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Preface

The 21st European Conference on Object-Oriented Programming, ECOOP 2007,
was held in Berlin, Germany, on July 30 to August 3, 2007. ECOOP is the most
important and inspiring forum in Europe and beyond for researchers, practition-
ers, and students working in that smorgasbord of topics and approaches known
as object orientation. This topic area was explored and challenged by excellent
invited speakers—two of which were the winners of this year’s Dahl-Nygaard
award—in the carefully refereed and selected technical papers, on posters, via
demonstrations, and in tutorials. Each of the many workshops complemented
this with a very interactive and dynamic treatment of more specific topics. Fi-
nally, panels allowed for loud and lively disagreement. Yet, it is one of ECOOP’s
special qualities that this plethora of activities add up to a coherent and exciting
whole, rather than deteriorating into chaos.

The Program Committee received 161 submissions this year. Only 135 of
them were carried through the full review process, because of a number of re-
tractions and a number of submissions of abstracts that were never followed by
a full paper. However, the remaining papers were of very high quality and we
accepted 25 of them for publication. Helping very good papers to be published is
more useful than having an impressively low acceptance rate. The papers were
selected according to four groups of criteria, whose priority depended on the
paper: relevance; originality and significance; precision and correctness; and pre-
sentation and clarity. Each paper had three, four, or five reviews, depending on
how controversial it was. As a new thing this year we let the authors read their
reviews before the Program Committee meeting, and solicited a short response
from the authors; this seemed to be helpful in several ways. The discussions
at the Program Committee meeting, February 1–2 2007, were often long and
agitated, but at the end we were happy with the result.

The success of ECOOP 2007 was only possible because of the dedication,
inspiration, and plain hard work of many people. I would like to thank the au-
thors for submitting so many high-quality papers. I would also like to thank
the Program Committee for writing the more than 500 reviews and partici-
pating very actively in the Program Committee meeting; the Organizing Chair
Stephan Herrmann for helping with numerous problems along the way; the AITO
Executive board and especially Dave Thomas for their good advice on several
occasions; Richard van de Stadt who was in charge of the submission Web site
and its software, for his impressively quick response times, high quality of work,
and generally friendly nature; and finally Karen Kjær Møller, who helped us all
very much with administrative and similar tasks during the Program Committee
meeting.

May 2007 Erik Ernst
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Peter Möckel (Deutsche Telekom Laboratories, Germany)

Panel Chairs
Bernd Mahr (Technical University of Berlin, Germany)
Judith Bishop (University of Pretoria, South Africa)

Tutorial Chairs
Thomas Santen (Technical University of Berlin, Germany)
Klaus Grimm (DaimlerChrysler AG, Germany)

Workshop Chairs
Peter Pepper (Technical University of Berlin, Germany)
Arnd Poetzsch-Heffter (Technical University of Kaiserslautern, Germany)



VIII Organization

Workshop Committee
Uwe Aßmann (Dresden University of Technology, Germany)
Lodewijk Bergmans (University of Twente, The Netherlands)
Nick Mitchell (IBM T.J. Watson Research Center, USA)
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Organization IX

Erik Ernst (University of Aarhus, Denmark)
Yossi Gil (The Technion, Israel)
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Erlang – Software for a Concurrent World

Joe Armstrong

Ericsson AB
joe.armstrong@ericsson.com

Abstract. This talk is about Erlang and Concurrency Oriented Pro-
gramming. We start with a short history of Erlang and of shared state
and message passing concurrency. We argue that it is impossible to make
fault-tolerant systems using mutable shared state concurrency models.
We explain the thinking behind what has become known as “Erlang style
concurrency” and show the relation to Concurrency Oriented Program-
ming. We take a brief detour and talk about the commercial spread of
Erlang, highlighting some of the more successful products and compa-
nies based on Erlang. We talk about the general problem of program-
ming multicore computers and show how the goal of achieving factor
N speedups on N-core processors with no change to the code, is being
realised.

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Gradual Typing for Objects

Jeremy Siek1 and Walid Taha2

1 University of Colorado, Boulder, CO 80309, USA
and LogicBlox Inc., Atlanta, GA 30309, USA

jeremy.siek@colorado.edu
2 Rice University, Houston, TX 77005, USA

taha@rice.edu

Abstract. Static and dynamic type systems have well-known strengths
and weaknesses. In previous work we developed a gradual type system for
a functional calculus named λ?

→. Gradual typing provides the benefits of
both static and dynamic checking in a single language by allowing the
programmer to control whether a portion of the program is type checked
at compile-time or run-time by adding or removing type annotations on
variables. Several object-oriented scripting languages are preparing to
add static checking. To support that work this paper develops Ob?

<:,
a gradual type system for object-based languages, extending the Ob<:

calculus of Abadi and Cardelli. Our primary contribution is to show that
gradual typing and subtyping are orthogonal and can be combined in a
principled fashion. We also develop a small-step semantics, provide a
machine-checked proof of type safety, and improve the space efficiency
of higher-order casts.

1 Introduction

Static and dynamic typing have complementary strengths, making them better
for different tasks and stages of development. Static typing provides full-coverage
error detection, efficient execution, and machine-checked documentation whereas
dynamic typing enables rapid development and fast adaptation to changing re-
quirements. Gradual typing allows a programmer to mix static and dynamic
checking in a program and provides a convenient way to control which parts of
a program are statically checked. The goals for gradual typing are:

– Programmers may omit type annotations on parameters and immediately
run the program; run-time type checks are performed to preserve type safety.

– Programmers may add type annotations to increase static checking. When
all parameters are annotated, all type errors are caught at compile-time.1

– The type system and semantics should minimize the implementation burden
on language implementors.

In previous work we introduced gradual typing in the context of a functional
calculus named λ?

→ [47]. This calculus extends the simply typed lambda calculus
1 The language under study does not include arrays so the claim that we catch all

type errors does not include the static detection of out-of-bound errors.

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 2–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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with a statically unknown (dynamic) type ? and replaces type equality with type
consistency to allow for implicit coercions that add and remove ?s.

Developers of the object-oriented scripting languages Perl 6 [49] and JavaScript
4 [27] expressed interest in our work on gradual typing. In response, this paper
develops the type theoretic foundation for gradual typing in object-oriented lan-
guages. Our work is based on the Ob<: calculus of Abadi and Cardelli, a statically-
typed object calculus with structural subtyping. We develop an extended calculus,
named Ob?

<:, that adds the type ? and replaces the use of subtyping with a relation
that integrates subtyping with type consistency.

The boundary between static and dynamic typing is a fertile area of research
and the literature addresses many goals that are closely related to those we
outline above. Section 8 describes the related work in detail.

The paper starts with a programmer’s and an implementor’s tour of grad-
ual typing (Sections 2 and 3 respectively) before proceeding with the technical
development of the new results in Sections 4, through 7.

Technical Contributions. This paper includes the following original contribu-
tions:

1. The primary contribution of this paper shows that type consistency and
subtyping are orthogonal and can be naturally superimposed (Section 4).

2. We develop a syntax-directed type system for Ob?
<: (Section 5).

3. We define a semantics for Ob?
<: via a translation to the intermediate lan-

guage with explicit casts Ob〈·〉
<: for which we define a small-step operational

semantics (Section 6).
4. We improve the space efficiency of the operational semantics for higher-order

casts by applying casts in a lazy fashion to objects (Section 6).
5. We prove that Ob?

<: is type safe (Section 7). The proof is a streamlined
variant of Wright and Felleisen’s syntactic approach to type soundness [5,
53]. The formalization and proof are based on a proof of type safety for
FOb?

<: (a superset of Ob?
<: that also includes functions) we wrote in the

Isar proof language [52] and checked using the Isabelle proof assistant [39].
The formalization for FOb?

<: is available in a technical report [46].
6. We prove that Ob?

<: is statically type safe for fully annotated programs
(Section 7), that is, we show that neither cast exceptions nor type errors
may occur during program execution.

2 A Programmer’s View of Gradual Typing

We give a description of gradual typing from a programmer’s point of view,
showing examples in hypothetical variant of the ECMAScript (aka JavaScript)
programming language [15] that provides gradual typing. The following Point
class definition has no type annotations on the data member x or the dx param-
eter. The gradual type system therefore delays checks concerning x and dx inside
the move method until run-time, as would a dynamically typed language.
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class Point {
var x = 0
function move(dx) { this.x = this.x + dx }

}
var a : int = 1
var p = new Point
p.move(a)

More precisely, because the types of the variables x and dx are statically un-
known the gradual type system gives them the “dynamic” type, written ? for
short. The reader may wonder why we do not infer the type of x from its ini-
tializer 0. We discuss the relation between gradual typing and type inference
in Section 8. Now suppose the + operator expects arguments of type int. The
gradual type system allows an implicit coercion from type ? to int. This kind of
coercion could fail (like a down cast) and therefore must be dynamically checked.
In statically-typed object-oriented languages, such as Java and C#, implicit up-
casts are allowed (they never fail) but not implicit down-casts. Allowing implicit
coercions that may fail is the distinguishing feature of gradual typing and is
what allows gradual typing to support dynamic typing.

To enable the gradual migration of code from dynamic to static checking,
gradual typing allows for a mixture of the two and provides seamless interaction
between them. In the example above, we define a variable a of type int, and
invoke the dynamically typed move method. Here the gradual type system allows
an implicit coercion from int to ?. This is a safe coercion—it can never fail at
run-time—however the run-time system needs to remember the type of the value
so that it can check the type when it casts back to int inside of move.

Gradual typing also allows implicit coercions among more complicated types,
such as object types. An object type is similar to a Java-style interface in that it
contains a list of member signatures, however object types are compared struc-
turally instead of by name. In the following example, the equal method has a
parameter o annotated with the object type [x:int].

class Point {
var x = 0
function bool equal(o : [x:int]) { return this.x == o.x }

}
var p = new Point
var q = new Point
p.equal(q)

The method invocation p.equal(q) is allowed by the gradual type system. The type
of parameter o is [x:int] whereas the type of the argument q is [x:?,equal:[x:int]→bool].
We compare the two types structurally, one member at a time. For x we have a
coercion from ? to int, so that is allowed. Now consider the equal member. Because
this is an object-oriented language with subtyping, we can use an object with more
methods in a place that is expecting an object with fewer methods.
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Next we look at a fully annotated program, that is, a program where all
the variables are annotated with types. In this case the gradual type system
acts like a static type system and catches all type errors during compilation. In
the example below, the invocation of the annotated move method with a string
argument is flagged as a static type error.

class Point {
var x : int = 0
function Point move(dx : int) { this.x = this.x + dx }

}
var p = new Point
p.move(”hi”) // static type error

3 An Implementor’s View of Gradual Typing

Next we give an overview of gradual typing from a language implementor’s point
of view, describing the type system and semantics. The main idea of the type
system is that we replace the use of type equality with type consistency, written
∼. The intuition behind type consistency is to check whether the two types
are equal in the parts where both types are known. The following are a few
examples. The notation [l1 : s1, . . . , ln : sn] is an object type where l : s is the
name l and signature s of a method. A signature has the form τ → τ ′, where τ
is the parameter type and τ ′ is the return type of the method.

int ∼ int int �∼ bool ? ∼ int int ∼?
[x : int→ ?, y : ?→ bool] ∼ [y : bool→ ?, x : ?→ int]

[x : int→ int, y : ?→ bool] �∼ [x : bool → int, y :?→ bool]
[x : int→ int, y : ?→ ?] �∼ [x : int→ int]

To express the “where both types are known” part of the type consistency re-
lation, we define a restriction operator, written σ|τ . This operator “masks off”
the parts of type σ that are unknown in type τ . For example,

int|? =? int|bool = int

[x : int→ int, y : int→ int]|[x: ?→ ?,y:int→int] = [x : ? → ?, y : int→ int]

The restriction operator is defined as follows.

σ|τ = case (σ, τ ) of
(−, ?) ⇒ ?

| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , ln : tn]) ⇒
[l1 : s1|t1 , . . . , ln : sn|tn ]

| (−, −) ⇒ σ

(σ1 → σ2)|(τ1→τ2) = (σ1|τ1) → (σ2|τ2)
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Definition 1. Two types σ and τ are consistent, written σ ∼ τ , iff σ|τ = τ |σ,
that is, when the types are equal where they are both known.2

Proposition 1. (Basic Properties of ∼)

1. ∼ is reflexive.
2. ∼ is symmetric.
3. ∼ is not transitive. For example, bool ∼ ? and ? ∼ int but bool �∼ int.
4. τ ∼ τ |σ.
5. If neither σ nor τ contain ?, then σ ∼ τ iff σ = τ .

A gradual type system uses type consistency where a simple type system uses
type equality. For example, in the following hypothetical rule for method invo-
cation, the argument and parameter types must be consistent.

Γ � e1 : [. . . , l : σ → τ, . . .] Γ � e2 : σ′ σ′ ∼ σ

Γ � e1.l(e2) : τ

Gradual typing corresponds to static typing when no ? appear in the program
(either explicitly or implicitly) because when neither σ nor τ contain ?, we have
σ ∼ τ if and only if σ = τ , as stated in Proposition 1.

Broadly speaking, there are two ways to implement the run-time behavior of
a gradually typed language. One option is to erase the type annotations and
interpret the program as if it were dynamically typed. This is an easy way to
extend a dynamically typed language with gradual typing. The disadvantages
of this approach is that unnecessary run-time type checks are performed and
some errors become manifest later in the execution of the program. We do not
describe this approach here as it is straightforward to implement.

The second approach performs run-time type checks at the boundaries of
dynamically and statically typed code. The advantage is that statically typed
code performs no run-time type checks. But there is an extra cost in that run-
time tags contain complete types so that objects may be completely checked at
boundaries. There are observable differences between the two approaches. The
following example runs to completion with the first approach but produces an
error with the second approach.

function unit foo(dx : int) { }
var x : ? = false; foo(x)

In this paper we give a high-level description of the second approach by defin-
ing a cast-inserting translation from Ob?

<: to an intermediate language with
explicit casts named Ob〈·〉

<:. The explicit casts have the form 〈τ ⇐ σ〉e, where
σ is the type of the expression e and τ is the target type. As an example of
cast-insertion, consider the translation of the unannotated move method.

2 We chose the name “consistency” because it is analogous to the consistency of partial
functions. This analogy can be made precise by viewing types as trees and then using
the standard encoding of trees as partial functions from tree-paths to labels [41]. The
?s are interpreted as places where the partial function is undefined.
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function move(dx) { this.x = this.x + dx }
� function ? move(dx : ?) { this.x = 〈?⇐ int〉(〈int⇐ ?〉this.x + 〈int⇐ ?〉dx) }

We define the run-time behavior of Ob〈·〉
<: with a small-step operational seman-

tics in Section 6. The operational semantics defines rewrite rules that simplify an
expression until it is either a value or until it gets stuck (no rewrite rules apply).
A stuck expression corresponds to an error. We distinguish between two kinds
of errors: cast errors and type errors. A cast error occurs when the run-time
type of a value is not consistent with the target type of the cast. Cast errors can
be thought of as triggering exceptions, though for simplicity we do not model
exceptions here. We categorize all other stuck expressions as type errors.

Definition 2. A program is statically type safe when neither cast nor type
errors can occur during execution. A program is type safe when no type errors
can occur during execution.

In Section 7 we show that any Ob?
<: program is type safe and that any Ob?

<:

program that is fully annotated is statically type safe.

4 Combining Gradual Typing and Subtyping

In previous work we discovered that approaches to gradual typing based on
subtyping and ? as “top” do not achieve static type safety for fully annotated
terms [47]. The problem is that if you allow an implicit down-cast from “top”
to any type (? <: S), then you can use the normal up-cast rule R <: ? and
transitivity to deduce R <: S for any two types R and S. The resulting type
system therefore accepts all programs and does not reject programs that have
static type errors. This discovery led us to the type consistency relation which
formed the basis for our gradual type system for functional languages. However,
subtyping is a central feature of object-oriented languages, so the question is how
can we add subtyping to gradual type system while maintaining static type safety
for fully annotated terms? It turns out to be as simple as adding subsumption:

Γ � e : σ σ <: τ
Γ � e : τ

We do not treat ? as the top of the subtype hierarchy, but instead treat ? as
neutral to subtyping, with only ? <: ?. The following defines subtyping.3

int <: int float <: float bool <: bool ? <: ?

int <: float [li : si
i∈1...n+m] <: [li : si

i∈1...n]

3 The calculus Ob?
<: does not include functions, so no subtyping rules for function

types are provided here. The calculus FOb?
<: in the technical report [46] includes

function types.
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While the type system is straightforward to define, more care is needed to
define 1) a type checking algorithm and 2) an operational semantics that takes
subtyping into account. In this section we discuss the difficulties in defining a
type checking algorithm and present a solution.

It is well known that a type checking algorithm cannot use the subsumption
rule because it is inherently non-deterministic. (The algorithm would need to
guess when to apply the rule and what target type to use.) Instead of using
subsumption, the standard approach is to use the subtype relation in the other
typing rules where necessary [41]. The following is the result of applying this
transformation to our gradually typed method invocation rule.

Γ � e1 : [. . . , l : σ → τ, . . .] Γ � e2 : σ′ σ′ <: σ′′ σ′′ ∼ σ

Γ � e1.l(e2) : τ

This rule still contains some non-determinacy because of the type σ′′. We need
a combined relation that directly compares σ′ and σ.

Fortunately there is a natural way to define a relation that takes both type
consistency and subtyping into account. To review, two types are consistent
when they are equal where both are known, i.e., σ ∼ τ iff σ|τ = τ |σ. To combine
type consistency with subtyping, we replace type equality with subtyping.

Definition 3 (Consistent-Subtyping). σ � τ ≡ σ|τ <: τ |σ

Here we apply the restriction operator to types σ and τ that may differ according
to the subtype relationship, so we must update the definition of restriction to
allow for objects of differing widths, as shown below.

σ|τ = case (σ, τ ) of
(−, ?) ⇒ ?

| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , lm : tm]) where n ≤ m ⇒
[l1 : s1|t1 , . . . , ln : sn|tn ]

| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , lm : tm]) where n > m ⇒
[l1 : s1|t1 , . . . , lm : sm|tm , lm+1 : sm+1, . . . , ln : sn]

| (−, −) ⇒ σ

(σ1 → σ2)|(τ1→τ2) = (σ1|τ1) → (σ2|τ2)

The following proposition allows us to replace the conjunction σ′ <: σ′′ and
σ′′ ∼ σ with σ′ � σ in the gradual method invocation rule.

Proposition 2 (Properties of Consistent-Subtyping). The following are
equivalent:

1. σ � τ ,
2. σ <: σ′ and σ′ ∼ τ for some σ′, and
3. σ ∼ σ′′ and σ′′ <: τ for some σ′′.
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The method invocation rule can now be formulated in a syntax-directed fashion
using the consistent-subtyping relation.

Γ � e1 : [. . . , l : σ → τ, . . .] Γ � e2 : σ′ σ′ � σ

Γ � e1.l(e2) : τ

It is helpful to think of the type consistency and subtyping relation as al-
lowing types to differ along two different axes, with ∼ along the x-axis and <:
along the y-axis. With this intuition, the following informal diagram represents
Proposition 2.

σ′

∼

τ |σ ∼ τ

σ

<:

��

∼

∼

σ|τ

<:

��

σ′′

<:

��

The following is an example of the above diagram for a particular choice of types.

[x : int → ?]

∼

[x :? → ?] ∼ [x :? → int]

[x : int → ?, y : bool → bool]

<:

��

∼

∼

[x :? → ?, y : bool → bool]

<:

��

[x :? → int, y : bool → bool]

<:

��

5 A Gradually Typed Object Calculus

We define a gradually typed object calculus named Ob?
<: by extending Abadi and

Cardelli’s Ob<: [1] with the unknown type ?. For purposes of exposition, we add
one parameter (in addition to self) to methods. The syntax of Ob?

<: includes
three constructs for working with objects. The form [li=τi ς(xi : σi)ei

i∈1...n]
creates an object containing a set of methods. Each method has a name li, a
parameter xi with type annotation σi, a body ei, and a return type τi. The
ς symbol just means “method” and is reminiscent of the λ used in functional
calculi. The self parameter is implicit. Omitting a type annotation is short-hand
for annotating with type ?. Multi-parameter methods can be encoded using
single-parameter methods [1]. The form e1.l(e2) is a method invocation, where
e1 is the receiver object, l is the method to invoke, and e2 is the argument. The
form e1.l:=τ ς(x :σ)e2 is a method update. The result is a copy of e1 except that
its method l is replaced by the right-hand side. Abadi and Cardelli chose not to
represent fields in the core calculus but instead encode fields as methods. The
following is an example of a point object in Ob?

<::
[equal=bool ς(p:[x:int]) self.x.eq(p.x), x=zero].
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Variables x ∈ X ⊇ {self} e ∈ Ob<:

Method labels l ∈ L
Ground Types γ ∈ G ⊇ {bool, int, float, unit}
Constants c ∈ C ⊇ {true, false, zero, 0.0, ()}
Types ρ, σ, τ ::= γ | [li : si

i∈1...n]
Method Sig. s, t ::= τ → τ
Expressions e ::= x | c | [li=τi ς(xi :σi) ei

i∈1...n] |
e.l(e) | e.l:=τ ς(x :σ)e

Syntactic Sugar l=e : τ ≡ l=τ ς(x :unit)e (x /∈ e)
e.l ≡ e.l(())
e1.l:=e2 : τ ≡ e1.l:=τ ς(x :unit)e2 (x /∈ e)

Types ρ, σ, τ += ? e ∈ Ob?
<: ⊃ Ob<:

Syntactic Sugar ς(x)e ≡ ? ς(x :?)e
l=e ≡ l=e :?
e1.l:=e2 ≡ e1.l:=e2 :?

The gradual type system for Ob?
<: is shown in Figure 1. (For reference, the

type system for Ob<: is in the Appendix, Fig. 4.) We use the symbol Γ for
environments, which are finite partial functions from variables to types. The
type system is parameterized on a TypeOf function that maps constants to
types.

There are two rules for each elimination form. The first rule handles the case
when the type of the receiver is unknown and the second rule handles when the
type of the receiver is known. In the (GIvk1) rule for method invocation, the
type of the receiver e1 is unknown and the type of the argument e2 is uncon-
strained. The rule (GIvk2) is described in Section 4, and is where we use the
consistent-subtyping relation �. The rule (GUpd1) for method update handles
the case when the type of the receiver e1 is unknown. The new method body is
type checked in an environment where self is bound to ? and the parameter x is
bound to its declared type σ. The result type for this expression is [l : σ → τ ]. 4

The rule (GUpd2) handles the case for method update when the type of the
receiver is an object type ρ. The new method body is type checked in an envi-
ronment where self is bound to ρ and x is bound to its declared type σ. The
constraints σk � σ and τ � τk make sure that the new method can be coerced
to the type of the old method.

4 The result type for (GUpd1) is somewhat unsatisfactory because a method l′ �= l
can be invoked on e but not on the updated version of e. This can be easily resolved
by extending the type system to include open object types in addition to closed
object types, as is done in OCaml. If an object has an open object type you may
invoke methods that are not listed in its type.
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(GVar)

Γ (x) = τ

Γ 	G x : τ
Γ 	G e : τ

(GConst) Γ 	G c : TypeOf (c)

(GObj)

Γ, self :ρ, xi : σi 	G ei : τi ∀i ∈ 1 . . . n

Γ 	G [li=τi ς(xi :σi)ei
i∈1...n] : ρ

(where ρ ≡ [li : σi → τi
i∈1...n])

(GIvk1)
Γ 	G e1 : ? Γ 	G e2 : τ

Γ 	G e1.l(e2) : ?

(GIvk2)

Γ 	G e1 : [. . . , l : σ → τ, . . .] Γ 	G e2 : σ′ σ′ � σ

Γ 	G e1.l(e2) : τ

(GUpd1)

Γ 	G e : ? Γ, self : ?, x :σ 	 e′ : τ

Γ 	G e.l:=τ ς(x :σ)e′ : [l : σ → τ ]

(GUpd2)

Γ 	G e1 : ρ Γ, self :ρ, x :σ 	G e2 : τ σk � σ τ � τk

Γ 	G e1.lk:=τ ς(x : σ)e2 : ρ

(where ρ ≡ [li : σi → τi
i∈1...n] and k ∈ 1 . . . n)

Fig. 1. A Gradual Type System for Objects

6 A Semantics for Ob?
<:

In this section we define a semantics for Ob?
<: by defining a cast-inserting

translation to the intermediate language Ob〈·〉
<: and by defining an operational

semantics for Ob〈·〉
<: . The syntax and typing rules for the intermediate lan-

guage are those of Ob<: [1] (Fig. 4 of the Appendix) extended with an ex-
plicit cast. The syntax and typing rule for the explicit cast are shown below.

Intermediate Language

Expressions e += 〈τ ⇐ τ〉e e ∈ Ob〈·〉
<: ⊃ Ob<:

· · · Γ � e : σ σ ∼ τ σ �= τ

Γ � 〈τ ⇐ σ〉e : τ
Γ � e : τ

Most run-time systems for dynamic languages associate a “type tag” with each
value so that run-time type checks can be performed efficiently. In this paper
we use a term-rewriting semantics that works directly on the syntax, without
auxiliary structures. Instead of type tags, the cast expressions themselves are
used to support run-time type checking. The cast includes both the source and
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target type because both pieces of information are needed at run-time to apply
casts to objects.

We do not allow “no-op” casts in the intermediate language to simplify the
canonical forms of values, e.g., a value of type int is an integer, and not an
integer cast to int. The typing rule for casts requires the source and target type
to be consistent, so the explicit cast may only add or remove ?’s from the type.
Implicit up-casts due to subtyping remain implicit using a subsumption rule, as
such casts are safe and there is no need for run-time checking.

6.1 The Cast Insertion Translation

The cast insertion translation is guided by the gradual type system, inserting
casts wherever the type of a subexpression differs from the expected type. For
example, recall the rule for method invocation.

(GIvk2)

Γ �G e1 : [. . . , l : τ → τ ′, . . .] Γ �G e2 : σ σ � τ

Γ �G e1.l(e2) : τ ′

The type σ of e2 may differ from the method’s parameter type τ . We need to
translate the invocation to a well typed term of Ob〈·〉

<: , where the argument type
must be a subtype of the parameter type. We know that σ � τ , so σ can differ
from τ along both the type consistency relation ∼ and the subtype relation <:.
So we have the diagram on the left:

τ

σ

�
���������

τ

σ

�
����������

∼ �� ρ

<:

��

A cast can move us along the x-axis, and the subsumption rule can move us
along the y-axis. So a solution to the problem, shown above on the right, is to
cast e2 from σ to some type ρ where ρ <: τ . (We could just as well move up
along the y-axis via subsumption before casting along the x-axis; it makes no
difference.) The following example shows how we can choose ρ for a particular
situation and gives some intuition for how we can choose it in general.

[x :? → int]

[x : int→ ?, y : bool→ bool]

�
����������������������

∼ �� [x :? → int, y : bool → bool]

<:

��

The type ρ must be the same width (have the same methods) as σ, and it must
have a ? in all the locations that correspond to ?s in τ (and not have ?s where
τ does not). In general, we can construct ρ with the merge operator, written
σ ↼ τ , defined below.
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σ ↼ τ ≡ case (σ, τ ) of
(?, −) ⇒ τ

| (−, ?) ⇒ ?
| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , lm : tm]) where n ≤ m ⇒

[l1 : s1 ↼ t1, . . . , ln : sn ↼ tn]
| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , lm : tm]) where n > m ⇒

[l1 : s1 ↼ t1, . . . , lm : sm ↼ tm, lm+1 : sm+1, . . . , ln : sn]
| (−, −) ⇒ σ

(σ1 → σ2) ↼ (τ1 → τ2) = (σ1 ↼ τ1) → (σ2 ↼ τ2)

With the merge operator, we have the following diagram:

σ

σ′

�
������������

∼ �� (σ′ ↼ σ)

<:

��

Proposition 3 (Basic Properties of ↼)

1. (σ ↼ σ) = σ
2. σ ∼ (σ ↼ τ)
3. If σ � τ then (σ ↼ τ) <: τ .

The cast insertion judgment Γ � e � e′ : τ translates an expression e in the
environment Γ to e′ and determines that its type is τ . The cast insertion rule for
method invocation (on known object types) is defined as follows using σ′ ↼ σ
as the target of the cast on e2.

(CIvk2)

Γ � e1 � e′1 : [. . . , l : σ → τ, . . .] Γ � e2 � e′2 : σ′ σ′ � σ

Γ � e1.l(e2)� e′1.l(〈〈(σ′ ↼ σ)⇐ σ′〉〉e′2) : τ

In the case when σ′ = σ, we do not insert a cast, which is why we use the
following helper function.

〈〈τ ⇐ σ〉〉e ≡ if σ = τ then e else 〈τ ⇐ σ〉e

The rest of the translation rules are straightforward. Fig. 2 gives the full defini-
tion of the cast insertion translation.

The cast-insertion judgment subsumes the gradual type system and addi-
tionally specifies how to produce the translation. In particular, a cast-insertion
derivation can be created for precisely those terms accepted by the type system.

Proposition 4 (Cast Insertion and Gradual Typing)
Γ �G e : τ iff ∃e′. Γ � e� e′ : τ .

When there is a cast insertion translation for term e, the resulting term e′ is
guaranteed to be a well-typed term of the intermediate language. Lemma 1 is
used directly in the type safety theorem.
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Γ 	 e� e′ : τ

(CVar)

Γ (x) = τ

Γ 	 x� x : τ

(GConst) Γ 	 c� c : TypeOf (c)

(CObj)

Γ, self :ρ, xi : σi 	 ei � e′
i : τi ∀i ∈ 1 . . . n

Γ 	 [li=τi ς(xi : σi)ei
i∈1...n]� [li=τi ς(xi : σi)e

′
i

i∈1...n] : ρ
(where ρ ≡ [li : σi → τi

i∈1...n])

(CIvk1)

Γ 	 e1 � e′
1 : ? Γ 	 e2 � e′

2 : τ

Γ 	G e1.l(e2)� (〈〈[l : τ →?] ⇐?〉〉e′
1).l(e

′
2) : ?

(CIvk2)

Γ 	 e1 � e′
1 : [. . . , l : σ → τ, . . .] Γ 	 e2 � e′

2 : σ′ σ′ � σ

Γ 	 e1.l(e2)� e′
1.l(〈〈(σ′ ↼ σ) ⇐ σ′〉〉e′

2) : τ

(CUpd1)

Γ 	 e1 � e′
1 : ? Γ, self :?, x :σ 	 e2 � e′

2 : τ

Γ 	 e1.l:=τ ς(x :σ)e2 � (〈〈[l : σ → τ ] ⇐?〉〉e′
1).l:=τ ς(x :σ)e′

2 : [l : σ → τ ]

(CUpd2)

Γ 	 e1 � e′
1 : ρ Γ, self :ρ, x :σ 	 e2 � e′

2 : τ
σk � σ τ � τk e3 ≡ 〈〈τk ⇐ τ〉〉[x → 〈〈σ ⇐ σk〉〉y]e′

2

Γ 	 e1.lk:=τ ς(x :σ)e2 � e′
1.lk:=τk ς(y :σk)e3 : ρ

(where ρ ≡ [li : σi → τi
i∈1...n] and k ∈ 1 . . . n)

Fig. 2. Cast Insertion

Lemma 1 (Cast Insertion is Sound)
If Γ � e� e′ : τ then Γ � e′ : τ .

Proof. The proof is by induction on the cast insertion derivation.

The next lemma is needed to prove static type safety, that is, a fully annotated
term is guaranteed to produce neither cast nor type errors. The set of fully
annotated terms of Ob?

<: is exactly the Ob<: subset of Ob?
<:. The function FV

returns the set of variables that occur free in an expression.

Lemma 2 (Cast Insertion is the Identity for Ob<:)
If Γ � e � e′ : τ and e ∈ Ob<: and ∀x ∈ FV(e) ∩ dom(Γ ). Γ (x) ∈ Ob<: then
Γ � e : τ and τ ∈ Ob<: and e = e′.

Proof. The proof is by induction on the cast insertion derivation.

Lemma 2 is also interesting for performance reasons. It shows that for fully
annotated terms, no casts are inserted so there is no run-time type checking
overhead.
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6.2 Operational Semantics of Ob〈·〉
<:

In this section we define a small-step, evaluation context semantics [17, 18, 53]
for Ob〈·〉

<:. Evaluation reduces expressions to values.

Definition 4 (Values and Contexts). Simple values are constants, variables,
and objects. Values are simple values or a simple value enclosed in a single cast.
An evaluation context is an expression with a hole in it (written []) to mark
where rewriting (reduction) may take place.

Simple Values ξ ::= c | x | [li=τi ς(xi :σi)ei
i∈1...n]

Values v ::= ξ | 〈τ ⇐ τ〉ξ
Contexts E ::= [] | E.l(e) | v.l(E) | E:=τ ς(x :τ)e | 〈τ ⇐ τ〉E

The reduction rules are specified in Fig. 3. When a reduction rule applies to an
expression, the expression is called a redex:

Definition 5 (Redex). redex e ≡ ∃e′. e −→ e′

The semantics is parameterized on a δ-function that defines the behavior of the
primitive methods attached to the constants. The rule for method invocation
(Ivk) looks up the body of the appropriate method and substitutes the argu-
ment for the parameter. The primitive method invocation rule (Delta) simply
evaluates to the result of applying δ. In both the (Ivk) and (Delta) rules, the
argument is required to be a value as indicated by the use of meta-variable v.
Method update (Upd) creates a new object in which the specified method has
been replaced.

The traditional approach to evaluating casts is to apply them in an eager
fashion. For example, casting at function types creates a wrapper function with
the appropriate casts on the input and output [19, 20, 21, 48].

〈(ρ → ν) ⇐ (σ → τ)〉v −→ (λx :ρ. 〈ν ⇐ τ〉(v (〈σ ⇐ ρ〉x))

The problem with this approach is that the wrapper functions can build up,
one on top of another, using memory in proportion to the number of cast ap-
plications. The solution we use here is to delay the application of casts, and to
collapse sequences of casts into a single cast. When a cast is applied to a value
that is already wrapped in a cast, either the (Merge) or (Remove) rule applies,
or else the cast is a “bad cast”.

Definition 6 (Bad Cast)

badcast e ≡ ∃v ρ σ σ′ τ. e = 〈τ ⇐ σ′〉〈σ ⇐ ρ〉v ∧ ρ �� τ

BadCast e ≡ ∃E e′. e = E[e′] ∧ badcast e′

The (Merge) rule collapses two casts into a single cast, and is guarded by a
type check. The target type of the resulting cast must be consistent with the
inner source type ρ and it must be a subtype of the outer target type τ . We
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(Ivk) o.lj(v) −→ [self → o, xj → v]ej

(where o ≡ [li=τi ς(xi :σi)ei
i∈1...n]) (1 ≤ j ≤ n) e −→ e

(Delta) c.l(v) −→ δ(c, l, v)

(Upd)
[li=τi ς(xi :σi)ei

i∈1...n].lj :=τ ς(x :σ)e

−→ [li=τi ς(xi :σi)ei
i∈{1...n}−{j}, lj=τ ς(x :σ)e]

(1 ≤ j ≤ n)

(Merge)

ρ � τ ρ �= τ

〈τ ⇐ σ′〉〈σ ⇐ ρ〉v −→ 〈〈(ρ ↼ τ) ⇐ ρ〉〉v

(Remove)

ρ = τ

〈τ ⇐ σ′〉〈σ ⇐ ρ〉v −→ v

(IvkCst) (〈τ ⇐ σ〉v1).lj(v2) −→ 〈τ2 ⇐ σ2〉(v1.lj(〈σ1 ⇐ τ1〉v2))
(where σ ≡ [. . . , lj : σ1 → σ2, . . .] and τ ≡ [. . . , lj : τ1 → τ2, . . .])

(UpdCst)
(〈τ ⇐ σ〉v).lj :=τ2 ς(x :τ1)e

−→ 〈τ ⇐ σ〉(v.lj :=σ2 ς(z :σ1)〈〈σ2 ⇐ τ2〉〉[x → 〈〈τ1 ⇐ σ1〉〉z]e)
(where σ ≡ [. . . , lj : σ1 → σ2, . . .] and τ ≡ [. . . , lj : τ1 → τ2, . . .])

(Step)
e −→ e′

E[e] −→ E[e′]
e −→ e

(Refl) e −→∗ e e −→∗ e

(Trans)
e1 −→∗ e2 e2 −→ e3

e1 −→∗ e3

Fig. 3. Reduction

therefore use the ↼ operator and cast from ρ to ρ ↼ τ . The (Remove) rule
applies when the inner source and the outer target types are equal, and removes
both casts.

The delayed action of casts on objects is “forced” when a method is invoked
or updated. The rules (IvkCst) and (UpdCst) handle these cases.

7 Type Safety of Ob?
<:

The bulk of this section is dedicated to proving that the intermediate language
Ob〈·〉

<: is type safe. The type safety of our source language Ob?
<: is a conse-

quence of the soundness of cast insertion and the type safety of the intermediate
language. The type safety proof for the intermediate language has its origins
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in the syntactic type soundness approach of Wright and Felleisen[53], but is sub-
stantially reorganized using some folklore.5 We begin with a top-down
overview of the proof and then list the lemmas and theorems in the standard
bottom-up fashion.

The goal is to show that if a term es is well-typed (� es : τ) and reduces in
zero or more steps to ef (es �−→∗ ef ), then � ef : τ and ef is either a value or
contains a bad cast or ef can be further reduced. Note that the statement “ef is
either a value or contains a bad cast or ef can be further reduced” is equivalent
to saying that ef is not a type error as defined in Section 3. The proof of type
safety is by induction on the reduction sequence. A reduction sequence (defined
in Fig. 3) is either a zero-length sequence (so es = ef ), or a reduction sequence
es �−→∗ ei to an intermediate term ei followed by a reduction step ei �−→ ef . In
the zero-length case, where es = ef , we need to show that if es is well-typed then
it is not a type error. This is shown in the Progress Lemma. In the second case,
the induction hypothesis tells us that ei is well-typed. We then need to show
that if ei is well-typed and ei �−→ ef then ef is well-typed. This is shown in the
Preservation Lemma. Once we have a well-typed ef , we can use the Progress
Lemma to show that ef is not a type error.

Progress Lemma. Suppose that e is well-typed and not a value and does not
contain a bad cast. We need to show that e can make progress, i.e., there is
some e′ such that e �−→ e′. Therefore we need to show that e can be decomposed
into an evaluation context E filled with a redex e1 (∃e2. e1 −→ e2) so that we
can apply rule (Step) to get E[e1] �−→ E[e2]. The existence of such a decom-
position is given by the Decomposition Lemma.6 In general, when the Progress
Lemma fails for some language, it is because there is a mistake in the defini-
tion of evaluation contexts (which defines where evaluation should take place)
or there is a mistake in the reduction rules, perhaps because a reduction rule is
missing.

Preservation Lemma. We need to show that if � e : τ and e �−→ e′ then � e′ : τ .
Because e �−→ e′, we know there exists an E, e1, and e2 such that e = E[e1],
e′ = E[e2], and e1 −→ e2. The proof consists of three parts, each of which is
proved as a separate lemma.

5 The original proof of Wright and Felleisen requires the definition of faulty expressions
which is more complicated than necessary because it relies on a proof by contradic-
tion. Later type soundness proofs, such as [28, 38, 43], take a more direct approach.
We use a proof organization similar to [5].

6 Our Decomposition Lemma differs from the usual Unique Decomposition Lemma
(but is similar to Lemma A.15 in [5]) in that we include the premise that the ex-
pression is well-typed and conclude with a stronger statement than usual, that the
hole is filled with a redex. The usual approach is to conclude with a hole filled with
something, let us call it a pre-redex, that turns out to be either a redex or an ill-typed
term. We do not prove uniqueness here because it is not necessary in the proof of
type safety. Nevertheless, decompositions are unique for Ob〈·〉

<: .
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1. From � E[e1] : τ we know that e1 is well-typed (� e1 : σ) and the context
E is well-typed. The typing judgment for contexts (defined the Appendix,
Fig. 5) assigns the context an input and output type, such as � E : σ ⇒ τ .
(Subterm Typing)

2. Because e1 is well-typed and e1 −→ e2, e2 is well-typed with the same type
as e1. (Subject Reduction)

3. Filling E with e2 produces an expression of type τ . More precisely, if � E :
σ ⇒ τ and � e2 : σ then � E[e2] : τ . (Replacement)

In general, Subterm Typing and Replacement hold for a language so long as
evaluation contexts are properly defined. Subject Reduction, on the other hand,
is highly dependent on the reduction rules of the language and is the crux of the
type safety proof.

We now state the lemmas and theorems in the traditional bottom-up order,
but without further commentary due to lack of space. We start with some basic
properties of objects.

Proposition 5 (Properties of Objects)

1. If Γ � [li=τi ς(xi :σi)ei
i∈1...n] : ρ where ρ ≡ [li : σi → τi

i∈1...n] and
j ∈ 1 . . . n and Γ, self : ρ, xj : σj � e′ : τj

then Γ � [li=τi ς(xi :σi)ei
i∈{1...n}−{j}, lj=τj ς(xj : σj)e′] : ρ.

2. If [li : σi → τi
i∈1...n] <: [lj : ρj → νj

j∈1...m] and k ∈ 1 . . .m then ρk = σk

and νk = τk.

7.1 Progress

Towards proving the Progress Lemma, we show that values of certain types have
canonical forms.

Lemma 3 (Canonical Forms)

1. If � v : γ then ∃c ∈ C. v = c.
2. If � v : ρ where ρ ≡ [li : σi → τi

i∈1...n]
then ∃x e. v = [li = τi ς(xi :σi)ei

i∈1...n]
or ∃x e σ. v = 〈σ ⇐ ρ〉[li = τi ς(xi :σi)ei

i∈1...n].
3. �� ξ : ? (simple values do not have type ?)

The main work in proving Progress is proving the Decomposition Lemma.

Lemma 4 (Decomposition). If � e : τ then e ∈ Values or
∃σ E e′. e = E[e′] ∧ (redex e′ ∨ badcast e′).

Proof. By induction on the typing derivation using the Canonical Forms Lemma
and Proposition 5.

Lemma 5 (Progress). If � e : τ then e ∈ Values or ∃e′.e �−→ e′ or BadCast e.

Proof. Immediate from the Decomposition Lemma.
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7.2 Preservation

Next we prove the Preservation Lemma and the three lemmas on which it relies:
Subterm Typing, Subject Reduction, and Replacement.

Lemma 6 (Subterm Typing). If � E[e] : τ then ∃σ. � E : σ ⇒ τ and � e : σ.

Proof. A straightforward induction on the typing derivation.

We assume that the δ function for evaluating primitives is sound.

Assumption 1 (δ-typability)
If TypeOf (c) = [. . . , l : σ → τ, . . .] and � v : σ then � δ(c, l, v) : τ .

Towards proving the Subject Reduction lemma, for the function application case
we need the standard Substitution Lemma which in turn requires an Environ-
ment Weakening Lemma.

Definition 7. Γ ⊆ Γ ′ ≡ ∀xτ. Γ (x) = τ implies Γ ′(x) = τ

Lemma 7 (Environment Weakening)
If Γ � e : τ and Γ ⊆ Γ ′ then Γ ′ � e : τ .

Proof. A straightforward induction on the typing derivation.

Definition 8. We write Γ\{x} for Γ restricted to have domain dom(Γ )\{x}.

Lemma 8 (Substitution)
If Γ � e1 : τ and Γ (x) = σ and Γ\{x} ⊆ Γ ′ and Γ ′ � e2 : σ
then Γ ′ � [x �→ e2]e1 : τ .

Proof. By induction on the typing derivation. All cases are straightforward ex-
cept for (Obj) and (Upd) for which we use Environment Weakening.

Lemma 9 (Inversions on Typing Rules)

1. If Γ � c : σ → τ then there exists σ′ and τ ′ such that TypeOf (c) = σ′ → τ ′

and σ <: σ′ and τ ′ <: τ .
2. If Γ � 〈τ ′ ⇐ σ〉e : τ then τ ′ <: τ and σ ∼ τ ′ and σ �= τ ′ and Γ � e : σ.
3. Suppose Γ � [li = τi ς(xi : σi)ei

i∈1...n] : τ and let ρ ≡ [li : σi → τi
i∈1...n].

Then ρ <: τ and for any j ∈ 1 . . . n we have Γ, self : ρ, xj : σj � ej : τj.

Proof. The proofs are by induction on the typing derivation.

Lemma 10 (Subject Reduction). If � e : τ and e −→ e′ then � e′ : τ .

Proof. The proof is by induction on the typing derivation, followed by case anal-
ysis on the reduction.

(Ivk) Use the Substitution and Inversion Lemmas and Proposition 5.
(Delta) Use δ-typability and the Inversion Lemma.
(Upd) Use Proposition 5 and the Inversion Lemma.
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(Merge) Use Proposition 3 and the Inversion Lemma.
(Remove, InvCst, UpdCst) Use the Inversion Lemma.

Lemma 11 (Replacement). If E : σ ⇒ τ and � e : σ then � E[e] : τ .

Proof. A straightforward induction on the context typing derivation.

Lemma 12 (Preservation). If e �−→ e′ and � e : τ then � e′ : τ .

Proof. Apply Subterm Typing to get a well-typed evaluation context and redex.
Then apply Subject Reduction and Replacement.

7.3 Type Safety

Lemma 13 (Type Safety of Ob〈·〉
<:). If � e : τ and e �−→∗ e′ then � e′ : τ and

e′ ∈ Values or BadCast e′ or ∃e′′. e′ �−→ e′′.

Proof. By induction on the evaluation steps. For the base case, where e = e′, we
use Progress to show that e is either a value, a bad cast, or can make progress.
For the case where e1 �−→∗ e2 and e2 �−→ e3, e2 is well-typed by the induction
hypothesis and therefore e3 is well-typed by Preservation. Applying Progress to
e3 brings us to the conclusion.

Theorem 1 (Type Safety of Ob?
<:). If � e1 � e2 : τ and e2 �−→∗ e3 then

� e3 : τ and e3 ∈ Values or BadCast e3 or ∃e4. e3 �−→ e4.

Proof. The expression e2 is well-typed because cast insertion is sound (Lemma 1).
We then apply Lemma 13.

Theorem 2 (Static Type Safety of Ob?
<:). If e1 ∈ Ob<: and � e1 � e2 : τ

and e2 �−→∗ e3 then � e3 : τ and e3 ∈ Values or ∃e4. e3 �−→ e4.

Proof. By Lemma 2 we have e1 = e2, so e2 does not contain any casts. By
Lemma 13 we know that either e3 is a value or a bad cast or can make progress.
However, since e2 did not contain any casts, there can be none in e3.

8 Related Work

Type Annotations for Dynamic Languages. Several dynamic programming lan-
guages allow explicit type annotations, such as Common LISP [33], Dylan [16,
45], Cecil [10], Boo [13], extensions to Visual Basic.NET and C# proposed by
Meijer and Drayton [36], the Bigloo [8, 44] dialect of Scheme [34], and the
Strongtalk dialect of Smalltalk [6, 7]. In these languages, adding type annotations
brings some static checking and/or improves performance, but the languages do
not make the guarantee that annotating all parameters in the program prevents
all type errors and type exceptions at run-time. This paper formalizes a type
system that provides this stronger guarantee.
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Soft Typing. Static checking can be added to dynamically typed languages using
static analyses. Cartwright and Fagan [9], Flanagan and Felleisen [22], Aiken,
Wimmers, and Lakshman [3], and Henglein and Rehof [29, 30] developed analyses
that can be used, for example, to catch bugs in Scheme programs [23, 30]. These
analyses provide warnings to the programmer while still allowing the program-
mer to execute their program immediately (even programs with errors), thereby
preserving the benefits of dynamic typing. However, the programmer does not
control which portions of a program are statically checked: these whole-program
analyses have non-local interactions. Also, the static analyses bear a significant
implementation burden on developers of the language. On the other hand, they
can be used to reduce the amount of run-time type checking in dynamically
typed programs (Chambers et al. [11, 14]) and therefore could also be used to
improve the performance of gradually typed programs.

Dynamic Typing in Statically Typed Languages. Abadi et al. [2] extended a stat-
ically typed language with a Dynamic type and explicit injection (dynamic) and
projection operations (typecase). Their approach does not satisfy our goals, as
migrating code between dynamic and static checking not only requires chang-
ing type annotations on parameters, but also adding or removing injection and
projection operations throughout the code. Our approach automates the latter.

Interoperability. Gray, Findler, and Flatt [25] consider the problem of interoper-
ability between Java and Scheme and extended Java with a Dynamic type with
implicit casts. They did not provide an account of the type system, but their
work provided inspiration for our work on gradual typing. Matthews and Find-
ler [35] define an operational semantics for multi-language programs but require
programmers to insert explicit “boundary” markers between the two languages,
reminiscent of the explicit injection and projections of Abadi et al.

Tobin-Hochstadt and Felleisen [51] developed a system that provides con-
venient inter-language migration between dynamic and static languages on a
per-module basis. In contrast, our goal is to allow migration at finer levels of
granularity and to allow for partially typed code. Tobin-Hochstadt and Felleisen
build blame tracking into their system and show that errors may not originate
from statically typed modules. Our gradual type system enjoys a similar prop-
erty. If all parameters in a term are annotated then no casts are inserted into the
term during compilation provided the types of the free variables in the term do
not mention ? (Lemma 2). Thus, no cast errors can originate from such a term.

Hybrid typing. The Hybrid Type Checking of Flanagan et al. [21, 24] combines
standard static typing with refinement types, where the refinements may express
arbitrary predicates. The type system tries to satisfy the predicates using auto-
mated theorem proving, but when no conclusive answer is given, the system in-
serts run-time checks. This work is analogous to ours in that it combines a weaker
and stronger type system, allowing implicit coercions between the two sys-
tems and inserting run-time checks. One notable difference between our system
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and Flanagan’s is that his is based on subtyping whereas ours is based on type
consistency.

Ou et al. [40] define a language that combines standard static typing with
more powerful dependent typing. Implicit coercions are allowed to and from
dependent types and run-time checks are inserted. This combination of a weaker
and a stronger type system is again analogous to gradual typing.

Quasi-Static Typing. Thatte’s Quasi-Static Typing [50] is close to our gradual
type system but relies on subtyping and treats the unknown type as the top of
the subtype hierarchy. In previous work [47] we showed that implicit down-casts
combined with the transitivity of subtyping creates a fundamental problem that
prevents the type system from catching all type errors even when all parameters
in the program are annotated.

Riely and Hennessy [42] define a partial type system for Dπ, a distributed
π-calculus. Their system allows some locations to be untyped and assigns such
locations the type lbad. Their type system, like Quasi-Static Typing, relies on
subtyping, however they treat lbad as “bottom”, which allows objects of type
lbad to be implicitly coercible to any other type.

Gradual Typing. The work of Anderson and Drossopoulou on BabyJ [4] is closest
to our own. They develop a gradual type system for nominal types and their
permissive type ∗ is analogous to our unknown type ?. Our work differs from
theirs in that we address structural type systems.

Gronski, Knowles, Tomb, Freund, and Flanagan [26] provide gradual typing in
the Sage language by including a Dynamic type and implicit down-casts. They use
a modified form of subtyping to provide the implicit down-casts whereas we use
the consistency relation. Their work does not include a result such as Theorem 2
of this paper which shows that all type errors are caught in programs with fully
annotated parameters.

Herman alerted us to the space-efficiency problems in the traditional approach
to higher-order casts. (We used the traditional approach in [47].) Concurrent to
the work in this paper, Herman, Tomb, and Flanagan [31] proposed a solution a
space-efficiency problem which, similar to our approach, delays the application
of higher-order casts. However, the details of their approach are based on the
coercion calculus from Henglein’s Dynamic Typing framework [29]. The coercion
calculus can be viewed as a way to compile the explicit casts of this paper,
removing the interpretive overhead of traversing types at run-time.

Type inference. A language with gradual typing is syntactically similar to one
with type inference [12, 32, 37]: both allow type annotations to be omitted.
However, type inference does not provide the same benefits as dynamic typing
(and therefore gradual typing). With type inference, programmers save the time
it takes to write down the types but they must still go through the process
of revising their program until the type inferencer accepts the program as well
typed. As type systems are conservative in nature and of limited (though ever
increasing) expressiveness, it may take some time to turn a program (even one
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without any real errors) into a program to which the type inferencer can assign
a type. The advantage of dynamic typing (and therefore of gradual typing) is
that programmers may begin executing and testing their programs right away.

9 Conclusion and Future Work

The debate between dynamic and static typing has continued for several decades,
with good reason. There are convincing arguments for both sides. Dynamic typ-
ing is better suited for prototyping, scripting, and gluing components, whereas
static typing is better suited for algorithms, data-structures, and systems pro-
gramming. It is common practice for programmers to start developing a program
in a dynamic language and then translate to a static language later on. However,
static and dynamic languages are often radically different, making this transla-
tion difficult and error prone. Ideally, migrating between dynamic to static could
take place gradually and within one language.

In this paper we present the formal definition of an object calculus Ob?
<:,

including its type system and operational semantics. This language captures the
key ingredients for implementing gradual typing in object-oriented languages,
showing how the type consistency relation can be naturally combined with sub-
typing. The calculus Ob?

<: provides the flexibility of dynamically typed lan-
guages when type annotations are omitted by the programmer and provides the
benefits of static checking when all method parameters are annotated. The type
system and run-time semantics of Ob?

<: are relatively straightforward, so it is
suitable for practical languages.

As future work, we intend to investigate the interaction between gradual typ-
ing and Hindley-Milner inference [12, 32, 37], and we intend to apply static
analyses (such as Soft Typing [9] or Henglein’s Dynamic Typing [29]) to reduce
the number of run-time casts that must be inserted during compilation. There
are a number of features we omitted from the formalization for the sake of keep-
ing the presentation simple, such as recursive types and imperative update. We
plan to add these features to our formalization in the near future. Finally, we
intend to incorporate gradual typing into a mainstream dynamically typed pro-
gramming language and perform studies to evaluate whether gradual typing can
benefit programmer productivity.
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Appendix

(Var)

Γ (x) = τ

Γ 	 x : τ
Γ 	 e : τ

(Const) Γ 	 c : TypeOf (c)

(Obj)

Γ, self :ρ, xi : σi 	 ei : τi ∀i ∈ 1 . . . n

Γ 	 [li = τi ς(xi : σi)ei
i∈1...n] : ρ

(where ρ ≡ [li : σi → τi
i∈1...n])

(Ivk)

Γ 	 e1 : [. . . , l : σ → τ, . . .] Γ 	 e2 : σ

Γ 	 e1.l(e2) : τ

(Upd)

Γ 	 e1 : ρ Γ, self :ρ, x :σ 	 e2 : τ σk <: σ τ <: τk

Γ 	 e1.lk:=τ ς(x : σ)e2 : ρ
(where ρ ≡ [li : σi → τi

i∈1...n] and k ∈ 1 . . . n)

(Sub)
Γ 	 e : σ σ <: τ

Γ 	 e : τ

Fig. 4. The type system for Ob<:

(CxHole) 	 [] : τ ⇒ τ 	 E : τ ⇒ τ

(CxIvkL)

	 E : σ ⇒ [. . . , l : ρ → τ, . . .] 	 e : ρ

	 E.l(e) : σ ⇒ τ

(CxIvkR)

	 e : [. . . , l : ρ → τ, . . .] 	 E : σ ⇒ ρ

	 e.l(E) : σ ⇒ τ

(CxUpd)

	 E : σ′ ⇒ ρ self : ρ, x : σ 	 e : τ σk <: σ τ <: τk

	 E.lk:=τ ς(x :σ)e : σ′ ⇒ ρ
(where ρ ≡ [li : σi → τi

i∈1...n] and 1 ≤ k ≤ n)

(CxSub)

	 E : σ ⇒ ρ 	 ρ <: ρ′

	 E : σ ⇒ ρ′

Fig. 5. Well-typed contexts
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Abstract. Ownership is a powerful concept to structure the object store
and to control aliasing and modifications of objects. This paper presents
an ownership type system for a Java-like programming language with
generic types. Like our earlier Universe type system, Generic Universe
Types enforce the owner-as-modifier discipline. This discipline does not
restrict aliasing, but requires modifications of an object to be initiated
by its owner. This allows owner objects to control state changes of owned
objects, for instance, to maintain invariants. Generic Universe Types re-
quire a small annotation overhead and provide strong static guarantees.
They are the first type system that combines the owner-as-modifier dis-
cipline with type genericity.

1 Introduction

The concept of object ownership allows programmers to structure the object
store hierarchically and to control aliasing and access between objects. Owner-
ship has been applied successfully to various problems, for instance, program
verification [18,20,21], thread synchronization [5,15], memory management [2,6],
and representation independence [3].

Existing ownership models share fundamental concepts: Each object has at
most one owner object. The set of all objects with the same owner is called a
context. The root context is the set of objects with no owner. The ownership
relation is a tree order.

However, existing models differ in the restrictions they enforce. The original
ownership types [9] and their descendants [4,7,8,24] restrict aliasing and enforce
the owner-as-dominator discipline: All reference chains from an object in the root
context to an object o in a different context go through o’s owner. This severe
restriction of aliasing is necessary for some of the applications of ownership, for
instance, memory management and representation independence.

However, for applications such as programverification, restricting aliasing is not
necessary. Instead, it suffices to enforce the owner-as-modifier discipline: An ob-
ject omay be referenced by any other object, but reference chains that do not pass
through o’s owner must not be used to modify o. This allows owner objects to con-
trol state changes of owned objects and thus maintain invariants. The owner-as-
modifier discipline has been inspiredbyFlexibleAliasProtection [23]. It is enforced
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by the Universe type system [12], in Spec#’s dynamic ownership model [18], and
Effective Ownership Types [19]. The owner-as-modifier discipline imposes weaker
restrictions than the owner-as-dominatordiscipline, which allows it to handle com-
mon implementationswhere objects are sharedbetweenobjects, such as collections
with iterators, shared buffers, or the Flyweight pattern [12,22]. Some implemen-
tations can be slightly adapted to satisfy the owner-as-modifier discipline, for ex-
ample an iterator can delegate modifications to the corresponding collection which
owns the internal representation.

Although ownership type systems have covered all features of Java-like
languages (including for example exceptions, inner classes, and static class mem-
bers) there are only three proposals of ownership type systems that support
generic types. SafeJava [4] supports type parameters and ownership parameters
independently, but does not integrate both forms of parametricity. This leads to
significant annotation overhead. Ownership Domains [1] combine type parame-
ters and domain parameters into a single parameter space and thereby reduce
the annotation overhead. However, their formalization does not cover type pa-
rameters. Ownership Generic Java (OGJ) [24] allows programmers to attach
ownership information through type parameters. For instance, a collection of
Book objects can be typed as “my collection of library books”, expressing that
the collection object belongs to the current this object, whereas the Book ob-
jects in the collection belong to an object “library”. OGJ enforces the owner-as-
dominator discipline. It piggybacks ownership information on type parameters.
In particular, each class C has a type parameter to encode the owner of a C
object. This encoding allows OGJ to use a slight adaptation of the normal Java
type rules to also check ownership, which makes the formalization very elegant.

However, OGJ cannot be easily adapted to enforce the owner-as-modifier dis-
cipline. For example, OGJ would forbid a reference from the iterator (object 6)
in Fig. 1 to a node (object 5) of the map (object 3), because the reference by-
passes the node’s owner. However, such references are necessary, and are legal
in the owner-as-modifier discipline. A type system can permit such references in
two ways.

First, if the iterator contained a field theMap that references the associated
map object, then path-dependent types [1,4] can express that the current field
of the iterator points to a Node object that is owned by theMap. Unfortunately,
path-dependent types require the fields on the path (here, theMap) to be final,
which is too restrictive for many applications.

Second, one can loosen up the static ownership information by allowing certain
references to point to objects in any context [12]. Subtyping allows values with
specific ownership information to be assigned to “any” variables, and downcasts
with runtime checks can be used to recover specific ownership information from
such variables. In OGJ, this subtype relation between any-types and other types
would require covariant subtyping, for instance, that Node<This> is a subtype of
Node<Any>,which is not supported in Java (or C#). Therefore, piggybacking own-
ership on the standard Java type system is not possible in the presence of “any”.
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2: Data 1: Clientvalue

3: Map

5: Node

4: ID6: IterImpl

mapiter

firstcurrent

keyvalue

Fig. 1. Object structure of a map from ID to Data objects. The map is represented by
Node objects. The iterator has a direct reference to a node. Objects, references, and
contexts are depicted by rectangles, arrows, and ellipses, respectively. Owner objects
sit atop the context of objects they own. Arrows are labeled with the name of the
variable that stores the reference. Dashed arrows depict references that cross context
boundaries without going through the owner. Such references must not be used to
modify the state of the referenced objects.

In this paper, we present Generic Universe Types (GUT), an ownership type
system for a programming language with generic types similar to Java 5 and
C# 2.0. GUT enforces the owner-as-modifier discipline using an any ownership
modifier (analogous to the readonly modifier in non-generic Universe types
[12]). Our type system supports type parameters for classes and methods. The
annotation overhead for programmers is as low as in OGJ, although the presence
of any makes the type rules more involved. A particularly interesting aspect of
our work is how generics and ownership can be combined in the presence of an
any modifier, in particular, how a restricted form of ownership covariance can
be permitted without runtime checks.

Outline. Sec. 2 illustrates the main concepts of GUT by an example. Secs. 3
and 4 present the type rules and the runtime model of GUT, respectively. Sec. 5
presents the type safety and the owner-as-modifier property theorems. Details
and proofs can be found in the accompanying technical report [10].

2 Main Concepts

In this section, we explain the main concepts of GUT informally by an example.
Class Map (Fig. 2) implements a generic map from keys to values. Key-value
pairs are stored in singly-linked Node objects. Class Node extends the superclass
MapNode (both Fig. 3), which is used by the iterator (classes Iter and IterImpl
in Fig. 4). The main method of class Client (Fig. 5) builds up the map structure
shown in Fig. 1. For simplicity, we omit access modifiers from all examples.

Ownership Modifiers. A type in GUT is either a type variable or consists of
an ownership modifier, a class name, and possibly type arguments. The owner-
ship modifier expresses object ownership relative to the current receiver object
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this1. Programs may contain the ownership modifiers peer, rep, and any. peer
expresses that an object has the same owner as the this object, rep expresses
that an object is owned by this, and any expresses that an object may have any
owner. any types are supertypes of the rep and peer types with the same class
and type arguments because they convey less specific ownership information.

The use of ownership modifiers is illustrated by class Map (Fig. 2). A Map object
owns its Node objects since they form the internal representation of the map and
should, therefore, be protected from unwanted modifications. This ownership
relation is expressed by the rep modifier of Map’s field first, which points to
the first node of the map.

Map<K, V> {

Node<K, V> first;

put(K key, V value) {

Node<K, V> newfirst = Node<K, V>();

newfirst.init(key, value, first);

first = newfirst;

}

V get(K key) {

Iter<K, V> i = iterator();

(i.hasNext()) {

(i.getKey().equals(key)) i.getValue();

i.next();

}

;

}

Iter<K, V> iterator() {

IterImpl<K, V, Node<K, V> > res;

res = IterImpl<K, V, Node<K, V> >();

res.setCurrent(first);

res;

}

IterImpl<K, V, Node<K, V> > altIterator() {

/* same implementation as method iterator() above */

}

}

Fig. 2. An implementation of a generic map. Map objects own their Node objects, as
indicated by the rep modifier in all occurrences of class Node. Method altIterator is
for illustration purposes only.

The owner-as-modifier discipline is enforced by disallowing modifications of
objects through any references. That is, an expression of an any type may be
1 We ignore static methods in this paper, but an extension is possible [20].
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used as receiver of field reads and calls to side-effect free (pure) methods, but
not of field updates or calls to non-pure methods. To check this property, we
require side-effect free methods to be annotated with the keyword pure.

Viewpoint Adaptation. Since ownership modifiers express ownership rela-
tive to this, they have to be adapted when this “viewpoint” changes. Consider
Node’s inherited method init (Fig. 3). After substituting the type variable X,
the third parameter has type peer Node<K,V>. The peer modifier expresses that
the parameter object must have the same owner as the receiver of the method.
On the other hand, Map’s method put calls init on a rep Node receiver, that is,
an object that is owned by this. Therefore, the third parameter of the call to
init also has to be owned by this. This means that from this particular call’s
viewpoint, the third parameter needs a rep modifier, although it is declared
with a peer modifier. In the type system, this viewpoint adaptation is done by
combining the type of the receiver of a call (here, rep Node<K,V>) with the type
of the formal parameter (here, peer Node<K,V>). This combination yields the
argument type from the caller’s point of view (here, rep Node<K,V>).

MapNode<K, V, X MapNode<K, V, X> > {

K key; V value; X next;

init(K k, V v, X n) { key = k; value = v; next = n; }

}

Node<K, V> MapNode<K, V, Node<K, V> > {}

Fig. 3. Nodes form the internal representation of maps. Class MapNode implements
nodes for singly-linked lists. Using a type variable for the type of next is useful to
implement iterators. The subclass Node instantiates MapNode’s type parameter X to
implement a list of nodes with the same owner.

Viewpoint adaptation and the owner-as-modifier discipline provide encapsula-
tion of internal representation objects. Assume that class Map by mistake leaked
a reference to an internal node, for instance, by making first public or by pro-
viding a method that returns the node. By viewpoint adaptation of the node
type, rep Node<K,V>, clients of the map can only obtain an any reference to the
node and, thus, the owner-as-modifier discipline guarantees that clients cannot
directly modify the node structure. This allows the map to maintain invariants
over the node, for instance, that the node structure is acyclic.

Type Parameters. Ownership modifiers are also used in actual type argu-
ments. For instance, Map’s method iterator instantiates IterImpl with the
type arguments K, V, and rep Node<K,V>. Thus, local variable res has type
peer IterImpl<K,V,rep Node<K,V>>, which has two ownership modifiers. The
main modifier peer expresses that the IterImpl object has the same owner as
this, whereas the argument modifier rep expresses that the Node objects used



Generic Universe Types 33

by the iterator are owned by this. It is important to understand that this ar-
gument modifier again expresses ownership relative to the current this object
(here, the Map object), and not relative to the instance of the generic class that
contains the argument modifier (here, the IterImpl object res).

Iter<K, V> {

K getKey();

V getValue();

hasNext();

next();

}

IterImpl<K, V, X MapNode<K, V, X>>

Iter<K, V> {

X current;

setCurrent(X c) { current = c; }

K getKey() { current.key; }

V getValue() { current.value; }

hasNext() { current != ; }

next() { current = current.next; }

}

Fig. 4. Class IterImpl implements iterators over MapNode structures. The precise node
type is passed as type parameter. The upper bound allows methods to access a node’s
fields. Interface Iter hides IterImpl’s third type parameter from clients.

Type variables have upper bounds, which default to any Object. In a class C,
the ownership modifiers of an upper bound express ownership relative to the C
instance this. However, when C’s type variables are instantiated, the modifiers of
the actual type arguments are relative to the receiver of the method that contains
the instantiation. Therefore, checking the conformance of a type argument to its
upper bound requires a viewpoint adaptation. For instance, to check the instan-
tiation peer IterImpl<K,V,rep Node<K,V>> in class Map, we adapt the upper
bound of IterImpl’s type variable X (any MapNode<K,V,X>) from viewpoint
peer IterImpl<K,V,rep Node<K,V>> to the viewpoint this. With the appro-
priate substitutions, this adaptation yields any MapNode<K,V,rep Node<K,V>>.
The actual type argument rep Node<K,V> is a subtype of the adapted upper
bound. Therefore, the instantiation is correct. The rep modifier in the type ar-
gument and the adapted upper bound reflects correctly that the current node
of this particular iterator is owned by this.

Type variables are not subject to the viewpoint adaptation that is performed for
non-variable types.When typevariables are used, for instance, infielddeclarations,
the ownership information they carry stays implicit and does, therefore, not have
to be adapted. The substitution of type variables by their actual type arguments
happens in the scope in which the type variables were instantiated. Therefore, the
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viewpoint is the same as for the instantiation, and no viewpoint adaptation is re-
quired. For instance, the call expression iter.getKey() in method main (Fig. 5)
has type rep ID, because the result type of getKey() is the type variable K, which
gets substituted by the first type argument of iter’s type, rep ID.

Thus, even though an IterImpl object does not know the owner of the keys and
values (due to the implicit any upper bound for K and V), clients of the iterator can
recover the exact ownership information from the type arguments. This illustrates
that Generic Universe Types provide strong static guarantees similar to those of
owner-parametric systems [9], even in the presence ofany types. The corresponding
implementation in non-generic Universe types requires a downcast from the any
type to a rep type and the corresponding runtime check [12].

ID { /* ... */ }

Data { /* ... */ }

Client {

main( Data value) {

Map< ID, Data> map = Map< ID, Data>();

map.put( ID(), value);

Iter< ID, Data> iter = map.iterator();

ID id = iter.getKey();

}

}

Fig. 5. Main program for our example. The execution of method main creates the
object structure in Fig. 1.

Limited Covariance and Viewpoint Adaptation of Type Arguments.
Subtyping with covariant type arguments is in general not statically type safe.
For instance, if List<String>were a subtype of List<Object>, then clients that
view a string list through type List<Object> could store Object instances in
the string list, which breaks type safety. The same problem occurs for the own-
ership information encoded in types. If peer IterImpl<K,V,rep Node<K,V>>
were a subtype of peer IterImpl<K,V,any Node<K,V>>, then clients that view
the iterator through the latter type could use method setCurrent (Fig. 4) to
set the iterator to a Node object with an arbitrary owner, even though the it-
erator requires a specific owner. The covariance problem can be prevented by
disallowing covariant type arguments (like in Java and C#), by runtime checks,
or by elaborate syntactic support [13].

However, the owner-as-modifier discipline supports a limited form of covari-
ance without any additional checks. Covariance is permitted if the main modifier
of the supertype is any. For example, peer IterImpl<K,V,rep Node<K,V>> is
an admissible subtype of any IterImpl<K,V,any Node<K,V>>. This is safe be-
cause the owner-as-modifier discipline prevents mutations of objects referenced
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through any references. In particular, it is not possible to set the iterator to an
any Node object, which prevents the unsoundness illustrated above.

Besides subtyping, GUT provides another way to view objects through differ-
ent types, namely viewpoint adaptation. If the adaptation of a type argument
yields an any type, the same unsoundness as through covariance could occur.
Therefore, when a viewpoint adaptation changes an ownership modifier of a type
argument to any, it also changes the main modifier to any.

This behavior is illustrated by method main of class Client in Fig. 5. As-
sume that main calls altIterator() instead of iterator(). As illustrated
by Fig. 1, the most precise type for the call expression map.altIterator()
would be rep IterImpl<rep ID, any Data, any Node<rep ID, any Data>>
because the IterImpl object is owned by the Client object this (hence, the
main modifier rep), but the nodes referenced by the iterator are neither owned
by this nor peers of this (hence, any Node). However, this viewpoint adapta-
tion would change an argument modifier of altIterator’s result type from rep
to any. This would allow method main to use method setCurrent to set the
iterator to an any Node object and is, thus, not type safe. The correct viewpoint
adaptation yields any IterImpl<rep ID, any Data, any Node<rep ID, any
Data>>. This type is safe, because it prevents the main method from mutating
the iterator, in particular, from calling the non-pure method setCurrent.

Since next is also non-pure, main must not call iter.next() either, which
renders IterImpl objects useless outside the associated Map object. To solve this
issue, we provide interface Iter, which does not expose the type of internal nodes
to clients. The call map.iterator() has type rep Iter<rep ID, any Data>,
which does allow main to call iter.next(). Nevertheless, the type variable X
for the type of current in class IterImpl is useful to improve static type safety.
Since the current node is neither a rep nor a peer of the iterator, the only
alternative to a type variable is an any type. However, an any type would not
capture the relationship between an iterator and the associated list. In particular,
it would allow clients to use setCurrent to set the iterator to a node of an
arbitrary map. For a discussion of alternative designs see [10].

3 Static Checking

In this section, we formalize the compile time aspects of GUT. We define the
syntax of the programming language, formalize viewpoint adaptation, define
subtyping and well-formedness conditions, and present the type rules.

3.1 Programming Language

We formalize Generic Universe Types for a sequential subset of Java 5 and
C# 2.0 including classes and inheritance, instance fields, dynamically-bound
methods, and the usual operations on objects (allocation, field read, field update,
casts). For simplicity, we omit several features of Java and C# such as interfaces,
exceptions, constructors, static fields and methods, inner classes, primitive types
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and the corresponding expressions, and all statements for control flow. We do not
expect that any of these features is difficult to handle (see for instance [4,11,20]).
The language we use is similar to Featherweight Generic Java [14]. We added
field updates because the treatment of side effects is essential for ownership type
systems and especially the owner-as-modifier discipline.

Fig. 6 summarizes the syntax of our language and our naming conventions
for variables. We assume that all identifiers of a program are globally unique
except for this as well as method and parameter names of overridden methods.
This can be achieved easily by preceding each identifier with the class or method
name of its declaration (but we omit this prefix in our examples).

The superscript s distinguishes the sorts for static checking from correspond-
ing sorts used to describe the runtime behavior, but is omitted whenever the
context determines whether we refer to static or dynamic entities.

T denotes a sequence of Ts. In such a sequence, we denote the i-th element by
Ti. We sometimes use sequences of tuples S = X T as maps and use a function-
like notation to access an element S(Xi) = Ti. A sequence T can be empty. The
empty sequence is denoted by ε.

A program (P ∈ Program) consists of a sequence of classes, the identifier of
a main class (C ∈ ClassId), and a main expression (e ∈ Expr). A program
is executed by creating an instance o of C and then evaluating e with o as
this object. We assume that we always have access to the current program
P, and keep P implicit in the notations. Each class (Cls ∈ Class) has a class
identifier, type variables with upper bounds, a superclass with type arguments,
a list of field declarations, and a list of method declarations. FieldId is the sort
of field identifiers f. Like in Java, each class directly or transitively extends the
predefined class Object.

A type (sT ∈ sType) is either a non-variable type or a type variable identi-
fier (X ∈ TVarId). A non-variable type (sN ∈ sNType) consists of an ownership
modifier, a class identifier, and a sequence of type arguments.

An ownership modifier (u ∈ OM) can be peeru, repu, or anyu, as well as the
modifier thisu, which is used solely as main modifier for the type of this. The
modifier thisu may not appear in programs, but is used by the type system to
distinguish accesses through this from other accesses. We omit the subscript u
if it is clear from context that we mean an ownership modifier.

A method (mt ∈ Meth) consists of the method type variables with their
upper bounds, the purity annotation, the return type, the method identifier
(m ∈ MethId), the formal method parameters (x ∈ ParId) with their types, and
an expression as body. The result of evaluating the expression is returned by the
method. ParId includes the implicit method parameter this.

To be able to enforce the owner-as-modifier discipline, we have to distinguish
statically between side-effect free (pure) methods and methods that potentially
have side effects. Pure methods are marked by the keyword pure. In our syntax,
we mark all other methods by nonpure, although we omit this keyword in our
examples. To focus on the essentials of the type system, we do not include purity
checks, but they can be added easily [20].
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An expression (e ∈ Expr) can be the null literal, method parameter access,
field read, field update, method call, object creation, and cast.

Type checking is performed in a type environment (sΓ ∈ sEnv), which maps
the type variables of the enclosing class and method to their upper bounds and
method parameters to their types. Since the domains of these mappings are
disjoint, we overload the notation, where sΓ(X) refers to the upper bound of type
variable X, and sΓ(x) refers to the type of method parameter x.

P ∈ Program ::= Cls C e
Cls ∈ Class ::= class C<X sN> extends C<sT> { f sT; mt }
sT ∈ sType ::= sN | X
sN ∈ sNType ::= u C<sT>
u ∈ OM ::= peeru | repu | anyu | thisu

mt ∈ Meth ::= <X sN> w sT m(x sT) { return e }
w ∈ Purity ::= pure | nonpure
e ∈ Expr ::= null | x | e.f | e.f=e | e.m<sT>(e) | new sN | (sT) e

sΓ ∈ sEnv ::= X sN; x sT

Fig. 6. Syntax and type environments

3.2 Viewpoint Adaptation

Since ownership modifiers express ownership relative to an object, they have to
be adapted whenever the viewpoint changes. In the type rules, we need to adapt
a type T from a viewpoint that is described by another type T′ to the viewpoint
this. In the following, we omit the phrase “to the viewpoint this”. To perform
the viewpoint adaptation, we define an overloaded operator� to: (1) Adapt an
ownership modifier from a viewpoint that is described by another ownership
modifier; (2) Adapt a type from a viewpoint that is described by an ownership
modifier; (3) Adapt a type from a viewpoint that is described by another type.

Adapting an Ownership Modifier w.r.t. an Ownership Modifier. We
explain viewpoint adaptation using a field access e1.f. Analogous adaptations
occur for method parameters and results as well as upper bounds of type pa-
rameters. Let u be the main modifier of e1’s type, which expresses ownership
relative to this. Let u′ be the main modifier of f’s type, which expresses own-
ership relative to the object that contains f. Then relative to this, the type of
the field access e1.f has main modifier u�u′.

� :: OM × OM → OM
this�u′ = u′ u�this = u

peer�peer = peer rep�peer = rep
u�u′ = any otherwise

The field access e1.f illustrates the motivation for this definition: (1) Accesses
through this (that is, e1 is the variable this) do not require a viewpoint
adaptation since the ownership modifier of the field is already relative to this.
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(2) In the formalization of subtyping (see ST-1) we combine an ownership mod-
ifier u with thisu. Again, this does not require a viewpoint adaptation.

(3) If the main modifiers of both e1 and f are peer, then the object referenced
by e1 has the same owner as this and the object referenced by e1.f has the same
owner as e1 and, thus, the same owner as this. Consequently, the main modifier
of e1.f is also peer. (4) If the main modifier of e1 is rep and the main modifier
of f is peer, then the main modifier of e1.f is rep, because the object referenced
by e1 is owned by this and the object referenced by e1.f has the same owner
as e1, that is, this. (5) In all other cases, we cannot determine statically that
the object referenced by e1.f has the same owner as this or is owned by this.
Therefore, in these cases the main modifier of e1.f is any.

Adapting a Type w.r.t. an Ownership Modifier. As explained in Sec. 2,
type variables are not subject to viewpoint adaptation. For non-variable types,
we determine the adapted main modifier using the auxiliary function�m below
and adapt the type arguments recursively:

� :: OM × sType → sType
u�X = X
u�N = (u�mN) C<u�T> where N = u′ C<T>

The adapted main modifier is determined by u�u′, except for unsafe (covariance-
like) viewpoint adaptations, as described in Sec. 2, in which case it is any. Unsafe
adaptations occur if at least one of N’s type arguments contains the modifier rep,
u′ is peer, and u is rep or peer. This leads to the following definition:

�m :: OM × sNType → OM

u�mu′ C<T> =

{
any if (u = rep ∨ u = peer) ∧ u′ = peer ∧ rep ∈ T
u�u′ otherwise

The notation u ∈ T expresses that at least one type Ti or its (transitive) type
arguments contain ownership modifier u.

Adapting a Type w.r.t. a Type. We adapt a type T from the viewpoint
described by another type, u C<T>:

� :: sNType × sType → sType

u C<T>�T = (u�T)[T/X] where X = dom(C)

The operator � adapts the ownership modifiers of T and then substitutes the
type arguments T for the type variables X of C. This substitution is denoted by
[T/X]. Since the type arguments already are relative to this, they are not subject
to viewpoint adaptation. Therefore, the substitution of type variables happens
after the viewpoint adaptation of T’s ownership modifiers. For a declaration
class C<X > . . ., dom(C) denotes C’s type variables X.

Note that the first parameter is a non-variable type, because concrete own-
ership information u is needed to adapt the viewpoint and the actual type ar-
guments T are needed to substitute the type variables X. In the type rules,
subsumption will be used to replace type variables by their upper bounds and
thereby obtain a concrete type as first argument of�.
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Example. The hypothetical call map.altIterator() in main (Fig. 5) illustrates
the most interesting viewpoint adaptation, which we discussed in Sec. 2. The
type of this call is the adaptation of peer IterImpl<K,V,rep Node<K,V>> (the
return type of altIterator) from rep Map<rep ID,any Data> (the type of the
receiver expression). According to the above definition, we first adapt the return
type from the viewpoint of the receiver type, rep, and then substitute type
variables.

The type arguments of the adapted type are obtained by applying viewpoint
adaptation recursively to the type arguments. The type variables K and V are not
affected by the adaptation. For the third type argument, rep � rep Node<K,V>
yields any Node<K,V> because rep�rep=any, and again because the type vari-
ables K and V are not subject to viewpoint adaptation. Note that here, an own-
ership modifier of a type argument is promoted from rep to any. Therefore, to
avoid unsafe covariance-like adaptations, the main modifier of the adapted type
must be any. This is, indeed, the case, as the main modifier is determined by
rep�m peer IterImpl<K,V,rep Node<K,V>>, which yields any.

So far, the adaptation yields any IterImpl<K,V,any Node<K,V>>. Now we
substitute the type variables K and V by the instantiations given in the receiver
type, rep ID and any Data, and obtain the type of the call:

any IterImpl<rep ID, any Data, any Node<rep ID,any Data>>

3.3 Subclassing and Subtyping

We use the term subclassing to refer to the relation on classes as declared in
a program by the extends keyword, irrespective of main modifiers. Subtyping
takes main modifiers into account.

Subclassing. The subclass relation � is defined on instantiated classes, which
are denoted by C<T>. The subclass relation is the smallest relation satisfying the
rules in Fig. 7. Each un-instantiated class is a subclass of the class it extends
(SC-1). The form class C<X N> extends C′<T′> { f T; m }, or a prefix thereof,
expresses that the program contains such a class declaration. Subclassing is
reflexive (SC-2) and transitive (SC-3). Subclassing is preserved by substitution
of type arguments for type variables (SC-4). Note that such substitutions may
lead to ill-formed types, for instance, when the upper bound of a substituted
type variable is not respected. We prevent such types by well-formedness rules,
presented in Fig. 9.

Subtyping. The subtype relation <: is defined on types. The judgment Γ �
T <: T′ expresses that type T is a subtype of type T′ in type environment Γ.
The environment is needed since types may contain type variables. The rules for
this subtyping judgment are presented in Fig. 8. Two types with the same main
modifier are subtypes if the corresponding classes are subclasses. Ownership
modifiers in the extends clause (T′) are relative to the instance of class C, whereas
the modifiers in a type are relative to this. Therefore, T′ has to be adapted
from the viewpoint of the C instance to this (ST-1). Since both thisu and peer
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SC-1 class C<X > extends C′<T′>

C<X> � C′<T′>
SC-2

C<T> � C<T>

SC-3

C<T> � C′′<T′′>
C′′<T′′> � C′<T′>

C<T> � C′<T′>
SC-4

C<T> � C′<T′>

C<T[T′′/X′′]> � C′<T′[T′′/X′′]>

Fig. 7. Rules for subclassing

express that an object has the same owner as this, a type with main modifier
thisu is a subtype of the corresponding type with main modifier peer (ST-2).
This rule allows us to treat this as an object of a peer type. Subtyping is
transitive (ST-3). A type variable is a subtype of its upper bound in the type
environment (ST-4). Two types are subtypes, if they obey the limited covariance
described in Sec. 2 (ST-5). Covariant subtyping is expressed by the relation <:a.
Covariant subtyping is reflexive (TA-1). A supertype may have more general
type arguments than the subtype if the main modifier of the supertype is any
(TA-2). Note that the sequences T and T′ in rule TA-2 can be empty, which
allows one to derive, for instance, peer Object <:a any Object. Reflexivity of
<: follows from TA-1 and ST-5.

ST-1
C<T> � C′<T′>

Γ 	 u C<T> <: u�(thisu C′<T′>)
ST-2

Γ 	 thisu C<T> <: peer C<T>

ST-3

Γ 	 T <: T′′

Γ 	 T′′ <: T′

Γ 	 T <: T′ ST-4
Γ 	 X <: Γ(X)

ST-5
T <:a T′

Γ 	 T <: T′

TA-1
T <:a T

TA-2
T <:a T′

u C<T> <:a any C<T′>

Fig. 8. Rules for subtyping and limited covariance

In our example, using rule TA-1 for K and V, and rule TA-2 we obtain rep
Node<K,V> <:a any Node<K,V>. Rules TA-2 and ST-5 allow us to derive

peer IterImpl<K,V,rep Node<K,V>> <: any IterImpl<K,V,any Node<K,V>>,

which is an example for limited covariance. Note that it is not possible to derive
peer IterImpl<K,V,rep Node<K,V>> <: peer IterImpl<K,V,any Node<K,V>>;

that would be unsafe covariant subtyping as discussed in Sec. 2.

3.4 Lookup Functions

In this subsection, we define the functions to look up the type of a field or the
signature of a method.
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Field Lookup. The function sfType(C, f) yields the type of field f as declared
in class C. The result is undefined if f is not declared in C. Since identifiers
are assumed to be globally unique, there is only one declaration for each field
identifier.

SFT
class C< > extends < > { . . . T f . . . ; }

sfType(C, f) = T

Method Lookup. The function mType(C, m) yields the signature of method m
as declared in class C. The result is undefined if m is not declared in C. We do
not allow overloading of methods; therefore, the method identifier is sufficient
to uniquely identify a method.

SMT
class C< > extends < > { ; . . . <Xm Nb> w Tr m(x Tp) . . .}

mType(C, m) = <Xm Nb> w Tr m(x Tp)

3.5 Well-Formedness

In this subsection, we define well-formedness of types, methods, classes, pro-
grams, and type environments. The well-formedness rules are summarized in
Fig. 9 and explained in the following.

WFT-1
X ∈ dom(Γ)

Γ 	 X ok
WFT-2

class C< N> . . .
Γ 	 T ok Γ 	 T <: ((u C<T>)�N)

Γ 	 u C<T> ok

WFM-1

Γ = Xm Nb, X N; this (thisu C<X>), x Tp

Γ 	 Tr, Nb, Tp ok Γ 	 e : Tr override(C, m)
w = pure ⇒ (Tp = any�Tp ∧ Nb = any�Nb)

<Xm Nb> w Tr m(x Tp) { return e } ok in C<X N>

WFM-2

∀ class C′<X′ N′> : C<X> � C′<T′> ∧ dom(C) = X ⇒
mType(C′, m) is undefined ∨ mType(C, m) = mType(C′, m)[T′/X′]

override(C, m)

WFC

X N; 	 N, T, (thisu C′<T′>) ok
mt ok in C<X N> rep /∈ N

class C<X N> extends C′<T′> { f T; mt } ok

WFP

Cls ok
class C<> . . . ∈ Cls

ε; this (thisu C<>) 	 e : N

Cls, C, e ok
SWFE

Γ = X N, X′ N′ ;
this (thisu C<X>), x T

class C<X N> . . .
Γ 	 N, N′, T ok

Γ ok

Fig. 9. Well-formedness rules
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Well-Formed Types. The judgment Γ � T ok expresses that type T is well-
formed in type environment Γ. Type variables are well-formed, if they are con-
tained in the type environment (WFT-1). A non-variable type u C<T> is well-
formed if its type arguments T are well-formed and for each type parameter the
actual type argument is a subtype of the upper bound, adapted from the view-
point u C<T> (WFT-2). The viewpoint adaptation is necessary because the type
arguments describe ownership relative to the this object where u C<T> is used,
whereas the upper bounds are relative to the object of type u C<T>. Note that
rule WFT-2 permits type variables of a class C to be used in upper bounds of C.
For instance in class IterImpl (Fig. 4), type variable X is used in its own upper
bound, any MapNode<K, V, X>.

Well-Formed Methods. The judgment mt ok in C<X N> expresses that method
mt is well-formed in a class C with type parameters X N. According to rule WFM-1,
mt is well-formed if: (1) the return type, the upper bounds of mt’s type variables,
and mt’s parameter types are well-formed in the type environment that maps mt’s
and C’s type variables to their upper bounds as well as this and the explicitmethod
parameters to their types. The type of this is the enclosing class, C<X>, with main
modifier thisu; (2) the method body, expression e, is well-typed with mt’s return
type; (3) mt respects the rules for overriding, see below; (4) if mt is pure then the
only ownership modifier that occurs in a parameter type or the upper bound of
a method type variable is any. We will motivate the fourth requirement when we
explain the type rule for method calls.

Method m respects the rules for overriding if it does not override a method
or if all overridden methods have the identical signatures after substituting type
variables of the superclasses by the instantiations given in the subclass (WFM-2).
For simplicity, we require that overrides do not change the purity of a method,
although overriding non-pure methods by pure methods would be safe.

Well-Formed Classes. The judgment Cls ok expresses that class declaration
Cls is well-formed. According to rule WFC, this is the case if: (1) the upper
bounds of Cls’s type variables, the types of Cls’s fields, and the instantiation
of the superclass are well-formed in the type environment that maps Cls’s type
variables to their upper bounds; (2) Cls’s methods are well-formed; (3) Cls’s
upper bounds do not contain the rep modifier.

Note that Cls’s upper bounds express ownership relative to the current Cls
instance. If such an upper bound contains a rep modifier, clients of Cls cannot
instantiate Cls. The ownership modifiers of an actual type argument are relative
to the client’s viewpoint. From this viewpoint, none of the modifiers peer, rep,
or any expresses that an object is owned by the Cls instance. Therefore, we
forbid upper bounds with rep modifiers by Requirement (3).

Well-Formed Programs. The judgment P ok expresses that program P is
well-formed. According to rule WFP, this holds if all classes in P are well-
formed, the main class C is a non-generic class in P, and the main expression e is
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well-typed in an environment with this as an instance of C. We omit checks for
valid appearances of the ownership modifier thisu. As explained earlier, thisu

must not occur in the program.

Well-Formed Type Environments. The judgment Γ ok expresses that type
environment Γ is well-formed. According to rule SWFE, this is the case if all
upper bounds of type variables and the types of method parameters are well-
formed. Moreover, this must be mapped to a non-variable type with main mod-
ifier thisu and an uninstantiated class.

3.6 Type Rules

We are now ready to present the type rules (Fig. 10). The judgment Γ � e : T
expresses that expression e is well-typed with type T in environment Γ. Our
type rules implicitly require types to be well-formed, that is, a type rule is
applicable only if all types involved in the rule are well-formed in the respective
environment.

GT-Subs

Γ 	 e : T
Γ 	 T <: T′

Γ 	 e : T′ GT-Var
x ∈ dom(Γ)

Γ 	 x : Γ(x)
GT-Null

T �= thisu < >

Γ 	 null : T

GT-New
N �= anyu < >

Γ 	 new N : N
GT-Cast

Γ 	 e0 : T0

Γ 	 (T) e0 : T

GT-Read

Γ 	 e0 : N0

N0 = C0< >
T1 = fType(C0, f)

Γ 	 e0.f : N0�T1
GT-Upd

Γ 	 e0 : N0 N0 = u0 C0< >
T1 = fType(C0, f)
Γ 	 e2 : N0�T1

u0 �= any rp(u0, T1)

Γ 	 e0.f=e2 : N0�T1

GT-Invk

Γ 	 e0 : N0 N0 = u0 C0< >
mType(C0, m) = <Xm Nb> w Tr m(x Tp)

Γ 	 T <: (N0�Nb)[T/Xm] Γ 	 e2 : (N0�Tp)[T/Xm]
(u0 =any ⇒ w=pure) rp(u0, Tp ◦ Nb)

Γ 	 e0.m<T>(e2) : (N0�Tr)[T/Xm]

Fig. 10. Type rules

An expression of type T can also be typed with T’s supertypes (GT-Subs). The
type of method parameters (including this) is determined by a lookup in the
type environment (GT-Var). The null-reference can have any type other than a
thisu type (GT-Null). Objects must be created in a specific context. Therefore
only non-variable types with an ownership modifier other than anyu are allowed
for object creations (GT-New). The rule for casts (GT-Cast) is straightforward;
it could be strengthened to prevent more cast errors statically, but we omit this
check since it is not strictly needed.
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As explained in detail in Sec. 3.2, the type of a field access is determined by
adapting the declared type of the field from the viewpoint described by the type
of the receiver (GT-Read). If this type is a type variable, subsumption is used to
go to its upper bound because fType is defined on class identifiers. Subsumption
is also used for inherited fields to ensure that f is actually declared in C0. (Recall
that fType(C0, f) is undefined otherwise.)

For a field update, the right-hand side expression must be typable as the
viewpoint-adapted field type, which is also the type of the whole field update
expression (GT-Upd). The rule is analogous to field read, but has two additional
requirements. First, the main modifier u0 of the type of the receiver expression
must not be any. With the owner-as-modifier discipline, a method must not
update fields of objects in arbitrary contexts. Second, the requirement rp(u0, T1)
enforces that f is updated through receiver this if its declared type T1 contains
a rep modifier. For all other receivers, the viewpoint adaptation N0�T1 yields an
any type, but it is obviously unsafe to update f with an object with an arbitrary
owner. It is convenient to define rp for sequences of types. The definition uses
the fact that the ownership modifier thisu is only used for the type of this:

rp :: OM × sType → bool
rp(u,T) = u = thisu ∨ (∀i : rep /∈ Ti)

The rule for method calls (GT-Invk) is in many ways similar to field reads
(for result passing) and updates (for argument passing). The method signature
is determined using the receiver type N0 and subsumption. The type of the
invocation expression is determined by viewpoint adaptation of the return type
Tr from the receiver type N0. Modulo subsumption, the actual method arguments
must have the formal parameter types, adapted from N0 and with actual type
arguments T substituted for the method’s type variables Xm. For instance, in
the call first.init(key, value, first) in method put (Fig. 2), the adapted
third formal parameter type is rep Node<K,V> � peer Node<K,V> (note that
Node substitutes the type variable X by peer Node<K,V>). This adaptation yields
rep Node<K,V>, which is also the type of the third actual method argument.

To enforce the owner-as-modifier discipline, only pure methods may be called
on receivers with main modifier any. For a call on a receiver with main modifier
any, the viewpoint-adapted formal parameter type contains only the modifier
any. Consequently, arguments with arbitrary owners can be passed. For this to
be type safe, pure methods must not expect arguments with specific owners. This
is enforced by rule WFM-1 (Fig. 9). Finally, if the receiver is different from this,
then neither the formal parameter types nor the upper bounds of the method’s
type variables must contain rep.

4 Runtime Model

In this section, we explain the runtime model of Generic Universe Types. We
present the heap model, the runtime type information, well-formedness condi-
tions, and an operational semantics.
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4.1 Heap Model

Fig. 11 defines our model of the heap. The prefix r distinguishes sorts of the
runtime model from their static counterparts.

h ∈ Heap = Addr → Obj
ι ∈ Addr = Address | nulla

o ∈ Obj = rT, Fs
rT ∈ rType = ιo C<rT>
Fs ∈ Fields = FieldId → Addr
ιo ∈ OwnerAddr = ι | anya
rΓ ∈ rEnv = X rT; x ι

Fig. 11. Definitions for the heap model

A heap (h ∈ Heap) maps addresses to objects. An address (ι ∈ Addr) can be
the special null-reference nulla. An object (o ∈ Obj) consist of its runtime type
and a mapping from field identifiers to the addresses stored in the fields.

The runtime type (rT ∈ rType) of an object o consists of the address of o’s
owner object, of o’s class, and of runtime types for the type arguments of this
class. We store the runtime type arguments including the associated ownership
information explicitly in the heap because this information is needed in the
runtime checks for casts. In that respect, our runtime model is similar to that of
the .NET CLR [16]. The owner address of objects in the root context is nulla.
The special owner address anya is used when the corresponding static type has
the anyu modifier. Consider for instance an execution of method main (Fig. 5),
where the address of this is 1. The runtime type of the object stored in map is
1 Map<1 ID, anya Data>. For simplicity we drop the subscript o from ιo whenever
it is clear from context whether we refer to an Addr or an OwnerAddr.

The first component of a runtime environment (rΓ ∈ rEnv) maps method type
variables to their runtime types. The second component is the stack, which maps
method parameters to the addresses they store.

Subtyping on Runtime Types. Judgment h, ι � rT <: rT′ expresses that the
runtime type rT is a subtype of rT′ from the viewpoint of address ι. The viewpoint,
ι, is required in order to give meaning to the ownership modifier rep. Subtyping
for runtime types is defined in Fig. 12. Subtyping is transitive (RT-3), and allows
owner-invariant (RT-1) and covariant subtyping (RT-2).

Rule RTL introduces owner-invariant subtyping <:l and defines how sub-
typing follows subclassing if (1) the runtime types have the same owner address
ι′, (2) in the type arguments, the ownership modifiers thisu and peer are sub-
stituted by the owner address ι′ of the runtime types (we use the same owner
address for both modifiers since they both express ownership by the owner of
this), (3) rep is substituted by the viewpoint address ι, (4) anyu is substituted
by anya, (5) the type variables X of the subclass C are substituted consistently by
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rT, and (6) either the owner of ι is ι′ or rep does not appear in the instantiation
of the superclass. This ensures that the substitution of ι for rep-modifiers is
meaningful. Note that in a well-formed program, thisu never occurs in a type
argument; nevertheless we include the substitution for consistency. Rule RTL
gives the most concrete runtime type deducible from static subclassing.

RT-1
h, ι 	 rT <:l

rT′

h, ι 	 rT <: rT′ RT-2
rT <:a

rT′

h, ι 	 rT <: rT′ RT-3

h, ι 	 rT <: rT′′

h, ι 	 rT′′ <: rT′

h, ι 	 rT <: rT′

RTL
C<X> � C′<sT> dom(C) = X owner(h, ι) = ι′ ∨ rep /∈ sT

h, ι 	 ι′ C<rT> <:l ι′ C′<sT[ι′/thisu, ι′/peer, ι/rep, anya/anyu, rT/X]>

RTA-1 rT <:a
rT

RTA-2
rT <:a rT′

ι′ C<rT> <:a anya C<rT′>
RTH-1

h(ι) = rT,
h, ι 	 rT <: rT′

h 	 ι : rT′

RTH-2
h 	 nulla : rT′ RTS

h 	 ι : dyn(sT, h, rΓ)
sT = thisu < > ⇒ ι = rΓ(this)

h, rΓ 	 ι : sT

Fig. 12. Rules for subtyping on runtime types

As for subtyping for static types, we have limited covariance for runtime types.
Covariant subtyping is expressed by the relation <:a . The rules for limited
covariance, RTA-1 and RTA-2, are analogous to the rules TA-1 and TA-2 for
static types (Fig. 8). Reflexivity of <: follows from RTA-1 and RT-2.

The judgment h � ι : rT′ expresses that in heap h, the address ι has type
rT′. The type of ι is determined by the type of the object at ι and the subtype
relation (RTH-1). The null reference can have any type (RTH-2).

Finally, the judgment h, rΓ � ι : sT expresses that in heap h and runtime
environment rΓ, the address ι has a runtime type that corresponds to the static
type sT (see below for the definition of dyn) and that the main modifier thisu

is used solely for the type of this (RTS).

From Static Types to Runtime Types. Static types and runtime types are
related by the following dynamization function, which is defined by rule DYN:

dyn :: sType × Heap × rEnv → rType

DYN

rΓ = X′ rT′; this ι, h, ι 	 h(ι)↓1 <:l ι′ C<rT>
dom(C) = X free(sT) ⊆ X ◦ X′

dyn(sT, h, rΓ) = sT[ι′/this, ι′/peer, ι/rep, anya/anyu, rT/X, rT′/X′]

This function maps a static type sT to the corresponding runtime type. The
viewpoint is described by a heap h and a runtime environment rΓ. In sT, dyn
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substitutes rep by the address of the this object (ι), peer and thisu by the
owner of ι (ι′), and anyu by anya. It also substitutes all type variables in sT by
the instantiations given in ι′ C<rT>, a supertype of ι’s runtime type, or in the
runtime environment. The substitutions performed by dyn are analogous to the
ones in rule RTL (Fig. 12), which also involves mapping static types to runtime
types. We do not use dyn in RTL to avoid that the definitions of <: and dyn
are mutually recursive. We use projection ↓i to select the i-th component of a
tuple, for instance, the runtime type and field mapping of an object.

Note that the outcome of dyn depends on finding ι′ C<rT>, an appropriate
supertype of the runtime type of the this object ι, which contains substitutions
for all type variables not mapped by the environment (free(sT) yields the free
type variables in sT). Thus, one may wonder whether there is more than one such
appropriate superclass. However, because type variables are globally unique, if
the free variables of sT are in the domain of a class then they are not in the
domain of any other class. To obtain the most precise ownership information we
use the owner-invariant runtime subtype relation <:l defined in rule RTL.

To illustrate dynamization, consider an execution of put (Fig. 2), in an en-
vironment rΓ whose this object has address 3 and a heap h where address 3
has runtime type 1 Map<1 ID, anya Data> (see Fig. 1). We determine the run-
time type of the object created by new rep Node<K,V>. The dynamization of
the type of the new object w.r.t. h and rΓ is dyn(rep Node<K,V>, h, rΓ), which
yields 3 Node<1 ID, anya Data>. This runtime type correctly reflects that the new
object is owned by this (owner address 3) and has the same type arguments as
the runtime type of this.

It is convenient to define the following overloaded version of dyn:

dyn(sT, h, ι) = dyn(sT, h, (ε; this ι))

4.2 Lookup Functions

In this subsection, we define the functions to look up the runtime type of a field
or the body of a method.

Field Lookup. The runtime type of a field f is essentially the dynamization
of its static type. The function rfType(h, ι, f) yields the runtime type of f in an
object at address ι in heap h. In its definition (RFT, in Fig. 13), C is the runtime
class of ι, and C′ is the superclass of C which contains the definition of f.

Method Lookup. The function mBody(C, m) yields a tuple consisting of m’s
body expression as well as the identifiers of its formal parameters and type
variables. This is trivial if m is declared in C (RMT-1, Fig. 13). Otherwise, m is
looked up in C’s superclass C′ (RMT-2).

4.3 Well-Formedness

In this subsection, we define well-formedness of runtime types, heaps, and run-
time environments. The rules are presented in Fig. 13.
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RFT
h(ι)↓1= C< > C< > � C′< >

rfType(h, ι, f) = dyn(sfType(C′, f), h, ι)

RMT-1
class C< > extends < > { ; . . . <X > m(x ) { return e } . . . }

mBody(C, m) = (e, x, X)

RMT-2
class C< > extends C′< > { no method m }

mBody(C, m) = mBody(C′, m)

WFRT

ι′ ∈ dom(h) ∪ {nulla, anya} h, ι 	 rT ok
class C< sN> . . . h, ι 	 rT <: dyn(sN, h, ι)

h, ι 	 ι′ C<rT> ok

WFH

nulla /∈ dom(h) ∀ι : h, ι 	 h(ι)↓1 ok ∧ nulla ∈ owners(h, ι)
∀ι, f : h(ι)↓2= Fs ∧ rfType(h, ι, f) = rT =⇒ h 	 Fs(f) : rT

h ok

WFRE

rΓ = X rT ; this ι, x ι′ sΓ = X sN, X′ ; this (thisu C<X′>), x sT′

h ok sΓ ok ι �= nulla h, rΓ 	 rT ok h, rΓ 	 rT <: dyn(sN, h, rΓ)
h, rΓ 	 ι : thisu C<X′> h, rΓ 	 ι′ : sT′

h 	 rΓ : sΓ

Fig. 13. Rules for field and method lookup, and well-formedness

Well-Formed Runtime Types. The judgment h, ι � ι′ C<rT> ok expresses
that runtime type ι′ C<rT> is well-formed for viewpoint address ι in heap h.
According to rule WFRT, the owner address ι′ must be the address of an object
in the heap h or one of the special owners nulla and anya. All type arguments
must also be well-formed types. A runtime type must have a type argument for
each type variable of its class. Each runtime type argument must be a subtype
of the dynamization of the type variable’s upper bound. We use h, rΓ � rT ok as
shorthand for h, rΓ(this) � rT ok.

Well-Formed Heaps. A heap h is well-formed, denoted by h ok, if and only if
the nulla address is not mapped to an object, the runtime types of all objects
are well-formed, the root owner nulla is in the set of owners of all objects,
and all addresses stored in fields are well-typed (WFH). By mandating that all
objects are (transitively) owned by nulla and because each runtime type has
one unique owner address, we ensure that ownership is a tree structure.

Well-Formed Runtime Environments. The judgment h � rΓ : sΓ expresses
that runtime environment rΓ is well-formed w.r.t. a well-formed heap h and a
well-formed static type environment sΓ. According to rule WFRE, this is the
case if and only if: (1) rΓ maps all method type variables X that are contained in
sΓ to well-formed runtime types rT, which are subtypes of the dynamizations of
the corresponding upper bounds sN; (2) rΓ maps this to an address ι. The object
at address ι is well-typed with the static type of this, thisu C<X′>. (3) rΓ maps
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the formal parameters x that are contained in sΓ to addresses ι′. The objects at
addresses ι′ are well-typed with the static types of x, sT′.

4.4 Operational Semantics

We describe program execution by a big-step operational semantics. The transi-
tion h, rΓ, e� h′, ι expresses that the evaluation of an expression e in heap h and
runtime environment rΓ results in address ι and successor heap h′. A program
with main class C is executed by evaluating the main expression in a heap h0

that contains exactly one C instance in the root context where all fields f are
initialized to nulla (h0 = {ι �→ (nulla C<>, f nulla)}) and a runtime envi-
ronment rΓ0 that maps this to this C instance (rΓ0 = ε;this ι). The rules for
evaluating expressions are presented in Fig. 14 and explained in the following.

OS-Var
h, rΓ, x� h, rΓ(x)

OS-Null
h, rΓ, null� h, nulla

OS-Cast

h, rΓ, e0 � h′, ι
h′, rΓ 	 ι : sT

h, rΓ, (sT) e0 � h′, ι
OS-New

ι /∈ dom(h) ι �= nulla
rT = dyn(sN, h, rΓ) = C< >

Fs(fields(C)) = nulla

h′ = h[ι → (rT, Fs)]

h, rΓ, new sN� h′, ι

OS-Read

h, rΓ, e0 � h′, ι0
ι0 �= nulla

ι = h′(ι0)↓2 (f)

h, rΓ, e0.f� h′, ι
OS-Upd

h, rΓ, e0 � h0, ι0
ι0 �= nulla

h0,
rΓ, e2 � h2, ι

h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2 � h′, ι

OS-Invk

h, rΓ, e0 � h0, ι0 ι0 �= nulla h0,
rΓ, e2 � h2, ι2

h0(ι0)↓1= C0< > mBody(C0, m) = (e1, x, X)
rT = dyn(sT, h, rΓ) rΓ′ = X rT ; this ι0, x ι2 h2,

rΓ′, e1 � h′, ι

h, rΓ, e0.m<sT>(e2)� h′, ι

Fig. 14. Operational semantics

Parameters, including this, are evaluated by looking up the stored address in
the stack, which is part of the runtime environment rΓ (OS-Var). The null ex-
pression always evaluates to the nulla address (OS-Null). For cast expressions,
we evaluate the expression e0 and check that the resulting address is well-typed
with the static type given in the cast expression w.r.t. the current environment
(OS-Cast). Object creation picks a fresh address, allocates an object of the ap-
propriate type, and initializes its fields to nulla (OS-New). fields(C) yields all
fields declared in or inherited by C.

For field reads (OS-Read) we evaluate the receiver expression and then look
up the field in the heap, provided that the receiver is non-null. For the update of
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a field f, we evaluate the receiver expression to address ι0 and the right-hand side
expression to address ι, and update the heap h2, which is denoted by h2[ι0.f := ι]
(OS-Upd). Note that the limited covariance of Generic Universe Types does not
require a runtime ownership check for field updates.

For method calls (OS-Invk) we evaluate the receiver expression and actual
method arguments in the usual order. The class of the receiver object is used
to look up the method body. Its expression is then evaluated in the runtime
environment that maps m’s type variables to actual type arguments as well as
m’s formal method parameters (including this) to the actual method arguments.
The resulting heap and address are the result of the call. Note that method
invocations do not need any runtime type checks or purity checks.

5 Properties

In this section, we present the theorems and proof sketches for type safety and
the owner-as-modifier property as well as two important auxiliary lemmas.

Lemmas. The following lemma expresses that viewpoint adaptation from a
viewpoint to this is correct. Consider the this object of a runtime environment
rΓ and two objects o1 and o2. If from the viewpoint this, o1 has the static type
sN, and from viewpoint o1, o2 has the static type sT, then from the viewpoint
this, o2 has the static type sT adapted from sN, sN�sT. The following lemma
expresses this property using the addresses ι1 and ι2 of the objects o1 and o2,
respectively.

Lemma 1 (Adaptation from a Viewpoint)

h, rΓ 	 ι1 : sN, ι1 �= nulla

h, rΓ′ 	 ι2 : sT
free(sT) ⊆ dom(sN) ◦ X
rΓ′ = X dyn(sT, h, rΓ); this ι1,

⎫⎪⎪⎬
⎪⎪⎭

=⇒ h, rΓ 	 ι2 : (sN�sT)[sT/X]

This lemma justifies the type rule GT-Read. The proof runs by induction on
the shape of static type sT. The base case deals with type variables and non-
generic types. The induction step considers generic types, assuming that the
lemma holds for the actual type arguments. Each of the cases is done by a case
distinction on the main modifiers of sN and sT.

The following lemma is the converse of Lemma 1. It expresses that viewpoint
adaptation from this to an object o1 is correct. If from the viewpoint this, o1

has the static type sN and o2 has the static type sN�sT, then from viewpoint
o1, o2 has the static type sT. The lemma requires that the adaptation of sT
does not change ownership modifiers in sT from non-any to any, because the
lost ownership information cannot be recovered. Such a change occurs if sN’s
main modifier is any or if sT contains rep and is not accessed through this (see
definition of rp, Sec. 3.6).
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Lemma 2 (Adaptation to a Viewpoint)

h, rΓ 	 ι1 : sN, ι1 �= nulla

h, rΓ 	 ι2 : (sN�sT)[sT/X]
sN = u < >, u �= any, rp(u, sT)
free(sT) ⊆ dom(sN) ◦ X, sT �= thisu < >
rΓ′ = X dyn(sT, h, rΓ); this ι1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒ h, rΓ′ 	 ι2 : sT

This lemma justifies the type rule GT-Upd and the requirements for the types
of the parameters in GT-Invk. The proof is analogous to the proof for Lemma 1.

Type Safety for Generic Universe Types is expressed by the following theorem.
If a well-typed expression e is evaluated in a well-formed environment (including
a well-formed heap), then the resulting environment is well-formed and the result
of e’s evaluation has the type that is the dynamization of e’s static type.

Theorem 1 (Type Safety)

h 	 rΓ : sΓ
sΓ 	 e : sT
h, rΓ, e� h′, ι

⎫⎬
⎭ =⇒

{
h′ 	 rΓ : sΓ
h′, rΓ 	 ι : sT

The proof of Theorem 1 runs by rule induction on the operational semantics.
Lemma 1 is used to prove field read and method results, whereas Lemma 2 is
used to prove field updates and method parameter passing.

We omit a proof of progress since this property is not affected by adding
ownership to a Java-like language. The basic proof can be adapted from FGJ
[14] and extensions for field updates and casts. The new runtime ownership check
in casts can be treated analogously to standard Java casts.

Owner-as-Modifier discipline enforcement is expressed by the following the-
orem. The evaluation of a well-typed expression e in a well-formed environment
modifies only those objects that are (transitively) owned by the owner of this.

Theorem 2 (Owner-as-Modifier)

h 	 rΓ : sΓ
sΓ 	 e : sT
h, rΓ, e� h′,

⎫⎬
⎭ ⇒

⎧⎨
⎩

∀ι ∈ dom(h), f :
h(ι)↓2(f) = h′(ι)↓2(f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

where owner(h, ι) denotes the direct owner of the object at address ι in heap h,
and owners(h, ι) denotes the set of all (transitive) owners of this object.

The proof of Theorem 2 runs by rule induction on the operational semantics.
The interesting cases are field update and calls of non-pure methods. In both
cases, the type rules (Fig. 10) enforce that the receiver expression does not
have the main modifier any. That is, the receiver object is owned by this or
the owner of this. For the proof we assume that pure methods do not modify
objects that exist in the prestate of the call. In this paper we do not describe
how this is enforced in the program. A simple but conservative approach forbids
all object creations, field updates, and calls of non-pure methods [20]. The above
definition also allows weaker forms of purity that permit object creations [12]
and also approaches that allow the modification of newly created objects [25].
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6 Conclusion

We presented Generic Universe Types, an ownership type system for Java-like
languages with generic types. Our type system permits arbitrary references
through any types, but controls modifications of objects, that is, enforces the
owner-as-modifier discipline. This allows us to handle interesting implementa-
tions beyond simple aggregate objects, for instance, shared buffers [12]. We show
how any types and generics can be combined in a type safe way using limited
covariance and viewpoint adaptation.

Generic Universe Types require little annotation overhead for programmers.
As we have shown for non-generic Universe Types [12], this overhead can be fur-
ther reduced by appropriate defaults. The default ownership modifier is generally
peer, but the modifier of upper bounds, exceptions, and immutable types (such
as String) defaults to any. These defaults make the conversion from Java 5 to
Generic Universe Types simple.

The type checker and runtime support for Generic Universe Types are imple-
mented in the JML tool suite [17].

As future work, we plan to use Generic Universe Types for program verifica-
tion, extending our earlier work [20,21]. We are also working on path-dependent
Universe Types to support more fine-grained information about object owner-
ship, and to extend our inference tools for non-generic Universe Types to Generic
Universe Types.
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Abstract. Object-oriented languages define the identity of an object to
be an address-based object identifier. The programmer may customize
the notion of object identity by overriding the equals() and hashCode()
methods following a specified contract. This customization often intro-
duces latent errors, since the contract is unenforced and at times impos-
sible to satisfy, and its implementation requires tedious and error-prone
boilerplate code. Relation types are a programming model in which ob-
ject identity is defined declaratively, obviating the need for equals()
and hashCode() methods. This entails a stricter contract: identity never
changes during an execution. We formalize the model as an adaptation
of Featherweight Java, and implement it by extending Java with relation
types. Experiments on a set of Java programs show that the majority of
classes that override equals() can be refactored into relation types, and
that most of the remainder are buggy or fragile.

1 Introduction

IX: That every individual substance expresses the whole universe in its own
manner and that in its full concept is included all its experiences together with
all the attendant circumstances and the whole sequence of exterior events.
G. W. Leibniz, Discourse on Metaphysics (1686)

Object-oriented languages such as Java and C# support an address-based no-
tion of identity for objects or reference types. By default, the language consid-
ers no two distinct object instances equal; Java’s java.lang.Object.equals()
tests object identity by comparing addresses. Since programmers often intend
alternative notions of equality, classes may override the equals() method, im-
plementing an arbitrary programmer-defined identity relation.

In order for standard library classes such as collections to function properly,
Java mandates that an equals() method satisfy an informal contract. First, it
must define an equivalence relation, meaning that equals() should encode a
reflexive, symmetric, and transitive relation. Second, the contract states that “it
must be consistent”, i.e., two objects that are equal at some point in time must
remain equal, unless the state of one or both changes. Third, no object must be
� This work has been supported in part by the Defense Advanced Research Projects
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equal to null. Furthermore, when a programmer overrides equals(), he must
also override hashCode() to ensure that equal objects have identical hash-codes.

Programmer customization of identity semantics causes problems for several
reasons. First, creating an equivalence relation is often non-trivial and, in some
cases, impossible [12] (for details, see Section 2). Second, the language has no
mechanism to enforce the contract either statically or dynamically, leaving plenty
of rope by which programmers routinely hang themselves. We found buggy
or fragile equals() methods in nearly every Java application that we exam-
ined. Third, programmer identity tests often comprise repetitive and error-prone
boiler-plate code, which must be updated manually as the code evolves. Even
more boiler-plate code arises in patterns such as caching via hash-consing [18].

To alleviate these problems, we propose a programming model in which ob-
ject identity is specified declaratively, without tedious and error-prone equals()
and hashCode() methods. The model features a new language construct called
a relation type. A relation type declares zero or more fields, and designates a
(possibly empty) subset of these as immutable key fields, i.e. the field itself may
not be mutated. An instance of a relation type is called a tuple. A tuple’s iden-
tity is fully determined by its type and the identities of the instances referred
to by its key fields. In other words, two tuples a and b are equal if and only if:
(i) a and b are of the same type and, (ii) corresponding key fields in a and b are
equal. Conceptually, our programming model provides a relational view of the
heap, as a map from identities to their associated mutable state. One can think
of tuples with the same identity as pointing to the same heap location, and our
model permits efficient implementations (e.g., the use of space-efficient shared
representations in combination with pointer-equality for fast comparisons).

Our model enforces a stricter contract than Java’s since object identity never
changes, and tuples of different types must have different identities. Several con-
cepts arise as special cases of relation types: (i) a class of objects is one with an
address as its only key field, (ii) a value-type [5,15] is one with only key fields,
and (iii) a Singleton [17] is a type with no key fields.

We formalize our programming model as an adaptation of Featherweight Java,
and prove that hash-consing identities preserves semantics. We implemented
relation types in a small extension of Java called RJ, and created an RJ-to-Java
compiler. We examined the classes that define equals() methods in several Java
applications and refactored these classes to use relation types instead. We found
that the majority of classes that define equals() can be refactored with minimal
effort into relation types, and that most of the remainder are buggy or fragile.

To summarize, this paper makes the following contributions:

1. We present a programming model in which object identity is defined declara-
tively using a new language construct called relation types. By construction,
relation types satisfy a strict contract that prevents several categories of
bugs, and admits efficient implementations. Objects, value types, and sin-
gletons arise as special cases of the model.

2. We formalize the model using an adaptation of Featherweight Java, and
prove that hash-consing is a safe optimization in this model.
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3. We extended Java with relation types (RJ), and created an RJ-to-Java com-
piler. Experiments indicate that the majority of classes that define equals()
in several Java applications can be refactored into relation types, and that
most of the remainder are buggy or fragile.

2 Overview of RJ

This section examines Java’s equality contract and illustrates several motivating
problems. We then informally present our new approach based on relation types.

2.1 Java’s Equality Contract

The contract for the equals() method in java.lang.Object [1] states that:

The equals method implements an equivalence relation on non-null object references:

(1) It is reflexive: for any non-null reference value x, x.equals(x) should return true.
(2) It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if

and only if y.equals(x) returns true.
(3) It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.
(4) It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)

consistently return true or consistently return false, provided no information used in equals
comparisons on the objects is modified.

(5) For any non-null reference value x, x.equals(null) should return false.

Furthermore, whenever one overrides equals(), one must also override
hashCode(), to ensure that equal objects have identical hash-codes.

class Point {
int x;
int y;
public boolean equals(Object o){

if (!(o instanceof Point))
return false;

return ((Point)o).x == x
&& ((Point)o).y == y;

}
}

class ColorPoint extends Point{
Color color;
public boolean equals(Object o){

if (!(o instanceof Point))
return false;

if (!(o instanceof ColorPoint))
return o.equals(this);

return super.equals(o) &&
((ColorPoint)o).color == color;

}
}

Fig. 1. A class Point and its subclass ColorPoint

This contract has several problems. First, it is impossible to extend an in-
stantiatable class with a new field, and have the subclass be comparable to
its superclass, while preserving the equivalence relation. Consider the example
shown in Figure 1 (taken from [12]). Here, the equals() method of ColorPoint
must be written as such to preserve symmetry. However, this violates transitivity
as indicated in [12]. If one defines three points as follows:

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1,2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);
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then p1.equals(p2) is true and so is p2.equals(p3), but p1.equals(p3) is
false since color is taken into account.

A second problem with the contract is that the consistency (non-)requirement
allows the identity relation defined by the equals()method to change over time:
equals() may refer to mutable state. If an object’s identity relation changes
while the object resides in a collection, the collection’s operations (e.g. add()
and remove()) will not function as intended.

Most importantly, neither the compiler nor the runtime system enforces the
contract in any way. If the programmer mistakenly violates the contract, the
problem can easily manifest as symptoms arbitrarily far from the bug source.
A correct implementation involves nontrivial error-prone boilerplate code, and
mistakes easily and commonly arise, as we shall see in Section 2.2.

Java’s contract (but not C#’s) is also under-specified because it permits
equals() and hashCode() to throw run-time exceptions that could be avoided.

2.2 Examples

We carefully examined several applications, and found many problems in imple-
mentations of equals() and hashCode() methods, such as:

(a) Dependence on mutable state. Figure 2(a) shows a fragile code fragment
from org.hsqldb.GroupedResult.ResultGroup in hsqldb, where equals()
and hashCode() refer to a mutable field row of type Object[], which is up-
dated elsewhere. If the program modifies a row while a ResultGroup is
stored in a collection, then subsequent attempts to retrieve elements from
that collection may fail or produce inconsistent results. While the equals()
contract does not prohibit equals() and hashCode() from referring to mu-
table state, it “handles” these cases by declaring that “all bets are off” when
the identity relation changes. The programmer must carefully maintain the
non-local invariant that mutations do not overlap with relevant collection
lifetimes, often resulting in buggy or hard-to-maintain code.

(b) Asymmetry. Figure 2(b) shows excerpts from two classes from jfreechart,
one a superclass of the other. These equals() implementations are asym-
metric: it is easy to construct a NumberAxis a and a CyclicNumberAxis b
such that a.equals(b) but !b.equals(a). This violates the contract and
may produce inconsistent results if a heterogeneous collection contains both
types of objects.

(c) Contract for equals()/hashCode(). In Figure 2(c), from bcel, equals()
and hashCode() refer to different subsets of the state, so two equal objects
may have different hashcodes. The developers apparently knew of this prob-
lem as is evident from the comment “If the user changes the name or type,
problems with the targeter hashmap will occur”.

(d) Exceptions and null values. Figure 2(d) shows an equals() method
from pmd, which has two immediate problems. First, if the parameter o is
null, the method throws a NullPointerException rather than return false
as per the contract. Second, the code will throw a ClassCastException if
the object is ever compared to one of an incompatible type.
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class ResultGroup {
Object[] row;
int hashCode;
private ResultGroup(Object[] row) {

this.row = row;
hashCode = 0;
for (int i = groupBegin;

i < groupEnd; i++) {
if (row[i] != null) {

hashCode += row[i].hashCode();
}

}
}
public int hashCode() { return hashCode; }
public boolean equals(Object obj) {

if (obj == this) { return true; }
if (obj == null ||
!(obj instanceof ResultGroup)) {
return false;

}
ResultGroup group = (ResultGroup)obj;
for (int i = groupBegin;

i < groupEnd; i++) {
if (!equals(row[i], group.row[i])) {

return false;
}

}
return true;

}
private boolean equals(Object o1,

Object o2) {
return (o1 == null) ? o2 == null

: o1.equals(o2);
}

}

(a) Program fragment taken from hsqldb

public class NumberAxis extends ValueAxis ... {
private boolean autoRangeIncludesZero;
public boolean equals(Object obj) {

if (obj == this) { return true; }
if (!(obj instanceof NumberAxis)) {
return false;

}
if (!super.equals(obj)) { return false; }
NumberAxis that = (NumberAxis) obj;
if (this.autoRangeIncludesZero !=

that.autoRangeIncludesZero) {
return false; }

...
}

public class CyclicNumberAxis
extends NumberAxis {

protected double period;
public boolean equals(Object obj) {

if (obj == this) { return true; }
if (!(obj instanceof CyclicNumberAxis)) {
return false;

}
...

...
if (!super.equals(obj)) { return false; }
CyclicNumberAxis that =

(CyclicNumberAxis) obj;
if (this.period != that.period) {

return false;
}
...

}

(b) Program fragment taken from jfreechart

public class LocalVariableGen implements ... {
public int hashCode() {
//If the user changes the name or type,
//problems with the targeter hashmap
//will occur
int hc = index ^ name.hashCode()

^ type.hashCode();
return hc;

}
public boolean equals( Object o ) {
if (!(o instanceof LocalVariableGen)) {

return false;
}
LocalVariableGen l = (LocalVariableGen) o;
return (l.index == index)

&& (l.start == start)
&& (l.end == end);

}
}

(c) Program fragment taken from bcel

public class MethodNameDeclaration
public boolean equals(Object o) {
MethodNameDeclaration other =

(MethodNameDeclaration) o;
if (!other.node.getImage().

equals(node.getImage())) {
return false;

}
...

}

(d) Program fragment taken from pmd

public class emit {
protected static void emit action code( ... ){
...
if (prod.action() != null &&

prod.action().code string() != null &&
!prod.action().equals(""))
out.println(prod.action().code string());

...
}

}

(e) Program fragment taken from javacup

Fig. 2. Problems with the equality contract encountered in practice

(e) Inadvertent test of incomparable types. Figure 2(e) shows a buggy
code fragment taken from method java cup.emit.emit action code() in
javacup. Here, the last part of the condition, !prod.action().equals(""),
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compares an object of type java cup.action part with an object of type
String. Such objects are never equal to each other, hence the condition triv-
ially succeeds. This bug causes spurious blank lines in the parser that is gen-
erated by javacup. We confirmed with the developers [26] that they intended
to write !prod.action().code string().equals(""). More generally, the
problem stems from the property that objects of arbitrary types may be
considered equal, precluding compile-time type-based feasibility checks.

2.3 Revised Equality Contract

We propose a model that forces programmers to define object identity declar-
atively by explicitly indicating the fields in a type that comprise its identity,
which automatically induces an equivalence relation ==R. Our programming
model enforces a new equality contract that differs from Java’s as follows:

– It is enforced: The language implementation generates ==R automatically
and forbids the programmer from manipulating this relation explicitly.

– It is more strict than the original contract in item (4’); object identity cannot
change throughout the execution.

– The problems with defining an equivalence relation in the presence of sub-
classing are resolved by making relation types and their subtypes incompa-
rable: x ==R y yields false if x and y are not of exactly the same type.

The revised contract, shown below, is consistent with Java’s equality contract.
Note that items (1’), (2’),(3’), and (5’) are essentially the same as before.

Revised Equality Contract for ==R identity relation, on non-null references:

(1’) ==R is reflexive: For any non-null reference value x, x ==R x must return true.
(2’) ==R is symmetric: For any non-null reference values x and y, x ==R y returns true if and

only if y ==R x returns true.
(3’) ==R is transitive: For any non-null reference values x, y, and z, if x ==R y returns true and

y ==R z returns true, then x ==R z must return true.
(4’) For any non-null reference values x and y, multiple tests x ==R y consistently return true,

or consistently return false throughout the execution.
(5’) For any non-null reference value x, x ==R null must return false.

2.4 Relation Types

Our programming model introduces a new notion of class called a relation type.
We informally present the notion here; Section 3 defines the semantics formally.

A relation type resembles a class in Java, except a programmer may not
override the equals() and hashCode() methods. Instead, the programmer must
designate a (possibly empty) subset of instance fields as key fields, using the
keyword key. Key fields are implicitly final and private. We call an instance
of a relation type a tuple, and its identity is fully determined by its type and the
identities of the instances referred to by its key fields.

The programmer does not explicitly allocate a tuple using new; instead, he
calls a predefined id() method, whose formal parameters correspond exactly
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to the types of the key fields (including all those declared in its supertypes).
Informally, the id() method does an associative lookup to find the tuple with
the same identity. If no such tuple is found, id() creates a new tuple.

relation Car {
key String model;
key int year;
key String plate;

}

relation Person {
key int SSN;
Name name;

}

relation Name {
key String first;
key String last;

}

relation FullName extends Name {
key String middle;
String nickname;

}

class Policy { ... }

relation CarInsurance {
key Person person;
key Car car;
Policy policy;
int computePremium() { ... }

}

relation PolicyMgr {
// no key fields
public void addPolicy(Policy p){

policies.add(p);
}

List<Policy> policies =
new ArrayList<Policy>();

}

1. public static void main(String[] args){
2. Person p1 = Person.id(123);
3. Person p2 = Person.id(123);
4. Person p3 = Person.id(456);
5. // p1 == p2
6. // p1 != p3
7. // p1.SSN = 789 --> compile error

8. Name n1 = Name.id("Alice","Jones");
9. Name n2 = FullName.id("Alice","Jones","Leah");
10. p1.name = n1;
11. // n1 != n2
12. // n1 == ((FullName)n2).toName()
13. // p2.name.first == "Alice"
14. // p2.name.last == "Jones"

15. Policy pol1 = new Policy();
16. Policy pol2 = new Policy();
17. // pol1 != pol2

18. Car c1 = Car.id("Chevy",2004,"DZN-6767");
19. CarInsurance cins = CarInsurance.id(p1,c1);
20. cins.policy = pol1;
21. cins.computePremium();

22. PolicyMgr pm = PolicyMgr.id();
23. pm.add(pol1);
24. pm.add(pol2);

25. Set<Person> people = new HashSet<Person>();
26. people.add(p1);
27. people.add(p3);
28. // people.contains(p2) is true

29. p2.name = n2;
30. // ((FullName)p1.name).middle == "Leah";
31. // people.contains(p2) is still true
32. }

Fig. 3. Example of relation types

Figure 3 shows an example of pseudo-code with relation types. Relation type
Car declares key fields model, year, and plate. This means that two cars with
the same model, year and plate have the same identity and are indistinguish-
able. Since Car has no mutable state, it corresponds to a value type [5].

Relation types are more general than value types because tuples may contain
mutable state. Consider relation type Person, which has a key field SSN and a
mutable field Name. This means that there exists at most one Person tuple with
a given SSN, and that assignments to SSN are forbidden. So on the right side
of the example, variables p1 and p2 refer to the same tuple (they are aliased).
Assignments to the non-key field name are allowed (see line 10).

Inheritance among relation types resembles single inheritance for classes: sub-
types may add (but not remove) additional key fields as well as other instance



Declarative Object Identity Using Relation Types 61

fields and methods. A subtype inherits methods and fields declared in a relation
supertype. A relation type and its subtype are incomparable; subtype tuples
have different identities from supertype tuples. Should the programmer want
to compare a tuple to the corresponding subtuple of a subtype, the language
provides predefined coercion methods to convert subtypes to supertypes.

Consider the relation type Name and its subtype FullName in the figure. Tu-
ples of these relations have different identities (see line 11), and the predefined
coercion operator toName() must be used to compare the corresponding key
fields of these relations (see line 12). The assertions shown on lines 13 and 14
follow from the fact that p1 and p2 refer to the same tuple.

Conceptually, Java classes (with address-based identity) correspond to rela-
tion types with an implicitly defined key field address, assigned a unique value
by an object constructor. We use the class keyword to indicate a relation type
with an implicit address field. For example, the tuples (objects) of type Policy
created at lines 15 and 16 have different identities (see line 17). Note that classes
may not explicitly declare key fields or inherit from relation types that do. Our
relation keyword indicates the absence of an address key field.

The relation type CarInsurance illustrates how relation types provide a re-
lational view of the heap. The CarInsurance type maps distinct identities to
mutable state stored in the policy field. By analogy to relational databases,
the CarInsurance type resembles a relational table with three columns, two of
which are keys. The type also defines methods such as computePremium() that
may refer to all of all state of a particular CarInsurance tuple.

If a relation type has no key fields, then it corresponds to the Singleton

design pattern [17], since its identity consists solely of the type. Figure 3 shows
a (singleton) relation type PolicyMgr that provides access to a globally accessible
list of insurance policies. Lines 22–24 access this list.

Finally, lines 25–31 illustrate what happens when we insert tuples into collec-
tions. Here, we define a set people and add p1 and p3 to it. Since p1 and p2
are equal, the test people.contains(p2) returns true. Now if we modify p2 by
changing its name field (line 26), p2 remains in the set as expected (line 28). The
result of the test remains unchanged because the identity of p2 did not depend
on mutable state, and p2 was not removed from the set.

2.5 Lifetime Management and Namespaces

Thus far, we assumed that each relation type provides a global namespace for
tuples of a given type. Under this model, the program can support at most one
tuple with a given identity. Now, consider the case where a tuple t has a non-
key field that points to an object v. Normally, if t becomes garbage, and there
are no other references to v, then v becomes garbage. However, if the program
can reconstruct t’s identity (which is the case if, e.g., all of t’s key fields are of
primitive types), then the implementation cannot know whether the program
will try to retrieve v in the future. In such cases, t and v are immortal and
cannot be garbage-collected, effectively causing a memory leak.
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For a more flexible, practical model, the programmer can use scopes to pro-
vide separate namespaces for a type, and also to control tuple lifetime. Con-
sider the pseudo-code of Figure 4(a). The code creates two Persons, each with
the same identity (3), but which reside in different scopes. First, the program
creates a namespace of type Scope<Person> via a call to a built-in method
Person.newScope(). Type Scope<Person> provides an id() method with the
same signature as that of Person. Then, rather than creating a tuple from global
namespace via Person.id(), the program allocates a tuple from a particular
named scope (e.g., s1.id()).

Regarding garbage collection: a tuple becomes garbage when the program
holds no references to its containing scope (provided all of its key fields have
become garbage). In the example code, if foo returns jack, then jane may be
garbage-collected when foo returns, since there will be no live references to jane
nor its scope s2.

Person foo() {
Scope<Person> s1 = Person.newScope();
Person jack = s1.id(3);
jack.setName(Name.id("Jack","Sprat"));
Scope<Person> s2 = Person.newScope();
Person jane = s2.id(3);
jane.setName(Name.id("Jane","Sprat"));
return (*) ? jack : jane;

}

Person foo() {
Object s1 = new Object();
Person jack = Person.id(3,s1);
jack.setName(Name.id("Jack","Sprat"));
Object s2 = new Object();
Person jane = Person.id(3,s2);
jane.setName(Name.id("Jane","Sprat"));
return (*) ? jack : jane;

}
(a) (b)

Fig. 4. Example of scopes

The base programming model can emulate programming with scopes by adding
to each relation type an implicit key field called scope, whose type is an object.
This will be discussed further in Section 4.1.

3 A Core Calculus for RJ

We formally define a core calculus for the RJ language as an adaptation of Feath-
erweight Java [19] (FJ). For simplicity, we adopt the notation and structures of
the model presented in [19]. RJ differs from Featherweight Java in that it has
relation types instead of classes, and allows assignment.

3.1 Syntax

We use the notation x̄ to denote a possibly empty sequence, indexed starting at
1, and • for the empty sequence. The size of the sequence is indicated by #x̄.
We write x̄ ∈ X to denote x1 ∈ X, · · · , x#x̄ ∈ X (and similarly x̄ �∈ X). For any
partial function F , we write Dom(F ) for the domain of F . The notation F (x̄) is
short for the sequence F (x1), · · · , F (xn).

We use L to denote a relation type declaration, and M a method. We write R,
S and T for relation type names; f , g and h for field names; x for variables; e and
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c for expressions; l and a for memory locations, with subscripts as needed. The
notation “R̄ x̄” is shorthand for the sequence “R1 x1, · · · , Rn xn” and similarly
“R̄ f̄ ;” is shorthand for the sequence declarations “R1 f1; · · ·Rn fn;” for some n.
The declaration “key R̄ f̄ ;” is similar with the annotation ‘key’ preceding every
declaration in the sequence.

The syntax of the RJ language is shown below:

L ::= relation R extends R { key R̄ f̄ ; R̄ f̄ ; M̄ }
M ::= R m(R̄ x̄) { return e; }
e ::= x | e.f | e.m(ē) | e == e | if e then e else e | e.f ← e | R.id(ē) | l

A relation type is declared to be a subtype of another using the extends keyword
and consists of series of field declarations and a series of method declarations.
Some field declarations are marked with the keyword key and represent the key
fields of the relation type. Key fields are immutable, and non-key fields may or
may not be mutable. We assume that there is an uninstantiatable relation type
Relation at the top of the type hierarchy with no fields and no methods. As
in Featherweight Java, a subtype inherits fields and methods, field declarations
are not allowed to shadow fields of supertypes, and methods may override other
methods with the same signature. A method declaration specifies a method’s
return type, name, formal parameters, and body. The body consists of a single
statement which returns an expression e, which may refer to formal parameters
and the variable this. Note that relation types do not have constructors. Instead,
a tuple is constructed using a method id() with predefined functionality.

An expression consists of a variable, a field access, a method call, an equality
test, or an if–then–else construct. Other forms are an assignment e.f ← e,
which assigns to e.f and evaluates to the value being assigned, or a relation
construction expression R.id(ē), which takes as many parameters as there are
key fields in R and its supertypes (in the same order). Informally, R.id(ē)
refers to the tuple of type R whose arguments are denoted by ē. If such a tuple
already exists, then it is returned (with all existing non-key state), otherwise
it is created with all non-key fields set to null. Finally, an expression may be
a memory location l, which is used for defining semantics only and not by the
programmer.

A relation table RTable is a mapping from a relation type name R to a decla-
ration of the form “relation R ...”. RTable is assumed to contain an entry for
every relation type except for the top level type Relation. The subtype relation
(denoted <:) is obtained in a customary way [19]. An RJ program consists of a
pair (RTable, e) of a relation table and an expression.

3.2 Semantics

Figure 5 shows some auxiliary functions needed to define the reduction rules of
RJ. The function keys() returns the set of key fields of a relation type, while
nonKeys() returns its non-key fields. Function fields() returns the sequence of
all fields of a relation type. Partial function mbody(m, R) looks up the body of
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method named m for relation type R and returns a pair of formal parameters
and the expression that constitutes its body, written as x̄.e. The notation m �∈ M̄
means that there is no method declaration for a method named m in M̄ . We do
not deal with method overloading as in Featherweight Java.

The arity of a relation type R is the number of key fields in R and all its
supertypes, and is denoted by |R|.

Key lookup:

keys(Relation) = • relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄} keys(S) = S̄ h̄

keys(R) = S̄ h̄, T̄ ḡ

Non-Key lookup:

nonKeys(Relation) = •
relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄}

nonKeys(S) = S̄ h̄

nonKeys(R) = S̄ h̄, R̄ f̄

Field lookup:
fields(R) = keys(R), nonKeys(R)

Method body lookup:
relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄} T m(T̄ x̄){ return e; } ∈ M̄

mbody(m, R) = x̄.e

relation R extends S {key T̄ ḡ; R̄ f̄ ; M̄} m 
∈ M̄

mbody(m, R) = mbody(m, S)

Fig. 5. Auxiliary functions for RJ

Traditionally, a heap is defined as a map from memory locations and field
names to memory locations. In our programming model, the identity of a tuple
constitutes a high-level address for it. To reflect this, the heap in our model is
comprised of two components: a map from locations to identities, and a map from
identities and field names to locations. There is therefore a level of indirection
to introduce these high-level addresses.

Let Locs be a set of memory locations, Ids a set of identities, and Fields

the set of field names. We use k to denote an identity. Let a heap H be a partial
function of type (Ids,Fields) → Locs, and a heap index L a partial function
of type Locs → Ids. A heap index L corresponds to a heap H if and only if L
is defined for every location in the range of H and every identity in the domain
of H is in the range of L. We use the notation H[(k, f) → l] to denote the heap
function identical to H except at (k, f), which is mapped to l. Similarly, L[l
→ k] denotes heap index L with l mapped to k. We write L[l̄ → k̄] to denote
L[l1 → k1] · · · [ln → kn], where l̄ and k̄ have size n.

The function allocn(L) allocates a sequence of n fresh locations not mapped
by L. We write alloc(L) as a shorthand for alloc1(L).

Finally, we introduce a function I that computes the identity of a tuple,
given its type and the identities of its key fields. Formally, I is a partial injective
function I that maps a relation type and a sequence of identities to an identity
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in Ids. I(R, k̄) is defined when #k̄ = |R|, and undefined otherwise. Note that
the base case for constructing identities is to construct the identity for a relation
type without key fields (i.e., a singleton).

The typing rules for RJ are straightforward adaptations of those for Feather-
weight Java, and can be found in a forthcoming technical report [32].

Figure 6 shows reduction rules for RJ. A reduction step is of the form:
(L, H, e) −→ (L′, H′, e′) and means that e reduces in one step to e′ in
the context of heap index L and heap H, resulting in L′ and H′. We use the
notation −→RJ to denote one step of reduction in RJ, when it is not clear from
context. We write −→∗

RJ to denote the reflexive, transitive closure of the −→RJ

relation.
Rule R-Field reduces expression l.fi, where l is a location, by looking up the

identity that l maps to in L, and the location mapped to by this identity and
field fi in H, i.e. H(L(l), fi).

Rule R-Invk deals with method invocation and applies only after the receiver
and parameters have been reduced to locations. The expression [ā/x̄, l/this]e
denotes e in which formal parameters x̄ and this have been replaced with actual
parameters ā and receiver l, respectively.

Rules R-Eq-True R-Eq-False show how to reduce an equality between two
memory locations l1 and l2. These are equal if they hold the same identity, i.e.,
L(l1) = L(l2).

Rules R-If-True and R-If-False show the reduction for the if-then-else
expression in the obvious way.

Rule R-Assign shows how to reduce an assignment expression l.fi ← a. Field
f must be non-key, and l and a locations. The expression reduces to a and the
heap H is replaced with one that is identical except at (L(l),fi), which is now
mapped to a.

Rule R-Id-NoKey shows the reduction of a constructor expression for a rela-
tion type with no key fields R.id(). This expression is reduced to a fresh memory
location l, which is mapped to the corresponding identity k = I(R) in the new
heap index.

Rule R-Id-Create shows the reduction of a constructor expression R.id(ā)
for the case where the identified tuple has not been created yet. For this rule to
apply, the arguments must have been already reduced to locations ā. The identity
k of the tuple is computed using I(R, L(ā)). The expression l, l̄ = alloc#ā+1(L)
allocates #ā+1 fresh memory locations from L, one for the tuple itself, and #ā
for each of its key fields. The constructor expression reduces to location l, which
is mapped to k in the new heap index. The heap itself is also updated at (k,g)
for each key field g in ḡ of R to a fresh memory location. The notation H[(k, ḡ)
→ l̄] represents H[(k, g1)→ l1] · · · [(k, gn)→ ln], where ḡ and l̄ have size n. The
typing rules [32] guarantee that the constructor for R has as many arguments
as its number of key fields, which means that sequences ā and ḡ have the same
length. Rule R-Id-Create applies when (k, ḡ) is not in the domain of H and
the tuple is therefore created.
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fields(R) = R̄ f̄ l ∈ Locs li = H(L(l), fi)

(L, H, l.fi) −→ (L, H, li)
(R-Field)

mbody(m, R) = x̄.e l, ā ∈ Locs

(L, H, l.m(ā)) −→ (L, H, [ā/x̄, l/this]e)
(R-Invk)

l1, l2 ∈ Locs L(l1) = L(l2)

(L, H, l1 == l2) −→ (L, H, true)
(R-Eq-True)

l1, l2 ∈ Locs L(l1) 
= L(l2)

(L, H, l1 == l2) −→ (L, H, false)
(R-Eq-False)

(L, H, if true then eT else eF ) −→ (L, H, eT ) (R-If-True)

(L, H, if false then eT else eF ) −→ (L, H, eF ) (R-If-False)

nonKeys(R) = R̄ f̄ l, a ∈ Locs

(L, H, l.fi ← a) −→ (L, H[(L(l), fi) → a], a)
(R-Assign)

k = I(R) l = alloc(L)

(L, H, R.id()) −→ (L[l → k], H, l)
(R-Id-NoKey)

ā ∈ Locs k = I(R, L(ā)) keys(R) = R̄ ḡ

(k, ḡ) 
∈ Dom(H) l, l̄ = alloc#ā+1(L)

(L, H, R.id(ā)) −→ (L[l → k][l̄ → L(ā)], H[(k,ḡ) → l̄], l)

(R-Id-Create)

ā ∈ Locs k = I(R, L(ā)) keys(R) = R̄ ḡ

(k, ḡ) ∈ Dom(H) l = alloc(L)

(L, H, R.id(ā)) −→ (L[l → k][l̄ → L(ā)], H, l)

(R-Id-Find)

(L, H, e) −→ (L′, H′, e′)

(L, H, e.f) −→ (L′, H′, e′.f)
(RC-Field)

(L, H, e) −→ (L′, H′, e′)

(L, H, e.m(c̄)) −→ (L′, H′, e′.m(c̄))
(RC-Invk-Recv)

(L, H, e) −→ (L′, H′, e′) l, ā ∈ Locs

(L, H, l.m(ā, e, c̄)) −→ (L′, H′, l.m(ā, e′, c̄))
(RC-Invk-Arg)

(L, H, e) −→ (L′, H′, e′)

(L, H, e == c) −→ (L′, H′, e′ == c)
(RC-Eq-1)

(L, H, e) −→ (L′, H′, e′) l ∈ Locs

(L, H, l == e) −→ (L′, H′, l == e′)
(RC-Eq-2)

(L, H, e) −→ (L′, H′, e′)

(L, H, e.f ← c) −→ (L′, H′, e′.f ← c)
(RC-Assign-1)

(L, H, e) −→ (L′, H′, e′) l ∈ Locs

(L, H, l.f ← e) −→ (L′, H′, l.f ← e′)
(RC-Assign-2)

(L, H, e) −→ (L′, H′, e′) ā ∈ Locs

(L, H, R.id(ā, e, c̄)) −→ (L′, H′, R.id(ā, e′, c̄))
(RC-Id-Arg)

Fig. 6. Computation and Congruence Rules for RJ
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Rule R-Id-Find is similar, except that the tuple exists in the heap and it is
therefore not updated. The constructor expression still reduces to a fresh memory
location l, which is mapped to the identity k in the new heap index.

The rest of the reduction rules (Figure 6) ensure that an expression is reduced
in a deterministic fixed order.

RJ’s computation on a program (RTable, e) starts in a state (L, H, e), where
L and H have empty domains, and consists of a sequence of states obtained by
applying the reduction rules, until none applies.

3.3 The RJ-HC Language

In this section, we prove that the hash-consing optimization [18], which consists
of storing equal values at the same memory location, preserves semantics for
RJ. To this end, we present RJ-HC, a version of the core calculus of RJ with a
hash-consing operational semantics.

RJ-HC has the same syntax and auxiliary functions as RJ, except for memory
allocation, which performs hash-consing. The auxiliary function allocRJ-HC(L, k)
in RJ-HC returns a location l that maps to k in L, if such a location exists,
and a fresh location otherwise. We write allocRJ-HC(L, k̄) to denote the sequence
allocRJ-HC(L, k1), · · · , allocRJ-HC(L, kn), where n is the length of k̄.

The reduction rules of RJ-HC are identical to RJ, except for R-Id-NoKey,
R-Id-Create, and R-Id-Find. Figure 7 shows these new rules for RJ-HC. Rule
R-Id-NoKey-HC is similar to that in RJ, except that it uses the new allocation
function. There is a single rule R-Id-HC for the constructor expression, which
also uses the hash-consing allocation function. It always updates the heap H,
possibly rewriting it with existing values.

We use the notation −→RJ-HC to denote one step of reduction in RJ-HC, when
it is not clear from context. We write −→∗

RJ-HC to denote the reflexive, transitive
closure of the −→RJ-HC relation.

k = I(R) l = allocRJ-HC(L, k)

(L, H, R.id()) −→ (L[l → k], H, l)
(R-Id-NoKey-HC)

ā ∈ Locs k = I(R, L(ā)) keys(R) = R̄ ḡ

l = allocRJ-HC(L, k) l̄ = allocRJ-HC(L, L(ā))

(L, H, R.id(ā)) −→ (L[l → k][l̄ → L(ā)], H[(k,ḡ) → l̄] , l)

(R-Id-HC)

Fig. 7. New Computation Rules for RJ-HC

We now show that RJ and RJ-HC have the same behavior on the same pro-
gram (RTable, e). First, some definitions:

Definition 1 (Well-Formed State). A state (L, H, e) in a computation
of RJ (RJ-HC) is well-formed if L corresponds to H and for every location l
appearing in e, L is defined at l.
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It is easy to show that reduction preserves well-formedness both in RJ and
RJ-HC.

Definition 2 (Structural Equivalence). We say that two well-formed states
(L, H, e) and (L′, H′, e′) are structurally equivalent if:

1. H and H′ have the same domain and for all (k,f) in that domain: L(H(k, f))
= L′(H′(k, f))

2. [L(l̄)/l̄]e = [L′(l̄′)/l̄′]e′, where l̄ and l̄′ are sequences of locations appearing
in e and e′, respectively. To denote this condition we write e ≡ e′ when L
and L′ are clear from the context.

In Definition 2, item 1 states that the heaps and heap indices must have the
same structure. Item 2 states that expressions e and e′ where all locations are
substituted with their corresponding identities are syntactically identical.

Lemma 1. Assume that (Lo, Ho, eo) and (L, H, e) are structurally equivalent
states resulting from the computation of RJ-HC and RJ, respectively, on the
same program. If (Lo, Ho, eo) −→RJ-HC (L′

o, H′
o, e′o) then there exists a state

(L′, H′, e′), such that (L, H, e) −→RJ (L′, H′, e′) and (L′
o, H′

o, e′o) and
(L′, H′, e′) are structurally equivalent.

Proof. By induction on the derivation of (Lo, Ho, eo) −→RJ-HC (L′
o, H′

o, e′o)
with a case analysis on the last reduction rule used. The proof can be found in
[32].

Theorem 1. Assume that (Lo, Ho, eo) and (L, H, e) are structurally equiv-
alent states resulting from the computation of RJ-HC and RJ, respectively, on
the same program. If (Lo, Ho, eo) −→∗

RJ-HC (L′
o, H′

o, e′o) then there exists a
state (L′, H′, e′), such that (L, H, e) −→∗

RJ (L′, H′, e′) and (L′
o, H′

o, e′o)
and (L′, H′, e′) are structurally equivalent.

Proof. By induction on the length n of reduction sequence (Lo, Ho, eo) −→∗
RJ-HC

(L′
o, H′

o, e′o).

Case: n = 0. Trivial.

Case: (Lo, Ho, eo) −→RJ-HC (L′′
o, H′′

o, e′′o) −→∗
RJ-HC (L′

o, H′
o, e′o).

By Lemma 1, we know that there exists a state (L′′, H′′, e′′) such that (L, H, e)
−→RJ (L′′, H′′, e′′) and (L′′

o, H′′
o, e′′o) and (L′′, H′′, e′′) are structurally equiv-

alent. By the induction hypothesis, there exists a state (L′, H′, e′) such that
(L′′, H′′, e′′) −→∗

RJ (L′, H′, e′), and (L′, H′, e′) and (L′
o, H′

o, e′o) are struc-
turally equivalent. ��

4 Implementation and Evaluation

To evaluate the utility of relation types, we extended Java with relation types and
developed a compiler for translating programs written in the resulting RJ lan-
guage to Java. We examined the classes that define equals() and hashCode() in
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a number of open-source Java applications. For each application, we determined
if and how these classes could be rewritten with relation types.

4.1 Implementation

RJ adds a few minor extensions to Java syntax:

– The relation keyword indicates that a class or interface is a relation type.
– The key keyword indicates that a field in a relation type is a key field. A

relation class may have zero or more key fields.
– Each relation class R implicitly defines an id() method with return type R

and argument types corresponding to the key fields in R and its supertypes.

Conceptually, the hierarchy of relation types is completely distinct from the
hierarchy of (non-relation) reference types. For pragmatic reasons, the implemen-
tation makes java.lang.Object the implicit supertype of a all relation types,
but relation types cannot inherit explicitly from a reference type or vice versa.

We have implemented RJ using the Java 5.0 metadata facility. Embedding the
RJ language in Java enabled us to leverage the Eclipse JDT refactoring frame-
work as the basis for our compiler. Concretely, relation types are annotated with
a @Relation annotation and key fields with a @Key annotation. Furthermore,
we model the implicitly defined id() method as a constructor annotated with
the @Id annotation1. Since our experiments target converting Java classes into
relation types, our RJ implementation allows non-relation types and relations
to co-exist. Specifically, we allow the declaration of equals() and hashCode()
methods in non-relation Java classes.

We implemented a simple type checker for RJ that enforces the following
constraints on relation types:

– Up-casts (implicit or explicit) from a relation type to Object are disallowed.
– Key fields must be private and final, but there is no restriction on the

type of objects they point to.
– Declaring equals() and hashCode() in a relation type is disallowed.
– In order to avoid programmer errors, the application of the == and != oper-

ators to one operand of a relation type and another operand of a reference
type results in a type error.

– Calling equals() on an expression of a relation type is a type error.

The RJ compiler translates RJ to Java using the AST rewriting infrastruc-
ture in Eclipse. The translation involves the following steps: (i) generation of a
nested Key class that contains the key fields declared in a relation type and that
implements appropriate equals() and hashCode() methods, (ii) generation of
a static map that contains the relation’s tuples, (iii) generation of a constructor
that initializes the key fields from corresponding formal parameters, (iv) gener-
ation of the id() method that returns a tuple with a given identity if it already
1 In a full language implementation, the programmer would not need to declare an
id() method; our prototype implementation requires the explicit constructor as an
expedient way to interoperate with the Eclipse Java development tools.
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exists, and creates such a tuple otherwise, and (v) updating the references to key
fields (necessary because these fields are moved into the generated Key class).
Figure 8 shows the annotated source and generated code for the Person class
from Figure 3.

@Relation public class Person {
@Key private final int SSN;
@Key private final Name name;
@Id private Person(int SSN, Name name) {

this.SSN = SSN;
this.name = name;

}
}

public class Person {
protected final Key key;
protected Person(Key key) {

this.key = key;
}
public static Person id(int SSN, Name name) {

Key k = new Key(SSN, name);
Person c = m.get(k);
if (c == null) {
c = new Person(k);
m.put(k, c);

}
return c;

}
private static Map<Key, Person> m =

new HashMap<Key, Person>();

protected static class Key {
public Key(int SSN, Name name) {
this.SSN = SSN;
... // continued on right column

...
this.name = name;

}
public boolean equals(Object o) {

if (o = null &&
getClass().equals(o.getClass())) {
Key other = (Key) o;
return SSN == other.SSN &&
(name == null) ? (other.name == null)
: name.equals(other.name);

}
return false;

}
public int hashCode() {

return 6079 * SSN + 6089 *
((name == null) ? 1 : name.hashCode());

}
private final int SSN;
private final Name name;

}
}

Fig. 8. RJ source code implemented with Java annotations (top), and generated Java
implementation (bottom)

In the basic implementation discussed so far, tuples are never garbage col-
lected. Therefore we extended our implementation to use weak references, so
tuples can be collected when their identity becomes unreachable, as discussed
in Section 2.5. In this approach, key fields use WeakReferences as pointers, and
relation types use the ReferenceQueue notification mechanism to remove a tu-
ple when any of its weak referents becomes dead. Additionally, the canonicalized
tuple objects are cached using SoftReferences. If none of the key fields of a re-
lation type are of reference types, the scope mechanism discussed in Section 2.5
can be used. A scope is a reference, so when the scope dies, so do its tuples.

Our current prototype implementation maximizes the amount of sharing and
follows one of many possible implementation strategies. This strategy was chosen
in part because it results in significant changes to the aliasing patterns in our
benchmarks, and hence makes a good test that our rewriting was done correctly.
Note that while hash-consing is often regarded as an optimization, it is unlikely
that our prototype implementation actually maximizes performance, since the
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benefits of hash-consing need to balanced against costs such as finding the hash-
consed objects when needed. Furthermore, our implementation uses ordinary
java.util.HashMap objects to implement hash-consing, which will hurt our
performance since the standard hash tables employ a rather allocation-intensive
mechanism for defining hash keys. For this reason, we do not present performance
results for our current prototype.

Beyond the current prototype, there are many implementation tradeoffs to
consider. We have considerable freedom to copy and move objects around in our
model, and this may allow an implementation to base decisions about copying
on the likely impact on locality; this could even be based on runtime feedback if
sufficient support were included in a virtual machine. Our model also provides
greater freedom to use aggressive optimizations such as object inlining [16] that
involve re-arranging objects in memory. It remains as future work to evaluate op-
timized implementations to discover empirically what implementation tradeoffs
work well in practice.

4.2 Case Study: javacup

We now describe in detail one case study, investigating how javacup (version
11a), an LALR parser generator written in Java, can be refactored to use relation
types. We examined each class that overrides equals(), identified the intended
key fields by examining the equals() and hashCode() implementations, and
then manually rewrote the class into a relation type. We then compiled the
resulting RJ version of javacup into Java, ran both the original version and
this generated version on a grammar for Java 5 and ensured that the resulting
generated parsers are identical.

In the course of this exercise, we needed to apply a number of refactorings
that preserve the behavior of javacup, but that ease the introduction of relation
types. The most significant of these refactorings consisted of:

– Key fields were made private and final. In a few cases, methods that
initialize these fields were inlined into a calling constructor, or eliminated
as dead code. In a few cases, some minor code restructuring was needed to
eliminate “spurious mutability”.

– Nontrivial constructors were replaced by a combination of (i) simple con-
structors that only initialize key fields, and (ii) factory methods [17] that
contain the remaining initialization code for, e.g., initializing mutable fields.

– In a few cases, the code contained implicit up-casts to type Object because
tuples were stored into collections. In such cases, we parameterized uses of
collection types with parameters of the appropriate relation type in order to
avoid the up-cast.

After performing these steps, we deleted the equals() and hashCode()methods,
added @Relation, @Key, and @Id annotations, and ensured that the resulting
code could be compiled and executed successfully.

Interestingly, we found that the resulting version of javacup produced a parser
with significantly different source text than the parser produced by the original
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Table 1. Summary of results for javacup case study

class actions performed
java cup.production part Converted into relation type: 1 key field, 0 non-key fields
java cup.action part Converted into relation type: 1 key field, 0 non-key fields
java cup.symbol part Converted into relation type: 1 key field, 0 non-key fields

java cup.parse action
Converted into singleton relation type (0 key fields, 0 non-
key fields)

java cup.nonassoc action
Converted into singleton relation type (0 key fields, 0 non-
key fields)

java cup.shift action Converted into relation type: 1 key field and 0 non-key fields

java cup.reduce action
Converted into relation type: 1 key field, 0 non-key fields.
Error in use of equals() previously discussed in Section 2.2.

java cup.production Converted into relation type: 1 key field, 14 non-key fields
java cup.action production Converted into relation type: 0 key field, 2 non-key fields

java cup.lr item core
This class and its subclass lalr item were refactored into a
combination of 2 classes without equals()/hashCode() and
one relation type with 2 key fields and 0 non-key fields.

java cup.lalr item See comments for java cup.lr item core.
java cup.lalr state Converted into relation type: 1 key field, 2 non-key fields

java cup.symbol set
Not converted because equals() refers to mutable state.
Note: equals() is dead, so could simply be removed.

java cup.terminal set

Not converted because equals() refers to mutable state.
Note: equals() is dead, so could simply be removed. Does
not declare hashCode(), hence equals()/hashCode() contract
violated.

java cup.lalr item set Not converted because equals() refers to mutable state.

javacup, but that these parsers behave identically when applied to a number of
inputs. Further investigation revealed that the output of the original version de-
pended on iterators whose order relied on hash-codes of the elements stored in
hash-tables. The hashCode() methods in our generated code differ from those
in the original javacup, which resulted in different (but equivalent) generated
parsers. As a further experiment, we rewrote javacup to use LinkedHashMaps2 in-
stead of Hashtables, and repeated the entire experiment. The resulting javacup
produced a parser that was syntactically identical to the original javacup output.

Table 1 shows, for each class in javacup with an application-defined equals()
method, the outcome of this exercise. As the table shows, of 15 classes with
application-defined equals() methods, 12 could be converted into relation
types, and most of them with relatively little effort. Classes lr item core and
lalr item required a somewhat nontrivial transformation. The equals() meth-
ods in these classes do not reflect general object identity, but only apply within
the context of an lalr item set. We therefore removed these equals() meth-
ods and rewrote lalr item set to appropriately manipulate these objects using
a newly created relation type ItemKey. Another item of note was a bug in a use
of reduce action.equals() that we previously discussed in Section 2.2. Classes
symbol set, terminal set and lalr item set could not be converted because
their equals() methods refer to mutable collections. Interestingly, the equals()
methods in symbol set and terminal set are dead, and could be removed.

2 A LinkedHashMap is a hash-table for which the iteration order is determined by the
order in which elements are inserted instead of depending on the hash-codes of the
elements.
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Furthermore, class terminal set violates the equals()/hashCode()contract by
not overriding Object.hashCode().

4.3 Other Benchmarks

We repeated the methodology of the case study on a number of open-source Java
applications.

The benchmarks ant, hsqldb, jfreechart3, lucene, and pmd are open-source
codes; we used the versions collected in the DaCapo benchmarks [11], version
dacapo-2006-10. Bcel is the Apache Bytecode Engineering Library [4], version
5.2. Shrike is the com.ibm.wala.shrike project from the T. J. Watson Libraries
for Analysis (WALA) [2], version 1.0. We use shrike regularly, and chose it for
consideration based on prior knowledge that it would suit relation types. Shrike
also has sophisticated, hand-rolled hash-consing, which is now generated auto-
matically by the RJ compiler. The other benchmarks were chosen based on their
having a reasonable number of equals() methods, and based on the availability
of some drivers to test for correct behavior.

As described for javacup earlier, we transformed each code by hand where
necessary to make fields private and final, remove unnecessary mutable state,
and similar local changes. While we believe our transformations were correct
(modulo erroneous existing behavior), we have no mechanical proof that the
changes are semantics-preserving. We ran a number of dynamic tests for each
code, including unit tests where available, the DaCapo drivers, and other drivers
we created, and verified that for each test the RJ implementation behaves identi-
cally to the original implementation. This methodology gives us some confidence
that the RJ versions are correct.

Table 2 summarizes our findings. The columns of the table show, for each
benchmark, from left to right:

1. The number of equals() methods originally declared.
2. The number of equals()methods eliminated by conversion to relation types.
3. The percentage of eliminated equals() methods.
4. The total number of relation types introduced.
5. The number of relation types that correspond to value types (i.e., all fields

are key fields).
6. The number of relation types that correspond to singletons.
7. The number of relation types that have non-key fields.
8. A summary of the bugs and issues that we encountered, as explained in the

legend of the table.

As the table reflects, during this exercise we were able to convert the majority
of candidate classes to relation types with little program modification. Most of
these types actually represent values with no mutable state. As is well known,

3 jfreechart has more than 200 equals() methods—a daunting number to study
by hand. So we looked only at the first two packages in lexicographic order:
org.jfree.chart.annotations and org.jfree.chart.axis.
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Table 2. Summary of results

benchmark #equals() #relation types bugs/issues
orig. removed % total value sing. non-value

ant 12 9 75.0 9 3 0 6 H,M

bcel 20 14 70.0 22 11 5 11 F,H,M

hsqldb 12 2 16.7 2 0 0 2 E,F,M,S

javacup 14 11 78.6 11 8 2 3 H,M,T

jfreechart 46 33 71.7 40 40 1 0 H,M,S

lucene 27 27 100.0 27 23 0 4 E,M

pmd 12 5 41.7 5 3 2 2 E,F,M,N,S

shrike 32 32 100.0 61 55 3 6 M

Explanation of codes used for Bugs/Issues:
E equals() method throws exception if passed unanticipated argument
F fragile (e.g., equals() defined in terms of toString())
H equals()/hashCode() contract violated
M equals()/hashCode() depends on mutable state
N violates contract for equals(null)
S symmetry requirement in equals() contract violated
T inadvertent test of incomparable types

programming in a functional style without mutation eliminates many classes of
bugs and generally leads to more robust, maintainable code. Relation types fit
well into such a programming style.

The last column of the table shows that we found violations of the contract
and other problems in every code. This reinforces our claim that the current
unenforced contract leads to fragile and error-prone code. Relation types en-
courage more robust code by enforcing a stricter contract and removing the
need for tedious, error-prone boiler-plate code.

Of the types which we did not convert to relation types, most fall into one
of two categories. The first category comprises types where the programmer
had already manually applied hash-consing or other caching and pooling op-
timizations. In such cases, the program complexity exceeded our threshold for
rewriting in these experiments. Relation types would obviate the need for such
manual storage optimizations, since the compiler can implement hash-consing
and related representation transformations automatically.

The other category comprises types where identity depends on mutable state.
Many instances of mutable identity appear spurious, and could be eliminated
with a slightly more functional design. We also found a fairly large number of
cases we call piecemeal initialization. In these cases, the program incrementally
builds up an object’s state piecemeal; for example, the program parses an XML
document and mutates an object to represent the state as it parses. However,
the object becomes logically immutable after initialization. To support such pat-
terns, we plan to extend RJ with a facility to “freeze” a mutable object into an
immutable relation tuple. Note that, in our current model, it is not possible to
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construct two tuples t1 and t2 such that the identity of t1 is determined by t2
and vice versa. The proposed extension would remedy this limitation.

5 Related Work

Baker [6] studies issues related to object identity in Common Lisp and concludes
that the existing functions for testing equality in that language are problematic
for a number of reasons, chiefly the fact that successive calls to EQUAL may
produce different answers if there is a dependence on mutable state. Although
the languages under consideration are quite different, Baker’s proposed solution
is similar in spirit to ours in the sense that objects of different types are never
equal, and that an object’s identity should not rely on mutable state.

The C# language [24] supports both reference equality, i.e. equal object iden-
tifiers, and value equality. As in Java, C# Equals() supports reference equality
by default for reference types. The C# programmer can override Equals and ==
to support structural or value equivalence as desired, raising the same issues as
when overriding equals() in Java. C# also supports built-in structural equality
for C# value types, but restricts value types to structs and enumerations, with
no inheritance.

A relation type’s key annotation enforces an immutability constraint on the
annotated field. Several other works have addressed language designs that incor-
porate immutability concepts. Pechtchanski and Sarkar [25] propose a framework
of immutability specification along three dimensions: lifetime, reachability, and
context. Our key annotation indicates persistent and shallow immutability: The
value of a key field never changes but there is no constraint on mutability of state
reached from a key field (similar to “final” in Java). Of course, a key annotation
conveys more information than immutability constraints by identifying the state
that contributes to object identity.

Much other work defines analyses and languages for immutability constraints
(see [10,13,20,28,29]). Javari [29] adds support for reference immutability to Java,
and enforces specifications expressing transitive immutability constraints. Javari
also allows for the declaration of read-only methods that cannot modify the
state of the receiver object, and read-only classes for which all instance fields are
implicitly read-only. Our programming model could be combined with language
extensions such as those in Javari, to support immutability constraints on non-
key fields which do not contribute to the identity relation.

In our model, a relation type that has only key fields is a value type. Value
types [5,15,24,33] provide many benefits for the programmer. For example, they
provide referential transparency: functions that manipulate only values have de-
terministic behavior. Since values are immutable, they eliminate aliasing issues
and make code less error-prone. From an implementation viewpoint, value types
simplify analyses that allow a number of aggressive compiler optimizations, such
as unboxing [27], object inlining [16], memoization [23], data replication in dis-
tributed or cluster computing settings [15], and hash-consing [18].



76 M. Vaziri et al.

Bacon’s Kava language [5] is a variation on Java with a uniform object model
that supports user-defined value types. Kava’s notion of a value is that of an
immutable object, with all fields pointing to other values. All value types are
subclasses of a type Value, and they may inherit from other value types and
from interfaces. In our experience, Java programs commonly include “value-
like” classes that define equality and hashcode based on an immutable subset of
instance fields, but that also have some mutable state associated with them. Our
relation types allow for such classes, and unify values and objects by providing a
generalization of both as relations that map key fields to some possibly mutable
state. Furthermore, due to this uniformity, we need not segregate type hierarchies
for values and non-values, and a relation type may inherit from a value.

Our value-types are also more general than Titanium’s [33] immutable classes,
and C#’s value types [24], which do not support inheritance for“value-like”
classes. Fortress’s value objects [3] also do not support “value-like” classes, but
they do allow fields of values to be set in order to allow piecemeal initialization.

Tuples have been added to object-oriented languages in various work (for
example [21,30,22]). Our tuples differ in that they have keys, similar to primary
keys in a row of a relational database, and relation types implicitly define a map
from keys to non-keys. A relation type does not contain two tuples with equal
keys but different non-key parts.

Some languages integrate object and relational data models to facilitate com-
munication with a database (see, e.g., [22,7]), or provide first-class language
support for relationships (see, e.g., [9]). The focus of our programming model is
to view the heap itself as a relational database, and use concepts from databases
such as primary keys to express identity. In future work, we plan to investigate
the application of relation types to support data access integration.

Linda’s [14] data model introduced an associative memory called a tuplespace
as a model for sharing data in parallel programming. Relation types could per-
haps be applied in this setting, providing a strong coupling between the object-
oriented language and the distributed tuplespace. Relation types would also
facilitate optimizations for data replication, as mentioned previously.

We formalized relation types using an adaptation of Featherweight Java (FJ),
a functional language. Other extensions of FJ introduce mutation [8], using a
heap that maps memory locations to mutable state. Our model provides a level
of indirection in the heap, augmenting values with mutable state, thus providing
a uniform framework for the functional and non-functional language aspects.

6 Summary and Future Work

We presented a programming model that provides a relational view of the heap.
In this model, object identity is specified declaratively using a new language
construct called relation types and programmers are relieved from the burden
of having to write error-prone equals() and hashCode() methods. We formal-
ized the model as an extension of Featherweight Java and implemented it as
an extension of Java. Our experiments indicate that the majority of classes that
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override equals() can be refactored into relation types, and that most of the
remainder are buggy or fragile.

We plan to extend the model with other features that borrow from database
concepts (e.g., atomic sets [31]), and raise the level of abstraction for navigating
the heap. Some of our ideas include a query language on top of relation types and
features for pattern matching. We also plan to support delayed initialization of
key fields, and to experiment with optimized representations for relation types.
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Abstract. 64-bit address spaces come at the price of pointers requiring twice as
much memory as 32-bit address spaces, resulting in increased memory usage.

This paper reduces the memory usage of 64-bit pointers in the context of Java
virtual machines through pointer compression, called Object-Relative Addressing
(ORA). The idea is to compress 64-bit raw pointers into 32-bit offsets relative
to the referencing object’s virtual address. Unlike previous work on the subject
using a constant base address for compressed pointers, ORA allows for applying
pointer compression to Java programs that allocate more than 4GB of memory.

Our experimental results using Jikes RVM and the SPECjbb and DaCapo
benchmarks on an IBM POWER4 machine show that the overhead introduced
by ORA is statistically insignificant on average compared to raw 64-bit pointer
representation, while reducing the total memory usage by 10% on average and up
to 14.5% for some applications.

1 Introduction

In our recent work [1], we reported that Java objects increase by 40% in size when
comparing 64-bit against 32-bit Java virtual machines. About half of this increase comes
from the increased header which doubles in size. The other half comes from increased
object fields containing pointers or references.

Running 64-bit Java virtual machines can thus be costly in terms of memory usage.
This is a serious concern on heavy-loaded systems with many simultaneously running
programs that are memory-intensive. In fact, overall system performance can quickly
deteriorate because of memory page swapping once physical memory gets exhausted.
One way of dealing with the excessive memory usage on 64-bit systems is to have more
physical memory in the machine as one would provide on a 32-bit system. However,
this is costly as physical memory is a significant cost in today’s computer systems.

This paper proposes to address the increased memory usage in 64-bit Java virtual
machines through Object-Relative Addressing (ORA). Object-relative addressing is a
pointer compression technique that compresses pointers in object fields as 32-bit off-
sets relative to the current object’s address. The 64-bit virtual address of the referenced
object is then obtained by adding the 32-bit offset to the 64-bit virtual address of the
referencing object. In case the referenced object is further away than what can be rep-
resented by a 32-bit offset, object relative addressing interprets the 32-bit offset as an
index in the Long Address Table (LAT) that translates the 32-bit offset into a 64-bit
virtual address.
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The advance of object-relative addressing over prior work on the subject by Adl-
Tabatabai et al. [2], is that object-relative addressing is not limited to Java programs
that consume less than 4GB of heap, or the 32-bit virtual address space. Object-relative
addressing enables pointer compression to be applied to all Java programs, including
Java programs that allocate more than 4GB of memory.

We envision that object-relative addressing is to be used in conjunction with a mem-
ory management strategy that strives at limiting the number of inter-object references
that cross the 32-bit address range. Crossing the 32-bit address range incurs overhead
because the LAT needs to be accessed for retrieving the 64-bit address corresponding to
the 32-bit offset. Limiting the number of LAT accesses thus calls for a memory allocator
and garbage collector that strives at allocating objects within a virtual memory region
that is reachable through the (signed) 32-bit offset. Such memory allocators and garbage
collectors can be built using techniques similar to object colocation [3], connectivity-
based memory allocation and collection [4,5], region-based systems [6], etc.

The experimental results using the SPECjbb2000 and the DaCapo benchmarks and
the Jikes RVM on an IBM POWER4 machine show that object-relative addressing does
not incur a run time overhead. Some applications experience a performance improve-
ment up to 4.0% while other applications experience a slowdown of at most 3.5%; on
average though, no statistically significant performance impact is observed. The benefit
of ORA comes in terms of memory usage: the amount of allocated memory reduces by
10% on average and for some applications up to 14.5%.

This paper is organized as follows. After having discussed prior work in object
pointer compression in section 2, we will present object-relative addressing in section 3.
Section 4 will then detail our experimental setup. The evaluation of ORA in terms of
overall performance, memory hierarchy performance and memory usage will be pre-
sented in section 5. Finally, we will discuss related work in section 6 before concluding
in section 7.

2 Object Pointer Compression: Prior Work

The prior work on the subject by Adl-Tabatabai et al. [2] propose a straightforward
compression scheme for addressing the memory usage in 64-bit Java virtual machines.
They represent 64-bit pointers as 32-bit offsets from a base address of a contiguous
memory region. Dereferencing or decompressing a pointer then involves adding the
32-bit offset to a base address yielding a 64-bit virtual addess. Reverse, compressing a
64-bit virtual address into a 32-bit offset requires substracting the 64-bit address from
the base address; the lower 32 bits are then stored. A similar approach was proposed by
Lattner and Adve [7] for compressing pointers in linked data structures.

The fact that 64-bit virtual addresses are represented as 32-bit offsets from a base
address implies that this pointer compression technique is limited to Java programs
that consume less than 4GB of storage. If a Java program allocates more than 4GB
of memory, the virtual machine has to revert to the 64-bit pointer representation. This
could for example be done by setting the maximum heap size through a command line
option: if the maximum heap size is larger than 4GB, uncompressed pointers are used;
if smaller than 4GB, compressed pointers are used.
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Adl-Tabatabai et al. apply their pointer compression method to both vtable pointers
and pointers to other Java objects, so called object references. The 32-bit object refer-
ences are then relative offsets to the heap’s base address; the 32-bit vtable pointers are
relative offsets to the vtable space’s base address.

In this paper, we focus on compressing object references and do not address vtable
pointer compression. The reason is that vtable pointers are not that big of an issue when
it comes to pointer compression. The 32-bit vtable pointer offsets are highly likely to
be sufficient even for programs that allocate very large amounts of memory; it is highly
unlikely to require more than 4GB of memory for allocating vtables. In other words, the
pointer compression method by Adl-Tabatabai et al. is likely to work properly when ap-
plied to vtable pointers. Moreover, recent work by Venstermans et al. [8] has proposed a
technique that completely eliminates the vtable pointer from the object header through
typed virtual addressing. We also refer to the related work section of this paper for a
discussion on object header reduction techniques.

3 Object-Relative Addressing

Object-Relative Addressing (ORA) is a pointer compression technique for 64-bit Java
virtual machines that does not suffer from the 4GB heap limitation in Adl-Tabatabai
et al.’s method. The goal of ORA is to enable heap pointer compression for all Java
programs, even for programs that allocate more than 4GB of memory.

3.1 Basic Idea

Figure 1 illustrates the basic idea of object-relative addressing (ORA) and compares
ORA against the traditional way of referencing objects in 64-bit Java virtual machines.
We call the referencing object the object that contains a pointer in its data fields. The
object being referenced is called the referenced object. ORA references objects through
32-bit offsets. The ‘fast’ decompression path then adds this 32-bit offset to the refer-
encing object’s virtual address for obtaining the virtual address of the referenced object.

object address object address

+

64-bit virtual address 32-bit offset

object header object fields

(a) 64-bit object addressing (b) object-relative addressing

fast path

slow path

Long Address Table
referencing object

referenced object

32

3264

64

64 64

64
64

Fig. 1. Illustrating the basic idea of object-relative addressing (on the right) compared against the
traditional 64-bit addressing (on the left)
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read 32-bit object reference;
if (least significant bit of 32-bit reference is NOT set) {

/* fast decompression path */
add 32-bit object reference to 64-bit object
virtual address to form 64-bit object address;

}
else {

/* slow decompression path */
index LAT for reading 64-bit object address;

}

Fig. 2. High-level pseudocode for decompressing 32-bit object references

This is the case when both the referencing object and the referenced object are close
enough to each other so that a 32-bit offset is sufficiently large. In case both objects are
further away from each other in memory than what can be addressed through a 32-bit
offset, ORA follows the ‘slow’ decompression path. The 32-bit offset is then consid-
ered as an index into the Long Address Table (LAT) which holds 64-bit virtual addresses
corresponding to 32-bit indexes.

The end result of object-relative addressing is that only 32 bits of storage are required
for storing object references. This reduces the amount of memory consumed compared
to the traditional way of storing object references which requires 64 bits of storage.
We now go through the details of how ORA can be implemented. We discuss (i) how
pointers are decompressed, (ii) how to compress pointers, (iii) how to deal with null
pointer representation, (iv) how to manage the LAT, (v) what the implications are for
garbage collection, (vi) how ORA compares to Adl-Tabatabai et al.’s method in terms
of anticipated runtime overhead, and finally (vii) what the implications are for memory
management.

3.2 Decompressing Pointers

Decompressing 32-bit object references requires determining whether the fast or slow
path is to be taken. This is done at runtime by inspecting the least significant bit of the
32-bit offset; in case the least significant bit is zero, the fast path is taken; otherwise, the
slow path is taken. This is illustrated in Figure 2 showing the high-level pseudocode for
decompressing 32-bit object references into 64-bit virtual addresses.

The way how the high-level pseudocode is translated into native machine instruc-
tions has a significant impact on overall performance. And in addition, efficient pointer
decompression is likely to result in different implementations on platforms with dif-
ferent instruction-set architectures (ISAs). For example, in case predicated execution is
available in the ISA [9], a potential implementation could predicate the fast and slow
paths. Or, in case a ‘base plus index plus offset’ addressing mode is available in the
ISA, computing the address of an object field being accessed in the referenced object
could be integrated into a single memory operation, i.e., the decompression arithmetic
could be combined with the field access. The referencing object’s virtual address plus
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;; R4 contains the referencing
;; object’s virtual address

ld4 R1, [R4 + offset] ;; load 32-bit object offset and
;; sign-extend it into R1
;; fast decompression path

add R2, R4, R1 ;; compute 64-bit address
tst R1, 1 ;; test least significant bit (LSB)
bre L2 ;; jump to L2 in case non-zero

L1: ... ;; referenced object’s virtual
;; address is in R2 here

...
L2: ;; slow decompression path

mask R1 ;; compute LAT index by masking R1
ld8 R2, [R5 + R1] ;; load 64-bit address from LAT

;; R5 contains LAT address and
;; R1 contains LAT index

jmp L1

Fig. 3. Low-level pseudocode for decompressing 32-bit object references: the if-then decompres-
sion approach

the 32-bit offset plus the offset of the object field in the referenced object could then be
encoded in a single addressing mode.

In our experimental setup using a PowerPC setup, we were not able to implement
these optimizations because the PowerPC ISA does not provide predication, nor does
it support the ‘base plus index plus offset’ addressing mode. Instead, we consider two
implementations to pointer decompression that are generally applicable across different
ISAs. These two decompression implementations have different performance trade-offs
which we discuss now and which we will experimentally evaluate in section 5.

If-then pointer decompression. The if-then implementation is shown in Figure 3.
The assembler code generated for decompressing 32-bit object references optimizes the
corresponding high-level pseudocode by optimizing for the most common case, namely
the fast path. We (speculatively) compute the virtual address of the referenced object by
adding the 32-bit offset with the referencing object’s virtual address. In case the least
significant bit of the 32-bit offset is zero, we then continue fetching and executing along
the fall-through path. Only in case the least significant bit of the 32-bit offset is set, we
jump to the slow path. The slow path selects a number of bits from the 32-bit offset that
will serve as index into the LAT. The slow path then indexes the LAT which reads the
64-bit virtual address of the referenced object.

Patched pointer decompression. Patched pointer decompression optimizes the com-
mon case even further by assuming that the fast path is always taken. This results in
the code shown in Figure 4. In other words, the 32-bit offset is added to the referencing
object’s virtual address to obtain the referenced object’s virtual address. This avoids the
conditional branch as needed in the if-then decompression implementation. In case the
referenced object may not be reachable using a 32-bit offset, the decompression code
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;; R4 contains the referencing
;; object’s virtual address

ld4 R1, [R4 + offset] ;; load 32-bit object offset and
;; sign-extend it into R1
;; fast decompression path

add R2, R4, R1 ;; compute 64-bit address
L1: ... ;; referenced object’s virtual

;; address is in R2 here

Fig. 4. Low-level pseudocode for decompressing 32-bit object references: the patched decom-
pression approach before code patching is applied

;; R4 contains the referencing
;; object’s virtual address

ld4 R1, [R4 + offset] ;; load 32-bit object offset and
;; sign-extend it into R1

jmp L2

L1: ... ;; referenced object’s virtual
;; address is in R2 here

...
L2: add R2, R4, R1 ;; compute 64-bit address

tst R1, 0 ;; test least significant bit (LSB)
bre L1 ;; jump to L1 in case zero

;; slow decompression path
mask R1 ;; compute LAT index by masking R1
ld8 R2, [R5 + R1] ;; load 64-bit address from LAT

;; R5 contains LAT address and
;; R1 contains LAT index

jmp L1

Fig. 5. Low-level pseudocode for decompressing 32-bit object references: the patched decom-
pression approach after code patching is applied

needs to be patched. Code patching is done at run time whenever pointer compres-
sion reveals that objects may no longer be reachable using compressed pointers, as will
be discussed in the next section. The decompression code after patching is shown in
Figure 5. Code patching replaces the addition (of the 32-bit offset with the referencing
object’s virtual address) with a jump to a piece of code that does the pointer decompres-
sion using the if-then approach. Since most object references will follow the fast path,
the patched decompression approach (before patching is applied) will be substantially
faster than the if-then decompression approach.

3.3 Compressing Pointers

Compressing 64-bit pointers to 32-bit offsets is done the other way around, see Figure 6.
We first compute the difference between the 64-bit virtual addresses of the referenced
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compute difference between 64-bit virtual addresses
of the referenced object and the referencing object;

if (difference is smaller than 2GB) {
/* fast compression path */
store 32-bit offset;

}
else {

/* slow compression path */
allocate entry in LAT;
store the referenced object’s address in the
LAT in allocated entry;

store LAT index as a 32-bit value while setting
the LSB of 32-bit value being stored;

/* for the patched approach */
patch pointer decompressions that need to;

}

Fig. 6. High-level pseudocode for compressing 64-bit object references

and referencing objects. If this difference is smaller than 2GB, i.e., can be represented
by a 32-bit offset, we then store the difference as a 32-bit offset in the referencing
object’s data fields. If on the other hand the difference is larger than 2GB, we allocate a
LAT entry and store the referenced object’s virtual address in the allocated LAT entry.
The LAT entry’s index is then stored in the referencing object’s data fields while setting
the LSB of the stored LAT index. In case of the patched decompression approach, all
pointer decompressions that may read the 32-bit offset need to be patched. The patching
itself is done as described in the previous section. This requires that the VM keeps track
of the accesses to a given data field in an object of a given type.

3.4 Null Pointer Representation

An important issue when compressing references is how to deal with null pointers.
The representation of a null value in native code is typically a 64-bit zero value. Com-
pressing a 64-bit null value to a 32-bit representation under ORA is not trivial. A naive
approach would represent the compressed null value as a 32-bit zero value. However,
the 32-bit null value would then be decompressed to the this pointer, i.e., the pointer
to the object itself. This would make the null value indistinguishable from the this
pointer.

For dealing with null pointer representation, we take the following approach. We first
add the 32-bit compressed pointer to the referencing object’s 64-bit virtual address.
In case the least significant 32 bits of the resulting value are zero, we consider the
32-bit compressed pointer as the null value. This means we no longer have a single
null value. As a result, a special treatment is required when comparing two pointers.
In case both pointers represent the null value, a simple comparison may evaluate to not
equal, for example, in case both compressed pointers come from different objects. As
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such, we need to capture this special case in the virtual machine’s code generator when
generating code that compares pointers. In addition, given that all memory addresses
with the 32 least significant bits set to zero represent null values, we cannot allocate
objects at these 4GB memory boundaries.

3.5 Managing the LAT

Another important issue to deal with is how to manage the Long Address Table (LAT).
Allocating LAT entries is very straightforward by advancing the LAT head pointer.
Managing LAT entries is done during garbage collection (GC). Let us first consider non-
generational garbage collection. A SemiSpace garbage collector for example, which
copies reachable objects from one space to the other upon a GC, requires that the LAT
be recomputed, i.e., a new LAT is built up during GC and the old LAT is discarded. A
Mark-Sweep garbage collector that does not need to copy reachable objects, in theory,
does not require recomputing the LAT. However, in order not to let the LAT explode
because of entries pointing to dead objects, a good design choice is to also recompute
the LAT upon a mark-sweep collection.

For generational garbage collectors, we recommend using two LATs, one associated
with the nursery space and another one associated with the mature space. The nursery
LAT contains references in and out of the nursery space; the mature LAT contains all
other references. Upon a nursery GC, all reachable nursery objects are copied to the
mature space; as such, the nursery LAT can be discarded and the mature LAT possibly
needs to be updated for the newly copied objects. Upon a full GC, the same strategy
can be used as under a non-generational GC, i.e., the mature LAT needs to be rebuilt
and in addition, the nursery LAT is discarded.

In case of the unlikely event of the LAT running full—the LAT can be chosen to
be sufficiently large, and, in addition, a good object allocation strategy would strive at
reducing the number of LAT entries allocated—a garbage collection could be triggered
to reclaim unreachable memory. GC will rebuild the LAT, and as a result the LAT will
likely shrink (or if needed, the LAT size could be increased). A data structure linking
memory pages makes increasing the LAT relatively easy, i.e., the LAT does not need to
be copied.

3.6 Implications to Copying Garbage Collectors

Object-relative addressing raises the following issue to copying garbage collectors.
Consider the case where object A has a reference to object B in its data fields. As-
sume object A is reachable; by consequence, object B is also reachable. The garbage
collector has to assume both objects are live and a copying collector will thus have
to copy both objects. Assume the copying collector first copies object A. The com-
pressed pointer in A referencing to B then needs to be updated because object A was
copied which changes the compressed pointer’s base address. Upon copying object B,
the compressed pointer in A referencing to B needs to be computed again because now
B is moved. In other words, the compressed pointer in A needs to be recomputed twice
under a copying garbage collector.
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In order not to recompute the compressed pointer twice, we do the following. During
garbage collection, we maintain both the original object A and a copied version of
object A in the scan list, and we use the original object A to retrieve the virtual address
of the referenced object B. As such, we need to recompute the compressed pointer only
once, namely upon scanning object B.

3.7 Discussion

Note that pointer compression and decompression in ORA cannot be optimized as in
the simple pointer compression technique proposed by Adl-Tabatabai et al. [2]. Adl-
Tabatabai et al. report that it is “crucial to optimize the unnecessary compression and
decompression in order to get net performance gains”. This can be done by consid-
ering the phase ordering between code optimization and compression/decompression
arithmetics to make sure the additional compression/decompression arithmetics get op-
timized whenever possible. The optimizations by the Adl-Tabatabai et al. approach in-
clude for example:

– load-store forwarding: If a loaded 32-bit offset is subsequently stored, the 32-bit
offset does not need to be decompressed and subsequently compressed again; the
32-bit offset can be stored right away. This is not the case for ORA because the base
address to which the 32-bit offset relates is the virtual address of the referencing
object. And since the objects from which the 32-bit offset is loaded is likely to be
different from the object to which the 32-bit offset needs to be stored, the 32-bit
offset to be stored needs to be recomputed.

– reference comparison: Comparing objects’ virtual addresses can be done easily by
comparing the 32-bit offsets in the Adl-Tabatabai et al. approach. This is not the
case for ORA; the 64-bit virtual addresses need to be decompressed from the 32-bit
offsets before allowing for a comparison, the reason being that the base addresses
are likely to be different for both 32-bit compressed pointers.

– reassociation of address expressions: Computing the address of an object field or
array element involves two additions in Adl-Tabatabai et al.’s approach: the heap
base needs to be added to the 32-bit offset plus the object field’s offset. Under many
circumstances, one addition can be pre-computed at compile time. For example, in
case of an object field access, the heap base address and the object field’s offset are
both constants and can be pre-computed. Again, this is an optimization that cannot
be applied to ORA because the base address is not constant. A related optimization
is to apply common subexpression elimination. For example, if multiple fields of
the same object are accessed, then the heap base address plus the 32-bit offset is a
common subexpression that can be eliminated, i.e., does not need to be recomputed
over and over again. The latter optimization can also be applied under ORA.

In summary, the pointer compression approach by Adl-Tabatabai et al. allows for a
number of optimizations that cannot be applied to ORA. Hence, it is to be expected that
ORA will perform poorer than the pointer compression technique proposed by Adl-
Tabatabai et al. However, ORA can apply pointer compression to Java programs that
allocate more than 4GB of heap memory, which cannot be done using Adl-Tabatabatai
et al.’s method.
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It is interesting to note that, in case the ‘base plus index plus offset’ memory ad-
dressing mode would be available in the host ISA—again, which is not the case in our
PowerPC setup—ORA would be able to apply an important optimization that would
likely close (part of) the gap between ORA and Adl-Tabatabai et al.’s technique. Pointer
decompression can then be combined with field offset computation into a single address
expression. In that case, the optimization done by Adl-Tabatabai et al. to pre-compute
constants would be subsumed by combining the pointer decompression with field offset
computation.

3.8 Implications for Memory Management

As mentioned in the introduction, object-relative addressing is envisioned to be used
in conjunction with a dedicated memory management approach for allocating objects
in memory regions such that all inter-object references within a memory region can
be represented by a 32-bit offset. To this end, ORA can rely on previously proposed
memory management approaches that allocate connected objects into memory regions
while minimizing the number of references across memory regions. Example memory
management approaches that serve this need are object colocation [3], connectivity-
based garbage collection [4,5] and region-based systems [6]. The smarter the memory
management strategy, the smaller the number of LAT accesses, the smaller the com-
pression/decompression overhead, and thus the higher overall performance.

In this context, it is also important to note that ORA is flexible in the sense that ORA
can be activated and deactivated for particular object types; or, if needed, ORA can
even be activated/deactivated for particular references between pairs of object types.
It was this insight on ORA’s flexibility that lead us to our compression/decompression
scheme with patching. The slow decompression path is not called for at the beginning
of the program execution as the heap is small enough—as such we always execute
the fast path and thus eliminate executing the if-then statement. Once an inter-object
reference is detected that cannot be represented by a 32-bit value, all the code that may
possibly read the compressed pointer needs to be patched. ORA is flexible enough to
handle such cases as a safety net in case the memory management strategy would fail
to allocate objects so that all pointers can be represented as 32-bit offsets.

4 Experimental Setup

We now detail our experimental setup: the virtual machine, the benchmarks and the
hardware platform on which we perform our measurements. We also detail how we
performed our statistical analysis on the data we obtained.

4.1 Jikes RVM

The Jikes RVM is an open-source virtual machine developed by IBM Research [10]. We
used the recent 64-bit AIX/PowerPC v2.3.5 port. We extended the 64-bit Jikes RVM in
order to be able to support the full 64-bit virtual address range. In this paper, we use
the GenMS garbage collector. GenMS is a generational collector that copies reachable
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Table 1. The benchmarks used in this paper

suite benchmark description
SPECjbb2000 pseudojbb models middle tier of a three-tier system

DaCapo

antlr parses one or more grammar files and generates a parser
and lexical analyzer for each

bloat performs a number of optimizations and analysis on
Java bytecode files

fop takes an XSL-FO file, parses it and formats it,
generating a PDF file

hsqldb executes a JDBCbench-like in-memory benchmark, executing
a number of transactions against a model of a banking application

jython interprets the pybench Python benchmark
pmd analyzes a set of Java classes for a range of source code problems

objects from the nursery to the mature space upon a nursery space garbage collection.
A full heap collection then collects the heaps using the mark-sweep strategy.

4.2 Benchmarks

The benchmarks that we use in this study come from the SPECjbb2000 and DaCapo
benchmark suites, see Table 1. SPECjbb2000 is a server-side benchmark that models the
middle tier (the business logic) of a three-tier system. Since SPECjbb2000 is a through-
put benchmark that runs for a fixed amount of time, we use pseudojbb which runs for
a fixed amount of work (35,000 transactions) and an increasing number of warehouses
going from 1 up to 8 warehouses. The initial heap size is set to 256M and the maximum
heap size is set to 512MB. The DaCapo benchmark suite [11] is a relatively new set
of open-source, client-side Java benchmarks. The DaCapo benchmarks exhibits more
complex code, richer object behaviors and more demanding memory system require-
ments than the SPECjvm98 client-side benchmarks. We set the maximum heap size to
512MB with a 100MB initial heap size in all of our experiments. We use the DaCapo
benchmarks under version beta-2006-08. Unfortunately, we were unable to run all Da-
Capo benchmarks on Jikes RVM v2.3.5; we use the 6 DaCapo benchmarks mentioned
in Table 1. For bloat and jython we use the small input—the large input failed to run.
The other 4 DaCapo benchmarks are run with the large input.

4.3 Hardware Platform

The hardware platform on which we have done our measurements is the IBM POWER4
which is a 64-bit microprocessor that implements the PowerPC ISA. The POWER4 is
an aggressive 8-wide issue superscalar out-of-order processor capable of processing
over 200 in-flight instructions. The POWER4 is a dual-processor CMP with private L1
caches and a shared 1.4MB 8-way set-associative L2 cache. The L3 tags are stored on-
chip; the L3 cache is a 32MB 8-way set-associative off-chip cache with 512 byte lines.
The TLB in the POWER4 is a unified 4-way set-associative structure with 1K entries.
The effective to real address translation tables (I-ERAT and D-ERAT) operate as caches
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for the TLB and are 128-entry 2-way set-associative arrays. The standard memory page
size on the POWER4 is 4KB. Our 615 pSeries machine has one single POWER4 chip.
The amount of RAM-memory equals 1GB.

In the evaluation section we will measure execution times on the IBM POWER4 us-
ing hardware performance counters. The AIX 5.1 operating system provides a library
(pmapi) to access these hardware performance counters. This library automatically
handles counter overflows and kernel thread context switches. The hardware perfor-
mance counters measure both user and kernel activity.

4.4 Statistical Analysis

In the evaluation section, we want to measure the impact on performance of ORA.
Since we measure on real hardware, non-determinism in these runs results in slight
fluctuations in the number of execution cycles. In order to be able to take statistically
valid conclusions from these runs, we employ statistics to determine 95% confidence
intervals from 8 measurement runs. We use the unpaired or noncorresponding setup for
comparing means, see [12] (pages 64–69).

5 Evaluation

In the evaluation section of this paper, we first measure the performance impact of ORA
and subsequently focus on the reduction in memory usage and its impact on the memory
subsystem.

5.1 Performance

For quantifying the performance impact of ORA applied to Java application objects, we
consider five scenarios that we compare against the base case. Our base case is a 64-bit
version of Jikes RVM which assumes 64-bit pointer representations in object data fields.
Figure 7 shows the performance for each of the following five scenarios relative to the
base case. Initially, we assume that all pointer compressions and decompressions occur
through the fast path, i.e., all inter-object references can be represented as 32-bit offsets.
We then subsequently quantify the overhead of pointer compression and decompression
through the slow path accessing the LAT.

Compressed pointers with zero heap base. The ‘compressed pointer with zero heap
base’ is the scenario where all 64-bit pointers in object data fields are compressed to 32-
bit pointers with the heap base address being zero. This means that loading the 32-bit
compressed pointers (with zero extension) yields the virtual address of the referenced
object; storing a compressed pointer is done by storing the four least significant bytes of
the virtual address to memory. This scenario shows the best possible performance that
can be achieved through compressed pointer representation: pointers are compressed
and there is no compression/decompression overhead. The average performance gain is
5.0%, and up to 14.2% for hsqldb. This performance gain is a direct consequence of the
memory savings through a reduced number of data cache misses and D-TLB misses.
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Fig. 7. Evaluating object-relative addressing in terms of performance

Compressed pointers with non-zero heap base. The ‘compressed pointer with non-
zero heap base’ is similar to the previous scenario except that the heap base address
is non-zero. In other words, decompressing a 32-bit pointer requires adding the 32-bit
offset to the 64-bit heap base address. This scenario corresponds to Adl-Tabatabai et
al.’s approach: it assumes that the heap space is no larger than 4GB, and assumes a
fixed heap base address. The average performance gain for compressed pointers with
a non-zero heap base drops to 1.7%; the maximum performance gain is observed for
hsqldb (11.1%) and the largest slowdown is observed for bloat (-4.6%).

The 1.7% average performance gain over the base case is smaller than what is
reported by Adl-Tabatabai et al. in [2]. The reason is that our results are for the Pow-
erPC ISA using Jikes RVM whereas the results by Adl-Tabatabai et al. are for the
Intel Itanium Processor Family (IPF) using ORP and StarJIT. As a result, not all opti-
mizations implemented by Adl-Tabatabai et al. may be implemented in our system.
Note however that the goal of this scenario is not to re-validate the approach pro-
posed by Adl-Tabatabai et al., but rather to quantify the overhead of pointer compres-
sion/decompression in our framework.

ORA with if-then decompression. The ‘ORA if-then decompression’ scenario im-
plements object-relative addressing using the if-then decompression implementation.
This scenario includes testing the LSB of the 32-bit compressed pointer for determin-
ing whether to take the fast or the slow path. This scenario incurs an average slowdown
of 1.5%. The highest slowdown observed is 3.5% (bloat); the highest speedup observed
is 4.0% (hsqldb).

ORA with patched decompression. There are two ‘ORA patched decompression’
scenarios. The first ‘w/ patching’ scenario assumes that all loads are patched, i.e., all
pointer decompressions are done by jumping to an if-then decompression scheme as
shown in Figure 5. The second ‘w/o patching’ scenario assumes that none of the loads
are patched, i.e., all pointer decompressions are done by adding the 32-bit offset to the
referencing object’s virtual address as shown in Figure 4. As expected, the ‘w/ patching’
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Fig. 8. The number of L2 misses per 1K instructions of the base run

scenario incurs a higher overhead than the ‘if-then decompression’ because of the jump
instruction, however, this overhead is very small and not statistically significant. The
‘w/o patching’ scenario, which eliminates the jump instruction in the decompression
scheme and which is the most realistic scenario in case an appropriate memory man-
agement strategy is available, results in a statistically insignificant average slowdown
of 0.2%. The maximum slowdown observed is 3.4% (pmd) and the maximum speedup
observed is 3.4% (hsqldb).

LAT access overhead. So far, we assumed that all decompressions occur along the fast
path, i.e., the slow decompression path is never taken. In order to quantify the overhead
of going through the slow path we have set up a benchmarking experiment in which the
nursery and mature space are located more than 4GB away from each other. This bench-
marking experiment implies that all inter-generational pointers—from nursery objects
to mature objects, and vice versa—have to pass through the LAT. In other words, a LAT
entry is allocated for all inter-generational pointers, and the slow path is taken when
compressing/decompressing inter-generational pointers. On average, 15.5% of all ref-
erences go through the slow path, up to 23.6% (fop) and 36.6% (bloat). The average
slowdown of this benchmarking experiment is 4.1% ± 1.3%. We want to emphasize
that the sole purpose of this benchmarking experiment is to quantify the overhead due
to taking the slow compression/decompression path; the goal of this experiment is not
to present a use case scenario. In practice, when an appropriate memory management
strategy is employed that limits the number of LAT accesses, even smaller slowdowns
are to be expected.

5.2 Cache Hierarchy Performance

Figures 8 and 9 show the number of L2 and L3 misses per 1K instructions of the base
run, respectively. In these graphs, we normalize the number of L2 and L3 misses for the
various scenarios from above to the number of instructions in the base run. We clearly
observe that the number of L2 misses and L3 misses (main memory accesses) reduces
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Fig. 9. The number of L3 misses per 1K instructions of the base run
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Fig. 10. Reduction in the number of allocated bytes through ORA

through ORA, up to 12.6% and 22.4% for pmd and hsqldb. In other words, ORA better
utilizes the cache hierarchy reducing the pressure on main memory.

5.3 Memory Usage

We now analyze the impact of ORA on memory usage and quantify the impact of ORA
on the number of bytes allocated and the number of memory pages touched.

Figure 10 shows the reduction in the number of allocated bytes through object-
relative addressing. Compressing 64-bit object references reduce the number of allo-
cated bytes by 10% on average and reductions up to 14.5% for pmd.

Figures 11 and 12 show the number of memory pages in use on the vertical axis
as a function of time (measured in the number of allocations) on the horizontal axis
for pseudojbb and hsqldb, respectively. Each figure shows two graphs, one for the
base 64-bit pointer representation (top graph), and one for the compressed pointer rep-
resentation through object-relative addressing (bottom graph). (We observed similar
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Fig. 11. Number of pages in use as a function of time for pseudojbb: the base 64-bit pointer
representation (at the top) and the ORA compressed pointer representation (at the bottom)

curves for the other benchmarks.) The curves in these graphs increase as memory gets
allocated until a garbage collection is triggered after which the number of used pages
drops. The small drops correspond to nursery collections; the large drops correspond to
mature collections collecting the full heap. The graph for hsqldb shows that the number
of pages in use is substantially lower under ORA than under the base 64-bit pointer
representation. The graph for pseudojbb shows that the reduced number of pages in
use delays garbage collections, i.e., it takes a longer time before a garbage collection is
triggered.
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6 Related Work

6.1 Java Program Memory Characterization

Dieckmann and Hölzle [13] present a detailed characterization of the allocation behav-
ior of SPECjvm98 benchmarks. Among the numerous aspects they evaluated, they also
quantified object size and the impact of object alignment on the overall object size. This
study was done on a 32-bit platform.
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Venstermans et al. [1] compare the memory requirements for Java applications on
a 64-bit virtual machine versus a 32-bit virtual machine. They concluded that objects
are nearly 40% larger in a 64-bit VM compared to a 32-bit VM. There are two primary
reasons for this. First, the header in 64-bit mode is twice as large as in 32-bit mode. This
accounts for approximately half the object size increase. Second, a reference in 64-bit
computing mode is twice the size as in 32-bit computing mode. This causes the data
fields that contain references to increase; this accounts for roughly the other half of the
total object size increase between 32-bit and 64-bit. Pointer compression as proposed
in this paper addresses the size increase because of references in the object data fields.

A number of related research studies have been done on characterizing the memory
behavior of Java applications, such as [14,15,16]. Other studies aimed at reducing the
memory usage of Java applications, for example, using techniques such as heap com-
pression [17], object compression [18], etc.

6.2 Pointer Compression

Mogul et al. [19] studied the impact of pointer size on overall performance on a Digital
Alpha system using a collection of C programs. They compared the performance of
the same application in both 64-bit and 32-bit mode. They concluded that while perfor-
mance was often unaffected by larger pointers, some programs experienced significant
performance degradations, primarily due to cache and memory page issues. The study
done by Venstermans et al. [1] confirms these findings for Java programs.

Adl-Tabatabai [2] address the increased memory requirements of 64-bit Java im-
plementations by compressing 64-bit pointers to 32-bit offsets. They apply their pointer
compression technique to both the Type Information Block (TIB) pointer—or the vtable
pointer—and the forwarding pointer in the object header and to pointers in the object
itself. As mentioned before, the approach by Adl-Tabatabai et al. is limited to applica-
tions within a 32-bit address space. As such, applications that require more than 4GB
of memory cannot benefit from pointer compression.

Lattner and Adve [7,20] apply a similar approach to compressing pointers in linked
data structures. Linked data structures are placed in a memory region where pointers
are represented relative to the memory region’s base address.

Zhang and Gupta [21] compress 32-bit integer values and 32-bit pointer values into
15-bit entities, applied to 32-bit C programs. For integer values, in case the 18 most
significant bits are identical, i.e., all 1’s or all 0’s, the integer value can be compressed
into a 15-bit entity by discarding the 17 most significant bits. A pointer in an object’s
field is compressed if the 17 most significant bits of the referencing object’s virtual
address is identical to the 17 most significant bits of the referenced object’s virtual ad-
dress; only the 15 least significant bits are then stored. This is similar to ORA at first
sight, but there is a subtle but important difference. Whereas ORA allows for com-
pressing pointers in case the referenced object is reachable with an n-bit offset from
the referencing object, Zhang and Gupta’s approach requires that both objects reside in
the same 2n-bit memory region. This may lead to the situation where two objects are
close to each other, i.e., the difference between both object’s virtual addresses is smaller
than what can be represented by an n-bit offset, yet the pointers cannot be compressed.
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Pairs of compressed 15-bit entity compressed are packed together into a single 32-
bit word. Accelerating compression/decompression is done through data compression
extensions to the processor’s ISA.

Kaehler and Krasner [22] describe the Large Object-Oriented Memory (LOOM)
technique for accessing a 32-bit virtual address space on a 16-bit machine. Objects in
secondary memory have 32-bit pointers to other objects. Primary (main) memory serves
as a cache to secondary memory. Object pointers in main memory are represented as
short 16-bit indices into an Object Table (OT). This OT contains the full 32-bit address
of the object. Objects need to be moved to main memory before they can be referenced.
Translation between 32-bit pointers and 16-bit indices is performed when moving ob-
jects to main memory.

6.3 Object Header Compression

A number of studies have been done on compressing object headers which we briefly
discuss here.

Bacon et al. [23] present a number of header compression techniques for the Java ob-
ject model on 32-bit machines. They propose three approaches for reducing the space
requirements of the TIB pointer in the header: bit stealing, indirection and the implicit
type method. Bit stealing and indirection still require a condensed form of a TIB pointer
to be stored in the header. Implicit typing on the other hand, completely eliminates the
TIB pointer. Various flavors of implicit typing have been proposed in the literature,
such as Big Bag of Pages (BiBOP) approach by Steele [24] and Hanson [25], a hy-
brid BiBOP/bit-stealing approach by Dybvig et al. [26], and Selective Typed Virtual
Addressing [8].

Shuf et al. [27] propose the notion of prolific types versus non-prolific types. A pro-
lific type is defined as a type that has a sufficiently large number of instances allocated
during a program execution. In practice, a type is called prolific if the fraction of ob-
jects allocated by the program of this type exceeds a given threshold. All remaining
types are referred to as non-prolific. Shuf et al. found that only a limited number of
types account for most of the objects allocated by the program. They then propose to
exploit this notion by using short type pointers for prolific types. The idea is to use a
few type bits in the status field to encode the types of the prolific objects. As such, the
TIB pointer field can be eliminated from the object header. The prolific type can then be
accessed through a type table. A special value of the type bits, for example all zeros, is
then used for non-prolific object types. Non-prolific types still have a TIB pointer field
in their object headers. A disadvantage of this approach is that the number of prolific
types is limited by the number of available bits in the status field. In addition, comput-
ing the TIB pointer for prolific types requires an additional indirection. The advantage
of the prolific approach is that the amount of memory fragmentation is limited since all
objects are allocated in a single segment, much as in traditional VMs.

7 Conclusion

Pointers in 64-bit address spaces require twice as much memory as in 32-bit address
spaces. This results in increased memory usage which degrades cache and TLB



98 K. Venstermans, L. Eeckhout, and K. De Bosschere

performance; in addition, physical memory gets exhausted quicker. This paper pre-
sented object-relative addressing (ORA) for implementation in 64-bit Java virtual ma-
chines. ORA compresses 64-bit pointers in object fields into 32-bit offsets relative
to the referencing object’s virtual address. The important benefit of ORA over prior
work, which assumed 32-bit offsets relative to a fixed base address, is that ORA en-
ables pointer compression for programs that allocate more than 4GB of memory. Our
experimental results using Jikes RVM on an IBM POWER4 machine using SPECjbb
and DaCapo benchmarks show that ORA incurs a statistically insignificant impact on
overall performance compared to raw 64-bit pointer representation, while reducing the
amount of memory allocated by 10% on average and up to 14.5% for some applications.
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Abstract. While real-time garbage collection is now available in pro-
duction virtual machines, the lack of generational capability means ap-
plications with high allocation rates are subject to reduced throughput
and high space overheads.

Since frequent allocation is often correlated with a high-level, object-
oriented style of programming, this can force builders of real-time sys-
tems to compromise on software engineering.

We have developed a fully incremental, real-time generational col-
lector based on a tri-partite nursery, which partitions the nursery into
regions that are being allocated, collected, and promoted. Nursery col-
lections are incremental, and can occur within any phase of a mature
collection.

We present the design, mathematical model, and implementation of
our collector in IBM’s production Real-time Java virtual machine, and
show both analytically and experimentally that the collector achieves
real-time bounds comparable to a non-generational Metronome-style col-
lector, while cutting memory consumption and total execution times by
as much as 44% and 24% respectively.

1 Introduction

With the advent of hard real-time garbage collection [1] and its incorporation
into a production virtual machine [2], Java is finally making significant inroads
into domains with hard real-time concerns such as audio processing, military
command-and-control, telecommunications, and financial trading systems.

The engineering and product life-cycle advantages consequent from the sim-
plicity of programming with garbage collection, coupled with reliable real-time
performance, obviate the need for low-level, error-prone techniques such as ob-
ject pooling and manual memory management with scoped regions [3]. Further-
more, programmers no longer need to code time-critical portions of the system
in lower-level, less secure languages like C.
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However, previous incremental and real-time collectors have generally not
included generational collection. Generational collection takes advantage of the
fact that most objects die quickly, and tends to increase throughput and decrease
memory requirements.

Since frequent allocation is often correlated with a high-level, object-oriented
style of programming, the lack of generational collection can force builders of
real-time systems to compromise the software engineering of their systems by
manually recoding to allocate fewer objects.

A few generational collectors with various levels of soft- or hard-real-time
behavior have been built [4,5], but they collect the nursery synchronously. This
either leads to long pauses (in the order of 50 ms) or a very limited nursery size.
For example, if the target maximum pause time is 1 ms and the evacuation rate
is 100 MB/s, then the nursery can be no larger than 100 KB. At such small
sizes the survival rate is often too high to derive much benefit from generational
collection.

In this paper, we present a fully generational version of the Metronome real-
time garbage collector [1] in which both the nursery and mature collections
are performed incrementally, and in which the scheduling of the two types of
collections is only loosely coupled. This allows nursery collection to occur at any
time, including in the middle of a full-heap collection.

This generational algorithm is more complex but yields one significant advan-
tage: the ability to size the nursery independent of the real-time bounds of the
application. This allows the collector to achieve very short pause times (nomi-
nally 500 μs) and reliable real-time behavior, while using a nursery large enough
to achieve low survival rates.

The fundamental innovation in our work is the use of a tri-partite nursery:
the nursery is split into three regions. There is an allocation nursery into which
new objects are allocated. Meanwhile the previous nursery, then known as the
collect nursery can be collected, with live objects copied out into the mature area.
For algorithmic reasons, references may exist from the heap and collect nursery
to objects in the previous nursery that were previously promoted. In order to
forward these references we retain this previous nursery as the promotion nursery.

The contributions of this work are:

– An algorithm for a fully generational real-time garbage collection in which
the nursery and major collections are both incremental and can be arbitrarily
interleaved.

– A tri-partite nursery which allows a nursery evacuation while the application
continues to allocate into a new nursery.

– An analysis of the space bounds and mutator utilization of a generational
collector in which the nursery size is elastic. Furthermore, we derive the
nursery size which optimizes utilization and memory consumption.

– Measurements of applications showing that our generational collector is able
to achieve comparable real-time behavior to a non-generational Metronome
system, while using significantly less memory and increasing throughput.
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2 Metronome Overview

This section describes the Metronome algorithm and implementation, both for
background on real-time collection and for the purpose of understanding the
system against which we benchmark the generational collector in Section 5.

The original Metronome system [1] was implemented in Jikes RVM (12.4ms
worst-case pause, 44% MMU at 22.2ms). The model and algorithm of a gener-
ational variant with a synchronous nursery – the syncopated Metronome – has
been published [4]. There was no actual implementation of the generational col-
lector – only arraylet pre-tenuring – and a measurement of the effective survival
rates with and without pre-tenuring. The conclusion was that the synchronous
nursery technique could work for small embedded benchmarks with low survival
rates, but would not be suitable as a general-purpose solution.

A second-generation version of the original Metronome algorithm was imple-
mented in IBM’s J9 JVM (1ms worst-case pauses, 70% MMU at 10ms), and
was released as a product by IBM in 2006 [2]. This product also includes a full
implementation of RTSJ, The Real-Time Specification for Java [3]. The work
described in this paper is a generational system built on the IBM J9 product,
without the RTSJ features.

The Metronome algorithm is described in greater detail in [1], but there are
some differences in the J9 implementation. We will describe the J9 implementa-
tion but point out the aspects which differ from the original Jikes RVM imple-
mentation. Among other things, the J9 version implements the complete Java
semantics including finalizers and weak/soft/phantom references, which were not
supported in the original version.

The Metronome is a hard real-time incremental collector. It uses a hybrid of
non-copying mark-sweep collection (in the common case) and selective copying
collection (when fragmentation occurs).

The virtual machine scheduler alternates between execution of application
(“mutator”) threads and garbage collector threads, using predictable quanta
and predictable spacing between those quanta. The system runs on uni- or mul-
tiprocessors (the original system only ran on uniprocessors), but alternation be-
tween application and collector is synchronized across processors with a barrier
synchronization.

2.1 Time Based Scheduling

A key contribution of the Metronome system is that it abandons a fine grained
work-based approach – such as that of Baker [6] – in favor of a time-based
approach. The fundamental observation here is that the race between collector
and mutator occurs at a relatively coarse time granularity; namely that of a
collection cycle. Bursty allocation behavior in small time windows can then be
amortized over the relatively long period of a complete collection cycle. A time-
based scheduler interleaves mutator and collector work in small quanta at a ratio
determined by the model. This ensures that the collector keeps up, but does so
in a predictable manner amenable to providing the required real-time guarantees
on utilization levels.
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Minimum Mutator Utilization (MMU). In order to achieve correct time-
based behavior, Metronome uses the minimum mutator utilization or MMU met-
ric introduced by Cheng and Blelloch [7]. MMU is a measure of the worst-case
utilization by the application (mutator) over a particular time window. MMU
is independent of the length of particular collector pauses, since multiple short
pauses grouped closely together can be as disruptive as a single long pause.

The system by default runs at an MMU of 70% over a 10 ms time window
(that is, the application always receives at least 7 ms out of every 10 ms of real
time). Shorter time windows and/or higher MMUs are possible depending on
the characteristics of the application.

The system uses over-sampling and instead of interrupting the application
for a single 3 ms quantum every 10 ms, it instead uses quanta whose nominal
length is 500 μs, with a worst-case quantum of less than 1 ms. Over-sampling
both reduces variance and increases the robustness of the schedule.

The original Metronome collector did not use over-sampling and was able to
run at an MMU of 60% in a 20 ms window, with a worst-case pause of 8 ms.

2.2 Collector Design

The collector is a snapshot-at-the-beginning algorithm that allocates objects
black (marked). While it has been argued that such a collector can increase float-
ing garbage, the worst-case performance is no different from other approaches
and the termination condition is deterministic, which is a crucial property for
real-time collection. As we will show subsequently, the introduction of genera-
tional collection greatly reduces the amount of floating garbage.

The key elements of the design and implementation of the Metronome collector
are:

Time-based Scheduling. The Metronome collector achieves good minimum
mutator utilization, or MMU, at high frequencies (1024 Hz) because it uses
time-based rather than work-based scheduling. Time-based scheduling sim-
ply interleaves the collector and the mutator on a fixed schedule.

Guaranteed Real-time Bounds. Despite our use of time- rather than work-
based scheduling, we are able to tightly bound memory utilization while still
guaranteeing good MMU.

Incremental Mark-Sweep. Collection is a standard snapshot-at-the-beginning
incremental mark-sweep algorithm [8] implemented with a weak tricolor in-
variant [9]. We extend traversal during marking so that it redirects any
pointers pointing at from-space so they point at to-space. Therefore, at the
end of a marking phase, the relocated objects of the previous collection can
be freed.

Segregated Free Lists. Allocation is performed using segregated free lists.
Memory is divided into fixed-sized pages, and each page is divided into blocks
of a particular size. Objects are allocated from the smallest size class that
can contain the object.
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Mostly Non-copying. Since fragmentation is rare, objects are usually not
moved. If a page becomes fragmented due to garbage collection, its objects
are moved to another (mostly full) page containing objects of the same size.

Read Barrier. Relocation of objects is achieved by using a forwarding pointer
located in the header of each object [10]. A read barrier maintains a to-space
invariant (mutators always see objects in the to-space).

Arraylets. Large arrays are broken into fixed-size pieces (which we call ar-
raylets) to bound the work of scanning or copying an array and to bound
external fragmentation caused by large objects.

Fuzzy Snapshot. In order to maintain real-time bounds in the presence of
a large number of threads, the requirement for an atomic snapshot of all
roots is avoided by having the write barrier record both the old and the new
pointers during the root scanning phase, instead of just the old pointer as is
done by a conventional snapshot-at-the-beginning collector.

We use the term collection to refer to a complete mark-sweep-defragment
cycle and the term collector quantum to refer to a scheduling quantum in which
the collector runs. A collection consists of many collector quanta.

The system uses a lazy read barrier. The laziness comes from the fact that
references in the stack are not updated atomically when an object is moved. To
ensure termination, object references written back into the heap are forwarded
to current versions as they are written. As the marking phase traverses the heap,
references are also forwarded to new versions. Old versions of moved objects can
not be removed until after the next collection has been completed as there may
still be references to them somewhere.

The original Metronome system used an eager read barrier which is slightly
faster but requires a fixup pass over stack frames at the end of each collector
quantum during the defragmentation phase. Especially on a system with many
threads, this may lead to unacceptably long collector quanta.

Metronome achieves guaranteed real-time behavior provided the application
is correctly characterized by the user. In particular, the user must be able to
specify the maximum amount of simultaneously live data m as well as the peak
allocation rate over the time interval of a garbage collection a(ΔG). The collector
is parameterized by its tracing rate R.

Given these characteristics of the mutator and the collector, the user then
has the ability to tune the performance of the system using three inter-related
parameters: total memory consumption s, minimum guaranteed CPU utilization
u, and the resolution at which the utilization is calculated Δt.

3 Real-Time Generational Collection

The potential for reducing memory consumption and/or improving throughput
by employing a generational collection technique [12,13] is well understood. The
generational hypothesis states that most objects have very short lifetimes. A
generational collector takes advantage of this by first allocating objects into a



106 D. Frampton et al.

nursery, and then employing collection techniques optimized for low survival
rates to promote survivors into the next generation. In this paper we are con-
cerned with a model of generational collection with two generations; a nursery
and a mature space.

A key property for real-time generational collection is that the work required
to perform a nursery collection be O(nursery), not O(heap). One consequence
of this is that the collector must be able to discover all pointers into the nursery
from the mature area without scanning the entire mature area. This is typically
accomplished by using a write barrier, which adds overhead to each pointer
write, but keeps track of all pointers from mature objects to nursery objects in a
remembered set. In combination with other roots in the system, this remembered
set can be used to collect the nursery without having to consider the mature
space.

Previous systems have performed generational collection synchronously [4,5],
but doing so links the responsiveness of the system to the worst case nursery
collection time. In many applications, there are at least some time periods where
the generational hypothesis does not hold. This either forces nursery sizes to be
very small (low numbers of kilobytes) or worst case pause times to be quite large
(tens of milliseconds).

To make generational real-time collection more widely applicable, we must (a)
make nursery collection incremental, and (b) allow nursery collections to occur
at any point during a mature collection cycle. Achieving both of these design
goals decouples worst case pause time from nursery size, enabling the nursery
to be sized to obtain the low survival rates critical for effective generational
collection.

The rest of this section outlines the key challenges in incremental nursery col-
lection and how our system addresses them. This is not a complete description of
our generational algorithm; but it does cover all of the key extensions necessary
to build an incremental generational collector on top of the base Metronome
system. The next subsection describes how the tri-partite nursery enables the
mutator to continue allocating while a nursery collection is in progress. The sec-
ond subsection describes the techniques used to collect the nursery, including the
write barriers that are used to preserve the nursery root set. The final subsection
discusses interactions that arise when a nursery collection occurs concurrently
with a mature space collection.

3.1 Tri-partite Nursery

The fundamental goal of our algorithm is to allow the mutators to continue
executing – and therefore allocating – while we are collecting the nursery. In order
to satisfy this requirement, while retaining a reasonable model of the system, we
begin allocating new objects into a separate nursery area while we perform the
collection of the previous nursery. We call this new nursery the alloc nursery,
and the nursery being collected the collect nursery.

Unlike the previous synchronous generational Metronome [4], the alloc nursery
does not have a fixed size. Instead, it continues to grow via mutator allocation
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actions until it is both desirable and possible to begin the next nursery collection
cycle. It is desirable to initiate a nursery collection once a certain amount of
allocation – the nursery trigger – has occurred. However, if the previous nursery
collection is still in progress when the nursery trigger is hit, the new nursery
collection must be deferred until the prior nursery collection completes. During
this time interval, the mutator can continue to allocate into the alloc nursery.
The nursery trigger is a system parameter and can be varied to trade-off survival
rate with memory consumption (see Section 4). The elasticity of the nursery size
allows the system to smoothly absorb short-term spikes in the allocation rate,
without resorting to flood-gating: direct allocation into the mature area.

Since the nursery collection is incremental, the mutator is free to create new
pointers within the system. As demonstrated in detail in the following sections,
this leads to the requirement to retain each nursery until the nursery after it
has been collected. We call a nursery at this point in the lifecycle the promote
nursery. A promote nursery contains no active object data, but simply forward-
ing pointers, or indirections to objects that have been promoted to the mature
space.

All nursery pages are allocated out of the single global pool of pages shared
with the mature space. This facilitates both the logical pre-tenuring of ar-
raylets [4] and the development of a simple model of the system. Allocation
into nursery pages is performed using a simple bump pointer. As the surviv-
ing objects are promoted into the mature space, they will be relocated to an
appropriate size-segregated page.

3.2 Incremental Generational Collection

As with other generational approaches, we use a write barrier that checks on
the fast path if a pointer is being created from a mature object to the nursery.
Figure 1 shows the fast path of the barrier, including a call to the slow path when
the collector is tracing. This part of the barrier supports incremental tracing,
and, from the perspective of the mutator, comes at no additional cost over the
base system as the same technique is used for both nursery and full heap traces.

write_barrier (source: OBJECT, slot: ADDRESS, target: OBJECT) {
target = forward(target) // Ensure forwarded

if (isMature(source))
if (isNursery(target))

call slow_path

if (collector_tracing)
call slow_path

}

Fig. 1. Write barrier pseudo-code
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Throughout the detailed description of the nursery collection we use the fol-
lowing notation:

M: The mature region.
Nk: The kth nursery region.
REMk: This is the remset that is processed when collecting Nk. It is filled

during the period of time that Nk is the active alloc nursery.
ROOTk: The set of roots that was captured at the start of collecting Nk. While

we have an extension that allows the roots to be captured incrementally, for
simplicity we describe the algorithm as if there was an atomic root snapshot.

M
MATURE

N0
PROMOTE

N1
COLLECT

N2
ALLOC
(empty)

REM1
REM2
(empty)

(a) State at collection start

M
MATURE

N0
PROMOTE

N1
COLLECT
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(b) Edges added during collection
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(c) State during collection
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(d) State at end of collection

Fig. 2. Heap reference state and changes during a nursery collection

Consider the state of the system at the start of a collection, N1 as shown in
Figure 2a. For the initial nursery collection the promote nursery will be empty.
We also have a remset REM1 which will capture all references created from
M → N1, and as demonstrated later, also any pointers into N0 that were created
during the collection of N0.

As we begin to collect N1 we perform the following steps atomically:

1. Take the remembered set REM1 containing all references from M → N1

(and possibly M → N0),
2. Take the root set ROOT1 (from stacks and other VM structures),
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3. Switch all mutators to begin allocating into N2

4. Switch all mutators to begin contributing remset entries into REM2.
5. Turn on the tracing barrier to ensure the nursery is traced consistently.

Mutators are then allowed to continue running while N1 is collected incremen-
tally. It is clear that the union of REM1 and ROOT1 provide us with a complete
snapshot of N1. Therefore, all live objects in N1 are transitively reachable from
this set. Through the protection provided by the tracing barrier, this allows us to
safely and completely collect the nursery. Note that all references created from
N2 into N1 must have been obtained from somewhere captured by the snapshot.
This means that it is not necessary to trace through N2 during the collection of
N1. Figure 2b shows the references that can be created in mutator intervals that
occur during a nursery collection. All pointers created to the mature area, or
contained within an individual area will never be required to perform a nursery
collection. They are shown on the figures for completeness.

The interesting references that can be created during collection are thus:

M→ N1: We include these in REM2. We already have a complete snapshot
for N1 in (REM1, ROOT1). As we need to retain N1 to deal with the un-
barriered pointers from N2 → N1 we may simply leave these values here to
be updated at the next collection.

M→ N2: We include these in REM2: these are essentially the normal genera-
tional remembered set entries.

N1 → N2: These references are not write barriered. As the objects are promoted
into the mature space, we will add appropriate entries to REM2. The entries
created on promotion correspond to the case above of M → N2.

N2 → N1: For objects that remain live, these references can only be discovered
at the next collection (N2). This is what requires us to retain a promote
nursery. These references are not required to find live objects in N1 as we
have a complete snapshot for N1 in (REM1, ROOT1).

Figure 2c shows all references that may exist within the heap during collection.
Once collection has been completed, the remset REM1 will have been completely
drained, and all objects (transitively) reachable from the mature space will have
been promoted. In addition, as all references that may exist to N0 would have
existed solely in REM1, there are now no references into N0 and the space can be
reclaimed. N1 then becomes the promote nursery. This state is shown in Figure
2d. From this point the only information remaining in the promote nursery is
the forwarding pointer information for promoted objects. The space is essentially
closed, as all live objects have been identified and promoted.

Figure 3 shows the pointers that can be created during mutator intervals
outside of a collection. These are simply pointers between M and N2 (the alloc
nursery), with all pointers from M → N2 captured in REM2.

Note that after incrementing each of the indices, the state is as shown in
Figure 2a when the next collection commences.
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Fig. 3. Edges added outside of a nursery collection

3.3 Mature/Nursery Interaction

While the individual techniques for collecting both nursery and mature space
have been shown to be correct in isolation, additional complexity is involved
in combining them. In order to provide the necessary real-time guarantees, the
ability for a nursery collection to occur must not be interfered with by the ma-
ture collection process. To achieve this, the mature collection leaves the system
in a state where a nursery collection is possible at the end of each and every ma-
ture increment. There is no inverse requirement as the nursery collections will
leave sufficient time to perform mature collection, unless the application and/or
collector behavior has been incorrectly parameterized. The additional burden
placed on the mature and nursery collectors must also be carefully controlled to
ensure that no mature related work is performed by the nursery collector, and
that the amount of additional work being performed is acceptable.

Objects are allocated with a two-field color. The color is obtained from the
allocating thread and changes as the thread is scanned at the beginning of each
nursery and mature collection. One field indicates the nursery epoch, while the
other indicates the mature epoch. The importance of these will be understood
as the following problems are discussed.

Nursery collecting out from under mature space. It is possible for objects
that are live in a mature collection to be garbage from the perspective of a
subsequent nursery collection. For this reason, during a mature collection, a
nursery collection must keep alive the portion of the nursery that is part of the
executing mature collection’s snapshot. Any previously written references from
the mature space to the nursery will already be captured in a remembered set.
References that are subsequently lost to the nursery will be captured by the
nursery’s Yuasa barrier. The references to the nursery that were lost before the
nursery collection began are those of interest, and these are the nursery references
on the mature collection’s Yuasa barrier.

The nursery treats these values as additional roots during its collection. The
mature space is required to maintain nursery references separately. This avoids
the nursery collector performing any mature space bounded work.
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Promoting objects in the appropriate state. It is important that the
nursery promotes objects into the mature space in a consistent manner. If, for
example, the nursery promotes objects into the mature space as unmarked after
tracing is complete, the mature space may sweep up live objects. Similarly, if the
nursery promotes objects as live during tracing, references from these objects into
the mature space may be missed and cause dangling pointers within the mature
space.

This is the motivation for all objects being allocated with a mature epoch bit
set. All objects that were allocated before the collection began will not have this
bit set, and all objects allocated after the collection began will. When the nursery
visits an object, it can use this bit to determine the appropriate mark state to
promote with. If the object is in the previous epoch, it will either be marked
by the mature collector or, interestingly, can be left as harmless garbage. If the
object is in the current epoch, it is promoted as marked – which is equivalent to
the allocate-black property of many snapshot collectors.

Sweeping out from under the nursery. The nursery collector maintains
a remembered set of references into the nursery from the mature space. If the
mature objects containing those references die, then the nursery collector would
be processing garbage data looking for roots for its collection. To avoid this, the
mature collector is required to sweep the remembered set, removing any refer-
ences from dead objects. As these objects are garbage, any references from them
into the nursery need not be traced. Additionally, when the mature space is de-
fragmented, the nursery remset entries must be forwarded to maintain freshness.

4 Analytical Model

Intuitively, a generational collector is more efficient than a full-heap collector
because processing an area in which there are many dead objects allows recla-
mation of more space for a given amount of GC work. However, when the survival
rate η is high or even comparable to the survival rate of a full-heap collection,
the generational variant will fare worse because of the cost of determining what
is live as well as the actual copying. In this section, we model the behavior of the
generational collector and compare it to that of the original Metronome collector
and the syncopated Metronome collector.

4.1 Definitions

We begin by characterizing the garbage collector itself by the following param-
eters:

– RT is the tracing rate in the heap (bytes/second);
– RS is the sweeping rate in the heap (bytes/second);
– RN is the collection rate in the nursery (bytes/second);
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As mentioned earlier, generational collectors may be a net loss because inher-
ently, RT > RN (because tracing is faster than tracing together with copying).
The application is characterized by the following parameters:

– a is the allocation rate (bytes/second) in mutator time (that is, allocation
rate ignoring the times when garbage collection is active);

– m is the maximum live memory of the mutator (bytes);
– η(N) is the survival rate in the nursery. Specifically, it is the portion of the

objects (by bytes) that is live (taking into account the generational barrier)
of the last N allocated bytes. This function is monotonically decreasing in
N .

We characterize the real-time behavior of the system with the following pa-
rameters:

– Δt is the task period (seconds);
– u is the minimum mutator utilization [7] in each Δt;

4.2 Steady-State Assumption and Time Conversion

The allocation rate a and the survival ratio η in fact can vary considerably as
the application runs. For the time being we will consider the case when they are
smooth. However, since the nursery size varies dynamically as a central aspect of
this algorithm, we model it dynamically. As in previous Metronome collectors,
modeling relies on being able to convert from mutator time to GC time. For
a given interval Δt, the collector may consume up to (1 − u) · Δt seconds for
collection. We define the garbage collection factor γ as the ratio of mutator
execution to useful collector work.

γ =
u ·Δt

(1 − u) ·Δt
=

u

1− u
(1)

Multiplying by γ converts collector time into mutator time; dividing does the
reverse. Since the relationship between u in the range [0, 1) and γ in the range
[0,∞) is one-to-one, we also have

u =
γ

1 + γ
(2)

From the above parameters, we can then derive the overall space consumption
of the system. Fundamentally, for all real-time collectors, the space requirements
depend on the amount of extra memory that is allocated during the time when
incremental collection is being performed and the mutator is continuing to run.
Thus:

– s is the space requirement (bytes) of the application in our collector, and
– e is the extra space allocated by the mutator over the course of a full-heap

collection.

We will review bounds for s and e for previous collectors and then show how
they relate to our collector.
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Fig. 4. Time dilation due to generational collection causes additional allocation during
a major heap collection, but attenuates all allocation by the survival rate η

4.3 Bounds for Non-generational Metronome Collectors

In the absence of generational collection, the extra space eM for Metronome (as
described in [1]) is

eM = aγ ·
(

m

RT
+

s

RS

)
(3)

which is the allocation rate multiplied by the time required to perform a collec-
tion, converted into mutator time by the γ factor.

Freeing an object in Metronome-style collectors may take as many as three
collections: (1) to collect the object; (2) because the object may have become
garbage immediately after a collection began, and will therefore not be discov-
ered until the following collection cycle — floating garbage; and (3) because we
may need to relocate the object in order to make use of its space. The first two as-
pects are common to incremental collectors; the third is specific to Metronome’s
approach to defragmentation.

sM = (m + 3eM ) · (1 + ρ) (4)

In other words, the maximum space required is the base memory plus three
times the extra memory allocated during collection multiplied by the amount of
fragmentation.

4.4 Bounds for Our Generational Collector

When performing generational collection, the time spent collecting the nursery
reduces the rate of progress of the full heap collection. This in turn means that
the mutator performs more allocation during collection. However, with genera-
tional collection the allocation into the mature area is also attenuated by the
survival rate η(N). This effect is shown in Figure 4, expressed by the following
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equations, in which we define the generational dilation factor δ and the corre-
sponding extra space eG under generational collection:

δ = 1− aη(N)
RN

· γ (5)

eG =
aη(N)γ

δ
·
(

m

RT
+

s

RS

)
(6)

Since our generational collector is fully incremental, we can maintain real-time
behavior without limiting the size of the nursery, and therefore use a nursery
size which is best suited to the survival rate of the application. However, this
flexibility also leads to additional complexities in determining what that size
should be.

Since η(N) is monotonically decreasing and low η values are crucial to the
success of generational collection, let us consider what happens as the nursery
size varies. When the nursery size is very small, the collector will spend all its
time performing nursery collections because the low survival rate leads to very
unproductive nursery collections. In fact, because of the way in which the nursery
grows, generational collection will not complete until the nursery grows in size
until exactly all of the collection time is spent solely on minor collections at
which point

N · η(N)
RN

= γ
N

a
(7)

In other words, N grows until it reaches a minimum tenable size Nmin:

η(Nmin) =
γ ·RN

a
(8)

Note that this requires that RN > aη(N)γ.
When the nursery size is set above this threshold, major collections are given

an opportunity to complete and there is a bound on the memory consumption.
If the nursery is set arbitrarily large, overall memory consumption increases as
the nursery dominates the mature space in size. Between these two extremes is a
nursery size which minimizes the overall heap consumption. In order to compute
this point and to compare the generational system against the non-generational
version, we need to to compute the space bounds of the system.

Of course, the generational version has the additional space cost of the tri-
partite nursery. As a result, the space requirement of our collector paired with
a given application is

sG = (m + 3eG) · (1 + ρ) + 3N (9)

The (1 + ρ) factor is notably absent in the 3N term because of the lack of
fragmentation in the nurseries. As we pointed out before, the nursery will grow
in size until it passes the threshold of equation 8. If the nursery is larger than
this crossover point, the heuristic will not grow the nursery in size anymore.
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However, continuing to grow the nursery in size will actually diminish overall
heap consumption. This can be seen because just above the crossover point, the
term δ is infinitesimally positive so that sG is arbitrarily large. Similarly, when N
approaches infinity, sG is arbitrarily large. Thus, if we hold utilization constant
(because it is a target), there must exist, by continuity, a globally minimal overall
heap size for some nursery size. Inverting the function to express utilization in
terms of sG gives the achievable utilization for a particular overall heap size.

Note that we are making a steady-state assumption about η(N). Since we
are collecting the nursery itself incrementally and therefore handle a wide range
of nursery sizes, this is reasonable for a large class of real programs. However,
there is also a class of programs that have a setup phase which precedes steady-
state (or “mission”) phase. For such programs the steady-state assumption, when
applied to the entire program, may produce overly large nurseries. We will study
an example of such a program in Section 5.4. This effect is also present in non-
generational real-time collectors, but is exacerbated in generational collectors.
For both types of systems, it is desirable to allow the application to explicitly
delineate the setup and mission phases, and to either allow real-time bounds to
be violated during the setup phase in favor of reduced memory consumption,
or to perform a (potentially synchronous) memory compaction between the two
phases.

4.5 Comparison with Syncopation

Generational collection in a Metronome-style collector was previously described
using a technique called Syncopation [4]. Syncopation uses synchronous collec-
tion of the nursery combined with flood-gating — direct allocation into the ma-
ture space — when allocation and survival rates are too high for synchronous
collection to be performed without violating real-time bounds.

However, with syncopation the nursery size N was not really variable, since
the synchronous nursery collection places severe bounds on real-time behavior.
With such small nurseries, real-world programs almost always contain spikes
in the survival rate such that for all practical N , η(N) → 1. Therefore it was
generally necessary to use the largest possible nursery size such that

N

RN
= (1− u)Δt (10)

N = (1− u)ΔtRN (11)

The time dilation and extra space calculations then become simpler, such that

δ′ = 1− N

RN
· γ (12)

eS =
aγ

δ′
·
(

m

RT
+

s

RS

)
(13)

and the space bound for synchronous nursery collection is

sS = (m + 3eS) · (1 + ρ) + (1− u)ΔtRN (14)
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Although there is no factor of 3 multiplier on the nursery as for our gen-
erational collector (equation 9), the higher survival rates incurred by the much
smaller nurseries mean that the space consumption in the mature space increases
significantly.

5 Experimental Evaluation

We have implemented our generational algorithm as a modification1 to the IBM
WebSphere Real Time Java virtual machine [2], which uses the non-generational
Metronome-based algorithm described in Section 2. Both collectors support the
complete Java semantics, including finalization and weak/soft/phantom refer-
ences.

The syncopated Metronome, discussed in Section 4, is not experimentally com-
pared. The nursery sizes required to achieve low survival rates on non-embedded
applications – in the order of 1MB for SPECjvm98 – would incur pauses of
at least an order of magnitude beyond the worst-case latencies for the other
systems.

All experiments were run on an IBM Intellistation A Pro workstation with
dual AMD Opteron 250 processors running at 2.4 GHz with a 1 MB L2 data
cache. Total system memory was 4 GB RAM.

The operating system was IBM’s real-time version of Linux2 based on Red Hat
Enterprise Linux 4. This includes a number of modifications to reduce latency,
in particular the PREEMPT RT patch with modifications for multi-core/multi-
processor systems.

We begin our evaluation with a performance comparison of the generational
and non-generational systems across a range of benchmarks. We then demon-
strate the effectiveness of the dynamic nursery size at coping with short bursts
of allocation. Selecting a highly generational benchmark, jess, we show the im-
portance of large nursery sizes made possible through incremental nursery col-
lection. We then highlight the difficulties in fairly comparing real-time collectors
by observing differences between startup and steady-state behavior.

As we are interested in comparing the collector performance of two alterna-
tives, we use a modified second run methodology. This methodology involves
invoking a benchmark twice within a single JVM invocation, the first warmup
run performs compilation and optimization, while results are gathered from a
second measurement run. This methodology better isolates the performance dif-
ferences due to the collector.

The JIT implementation in our system is not real-time, so it is necessary to
disable it during the measurement run. Between the warmup and measurement

1 In addition to adding generational capabilities, we also disabled support for the Real-
Time Specification for Java (RTSJ) standard [3] and enabled defragmentation in both
the base and generational configurations of the JVM. Therefore, the performance
results for our base system are not directly comparable to the product.

2 ftp://linuxpatch.ncsa.uiuc.edu/rt-linux/rhel4u2/R1/rtlinux-src-2006-08-
30-r541.tar.bz2
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runs we disable the JIT by calling java.lang.Compiler.disable, and pause
to allow the compilation queue to drain. IBM’s real-time JVM also includes an
ahead-of-time compiler which could be used to factor out JIT interference, but
the generated code is slower than that produced by the JIT and therefore – since
the mutator is running slower – does not stress the garbage collector as much.

5.1 Generational vs. Non-generational Comparison

We performed a comparison of the generational and non-generational Metronome
using the SPECjvm98 and DaCapo [11] benchmark suites. A summary of the
results is shown in Table 1. For the baseline (non-generational) system we show
the total run time, and the portions of time spent in mutator and collector
(GC). We also show peak memory use, average memory use, and the achieved
MMU (based on a target of 70%). For the generational collector, we show values
relative to the baseline to facilitate comparison. Figures reported are relative
times, the fraction of garbage collection time spent in nursery collection, the
relative memory consumption figures, and the achieved MMU.

Table 1. Comparison of non-generational with generational Metronome collector

Full Heap Metronome Generational Metronome
Trigger Time (s) Mem. (MB) Relative Time Nur. Rel. Mem

Bench. (MB) Total Mut. GC Peak Avg. MMU Total Mut. GC Frac. Peak Avg. MMU

compress 24, 2 8.99 8.162 0.126 28.77 14.45 70% 0.99 0.98 1.87 84% 1.00 1.01 69%
jess 8, 2 8.162 6.526 1.636 12.16 8.20 69% 0.84 0.94 0.43 77% 0.69 0.80 69%
rayttrace 16, 2 4.501 3.433 1.067 29.28 19.98 69% 0.76 0.90 0.28 81% 0.99 0.55 70%
db 24, 2 13.18 12.38 0.798 32.62 20.17 67% 1.00 1.00 0.89 57% 1.09 1.04 68%
javac 24, 2 6.365 4.99 1.375 49.27 32.78 67% 1.14 1.09 1.35 92% 1.70 2.03 68%
mpegaudio 8, 2 10.24 10.24 0 2.47 2.41 100% 1.01 1.01 1.00 NA 0.78 0.77 100%
mtrt 24, 2 3.126 2.388 0.738 82.97 46.87 69% 0.88 0.97 0.61 75% 0.93 0.55 67%
jack 8, 2 4.222 3.633 0.588 10.48 6.90 69% 0.92 0.97 0.64 81% 0.82 0.90 70%

antlr 20, 4 5.426 5.063 0.362 23.64 14.26 69% 0.94 0.91 1.33 59% 1.03 1.04 68%
bloat 24, 4 30.83 26.99 3.831 45.62 20.24 69% 0.88 0.94 0.47 92% 0.56 0.83 69%
chart 36, 4 159.8 147.5 12.24 51.14 25.55 67% 0.99 1.06 0.24 80% 0.80 1.10 67%
eclipse 64, 8 90.14 77.47 12.67 80.86 66.66 56% 0.95 0.98 0.78 65% 1.23 0.75 67%
fop 24, 4 3.210 2.857 0.353 27.22 22.09 70% 1.00 1.00 0.94 82% 0.89 0.83 69%
hsqldb 144, 16 4.753 4.303 0.450 158.48 116.29 70% 1.47 1.24 3.71 100% 1.11 0.89 63%
jython 20, 4 22.44 18.53 3.911 46.72 24.89 67% 0.93 0.99 0.69 69% 0.76 0.68 63%
luindex 20, 4 17.71 16.59 1.118 21.38 14.86 68% 1.06 1.03 1.41 79% 1.02 1.04 69%
lusearch 36, 8 17.29 13.18 4.114 48.75 34.79 68% 0.97 1.00 0.88 35% 1.11 0.98 66%
pmd 48, 4 30.34 24.98 5.364 71.30 47.00 68% 0.98 0.88 1.42 89% 2.48 1.68 66%
xalan 128, 12 12.49 11.43 1.051 136.86 87.49 64% 1.16 1.11 1.80 71% 1.00 1.04 68%
geomean 0.983 0.997 0.883 0.995 0.93

For each benchmark, the first column reports the full heap and nursery trig-
gers used for that benchmark. The full heap triggers are based on each program’s
steady-state allocation rate and maximum live memory size; the nursery trigger
was selected by evaluating a range of possibilities (512KB through 16MB) and
picking the trigger that enabled the best time/space performance. Note that
these are triggers and not heap sizes. Because of the nature of incremental col-
lection, for a given set of parameters the system may require differing amounts
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of memory to run without violating its real-time requirements. When compar-
ing stop-the-world collectors, a simpler methodology may be used in which the
heap size is fixed and the resulting throughput is measured. With a real-time
collector there is an additional degree of freedom, so the comparison is more
complex, with an inter-relationship between total run time, total memory usage,
and MMU.

The reported memory size includes both the size of the heap and the size
of the nursery. This is both to make a fair comparison and it also reflects the
nature of our system, in which nursery pages and heap pages are intermingled
in physical memory. Note that the full heap collection trigger is with respect to
this total usage – that is, it includes the memory being consumed by the nursery.

As predicted by the analytic model presented in Section 4, generational col-
lection is better for many, but not all benchmarks. Overall, it reduces both
time and space, with most of the speedup coming from reduction in time spent
in the collector. However, time varies from a 24% speedup on raytrace to a
47% slowdown on hsqldb and space varies from a 44% reduction on bloat to
a 148% increase on hsqldb. Real-time performance (MMU) is essentially the
same, with the largest variation being 7% on hsqldb. Many benchmarks have
short periods where they which they exhibit non-generational behavior, leading
to peak memory usage higher than the non-generational system, while average
usage across the whole execution is lower. An example is eclipse, where the
generational system has a peak usage 25% higher, but average memory use is
just 75% of the base system over the entire run. Overall, for programs that are
at least somewhat generational in their memory allocation and usage patterns,
the generational collector offered significant performance benefits. Significant
degradations correlated with non-generational memory usage patterns.

5.2 Dynamic Nursery Size

The use of a single pool of pages for both the nursery and the heap, and the
ability of the nursery to temporarily consume more than its trigger size, allows
our collector to gracefully handle temporary spikes in the allocation rate. Table 2
shows the minimum, mean, and maximum nursery sizes for each benchmark
(mpegaudio performs so little allocation that it never fills a 2MB nursery, so
there is no data for it). Many of the benchmarks do in fact have a maximum
nursery size three or more times as large as the nursery trigger, and in the
case of mtrt the nursery is 15 times as large as the trigger size. As the nursery
trigger gets larger, this effect is less dramatic but can still be seen to some
degree on most of the benchmarks. These variations show that the dynamically
sized nursery is highly effective at absorbing short-term allocation bursts, while
maintaining overall space bounds and real-time behavior.

5.3 Parameterization Studies

In Section 4, we discussed analytically the effect of varying the nursery size on
total memory consumption. Figure 5 shows the overall performance of the jess
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Table 2. Dynamic Variation in Nursery Sizes Absorbs Uneven Allocation Rates

Benchmark Trigger Mean Maximum Std. Dev.

201 compress 2.0 5.3 6.0 1.37
202 jess 2.0 2.0 2.4 0.02
205 raytrace 2.0 2.2 9.6 0.85
209 db 2.0 2.2 6.2 0.67
213 javac 2.0 2.9 7.1 1.31
222 mpegaudio — — — —
227 mtrt 2.0 2.8 31.7 3.96
228 jack 2.0 2.0 2.1 0.01

antlr 4.0 4.05 4.31 0.05
bloat 4.0 4.05 4.31 0.02
chart 4.0 4.05 4.39 0.04
eclipse 8.0 8.04 8.97 0.07
fop 4.0 4.05 4.17 0.04
hsqldb 16.0 25.30 39.97 8.45
jython 4.0 4.11 5.48 0.20
luindex 4.0 4.03 4.06 0.004
lusearch 8 8.07 8.36 0.07
pmd 4.0 5.28 17.39 2.61
xalan 12.0 12.04 12.05 0.005

benchmark as we vary the nursery size from 256KB to 3072KB. We choose jess
as it is highly generational and therefore allows us to clearly see the effect of
altering the nursery trigger. Non-generational programs are likely to perform
poorly on all feasible nursery sizes. Both the time and space measurements are
point-wise normalized against the non-generational system. The most dramatic
effect is that at low nursery sizes, the memory usage spikes upwards (beyond the
range of the graph) as predicted by divergence condition in equation 7. Some-
where around a 512KB nursery size, the memory consumption of the generational
and non-generational system are similar. Around 1.5MB, further increases in the
nursery size do not improve the efficiency of the nursery collections so that the
mature space does not decrease fast enough to compensate for the triple in-
crease in space that the 3N term charges so that memory consumption begins
to increase. Note that total time spent in nursery collections also monotonically
decreases as we increase the nursery size as the total amount of data that is
promoted decreases as η(N) decreases. Mutator time is fairly consistent across
nursery sizes and the shape of the total execution time mutedly follows the shape
of the GC Time.

Figure 6 shows the dynamic behavior of memory consumption and mutator
utilization of the jess benchmark when the nursery size is set to 3 different
regimes. Generally, as we increase the nursery size, the overall efficiency of col-
lection improves and total time spent in garbage collection decreases. For the
very low nursery size of 256KB in sub-figure (a), all the time is spent in minor
collections and the nursery is barely big enough for even a minor collection to
complete. Consequently overall memory consumption is unbounded as the ma-
ture space keeps growing. The thick band shows that the utilization is always
oscillating between 72% to 85% indicating that the GC has no breathing room
at all. When the nursery trigger size is doubled as in sub-figure (b), the nursery
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Fig. 5. Effect of changing nursery size for 202 jess with an 8m mature trigger

collections complete before the subsequent nursery is filled, allowing major col-
lection work to occur and leading to a bounded mature heap size of around 9MB.
Utilization is not as constant as the GC does not have to work as hard so that
mutator utilization is occasionally around 90% and each major GC generally
take half a second. When nursery size is further increased as in sub-figure (c),
minor collections complete early enough that a large fraction of overall collection
time can be spent in major collection that each major collection takes only a
tenth of a second. Often, there are no active collections(either major or minor) so
that overall utilization reaches 100% and averages around 85%. Because overall
efficiency is improved, the heap consumption is 8.25MB and is actually lower
even though the nursery is larger.

5.4 Startup vs. Steady State Behavior

Figure 7 shows the memory consumption of pseudojbb under both systems.
This benchmark begins by setting up several large data structures and then
runs many transactions each of which slightly modify the pre-existing large data
structures. In the first phase, both the allocation rate and the survival rate is
high. As a result, the generational system’s nursery is unable to absorb the allo-
cation completely and must grow. During this period, as objects are promoted,
there are often two copies of portions of the long-lived data structures. In this
phase, the nurseries cause the memory consumption to be 45% higher than that
of the non-generational system. However, once we reach the “mission” phase of
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(a) 256KB Nursery Trigger

(b) 512KB Nursery Trigger

(c) 2MB Nursery Trigger

Fig. 6. Performance of 202 jess with varying nursery trigger and 8m mature trigger



122 D. Frampton et al.

(a) Non-generational

(b) Generational with 8 MB Nursery Trigger

Fig. 7. Memory usage over time of pseudojbb under non-generational and generational
collection

the application (about 1.8 seconds into the run), the greater efficiency of the gen-
erational system dominates, resulting in a 10% reduction in space consumption
and less time spent in garbage collection.

6 Related Work

Generational collectors were concurrently introduced by Ungar [12] and Moon [13]
and have proven to be so effective that many more sophisticated partial-heap tech-
niques have been unable to match its performance.

A number of other systems have combined generational and concurrent col-
lection. Doligez et al. [5] developed a collector for ML which exploited the large
proportion of immutable objects by allocating them in independently collected
nurseries. Nursery collection was synchronous and thread-local. Domani et al. [14]
subsequently expanded on this basic design for a concurrent, non-compacting col-
lector in which nursery collection was also concurrent. However, both collectors
do not perform generational collection during tenured space collection, which is
a fundamental requirement in our system for maintaining real-time behavior.
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Yuasa [8] introduced a snapshot-style incremental collector. Unlike incremen-
tal update collectors, Yuasa’s collector operated on a virtual snapshot of the
object graph at the time collection started. Yuasa’s algorithm results in more
floating garbage and requires a more expensive write barrier, but is better suited
to real-time collection since operations by the mutator can not “undo” the work
done by the collector.

Baker [6] was the first to attack the problem of real-time garbage collection.
As we discussed in Section 2, his technique fundamentally suffers from using
work-based, event-triggered scheduling, and from evaluating real-time proper-
ties from the point of view of the collector rather than the application. The
result is fundamentally soft real-time (best effort) rather than hard real-time
(guaranteed) response.

There have been many incremental and soft real-time collectors since then,
exploring various aspects of the design space, such as the use of virtual memory
support [15] and coarse-grained replication with a synchronous nursery [16].
However, there is no guarantee on the maximum pause time.

While most previous work on real-time collection has focused on work-based
scheduling, there are some notable exceptions. In particular, Henriksson [17]
implemented a Brooks-style collector [10] in which application processes are di-
vided into two priority levels: for high-priority tasks (assumed to be periodic with
bounded compute time and allocation requirements), memory is pre-allocated
and the system is tailored to allow mutator operations to proceed quickly.

Cheng and Blelloch [7] described a time-triggered real-time multiprocessor
replicating collector with excellent utilization, for which they introduced the
minimum mutator utilization (MMU) metric, a generic application-oriented mea-
sure of the behavior of a concurrent collector. However, MMU was measured
rather than guaranteed, and space overheads were large. A generational variant
was presented but the replication-based techniques and need for an atomic flip
meant pointer arrays doubled in size as each logical slot required two physical
slots.

The Metronome collector of Bacon et al. [1] was the first guaranteed hard
real-time collector. This collector provided guaranteed MMU based on the the
characterization of the application in terms of maximum live memory and al-
location rate. Space overhead was usually comparable to that required by syn-
chronous (“stop-the-world”) collectors, due to incremental defragmentation and
quantitative bounding of all sources of memory loss [18].

Bacon et al. [4] introduced a real-time generational collector that used a syn-
chronous (“stop-the-world”) nursery collector [4]. Though this works well for
embedded benchmarks with nurseries in the tens of kilobytes, larger nurseries
quickly push maximum pause times into the tens of milliseconds. This effect is
exacerbated by the need to “over-sample” (collecting the nursery multiple times
within a single MMU quantum) in order to avoid pathological behavior during
allocation rate spikes. This forces the use of smaller nurseries, which increases
survival rate and lowers the effectiveness of generational collection.
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7 Conclusion

We have presented a new algorithm for performing generational collection incre-
mentally in real-time, based on a tri-partite nursery which overlaps allocation,
collection, and defragmentation. Generational collection can be interleaved with
incremental real-time collection of the mature space at any point. The resulting
algorithm allows the use of large nurseries that lead to low survival rates, and yet
is capable of achieving sub-millisecond latencies and high worst-case utilization.

We have implemented this new algorithm in a product-based real-time Java
virtual machine, and evaluated analytically and experimentally the situations
under which our generational collector is superior to a non-generational real-
time collector. Programs with inherently non-generational behavior and pro-
grams whose setup phase includes unusually high survival and allocation rates,
will require more space to achieve the corresponding real-time bounds. However,
the results show that for most programs, generational collection achieves compa-
rable real-time bounds while leading to an improvement in space consumption,
throughput, or both.
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Abstract. A generational collection strategy utilizing a single nursery cannot ef-
ficiently manage objects in application servers due to variance in their lifespans.
In this paper, we introduce an optimization technique designed for application
servers that exploits an observation that remotable objects are commonly used as
gateways for client requests. Objects instantiated as part of these requests (remote
objects) often live longer than objects not created to serve these remote requests
(local objects). Thus, our scheme creates remote and local objects in two sepa-
rate nurseries; each is properly sized to match the lifetime characteristic of the
residing objects. We extended the generational collector in HotSpot to support
the proposed optimization and found that given the same heap size, the proposed
scheme can improve the maximum throughput of an application server by 14%
over the default collector. It also allows the application server to handle 10%
higher workload prior to memory exhaustion.

1 Introduction

Garbage collection (GC) is one of many features that make Java so attractive for the
development of complex software systems, especially but not limited to, application
servers. GC improves programmer productivity by reducing errors caused by explicit
memory management. Moreover, it promotes good software engineering practice that
can lead to cleaner code since memory management functions are no longer interleaved
with the program logic [1, 2]. As of now, one of the most adopted GC strategies is
generational garbage collection [3, 4].

Generational GC is based on the hypothesis that “most objects die young”, and thus,
concentrates its collection effort in the nursery, a memory area used for object creation
[4]. Currently, generational collectors are configured to have only one nursery because
such a configuration has proven to work well in desktop environments. However, recent
studies have found the configuration to be inefficient in large server applications [5, 6]
because they frequently create objects that cannot be classified as either short-lived or
long-lived. Such a variance in lifespans can result in two major performance issues in
any single-nursery generational collectors.

1. A large volume of promoted objects. If the nursery size is too small, objects with
longer lifespans are promoted and then die soon after promotion. In this situation,
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the time spent in promoting objects and higher frequency of full heap collection
invocations can result in longer collection pauses and more time spent in GC.

2. Delayed collection of dead objects. If the nursery size is large enough to allow
longer living objects more time to die, short-lived objects are not collected in a
timely fashion. This scenario can result in larger heap requirement, poor heap uti-
lization, and higher paging efforts [7, 8].

1.1 This Work

We introduce the notion of remote and local objects as a framework for identifying
objects with similar lifespans in application servers. The proposed framework exploits
the key objects notion [9], which leverages temporal locality to cluster objects with
similar lifespans. In Java application servers, remotable objects are commonly used as
gateways for client requests. Once a request arrives, many more objects are created,
forming a cluster, to perform the requested service. Once the request is satisfied, most
of these objects die. Studies have shown that objects connected to remotable objects
tend to have longer lifespans than other short-lived objects in an application [5, 6].
Thus, our technique considers these remotable objects as the key objects and any objects
connected to these remotable objects as remote objects. We then refer to the remaining
objects as local objects.

We then present a new generational collector based on the notion of remote and local
objects. Our garbage collector is optimized based on the hypothesis that remote and
local objects have different lifespan characteristics. Therefore, managing them in two
separate nurseries (i.e. local nursery and remote nursery) will result in better garbage
collection efficiency, as each nursery can be optimally sized based on the allocation
volume and lifespan characteristic of the residing objects. Garbage collection in each
nursery can be done independently of the other nursery, and the surviving objects from
both nurseries are promoted to a shared mature generation. A low-overhead run-time
component is used to dynamically identify and segregate remote and local objects. We
have extended the generational collector in the HotSpot virtual machine (we refer to
the HotSpot’s collector as the default collector) to support the proposed optimization
technique (we refer to the optimized version as the collector for application server or
AS-GC). We then compared the performance of AS-GC with that of the highly tuned
default collector. The results of our experiments indicate that our proposed scheme
yields the following three benefits.

1. Timely object reclamation. The results show that the minor collectors of the lo-
cal and remote nurseries are called more frequently, and each time, the percentage
of surviving objects is lower than that of the default collector. Higher frequency
of minor collection invocations means that our approach attempts to recycle ob-
jects quickly. Higher efficiency means that fewer objects are promoted, leading to
shorter pauses, fewer major collection invocations, and less time spent in garbage
collection.

2. Higher throughput. Given the same heap space, our collector yields 14% higher
maximum throughput than that of the default collector. This improvement is
achieved with negligible runtime overhead.



128 F. Xian et al.

3. Higher workload. With the default collector, the throughput performance degrades
significantly due to memory exhaustion when the workload reaches a certain level.
Because our scheme is more memory efficient, it can operate with less heap space.
Therefore, it can handle 10% higher workload before the same exhaustion is en-
countered.

Even though our proposed solution is domain-specific, it should have great poten-
tials for a wider adoption by language designers and practitioners as the application
server market is one of the biggest adoptors of Java [10]. It is worth noting that our ap-
proach is significantly different from the existing techniques to improve the efficiency
of garbage collection (e.g. pretenuring, older-first, and Beltway [1, 11, 12, 13]). How-
ever, our approach can also be integrated with these techniques to achieve even higher
GC efficiencies.

The remainder of this paper is organized as follows. Section 2 describes the prelim-
inary studies and discusses the results that motivate this work. Section 3 provides an
overview of the proposed technique and implementation details. Section 4 details the
experimental environment. Section 5 describes each experiment and reports the results.
Section 6 further discusses the results of our work. Section 7 provides an applicability
study of this work. Section 8 highlights some of the related work, and the last section
concludes this paper.

2 Why Design a Garbage Collector for Application Servers?

“It has been proven that for any possible allocation algorithm, there will
always be the possibility that some application program will allocate and
deallocate blocks in some fashion that defeats the allocator’s strategy.”

Paul R. Wilson et al. [14]

The same argument can be made about garbage collection. Most garbage collectors,
shipped as part of any commercial Java Virtual Machines (JVMs), are based on the
generational approach utilizing a single nursery. While such a collection strategy has
worked well for Java over the past decade, studies have shown that objects in Java
application servers may not always be short-lived [5, 6], leading to an inefficiency of
any single-nursery generational collector.

Longer living objects in these server applications can degrade the efficiency of these
collectors. When this happens, the throughput performance of these server applications
can seriously suffer. Such inefficiency can also result in poor memory utilization [7],
leading to a large number of page faults under heavy workload, ungraceful degradation
of throughputs and failures [6].

In the remainder of this section, we highlight some of the differences in run-time
characteristics between desktop applications and application servers. We then report
the result of our experiments to investigate the lifespan characteristics in these appli-
cations and the differences in the performance of generational collection in these two
types of applications.
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Table 1. Comparing the basic characteristics of SPECjvm98, SPECjbb2000, and SPEC-
jAppServer2004

Characteristic SPECjvm98 SPECjbb2000 SPECjAppServer2004
(8 warehouses) (Trans. rate = 40)

# of simultaneous threads 5 (in MTRT) 11 331
# of allocated objects 8 million (in Jess) 33 million 80 million

Amount of allocated space 231 (in db) MB 900 MB 5.1 GB
Total execution time seconds minutes hours

2.1 Basic Characteristics of Application Servers

Application servers often face significant variations in service demands, the higher de-
mands often coincide with “the times when the service has the most value” [15]. Thus,
these servers are expected to maintain responsiveness, robustness, and availability re-
gardless of the changing demands. Past studies have shown that under the heaviest
workload, the resource usage can be so intense that, often times, these servers would
suddenly fail with little or no warning [6, 16, 17, 18].

To better understand the differences in resource usage between desktop applica-
tions and application servers, we conducted an experiment to compare their basic run-
time characteristics (see Table 1). We used SPECjvm98, SPECjbb2000, and SPEC-
jAppServer2004 in our study. SPECjvm98 [19] is a commonly used benchmark suite in
the research community. All applications in the suite are designed to run well in general
purpose workstations. SPECjbb2000 [20] is a server benchmark designed to emulate
the application server tier. It does not make any connections to external services (e.g.
database connections). On the other hand, SPECjAppServer2004 [21] is a benchmark
for real-world application servers designed to run on high-performance computer sys-
tems (more information about this benchmark is available in Section 4).

From Table 1, the differences in memory requirement and degree of concurrency
can translate to much higher resource usage in server applications. However, they do
not yield any insights into the differences in lifespan of objects between these two types
of applications. Therefore, we conducted further experiments to compare their lifespan
characteristics.

2.2 An Experiment to Evaluate Lifespans of Objects in Server Applications

We measured lifespan by the amount of memory allocated between birth and death (in
bytes)1. We measured the execution progress by the accumulated amount of allocated
memory (also in bytes) [11]. Figure 1 depicts our findings.

The vast majority of objects in Jess, a benchmark program in the SPECjvm98 suite,
are short-lived; that is, most objects have lifespans of less than 10% of the maximum
lifespan (as illustrated in 1a). Note that we also conducted similar studies using other

1 We only accounted for objects allocated in the garbage-collected heap and ignored any objects
created in the permanent space.
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Fig. 1. Each dot in these graphs represents an object. The x-axis represents the normalized age
of death, and the y-axis represents the normalized time of death. Thus, the position of each dot
provides us with the age of that particular object and the time that it dies. For example, the squared
object in the SPECjAppServer2004 graph (c) has a lifespan of 48% of the maximum lifespan and
dies when the application allocates about 80% of the total allocated bytes.

applications in the SPECjvm98 benchmark suite and found their results to be very sim-
ilar to Jess. For brevity, we do not include the results of those studies. The results of our
study nicely conform to the “weak generational hypothesis” (most objects die young),
which is the cornerstone of generational garbage collection [3, 4].

On the other hand, large numbers of objects in the SPECjbb2000 with 8 warehouses
(Figure 1b) and SPECjAppServer2004 with 40 Tx (Figure 1c) have lifespans of up to
30% to 50% of the maximum lifespans. It is worth noting that there are more objects
with longer lifespans as these programs approach termination (as indicated by the tri-
angular patterns). This is to be expected as the amount of work in each benchmark
becomes heavier as the program continues to run. For example, SPECjbb2000 starts
with a single warehouse and creates one more warehouse each time it finishes making
the queries. In our experiment, this process continues until 8 warehouses are created.
It is worth noting that the clusters of dead objects (appeared in Figure 1b as groups
of dark spots) correspond to the number of warehouses created and worked on by the
application.

Our past research effort on .NET server applications also indicates a similar lifes-
pan behavior to the Java server benchmarks [5]. We hypothesize that such behavior is
a result of a high degree of concurrency in these server applications (see more discus-
sion about this issue in Section 6). If concurrency is indeed the main factor for such a
lifespan behavior, it is also possible for multithreaded desktop applications to exhibit a
similar behavior. Since most of the available desktop benchmarks are not heavily mul-
tithreaded, we have yet to conduct further experiments to validate our hypothesis. Such
experiments will be left for future work.

Next, we conducted an experiment to investigate the efficacy of the generational
collector in the SPECjbb2000 benchmark. Our investigation focused on two execution
areas: the first 40% of execution (zone 1 of Figure 1b) where most objects are still
short-lived and the last 60% of execution (zone 2 of Figure 1b) where most objects are
long-lived. We observed the following results.
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1. Generational collector performs efficiently in zone 1. Figure 1b clearly shows that
objects in this zone can be easily segregated into short-lived and long-lived. While
executing in this zone, the generational scheme performs very efficiently.

2. Generational collector is not efficient in zone 2. Figure 1b shows that the lifespans
cannot be easily classified into the short-lived and long-lived taxonomy. Therefore,
the generational collector begins to lose its efficiency upon entering this zone. We
also noticed that the heap size is increased dramatically even though the number of
objects created in this zone is only twice as much as that of zone 1.

The lifespan behavior as depicted in zone 2 poses two important challenges to gen-
erational collectors. First, if the nursery size is set too small, minor collection may pro-
mote a significant number of objects. A large volume of promoted objects can cause the
pause times to be long. Moreover, these promoted objects can result in more frequent
collection of the older generation. This observation is reported by Xian et al. [6].

Second, the nursery may need to be set to a much larger size to allow objects with di-
verse lifespans sufficient time to die. Our study shows that the performance differences
due to larger nursery sizes without increasing the overall heap size, are not noticeable.
To yield a better performance, the entire heap space must be enlarged to provide a suffi-
cient GC headroom. With a larger nursery, the truly short-lived objects are not collected
in a timely fashion and continue to occupy the heap space, resulting in a much larger
heap requirement, as noted in zone 2 and reported by Hertz and Berger [7].

In the next section, we provide the detailed information about the proposed genera-
tional collector designed to address these two challenges.

3 A Generational Collector for Application Servers (AS-GC)

In this section, we discuss a notion called key objects that is used to optimize the pro-
posed generational strategy. We also discuss three major runtime components, dynamic
objects segregation mechanism, nurseries management, and inter-type reference track-
ing mechanism that we implemented in HotSpot.

3.1 Defining Key Objects

Our work leverages the previous research on Key Objects to dynamically identify clus-
ters of similar-lifespan objects [9]. Hayes defines key objects as “clusters of objects that
are allocated at roughly the same time, and live for roughly the same length of time” [9].
In other words, the idea is to segregate objects into groups based on temporal locality
and lifespan similarity. Our technique considers remotable objects as the key objects.
Any objects connected to these remotable objects become part of their clusters and are
assumed to have similar lifespan [9, 22, 23]. As stated earlier, these objects are referred
to as remote objects, and any objects that are not part of these clusters are referred to
as local objects. These two types of objects, once identified, will be managed in two
separate nurseries.
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3.2 Dynamic Objects Segregation

Our next step is to efficiently segregate local and remote objects. While the segregation
process can be done statically [24], we chose a dynamic scheme because the distinction
between remote and local objects can be easily done at run-time. Our scheme detects
when remote methods are invoked. While these remote methods are still in scope, any
newly allocated objects are considered remote.

In HotSpot [25], methods, classes and threads are implemented by methodOop, Klas-
sOop and Thread objects, respectively. To segregate remote and local objects, we added
a new flag bit, is remote to methodOop to indicate that the corresponding method is
remote. If a method belongs to any interfaces that extend java.rmi.Remote (e.g., some
enterprise Beans, EJBHome or EJBObject interface), we set this flag. Otherwise, the
flag remains unset.

For each thread, we also added a simple attribute CallTreeDepth to record the depth
of the current call tree on the thread. At every method entry and exit, the CallTreeDepth
is incremented or decremented accordingly. Particularly, when a thread first makes
a remote method call, the method’s information and the depth of the call tree are
recorded. When a remote method call exits, the corresponding recorded information
is also deleted. If a thread still maintains information about a remote method call, it
means that the remote method call is still in scope, so all objects created during this
time are categorized as remote objects.

There are two major sources of overhead in the type segregation process: book-
keeping of remote method calls and remote/local-type checking. In our implementa-
tion, three comparison operations are performed at every method entry and exit. In
type-checking, only two comparison operations are needed to determine if an object is
remote. Through experiments, we found the overhead of the type segregation process
to be roughly 1% of the total execution time.

3.3 Local and Remote Nurseries

Organization: Once the type of an object is identified, the next step is to create the
local and remote nurseries to host local and remote objects, respectively. Since we are
extending the heap organization of HotSpot to support our proposed scheme, we first
outline the heap layout adopted by HotSpot (as shown in Figure 2a).

The HotSpot VM partitions the heap into three major generations: nursery, mature,
and permanent, which is not shown in Figure 2. The nursery is further partitioned into
three areas: eden and two survivor spaces, from and to, which account for 20% of the
nursery (i.e. the ratio of the eden to the survivor spaces is 4:1). Object allocations ini-
tially take place in the eden space. If the eden space is full, and there is available space
in the from space, the from space is used to service subsequent allocation requests.

Figure 2b illustrates our heap organization. Our technique simply extends the exist-
ing heap organization to create two nurseries instead of just one. Within each nursery,
the heap layout is similar to that of HotSpot (an eden space and two survivor spaces).
The local and remote nurseries can be individually and optimally sized to match the
lifespan characteristics of the local and remote objects, respectively.
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Fig. 2. Comparing the heap organizations of HotSpot and the proposed AS-GC

Garbage collection in HotSpot. We refer to the collection scheme in HotSpot as
GenMS. In this technique, minor collection is invoked when both the eden and from
spaces are full. The collection process consists mainly of copying any surviving objects
into the to space and then reversing the names of the two survivor spaces (i.e. from
space becomes to space, and vice versa). Thus, the to space is always empty prior to a
minor collection invocation [25].

The to space provides an aging area for longer living objects to die within the nursery,
assuming that the volume of surviving objects is not larger than the size of the to space.
If this assumption does not hold, some surviving objects are then copied directly to
the mature generation. When the space in the mature generation is exhausted, full or
mature collection based on mark-compact algorithm is used to collect the entire heap.
It is worth noting that the aging area is only effective when the number of copied objects
from the eden and the from spaces is small. If the number of surviving objects becomes
too large (such as in application servers), most of these objects are promoted directly to
the mature generation, leading to more frequent mature collection invocations.

Sizing of each nursery: The process to identify the optimal nursery sizes consists of
two steps. First, we conducted a set of experiments to identify the optimal ratio between
the nursery and the mature space in GenMS. We found that the nursery to mature ratio
(nursery/mature ratio) of 1:2 (i.e. 33% nursery and 67% mature) yields the optimal
throughput performance for our benchmark. This ratio is then used to further configure
the local and remote nurseries; that is, the sum of the local and remote nurseries is equal
to the nursery size of GenMS. As a reminder, our research objective is to show that our
technique is more efficient than GenMS, given the same heap space, and thus, the same
nursery size is used.

The second step involves conducting another set of experiments to identify the lo-
cal/remote ratio (size of local nursery / size of remote nursery). We initially anticipated
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Fig. 5. Allocation rate is defined as the volume of allocated bytes over a period of time. In this
experiment, we considered the allocation rates of remote and local objects separately. We then
calculated the ratio of local allocation rates to remote allocation rates throughout the execution.

the remote nursery to be larger than the local nursery due to the results of previous
studies indicating that the remote objects are longer living. To our surprise, the result of
our experiment (depicted in Figure 3) indicates that the local nursery should be at least
3 times larger than the remote nursery.

To better understand why our result is counter-intuitive, we conducted an experiment
to validate the previous claims that remote objects are longer living [5, 6]. Our result
clearly shows that the claim is valid; remote objects indeed live significantly longer than
local objects (see Figure 4). We then investigated the allocation behavior and discov-
ered a valuable insight. The median allocation rate (volume of allocated objects over
time) of local objects is three times higher than that of remote objects (see Figure 5).
Periodically, the allocation rates of the local objects can be several hundred times higher
than those of remote objects. We also noticed that during the initial phase of execution,
there are no allocations of remote objects at all. This is expected as all services must be
initialized locally prior to taking remote requests.
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Local Card Table Remote Card Table

Local Space  Remote Space

0     1     0    1     1     1    1     1 0    1    1     0

L0      L1      L2     L3      L4     L5 ...                                         R0     R1     R2      R3

 0      1      2     3      4       5     6       7 ,,, 0      1      2      3

Fig. 6. Each round object represents a remote object, and each square object represents a local
object. The nurseries are divided into 128-byte blocks; each block is represented by one byte card
allocated in a separated card table area. Initially, each byte is set to the value of 1. When an inter-
nursery reference is made (write-barrier is used to detect such a reference), the card representing
the memory block that contains the inter-nursery reference becomes dirtied and is assigned the
value of 0. In the example shown here, there are four inter-nursery references originated from
memory blocks L0, L2, R0 and R3; thus, those cards have the value of 0.

This finding suggests that a possible dominating factor in determining the local/
remote ratio is the allocation rate. It is also very likely that the allocation rate can influ-
ence the lifespans of objects in GenMS (will be discussed in Section 6).

3.4 Tracking Inter-nursery References

It is possible for objects to make inter-nursery references (i.e. a reference originated
from the remote nursery to an object in the local nursery, and vice versa). Thus, we need
a mechanism to track these inter-nursery references. Through a preliminary experiment,
we discovered that it is common for the number of references from the remote nursery
to the local nursery to be as many as 20 times higher than those from the local nursery to
the remote nursery. This is likely because many of the services in these servers are done
by worker threads created during the initialization. This observation led us to design a
card table mechanism that uses two different scanning granularities for the local and
remote nurseries to reduce scanning time. Figure 6 illustrates the organization of our
card tables.

When a minor collection is invoked in the local nursery, the remote card table is
scanned to locate any inter-nursery references coming from the remote nursery in a fine-
grained way (byte by byte). This is because the volume of the inter-nursery references
coming form the remote space tends to be very high. For each encountered dirty card,
the memory block is further scanned to locate inter-nursery references. Note that the
mechanism to record inter-generational references (references from the mature space to
the nurseries) [4,2] is already provided by HotSpot. Thus, we do not need to implement
such a mechanism.

On the contrary, when a minor collection is invoked in the remote nursery, the local
card table is scanned in a coarse-grained way (word by word2). This is because there

2 In our experimental system, one word is corresponding to four bytes.
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are fewer inter-nursery references originated from the local space. For every dirty word,
the collector then identifies each dirty card within the word before proceeding to scan
the corresponding memory block to locate any potential inter-nursery references. So
for the local card table, each card is marked in the fine-grained way but scanned in the
coarse-grained way, and thereby, reducing the cost of scanning.

4 Experimental Environment

In this section, we describe our experimental environment consisting of an application
server and a benchmark program. We also provide the detailed information about the
computing platforms and the operating environments in which the experiments were
conducted.

4.1 Application Server and Workload Driver

There are two major software components in our experiment, the Application Servers
and the workload drivers. We investigated several server benchmarks and selected JBoss
[26] as our application server. JBoss is by far the most popular open-source Java Appli-
cation Server (with 25% of market share and over fifteen million downloads to date). It
fully supports J2EE 1.4 with advanced optimizations including object cache to reduce
the overhead of object creation. Note that MySQL3 is used as the database server in our
experimental environment.

In addition to identifying the application server, we need to identify workload drivers
that create realistic client/server environments. We chose an application server bench-
mark, jAppServer2004 from SPEC [21], which is a standardized benchmark for testing
the performance of Java Application Servers. It emulates an automobile manufactur-
ing company and its associated dealerships. The level of workload can be configured
by transaction rate (Tx). This workload stresses the ability of the Web and EJB con-
tainers to handle the complexities of memory management, connection pooling, passi-
vation/activation, caching, etc. The throughput of the benchmark is measured in JOPS
(job operations per second).

4.2 Experimental Platforms

To deploy SPECjAppServer2004, we used three machines to construct the three-tier
architecture. The client machine is an Apple PowerMac with 2x2GHz PowerPC G5
processors with 2 GB of memory and runs Mac OS-X. The application server is a
single-processor 1.6 GHz Athlon with 1GB of memory. The database server is a Sun
Blade with dual 2GHz AMD Opteron processors with 2GB of memory. The database
machine and the application server run Fedora Core 2 Linux.

In all experiments, we used the HotSpot VM shipped as part of the Sun J2SE 1.4.2
[25] to run the JBoss application server. Unless specified differently in the next sec-
tion, the heap space was limited to 2 GB (twice the amount of physical memory). The

3 Visit www.mysql.com for more information.
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nursery/mature ratio was set to the optimal value of 1:2, and the local/remote ratio
was selected to be 3:1. We conducted all experiments in a standalone mode with all
non-essential daemons and services shut down.

5 Results and Analysis

In this section, we report the experimental results focusing on the following perfor-
mance metrics: garbage collection time, garbage collection efficiency and frequency,
maximum throughput, memory requirement, and workload capacity.

5.1 Garbage Collection Behaviors

We first measured the GC frequency. As shown in Table 2, our collector invokes the
minor collection more frequently than the GenMS approach. This is not necessarily a
bad thing. Higher frequency of minor collection invocations can translate to reduced
heap requirement if each of these invocations is effective in collecting dead objects. As
reported in the table, the average survival rate4 of the proposed scheme is consistently
lower than that of GenMS when the same transaction rate is applied. Because the local
and remote nurseries are also smaller than the nursery in GenMS, the volume of the
promoted objects in our scheme is also lower.

Table 2. Comparing survival rates

GenMS AS-GC
Normalized workload Minor collections Survival rate Minor collections Survival rate

(%) Local Remote Local Remote
10 695 3.7% 976 26 3.6% 3.7%
20 1019 5.8% 1230 81 4.8% 4.9%
30 1981 6% 2204 401 5.1% 5.2%
40 2913 6.8% 3201 1098 5.6% 5.1%
50 3707 7.1% 3520 1233 6.8% 6.1%
60 4506 8.2% 4501 1622 6.9% 7.0%
70 5102 8.9% 5020 1903 7.0% 7.1%
80 6278 9.7% 6409 2411 8.2% 7.9%
90 7150 10.9% 7533 2702 9.0% 9.0%

100 8008 12.9% 8904 3202 10.1% 10.2%

More efficient minor collection translates to fewer full collection invocations (see
Figure 7). At the maximum workload (Tx = 100), the reduction can be as much as 20%.
Fewer full collection invocations also result in less time spent in GC; the reduction in
GC time ranges from 25% to 32% when the workload is above 30 Tx (see Figure 8).

In terms of GC pauses, we report our results based on the concept of Bounded Mini-
mum Mutator Utilization (BMU) [27]. Figure 9 shows BMU of GenMS and AS-GC at
the initial decline of throughput (50 Tx). The x-intercept indicates the maximum pause

4 The survival rate is the percentage of objects that survives each minor collection.
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time, and the asymptotic y-value indicates the fraction of the total time used for the
mutator execution (average utilization). Note that we considered the additional time to
track the inter-nursery references as a component of the GC time.

Full collection invocations dominate the GC pause times. On average, the pause
times are usually more than 1 second. As shown in the graph, GenMS has the largest
x-intercept value of around 8.83 seconds, and its utilization is about 10% lower than
that of AS-GC (occurs around 200 seconds). The x-intercept of AS-GC is significantly
smaller, because of less copying overhead. The overall utilization (asymptotic y-value)
of AS-GC is about 5% higher than that of GenMS.

5.2 Heap Utilization

We define heap utilization as the amount of heap space needed to yield a certain through-
put performance. Thus, if two systems yield the same throughput but one requires a
smaller heap space, that system has better heap utilization. To evaluate this performance
metric, we measured the heap space required by the two collectors to yield the same
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Fig. 10. Comparing heap usage between two workloads

throughput given the same workload. We chose two workload levels, 20 Tx and 40 Tx.
At 20 Tx, both collectors achieve their corresponding maximum throughputs. At 40 Tx,
the heap becomes tight but the application still maintains acceptable throughput perfor-
mance (see Section 5.3).

For the experimental methodology, we measured the throughputs of GenMS under
different heap sizes ranging from 200MB to 1GB. (We chose 1GB to minimize the
effect of paging.) We then varied the heap size of AS-GC until we achieved the same
throughputs as delivered by GenMS. The ratio between mature and nursery spaces is
maintained at two to one.

Figure 10a reports our findings when the workload is set to 20 Tx. The solid lines in
the graph illustrate the required heap sizes (left-side y-axis) of the two GC techniques
to achieve the throughput specified in the lower x-axis. The dotted line is used to show
the heap reduction percentage of AS-GC (right-side y-axis) over GenMS, based on the
normalized throughput (top x-axis).

As shown in Figure 10a, once the heap size is large enough to handle the specified
workload level (over 200 MB), AS-GC requires smaller heap space to achieve the same
throughput as GenMS. When 20 Tx is used, we see the heap size reduction of 11%.
When the workload is 40 Tx (see Figure 10b), AS-GC uses 13.4% smaller heap to
deliver the same throughput. Since paging is not a major factor in this experiment, the
main reason for better heap utilization is our collector’s ability to collect dead objects
more quickly and more efficiently.

5.3 Throughput

We conducted a set of experiments to measure the throughput of each collector. Each
measurement was done using the same workload and the same heap size. This time, we
allowed the size to be as large as 2GB so that we can evaluate the effect of AS-GC on
paging. Figure 11 illustrates the throughput behavior of SPECjAppServer2004 utilizing
GenMS and AS-GC. Figure 12 reports the percentage of improvement in throughput
performance when AS-GC is used.
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Notice that we can achieve about 14% throughput improvement when the workload
is 20 Tx. Once the workload is around 50 to 55 Tx, the amount of heap space needed
to execute the program exceeds the available physical memory (1GB). At this point,
the system rapidly loses its ability to respond to user’s requests. As the heap become
tighter and tighter, the throughput improvement can range from 30% (55 Tx) to 78%
(70 Tx). However, the system, when facing such high demands, is suffering from exces-
sive paging (see Figure 13). While the percentage of improvement is large, the actual
throughput delivered by the system is very small. It is worth noting that the main reason
for a 30% improvement in the throughput performance when the transaction rate ranges
from 55 to 65 is due to a significant reduction in the paging effort.

5.4 Ability to Handle Heavier Workload

To evaluate our collector’s ability to handle varying workload, we set the initial work-
load to 20 Tx and the heap size to 1GB to minimize the effect of paging. We executed
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SPECjAppServer2004 using this initial configuration. We then gradually increased the
workload until we could precisely identify a period of execution where the throughput
performance degraded sharply (Figure 11).

From Figure 14, the throughput of AS-GC degrades drastically at 55 Tx while the
throughput of GenMS degrades at 50 Tx. This difference translates to 10% higher work-
load capacity before failure. By utilizing the heap space more efficiently, AS-GC should
be able to respond to an unanticipated workload-increase better than GenMS.

6 Discussion

In this section, we provide a discussion about a runtime phenomenon called lifespan
interference that occurs when multiple threads share the same nursery. We also discuss
the feasibility of applying region-based memory management as an alternative to our
approach to improve the performance of application servers.

6.1 Lifespan Interference

When a heap is shared by mulitple threads, thread scheduling performed by the underly-
ing operating system can significantly affect lifespans of objects belonging to a thread.
We refer to such an effect on lifespans due to scheduling as lifespan interference, which
is illustrated in Figure 15.

In Figure 15a, Thread 1 (T 1) allocates object a, object b, and object c before making
an I/O access. At this point, the operating system would suspend the execution of T 1.
Since there are no other threads allocating objects from the same heap as T 1 in this
scenario, the lifespan of every object in T1 can be easily calculated based on the object
allocation pattern of T 1. Thread scheduling by the operating system has no effect on
lifespan in a single-threaded environment. Thus, the lifespan of object a is 3 because
objects b, c, and d are created during the lifetime of object a.

In Figure 15b, T 1, T 2, and T 3 share the same heap. Again, T 1 is suspended by the
operating system during the I/O access. Let’s further assume that the scheduler picks

alloc a
alloc b
alloc c
I/O access
alloc d
death a
death c
death b
Terminate

Thread 1

alloc a
alloc b
alloc c
I/O access
alloc d
death a
death c
death b
Terminate

Thread 1

alloc e
alloc f
alloc g
alloc h
alloc i
alloc j
alloc k
Terminate

Thread 2

alloc l
alloc m
alloc n
alloc o
alloc p
alloc q
alloc r
Terminate

Thread 3

Heap Heap

(a) single-threaded scenario
(lifespan of a = 3)

(b) multi-threaded scenario
(lifespan of a = any value from 3 to 17)

Fig. 15. What is the lifespan of object a?
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Fig. 16. Comparing the lifespans of remote and local objects when GenMS and AS-GC are used

T 2 to run next. At this point, the lifespan of object a must include objects created by
T 2. Notice that in the example, the execution of T 1 does not depend on any objects
created by T 2, but these objects can greatly affect the lifespans of objects created by
T 1. Depending on how long T 1 is suspended, the lifespan of object a can be any values
ranging from 3 to 17 (when both T 2 and T 3 complete their execution before T 1 is
resumed).

Lifespan interference is one reason why GenMS is not very efficient in large multi-
threaded server applications. Objects that should be short-lived (according to the per-
thread-allocation pattern) can appear to be much longer living due to scheduling. By
segregating remote and local objects into two separate nurseries, the lifespans of re-
mote and local objects are determined by the number of object allocations in remote
and local nurseries, respectively. Figure 16 depicts the lifespans of objects in SPEC-
jAppServer2004 when the GenMS and AS-GC approaches are used. In all workload
levels, remote objects are longer living than local objects when GenMS is used. How-
ever when AS-GC is used, the lifespans of remote objects are reduced by as much as
75% (transaction rate = 20). In fact, the lifespans of the local objects are now much
longer than those of the remote objects.

To put this into perspective, we compare the effect of interferences in our approach
with existing approaches. It is clear that our technique provides better isolation from
interferences than the shared nursery technique. On the other hand, our technique is not
as isolated as techniques such as thread local heaps [28] or thread specific heaps [29],
which create a subheap for each thread. However, it is unclear how well such approaches
would perform given a large number of threads created in these server applications. For
example, a study by [30] has shown that when each thread gets its own sub-heap, the
memory utilization tends to be poor due to unused memory portion within each sub-
heap. In addition, a study by [28] also reports that the run-time overhead to perform
dynamic monitoring of threads may offset the improvement in garbage collection per-
formance obtained through the thread local heap approach.
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6.2 Region-Based Memory Management

Another approach to improving the performance of application servers from the mem-
ory management perspective is to utilize region-based memory management [31,32,33,
34] instead of or in conjunction with garbage collection. In region-based memory man-
agement, each object is created in a program specific region [31]. When a region is no
longer needed, the entire area is reclaimed. One notable example of using region-based
memory management in Java is scope-memory adopted in the Real-Time Specification
for Java [35]. In this approach, a region is created for each real-time thread. The life-
time of objects created in this region is strictly bounded to the lifetime of the thread
owning the region; as the thread terminates, the region is also destroyed.

As stated earlier, the lifetime of a remote object in an application server tends to be
bounded by the time taken to complete a request or a task. Thus, it may be possible
to bound the lifetime of a region to a task. However, our investigation of application
servers also reveals many runtime factors that can make the deployment of region-
based memory management in application servers challenging. First, not all objects
created during a request are task-bounded. Techniques such as object caching [26] and
HTTP sessions allow objects to outlive the task that creates them. Second, the time
taken to complete a task can vary from a few seconds to over twenty minutes. Third,
within each task there are tens to hundreds of threads that cooperate to complete a task.
Fourth, within each task there can be hundreds of garbage collection attempts that yield
efficient result, meaning that there is plenty of memory space to be recycled prior to the
task termination. We have partially attempted a few solutions, discussed below, that can
potentially address these factors.

Identifying task-bounded objects. Compile-time analysis may be employed to segre-
gate task-bounded objects from non-task-bounded objects [31,32,33,34]. However, this
implies the accessibility of source programs, which may not be made readily available
by commercial software vendors. Moreover, standardized interfaces need to be estab-
lished to allow VMs created by multiple vendors (e.g. Sun, BEA, IBM, etc.) to exploit
the information generated by the compiler. Currently, we are extending our experimen-
tal framework to support this solution.

Reducing heap requirement. In region-based memory management, unreachable ob-
jects are not reclaimed until the end of the task. The policy of not reclaiming these
objects can severely degrade performance and affect robustness of application servers
especially when the memory demand is high, but the unused memory is not timely re-
cycled [6]. One solution to conserve the heap usage is to combine region-based memory
management with garbage collection [36,32,33]. It is unclear if this technique will yield
higher performance improvement than the proposed AS-GC approach. We are currently
experimenting with this proposed technique.

Identifying short-running tasks. Committing a memory region to a task for a long
period of time may not be feasible as dead objects are not recycled promptly. However,
short-running tasks may benefit from region-based memory management. The selection
of the short-running tasks entails identifying threads that participate in each of these
short-running tasks. Once these threads are identified, each will be directed to allocate
objects in a specific region. While the idea appears to be straight-forward, a practice
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of thread pooling may drive up the cost of dynamically identifying these threads. With
thread pooling, the analysis may have to be performed constantly as one thread can
participate in both short-running and long-running tasks.

7 Applicability Study

In this section, we discuss four important issues that can greatly impact the applicabil-
ity the proposed approach: generalization, alternative nursery configurations, required
tuning efforts, and possible integrations with existing optimization techniques.

Generalization. To demonstrate that our solution can be generalized beyond the
benchmark that was used, we conducted a preliminary study to compare the perfor-
mance of AS-GC and GenMS using a different application server benchmark, SPEC-
jAppServer2002. It is an outdated version of SPEC standardized application server
benchmark. It conforms to the older J2EE standard (version 1.2) and also utilizes a
different connection mechanism [37]. Our result indicates that we can achieve simi-
lar performance gains with AS-GC (14.8% higher maximum throughput). For future
work, we will experiment with other commercial application servers as well as work-
load drivers to further validate the generalizability of our solution.

Nursery Configurations. In our experiments, we configured AS-GC to have the same
nursery/mature ratio as GenMS throughout. However, it is possible for the performance
of AS-GC to be different if other nursery/mature and local/remote ratios are used. As
a preliminary study, we investigated the performance of AS-GC under two other nurs-
ery/mature heap configurations (1:3 and 1:1). We found that an additional 2% improve-
ment in the throughput performance can be achieved with a larger nursery (1:1). This
finding tells us that better results may be obtainable. As future work, we will conduct
more investigation on the effect of heap configuration on the performance of the pro-
posed AS-GC.

Tuning Efforts. Currently, heap tuning is recommended by application server vendors
as a way to achieve maximum performance 5. In our experiments, we used a standard
parameter—used by practitioners for the tuning purpose—to set the nursery/mature
ratio. To facilitate tuning of the local/remote ratio, we created a new command-line-
configurable parameter to allow users to fully utilize our collector. While the tuning
process can be tedious, it is a common procedure, and our proposed scheme only re-
quires a small effort in addition to the current tuning practice.

Optimization. Fundamentally, our collector is a variation of copying-based genera-
tional collection. Thus, any existing techniques (e.g. pretenuring, older-first, Beltway)
can be easily integrated into our scheme to further improve the performance. For exam-
ple, we can have multiple belt 0s to manage clusters of objects with different lifespans.
Each of these belts can be properly sized to allow just enough time for objects in the

5 See http://java.sun.com/docs/performance/appserver/AppServerPerfFaq.html for tuning sug-
gestions from Sun and http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.
pdf for tuning suggestions from IBM.
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older increments to die. Pretenuring can also be applied to each sub-nursery to further
improve minor collection efficiency. In addition, studies have shown that concurrent and
incremental extensions can greatly improve the performance of GenMS. We foresee that
if such extensions are applied to our technique, a significant performance improvement
can also be expected.

8 Related Work

The main inspiration for our work is based on the concept of Key objects [9]. Hayes pro-
poses the key object opportunism approach to manage longer-lived objects in a ”keyed-
area” [9]. This approach is based on the observation that large clusters of objects are
usually allocated at the same time and also tend to die together. The main idea is to
select representatives (or key objects) from the cluster and examine the reachability of
these key objects more frequently than the rest of the cluster. This approach only applies
when key objects exist, and they can be easily detected.

In this work, our key objects are the remotable objects, and any objects connected
to these remotable objects (i.e. remote objects) are assumed to have similar lifespans.
We can make such an assumption because the results from previous work have shown
that objects connected together tend to die together [23]. To detect and segregate these
remote objects, there are several options. One possible way is to use techniques such
as object colocation optimization [24] to provide the necessary compile-time analysis
to detect remote objects and the runtime component to segregate these remote objects
from the local objects. We believe that the colocation technique would have worked
well if these remote objects were difficult to be heuristically detected. However, this is
not the case as remote objects can be easily detected by monitoring calls to remotable
objects. Thus, we choose a dynamic detection technique because it can accomplish our
goal at low cost. In terms of object segregation, our technique virtually accomplishes
the same goal as their special allocator called coalloc.

In addition to the colocation technique, there are at least two additional techniques
to improve the efficiency of generational GC. The first technique is pretenuring. The
basic idea is to identify long-lived objects and create them directly in the mature gen-
eration. The goal of this technique is to reduce the promotion cost, thus reducing the
GC time and improving the overall performance. Blackburn et al. [11] use a profile-
based approach to select objects for pretenuring. They report a reduction in GC time
of up to 32% and an improvement in the execution time by 7%. They also report a
slight increase in the heap usage with pretenuring. Harris [12] uses dynamic sampling
based on overflow and size to predict long-lived objects. Subsequent work to further
optimize pretenuring include dynamic object sampling [38] and class based lifespan
prediction [39].

The second technique is to avoid performing garbage collection on newly created
objects because they may not have sufficient time to die; instead, the collection effort
is mostly spent on older objects [40]. Stefanović et.al. [13] implements the older-first
garbage collector that prioritizes collection of older objects to give young objects more
time to die. This technique evolves to become a major part of the Beltway framework,
introduced by Blackburn et al. [1]. In this framework, the heap is divided into several
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belts, and each belt groups one or more increments (a unit of collection) in a FIFO fash-
ion [1]. All objects are allocated into the belt 0 (can be viewed as similar to the nursery).
Beltway framework uses the older-first approach to collect the oldest increment of a belt
first. All survivors are promoted to the last increment of the next higher belt. The results
of their experiment show an average of 5% to 10% improvement in execution time and
35% improvement under tight heaps.

Compared to our technique, it is unclear how pretenuring and the Beltway framework
would handle the lifespan characteristic of objects in application servers. If the decision
is to pretenure any longer living objects, then the major collection frequency would be
high. On the other hand, if the heap size is enlarged to allow more time for objects to die
in the nursery, very short-lived objects are not reclaimed promptly. Similarly, each belt
in the Beltway framework can be viewed as a generation. While the use of increments
can avoid collection of the newly created objects, the framework still must make the
decision on how to deal with the longer living objects. If belt 0 is small, these objects
would be promoted to the subsequent belt, resulting in more frequent collection of the
older belts. If belt 0 is large, the short-lived objects are still not collected promptly.

On the other hand, our approach invokes minor collection very frequently to quickly
reclaim objects; each of our minor invocations also yields good GC efficiency. However,
a major short-coming of our technique is that it does not work if objects can be easily
segregated into short-lived/long-lived taxonomy. While the argument can be made for
a very fine-grained segregation policy (e.g. consider segregating objects with slight dif-
ferences in lifespans), the dynamic segregation overhead may offset the small benefit
that can be gained. However, if clusters of objects with different lifespans can be iden-
tified, both pretenuring and the Beltway framework can be applied to further optimize
our technique.

The idea of allocating objects exhibiting similar run-time behaviors into their own
area is not new. Standard ML of New Jersey has been using up to 14 generations in
addition to a shared nursery space to achieve good GC performance [41]. Each older
generation consists of four arenas; each arena is used to manage a different class of
objects (i.e. code objects, arrays, strings, and pairs) with different lifespans and object
organizations (containing pointers vs not containing pointers). Our technique differs
from this technique in several ways. First, we create two arenas in the nursery. In effect,
we attempt to segregate objects at birth to improve minor collection performance. Their
scheme segregates objects in the older generation to improve the full collection perfor-
mance. Second, object segregation in our approach must be determined at allocation
time based on the state of allocating threads (serving remote or local requests). Their
technique segregates objects at GC time based on object types.

When Steensgaard introduces the thread local heaps approach [29], he also suggests
that heap utilization can be improved by grouping threads that share data structures into
their own sub-heap [42]. By creating a separate nursery for remote objects, our tech-
nique, in effect group threads that access remote objects into their own sub-nursery.
This is somewhat similar to the suggestion by Steensgaard except that we do not create
a sub-heap that includes both the nursery and the mature space. One reason for such
a difference is because our optimization technique is introduced to allow the genera-
tional strategy to efficiently manage objects with diverse lifespans while Steensgaard’s
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technique is designed to improve the allocation and garbage collection parallelism in
multithreaded environments.

Recent studies have shown that once the heap size is larger than the physical mem-
ory, paging overheads can dominate the execution time and may even result in thrash-
ing [11, 43, 8, 44]. Recent efforts have concentrated on dynamic sizing of the heap
to maximize the performance of the existing GC techniques while minimizing pag-
ing [43, 8, 44, 45]. While these solutions have shown to work well, they all accept
the fact that generational GC is memory inefficient, and thereby, assume that there is
enough physical memory for the needed headroom. In large server applications, this as-
sumption does not always hold. Workload variation can reduce the amount of available
headroom as well as causing the heap size to be larger than the available physical mem-
ory. Nevertheless, these techniques can easily support our collector to further improve
the GC performance.

9 Conclusion

In this paper, we introduce a new generational collector called AS-GC that takes ad-
vantage of an intrinsic behavior of many application servers in which remotable objects
are commonly used as gateways for client requests. Objects instantiated as part of these
requests (remote objects) tend to live longer than the remaining objects (local objects).
This insight is used to create these two types of objects in two optimally sized nurseries.
In doing so, the minor collection can be invoked more frequently and efficiently without
increasing the heap requirement.

We have implemented the proposed AS-GC and evaluated its performance in an
application server setting. We discovered that our proposed scheme can reduce the allo-
cation interferences due to multithreading; a major reason that causes the inefficacy of
single-nursery generational collectors. The experimental results show that our collector
reduces the frequency of full collection invocations, paging effort, average pause time,
and overall garbage collection time. As a result, our collector can yield a 14% increase
in the maximum throughput and handle a 10% higher workload.
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Abstract. Most modern programming languages rely on exceptions for dealing 
with abnormal situations. Although exception handling was a significant 
improvement over other mechanisms like checking return codes, it is far from 
perfect. In fact, it can be argued that this mechanism is seriously limited, if not, 
flawed. This paper aims to contribute to the discussion by providing 
quantitative measures on how programmers are currently using exception 
handling. We examined 32 different applications, both for Java and .NET. The 
major conclusion for this work is that exceptions are not being correctly used as 
an error recovery mechanism. Exception handlers are not specialized enough 
for allowing recovery and, typically, programmers just do one of the following 
actions: logging, user notification and application termination. To our 
knowledge, this is the most comprehensive study done on exception handling to 
date, providing a quantitative measure useful for guiding the development of 
new error handling mechanisms.  

Keywords: Exception Handling Mechanisms, Programming Languages. 

1   Introduction 

In order to develop robust software, a programming language must provide the 
programmer with primitives that make it easy and natural to deal with abnormal 
situations and recover from them. Robust software must be able to perceive and deal 
with the temporary disconnection of network links, disks that are full, authentication 
procedures that fail and so on.  

Most modern programming languages like C#, Java or Python rely on exceptions 
for dealing with such abnormal events. Although exception handling was a significant 
improvement over other mechanisms like checking return codes, it is far from perfect. 
In fact, it can be argued that the mechanism is seriously limited if not even flawed as 
a programming construct. Problems include: 

• Programmers throw generic exceptions which make it almost impossible to 
properly handle errors and recover for abnormal situations without shutting 
down the application. 

• Programmers catch generic exceptions, not proving proper error handling, 
making the programs continue to execute with a corrupt state (especially 
relevant in Java). On the other hand, in some platforms, programmers do not 
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catch enough exceptions making applications crash even on minor error 
situations (especially relevant in C#/.NET). 

• Programmers that try to provide proper exception handling see their productivity 
seriously impaired. A task as simple as providing exception handling for  
reading a file from disk may imply catching an dealing with tens of  
exceptions (e.g. FileNotFoundException, DiskFullException, 
SecurityException, IOException, etc.). As productivity decreases, 
cost escalates, programmer’s motivation diminishes and, as a consequence, 
software quality suffers. 

• Providing proper exception handling can be quite a challenging and error prone 
task. Depending on the condition, it may be necessary to enclose try-catch blocks 
within loops in order to retry operations; in some cases it may be necessary to 
abort the program or perform different recovery procedures. Bizarre situations, 
like having to deal with being thrown an exception while trying to close a file on a 
catch of a finally block, are not uncommon. Dealing with such issues correctly is 
quite difficult, error prone, not to say, time consuming. 

To make things interesting, the debate about error handling mechanisms in 
programming languages has been recently fuelled with the launch of Microsoft’s 
.NET platform.  

Currently, the Java Platform and the .NET platform constitute the bulk of the 
modern development environments for commercial software applications. Curiously, 
Microsoft opted to have a different exception handling approach than in Java. In .NET 
the programmer is not forced to declare which exceptions can occur or even deal with 
them. Whenever an exception occurs, if unhandled, it propagates across the stack until 
it terminates the application. On the other hand, in Java, in most cases, the 
programmer is forced to declare which exceptions can occur in its code and explicitly 
deal with exceptions that can occur when a method is called. The rational for this is 
that if the programmer is forced to immediately deal with errors that can occur, or re-
throw the exception, the software will be more robust. I.e. the programmer must be 
constantly thinking about what to do if an error occurs and acknowledge the 
possibility of errors.  

On the .NET’s camp, the arguments for not having checked exceptions that are 
normally used are [1]: 

• Checked exceptions interfere with the programmers’ productivity since they 
cannot concentrate in business logic and are constantly forced to think about 
errors. 

• Since the programmer is mostly concentrated in writing business logic and not 
dealing with errors, it tends to shut-up exceptions, which actually makes things 
worse. (Corrupt state is much more difficult to debug and correct than a clean 
exception that terminates an application.) 

• Errors should be “exonerated” by exhaustive testing. I.e. a sufficiently accurate 
test suite should be able to expose dormant exceptions, and corresponding 
abnormal situations. For the problems that remain latent, it is better that they 
appear as a clean exception that terminates the application than having them 
being swallowed in a generic catch statement which leads to corrupt state. 
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Obviously, both camps cannot be 100% right. But, overall, the important message 
is that in order to develop high-quality robust software, in a productive way, new 
advances in error handling are needed. The existing mechanisms are not adequate nor 
suffice. 

This paper aims to contribute to the discussion by providing quantitative measures 
on how programmers are currently using exception handling. We examined 32 
different applications, both for Java and .NET, covering 4 different software 
categories (libraries; stand-alone applications; servers; and applications running on 
servers). Overall, this corresponds to 3,410,294 lines of source code of which 137,720 
are dedicated to exception handling. For this work, we have examined and processed 
18,589 try blocks and corresponding handlers. To our knowledge, this is the most 
comprehensive study done to date on exception handling. 

The data presented on this paper is important to guide the development of new 
mechanisms and approaches to exception handling. Other results will help e.g. justify 
the feasibility of using existent methodologies, like applying Aspect Oriented 
Programming (AOP) to implement exception handlers as advices. 

The rest of this paper is organized as follows: Section 2 discusses related work; 
Section 3 describes the application set used in this study; Section 4 explains the 
methodology used in the analysis; Section 5 presents the results of the tests and 
observations about their significance; finally, Section 6 concludes the paper. 

2   Related Work 

Since the pioneering work of John B. Goodenough in the definition of a notation for 
exception handling [2] and Flaviu Cristian in defining its usage [3], the programming 
language constructs for handling and recovering from exceptions have not changed 
much. Nevertheless, programming languages designers have always suggested 
different approaches for implementing these mechanisms. 

Several studies have been conducted over the years for validating the options taken in 
each different implementation. For instance, Alessandro Garcia, et al. did a comparative 
study on exception handling (EH) mechanisms available developing dependable 
software [4]. Alessandro’s work consisted in a survey of exception handling approaches 
in twelve object-oriented languages. Each programming language was analyzed in 
respect to ten technical aspects associated with EH constructs: exception representation; 
external exceptions in signatures; separation between internal and external exceptions; 
attachment of handlers to program constructs (e.g. to statements, objects, methods, etc.); 
dynamism of handler binding; propagation of exceptions ; continuation of the flow 
control (resumption or termination); clean-up actions; reliability checks; and concurrent 
exception handling. After the evaluation of all the programming languages in terms of 
exception mechanisms, the major conclusion of the study was that “none of the existing 
exception mechanisms has so far followed appropriate design criteria” and 
programming language designers are not paying enough attention to properly supporting 
error handling in programming languages. 
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Saurabh Sinha and Mary Jean Harrold performed an extensive analysis of programs 
with exception handling constructs and discussed their effects on analysis techniques 
such as control flow, data flow, and control dependence [5]. In the analysis, the authors 
also presented techniques to create intraprocedural and interprocedural representations 
of Java programs that contain EH constructs and an algorithm for computing control 
dependences in their presence. Using that work, the authors performed several studies 
and showed that 8.1% of the methods analyzed used some kind of exception mechanism 
and that these constructs had an important influence in control-dependence analysis. 

R. Miller and A. Tripathi identified several problems in exception handling 
mechanisms for Object-Oriented software development [6]. In their work, it is shown 
that the requirements of exception handling often conflict with some of the goals of 
object-oriented designs, such as supporting design evolution, functional specialization, 
and abstraction for implementation transparency. Being specific: object-oriented 
programming does not support a complete exception specification (extra information 
may be needed for the exception context not supported by an object interface); state 
transitions are not always atomic in exception handling; exception information needs 
to be specific, but functions can be overloaded to have a different meaning in different 
situations; the exception handling control flow path is different from the normal 
execution path and is up to the programmer to differentiate both of them. Thus, the 
modification of object-oriented frameworks for adaptation to exception handling can 
have the following effects in terms of: Abstraction, change of abstraction levels and 
the usage of partial states; Encapsulation, the exception context may leak information 
that reveals or allows the access to the exception signaler private data; Modularity, 
design evolution may be inhibited by exception conformance; Inheritance anomalies 
may occur when a language does not support exception handling augmentation in a 
modular way. 

Martin P. Robillard and Gail C. Murphy in their article on how to design “robust 
Java programs with exceptions”, classified exceptions as a global design problem and 
discussed the complexity of exception structures [7]. In their work, the authors 
pointed that the lack of information about how to design and implement with 
exceptions lead to complex and spaghetti-like exception handling code. The main 
factors that contribute to the difficulty of designing exception structures are the global 
flow of exceptions and the emergence of unanticipated exceptions. To help control 
these factors, the authors refined an existent software compartmenting technique for 
exception design and report about its usage in the rewriting of three Java programs 
and the consequent improvements they observed. 

More recently, due to a new AOP approach to EH, two interesting studies were 
published emphasizing the separation of concerns in error handling code writing 
[8][9]. Martin Lippert and Cristina Lopes rewrote a Java application using AspectJ. 
Their objective was to provide a clear separation between the development of 
business code and exception handling code. This was achieved by applying error 
handling code as an advice (in AOP terminology) [10]. With this approach they also 
obtained a large reduction in the amount of exception handling code present in the 
application. Some of the results presented show that without aspects, the amount of 
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code for exceptions is almost 11% of all the code; with aspects it represents only 
2.9%. Lippert’s paper also accounts the total number of catch blocks in the code and 
the most common exception classes used as parameters for these catch statements. 
One of the measures they present to support their AOP approach is the reduction of 
the number of different handlers effectively written for each one of the most 
commonly used exception classes. For the top 5 classes were implemented between 
90.0% and 96.5% less handlers. F. Filho and C. Rubira conducted a similar study but 
they were not so enthusiastic in their results. The authors presented four metrics to 
evaluate the AOP approach to exception handling: separation of concerns; coupling 
between components and depth of inheritance tree; cohesion in the access to fields by 
pairs of method and advice; and dimension (size and number) of code. The work 
reports that the improvements of using AOP do not represent a substantial gain in any 
of the presented metrics showing that reusing handlers is much more difficult than is 
usually advertised. Handler reuse depends of the type of exceptions being handled, on 
what the handler does, the amount of contextual information needed; and what the 
method raising the exception returns and what the throws clause actually specifies.  

The objective of this study is different from its predecessors. It does not target the 
quality of the mechanisms available in programming languages but the usage that 
programmers make of them. The emphasis is on understanding how programmers 
write exception handling code, how much of the code of an application is dedicated to 
error recovery and identifying possible flaws in their usage. 

3   Workbench 

The target platforms of this study were the .NET and Java environments, as well as 
the C# and Java programming languages. 

Selecting a set of applications for the study was quite important. The code present 
in the applications had to be representative of common programming practices on the 
target platforms. Also, care had to be taken so that these would be “real world” 
applications developed for production use (i.e. not simply prototypes or beta 
versions). This was so in order not to bias the results towards immature applications 
where much less care with error handling exists.  Finally, in order to be possible to 
perform different types of analyses, both the source code and the binaries of the 
applications had to be available.  

Globally, we analyzed 32 applications divided into two sub-sets of 16 .NET 
programs and 16 Java programs. Each one of these sub-sets was organized in four 
categories accordingly to their nature:  

• Libraries: software libraries providing a specific application-domain API. 
• Applications running on servers (Server-Apps): Servlets, JSPs, ASPs and 

related classes. 
• Servers: server programs. 
• Stand-alone applications: desktop programs. 

The complete list of applications is shown in Table 1.  
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Table 1. Applications listed by group 

SmartIRC4NET IRC library 

Report.NET PDF generation library 

Mono (corlib) Open-source CLR implementation 

L
ib

ra
ri

es
 

NLog Logging library 

UserStory.Net 
Tool User Story tracking in Extreme 
Programming projects 

PhotoRoom 
ASP.NET web site for managing on-line photo 
albums 

SharpWebMail 
ASP.NET webmail application that is written 
in C# 

Se
rv

er
-A

pp
s 

SushiWiki WikiWikiWeb like Web application 

NeatUpload 
Allows ASP.NET developers to stream files to 
disk and monitor progress 

Perspective Wiki engine 

Nhost Server for .Net objects 

S
er

ve
rs

 

DCSharpHub Direct connect file sharing hub 

Nunit Unit-testing framework for all .NET languages 

SharpDevelop IDE for C# and VB.NET projects 

AscGen 
Application to convert images into high 
quality ASCII text 

.N
E

T
 

S
ta

nd
-a

lo
ne

 

SQLBuddy 
SQL scripting tool for use with Microsoft SQL 
Server and MSDE 

Thought River Commons General purpose library 

Javolution Real-time programming library 

JoSQL SQL for Java Objects querying 

L
ib

ra
ri

es
 

Kasai Authentication and authorization framework 

Exoplatform 
Corporate portal and Enterprise Content 
Management 

GoogleTag Library Google JSP Tag Library 

Xplanner 
Project planning and tracking tool for Extreme 
Programming 

Ja
va

 

Se
rv

er
-A

pp
s 

Mobile platform 
Banks and mobile operators software for SMS 
and MMS services in cellular networks (not 
open-source) 
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Table 1. (continued) 

Jboss J2EE application server 

Apache Tomcat Servlet container 

JCGrid Tools for grid-computing 

S
er

ve
rs

 

Berkeley DB 
High performance, transactional storage 
engine 

Compiere 
ERP software application with integrated 
CRM solutions 

J-Ftp Graphical Java network and file transfer client 

Columba Email Client 

Ja
va

 

S
ta

nd
-a

lo
ne

 

Eclipse Extensible development platform and IDE 

4   Methodology 

The test applications were analyzed at source code level (C# and Java sources) and at 
binary level (metadata and bytecode/IL code) using different processes.  

To perform the source code analysis two parsers were generated using antlr [11], 
for C#, and javacc [12] for Java. These parsers were then modified to extract all the 
exception handling code into one text file per application. These files were then 
manually examined to build reports about the content of exception handlers. 

The source code of all application was examined with one exception. Due to the 
huge size of Mono, only its “corlib” module was processed. 

The parsers were also used to identify and collect information about try blocks 
inside loops (i.e. detect try statements inside while and do..while loops). This is so 
because normally this type of operations corresponds to retrying a block of code that 
has raised an exception in order to recover from an abnormal situation.  

The main objective of this article is to understand how programmers use the 
exception handling mechanisms available in programming languages. Nevertheless, the 
analysis of the applications source code is not enough by itself when trying to 
distinguish between the exceptions that the programmer wants to handle and the 
exceptions that might occur at runtime. This is so because the generated IL code/ 
bytecode can produce more (and different) exceptions than the ones that are declared in 
the applications source code by means of throw and throws statements. 

To perform the analysis of the .NET assemblies and of the Java class files two 
different applications were developed: one for .NET and another for Java. The first 
one used the RAIL assembly instrumentation library [13] to access assembly metadata 
and IL code and extract all the information about possible method exceptions, 
exception handlers and exception protection blocks. The second application targeted 
the Java platform and used the Javassist bytecode engineering library [14] to read 
class files and extract exception handler information. 

All data was stored on a relational database for easy statistical treatment. 
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Table 3. List of Assemblies and Java Packages analyzed 

.NET Java 

Meebey.SmartIrc4net.dll 
Reports.dll 
mscorlib.dll 
NLog.dll 
rq.dll (UserStory) 
PhotoRoom.dll 
SharpWebMail.dll 
SushiWiki.dll 
Brettle.Web.NeatUpload.dll 
Perspective.dll 
nhost.exe 
DCSharpHub.exe 
nunit.core.dll 
SharpDevelop.exe 
Ascgen dotNET.exe 
SqlBuddy.exe 

ThoughRiverCommons (all) 
Javolution (all) 
JoSQL (all) 
org.manentia.kasai 
Exoplatform (all) 
GoogleTagLibrary (all) 
XPlanner (all) 
Mobile platform (all) 
JBoss (all) 
org.apache 
JCGrid (all) 
Berkeley DB (all) 
org.compiere 
net.sf.jftp 
org.columba 
org.eclipse 

For each application only one file (.NET) or package (and sub-packages) of classes 
(Java) was analyzed. Table 2 shows the names of the files and packages that were 
used in this study. The criterion followed to select these targets was the size of the 
files and their relevance in the implementation of the application core. 

5   Results 

In the following subsections we will present the results of this study, drawing some 
observations about their significance.  

Nevertheless, we should caution that although the number of applications that were 
used was relatively large (32), it is not possible to generalize the observations to the 
whole .NET/Java universe. For that, it would be necessary to have a very significant 
number of applications, possible consisting in hundreds programs. Even so, due to the 
care taken in selecting the target applications, we believe that the results allow a 
relevant glimpse into current common programming practices in exception handling. 

5.1   Error Handling Code in Applications  

One important metric for understanding current error handling practices is the 
percentage of source code that is used in that task. For gathering this metric, we 
compared the number of lines of code inside all catch and finally handlers to the total 
number of lines of the program. The results are shown in Figure 1.  

It is quite visible that in Java there is more code dedicated to error handling than in 
.NET. This difference can be explained by the fact that in Java it is compulsory to 
handle or declare all exceptions a method may throw, thus increasing the total amount 
of code used for error handling. Curiously, there is an exception to this pattern. In the 
Server Application group, the difference is almost non-existent. To explain this result 
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we examined the applications’ source code. For this class of applications, both in Java 
and .NET, programmers wrote quite similar code. Meaning that they expect the same 
kind of errors (e.g. database connections loss, communication problems, missing data, 
etc.) and they use the same kind of treatment (the most common handler action in this 
type of applications is logging the error).  
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Fig. 1. Amount of error handling code 

One surprising result is that the total amount of code dedicated to exception 
handling is much less than what would be expected. This is even more surprising in 
Java where using exceptions is almost mandatory even in small programs. Our results 
show that the maximum amount of code used for error handling was 7% in the 
Servers group. Overall, the result is 5% for Java, with a 2% standard deviation, and 
3% for .NET, with a standard deviation of 1%. It should be noted the applications 
used in this study are quite mature, being widely used. We reason that the effort 
dedicated to writing error protection mechanisms is not as high as expected, even for 
highly critical applications like servers. The forceful of declaring and catching 
checked exceptions in Java effectively increases (almost doubles) the amount of error 
handling code written, even though it is still represents a small fraction of all the code 
of an application. The critical issue is that normally error handling code is being used 
more to alert the user, to abort the applications or to force them to continue their 
execution, than to actually recover from existing errors. 

5.2   Code in Exception Handlers  

Apart from measuring the amount of the code that deals with errors, to find out how 
programmers use exception handling mechanisms, it is important to know what kind 
of actions are performed when an error occurs.  

To be able to report on this subject we had to inspect sets of ten thousand lines of 
application source code. As a matter of fact, we covered all the handlers (catch and 
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finally) in all the applications except for JBoss and Eclipse. For these two, due to their 
dimension, only 10% of the 96,405 lines of code existing inside of exception handlers 
were examined. Even so, they are representative of the rest. 

Table 4. Description of the Handler’s actions categories 

Category Description 

Empty  
The handler is empty, is has no code and 
does nothing more than cleaning the stack 

Log  
Some kind of error logging or user 
notification is carried out 

Alternative/ 
Static  
Configuration  

In the event of an error or in the execution of 
a finally block some kind of pre-determined 
(alternative) object state configuration is 
used 

Throw  
A new object is created and thrown or the 
existing exception is re-thrown 

Continue  
The protected block is inside a loop and the 
handler forces it to abandon the current 
iteration and start a new one 

Return  

The handler forces the method in execution 
to return or the application to exit. If the 
handler is inside a loop, a break action is also 
assumed to belong to this category 

Rollback  

The handler performs a rollback of the 
modifications performed inside the protected 
block or resets the state of all/some objects 
(e.g. recreating a database connection) 

Close  

The code ensures that an open connection or 
data stream is closed. Another action that 
belongs to this category is the release of a 
lock over some resource 

Assert  

The handler performs some kind of assert 
operation. This category is separated because 
it happens quite a lot. Note that in many 
cases, when the assertion is not successful, 
this results in a new exception being thrown 
possibly terminating the application 

Delegates  
(only for .NET)  

A new delegate is added 

Others  
Any kind of action that does not correspond 
to the previous ones 

To simplify the classification of these error handling actions we propose a small set 
of categories that enable the grouping of related actions. These categories are 
summarized in the previous table. 

Note that an exception handler may contain actions that belong to more than one 
category. In fact, this is the common case. For instance, a handler can log an error, 
close a connection and exit the application. These actions are represented by three 
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distinct categories: Log, Close and Return. Thus, in the results, this handler would be 
classified in all these three categories. 

Since catch and finally handlers have different purposes, we opted for doing 
separate counts for each type of handler. Finally, the distribution of handler actions 
for each application was calculated as a weighted average accordingly to the number 
of actions found in each application. This is so that small applications do not bias the 
results towards their specific error handling strategy.  

The results obtained for each application group are shown in next four graphs. 
The graph of Figure 2 shows the average of results by application group for .NET 

catch handlers. In the four application groups 60% to 75% of the total distribution of 
handler actions is composed of three categories: Empty, Log and Alternative 
Configuration.  

Empty handlers are the most common type of handler in Servers and the second 
largest in Libraries and Stand-alone applications. This result was completely 
unexpected in .NET programs since there are no checked exceptions in the CLR and, 
therefore, programmers are not obliged to handle any type of exception. Checked 
exceptions can sometimes lead lazy programmers to “silence exceptions” with empty 
handlers only to be able to compile their applications. From the analysis of the source 
code we concluded that its usage in .NET is not related with compilation but with 
avoiding premature program termination on non-fatal exceptions. A typical example 
is the presence of several linear protected blocks containing different ways of 
performing an operation. This technique assures that if one block fails to achieve its 
goal, the execution can continue to the next block without any error being generated. 

Logging errors is also one of the most common actions in the handlers of all the 
applications. In fact, is the most common action in Server-Apps and Stand-alone 
groups? Considering web applications and desktop applications, this typically 
corresponds to the generation of an error log, the notification of the user about the 
occurrence of a problem and the abortion of the task. This idea is re-enforced by the 
value of the Return action category in these two application groups which is the 
identical and the highest of all four groups. 

The number of Alternative configuration actions reports on the usage of alternative 
computation or object’s state reconstruction when the code inside a protected block 
fails in achieving its objective. These actions are by far the most individualized and 
specialized of all. In some cases they are used to completely replace the code inside 
the protected block. 

In the Libraries applications group, Assert operations are the second most common 
error handling action. Asserts ensure that if an error occurs, the cause of the error is 
well known and reported to the user/programmer. 

In Servers there is also a high distribution value for the Others category. These 
actions are mainly related with thread stopping and freeing resources. 

Another category of actions with some weight in the global distribution is the 
Throw action. This is mainly due to the layered and component based development of 
software. Layers and components usually have a well defined interface between them. 
It is a fairly popular technique to encapsulate all types of exceptions into only one 
type when passing an exception object between layers or software components. This 
is typically done with a new throw. 
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Fig. 2. Catch handler actions count for .NET programs 
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Fig. 3. Catch handlers’ actions count for Java programs 
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Fig. 4. Finally handlers’ actions for .NET programs 



 Exception Handling: A Field Study in Java and .NET 163 

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

Libraries Server-Apps Servers Stand-Alone

Empty Log Alternative Config Throw Continue

Return Rollback Close Assert Others
 

Fig. 5. Finally handlers’ actions for Java programs 

Empty, Log, Alternative Configuration, Throw and Return are the actions most 
frequently found in the catch handlers of .NET applications. By opposition, Continue, 
Rollback, Close, Assert, Delegate and Others actions are rarely used in .NET. 

Figure 3 shows the results for catch handlers in Java programs. Only in the Stand-
alone and Server-Apps groups we found some similarity with .NET. Despite this fact, 
it is possible to see the same type of clustering found in .NET. The cluster of 
categories that concentrate the highest distribution of values is composed by Empty, 
Log, Alternative Configuration, Throw and Continue actions.  

The distribution values on the Empty category surprised us once again. This value 
is lower than the ones found in .NET. This suggests that the checked exception 
mechanism has little or no weight on the decision of the programmer to leave an 
exception handler empty: another reason must exist to justify the existence of empty 
handlers besides silencing exceptions. In .NET this happen quite frequently for 
building alternative execution blocks. We risk saying that in Java exception 
mechanisms are no longer being used only to handle “exceptional situations” but also 
as control/execution flow construct of the language. (Note that even the Java API 
sometimes forces this. For instance, the detection of an end-of-file can only be done 
by being thrown an exception.) 

The Log actions category takes the first place for Server-apps, Server and Stand-
alone application groups and the second place in Libraries group. In this last group, 
Log is only surpassed by Throw, another popular action in the Server-Apps and 
Server groups. In Java, the Log and Throw actions are highly correlated. We observed 
that in the majority of cases, when an object is thrown the reason why it happens is 
also logged. 

Return is also a common action in all the application groups. Between 7% and 15% 
of all handlers terminate the method being executed, returning or not a value. 

Figure 4 illustrates the results for finally handlers in .NET. The distribution of the 
several actions is different from the one found in catch handlers. Nevertheless, is 
visible that the most common handler action category in .NET, for all application 
groups, is Close. I.e. finally handlers, in our test suite, are mainly used to close 
connections and release resources. 
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Alternative configuration is the second mostly used handler action in all 
application groups with the exception of Libraries. A typical block of code usually 
found in finally handlers is composed by some type of conditional test that enables (or 
not) the execution of some predetermined configuration. In some cases, these 
alternative configuration is done while resetting some state. In those cases, they were 
classified as Rollback and not Alternative. 

Another common category present in finally handlers of .NET applications is 
Others. These actions include file deletion, event firing, stream flushing, and thread 
termination, among other less frequent actions. In Server applications it is also 
common to reset object’s state or rollback previously done actions. 

Finally, on Stand-alone applications there are some empty finally blocks that we 
can not justify since they perform no easily understandable function.  

In Java applications (Figure 5) the scenario is very similar to the one found in 
.NET. Close is the most significant category in all application groups. There are also 
some actions classified as Others, which are similar to the ones of .NET. In Java they 
have more weight in the distribution, indicating a higher programming heterogeneity 
in exception handling. 

Rollback and Alternative configuration actions are also used as handler actions in 
Java finally handlers. 

It is possible to observe that there is some common ground between application 
groups in Java and .NET in what concerns exception handling. For the most part, 
Empty and Log the most common actions in all catch handlers and Close is the most 
used action in finally handlers. 

5.3   Exception Handler Argument Classes 

After identifying the list of actions performed by handlers, we concentrated on finding 
out if there is some relation between catch handlers for the same type of exception 
classes. For this, we developed two programs: one to process .NET’s IL code and 
another to process Java bytecode. These IL code/bytecode analyzers were used to 
discover what exceptions classes were most frequently used as catch statement 
arguments. We opted by performing this analysis at this level and not at source code 
level because it is simpler to obtain this information from assemblies or class files 
metadata than from C# or Java code.  

Figure 6 shows the most common classes used as argument of catch instructions 
in .NET applications. The results are grouped by application type and the values 
represent the weighted average of the distribution among applications of the same 
group. Thus, programs with the largest number of handlers have more weight in the 
final result.  

It is possible to observe that programmers prefer to use the most generic exception 
classes like System.Exception and System.Object for catching exceptions. 
Note that .NET, not C#, allows any type of object to be used as an exception 
argument.  When the argument clause of a catch statement is left empty, the compiler 
assumes that any object can be thrown as an exception. This explains the large 
presence of System.Object as argument. 
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Fig. 6. .NET catch’s arguments classes 

The use of generic classes in catch statements can be related to the two of the most 
common actions in handlers: Logging and Return. This means that for the largest set 
of possible exceptions that can be thrown, programmers do not have particular 
exception handling requirements: they just register the exception or alert the user of 
its occurrence. Nevertheless, there are a lot of handlers that use more specific 
exception classes. These different handlers do not have any weight by themselves in 
the distribution but all the code that actually tries to perform some error recovery 
operations is concentrated around these specialized handlers. 

I/O related exception handlers are fairly used in Libraries and Servers. Also invalid 
arguments types, number and format errors are treated as exceptions by all the 
applications as shown by the presence of System.ArgumentException 
handlers and System.FormatException handlers.  

There are not many differences between Java and .NET in terms of  
catch arguments. Figure 7 shows the results for Java. It is possible to conclude  
that the most generic exception classes are the preferred ones: Exception, 
IOException, and ClassNotFoundException. We tried to found out why 
ClassNotFoundException is so commonly used by analyzing the source code. 
For the most part, most of the handlers associated to the use of this class are empty, 
just log the error or throw a new kind of exception. Others try to load a parent class of 
the class not found or another completely different class. In general, these handlers 
are associated with “plug-in” mechanisms or modular software components using 
dynamic class loading. 

Finally, we did an analysis of all the applications source code to find out what was 
the distribution of handler actions by catch handler argument class for the most 
commonly used classes. The results can be found in Figure 8.  

The results are quite different from one type of exception class to another. Even so, 
it is still possible to say that the dominant handler actions are the ones belonging to 
the categories: Empty, Log, Alternative Configuration, Throw and Return. 
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Fig. 7. Java catch’s arguments classes 
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Fig. 8. Handler action distribution for the most used catch handler classes 

It is interesting to notice that in .NET catch instructions with no arguments are 
directly associated with the largest number of Empty handlers. 

In Java, in particular for ClassNotFoundException, alternative configuration 
actions are common. This behavior is understandable if we consider that, if a class is 
not found then a new one should be suggested as alternative. (This is quite common in 
database applications, while loading JDBC drivers.) 

5.4   Handled Exceptions 

On the last section, we reported the exceptions that are used in catch statements. 
Nevertheless, a catch statement can catch the specific exception that was listed or 
more specific ones (i.e. derived classes). We will now discuss exception handling 
code from the point of view of possible handled exceptions. As described in section 4 
we used IL code/bytecode analyzers to collect all the exceptions that the applications 
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could throw because this information is not completely available at source code level. 
I.e. the set of exceptions that an application can throw at runtime is not completely 
defined by the applications source code throw and throws statements. Therefore, a 
profound analysis of the compiled applications was required for gathering this 
information. 

5.4.1   Exception Universe 
In Java, thanks to the checked exception mechanism, we are able to discover and locate 
all the exceptions that an application can throw by analyzing its bytecode and metadata. 
To know what exceptions may be thrown by a method it is necessary to know: 

• All the exceptions that the bytecode instructions of a method may raise 
accordingly to the Java specs [15] 

• All the exception classes declared in the throws statement of the methods 
being called 

• All the exceptions that are produced inside a protected block and are caught by 
one of its handlers 

• All the exception classes in the method own throws statement 

In .NET this is a more difficult task because there are no checked exceptions. To 
discover what exceptions a method may raise is necessary to know: 

• All the exceptions that can be raised by each one of the IL instructions 
accordingly to the ECMA specs of the CLR [16] 

• All the exceptions that the method being called may raise 
• All the exception classes present in explicit throw statements 
• All the exceptions that are produced inside a protected block and are not caught 

by one of its handlers 

When we started to work on which exceptions could occur in .NET and Java, the 
results of the analysis were quite biased. This happened because: 

• Almost all instructions can raise one or more exceptions, accordingly to CLR 
ECMA specs and Java specs, making the total number of exceptions reported 
grow very fast and the occurrence of other types of exceptions not directly 
associated with instructions almost irrelevant; 

• In most cases, the exceptions that each low-level instruction could actually 
throw would not indeed occur since some code in the same method would 
prevent it (e.g. an explicit program termination if a database driver was not 
found, thus making all ClassNotFoundException exceptions for that 
class irrelevant). Since it is not possible to detect this code automatically, 
although the results could be correct, the analysis would not reflect the reality of 
the running application or the programming patterns of the developer. 

To obtain meaningfully results we decided to perform a second analysis not using 
all the data from the static analysis of bytecode and IL code instructions. In particular, 
we filtered a group of exceptions that are not normally related to the program logic, 
and that the programmer should not normally handle, considering the rest. The list of 
exceptions that were filtered (i.e. not considered) is shown in Table 4. 
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Table 5. Java and .NET exception classes for bytecode and IL code instructions 

JAVA .NET 
java.lang.NullPointerException System.OverflowException 
java.lang.IllegalMonitorStateException System.Security.SecurityException 
java.lang.ArrayIndexOutOfBoundsException System.ArithmeticException 
java.lang.ArrayStoreException System.NullReferenceException 
java.lang.NegativeArraySizeException System.DivideByZeroException 
java.lang.ClassCastException System.Security.VerificationException 
java.lang.ArithmeticException System.StackOverflowException 
 System.OutOfMemoryException 
 System.TypeLoadException 
 System.MissingMethodException 
 System.InvalidCastException 
 System.IndexOutOfRangeException 
 System.ArrayTypeMismatchException 
 System.MissingFieldException 
 System.InvalidOperationException 

5.4.2   Results for Handled Exceptions 
Being aware of the complete list of exceptions that an application can raise and of the 
complete list of handlers and protected blocks, it is possible to find out which are the 
most commonly handled exception types. The results for .NET applications are shown 
in Figure 9; the values represent the average of results by application group where 
every application had a different weigh in the overall result according to the total 
number of results that they provided. It is possible to observe that the results are very 
different from application group to application group. For instance, in the Libraries 
group, the most commonly handled exceptions are ArgumentNullException 
and ArgumentException, resulting from bad parameter use in method invocat-
ions. In the remaining three groups the number one exception type is Exception, this can 
be a symptom of the existence of a larger and more differentiated set of exceptions that 
can occur. If many different exceptions can occur it is viable to assume that the most 
generalized type (i.e. Exception, IOException, etc.) becomes the most common 
one. 

Seeing exception types like HttpException, MailException, SmtpException 
and SocketException in this top ten list and observing a distribution with such 
variations from application group to application group, we are confident to say that 
the type of exceptions that an application can raise and, in consequence, handle is 
strictly related with the application nature. 

There is a mismatch between the type of classes used as arguments to catch 
instructions and the classes of the exceptions that are handled, i.e. throw statements 
use the exception classes that best fit the situation (exception) but the handlers that 
will eventually “catch” these exceptions use general exception classes like .Net’s and 
Java’s Exception as their arguments. 

In Java, as in .NET, there is a large spectrum of exception types being handled. 
The results for Java are illustrated in Figure 10. The huge distinction helps to 
differentiate IOException as the most “caught” exception type in all application 
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Fig. 9. Most commonly handled exception types in .NET 

groups. It is also possible to observe that the exception types are tightly related to the 
applications. For instance in Stand-alone applications, three of the exception classes are 
from Eclipse. Due to its size Eclipse carries a large weight in its application group 
results and, as we are able to observe, its “private” exceptions are present in this top ten. 
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Fig. 10. Most commonly handled exceptions in Java 

5.4.3   Call Stack Levels Analysis 
The analysis of the applications bytecode and IL code allows us to discover the 
number of levels in the call stack that an exception travels before it is caught by some 
handler. Note that an exception is caught if the catch argument class is the same of the 
exception or a super-class of it. 

One result that we can directly associate with the checked exceptions mechanism is 
the difference in the number of levels that an exception covers before it is caught by 
some handler in Java and .NET. 

In Figure 11 it is possible to observe that in Java almost 80% of the exceptions are 
caught one level up from where they are generated, 15% two levels up, 5% three 
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levels up and all the remaining are caught as high as five levels. On the other hand, in 
.NET, exceptions can cover up to seventeen levels and the distribution of the 
exceptions per levels covered is much sparser than in Java. The .NET programmer is 
not forced to catch exceptions and, as a result, exceptions can be caught much later in 
the call stack and most of times by exception handlers with general catch arguments. 

In .NET, 5% of the exceptions are caught before they cover any level in the call 
stack. This result is unexpected and could only be explained by a detailed analysis of 
the IL code in the assemblies and of the source code of the programs. At first we 
thought that this could be the result of some code tangling at compile time but  
the analysis showed that the exceptions were originated in throw instructions inside 
the protected blocks of methods. Programmers raised these exceptions to pass the 
execution flow from the current point in the method to code inside a handler – i.e. 
they use exceptions as a flow control construct. 
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Fig. 11. Call stack levels for caught exceptions 

5.4.4   Handler Size 
Another interesting measure that we withdraw from the analysis of assemblies IL 
code and metadata was related with handler’s code size or, more precisely, the count 
of opcodes inside a handler. This analysis could only be conducted in .NET because 
the metadata in the assemblies clearly identifies the begin and end instructions for 
each handler while in Java only the information about the beginning of a handler is 
available. To discover where a handler finishes we would have to do a static flow 
control analysis and find the join point in the code after the first instruction in the 
handler, which is outside of the scope of this paper. 

The graph in Figure 12 shows that the largest set of handlers in Server-Apps, 
Servers and Stand-alone applications groups have 8 IL Code instructions. In the 
Libraries group more than 40% of the handlers have 3 instructions. The second 
largest set of handlers in all groups has 5 instructions. Obviously, there are bigger 
handlers but their number is so low that we excluded them from the graph to improve 
its reading. 
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These results made us curious about what was happening in these handlers and 
what were the instructions in question. We analyzed all the IL code in all the handlers 
and found some interesting facts: 

• In the 526 handlers with size 8, 500 (95%) invoked a Dispose() method in 
some object; from this 500 there were two major sets of handlers with the exact 
same opcodes, one with 329 elements and the other with 166; the remaining 5 
handlers were different between them; these handlers were all Finally handlers.  

• In the set of handlers with 5 instructions there were 194 elements; 74 disposed 
of some object; 24 created and throwed a new exception; 36 stored some value. 

• 484 of the 498 handlers of size 3 were Finally handlers; 426 handlers had exactly 
the same opcodes and were responsible for closing a database connection; other 
34 handlers also had the same code and invoked a Finalize method in some 
object. 

• The largest set of handlers with size 2 was empty handlers in the source code 
and its actions consisted in cleaning the stack and returning; others rethrowed 
the exception, and the rest called some Assert method. 

These lead us to the conclusion that many of the handlers with few instructions are 
very similar between them and that the majority are Finally handlers that do some 
kind of method dispose or connection closing. 
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Fig. 12. Handlers size in number of IL code instructions for .NET 

5.4.5   Types of Handlers 
Knowing that the majority of the handlers with few instructions were finally blocks 
we tried to discover which was the relation between the total number of protected 
blocks, the total number of catch handlers and the total number of finally handlers. 

The data in Table 5 shows that for the 1565 protected blocks found in the .NET 
applications there are 1630 handlers; 1144 protected bocks (73%) have finally handlers; 
but only 29% have catch handlers. On Java there are 18389 handlers distributed by 
17024 protected blocks; 8109 protected blocks (48%) have finally handlers; 9402 
(55%) have catch handlers. 
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Table 6. Number of protected blocks, catch handlers and finally handlers 
 

Protected Blocks Handlers 
Protected Blocks with 
Finally Handlers 

Protected Blocks with 
Catch Handlers 

.NET 1565 1630 1144 450 
Java 17024 18389 8109 9402 

In our test set of applications, .NET programmers use much more finally handlers, 
relatively to the total number of handlers, than Java programmers. 

In the graph of Figure 13 it is possible to see that Java applications have higher 
maximum values of catch handlers per protected block, the average number of catch 
blocks per try block is almost identical in all the application groups for the two 
platforms and has the approximate value of one. The standard deviation values are 
also very low meaning that the largest number of protected blocks has only one catch 
handler. 
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Fig. 13. Number of catch handlers per protected block. 

5.4.6   Checked vs. Unchecked Exceptions 
As mentioned before, the checked exceptions mechanism influences the way Java 
programmers use the exception detection and handling language constructs. But 
programmers can, alternatively, use unchecked exceptions in Java. For instance, there 
are some libraries specialized in using only unchecked exceptions (e.g. Java NIO). 

In the programs that were analyzed, we compared the number of catch 
instructions that have an unchecked exception class as argument with the total number 
of catch instructions. The results are displayed in Table 6. It is possible to observe 
that except for the Stand-Alone application group, where the usage reaches 36.7%, for 
the remaining groups, values are very low, never exceeding 9%. Nevertheless, 
unchecked exceptions are indeed being used and, besides their extensive usage by 
some dedicated libraries, they are largely used to report on underlying system errors. 
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Table 7. Usage of Unchecked exceptions in Java catch handlers 

 Unchecked 
Libraries 8,90% 
Servers 8,50% 
Stand-Alone 36,70% 
Server-Apps 6,50% 

5.4.7   Retry Functionality 
Neither Java or .NET have nothing like a “retry” block functionality that would 
enable the programmer to execute a try block in a cycle until it succeeds or reaches a 
certain condition. Other languages like Smalltalk [17] or Eiffel [18] have this kind of 
construct. 

In Java and .NET, if a programmer wants to mimic this functionality he has to 
insert a protected block inside a cycle, for instance, insert a try block inside a while or 
do-while cycle. 

Using source code parsers for accounting the number of protected blocks found 
inside cycles or loops we were able to obtain the total number of these occurrences. In 
Java we found 1082 cases and in .NET 16. 

This analysis can be considered as some sort of blind analysis because we do not 
know if the programmer really intended to do a “retry”. Nevertheless, 6% of all catch 
handlers were inside loops and if the programmer really intended to do a “retry”, 
which seams to be the most reasonably reason, that would be a fairly interesting result 
to justify the addition of this functionality to both languages. 

5.5   Making Exception Handling Work 

The results discussed in the previous sections show that programmers, most of the 
time, do not use exception handling mechanisms correctly or, at least, they do not use 
them for error recovery. These practices lead to a decrease in software quality and 
dependability. It is clear that in order to develop high-quality robust software, in a 
highly productive way, new advances are needed. Some authors have already started 
looking for new approaches. In our line of work we are currently approaching the 
problem by trying to create automatic exception handling for the cases where “benign 
exception handling actions” can be defined (e.g. compressing a file on a disk full 
exception). In general, we are trying to free the programmer from the task of writing 
all the exception handling code by hand, forcing the runtime itself to automatically 
deal with the problems whenever possible. A complete description of the technique is 
out of scope of this paper, but the interested reader can refer to [19] for a discussion 
of the approach. 

6   Conclusion 

This article aimed to show how programmers use the exception handling mechanisms 
available in two modern programming languages, like C# and Java. And, although we 
have detailed the results individually for both platforms and found some differences, 



174 B. Cabral and P. Marques 

in the essential results are quite similar. To our knowledge, this is the most extensive 
study done on exception handling by programmers in both platforms.  

We discovered that the amount of code used in error handling is much less than 
what would be expected, even in Java where programmers are forced to declare or 
handle checked exceptions. 

More important is the acknowledgment that most of the exception classes used as 
catch arguments are quite general and do not represent specific treatment of errors, as 
one would expect. We have also seen that these handlers most of the times are empty 
or are exclusively dedicated to log, re-throw of exceptions or return, exit the method, 
or program. On the other hand, the exception objects “caught” by these handlers are 
from very specific types and closely tied to application logic. This demonstrates that, 
although programmers are very concerned in throwing the exception objects that best 
fit a particular exceptional situation, they are not so keen in implementing handling 
code with the same degree of specialization. 

These results lead us to the conclusion that, in general, exceptions are not being 
correctly used as an error handling tool. This also means that if the programming 
community at large does not use them correctly, probably it is a symptom of a serious 
design flaw in the mechanism: exception constructs, as they are, are not fully 
appropriate for handling application errors. Work is needed on error handling 
mechanisms for programming languages. Exception handlers are not specific enough 
to deal with the detail of the occurring errors; the most preferable behavior is logging 
the problem or alerting the user about the error occurrence and abort the on-going 
action. Empty handlers, used to “silence” exceptions, will frequently hide serious 
problems or encourage bad utilization of programming language error handling 
constructs. 

Some of the problems detected, like the duplication of code between handlers, and 
the mingling of business code with exceptions handling code, among other problems 
are still to be tackled and represent an important research target. 

We now know, at least for this set of applications, what type of exceptions 
programmer prefer to handle and what type of exceptions are commonly caught. In 
the future we would like to extend our analysis to running software, actually 
accounting what type of exceptions do really occur and how this relates to the code 
programmers are forced to write for error handling. 
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Abstract. Although one of the main promises of aspect-oriented (AO) 
programming techniques is to promote better software changeability than object-
oriented (OO) techniques, there is no empirical evidence on their efficacy to 
prolong design stability in realistic development scenarios. For instance, no 
investigation has been performed on the effectiveness of AO decompositions to 
sustain overall system modularity and minimize manifestation of ripple-effects in 
the presence of heterogeneous changes. This paper reports a quantitative case 
study that evolves a real-life application to assess various facets of design stability 
of OO and AO implementations. Our evaluation focused upon a number of 
system changes that are typically performed during software maintenance tasks. 
They ranged from successive re-factorings to more broadly-scoped software 
increments relative to both crosscutting and non-crosscutting concerns. The study 
included an analysis of the application in terms of modularity, change 
propagation, concern interaction, identification of ripple-effects and adherence to 
well-known design principles. 

1   Introduction 

Design stability [1-4] encompasses the sustenance of system modularity properties 
and the absence of ripple-effects in the presence of change. Development of stable 
designs has increasingly been a deep challenge to software engineers due to the high 
volatility of systemic concerns and their dependencies [5]. Contemporary developers 
often need to embrace a plethora of unexpected changes on driving design concerns, 
ranging from simple perfective modifications and re-factorings to more 
architecturally-relevant system increments. In fact, incremental development has been 
established as the de-facto practice in realistic software development in order to 
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progressively cope with such evolving system concerns [1, 3, 5]. Some recent 
industrial case studies have demonstrated that around 50% of object-oriented (OO) 
code is altered between two releases, and 68% of change requests are accepted and 
implemented [1, 3]. 

It has been empirically observed that design stability is directly dependent on the 
underlying decomposition mechanisms [4-6]. For instance, certain studies have 
detected that the versatility of multiple inheritance is one of the main causes of ripple-
effects in OO systems [6]. Interestingly, we are in an age where emerging aspect-
oriented (AO) programming techniques [7] are targeted at improving software 
maintainability. The proponents of aspect-oriented programming argue that superior 
modularity and changeability of crosscutting concerns are obtained through the use of 
new composition mechanisms, such as pointcut-advice and inter-type declarations. It 
is often claimed that such AO mechanisms support enhanced incremental 
development [5, 6, 8], and avoid early design degradation [9]. 

However, there is no empirical evidence AO decompositions promote superior 
design stability in realistic evolutionary software development [1], especially when 
experiencing changes of a diverse nature. Most of the existing case-studies in the 
literature have reported on the positive and negative impacts of aspect-oriented 
programming in the upfront modularization of conventional crosscutting concerns 
such as: persistence [9-11], distribution [11], exception handling [12, 13], and design 
patterns [14-16]. More fundamentally, these evaluations do not compare the stability 
of AO and OO decompositions while applying heterogeneous types of changes to 
both crosscutting and non-crosscutting concerns. As a result, there is no empirical 
knowledge on how aspect-oriented programming contributes to the reduction of 
ripple-effects and design principle violations in incremental development scenarios. 

This paper presents a case-study that quantitatively assesses the stability of OO and 
AO design versions of a real-life Web-based information system, called Health 
Watcher (HW). The OO version was implemented in Java, while the AO versions 
were implemented in AspectJ [17] and CaesarJ [8]. Our evaluation focused upon ten 
releases of the HW system, which underwent a number of typical maintenance tasks, 
including: re-factorings, functionality increments, extensions of abstract modules, and 
more complex system evolutions. Some of the crosscutting concerns were 
“aspectized” from the first release, while others were modularized as new HW 
versions were released. Very often, additive and subtractive modifications required 
the alteration of how two or more concerns were inter-related. The design stability of 
OO and AO versions was evaluated according to conventional suites of modularity 
and change impact metrics. Such measures allowed us to analyze the extent to which 
the OO and AO implementations were vulnerable to ripple-effects, and exhibited 
symptoms of violations of fundamental design properties, such as the narrow 
interfaces and the Open-Closed principle [18]. 

The main outcomes of our analysis in favour of AO designs were: 

(1) the concerns aspectized upfront tended to show superior modularity stability in 
the AO designs; changes tended to be confined to the target module and only 
minor fragility scenarios were observed in the aspect interfaces; 

(2) AO solutions required less intrusive modification (e.g. changes to existing 
operations and lines of code) even when the change focused on a non-
crosscutting concern; 
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(3) aspectual decompositions have demonstrated superior satisfaction of the Open-
Closed principle [18] in most of the maintenance scenarios; 

(4) both OO and AO implementations have exhibited a significant stability of 
high-level design structures; however, architectural ripple effects (i.e. changes 
to architectural elements) were observed when persistence-related exceptions 
needed to be introduced in the OO design; 

Alternatively, the main findings against aspectual decompositions were: 

(1) significant incidence of violation of pivotal design principles – such as narrow 
interfaces and low coupling – were detected in evolutionary scenarios 
involving classical design patterns, such as the  Command and State design 
patterns [19]; 

(2) although invasive modification was more frequent in the OO solution, the AO 
modifications tended to propagate to seemingly unrelated modules; 

(3) in general the aspectization of exception handling has shown no improvement; 
in addition, certain design degeneration was observed due to the creation of 
artificial method signatures in order to expose contextual information to the 
aspectized exception handlers. 

The remainder of the paper is structured as follows: Section 2 describes the 
experimental settings and justifies the decisions made to ensure the study is valid. 
Section 3 describes the Health Watcher system used as the base for this study and also 
describes the changes applied. The results gathered from applying modularity metrics 
are discussed in Section 4. Section 5 discusses how the changes propagate within each 
paradigm. The evolution of the concern interactions are discussed in Section 6. Other 
related discussions of the results are conducted in Section 7. Finally, Sections 8 and 9 
conclude this paper by discussing related work and summarizing this paper’s findings. 

2   Experimental Settings 

This section describes the configuration of our study including the choice of the target 
application (Section 2.1), and the evaluation methodology (Section 2.2). 

2.1   Target System Selection 

The first major decision that had to be made in our investigation was the selection of 
the target application. The chosen system is a typical Web-based information system, 
called Health Watcher (HW) [11]. The main purpose of the HW system is to allow 
citizens to register complaints regarding health issues. This system was selected 
because it met a number of relevant criteria for our intended evaluation. First, it is a 
real and non-trivial system with existing Java and AspectJ implementations (each 
around 4000 lines of code). The HW system is particularly rich in the kinds of non-
crosscutting and crosscutting concerns present in its design. HW also involves a 
number of recurring concerns and technologies common in day-to-day software 
development, such as GUI, persistence, concurrency, RMI, Servlets and JDBC. 
Second, each HW design and implementation choice for both OO and AO solutions 
has been extensively discussed and evolved in a controlled manner. Both the OO and 
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AO designs (Sections 3.1 and 3.2) of the HW system were developed with modularity 
and changeability principles as main driving design criteria. Third, qualitative and 
quantitative studies of the HW system have been recently conducted [9, 11] allowing 
us to correlate our results with these previous studies. Finally, the first HW release of 
the Java implementation was deployed in March 2001, since then a number of 
incremental and perfective changes have been addressed in posterior HW releases; it 
has allowed us to observe typical types of changes in such an application domain.  

2.2   Study Phases and Change Scenarios  

The study was divided into three major phases: (1) the development and alignment of 
HW versions, (2) the implementation of change scenarios, and (3) the assessment of 
the three versions (developed in phase 1) and the successive releases (delivered in 
phase 2). In the first phase, we prepared the base versions of the OO and AO 
implementations of the HW system. The OO solution was already available and 
implemented in Java. Two AO implementations were assessed: one based on a  
pre-existing AspectJ version (implemented after the original OO implementation)  
[11, 17], and a newly created CaesarJ [8] version for this study. Both the Java and 
AspectJ implementation have been successfully used in other studies [9, 11], and so 
provided a solid foundation for this study. An independent post-graduate student was 
responsible for implementing the CaesarJ version by re-factoring the Java 
implementation. We would like to highlight that this study has not targeted the 
comparison of the two AO programming languages (i.e. AspectJ and CaesarJ). On the 
contrary, the objective of using more than one particular language was to allow us to 
yield broader conclusions that are agnostic to specific AO language features.  

All three base HW versions were verified according to a number of alignment rules 
in order to assure that coding styles and implemented functionality were exactly the 
same. Moreover, the implementations followed the same design decisions in that best 
practices were applied in all implementations to ensure a high degree of modularity 
and reusability. This alignment and validation exercise was performed by an 
independent post-doc researcher. A number of test-cases were exhaustively used for 
all the releases of the Java, AspectJ and CaesarJ versions to ease the alignment 
process. These alignment procedures assure that the comparison between versions is 
equitable and fair. Inevitably, some minor re-factorings in the three versions had to be 
performed when misalignments were observed at the composition-level, interface-
level, module-level or even LOC-level. When these misalignments were discovered 
the implementers for that particular version (in the case of the Java and AspectJ 
versions this was the original HW developers) were notified and instructed to correct 
the implementation accordingly. 

The second phase involved the implementation of nine changes (Section 3.3) in all 
three HW versions (available from [20]). Each change involved: (i) the design and 
implementation of new modules to be included or existing modules to be removed 
from the system, (ii) the use of language mechanisms to compose such new modules 
with existing ones, and (iii) if necessary, changes to the modules already present in 
the previous HW release. Also, for each change, we needed to again ensure that the 
Java, AspectJ and CaesarJ implementations were aligned and so the alignment 
process described above was applied to each subsequent version of HW developed.  
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The goal of the third phase was to compare the design stability of AO and OO 
designs. In order to support a multi-dimensional data analysis, the assessment phase 
was further decomposed in four main stages. The first two stages (Section 4) are 
aimed at examining the overall maintenance effects in fundamental modularity 
properties through the HW releases. The third stage (Section 5) evaluates the  
three implementations from the perspective of change propagation. The last stage 
(Section 6) focuses on assessing design stability in terms of how the implementation 
of concern “boundaries” and their dependencies have evolved through the HW 
releases. Section 7 also discusses architecture-level design stability. Traditional 
metrics suites were used in all the assessment stages, and will be discussed in the 
respective sections. Although design stability is discussed in terms of these metrics, 
the metric measurements are a direct reflection of design changes, i.e. any variations 
in the metric values are evidence of changes that occurred in the code structure. 

3   Health Watcher System 

Both the OO and AO architectural designs of the HW system are mainly determined 
by the conjunctive application of both client-server and layered architectural styles 
[21]. The original architecture aimed at modularizing user interface, distribution, 
business rules, and data management concerns. Most of them are layers in both the 
OO and AO architectures; the only exception is the distribution concern that has been 
aspectized and is no longer a layer in the AO architectural design. All the 
corresponding OO and AO design structures that realize such driving design concerns 
have been successfully reused in several applications [3, 10, 11]. Fig. 1 and Fig. 2 
present representative slices of both OO and AO architecture designs. 

3.1   The Object-Oriented Design 

In the HW system, complaints are registered, updated and queried through a Web 
client implemented using Java Servlets [22], represented by the components in the 
view layer. Accesses to the HW services are made through the IFacade interface, 
which is implemented by the HealthWatcherFacade. This facade works as a portal to 
access the business collections, such as ComplaintRecord and EmployeeRecord. 
Records access the data layer using interfaces, like IComplaintRep, which decouple 
the business logic from the specific type of data management in use. For example, 
Fig. 1 shows a ComplaintRep class that implements a repository for a database. 

This structure prevents some code tangling, because it clearly separates some main 
concerns in layers. However, tangling is not completely avoided [11]. For example, 
the HealthWatcherFacade implements several concerns, including transaction 
management (persistence) and distribution. One possibility is the use of adapters [19] 
to take care of transaction functionality, but at a high price, since developers must 
maintain both the facade and the adapter.  

The design of the OO HW system also fails to completely prevent code scattering. 
For example, business components implement the distribution concern; this comes from 
the need to implement the Serializable interface to allow them to be sent across a 
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network. Furthermore, almost all components must deal with the exception handling 
concern. However, despite not completely separating concerns, the layered architecture 
gives some support to adaptability. For instance, in the system configuration used in our 
experiment, instead of RMI, one could use EJBs. 

 

Fig. 1. OO HW architecture. A sub-set of scenarios and the modules they affect are marked. 

3.2   The Aspect-Oriented Design 

Fig. 2 displays a diagram that is essentially the same for both AO implementations 
(AspectJ and CaesarJ). The AO versions modularize some concerns that were tangled 
and scattered in the OO decomposition counterpart. Basically, in the first AO release 
of the HW system, crosscutting elements relative to distribution, persistence, and 
concurrency control concerns were modularized as aspects.  

For instance, the concurrency control concern was removed from the layers and 
encapsulated in two aspects, namely HWManagedSync and HWTimestamp; each of 
these deals with a specific facet of concurrency control. Timestamp is a technique 
used to avoid object inconsistency. This problem can occur when two copies of an 
object are retrieved by different requests before one of them can update its version. 
The technique uses a timestamp field to avoid object updating if there is a newer 
version of it stored in the persistence mechanism. 
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Fig. 2. AO HW architecture. A sub-set of scenarios and the modules they affect are marked. 

3.3   Change Scenarios 

The selected changes to be applied to the HW system are varied in terms of the types 
of modifications performed. Some of them add new functionality, some improve or 
replace functionality, and others improve the system structure for better reuse or 
modularity. The purpose was to expose the OO and AO implementations to distinct 
maintenance and evolution tasks that are recurring in incremental software 
development. These changes originated from a variety of sources: the experiences of 
the original developers of HW including changes they would like to implement (that 
are actually necessary) and changes from previous empirical studies [9, 12]. The 
remaining changes were created by the students and researchers involved in this 
study, where certain extensions and improvements that could be applied were 
identified. This ensured a variety of sources of changes was used and so would not 
artificially bias one paradigm. Before the changes were applied, the original 
developers of HW were consulted to confirm whether these changes were valid. 

This wide range of modifications provide an indication as to whether one paradigm 
supports better design stability for certain types of change. The changes were 
implemented using the best possible practices in the given paradigm to ensure a fair 
comparison. Each of the scenarios is summarized in Table 1, a sub-set of the 
scenarios and the modules that they affect in the OO and AO paradigm are marked on 
Fig. 1 and Fig. 2 according to whether a component is added, removed or modified 
during a particular scenario. 



 On the Impact of Aspectual Decompositions on Design Stability: An Empirical Study 183 

Table 1. Summary of the scenarios used in the study 

Scenario Change Impact 
1 Factor out multiple Servlets to improve extensibility. View Layer 

2 Ensure the complaint state cannot be updated once closed to protect 
complaints from multiple updates. 

View/Business Layers 

3 Encapsulate update operations to improve maintainability using 
common software engineering practices. 

Business/View Layers 

4 Improve the encapsulation of the distribution concern for better 
reuse and customization. 

View/Distribution/ 
Business Layers 

5 Generalize the persistence mechanism to improve reuse and 
extensibility. 

Business/Data Layers 

6 Remove dependencies on Servlet response and request objects to 
ease the process of adding new GUIs. 

View Layer 

7 Generalize distribution mechanism to improve reuse and 
extensibility. 

Business/View/ 
Distribution Layers 

8 New functionality added to support querying of more data types.  Business/Data/View 
Layers 

9 Modularize exception handling and include more effective error 
recovery behaviour into handlers. 

Business/Data/View 
Layers 

4   Modularity Analysis 

We have described earlier how the assessment procedures were organized in four 
stages (Section 2.2). This section presents the results for the first two stages, where we 
primarily analyze the initial modularity of each OO and AO solutions (Section 4.1). 
Then we analyze their stability throughout the implemented changes (Section 4.2). 
Both the first and second assessment phases are supported by a metrics suite that 
quantified four fundamental modularity attributes, namely separation of concerns 
(SoC), coupling, cohesion, and conciseness [23]. Such metrics were chosen because 
they have already been used in several experimental studies and proven to be effective 
quality indicators (e.g. [9, 12, 14, 15, 24]). 

The metrics for coupling, cohesion, and size were defined based on classic OO 
metrics [25]; the original metrics definitions were extended to be applied in a 
paradigm-independent way, supporting the generation of comparable results. Also, 
this suite introduces three new metrics for quantifying SoC. They measure the degree 
to which a single concern in the system maps to: (i) the design components (i.e. 
classes and aspects) – based on the CDC metric (Concern Diffusion over 
Components), (ii) operations (i.e. methods and advice) – based on the CDO metric 
(Concern Diffusion over Operations), and (iii) lines of code – based on the CDLOC 
metric (Concern Diffusion over Lines of Code). The majority of these metrics can be 
collected automatically by applying the appropriate tool [26, 27].  

The separation of concern metrics had to be calculated manually. This involved a 
post-graduate student (not involved in the implementation phase of the study) 
‘shadowing’ the code to identify which segment of code contributed to which concern. 
In circumstances when it was not clear which concern the segment contributed to, 
discussions between all people involved in the implementation took place to reach a 
common agreement. For all the employed metrics, a lower value implies a better result. 
Detailed discussions about the metrics are out of the scope of this work and appear 
elsewhere [14, 23].  
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4.1   Quantifying Initial Modularity  

This stage evaluates the modularity of the base versions in order to have an overall 
understanding of the modularity attributes of the first release of each OO and AO 
implementation. Hence, it can support our further analysis on how the maintenance 
changes affected the degree of modularity initially obtained in the Java, AspectJ and 
CaesarJ implementations. Instead of analysing each individual metric result, we 
provide a general view of the meanings behind the results. Fig. 3 presents the 
modularity results for SoC, coupling, cohesion, and size in the base version. The 
concurrency concern is representative of all the analysed crosscutting concerns which 
included: concurrency, persistence, distribution and exception handling. Furthermore, 
other architectural and design elements were analysed using the SoC metrics that are 
discussed later, these elements included: view (GUI) layer, business layer and various 
design pattern. The metrics raw data can be found at [20]. 

 

Fig. 3. Relative SoC metric values for concurrency (CDC, CDO and CDLOC), and absolute values 
for coupling, cohesion, lines of code and vocabulary size for the base version of Health Watcher 

A careful analysis of the measures (Fig. 3) determines that the AO implementations 
offer superior modularity in these initial versions. Even though the base AO 
implementations have more modules (measured by the Vocabulary Size metric which 
counts the number of components) and a higher Concern Diffusion over Components 
(CDC), this does not automatically mean that separation of concerns is worse. It is 
due to the fact that additional aspectual modules have been created for the purpose of 
isolating certain crosscutting concerns (Section 3.2). When other values are analysed 
together, such as Concern Diffusion over Lines of Code (CDLOC) and over 
Operations (CDO), Coupling between Components (CBC), Lack of Cohesion over 
Operations (LCOO), it becomes clear that AO implementations create more cohesive 
and self-contained modules that are less coupled to each other. They create dedicated 
components for each concern, but they also require fewer Lines of Code (LOC), since 
they reduce the duplicated code. The subsequent sections will analyse how these 
modularity properties alter due to the application of change scenarios (Section 3.3). 

4.2   Quantifying Modularity Stability 

After producing an overview of the modularity attributes in the base versions we 
proceeded with the analysis regarding the stability of these attributes. In the following 
we present the most significant results for each modularity attribute. 
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The variations in the modularity metrics are traced back to the implementations in 
order to determine the causes of instability. Generally, any variation to their values is 
considered undesirable. Often the variations are unavoidable, particularly when a 
certain module is the focus of an implementation change. Thus, we categorise the 
variation in the values as either being unavoidable or negative. Unavoidable 
variations occur when a component that is directly related to the affected concern is 
altered. For example, if a scenario targets the GUI concern, then variations in the 
metric values for the view related modules are generally expected and unavoidable. 
However, if unrelated modules are affected, then these should be considered as being 
negative variation. As a result, the approach with the most stable design is the one 
which minimises the number of negative variations. 

Concern Measures. The analyzed crosscutting concerns included concurrency, 
distribution, persistence, and exception handling. These were selected because they 
were the main modularization target either at the initial HW design decomposition 
(Sections 3.1 and 3.2) or subject to change when applying the scenarios described in 
Section 3.3. For the same reasons, other non-crosscutting concerns were also analyzed 
including the view and business layers of the HW architecture. Finally, the modularity 
of concerns relative to some key design patterns adopted during the system HW 
evolutions –  such as the Command and State design patterns [19] – were analyzed. 

From the analysis of SoC metric results, three distinct groups of concerns 
naturally emerged, with respect to which type of modularization paradigm presents 
superior stability. The following set of figures illustrates the relative variations 
between versions in the Java, AspectJ and Caesar implementations. When no bar for a 
particular implementation is present, this means no variation in that particular 
measure was observed for the corresponding scenario. We do not distinguish in the 
graphics the difference between an increase in a metric value and a drop in a metric 
value. 

Concerns with Superior AO Design Stability. Most of the concerns that present a 
widely-scoped crosscutting nature have presented superior design stability when 
implemented using AO techniques. This includes concurrency, persistence and 
distribution, with the sole exclusion of exception handling (discussed later). All of 
these concerns were modularized into aspects from the first AspectJ and CaesarJ 
implementations. Fig. 4 presents the metrics results for the concurrency concern, the 
representative of how concerns in this group have behaved. In general, the concern 
diffusion over components (CDC) metric is less affected on AO implementations as 
the initial modules seem to cope well with newly introduced scenarios and the 
changes are localized in these modules.  

The concern diffusion over operations (CDO) metric also presents a very superior 
result for the AO implementations. This difference largely comes from the 
quantification properties in AO, where the use of declare statements and regular 
expressions in pointcuts eliminates the need for some operations. For example, in the 
specific case of concurrency, the timestamp behaviour affects CDO in the OO 
implementation (particularly in Scenario 2), but has less influence on the values for 
AO version, where it is implemented with advice and intertype declarations (or 
bindings in CaesarJ). The results for concern diffusion over lines of code (CDLOC) 
provide evidence that AO implementations present better stability.  
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Fig. 4. Changes in the SoC metrics for the concurrency concern 

Concerns with Superior OO Design Stability. Concerns that are widely scoped but 
that do not have a crosscutting nature, such as view and business; have presented 
slightly superior design stability in the OO implementation. Fig. 5 presents the 
metrics results for the view concern. In general, this type of concern is already well 
modularised by OO decompositions and this modularisation is stable throughout the 
changes. AO implementations do not visibly modify this OO modularisation, but the 
transfer of some functionality affects the stability of these concerns. Using the view 
results as an example, we observe that the concerns are spread over the same number 
of more components (CDC) in AO. That is because the AO implementations not only 
suffer from the same unavoidable changes as OO, but also may present some negative 
changes, such as new pointcuts having to be introduced to aspects related to the view 
layer. In contrast, the OO implementation will have the necessary functionality 
inserted directly to the view layer and so will not impact the CDC metric. The number 
of operations per concern (CDO) also shows the same general trend. The concern 
diffusion over lines of code (CDLOC) results provide additional evidence of the 
superiority of OO decompositions for these concerns, because the AO 
implementations are more instable with respect to how certain concerns interact with 
each other (Section 6). 

 

Fig. 5. Changes in the SoC metrics for the view layer 

Concerns with no Stability Superiority Observed. Some concerns have not presented 
explicit superiority in either of the paradigms. These include the exception handling 
(EH) concern and also the more localized concerns, such as the Command and State 
patterns [19]. As can be observed in Fig. 6, both paradigms experience similar high 
degrees of variation in all the metrics for the EH concern. This similarity occurs for 
two main reasons. First, the EH concern was not explicitly modularised in the AO 
implementations until the last scenario (Section 3.3). Before that, the exception 
handlers were just aspectized when they related to other concerns that were also 
aspectized. For example, when concurrency was aspectized, its handlers were also 
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removed from the base code and encapsulated in a new module. Second, AO 
implementations were not able to promote modularization gains in terms of this 
concern even in Scenario 9. The general problem with using AO to encapsulate EH is 
that it usually involves negative changes through the creation of artificial operations 
in order to expose context information for the aspectized exceptional behaviour [12]. 

When analysing the results for the more localized concerns we were confronted 
with very distinct and irregular patterns. It was not possible to generalize about their 
stability, because specific characteristics of the concerns and their applications play a 
major role on the results. For example, the State pattern was very stable and similar 
for all metrics in both paradigms. However, the Command pattern was stable through 
several scenarios but was largely affected by the last two scenarios, in a similar 
proportion on AO and OO. We conclude that, due to the narrow scope of these 
concerns, their stability largely depends on the localization of the change. 

   

Fig. 6. Changes in the SoC metrics for the exception handling concern 

 

 

Fig. 7. Size metric variation through the 10 versions 

Size Measures. Both OO and AO implementations present very similar stability with 
respect to size measures. Fig. 7 shows the absolute results for Weighted Operations per 
Component (WOC – i.e. complexity of operations based on number of parameters) and  
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Vocabulary Size (VS – i.e. number of components) through the versions. The VS curves 
show that AO implementations tend to be worse, and this difference gets larger, 
rendering AO less stable regarding the number of components needed to modularize the 
concerns. The Lines of Code (LOC) curves, present an inverted result, where AO 
implementations scale better, due to being able to avoid repeated code. 

The WOC curves show that AO implementations are usually more complex, as 
they introduce pointcuts and advice that are counted as operations. In general the 
curves are very similar. However, AO performs better for functional changes (i.e. 
Scenario 9), due to better quantification, but poorly in the exception handling scenario 
as new advice and artificial methods must be created for each handler. As a general 
conclusion for the size attribute, AO is more stable with respect to LOC and for 
functional changes, while OO is better in VS and in exception handling. 

Coupling and Cohesion Measures. Due to the strong synergy between coupling and 
cohesion, we will discuss these two attributes together. The Depth of Inheritance Tree 
(DIT) metrics are largely the same and do not bring any interesting insights. In this 
section we will refer to Coupling Between Components (CBC) and Lack of Cohesion 
over Operations (LCOO) metrics as coupling and cohesion. 

Fig. 8 displays the graphs for the average cohesion and coupling per component. 
Observing the curves, AO implementations have generally much more stable values 
for both coupling and cohesion. It can be seen that most of the scenarios actually 
improve their values, while OO implementations are affected in different ways. The 
only major changes for AO occur in version three and the last two scenarios. In the 
former, the cohesion values are worsen due to hook methods having to be inserted in 
the base code for the newly added aspects to be executed correctly. In general, AO 
implementations were much better and more stable with respect to coupling and 
cohesion attributes due to the generic capabilities of AO techniques. 

 

Fig. 8. Average results for cohesion (left) and coupling (right) per component throughout the 
versions 

5   Change Impact Analysis 

This section describes the third assessment stage where we quantitatively analyze to 
what extent each maintenance scenario entails undesirable change propagations in the 
AO and OO HW implementations.  
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5.1   Impact of the Change Nature 

This phase relies on a suite of typical change impact measures [3, 4] presented in 
Table 2, such as number of components (aspects/classes) added or changed, number 
of added or modified LOC, and so forth. The purpose of using these metrics is to 
quantitatively assess the propagation effects, when applying the various changes, in 
terms of different levels of abstraction: components, operations, lines of code and 
relationships. The lower the change impact measures the more stable and resilient the 
design is to a certain change.  

Table 2. Change propagation metrics for Java (J), AspectJ (A) and CaesarJ (C) 

 Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Sc. 9 
J 24 12 2 3 4 4 4 12 5 
A 29 16 3 0 4 4 2 12 6 

Added 
Components 

C 25 16 3 0 4 4 2 12 6 
J 2 6 14 25 1 24 2 23 46 
A 2 5 4 0 1 26 2 19 52 

Changed 
Components 

C 2 4 5 0 1 25 2 18 21 
J 4 4 10 0 0 0 0 62 5 
A 2 7 1 0 0 0 0 40 16 

Added 
Operations 

C 2 7 1 0 0 0 0 32 17 
J 3 61 15 19 2 25 1 21 94 
A 0 57 3 0 1 25 0 10 94 

Changed 
Operations 

C 0 57 6 0 1 25 0 14 99 
A 5 12 8 0 2 0 2 0 16 

Added Pointcuts 
C 5 12 11 0 1 0 0 4 9 
A 1 0 0 0 0 1 2 3 1 

Changed 
Pointcuts 

C 1 0 0 0 0 1 0 4 1 
J 72 59 123 294 6 1 0 653 109 
A 4 34 4 0 1 2 0 290 60 Added LOC 
C 8 35 6 0 1 2 0 300 70 
J 4 53 12 40 1 107 1 13 177 
A 2 50 0 0 5 110 4 9 141 Changed LOC 
C 2 52 5 0 5 110 4 5 187 

Adherence to the Open-Closed Principle. AO solutions generally require more new 
components to implement a change. In comparison the OO implementation require 
existing components to be modified more extensively to implement the same change. 
This behaviour is confirmed in the change propagation metrics (see Table 2) whereby 
much more extensive changes (in terms of added operations and LOC) occur in the 
OO version. Up to 30% fewer operations and up to 60% fewer LOC are added in the 
AO implementations throughout the scenarios. This indicates that the AO solutions 
conform more closely to the Open-Closed principle [18] which states that “software 
should be open for extension, but closed for modification”.  

The scenario which demonstrates this difference best is Scenario 3. The purpose of 
this scenario is to isolate the update method calls, which is implemented in the form 
of the Observer pattern [19]. This involves modifying a sub-set of the command 
classes in the view layer by removing the update calls. However, the OO 
implementation requires further modification, for example a variety of classes within 
the business layer require modification (marked on Fig. 1) so that the update method 
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is called when the state of business objects alters. The AO implementation is able to 
quantify and capture these state changes via pointcuts and so the Observer pattern is 
able to be applied by introducing new components rather than modifying existing 
ones (the added modules are marked on Fig. 2). 

In order to analyse the results more closely and to identify specific reasons for 
these changes the results will be split into three categories: the first examines groups 
of scenarios where the AO versions are superior, the second focuses on scenarios 
where the AO and OO implementations are comparable and the final category looks 
at scenarios where the OO version is superior.  It is interesting to note that these 
categories can be mapped to particular types of change.  

Propagation of Functional Changes is Superior in AO Designs. When considering the 
scenarios (1, 3, 8 and 9) where the AO solutions are superior, they require fewer 
changes to components (in terms of modified LOC, added LOC, etc). It is also clear 
that these changes are absorbed in other ways. For example, we can see that pointcuts 
must either be modified or added in these scenarios. Equally, the OO implementation 
requires new fields/parameters to be added directly to the base classes in order to 
implement the changes in these scenarios. These additions can be directly absorbed 
within new aspects. What is not clear from analysing these metrics in isolation is 
which type of change propagation is more desirable and which paradigm provides the 
better mechanism for absorbing these changes. When considering the earlier 
modularity metrics we can conclude that the AO implementation has less impact on 
these attributes and so AO provides better mechanisms for absorbing these changes. 
Note that the changes performed in Scenario 4 reflect an attempt to improve the 
modularity of the distribution concern, as this concern was already well modularised 
in the AO versions no changes were necessary. 

AO and OO are Comparable when Implementing Perfective Changes. In the cases 
where (Scenarios 5, 6, and 7) the AO and OO implementations have similar change 
propagation metrics, the modifications are related to improving the design structure of 
HW in terms of extensibility and reusability. These improvements to the design 
generally target OO concepts, this can be inferred from the metrics due to the low 
number of pointcuts added or modified in these scenarios. For example, two of the 
scenarios (6 and 7) involve splitting a class implementation in two parts. As this 
structure is repeated in both the AO and OO implementation it is natural that they are 
both affected in similar ways. This is also reflected in the earlier modularity metrics. 

OO Implementation of the State Pattern was Superior. Finally, the OO implementation 
is clearly superior in Scenario 2, which basically involves the instantiation and 
inclusion of the State pattern [19]. Although the added state update behaviour is 
crosscutting, it does require ‘hook methods’ to be inserted in the base components for 
advice to be executed at the correct events. This results not only in the same structural 
changes as the OO implementation (introduction of methods, fields and inheritance 
relationships) but also in new aspects to be added. In comparison, the OO solution can 
encapsulate the same behaviour using OO mechanisms and, as a consequence, 
reduces the need for changes across modules. There are other scenarios (such as 
Scenario 1) where the suitability of using AO is questionable but due to the fact that 
multiple concerns are involved (view and distribution), the AO solutions are able to 
capture these relationships more cleanly and, so, offer improvements over OO. 
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5.2   Overall Stability Measurements 

From these change propagation metrics various attributes can be extracted that can be 
used to comment on the implementations’ stability. One of the most significant results 
from these stability metrics is the number of unique components modified through the 
nine scenarios applied. For each paradigm 72 different modules are modified 
throughout all the scenarios. It may appear at first glance that because this measure is 
the same the stability is also the same. However, the actual number of potential 
modules that could be modified has to be taken into account. In the case of the OO 
design, this is 1113 potential classes (the cumulative figure of all classes in all 
versions). The AO versions have over 250 more classes/aspects that could be 
modified. As a result, the fact that the number of modified modules is the same for the 
AO versions despite this, illustrates that the AO implementations are more stable.  

Similarly, when analysing the changes to the LOC that are made to these 72 
modules the AO solutions again show more stability. For example, in version 10 of 
the OO implementation of HW there are in total 5453 LOC of which 32% of these 
have either been modified or added during the course of the study. This is compared 
to around 4000 LOC in version 10 of the AO implementations of which only 18-19% 
have been added or modified. 

6   Concern Interaction Analysis  

We have presented results concerning the first three assessment phases. This section 
discusses the last evaluation stage: the scalability of OO and AO solutions from the 
viewpoint of stability in concern interactions. 

The analysis of the data gathered based on the modularity and change impact 
metrics (Sections 4 and 5) makes it evident that most of the concerns involved in HW 
are scattered and tangled with each other over the system classes. For example, the 
class HealthWatcherFacade implements a business layer facade (Fig. 1), but also 
incorporates code for distribution- and persistence-specific functionalities. The 
implementation of certain system concerns and the way they interact through the 
system modular decomposition change as the system evolves. As a consequence, this 
section discusses how the concern interactions changed over time in the three HW 
implementations. The goal is to observe how changes relative to a specific concern 
“traversed the boundaries” of other concern implementations and/or generated new 
undesirable inter-concern dependencies. 

6.1   Concern-Interaction Categories  

We have performed an analysis of AO and OO design stability when there are 
interactions involving two or more concerns. In order to support such an analysis, we 
have observed different categories of interactions involving the analyzed concerns. In 
the context of the HW system, there are different ways in which the concerns interact 
with each other: invocation-based interaction, interlacing, and overlapping. Our 
classification of concern interactions is based on how the concern realizations share 
elements in the implementation artefacts, which have been defined and exploited in 
previous studies [12, 15]. 
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Invocation-based Interactions. This is the simplest form of composition. The 
invocation-based interaction occurs when a component realizing the first concern is 
connected to a component realizing another concern based on one or more method 
calls. An example of this form of interaction is when the business facade class calls 
persistence methods to invoke transaction management in the OO HW version.  

Interlacing. In this case, implementations of two concerns, C1 and C2, have one or 
more components in common [12, 15]. However, C1 and C2 are implemented by 
different sets of methods, attributes and statements in the shared classes. In other words, 
the involved concerns have common participant components, but there is no common 
element implementing both. We can identify interlacing either in the component level or 
in the method level. Both component- and method-level interlacing produce concern 
tangling but at different levels of abstraction. Alternatively, in the method-level 
interlacing the implementations of concerns C1 and C2 have one or more methods in 
common. However, different pieces of code in these methods are dedicated to 
implement both concerns. An example of this interaction category is the concurrency 
control implemented in some methods of data management classes of the OO HW 
version. In these methods there is exception handling code that is not related to the 
concurrency control concern. 

Overlapping. The implementations of concerns C1 and C2 share one or more 
statements, attributes, methods, and components. This dependency style is different 
from interlacing because here the shared elements contribute to both concerns rather 
than being disjoint. Depending on the kind of elements participating in the interaction, 
it can be classified as component overlapping, operation overlapping, or attribute 
overlapping. The update methods are examples of operation overlapping. They are 
used to guarantee that in a distributed environment the modified data in one (client) 
machine is reflected to another (server) machine and that persistence data modified in 
memory is also reflected to the persistence mechanism. 

6.2   Concern Interactions in the Base Versions  

We explore the categories of concern interactions (previous subsection) in the base 
version in order to provide a general idea of how each pair of concerns depends on 
each other. This first analysis allows us to track the stability of these dependences 
through the software scenarios. We have analyzed all the 15 possible pair-wise 
concerns of the three HW implementations (Java, AspectJ and CaesarJ) and we have 
found many similarities between them. The results regarding the types of interactions 
are essentially the same for AspectJ and CaesarJ; therefore, we discuss them as AO 
issues. Our first observation is that, in general, concern boundaries are wider in the 
OO implementation, i.e. the concerns interact in more components in OO than in AO. 
Although the AO compositions usually present fewer components in the concern 
boundaries, these components usually present more intricate interactions. Fig. 9 
presents two illustrative instances of concern interactions, concurrency with 
distribution and concurrency with persistence. The left side of the pie chart (Fig. 9) 
shows that 5 components present interlacing between the concurrency and distribution 
concerns in the OO version, while only 3 components present interlacing of these 
concerns in the AO version. In this interaction, it is not clear that components in the 
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concern boundaries of the AO design have stronger interaction. On the other hand, in 
the concurrency with persistence interaction (Fig. 9, right side) the same number of 
operations (17) realizes the interaction between these two concerns. However, AO 
composition has more methods with overlapping of concerns (6 against 2). 
Furthermore, the AO version has fewer components with interlacing which also 
means a stronger dependency of concurrency with persistence in these components.  

 

Fig. 9. Pie charts of interactions between concurrency and distribution concerns (left) and con-
currency and persistence concerns (right) in the base versions 

6.3   Scalability of Aspectual Decompositions 

In this section we focus on the stability of each pair of concerns through the 
implementations. We verify for each concern the number of components it shares 
with other concerns. This kind of analysis supports assessment of concern 
modularization and stability because it shows whether the inter-concern coupling 
drops with the software evolution or not. Table 3 shows the obtained results for each 
pair-wise concern in terms of the number of components in the boundaries. Due to 
space limitations, this table presents only the results for the base version and 
Scenarios 3, 6 and 9 for all the 15 compositions. We have selected these versions 
because (i) they group together each 3 sequences of evolution and (ii) they represent 
scenarios with more extensive changes, including architectural ones. 

The results in Table 3 show that, in general, concern interactions are more stable in 
the AO implementations through all scenarios. Only one composition, concurrency 
with view (see Table 3, line 9), presents stability in favour of OO. Alternatively, 5 
compositions in AspectJ (and 4 in CaesarJ) present stable results: business with 
concurrency (line 1), concurrency with distribution (line 6), concurrency with EH 
(line 7), concurrency with persistence (line 8), and persistence with view (line 15). 
This last one is not totally stable in CaesarJ, but a minor variation occurs between the 
Scenarios 3 and 6. Besides, all the other AO compositions involving at least one 
crosscutting concern show an almost stable behaviour, such as business with 
persistence, distribution with view and business with distribution. This stability of AO 
solutions is a result of the better separation of crosscutting concerns. For instance, 
concurrency is far more stable in all of its compositions in AO solutions than in OO 
ones, which is explained by its better modularization (Section 4.2). 

Similarly to concurrency, the concern interaction analysis summarized in Table 3 
also shows that the distribution concern is far better separated in the AO versions. All 
compositions of distribution (lines 2, 6, 10, 11, and 12 of Table 3) have fewer shared 
components in AspectJ and CaesarJ. Although the introduction of the Adapter pattern 
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Table 3. Number of shared components of the pair-wise concerns through the HW implementat-
ions in Java (J), AspectJ (A) and CaesarJ (C) 

Base Scenario 3 Scenario 6 Scenario 9 Concerns 
Interaction J A C J A C J A CJ J A C 
1 Bus + Conc 3 5 5 4 5 5 5 5 5 6 5 5 
2 Bus + Dist 29 10 18 32 8 19 22 8 19 29 11 23 
3 Bus + EH 26 30 29 28 30 29 29 30 29 38 41 40 
4 Bus + Per 23 12 12 24 10 10 24 10 10 34 12 12 
5 Bus + View 18 19 19 17 21 20 17 21 20 25 29 28 
6 Conc + Dist 5 3 3 7 3 3 8 3 3 8 3 3 
7 Conc + EH 7 11 11 9 11 11 10 11 11 11 11 11 
8 Conc + Per 4 3 3 6 3 3 6 3 3 6 3 3 
9 Conc + View 0 2 2 0 3 2 0 3 2 0 2 1 

10 Dist + EH 40 32 32 44 29 29 33 29 29 37 31 32 
11 Dist + Per 28 16 16 32 13 13 21 14 14 27 15 15 
12 Dist + View 16 5 5 16 2 2 4 2 2 6 2 2 
13 EH + Per 40 32 31 42 30 29 41 30 29 48 34 32 
14 EH + View 20 24 24 23 28 28 23 28 28 32 38 39 
15 Per + View 17 5 5 15 5 5 15 5 4 22 5 4 

(Scenario 5) improves the separation of the distribution concern in the Java version 
and it also drops interaction of this concern, this improvement is not enough to make 
it superior to the AO implementations. In spite of the superiority of AO compositions 
of crosscutting concerns, OO is no worse in the interaction of non-crosscutting 
concerns. In fact, in most of compositions involving either business or view, OO is 
comparable to AO implementations or even better. For instance, the OO composition 
of concurrency with view has no shared classes in the base version and this situation 
remains stable in the following scenarios. This result is not surprising, as OO 
decomposition is suitable to modularize non-crosscutting concerns. 

As mentioned earlier and also presented in Table 3, CaesarJ has very similar results 
to AspectJ. However, there are some exceptions which present significant difference, 
such as the business with distribution composition. In this composition the CaesarJ 
solution is worse than AspectJ, but better than Java. The difference between AspectJ 
and CaesarJ is due to their distinct composition mechanisms. The AspectJ solution 
uses declare parents construct to introduce the Serializable interface into classes, but 
CaesarJ does not provide such a construct. Therefore, this piece of code which is part 
of the distribution concern remains scattered in the CaesarJ implementation which 
contributes to the high interaction between business and distribution. 

7   Discussions 

7.1   Observing Ripple Effects 

A further analysis performed was centred on identifying ripple-effects caused by 
changes that propagate between unrelated components. For example, if a change 
targets the Servlets then it would be hoped that these changes would be localised to 
the view layer. Any change which targets a particular concern and is propagated to 
other concerns is considered a negative change. Typically scenarios which target a 
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crosscutting concern (i.e. Scenarios 5 and 7 which target persistence and distribution) 
the AO paradigm is able to localise these changes to specific components. In 
comparison the change has to span multiple layers/concerns in the OO version. 

In scenarios which typically target the layers of the HW system the OO 
implementation performs better or comparable to the AO implementations. This is 
interesting as the AO implementation has the same core behaviour (in terms of layers) 
so the changes should propagate in a similar manner. As in the OO version, the AO 
core layers require modification but changes also propagate to other (seemingly) 
unrelated concerns. For example, Scenarios 1 and 6 specifically target the view layer; 
the OO implementation is able to contain these changes entirely within this layer. 
However, the AO versions require other additional concerns to be modified such as 
distribution and pattern implementations but not at the expense of modularity. 
Although the OO implementation also has these dependencies, the increased tangling 
prevents the modifications from spreading to multiple components but do affect more 
operations and LOC. A similar ripple-effect occurred between the persistence and 
concurrency concerns within Scenario 3, whereby the AO implementations required 
modification of the timestamp behaviour but the OO implementation did not due to 
the differences in the levels of concern locality (Section 4.2). 

However, within the same scenario (Scenario 3) and Scenario 5 the OO 
implementation demonstrates a significant weakness that occurs in the majority of the 
scenarios. This is the high fragility [2, 28] of the HealthWatcherFacade class (see 
Fig. 1) which is caused by the extremely high tangling of concerns within this class. 
Although this may not seem a bad property due to the fact that it appears to reduce the 
ripple-effects it does increase the complexity and reduces the modularity. 

Generally, we can conclude that ripple-effects occur in both the AO and OO 
versions. The improved SoC within the AO versions causes the changes to propagate to 
more unrelated components, making the changes less obvious as unexpected 
components are affected. In turn the OO version requires more extensive changes within 
each affected component making these changes more obvious. These differences lead to 
a notion of ‘deep’ and ‘wide’ ripple-effects. The AO ripple-effects tend to go ‘deeper’ in 
that the changes propagate to unrelated components. In comparison the OO ripple-
effects tend to go ‘wider’ in that the ripple-effects tend to more extensively affect the 
modified components. 

This notion is illustrated in Scenario 8, which focuses on modifying the business, 
view and data layers. The changes in the OO version tend to be located in each of 
these layers (marked on Fig. 1), however, the AO version requires additional 
behaviour to be added in seemingly unrelated components (marked on Fig. 2). The 
concurrency concern within OO implementation requires a concurrency manager to 
be inserted directly into the new classes added (hence being “wider”). In comparison 
the AO versions needs extra logic to determine which class is currently being 
accessed and then delegate to the appropriate concurrency manager and is “deeper” 
by affecting an unobvious component. 

It would appear that wider ripple-effects were less problematic due to the changes 
having to be made being more obvious. However, when taking into account the earlier 
modularity metrics it is clear that if these ripple-effects could be identified or limited 
then the AO paradigm would be superior. Pointcut fragility [29] is the significant 
factor that contributes to these AO ripple-effects. For example, in Scenarios 6 and 8 
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the re-factorings and component additions that take place invalidate pointcuts that are 
used to apply the Observer pattern. This results in unintuitive changes having to be 
made. This trade-off that must be accounted for; future AO techniques should take 
this pointcut fragility into account and allow more expressive and semantic-based 
pointcuts to be specified. 

7.2   Architecture Stability Analysis 

Our policy to analyse design stability at the architecture level followed the same 
principle and relied on similar measures as in the implementation level. The analysis 
at the architecture level was supported by a modularity suite of metrics based on 
measures for SoC, component coupling and cohesion, and interface complexity. 
However, now the metrics are defined in terms of architecture-level abstractions, such 
as components, interfaces and operations [30]. First, we compared the modularity of 
the OO and AO HW architectures in the base version. For SoC, we assessed the 
scattering of the concerns over the design elements and the architecture description. 
The considered concerns during the analysis were: distribution, persistence, 
concurrency, exception handling, view, and business. 

The most significant difference between the two solutions was related to the 
persistence concern. The persistence concern was present in many more architectural 
elements in the OO solution than in the AO solution. For instance, in the OO 
architecture more components (5 vs. 2), more interfaces (22 vs. 9) and more operations 
(154 vs. 45) have the persistence concern. The reason for this phenomenon is that, in the 
OO architecture, the persistence-specific exceptional events are propagated from 
components in the data layer to components in the view layer. Therefore, these 
persistence exception events are handled by almost all interfaces between the data, 
business, distribution, view layers. In the AO architecture, these exceptions are caught 
and treated via the persistence aspect earlier in the interfaces of the data layer and do 
not propagate through the other interfaces and respective layers. 

After applying the metrics to the base version, we applied the metrics for both  
OO and AO architectures in the other versions of the HW system. The goal was to 
analyse the impact of the evolution changes in the architecture modularity. The 
scenario which changes impact most in the architecture was Scenario 8. This occurred 
because this scenario demanded the addition of a number of operations in the 
interfaces between each connected pair of layers. Note that Scenario 8 impacts the 
boundaries of every layer in Fig. 1 and Fig. 2. For instance, it affected IFacade, 
HealthWatcherFacade and IHealthUnitRep interfaces in the distribution, business and 
data layers respectively. In fact, the measures showed that the persistence concern is 
more stable in the AO architecture. As the persistence concern is not well 
modularized in the OO architecture (as stated earlier), every operation added in 
Scenario 8 had to address the persistence concern. Each new operation had to 
consider the persistence-specific exceptional events. The concern metrics highlighted 
that the number of operations containing the persistence concern in the OO 
architecture increased 38 (from 154 in the base version to 192) in the version 
produced after applying Scenario 8. In comparison, the increase that occurred in the 
AO architecture was just one operation. This result confirmed the previous results for 
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the implementation level that Scenario 8 favours the AO implementation of the 
persistence concern due to the quantification mechanisms. 

8   Related Work and Study Constraints 

8.1   Related Work 

The current body of empirical knowledge on AO techniques cannot explain the 
influence of compelling aspect interactions on long-term design stability. Lopes and 
Bajracharya [31] presented an analysis of modularity in AO design using the theory of 
modular design developed by Baldwin and Clark [32]. They have studied the design 
evolution of a Web Service application where they observed the effects of applying 
aspect modularisations using Design Structure Matrix and Net Option Value. It was 
an interesting first experiment that observed that there was added value in introducing 
aspects into an already modularized design. It contributes to an earlier work by 
Sullivan [33] by: (i) providing a realistic and modern example, and (ii) the analysis of 
effects of AOP on the value of the overall design. However, this study involved only 
the application of only two kinds of aspects: logging and authentication. 

There is little related work focusing either on the quantitative assessment of AO 
solutions in general, or on the empirical investigation about the design stability of AO 
decompositions. Substantial empirical evidence is missing even for crosscutting 
concerns that software engineers face every day, such as persistence, distribution, and 
exception handling. There are several case studies in the literature involving the 
“aspectization” of such pervasive crosscutting concerns [10-12]. However, these 
studies mainly focus on the investigation on how the use of AO abstractions supports 
the separation of those concerns. They do not analyze other effects and stringent 
quality indicators in the resulting AO systems. Furthermore, they do not quantify the 
benefits and drawbacks of AO techniques in the presence of widely-scoped changes. 
A number of empirical analyses need to be carried out, since certain typical criticisms 
that AOP has suffered [34] and the initial studies have exhibited some controversies 
even when aspectizing classical crosscutting concerns, such as transaction 
management [10, 11], exception handling [12, 13], and design patterns [14-16].  

We have previously performed a far-reaching maintenance study [24], but our 
target was aspects specific to multi-agent systems. In addition, the aspects used in this 
system have a localized scope and tend to affect a few modules; they do not have a 
major influence on the architectural design of the system. In addition, the introduced 
changes were restricted to simple changes in few classes or aspects. Also, we did not 
evaluate aspect interaction issues. In another study, we evaluated how AspectJ scales 
to modularize pattern compositions [15]. However, the stability of the aspectized 
pattern combinations was not assessed. Our previous study documented in [19] 
evaluated the scalability of the AspectJ implementation by performing some initial 
changes to the HW system. These changes correspond to a subset of the changes 
made in Scenario 8. However, this previous study did not examine concern 
interaction, design stability or the affect on design principles. Nevertheless, the study 
presented in this paper has confirmed and expanded in scope our previous findings. 



198 P. Greenwood et al. 

8.2   Study Constraints 

Although it can be argued that using a single system for such a study is a limiting 
factor we feel that the HW system is representative of modern systems and the 
scenarios applied are extensive and so reduces the necessity of additional systems. 
Naturally it is desirable to involve more systems and more approaches. 

As stated previously one of the aims of this study was to perform a general 
comparison of the OO and AO paradigms. This was achieved by re-implementing 
HW using CaesarJ, however, a similar OO re-implementation was not performed for 
Java. As such the study could be viewed as a Java vs. AO comparison but we feel this 
would be unfair. Java is a good representative of OO techniques and re-implementing 
it would be a wasted exercise. Equally, it would be difficult to reproduce a similar 
implementation due to the techniques used in the OO implementation i.e. Servlets, 
etc. Fundamentally for this type of study we require good representatives of AO 
techniques for the base language. Unfortunately this range does not exist for other OO 
languages and so limits the benefits of studying other OO languages.  

The concerns analysed tended to focus on ones that were more significantly 
affected by the changes applied in either the AO or OO versions. Due to the nature of 
the study and the fact that separation of concerns is central to this study the 
crosscutting concerns were naturally the ones which varied the most. We have also 
presented results of other non-crosscutting concerns (e.g. view and business layers) to 
provide a balanced comparison of the AO and OO paradigms. 

The applicability and usefulness of some of the specific metrics used in this study 
has often been questioned such as the cohesion measure. We accept the criticism of 
such metrics. However, it is important to consider the results gathered from all 
metrics rather than just one metric in particular. The multi-dimensional analysis 
allows us to grasp which measurement outliers are significant and which are not. In 
fact, when drawing conclusions from the results we have considered all the gathered 
data and never relied upon one single piece of data from this set. 

9   Concluding Remarks 

The transfer of aspect-oriented technologies to mainstream software development is 
largely dependent on our ability to empirically understand their positive and negative 
effects through design changes. Software designs are often the target of unanticipated 
changes and, as a result, incremental development has been established as the defacto-
practice in realistic software development [1, 5, 6]. This study has followed these 
practices to evolve a real-life application in order to assess various facets of design 
stability of object-oriented and aspect-oriented implementations. This included the 
analysis of the implementations modularity, change propagation, concern interaction 
analysis and identification of architectural ripple-effects. 

From this analysis we have discovered a number of interesting outcomes. Firstly, 
the AO implementations tend to have a more stable design particularly when a change 
targets a crosscutting concern. Furthermore, changes tended to be much less intrusive 
and more simplistic to apply in the AO implementations. This indicates that aspectual 
decompositions are superior especially when considering the Open-Closed principle 
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[18] (Section 5). Significantly, both OO and AO implementations exhibited high 
stability in high-level design structures but with a certain architectural ripple-effect 
occurring within the OO design when persistence-related exceptions had to be 
introduced. In certain circumstances aspectual decompositions did perform worse. 
These tended to occur when evolutionary scenarios targeted classical design patterns 
such as Command and State [19], applying these design patterns violated pivotal 
design principles, such as narrow interfaces and low coupling. Even though as stated 
above the AO implementations tended to require less invasive changes, sometimes the 
modifications propagated to components that were not the direct target of the change 
scenario. The overall conclusion regarding the design stability and concern interaction 
analysis (Section 6) is that aspect decomposition narrows the boundaries of concern 
dependencies, however, with more tight and intricate interactions. 
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An Accidental Simula User
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Abstract. It was a simple choice, really, on an IBM 370 in the 70’s,
between APL, Fortran, Lisp 1.5, PL/1, COBOL, and Simula’67. Noth-
ing could come close to Simula’s combination of strong typing, garbage
collection, and proper string processing. Separate compilation (prefix
classes) and coroutines were nice bonuses. And then there were these . . .
“objects” but, well, nothing is perfect. Hot topics in those days were the
freshly invented denotational semantics (which Simula didn’t have), for-
mal type systems (which objects didn’t have), and abstract data types
(which seemed to have confusingly little to do with classes). Still, Sim-
ula was the obvious choice to get something done comfortably because,
after all, it was an improved Algol. It even had the functional program-
ming feature of call-by-name by default. So, it became my first favorite
language, for every reason other than it being object-oriented.

The story I am going to tell is the very, very slow realization that Sim-
ula was the embodiment of a radically different philosophy of program-
ming, and the gradual and difficult efforts to reconcile that philosophy
with the formal methods that were being developed for procedural and
functional programming. Along the way, domain theory helped rather un-
expectedly, at least for a while. Type theory had to be recast for the task
at hand. Landin’s lambda-reductionism had to be partially abandoned.
Always, there seemed to be a deep fundamental mismatch between ob-
jects and procedures, well described by Reynolds, that made any unifi-
cation impossibly complicated. But in the end, both object-oriented and
procedural programming have benefited from the clash of cultures. And
the story is far from over yet, as witnessed by the still blooming area of
program verification for both procedural and object-oriented languages.
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Abstract. Object invariants describe the consistency of object states,
and are crucial for reasoning about the correctness of object-oriented
programs. However, reasoning about object invariants in the presence
of object abstraction and encapsulation, arbitrary object aliasing and
re-entrant method calls, is difficult.

We present a framework for reasoning about object invariants based
on a behavioural contract that specifies two sets: the validity invari-
ant—objects that must be valid before and after the behaviour; and the
validity effect—objects that may be invalidated during the behaviour.
The overlap of these two sets is critical because it captures precisely
those objects that need to be re-validated at the end of the behaviour.
When there is no overlap, no further validity checking is required.

We also present a type system based on this framework using owner-
ship types to confine dependencies for object invariants. In order to track
the validity invariant, the type system restricts updates to permissible
contexts, even in the presence of re-entrant calls. Object referencing and
read access are unrestricted, unlike earlier ownership type systems.

1 Introduction

The flexibility and extensibility offered in object-oriented programming is both
a boon and a curse. Classes provide an encapsulated definition of object data
and behaviour; subclassing allows the extension of existing definitions with reuse
of code that depends on a parent class; heap-based allocation allows objects to
persist beyond the scope of their creator; object references provide a disciplined
use of pointers. However this programming flexibility comes at a cost. Reasoning
about the behaviour of objects is difficult. More specifically, the presence of
complex object dependencies, object aliasing, and arbitrary method call-backs
(re-entrant calls) makes it difficult to reason about object-oriented code. The
particular problem we focus on in this paper is how we can guarantee the validity
of objects within such a programming context.

Formal verification techniques for structured programming encapsulate the
program state within local variables and arguments of procedures. This makes it
feasible to provide a complete axiomatic semantics based on a pre/post-condition
style of reasoning about code. A critical assumption in such reasoning systems, is
that the program state that is being reasoned about is encapsulated within code

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 202–226, 2007.
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blocks—a stack-based memory model is assumed. Such reasoning techniques
cannot directly cope with reasoning about programs with pointers—the essen-
tial problem is that heap-based data may be accessed and modified indirectly
via pointers. Currently the most promising approach for formally dealing with
pointers appears to be Separation Logic [6,29,15,7] which supports reasoning
about the distinctness of regions of the heap.

Design by contract is a technique for reasoning about objects introduced
by Meyer [21] and provided with programming language support in Eiffel [20].
Design by contract relies on the specification of object behaviours via the combi-
nation of object invariants describing valid object states, and pre/post-conditions
for object behaviours. Although design by contract does provide a good concep-
tual basis for assisting designers, its formal basis is weakened by the presence of
inter-object dependencies, aliasing and call-backs.

We extend an example used by Leino and Müller [17] to illustrate the effect
of call-backs on object invariants. If P calls back on m then a divide-by-zero error
may occur. The problem is that P is called when the current invariant is broken,
and cannot be relied on in subsequent re-entrant calls. On the other hand, if Q
in n is re-entrant there is no harm, assuming it maintains invariants.

class C {
int a, b; invariant: 0 <= a < b;
C() { a = 0; b = 3; }
void m() { int k = 100/(b-a);

a = a+3; P(...); b = (k+4)*b; }
void n() { int k = 100/(b-a); Q(...); } }

In order to reason about this type of code, we need to be able to track the
effect and dependency of possible call-backs on the current object invariant. This
is our goal.

The difficulty of modular verification of object-oriented programs has been
recognized for a long time [16]. Recently researchers have made some in-roads,
with the use of fixed ownership-based schemes in Universe Types [24,22,13,26],
and dynamic ownership used to track object validity in the Boogie methodology,
as manifested in Spec# [3,17,27,4]. Our own work draws strongly on the ideas
of object validity of this work. Further comparisons will follow in Section 5.

In this paper we present a general framework for tracking validity within ob-
ject systems which is independent of any particular language framework. The
motivation for adopting a language-free approach is to emphasize the underlying
principles. The key idea of our model is to capture the effect of code blocks (such
as method bodies) on the validity of the objects in the system. The approach
we take requires code blocks to specify a pair of object sets 〈I, E〉. I is the va-
lidity invariant for the code, which specifies those objects that must be valid
before and after the code executes. E is the validity effect which specifies those
objects that may be invalidated during execution of the code. During execution,
nested code blocks or method calls 〈I ′, E′〉 must satisfy some consistency cri-
teria with respect to their calling context. When the sets I and E are disjoint,
there is nothing to check, other than consistency criteria for the code—system
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validity is automatically guaranteed to hold. If I and E are not disjoint, validity
of the objects within their overlap must be established by other means (pre-
sumably relying on a more detailed program logic). It is this ability to hone in
on a restricted critical set of objects whose validity must be established after
code execution which provides the novelty in our model. When object validity is
specified via object invariants, our model imposes certain structural constraints
that relate the form of I and E to the dependencies inherent in the object in-
variants.

A general model is only useful if it can be realized in some concrete form.
To that end, we offer a small language, Oval, that realizes the model using an
ownership-based type system. In Oval, an object’s invariant can only depend
on its own fields, and on other objects that it contains, as determined by the
ownership structure. For simplicity, we restrict the overlap between I and E to be,
at most, a single object which is always the current active object. Consequently,
only local (per-object) reasoning is necessary to establish system-wide validity.

Within Oval, we do not impose restrictions on object reference or read access;
our system does not rely on alias protection. Instead, interpreting the consistency
criteria of nested code blocks (method calls) from our general model, we restrict
what write access is allowed in different contexts. It is this mechanism that allows
us to keep track of which objects are valid at any particular time; for example,
if a call-back requires an object to be valid, we can prohibit it if that object may
be invalid but allow it if we know it must be valid.

Interestingly, it is straightforward to create immutable objects in Oval. Ob-
jects high up in the ownership hierarchy are more accessible for update (and
more likely to be invalid). For us, immutable objects are those created at the
very bottom of the ownership hierarchy, where nothing has write access. Note
that immutability is determined by the object’s creation type (instantiating the
object’s owner to be bot) rather than the object’s class (where the owner is a
formal parameter, rather than a concrete context). Our system also provides a
more general model than approaches based on read-only annotations. In Oval,
the context of the reference holder determines its update capability.

Our system is also able to express encapsulation-aware read-only references.
They typically use hidden contexts (equivalent to existentially abstract contexts)
to forbid access to methods that have some write capability on the objects en-
capsulated by the context where the reference is held.

In summary, specific contributions of this paper include:
– a validity specification for blocks of code—defining a set of objects I that

must be valid before and after, and a set of objects E that may be invalidated
during code execution;

– identification of where explicit validity checks are required within code blocks,
and where validity can be assumed to hold;

– a model of structure based on the object dependency implied by object
invariants;

– a small language, Oval, with an ownership-based type system—where an
object’s invariant can only depend on an its own fields and its owned objects,
and system validity can be achieved with per-object checks;



Validity Invariants and Effects 205

– immutable objects and a generalization of read-only annotations arise as a
special case of the type system.

This paper is organized as follows. Section 2 details our general approach
for describing system validity and the behavioural abstraction 〈I, E〉 introduced
above. In particular we outline the consistency conditions for nested code with
the underlying rationale. Our initial model is descriptive, rather than focused
on specific language mechanisms for programming objects. Section 3 introduces
the Oval language with examples. Here, our intention is to illustrate language
mechanisms and type rules to support our general model of Section 2 rather than
to design a realistic programming language. Unlike most previous ownership
schemes [12,11,9,8,10], we do not use the object ownership structure to restrict
object references and aliasing, but rather, we use it to specify the sets of objects
that must be valid, or may be invalid, during method calls. This use of ownership
builds on earlier work extending the use and flexibility of ownership type systems
[19,18]. With Oval we have opted for simplicity rather than a fully expressive
model. Oval requires that object invariants are only invalidated one object at a
time; possible extensions avoiding this limitation are discussed in this section.
In Section 4 we provide a static and dynamic semantics for our language and
formalize properties that demonstrate how this language implements the general
model. Section 5 addresses other related work, including Boogie/Spec# and
Universes, Ownership Types and read-only systems. Section 6 briefly concludes
the paper.

2 A Model for Object Validity

2.1 The Validity Contract 〈I, E〉

The key idea for our model is very simple: whenever an object is active, it may
be invalid. If an object is not active (and still alive) then it must be valid. But
what determines when an object is valid? For now, it suffices to consider an
object to be valid when it satisfies its specified invariant—this is the standard
notion of object validity. Later on, in Subsection 2.3, we will refine this notion
somewhat, in order to handle object invariants that depend on more than one
object. So, for the moment, to maintain consistency with the refined notion, we
will simply assume that there is some notion of object validity, and at any time,
there is a set of all valid objects, that we call the validity set Valid.

For any particular structured block of code, we specify a behavioural abstrac-
tion: the validity contract 〈I, E〉. The validity invariant I specifies a set of objects
that must be valid both before and after the code executes. Clearly this imposes
an obligation on the caller (see Subsection 2.2) and the code itself (see below).
The validity effect E specifies those objects that may be invalidated during exe-
cution of the code.

A given validity contract 〈I, E〉 for a block of code provides constraints on
Valid at different execution timepoints as shown in Table 1. In the following
we denote the validity set at the start of code execution by Valid0, so that at
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any timepoint, Valid0 − Valid represents invalidated objects—those that were
initially valid, but are currently invalid. Interpreting constraints, we first have,
immediately before the code executes, that all objects in I must be valid. During
execution, only those objects in E may become invalid, and so the remainder,
I − E must still be valid. At the end of execution, we have a proof obligation for
the code: the validity of the critical set of objects I ∩ E must be checked. Then,
immediately after execution, we have ensured that all objects in I are still valid,
and that only objects in E− I may have been invalidated. These constraints will
be the basis for the rules for subcontracting, coming up next.

We have chosen our model to be flow insensitive for simplicity. It is indeed
possible to provide a stronger validity contract in which we provide separate pre-
and post-conditions for validity. For consistency, the post-condition would need
to be stronger than the disjunction of the pre-condition and the validity effect.
We leave the pursuit of this more general form of validity contract for another
time.

Table 1. Validity Contract: Constraints on the Validity Set

Before: I ⊆ Valid

During: I − E ⊆ Valid

Valid0 − Valid ⊆ E

At End: I ∩ E ⊆ Valid to be checked

After: I ⊆ Valid

Valid0 − Valid ⊆ E − I

2.2 Validity Subcontract for Nested Behaviours

With structured code, we can nest behaviours in various ways, such as by mak-
ing method calls, or entering nested blocks. From a caller’s perspective, we can
also think of a method override as being a nested version of the overridden
method. Method calls must respect the validity contract of their calling context;
nested code blocks may have their own contract, but must respect the contract
of their containing block; and the contract for a method override must be con-
sistent with the contract for the method being overridden. All of these nested
behaviours must conform to the contract for the surrounding behaviour in the
same way.

In Design by Contract [21] there is a notion of subcontracting for subclasses,
and in particular, for overridden methods. The subcontract rules (preconditions
may only be weakened, postconditions may only be strengthened) provide a
guarantee that the overriding behaviour conforms to the contract of the overrid-
den method, which allows clients to reason about method calls without worrying
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about whether the method has been overridden in a subclass. In formal specifica-
tion this notion corresponds to that of operation refinement. We adopt a similar
approach for validity subcontracts, but we take into account the constraints on
validity imposed by a contract, as formulated above.

Within the context of a particular validity contract 〈I, E〉, suppose we execute
code that is known to meet another validity contract 〈I ′, E′〉. According to the
constraints of Table 1, on entry to 〈I ′, E′〉 we require I ′ ⊆ Valid, but we know
that during the execution of 〈I, E〉 that I−E ⊆ Valid. We therefore require that
I ′ ⊆ I − E. From the perspective of 〈I, E〉, we do not care what becomes invalid
during execution of 〈I ′, E′〉, provided that it exits satisfying the constraints im-
posed by 〈I, E〉. When 〈I ′, E′〉 exits, we know that the only objects to have been
invalidated by its execution, Valid

′
0 − Valid, lie within E′ − I ′. However we

know that before 〈I ′, E′〉 executes, that Valid0 − Valid
′
0 is within E. It follows

that Valid0 − Valid will be within E as required, provided E′ − I ′ ⊆ E. This
reasoning leads us to the following definition for a validity subcontract. Note that
the definition makes no mention of the validity set Valid. The subcontract def-
inition simply relates two different validity contracts, irrespective of what the
validity set may be.

Definition 1 (Validity Subcontract). 〈I ′, E′〉 is a validity subcontract of
〈I, E〉 if:

I ′ ⊆ I − E

E′ − I ′ ⊆ E

Fig. 1. Validity Subcontracts: The Relationship between Nested Contracts. Validity of
objects in Ei ∩ Ii (shaded) must be separately established.

Figure 1 captures the nesting properties of the validity invariants and effects,
for subcontracts. Here 〈I3, E3〉 is a subcontract of 〈I2, E2〉, which is, in turn, a
subcontract of 〈I1, E1〉. Intuitively, we think of this in terms of nested method
calls. The validity invariant is weakened, the deeper the call structure. On suc-
cessive calls it is safe to reduce the size of the validity effect. However, most
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interesting is where the effect may be increased. This critical set is the overlap
of the validity invariant and effect for the new call. It is precisely this critical set
of objects whose validity must be re-established at the end of the call.

Before introducing our language Oval, we will discuss the relationship between
the validity set and object invariants for our general model.

2.3 Object Invariants and Dependency Structure

In abstract terms an object’s invariant captures the commonality between the
pre- and post-conditions for all of the object’s methods. By specifying an ob-
ject invariant, we effectively constrain the allowable behaviours of the object,
thereby defining the safe or consistent states of the object. An object’s invariant
ultimately resolves to constraints on fields, not only of the current object, but
also, possibly, of other objects. It is therefore possible for an object’s invariant
to be satisfied, even though it depends on another object whose invariant does
not hold. To avoid this worrisome situation, we refine the idea of object validity.

Definition 2 (Object Dependency). An object (transitively) depends on an-
other if it’s invariant depends directly, or indirectly, on the fields of the other
object. We write � for this preorder between objects.

Definition 3 (Object Validity). An object is valid if it’s invariant is satisfied
and if all of the objects that it depends on are also valid. The validity set Valid

is the largest set of objects that are valid.

Because the definition of valid object is recursive, we have specified the validity
set to be the largest possible set of objects satisfying the constraint.

It is possible to have objects whose invariant holds, but that are not valid by
our definition. For us, the important point is that from a system-wide perspec-
tive, validity is a closed property. The validity of an object only depends on its
own state, and the validity of other objects that its invariant depends on.

Property 1 (Validity Closure). If o ∈ Valid and o � o ′ then o ′ ∈ Valid.

This asserts that the validity set is down-closed with respect to the object depen-
dency induced by the invariants. Consequently in specifying validity contracts, it
makes sense to insist that the validity invariant I (valid objects) is down-closed,
and that the validity effect E (possibly invalid objects) is up-closed with respect
to object dependency. Figure 1 was drawn to illustrate the closure properties of
I and E, assuming that object dependency is downwards in the diagram.

We now begin to see some hope of how to achieve a syntactic representation
of validity contracts in programming languages. Assuming we can explicitly list
the objects at the top of I and the bottom of E, and assuming we can capture
the object dependency, then we should be able to reason about validity contracts
syntactically. In Section 3 we do so by using ownership types to constrain the
object dependency, and specifying the extrema of I and E as single objects, that
is, as ownership contexts I and E respectively.
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3 Oval: A Language with Ownership-Based Validity

Oval is a simple object-oriented programming language that incorporates owner-
ship types to support validity contracts. Oval realises our general model by using
object ownership to provide the structure for specifying validity invariants and
effects. Oval presumes that object dependency (for invariants) is constrained by
object ownership.

3.1 Ownership Types and Effect Encapsulation

Object encapsulation techniques hide an object’s internal representation and
force any access from outside to be made via the object’s interface. Ownership
types [28,12,11,9] improve on previous work on full encapsulation techniques
[14,2] by allowing outgoing references while still preventing representation expo-
sure; objects cannot be referenced from outside of the encapsulation.

In ownership type systems, each object has one fixed owning object, given at
the time of creation. The ownership relation partitions objects into an ownership
tree, whose root is a conceptual object called top in this paper. Objects are con-
fined so that they can only reference or access objects owned by their (transitive
and reflexive) owners.

Ownership type systems are essentially access control systems where accessi-
bility is determined by the position of the target object in the ownership tree.
Such systems achieve a form of information hiding. However, the problem of
maintaining object validity is fundamentally a problem of effects: only updates
can break object invariants. In other words, read access can always be consid-
ered safe. Our earlier work on effect encapsulation [19] has provided a technique
for encapsulating side-effects on an object without restricting referenceability or
read access. Our work in this paper provides a significant extension to effect
encapsulation; we allow each method to specify the validity invariant, that is,
what object invariants can be expected to hold. By tracking permissible updates
via the validity effect, the type system checks if each expected validity invariant
can be met.

3.2 Overview of Oval

In Oval, we use ownership types to structure objects, specify validity contracts
and confine dependencies for object invariants.

Oval programs specify a validity invariant and effect for each method as a
validity contract, 〈I, E〉. I and E are ownership contexts in our type system.
The corresponding validity invariant I is the context I and all contexts owned
(transitively) by I; the corresponding effect E is the context E and all owning
contexts of E; in the ownership order, I is the top of the down-set I, and E is the
bottom of the up-set E (which is a branch of the ownership tree). The only overlap
allowed for I and E is the local context this. This yields just two interesting cases.
When the validity invariant and effect are disjoint, the critical set is empty, and I

must be strictly within E in the ownership order. Otherwise, when they overlap,
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they must satisfy I = E = this; the critical set just contains the current object.
As we shall see, the type system also checks that the subcontract rule is satisfied
by any method calls. Consequently when the critical set is empty, there is no
further reasoning about object validity required in the current method body.
When the critical set is a single object, only the validity of the current object
needs to be re-established at the end of the method body. By incorporating the
idea of validity contracts in the type system, Oval provides a frame for localized
reasoning about object validity.

The constraint that I and E can only overlap at the current object, allows
us to keep both the syntax and type system simple in Oval. Allowing a bigger
overlap is feasible: it is a trade-off between greater expressiveness and increased
complexity. The added complexity arises from syntactic issues (describing sets
of contexts rather than singletons), the type system (the static dependency or-
dering is trickier), and reasoning for re-establishment of invariants with multiple
objects simultaneously. These sorts of extensions have been made for Spec#
where objects may have peers, and whole peer sets can be simultaneously inval-
idated.

An object’s invariant may only depend on its member fields and fields of
(transitively) owned objects. For expressiveness, we allow fields that are not
part of the object’s representation to be declared nonrep. nonrep fields cannot
be mentioned in the class invariant. Fields which are not explicitly declared
nonrep are part of the object’s representation and may participate in its object
invariant. Some other languages have a similar design, for instance, Javari [5] uses
the keyword mutable to annotate those nonrep fields. Because there is no object
ownership structure in Javari, object invariants can never depend on mutable
fields. In our language, we do allow the owning object’s invariant to depend on
any fields of owned objects (including nonrep fields). An object’s invariant can
only depend on its rep fields and objects that it (transitively) owns. So updates
on rep fields may affect the target’s invariant, and so (in Oval) should only be
allowed by the target’s own methods. Updates on nonrep fields can only affect
an owner’s invariant, and that owner must already have an active method that
is responsible for re-establishing the owner’s invariant.

A constructor must always establish its object’s invariant. For simplicity, we
consider constructors to have no effect on validity—they simply initialize the
object in a valid state.

In addition to the usual top context, we introduce another context bot. The bot
context is the bottom of the ownership hierarchy; it is inside/owned by all other
contexts. We syntactically restrict its use in Oval to the validity invariant part
of a contract. When a method’s validity invariant is bot, it neither requires nor
ensures any object validity; it provides a vacuous constraint for the validity set.

3.3 Oval by Example

The validity contract allows us to solve the re-entrancy problem discussed in the
Introduction section.
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class C {
int a, b;
invariant: 0 <= a < b;
C() { a = 0; b = 3; }
void m() <this, this> { int k = 100/(b-a);

a = a+3; P(...); b = (k+4)*b; }
void n() <this, top> { int k = 100/(b-a);

Q(...); } }

In the above example, the validity contract for method m is <this,this>,
which means the method requires the current object (this) to be valid and
the method is allowed to break this’s invariant via either direct assignment or
indirect method calls. What is interesting here is that our type system guarantees
P cannot callback on m. In order for P to callback on m, P must meet the required
validity invariant—this must be valid. However, object this is invalid in P
because the validity effect of m has invalidated this.

On the other hand, the contract for method n is <this,top>. It does expect
the current object (this) to be valid, but it does not invalidate any object
except the conceptual context top. This time, Q may callback on n, because this
is valid in Q and so it will be able to satisfy the required validity invariant of n
on re-entry.

A method can require a validity invariant other than its target object (this),
as in the following code using class C from above.

class D { nonrep int f; ... }

class G [p, q] where p < q {
void ie(C<p> x, D<q> y) <p, q> { y.f = 100/(x.b-x.a); } }

Every class has a formal parameter which refers to the owner of the current
object. By default, when the owner parameter is not used by the class definition,
it may be omitted, as for class D. Moreover, since field f is declared as nonrep,
updates on field f will not break the invariant of class D, because the local
invariant cannot depend on its nonrep fields. But updates on f may break the
invariant of its owning object, whose invariant is allowed to depend on any field
of owned objects. In fact, in our type system, fields not declared to be nonrep
can only be updated by the object itself.

As part of its validity contract, method ie states that p is the validity invariant;
since the parameter x is owned by p, x must be valid, that is, its invariant must
hold—so we know there will be no divide-by-zero error. Note that, to reason in
this way, the programmer needs to know class C’s invariant—C’s invariant needs
to be visible. We will discuss this in Section 5.

The method contract of ie specifies its validity effect as q; this permits q
to be invalidated. Since the object in y is owned by q; assignment on y may
invalidate q and any objects owning q; this is allowed by the method’s validity
effect.

To illustrate a more realistic use of our type system, we adopt an example
from a tutorial on Spec# [30].
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class Person {
int freeday;
Meeting<this> next;
invariant: if next!=null then next.day!=freeday;
int travel(int d) <this, this> {

freeday = d;
if (next!=null) next.reschedule((d+1)%7); } }

class Meeting {
int day;
invariant: 0 <= day < 7;
Meeting(int d) { day = d; }
void reschedule(int d) <this, this> { day = d; } }

The invariant of Person depends on the day field of the Meeting object next.
Consequently, if the day field of the Meeting object is changed, the invariant of
the Person may be broken. Ownership types capture this kind of dependency
by enforcing the Meeting object to be owned by Person—the owner argument
of next is this which refers to the current Person object.

Both the validity invariant and effect of the method reschedule in class
Meeting are the current object this. The method is allowed to update its day
field, and it will require and ensure its local invariant holds before and after the
method call.

Back to the travel method in class Person whose validity contract is also
<this, this>. The method is allowed to call next.reschedule because it can
meet reschedule’s validity invariant requirement, and next.reschedule can
meet travel’s requirement for validity effect. Method next.reschedule requires
next to be valid before calling it; within the method travel the local invariant
of the Person object may be violated, but all objects owned by the Person
object, including the object in next, are valid. On the other hand, method
travel’s validity effect insists that only objects (transitively and reflexively)
owning this may be invalidated within its body, more precisely for this case, it
insists that the object in next must be valid after the call to next.reschedule.
The validity invariant on method next.reschedule ensures that the object in
next is validated after the call.

Linked lists are a popular example for illustrating language features deal-
ing with restricted use of references. Ownership type systems are known to be
inadequate for expressing cross-encapsulation references such as needed by iter-
ators, because of their restrictive reference containment. We show how iterators
are expressed in our language, explaining how our type system is able to relax
the usual ownership restriction on reference containment while still keeping the
iterators safe.

class List[o, d] {
Node<this, d> head;
void insert(Data<d> data) <this, this> { head.insert(data); }
Iterator<o, this, d> getIterator() <bot, top> {

return new Iterator<o, this, d>(head); } }
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class Node[l, d] {
nonrep Data<d> data; nonrep Node<l, d> next;
Node(Node<l, d> next, Data<d> data) {

this.next = next; this.data = data; }
void insert(Data<d> data) <bot, l> {

next = new Node<l, d>(next, data); } }

class Iterator[o, l, d] {
nonrep Node<l, d> current;
Iterator(Node<l, d> node) { current = node; }
void next() <bot, o> { current = current.next; }
int element() <bot, top> { return current.data; }
void insert(Data<d> data) <bot, l> { current.insert(data); } }

// client code
List<o, d> list = ...; Data<d> data = ...; list.insert(data);
Iterator<o, *, d> iterator = list.getIterator();
while iterator.element() {
int data = iterator.element(); iterator.next(); }

list.insert(data) // OK
iterator.insert(data); // error, effect is unknown in current context
Node<*, d> node = list.head; // OK, * can abstract any context
node.next = ... // error, owner of node.next is hidden

The List class provides methods for adding new elements to the list and
for returning iterators for the list. The implementation of the List class is al-
most the same as for ownership types except the methods have been annotated
with a validity contract. Method insert will update the current object and can
be called by clients, so its validity invariant and effect are the current object.
Method getIterator’s validity contract is <bot,top>; it makes no assumptions
about validity (by the bot invariant), and does not invalidate any object (by the
top effect).

In the Node class, the field next is declared to be nonrep so that it is part of
its owner’s representation (the owner being the list, in this example). We can
allow the field next to be part of the node’s representation if the programmer
wants that—this is an explicit design choice: if the field is part of the object’s
representation, then the iterator will not be able to insert objects into the list,
because it will not be able to specify the required effect on the node as part of
its validity contract.

The field current in class Iterator may refer to the node objects owned by
list (note that the class parameter l is bound to the list object). The method
insert may add new elements into the list. The method next allows the iterator
to step to the next link in the list object. Method element will return the
data at the current position of traversal. None of these methods constrain the
validity, because the iterator has no internal representation: its fields are owned
by the list, and any invariant will be associated with the list rather than the
iterator.
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3.4 Abstract Contexts and Mutability from Top to Bot

In the list example above, the client can give the correct types for list and data
objects, but it cannot give the precise type for iterators. This is because the
second formal parameter of the iterators is bound to the internal context of the
list, which cannot be named from the client outside. To solve this problem, we
use the context abstraction techniques introduced in our earlier papers [19,18]
to abstract the name of list’s internal context, so that the client can declare the
correct type to hold a reference to the iterators. This is how our type system
frees programs from the restrictive reference containment enforced by ownership
type system. We allow arbitrary reference structure, yet, we ensure safety of
these references. In this example, the client cannot use the iterators to insert
elements into the list, because this will mutate and break the list’s invariant. In
order for the client to insert new elements, it must use the list’s interface which
allows the list’s local invariant to be re-established by itself. The last two lines
of the client code illustrate that the nodes of the list can be referenced by the
external client code, but they cannot directly update the nodes because they
cannot specify a concrete context for the owner of the nodes’ fields (the list in
this case).

However, our iterators are not read-only references. Iterators are able to re-
turn Data objects which can be mutated by the client. This is very different to
previous read-only systems which use read-only references to allow iterators to
cross the boundary of object encapsulation. More precisely, read-only references
can only call pure (side-effect free) methods and return references in read-only
mode. For instance, the Data objects returned by their read-only iterators cannot
be mutated.

Moreover, our iterators are able to mutate the list’s representation in its
insert method depending on the caller’s context. In this example, the client
sits outside of the list context so it cannot use iterators to mutate the list.
But objects inside the list may call insert on iterators to modify the list. In
this sense, all references in our language are context-aware, they can be used to
read anything, but write capability depends on the contexts where the references
are held.

Oval provides the ability to create immutable objects explicitly. Immutable
objects cannot be mutated after initialization. In Oval, immutable objects are
those objects whose owner is the special context bot. By declaring an object to
have bot as owner, the system allows any other object’s invariant to depend on
this object. Consequently, mutation of an object owned by bot could break the
invariants of those objects. This is disallowed by prohibiting bot from being used
as a validity effect. No well-formed method is capable of mutating objects owned
by bot—effectively they become immutable.

There are some notable special cases for validity contracts. The validity con-
tract for the main method is <top, top>. Validity invariant top means all objects
in the heap are valid. At the beginning of the main method (before execution of
the program), there is no object in the heap. At the end of the main method (af-
ter execution of the program), all objects created by the program must be valid.
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Another special contract is <bot,top>. Methods with a <bot,top> contract do
not require any objects to be valid, and do not break any validity that objects
may have. By the subcontracting rule, any calls within such methods must obey
the same contract. The <bot,top> contract can be used to default the validity
contract of methods in legacy code such as Java programs; any callbacks from
legacy code must be restricted to <bot,top> methods.

4 The Oval Type System

We present a type system for a core part of the Oval language to demonstrate
that the general object validity model of Section 2 is realizable within a type
system. The Oval type system is based on our earlier effective ownership type
system [19]. There, methods are declared with an effective owner, E, which serves
two purposes: it determines the write capability of the method body, and it
restricts access to call contexts where E is known. In Oval, we replace the effective
owner, E, with a validity contract 〈I, E〉. The Oval type system adopts our earlier
scheme [19,18], based on abstraction of ownership contexts, which provides for
liberal read access to owned objects in an ownership type systems.

The most important rules of the Oval type system are field assignment and
method call. Method call is constrained by the subcontracting rules of Sec-
tion 2.2. We do not formalize the expression of object invariants and their depen-
dence on fields; informally, we simply require that object invariants only depend
on the object’s owned fields (those declared without nonrep) and on fields of other
objects that it (transitively) owns. However we do formalize object validity by
presenting a dynamic semantics which tracks a set Σ of valid objects, assum-
ing that the object invariant is re-established for critical method calls (where
I = E = this).

4.1 Syntax and Static Semantics

The abstract syntax is given in Table 2. X ranges over formal context parameters;
and x ranges over variable names including this used to reference the target object
for the current call. Note that this is also used as a context. The overbar is used
for a sequence of constructs; for example, e is used for a possibly empty sequence
e1..en, T x stands for a possibly empty sequence of pairs T1 x1..Tn xn.

The first context argument of a type determines the actual owner of objects
of the type. The abstract context * is used to hide context arguments when they
are not nameable. We do not distinguish syntactically between concrete and
abstract contexts in forming types. However such distinctions are important in
our type rules. For example, the object creation type in a new expression must
be concrete.

Programs consist of a collection of classes with an expression to be evalu-
ated. Classes are parameterized with context parameters having some assumed
ordering expressed by the where clause. The first formal context parameter of a
class determines the owner of this object within the class. Like the original type
systems, the owner of an object is determined by its creation type, and is fixed for
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Table 2. Abstract Syntax for the Oval Source Language

T ::= C〈K〉 types
K, I, E ::= X | this | top | bot | ∗ contexts

P ::= L e programs

L ::= class C[X]� T where X ≺ X {F; M} classes
F ::= [nonrep]opt T f fields

M ::= T m(T x) 〈I, E〉 {e} methods
e ::= terms

x variable
| new T(e) new
| e.f select
| e.m(e) call
| e.f = e assignment

Table 3. Extended Syntax for Oval’s Type Rules

K, I, E ::= ... | ? | Krep contexts
Γ ::= • | Γ , X ≺ X | Γ , x : T environments
S ::= 〈K, I, E〉 stack frames

the lifetime of the object. Unlike the original ownership type systems we do not
insist that the owner is within the other formal parameters of the class, because
we do not use ownership to constrain object references. In the class production,
inheritance � T is optional because our type system does not need a top type.
Each field may optionally be declared to be nonrep, implying that the object’s
own invariant should not depend on it. Each method defines a pair of contexts
〈I, E〉 which specify the validity contract. We interpret the validity invariant as
the down-set of I in the ownership ordering of contexts, and the validity effect is
the up-set of E. The actual validity contract for a method call is determined by
the context binding for the type of the target object (see the lookup [LKP-DEF]

in Table 8). Our term syntax is kept as simple as possible; our interest is focused
on field assignment and method call—the operations which can make changes,
direct or indirect, to objects.

Table 3 extends the abstract syntax for use in the type system. This syntax is
not expressible in programs. The context ? denotes an existential context, that
is, an unknown context. It replaces the general context ∗ when a type is opened
up in a dot expression for a field access or method call (see the [LKP-DEF] rule in
Table 8). Different occurrences of the existential context cannot be compared,
because they represent arbitrarily different, but unknown contexts. Similarly
Krep denotes an existential context whose owner is K. This allows us to expand
the fields of a non-local object without needing to name it as a context (see the
lookups [LKP-FLD-EXP], [LKP-INT’] rules in Table 8). Our earlier paper [18] has
more detail on the topic of context abstractions and existential contexts.

Type environments Γ record the assumed ordering between context parame-
ters, and the types of variables. Stack frames S keep track of the current active
object and the validity contract for the active call. In the dynamic semantics K
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Table 4. Type, Subtype, and Binding Rules

[TYP-OBJ]

defin(C〈K〉, ) = class C ... where K ′ ≺ K ′′ ...

∗ /∈ K Γ � K ′ ≺ K ′′

Γ �o C〈K〉

[TYPE]
Γ �o T ′ � T ′ < T

Γ � T

[SUB-EXT]
class C[X]� T ′ ... T = [K/X]T ′

� C〈K〉 < T

[SUB-RFL] � T < T

[SUB-TRA]
� T < T ′′ � T ′′ < T ′

� T < T ′

[BIN-ABS]
� K ⊆ K ′

� C〈K〉 <: C〈K ′〉

[BIN-SUB]
� T < T ′′ � T ′′ <: T ′

� T <: T ′

corresponds to the current object location; in the static semantics, K is bound to
this in method bodies. 〈I, E〉 denotes the validity contract of the current method.

The type rules proper follow in the next four tables. In addition, Table 8
defines some auxiliary definitions to be used by the type system. We put substi-
tutions and lookups in the auxiliary definitions to keep the type rules simple.

Table 4 provides rules for type well-formedness and subtyping rules for ex-
pressible types. We introduce a separate judgement for bindability to handle
types with existential contexts (which only occur in the type system after field
or method lookup). For expressible types, there is no difference between sub-
typing and bindability. However bindability is not reflexive, because existential
types can only occur on the right-hand side of the binding relation.

Concrete object types are formed by substituting concrete contexts into class
definitions as in [TYP-OBJ]. This rule explicitly excludes context abstraction. By
[TYPE] well-formed expressible types are those that have a valid concrete subtype.
The rules for subtyping are based on substitution in class inheritance [SUB-EXT],
and by reflexive and transitive closure [SUB-RFL], [SUB-TRA]. The binding rules
are governed by a combination of context abstraction [BIN-ABS] and subtyping
[BIN-SUB].

Table 5 defines the context ordering for concrete contexts. It also defines the
rules for context abstraction. [ABS-RFL] ensures that the existential contexts ?
and Krep abstract nothing. Combined with the earlier bindability rule [BIN-ABS]

this ensures that types with existential contexts cannot be associated with the
target of a binding. Finally [SUBCONTRACT] describes rules for enforcing valid-
ity subcontracting, which correspond to the earlier subcontracting definition of
Section 2.2. The fourth case is equivalent to Γ � E � E ′ ∨E = ownerΓ (E ′). This
highlights the fact that calls that affect the validity invariant can only be made
from the owner context.
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Table 5. Context Ordering, Abstraction and Subcontracting Rules

[ORD-ENV]
K ≺ K ′ ∈ Γ

Γ � K ≺ K ′

[ORD-OWN]
K �= bot

Γ � K ≺ ownerΓ (K)

[ORD-BOT]
K �= bot

Γ � bot ≺ K

[ORD-REP]
Γ � Krep ≺ K

[ORD-TRA]
Γ � K ≺ K ′ Γ � K ′ ≺ E

Γ � K ≺ E

[ORD-REF]
Γ � K ≺ K ′ or K = K ′

Γ � K � K ′

[ABS-ANY] � K ⊆ ∗

[ABS-RFL]
K �= ? K �= rep

� K ⊆ K

[SUBCONTRACT]

Γ � I ≺ E =⇒ Γ � I ′ � I

Γ � I ′ ≺ E ′ =⇒ Γ � E � E ′

I = E =⇒ Γ � I ′ ≺ I

I ′ = E ′ =⇒ Γ � E � ownerΓ (E ′)
Γ ; 〈K, I, E〉 � 〈I ′,E ′〉

The rules for well-formed program definitions and declarations are in Table 6.
Themain expressionhas an empty environment, anduses the top context to express
thevalidity contract.Avalidclassmusthavevalidfields andmethods,assuming the
given contextordering.The [METHOD] checks thevalidity contract is in oneof the two
correct forms, where the critical set is just this or is empty, and checks the method
body within the appropriate stack frame. If the method is overriding a superclass
method, its validity contract must be a subcontract of its parent.

Table 7 defines expression types. [EXP-NEW] requires that the object creation
type is a valid object type, and that the constructor arguments are bindable.
Field assignment [EXP-ASS] requires that the assigned expression type be bind-
able to the field type. If the field type involves a hidden context, this is not
possible. For default field accessibility, the target expression e must be this, and
it must be allowed to break its validity. For nonrep fields, the validity of the owner
of the target expression must be able to be modified. Method call [EXP-CAL] is
governed by the validity subcontracting rule; note that this check applies in the
context of the call, so the same call may be allowed in some calling contexts and
not in others. This contributes to the context sensitivity of the type system.

4.2 Dynamic Semantics and Properties

To formulate reduction rules, in Table 9 we extend the syntax of terms and
contexts with typed object locations; they provide the runtime context bindings
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Table 6. Program, Class, Method and Field Rules

[PROGRAM]
� L •; 〈top, top, top〉 � e : T

� L e

[CLASS]

Γ = X ′ ≺ X ′′, this : C〈X〉, super : T Γ � T Γ � M Γ � F

ownerΓ (this) = ownerΓ (super) range(F) ∩ dom(fields(T , this)) = •
� class C[X]� T where X ′ ≺ X ′′ {F; M}

[METHOD]

S = 〈this, I, E〉 Γ , x : T ;S � e : T ′′ Γ � T , T � T ′′ <: T

I = E = this or Γ � I ≺ E

method(Γ(super), this, m) = T ′ m(T ′ ) 〈I ′, E ′〉... =⇒
� T <: T ′ � T ′ <: T Γ ; S � 〈I ′,E ′〉

Γ � T m(T x) 〈I, E〉 {e}

[FIELD]
Γ � T

Γ � [nonrep]opt T f

Table 7. Typing Rules for Expressions

[EXP-VAR]
Γ(x) = T

Γ ; S � x : T

[EXP-NEW]
Γ �o T fields(T , ?) = T Γ ; S � e : T ′ � T ′ <: T

Γ ; S � new T(e) : T

[EXP-SEL]
fieldsΓ

S(e)(f) = T

Γ ; S � e.f : T

[EXP-ASS]

Γ ; S � e.f : T Γ ; S � e ′ : T ′ � T ′ <: T

f /∈ nrfieldsΓ
S(e) =⇒ Γ ; S � 〈bot, e〉 ∧ S = 〈e, ..〉

f ∈ nrfieldsΓ
S(e) =⇒ Γ ; S � 〈bot, ownerΓ (e)〉

Γ ; S � e.f = e ′ : T ′

[EXP-CAL]

methodΓ
S(e, m) = T m〈I, E〉(T )

Γ ; S � e : T ′ � T ′ <: T Γ ; S � 〈I, E〉
Γ ; S � e.m(e) : T

which serve to structure the heap. Objects are modeled as mappings from fields
to locations (for convenience, the object type is encoded in the object’s location
rather than in the object itself). The heap maps locations to objects.

Amongst the extra definitions in Table 10, note that the well-formedness of
the validity set requires that it contains all objects within the validity invariant
I, and I itself when it is distinct from the validity effect E.

Table 11 presents a big-step reduction semantics. It is of particular interest to
trace how the validity set is affected by the reductions, depending on the validity
contract for method call, and how default and nonrep field assignment differ by
either invalidating the target of the call or its owner.

Finally, we present some of the key properties of the type system. The main
result validity preservation is stated together with the conventional type preser-
vation property in Theorem 1. The first line of the if-then block is the validity
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Table 8. Auxiliary Definitions for Typing Rules

[LKP-DEF]
L = class C[X] ... K ′ = [?/∗]K
defin(C〈K〉, K) = [K ′/X, K/this]L

[LKP-FLD]
defin(T , K) = class ... � T ′ {[nonrep]opt T f; ... }

fields(T , K) = f T , fields(T ′, K)

[LKP-FLD-EXP]
Γ ; S � e : T

fieldsΓ
S(e) = fields(T , internalT

S(e))

[LKP-MUT]
class C ... � T {... nonrep T f ...; ... }

nrfields(C〈..〉) = f, nrfields(T)

[LKP-MUT-EXP]
Γ ; S � e : T

nrfieldsΓ
S(e) = nrfields(T)

[LKP-MTH]
defin(T , K) = class ... T ′ m(T x){e} ...

method(T , K, m) = T ′ m(T x){e}

[LKP-MTH ′]
defin(T , K) = class ... � T ′ { ... ; M} m /∈M

method(T , K, m) = method(T ′, K, m)

[LKP-MTH-EXP]
Γ ; S � e : T

methodΓ
S(e, m) = method(T , internalT

S(e), m)

[LKP-OWN]
Γ ; • � e : T

ownerΓ (e) = owner(T)

[LKP-OWN ′]
owner(C〈K, ..〉) = K

[LKP-INT]
S = 〈K, I, E〉

internalT
S(K) = K

[LKP-INT ′]
S = 〈K, I, E〉 e �= K K ′ = owner(T)

internalT
S(e) = K ′

rep

invariant property; and the second line of the if-then is the type preservation
property. Corollary 1 states that all objects created by the program must be
valid at the end of the execution.

Theorem 1 (Validity Preservation and Type Preservation). Given � P,
� H and H � S,

if
{

H; S � Σ

•; S � e : T
and H; Σ; e ⇓S H ′; Σ ′; l, then

{
H ′; S � Σ ′

•; S � l : T ′, � T ′ <: T and � H ′ .

Proof. The proof proceeds by induction on the form of H; Σ; e ⇓S H; Σ; l. Due
to the limited space, we only sketch the proof for validity preservation. Let
S = 〈K, I, E〉. Case [RED-SEL] is trivial. Case [RED-NEW]: we show that the newly
created object is valid by the [OBJECT] rule, then by the [VALIDITY SET] rule we
have the result. Case [RED-ASS]: we need to show assignments cannot invalidate
objects in Σ, by the [EXP-ASS] and the [SUBCONTRACT] rules we have that the
object invalidated by the assignment is equal or outside of E. Since H � S, and
by the [STACKFRAME] rule we have I is inside or equal to the invalidated object,
depending on whether or not I and E are the same. Then by the [OBJECT] and
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Table 9. Extended Syntax for Dynamic Semantics

l, lT typed locations
e ::= ... | l terms
K, I, E ::= ... | l contexts

o ::= f �→ l objects

H ::= l �→ o heaps

Σ ::= bot, l valid objects

Table 10. Auxiliary Definitions for Dynamic Features

[EXP-LOC]
Γ ; S � lT : T

[HEAP]

∀l ∈ dom(H) · •; • � l : T H(l) = f �→ l

fields(T , l) = f T •; • � l : T ′ � T ′ <: T

� H

[STACKFRAME]
{K, I, E} ⊆ dom(H) ∪ {top} • � I ≺ E or K = I = E

H � 〈K, I, E〉

[OBJECT]
• � l ′ � l =⇒ l ′ ∈ Σ

Σ � l

[VALIDITY SET]
Σ ⊆ dom(H) ∪ {top} • � I ≺ E =⇒ Σ � I I = E =⇒ Σ, I � I

H; 〈K, I, E〉 � Σ

Table 11. Reduction Rules

[EXECUTION]
•; bot; e ⇓〈top,top,top〉 H;Σ; l

L e ⇓ H; Σ; l

[RED-CAL]

H;Σ; e ⇓S H ′; Σ ′; l H ′; Σ ′; e ⇓S H ′′; Σ ′′; l
method(l, m) = ...〈I, E〉( x){e ′} H ′′; Σ ′′; [l/x]e ′ ⇓〈l,I,E〉 H ′′′;Σ ′′′; l ′

l = I = E =⇒ Σ ′′′′ = Σ ′′′, l Γ � I ≺ E =⇒ Σ ′′′′ = Σ ′′′

H;Σ; e.m(e) ⇓S H ′′′; Σ ′′′′; l ′

[RED-NEW]
H;Σ; e ⇓S H ′; Σ ′; l lT /∈ dom(H ′) fields(T , lT ) = f

H;Σ; new T(e) ⇓S H ′, lT �→ {f �→ l}; Σ ′, lT ; lT

[RED-ASS]

H;Σ; e ⇓S H ′; Σ ′; l H ′; Σ ′; e ′ ⇓S H ′′; Σ ′′; l ′

f /∈ nrfields(l) =⇒ Σ ′′′ = Σ ′′ − l

f ∈ nrfields(l) =⇒ Σ ′′′ = Σ ′′ − owner(l)

H;Σ; e.f = e ′ ⇓S [l �→ H ′′(l)[f �→ l ′]]H ′′;Σ ′′′; l ′

[RED-SEL]
H;Σ; e ⇓S H ′; Σ ′; l

H;Σ; e.f ⇓S H ′; Σ ′; H ′(l)(f)

[VALIDITY SET] rules, we have the result. Case [RED-CAL]: as for the [RED-ASS]

case, except the target object of the call may be invalidated during the call and
is re-validated after the call.
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Corollary 1 (System Validity). Given � P, if P ⇓ H; Σ; l then Σ = dom(H).

Proof. After applying Theorem 1 to the [EXECUTION] rule, we have the result
by the [VALIDITY SET] rule.

5 Discussion and Related Work

5.1 Boogie and Universes

Our model for object validity is general, and not tied to any particular language.
The Oval language provides just one possible realization of our general model
for validity contracts. It has been inspired, not only by our own attempt to use
ownership types to reason about object invariants and effects [19], but by various
work on the Boogie methodology [17] and Universes [24]. We now compare the
Universes and Boogie approaches with our general model.

Universes uses a relatively simple ownership type system to arrange objects
into layers. Object invariants may depend on objects in the same and inner lay-
ers. Read-only annotations are used to allow object dependencies between layers,
without providing a general update capability. The layering of objects corresponds
to our object preorder�. The validity invariant should be interpreted as the set of
layers below the currently active layer, and the validity effect corresponds to the
current layer. In Universes, there is no attempt to track the (possibly) invalid call
context E, and so its up-closure is not required.

The Boogie methodology, as manifested in Spec#, is based on a program logic,
accompanied by a model for protecting the validity of object state, which dynam-
ically tracks the ownership of objects. The basic model describes objects as ei-
ther consistent or valid or neither. Consistent or valid objects must satisfy their
own invariant, and may only own consistent objects. Within the scope of an ob-
ject pack/upack block, a valid object may be updated and its invariant may be
broken within that scope. For us, the validity invariant corresponds to the set of
valid or consistent objects, and the validity effect corresponds to those objects that
have currently been unpacked. Interestingly, this model allows dynamic transfer of
ownership. For us, this implies that the preorder� is dynamic, so when reasoning
about I and E, we need to allow for different closures as the ownership structure
changes. This may require some extra consistency constraints, but we believe that
our model for validity contracts as summarized in Table 1 is still applicable. This
is worthy of further investigation. In general, program logics like Boogie increase
the specification overhead significantly. We believe the use of an Oval-like type
system can provide framing assumptions for more detailed specifications, thereby
allowing those specifications to be more concise.

Ownership is useful for expressing partially ordered one-to-many dependency
relation, that is, one object may depend on multiple other objects. This kind of
dependency is particularly useful for enforcing locality in object-oriented pro-
grams to allow localized reasoning on object invariants. However, ownership is
not enough for expressing cyclic, many-to-one or many-to-many dependency re-
lations. For instance, in a double-linked list, a node object has two fields—a
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previous field to reference its predecessor node in the list and a next field to
reference its successor. The invariant of such a node typically requires the next
field in its predecessor and the previous field in its successor to reference back
the node itself. As a result, the invariants of two adjacent nodes are mutual.
Ownership cannot capture such an invariant precisely, instead it requires such
an invariant to be maintained by the list (i.e., the owner of the nodes). This is
a sound solution, but in practice, it may complicate specification and reasoning
[17]. In order to verify the invariant of the list, one has to consider all node
objects owned by the list, but in fact modification of one node can affect only
its predecessor and successor nodes.

Universes and Boogies allow local invariants to depend on the states of objects
which are not owned by the current object; those objects are typically required to
be within the same owner or sufficiently unpacked. For example, a node object’s
invariant may mention fields in its predecessor and successor nodes. This kind of
invariant is called a visibility-based invariant [22,17], because it requires an in-
variant to be visible in every method that might violate the invariant, typically
restricted to be within a module or friend classes. Visibility-based invariants
essentially allow programmers to trade the locality offered by ownership for flex-
ibility in the object invariant. They need to check states which are not local, and
consequently generate more complicated proof obligations. Our general model
introduced in Section 2 is independent of the form of the invariant, whether own-
ership or visibility-based. The Oval language has only used an ownership-based
invariant in demonstrating the general model. This results in several advantages
including less specification overhead (only type annotations are needed) and
significantly simplified proof obligations for verification. In the future, we may
consider extending Oval to handle visibility-based invariants as well.

5.2 Ownership Type Systems

Ownership Types [28,12,11,9] allow programmers to enforce a tree-based encap-
sulation by declaring owners of objects as part of their types. Traditional object-
oriented programs offer no object structure, and can be considered as special case
of ownership types where all objects are owned by a single universal context top.

Effective ownership [19] allows programmers to add contexts to methods as
effect owners. It is an encapsulation-aware effect system which frees ownership
types from reference constraint, i.e. it allows arbitrary reference structure, but
still retains a strict encapsulation on object representation. The effect encapsula-
tion property guarantees that any update to an object’s internal state must occur
(directly or indirectly) via a call on a method of its owner. Ownership types can
be generalized as a special case of effective ownership where all effect owners are
the current context this.

The type system we present in this paper generalizes effective ownership by
adding invariant constraints to methods. The effect owner used in effective own-
ership is indeed the validity effect we have used in our new type system. Effective
ownership is a special case of this type system where all validity invariants are
the special context bot. The actual formalization of effective ownership is slightly
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different, but we are able encode them in our type system. Consequently, the
effect encapsulation property is also true in our type system.

The original ownership types hide knowledge of the identity of an object out-
side itself so that it cannot be named from outside. This kind of naming restriction
may limit the expressiveness of ownership types. In particular, ownership types
are known to be unable to express some common design patterns such as iterators
or callbacks, which typically need to cross the boundary of encapsulation.

There have been a number of proposals made to improve the expressiveness of
ownership types. JOE [10] allows internal contexts to be named through read-
only local variables so that internal representation can be accessed from outside.
Ownership Domains [1] use a similar method where read-only fields (final fields
in Java) are used to name internal domains (partitions of contexts) instead of
read-only variables. The inner class solution [9,8] allows inner classes to name
the outer object directly. These proposals tend to break the strict encapsulation
of ownership types, and do not support localized reasoning on object invariants.

5.3 Read-Only Systems

Read-only systems [23,25,5] use read-only references to cross the boundary of
encapsulation, called observational representation exposure in [5]. Read-only ref-
erences are considered harmless because they are restricted—they can only call
pure methods (methods with no side effect) and return other read-only ref-
erences. For example, they are able to express iterators by using a read-only
reference to access the internal implementation of the list object.

However, these iterators can only return data elements in read-only mode,
that is, the elements stored in the list cannot be updated in this way (unless
using dynamic casting with its associated runtime overheads [25]). This is due
to the fact that traditional read-only references are plain read-only—they are
unaware of any encapsulation structure.

Our proposal here allows references to cross encapsulation boundaries but
ensures these references cannot update the internal states directly, that is, any
update still has to be initiated by the owner object. The novelty is that all
references in our system are encapsulation-aware. A reference can never be used
to mutate states encapsulated by the context where the reference is held, yet they
can always be used to mutate states of or outside of the current context. For
example, iterator objects in our program can be used by a client to mutate data
elements stored by a list object, while still protecting the list’s representation
from external modification. Moreover, the iterator objects may or may not be
used to update the list’s internal implementation depending on the contexts
where the iterators are used—the insert method may be called from within the
list context but never from outside of the list.

6 Conclusion

In this paper, we have presented a general framework for tracking object invari-
ants. The novelty of this model is a behavioural abstraction that specifies two
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sets, the validity invariant and the validity effect. The overlap of these two sets
captures precisely those objects that need to be re-validated at the end of the be-
haviour. To support our general model, we have also presented an object-oriented
programming language that uses ownership types to confine dependencies for ob-
ject invariants, and restricts permissible updates to track where object invariants
hold even in the presence of re-entrant calls.
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Abstract. With Java 5 annotations, we note a marked increase in tools that 
statically detect potential null dereferences. To be effective such tools require that 
developers annotate declarations with nullity modifiers and have annotated API 
libraries. Unfortunately, in our experience specifying moderately large code bases, 
the use of non-null annotations is more labor intensive than it should be. 
Motivated by this experience, we conducted an empirical study of 5 open source 
projects totaling 700 KLOC which confirms that on average, 3/4 of declarations 
are meant to be non-null, by design. Guided by these results, we propose adopting 
a non-null-by-default semantics. This new default has advantages of better 
matching general practice, lightening developer annotation burden and being 
safer.  We adapted the Eclipse JDT Core to support the new semantics, including 
the ability to read the extensive API library specifications written in the Java 
Modeling Language (JML). Issues of backwards compatibility are addressed. 

1   Introduction 

Null pointer exceptions (NPEs) are among the most common faults raised by 
components written in object-oriented languages. As a present-day illustration of this, 
we note that of the bug fixes applied to the Eclipse Java Development Tools (JDT) 
Core1 between releases 3.2 and 3.3, five percent were directly attributed to NPEs. 
Developers increasingly have at their disposal tools that can detect possible null 
dereferences by means of static analysis (SA) of component source.  A survey of such 
tools shows that the introduction in Java 5 of Annotations [30, §9.7] seems to have 
contributed to an increase in support for non-null static checking in Java.  

It is well know that SA tools supporting inter-procedural analysis tend to yield a 
high proportion of false positives unless code and support libraries are supplemented 
with appropriate nullity annotations [20, 35]. This currently translates into more work 
for developers; adding annotations to new or existing code can be a formidable task: 
e.g. the Eclipse JDT Core contains approximately 11,000 declarations that are 
candidates for non-null annotation. It has been our experience in annotating 
                                                           
1 The JDT Core includes the Eclipse Java compiler (incremental and batch), code assist, code 

search, etc. 
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moderately large code bases (including the JDT Core), that we spend most of our time 
constraining declarations to be non-null rather than leaving them unannotated.  

Can something be done to alleviate the burden of developers? Imposing such an 
extra burden on developers generally translates into reduced adoption—contrast the 
total number of downloads, over comparable periods, of two fully automated and 
popular SA tools: Esc/Java2 (52,000) which requires developers to write 
specifications and/or annotations vs. FindBugs which doesn’t (270,000)2. Motivated 
by our experiences and inspired by the success of FindBugs (built on the philosophy 
that simple techniques are effective too), a simple solution seemed apparent: switch 
the nullity interpretation of declarations to non-null by default. But since this would 
be contrary to the current Java default, such a switch would only be justified if 
significantly more than 50% of declarations are non-null in practice, and appropriate 
measures are taken to address backwards compatibility and migration of existing 
projects to the new default. We deal with both of these points in this article. 

The main contribution of this paper is a carefully executed empirical study 
(Sections 2 and 3) confirming the following hypothesis: 

In Java programs, at least 2/3 of declarations (other than local variables) that are 
of reference types are meant to be non-null, based on design intent. 

We exclude local variables because their non-nullity can be inferred by intra-
procedural analysis [2, 35].  For this study we sampled 5 open source projects totaling 
722 KLOC of Java source. To our knowledge, this is the first formal empirical study 
of this kind—though anecdotal evidence has been mentioned elsewhere, e.g. [24, 25].   

A review of languages supporting non-null annotations or types (Section 4) shows 
a recent trend in the adoption of non-null as a default. We believe that this, coupled 
with the study results, suggest that the time is ripe for non-null-by-default in Java. A 
second contribution of this paper is a proposal, supported by the study results, that 
declarations of reference types be non-null by default in Java. This new default has 
the advantage of better matching general practice, lightening the annotation burden of 
developers and being safer (Section 5). Our proposal also carefully addresses issues 
of backwards compatibility and code migration. We describe an implementation of 
the new default in a customized version of the Eclipse 3.3 JDT Core which supports 
non-null types [8, 24]. It achieves this by adopting the syntax for nullity modifiers of 
the Java Modeling Language (JML)—e.g. /*@non_null*/ and /*@nullable*/ 3.  
Among other things, this choice of syntax makes it possible to support all versions of 
Java (not just Java 5) and non-null casts.  In addition, it relieves developers from 
having to annotate API libraries since the tool processes the extensive collection of 
API specifications developed by the JML community.  

Expert groups have recently been formed to look into the standardization of 
“Annotations for Software Defect Detection” (JSR 305) [45] and “Annotations on 

                                                           
2 To be fair, we note that FindBugs originally only supported intra-procedural analysis. It now 

supports inter-procedural analysis and hence, like ESC/Java2, will require developers to 
provide nullity annotations when this feature is enabled. 

3 For a brief period, experimental support for such annotations (i.e. inside comments) was a part 
of the 3.2 build. 
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Java Types” (JSR 308) [17]. JSR 305 will “work to develop standard annotations 
(such as @NonNull) that can be applied to Java programs to assist tools that detect 
software defects.” Making the right choice of nullity default will have an important 
impact on the annotation burden of developers and, we believe, can even help 
improve the accuracy of SA tools, particularly nullity annotation assistants (cf. 
Section 5.3).  The next two sections cover the main contribution of the paper: the 
study method and study results, respectively. 

2   Study 

2.1   Hypothesis 

The purpose of the study was to test the following hypothesis:  

In Java programs at least 2/3 of declarations (other than local variables) that are of 
reference types are meant to be non-null, based on design intent. 

A key point of this hypothesis is that it is phrased in terms of design intent; i.e. 
whether or not the application designer intended a particular declaration to be nullable 
or non-null.  Design intent is not something that can be reverse-engineered from the 
inspection of code.  Tools exist which attempt to guess correct nullity annotations, but 
these remain guesses. As an illustration of this, consider the following interface: 

 
public interface A { 
  void m(Object o); 
} 

Should the parameter o be declared non-null?  In the case of an interface, there is no 
code to inspect. While a tool might be able to analyze current implementations of the 
interface, if these happen to be accessible, that does not preclude future 
implementations from having different behaviors. Furthermore, let us assume that the 
only implementation of A has the following definition: 

 
public class C implements A { 
  private Object copy; 
  void m(Object o) { 
    copy = o.clone(); 
  } 
} 

Does this mean that o was meant to be non-null, or have we stumbled upon a bug in 
C.m()?  Without knowledge of intent of the designers of A, we cannot tell. To quote 
Bill Pugh, FindBugs project lead, “Static analysis tools, such as FindBugs, don't 
actually know what your code is supposed to do. Instead, they typically just find 
inconsistencies in your code” [46]. 

Design intent is found most often in the heads of designers and sometimes recorded 
as documentation, inlined code comments or machine checkable annotations and 
specifications. Hence, it was important for us to seek study subjects supported with 
design documentation, that were already annotated or for which we had access to 
designers who could answer our questions as we added annotations to the code. 
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2.2   Case Study Subjects 

It was our earlier work on an ESC/Java2 case study, in the specification and 
verification of a small web-based enterprise application framework named SoenEA 
[47], that provided the final impetus to initiate the study reported in this paper; i.e., 
the burden of having to annotate (what appeared to be) almost all reference type 
declarations of an existing code base with non-null modifiers, seemed to drive home 
the idea that non-null should be the default.  Hence, we chose to include SoenEA as 
one of our case study subjects.  As our next three subjects we chose the JML checker, 
ESC/Java2 and the tallying subsystem of Koa, a recently developed Dutch internet 
voting application4.  We chose these projects because: 

• We believe that they are representative of typical designs in Java applications and 
that they are of a non-trivial size—numbers will be given shortly. 

• The sources included some inlined design documentation and were at least partly 
annotated with nullity modifiers; hence we would not be starting entirely from 
scratch. 

• We were familiar with the source code (and/or had peers that were) and hence 
expected that it would be easier to extend or add accurate nullity annotations.  Too 
much effort would have been required to study and understand unfamiliar and 
sizeable projects in sufficient detail to be able to write correct specifications5. 

• Finally, the project sources are freely available to be reviewed by others who may 
want to validate our specification efforts.   

All of the study subjects named so far are related to work done by the JML 
community and could be considered “academic” projects. Since restricting our 
attention to such samples might bias the study results we chose the Java Development 
Tools (JDT) package of Eclipse 3.3 as our final study subject.  This brings in a “real” 
industrial grade application.  Furthermore, prior to this study we were in no way 
involved in the development of the JDT hence there could be no bias in terms of us 
imposing a particular Java design style on the code base. 

2.3   Procedure 

2.3.1   Selection of Sample Files 
With the study projects identified, our objective was to add nullity annotations to all 
of the source files, or, if there were too many, a randomly chosen sample of files.  In 
the latter case, we fixed our sample size at 35 since sample sizes of 30 or more are 
generally considered “sufficiently large” [29].  Our random sampling for a given 
project was created by first listing the N project files in alphabetical order, generating 
35 random numbers in the range 1..N, and then choosing the corresponding files. 

Table 1 provides the number of files, lines-of-code (LOC) and source-lines-of-code 
(SLOC) [43] for our study subjects as well as the projects that they are subcomponents 
of. Aside from SoenEA, the study subjects are actually an integral (and dependant) part 
of a larger project.  For example, the JML checker is only one of the tools provided as 
part of the ISU tool suite—other tools include JmlUnit and the JML run-time assertion 
                                                           
4 Koa was used, e.g., in the 2004 European parliamentary elections. 
5 Particularly since projects tend to lack detailed design documentation. 
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checker compiler. The Eclipse JDT Core is one of 5 components of the Eclipse JDT, 
which itself is one of several subprojects of Eclipse. Overall, the source for all four 
projects consists of 1475 KLOC (939 KSLOC) from almost 6000 Java source files.  Our 
study subjects account for 722 KLOC from a total population of 1644 files. 

Table 1. General statistics of study subjects and their encompassing projects 

Encompassing 
Project  

JML ISU 
Tools 

ESC 
Tools SoenEA Koa Eclipse 

JDT 
Total 

(partial) 

# of files 831 455 52 459 4124 5921 

LOC (K) 243 124 3 87 1018 1475 

SLOC (K) 140 75 2 62 660 939 

       
Study subject  

 
JML 

Checker 
ESC/ 
Java2 SoenEA Koa Tally 

Subsystem
Eclipse JDT 

Core Total 

# of files 217 216 52 29 1130 1644 

LOC (K) 86 63 3 10 560 722 

SLOC (K) 58 41 2 4 365 470 

 
 
/** 
 * Performs code correction for the given IProblem, 
 * reporting results to the given correction requestor. 
 *  
 * Correction results are answered through a requestor. 
 *  
 * @param problem  the problem which describe the problem to correct. 
 * @param targetUnit denote the compilation unit …. Cannot be null. 
 * @param requestor the given correction requestor 
 * @exception IllegalArgumentException if targetUnit or 
 *            requestor is null. 
 * … 
 * @since 2.0  
 */ 
public void computeCorrections(IProblem problem, … targetUnit, … requestor) throws … { 
  if (requestor == null) { 
 throw new IllegalArgumentException(Messages.correction_nullUnit); 
  } 
  this.computeCorrections( 
 targetUnit, problem.getID(),  
 problem.getSourceStart(),  
 problem.getSourceEnd(),  
 problem.getArguments(), 
 requestor); 
} 
 

Fig. 1. Excerpt from the JDT Core API class org.eclipse.jdt.core.CorrectionEngine 

2.3.2   Annotating the Sample Files 
We then added non-null annotations to declarations where appropriate. As an 
illustration of the type of situations that we faced, consider the code for the 
computeCorrections() method of the public API class org.eclipse.jdt.core. 
CorrectionEngine as shown in Figure 1. (By convention, types inside packages 
named internal are not to be used by client plug-ins, while all other types are 
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assumed to be part of the JDT Core’s public API, hence CorrectionEngine is part of 
the API.)  In principle, clients would only read the method’s Javadoc which would 
allow a developer to learn that targetUnit and requestor must not be null.  Nothing 
is said about problem and yet this argument is dereferenced in the method body 
without a test for null.  Hence we have detected an inconsistency between the Javadoc 
and the code. Further analysis actually reveals another inconsistency: an 
IllegalArgumentException is not thrown when targetUnit is null.  None-the-less, 
the intended nullity attributes for the three formal parameters is clearly non_null. 

A simple example of a field declaration that we would constrain to be non-null is: 
 

static final String MSG1 = “abc”; 

Of course, cases in which the initialization expression is a method call require more 
care.  Similarly we would conservatively annotate constructor and method parameters as 
well as method return types based on the apparent design intent. As an example of a 
situation where there was no supporting documentation, consider the following method: 

String m(int paths[]) { 
  String result = ""; 
  for(int i = 0; i < paths.length; i++) { 
    result += paths[i] + ";"; 
  } 
  return result; 
} 

In the absence of any explicit specification or documentation for such a method we 
would assume that the designer intended paths to be non-null (since there is no test 
for nullity and yet, e.g., the length field of paths is used). We can also deduce that 
the method will always return a non-null String. 

2.3.3   Proper Handling of Overriding Methods 
Special care needs to be taken when annotating overriding or overridden methods. We 
treat non-null annotations as if defining non-null types [8, 24].  In this respect, we 
follow Java 5 conventions and support method 

• return type covariance—as is illustrated in Figure 2; 
• parameter type invariance. 

Hence, constraining a method return or parameter type to be non-null for an 
overriding method in one of our study sample files generally required adding 
annotations to the overridden method declaration(s) as well.  This was particularly 
evident in the case of the JML checker code since the class hierarchy is up to 6 levels 
of inheritance for some of files that we worked on (e.g. JmlCompilationUnit). 

2.4   Verification and Validation of Annotations 

We used two complementary techniques to ensure the accuracy of the nullity 
annotations that we added. Firstly, we compiled the study subjects—using the Eclipse 
JML JDT to be described in Section 5.1—with runtime assertion checking (RAC) 
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public abstract class Greeting  
{ 
  protected /*@non_null*/ String nm; 
 
  public void set(/*@non_null*/ String nm) { 
    this.nm = aNm; 
  } 
 
  public /*@non_null*/ String welcome() { 
    return greeting() + " " + nm; 
  } 
 
  public abstract /*@nullable*/ String greeting(); 
 
} 

(a)  Greeting class 
 

public class EnglishGreeting extends Greeting  
{ 
 
  public void set(/*@nullable*/ String nm) // error: contravariance prohibited in Java 5 
  { 
    ... 
  } 
 
  public /*@non_null*/ String greeting() {  // ok: covariance supported in Java 5 
  { 
    return "Hello"; 
  } 
} 

(b)  EnglishGreeting class 

Fig. 2. Illustration of nullity type variance rules for overriding methods 

enabled and then ran them against each project’s standard test suite. Nullity RAC 
ensures that a non-null declaration is never initialized or assigned null, be it for a local 
variable, field, parameter or method (return) declarations. In some cases the test suites 
are quite large—e.g. in the order of 15,000 for the Eclipse JDT, 50,000 for JML, and 
600 for ESC/Java2.  While the number of tests for ESC/Java2 is lower, some of the 
individual tests are “big”: e.g. the type checker is run on itself.  In addition, we ran the 
RAC-enabled version of ESC/Java2 on all files in the study samples.  Though testing 
can provide some level of assurance, coverage is inevitably partial and depends highly 
on the scope of the test suites. 

Hence, we also made use of the ESC/Java2 static analysis tool. In contrast to 
runtime checking, static analysis tools can verify the correctness of annotations for 
“all cases” (within the limits of the completeness of the tool); but this greater 
completeness comes at a price: in many cases, general method specifications (beyond 
mere nullity annotations) needed to be written in order to eliminate false warnings.   

Using these techniques we were able to identify about two dozen (0.9%) 
incorrectly annotated declarations—excluding errors we corrected in files outside of 
the sample set.  With these errors fixed, tests passing and ESC/Java2 not reporting 
any nullity warnings, we are very confident in the accuracy of the final annotations. 
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2.5   Metrics 

Java reference types can be used in the declaration of local variables, fields, methods 
(return types) and parameters.  In our study we considered all of these types of 
declaration except for local variables since they are outside of the scope of the study 
hypothesis. Unless specified otherwise, we shall use the term declaration in the 
remainder of this article to be a declaration other than that of a local variable.  

We have two principal metrics in this study, both of which are measured on a per 
file basis: 

• d is a measure of the number of declarations that are of a reference type and 
• m is a measure of the number of declarations specified to be non-null (hence m ≤ d). 

The main statistic of interest, x, will be a measure of the proportion of reference type 
declarations that are non-null, i.e. m / d. 

2.6   Statistics Tool 

In order to gather statistics concerning non-null declarations we created a simple Eclipse 
JDT abstract syntax tree (AST) visitor which walks the Java AST of the study subjects 
and gathers the required statistics for relevant declarations. At an earlier point in the 
study, we made use of an enhanced version of the JML checker which both counted and 
inferred nullity annotations using static analysis driven by elementary heuristics. We 
decided instead to annotate all declarations explicitly and use a simple visitor to gather 
statistics. This helped us eliminate one threat to internal validity that arose due to 
completeness and soundness issues of the JML-checker based statistics-gathering tool. 

2.7   Threats to Validity 

2.7.1   Internal Validity 
We see two threats to internal validity.  Firstly, in adding non-null constraints to the 
sample files we may have been excessive. As was discussed earlier, we chose 
to be conservative in our annotation exercise. Furthermore, as was mentioned in 
Section 2.4, we ran the given project test suites with runtime checking enabled and we 
subjected the files to static analysis using ESC/Java2. Since ESC/Java2 is neither 
sound nor complete, this does not offer a guarantee of correctness, but it does increase 
our confidence in the accuracy of the annotations.   

Finally, we note that the code samples (both before the exercise and after) are 
available for peer review: the JML checker is accessible from SourceForge 
(jmlspecs.sourceforge.net); ESC/Java2 and Koa are available from Joseph Kiniry’s 
GForge site (sort.ucd.ie), Eclipse from Eclipse.org, and SoenEA (as well as the Eclipse 
JML JDT) are available from the authors. 

2.7.2   External Validity 
Can we draw general conclusions from our study results? The main question is: can 
our sample of source files be taken as representative of typical Java applications?  
There are two aspects that can be considered here: the design style used in the 
samples, and the application domains. 
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Modern object-oriented programming best-practices promote e.g., a disciplined (i.e. 
moderate) use of null with the Null Object pattern recommended as an alternative [27]. 
Of course, not all Java code is written following recommended best practices; hence our 
sample applications should include such “non-OO-style” code. This is the case for some 
of the ESC/Java2 core classes which were designed quite early in the project history and 
were apparently influenced by the design of its predecessor (written in Modula-3 [12]). 
For example, some of the classes declare their fields as public (a practice that is 
discouraged [3, Item 12]) rather than using getters and setters, making it very difficult to 
ascertain, in the absence of supporting documentation, whether a field was intended to 
be non-null.  Also, the class hierarchy is very flat, with some classes resembling a 
module in the traditional sense (i.e. a collection of static methods) more than a class. 

With a five-sample set, it is impossible to claim that we have coverage in 
application domains, but we note that the SoenEA and Koa samples represent one of 
the most popular uses of Java—web-based enterprise applications [28]. 

3   Study Results 

A summary of the statistics of our study samples is given in Table 2. As is usually 
done, the number of files in each sample is denoted by n, and the population size by 
N. Note that for SoenEA, 11 of the files did not contain any declarations of reference 
types, hence the population size is 41 = 52 – 11; the reason that we exclude such files 
from our sample is because it is not possible to compute the proportion of non-null 
references for files without any declarations of reference types. We see that the total 
number of declarations that are of a reference type (d) across all samples is 2839. The 
total number of such declarations constrained to be non-null (m) is 2319. The 
proportion of non-null references across all files is 82%. 

We also computed the mean, x , of the proportion of non-null declarations on a per 
file basis (xi = di / mi).  The mean ranges from 79% for the Eclipse JDT Core, to 89% 
 

Table 2. Distribution of the number of declarations of reference types 

  

JML 
Checker 

ESC/ 
Java2 

SoenEA Koa TS 
Eclipse 

JDT 
Core 

Sum or 
Average 

n 35 35 41 29 35 175 

N 217 216 41 29 1130 1633 

∑ di 420 989 231 566 633 2839 

∑ mi 362 872 196 424 465 2319 

∑mi / ∑di 86% 88% 85% 75% 73% 82% 

mean ( x ) 89% 85% 84% 80% 79% 83% 

std.dev.(s) 0.14 0.22 0.28 0.26 0.24 - 

E (α=5%) 4.4% 6.8% - - 7.7% - 

μmin = x –E 85% 78% 84% 80% 71% 80% 
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for the JML checker. Also given are the standard deviation (s) and a measure of the 
maximum error (E) of our sample mean as an estimate for the population mean with a 
confidence level of 1 – α = 95%. The overall average and weighted average (based on 
N) for μmin are 80% and 74%, respectively. Hence we can conclude with 95% 
certainty that the population means are above μmin = 74% in all cases. As was 
explained earlier, we were conservative in our annotation exercise, hence is it quite 
possible that the actual overall population mean is greater than this. 

All declarations were non-null (i.e. x = 100%) for 46% of the files included in our 
sampling: 10% of JML, 9% of ESC/Java2, 13% of SoenEA, 7% of Koa and 7% of Eclipse 
JDT files. The distribution of the remaining 54% of files sampled is shown in Figure 3; 
each bar represents the proportion of sampled files having a value of x in the given 
range—following standard notation, [a,b) represents the interval of values v in the range 
a ≤ v < b. We see that the JML checker has no files with an x in the range [0-10%).  On 
the other hand, the JDT has the largest proportion of files in the range [80-90%).   

The mean of x by kind of declaration (fields, methods and parameters) for each of 
the study samples is given in Figure 4. The mean is highest for parameters in all cases 
except for the Eclipse JDT, and it is second highest for methods in all cases except for 
Koa. The Eclipse JDT has the highest proportion of non-null fields; we believe that 
this is because Eclipse developers make extensive use of named string constants 
declared as static final fields. 

Hence the study results clearly support the hypothesis that in Java code, over 2/3 of 
declarations that are of reference types are meant to be non-null—in fact, it is closer 
to 3/4. It is for this reason that we recently adapted the Eclipse JDT Core to support 
nullity modifiers and to adopt non-null as the default.  We describe our enhancements 
to the Eclipse JDT Core in Section 5.1. In the next section we explore related work. 
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Fig. 3. Distribution of the percentage of sampled files having a value for x (the proportion of 
non-null declarations) in the range [0-100%).  The remaining 46% of files had x = 100%. 
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Fig. 4. Mean of x, the proportion of non-null declarations, by kind 

4   Related Work: Languages and Nullity 

In this section we present a summary of the languages, language extensions and tools 
that offer support for non-null types or annotations.  This will allow us to better assess 
current language design trends in the treatment of nullity, and hence better establish 
the context for the proposal presented in Section 5. 

4.1   Languages Without Pointer Types 

Early promotional material for Java touted it to be an improvement over C and C++, 
in particular because “Java has no pointers” [26, Chapter 2], hence ridding it of “one 
of the most bug-prone aspects of C and C++ programming” [26, p.6].  Of course, 
reference types are implemented by means of pointers, though Java disciplines their 
use—e.g. the pointer arithmetic of C and C++ is prohibited in Java. 

Other languages have pushed this discipline even further by eliminating null.  
Obvious examples are functional languages, including ML which also supports 
imperative features such as references and assignment. Another noteworthy example 
from the ML family is the Objective Caml object-oriented language. Though ML and 
Objective Caml support references, every reference is guaranteed to point to an 
instance of its base type, because the only way that a reference can be created is by 
taking the reference of a value of the base type [44].  Hence, references are 
(vacuously) non-null by default in these languages.  Of course, a generic “pointer 
type” can be defined in ML or Objective Caml as a user-defined tagged union type 

 
type 'a pointer = Null | Pointer of 'a ref; 
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Programmers need not go out of their way to define and use such a type since it is 
very seldom necessary [36].  Similar remarks can be made of early prototypical 
object-oriented languages like CLU. CLU (vacuously) supported non-null references 
by default since it did not have an explicit notion of pointers, nor did it have a special 
“null” value belonging to every reference type. Our study results confirm that Java 
developers, like Objective Caml programmers, need non-null types more often than 
nullable types. 

4.2   Imperative Languages with Pointer Types 

To our knowledge, the first imperative programming language, or language extension, 
with pointer types to adopt the non-null-by-default semantics is Splint [19, 21].  Splint 
is a “lightweight” static analysis tool for C that evolved out of work on LCLINT (a type 
checker of the behavioral interface specification language for C named Larch/C 
[18, 32]).  Splint is sometimes promoted as “a better lint” because it is able to make 
use of programmer supplied annotations to detect a wider range of potential errors, 
and this more accurately, than lint. Annotations are provided in the form of stylized 
comments. In Splint, declarations having pointer types are assumed to be non-null by 
default, unless adorned with /*@null*/.  Splint does nullity checking at “interface 
boundaries” [21, §2]: annotations can be applied to function parameters and return 
values, global variables, and structure fields but not to local variables [22, p.44]. 

While there are no other extensions to C supporting the non-null-by-default 
semantics, extensions for non-null annotations or types have been proposed.  For 
example, Cyclone [38], described as a “safe dialect of C”, supports the concept of 
never-NULL pointers, written as “T @” in contrast to the usual syntax “T *” for nullable 
pointers to T [31].  As another example, we note that the GNU gcc supports a form of 
non-null annotation for function parameters only; e.g. an annotation of the form 

 
__attribute__((nonnull (1, 3))) 

after a function signature would indicate that the first and third arguments of the 
function are expected to be non-null [48, §5.24]. 

4.3   Object-Oriented Languages (Non-Java) 

4.3.1   Eiffel 
The recent ECMA Standard of the Eiffel programming language introduces the notions 
of attached and detachable types [13].  These correspond to non-null (or non-void 
types, as they would be called in Eiffel) and nullable types, respectively. By default, 
types are attached—which, to our knowledge, makes Eiffel the first non research-
prototype object-oriented language to adopt this default. Eiffel supports covariance in 
method return types and invariance of parameter types except with respect to parameter 
nullity, for which it supports contravariance [13, §8.10.26, §8.14.5]—see Table 3.   

Prior to the release of the ECMA standard, types were detachable by default. 
Hence a migration effort for the existing Eiffel code base has been necessary. Special 
consideration has been given to minimizing the migration effort in the form of 
compiler and tool support. 
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Table 3. Summary of support for non-null 

Member declaration  
modifier (prefix) for 

Non-null  
Annotation (A) and 

Checking  
at run-time (R), or 

statically at compile-
time (S). 

Abbr.: all ( = ARS); 
none ( ) 

 

Overriding  
method type 

variance  
w.r.t. …  Language 

/ 
Tool 

T
ype (T

) / A
nnotation (A

) 

D
efault: non-null (N

N
) or  

nullable (nu) 

non-null nullable 

m
ethod 

param
 

field 

local var 

array elt 

result 
nullity 

param 
-eter 

nullity 

A
nno. A

P
I of std libraries? 

C
lass m

odifier? 

C
om

piler option to invert default 

Splint A NN /*@notnull*/ /*@null*/ AS AS AS S  N/A N/A  N/A  
Cyclone T nu @, e.g. T@ (std., e.g. T*)   ( )   N/A N/A  N/A  

Eiffel T NN ! ?     covariance contravar.    
Spec# T nu ! (suffix) ? (suffix)    AS invariance invariance ( )   
Nice T NN ! ? AS AS AS AS  covariance contravar.    
Java 

support 
              

JML A NN /*@non_null*/ /*@nullable*/   AS AS covariance invariance    
IntelliJ 
IDEA 
(≥ 5.1) 

A nu @NotNull @Nullable AS AS AS AS  covariance contravar.    

Nully  
(IDEA 
plug-in) 

A nu @NonNull @Nullable  ( ) ( )  no 
restriction

no 
restriction 

   

FindBugs 
(≥ 0.8.8) 

A nu @NonNull 
@Check-
ForNull 

AS AS S  no 
restriction

no 
restriction 

   

JastAdd +  
NonNull 
Extension 

A nu [NotNull] [MayBeNull] AS AS AS AS  invariance invariance    

Eclipse 
JML 

JDT (3.3) 
T NN /*@non_null*/ /*@nullable*/     covariance invariance    

 

4.3.2   Spec# 
Spec# is an extension of the C# programming language that adds support for 
contracts, checked exceptions and non-null types.  The Spec# compiler statically 
enforces non-null types and generates run-time assertion checking code for contracts 
[2]. The Boogie program verifier can be used to perform extended static checking of 
Spec# code [11].  While Spec# code cannot generally be processed by C# compilers, 
compatibility can be maintained by placing Spec# annotations inside stylized 
comments (/*^ … ^*/) as is done with other annotation languages like Splint and 
JML (which use /*@ … */). 

Introduction of non-null types (vs. annotations) requires care, particularly with 
respect to field initialization in constructors and helper methods [23]. Open issues also 
remain with respect to arrays and non-null static fields, for which the Spec# compiler 
resorts to run-time checking to ensure type safety [1, §1.0]. For reasons of backwards 
compatibility, a reference type name T refers to possibly null references of type T. 
The notation T! (or /*^ ! ^*/, with a special shorthand of /*!*/) is used to represent 
non-null references of type T.   
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As of the February 2006 release of the Spec# compiler, it is possible to use a 
compiler option to enable a non-null-by-default semantics. When this is done, T? can 
be used to denote possibly null references to T.  Note, however, that Spec# has no 
class level modifiers which would allow the default nullity to be set for a single class. 
We note in passing that of all the languages discussed in this section, Spec# is the 
only one with annotation suffixes (i.e. that appear after the type name rather than 
before).  Nullity return type and parameter type variance for overriding methods in 
Spec# conforms to the type invariance rules of C#—i.e., types must be the same. 

4.3.3   Nice 
Nice is a programming language whose syntax is superficially similar to that of Java. 
It can be thought of as an enriched variant of Java supporting parametric types, multi-
methods, and contracts, among other features [4, 5].  Nullable types are called option 
types in Nice terminology. It is claimed that Nice programs are free of null pointer 
exceptions.  By default, a reference type name T denotes non-null instances of T. To 
express the possibility that a declaration of type T might be null, one prefixes the type 
name with a question mark, ?T [6]. 

4.4   Java Support for Non-null 

4.4.1   FindBugs 
The FindBugs tool does static analysis of Java class files and reports common 
programming errors; hence, by design, the tool forgoes soundness and completeness 
for utility; an approach that is not uncommon for static analyzers [34].  In order to 
increase the accuracy of error reporting related to nullity and to better be able to 
assign blame, support for nullity annotations for return types and parameters was 
recently added—annotations can be applied to local variables, but they are effectively 
ignored.  The annotations are: @NonNull, used to indicate that the declared entity 
cannot be null, and @CheckForNull, indicating that a null value should be expected 
and hence, any attempted dereference should be preceded with a check [35]. 

Although FindBugs has been applied to production code (e.g. Eclipse 3.0 source), 
nullity annotations have not yet been used on such samples.  Our study results suggest 
that when this happens, specifiers are likely to find themselves decorating most 
reference type declarations with @NonNull. 

4.4.2   Nully and the IntelliJ IDEA 
Nully is an IntelliJ IDEA plug-in that can be used to detect potential null dereferences 
at edit-time, compile-time and run-time. It can be applied to method return types and 
parameters as well as local variables but not fields. Nully documentation claims that it 
supports run-time checking of non-null constraints on local variables but this could 
not be confirmed. Non-null checking of parameters is only provided in the form of 
run-time checks [39]. 

There has yet to be an official release of Nully and it is not clear whether the tool is 
still being developed, particularly since the latest release of the IntelliJ IDEA marks the 
introduction of its own (proprietary) annotations @NotNull and @Nullable [37].  IDEA 
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supports edit-time and compile-time checks, but not run-time checks of non-null. IDEA 
supports nullity return type covariance and parameter type contravariance. We note that 
this is incompatible with Java which requires invariance for parameter types.  

4.4.3   JastAdd 
JastAdd is an open source “aspect-oriented compiler construction system” whose 
architecture promises to support compiler feature development in a more modular 
fashion than is usually possible [14, 33]. As a demonstration of this flexibility, 
support for non-null types has been defined as an “add-on” to the JastAdd based Java 
1.4 compiler [15]. The implemented type system is essentially that of Fähndrich and 
Leino [24]. In fact, they make use of the same annotations, which makes the extension 
incompatible with standard Java (of course, it should be rather easy to rename the 
annotations to be conformant to Java 5 annotation syntax). Like Spec#, nullity 
modifiers of overriding methods must match exactly, both for return and parameter 
types.  To provide support for its non-null type system, JustAdd was extended with 
the ability to infer type nullity and rawness for APIs and other legacy code. After 
analyzing 100 KLOC from the Java 1.4 API, 24% of reference return types were 
inferred to be non-null and 70% of dereferences were found to be safe [15].    

4.4.4   Java Modeling Language 
The Java Modeling Language (JML) originated from Iowa State University (ISU) 
under the leadership of Gary Leavens. JML is currently the subject of study and use 
by a dozen international research teams [40].  It is a behavioral interface specification 
language that, in particular, brings support for Design by Contract (DBC) to Java 
[41]. Using JML, developers can write complete interface specifications for Java 
types.  JML annotated Java code can be compiled with standard Java compilers 
because annotations are contained in stylized comments whose first character is @. 
JML enjoys a broad range of tool support including [7, 40]: 

• Jmldoc that generates documentation in a manner that is similar to Javadoc, but 
incorporating JML specifications. 

• jmlc, the ISU JML run-time assertion checker compiler. 
• ESC/Java2, an extended static checker that provides a compiler-like interface to 

fully automated checking of JML specifications.  Like similar tools, ESC/Java2 
compromises soundness and completeness for efficacy and utility. 

• LOOP tool that can be used in conjunction with PVS to perform complete 
verification of JML annotated Java applications. 

• JmlUnit, a tool for generating JUnit test suites using JML specifications as test 
oracles. 

• JMLKEY tool that offers support for model-driven design, principally from UML 
class diagrams, with JML as a design (constraint) specification language. The tool 
supports the complete JavaCard language. 

JML has nullity modifiers (non_null and nullable) and it recently adopted a non-
null-by-default semantics for reference type declarations [9].   
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4.5   Summary 

A summary of the languages, extensions and tools covered in this section, is given in 
Table 3. Two key observations are that for all languages and tools not using Java 5 
annotations there seems to be a trend in adopting 

• non-null type system over non-null annotations, with 
• non-null as the default. 

Even well established languages like Eiffel are making the bold move of switching to 
the new default [42].  The apparent trend in the evolution of languages supporting 
pointers would seem to indicate that the time is ripe to consider a switch in Java from 
nullable-by-default to non-null-by-default.  A concrete proposal for this is given in the 
next section. 

5   Non-null by Default in Java 

The study results suggest that an adoption of non-null-by-default in Java would have 
the advantage of 

• Better matching general practice: the majority of declarations will be correctly 
constrained to be non-null, and hence, 

• Lightening the annotation burden of developers; i.e. there are fewer declarations to 
explicitly annotate as nullable. 

In addition, and possibly more importantly, the new default would be safer: 

• Processing of null generally requires extra programming logic and code to be 
handled correctly. With the new default, an annotation now explicitly alerts 
developers that null values need to be considered.   

• If a developer delays or forgets to annotate a declaration as nullable, this will at 
worst limit functionality rather than introducing unwanted behavior (e.g., null 
pointer exceptions)—also, limited functionality is generally easier to detect than 
potential null pointer exceptions. 

5.1   An Implementation of Non-null by Default: Eclipse JML JDT 

Guided by our experiences in the implementation of non-null types and non-null by 
default in JML tools [8], we have recently completed a similar implementation as an 
extension to the Eclipse JDT Core—which we will call the Eclipse JML JDT Core (or 
JML JDT for short).  Since 3.2, the Eclipse JDT Core has supported intra-procedural flow 
analysis for potential null problems.  The JML JDT builds upon and extends this base. 

One of the first and most obvious questions which we faced was: which annotation 
syntax should the tool support? Until the JSR 305 [45] efforts are finalized, adhering 
to JML-like annotations seemed advantageous since it would allow the JML JDT to 

• support nullity annotations for all versions of Java, not just Java 5 (many projects, 
including Eclipse, are still at Java 1.4). 
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• support casts to non-null (these are necessary to counter false positives).  Java 5 
annotations cannot be used for this purpose, though JSR 308 [17] is likely to 
address this limitation as of Java 7. 

• naturally recognize and process the extensive collection of JML API specifications 
which have been developed over the years by the JML community. 

Using JML syntax also means that the source files will be more easily amenable to 
processing by the complementary suite of JML tools (cf. Section 4.4.4). Once the 
standard Java 5 annotations are defined, it will be rather easy to adapt the tool to 
process these annotations as well. 

A summary of the JML JDT Core capabilities is given at the bottom of Table 3 on 
page 239. In particular we note that it supports edit-time, compile-time and runtime 
checking of nullity annotations—see Figure 5. 

 

Fig. 5. Screenshot of the Eclipse JML JDT 

5.2   Backwards Compatibility, and Migration to the New Default 

The JML JDT supports tool-wide and project specific settings for the choice of 
nullity default. A finer grain of control is provided in the form of type (i.e., class 
or interface) scoped declaration modifiers named nullable_by_default, and 
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non_null_by_default.  Applying the first of these modifiers to a type enables 
developers to recover the nullable-by-default semantics; i.e., all reference type 
declarations in the class or interface that are not explicitly declared non-null are 
interpreted as nullable. Note that the scope of the *_by_default modifiers is strictly 
the type to which it is applied; hence, it is not inherited by subtypes.  

In addition to these class- and interface-scoped modifiers, a script is available that 
enables developers to add the nullable_by_default modifier to all classes and 
interfaces in a given project.  This allows the global project default to be non-null 
while, gradually, and as needed, files can be reviewed and updated one-by-one to 
conform to the new default by 

• adding nullable modifiers, 
• optionally removing explicit non_null modifiers (if there are any), and finally, 
• removing the nullable_by_default modifier. 

(This is the process which we have been following in our gradual migration of the 
thousands of JML-annotated source files which are part of our tool and case study 
repositories.) Of course, such a porting effort also drives home the importance of 
adopting the right default semantics as early as possible. 

5.3   Helping Automated Annotation Assistants Too 

The best time to add nullity annotations is when code is being created since at that 
time the original author is available to record his or her design intents. Adoption of 
non-null by default means that developers will have fewer declarations to annotate in 
the new code that they write.  

What can be done about existing unannotated code? There exist a few fully automatic 
static analysis tools, called annotation assistants, which can help in adding nullity 
annotations (among other specification constructs) to source files. Does the existence of 
such tools eliminate the need to change nullity defaults?  We believe not. For the most 
part, these annotation assistants are research prototypes and would be unable to cope with 
large code bases. In a recent study, Engelen lists three non-null annotation assistants [16]: 
the JastAdd Nullness Inferrer [15], Houdini [25] and the more recent CANAPA [10]. Of 
these tools, only Houdini has published performance results. Houdini makes use of 
ESC/Java2 to test its annotation guesses, and it is capable of processing less than 500 
lines per hour (though admittedly it infers more than non-null annotations). On the other 
hand, the accuracy of its non-null annotations is reported at 79% [25]. 

Our study results have shown that we can get comparable accuracy simply by 
assuming that declarations are non-null. We believe that the switch to non-null by 
default can actually be an aid to annotation assistants. Tools can assume that 
declarations are non-null (and hence get a majority of annotations correct) and only 
opt for nullable if there is clear evidence that the declaration can be assigned null. 

6   Conclusion 

In this paper, we report on a novel study of five open projects (totaling over 722 
KLOC) taken from various application domains. The study results have shown that on 
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average, one can expect approximately 75% of reference type declarations to be non-
null by design in Java. We believe that this report is timely, as we are witnessing the 
increasing emergence of static analysis (SA) tools using non-null annotations to detect 
potential null pointer exceptions.  Before too much code is written under the current 
nullable-by-default semantics, it would be preferable that Java be adapted, or at least a 
standard non-null annotation-based extension be defined, in which declarations are 
interpreted as non-null by default. This would be the first step in the direction of an 
apparent trend in the modern design of languages (with pointer types), which is to 
support non-null types and non-null by default. 

One might question whether a language as widely deployed as Java can switch nullity 
defaults. If the successful transition of Eiffel is any indication, it would seem that the 
switch can be achieved if suitable facilities are provided to ease the transition. We believe 
that our Eclipse JML JDT offers such facilities in the form of support for project-specific 
as well as fine-grained control over nullity defaults (via type-scope annotations). Until 
standard Java 5 nullity annotations are adopted via JSR 305, we have designed the JML 
JDT to recognize JML style nullity modifiers, hence allowing the tool to reuse the 
comprehensive set of JML API specifications (among other advantages). Adding nullity 
annotations is time consuming. By adopting JML-style nullity modifiers we also offer 
developers potentially increased payback, in that all other JML tools will be able to 
process the annotations as well—including the SA tool ESC/Java2 and JmlUnit, which 
generates JUnit test suites using JML specifications and annotations as test oracles. 

As a natural continuation of our work, we have begun enhancements to the Eclipse 
JML JDT to allow runtime and compile-time (SA) support for Design by Contract via 
a core of JML’s syntax. 
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Abstract. We present Shekoosh, a novel framework for constraint-based gener-
ation of structurally complex inputs of large sizes. Given a Java predicate that
represents the desired structural integrity constraints, Shekoosh systematically
explores the input space of the predicate and generates inputs that satisfy the
given constraints. While the problem of generating an input that satisfies all the
given constraints is hard, generating a structure at random, which may not satisfy
the constraints but has a desired number of objects is straightforward. Indeed,
a structure generated at random is highly unlikely to satisfy any of the desired
constraints. However, it can be repaired to transform it so that it satisfies all the
desired constraints.

Experiments show that Shekoosh can efficiently generate structures that are
up to 100 times larger than those possible with previous algorithms, including
those that are based on a dedicated search and also those that use off-the-shelf
enumerating SAT solvers.

Keywords: Constraint-based Generation, Software Testing, Data Structure Re-
pair, Integer Constraint Solving.

1 Introduction

Software systems are steadily growing in complexity and size. At the same time, relia-
bility is becoming a more and more vital concern. Software failures already cost the US
economy tens of billions of dollars annually [1]. To meet the ever-increasing demand for
reliability, a great deal of progress is required in improving the current state-of-the-art
to deliver higher quality software at a lower cost.

Software testing, the most commonly used technique for validating the quality of
software, is a labor intensive process, and typically accounts for about half the total cost
of software development and maintenance [2]. Automating testing would not only re-
duce the cost of producing software but also increase the reliability of modern software.

While testing is a conceptually simple process—just create a test suite, i.e., a set
of test inputs, run them against the program, and check if each output is correct—the
current approaches to testing remain expensive and ineffective. The key issue with the
current practice of testing is the need to manually generate test suites.

For programs that take as inputs structurally complex data, which pervade mod-
ern software, test generation is particularly hard. Desired inputs must satisfy complex
structural integrity constraints that characterize valid structures. Examples of structures
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c© Springer-Verlag Berlin Heidelberg 2007
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include text-book data structures, such as red-black trees that characterize balanced bi-
nary search trees [3], which are widely used as library classes, as well as various other
structures, such as fault-trees that characterize failures of mission-critical systems [4]
and intentional names that characterize properties of services in a dynamic networked
environment [5], which are implemented in stand-alone applications.

There are two fundamental approaches for generating structurally complex tests:
one, representation-level generation by explicitly allocating objects and setting val-
ues of their fields such that the underlying constraints are satisfied; two, abstract-level
generation by a sequence of method invocations using the API. The two approaches
are complementary and have their advantages and disadvantages. For example, while
concrete-level generation requires the user to a priori provide constraints, abstract-level
generation requires the user to first correctly implement the methods used in a sequence.

Recent years have seen a significant progress in automating both these approaches.
Constraint-based techniques are able to provide efficient test enumeration at the repre-
sentation level using off-the-shelf SAT solvers [6] as well as using novel search algo-
rithms [7,8,9]. Efficient state matching algorithms are able to provide test enumeration
at the abstract level by pruning redundant method sequences [11, 12, 10].

Much of the prior work, however, has focused on systematic generation of small
structures. The motivation—inspired by traditional model checking—for that is to en-
able bounded exhaustive testing, where a program is tested on all (in-equivalent) inputs
within a small input size. While bounded exhaustive testing does increase a developer’s
confidence in their software, it is not prudent to altogether ignore testing the program on
larger inputs. The existing test generation techniques do not provide an efficient way to
generate large structures. Note that the ability to generate large structures even enables
a systematic approach to test the performance of the software.

This paper presents a novel algorithm for constraint-based generation of large inputs
that represent structurally complex data. We view structures as object graphs whose
nodes represent objects and edges represent fields. A key observation behind our algo-
rithm is that while generating an object-graph that satisfies desired structural constraints
is hard, generation of a connected graph at random with a desired number of nodes is
straightforward. Of course, a graph generated at random is highly unlikely to satisfy any
of the desired constraints and would therefore represent an invalid structure. However,
we can systematically repair such a graph such that it satisfies all the constraints.

Our algorithm deploys an efficient repair routine that we have developed in our pre-
vious work on error recovery [13]. Given a structure that violates desired integrity
constraints, the repair routine performs repair actions, which mutate the structure to
transform it into a valid structure. The repair routine performs a systematic state-space
exploration of a neighborhood of the given structure and uses symbolic execution [14]
as well as heuristics to perform efficient and effective repair.

We have evaluated our test generation algorithm on a variety of data structure sub-
jects, including those from the Java Collection Framework. Experimental results using
our prototype implementation, Shekoosh, show that our algorithm can generate struc-
tures that are 100 times larger than those possible with previous constraint-based gen-
eration techniques, such as Korat [7] that implements a dedicated search, or TestEra [6]
that uses the Alloy Analyzer [15] and off-the-shelf SAT solvers, such as mChaff [16].
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We make the following contributions:

– Repair for generation. We introduce the idea of using data structure repair to
generate structurally complex tests.

– Algorithm to generate large inputs. We present an efficient algorithm for
constraint-based generation of large inputs that represent structurally complex data.

– Implementation. We present the Shekoosh tool that implements our test generation
algorithm.

– Evaluation. We evaluate our implementation using a variety of subjects and present
experimental results that show two orders of magnitude improvement over the pre-
vious state-of-the-art.

2 Example

This section describes an example that illustrates our test generation algorithm. Con-
sider the following class declaration that declares a binary search tree, i.e., an acyclic
graph that satisfies the search constraints on the values of its nodes:

c l a s s B i n a r y S e a r c h T r e e {
Node r o o t ;
i n t s i z e ;

s t a t i c c l a s s Node {
i n t elem ;
Node l e f t ;
Node r i g h t ;

}
}

Each BinarySearchTree object has a root node and stores the number of nodes
in the field size. Each Node object has an integer value, called elem, and has a left
and a right child. The structural constraints of a binary search tree can be written
as a predicate that returns true if and only if its input satisfies all the constraints. Fol-
lowing the literature, we term such predicates repOk methods and for object-oriented
programs, we term structural invariants class invariants [17].

The class invariant of BinarySearchTree can be formulated as follows.

boolean repOk ( ) {
i f ( ! i s A c y c l i c ( ) ) re tu rn f a l s e ;
i f ( ! s i zeOk ( ) ) re tu rn f a l s e ;
i f ( ! s e a r c h C o n s t r a i n t s O k ( ) ) re tu rn f a l s e ;
re tu rn tru e ;

}

When invoked on a BinarySearchTree object o, the predicate repOk traverses the
object graph rooted at o and checks all the constraints that define a binary search tree.
If any constraint is violated the predicate returns false; otherwise, it returns true. The
helper methods are implemented as standard work-list-based algorithms that keep track
of visited nodes [18] (Appendix A gives an implementation of the helper methods).
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To generate tests, our prototype Shekoosh takes as inputs the class declarations, the
repOk predicate and a desired structure size. For this example, for size 100, Shekoosh
takes 32 milliseconds (on average) to generate a valid binary search tree; for size 10000
(respectively 100000), Shekoosh generates a structure in less than one (respectively
three) seconds (on average). In comparison, TestEra [6], which uses the Alloy Analyzer
fails to generate a binary search tree with twenty nodes, due to the analyzer’s inability
to translate the structural invariant from Alloy to a propositional formula given twenty
minutes. Korat [7], which implements a specialized search fails to generate a binary
search tree with thirty nodes in twenty minutes. Section 5 presents a detailed compari-
son for a variety of subject structures.

3 Background: Forward Symbolic Execution

Forward symbolic execution is a technique for executing a program on symbolic values
[14]. There are two fundamental aspects of symbolic execution: (1) defining semantics
of operations that are originally defined for concrete values and (2) maintaining a path
condition for the current program path being executed. A path condition specifies nec-
essary constraints on input variables that must be satisfied to execute the corresponding
path. As an example, consider the following program that returns the absolute value of
its input:

i n t abs ( i n t i ) {
L1 . i n t r e s u l t ;
L2 . i f ( i < 0)
L3 . r e s u l t = −1 ∗ i ;
L4 . e l s e r e s u l t = i ;
L5 . re tu rn r e s u l t ;

}

To symbolically execute this program, we consider its behavior on a primitive integer
input, say I . We make no assumptions about the value of I (except what can be deduced
from the type declaration). So, when we encounter a conditional statement, we consider
both possible outcomes of the condition. To perform operations on symbols, we treat
them simply as variables, e.g., the statement on L3 updates the value of result to be
−1 ∗ I . Of course, a tool for symbolic execution needs to modify the type of result to
note updates involving symbols and to provide support for manipulating expressions,
such as −1 ∗ I . Symbolic execution of the above program explores the following two
paths:

p a t h 1 :
[ I < 0] L1 −> L2 −> L3 −> L5
p a t h 2 :
[ I >= 0] L1 −> L2 −> L4 −> L5

Note that for each path that is explored, there is a corresponding path condition
(shown in square brackets). While execution on a concrete input would have followed
exactly one of these two paths, symbolic execution explores both.
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4 Algorithm

This section describes our test generation algorithm. Our prototype implementation,
Shekoosh, has three main modules: Egor, a random graph generator, Juzi++, an opti-
mized repair framework based on our previous work on error recovery [13], and Dicos,
a solver for difference constraints [3].

We describe the algorithm for generating a structure that has a unique root; struc-
tures that have more than one root are handled similarly [7]. Figure 1 shows the gen-
eration framework, which takes three inputs: (1) clazz that represents the class of the
structure’s root, (2) predicate repOk that represents the structural integrity constraints,
and (3) size, a set of pairs, which defines the number of objects for each class in the
structure. To illustrate, consider the declaration of the class BinarySearchTree from
Section 2. To generate tree objects with 100 nodes, we set size = {<BinarySearch
Tree, 1>, <Node, 100>}.

Shekoosh performs the following steps:

– Allocate appropriate objects using the field declarations in clazz and generate a
random graph using these objects; indeed, this graph may not satisfy any of the
desired constraints yet;

– Repair the reference fields of the random graph such that all constraints on these
fields are satisfied; Juzi++ returns the constraints on the primitive variables;

– Solve the data constraints; Dicos returns a complete solution;
– Assign each data field its value; the resulting graph represents a concrete object-

graph that satisfies all the desired invariants.

The rest of this section describes the details of the algorithm and its main modules.

4.1 Egor: Random Graph Generator

Egor takes an object representing the class declaration of the structure’s root class, and
the desired size as inputs, and generates a random graph that is allocated on the heap.

Primitives

Random 
Graph

Repair Framework
(Juzi)

Scope
(size) (repOk)

Method
Predicate

Random Graph
Generator (Egor)

Constraint Solver
(Dicos)

ConstraintsGenerated
Structure on Primitives

Class

(clazz)
Declaration Values to

Fig. 1. Shekoosh framework for test input generation
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O b j e c t genera teRandomGraph ( C l a s s c l a z z , Set<P a i r<Clas s , in t>> s i z e ) {

Random rand = new Random ( ) ;
L i n k e d L i s t l i v e O b j e c t W o r k L i s t = new L i n k e d L i s t ( ) ;
S e t d e a d O b j e c t S e t = new HashSet ( ) ;
L i v e F i e l d C o u n t l i v e F i e l d C o u n t = new L i v e F i e l d C o u n t ( c l a z z ) ;
C u r r e n t S i z e c u r r e n t S i z e = new C u r r e n t S i z e ( c l a z z ) ;

O b j e c t r o o t = c l a z z . n e w I n s t a n c e ( ) ;
l i v e O b j e c t W o r k L i s t . add ( r o o t ) ;
l i v e F i e l d C o u n t . u p d a t e ( r o o t ) ;

whi le ( ! l i v e O b j e c t W o r k L i s t . isEmpty ( ) ) {
O b j e c t o = l i v e O b j e c t W o r k L i s t . r e m o v e F i r s t ( ) ;

f o r ( F i e l d f : f i e l d s ( o ) ) {
l i v e F i e l d C o u n t . dec remen t ( f ) ;
i f ( c u r r e n t S i z e . g e t ( f ) == d e s i r e d S i z e ( f , s i z e ) ) {

i n t i = rand . n e x t I n t ( 2 ) ;
i f ( i == 0) f . s e t V a l u e ( n u l l ) ;
i f ( i == 1) f . s e t V a l u e ( getRandomObject ( d e a d O b j e c t S e t ) ) ;

}
e l s e {

i f ( l i v e F i e l d C o u n t . g e t ( f ) == 0 ) {
O b j e c t o’ = newInstance(f);
f.setValue(o’ ) ;
l i v e O b j e c t W o r k L i s t . add ( o’);
liveFieldCount.update(o’ )
c u r r e n t S i z e . u p d a t e ( f ) ;

}
e l s e {

i n t i = rand . n e x t I n t ( 3 ) ;
i f ( i == 0) f . s e t V a l u e ( n u l l ) ;
i f ( i == 1) f . s e t V a l u e ( getRandomObject ( d e a d O b j e c t S e t ) ) ;
i f ( i == 2) {

O b j e c t o’ = newInstance(f);
f.setValue(o’ ) ;
l i v e O b j e c t W o r k L i s t . add ( o’);
liveFieldCount.update(o’ ) ;
c u r r e n t S i z e . u p d a t e ( f ) ;

}
}

}
}
d e a d O b j e c t S e t . add ( o ) ;

}
}

Fig. 2. The Egor algorithm for generating random graphs

The vertices of the graph are new objects of the given classes. The edges of the graph
represent the reference fields. Figure 2 shows the pseudo-code for the Egor random
graph generation algorithm.

Intuitively, the algorithm starts with an empty graph. It then allocates new objects as
required to generate a graph of the desired size. For each object, the algorithm randomly
assigns values to the object’s reference fields, ensuring at each step that the graph can
further be extended if necessary. The algorithm terminates when the graph has the de-
sired number of objects and all the reference fields of the allocated objects have been
initialized.
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To explain the algorithm, we first explain the notation we use in Figure 2:

– clazz is an object representing the container class of the structure (for example
the BinarySearchTree class).

– size is a set of pairs representing the desired size of every class in the structure.
Egor provides a helper method desiredSize that takes a field f and size, and
returns the desired size of the class that is the declared type of f.

– liveObjectWorkList is a list of objects whose reference fields are yet to be
assigned a value.

– deadObjectSet is a set of objects whose reference fields have already been as-
signed a value. Egor provides a helper method getRandomObject that randomly
returns an object from the deadObjectSet

– LiveFieldCount is a class that represents for each class the number of object
fields, i.e., live count, that have not yet been assigned values in the structure. The live
count of every class is initially set to zero. LiveFieldCount provides three helper
methods: get, update, and decrement. The method get takes a field object and
returns the live count of the field’s declared class; update takes an object, and for
each of its fields, increments the live count of the field’s declared class; decrement
takes a field object, and decrements the live count value of the field’s declared class.

– CurrentSize is a class that represents the number of objects for each class in the
structure. For each class, the current size is initially zero. The class CurrentSize
provides two helper methods: get and update. The method get takes a field and
returns the current size of the field’s declared class; update takes a field and incre-
ments the size for the field’s declared class.

The Egor generation algorithm first initializes its variables. Next, it creates an in-
stance of the root class (clazz), adds it to the liveObjectWorkList, and updates
the liveFieldCount. Next, Egor iterates until the liveObjectWorkList is empty.
In each iteration, Egor removes the first object from the liveObjectWorkList and
assigns values to each of the object’s reference fields as follows. When assigning a
field f of type t, Egor first checks the currentSize, and the desiredSize for t.
If currentSize is equal to the desiredSize, Egor randomly assigns f to null, or
to an object from the deadObjectSet since new objects of class t can no longer be
added to the graph. If the current size is less than the desired size, Egor checks t’s
liveFieldCount. If it is zero, i.e., the graph can only be extended further by assign-
ing a new object to f , Egor allocates a new object o′ of type t, assigns o′ to f , and
updates the liveFieldCount and currentSize for t. If the live field count is greater
than zero, Egor randomly assigns f to null, an object from the deadObjectSet, or a
new object of a compatible type. After assigning all the fields of an object, Egor adds
the object to the deadObjectSet. Figure 3 illustrates the generation of a
BinarySearchTree with two nodes.

The generated graph satisfies two key properties: reachability, i.e., all the objects
allocated are reachable from the root object, and randomness, i.e., the assignment to
each field is made at random (using the Java API). Note that primitive data is left unini-
tialized. Determining the values for the primitive fields is performed using Dicos after
the random structure is repaired by Juzi++. Figure 4 shows an example of a six node
BinarySearchTree graph generated using Egor.
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Fig. 3. Egor illustration: generating a random BinarySearchTree object with two nodes.
The algorithm takes three iterations of the while-loop. The algorithm state at the beginning of
each iteration as well as the resulting object-graph are shown. The reference fields are labeled
appropriately; a ‘?’ indicates the field has not yet been assigned a value by the algorithm; fields
that have the value null are omitted for clarity. Each node is labeled with its identity (N0 or N1)
and a symbolic integer value (i0 or i1).
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4.2 Juzi++: Repair Framework

Juzi++ takes as inputs the random graph generated by Egor and repOk, and performs
repair actions on the graph. Each repair action assigns a new value to an object field.
Juzi++ transforms the graph so that it satisfies the desired constraints on the reference
fields, and returns a set of constraints on the primitive fields of the structure. Juzi++
builds on our previous work on data structure repair and introduces new heuristics that
enable repair to scale to large structures that may have a large number of corruptions.
Juzi++ introduces two key heuristics: prioritizing values to use in repair as well as
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prioritizing fields to repair. We first describe our basic repair algorithm Juzi [13], and
then explain the heuristics that Juzi++ implements.

Juzi. This section describes the basic Juzi [13] repair algorithm. Given a structure s

that is to be repaired and a predicate repOk that represents the structural constraints,
the algorithm:

– invokes s.repOk().
– monitors execution of repOk to note the order in which fields of objects in s are

accessed1.
– if repOk returns false

– backtracks and mutates s by toggling the value of the last field that was accessed
by repOk (while maintaining the values of all other fields), and re-executes repOk

– else
– outputs s (which now has been repaired)

The first invocation of repOk (which is on the given corrupt structure) simply follows
the Java semantics. When repOk returns false, the repair algorithm mutates the given
structure, by changing the value of the last accessed field, which is non-deterministically
assigned:

– null, if the field value was not originally null;
– an object (of a compatible type) that was encountered during the last execution of
repOk on the corrupt structure, if the field was not originally pointing to this object;

– a new object (of a compatible type), unless the object that the field originally
pointed to was different from all objects in the structure encountered during the
last execution of repOk;

When all the choices for a field assignment have been explored, Juzi resets the value
of the last field accessed to its initial value and systematically backtracks to modify the
value of the second-last field accessed and so on.

Generation of large structures requires highly efficient repair. Notice that Juzi uses
backtracking to perform repair. Thus, Juzi repeatedly invokes repOk until the predicate
returns true. The performance of repair depends on the number of times repOk is exe-
cuted. When repairing a graph generated at random, the number of invocations can be
prohibitively expensive. For such a graph, the number of faults are likely to be propor-
tional to its size. Therefore, the number of times repOk is executed, which equals the
total number of repair actions performed, is very high and the basic Juzi approach does
not scale, say to repairing large structures, say consisting of 10000 nodes, that have a
large number of faults.

Juzi++. We introduce two heuristics for prioritizing repairs to enable an efficient repair
framework, which we use in Shekoosh. The heuristics are aimed to optimize repair.
However they do not compromise completeness (Section 6).

1 Execution of repOk is monitored by replacing field accesses with invocations of ”get” methods
and adding new boolean fields that are set on the first access of the corresponding field. Details
are available elsewhere [13, 19].
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Fig. 5. (a) BinarySearchTree object repaired by Juzi++; primitive fields have symbolic val-
ues. (b) Difference constraints on primitive fields computed by Juzi++. (c) Solution to the con-
straints generated by Dicos used to assign values to the primitive fields.

The first heuristics is based on building and solving constraints on references. Juzi++
identifies equality constraint patterns of the form:

i f ( f i e l d != v a l u e ) re tu rn f a l s e ;

The solution of such constraints is embedded in the negation of the condition. Juzi++
detects and directly solves such constraints without using nondeterministic assignment.
This optimization enables highly efficient solving of a variety of local constraints. To
illustrate, the parent-child relation of a binary tree takes the following form:

Node l e f t = c u r r e n t . l e f t ;
i f ( l e f t . p a r e n t != c u r r e n t ) re tu rn f a l s e ;

Juzi++ keeps track of the last equality comparison between a reference field and a
value, and selects the value as the first candidate to try. Thus, for the above example,
Juzi++ needs to try only one value for repairing the parent field of a node.

The second heuristics is based on a lightweight dynamic analysis [20] of the struc-
ture. Unlike Juzi, which for each field uses the same order of nondeterministic choices,
we use a dynamic ordering. The analysis identifies a set of core fields—fields that are
used primarily to traverse the structure. When repairing core fields, our algorithm gives
higher priority to selecting a new node or null, over selecting an already visited node.
This optimization guarantees that the reachability of the structure is preserved by repair,
and reduces the number of attempts required to find the repaired structure.

These two heuristics dramatically improve the performance of repair (Section 5). The
search uses the most likely values first, which enables generation of large structures.
Note that prioritization of constraints does not compromise the completeness of the
algorithm: if a solution to the constraints represented by repOk exists for the desired
size, our algorithm will generate it. Moreover, the optimizations allow Juzi++ to fix
more than one corrupt field using a single execution of repOk—an optimization that is
essential to scale repair based on imperative constraints.

To illustrate repair, recall the structure shown in Figure 4. Figure 5(a) shows the
corresponding repaired structure.
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Fig. 6. (a) Data constraint graph based on the constraints from Figure 5 (b); the edges labeled
with weight 1 arise from the difference constraints; s is the new reference node and edges labeled
with ‘?’ indicate the new edges. (b) Solution for the difference constrains; each ‘?’ has been
replaced with the value of the longest distance from s.

Juzi++ repairs the structural constraints and returns a set of data constraints, which
constrain the primitive fields of the resulting structure. Juzi++ extracts the data con-
straints using symbolic execution. To illustrate, Figure 5(b) shows the data constraints
extracted from the BinarySearchTree in Figure 5(a). The constraints returned by
Juzi++ are solved by Dicos (Section 4.3), which determines an appropriate value for
each primitive field.

4.3 Dicos: Data Constraint Solver

This section describes a technique for generating data values that satisfy the data con-
straints of the subject structure. A simple approach for generating data values is to
assign the values randomly. While generating random values for the primitive fields is
straightforward, such an approach is unlikely to give a valid solution in the presence of
any constraints on data.

We have developed Dicos, a difference constraint solver for constraints on primitive
integers. Our current implementation handles difference constraints that take the form
x < y and x ≤ y as well as equality constraints. Following a textbook algorithm [3],
Dicos builds a constraint graph where the vertices are the primitive fields, and the edges
are the difference constraints. Once the graph is built, the problem simplifies to finding
the topological order of the nodes in the graph. The primitive values are the longest
distances from a new reference node. For a directed acyclic graph with n nodes and e
edges, we can compute the primitive values in O(n + e) using a topological sort.

To illustrate, consider the constraints shown in Figure 5(b). Figure 6(a) shows the
corresponding constraint graph. The solution of this constraint graph is shown in Fig-
ure 6(b). The values for the nodes are the longest distances from the reference node
added during the graph construction.

We use the solution returned by Dicos to assign values to the data fields of the struc-
ture (Figure 5(c)).

5 Experiments

In this section we evaluate the performance of Shekoosh in generating large data struc-
tures. We first describe our experimental methodology. We present different subject
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structures with various complex structural and data integrity constraints. We use
Shekoosh to generate the subject structures, and we compare our results with related
techniques in automatic test input generation. Finally, we discuss the scalability of
Shekoosh in terms of the size and the complexity of the generated structures.

5.1 Methodology

We evaluate Shekoosh by applying it to generate ten subject structures. For each subject,
we evaluate the time it takes to generate one valid structure for sizes: 10, 100, 1000,
10000, and 100000. We repeat the generation using 50 different randomization seeds
and report the average generation time.

Our subjects are divided into three categories: (1) subjects with simple constraints on
the structure only, (2) subjects with simple constraints on both the structure as well as
the primitive data (3) and subjects with highly complex structural and data constraints.
Subjects in category (1) can be generated without using our constraint solver Dicos, i.e.,
without the need for symbolic execution for primitives, while subjects in category (2)
and (3) require its use.

For solving purely structural constraints, two of the previous tools that have been
shown to provide efficient solving are TestEra [6], which uses the Alloy Analyzer [21]
and off-the-shelf SAT technology, and Korat [7], which implements an imperative con-
straint solver. For the benchmarks in category (1), we present a comparison of Shekoosh
with these two tools. For the benchmarks in categories (2) and (3), TestEra and Korat are
unable to compete with Shekoosh because they require explicit enumeration of primi-
tive values and checking of their constraints—the two tools do not use any dedicated
solver of constraints on primitives. We have conducted experiments to generate the
structures in categories (2) and (3) using Korat and TestEra. We gave Korat and TestEra
20 minutes to generate one structure. Korat and TestEra failed to generate structures
with 25 nodes within the given time. The comparison with TestEra and Korat shows
that Shekoosh can generate structures of sizes that are 100 times larger.

5.2 Experimental Results

We next describe the data structure subjects and the generation results. All experiments
used a 1.7 GHZ Pentium M processor with 512 MB RAM.

Category (1). Subjects in this category only have simple constraints on the structure,
and no constraints on primitive data. The structural constraints are limited to reachabil-
ity, acyclicity, and transposition. We use these structures to evaluate the performance of
Shekoosh in comparison with TestEra and Korat. The subjects in this category are as
follows:

– Singly-linked acyclic list. A list object has a header node; each list node has a
next field. Structural integrity is acyclicity along next.

– Doubly-linked circular list. A list object has a header node; each list node has
a next and a previous field. Structural integrity is circularity along next and
the transpose relation between next and previous. This subject is based on the
library class java.util.LinkedList.
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Table 1. Results on solving constraints on the structure. Shekoosh is able to generate structures
that are 100 times larger than those feasible with TestEra and Korat. A time of ‘-’ indicates
failure to generate in 20 minutes. All tabulated times are in milliseconds.

Shekoosh Korat TestEra
Singly Linked Generation Repair Total Total Total
List Time(msec) Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 1 2 3 37 3000
100 Nodes 4 4 8 334 -
1000 Nodes 8 14 22 - -
10000 Nodes 30 33 63 - -
100000 Nodes 199 483 682 - -

Doubly Linked Generation Repair Total Total Total
List Time(msec) Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 1 16 17 82 8000
100 Nodes 3 44 43 3204 -
1000 Nodes 14 271 285 - -
10000 Nodes 50 3718 3768 - -
100000 Nodes 396 43174 43570 - -

Binary Tree Generation Repair Total Total Total
Time(msec) Time(msec) Time(msec) Time(msec) Time(msec)

10 Nodes 1 14 15 21 5000
100 Nodes 2 125 127 512 -
1000 Nodes 14 372 386 - -
10000 Nodes 85 3672 3777 - -
100000 Nodes 397 45267 45664 - -

– Binary tree. A binary tree object has a root node; each node has a left and a
right child node. Structural integrity is acyclicity along left and right.

Solving Constraints on Structure. We used Shekoosh to generate the subject struc-
tures of this category with sizes ranging from 10 to 100000 nodes. Table 1 shows the
results for the subjects in category (1). For test generation, Shekoosh’s performance
scales essentially linearly. Singly-linked list has the simplest of the constraints and its
generation is therefore the fastest. Even though doubly-linked list and binary tree have
two fields each, the constraints for doubly-linked list are more complex since they in-
volve two properties (circularity and transpose relation between next and previous)
as opposed to one (acyclicity).

Notice that the generation time is essentially proportional to the number of fields in
the structure. The repair time dominates the generation time as expected. The actual
time to repair depends on the complexity of the underlying structural constraints.

We gave TestEra and Korat 20 minutes to generate one structure. Overall, Korat
performs better than TestEra. However, Korat is unable to generate any subject struc-
ture with more than 800 nodes within the given time. Thus, Shekoosh is able to gen-
erate structures that are up to 100 times larger than those feasible with Korat and
TestEra.
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Table 2. Results on solving constraints on the structure as well as on data. All times are in
milliseconds.

Shekoosh
Sorted Linked Structure Generation Structure Repair Data Generation Total
List Time(msec) Time(msec) Time(msec) Time(msec)
100 Nodes 16 21 5 42
1000 Nodes 22 51 27 100
10000 Nodes 46 210 26 282
100000 Nodes 338 1423 178 1939

Binary Search Structure Generation Structure Repair Data Generation Total
Tree Time(msec) Time(msec) Time(msec) Time(msec)
100 Nodes 10 142 8 160
1000 Nodes 27 422 14 463
10000 Nodes 65 4008 30 4103
100000 Nodes 446 48401 201 49048

Heap Array Structure Generation Structure Repair Data Generation Total
Time(msec) Time(msec) Time(msec) Time(msec)

100 Nodes 10 11 8 29
1000 Nodes 14 37 15 66
10000 Nodes 15 124 29 168
100000 Nodes 55 1084 184 1323

Category (2). Subjects in this category are similar in complexity to those of category
(1) yet they have constraints on the order of primitive data. We use these structures to
evaluate our constraint solver and measure its efficiency in completing the solution. The
subjects in this category are as follows:

– Sorted linked list. A sorted linked list is an acyclic linked list whose nodes have
integer elements. Integrity constraints include acyclicity as well as ordering of ele-
ments: all elements appear in sorted order.

– Binary search tree. A binary search tree is a binary tree whose nodes have integer
keys. Integrity constraints include acyclicity as well as ordering on keys: for each
node, its key is larger than any of the keys in the left sub-tree and smaller than any
of the keys in the right-sub tree.

– Heap arrays. Heap arrays provide an array-based implementation of the binary
heap data structure that is also commonly known as a priority queue. A heap has a
capacity that is the length of the underlying array and a size that is the number
of elements currently in the heap. For a heap element at index i, its left child is at
index 2 ∗ i + 1 and the right child is at index 2 ∗ i + 2. Integrity constraints require
that size <= capacity and the heap satisfies the max-heap property: an element
is larger than both its children.

Solving Constraints on Structure as well as Data. Structures in this category have
constraints on the order of the data. For a sorted list, the elements are ordered in a
strictly increasing/decreasing order along the next field. For a binary search tree the
element in the root of a tree is larger than all the elements in the left sub-tree, and less
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than all the elements in the right sub-tree. For a heap array, an element at a node is larger
than both its children. We used TestEra and Korat to generate these structures, and both
failed to generate the first structure with 30 nodes within 20min. TestEra and Korat use
a search algorithm to solve the reference constraints as well as data constraints where
as in our approach we try to solve the two problems separately if possible (section 6)
which allows us to use a dedicated solver for data constraints.

Table 2 tabulates the results for the subjects in category (2). We point out the ef-
ficiency of our constraint solver Dicos. The performance of Dicos scales essentially
linearly with the size of the generated structures. For test generation, Shekoosh’s per-
formance still scales. Note that the structure repair time includes the time to build the
constraints on the primitives. (Recall, Juzi++ returns these constraints as its result).

Category (3). Subjects in this category have more complex structural and data con-
straints than those in categories (1) and (2). These constraints include height balance,
path coloring, sentinel reachability (all nodes should have a pointer to a sentinel node)
and more. These structures are used to measure the scalability of our approach in gener-
ating large data structures, and to discover which phase has the most contribution in the
generation time. Again we tried to use TestEra and Korat to generate these structures,
and both tools couldn’t generate the first structure of 25 nodes within the given 20min
threshold. The subjects in this category are as follows:

– Disjoint set. The Disjoint set data structure is a linked-based implementation of the
fast union-find data structure [3]; this implementation uses both path compression
and rank estimation heuristics to improve efficiency. A Disjoint set object has a
header and a tail node as well as a size field that represents the size of the set;
each set node has a next and a parent field. Structural integrity constraints are
acyclicity and reachability to the sentinel header node (the parent field of each
node should point to the header node).

– TreeMap. TreeMap implements the Map interface using red-black trees. A
TreeMap object has a root node; and stores the number of entries in the size field.
A TreeMap node stores a data element in the field key, has a left and a right

child, and also has a parent pointer. Furthermore, a node has a color, which is ei-
ther RED (false) or BLACK (true). Structural integrity is acyclicity along left and
right, the transpose relation between left, right and parent, and the natural
order on the keys. Furthermore a TreeMap structure should satisfy the following
constraints on the colors of its nodes:
• red entries have black children;
• the number of black entries on any path from the root to a leaf is the same.

– AVL tree. implements the intentional name trees that describe properties of ser-
vices in the Intentional Naming System (INS) [22], an architecture for service lo-
cation in dynamic networks. An AVL tree is a balanced binary search tree. The
integrity constraints are the same as those of the binary search tree as well as the
balance property where the height of the left and the right sub-trees does not differ
by more than one.

– Fibonacci heap. A Fibonacci-Heap is a dynamic data structure that also imple-
ments a heap. A Fibonacci heap object has a min field that points to the minimum
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Table 3. Results on large structures with very complex structural integrity constraints. All times
are in milliseconds.

Shekoosh
Disjoint Structure Generation Structure Repair Data Generation Total
Set Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 4 5 25
100 Nodes 15 63 10 88
1000 Nodes 31 4255 37 4323
5000 Nodes 62 33455 87 33604
10000 Nodes 132 250485 178 250795

AVL Structure Generation Structure Repair Data Generation Total
Tree Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 16 10 42
100 Nodes 33 94 21 148
1000 Nodes 47 3322 48 3397
5000 Nodes 78 23313 121 23424
7000 Nodes 115 455813 201 456297

Fibonacci Structure Generation Structure Repair Data Generation Total
Heap Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 32 7 55
100 Nodes 31 64 9 124
1000 Nodes 47 2140 29 2204
4000 Nodes 62 97952 52 98066
7000 Nodes 94 248828 184 249106

Red Black Structure Generation Structure Repair Data Generation Total
Tree Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 16 10 42
100 Nodes 43 268 22 333
1000 Nodes 62 6546 53 6661
5000 Nodes 267 315671 149 316087

element in the heap, and a size field that stores the number of nodes. Each Fi-
bonacci heap node has a parent pointer, a child pointer, and a sibling pointer.
A node stores the key element in a key field. Detailed description of the structural
and data integrity constraints of a fibonacci heap are found in [3].

Generating Structurally Complex Subjects. The results for generating the structures
in categories (1) and (2) show that all the components of Shekoosh (Egor, Juzi++, and
Dicos) scale linearly. Yet as expected Juzi++ dominated the time required for genera-
tion. We further test the scalability of Shekoosh when generating structures with very
complex constraints on the structure (complex structures truly determine the efficiency
of the repair algorithm and thus the generation approach).

Table 3 shows the results for generating the structures in category (3). Note that as
the structure size increases, both Egor and Dicos scale linearly , yet the repair algorithm
grows faster. This is due to the complex nature of the structures being generated. The
domination of the repair algorithm over the overall generation time is clearly obvious in
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Fig. 7. Variation in the number of repair actions with the size of the structures. For all the studied
subject structures, the number of repair actions grows essentially linearly with the size of the
structure.

these structures. Even with the complexities, Shekoosh is still able to generate structure
with thousands of nodes.

We point out that although the repair algorithm uses a search based approach (similar
to Korat), it was still able to repair large structures with very complex properties (the
balancing property of the AVL, the path color property of the red-black tree, the sen-
tinel property of the disjoint sets, and the heap property of the fibonacci heap) within
the threshold value that we used before terminating the generation. The next section
will further investigate the scalability of Shekoosh and the performance of the repair
algorithm.

5.3 Scalability of Shekoosh

The experimental results show that the scalability of Shekoosh is highly dependent on
the scalability of the repair algorithm. Recall that the performance of Juzi++ is directly
proportional to the number of repair actions performed while repairing the structure.
We use the number of repair actions as a metric to measure the scalability of Juzi++,
and thus Shekoosh. Figure 7 displays the graphs of the variation of the number of repair
actions with the size of the structures. Unlike what we expected, although the perfor-
mance of Juzi++ is not linear (Section 5.2), the number of repair actions grows linearly
with the size of the structure. These results are justified as follows:
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– First, the number of faults in the structures grows linearly with the size of the struc-
ture due to the random creation of the graph generated by Egor. The random graph
acts as a partial solution that in the worst case satisfies the reachability and the size
constraints of the structure.

– Second, the optimizations that were added to Juzi++ directs the search algorithm
to the most likely value to repair a field, and thus the number of repair actions are
closer to the number of faults as most of the fault are highly likely to be repaired
with only one action.

– Third, and most important, recall that the backtracking algorithm in Juzi++ uses a
stateless search space approach. Basically, with every repair action repOk is called,
the original structure is re-initialized, and the state is built up to the faulty field.
Using this approach the structure is reconstructed with every repair action. This
causes a quadratic effect on the runtime of Juzi++ even though the number of repair
actions grows linearly.

This observation about the number of repair actions shows that for the subject struc-
tures the performance of Juzi++ is more dependent on the backtracking algorithm rather
than the search algorithm. An alternative approach for backtracking is to use a stateful
approach similar to that used in software model checkers like the Java Path Finder
(JPF) [10]. Future versions of Shekoosh will implement a stateful approach which can
allow Shekoosh to generate even larger structures with complex integrity constraints.

6 Discussion

We next present some characteristics and limitations of Shekoosh and discuss some
promising future directions.

Completeness of Generation. Shekoosh repairs a randomly generated structure in two
steps: repair of structural constraints (using Juzi++) and repair of data constraints (using
Dicos). Doing so enables efficient solving of structural constraints without the overhead
of building data constraints on every execution of repOk. However, due to possible de-
pendencies among different kinds of constraints, it is possible that a structure that sat-
isfies its structural constraints cannot be repaired further to satisfy the data constraints
without modifying the structure. In such cases, Shekoosh systematically backtracks and
uses Juzi++ to generate a different structure. We point out that the algorithm is com-
plete for difference constraints: the given structure size makes the underlying problem
decidable. Even though the initial structure is generated at random, the repair by Juzi++
and Dicos is systematic. If any valid structure of the desired size exists, such a structure
will be returned by Shekoosh; if no such structure exists, Shekoosh notifies the user.

Data Constraint Solving. The current implementation of Shekoosh supports solving
two types of data constraints: difference constraints and equality constraints. Solving a
problem that comprises additional types of constraints requires extending our solver Di-
cos or the use of a more sophisticated solver, such as the CVC-lite theorem prover [23].

Test Case Enumeration. We have illustrated Shekoosh for generating one structure of
a desired size. Shekoosh can also be used to systematically enumerate a given number
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of structures. We expect a typical usage of Shekoosh to be to generate a small set of
large test inputs; for inputs of large size, exhaustive generation is infeasible in principle
due to the enormous number of valid structures.

Sensitivity to repOk. Repair actions performed by our algorithm depend on the for-
mulation of repOk. Recall that Juzi++ backtracks on the last field accessed by repOk
and modifies that field. Therefore, repOks that return false as soon as they determine a
constraint violation without accessing remaining parts of the structure induce faster gen-
eration. Naturally written repOks have been shown to enable efficient generation [18].

Constraint-Based Generation Versus Construction Sequences. As we discussed in
the introduction, an alternative to constraint-based test generation is the complementary
approach of using method sequences to construct structures of a desired size. While this
alternative requires an a priori implementation of the methods used in the construction
sequence as well as their correct functionality, it presents a viable alternative for gen-
erating certain large structures. We have conducted experiments to compare the perfor-
mance of Shekoosh with construction sequences using our subjects (Section 5). For the
subjects in category (1) the performance of both approaches was similar in magnitude.
Subjects in category (1) have no data elements, thus both approaches scaled linearly.
The comparison for subjects in category (2) is more informative. For sorted linked list,
Shekoosh outperforms construction sequences, e.g., for 100000 nodes, construction se-
quence takes 19800 milliseconds, which is 10 times the time Shekoosh takes. For binary
search tree, the times are of a similar magnitude: for 100000 nodes, Shekoosh takes
2372 milliseconds while construction sequences take 1858 milliseconds. For heap ar-
ray, construction sequences outperform Shekoosh, e.g., for 100000 nodes, construction
sequences take 251 milliseconds, which is one-sixth of the time Shekoosh takes. For
the structures in category (3) construction sequences outperforms shekoosh due to the
complexity of the constraints being solved.

The two approaches are complementary and have their advantages and disadvan-
tages. While construction sequences outperform Shekoosh when generating structurally
complex structure, it still requires an a priori correct implementation of the methods
used in the sequence. Shekoosh generically generates the structures from the given
specification, but its performance is sensitive to the complexity of the structures be-
ing generated.

7 Related Work

We discuss how Shekoosh is related to other approaches in test input generation. We
first survey some related work on specification-based testing. We then examine differ-
ent approaches for assertion-based data structure repair. Finally we look at different
methodologies for solving constraints on data.

7.1 Specification-Based Linked Structure Generation

Specification-based testing has been present in the testing literature since decades [24].
Many approaches automate test generation from specification languages such as Z
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specification [25], JML annotations [26], ASML specifications [27], or UML state-
charts [28]. Originally these specifications did not handle complex data structures like
the ones we present in this paper, yet some were extended to handle such structures.

The AsmL Test Generator (ASMLT) [27] was recently extended to handle struc-
turally complex data using a search based approach. ASMLT transforms Asml speci-
fications into finite state machines (FSM), and a search algorithm is performed on the
FSM to generate the test inputs.

Korat [7] is a search-based test generation tool that exhaustively enumerates all non-
isomorphic instances of a complex data structure up to a bound on the size. Unlike
AsmlT, Korat takes the constraint written as a Java predicate. Korat’s approach is highly
favorable by programmers since there is no need to learn a new language (which is
declarative in most of the cases) to write the specification. Yet the performance of Korat
is highly sensitive to the way the Java predicate is written. Korat uses a search based
approach that systematically explores the input space to find all the structures to satisfy
the given predicate.

TestEra [29] is a test generation tool that uses the Alloy Analyzer [15] which in turn
uses off-the-shelf enumerating SAT solvers [16] to generate all the structures that satisfy
the integrity constraints. TestEra translates the class declarations of a structure into an
Alloy model, and the Java predicate into an Alloy formula which is then fed into the
Alloy Analyzer. TestEra is insensitive to the way the specifications are written since the
Alloy Analyzer translates the model into a CNF formula before using a SAT solver to
find the solution. The performance of TestEra is limited to the efficiency of the Alloy
Analyzer when translating the Alloy model, and the performance of the SAT solver to
find the solution.

Handling data constraints is a challenge for both search and SAT based approaches.
Korat treats data members the same way it treats references. TestEra does not provide
an efficient way to handle data elements due to the way integer types are modeled in
Alloy [30].

Our generation tool, Shekoosh, differs from the above approaches as it targets gen-
erating the first structure that satisfies a given Java predicate rather than enumerating
all the test cases. Although Shekoosh uses an approach similar to Korat when repairing
the structures, the algorithm scales due to three factors: (1) the partial solution provided
by the random graph generator (Although the graph generated by egor is random, yet
it still acts as a partial solution which at least satisfies the reachability constraint of the
structure), (2) the optimizations added to the repair algorithm which direct the search
to the most-likely value to repair a structure, and (3) the dedicated solver (Dicos) for
solving the constraints on primitives (unlike Korat).

7.2 Error Recovery

Dynamic error recovery has been part of software systems for a long time [31]. For
example, state-full techniques used checkpointing [32] to recover the program state
in distributed systems, and stateless techniques implemented dedicated repair routines
for special faults [33]. The problem with these approaches is that they require dedicated
special routines to be implemented with each system, and thus it is hard to build a robust
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generic repair framework using such approaches, since the developer must envision all
possible bugs.

Recent work on repair proposes assertion-based techniques to repair a data struc-
ture. Assertions have long been used to describe the properties of code. Many tools and
techniques make use of assertions to check the program correctness statically and dy-
namically [2]. The success of assertion checks in hardware verification [34] motivated
the use of the same approach for software validation [35]. Most of the recent program-
ming languages have special support for assertions, for example the assert keyword
in Java 1.5. Assertions can be used to describe the structural integrity constraints of
a data structure. Such a description can be written in a declarative language like first
order logic, or in an imperative language as a predicate method. Although declarative
languages provide a more succinct method for describing constraints, there is a large
gap between the syntax and grammar of such languages and those of imperative pro-
gramming languages which are commonly used by software developers and testers.

Recent techniques for repair use the structural constraints to dynamically repair data
structures. Demsky and Rinard have recently proposed an constraint-based generic
framework for data structure repair [36]. Given the consistency constraints in a new
declarative language, their algorithm generates repair routines for each of the integrity
constraints.

Juzi [13] is assertion-based framework for data structure repair [13]. However in
Juzi, assertions are written in the host language (Similar to Korat). Given the structural
constraints written as a Java predicate, Juzi systematically searches the neighborhood
of the fault and mutates the structure to satisfy the integrity constraints. Juzi uses a ded-
icated search algorithm [7] to find the correct candidate that repairs an erroneous data
structure. The performance of Juzi depends on the number of faults and the efficiency
of the search algorithm in finding the correct candidate.

Shekoosh builds on the Juzi algorithm; it optimizes the search algorithm in order to
scale for repairing larger structures with more faults.

7.3 Other Test Generation Techniques

Automatic test case generation is a very old idea, and there are large number of tech-
niques on the topic. We select a couple of techniques and compare them with our ap-
proach. A straightforward method for test generation is to build structures using already
existing construction sequences. Godefroid et al. proposed DART [37], an automated
random testing tool that uses both static and dynamic analysis to generate test cases.
Many techniques for test generation use randomized algorithms [38, 39] to generate
input tests. Pargas [40] used genetic algorithms to generate a sequence of construc-
tion calls that builds up a test input. Claessen et al. [41] use specifications written in
Haskell [42] to randomly generate a large number of inputs to test programs written
in Haskell. All these techniques can scale to generate large structures with complex
structural and data integrity constraints.

Shekoosh differs from the above techniques in that it does not require any imple-
mentation of the generated structure. Shekoosh only uses the class declaration and the
predicate method describing the constraints.
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8 Conclusions

We have presented Shekoosh, a novel framework for generating large data structures.
Given a Java predicate that represents the desired structural and data integrity con-
straints, and the size of the structure to be generated, the Shekoosh test generation algo-
rithm generates a structure that has the given size and satisfies all the constraints. Gen-
eration has three phases. The first phase generates a random graph. The second phase
repairs the graph to satisfy the structural constraints using an optimized framework
based on our previous work on error recovery. The third phase solves the constraints on
primitive data and assigns appropriate values to the primitive fields.

Experiments on generating large data structures using subjects with complex struc-
tural and data constraints show that Shekoosh can efficiently generate structures with
thousands of nodes. In comparison with two existing constraint-based generation frame-
works, Shekoosh is able to generate structures that are up to 100 times larger.

We believe Shekoosh presents an exciting new approach to test generation and rep-
resents an important step towards a wider application of constraint-based approaches
for automated testing and error recovery.
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A Structural Invariants for BinarySearchTree

The helper methods used in class invariant of BinarySearchTree can be formulated
as follows.
/ / checks t h e a c y c l i c i t y p r o p e r t y of t h e t r e e
boolean i s A c y c l i c ( ) {

S e t v i s i t e d = new HashSet ( ) ;
v i s i t e d . add ( r o o t ) ;
L i n k e d L i s t w o r k L i s t = new L i n k e d L i s t ( ) ;
w o r k L i s t . add ( r o o t ) ;

whi l e ( ! w o r k L i s t . i sEmpty ( ) ) {
Node c u r r e n t = ( Node ) w o r k L i s t . r e m o v e F i r s t ( ) ;
i f ( c u r r e n t . l e f t != n u l l ) {

i f ( ! v i s i t e d . add ( c u r r e n t . l e f t ) ) re tu rn f a l s e ;
w o r k L i s t . add ( c u r r e n t . l e f t ) ;

}
i f ( c u r r e n t . r i g h t != n u l l ) {

i f ( ! v i s i t e d . add ( c u r r e n t . r i g h t ) ) re tu rn f a l s e ;
w o r k L i s t . add ( c u r r e n t . r i g h t ) ;

http://www.synopsys.com/products/simulation/assertion_based_wp.pdf
http://www.synopsys.com/products/simulation/assertion_based_wp.pdf
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}
}
re tu rn tru e ;

}
/ / checks i f t h e r e a c h a b i l i t y c o n s t r a i n t i s s a t i s f i e d
boolean s i zeOk ( ) {

re tu rn s i z e == numNodes ( r o o t ) ;
}
/ / r e t u r n s t h e number of nodes r e a c h a b l e from t h e r o o t node
i n t numNodes ( Node n ) {

i f ( n == n u l l ) re tu rn 0 ;
re tu rn ( 1 ) + ( numNodes ( n . l e f t ) ) + ( numNodes ( n . r i g h t ) ) ;

}
/ / checks i f t h e t r e e e l e m e n t s s a t i s f y t h e o r d e r c o n s t r a i n t s
boolean s e a r c h C o n s t r a i n t s O k ( ) {

re tu rn i s O r d e r e d ( r o o t , MINUSINFINITY , PLUSINFINITY ) ;
}

boolean i s O r d e r e d ( Node n , O b j e c t min , O b j e c t max ) {
i f ( ( min != n u l l && compare ( n . e l emen t , min ) <=0 ) | |
( max != n u l l && compare ( n . e l emen t , max ) >=0)

re tu rn f a l s e ;
i f ( n . l e f t != n u l l )

i f ( ! i s O r d e r e d ( n . l e f t , min , n . e l e m e n t ) ) re tu rn f a l s e ;
i f ( n . r i g h t != n u l l )

i f ( ! i s O r d e r e d ( n . r i g h t , n . e l ement , max ) ) re tu rn f a l s e ;
re tu rn tru e ;

}
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Abstract. Data in object-oriented programming is organized in a hierarchy of
classes. The problem of object-oriented pattern matching is how to explore this
hierarchy from the outside. This usually involves classifying objects by their run-
time type, accessing their members, or determining some other characteristic of
a group of objects. In this paper we compare six different pattern matching tech-
niques: object-oriented decomposition, visitors, type-tests/type-casts, typecase,
case classes, and extractors. The techniques are compared on nine criteria re-
lated to conciseness, maintainability and performance. The paper introduces case
classes and extractors as two new pattern-matching methods and shows that their
combination works well for all of the established criteria.

1 Introduction

Data in object-oriented programming is organized in a hierarchy of classes. The prob-
lem of object-oriented pattern matching is how to explore this hierarchy from the out-
side. This usually involves classifying objects by their run-time type, accessing their
members, or determining some other characteristic of a group of objects. Here, we
take a very general view of patterns. A pattern is simply some way of characterizing
a group of objects and binding local names to objects that match some property in the
classification.

A number of functional languages are built on patterns as an essential syntactic con-
struct. Examples are SML, OCaml or Haskell. In object-oriented languages, patterns
are much less common, even though some research exists [1,2,3,4]. Mainstream object-
oriented languages propose to do pattern matching through encodings, such as virtual
classification methods, visitors, or type-tests and type-casts.

The reason why patterns have so far played a lesser role in object-oriented languages
might have to do with the object-oriented principle which states that behavior should
be bundled with data and that the only form of differentiation should be through virtual
method calls. This principle works well as long as (1) one can plan from the start for
all patterns that will arise in an application, and (2) one only needs to decompose one
object at a time.

However, these two assumptions do not always hold. The extensive literature on the
expression problem [5,6,7,8] has explored many situations where access patterns are
constructed a-posteriori, after the interface of the base class is fixed. Furthermore, there
are access patterns where the result depends on the kinds of several objects.
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Consider for instance symbolic manipulation of expressions. We assume a hierar-
chy of classes, rooted in a base class Expr and containing classes for specific forms of
expressions, such as Mul for multiplication operations, Var for variables, and Num for
numeric literals. Different forms of expressions have different members: Mul has two
members left and right denoting its left and right operand, whereas Num has a member
value denoting an integer. A class hiercharchy like this is expressed as follows (we use
Scala as programming notation throughout the paper).

class Expr
class Num(val value : int) extends Expr
class Var(val name : String) extends Expr
class Mul(val left : Expr, val right : Expr) extends Expr

A particular expression would then be constructed as follows

new Mul(new Num(21), new Num(2))

Let’s say we want to write a simplifier for arithmetic expressions. This program should
try to apply a set of simplification rules, until no more rewrites are possible. An example
simplification rule would make use of the right-neutrality of the number one. That is,

new Mul(x, new Num(1)) is replaced with x .

The question is how simplification rules like the one above can be expressed. This is
an instance of the object-oriented pattern matching problem, where objects of several
variant types connected in possibly recursive data structures need to be classified and
decomposed from the outside.

We will review in this paper the six techniques for this task: (1) classical object-
oriented decomposition, (2) visitors, (3) type-tests/type-casts, (4) typecase, (5) case
classes, and (6) extractors. Of these, the first three are well known in object-oriented lan-
guages. The fourth technique, typecase, is well known in the types community, but its
extensions to type patterns in Scala is new. The fifth technique, case classes, is specific
to Scala. The sixth technique, extractors, is new. It has been proposed independently
by John Williams for Scala [9] and by Don Syme under the name “active patterns” for
F# [10]. The basic F# design is in many ways similar to the Scala design, but Scala’s
treatment of parametricity is different.

Every technique will be evaluated along nine criteria. The first three criteria are con-
cerned with conciseness of expression:

1. Conciseness/framework: How much “boilerplate” code needs to be written to en-
able classifications?

2. Conciseness/shallow matches: How easy is it to express a simple classification on
the object’s type?

3. Conciseness/deep matches: How easy is it to express a deep classification involving
several objects?

The next three criteria assess program maintainability and evolution. In big projects,
their importance often ranks highest.



Matching Objects with Patterns 275

4. Representation independence: How much of an object’s representation needs to be
revealed by a pattern match?

5. Extensibility/variants: How easy is it to add new data variants after a class hierarchy
is fixed?

6. Extensibility/patterns: How easy is it to add new patterns after a class hierarchy is
fixed? Can new patterns be expressed with the same syntax as existing ones?

Note that all presented schemes allow extensions of a system by new processors that
perform pattern matching (one of the two dimensions noted in the expression problem).
After all, this is what pattern matching is all about! The last three considered criteria
have to do with performance and scalability:

7. Base performance: How efficient is a simple classification?
8. Scalability/breadth: How does the technique scale if there are many different cases?
9. Scalability/depth: How does the technique scale for larger patterns that reach sev-

eral levels into the object graph? Here it is important that overlaps between several
patterns in a classification can be factored out so that they need to be tested only
once.

Our evaluation will show that a combination of case classes and extractors can do well
in all of the nine criteria.

A difficult aspect of decomposition is its interaction with static typing, in particular
type-parametricity. A subclass in a class hierarchy might have either fewer or more type
parameters than its base class. This poses challenges for the precise typing of decom-
posing expressions which have been studied under the label of ”generalized algebraic
data-types”, or GADT’s [11,12]. The paper develops a new algorithm for recovering
static type information from patterns in these situations.

Related Work. Pattern matching in the context of object-oriented programming has
been applied to message exchange in distributed systems [13], semistructured data [14]
and UI event handling [15].

Moreau, Ringeissen and Vittek [1] translate pattern matching code into existing lan-
guages, without requiring extensions. Liu and Myers [4] add a pattern matching con-
struct to Java by means of a backward mode of execution.

Multi-methods [16,17,18,19] are an alternative technique which unifies pattern
matching with method dispatch. Multi-methods are particularly suitable for matching
on several arguments at the same time. An extension of multi-methods to predicate-
dispatch [20,21] can also access embedded fields of arguments; however it cannot bind
such fields to variables, so support for deep patterns is limited.

Views in functional programming languages [22,23] are conversions from one data
type to another that are implicitly applied in pattern matching. They play a role similar
to extractors in Scala, in that they permit to abstract from the concrete data-type of
the matched objects. However, unlike extractors, views are anonymous and are tied to
a particular target data type. Erwig’s active patterns [24] provide views for non-linear
patterns with more refined computation rules. Gostanza et al.’s active destructors [25]
are closest to extractors; an active destructor corresponds almost exactly to an unapply
method in an extractor. However, they do not provide data type injection, which is
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// Class hierarchy:
trait Expr {

def isVar : boolean = false
def isNum : boolean= false
def isMul : boolean = false
def value : int = throw new NoSuchMemberError
def name : String = throw new NoSuchMemberError
def left : Expr = throw new NoSuchMemberError
def right : Expr = throw new NoSuchMemberError

}
class Num(override val value : int) extends Expr {

override def isNum = true }
class Var(override val name : String) extends Expr {

override def isVar = true }
class Mul(override val left : Expr, override val right : Expr) extends Expr {

override def isMul = true }
// Simplification rule:

if (e.isMul) {
val r = e.right
if (r.isNum && r.value == 1) e.left else e

} else e

Fig. 1. Expression simplification using object-oriented decomposition

handled by the corresponding apply method in our design. Also, being tied to traditional
algebraic data types, active destructors cannot express inheritance with varying type
parameters in the way it is found in GADT’s.

2 Standard Techniques

In this section, we review four standard techniques for object-oriented pattern matching.
These are, first, object-oriented decomposition using tests and accessors, second, vis-
itors, third, type-tests and type-casts, and fourth, typecase. We explain each technique
in terms of the arithmetic simplification example that was outlined in the introduction.
Each technique is evaluated using the six criteria for conciseness and maintainabil-
ity that were developed in the introduction. Performance evaluations are deferred to
Section 5.

2.1 Object-Oriented Decomposition

In classical OO decomposition, the base class of a class hierarchy contains test methods
which determine the dynamic class of an object and accessor methods which let one
refer to members of specific subclasses. Some of these methods are overridden in each
subclass. Figure 1 demonstrates this technique with the numeric simplification example.
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The base class Expr contains test methods isVar, isNum and isMul, which correspond
to the three subclasses of Expr (a trait is roughly a Java interface with methods op-
tionally having default implementations). All test methods return false by default. Each
subclass re-implements “its” test method to return true. The base class also contains one
accessor method for every publicly visible field that is defined in some subclass. The
default implementation of every access method in the base class throws a NoSuchMem-
berError exception. Each subclass re-implements the accessors for its own members.
Scala makes these re-implementations particularly easy because it allows one to unify
a class constructor and an overriding accessor method in one syntactic construct, using
the syntax override val ... in a class parameter.

Note that in a dynamically typed language like Smalltalk, the base class needs to
define only tests, not accessors, because missing accessors are already caught at run-
time and are turned into NoSuchMethod messages. So the OO-decomposition pattern
becomes considerably more lightweight. That might be the reason why this form of
decomposition is more prevalent in dynamically typed languages than in statically typed
ones. But even then the technique can be heavy. For instance, Squeak’s Object class
contains 35 test methods that each inquire whether the receiver is of some (often quite
specific) subclass.

Besides its bulk, the object-oriented decomposition technique also suffers from its
lack of extensibility. If one adds another subclass of Expr, the base class has to be aug-
mented with new test and accessor methods. Again, dynamically typed languages such
as Smalltalk alleviate this problem to some degree using meta-programming facilities
where classes can be augmented and extended at run-time.

The second half of Figure 1 shows the code of the simplification rule. The rule in-
spects the given term stepwise, using the test functions and accessors given in class
Expr.

Evaluation: In a statically typed language, the OO decomposition technique demands
a high notational overhead for framework construction, because the class-hierarchy has
to be augmented by a large number of tests and accessor methods. The matching it-
self relies on the interplay of many small functions and is therefore often somewhat
ad-hoc and verbose. This holds especially for deep patterns. Object-oriented decompo-
sition maintains complete representation independence. Its extensibility characteristics
are mixed. It is easy to add new forms of matches using existing tests and accessors.
If the underlying language has a concept of open classes or mixin composition, these
matches can sometimes even be written using the same method call syntax as primi-
tive matches. On the other hand, adding new subclasses requires a global rewrite of the
class-hierarchy.

2.2 Visitors

Visitors [26] are a well-known design pattern to simulate pattern matching using double
dispatch. Figure 2 shows the pattern in the context of arithmetic simplification. Because
we want to cater for non-exhaustive matches, we use visitors with defaults [3] in the
example. The Visitor trait contains for each subclass X of Expr one case-method named
caseX. Every caseX method takes an argument of type X and yields a result of type T,
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// Class hierarchy:
trait Visitor[T] {

def caseMul(t : Mul): T = otherwise(t)
def caseNum(t : Num): T = otherwise(t)
def caseVar(t : Var): T = otherwise(t)
def otherwise(t : Expr): T = throw new MatchError(t)

}
trait Expr {

def matchWith[T](v : Visitor[T]): T }
class Num(val value : int) extends Expr {

def matchWith[T](v : Visitor[T]): T = v.caseNum(this) }
class Var(val name : String) extends Expr {

def matchWith[T](v : Visitor[T]): T = v.caseVar(this) }
class Mul(val left : Expr, val right : Expr) extends Expr {

def matchWith[T](v : Visitor[T]): T = v.caseMul(this) }
// Simplification rule:

e.matchWith {
new Visitor[Expr] {

override def caseMul(m : Mul) =
m.right.matchWith {

new Visitor[Expr] {
override def caseNum(n : Num) =

if (n.value == 1) m.left else e
override def otherwise(e : Expr) = e

}
}

override def otherwise(e : Expr) = e
}

Fig. 2. Expression simplification using visitors

the generic type parameter of the Visitor class. In class Visitor every case-method has a
default implementation which calls the otherwise method.

The Expr class declares a generic abstract method matchWith, which takes a visitor
as argument. Instances of subclasses X implement the method by invoking the corre-
sponding caseX method in the visitor object on themselves.

The second half of Figure 2 shows how visitors are used in the simplification rule.
The pattern match involves one visitor object for each of the two levels of matching.
(The third-level match, testing whether the right-hand operand’s value is 1, uses a direct
comparison). Each visitor object defines two methods: the caseX method corresponding
to the matched class, and the otherwise method corresponding to the case where the
match fails.

Evaluation: The visitor design pattern causes a relatively high notational overhead
for framework construction, because a visitor class has to be defined and matchWith
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// Class hierarchy:
trait Expr
class Num(val value : int) extends Expr
class Var(val name : String) extends Expr
class Mul(val left : Expr, val right : Expr) extends Expr

// Simplification rule:

if (e.isInstanceOf[Mul]) {
val m = e.asInstanceOf[Mul]
val r = m.right
if (r.isInstanceOf[Num]) {

val n = r.asInstanceOf[Num]
if (n.value == 1) m.left else e

} else e
} else e

Fig. 3. Expression simplification using type-test/type-cast

methods have to be provided in all data variants. The pattern matching itself is disci-
plined but very verbose, especially for deep patterns. Visitors in their standard setting
do not maintain representation independence, because case methods correspond one-
to-one to data alternatives. However, one could hide data representations using some
ad-hoc visitor dispatch implementation in the matchWith methods. Visitors are not ex-
tensible, at least not in their standard form presented here. Neither new patterns nor
new alternatives can be created without an extensive global change of the visitor frame-
work. Extensible visitors [6] address the problem of adding new alternatives (but not
the problem of adding new patterns) at the price of a more complicated framework.

2.3 Type-Test/Type-Cast

The most direct (some would say: crudest) form of decomposition uses the type-test
and type-cast instructions available in Java and many other languages. Figure 3 shows
arithmetic simplification using this method. In Scala, the test whether a value x is a
non-null instance of some type T is expressed using the pseudo method invocation
x.isInstanceOf[T ], with T as a type parameter. Analogously, the cast of x to T is ex-
pressed as x.asInstanceOf[T ]. The long-winded names are chosen intentionally in order
to discourage indiscriminate use of these constructs.

Evaluation: Type-tests and type-casts require zero overhead for the class hierarchy. The
pattern matching itself is very verbose, for both shallow and deep patterns. In particular,
every match appears as both a type-test and a subsequent type-cast. The scheme raises
also the issue that type-casts are potentially unsafe because they can raise ClassCastEx-
ceptions. Type-tests and type-casts completely expose representation. They have mixed
characteristics with respect to extensibility. On the one hand, one can add new variants
without changing the framework (because there is nothing to be done in the framework
itself). On the other hand, one cannot invent new patterns over existing variants that use
the same syntax as the type-tests and type-casts.
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// Class hierarchy:
trait Expr
class Num(val value : int) extends Expr
class Var(val name : String) extends Expr
class Mul(val left : Expr, val right : Expr) extends Expr

// Simplification rule:

e match {
case m : Mul ⇒

m.right match {
case n : Num ⇒

if (n.value == 1) m.left else e
case ⇒ e

}
case ⇒ e

}

Fig. 4. Expression simplification using typecase

2.4 Typecase

The typecase construct accesses run-time type information in much the same way as
type-tests and type-casts. It is however more concise and secure. Figure 4 shows the
arithmetic simplification example using typecase. In Scala, typecase is an instance of
a more general pattern matching expression of the form expr match { cases }. Each
case is of the form case p ⇒ b; it consists of a pattern p and an expression or list of
statements b. There are several kinds of patterns in Scala. The typecase construct uses
patterns of the form x : T where x is a variable and T is a type. This pattern matches all
non-null values whose runtime type is (a subtype of) T . The pattern binds the variable
x to the matched object. The other pattern in Figure 4 is the wildcard pattern , which
matches any value.

Evaluation: Pattern matching with typecase requires zero overhead for the class hi-
erarchy. The pattern matching itself is concise for shallow patterns but becomes more
verbose as patterns grow deeper, because in that case one needs to use nested match-
expressions. Typecase completely exposes object representation. It has the same char-
acteristics as type-test/type-cast with respect to extensibility: adding new variants poses
no problems but new patterns require a different syntax.

3 Case Classes

Case classes in Scala provide convenient shorthands for constructing and analyzing
data. Figure 5 presents them in the context of arithmetic simplification.

A case class is written like a normal class with a case modifier in front. This
modifier has several effects. On the one hand, it provides a convenient notation for
constructing data without having to write new. For instance, assuming the class hi-
erarchy of Fig. 5, the expression Mul(Num(42), Var(x)) would be a shorthand for
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// Class hierarchy:
trait Expr
case class Num(value : int) extends Expr
case class Var(name : String) extends Expr
case class Mul(left : Expr, right : Expr) extends Expr

// Simplification rule:

e match {
case Mul(x, Num(1)) ⇒ x
case ⇒ e

}

Fig. 5. Expression simplification using case classes

new Mul(new Num(42), new Var(x)). On the other hand, case classes allow pattern
matching on their constructor. Such patterns are written exactly like constructor expres-
sions, but are interpreted “in reverse”. For instance, the pattern Mul(x, Num(1)) matches
all values which are of class Mul, with a right operand of class Num which has a value
field equal to 1. If the pattern matches, the variable x is bound the left operand of the
given value.

Patterns
A pattern in Scala is constructed from the following elements:

– Variables such as x or right. These match any value, and bind the variable name to
the value. The wildcard character is used as a shorthand if the value need not be
named.

– Type patterns such as x : int or : String. These match all values of the given type,
and bind the variable name to the value. Type patterns were already introduced in
Section 2.4.

– Constant literals such as 1 or ”abc”. A literal matches only itself.
– Named constants such as None or Nil, which refer to immutable values. A named

constant matches only the value it refers to.
– Constructor patterns of the form C(p1, . . . , pn), where C is a case class and

p1, . . . , pn are patterns. Such a pattern matches all instances of class C which were
built from values v1, . . . , vn matching the patterns p1, . . . , pn.

It is not required that the class instance is constructed directly by an invoca-
tion C(v1, . . . , vn). It is also possible that the value is an instance of a subclass
of C, from where a super-call constructor invoked C’s constructor with the given
arguments. Another possibility is that the value was constructed through a sec-
ondary constructor, which in turn called the primary constructor with arguments
v1, . . . , vn. Thus, there is considerable flexibility for hiding constructor arguments
from pattern matching.

– Variable binding patterns of the form x@p where x is a variable and p is a pattern.
Such a pattern matches the same values as p, and in addition binds the variable x to
the matched value.
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To distinguish variable patterns from named constants, we require that variables start
with a lower-case letter whereas constants should start with an upper-case letter or
special symbol. There exist ways to circumvent these restrictions: To treat a name
starting with a lower-case letter as a constant, one can enclose it in back-quotes, as
in case ‘x‘ ⇒ ... . To treat a name starting with an upper-case letter as a variable, one
can use it in a variable binding pattern, as in case X @ ⇒ ....

case (Cons( , ), Cons( , )) ⇒ b1
case (Cons( , ), Nil) ⇒ b2
case (Nil, Cons( , )) ⇒ b3
case (Nil, Nil) ⇒ b4

b2

b1

b3
Nil _1?

Cons _2?Cons _1?Tuple2?

Nil _2?

Cons _2?

Nil 2? b4

Fig. 6. Optimizing nested patterns

Optimizing Matching Expressions
A pattern match has usually several branches which each associate a pattern with a
computation. For instance, a slightly more complete realistic simplification of arith-
metic expressions might involve the following match:

t match {
case Mul(Num(1), x) ⇒ simplify(x)
case Mul(x, Num(1)) ⇒ simplify(x)
case Mul(Num(0), x) ⇒ Num(0)
case Mul(x, Num(0)) ⇒ Num(0)
case ⇒ t }

A possible implementation for this match would be to try patterns one by one. How-
ever, this strategy would not be very efficient, because the same type tests would be
performed multiple times. Evidently, one needs to test not more than once whether t
matches Mul, whether the left operand is a Num, and whether the right operand is a
Num. The literature on pattern matching algebraic data types discusses identification
and removal of superfluous tests [27]. We adapt these results to an object-oriented set-
ting by replacing constructor-tests with subtyping [28].

The principle is shown in Fig. 6 for a match on a pair (tuple types are explained in
detail below). After preprocessing, a group of nested patterns is expressed as a decision
tree. During execution of the generated code, a successful test leads to the right branch,
where as a failing one proceeds downwards. If there is no down path, backtracking
becomes necessary until we can move down again. If backtracking does not yield a
down branch either, the whole match expression fails with a MatchError exception. Note
that for this match, match failure is excluded by the pattern in the last case.

A vertically connected line in the decision tree marks type tests on the same value
(the selector). This can be implemented using type-test and type-case. However, a linear
sequence of type tests could be inefficient: in matches with n cases, on average n/2
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cases might fail. For this reason, we attach integer tags to case class and translates
tests on the same selector to a lookup-switch. After having switched on a tag, only a
constant number of type tests (typically one) is performed on the selector. We review
this decision in the performance evaluation.

Examples of Case Classes
Case classes are ubiquitous in Scala’s libraries. They express lists, streams, messages,
symbols, documents, and XML data, to name just a few examples. Two groups of case
classes are referred to in the following section. First, there are classes representing
optional values:

trait Option[+T]
case class Some[T](value : T) extends Option[T]
case object None extends Option[Nothing]

Trait Option[T] represents optional values of type T. The subclass Some[T] represents
a value which is present whereas the sub-object None represents absence of a value.
The ‘+’ in the type parameter of Option indicates that optional values are covariant:
if S is a subtype of T , then Option[S] is a subtype of Option[T ]. The type of None
is Option[Nothing], where Nothing is the bottom in Scala’s type hierarchy. Because of
covariance, None thus conforms to every option type.

For the purpose of pattern matching, None is treated as a named constant, just as
any other singleton object. The case modifier of the object definition only changes
some standard method implementations for None, as explained in Section 4. A typical
pattern match on an optional value would be written as follows.

v match {
case Some(x) ⇒ “do something with x”
case None ⇒ “handle missing value”

}

Option types are recommended in Scala as a safer alternative to null. Unlike with null,
it is not possible to accidentally assume that a value is present since an optional type
must be matched to access its contents.

Tuples are another group of standard case classes in Scala. All tuple classes are of
the form:

case class Tuplei[T1, ..., Ti]( 1 : T1, ..., i : Ti)

There’s also an abbreviated syntax: (T1, ..., Ti) means the same as the tuple type
Tuplei[T1, ..., Ti] and analogous abbreviations exist for expressions and patterns.

Evaluation: Pattern matching with case classes requires no notational overhead for the
class hierarchy. As in functional programming languages, the matching code is concise
for shallow as well as for nested patterns. However, also as in functional programmin,
case classes expose object representation. They have mixed characteristics with respect
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to extensibility. Adding new variants is straightforward. However, it is not possible to
define new kinds of patterns, since patterns are in a one to one correspondence with (the
types of) case classes. This shortcoming is eliminated when case classes are paired with
extractors.

4 Extractors

An extractor provides a way for defining a pattern without a case class. A simple exam-
ple is the following object Twice which enables patterns of even numbers:

object Twice {
def apply(x :Int) = x∗2
def unapply(z :Int) = if(z%2==0) Some(z/2) else None

}

This object defines an apply function, which provides a new way to write integers:
Twice(x) is now an alias for x ∗ 2. Scala uniformly treats objects with apply methods as
functions, inserting the call to apply implicitly. Thus, Twice(x) is really a shorthand for
Twice.apply(x).

The unapply method in Twice reverses the construction in a pattern match. It tests its
integer argument z. If z is even, it returns Some(z/2). If it is odd, it returns None. The
unapply method is implicitly applied in a pattern match, as in the following example,
which prints “42 is two times 21”:

val x = Twice(21)
x match {

case Twice(y) ⇒ Console.println(x+” is two times ”+y)
case ⇒ Console.println(”x is odd”) }

In this example, apply is called an injection, because it takes an argument and yields
an element of a given type. unapply is called an extraction, because it extracts parts
of the given type. Injections and extractions are often grouped together in one object,
because then one can use the object’s name for both a constructor and a pattern,
which simulates the convention for pattern matching with case classes. However, it is
also possible to define an extraction in an object without a corresponding injection.
The object itself is often called an extractor, independently of the fact whether it
has an apply method or not.

It may be desirable to write injections and extractions that satisfy the equality
F .unapply(F .apply(x)) == Some(x), but we do not require any such condition on user-
defined methods. One is free to write extractions that have no associated injection or
that can handle a wider range of data types.

Patterns referring to extractors look just like patterns referring to case classes, but
they are implemented differently. Matching against an extractor pattern like Twice(x)
involves a call to Twice.unapply(x), followed by a test of the resulting optional value.
The code in the preceding example would thus be expanded as follows:
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val x = Twice.apply(21) // x = 42
Twice.unapply(x) match {

case Some(y) ⇒ Console.println(x+” is two times ”+y)
case None ⇒ Console.println(”x is odd”)

}

Extractor patterns can also be defined with numbers of arguments different from one.
A nullary pattern corresponds to an unapply method returning a boolean. A pattern
with more than one element corresponds to an unapply method returning an op-
tional tuple. The result of an extraction plays the role of a ”representation-object”,
whose constituents (if any) can be bound or matched further with nested pattern
matches.

Pattern matching in Scala is loosely typed, in the sense that the type of a pattern does
not restrict the set of legal types of the corresponding selector value. The same princi-
ple applies to extractor patterns. For instance, it would be possible to match a value of
Scala’s root type Any with the pattern Twice(y). In that case, the call to Twice.unapply(x)
is preceded by a type test whether the argument x has type int. If x is not an int, the pat-
tern match would fail without executing the unapply method of Twice. This choice is
convenient, because it avoids many type tests in unapply methods which would other-
wise be necessary. It is also crucial for a good treatment of parameterized class hierar-
chies, as will be explained in Section 6.

Representation Independence
Unlike case-classes, extractors can be used to hide data representations. As an example
consider the following trait of complex numbers, implemented by case class Cart, which
represents numbers by Cartesian coordinates.

trait Complex
case class Cart(re : double, im : double) extends Complex

Complex numbers can be constructed and decomposed using the syntax Cart(r, i).
The following injector/extractor object provides an alternative access with polar
coordinates:

object Polar {
def apply(mod : double, arg : double): Complex =

new Cart(mod ∗ Math.cos(arg), mod ∗ Math.sin(arg))

def unapply(z : Complex): Option[(double, double)] = z match {
case Cart(re, im) ⇒

val at = atan(im / re)
Some(sqrt(re ∗ re + im ∗ im),

if (re < 0) at + Pi else if (im < 0) at + Pi ∗ 2 else at)
}

}

With this definition, a client can now alternatively use polar coordinates such as
Polar(m, e) in value construction and pattern matching.
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// Class hierarchy:
trait Term
class Num(val value : int) extends Term
class Var(val name : String) extends Term
class Mul(val left : Term, val right : Term) extends Term

object Num {
def apply(value : int) = new Num(value)
def unapply(n : Num) = Some(n.value)

}
object Var {

def apply(name : String) = new Var(name)
def unapply(v : Var) = Some(v.name)

}
object Mul {

def apply(left : Term, right : Term) = new Mul(left, right)
def unapply(m : Mul) = Some (m.left, m.right)

}
// Simplification rule:

e match {
case Mul(x, Num(1)) ⇒ x
case ⇒ e

}

Fig. 7. Expression simplification using extractors

Arithmetic Simplification Revisited

Figure 7 shows the arithmetic simplification example using extractors. The simplifica-
tion rule is exactly the same as in Figure 5. But instead of case classes, we now define
normal classes with one injector/extractor object per each class. The injections are not
strictly necessary for this example; their purpose is to let one write constructors in the
same way as for case classes.

Even though the class hierarchy is the same for extractors and case classes, there is
an important difference regarding program evolution. A library interface might expose
only the objects Num, Var, and Mul, but not the corresponding classes. That way, one can
replace or modify any or all of the classes representing arithmetic expressions without
affecting client code.

Note that every X.unapply extraction method takes an argument of the alternative
type X , not the common type Term. This is possible because an implicit type test gets
added when matching on a term. However, a programmer may choose to provide a type
test himself:

def unapply(x : Term) = x match {
case m :Mul ⇒ Some {m.left, m.right}
case ⇒ None

}
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class Mul( left : Expr, right : Expr) extends Expr {
// Accessors for constructor arguments
def left = left
def right = right

// Standard methods
override def equals(other : Any) = other match {

case m : Mul ⇒ left.equals(m.left) && right.equals(m.right)
case ⇒ false

}
override def hashCode = hash(this.getClass, left.hashCode, right.hashCode)
override def toString = ”Mul(”+left+”, ”+right+”)”

}
object Mul {

def apply(left : Expr, right : Expr) = new Mul(left, right)
def unapply(m : Mul) = Some(m.left, m.right)

}

Fig. 8. Expansion of case class Mul

This removes the target type from the interface, more effectively hiding the underlying
representation.

Evaluation: Extractors require a relatively high notational overhead for framework
construction, because extractor objects have to be defined alongside classes. The
pattern matching itself is as concise as for case-classes, for both shallow and deep
patterns. Extractors can maintain complete representation independence. They allow
easy extensions by both new variants and new patterns, since patterns are resolved to
user-defined methods.

Case Classes and Extractors
For the purposes of type-checking, a case class can be seen as syntactic sugar for a
normal class together with an injector/extractor object. This is exemplified in Figure 8,
where a syntactic desugaring of the following case class is shown:

case class Mul(left : Expr, right : Expr) extends Expr

Given a class C, the expansion adds accessor methods for all constructor parameters to
C. It also provides specialized implementations of the methods equals, hashCode and
toString inherited from class Object. Furthermore, the expansion defines an object with
the same name as the class (Scala defines different name spaces for types and terms; so
it is legal to use the same name for an object and a class). The object contains an injec-
tion method apply and an extraction method unapply. The injection method serves as a
factory; it makes it possible to create objects of class C writing simply C(. . .) without
a preceding new. The extraction method reverses the construction process. Given an
argument of class C, it returns a tuple of all constructor parameters, wrapped in a Some.
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However, in the current Scala implementation case classes are left unexpanded, so
the above description is only conceptual. The current Scala implementation also com-
piles pattern matching over case classes into more efficient code than pattern matching
using extractors. One reason for this is that different case classes are known not to over-
lap, i.e. given two patterns C(. . .) and D(. . .) where C and D are different case classes,
we know that at most one of the patterns can match. The same cannot be assured for
different extractors. Hence, case classes allow better factoring of multiple deep patterns.

5 Performance Evaluation

In this section, we measure relative performance of the presented approaches, using
three micro-benchmarks. All benchmarks presented here were carried out on a Pentium
4 machine running Ubuntu GNU/Linux operating system using the HotSpot server VM
and Sun’s JDK 1.5 and the Scala distribution v2.3.1. They can be run on any runtime
environment supported by the Scala compiler and are available on the first author’s web-
site. The BASE benchmark establishes how the techniques perform for a single pattern.
The DEPTH benchmark shows how factoring out common cases affects performance.
Finally, the BREADTH benchmarks tests how the number of alternatives affects perfor-
mance. Since typecase is equivalent cast after translation, we do not list it separately in
the benchmarks.

BASE Performance
We assess base performance by running the arithmetic simplification rule from the in-
troduction. This benchmark measures execution time of 2 ∗ 107 successful matches, in
milliseconds. The simplification is not applied recursively.

The results are given below. They are graphically represented in the left half of
Fig. 9. We use the abbreviations oo for object-oriented decomposition, vis for visitor,
cast for test-and-cast, ccls for case classes, ext for extractors returning tuples. Finally,
ext+ shows extractors in a modified example where classes extend product interfaces,
such that the extraction can return the same object and avoid constructing a tuple.

Discussion: No difference is observed between the object-oriented, test-and-cast and
case class approaches. The visitor and the extractor approaches suffer from having to
create new objects. In ext+, we diminish this penalty by making the data classes imple-
ment the Product2 interface and returning the same object instead of a tuple.

The DEPTH Benchmark
When several patterns are tested side-by-side, a lot of time can be saved by factoring
out common tests in nested patterns. If this is done by hand, the resulting code becomes
hard to read and hard to maintain.

This benchmark measures execution time of 105 applications of several arith-
metic simplification rules that are applied side-by-side and recursively. The results are
graphed in the right side of Fig. 9.
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Fig. 10. Diagrams for BREADTH benchmark

Discussion: The ooNaive column shows that a readable, semantically equivalent pro-
gram with redundant type tests can be 6 times slower than the hand-optimized oo ver-
sion. But cast and ccls improve on both. Again, vis, ext and ext+ suffer from object
construction. After factoring out common tests and removing object construction, ext+
is twice as fast as ext and on a par with vis.

The BREADTH Benchmark
Finally, we study how performance of a pattern match is related to the number of cases
in a matching expression. For a fixed number n, the BREADTH benchmark defines n
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generated subclass variants and a matching expression that covers all cases. Applying
the match 25000 times on each term of a list of 500 randomly generated terms yields
the result (the terms and the order are the same for all approaches). The data is shown
in Fig. 10 using two scales.

Discussion: Chained if-statements used by oodecomp fail n/2 on average. We also
see that ooabstract that dispatching to a virtual method in an abstract class is faster
than to one in an interface. The visitor approach vis is predictably unaffected by the
number of cases, because it uses double-dispatch. Surprisingly, cast performs on a
par with vis. It seems that HotSpot recognizes sequences of type-tests as an idiom
and translates it efficiently. Unaware of this VM optimization, we tried to achieve the
same using integer tags caseclass on which we switch before doing the instanceOf.
Extractions returning new tuples as results extTuple are affected negatively, but still
outperform object-oriented decomposition. Finally, saving on object constructions in
extSame achieves performance similar to caseclass.

Summary
The results show that the HotSpot VM is good at optimizing the output resulting from
translation of pattern matching. While providing for much more readable code, case
classes and unapply methods in long-running computations have performance that is
not inferior to the performance of standard techniques. Hotspot optimizes sequences
of type tests, which shows that we can reconsider our implementation strategy to take
advantage of this fact.

6 Parametricity

Up to now, we have studied only hierarchies of monomorphic classes. The problem
becomes more interesting once we consider classes with type parameters. An example
is the typed evaluator for lambda expressions given in Figure 11.

There is an abstract base trait Term with subclasses Var for variables, Num for num-
bers, Lam for lambda abstractions, App for function applications, and Suc for a pre-
defined successor function. The abstract base trait is now parameterized with the type
of the term in question. The parameters of subclasses vary. For instance Var is itself
generic with the same type parameter as Term, whereas Num is a Term of int, and Lam
is a Term of b ⇒ c where both b and c are type parameters of Lam.

The challenge is now how to write – in a statically type-safe way – an evaluation
function that maps a term of type Term[a] and an environment to a value of type a. Sim-
ilar questions have been explored in the context of “generalized algebraic data types”
(GADT’s) in functional languages such as Haskell [29] and Omega [30]. Kennedy and
Russo [12] have introduced techniques to simulate GADT’s in an extension of C# using
visitors and equational constraints on parameters. We show here how GADT’s can be
simulated using typecase as the decomposition technique. This provides a new per-
spective on the essence of GADTs by characterizing them as a framework for exploiting
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//Class hierarchy
trait Term[a]
class Var[a] (val name : String) extends Term[a]
class Num (val value : int) extends Term[int]
class Lam[b, c] (val x : Var[b], val e : Term[c]) extends Term[b ⇒ c]
class App[b, c] (val f : Term[b ⇒ c], val e : Term[b])extends Term[c]
class Suc () extends Term[int ⇒ int]

// Environments:
abstract class Env {

def apply[a](v : Var[a]): a

def extend[a](v : Var[a], x : a) = new Env {
def apply[b](w : Var[b]): b = w match {

case : v.type ⇒ x // v eq w, hence a = b
case ⇒ Env.this.apply(w)

}}}
object empty extends Env {

def apply[a](x : Var[a]): a = throw new Error(”not found : ”+x.name) }
// Evaluation:
def eval[a](t : Term[a], env : Env): a = t match {

case v : Var[b] ⇒ env(v) // a = b
case n : Num ⇒ n.value // a = int
case i : Suc ⇒ { y : int ⇒ y + 1 } // a = int ⇒ int
case f : Lam[b, c]⇒ { y : b ⇒ eval(f.e, env.extend(f.x, y)) } // a = b ⇒ c
case a : App[b, c]⇒ eval(a.f, env)(eval(a.e, env)) // a = c

}

Fig. 11. Typed evaluation of simply-typed lambda calculus

type-overlaps. It goes beyond previous work by also providing a way to write update-
able polymorphic functions. Such functions are used in several forms in denotational
and operational semantics, for instance they can implement stores or environments.

Figure 11 shows an evaluation function eval which uses typecase for pattern match-
ing its term argument t. The first observation from studying this function is that we need
to generalize our previous concept of a typed pattern. Given a term of type Term[a] and
pattern of form f : App[...], what type arguments should be provided? In fact, looking
at a term’s static type we can determine only the second type argument of App (which
must be equal to a), but not the first one. The first type argument needs to be a fresh,
completely undetermined type constant. We express this by extending the syntax in a
type pattern:

A type pattern can now consist of types and type variables. As for normal patterns,
we have the convention that type variables start with a lower-case letter whereas refer-
ences to existing types should start with an upper-case letter. (The primitive types int,
char, boolean, etc are excepted from this rule; they are treated as type references, not
variables).

However, Scala currently does not keep run-time type information beyond the top-
level class, i.e. it uses the same erasure module for generics as Java 1.5. Therefore, all
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type arguments in a pattern must be type variables. Normally, a type variable represents
a fresh, unknown type, much like the type variable of an opened existential type. We
enforce that the scope of such type variables does not escape a pattern matching clause.
For instance, the following would be illegal:

def headOfAny(x : Any) = x match {
case xs : List[a] ⇒ xs.head // error: type variable ‘a’ escapes its scope as

} // part of the type of ‘xs.head’

The problem above can be cured by ascribing to the right-hand side of the case clause
a weaker type, which does not mention the type variable. Example:

def headOfAny(x : Any): Any = x match {
case xs : List[a] ⇒ xs.head // OK, xs.head is inferred to have type ‘Any’, the

} // explicitly given return type of ‘headOfAny’

In the examples above, type variables in patterns were treated as fresh type constants.
However, there are cases where the Scala type system is able to infer that a pattern-
bound type variable is an alias for an existing type. An example is the first case in the
eval function in Figure 11.

def eval[a](t : Term[a], env : Env): a = t match {
case v : Var[b] ⇒ env(v) ...

Here, the term t of type Term[a] is matched against the pattern v :Var[b]. From the class
hierarchy, we know that Var extends Term with the same type argument, so we can
deduce that b must be a type alias for a. It is essential to do so, because the right-hand
side of the pattern has type b, whereas the expected result type of the eval function is a.
Aliased type variables are also not subject to the scoping rules of fresh type variables,
because they can always be replaced by their alias.

A symmetric situation is found in the next case of the eval function:

case n : Num ⇒ n

Here, the type system deduces that the type parameter a of eval is an alias of int. It must
be, because class Num extends Term[int], so if a was any other type but int, the Num
pattern could not have matched the value t, which is of type Term[a]. Because a is now
considered to be an alias of int, the right-hand side of the case can be shown to conform
to eval’s result type.

Why is such a reasoning sound? Here is the crucial point: the fact that a pattern
matched a value tells us something about the type variables in the types of both. Specif-
ically, it tells us that there is a non-null value which has both the static type of the
selector and the static type of the pattern. In other words, the two types must overlap.
Of course, in a concrete program run, the pattern might not match the selector value,
so any deductions we can draw from type overlaps must be restricted to the pattern-
matching case in question.

We now formalize this reasoning in the following algorithm overlap-aliases. Given
two types t1, t2 which are known to overlap, the algorithm yields a set E of equations
of the form a = t where a is a type variable in t1 or t2 and t is a type.
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Algorithm: overlap-aliases
The algorithm consists of two phases. In the first phase, a set of type equalities is com-
puted. In the second phase, these equalities are rewritten to solved form, with only type
variables on the left-hand side. We consider the following subset of Scala types:

1. Type variables or parameters, a.
2. Class types of form p.C[t]. Here, p is a path, i.e. an immutable reference to some

object, C names a class which is a member of the object denoted by p, and t is a
(possibly empty) list of type arguments for C.

3. Singleton types of form p.type where p is a path. This type denotes the set of
values consisting just of the object denoted by p.

Every type t has a set of basetypes denoted basetypes(t). This is the smallest set of
types which includes t itself, and which satisfies the following closure conditions:

– if t is a type variable with upper bound u, basetypes(t) ⊆ basetypes(u),
– if t is a singleton type p.type, where p has type u,

basetypes(t) ⊆ basetypes(u),
– if t is a class type p.C[u], basetypes(t) includes all types in the transitive super-

type relation of t [31].

The class extension rules of Scala ensure that the set of basetypes of a type is always
finite. Furthermore, it is guaranteed that if p.C[t] and q.C[u] are both in the basetypes of
some type t′, then the two prefix paths are the same and corresponding type arguments
are also the same, i.e. p = q and t = u.

This property underlies the first phase of the algorithm, which computes an initial
set of type equalities E :

for− all t of form p.C[t] ∈ basetypes(t1)
for− all u of form q.D[u] ∈ basetypes(t2)

if C = D
E := E ∪ {t = u}

The second phase repeatedly rewrites equalities in E with the following rules, until no
more rules can be applied.

p.C[t] = q.C[u] −→ {p = q} ∪ {t = u}
p = q −→ t = u if p : t, q : u
t = a −→ a = t if t is not a type variable

Note that intermediate results of the rewriting can be path equalities as well as type
equalities. A path equality p = q is subsequently eliminated by rewriting it to a type
equality between the types of the two paths p and q. �

Returning to the type-safe evaluation example, consider the first clause in function
eval. The type of the selector is Term[a], the type of the pattern is Var[b]. The basetypes
of these two types have both an element with Term as the class; for Var[b] the basetype is
Term[b], whereas for Term[a] it is Term[a] itself. Hence, the algorithm yields the equation
Term[b] = Term[a] and by propagation b = a.
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Now consider the second clause in function eval, where the type of the pattern is
Num. A basetype of Num is Term[int], hence overlap-aliases(Num, Term[a]) yields the
equation Term[int] = Term[a], and by propagation a = int.

As a third example, consider the final clause of eval, where the type of the
pattern is App[b, c]. This type has Term[c] as a basetype, hence the invocation
overlap-aliases(App[b, c], Term[a]) yields the equation Term[c] = Term[a], and by propa-
gation c = a. By contrast, the variable b in the pattern rests unbound; that is, it constitutes
a fresh type constant.

In each case, the overlap of the selector type and the pattern type gives us the correct
constraints to be able to type-check the corresponding case clause. Hence, the type-safe
evaluation function needs no type-cast other than the ones implied by the decomposing
pattern matches.

Polymorphic Updateable Functions

The evaluator in question uses environments as functions which map lambda-bound
variables to their types. In fact we believe it is the first type-safe evaluator to do so.
Previous type-safe evaluators written in Haskell [29], Omega [30] and extended C#
[12] used lambda expressions with DeBrujn numbers and represented environments as
tuples rather than functions.

In Figure 11, environments are modeled by a class Env with an abstract polymorphic
apply method. Since functions are represented in Scala as objects with apply methods,
instances of this class are equivalent to polymorphic functions of type ∀a.Var[a] ⇒ a.
Environments are built from an object empty representing an empty environment and
a method extend which extends an environment by a new variable/value pair. Every
environment has the form

empty.extend(v1, x1). ... .extend(vn, xn)

for n ≥ 0, where each vi is a variable of type Var[Ti] and each xi is a value of type Ti.
The empty object is easy to define; its apply method throws an exception every

time it is called. The implementation of the extend method is more difficult, because
it has to maintain the universal polymorphism of environments. Consider an extension
env.extend(v, x), where v has type Var[a] and x has type a. What should the apply method
of this extension be? The type of this method is ∀b.Var[b] ⇒ b. The idea is that apply
compares its argument w (of type Var[b]) to the variable v. If the two are the same, the
value to return is x. Otherwise the method delegates its task by calling the apply method
of the outer environment env with the same argument. The first case is represented by
the following case clause:

case : v.type ⇒ x .

This clause matches a selector of type Var[b] against the singleton type v.type. The latter
has Var[a] as a basetype, where a is the type parameter of the enclosing extend method.
Hence, overlap-aliases(v.type, Var[b]) yields Var[a] = Var[b] and by propagation a = b.
Therefore, the case clause’s right hand side x of type a is compatible with the apply
method’s declared result type b. In other words, type-overlap together with singleton
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types lets us express the idea that if two references are the same, their types must be the
same as well.

A pattern match with a singleton type p.type is implemented by comparing the
selector value with the path p. The pattern matches if the two are equal. The comparison
operation to be used for this test is reference equality (expressed in Scala as eq). If
we had used user-definable equality instead (which is expressed in Scala as == and
which corresponds to Java’s equals), the type system would become unsound. To see
this, consider a definition of equals in some class which equates members of different
classes. In that case, a succeeding pattern match does no longer imply that the selector
type must overlap with the pattern type.

Parametric Case-Classes and Extractors
Type overlaps also apply to the other two pattern matching constructs of Scala, case-
classes and extractors. The techniques are essentially the same. A class constructor
pattern C(p1, ..., pm) for a class C with type parameters a1, . . . , an is first treated as
if it was a type pattern : C[a1, . . . an]. Once that pattern is typed and aliases for the
type variables a1, . . . , an are computed using algorithm overlap-aliases, the types of
the component patterns (p1, ..., pm) are computed recursively. Similarly, if the pattern
C(p1, ..., pn) refers to a extractor of form

object C {
def unapply[a1, . . . , an](x : T ) ...
...

} ,

it is treated as if it was the type pattern : T . Note that T would normally contain type
variables a1, . . . , an.

As an example, here is another version of the evaluation function of simply-typed
lambda calculus, which assumes either a hierarchy of case-classes or extractors for
every alternative (the formulation of eval is the same in each case).

def eval[a](t : Term[a], env : Env): a = t match {
case v @ Var(name) ⇒ env(v)
case Num(value) ⇒ value
case Suc ⇒ { y : int ⇒ y + 1 }
case Lam(x : Var[b], e) ⇒ { y : b ⇒ eval(e, env.extend(x, y)) }
case App(f, e) ⇒ eval(f, env)(eval(e, env)) }

7 Conclusion

We described and evaluated six techniques for object-oriented pattern matching along
nine criteria. The evaluations of the preceding sections are summarized in Table 1. The
table classifies each technique for each criterion in three categories. We should empha-
size that this is more a snapshot than a definitive judgment of the different techniques.
All evaluations come from a single language on a single platform, with two closely
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Table 1. Evaluation summary

oodecomp visitor test/cast typecase caseclass extractor
Conciseness

framework – – + + + –
shallow matches o – – + + +
deep matches – – – o + +

Maintainability
representation independence + o – – – +
extensibility/variants – – + + + +
extensibility/patterns + – – – – +

Performance
base case + o + + + –
scalability/breath – + + + + –
scalability/depth – o + + + –

related implementations. Conciseness might vary for languages with a syntax different
from Scala. Performance comparisons might be different on other platforms, in partic-
ular if there is no JIT compiler.

However, the evaluations can serve for validating Scala’s constructs for pattern
matching. They show that case classes and extractors together perform well in all of
the criteria. That is, every criterion is satisfied by either case-classes or extractors, or
both. What is more, case-classes and extractors work well together. One can conceptu-
alize a case class as syntactic sugar for a normal class with an injector/extractor object,
which is implemented in a particularly efficient way. One can also switch between case
classes and extractors without affecting pattern-matching client code. The typecase con-
struct plays also an important role as the type-theoretic foundation of pattern matching
in the presence of parametricity. Extractor matching generally involves implicit pattern
matches with type patterns. Typecase is thus useful as the basic machinery on which
the higher-level constructs of case classes and extractors are built.
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Abstract. Programs that process streams of information are commonly
built by assembling reusable information-flow components. In some sys-
tems the components must be chosen from a pre-defined set of primitives;
in others the programmer can create new custom components using a
general-purpose programming language.

Neither approach is ideal: restricting programmers to a set of prim-
itive components limits the expressivity of the system, while allowing
programmers to define new components in a general-purpose language
makes it difficult or impossible to reason about the composite system.
We advocate defining information-flow components in a domain-specific
language (DSL) that enables us to infer the properties of the components
and of the composed system; this provides us with a good compromise
between analysability and expressivity.

This paper presents DirectFlow, which comprises a DSL, a compiler
and a runtime system. The language allows programmers to define ob-
jects that implement information-flow components without specifying
how messages are sent and received. The compiler generates Java classes
by inferring the message sends and methods, while the run-time library
constructs information-flow networks by composition of DSL-defined
components with standard components.

1 Introduction

Systems that stream information continuously from source to sink are common-
place; examples include software routers for network traffic [1], data stream query
systems [2], surveillance systems, real-rate video streaming [3], and highway loop
detector data analysis [4]. Hart and Martinez survey more than 50 current ex-
amples of environmental sensor networks, and argue that the ability to construct
systems that stream environmental data continuously from the field to the sci-
entists’ laboratories will revolutionize earth system science [5]. We refer to this
wide class of systems as information flow applications.

A popular strategy for building information-flow applications is by compos-
ing reusable components. Systems based on this strategy include Aurora [2],
the Click modular router [1], Krasic’s media streaming system [3], StreamIt [6],
Spidle [7], and our own Infopipes system [4,8]. In these systems, each compo-
nent has a set of input ports (inports) and output ports (outports), which con-
nect to information flows. Since each application has distinct data-processing
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requirements, many information-flow programming systems allow programmers
to define custom components.

In component-based systems, programmers construct an information-flow ap-
plication by connecting the ports of components with channels, which specify
the flow of data packets. In an object-oriented program, message sends directly
determine how the thread of control passes between objects. In contrast, a chan-
nel connecting two ports determines only how data packets flow: it says nothing
(directly) about how the thread passes between components. Control may pass
from upstream to downstream or the other way around: the choice depends on
not only the nature of the connected components, but also the context in which
the components appear. These dependencies make managing the control flow of
an information-flow application a difficult and labor-intensive task: the relation-
ship between a component’s data-flow behaviour and its control-flow interaction
with other components is understood only for linear components [9]. Moreover,
the context-sensitivity of components means that a local code change may have
a great influence on the global control-flow.

Manually managing the control flow distracts programmers from organizing
the data flow in an application, and a practical information-flow programming
system should relieve programmers of this burden with the following feature:

F0. Automatic invocation of components. The system should handle the invo-
cation of components in response to runtime data flow. The programmer
should not have to specify how a component invokes, or is invoked by,
neighboring components.

In addition to this software-engineering feature, we will argue that a practical
information-flow programming system should also support the following three
information-flow features:

F1. Expressive custom components. The system should allow the creation of
custom components with multiple inports and outports that can add packets
to or remove packets from a flow.

F2. Control over data-transfer latency between components. The system should
connect components with unbuffered channels to avoid introducing arbi-
trary latency between components.

F3. Choice of processing mode. Two different modes of processing are possible:
data-driven processing invokes a component when a data packet arrives at
one of its inports, while demand-driven processing invokes a component
when a data request arrives at one of its outports. The system should allow
both modes of processing to coexist in one application.

Unfortunately, no previous information flow systems support all four features
F0–F3 because this rich combination of features can allow programmers to con-
nect components in a way that has no reasonable implementation.

In this article we describe DirectFlow, which does support all four features.
How do we achieve this? DirectFlow allows programmers to define custom com-
ponents using a domain-specific language (DSL). The DirectFlow compiler
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checks the DSL modules to see if they satisfy a context condition (discussed
in Sect. 3.2). If they do, the compiler generates one or more Java classes for
each module. The DirectFlow runtime system allows programmers to compose
these custom components with standard library components; further consistency
checks are applied at composition time. The effect of the checks is to elimi-
nate unimplementable pipelines. The composed pipeline is then instantiated in
a set-up phase, and can finally be used in an ordinary Java program to perform
information-flow processing tasks.

In Sect. 2 we fill-in some background about the four features listed above
and explain why it is hard to support them all. The DirectFlow domain-specific
language is described in Sect. 3. Section 4 describes the way that we ascertain
the possible processing modes for the components defined in the DSL, and how
we generate Java code. Section 5 discusses the DirectFlow Framework, which
brings together library code, generated Java code, and hand-crafted Java code
into deployable pipelines.

The specific technical contributions of this work are as follows:

– A CSP-inspired programming model that supports both data-driven and
demand-driven data processing in a uniform manner.

– A general characterization of how the thread of control traverses through
ports of information-flow components connected by unbuffered data-driven
and demand-driven channels.

– A control-flow analysis algorithm that infers automatically how the thread
of control enters and exits an information-flow component.

– The DirectFlow DSL based on our programming model.
– A compiler that generates several different Java implementations of a com-

ponent from the DirectFlow definition, one for each possible flow of control.
– A run-time system that allows programmers to compose DirectFlow compo-

nents, while ensuring that they are composed consistently.

We also show that the ideas behind DirectFlow lead to an alternative formulation
of objects that does not involve methods.

2 Background

The information-flow features F1–F3 are important because of situations that
naturally arise in information-flow applications. We illustrate these situations by
example; here and throughout this paper we will refer to the custom components
depicted in Fig. 1.

A filter transforms individual packets in a flow. For example, a filter can de-
compress an MPEG video block into an 8× 8 block of pixels.

A prioritizer buffers packets in a flow. On request, it outputs the packet with
the highest priority. The output thus depends not only on the content of
the flow but also on the timing of the input and output events. Krasic uses
such a component to provide high-quality video playback over an unstable
network connection [3].
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Fig. 1. Five example components

A duplicator sends each packet in the input flow to two output flows. A pro-
grammer might use it to copy a stream for logging.

A separator sends each packet in the input flow to one of two output flows. The
chosen flow is the one that is ready to receive the packet first. A separator
allows us to connect a “ticket dispenser” component that produces unique
numbers to multiple clients.

A demultiplexer sends each packet in the input flow to one of two output
flows depending on the packet’s contents. For example, a demultiplexer can
extract video and audio streams from an MPEG system stream.

2.1 Why the Information-Flow Features Are Important

If an information-flow system is to allow programmers to define custom compo-
nents like these examples, it must exhibit features F1–F3. Without F1 (expres-
sivity), there is no way to implement a demultiplexer because it has two outports
with different data rates. Without F2 (latency-control), the system is no longer
compositional: splitting a component into two components can introduce arbi-
trary latency [8, §2.1]. Moreover, buffered channels change the behaviour of the
prioritizer because they alters the timing of input and output operations and
thus interfere with the priority-reordering.

The result of sacrificing F3 (choice of processing mode) depends on the
specifics of the system. If the system supports only data-driven processing, there
is no way to build a separator without buffering or blocking. If the system sup-
ports only demand-driven processing, there is no way to use a duplicator or a
demultiplexer without buffering or blocking.

Full support of F3 permits not only pure data-driven and demand-driven
components but also components that are partially data-driven and partially
demand-driven. For example, the prioritizer has a data-driven inport and a
demand-driven outport; it stores packets whenever they arrive and outputs one
whenever a request is received from downstream. If a system does support F3,
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components like the filter and duplicator present additional complications: they
can naturally work in multiple processing modes, and the programming system
ought to support this generality. While the case of multi-mode single-inport,
single-outport components is well understood [8,10], there is little discussion
of the general case in the literature beyond the statement that the problem is
“complicated” [9].

2.2 Information-Flow Features in Existing Systems

Given the importance of features F1–F3, it seems clear that an information-
flow programming system should aim to provide them. Unfortunately, all of
the systems we surveyed have given up some of F1–F3 in order to support
F0 (automatic invocation). The consequences of supporting F0–F3 depend on
system design:

1. Systems such as Click [1], which use buffered channels and rely on a runtime
scheduler to invoke components, can run into deadlocks or unbounded buffer
growth.

2. In thread-transparent Infopipes [9], adding components with multiple inports
or outports introduces the risk of resuming a stale coroutine.

3. Shivers’ and Might’s online transducers with multiple inports or outports [11]
risk using stale channel continuations.

These problems show up only in specific pipeline configurations (for example,
connecting a data-driven outport to a demand-driven inport); they suggest that
the combination of F1–F3 allows programmers to specify pipelines that are in-
ternally inconsistent and for which there is no reasonable implementation. Exist-
ing systems get around these problems by sacrificing one of the information-flow
features, or by giving up F0 and requiring the programmer to specify the control-
flow interaction of components.

Instead of sacrificing one of F1–F3 to achieve F0, DirectFlow allows program-
mers to define internally inconsistent pipelines but uses a context condition to
detect these cases at compile time. It is the restricted expressivity of the DSL
that makes this possible.

2.3 Comparison with Infopipes

DirectFlow evolved from the Infopipes middleware system [8]; following the ter-
minology developed there, we call a component a pipe and a composition of
components a pipeline. (To avoid confusion, we reserve “Infopipes” exclusively
for the previous Smalltalk-based system.) The Infopipes system sits on top of
an object-oriented language; it represents a pipe as an object and implements
inter-pipe packet transfer with message send.

Infopipes support features F1–F3, but require programmers to manually ar-
range the invocation of pipes by declaring their polarity configurations. A polarity
configuration defines the control-flow interface of a pipe by assigning a positive
or negative polarity to each port. A positive port transfers data by sending a



304 C.-k. Lin and A.P. Black

message (push for outports and pull for inports), and a negative port transfers
data when it receives a message. Specifying the polarity configuration of a pipe
is more complicated than merely writing a declaration: for each negative port
the programmer has to define a method to run in response to messages received.
Thus, the polarity configuration dictates how the functionality of the pipe must
be divided into methods. Moreover, there are no general rules to help program-
mers decide what polarity configurations a pipe can have; although multi-mode
(“polymorphic”) pipes can be constructed, all of the methods necessary to make
them work must be written by hand, and the programmer is responsible for
ensuring that the data-driven and demand-driven behaviours are the same.

DirectFlow differs from Infopipes in three main ways. First, DirectFlow pro-
grammers define their components at a higher level; rather than defining objects
that implement both the data-flow and the control-flow behaviour of their pipes,
they define only the data-flow behaviour using a DSL. The DirectFlow compiler
infers the control flow and generates the objects (specifically, Java classes). Sec-
ond, DirectFlow deals with composition more consistently than did Infopipes:
composite pipelines can be treated in exactly the same way as custom pipes, since
they can be instantiated as many times as needed. Third, while both Infopipes
and DirectFlow use ports, their role is different in the two systems. Infopipe
ports are objects that exist at runtime: all packets flowing into or out of a pipe
have to pass though a port. In DirectFlow, ports exist at configuration time, but
they are eliminated before runtime, thus also eliminating a level of indirection
in the information flow.

3 The DirectFlow DSL

The DSL component of DirectFlow is an embedded language for programming
information-flow components. We developed the language under the following
assumptions:
A1. A pipe transfers data packets through a fixed set of inports and outports.
A2. Pipes are reactive. A pipe does not own a thread of control: it runs only in

response to external data transfer requests.
A3. An outport of an upstream pipe is connected to a single inport of a down-

stream pipe by an unbuffered channel.
A4. At most one thread of control is executing in a pipeline at a given time.
A5. The thread moves from one pipe to another along with the data; this is

similar to the way that message sends in an object-oriented system cause
the thread of control to move from one object to another.

We introduced assumption A1 to simplify the design of DirectFlow, while as-
sumptions A3 and A5 are inherited from the Infopipes system. Assumptions A2
and A4, which may seem rather strong, apply not to the entire information-
flow application, but only to individual segments implemented in DirectFlow.
Programmers can implement any segment of the system that they wish to run
without scheduling overhead as a DirectFlow pipeline and then create higher-
level logic to connect these segments. For example, a voice-mail server might
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use separate pipelines to serve separate clients, and each client might have its
own pipeline that takes packets from the network, decrypts them, and presents
audio to the user. Even though A2 and A4 still hold within each pipeline, the
application as a whole involves multiple threads and run-time scheduling.

3.1 Language Overview and Syntax

The DirectFlow language is inspired by Hoare’s Communicating Sequential Pro-
cesses (CSP) [12] and therefore bears some resemblance to occam [13]. Using
CSP abstracts away from the polarity configurations of the objects; program-
mers see a DirectFlow module as a sequentially executed thread that uses input
and output statements to perform data transfers. Like occam, DirectFlow sup-
ports nondeterministic branches, so a DirectFlow module can perform concurrent
blocking I/O operations in the style of the POSIX select system call.

DirectFlow is not a complete, stand-alone programming language; for exam-
ple, it contains no support for arithmetic or other data manipulation operations.
To be useful the DSL must be embedded into a general-purpose programming
language, which we call the host language. This embedded design strategy has
the benefit of reducing the work of language design (there is no need to reinvent
all the wheels and do a bad job). It also simplifies the task of porting an existing
program to DirectFlow: the data input–output interface will need to be changed,
but the code that actually manipulates the data can be brought over from the
host language unchanged.

In the work described here we embedded the DirectFlow DSL into Java, and
matched DirectFlow’s concrete syntax to that of Java. However, it is a simple
matter to change the concrete syntax when integrating DirectFlow with another
host language: we developed a previous prototype using Smalltalk syntax and
integrated it with Squeak.

The syntax of the DirectFlow /Java language is shown in Fig. 2. A Direct-
Flow /Java module contains the name of the pipe, an optional Java superclass

module ::= pipe name (extends super)? ‘{’ portdecl+ process ‘{’ stmt+ ‘}’ ‘}’
portdecl ::= ( inport | outport ) port ( ‘,’ port )+ ‘;’
var ::= Java variable identifier

expr ::= Java expression

stmt ::= Java statement | alternative | input | output
alternative ::= alt stmt ( with stmt )+
input ::= var = port ‘?’ ‘;’
output ::= port ‘!’ expr ‘;’

Fig. 2. DirectFlow /Java syntax in Backus-Naur form extended with ? (indicating 0
or 1 repetitions), and + (indicating 1 or more repetitions). We list only those grammar
rules that augment Java syntax. The top level nonterminal symbol is module; the
alternative, input, and output statements can appear at any place in a DirectFlow
module at which an ordinary Java statement can appear.
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declaration (discussed in Sect. 4.4), port declarations, and a data-processing
process block. The process block defines how the pipe performs input–output
and processes data packets in each iteration; there is an implicit unbounded
loop around the block. Code in the block can make use of three new kinds of
primitive statement: alternative, input and output.

alternative. The meaning of alt stmt1 with stmt2 with stmt3 is that one of the
branches stmt1, stmt2 or stmt3 is executed. The programmer of a pipe has
no direct control over which; this is determined at run time based on the
outstanding input and output requests from other pipes. The meaning of an
alt statement does not depend on the order of the branches.

input. The meaning of var = port ? is that the pipe inputs a packet from the
inport port and stores the packet in the variable var.

output. The meaning of port ! expr is that the pipe evaluates the expression
expr and outputs the result through the outport port.

The primitive statements in our DSL correspond closely to those of CSP,
but with a few modifications. For example, a DirectFlow module has no way to
invoke itself, or indeed any other DirectFlow module. We have also eliminated
the CSP parallel composition operator || because it is not useful in our context
(due to A4). In contrast with the CSP choice operator [], which requires that
the first statement in each branch performs a distinct input or output operation,
the alt statement in the DirectFlow DSL does not restrict the first statements
in the branches.

3.2 The Context Condition

To ensure that a DirectFlow module corresponds to a reactive pipe, we introduce
one context condition restricting how the pipe performs input–output through
its ports. Before we can state the context condition we need to introduce two
definitions.

– An alt specialization of a module is the module that results from replacing
each alternative statement by one of its branches. For example, the module
{ a; alt b; with c; } has two alt specializations: { a; b; } and { a; c; }.

– A port is an index port of an alt specialization if the port is accessed exactly
once in the execution of the alt specialization, regardless of control flow, and
if the port is not accessed in any other alt specialization of the module. It
does not matter if the port is an inport or an outport.

The context condition we impose on DirectFlow is that every alt specialization
in a valid module must have at least one index port. The motivation behind this
requirement is twofold. First, we want to ensure that every alt specialization is
triggered by data transfer at a certain port. The index port of the alt special-
ization is that port; transferring data through the index port executes the alt
specialization. Second, we need to determine which branch of an alt to execute.
By requiring that each alt specialization has an exclusive index port not accessed
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elsewhere, we can always make this determination when a data transfer request
arrives at an index port. In essence, this rule lets us implement angelic nonde-
terminism, i.e., we make alt choices not arbitrarily but in a way that ensures
that the pipe can conduct the necessary data transfer.

pipe Filter {
inport in;
outport out;

process {
Object packet;
packet = in ?;
out ! packet;

}
}

pipe Duplicate {
inport in;
outport out0, out1;

process {
Object packet;
packet = in ?;
out0 ! packet;
out1 ! packet;

}
}

pipe Separate {
inport in;
outport out0, out1;

process {
Object packet;
packet = in ?;
alt out0 ! packet;
with out1 ! packet;

}
}

Fig. 3. DirectFlow modules for the Filter, Duplicate and Separate pipes of Sect. 2

Fig. 3 shows three pipes in DirectFlow /Java. Port names in a pipe are not
values in the host language and thus cannot be stored in variables; they can be
used only as the subjects of the ? and ! constructs.

Since the Filter module does not contain an alt statement, its alt specializa-
tion is trivially the same as the module itself. Both in and out are index ports of
this program, and thus it satisfies the context condition. Likewise, the alt spe-
cialization of the Duplicate module is the same as itself. Ports in, out0 and out1
are all index ports, and the module satisfies the context condition. The Separate
module has two alt specializations: {Object packet; packet = in ?; out0 ! packet; }
and {Object packet; packet = in ?; out1 ! packet; }. The first has out0 as an index
port; the second has out1 as an index port. Note that the port in appears in both
alt specializations, so it cannot be an index port of either.

pipe Switch {
inport in0, in1;
outport out0, out1;

process {
Object packet;
alt packet = in0 ?;
with packet = in1 ?;
alt out0 ! packet;
with out1 ! packet;

}
}

Fig. 4. This Switch pipe definition is not a valid DirectFlow module because none of
its alt specializations has an index port
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The Switch module in Fig. 4 is an example of an invalid DirectFlow module.
It has four alt specializations: { packet = in0 ?; out0 ! packet; }, { packet =
in0 ?; out1 ! packet; }, { packet = in1 ?; out0 ! packet; }, and { packet = in1 ?;
out1 ! packet; }. However, none of these alt specializations has an index port
because each port is accessed in two different specializations.

4 Compiling DirectFlow Modules

In the previous section we described how DirectFlow uses a CSP-inspired pro-
gramming model to eliminate the polarity-declaration requirement in Infopipes.
Instead the DirectFlow compiler infers the polarity configurations of a pipe and
generates the pipe objects. In this section we first discuss the inference process
conceptually, and then present the details of our inference algorithm. Finally, we
explain how the compiler generates code.

4.1 Principles of the Compilation Process

An object is characterized by its behaviour: its protocol (the messages that it can
understand), and the responses that it makes to those messages. Most “object-
oriented” languages, including Java, specify both of these things by defining a
set of methods: the names of the methods define the protocol, and the bodies of
the methods define the response to each message. So we have:

methods in an object =⇒
{

messages the object can understand
code to run when receiving a message

However, this is not the only way of defining the behaviour of an object. Direct-
Flow modules can also be viewed as defining objects. Their protocol is limited to
a subset of the messages push and pull, while the response to these messages is
given implicitly by the DirectFlow module. The task of the compiler is to deter-
mine if the object corresponding to a DirectFlow module understands push, pull,
or both, and to generate Java methods that implement the data-processing func-
tionality defined in the DirectFlow code. So we start by inverting the diagram
above:

methods in the object ⇐=

{
messages an object can understand
code to run when receiving a message

How can we decide what messages a pipe object can understand? The DirectFlow
code might say that a pipe performs output on a certain port, but it does not
explicitly say whether the port is positive or negative. If the port is positive, it
will send messages to transfer data to or from some other pipe, but will never
receive messages. Only negative ports can receive messages: negative inports
receive push messages and negative outports receive pull messages. Thus, if we
can determine the possible polarity configurations of a DirectFlow program, we
can infer its protocol. Can we also infer the body of the method to execute in
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Infopipe in out0 out1

Duplicate
− + +
+ − +
+ + −

Separate + − −

Fig. 5. Polarity configurations of the Duplicate and Separate pipes in Fig. 3

response to an incoming message? We can, provided that, for each negative port,
there is a single piece of code that executes a data transfer on the port. So we
constrain valid polarity configurations to ensure that each negative port must
be associated with one alt specialization, and that it is accessed exactly once in
the execution of one cycle of the pipe. In other words, a port can be negative
only if it is an index port as defined in Sect. 3.2.

Thus the following strategy lets us derive an implementation for a DirectFlow
module as a Java class:

For each alt specialization, mark one of its index ports with negative
polarity. Mark all other ports with positive polarity. The code to run
when receiving a message through a negative port is the alt specialization
that accesses the port.

This strategy determines how many polarity configurations a pipe has. The con-
text condition of Sect. 3.2 ensures that a DirectFlow module has at least one
polarity configuration, but some pipes have more than one. Consider the Filter
pipe in Fig. 3. Because both in and out are index ports, applying this strategy
to Filter produces the data-driven and demand-driven polarity configurations as
documented in the filter design pattern [10]. Fig. 5 shows the results of applying
this strategy to the Duplicate and the Separate pipes.

4.2 Mapping an Invalid DirectFlow Module to Objects

Let us try to implement the Switch DirectFlow module in Fig. 4 (which violates
the context condition) as a pipe object. We will fail, but it is instructive to see
why. We start by considering which ports should have negative polarity.

– Suppose that in0 and in1 are negative, and the other ports are positive. Since
branches in the second alt construct do not access any negative ports (out0
and out1 are both positive), the object cannot use the received message to
decide whether to send the outgoing packet through out0 or out1.

– Suppose ports in0, in1, and out0 are negative. This pipe cannot respond to
data request on out0 in a useful way because it has no way of requesting
data from upstream, but must instead block until an upstream pipe pushes
data in (which may never happen).

– Suppose that ports in1 and out0 are negative. With this polarity configura-
tion we can eliminate the blocking behaviour by making the object pull from
in0 when it receives a pull message associated with out0, and push to out1
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when it receives a push message associated with in1. However, such an ob-
ject does not implement the Switch Infopipe faithfully because our arbitrary
choice rules out the execution paths in0— out1 and in1— out0.

– Suppose that all ports are positive. Since pipe objects do not have their own
threads, and this pipe object does not have a thread entrance, it will never
acquire a thread and will just sit idly doing nothing. This behaviour is quite
useless, so we disallow the all-positive configuration.

Even though these discussions are based on our intuitive understanding of reac-
tive objects, they all relate back to the context condition. These lines of reasoning
should help programmers to understand the cause of the problem when the Di-
rectFlow compiler rejects a module that violates the context condition, or why
the compiler does not allow a pipe to have a specific polarity configuration.

4.3 Inferring Polarity Configurations of DirectFlow Modules

The compilation process reflects the preceding discussion. It starts by identifying
the alt specializations of the module using a mechanism called alt lifting. It then
determines if each alt specialization has one or more index ports; if there is no in-
dex port, the context condition has been violated. The next step is to compute the
polarity configurations by selecting one index port from each alt specialization
and marking it as a negative port. The compiler can then generate a pipe object
with a push method and a pull method. The push method contains alt specializa-
tions with negative inports, and the pull method contains alt specializations with
negative outports. If the pipe has multiple polarity configurations, we generate
a separate pipe object for each configuration. We now describe the processes of
alt lifting and of computing the polarity configurations in more detail.

Code pattern Rewrite result

alt 〈 s1, ..., sm 〉 ; t alt 〈 s1 ; t, ..., sm ; t 〉 (seq-a)
s ; alt 〈 t1, ..., tn 〉 alt 〈 s ; t1, ..., s ; tn 〉 (seq-b)
if (c) { alt 〈 s1, ..., sm 〉 } t alt 〈 if (c) s1 t, ..., if (c) sm t 〉 (if-a)
if (c) s { alt 〈 t1, ..., tn 〉 } alt 〈 if (c) s t1, ..., if (c) s tn 〉 (if-b)
alt 〈 s1, ..., alt 〈 t1, ..., tn 〉, ..., sm 〉 alt 〈 s1, ..., t1, ..., tn, ..., sm 〉 (alt)

Fig. 6. The rewrite rules for alt lifting in an abstract-syntax notation. We enclose alt
branches in angle brackets separated by commas. The semicolon (;) in the seq rules is
the statement sequence operator.

Alt Lifting. The alt lifting procedure computes the alt specializations of a Di-
rectFlow module through a series of rewrites. The rewrite rules, listed in Fig. 6,
make use of the property that conditional and statement sequencing constructs
all distribute over alt, so we can “lift” alt up without changing the meaning
of the module. Since code duplicated by the rewrites goes into different alt
branches, and an alt construct always executes only one branch, the duplica-
tion cannot cause multiple executions of the same statement. The procedure
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pipe Separate {
inport in;
outport out0, out1;

process {
alt {

Object packet;
packet = in ?;
out0 ! packet;

} with {
Object packet;
packet = in ?;
out1 ! packet;

}
}

}

pipe Switch {
inport in0, in1;
outport out0, out1;

process {
alt {

Object packet;
packet = in0 ?;
out0 ! packet;

} with {
Object packet;
packet = in1 ?;
out0 ! packet;

} with {
Object packet;
packet = in0 ?;
out1 ! packet;

} with {
Object packet;
packet = in1 ?;
out1 ! packet;

}
}

}

Fig. 7. The Separate and Switch pipes after alt lifting. The original DirectFlow source
for these two pipes are shown in Figs. 3 and 4.

repeatedly rewrites the module until all alt constructs are at the top level, at
which point each alt branch would be an alt specialization. The observant reader
will notice that there is no rule for loops. A module that contains an alt in a
loop always violates the context condition, so the compiler never needs to lift it.

Example: Applying alt Lifting to Separate and Switch. We illustrate the alt lifting
procedure by applying it to two examples. The Separate pipe in Fig. 3 contains
only one alt construct and the rewrite terminates in one step. The Switch pipe
in Fig. 4 contains two alt constructs; the rewrite starts by lifting either of the alt
constructs and then proceeds by flattening the nested alt constructs using the
alt rewrite rule. Fig. 7 shows the pipes after alt lifting; each top-level alt branch
corresponds to an alt specialization of the module.

Computing Polarity Configurations. The DirectFlow compiler computes
the polarity configurations of a DirectFlow module by first identifying the index
ports of each alt specialization, and then computing the Cartesian product of
the sets of index ports. The algorithm proceeds as follows.

Step 1. Let B be the set of alt specializations of the program; for each b ∈ B,
compute the set Pb of all the ports accessed in b.
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Step 2. For each b ∈ B, compute the set Qb using the following equation:

Qb = Pb −
⋃

i∈B−{b}
Pi

Qb is the set of ports that are accessed in the alt specialization b and
nowhere else.

Step 3. For each b ∈ B, eliminate from Qb all ports accessed in a loop, accessed
in only one branch of an if construct, or accessed multiple times in an
execution path. This step is a simple control-flow analysis that enforces
the “exactly once” part of the definition of index ports. The resulting
sets Qb contain the index ports of the alt specializations in B.

Step 4. We compute the negative ports in a polarity configuration by choosing
one port from the set Qb for each specialization b. We represent a
polarity configuration by a tuple of its negative ports, and the set N
of configurations is given by

N =
∏
i∈B

Qi

where
∏

represents Cartesian product on sets.

In our experience, the crude control-flow analysis algorithm in Step 3 works
fairly well. If it later turns out that imprecision in this algorithm rules out some
polarity configurations on useful DirectFlow modules, we can apply more sophis-
ticated control-flow analysis algorithms. (These could, for example, recognize
mutually exclusive if conditions to infer a larger set of polarity configurations.)

Example: Polarity configurations of Separate. We number the alt branches in
Fig. 7 according to their order of appearance and use the module to demonstrate
how to compute polarity configurations.

Step 1. P1 = { in, out0 }, P2 = { in, out1 }
Step 2. Q1 = P1 − P2 = { out0 }, Q2 = P2 − P1 = { out1 }
Step 3. No changes to Q1 and Q2

Step 4. N = Q1 ×Q2 = { 〈out0, out1〉 }
The set N has only one element, so Separate has one polarity configuration.

The ports out0 and out1 are negative, and hence in is positive.

Example: Polarity Configurations of Switch. We now apply the same constraint
solving process to the lifted Switch pipe in Fig. 7.

Step 1. P1 = { in0, out0 }, P2 = { in1, out0 }, P3 = { in0, out1 }, P4 =
{ in1, out1 }

Step 2. Q1 = Q2 = Q3 = Q4 = ∅
At this point we can conclude that the Switch DirectFlow module does not

have a polarity configuration because none of its alt specializations has an index
port, and the Cartesian product of any set with an empty set is empty. In this
case the compiler reports an error instead of continuing with the code generation
process.
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Fig. 8. Defining a DirectFlow pipe using the domain-specific language

4.4 Generating Code for Pipe Objects

When a DirectFlow module is compiled, the compiler analyses the module, deter-
mines how many polarity configurations are possible for the pipe that it defines,
and (assuming that there is at least one legal configuration) outputs several Java
class definitions. A Java logical pipe class is always created; the logical pipe is
like an abstract model of the pipe’s behaviour. Inside this class, amongst other
things, is a method validConfigurations that returns a set of polarity configu-
rations; in Fig. 8 we assume that there are three. For each configuration, the
compiler outputs a Java class definition for a physical pipe class. We don’t yet
know which of these classes will be used, because this depends on the context
into which the pipe is eventually deployed, so the most useful thing to do is to
generate all of them.

Each physical pipe Java class implements the data-processing functionality
of the DirectFlow module. In addition to the ability to transfer data packets to
and from other pipe objects, a DirectFlow physical pipe object can:

1. invoke methods in Java objects,
2. maintain persistent state between executions, and
3. make its persistent state accessible from other Java objects.

In this subsection we describe the design of physical pipe objects and how the
DirectFlow compiler generates these objects from a DirectFlow module.

At the core of a physical pipe object are its push and pull methods. The push
method accepts a port number and a data packet; the pull method accepts a
port number and returns a data packet. (The compiler translates port names
in DirectFlow to port numbers.) Both methods contain a top-level test of the
port number, and execute a different segment of code depending on the port
through which data transfer occurred; see SeparatePhysicalPipePNN in Fig. 9
for an example. Each of these segments is derived from one alt specialization,
and the derivation depends on whether the specialization has a negative inport
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public class DuplicatePhysicalPipeNPP {
public void push(int index, Object input) {

if (index == 0) {
Object packet;
packet = input;
out0.push(packet);
out1.push(packet);
return;

}
}

}
public class DuplicatePhysicalPipePNP {

public Object pull(int index) {
Object output;
if (index == 1) {

Object packet;
packet = in.pull();
output = packet;
out1.push(packet);
return output;

}
}

}

public class SeparatePhysicalPipePNN {
public Object pull(int index) {

Object output;
if (index == 1) {

Object packet;
packet = in.pull();
output = packet;
return output;

}
if (index == 2) {

Object packet;
packet = in.pull();
output = packet;
return output;

}
}

}

Fig. 9. Excerpt of physical pipe objects compiled from the DirectFlow modules in
Fig. 3. We show only two of the three classes generated from the Duplicate pipe because
the PPN case is analogous to the PNP one (left bottom).

or a negative outport. If an alt specialization has a negative inport, it works in
data-driven mode and therefore the code belongs in the push method (because an
upstream component will push data into this component). If an alt specialization
has a negative outport, it works in demand-driven mode and the code belongs in
the pull method.

This translation realizes our intuition that negative ports act as thread en-
trances, while positive ports act as thread exits. Since each index port (and
therefore, each negative port) is accessed exactly once, we can be certain that
each invocation of a data-driven alt specialization consumes one data packet,
and each invocation of a demand-driven alt specialization produces one data
packet. Fig. 9 shows the physical pipes generated from the Duplicate and the
Separate Infopipes.

We use the generation-gap pattern [14] in the physical pipe objects to integrate
the code generated from the DirectFlow DSL with ordinary Java code written
by hand. The original formulation of the generation-gap pattern puts machine-
generated code in a superclass of the hand-written code; this allows the machine-
generated code to be customized by subclassing. Such an approach does not quite
work in our case because the compiler can generate multiple physical pipe classes
from a DirectFlow module, and because the number of generated physical pipe
classes may change with the contents of the DirectFlow module. Instead we make
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the machine-generated classes subclasses of the hand-written code; this allows
all of the generated classes to reuse the same hand-written code. This is the
purpose of the extends superclass clause mentioned in Sect. 3.1: it defines the
name of the hand-written class from which the generated physical pipe classes
should inherit. We call this variant the inverse generation-gap pattern.

The inverse generation-gap pattern enables a physical pipe object to maintain
persistent state in the fields of its superclass; it also allows other Java objects to
access that persistent state through the public methods of the superclass. The
DirectFlow compiler copies all Java statements in a DirectFlow module into the
translated alt specializations in the physical pipe classes, so the programmer is
able to invoke other Java methods from within the DirectFlow module.

5 The DirectFlow Framework

The DirectFlow framework is designed to help the programmer build an infor-
mation flow system in several steps. Although this may at first sight appear
unnecessarily complicated, the stepwise development allows for maximal reuse.
Let us draw an analogy with object-oriented programming languages. If what
one wants is objects, classes may seem like an unnecessary complication— why
not define objects directly? However, it turns out that classes are quite use-
ful when one needs to make many objects that are almost the same. Similarly,
generic classes may seem like an unnecessary complication, but they turn out to
be quite useful when one needs to make several classes that differ parametrically.

5.1 Building a Pipeline

The first step in using DirectFlow is to define any custom pipes that are necessary
for the application at hand. There is a library of standard pipes, which we expect
to grow over time, but let us assume that at least one custom pipe is required,
for example, a pipe that diverts suspicious data packets (say, into a log) to help
track down a suspected sensor malfunction.

As described in Sect. 4.4, the result of compiling these custom pipe modules
is a collection of logical and physical pipe classes. The next step is to take these
generated classes and to write a Java program that composes them with ap-
propriate library classes to build the desired information pipeline. This process
is illustrated in Fig. 10 for the simple case of a pipeline containing only two
components. The thread configuring the pipeline first creates a CompositeFac-
tory object, and then creates the two logical pipes, src and sink, that will be
its components. src and sink are added to the factory, and the appropriate con-
nections between the output port of src and the input port of sink are set up.
Incremental checks are performed during this process; for example, we check to
make sure that two outports are not connected together. At this stage it is also
possible to specify that an internal port of one of the components is “forwarded”
to become an external port of the whole composition. When the programmer
has completed the “wiring up” of the composite factory, the factory is told to
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Fig. 10. A UML Sequence diagram showing how a physical pipeline is created

instantiate the composition. Some non-local checks can now be carried out, for
example, to ensure that there are no disconnected ports inside the composition.
If all is well, the result of instantiation is another logical pipeline.

The composite logical pipeline has no open ports, so it can be instantiated
as a physical pipeline: a pipeline that can actually carry data. This is not a
simple matter, because the appropriate mode of processing of each component
in the composition depends on the mode of its neighbors. Now we see the value
of building the logical pipeline first: it provides an abstract model of the com-
posite pipeline that can be explored to gain a global understanding of the whole
pipeline. This makes it possible to select the best physical pipe class to imple-
ment each logical pipe.

5.2 Composite Pipes

The DirectFlow system supports two kinds of pipes — simple pipes and composite
pipes — and goes to some lengths to treat them on an equal footing. Simple pipes
are created by instantiating a logical pipe object, which is an instance of the logical
pipe class generated by the DirectFlow compiler. Composite pipes, which are com-
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positions of other pipes, are constructed by instantiating a logical pipeline object,
but in this case the logical pipe object is created by a composite factory.

To construct a composite pipe, the programmer starts by creating a Compos-
iteFactory object and then invokes its methods to describe the structure of the
desired composite pipe.

– addPipe(String n, LogicalPipe op) This method adds an internal pipe op with
name n to the composite pipe.

– newInport(String ident) and newOutport(String ident) These methods adds
an input port or an output port to the composite pipe. A composite pipe
with ports can be further composed with other pipes.

– connect(Channel c) A Channel object identifies a pair of ports, each in a spe-
cific component. The connect method connects the two ports described by c.
The programmer can connect an inport of the composite pipe to an inport
of an internal pipe, an outport of an internal pipe to an inport of an internal
pipe, or an outport of an internal pipe to a outport of the composite pipe.

Finally, invoking the instantiate() method on the CompositeFactory creates a
CompositeLogicalPipe object. The resulting CompositeLogicalPipe object is like
any other logical pipe object, and the programmer can pass it to addPipe to
compose it with other pipes.

To create a physical pipe object that can perform data processing operations,
the programmer terminates a logical pipe by connecting its inports and outports
to special Source and Sink logical pipes, and then instantiates the logical pipe to
produce a CompositePhysicalPipe object.

Because the resulting physical pipe has no open ports, it cannot be sent push
or pull messages. Instead we use the getInternal method to obtain references to
the Source and Sink physical pipes, and use these objects to inject data and
control into the pipeline. This design hides the communication protocol between
physical pipe objects and allows it to evolve without changing the public interface
of the pipeline.

6 Related Work

Historical Information-Flow Systems. Computer programs have long been
structured to process streams of information from external devices. The idea of
a stream as a first-class object can be traced back to Stoy and Strachey’s OS6
operating system [15]. OS6 also incorporated stream functions, which could be
applied to an argument stream to construct another stream (with different con-
tents) as the result. A related I/O system using (bidirectional) streams appeared
in Unix [16]. In both OS6 and Unix, the stream subsystem is regarded as pe-
ripheral to the “main program”, and it incurs high overhead due to the reliance
on runtime scheduling and the need to move data across process boundaries.

Coordination Languages. Our work bears some resemblance to control-based
coordination languages [17] in that they model a program as a collection of enti-
ties connected by point-to-point channels. Unlike existing coordination
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languages, which treat processes as purely computational entities, DirectFlow
also captures the communication aspects of a component by addressing it sepa-
rately from the computation aspects of the component.

Communicating Sequential Processes. DirectFlow is inspired by Hoare’s
CSP [12]. Unlike libraries such as JCSP [18], which faithfully implement the
semantics of CSP, DirectFlow eliminates certain restrictions (such as the pro-
hibition against different alt branches starting with the same operation) while
adding others (such as the context condition) to better support the development
of information-flow programs.

Design Patterns. The way we build information-flow programs by exchanging
messages between Infopipe objects has been documented under the name filter
pattern [10]. The filter pattern literature describes (data-driven) sink filters and
(demand-driven) source filters, but it does not discuss how to generalize these
two cases to filters with multiple inputs or outputs. DirectFlow provides a more
general and more elegant mechanism for building filters because it relieves the
programmer from the responsibility of implementing both the data-driven and
demand-driven variants of a filter.

Information-Flow Systems Without F1. Some information-flow program-
ming systems achieve automatic component invocation by restricting the form or
the behaviour of custom components. Both thread-transparent Infopipes [9] and
StreamIt [6] require a component to have exactly one inport and one outport,
and Spidle [7] requires all channels to have the same data rate.

Information-Flow Systems Without F2. Some information-flow program-
ming systems connect components with buffered channels and achieve automatic
invocation by runtime scheduling. Click [1] and StreamIt [6] both fall into this
category. Such designs suffer from three problems. First, the reliance on runtime
scheduling makes it difficult to understand the interaction between components
and to ensure liveness. Second, channel buffering introduces latency and there-
fore breaks compositionality. Finally, buffering interferes with components such
as a prioritizer whose operation depends on the interleaving of input and output.

Information-Flow Systems Without F3. Some information-flow program-
ming systems achieve automatic component invocation by supporting only data-
driven or only demand-driven processing. The Eden operating system [19] ex-
plored making streams asymmetric by eliminating active output (data-driven)
operations. Reactive objects in O’Haskell [20,21] eliminate active input (demand-
driven) operations. Dataflow languages like SISAL [22] and lazy streams, which
typically appear in programs written in functional languages like Scheme or
Haskell, support only data-driven operation. These systems cannot support the
prioritizer described in Sect. 2, which uses both data-driven and demand-driven
data processing.

Polarity-Polymorphic Ports. Our previous Infopipes system [8] supports a
feature called polarity polymorphism which allows an Infopipe object to assume
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multiple polarity configurations. In the system, an Infopipe defines a polarity-
polymorphic port by providing it with both push and pull methods and specifying
its polarity using a variable that is instantiated to either + or −. For example, a
filter has polarity configuration α→ ᾱ that is instantiated to + → − or − → +.
The runtime system determines the polarity configuration of an Infopipeline by
unifying the polarity specifications of connected ports.

The Click modular router [1] uses agnostic ports for the same purpose. The
agnostic polarity specifies that the port can work in either demand-driven or
data-driven mode, and the programmer is required to specify a flow code for
any processing element that contains agnostic ports to help the runtime system
decide the polarity configurations of the element. A flow code is a sequence of port
codes that specify the internal dataflow of an element; if the codes of two ports
share the same letter, data packets arriving from one port may exit from the
other. For example, a filter has flow code “ x/x” indicating that packets arriving
from the inport can exit from the outport. We do not completely understand
how Click computes the polarity configurations of an element from its flow code,
but the design of agnostic ports appears to be similar to polarity polymorphism.
Both designs share the following drawbacks.

1. When defining a component, the programmer must identify the ports that
can assume either polarity and provide additional information on the rela-
tionship between the polarity of ports. There is no tool support for checking
whether the supplied information is consistent with the behaviour of the
component, and therefore the programmer is solely responsible for the cor-
rectness of the port polarity specifications.

2. The programmer must implement both push and pull methods for each poly-
morphic/agnostic port and ensure that the component exhibits the same
information flow behaviour regardless of whether it is used with push or pull.

3. The mechanisms used to specify port polarity relations are not general
enough to capture the polarity relations of components with more than two
ports. There is no way to define a polymorphic Infopipe that works in all
three configurations of the duplicate pipe in Fig. 5. Likewise, even though a
duplicator, a separator, and a demultiplexer all have different information-
flow behaviour and polarity configurations, they cannot be distinguished in
the Click system because they share the same flow code “ x/xx”.

In comparison, our proposed technique both requires less programmer inter-
vention (by automatically inferring the information flow behaviour of a pipe
and generating the methods corresponding to each polarity configuration) and
works in more general contexts (because it can distinguish between and correctly
characterize duplicators, separators, and demultiplexers).

7 Experiences

We first prototyped DirectFlow as a Smalltalk-embedded language and then
adapted it for embedding in Java. We implemented a DirectFlow /Java com-
piler in Haskell [23] and a corresponding run-time library in Java. Excluding
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comments and blank lines, the compiler is about 400 lines of Haskell, and the
run-time library is about 600 lines of Java. The implementation is available
through http://infopipes.cs.pdx.edu/.

One of the design goal for DirectFlow is to allow programmers to define pipes
that correspond to data stream operators like those in the Aurora Stream Query
Algebra (SQuAl) [2]. SQuAl defines a wide variety of primitive operators, which
include standard relational algebra operators like Map (projection) and Union,
generalized relational algebra operators like Filter (selection-based demultiplex-
ing), and data-stream-specific operators like Resample. Some of these operators
have multiple inports, some have multiple outports; only Map has a fixed rela-
tionship between its input data rate and its output data rate.

We studied SQuAl and concluded that DirectFlow is expressive enough to
support all its operators. The only difficulty is that implementing SQuAl op-
erators with variable arity requires a daisy-chain of pipes. For example, SQuAl
has an n-stream union operation; because a DirectFlow pipe has a fixed set of
ports, this must be implemented using a chain of two-stream unions components.
However, since this can be implemented by a 1..n loop at pipeline configuration
time, we do not see this as a problem.

Our study further suggests that using DirectFlow can improve the expressiv-
ity of existing data-stream management systems. To simplify system design and
implementation, data-stream management systems such as Niagara and Aurora
support only data-driven components. While they work well with data sources
that produce infrequent discrete events, they are not well-suited for data sources
that produce a continuous stream of time-varying data, such as thermometers or
light sensors. Such sources are most naturally demand-driven: operating them
in data-driven mode requires that they produce frequent updates, which wastes
resources when the user does not need those values. However, reducing the fre-
quency of updates compromises data freshness. DirectFlow naturally supports
both data-driven and demand-driven components, so it would allow a data-
stream management system to request data from continuous sources on demand,
achieving the best of both worlds.

8 Conclusions and Future Work

Abstraction mismatch between the programming language and the application
domain makes software development unnecessarily complicated. This is because
making programmers use a language that exposes aspects of the system that are
irrelevant to the domain forces over-specification and thus reduces reusability.
Dually, a language that hides aspects of the system that are relevant to the
domain makes it more difficult to define and to reason about system behaviour
in domain-specific terms.

We investigated the problem of abstraction mismatch in the information-flow
domain and proposed the DirectFlow language to address the shortcomings of
programming this domain with objects. By allowing programmers to define pipes
without specifying their polarity configurations, DirectFlow eliminates the need

http://infopipes.cs.pdx.edu/


DirectFlow: A Domain-Specific Language for Information-Flow Systems 321

to define and maintain multiple pipe objects that differ only in their polarity
configurations.

The design of DirectFlow seeks a balance between language expressivity and
implementation efficiency. The language allows a pipe to alter its input–output
behaviour based on its internal state, which makes it possible to define de-
multiplexers and reordering buffers, components that are commonly found in
information-flow programs. At the same time, DirectFlow is sufficiently restric-
tive to permit the compiler to perform static analysis on DirectFlow modules
and to compile them to objects. DirectFlow is expressive enough to imple-
ment the Aurora stream algebra; whether it will be equally successful on other
information-flow tasks is a question that we plan to explore in our future work.

In this paper we have demonstrated that DirectFlow simplifies the devel-
opment of information-flow components by hiding the control flow interaction
between them. It remains to be seen if DirectFlow facilitates reasoning about
information-flow programs. We hope that deeper understanding of the semantics
of DirectFlow will lead to progress in quality-of-service verification and in thread
allocation for information pipelines.

Acknowledgments. This work is partially supported by the National Science
Foundation of the United States under grants CCR–0219686 and CNS–0523474.
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Abstract. Understanding the collaborations that arise between the in-
stances of classes in object-oriented programs is important for the anal-
ysis, optimization, or modification of the program. Relationships have
been proposed as a programming language construct to enable an explicit
representation of these collaborations. This paper introduces a relational
model that allows the specification of systems composed of classes and
relationships. These specifications rely in particular on member interpo-
sition (facilitates the specification of relationship-dependent members of
classes) and on relationship invariants (facilitate the specification of the
consistency constraints imposed on object collaborations). The notion of
a mathematical relation is the basis for the model. Employing relations
as an abstraction of relationships, the specification of a system can be
formalized using discrete mathematics. The relational model allows thus
not only the specification of object collaborations but also provides a
foundation to reason about these collaborations in a rigorous fashion.

1 Introduction

The collaborations between objects are the key to understanding large object-
oriented programs. Software systems do not accomplish their tasks with a single
object in isolation, but only by employing a collection of objects — most likely
instances of different classes — that exchange messages [1]. Unfortunately, class-
based object-oriented programming languages do not provide sufficient means to
explicitly specify these collaborations. Today’s languages allow the description of
objects through the programming language abstraction of a class, yet they lack
a peer abstraction for object collaborations. Programmers must resort to the use
of references to indicate collaborations and thereby often hide the intent and,
at the same time, further complicate any analysis of a program since references
are a powerful, all encompassing programming construct.

Conceptual modeling languages, such as the Unified Modeling Language
(UML) [2] and the Entity-Relationship (ER) model [3], allow explicit representa-
tion of object collaborations through associations and relationships, respectively.
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The benefits of explicit representation of object collaborations also at the level of
the programming language have been gaining increasing acceptance [4,5,6,7,8].
Languages devised in this spirit provide, in addition to classes, the program-
ming language abstraction of a relationship. As classes allow the description of
a collection of individual objects, relationships allow the description of a collec-
tion of groups of interacting objects. In both cases, the description involves the
declaration of attributes and methods. Relationships furthermore indicate the
classes of which the interacting objects are instances to delimit the scope of the
collaboration.

The benefits of explicit representation of object collaborations through re-
lationships at the level of the programming language are diverse [4,5,6,7,8].
Relationship-based implementations allow a declarative description of object col-
laborations. Class-based object-oriented implementations employ an imperative
style since they represent object collaborations through references. The scope of
a collaboration, for example, is explicitly declared in a relationship-based imple-
mentation. In a class-based object-oriented implementation, programmers must
analyze the reference structure of the program to deduce the scope of the collab-
oration. Relationships are furthermore intrinsically bilateral, as both collabora-
tors are known to the relationship. A class-based object-oriented implementation
must deliberately introduce this bilateralism by providing a reference at each site
of the collaboration. Relationship-based languages also allow the declaration of
multiplicities (consistency constraints). In class-based object-oriented implemen-
tations, such multiplicities must be hand-coded by implementing the appropriate
checks to enforce the constraints. These checks are most likely distributed among
the classes participating in the collaboration, and this distribution carries the
risk of introducing inconsistencies when the classes are updated. Relationships
furthermore support the declaration of collaboration members. In class-based
object-oriented implementations, such members must be taken care of manu-
ally. It appears overall that, as nicely put by Rumbaugh [5], “class-based object-
oriented implementations of object collaborations hide the semantic information
of collaborations but expose their implementation details” (emphasis added).

Unfortunately, the concepts supported by current relationship-based
languages are not sufficient to specify object collaborations satisfactorily. Based
on the example of an information system of a university (variations of this ex-
ample can be found in several related publications [4,7,8,9]), we show which
requirements of the system cannot be accommodated. Figure 1 shows the com-
plete list of requirements for the university information system. Figure 2 depicts
the corresponding UML class diagram of the system, and Fig. 3 sketches its im-
plementation in a relationship-based language. There are several requirements
that call for concepts not supported by current relationship-based languages. For
example, the constraints that faculty members can neither substitute themselves
nor each other (R7) and that students cannot assist courses they attend (R4)
cannot be expressed through multiplicities. Also the restriction of the possible
values attributes may assume, such as the year of study (R2), cannot be spec-
ified declaratively. The existence of entity properties that only apply when the
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R1 The entities of the system are students, courses, and faculty members.
R2 For every student the name, a unique registration number, and the current year

of study must be retained. The year of study cannot exceed 10. Courses must
indicate their titles. Faculty members must list their names.

R3 Enrolled students must attend courses. When attending a course students can get
a mark between 1 and 6.

R4 Students can assist courses as teaching assistants. Students cannot assist courses
they are attending themselves. For every teaching assistant the language of in-
struction must be recorded. For every assisted course a maximal group size can
be defined, which restricts the number of students that are assisted by a single
teaching assistant. In case a maximal group size is prescribed for a course, then
it must be guaranteed that the number of students assisted by a single teaching
assistant must not exceed the maximal group size defined for that course.

R5 Students can work for a faculty member as research assistants, provided that they
are at least in their third year. For every research assistant the grant amount paid
can be retained.

R6 Every course must be taught by at least one faculty member.
R7 Every faculty member must name at least one other faculty member as substitute.

No faculty member can be its own substitute, and two distinct faculty members
cannot substitute each other.

Fig. 1. Requirements for the information system of a university

entity fulfills a particular role, such as the language of instruction for students
assisting courses (R4), is a further example of an issue that can only be dealt
with in current relationship-based languages by resorting to the introduction of
auxiliary classes and further levels of indirection.

Fig. 2. UML class diagram modeling the simplified version of the information system
of a university. The diagram uses an association class to allow the association attends
to declare its own members.

In this paper, we show how to specify object collaborations in an explicit
and declarative way. Our presentation is based on relationships but extends
current relationship-based languages with concepts appropriate to accommo-
date the typical kinds of requirements imposed on software systems. In partic-
ular, we introduce member interposition, a concept allowing the specification of
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relationship
Attends (0-* Student learner, 1-* Course lecture) {
int mark;

}
relationship
Assists (0-* Student ta, 0-* Course course) {}

relationship
WorksFor (0-* Student ra, 0-* Faculty supervisor) {}

relationship
Teaches (1-* Faculty lecturer, 0-* Course lecture) {}

relationship
Substitutes (1-* Faculty substitute, 0-* Faculty substituted){}

Fig. 3. Implementation of the running example in a language supporting relationships.
The code combines features present in RelJ [4] and/or the Data Structure Manager
(DSM) [5]. Details not relevant to the discussion have been omitted.

relationship-dependent members of classes, and relationship invariants, a con-
cept allowing the specification of the consistency constraints of relationships.
Since we use mathematical relations as the fundamental abstractions to rea-
son about relationships, we can express relationship invariants by means of the
mathematical properties of the relations underlying the relationships. The ab-
straction of a relation furthermore allows a formalization of the concepts we
introduce relying entirely on discrete mathematics.

The remainder of the paper is organized as follows: Sect. 2 introduces relations,
the abstractions underlying the relational model. Sects. 3 and 4 detail member
interposition and relationship invariants, respectively. Sect. 5 discusses further
issues related to the presented concepts. Sect. 6 provides design guidelines for a
programming language accommodating specifications as presented in this paper.
Sect. 7 lists the related work and Sect. 8 concludes the paper.

2 Relations

In this section we introduce relations, the driving forces underlying the concepts
presented in this paper. We also set up our terminology.

2.1 Abstracting Object Collaborations

The existence of an appropriate abstraction to reason about systems composed
of classes and relationships is a prerequisite to their specification. We use the
notion of a mathematical relation as an abstraction of a relationship. Figure 4
depicts the relationships Attends and Teaches. As classes describe the common
properties of a collection of individual objects, we abstract them as sets of objects.
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Fig. 4. Graphical representation of the Attends and Teaches relationship: classes
(ellipses) are sets of objects (circles) and relationships (arrows in between ellipses) are
sets of object tuples

As relationships describe the common properties of a collection of groups of
collaborating objects, we abstract them as sets of object tuples and consequently
as relations. Figure 4 thus contains the sets

Student = { Alice, Paul, Susan, John}
Course = { art, programming, math, compiler}
Faculty = { Franklin Wong, Ramesh Narayan, Jennifer Wallace}

and the relations

Attends = { Paul �→ programming, Paul �→ math, John �→ compiler,
Alice �→ art, Alice �→ programming, Alice �→ math,
Susan �→ art, Susan �→ compiler}

Teaches = { Jennifer Wallace �→ programming, Jennifer Wallace �→ compiler,
Ramesh Narayan �→ math, Franklin Wong �→ art}

Thanks to mathematical relations we can model a system composed of classes
and relationships using discrete mathematics. The resulting relational model of
a system then allows us to reason about a system composed of classes and
relationships in a rigorous fashion. From its model, we can derive the specification
of a system. The university information system yields the following initial model:

Attends ⊆ Student× Course
Assists ⊆ Student× Course

WorksFor ⊆ Student× Faculty
Teaches ⊆ Faculty× Course

Substitutes ⊆ Faculty× Faculty

2.2 Terminology and Restrictions

Before continuing the presentation of the specification of object collaborations
based on relations, we briefly set up the terminology used in this paper. We
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restrict the specification of object collaborations to the non-concurrent case and
— because of space constraints — we do not discuss inheritance either.

Class: We consider classes as types and also as sets. Such a set contains objects
that are instances of the type defined by the class declaration.

Relationship: We consider a relationship to be both a type and a relation.
The relation contains the object tuples that are instances of the type defined
by the relationship declaration.

Participants: The participants of a relationship are the carrier sets (i.e.,
classes) of the relation defining the relationship.

Roles: The participants of a relationship declaration can be named to indicate
the conceptual role the particular class plays in the relationship.

3 Member Interposition

Some properties of objects only apply when the object is fulfilling a particular
role [10]. The attributes instructionLanguage (see Fig. 1, R4) and
grantAmount (R5) are examples of such properties since these properties are
required only for teaching and research assistants, respectively, but not for all
students. Thus, the selection of properties that are required for an object depends
on the relationship(s) the object takes part in.

3.1 Problem Description and Solution

Member interposition accommodates relationship-dependent properties of ob-
jects. Member interposition allows us to define properties as part of the role
a particular class fulfills in a relationship. Figure 5 gives an example. Both
the attributes instructionLanguage and grantAmount are declared in the re-
lationships on which these attributes depend and as part of the roles played
by the classes to which these attributes apply (are interposed into). Attribute
instructionLanguage is declared in relationship Assists for the role teach-
ing assistant (ta), attribute grantAmount in relationship WorksFor for the role
research assistant (ra).

Without member interposition, we would have to use the role object [11]
and extension object [12] design patterns, respectively. We then would subclass
Student to provide specializations both for teaching and research assistants
and would need to introduce an additional level of indirection to represent the
possible roles students can play and to allow dynamic casts between these roles.
Member interposition, on the other hand, allows us to accommodate relationship-
dependent properties of classes without resorting to inheritance and role classes.

Relationships can declare both interposed members and non-interposed mem-
bers. Attribute mark in relationship Attends is an instance of a member that is
not interposed. Whereas an interposed member describes a class that plays a par-
ticular role in a relationship, a non-interposed member describes the
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relationship Attends
participants (Student learner, Course lecture) {
int mark;

}
relationship Assists
participants (Student ta, Course course) {
// attribute interposed into role ta

String >ta instructionLanguage;
}
relationship WorksFor
participants (Student ra, Faculty supervisor) {
// attribute interposed into role ra

int >ra grantAmount;
}

Fig. 5. Relationship members are declared either at the level of the relationship or,
through member interposition, at the level of a participating role. Interposed members
are declared using the “>” symbol and are depicted underlined.

collaboration that exists between the participants of a relationship. We there-
fore also refer to interposed members as participant-level members and to non-
interposed members as relationship-level members. Intuitively (see Fig. 4), we
can imagine an interposed member as being attached to each object (circle) of
the class (ellipse) that is the target of interposition. A non-interposed member,
on the other hand, is attached to each object tuple (arrow) of the relation-
ship. In the current specification, the attribute instructionLanguage records
per teaching assistant the language of instruction. If we interposed attribute
instructionLanguage into the role course instead of the role ta, we could
indicate in what language a particular course must be assisted. A third option
would be to declare attribute instructionLanguage as a non-interposed mem-
ber. In this case, teaching assistants would be allowed to use different languages
for different courses.

Like non-interposed members, interposed members are part of the interface1

of their defining relationships (and not part of the interface of the classes they
are interposed into). This treatment has two consequences. First, the names of
interposed members must be unique only within their defining relationship. An
interposed member can therefore be named the same as a member of the class
that is the target of interposition or the same as an interposed member of a
different relationship that has the same target of interposition. In both cases,
separate copies of these members are maintained. Second, operations to access
interposed members must be called on the relationship and are not allowed to be
called directly on the targeted class. According to Snyder [14], encapsulation in
class-based object-oriented programming languages aims to minimize the mod-
ule interdependences through the application of strict external interfaces. Since

1 We use the term interface as introduced by Parnas [13].
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member interposition leaves the interfaces of the classes being the target of in-
terposition unchanged, the encapsulation of these classes remains unaffected.

3.2 Formalization

Using the abstraction of a relation and the means provided by discrete mathe-
matics we can formalize the interposed and non-interposed attributes of Fig. 5
as follows:

Attends mark ∈ Attends �→ [1 .. 6] (3.1)
Assists instructionLanguage ∈ dom(Assists)→ String (3.2)

WorksFor grantAmount ∈ dom(WorksFor) �→ N (3.3)

As illustrated by (3.1), we can model a relationship-level attribute as a relation
from a relation to the set of possible values the attribute may assume (see Table 1
for an explanation of the notation used). In the example, the relationship-level
attribute mark is a partial function from the relation Attends to the set of integer
numbers ranging from 1 to 6. Note that we restrict the range of the function
to [1 .. 6] as imposed by R3 in Fig. 1. Participant-level attributes (3.2) and
(3.3), on the other hand, are relations from the domain or range of a relation
to the set of possible values the attribute may assume. The interposed attribute
instructionLanguage (3.2), for example, is a relation that has the domain of
the relation Assists — which is a subset of the set Student — as its domain, and
a set of strings as its range. Note that we use a total function for the relation
since we need to retain the language of instruction for every student assisting a
course (R4).

Table 1. Mathematical notation as defined in [15]

Symbol Description
→ Pair constructing operator

S ↔ T Set of binary relations from S to T

S ↔→ T Set of surjective relations from S to T

S ←↔ T Set of total relations from S to T

S → T Set of partial functions from S to T

S → T Set of total functions from S to T

S ; T Forward composition of relations S and T

S−1 Inverse of relation S

dom(S) Domain of relation S

ran(S) Range of relation S

S[m] Image of the set m under the relation S

card(m) Number of elements of set m

id(m) Identity relation built on set m
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Since member interposition targets at the role of a participant rather than at
the class as a whole, it is possible to selectively add properties to objects that
are instances of the same class, but play different roles in the same relationship
(relationship Substitutes, for example). In such a case, we formalize the rela-
tion defining the relationship as a relation from one subset of the participant to
another subset of the participant, with each subset containing the objects that
play a particular role in the relationship.

4 Relationship Invariants

Current relationship-based languages do not provide the appropriate means to
declare consistency constraints other than multiplicities. As demonstrated by
the running example of this paper, the existence of more elaborate constraints,
such as the restriction that students cannot assist courses they are attending
(Fig. 1, R4), are an important trait of object collaborations. We introduce the
concept of relationship invariants to express consistency constraints required for
the specification of object collaborations.

Invariants proved viable for the specification of consistency constraints in a
number of class-based object-oriented programming and specification languages,
such as the Eiffel programming language [16,17], the Spec# programming sys-
tem [18], and the behavioral interface specification language for Java, JML (Java
Modeling Language), and its verification tools [19,20]. Whereas invariants of
class-based object-oriented programming languages are imposed on individual
objects (object invariants) or on the class as a whole (static class invariants) [21],
we allow invariants to range over several classes by imposing them on one or
several relationships. As we maintain a set-oriented view of classes and relation-
ships, invariants implicitly quantify over the objects or object tuples contained in
the set the invariants are imposed on. Classical invariants of class-based object-
oriented programming and specification languages are different: such invariants
are restricted to individual objects and classes, respectively. The restricted scope
of classical invariants makes the verification of invariants particularly challenging
in case an invariant involves references [22,23].

We distinguish between intra-relationship and inter-relationship invariants,
and between value-based and structural invariants. The first category denotes
the scope of the invariant. An intra-relationship invariant is imposed on a sin-
gle relationship and thus restricts the collaboration of the participants within
that relationship. An inter-relationship invariant involves several relationships
and thus defines how relationships relate to each other. The second category
distinguishes whether values that relationships or participating classes assume
for their members are taken into account for the invariant specification. A value-
based invariant defines the values or the range of values the elements in the scope
of the invariant declaration are allowed to assume for the specified members. A
structural invariant restricts the possible ways different elements in the scope
of the invariant declaration can be paired up irrespective of the values these
elements assume for their members. The two categories are orthogonal, yielding



332 S. Balzer, T.R. Gross, and P. Eugster

four kinds of invariants. We provide a formalization of each kind of invariant
using the abstraction of a relation for a relationship.

4.1 Structural Invariants

We start the presentation of the different kinds of invariants with structural
invariants as they are similar to multiplicity restrictions. In fact, multiplicity
restrictions are a subset of structural intra-relationship invariants.

Structural Intra-Relationship Invariants. The requirements document of
the university information system (see Fig. 1) lists several structural invariants,
such as the restrictions that enrolled students must attend courses (R3) and that
every faculty member must name at least one other faculty member as substitute
(R7). These restrictions, expressed by multiplicities in current relationship-based
programming languages, define the structural characteristics of a relationship
and can thus be formalized by indicating the structural properties of the rela-
tions defining the relationship. For example, the (0..*,1..*) multiplicity of the
relationship Attends can be formalized as a total relation, and the (1..*,0..*)
multiplicity of the relationship Substitutes can be formalized as a surjective
relation, as outlined by (4.1) and (4.5), respectively, in the following:

Attends ∈ Student←↔ Course (4.1)
Assists ∈ Student↔ Course (4.2)

WorksFor ∈ Student↔ Faculty (4.3)
Teaches ∈ Faculty↔→ Course (4.4)

Substitutes ∈ Faculty↔→ Faculty (4.5)

There are additional structural invariants present in the running example, for
example, that no faculty member can be his or her own substitute and that two
distinct faculty members cannot substitute each other (R7). These structural
constraints, not expressible through multiplicities, define the asymmetry (4.6)
and irreflexiveness (4.7) of the Substitutes relationship and can be formalized
as follows:

Substitutes ∩ Substitutes−1 = ∅ (4.6)
Substitutes ∩ id(Faculty) = ∅ (4.7)

Based on the example of the Substitutes relationship, Fig. 6 illustrates how
structural intra-relationship invariants can be specified as part of relationship
declarations.

Structural Inter-Relationship Invariants. According to the requirements
document of the university information system (see Fig. 1) students are not al-
lowed to assist courses they are attending themselves (R4). This requirement
also represents a structural invariant, but, in contrast to the invariants dis-
cussed in the previous section, this invariant encompasses several relationships:
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relationship Substitutes
participants (Faculty substitute, Faculty substituted) {

invariant
surjectiveRelation(Substitutes) &&
asymmetric(Substitutes) &&
irreflexive(Substitutes);

}

Fig. 6. Relationship Substitutes with a structural intra-relationship invariant: the
relation defining the relationship is surjective, asymmetric, and irreflexive

the relationship Assists (“students are not allowed to assist courses...”) and
the relationship Attends (“...they are attending themselves”). To satisfy the
requirement, the two defining relations of the relationships must be disjoint:

Attends ∩ Assists = ∅ (4.8)

Figure 7 illustrates how the structural inter-relationship invariant (4.8) can
be specified as part of a program composed of classes and relationships. Unlike
an intra-relationship invariant, which can be directly listed as part of the re-
lationship declaration, an inter-relationship declaration appears outside of the
scope of the relationship declarations it is imposed on.

invariant (Attends, Assists) attendsAssistsDisjointness:
Attends intersection Assists == emptySet;

Fig. 7. Structural inter-relationship invariant guaranteeing that teaching assistants
cannot attend the courses they are assisting. An inter-relationship invariant can be
named and indicates the relationships it is imposed on in parentheses.

4.2 Value-Based Invariants

Value-based intra- and inter-relationship invariants bear resemblance to tradi-
tional invariants of class-based object-oriented programming languages as tra-
ditional invariants are assertions on the values the fields of an object or a class
may assume. Value-based invariants, however, exceed the scope of traditional
invariants as they range over several classes and relationships.

Value-Based Intra-Relationship Invariants. The requirements document
of the university information system (see Fig. 1) demands that students must
be at least in their third year to become research assistants (R5). This require-
ment can be expressed through a value-based intra-relationship invariant. As
demonstrated by (4.10) below we can formalize the invariant by requiring that
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relationship WorksFor
participants (Student ra, Faculty supervisor) {
// attribute interposed into role ra

int >ra grantAmount;

invariant
relation(WorksFor) &&
ra.year > 2 &&
partialFunction(grantAmount) in N;

}

Fig. 8. Relationship invariant consisting of a structural intra-relationships invariant
relation(WorksFor) and two value-based intra-relationship invariants guaranteeing
that research assistants are at least in their third year of study (ra.year > 2) and
that the amount of funding the student receives is optional and a natural number
(partialFunction(grantAmount) in N)

the range of the forward composition WorksFor−1 ;Student year is a subset of
the set of integer numbers ranging from 3 to 10. The forward composition yields
the set of pairs of faculty members and integer numbers, with one pair for each
group of research assistants that are supervised by the same faculty member and
that share the same year of study. The relation Student year (4.9) abstracts the
attribute year of class Student.

Student year ∈ Student→ [1 .. 10] (4.9)

ran(WorksFor−1 ; Student year) ⊆ [3 .. 10] (4.10)

Interestingly, the invariant (4.10) involves a member of a participant and not
a member of a relationship. As the constraint imposed on the member depends
on the relationship — the year of study needs to be considered only for research
assistants but not for students in general — it cannot be declared as a class
invariant (see Sect. 5.2) but must be declared as a relationship invariant. In
a mere class-based implementation of the running example with support for
traditional invariants, the definition of the constraint would have to account for
this dependence. To guard the evaluation of the invariant, a resulting object
invariant would most likely introduce an implication of the form supervisor !=

null ==> this.year > 2.
Figure 8 illustrates how the value-based intra-relationship invariant (4.10)

can be specified as part of the declaration of relationship WorksFor. The figure
furthermore reveals that an invariant declaration can consist of several kinds
of invariants. Besides the value-based intra-relationship invariant imposing the
constraint just discussed, Fig. 8 lists the structural intra-relationship invari-
ant relation(WorksFor) and a further value-based intra-relationship invari-
ant partialFunction(grantAmount) in N defining the nature of the inter-
posed member grantAmount. The corresponding formalization of the attribute
grantAmount was introduced in Sect. 3.2.
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invariant (Attends, Assists) enoughAssistants:
forAll c (isDefined(Assists.select(course==c).maxGroupSize)
==> numberOf(Attends.lecture.select(c)) <=
numberOf(Assists.course.select(c)) *
Assists.select(course==c).maxGroupSize);

Fig. 9. Value-based inter-relationship invariant guaranteeing that there are enough
teaching assistants per course. The use of role names as in Attends.lecture allows
the retrieval of the set of objects participating in the relationship and playing the
indicated role. The select operator allows the retrieval of the set of objects (when
applied to a role) or set of object tuples (when applied to the relationship) that match
the condition indicated in parentheses. For further details see Sect. 6.

Value-Based Inter-Relationship Invariants. The requirements document of
the university information system (see Fig. 1, R4) prescribes that the number of
students assisted by a single teaching assistant for a particular course does not ex-
ceed the maximal group size defined for that course, if defined at all. This require-
ment guarantees that enough teaching assistants are recruited for a particular
course. We can formalize this restriction by requiring that, for every course, the
number of students attending the course (card(Attends−1[{c}])) is less than or
equal to the number of assistants assisting the course (card(Assists−1[{c}])) mul-
tiplied by the maximal group size for the course (Assists maxGroupSize(c)). As
indicated by the implication in (4.11), the inequality is evaluated for a course only
that is currently assisted and for which the attribute maxGroupSize is defined.

∀c·(c ∈ dom(Assists maxGroupSize) ⇒
card(Attends−1[{c}]) ≤

card(Assists−1[{c}]) ∗Assists maxGroupSize(c))

(4.11)

Figure 9 shows the corresponding program specification of the value-based
inter-relationship invariant (4.11). In the example, we need to introduce explicit
quantification as the invariant must hold only for selected constituent objects of
the tuples involved.

5 Discussion

The use of relationships together with the concepts introduced in this paper
influences not only the specification of object collaborations but also the devel-
opment of programs composed of classes and relationships in general. In this
section, we discuss some consequences.

5.1 References

The introduction of relationships changes the purpose of references. In class-
based object-oriented programs references allow the implementation of object
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collaborations. For example, students keep references to the list of courses they
attend. With explicit relationships, on the other hand, classes no longer need to
maintain references to (instances of) the classes they collaborate with as the de-
scription of this collaboration is “out-sourced” to the corresponding relationship.

Relationships, however, need a kind of reference to access the objects that
participate in a relationship. It is questionable, though, whether traditional ref-
erences are the appropriate means to implement the “awareness” of a relationship
of its participants. To answer this question, we must consider what the charac-
teristics of references are and which traits of these characteristics are required
in the case of relationships. References can be used in two different ways: (i)
to access the artifact that the reference refers to and (ii) to read or change the
value (object identifier in a class-based object-oriented context) of the reference.
With respect to relationships, the first use of references is clearly desired — it
must be possible to access the objects that participate in a relationship. How-
ever, an object tuple should not be allowed to change its identity by replacing
(or possibly erasing) any of its constituent objects. Relationships therefore need
restricted forms of references that allow access of the constituent objects but
prohibit direct manipulation of the values assigned to references. Role names,
for example, can serve that purpose.

Of course, it must be possible to change the participation of objects in rela-
tionships. Because we consider classes and relationships as sets — sets of objects
and sets of object tuples, respectively — changes in relationship participation
break down to adding and removing object tuples to and from relationships.
These operations encompass the relationship as a whole and must therefore be
executed outside of the scope of the targeted relationship (see Sect. 6.1).

5.2 Class Invariants

A specification of programs composed of classes and relationships must include
the declaration of class invariants besides the declaration of relationship invari-
ants. Class invariants allow the specification of the consistency constraints that
are imposed on the instances of individual classes. Since classes do not describe
their collaborations with other classes, class invariants have an intra-class scope
and are purely value-based. To restrict the possible values objects can assume
for their members, we abstract object members as relations from classes (sets)
to the sets of possible values their members may assume. The mathematical
properties of these relations then express the class invariant.

Equations (5.1), (5.2), and (5.3) show the relations abstracting the members
of class Student. Equation (5.2) uses a total injection from the set Student to
the set of natural numbers to express that every student must have a number
which is unique.

Student name ∈ Student→ String (5.1)
Student number ∈ Student� N (5.2)

Student year ∈ Student→ [1 .. 10] (5.3)
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class Student {
String name;
int number;
int year;

invariant
totalFunction(name) &&
totalInjection(number) in N &&
totalFunction(year) in [1..10];

}

Fig. 10. Specification of the class invariant of Student restricting the possible values
class members can assume

Figure 10 shows the corresponding declaration of the class invariants of class
Student. The invariant that specifies that student numbers must be unique
highlights the benefits of treating classes and class members as sets and relations,
respectively. As opposed to its counterpart in a class-based implementation, it is
simple and clear-cut. In a class-based setting, on the other hand, the specification
of the same constraint would demand a more extensive invariant. To express the
injectivity of the relation Student number, a static class invariant would need to
be declared which uses explicit quantification to range over all instances of the
class and to make sure that the attribute number is different for every instance.

5.3 Invariant Preservation

The use of invariants as part of the declaration of classes and relationships raises
the question of their verification. Irrespective of the approach taken — run-
time verification (dynamic) or compile-time verification (static) — the invariants
imposed on a system composed of classes and relationships must be preserved
from one state to the other along state transitions of the system.

The relational model can help to substantially decrease the number of transi-
tions that must be inspected to verify the invariant. Thanks to the categorization
of invariants we can identify for each kind of invariant the operations that cause
state transitions that potentially endanger the invariant. For structural invari-
ants, for example, the operations causing such transitions are the addition to
and removal of objects from classes, and the addition to and removal of object
tuples from relationships. If we consider, in addition to its category, also the
mathematical properties of an invariant, we can delimit the cases in which state
transitions occur that potentially endanger the invariant.

In the most general case of a relation as a structural intra-relationship invari-
ant the following interdependence between the relationship and its participants
exists:

R ∈ A↔B⇔∀a, b·(a �→ b ∈ R⇒ a ∈ A ∧ b ∈ B) (5.4)
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From (5.4) we can delimit the following invariant-endangering operations:

– the removal of an object from a class if the object participates in a relation-
ship with the class being a participant of that relationship

– the addition of an object tuple if the constituent objects are not part of the
participants of the relation.

The number of invariant-endangering operations increases with the restrictive-
ness of the relation. In case of a total relation, for example, we can delimit the
following invariant-endangering operations:

– the addition of an object to a class that is the domain of the total relation
– the removal of an object from a class that is the domain of the total relation
– the addition of an object tuple if the constituent objects are not part of the

participants of the total relation
– the removal of an object tuple from the total relation if no other object tuple

exists in that relation that contains the first constituent object of the tuple
to be removed.

The handling of these invariant-endangering operations must be left to the
respective programming language or system that implements the specification
concepts introduced in this paper. An implementation could, for example, deal
with certain invariant-endangering operations by executing a corresponding cor-
rective action to maintain the invariant. A further implementation concern is
to determine the granularity of atomic sequences of operations. Most likely, an
implementation will provide the means to combine several invariant-endangering
operations in one atomic unit and thus allow a further decrease of the verification
load.

We expect the relational model of object collaborations to be helpful with
verifying invariants statically. Thanks to its foundation in discrete mathematics,
a relation model describing a concrete system composed of classes and relation-
ships could easily be transformed to the input required by a theorem prover or
model checker, which then would allow the verification of the system.

6 Language Design Issues

In this section we sketch the main features of a programming language that
incorporates the specification concepts introduced in this paper.

6.1 Three Dimensions of Problem Decomposition

In their seminal paper on programming with abstract data types, Liskov
et al. [24] introduce two forms of programming language abstractions: proce-
dures (functional abstraction) and operation clusters (abstract data types). We
regard the separation of functional decomposition from data decomposition to
be valuable as it allows us to separate the definition of artifacts from their use.
Due to our focus on the specification of object collaborations, we complement
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the abstractions introduced by Liskov et al. with the abstraction representing ob-
ject collaborations. A programming language that incorporates the specification
concepts introduced in this paper thus needs to support the following language
abstractions:

– Class (data decomposition): Programming language abstraction representing
classes as defined in Sect. 2.2.

– Relationship (collaboration decomposition): Programming language abstrac-
tion representing relationships as defined in Sect. 2.2.

– Application (functional decomposition): Programming language abstraction
comprising a number of procedures to manipulate the sets of objects and
object tuples contained in a program.

6.2 Language Definition

A programming language that incorporates the specification concepts introduced
in this paper must support the types ValueType, ClassName, RelationshipName,
Object〈ClassName〉, and Query〈Set〉. A ValueType is a type with a value type
semantics. Whereas both ClassName and RelationshipName are types that de-
note sets, Object〈ClassName〉 is a parameterized type that stands for a particular
instance of the class provided as an argument. A Query〈Set〉 is also a parameter-
ized type that represents sets of objects or object tuples. Possible arguments to a
query type are class names, relationship names, or any expressions composed of
relationship names and relational operators yielding a set as a result. Both pa-
rameterized types are instances of HandleType, which represents a Java final-like
reference to either an object or a set of objects and object tuples, respectively.

Like Bierman and Wren [4] we use tables and maps (see Fig. 11) to formalize
the declarations appearing in a program devised in the language under discus-
sion. We have tables for classes, relationships, inter-relationship invariants, and
for applications. Each table is a map from a name (class name, for example) to a
definition (class definition, for example). Definitions are tuples with the elements
being sets or further maps. For example, a class definition is a tuple (A,M,ci)
where A is a map from attribute names to attribute types, M is a map from
method names to method definitions, and ci is the class invariant body. The
signature definitions in Fig. 11 reveal an important characteristic of the pro-
gramming language: both the attributes of classes and relationships are of value
type only (see Sect. 5.1 for a further discussion). As relationships must have
access to their participating objects, RelMethodMap lists the set RoleName in
its range. Unlike classes and relationships, applications are neither types nor do
they declare invariants. Applications are mere procedural modules that consist
of a number of variables and procedures. As these procedures need to instantiate
classes and need to add to and remove objects from classes and object tuples from
relationships, respectively, applications can declare variables of type HandleType.

6.3 Creation, Addition, Removal, and Retrieval

An appropriate programming language must provide built-in operators to in-
stantiate classes, to add to and remove objects from classes, and to add to and
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ClassTable ∈ ClassName → AttrMap × ClMethodMap × ClassInvBody

RelationshipTable ∈ RelationshipName → RoleMap × AttrMap × RelMethodMap

× RelInvBody

InterRelInvTable ∈ (InvName × (RelationshipName × · · · × RelationshipName))

→ InterRelInvBody

ApplicationTable ∈ ApplicationName → VarMap × ProcedureMap

RoleMap ∈ RoleName → ClassName

AttrMap ∈ AttrName → ValueType

ClMethodMap ∈ MethodName → ArgMap × LocalMap × ValueType × MethodBody

RelMethodMap ∈ MethodName → ArgMap × LocalMap × RoleName × ValueType

× MethodBody

ArgMap ∈ ArgName → ValueType

LocalMap ∈ VarName → ValueType

VarMap ∈ VarName → (ValueType ∪ HandleType)

ProcedureMap ∈ ProcName → ProcArgMap × ProcLocalMap

× (ValueType ∪ HandleType) × ProcBody

ProcArgMap ∈ ArgName → (ValueType ∪ HandleType)

ProcLocalMap ∈ VarName → (ValueType ∪ HandleType)

Fig. 11. Signatures of class, relationship, and application tables and associated maps

remove object tuples from relationships. As both classes and relationships are
sets, the addition and removal operators are conceptually equivalent with set
union and set subtraction.

Figure 12 shows a program fragment implementing the running example. The
fragment consists of several class and relationship declarations and one appli-
cation declaration. Class Student declares a constructor to allow creation of a
single object. The constructor is called in procedure initialize in application
UniversityInformationSystem and assigned to the object handle alice. The
object denoted by alice is then added to class Student in line 27. For every
course Alice is attending, a corresponding student-course pair is added to the
relationship Attends (28-30). In the examples, the add operator is used to add
single objects and single object tuples, respectively. The add operator, however,
can also be used to add a set of objects and a set of object tuples to a class and
relationship, respectively. The same explanations apply likewise to the remove

operator.
An appropriate programming language must further provide built-in operators

to retrieve sets of objects and sets of object tuples. These operators must enable
the retrieval of the set of objects playing a particular role in a relationship and
the retrieval of the set of objects or object tuples that satisfy a given condition.

Figure 12 illustrates the use of the select operator to retrieve the set of
object tuples that match the condition provided as an argument. In line 21, all
faculty-course pairs are retrieved with the object denoted by the handle
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class Student {
2 Object<Student> Student(String name, int number, int year) {

this.name = name;
4 this.number = number;

this.year = year;
6 }...
}...

8 relationship Attends
participants (Student learner, Course lecture) {...}

10 ...
application UniversityInformationSystem {

12 // handles to objects
Object<Student> alice, john, susan, paul;

14 Object<Faculty> jenniferWallace, rameshNarayan, franklinWong;
Object<Course> programming, math, compiler, art;

16 ...
void main() {

18 initialize();
// assign all students of Franklin Wong the grade 6

20 Query<Teaches.lecture> coursesFw;
coursesFw = Teaches.select(lecturer==franklinWong).lecture;

22 Attends.select(lecture==coursesFw).setMark(6);
}

24 void initialize() {
...

26 alice = new Student("Alice", 778, 1);
Student.add(alice);

28 Attends.add(alice, programming);
Attends.add(alice, math);

30 Attends.add(alice, art);
}...

32 }

Fig. 12. Program fragment consisting of several class and relationship declarations and
one application declaration. The fragment shows the creation of an object (26), the
addition of an object to a class (27), and the addition of object pairs to a relationship
(28-30). Line 20 illustrates the use of queries as handles to a set that contains the result
of a retrieval operation. Line 22, furthermore highlights the set-oriented character of
the language: method setMark is called on the set of student-course pairs such that
the students contained in the set attend a class taught by Franklin Wong.

franklinWong playing the role of the lecturer. On this result set, the role
operator lecture is applied to return only the set of courses that are taught
by Franklin Wong. Of interest in the example is also the declaration of a query
type in line 20. According to the argument of the type, the query coursesFw

is a handle to a set of objects that are instances of type Course. Queries are
a powerful construct as they allow us to type intermediate retrieval results. In
the example, the query encompasses only one relationship, however, as a query
accepts any argument that is a set, any expression composed of relationship
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names and relational operators yielding a set as a result can be declared as an
argument of a query.

As demonstrated by the instructions on line 20-22, relationships ease the
handling of object collections. Willis et al. [25] introduced a prototype extension
to Java that supports the concept of first-class queries to dispose of iterators
otherwise needed to traverse object collections. However, such first-class queries
still need to explicitly indicate the matching attributes that establish the “join”
condition. With relationships, on the other hand, queries do not have to indicate
the join conditions as they are implicitly established through the relationship
declaration.

6.4 Atomic Procedures

Separating application declarations from class and relationship declarations al-
lows us furthermore to separate the declaration of invariants from their verifica-
tion. As the procedures of applications are the only ones to manipulate classes
and relationships, they are also the only ones to endanger the invariants estab-
lished on the classes and relationships. Therefore, in a programming language
that incorporates the specification concepts introduced in this paper, the body
of an application procedure defines the granularity of atomic sequences of oper-
ations. Invariants, consequently, must hold only on entry and exit of procedures,
but not during procedure execution. In Fig. 12, for example, the structural intra-
relationship invariant of relationship Attends is temporarily violated after the
addition of the object denoted by alice to class Student in line 27 (relation-
ship Attends is defined by a total relation). Only after the addition of the first
student-course pair to the relationship Attends for a course Alice is attending,
the invariant is re-established and preserved until the end of the procedure.

7 Related Work

In this section we discuss the related work. To be consistent with previous sec-
tions, we use our terminology for the discussion and indicate the actual terms
used in the respective publication(s), if different, in parentheses.

Rumbaugh [5] first discovered the important role relationships (relations) play
in object-oriented programming and thus introduces an object-oriented program-
ming language, the Data Structure Manager (DSM), that complements classes
with relationships. Classes in DSM can declare role names for their identification
in a relationship, a concept we adopted for the specification of object collabora-
tions. Rumbaugh also perceives relationships as sets of object tuples, however,
he does not further exploit his observation. Our work, in contrast, goes further
and links relationships to discrete mathematics, allowing the use of mathemati-
cal relations to define invariants, a concept more powerful than the multiplicities
(cardinalities) supported in DSM. Furthermore, we support relationship mem-
bers and member interposition, both concepts not present in Rumbaugh’s work.
The missing support for member interposition is also the reason why Rum-
baugh introduces qualified relations. A qualified relation is a special instance of
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a ternary relationship that allows the addition of a distinguishing attribute to
one of the two participants of the relationship. With member interposition, on
the other hand, the need for a ternary relationship in such cases fades as the
distinguishing attribute can be interposed into the respective participant.

Albano et al. [6] develop a strongly typed object-oriented database program-
ming language with explicit support for relationships (associations) that is specif-
ically tailored to fit the requirements of database applications. Like our work, the
language Albano et al. devised allows the declaration of relationship attributes;
however, it does not support relationship methods, nor member interposition. In
contrast to Rumbaugh, the authors allow programmers not only to declare mul-
tiplicities (cardinality and surjectivity) but also to indicate how these constraints
must be maintained, i.e., whether to cascade an operation that endangers the
constraint or whether to prevent it from being executed. Like DSM, however,
the language of Albano et al. lacks support for expressing constraints other than
multiplicities.

The main contribution of the work by Bierman and Wren [4] is to provide the
type system and the operational semantics of a Java-like language that supports
relationships. In this way, the authors describe how a strongly typed class-based
object-oriented language, like Java, can be extended to support relationships.
Bierman and Wren further introduce relationship inheritance, a concept not con-
sidered in this paper. Again, our work mainly differs from the work by Bierman
and Wren in its support for member interposition and relationship invariants.

Pearce and Noble [7,8] show how to use aspects [26,27] to implement re-
lationships and multiplicities in a class-based object-oriented language. In an
aspect-based implementation, relationship members can then be interposed into
participants through inter-type declarations.

Noble and Grundy [28] describe ways of persisting relationships from the mod-
eling to the implementation stage in object-oriented development by transform-
ing analysis relationships into corresponding classes. Their approach is purely
class-based and does not mention language support for relationships.

Helm et al. [29] use contracts to specify the behavioral compositions in class-
based object-oriented systems. Similar to relationships, these contracts allow the
programmer to explicitly state which classes collaborate with each other. The
focus of the work by Helm et al., however, is the specification of collaborative
behavior. A contract, for example, can declare actions that need to be executed
by the participants and can impose an ordering on the execution.

Aksit et al. [30] propose Abstract Communication Types (ACTs), classes de-
scribing object interactions, as a means to encapsulate these interactions at the
programming language level. ACTs rely on composition filters for their inte-
gration with the remaining system and act in response to calls issued from the
underlying classes that are forwarded and possibly adapted by these filters. Re-
lationships, on the contrary, are self-contained and independent of the events
happening in the participating classes.

Herrmann [31] describes a Java-like language supporting Object Teams, the
modules encapsulating multi-object collaborations. The focus of Herrmann’s
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work is the a posteriori integration of collaborations into existing systems. The
language thus allows the programmer to forward method calls from teams to
base classes and offers advice-like constructs, known from aspect-oriented pro-
gramming [26], to override methods of base classes.

Reenskaug [10] introduces role models to describe the structure of cooperating
objects along with their static and dynamic properties. Role models are purely
conceptual and focus on message-based interactions; however, they could assist
in the identification of relationships during system design as relationships can
be regarded as representations of particular role models.

8 Concluding Remarks

Relationships capture the collaborations between objects and provide a key to
understanding large-scale object-oriented systems. This paper introduces math-
ematical relations as an abstraction of relationships and develops the concept
of member interposition (which points out those members of classes that par-
ticipate in a relationship). Once relationships are explicit in a program, it is
possible to express invariants that extend beyond the inside of a class (or class
instance). Invariants can be classified along two orthogonal dimensions: there
are intra-relationship and inter-relationship invariants as well as value-based
and structural invariants.

Understanding and reasoning about object-oriented programs remains a dif-
ficult issue, and many approaches have been suggested to help the programmer
in this task. Mathematical relations as a formal model of relationships provide
a solid foundation to deal with the object collaborations in such a program. Re-
lationships that are explicit widen the view of the programmer (and ultimately
the view of tools) so that it is possible to reason (and optimize) beyond class
boundaries.
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Abstract. JavaGI is an experimental language that extends Java 1.5 by
generalizing the interface concept to incorporate the essential features
of Haskell’s type classes. In particular, generalized interfaces cater for
retroactive and constrained interface implementations, binary methods,
static methods in interfaces, default implementations for interface meth-
ods, interfaces over families of types, and existential quantification for
interface-bounded types. As a result, many anticipatory uses of design
patterns such as Adapter, Factory, and Visitor become obsolete; several
extension and integration problems can be solved more easily. JavaGI’s
interface capabilities interact with subtyping (and subclassing) in inter-
esting ways that go beyond type classes. JavaGI can be translated to
Java 1.5. Its formal type system is derived from Featherweight GJ.

1 Introduction

What are the distinguishing characteristics of Haskell compared to other pro-
gramming languages? An informed answer will eventually mention type classes.

Type classes have been invented for dealing with overloading in functional
programming languages in a non–ad-hoc manner [20,37]. To the surprise of their
inventors, type classes provide powerful means for solving various software-design
problems. For instance, sufficiently powerful type classe systems address various
software extension and integration problems [23]—in fact, a range of problems
for which previously a whole array of techniques and programming language
extensions has been proposed.

The observation that type classes and Java-style interfaces are related is not
new [32,23]. In this context, the following questions arise: (i) What part of type-
class expressiveness corresponds to interfaces? (ii) What is the exact value of
additional type-class expressiveness for an OO language? (iii) What is a viable
OO language design with interfaces that cover most if not all type-class expres-
siveness? The paper answers these questions by proposing the design of JavaGI
(Java with Generalized Interfaces) as a language extension of Java 1.5.

Type classes vs. interfaces. Let us recall Haskell’s type classes and relate
them to OO interfaces. A type class is a named abstraction for the signatures
of member functions that share one or more type parameters. Here is a type
class Connection for database connections with a member exec to execute SQL
commands:
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348 S. Wehr, R. Lämmel, and P. Thiemann

class Connection conn where
exec :: conn −> String −> IO QueryResult
{− further members elided −}

The type parameter conn abstracts over the implementing type. An instance
definition instantiates the type parameter(s) of a type class and provides specific
implementations of the member functions. Here is an instance for PostgreSQL,
assuming the existence of a type PostgreSQLConnection and a function pgsqlExec
of type PostgreSQLConnection −> String −> IO QueryResult:
instance Connection PostgreSQLConnection where

exec = pgsqlExec

This kind of abstraction is familiar to OO programmers. A Java programmer
would create a Connection interface and provide different classes that implement
the interface, e.g., a class for PostgreSQL:
interface Connection {

QueryResult exec(String command);
/∗ further members elided ∗/

}
class PostgreSQLConnection implements Connection {

public QueryResult exec(String command) { ... }
}

Type-class–bounded vs. interface polymorphism. The Connection example
indicates that interfaces and type classes have some common ground. But there
are differences such as the mechanics of using type classes and interfaces when
devising signatures for functions and methods. Here is a Haskell function using
the Connection type class for inserting a customer:
newCustomer conn customer = do let command = ...

exec conn command

The use of a member functions from a type class (such as exec) abstracts over
different implementations. An implementation (i.e., instance) is chosen on the
grounds of the types of the used members. The selection happens at compile
time, if types are sufficiently known. Otherwise, it is deferred till run time. Let
us consider the (inferred or declared) Haskell signature for newCustomer:
newCustomer :: Connection a => a −> Customer −> IO QueryResult

The type variable a serves as a placeholder for a connection type, which is re-
stricted by the constraint Connection a to be an instance of Connection. (‘=>’
separates all constraints from the rest of the signature.) In contrast, a Java
signature treats the interface Connection as a type. Thus:
class UseConnection {

static QueryResult newCustomer(Connection conn, Customer customer) {
String command = ...;
return conn.exec(command);

}
}

To summarize, polymorphism based on Haskell’s type classes uses (the names
of) type classes to form bounds on type variables in function signatures, whereas
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polymorphism based on Java’s interfaces (or .NET’s interfaces for that matter)
uses (the names of) interfaces as types, while type variables still serve their role
as type parameters for OO generics.

This difference has several consequences that we discuss in the paper. For in-
stance, type-class–bounded polymorphism naturally provides access to the “iden-
tity” of an implementing type, thereby enabling, among others, binary methods.
(A binary method [3] is a method with more than one argument of the imple-
menting type.) For example, Haskell’s type class Eq declares a binary method,
(==), for equality:
class Eq a where (==) :: a −> a −> Bool

The interfaces of Java 1.5 (or .NET) cannot directly express that the types of
the two formal arguments of the equality function must be identical because
the type implementing the corresponding interface cannot be referenced. A non-
trivial extension of Java with self types [4] addresses the problem. For Java 1.5,
there is an encoding that requires a rather complicated, generic interface with
recursive bounds [1].

Once we commit to a style that makes the implementing type of an interface
explicit, it is natural to consider multiple implementing types. Such a general-
ization of interfaces corresponds to multi-parameter type classes in Haskell [30].
Accordingly, an implementation of a “multi-parameter” interface is not tied to
a specific receiver type but rather to a family of interacting types.

Contributions

1. We generalize Java 1.5 interfaces to unleash the full power of type classes in
JavaGI, thereby enabling retroactive and constrained interface implementa-
tions, binary methods, static methods in interfaces, default implementations
for interface methods, and interfaces over families of types.

2. We conservatively extend Java’s interface concept. We clarify that interface-
oriented programming is sufficient for various scenarios of software extension
and integration. We substantiate that interface orientation is of crucial help
in mastering self types, family polymorphism, and class extension.

3. We retrofit Java’s interface types as bounded existential types, where the
bound is the interface. In general, constraint-bounded existential types are
more powerful than interface types. JavaGI’s existentials are non-intrusive
because they come with implicit pack and unpack operations.

4. We exploit interesting feature interactions between interface polymorphism
and OO subclassing to demonstrate that JavaGI goes beyond a mere transpo-
sition of Haskell type classes to Java. Further, interfaces over multiple types
require an original grouping mechanism “per receiver”.

Outline. Sec. 2 motivates generalized interfaces and describes JavaGI’s language
constructs through a series of canonical examples. Sec. 3 describes a simple
translation of JavaGI back to Java 1.5. Sec. 4 develops the type system of Core–
JavaGI as an extension of Featherweight GJ [17]. Related work is discussed in
Sec. 5. Finally, Sec. 6 concludes the paper and gives pointers to future work.
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2 JavaGI by Examples

This section introduces JavaGI through a series of examples addressing common
OO programming problems that cannot be addressed in the same satisfactory
manner with just Java 1.5. As JavaGI is a conservative extension of Java, JavaGI
code refers to common classes and interfaces from the Java 1.5 API.

2.1 Example: Retroactive Interface Implementation

Recall the interface for database connections from the introductory section. Sup-
pose we have to make existing code (such as newCustomer from class UseConnection)
work with a MySQL database where a library class MySQLConnection provides the
desired functionality, although under a different name:

class MySQLConnection { QueryResult execCommand(String command) { ... } }

The library author was not aware of the Connection interface, and hence did
not implement the interface for the MySQLConnection class. In Java, we can-
not retroactively add such an implementation. Hence, we need to employ the
Adapter pattern: a designated adapter class wraps a MySQLConnection object
and implements Connection by delegating to MySQLConnection. This approach is
tedious and suffers from problems like object schizophrenia [31].

Inspired by Haskell, JavaGI supports retroactive interface implementation such
that the implementation of an interface does no longer need to be coupled with
the implementing class. Here is the implementation definition for the Connection
interface with the MySQLConnection class acting as the implementing type (en-
closed in square brackets ‘[...]’):

implementation Connection [MySQLConnection] {
QueryResult exec(String command) { return this.execCommand(command); }

}

In the body of the method exec, this has static type MySQLConnection and refers
to the receiver of the method call. Thanks to the implementation definition just
given, the newCustomer method can now use a MySQLConnection:

MySQLConnection conn = ...;
QueryResult result = UseConnection.newCustomer(conn, someCustomer);

2.2 Example: Preserved Dynamic Dispatch

Methods of a Java 1.5 interface are virtual, i.e., subject to dynamic dispatch.
JavaGI preserves this capability for methods of retroactive interface implemen-
tations. This expressiveness implies extensibility in the operation dimension so
that we can solve the expression problem [36]. Compared to existing solutions
in Java 1.5 (or C# 2.0) [33], JavaGI’s solution is simple and more perspicuous.
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Consider a class hierarchy for binary trees with strings at the leaves:
abstract class BTree {}
class Leaf extends BTree { String information; }
class Node extends BTree { BTree left, right; }

Now suppose the classes for binary trees are in a compiled package, but we want
to implement a count method on trees that returns the number of inner nodes.
As we cannot add count to the classes, we introduce an interface Count with the
count method and implement the interface for the tree hierarchy.
interface Count { int count(); }
implementation Count [BTree] { int count() { return 0; } } // works also for Leaf
implementation Count [Node] {

int count() { return this.left.count() + this.right.count() + 1; }
}
class CountTest { int doCount(BTree t) { return t.count(); } }

In a recursive invocation of count in the implementation for Node, the static type
of the receiver is BTree. Without dynamic dispatch, the recursive calls would
count 0. Fortunately, JavaGI supports dynamic dispatch for retroactive interface
implementations, so the recursive invocations return indeed the number of inner
nodes of the subtrees.

The default implementation for BTree is required because retroactively added
methods must not be abstract. See Sec. 3 for an explanation and further restric-
tions on the distribution of implementations over different compilation units.

Adding new operations and new data variants is straightforward. For a new
operation, an interface and the corresponding implementations suffice.
// A new operation that collects the string information stored in the tree.
interface Collect { void collect(List<String> l); }
implementation Collect [BTree] { void collect(List<String> l) { return; } }
implementation Collect [Node] {

void collect(List<String> l) { this.left.collect(l); this.right.collect(l); }
}
implementation Collect [Leaf] {void collect(List<String> l) {l.add(this.information);} }

A new data variant corresponds to a new subclass of BTree and interface im-
plementations for existing operations, unless the default for the base class is
acceptable.
// A new data variant that stores information in inner nodes.
class InformationNode extends Node {

String information;
void collect(List<String> l) { this.left.collect(l); l.add(this.information); this.right.collect(l); }

}
implementation Collect [InformationNode]
// The implementation of Count for Node also works for InformationNode.

JavaGI is amenable to another solution to the expression problem, which re-
quires slightly more encoding effort. That is, we can transpose a Haskell-based
recipe to JavaGI exploiting its regular type-class–like power [23], without taking
any dependency on subtyping (and virtual methods): (i) designate an interface
instead of a class as the root of all data variants; (ii) define data variants as
generic classes that implement the root interface and are parameterized by the
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types of the immediate subcomponents; (iii) define subinterfaces of the root
interface for the operations; (iv) provide implementations for all the data vari-
ants. This recipe does not require default implementations for the root of the
hierarchy, and it does not put restrictions on the distribution over compilation
units.

2.3 Example: Binary Methods

Java 1.5 defines a generic interface for comparing values:

interface Comparable<X> { int compareTo(X that); }

If we wanted to ensure that the (formal) argument type coincides with the type
implementing the interface, then the above signature is too permissive. We would
need to define compareTo as a binary method [3]. In Java 1.5, we can still constrain
uses of the permissive signature of compareTo by a generic type with a recursive
bound. For instance, consider a generic method max that computes the maximum
of two objects using Comparable [2]:

<X extends Comparable<X>> X max(X x1, X x2) {
if (x1.compareTo(x2) > 0) return x1;
else return x2;

}

The recursive type bound X extends Comparable<X> expresses the intuition that
the argument type of compareTo and the type implementing Comparable are the
same. Any class C that is to be used with max must implement Comparable<C>.

In contrast, JavaGI supports binary methods (in interfaces) and enables the
programmer to define the less permissive signature for compareTo directly:

interface MyComparable { int compareTo(This that); }

The type variable This (cf. compareTo’s argument) is implicitly bound by the in-
terface. It denotes the type implementing the interface. The type of compareTo re-
sults in a simpler and more comprehensible signature for the maximum method:

<X> X myMax(X x1, X x2) where X implements MyComparable {
if (x1.compareTo(x2) > 0) return x1;
else return x2;

}

The switch to a constraint-based notation where X implements MyComparable is
reminiscent of .NET generics [21,39]. To type check an implementation, This is
replaced with the implementing type. Here is an implementation for Integer:

implementation MyComparable [Integer]

This implementation need not provide code for compareTo because Integer already
has a method int compareTo(Integer that). Assuming type inference for generalized
interfaces, we can call myMax as follows:

Integer i = myMax(new Integer(1), new Integer(2));
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Let us bring subtyping into play. For instance, consider an implementation of
MyComparable for Number, which is the (abstract) superclass of Integer.

implementation MyComparable [Number] {
int compareTo(Number that) { /∗ Convert to double values and compare ∗/ }

}

Suppose that x and y are of static type Number, so the call x.compareTo(y) is valid.
Which version of compareTo should be invoked when both x and y have dynamic
type Integer? JavaGI takes an approach similar to multimethods [10] and selects
the most specific implementation dynamically, thereby generalizing the concept
of virtual method calls. Hence, the compareTo method of the implementation for
Integer is invoked. In all other cases, the compareTo version for Number is chosen
(assuming that there are no other implementations for subclasses of Number).

2.4 Example: Constrained Interface Implementations

If the elements of two given lists are comparable, then we expect the lists them-
selves to be comparable. JavaGI can express this implication with a constrained
interface implementation.

implementation<X> MyComparable [LinkedList<X>] where X implements MyComparable {
int compareTo(LinkedList<X> that) {

Iterator<X> thisIt = this.iterator(); Iterator<X> thatIt = that.iterator();
while (thisIt.hasNext() && thatIt.hasNext()) {

X thisX = thisIt.next(); X thatX = thatIt.next();
int i = thisX.compareTo(thatX); // type checks because X implements MyComparable
if (i != 0) return i;

}
if (thisIt.hasNext() && !thatIt.hasNext()) return 1;
if (thatIt.hasNext() && !thisIt.hasNext()) return −1;
return 0;

}
}

If now x and y have type LinkedList<Integer>, then the call myMax(x, y) is valid.
The implementation of MyComparable for LinkedList<X> is parameterized over

X, the type of list elements. The constraint X implements MyComparable of the
implementation makes the compareTo operation available on objects of type X
and ensures that only lists with comparable elements implement MyComparable.

There is no satisfactory solution to the problem of constrained interface im-
plementations in Java 1.5. Here are two suboptimal solutions. (i) Implement
Comparable<LinkedList<X>> directly in class LinkedList<X>. But then we either
could no longer assemble lists with incomparable elements (if X has bound
Comparable<X>), or we would need run-time casts for the comparison of ele-
ments (if X is unbounded). (ii) Plan ahead and use a designated class, CmpList,
for lists of comparable elements.

class CmpList<X extends Comparable<X>> implements Comparable<CmpList<X>> { ... }

But this is another instance of the Adapter pattern with its well-known short-
comings. In addition, this technique results in a prohibitive proliferation of helper
classes such as CmpList because other interfaces than Comparable may exist.
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2.5 Example: Static Interface Members

Many classes need to implement parsing such that instances can be constructed
from an external representation. (Likewise, in the XML domain, XML data needs
to be de-serialized.) Hence, we would like to define an interface of parseable types
with a parse method. However, parse cannot be defined as an instance method
because it behaves like an additional class constructor. To cater for this need,
JavaGI (but not Java 1.5) admits static methods in interfaces:

interface Parseable { static This parse(String s); }

Again, This (in the result position) refers to the implementing type. For example,
consider a generic method to process an entry in a web form (cf. class Form) using
the method String getParameter(String name) for accessing form parameters:

class ParseableTest {
<X> X processEntry(Form f, String pname) where X implements Parseable {

String s = f.getParameter(pname);
return Parseable[X].parse(s);

}
Integer parseMyParam(Form f) { return processEntry<Integer>(f, ”integer parameter”); }

}

The expression Parseable[X].parse(s) invokes the static method parse of interface
Parseable with X as the implementing type, indicated by square brackets ‘[...]’.
The parseMyParam method requires a Parseable implementation for integers:

implementation Parseable [Integer] {
static Integer parse(String s) { return new Integer(s); }

}

In Java 1.5, we would implement this functionality with the Factory pattern.
The Java solution is more complicated than the solution in JavaGI because boil-
erplate code for the factory class needs to be written and an additional factory
object must be passed around explicitly.

2.6 Example: Multi-headed Interfaces

Traditional subtype polymorphism is insufficient to abstract over relations be-
tween conglomerations of objects and their methods. Family polymorphism [12]
has been proposed as a corresponding generalization. It turns out that interfaces
can be generalized in a related manner.

Consider the Observer pattern. There are two participating types: subject and
observer. Every observer registers itself with one or more subjects. Whenever a
subject changes its state, it notifies its observers by sending itself for scrutiny.
The challenge in modeling this pattern in a reusable and type-safe way is the
mutual dependency of subject and observer. That is, the subject has a register
method which takes an observer as an argument, while the observer in turn has
an update method which takes a subject as an argument.

JavaGI provides a suitable abstraction: multi-headed interfaces. While a clas-
sic OO interface concerns a single type, a multi-headed interface relates multiple
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implementing types and their methods. Such an interface can place mutual re-
quirements on the methods of all participating types. The following multi-headed
interface captures the Observer pattern:
interface ObserverPattern [Subject, Observer] {

receiver Subject {
List<Observer> getObservers();
void register(Observer o) { getObservers().add(o); }
void notify() { for (Observer o : getObservers()) o.update(this); }

}
receiver Observer { void update(Subject s); }

}

With multiple implementing types, we can no longer use the implicitly bound
type variable This. Instead, we have to name the implementing types explicitly
through type variables Subject and Observer. Furthermore, the interface groups
methods by receiver type because there is no obvious default.

The example illustrates that generalized interfaces may contain default imple-
mentations for methods, which are inherited by all implementations that do not
override them. The default implementations for register and notify rely on the list
of observers returned by getObservers to store and retrieve registered observers.
(Default implementations in interfaces weaken the distinction between interface
and implementation. They are not essential to JavaGI’s design, but they proved
useful in Haskell).

Here are two classes to participate in the Observer pattern:
class Model { // designated subject class

private List<Display> observers = new ArrayList<Display>();
List<Display> getObservers() { return observers; }

}
class Display { } // designated observer class

An implementation of ObserverPattern only needs to define update:
implementation ObserverPattern [Model, Display] {

receiver Display { void update (Model m) { System.out.println(”model has changed”); } }
}

All other methods required by the interface are either implemented by the par-
ticipating classes or inherited from the interface definition.

The genericUpdate method of the following test class uses the constraint
[S,O] implements ObserverPattern to specify that the type parameters S and O
must together implement the ObserverPattern interface.
class MultiheadedTest {

<S,O> void genericUpdate(S subject, O observer) where [S,O] implements ObserverPattern {
observer.update(subject);

}
void callGenericUpdate() { genericUpdate(new Model(), new Display()); }

}

The Observer pattern can also be implemented in Java 1.5 using generics
for the subject and observer roles with complex, mutually referring bounds. In
fact, the subject part must be encoded as a generic class (as opposed to a generic
interface) to provide room for the default methods of subjects. A concrete subject
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class must then extend the generic subject class, which has to be planned ahead
and is even impossible if the concrete subject class requires another superclass.

The notation for single-headed interfaces used so far is just syntactic sugar.
For example, JavaGI’s MyComparable interface (Sec. 2.3) is fully spelled out as:
interface MyComparable [This] { receiver This { int compareTo(This that); } }

2.7 Example: Bounded Existential Types

In the preceding examples, we have used interfaces such as Connection (Sec. 2.1)
and List (Sec. 2.2) as if they were types. This view aligns well with Java 1.5.
But multi-headed interfaces, introduced in the preceding section, do not fit this
scheme. For instance, simply using ObserverPattern as a type does not make sense.

To this end, JavaGI supports bounded existential types in full generality.
Take exists X where [Model,X] implements ObserverPattern . X as an example. This
bounded existential type (existential for short) comprises objects that acts as
an observer for class Model. Here is an example that calls the update method on
such objects:
class ExistentialTest {

void updateObserver((exists X where [Model,X] implements ObserverPattern . X) observer) {
observer.update(new Model()); /∗ implicit unpacking ∗/

}
void callUpdateObserver() { updateObserver(new Display()); /∗ implicit conversion ∗/ }

}

The example also demonstrates that existential values are implicitly unpacked
(e.g., the update method is invoked directly on an object of existential type), and
that objects are implicitly converted into an existential value (e.g., an object of
type Display is used directly as an argument to updateObserver).

This treatment of bounded existential types generalizes the requirement for
backwards compatibility with Java interface types, which are only syntac-
tic sugar for existentials. For instance, the type Connection is expanded into
exists X whereX implements Connection . X, whereas type List<Observer> is an ab-
breviation for exists X where X implements List<Observer> . X.

Support for multi-headed interfaces is not the only good reason to have
bounded existential types. They have other advantages over Java interface types:

– They allow the general composition of interface types. For example, the type
exists X whereX implements Count and X implements Connection . X is the inter-
section of types that implement both the Count and Connection interfaces.
Java 1.5 can denote such types only in the bound of a generic type variable
as in X extends Count & Connection.

– They encompass Java wildcards [35]. Consider List<? extends Connection>,
a Java 1.5 type comprising all values of type List<X> where
X extends Connection. (This type is different from the fully heterogeneous type
List<Connection>, where each list element may have a different type.) In Jav-
aGI, this type is denoted as exists X where X implements Connection . List<X>.
Torgersen, Ernst, and Hansen [34] investigate the relation between wildcards
and existentials.
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3 Translation to Java

This section sketches a translation from JavaGI to Java 1.5, which follows the
scheme for translating Haskell type classes to System F [15]. We first demon-
strate the general idea (Sec. 3.1), then explain the encoding of retroactively
defined methods (Sec. 3.2) and of multi-headed interfaces (Sec. 3.3), show how
existentials are translated (Sec. 3.4), and finally discuss interoperability with
Java (Sec. 3.5).

3.1 Translating the Basics

We first explain the general idea of the translation under the simplifying as-
sumption that the implementing types of an implementation definition provide
all methods required, so that the definition itself contains only static methods.1

An interface I 〈X〉[Y ] is translated into a dictionary interface I dict〈X, Y 〉. The
interface Idict supports the same method names as I, but static methods of I
are mapped to non-static methods and I’s non-static methods for implementing
type Yi get a new first argument this$ of type Yi.

As an example, consider the translation of the interfaces MyComparable and
Parseable (Sec. 2.3 and 2.5).

interface MyComparableDict<This> { int compareTo(This this$, This that); }
interface ParseableDict<This> { This parse(String s); }

A constraint [T ] implements I 〈U〉 in a class or method signature is translated
into an additional constructor or method argument, respectively, that has type
I dict〈T , U〉. The additional argument allows the class or method to access a dic-
tionary object (i.e., an instance of the dictionary class) that provides all methods
available through the constraint. In case of a class constraint, the dictionary ob-
ject is stored in an instance variable.

For example, here is the translation of myMax and processEntry (Sec. 2.3
and 2.5):

<X> X myMax(X x1, X x2, MyComparableDict<X> dict) {
if (dict.compareTo(x1, x2) > 0) return x1; else return x2;

}
<X> X processEntry(Form f, String pname, ParseableDict<X> dict) {

String s = f.getParameter(pname); return dict.parse(s);
}

A definition implementation〈X〉 I 〈T 〉[U ] {. . . } (ignoring constrained implemen-
tations for a moment) is translated into a dictionary class Cdict,U 〈X〉 that im-
plements I dict〈T , U〉. Methods of Idict corresponding to static methods in the
original interface are implemented by translating their bodies (discussed shortly).
The remaining methods of Idict are implemented by delegating the call to the
corresponding implementing type, which is available through the argument this$.

1 The following conventions apply: I ranges over interface names; Idict and Cdict,U represent
fresh interface and class names, respectively; X and Y range over type variables; T and U
range over types; overbar notation denotes sequencing (e.g., T denotes T1, . . . , Tn).
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The next example shows the translation of the implementation definitions for
MyComparable and Parseable with implementing type Integer (Sec. 2.3 and 2.5).
class MyComparableDict Integer implements MyComparableDict<Integer> {

public int compareTo(Integer this$, Integer that) {
return this$.compareTo(that); // Integer has a compareTo method

}
}
class ParseableDict Integer implements ParseableDict<Integer> {

public Integer parse(String s) { return new Integer(s); }
}

A constrained implementation is translated similarly, with every constraint
[T ] implements I 〈U 〉 giving rise to an extra constructor argument and an instance
variable of type I dict〈T , U〉 for the dictionary class. These dictionary objects
serve the same purpose as the additional arguments introduced for constraints
in class or method signatures.

The translation of the implementation of MyComparable for LinkedList (Sec.2.4)
looks as follows:
class MyComparableDict LinkedList<X> implements MyComparableDict<LinkedList<X>> {

private MyComparableDict<X> dict;
MyComparableDict LinkedList(MyComparableDict<X> dict) { this.dict = dict; }
public int compareTo(LinkedList<X> this$, LinkedList<X> that) {

/∗ ... ∗/ X thisX = thisIt.next(); X thatX = thatIt.next();
int i = this.dict.compareTo(thisX, thatX); /∗ ... ∗/

}
}

The translation of statements and expressions considers every instantiation of a
class and every invocation of a method. If the class or method signature contains
constraints, the translation supplies appropriate dictionary arguments.

Here are translations of sample invocations of myMax and of parseMyParam
(Sec. 2.3, 2.4, and 2.5).2

void invokeMyMax(LinkedList<Integer> x, LinkedList<Integer> y) {
Integer j = myMax(new Integer(1), new Integer(2), new MyComparableDict Integer());
LinkedList<Integer> z = myMax(x, y, new MyComparableDict LinkedList<Integer>(

new MyComparableDict Integer()));
}
Integer parseMyParam(Form f) {

return processEntry(f, ”integer parameter”, new ParseableDict Integer());
}

3.2 Translating Retroactively Defined Methods

The preservation of dynamic dispatch is the main complication in the translation
of retroactively defined methods (e.g., non-static methods of retroactive interface
implementations). For example, consider the implementations of Count for BTree
and its subclass Node from Sec. 2.2. The translation creates a dictionary interface
CountDict and two dictionary classes CountDict BTree and CountDict Node. Because
count is a retroactively defined method, its invocations in the implementation

2 Repeated allocations of dictionary objects can be avoided by using a caching mechanism.
For simplicity, we omit this optimization in this section.



JavaGI: Generalized Interfaces for Java 359

for Node must be translated such that an instance of CountDict BTree acts as the
receiver. But this means that the definition of count in CountDict BTree must take
care of dynamically dispatching to the correct target code.

MultiJava’s strategy for implementing external method families [11] solves the
problem. The dictionary CountDict BTree uses the instanceof operator to dispatch
on this$, which represents the receiver of the call in the untranslated code. If this$
is an instance of Node, the call is delegated to an instance of CountDict Node.
Otherwise, the code for BTree is used. If there are further arguments of the
implementing type, then they must be included in the dispatch.

Fig. 1 contains an application of this strategy. For simplicity, the code ignores
the possibility that some subclass of Node or Leaf overrides count internally. The
MultiJava paper explains how this situation is handled.

To allow for modular compilation, we impose two restrictions. (i) Retroactively
defined methods must not be abstract. (ii) If an implementation of interface I in
compilation unit U retroactively adds a method to class C, then U must contain
either C’s definition or any implementation of I for a superclass of C.

The first restriction corresponds to MultiJava’s restriction R2 [11, p. 542]. It
ensures that there is a default case for the instanceof tests on this$ (return 0;
in Fig. 1). The second restriction guarantees that all possible branches for the
instanceof tests can be collected in a modular way. It corresponds to MultiJava’s
restriction R3 [11, p. 543].

3.3 Translating Multi-headed Interfaces

Fig. 2 shows the translation of the multi-headed interfaceObserverPattern (Sec. 2.6).
The dictionary interface ObserverPatternDict has two type parameters, one for each
implementing type. Grouping by receiver type, in JavaGI achieved through the
receiver keyword, translates to different types for the first argument this$.

The abstract class ObserverPatternDef contains those methods for which default
implementations are available. A class such as ObserverPattern ModelDisplay, which

Fig. 1. Translation of interface Count and its implementations (Sec. 2.2) to Java 1.5
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Fig. 2. Translation of the multi-headed interface ObserverPattern, its implementation,
and its use (Sec. 2.6) to Java 1.5

implements the dictionary interface, inherits from the abstract class to avoid code
duplication and to allow redefinition of default methods.

3.4 Translating Bounded Existential Types

The translation of a bounded existential type is a wrapper class that stores a
witness object and the dictionaries for the constraints in instance variables. The
types of these instance variables are obtained by translating the original wit-
ness type and the constraints from JavaGI to Java, replacing every existentially
quantified type variable with Object.

Fig. 3 shows the class Exists1 resulting from translating the JavaGI type exists

X where X implements Count . X. The class uses a static, generic create method
to return new Exists1 instances for a witness of type X and a CountDict<X>

dictionary, because a constructor cannot be generic unless the class is generic.
A method call on an existential value is translated to Java by invoking the

corresponding method on one of the existential’s dictionaries, passing the witness
as first argument. For example, if x has type exists X where X implements Count



JavaGI: Generalized Interfaces for Java 361

Fig. 3. Java 1.5 class corresponding to the bounded existential type exists X where X
implements Count . X in JavaGI

. X in JavaGI, then x has type Exists1 in Java, and the call x.count() is translated
into x.dict.count(x.witness).

3.5 Interoperability with Java

The main source of incompatibility between JavaGI and Java is that Java uses
interface names as types, whereas JavaGI uses them only in constraints (if we
ignore JavaGI’s syntactic sugar). As discussed in Sec. 2.7, a Java interface type
I is interpreted as the existential exists X whereX implements I . X. We face two
problems: (i) it must be possible to pass objects of this type from JavaGI to
a Java method expecting arguments of type I; (ii) JavaGI must be prepared to
invoke methods of I on objects coming from the Java world, i.e., objects that are
not instances of the existential’s wrapper class but implement I in the Java-sense.

How are these problems solved? Let T = existsX whereQ . Y where Q is
a sequence of constraints and class C be the translation of T . To solve the
first problem, C implements each Java interface I 〈U〉 that appears in Q as
Y implements I 〈U〉. To solve the second problem, we adjust the translation for
method calls on objects of existential type. If a method declared in a Java inter-
face is called on an object of type T (assuming a suitable constraint in Q), the
modified translation leaves the call unchanged because the object may not be an
instance of C. The translated call is also valid for C because C implements the
Java interface. In all other cases, the translation treats the call as in Sec. 3.4.

Wrapping objects is problematic because operations involving object identity
(e.g., ==) and type tests (e.g., instanceof) in Java code may no longer work
as expected. (Translating such operations away does not work because they
may be contained in some external Java library not under our control.) It is,
however, somewhat unavoidable if retroactive interface implementation is to be
supported and changing the JVM is not an option. (For example, the translation
of expanders [38] to Java suffers from the same problem.) Eugster’s uniform
proxies [14] might solve the problem for type tests because they would allow the
wrapper to be a subclass of the run-time class of the witness and to implement
all interfaces the witness implements through a regular Java implements clause.
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4 A Formal Type System for JavaGI

This section formalizes a type system for the language Core–JavaGI, which cap-
tures the main ingredients of JavaGI and supports all essential features presented
in Sec. 2. The static semantics of Core–JavaGI is based on Featherweight GJ
(FGJ [17]) and on Wild FJ [34].

4.1 Syntax

Fig. 4 shows the syntax of Core–JavaGI.3 A program prog consists of a sequence
of class definitions cdef , interface definitions idef , implementation definitions

Fig. 4. Syntax of Core–JavaGI

impl , and a “main” expression e. We omit constructors from class definitions,
and assume that every field name is defined at most once. Methods of classes are
written as m :mdef where mdef is a method signature msig with a method body.
An interface definition contains static method signatures m : static msig and sig-
natures itsig for methods supported by particular implementing types. Imple-
mentation definitions provide the corresponding implementations m : staticmdef
and itdef .

Core–JavaGI does not support default methods in interface definitions. More-
over, signatures itsig and definitions itdef refer to their implementing type by
position. We assume that the name of a method defined in some interface is
unique across method definitions in classes and other interfaces. Interface imple-
mentations must provide explicit definitions for all methods of all implementing
types. It is straightforward but tedious to lift these restrictions.

3 The notation ξ
n

(or ξ for short) denotes the sequence ξ1, . . . , ξn for some syntactic construct
ξ, · denotes the empty sequence. At some points, we interpret ξ as the set {ξ1, . . . , ξn}.
We assume that the identifier sets TyvarName, ClassName , IfaceName , MethodName ,
FieldName , and VarName are countably infinite and pairwise disjoint.
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Fig. 5. Well-formedness

A method signature msig has the form 〈X〉T x → T where Q where T are
the argument types and T is the result type. Types T in Core–JavaGI are either
type variables X , class types N , or bounded existential types ∃X whereQ . T .
The latter are considered equivalent up to renaming of bound type variables,
reordering of type variables and constraints, addition and removal of unused type
variables and constraints, and merging of variable-disjoint, adjacent existential
quantifiers. Finally, ∃ · where · . T is equivalent to T , so that every type can be
written as an existential ∃X where Q . T where T is a type variable or class.

K abbreviates an instantiated interface I 〈T 〉 and P, Q range over constraints.
Core–JavaGI does not support class bounds in constraints.

Core–JavaGI expressions e are very similar to FGJ expressions. The new ex-
pression form K[T ].m(e) invokes static interface methods. The types T select
the implementation of method m. The target type of a cast must be a class type
N , so that constraints need not be checked at runtime.4

4.2 Typing Judgments

The typing judgments of Core–JavaGI make use of three different environments.
A program environment Θ is a set of program definitions def and constraint
schemes of the form ∀X . Q⇒ P . The constraint schemes result from the interface

and implementation definitions of the program (to be defined in Fig. 9). A type en-
vironment Δ is a sequence of type variables and constraints. Its domain, written
dom(Δ), consists of only the type variables. The extension of a type environment
is written Δ, X, Q assuming dom(Δ) ∩ X = ∅. A variable environment Γ is a
finite mapping from variables to types, written x : T . The extension of a variable
environment is denoted by Γ, x : T assuming x /∈ dom(Γ ).

Fig. 5 establishes well-formedness predicates on types, instantiated interfaces
with implementing types, constraints, and substitutions. The judgment Θ; Δ �
[T/X] ok under Q ensures that the (capture avoiding) substitution [T/X] replaces

4 Interoperability with Java requires support for casts to certain bounded existential types
whose constraints are easily checkable at runtime.



364 S. Wehr, R. Lämmel, and P. Thiemann

Fig. 6. Entailment and subtyping

X with well-formed types T that respect the constraints Q. Its definition uses
the entailment judgment Θ; Δ � Q discussed next. We abbreviate multiple well-
formedness predicates Θ; Δ � ξ1 ok, . . . , Θ; Δ � ξn ok to Θ; Δ � ξ ok.

Fig. 6 defines the entailment and the subtyping relation. Entailment Θ; Δ � Q
establishes the validity of constraint Q. A constraint is only valid if it is either
contained in the local type environment Δ, or if it is implied by a constraint
scheme of the program environment Θ. There is no rule that allows us to con-
clude T implements I if all we know is T ′ implements I for some supertype T ′ of
T . Such a conclusion would be unsound because the implementing type of I
might appear in the result type of some method.5 Similarly, a constraint such as
(∃X where X implements I . X) implements I is only valid if there exists a corre-
sponding implementation definition; otherwise, invocations of methods with the
implementing type of I in argument position would be unsound.6

The subtyping judgment Θ; Δ � T ≤ U is similar to FGJ, except that there is
a top rule Θ; Δ � T ≤ Object and two rules for bounded existential types. These
two rules allow for implicit conversions between existential and non-existential
values. The first allows opening an existential on the left-hand side if the quanti-
fied type variables are sufficiently fresh (guaranteed by the premise Θ; Δ � U ok).
The second rule allows abstracting over types that fulfill the constraints of the
existential on the right-hand side.

The relation mtypeΘ;Δ(m, T ) = msig , defined in Fig. 7, determines the sig-
nature of method m invoked on a receiver with static type T . The first rule is
similar to the corresponding rules in FJG, except that it does not ascend the in-
heritance tree; instead, Core–JavaGI allows for subsumption on the receiver type
(see the typing rules for expressions in Fig. 8). The second rule handles the case
of invoking a method defined in an interface implemented by the receiver. The

5 To ensure interoperability with Java, we generate suitable implementation definitions for all
Java classes that “inherit” the implementation of an interface from a superclass.

6 Interoperability with Java requires us to generate implementation definitions for I and all
its superinterfaces with implementing type ∃Xwhere X implements I . X.
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Fig. 7. Method types

Fig. 8. Expression typing. The remaining rules are similar to those for FGJ [17] and
thus omitted.

judgment smtypeΘ;Δ(m, K[T ]) = msig , also shown in Fig. 7, defines the type of
a static method invoked on instantiated interface K for implementing types T .

The typing judgment for expressions Θ; Δ; Γ � e : T (Fig. 8) assigns type
T to expression e under the environments Θ, Δ, and Γ . Its definition is very
similar to the corresponding FGJ judgment, so we show only those rules that are
new (rule for static method invocation) or significantly different (rules for field
lookup and non-static method invocation). Following Wild FJ [34], the rules
for field lookup and non-static method invocation propagate the existentially
bounded type variables and the constraints of the receiver type to the conclusion
to ensure proper scoping. Furthermore, the rule for non-static method invocation
allows subsumption on the receiver type. This change was necessary because
entailment does not take subtyping into account (see the discussion on page 364),
so without subsumption on the receiver type, it would not be possible to invoke
a retroactively defined method on a receiver whose static type is a subtype of
the type used in the corresponding implementation definition.
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Fig. 9. Program typing
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In the rule for field lookup, fieldsΘ(N) denotes the fields of N and its su-
perclasses (as in FGJ), and bound(T ) denotes the upper bound of T . It is de-
fined as bound(N) = N , bound(X) = Object , and bound(∃X whereQ . T ) =
∃X where Q . bound(T ).

Fig. 9 defines the program typing rules. They differ from FGJ because FGJ
defines only a method and a class typing judgment. The first part of the fig-
ure defines well-formedness of method definitions and a subtyping relation on
method signatures.7 The next three parts check that class, interface, and imple-
mentation definitions are well-formed. The last part defines the two judgments
def �⇒ Θ and � prog ok. The first judgment collects the constraint schemes
resulting from the definitions in the program: a class definition contributes no
constraint schemes, an interface definition contributes constraint schemes for all
of its superinterfaces because every implementation of the interface must respect
the superinterface constraints, and an implementation definition contributes a
single constraint scheme. The judgment � prog ok first collects all constraint
schemes, then checks the definitions of the program, and finally types the main
expression. The predicate well-founded(Θ) only holds if the class and interface
hierarchies of program Θ are acyclic. The predicate no-overlap(Θ) ensures that
program Θ does not contain overlapping implementation definitions, i.e., no
implementation definition in Θ is a substitution instance of some other imple-
mentation definition.

5 Related Work

PolyTOIL [7] and LOOM [6] are both object-oriented languages with a MyType
type as needed for binary methods: an occurrence of MyType refers to the type of
this. PolyTOIL achieves type safety by separating inheritance from subtyping,
whereas LOOM drops subtyping completely. However, both languages support
matching, which is more general than subtyping. The language LOOJ [4] inte-
grates MyType into Java. It ensures type safety through exact types that prohibit
subtype polymorphism. Compared with these languages, JavaGI does not support
MyType in classes but only in interfaces. As a consequence, JavaGI allows unre-
stricted subtype polymorphism on classes; only invocations of binary methods
on receivers with existential type are disallowed. JavaGI also supports retroactive
and constrained interface implementations, as well as static interface methods;
these features have no correspondence in PolyTOIL, LOOM, or LOOJ. LOOM
supports “hash types”, which can be interpreted as match-bounded existential
types in the same way as JavaGI’s interface types are interpreted as interface-
bounded existential types. Hash types, though, are tagged explicitly.

The multi-headed interfaces of JavaGI enable a statically safe form of family
polymorphism (dating back to BETA’s [24] virtual types). Other work on family
polymorphism either use path-dependent types [12], virtual classes [13], or a
generalized form of MyType [5] that deals with a mutually recursive system of
classes. Scala’s abstract types together with self type annotations [28,27] can

7 Interoperability with Java requires a second relation specifying covariant return types, only.
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also be used for family polymorphism. Helm and collaborators’ contracts [16]
specify how groups of interdependent objects should cooperate, thus allowing
some form of family polymorphism.

JavaGI’s generalization of Java interfaces is systematically inspired by
Haskell’s type-class mechanism [37,29,30]: (multi-headed) interface and imple-
mentation definitions in JavaGI play the role of (multi-parameter) type classes
and instance definitions in Haskell (so far without functional dependencies). A
notable difference between JavaGI and Haskell is that Haskell does not have
the notion of classes and objects in the object-oriented sense, so methods are
not tied to a particular class or object. Thus, methods of Haskell type classes
correspond to static methods of JavaGI’s interfaces; there is no Haskell corre-
spondence to JavaGI’s non-static interface methods. Another difference is the
absence of subtyping in Haskell, which avoids the question how subtyping and
instance definitions should interact. However, Haskell supports type inference,
whereas JavaGI requires explicit type annotations. Finally, Haskell’s existentials
are notoriously inconvenient since they are bound to data-type constructors and
lack implicit pack and unpack operations.

Siek and collaborators have developed a related notion of concepts for group-
ing and organizing requirements on a type [32]. In particular, they have also for-
malized this notion in FG, an extension of System F, receiving inspiration from
Haskell type classes. FG also includes associated types (i.e., types functionally
depending on other types). In contrast, JavaGI supports self types, bounded ex-
istential types, defaults for interface methods, and it interacts with subtyping.
It has been noted that a limited form of concepts can be also realized with C#’s
interface support [19], while the primary application domain of concepts (i.e.,
generic programming) requires extra support for associated types and constraint
propagation. We note that constraint propagation [19] is related to our notion
of constraint entailment.

There is an impressive number of approaches for some form of open classes—
means to extend existing classes. The approaches differ with regard to the “ex-
tension time” and the restrictions imposed on extensions. Partial classes in C�
2.0 provide a primitive, code-level modularization tool. The different partial
slices of a class (comprising superinterfaces, fields, methods, and other mem-
bers) are merged by a preprocessing phase of the compiler. Extension methods
in C� 3.0 [25] support full separate compilation, but the added methods cannot
be virtual, and members other than methods cannot be added. Aspect-oriented
language implementations such as AspectJ [22] typically support some sort of
open classes based on a global program analysis, a byte-code–level weaving tech-
nique, or more dynamic approaches.

MultiJava [11] is a conservative Java extension that adds open classes and
multimethods. We adopted MultiJava’s implementation strategy to account for
retroactive interface implementations and for implementing binary methods [3]
by specializing the argument types in subclasses. The design of Relaxed Multi-
Java [26] might help to lift the restrictions imposed by our compilation strat-
egy. Expanders [38] comprise an extra language construct (next to classes and
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interfaces) for adding new state, methods and superinterfaces to existing classes
in a modular manner. JavaGI does not support state extension. Expanders do
not deal with family polymorphism, static interface methods, binary methods,
and some other aspects of JavaGI.

The expander paper [38] comprises an excellent related work discussion loop-
ing in all kinds of approaches that are more or less remotely related to class
extensions: mixins, traits, nested inheritance, and Scala views.

6 Conclusion and Future Work

We have described JavaGI, a language that generalizes Java’s interfaces in var-
ious dimensions to enable clearer program designs, stronger static typing, and
extra forms of software extension and integration. Our generalization is based
on Haskell’s type class mechanism. The design of JavaGI shows that the com-
bination of type classes and bounded existential types with implicit pack and
unpack operations subsumes Java-like interfaces. We have watched out for fea-
ture interactions with existing uses of interfaces, subtyping, and subclassing.
In particular, JavaGI is the first satisfactory example of a language where type
classes (interfaces) and subtyping coexist. In this language-design process, we
realized that a convenient form of existential quantification needs to become
part of the extended Java type system. All of the scenarios that JavaGI can
handle have been previously identified in other work; however, using separate
language extensions with unclear interaction. There is no single proposal that
would match the expressiveness of JavaGI. Hence, we do not apply for an original-
ity award but we hope to score with the uniformity and simplicity of generalized
interfaces.

The formalization of JavaGI presented in this article consists of only a type
system for a core language. In future work, we would like to complete the formal-
ization. In particular, this includes the specification of an operational semantics,
its soundness proof, an algorithmic formulation of subtyping, the adoption of
Java’s inference algorithm for type parameters, the completeness proof for rep-
resenting Java generics in JavaGI’s existential-based type system, and a proper
formalization of the translation to Java. Furthermore, we are working on a pro-
totype compiler for JavaGI from which we also expect real-world data on the
overhead caused by the translation semantics. We also would like to lift the re-
strictions imposed by our compilation strategy, and we are investigating state
extension for JavaGI. Another challenging aspect is the potential of multiple type
parameters of generalized interfaces (both implementing types and regular type
parameters). Such multiplicity has triggered advanced extensions for Haskell’s
type classes [18,9,8] to restrict and direct instance selection and type inference.
In the context of JavaGI, the existing restriction for generics—that a certain
type can implement a generic interface for only one type instantiation—may be
sufficient for practical purposes.
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Abstract. In many domains, classes have highly regular internal struc-
ture. For example, so-called business objects often contain boilerplate
code for mapping database fields to class members. The boilerplate code
must be repeated per-field for every class, because existing mechanisms
for constructing classes do not provide a way to capture and reuse such
member-level structure. As a result, programmers often resort to ad hoc
code generation. This paper presents a lightweight mechanism for spec-
ifying and reusing member-level structure in Java programs. The pro-
posal is based on a modest extension to traits that we have termed
trait-based metaprogramming. Although the semantics of the mechanism
are straightforward, its type theory is difficult to reconcile with nominal
subtyping. We achieve reconciliation by introducing a hybrid
structural/nominal type system that extends Java’s type system. The
paper includes a formal calculus defined by translation to Featherweight
Generic Java.

1 Introduction

In mainstream object-oriented languages, programming amounts to class cre-
ation. While a programmer may write classes from scratch, good style dictates
that existing code be used when possible. Several mechanisms exist to aid the
programmer in this endeavor: inheritance combines existing classes with ex-
tensions or modifications; mixins and traits capture such extensions, allowing
them to be reused; and generic classes are instantiated with type parameters
to produce specialized classes. Each of these mechanisms allows programmers
to capture and reuse useful structure at the level of classes, but they provide
limited support for capturing structure at the level of class members.

In many domains, classes have highly regular internal structure. As a simple
example, consider a thread-safe class in which all methods obtain a single lock
before executing. Manually writing this boilerplate code results in clutter and
rigidity: the locking strategy cannot easily be changed after the fact. In Java,
thread-safe methods were considered important enough to warrant the synchro-
nized keyword, but adding keywords is a kind of magic that only the language
designer, not the language user, can perform. In this paper, we propose a mech-
anism that allows programmers to capture, reuse, and modify such member-level
patterns in a coherent way.

The synchronized pattern consists of behavior common to otherwise unre-
lated members of a class. Another common member-level pattern is when a class
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class Customer {

}

String phone
String getPhone()
void setPhone(String)
void findByPhone(String)

String name
String getName()
void setName(String)
void findByName(String)

void load(int id) {
    ... do lookup ...

}

void save() {
    ...
}

name = results.getString("name");

phone = results.getString("phone");

Fig. 1. A more complex member-level pattern

contains collections of similar members that are intended to match a domain
model. For example, consider a Customer class that provides access to a cus-
tomer table in a database. For each field present in the table, the Customer class
will contain a cluster of members: for the name field, the Customer class might
contain an instance variable name and methods getName, setName, and findByName.
Moreover, the class will provide load and save methods that load and store the
class’s instance variables. This situation is shown diagrammatically in Figure 1.
While additional behavior may be needed for particular fields, it is desirable to
abstract the common structure and implementation; once defined, the abstrac-
tion answers the question “what does it mean for a class to provide access to a
database field?” We show how this can be done with our mechanism at the end
of Section 3.

Our proposal is based on a modest extension to traits [9] that allows pro-
grammers to write trait functions, which are parameterized by member names.
Trait functions are applied at compile time to build classes, supporting what
we term trait-based metaprogramming. In describing our mechanism as a form
of metaprogramming, we mean that (1) it operates entirely at compile-time and
(2) it allows both generation and introspection of code.1 There are many frame-
works available for metaprogramming; our proposal’s strength is its singular
focus on member-level patterns. We believe that the territory between classes
and individual class members is a fruitful place to do metaprogramming, and
by focusing our efforts there, we are able to provide a succinct mechanism with
good guarantees about the generated code. A detailed discussion of related work
is given in Section 5.

The language design is presented informally in Section 3. In Section 4 we
model our mechanism as an extension to Featherweight Generic Java (FGJ), giv-
ing our semantics as a translation to FGJ. While the translation is very simple,

1 This paper focuses on generation; we discuss introspection in a technical report [28].
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its type theory is difficult to reconcile with nominal subtyping because abstrac-
tion over member labels is allowed. We achieve reconciliation by introducing a
hybrid structural/nominal type system that extends Java’s type system. The
type system is not strongly tied to our broader proposal, and we hope that the
ideas will find broad application in metaprogramming systems for nominally-
subtyped languages, a possibility we discuss in Section 5.2.

2 Background

Traits were originally introduced by Schärli et al. in the setting of Smalltalk [9]
as a mechanism for sharing common method definitions between classes. In their
proposal, a trait is simply a collection of named methods. These methods cannot
directly reference instance variables; instead, they must be “pure behavior.” The
methods defined in a trait are called the provided methods, while any methods
that are referenced, but not provided, are called required methods. An important
property of traits is that while they help structure the implementation of classes,
they do not affect the inheritance hierarchy. In particular, traits are distinguished
from mixins [5] because they can be composed without the use of inheritance.2

Traits can be formed by definition (i.e., listing a collection of method definitions)
or by using one of several trait operations:

Symmetric sum merges two disjoint traits to create a new trait. 3

Override forms a new trait by layering additional methods over an existing trait.
This operation is an asymmetric sum. When one of the new methods has the
same name as a method in the original trait, the override operation replaces
the original method.

Alias creates a new trait by adding a new name for an existing method. This
operation is not renaming, in that it does not replace references to the old
name with the new one.

Exclusion forms a new trait by removing a method from an existing trait. Com-
bining the alias and exclusion operations yields a renaming operation, al-
though the renaming is shallow.

The other important operation on traits is inlining, the mechanism whereby
traits are integrated with classes. This operation merges a class C, a trait, and
additional fields and methods to form a new subclass of C. Often, the additional
methods, called glue methods [9], provide access to the newly added fields. The
glue methods, plus the methods inherited from C, provide the required methods
of the trait. An important aspect of traits is that the methods of a trait are only
loosely coupled; they can be removed and replaced by other implementations.

Traits provide a lightweight alternative to multiple inheritance, and they have
been the focus of much recent interest, including formal calculi [11,20] and other
2 Bracha’s Jigsaw [4], one of the first formal presentations of mixins, supports a similar

notion of composition, but most other constructs under the name “mixin” do not.
3 Smalltalk traits allow name conflicts, but replace the conflicting methods with a

special method body conflict that triggers a run-time error if evaluated.
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language designs for traits [24,27,23,14]. While the details of these various mech-
anisms vary, they all share a focus on sharing common method implementations
across unrelated classes. Our design shifts the focus toward sharing member-level
patterns that can occur within a single class.

3 A Design for Trait-Based Metaprogramming

We present our design in the setting of Java, though there is little that is Java-
specific. Like other language designs that incorporate traits, a trait in our lan-
guage has a collection of members it provides and a collection of members it
requires. What is new in our design is that traits may be parameterized over
the names and types of these members: our traits are really trait functions. The
basic form of a trait is as follows:

trait trait-name (member-name parameters, type parameters, value parameters)
requires { requirements }
provides { member definitions }

Note that traits may be parameterized over values, such as constant values that
vary between instances of a member-level pattern. Member-name parameters
are prefixed with “$” so that member-name variables never shadow actual mem-
ber names; in our experience, having a clear distinction between obj.foo and
obj.$foo makes trait code easier to understand.

The requires and provides sections also differ from previous designs. In ad-
dition to giving the signatures of required class members, the requirements sec-
tion is also used to place constraints on type parameters, as illustrated in the
DelegateT example near the end of this section. Another departure in our design
is that the provides section can contain field declarations. When such declara-
tions are inlined in a class, the class’s constructors are responsible for initializing
them. Traits are inlined using the use construct, which is syntactically just an-
other form of member definition. Since traits are actually functions, the use
construct applies the trait function to its arguments and inlines the resulting
member definitions. As shown below, the provides section of a trait can also
have use declarations, which is how traits are composed. Conflicting method or
field declarations within the body of a trait or class, whether defined directly or
inlined from traits, are rejected by the type system.

3.1 Some Illustrative Examples

In the remainder of this section, we present a series of examples that illustrate
our mechanism and the kinds of patterns it captures. We begin by with the
notion of a “property” — a field along with getter and setter methods. In this
example, the variables $f, $g, and $s range over field and method names, while
the variable T ranges over types. The access modifiers public and private deter-
mine the visibility the members will have after they are inlined into a class:
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trait PropT ($f, $g, $s, T)
provides {

private T $f;
public void $s (T x) { $f = x; }
public T $g () { return $f; }

}

We can use PropT to define a 2D point class by “using” it twice with different
member names:

class Point2 {
use PropT (x, getX, setX, int);
use PropT (y, getY, setY, int);
Point2 () { x = 0; y = 0; }

}

Note also that the Point2 constructor initializes the fields introduced by the
traits.

Next, we revisit the synchronized example from Section 1:

trait SyncT ($op, R, A...)
requires {

ThisType implements {
Mutex lock;
R $op (A...);

}
}
provides {

override public R $op (A...) {
lock.acquire();
R res = outer.$op (...);
lock.release();
return res;

}
}

This example illustrates several features of our design. Often, as here, we use a
trait to wrap behavior around methods in a way that does not depend on the
parameters or return type of the method. Since Java does not treat parameter
sequences as tuples, we introduce the notation “x...” as a way to name parame-
ter sequences with heterogeneous types, where the arity may vary from instance
to instance. This notation can be used in the signatures of methods; within their
bodies, the actual value of the parameter sequence is denoted by “...”. When
the trait is inlined, a tuple of types is given for the parameter sequence, as in
the following example that synchronizes a string comparison method:

use SyncT (compare, int, (String, String));

The second feature to note is the ThisType keyword, which denotes the class
that is using the trait. Here, we use ThisType to state the requirement that the
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class provides the lock field and an implementation of the $op method to be
overridden by the trait. The scope of ThisType acts is the entire trait, so it may
appear as an argument or return type of a method, for example. In particular,
this means that traits can provide binary methods.

The last feature is the use of the override and outer keywords in the decla-
ration of the provided method. The override keyword states that the method
is replacing an existing method in the class, which could either be inherited or
locally defined. The outer keyword is used to invoke the version of the method
that is being overridden. The outer keyword is similar to super, except that it
may only be used to invoke methods that have the override annotation. After a
method is overridden by inlining a trait, it is considered locally defined, and so
it can be overridden again by inlining another trait; this technique can be used
to concatenate partial method implementations from multiple traits, as we show
in a later example.

The following class uses the SyncT trait to implement an atomic test-and-set
operation:

class C {
private boolean x;
private Mutex lock;
boolean testAndSet () { boolean t = x; x = true; return t; }
use SyncT (testAndSet, boolean, ());
C () { lock = new Mutex(); x = false; }

}

Note that without the override annotation in the SyncT trait, there would be a
conflict between the definition of testAndSet given in the body of C and the one
provided by SyncT.

The requires clause of a trait can also be used to impose constraints on any
type parameters the trait might have. These constraints can be nominal (using
extends) or structural (using implements), with the latter allowing us to capture
patterns like delegation, as in the following example:

trait DelegateT ($m, $f, T, A..., R)
requires {
T implements { R $m (A...); }
ThisType implements { T $f; }

}
provides {
R $m (A...) { return $f.$m(...); }

}

We conclude with a more substantial example: the Customer class from
Section 1. Classes like Customer are quite common in database applications,
where relational databases are mapped onto the class hierarchy. Usually, such
classes include large amounts of boilerplate code for performing this mapping.
Numerous mechanisms have been proposed to alleviate this burden, including
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trait BObjectT(String table)
provides {

protected void loadData(ResultSet r) {}
protected void findBy(String whereClause) throws DataNotFound {

Connection con = ... open connection to database ...
Statement stmt = con.createStatement();
String sql = "SELECT * FROM " + table + " WHERE " + whereClause;
ResultSet r = stmt.executeQuery(sql);
if (r.next()) {
loadData(r);

} else {
throw new DataNotFound();

}
}

}

trait StringFieldT($f, $g, $s, $fBy, String fieldName, int length)
requires {

ThisType implements {
void loadData(ResultSet r);
void findBy(String whereClause) throws DataNotFound;

}
}
provides {

use PropT($f, $g, $s, String);
override String $s(String x) throws FieldTooSmall {

if (x.length() > length) throw new FieldTooSmall();
outer.$s(x);

}
override void loadData(ResultSet r) {

$f = r.getString(fieldName);
outer.loadData(r);

}
void $fBy(String x) throws DataNotFound, FieldTooSmall {

if (x.length() > length) throw new FieldTooSmall();
findBy(fieldName + " = ’" + x + "’");

}
}

class Customer {
use BObjectT("customers");
use StringFieldT(name, getName, setName, findByName, "name", 40);
use StringFieldT(addr, getAddr, setAddr, findByAddr, "address", 40);
use StringFieldT(phone, getPhone, setPhone,

findByPhone, "phone_num", 40);
... etc ...

}

Fig. 2. Business objects: a sketch
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code generation and other forms of metaprogramming; sophisticated frameworks
like Hibernate4 and Ruby on Rails5 are currently used to automate this mapping.

Figure 2 presents a code fragment using trait-based metaprogramming to
tackle the mapping problem. Our solution uses two related traits: BObjectT fac-
tors out the code needed to query an SQL database, and StringFieldT maps a
field in an object to a string field in a database. The latter is a trait function with
value parameters: fieldName and length. As a whole, the example demonstrates
an idiom allowing traits to define “partial methods:” a base trait(BObjectT) is
used to seed a class with an empty implementation of a method (loadData). Then
a trait function (StringFieldT) is applied multiple times, each time extending
the method’s behavior before invoking the outer implementation.

3.2 From No Parameters to Too Many?

7One apparent downside of the proposed mechanism is that, having introduced
parameters, we need too many of them in order to encode interesting pat-
terns. The StringFieldT trait, for example, takes a total of six parameters,
and one can easily imagine adding more for a more sophisticated implemen-
tation. This problem is exacerbated by parameter sequences, where the user of a
trait must tediously spell out a tuple of types. In many of these cases, however,
the appropriate value for a parameter can be inferred or explicitly computed.
For instance, if the $f parameter to StringFieldT is name, we can derive that
$g should be getName, $s should be setName, and so on. Given a few primi-
tives for label manipulation, these rules are easy to write down. Likewise, the
type arguments to the SyncT trait can be inferred based on the actual method
that the trait overrides, as long as no method overloading has occurred. Hav-
ing the compiler infer these arguments makes our mechanism less cumbersome
to use, and we take up the idea in a companion technical report [28]; as it
turns out, this leads directly to a powerful form of pattern matching for trait
functions.

4 A Formal Model: Meta-trait Java

Having informally described trait-based metaprogramming, we proceed to the
formal model. The primary goal of this model is to study the type theory of
our mechanism in the context of Java’s nominal type system. Thus, we model
only the core features of our proposal: we drop super, outer, and variable-arity
parameters, since they do not substantially alter the type system, but do clutter
its presentation. In earlier work, we presented a detailed semantics for compiling
traits with hiding and renaming [25]; here, we give a simpler semantics that
performs renaming only through trait functions. The relationship between the
two models is discussed in Section 5.3.

4 http://www.hibernate.org/
5 http://www.rubyonrails.org/
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C ::= class c<α 
 N> 
 N {K D} class declaration

K ::= c(T f) {super(f); this.f = f;} constructor declaration

A ::= trait t($l, α) req {R} prov {D} trait function decl.

R ::= α 
 N implements {F S} trait requirement decl.

S ::= <α 
 N> T m(T x); method signature decl.

E ::= t(l, T) trait function application

| E drop l member exclusion

| E alias m as m method aliasing

D ::= F | M | use E; member declaration

F ::= T f; field declaration

M ::= T m(T x) {return e;} method declaration

e ::= x | e.f | e.m(e) | new N(e) expression
v ::= new N(e) value

N, P ::= c<T> nonvariable type name
T, U ::= N | α type name

Fig. 3. MTJ: syntax

Our calculus, MTJ, is essentially an extension of Featherweight Generic Java
(FGJ); we drop FGJ’s type casts and method type parameters since they do
not interact with our type system in any interesting way.6 Featherweight Java
was designed to capture the minimal essence of Java, with particular focus on
its type system and proof of soundness, and FGJ extends FJ with generics [17].
Our calculus adds traits and trait functions to FGJ, along with the additional
type-theoretic machinery needed to support those features. Like FGJ, we omit
assignment, interfaces, overloading, and super-sends. MTJ is not equipped with
its own dynamic semantics; instead, we define a translation from MTJ programs
to FGJ programs. The type system, however, is given directly, and it conserva-
tively extends FGJ’s type system.

4.1 Syntax

The syntax of MTJ is given in Figure 3; portions highlighted in grey are exten-
sions to FGJ’s syntax. For the calculus, we abbreviate extends to �, requires
to req, and provides to prov. The metavariables c and d range over class names
and t ranges over trait names. For field names and method names (collectively
called labels), we separate variables from concrete names, as follows:

6 For the remainder of this paper, when we refer to FGJ, we mean this restricted
calculus.
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Concrete Variable Either

Field names f, g $f f

Method names m $m m

Member names (labels) l $l l, k

Note we assume the sets of field and method names are disjoint. Object is a class
name, but cannot be defined in an MTJ program; this is a variable name, but
cannot occur as a parameter.

To keep notation compact, we make heavy use of overbar sequence nota-
tion: f denotes the possibly empty sequence f1, . . . , fn, for example. Pairs of se-
quences are interleaved: T f stands for T1 f1, . . . , Tn fn, and this.f = f; stands for
this.f1 = f1; . . . ;this.fn = fn;. Sequences are delimited as necessary to match
Java syntax. Sequences of parameters are also assumed to contain no duplicate
names. The empty sequence is denoted by •, and sequence concatenation by
the · operator. Finally, sequences with named elements are sometimes used as
finite maps taking names to sequence elements. Thus, D(foo) denotes the field
or method declaration in D named foo (unambiguous because method and field
names must be distinct).

A class table CT is a map from class names c to class declarations. Likewise,
a trait table TT maps trait names t to trait declarations. A program is a triple
(CT, TT, e). In defining the semantics of MTJ, we assume fixed, global tables
CT and TT. We further assume that these tables are well-formed : the class table
must define an acyclic inheritance hierarchy, and the trait table must define an
acyclic trait use graph.

4.2 Translation to FGJ

An FGJ program is an MTJ program with an empty trait table (and thus no
trait use declarations). The semantics of MTJ are given by a translation function
[[− ]] that takes MTJ class declarations to FGJ class declarations. The transla-
tion flattens trait use declarations into sequences of FGJ member declarations,
incorporating the bodies of traits into the classes in which they are used. As a
consequence, the so-called flattening property [22] holds by construction: class
members introduced through traits cannot be distinguished from class members
defined directly within a class.7

Much of the work of translation is performed by substitution. Since trait
functions are strictly first-order, the definitions of the various substitution forms
(types for types, labels for labels, etc.) are straightforward and hence omitted.

The details of the translation are shown in Figure 4. Class declarations are
translated by flattening the class body, keeping track of the name of the class
so that any occurrences of ThisType can be replaced by it. Fields and methods
are already “flat,” so the only interesting member-level translation is for trait
use declarations. To flatten a trait function application, we first substitute the
actual parameters for the formal parameters within the trait body, and then

7 A similar property, called the copy principle, has been defined for mixins [2].
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[[class c<α � N> � N {K D} ]] = class c<α � N> � N {K [[D ]]c<α>}

[[F ]]N = F

[[M ]]N = M

[[use E; ]]N = [[E ]]N

[[ t(l, T) ]]N = [[ [l/$l, T /α, N/ThisType]D ]]N

where TT(t) = trait t($l, α) req {R} prov {D}
[[E drop l ]]N = [[E ]]N \ l

[[E alias m as m′ ]]N = [[E ]]N · [m′/m] ([[E ]]N (m))

Fig. 4. MTJ to FGJ translation

flatten the result. To drop a member for an inlined trait, we simply remove it
from the flattened collection of member delcarations. There is a subtlety in the
semantics for aliasing: when recursive methods are aliased, do their recursive
invocations refer to the original method or to the alias? We have chosen the
latter interpretation, following Liquori and Spiwack [20]. This choice does not
affect our type system, but does affect finer-grained type systems that track
individual method requirements [25].

Note that translation is guaranteed to terminate, since the trait use graph is
required to be acyclic.

4.3 Types in MTJ

We now turn to the static semantics for MTJ. One approach for constructing a
type system for traits is to defer type checking of trait members until the trait
is used in a class, then check the trait members as if they were declared within
that class [20]. While this approach is pleasantly simple, requiring no changes
to the existing type system for classes, it has at least one significant downside:
type errors in a trait function may not be detected until that function is used,
perhaps by a programmer using a library of such trait functions.

Our goal, in contrast, is to subsume FGJ’s type system while separately type
checking trait definitions, expressions, and uses. To achieve this goal, our calculus
must give types to traits and trait expressions. Trait types must also be available
at the expression level, because this and ThisType may appear in trait method
bodies. In a structural type system, these requirements can be easily met by
introducing incomplete object types to track trait requirements and assigning
these types to traits [11,3]; the type of a trait would then be a (structural)
supertype of all classes that include that trait. Determining the status of trait
types in a nominal type system is more difficult. One route is to associate a type
name with each trait declaration [27], as is done for class declarations. Typing
trait expressions involving aliasing or exclusion, however, is awkward with this
approach.
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N, P ::= c<T> nonvariable type name

T, U ::= N | α type name

τ ::= N � σ object type

| T type name

| ∀α <: τ.τ bounded polymorphic type

| τ → τ function/method type

|
∏

$l.τ label-dependent type

σ ::=
〈
l : μl

l∈L〉
R object signature

μ ::= T | T → T object member signature

R ::= {l} required member set

Fig. 5. MTJ: type syntax

The situation in MTJ is further complicated by the fact that trait functions
are abstracted over labels and types, and may constrain their type parameters to
implement interfaces that include abstract labels (Section 3). In principle these
features could be supported in a purely nominal way, but we believe that the
resulting type system would be too brittle and cumbersome, and would limit the
programmer’s ability to use existing classes as type parameters to traits.

In view of these concerns, we propose a hybrid structural/nominal type sys-
tem. Purely nominal type systems must still check the structure of types to
ensure soundness; the pertinent structure does not appear in the syntax of the
types, but rather through auxiliary machinery (e.g., fields and mtype in FGJ).
Our type system exposes structural types syntactically: an object type N % σ
is a pair of a type name N and an object signature σ. If an object has type
N %σ, then it is nominally a subtype of N , and structurally a subtype of σ. The
nominal component is used for checking method arguments and return values,
because in FGJ these constructions impose nominal subtyping constraints, while
the structural component is used for checking field accesses and method invo-
cations, corresponding to the structural-checking machinery in FGJ. The full
syntax of MTJ types is given in Figure 5.

Of course, there is a relationship between the two components of an object
type: for each nominal type N — for each class — there is a signature σN

giving its interface. We call this signature the canonical signature for N . The
purpose of the signature component in an object type is to impose additional
structural constraints on the type of the object, beyond those already imposed
by its canonical signature. These additional constraints can only be introduced
through the requires and provides declarations in a trait function; thus, the
constraints are only placed on type variables (including ThisType, which we
treat as a type variable). The type variables in a trait are replaced by class
names when trait function application is translated to FGJ. Our type system
ensures that the constraints on these type variables are satisfied by the eventual
class name arguments, ensuring the type-safety of the resulting FGJ code.
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Notice that types τ include both object types and type names. A type name
is either a nonvariable type name (which is a class name, possibly applied to
type parameters) or a type variable. A nonvariable type name N stands for the
object type N % σN that includes the canonical signature of the class. A type
variable α stands for an unknown (but bounded) object type. The surface syntax
of the language prevents trait and class member declarations from introducing
new object types: member declarations can only refer to named types. Thus,
in the type syntax, object signatures are constrained to use type names rather
than arbitrary object types. This constraint allows us to give a tidy account of
recursive object types, as we shall see later.

An object signature σ is annotated with a set R of member names. In the
object type for a trait, this set contains the name of all required members. For
example, consider the following trait BarT, which requires a foo method and pro-
vides a bar method:

trait BarT
requires { ThisType implements { Object foo(Object x); } }
provides { Object bar(Object x) { return foo(foo(x)); } }

The type of BarT is Object%〈foo : Object→ Object, bar : Object→ Object〉{foo}.
The nominal component of the type is Object because BarT places no nominal
constraints on ThisType. Note that expression-level typing does not distinguish
between the provided and required members of an object type, because traits
are ultimately incorporated into classes that must provide all required members.

Classes are also given object types, as with the following polymorphic class [17]:

class Pair<X � Object, Y � Object> � Object {
Pair(X fst, Y snd) { super(); this.fst=fst; this.snd=snd; }
X fst; Y snd;
Pair<X,Y> setfst(X newfst) { return new Pair<X,Y>(newfst, snd); }

}

Our type system will give the following type to Pair:

∀X <: Object % 〈〉∅ , Y <: Object % 〈〉∅ . Pair<X,Y> %
〈

fst : X, snd : Y,
setfst : X→ Pair<X,Y>

〉

∅
Trait functions add an additional complication: the result type of a trait func-

tion may depend on its label parameters, but these labels are unknown values,
not unknown types. We introduce a very limited form of dependent types [15]
to address this issue. In our calculus, the dependent type

∏
$l.τ represents a

function that takes a label parameter and yields a value of type τ , where $l may
occur free in τ . For example, consider the following trait function:

trait GetterT ($f, $g, T)
requires { ThisType implements { T $f; } }
provides { T $g() { $f; } }

In MTJ, GetterT has the type∏
$f, $g . ∀T <: Object % 〈〉∅ . Object % 〈$f : T, $g : • → T〉{$f}
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Nominal subtyping: Δ 	 T � T

CT(c) = class c<α � N> � N { . . . }
Δ 	 c<T> � [T/α]N

Δ(α) = N � σ

Δ 	 α � N

Δ 	 T1 � T2 Δ 	 T2 � T3

Δ 	 T1 � T3 Δ 	 T � T

Structural subtyping: Δ 	 σ <: σ

μm = T → T μ′
m = T → T ′ Δ 	 T � T ′

Δ 	
〈
m : μm, l : μl

l∈L〉
R <:

〈
m : μ′

m, l : μl
l∈L〉

R

L1 ⊇ L2 R1 ⊆ (R2 ∪ (L1 \ L2))

Δ 	
〈
l : μl

l∈L1
〉

R1
<:
〈
l : μl

l∈L2
〉

R2

Δ 	 σ1 <: σ2 Δ 	 σ2 <: σ3

Δ 	 σ1 <: σ3

General subtyping: Δ 	 τ <: τ

Δ 	 N1 � N2 Δ 	 σ1 <: σ2

Δ 	 N1 � σ1 <: N2 � σ2 Δ 	 α <: Δ(α)

Δ 	 τ1 <: τ2 Δ 	 τ2 <: τ3

Δ 	 τ1 <: τ3

Fig. 6. MTJ: subtyping

To give the typing judgments of the system, we need a few definitions. A
context Γ is a sequence of abstract labels $l and variable typings x : T ; we write
$l ∈ Γ and Γ (x) = T , respectively, to denote their occurrence in Γ . Each label
or variable may only occur once in Γ . A type context Δ is a finite map from type
variables α to types τ . Just as we fixed class and trait tables in the translation
semantics, we fix a global class type table CTy and trait type table TTy for the
static semantics. The former takes class names to types, the latter takes trait
names to types. These tables play a role similar to a store typing: they give each
class and trait a presumed type, allowing us to check mutually-recursive class
definitions. Ultimately, we ensure that the actual type of each class and trait
matches the type given in the table. Formally, we regard the tables as implicit
contexts for our typing judgments.

4.4 Subtyping

MTJ has three forms of subtyping: nominal subtyping, written Δ � N1 � N2,
structural subtyping, written Δ � σ1 <: σ2, and general subtyping, written Δ �
τ1 <: τ2. These relations are defined in Figure 6.

The nominal subtyping relation is just FGJ’s subtyping relation: it defines
inheritance-based subtyping, which is the reflexive-transitive closure of the ex-
tends relation.
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Structural subtyping applies to object signatures. We support both depth and
width subtyping. For depth subtyping, we follow FGJ (and GJ) in providing
only covariant subtyping on methods. We also consider a signature with fewer
requirements to be a subtype of the same signature with more requirements; the
reasons for this choice will become clear in Section 4.7.

General subtyping is defined so that the nominal and structural components
of an object type may vary independently. In particular, it is sometimes neces-
sary for the nominal component of a type to be promoted without affecting the
structural component, as in the following example:

class HasFoo { Object foo; }
trait NeedsFooA requires { ThisType implements {foo : Object} }
trait NeedsFooB requires { ThisType � HasFoo } provides { use NeedsFooA; }

In NeedsFooB, ThisType is bounded by HasFoo%〈foo : Object〉{foo}. In NeedsFooA,
however, ThisType is bounded by Object % 〈foo : Object〉{foo}, so a promotion
of the nominal component of the bound is needed. Note that foo is marked re-
quired for NeedsFooA because it is not provided by the trait—in particular, it
cannot be removed using drop—but is expected to be present in any class using
the trait.

4.5 Static Semantics: Expressions

We present the static semantics of MTJ starting with expressions and working
our way upwards.

As usual for a type system without a subsumption rule, we include a promotion
function boundΔ for computing the least nonvariable supertype of a given type,
given in Figure 7. At the expression level, all types are named, so boundΔ is
only defined on type names. The type computed by boundΔ, however, is always
an object type. Thus, using boundΔ on a nonvariable type name corresponds
to an iso-recursive “unfold:” the signature component of boundΔ(N), i.e., the
canonical signature of N , is the one-step expansion of N . We use the function
“type” to compute the canonical type; that function, in turn, uses the class
table to discover the appropriate canonical signature. As in FGJ, we have a
well-formedness check for type names, written Δ � T OK, which ensures that
the type parameters for a class respect their bounds.

The expression typing rules (Figure 7) are similar to their counterparts in
FGJ, with a few notable differences. Most importantly, field access and method
invocation are checked via object signatures, rather than separate machinery.
These rules are the motivation for our hybrid type system, making it possible
to type traits and classes in a uniform way. Our rule for method invocation
is somewhat simpler than in FGJ, because we do not model generic methods.
A final point to observe is that all premises involving subtyping use the nom-
inal subtyping relation. Each such premise corresponds to a proposition that
must hold, using FGJ’s (nominal) subtyping relation, after translation of the
expression.
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Bound of type name:

type(N) = [T/α]τ0 when CTy(c) = ∀α <: τ.τ0

boundΔ(N) = type(N)

boundΔ(α) = Δ(α)

Well-formed type names: Δ 	 T OK

α ∈ dom(Δ)

Δ 	 α OK

CTy(c) = ∀α <: τ .τ0 Δ 	 T OK Δ 	 boundΔ(T ) <: [T/α]τ

Δ 	 c<T> OK

Expression typing: Δ; Γ 	 e : T

Δ; Γ 	 x : Γ (x)

Δ; Γ 	 e0 : T0 boundΔ(T0) = N � σ

Δ; Γ 	 e0.f : σ(f)

Δ; Γ 	 e0 : T0 boundΔ(T0) = N � σ σ(m) = T → T ′

Δ; Γ 	 e : U Δ 	 U � T

Δ; Γ 	 e0.m(e) : T ′

Δ 	 N OK fields(N) = T f Δ; Γ 	 e : U Δ 	 U � T

Δ; Γ 	 new N(e) : N

Fig. 7. MTJ: expression typing

4.6 Static Semantics: Member Declarations and Trait Expressions

Type checking for classes and traits begins at the member level: the judgment
Δ; Γ � D : τ , given in Figure 8, assigns each member declaration an object
type. This type should be understood as the least upper bound for the type of
objects containing the declaration. For field and method declarations, the nomi-
nal component of the type will always be Object, while the structural component
will give the label and type for that member. Trait use declarations are assigned
the type of their trait expression, which may include nominal requirements.

Member declaration typing checks that any abstract labels are in scope
(Γ � l OK). Notice that method bodies are checked via the expression typing
judgment, and the type given to the body is (as usual) required to be a nominal
subtype of the expected return type. We also check that any types appearing in
the program text are well-formed.

Trait expression typing is fairly straightforward; here, our type system re-
sembles Fisher and Reppy’s [11]. Recall that, when trait function applications
are translated, a class name is substituted for ThisType (Section 4.2); really,
ThisType is an implicit type parameter to every trait. Thus, when checking
a trait function application, we substitute the type of this (as given by Γ ) for
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Label checking: Γ 	 l OK

Γ 	 l OK

$l ∈ Γ

Γ 	 $l OK

Member declaration typing: Δ; Γ 	 D : τ

Δ 	 T OK Γ 	 f OK

Δ; Γ 	 T f; : Object � 〈f : T 〉∅

Δ; Γ 	 E : τ

Δ; Γ 	 use E; : τ

Δ 	 T0, T OK Γ 	 m OK Δ; Γ, x : T 	 e : U Δ 	 U � T0

Δ; Γ 	 T0 m(T x) {return e;} : Object �
〈
m : T → T0

〉
∅

Trait expression typing: Δ; Γ 	 E : τ

TTy(t) =
∏

$l.∀α <: τ . N � σ Δ 	 T OK Γ 	 l OK

Δ 	 boundΔ(T ) <: [l/$l, T/α, Γ (this)/ThisType]τ

Δ; Γ 	 t(l, T) : [l/$l, T /α, Γ (this)/ThisType]N � σ

Δ; Γ 	 E : T �
〈
l : μl

l∈L〉
R m ∈ L \ R m′ /∈ L Γ 	 m′ OK

Δ; Γ 	 E alias m as m′ : T �
〈
m′ : μm, l : μl

l∈L〉
R

Δ; Γ 	 E : T �
〈
l : μl

l∈L〉
R k ∈ L \ R

Δ; Γ 	 E drop k : T �
〈
l : μl

l∈L〉
R∪{k}

Fig. 8. MTJ: member-level typing

ThisType in the trait type. We also substitute the explicit type arguments,
checking that they respect their bounds.

The alias operation requires that the method to be aliased is actually provided
by the trait, and that no method with the aliased name is provided or required by
the trait. Likewise, for drop we check that the member to be dropped is provided
by the trait. Because the member might be mentioned in a method provided by
the trait, we do not simply drop it from the trait signature, but rather mark it as
required. A more precise type can be given if member requirements are tracked
for each provided method [25], but this comes at a cost: it leaks fine-grained
implementation details about the trait into its signature.

4.7 Static Semantics: Classes and Traits

When typing a class or trait declaration, we attempt to find the meet (greatest
lower bound) of its member declaration types. If the meet is defined, it gives
us the type for the class or trait; if it is not defined, there is a type error. For
example, consider the following class:
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class C {
int x;
int getX() { return x; }

}

The types of the member declarations are

Object % 〈x : int〉∅ and Object % 〈getX : • → int〉∅

respectively. The greatest lower bound of these types is

Object % 〈x : int, getX : • → int〉∅

Replacing Object in the nominal component of this type with C, we have the
type of the class.

As another example, suppose we have a trivial trait that provides nothing,
but requires a method foo:

trait ReqT
requires { ThisType implements { Object foo(); } }
provides {}

Notice that the type of ReqT is Object % 〈foo : • → Object〉{foo}. We can then
define a class A that uses ReqT:

class A � Object {
A foo() { return this; }
use ReqT;

}

Taking the meet of ReqT’s type with the type of foo defined in A yields the
type Object % 〈foo : • → A〉∅. This is why types with fewer required members are
“smaller” according to the subtyping relation: when we take the meet of two
types, one requiring a member and one providing it, the resulting type lists the
member as provided. In the above example, the type of the required member
was lowered as well. On the other hand, the class B is not well-typed.

class B � Object {
Object foo(Object x) { return x; }
use ReqT;

}

The requisite meet is not defined for B, because its type for foo has no lower
bound in common with ReqT.

The meet of two object types, written τ1 ∧Δ τ2, is defined in Figure 9. In
addition, we define object type concatenation, written τ1 ⊕Δ τ2, which yields the
meet of its operands but also checks that they provide disjoint sets of members.

The judgment Δ; Γ � R ⇒ α <: τ is used to gather trait requirements into
type constraints. Recall that both nominal and structural requirements can be
specified. Object type concatenation is used to compute a type encompassing
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Requirements:
reqs

(
N �

〈
l : μl

l∈L
〉

R

)
= N �

〈
l : μl

l∈R
〉

R

Object type meet: N � σ ∧Δ N � σ = N � σ

Δ 	 Ni � Nj with i, j ∈ {1, 2}
Δ 	 σ <: σ1 Δ 	 σ <: σ2 Δ 	 σ′ <: σ1, Δ 	 σ′ <: σ2 =⇒ Δ 	 σ′ <: σ

N1 � σ1 ∧Δ N2 � σ2 = Ni � σ

Object type concatenation: N � σ ⊕Δ N � σ = N � σ

σ1 =
〈
l : μl

l∈L1
〉

R1
σ2 =

〈
l : μl

l∈L2
〉

R2
(L1 ∩ L2) ⊆ (R1 ∪ R2)

N1 � σ1 ⊕Δ N2 � σ2 = N1 � σ1 ∧Δ N2 � σ2

Method signature declaration typing: Δ; Γ 	 S : τ

Δ 	 T0, T OK Γ 	 m OK

Δ;Γ 	 T0 m(T x); : Object �
〈
m : T → T0

〉
∅

Requirement constraints: Δ; Γ 	 R ⇒ α <: τ

Δ 	 N OK Δ; Γ 	 F : τf Δ; Γ 	 S : τs

boundΔ(N) ∧Δ (
⊕

Δ τf · τs) = N �
〈
l : μl

l∈L〉
∅

Δ; Γ 	 α � N implements {F S} ⇒ α <: N �
〈
l : μl

l∈L〉
L

Trait function declaration typing: A : τ

Δ; $l 	 R ⇒ α <: τ Δ; $l 	 R0 ⇒ ThisType <: τ ′
0

Δ = α <: τ, ThisType <: τ0 Δ; $l, this : ThisType 	 D : τdecl

τ0 = τ ′
0 ⊕Δ

(⊕
Δ τdecl

)
Δ 	 τ ′

0 <: reqs(τ0)

trait t($l, α) req {R0 R} prov {D} :
∏

$l . ∀α <: τ . τ0

Class declaration typing: C : τ

K = c(U g, T f) {super(g); this.f = f;}
fields(N) = U g fields(c<α>) = U g; T f

Δ = α <: type(N) Δ 	 N, N OK Δ; this : c<α> 	 D : τ

P � σ =
⊕

Δ τ σ =
〈
l : μl

l∈L〉
R N � σN = type(N)

Δ 	 σ <: (σN 	 (L \ R)) R ⊆ dom(σN) Δ 	 c<α> � P

class c<α � N> � N {K D} : ∀α <: type(N) . c<α> � σ ∧Δ N � σN

Fig. 9. MTJ: class and trait typing
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the given structural requirements, while checking that there is at most one re-
quirement for any member name. The rule takes the meet of this type with the
nominal requirement, allowing structural requirements to refine, but not con-
flict with, its canonical signature. Thus, for instance, a trait cannot both require
ThisType to be a subclass of String and also provide a length method that re-
turns a boolean. The type constraint given by the judgment includes the labels
of all required members in its requirement set.

The typing rule for trait function declarations is given in a declarative style:
it uses a type context Δ mentioning types that are in turn checked under Δ.
This is necessary for two reasons. First, a requires clause for one type parameter
may mention any of the trait function’s type parameters, so requirements must
be checked under the the constraints they denote. Likewise, the upper bound for
ThisType is needed for type checking member declarations, but the types given
to those declarations are used to constrain ThisType. The result type of the
trait function, τ0, is the concatenation of the types of the provided and required
members of the trait. Using concatenation rather than meet ensures that the
trait does not contain multiple definitions of a member.

Note that a trait function t may use other traits without fulfilling their require-
ments. In this case, we insist that t explicitly state the unfulfilled requirements in
its ThisType constraints, which is checked by the hypothesis Δ � τ ′

0 <: reqs(τ0),
where τ ′

0 is the bound t places on ThisType and τ0 is the result type of the trait
function.

Class declaration typing is similar to trait function typing: the types of the
class’s member declarations are used to partially determine the class’s type via
concatenation. There are several important differences, however. For one, the
class type includes the canonical signature of its immediate superclass (σN in the
rule). If a class overrides any members of its superclass, the overriding definitions
must be subtypes of the originals. Hence, we check that the signature of the
superclass, σN , restricted to the members defined in the class body, L \ R, is a
supertype of the signature for the class body, σ. Another difference is that all
trait requirements must be fulfilled by the class. This is checked in two ways.
First, the set of required members from the class body,R, must be a subset of the
members provided by the superclass, dom(σN ). Second, class itself is required
to be a nominal subtype of any nominal requirements introduced by the traits
it uses (Δ � c<α> � P ).

4.8 Soundness

The semantics of MTJ is given by a translation to FGJ, but the resulting FGJ
class table is also a valid MTJ class table. Thus, our soundness result is broken
into two steps, one taking place entirely within MTJ and one relating the two
calculi. We briefly survey the result here, with a detailed version of the proof
available in a companion technical report [28].

Definition 1. A class C is flat if it contains no trait use declarations.

Note that limiting the syntax of MTJ to flat class declarations yields the syntax
of FGJ, modulo the features that we dropped (casts and generic methods).
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To prove soundness, we need to ensure that the presumed class and trait types
from the class type and trait type tables agree with the actual classes and traits
in CT and TT.

Definition 2. A class type table CTy agrees with a class table CT, written
CT � CTy, if dom(CT) = dom(CTy) and for all c ∈ dom(CT), we have CT(c) :
CTy(c). We write TT � TTy for the same property relating the trait tables.

We can now show a typical soundness result purely in terms of MTJ; here,
translation acts as the “dynamic semantics” for MTJ and we prove that any
well-typed program will successfully translate to a program with the same type.

Theorem 1 (Soundness of translation). If CT � CTy and TT � TTy then,
for all c ∈ dom(CT), we have that C = [[CT(c) ]] is defined, that C is flat, and
that C : CTy(c). Furthermore, if � e : T under CT, then � e : T under the
translated class table.

This theorem is straightforward to prove. First, we prove a series of standard
lemmas for weakening of the context and type and label substitution. These
are sufficient to prove the theorem, since translation is essentially trait function
application. A minor twist comes in the lemma showing type preservation for
member declaration translation. The type of the original member is not always
the same as the translated member: if the original member is a trait use decla-
ration, and the trait places requirements on ThisType, those requirements will
not appear in the flattened trait body. Thus, the translation preserves only the
provided elements of a member declaration type. Theorem 1 still holds, however,
because the class typing rule ensures that there are no residual requirements, so
the type of the class as a whole is preserved under translation.

We then show the following result, relating MTJ to FGJ.

Theorem 2 (Well-typed, flat MTJ programs are well-typed FGJ pro-
grams). If (CT, •, e) is an MTJ program with only flat class declarations and
CT � CTy, TT � TTy, and �MTJ e : T , then (CT, e) is a well-typed FGJ program
and �FGJ e : T .

This theorem is even easier to prove: we prove that our canonical type signatures
give the same results as FGJ’s machinery (e.g., the mtype function), and then
prove by a series of inductive arguments that our typing judgments imply the
corresponding judgments in FGJ. Taking the two theorems together, we have
that a type-safe MTJ program translates to a type-safe FGJ program.

5 Discussion

5.1 Related Work: Metaprogramming

Broadly speaking, metaprogramming consists of writing (meta) programs that
manipulate (object) programs.Compilers are the best-known metaprograms, but
the technique is also useful for generating high-level code. In particular, gen-
erative programming has been proposed as a paradigm for building families
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of related systems: code and other artifacts are generated from a high-level
model or specification, automating much of the software development process [6].
Metaprogramming, of course, is a crucial element of this process. Since metapro-
gramming raises the level of abstraction and can arbitrarily modify the meaning
of code, it is important that metaprogramming frameworks strike a good balance
between expressiveness, invasiveness, readability, and safety guarantees.

Draheim et al. give a good summary of several metaprogramming frameworks
for Java and similar languages, focusing specifically on their utility for gener-
ative programming [7]. A typical approach is to use so-called meta-objects to
represent and alter code entities (classes, methods, etc.). The implementation of
the meta-objects gives rise to a meta-object protocol (MOP) that can be overrid-
den or extended with new features [18]. MOP frameworks have been used both
to generate code and to modify the semantics of language mechanisms such as
multiple inheritance. They are extremely flexible, but require manipulation of
ASTs and provide very few guarantees about generated code.

An alternative approach is to incorporate metaprogramming constructs di-
rectly into the language. SafeGen [16], for example, extends Java with cursors
and generators. Cursors pick out a collection of entities within the code of a
program, while generators, guided by cursors, output code fragments. Gener-
ators are written in a quasi-quotation style, giving the system a great deal of
flexibility. Perhaps the most interesting aspect of SafeGen is that generators are
statically checked for safety, using a theorem prover to check short first-order
sentences produced by the type checker. Programmers are insulated from the
theorem-proving process: from their perspective, it is just another type system.

Aspect-oriented programming (AOP) is another form of metaprogramming,
where advice is weaved into existing code [19]. Our proposal has significant sim-
ilarities with AOP, but also significant differences. Trait functions enable pro-
grammers to abstract “cross-cutting concerns” in a way similar to aspects; advice
often wraps methods with new behavior, just as we do with examples like SyncT.
The most important difference is a matter of control: aspects control their own
application to classes through pointcuts, but traits are explicitly included in
classes.

Fähndrich et al. have described an elegant pattern-based approach to metapro-
gramming, similar to AOP, but focused on generating new class members, rather
than modifying existing behavior [10]. Their system is template-based, but uses
pattern matching to determine how to instantiate the templates. The patterns
provide constraints that lead to strong static guarantees about the templates.
In our technical report, we sketch a design inspired by this idea: the member
requirements for a trait function are matched against the members defined in
a class, and the trait is automatically applied for each match [28]. This brings
trait-based metaprogramming much closer to AOP, but the control of trait ap-
plication still remains in the hands of the class designer, who must explicitly
request the pattern matching to take place. Moreover, our design has a much
coarser-grained notion of pointcuts than AOP, since traits cannot be inserted at
arbitrary points in the control-flow of a method.
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Most similar to our proposal, the Genoupe framework [8] for C# supports code
generation through parameterized classes. Classes are parameterized over types
and values, and may contain code that inspects their parameters at compile-
time, generating code as it does so. For example, classes can use a @foreach
keyword to loop over the fields or methods of a type parameter. The code within
the @foreach will be generated repeatedly for each match. Genoupe includes
some static type checking of parameterized classes, but it cannot guarantee the
well-formedness of the generated code. Moreover, generation results in complete
classes, which cannot be combined in a single-inheritance language.

In general, the novelty of our approach is its particular focus on member-
level patterns and its strength is in simplicity. Typed traits are composable,
incomplete class implementations, and with our extension, they offer a uniform,
expressive, and type-safe way to do metaprogramming without resorting to AST
manipulation. In addition, the result of this metaprogramming is always just a
trait, leaving ultimate control of the code to the class designer.

5.2 Related Work: Type Systems

Nominal subtyping is a refinement of structural subtyping: type names are placed
in a nominal subtyping relationship, but the types these names represent must
be structurally related to guarantee type safety. In purely nominal type sys-
tems, types must be always be named, and subtyping always explicitly stated;
“combining” structural and nominal subtyping amounts to relaxing these re-
quirements. Moby [13] and Unity [21] relax them entirely, allowing the use of
arbitrary structural subtyping. In Moby, there are object types and class types,
the latter naming a specific class. Subtyping on class types is based on the ex-
plicit inheritance hierarchy, and so is essentially nominal, while object types are
compared structurally. Unity is closer to our type system in that object types
include a nominal component (called a brand) and a structural component. In
both type systems, as with ours, nominal types have associated “canonical”
structural types describing their interface. Programmers can choose whether to
constrain types structurally or nominally, or, with Unity, both.

Our proposal also allows arbitrary structural subtyping, but only at the trait
function level; subtyping for expressions is strictly nominal. We believe this
paradigm to be widely applicable: a metalanguage with flexible, structural sub-
typing can be used to generate code for an object language with a more rigid,
nominal type system. Moreover, since traits are just (incomplete) collections of
class members, our type system can be used for other metaprogramming frame-
works that do not make traits an explicit programming construct but still assem-
ble classes from partial implementations. Though type parameters will not be
tied to trait functions in such frameworks, they can still be used at the metapro-
gramming level with purely structural constraints, since they will not be present
in generated code.

In Ancona et al.’s polymorphic bytecode proposal, compilation units are type-
checked without complete knowledge of the inheritance hierarchy: type-checking
results in a set of structural and nominal constraints to be satisfied by the
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eventual, dynamically-linked class hierarchy [1]. The combination of nominal and
structural constraints resembles our object types, and the system retains Java’s
purely nominal subtyping after linking is performed. Polymorphic bytecode, in
order to respect Java’s type system, must place nominal constraints on types
any time a method is invoked: it has no analog to our trait functions, which
allow purely structural constraints to be imposed and discharged.

5.3 Related Work: Traits

The introduction of traits for Smalltalk [9] prompted a flurry of work on traits for
statically-typed languages. Fisher and Reppy developed the first formal model
of traits in a statically-typed setting [12], subsequently extending it to support
polymorphic traits and stateful objects [11]. The model type checks traits in
isolation from classes. The structural component of our type system is essen-
tially a variant of Fisher and Reppy’s type system. In our previous workshop
paper [25], we reformulated the Fisher-Reppy trait calculus using Riecke-Stone
dictionaries [26], giving a semantics for member renaming and hiding operations
on traits. The calculus renames members by modifying a dictionary, rather than
substituting labels in program code. Thus, it provides a foundation for the sepa-
rate compilation of trait functions in Moby, which already uses such dictionaries
in its implementation. Separate compilation in Java remains future work.

Multiple designs extending Java with traits have been proposed. Smith and
Drossopoulou describe a family of three such extensions, called Chai [27]. They
support separate type checking of traits by introducing trait names into Java’s
type system; in essence, traits define interfaces, and the classes that use them are
considered to have “implemented” those interfaces. As discussed in Section 4,
this approach is probably too brittle to support trait functions. Another proposed
design is FeatherTrait Java [20], which adds traits to Featherweight Java, but
defers all type checking until traits have been included in a class. There are strong
similarities between traits and mixins [5]; a good discussion of their relationship
can be found in [14].

5.4 Conclusion

We have presented a language design for metaprogramming with traits. We be-
lieve our proposal hits a sweet spot for metaprogramming: while its semantics
are very simple, it is capable of capturing a wide variety of patterns occurring
at the member level of class definitions. In modeling our mechanism formally,
we have developed a type system which incorporates a mixture of structural
and nominal subtyping, and proved the soundness of the resulting calculus. An
implementation is underway, written as a source-to-source translator for Java.

Acknowledgments. We thank the anonymous reviewers for their help in catching
mistakes and improving the overall presentation.
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Abstract. We present MJ: a language for specifying general classes
whose members are produced by iterating over members of other classes.
We call this technique “class morphing” or just “morphing”. Morph-
ing extends the notion of genericity so that not only types of methods
and fields, but also the structure of a class can vary according to type
variables. This offers the ability to express common programming pat-
terns in a highly generic way that is otherwise not supported by conven-
tional techniques. For instance, morphing lets us write generic proxies
(i.e., classes that can be parameterized with another class and export
the same public methods as that class); default implementations (e.g.,
a generic do-nothing type, configurable for any interface); semantic ex-
tensions (e.g., specialized behavior for methods that declare a certain
annotation); and more. MJ’s hallmark feature is that, despite its em-
phasis on generality, it allows modular type checking: an MJ class can
be checked independently of its uses. Thus, the possibility of supplying
a type parameter that will lead to invalid code is detected early—an
invaluable feature for highly general components that will be statically
instantiated by other programmers.

1 Introduction

The holy grail of software construction is separation of concerns : aspects of
program behavior should be treated independently, so that complexity can be
decomposed into manageable pieces. Decomposition techniques have been the
goal of programming languages for several decades, both with standard object-
oriented techniques, as well as with “aspect” languages such as AspectJ [19] or
JBoss AOP [6]. Nevertheless, all mechanisms offer a fundamental trade-off be-
tween generality and safety: if a mechanism is general, then it is hard to check
that it is valid for all possible inputs. In this paper, we present a powerful mod-
ularity technique called class morphing or just morphing. We discuss morphing
through MJ—a reference language that demonstrates what we consider the de-
sired expressiveness and safety features of an advanced morphing language. MJ
morphing can express highly general object-oriented components (i.e., generic
classes) whose exact members are not known until the component is parameter-
ized with concrete types. For a simple example, consider the following MJ class,
implementing a standard “logging” extension:

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 399–424, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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class MethodLogger<class X> extends X {
<Y*>[meth]for(public int meth (Y) : X.methods)
int meth (Y a) {

int i = super.meth(a);
System.out.println("Returned: " + i);
return i;

}
}

MJ allows class MethodLogger to be declared as a subclass of its type param-
eter, X. The body of MethodLogger is defined by static iteration (using the for

statement) over all methods of X that match the pattern public int meth(Y). Y
and meth are pattern variables, matching any type and method name, respec-
tively. Additionally, the * symbol following the declaration of Y indicates that
Y matches any number of types (including zero). That is, the above pattern
matches all public methods that return int. The pattern variables are used in
the declaration of MethodLogger’s methods: for each method of the type param-
eter X, MethodLogger declares a method with the same name and type signature.
(This does not have to be the case, as shown later.) Thus, the exact methods of
class MethodLogger are not determined until it is type-instantiated. For instance,
MethodLogger<java.io.File> has methods compareTo and hashCode: these are the
only int-returning methods of java.io.File and its superclasses.

“Reflective” program pattern matching and transformation, as in the above
example, are not new. Several pattern matching languages have been proposed
in prior literature (e.g., [2,3,4,25]) and most of them specify transformations
based on some intermediate program representation (e.g., abstract syntax trees)
although the patterns resemble regular program syntax. Compared to such work,
MJ is quite unique for two reasons:

– MJ makes reflective transformation functionality a natural extension of
Java generics. For instance, our above example class MethodLogger appears
to the programmer as a regular class, rather than as a separate kind of
entity, such as a “transformation”. Using a generic class is a matter of
simple type-instantiation, which produces a regular Java class, such as
MethodLogger<java.io.File>.

– MJ generic classes support modular type checking—a generic class is type-
checked independently of its type-instantiations, and errors are detected if
they can occur with any possible type parameter. This is an invaluable prop-
erty for generic code: it prevents errors that only appear for some type pa-
rameters, which the author of the generic class may not have predicted. This
problem has been the target of some prior work, such as type-safe reflection
[10], compile-time reflection [11], and safe program generation [13]. Yet none
of these mechanisms offer MJ’s modular type checking guarantees. For in-
stance, the Genoupe [10] approach has been shown unsafe, as the reasoning
depends on properties that can change at runtime; CTR [11] only captures
undefined variable and type incompatibility errors, does not offer a formal
system or proof of soundness, and has limited expressiveness compared to MJ
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(especially with respect to method arguments); SafeGen [13] has no sound-
ness proof and relies on the capabilities of an automatic theorem prover—an
unpredictable and unfriendly process from the programmer’s perspective.

For an example of modular type checking, consider a “buggy” generic class:

class CallWithMax<class X> extends X {
<Y>[meth]for(public int meth (Y) : X.methods)
int meth(Y a1, Y a2) {

if (a1.compareTo(a2) > 0) return super.meth(a1);
else return super.meth(a2);

}
}

The intent is that class CallWithMax<C>, for some C, imitates the interface
of C for all single-argument methods that return int, yet adds an extra formal
parameter to each method. The corresponding method of C is then called with
the greater of the two arguments passed to CallWithMax<C>. It is easy to define,
use, and deploy such a generic transformation without realizing that it is not
always valid: not all types Y will support the compareTo method. MJ detects
such errors when compiling the above code, independently of instantiation. In
this case, the fix is to strengthen the pattern with the constraint <Y extends
Comparable<Y>>:

<Y extends Comparable<Y>>[meth]for(public int meth (Y) : X.methods)

Additionally, the above code has an even more insidious error. The generated
methods in CallWithMax<C> are not guaranteed to correctly override the methods
in its superclass, C. For instance, if C contains two methods, int foo(int) and
String foo(int,int), then the latter will be improperly overridden by the gener-
ated method int foo(int,int) in CallWithMax<C> (which has the same argument
types but an incompatible return type). MJ statically catches this error. This is
an instance of the complexity of MJ’s modular type checking when dealing with
unknown entities.

2 Language Overview and Motivation

MJ adds to Java the ability to include reflective iteration blocks inside a class or
interface declaration. The purpose of a reflective iteration block is to statically
iterate over a certain subset of a type’s methods or fields, and produce a declara-
tion or statement for each element in the iterator. By static iteration, we mean
that no runtime reflection exists in compiled MJ programs. All declarations or
statements within a reflective block are “generated” at compile-time.

2.1 Language Basics

A reflective iteration block (or reflective block) has similar syntax to the existing
for iterator construct in Java. There are two main components to a reflective
block: the iterator definition, and the code block for each iteration. The following
is a class declaration with a very simple reflective block:
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class C<T> {
for ( static int foo () : T.methods ) {|

public String foo () { return String.valueOf(T.foo()); }
|}

}

We overload the keyword for for static iteration. The iterator definition im-
mediately follows for, delimited by parentheses. This defines the set of elements
for iteration, which we call the reflective range (or just range) of the iterator.
The iterator definition has the basic format pattern : reflection set. The reflec-
tion set is defined by applying the .methods or .fields keywords to a type,
designating all methods or fields of that type. The pattern is either a method or
field signature pattern, used to filter out elements from the reflection set. Only
elements that match the pattern belong in the reflective range. In the example
above, the reflective range contains only static methods of type T, with name
foo, no argument, and return type int.

The second component of a reflective block is delimited by {|...|}, and con-
tains either method/field declarations or a block of statements. The reflective
block is itself syntactically a declaration or block of statements, but we prevent
reflective blocks from nesting. In case of a single declaration (as in most examples
in this paper), the delimiters can be dropped. The declarations or statements
are “generated”, once for each element in the reflective range of the block. In
the example above, a method public String foo() { ... } is declared for each
element in the reflective range. Thus, if T has a method foo matching the pattern
static int foo(), a method public String foo() exists for class C<T>, as well.

The reflective block in the previous example is rather boring. Its reflective
range contains at most one method, and we know statically the type and name
of that method. For more flexible patterns, we can introduce type and name
variables for pattern matching. Pattern matching type and name variables are
defined right before the for keyword. They are only visible within that reflective
block, and can be used as regular types and names. For example:

class C<T> {
T t;
C(T t) { this.t = t; }

<A>[m] for (int m (A) : T.methods )
int m (A a) { return t.m(a); }

}

The above pattern matches methods of any name that take one argument of
any type and return int. The matching of multiple names and types is done by
introducing a type variable, A, and a name variable, m. Name variables match
any identifier and are introduced by enclosing them in [...]. The syntax for
introducing pattern matching type variables extends that for declaring type pa-
rameters for generic Java classes: new type variables are enclosed in <...>. We
can give type variable A one or more bounds: <A extends Foo & Bar>, and the
bounds can contain A itself: <A extends Comparable<A>>. Multiple type variables
can be introduced, as well: <A extends Foo,B extends Bar>. In addition to the
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Java generics syntax, we can annotate a type parameter with keywords class or
interface. For instance <interface A> declares a type parameter A that can only
match an interface type. (This extension also applies to non-pattern-matching
type parameters, in which case A can only be instantiated with an interface.)
A semantic difference between pattern matching type parameters and type pa-
rameters in Java generics is that a pattern matching type parameter is not
required to be a non-primitive type. In fact, without any declared bounds or
class/interface keyword, A can match any type that is not void—this includes
primitive types such as int, boolean, etc. To declare a type variable that only
matches non-primitive types, one can write <A extends Object>.

The type and name variables declared for the reflective block can be used
as regular types and names inside the block. In the example above, a method
is declared for each method in the reflective range, and each declaration has
the same name and argument types as the method that is the current element
in the iteration. The body of the method calls method m on a variable of type
T—whatever the value of m is for that iteration, this is the method being invoked.

Often, a user does not care (or know) how many arguments a method takes.
It is only important to be able to faithfully replicate argument types inside
the reflective block. We provide a special syntax for matching any number of
types: a * suffix on the pattern matching type variable definition. For instance,
if a pattern matching type variable is declared as <A*>, then String m (A) is
a method pattern that matches any method returning String, no matter how
many arguments it takes (including zero arguments), and no matter what the
argument types are. Even though A* is technically a vector of types, it can only
be used as a single entity inside of the reflective block. MJ provides no facility
for iterating over the vector of types matching A. This relieves us from having
to deal with issues of order or length.

MJ also offers the ability to construct new names from a name variable, by
prefixing the variable with a constant. MJ provides the construct # for this
purpose. To prefix a name variable f with the static name get, the user writes
get#f. Note that get cannot be another name variable. Creating names out of
name variables can cause possible naming conflicts. In later sections, we discuss
in detail how the MJ type system ensures that the resulting identifiers are unique.
MJ also offers the ability to create a string out of a name variable (i.e., to use
the name of the method or field that the variable currently matches as a string)
via the syntax var.name. The example below demonstrates these features:

class C<T> {
T t;
C(T t) { this.t = t; }

<R,A*>[m] for (public R m (A) : T.methods )
R delegate#m (A a) {

System.out.println("Calling method "+ m.name + " on "+ t.toString());
return t.m(a);

}
}
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The above example shows a simple proxy class that declares methods that
mimic the (non-void-returning) public methods of its type parameter. Declared
method names are the original method names prefixed by the constant name
delegate. Declared methods call the corresponding original methods after logging
the call.

In addition to the above features, MJ also allows matching arbitrary modifiers
(e.g., final, synchronized or transient), exception clauses, and Java annota-
tions. MJ has a set of conventions to handle modifier, exception, and annotation
matching so that patterns are not burdened with unnecessary detail—e.g., for
most modifiers, a pattern that does not explicitly mention them matches re-
gardless of their presence. We do not elaborate further on these aspects of the
language, as they represent merely engineering conveniences and are orthogo-
nal to the main MJ insights: the morphing language features, combined with a
modular type-checking approach.

2.2 Applications

MJ opens the door for expressing a large number of useful idioms in a general,
reusable way. This is the power of morphing features: we can shape a generic
class or interface according to properties of the members of the type it is param-
eterized with. The morphing approach is similar to reflection, yet all reasoning
is performed statically, there is syntax support for easily creating new fields and
methods, and type safety is statically guaranteed.

Default Class. Consider a general “default implementation” class that adapts
its contents to any interface used as a type parameter. The class implements
all methods in the interface, with each method implementation returning a de-
fault value. This functionality is particularly useful for testing purposes—e.g.,
in the context of an application framework (where parts of the hierarchy will
be implemented only by the end user), in uses of the Strategy pattern [12] with
“neutral” strategies, etc. (Note that keyword throws in the pattern does not
prevent methods with no exceptions from being matched, since E is declared to
match a possibly-zero length vector of types.)

class DefaultImpl<interface T> implements T {
// For each method returning a non-primitive type, make it return null
<R extends Object,A*,E*>[m] for( R m (A) throws E : T.methods )
public R m ( A a ) throws E { return null; }

// For each method returning a primitive type, return a default value
<A*,E*>[m]for( int m (A) throws E : T.methods )
public int m (A a ) throws E { return 0; }

... // repeat the above for each primitive return type.

// For each method returning void, simply do nothing.
<A*,E*>[m] for ( void m (A) throws E : T.methods )
public void m (A a) throws E { }

}
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One can easily think of ways to enrich the above example with more complex
default behavior, e.g., returning random values or calling constructor methods,
instead of using statically determined default values. The essence of the tech-
nique, however, is in the iteration over existing methods and special handling
of each case of return type. This is only possible because of MJ’s morphing
capabilities. In practice, random testing systems often implement very similar
functionality (e.g., [8]) using unsafe run-time reflection. Errors in the reflective
or code generating logic are thus not caught until they are triggered by the right
combination of inputs, unlike in the MJ case.

Sort-by. A common scenario in data structure libraries is that of supporting
sorting according to multiple fields of a type. Although one can use a generic
sorting routine that accepts a comparison function, the comparison function
needs to be custom-written for each field of a type that we are interested in.
Instead, a simpler solution is to morph comparison functions based on the fields
of a type. Consider the following implementation of an ArrayList, modeled after
the ArrayList class in the Java Collections Framework:

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
...// ArrayList fields and methods.

// For each Comparable field of E, declare a sortBy method
<F extends Comparable<F>>[f]for(public F f : E.fields)
public void sortBy#f () {

Collections.sort(this,
new Comparator<E> () {
public int compare(E e1, E e2) {

return e1.f.compareTo(e2.f);
}

});
}

}

ArrayList<E> supports a method sortBy#f for every field f of type E. The
power of the above code does not have to do with comparing elements of a
certain type (this can be done with existing Java generics facilities), but with
calling the comparison code on the exact fields that need it. For instance, a
crucial part that is not expressible with conventional techniques is the code
e1.f.compareTo(e2.f), for any field f.

The examples above illustrate the power of MJ’s morphing features. Yet more
examples from the static reflection or generic aspects literature [10,11,13,19] can
be viewed as instances of morphing and can be expressed in MJ. For instance, the
CTR work [11] allows the user to express a “transform” that iterates over meth-
ods of a class that have a @UnitTestEntry annotation and generate code to call
all such methods while logging the unit test results. The same example can be
expressed in MJ, with several advantages over CTR: MJ is better integrated
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in the language, using generic classes instead of a “transform” concept; MJ is
a more expressive language, e.g., allowing matching methods with an arbitrary
number and types of arguments; MJ offers much stronger guarantees of modular
type safety, as its type system detects the possibility of conflicting definitions
(CTR only concentrates on preventing references to undefined entities) and we
offer a proof of type soundness.

3 Type System: A Casual Discussion

Higher variability always introduces complexity in type systems. For instance,
polymorphic types require more sophisticated type systems than monomorphic
types, because polymorphic types can reference type “variables”, whose exact
values are unknown at the definition site of the polymorphic code. In MJ, in
addition to type variables, there are also name variables—declarations and ref-
erences can use names reflectively retrieved from type variables. Thus, the exact
values of these names are not known when writing a generic class. Yet, the au-
thor of the generic class needs to have some confidence that his/her code will
work correctly with any parameterization in its intended domain. The job of
MJ’s type system is to ensure that generic code does not introduce static errors,
for any type parameter that satisfies the author’s stated assumptions. Pattern
matching type and name variables present two challenges: 1) how do we deter-
mine that declarations made with name variables are unique, i.e., there are no
naming conflicts, and 2) how do we determine that references always refer to
declared members and are well-typed, when we know neither the exact names
of the members referenced, or the exact names of the members declared. In this
section, we present through examples the main problems and insights related to
MJ’s modular type checking.

3.1 Uniqueness of Declarations

Simple Case: Consider a simple MJ class:

class CopyMethods<X> {
<R,A*>[m] for( R m (A) : X.methods )
R m (A a) { ... }

}

CopyMethods<X>’s methods are declared within one reflective block, which it-
erates over all the methods of type parameter X. For each method returning a
non-void type, a method with the same signature is declared for CopyMethods<X>.

How do we guarantee that, given any X, CopyMethods<X> has unique method
declarations (i.e., each method is uniquely identified by its 〈name, argument
types〉 tuple)? Observe that X can only be instantiated with another well-formed
type (the base case being Object), and all well-formed types have unique method
declarations. Thus, if a type merely copies the method signatures of another
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well-formed type, as CopyMethods<X> does, it is guaranteed to have unique method
signatures, as well. The same principle also applies to reflective field declarations.

It is important to make sure that reflective declarations copy all the uniquely
identifying parts of a method or field. For example, the uniquely identifying parts
of a method are its name together with its argument types. Thus, a reflective
method declaration that only copies either name or argument types would not
be well-typed. For example:

class CopyMethodsWrong<X> {
<R,A*>[m] for( R m (A) : X.methods )
R m () { }

}

The reflective declaration in CopyMethodsWrong<X> only copies the return type
and the name of the methods of a well-formed type. This would cause an error
if instantiated with a type with an overloaded method:

class Overloaded {
int bar (int a);
int bar (String s);

}

CopyMethodsWrong<Overloaded> would have two methods, both named bar, tak-
ing no arguments.

Beyond Copy and Paste: Morphing of classes and interfaces is not restricted to
copying the members of other types. Matched type and name variables can be
used freely in reflective declarations and statements. For example:

class ChangeArgType<X> {
<R,A extends Object>[m] for ( R m (A) : X.methods )
R m ( List<A> a ) { /* do for all elements */ ... }

}

In ChangeArgType<X>, for each method of X that takes one non-primitive type
argument A and returns a non-void type R, a method with the same name and
return type is declared. However, instead of taking the same argument type,
this method takes a List instantiated with the original argument type. Even
though ChangeArgType<X> does not copy X’s method signatures exactly, we can
still guarantee that all methods of ChangeArgType<X> have unique signatures, no
matter what X is. The key is that a reflective declaration can manipulate the
uniquely identifying parts of a method, (i.e., name and argument types), by
using them in type (or name) compositions, as long as these parts remain in the
uniquely identifying parts of the new declaration. The following is an example
of an illegal manipulation of types:

class IllegalChange<X> {
<R,A>[m] for ( R m (A) : X.methods )
A m ( R a ) { ... }

}

In the above example, the uniquely identifying part of X’s method is no longer
the uniquely identifying part of IllegalChange<X>’s method: the argument type
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of X’s method is no longer part of the argument type of IllegalChange<X>’s
method. IllegalChange<Overloaded> (using the Overloaded class defined above)
will cause an error in the generated code.

Multiple Reflective Blocks: We have discussed how to determine uniqueness
within one reflective block. When there are multiple reflective blocks in the same
type declaration, we need to guarantee that the declarations in one block do not
conflict with the declarations in another block. One way to accomplish this is to
guarantee that the blocks have iterators that produce disjoint declaration ranges.

Recall that the reflective range of an iterator is the set of entities it iterates
over. Accordingly, we define the declaration range of an iterator to be the set
of declarations it produces. Two ranges are disjoint if they contain no common
members. Consider the following MJ class with two reflective blocks whose dec-
laration ranges are disjoint:

class TwoBlocks<X> {
<R>[m] for ( R m (String) : X.methods )
R m (String a) { ... }

<R>[m] for ( R m (Number) : X.methods )
R m (Number a) { ... }

}

The first block’s reflective range contains all methods of X that take one argu-
ment of type String. The second block’s reflective range contains all methods of
X that take one argument of type Number. Thus, no methods in the first range can
possibly be in the second range, and vice versa. Just as in previous examples, the
uniqueness of entities in the reflective ranges implies the uniqueness of entities in
the declaration ranges (since these use the same 〈name, argument types〉 tuple).
Once we have guaranteed that declarations are unique both within and across
reflective blocks, we can guarantee that all declarations within TwoBlocks<X> are
unique, no matter what X is.

When using type variables as components of other types, disjointness is often
hard to establish. Consider the following example:

class ManipulationError<X> {
<R>[m] for ( R m (List<X>) : X.methods )
R m (List<X> a) { ... }

<R>[m] for ( R m (X) : X.methods )
R m (List<X> a) { ... }

}

In the two reflective blocks of ManipulationError<X>, different manipulations
are applied to the uniquely identifying parts—in the first block, no manipulation
is applied, while in the second block, the argument type is changed to List<X>
from X. Even though the two reflective blocks have disjoint iteration ranges, they
do not have disjoint declaration ranges. One instantiation that would cause a
static error is the following:
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class Overloaded2 {
int m1 ( List<Overloaded2> a ) { ... }
int m1 ( Overloaded2 a ) { ... }

}

ManipulationError<Overloaded2> would contain two methods named m1, both
taking argument List<Overloaded2>.

In general, we can guarantee the uniqueness of declarations across reflective
blocks by proving either type signature or name uniqueness. A general way to
establish the uniqueness of declarations is by using unique static prefixes on
names. (For static prefixes to be uniquely identifying, they must not be prefixes
of each other.) For instance, our earlier example can be rewritten correctly as:

class Manipulation<X> {
<R>[m] for ( R m (List<X>) : X.methods )
R list#m (List<X> a) { ... }

<R>[m] for ( R m (X) : X.methods )
R nolist#m (List<X> a) { ... }

}

Reflective and Regular Methods Together: Declaration conflicts can also occur
when a class has both regular and reflectively declared members. For example, in
the following class declaration, we cannot guarantee that the methods declared
in the reflective block do not conflict with method int foo().

class Foo<X> {
int foo () { ... }

<R,A*>[m]for ( R m (A) : X.methods )
R m (A a) { ... }

}

Just as in the case of multiple iterators, the main issue is establishing the
disjointness of declaration ranges, with the regular methods acting as a constant
declaration range. Again, the easiest way to guarantee disjointness is through
static prefixes such that all declarations produced by the reflective iterator have
names distinct from foo.

Proper Method Overriding and Mixins: Proper overriding means that a subtype
should not declare a method with the same name and arguments as a method in a
supertype, but a non-covariant return type. Ensuring proper method overriding
is again a special case of declaration range disjointness.

One case that deserves some discussion is that of a type variable used as
a supertype. (In case the type is a class, it is implicitly assumed to be non-
final.) This is sometimes called a mixin pattern [5,22]. Since the supertype could
potentially be any type, we have no way of knowing its declarations. For instance,
the following class is unsafe and will trigger a type error, as there is no guarantee
that the superclass does not already contain an incompatible method foo.
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class C<class T> extends T {
int foo () { ... }

}

Static prefixes are similarly insufficient to guarantee that subtype methods do
not conflict with supertype methods. As a result, any legal type extending its
type parameter can contain no members other than reflective iterators over its
supertype that declare overriding versions for (some subset of) the supertype’s
methods.

3.2 Validity of References

Another challenge of modular type checking for a morphing language is to ensure
the validity of references. We use the term “validity” to refer to the property
that a referenced entity has a definition, and its use is well-typed. The following
example demonstrates the complexities in checking reference validity in MJ:

class Reference<X> {
Declaration<X> dx;
... // code to set dx field
<U*>[n] for( String n (U) : X.methods )
void n (U a) { dx.n(a); }

}
class Declaration<Y> {
<V,W*>[m] for( V m (W) : Y.methods )
void m (W a) { ... }

}

We would like to check the validity of method invocation dx.n(a). There are
multiple unknowns in this invocation that make checking its validity difficult:

– dx has type Declaration<X>, which has reflectively declared methods. We
don’t know statically these methods’ names, argument types, or return types.

– the name of the method being invoked, n, is a name variable, reflectively
matched to the method names in X, which is a type variable. Again, we do
not know what these names may be.

– the type of the argument, a, is another type variable, U.

The intuition behind the checking logic is that if for every method n in X that
takes any argument types U, and returns String (i.e., for every method in the
range of the reflective block in Reference<X>) there is a method in Declaration<X>

with the same name, taking the same types of arguments, then this reference
is valid. The key to solving this problem is determining range subsumption. A
range R1 subsumes another range R2 if all the entities in R2 are also in R1. We
have already seen reflective ranges of an iterator and a declaration. We can easily
expand the concept of range to other syntactic entities, such as arbitrary names
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and types. The range of a pattern matching type variable consists of all the
types it matches in a given reflective iterator. Non-pattern-matching types have
ranges with one element (themselves). The range of a name variable consists of
all the names it matches in a given reflective iterator.

To determine the validity of dx.n(a), we need to determine that the range
of n in Reference<X> is subsumed by the declaration range of methods in
Declaration<X>, and the range of U, the actual argument type, is subsumed
by the range of the formal argument type for methods in Declaration<X>. The
range of n in Reference<X> consists of the names of methods in X that return a
String type. The method names in Declaration<X> are the names of all meth-
ods in X, regardless of return type. Thus, the latter range subsumes the former.
This guarantees that Declaration<X> does have a method matching each n. Sim-
ilarly, the range of U consists of the argument types of methods in X that return
String. The range of the argument types of methods in Declaration<X> consists
of the argument types of all methods in X. The latter range subsumes the former.
Therefore, we conclude that the call dx.n(a) is well-typed.

Subsumption of ranges in the MJ type system is checked by unification of
names and type variables in the reflective predicates, followed by checking of
type bounds (i.e., the known supertypes of type variables) for compatibility.
The next section formalizes this type checking approach more precisely.

4 Formalization

We formalize a core subset of MJ’s features. This formalization (FMJ) is based
on the FGJ [16] formalism, with differences (other than the simple addition of
our extra environment, Λ) highlighted in gray . Figures in which all rules are new
to our formalism (Figures 4,5) are not highlighted at all, for better readability.

4.1 Syntax

The syntax of FMJ is presented in Figure 1. We adopt many of the notational
conventions of FGJ: C,D denote constant class names; X,Y denote type variables;
N,P,Q,R denote non-variable types; S,T,U,V,W denote types; f denotes field names;
m denotes non-variable method names; x,y denote argument names. In addition,
we use u or v to denote name variables, while n denotes either variable or non-
variable names.

We use the shorthand T for a sequence of types T0,T1,...,Tn, and x for a
sequence of unique variables x0,x1,...,xn. We use : for sequence concatenation.
For example, S:T is a sequence that begins with S, followed by T. We use ∈ to
mean “is a member of a sequence” (in addition to set membership). Thus, T∈T
means that T is in the sequence T. We use or . . . for values of no particular
significance to a rule. We use � and ↑ as shorthands for the keywords extends

and return, respectively. Note that all classes must declare a superclass, which
can be Object.



412 S.S. Huang, D. Zook, and Y. Smaragdakis

T ::= X | N

N ::= C<T>

CL ::= class C<X�N>� T {T f; M}
| class C<X�N>� T {T f; M }

M ::= T m (T x) {↑e;}
M ::= <Y�P>[u] for(M:X.methods) U n (U x) {↑e;}
M ::= V n (V)
e ::= x | e.f | e.n(e) | new C<T>(e) | (T)e

Fig. 1. Syntax

The goal of our formalization is to show that a type system in which both dec-
larations and references can be made by reflecting over an unknown type can be
sound. To keep the formalism comprehensible and concentrate on the core ques-
tion, we left out some of MJ’s language features. Most notable of these features
is the ability to add static prefixes to name variables. Leaving this feature out
prevents us from formalizing the declaration of both static and reflective meth-
ods in the same class or through inheritance, and from formalizing reflective
iteration over different type variables.1 We also do not formalize non-variable
types as reflective parameters. This is a far less interesting case than reflecting
over type variables, since all types and names are statically known. The zero or
more length type vectors T* are also not formalized, without loss of generality.
These type vectors are a matching convenience. They are treated as single types
where they are used. Thus, safety issues regarding declaration and reference
using vector types are covered by regular, non-vector types. Additionally, our
formalism only includes reflectively declared methods, not fields—type checking
reflectively declared fields is a strict adaptation of the techniques for checking
methods. Lastly, polymorphic methods are not formalized.

Just like in FGJ, a program in FMJ is an (e,CT ) pair, where e is an FMJ
expression, and CT is the class table. We place the same conditions on CT as
FGJ does. Every class declaration class C... has an entry in CT ; Object is
not in CT. In addition, the subtyping relation derived from CT must be acyclic,
and the sequence of ancestors of every instantiation type is finite. (The last two
properties can be checked with the algorithm of [1] in the presence of mixins.)

4.2 Typing Judgments

The main typing rules of FMJ are presented in Figure 2, with auxiliary defi-
nitions presented in Figure 3, 4, 5, and 6. The core of this type system is in
1 We could formalize the declaration of static and reflective methods in the same

class (or through inheritance), but it would only be well-formed if the reflective
methods are defined using constant method names (instead of name variables), and
the constant names are different from all statically declared method names. This is
technically uninteresting, and we leave it out of our formalism for simplicity. The
same is true for formalizing reflective iteration over different type variables.
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determining range subsumption and disjointness. Thus, we begin our discussion
with an overview of the general typing rules, and follow with a detailed expla-
nation of subsumes and disjoint, both defined in Figure 4.

There are three environments in our typing judgments:

– Δ: Type environment. Δ maps type variables to their upper bounds.
Type variables can be introduced by class declarations (e.g., class C<X�N>
... introduces type variables X), or by reflective iterator definitions (e.g.,
<Y�P>[u] for(...) introduces type variables Y).

– Γ : Variable environment. Γ maps variables (e.g., x) to their types.
– Λ: Reflective iteration environment. Λ is introduced with each reflective

block. Λ maps a type T to a tuple of 〈Y, u, M〉. T is the reflective parameter
whose methods form the reflective set. M is the pattern used to filter the
reflective set. Y and u are the pattern matching type and name variables in-
troduced for use in M and the body of the reflective block. Since our syntax
does not allow nested reflective loops, Λ contains at most one mapping.

A fourth environment, M , is sometimes used in the auxiliary definitions. M
maps pattern matching type variables (e.g., those introduced by a reflective
block) to other types, which may be pattern matching type variables, or non-
pattern-matching types.

We use the �→ symbol for mappings in the environments. For example,
Δ=. . . ,X �→C<T> means that Δ(X)=C<T>. We require every type variable to
be bounded by a non-variable type. The function boundΔ(T) returns the up-
per bound of type T in Δ. boundΔ(N)=N, if N is not a type variable. And
boundΔ(X)=boundΔ(S), where Δ(X)=S.

In order to keep our type rules manageable, we make two simplifying as-
sumptions. First, to avoid burdening our rules with renamings, we assume that
pattern matching type variables have globally unique names (i.e., are distinct
from pattern matching type variables in a different reflective environment, as
well as from non-pattern-matching type variables). Secondly, we assume that all
pattern matching type and name variables introduced by a reflective block are
bound (i.e., used) in the corresponding pattern. Checking this property is easy
and purely syntactic.

Uniqueness of Names: One of the main challenges of this type system is
guaranteeing the uniqueness of declaration names. The uniqueness guarantee is
simpler in our formalism than discussed in Section 3, since, in FMJ, a class can
declare either static or reflective methods, but not both. Thus, we do not have to
consider the case when static and reflective names conflict. We do, however, have
to make sure that reflectively declared names do not conflict with each other.
Rules T-METH-R and T-CLASS-R place conditions on well-typed methods and
classes to prevent such naming conflicts.

T-METH-R ensures that methods declared within one reflective block should
not conflict with 1) each other, and 2) methods in the superclass (i.e., there
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is proper overriding). The first condition is partly guaranteed by our syntax: a
reflectively declared method must have the same name as the name in the method
pattern for its enclosing reflective block.2 Since a well-formed class can only be
instantiated with other well-formed classes (WF-CLASS), and all well-formed
classes have uniquely declared method names, we can be sure that method names
reflectively retrieved from any type parameter through the pattern are unique.

The second condition is enforced using override (Figure 3). override(n, T,
U→U0) determines whether method n, defined in some subclass of T with type
signature U→U0, properly overrides method n in T. If method n exists in T, it must
have the exact same argument and return types as n in the subclass.3 Addition-
ally, the reflective range of n in the subclass must be either completely subsumed
by one of T’s reflective ranges, or disjoint from all the reflective ranges of T (and,
transitively, T’s superclasses). This condition is enforced using Δ �validRange(Λ,
T) (Figure 4).

T-CLASS-R ensures that the reflective blocks within a well-typed class do
not have declarations that conflict with each other. There are two key condi-
tions: 1) all reflective blocks have the same reflective parameter (Xk), and 2)
the ranges of reflective blocks are disjoint pairwise. Since all blocks reflect over
the same reflective parameter, which itself has unique method names, and no
blocks overlap in their reflective ranges, the names used across all blocks are
unique, as well. T-CLASS-R relies on the definition of disjoint to handle much
of its complexity.

Valid Invocations: A second challenge in this type system is the validity of
references to reflectively declared methods. T-INVK (Figure 2) specifies condi-
tions for a well-typed method invocation. It uses Δ; Λ �mtype(n, T) (Figure 3)
to retrieve the type of method n in T, under the assumptions of Δ and Λ. We
next highlight the mtype rules.

MT-VAR-R covers the case when we are looking for the type of method n in
a type variable X, where X is the reflective parameter for the current reflective
environment Λ. If the method pattern for the current reflective iterator uses n
as its method name, mtype(n, X) is simply the type specified by the method
pattern. MT-VAR-S covers the case when method n is not a method covered by
the method pattern of the current reflective environment. In this case, we look
for the type of n in the non-variable bound of X.

Rules MT-CLASS-S and MT-SUPER-S apply when we look for n in C<T>,
where C<X> has only statically declared methods. MT-CLASS-S states that if n is
not a name variable used in the current reflective environment Λ (as determined
by Λ �constn(n), Figure 4), and it is the name of a statically declared method in

2 This is a slightly different requirement than what is necessary in the implementa-
tion. In the formalization, there is no method name overloading, hence the uniquely
identifying part of a method consists of its name only.

3 Again, this is a simplification inherited from the FGJ formalism. In practice, one
can overload method names with different argument types. We also made an extra
simplification over FGJ: FGJ allows a covariant return type for overriding methods,
whereas we disallow it to simplify the pattern matching rules in Figure 5.
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Expression typing:

Δ; Γ ;Λ �x ∈ Γ (x) (T-VAR)

Δ; Γ ;Λ �e0∈T0 fields(boundΔ(T0)) =T f

Δ; Γ ;Λ �e0.fi∈Ti (T-FIELD)

Δ; Γ ;Λ �e0∈T0 Δ; Λ �mtype(n, T0) =T→T Δ; Γ ; Λ �e∈S Δ �S<:T

Δ; Γ ;Λ �e0.n(e)∈T (T-INVK)

Δ �C<T> ok fields(C<T>) =U f Δ; Γ ; Λ �e∈S Δ �S<:U

Δ; Γ ;Λ �new C<T>(e)∈C<T> (T-NEW)

Δ; Γ ; Λ �e0∈T0 Δ �T ok
Δ �boundΔ(T0)<:boundΔ(T) or Δ �boundΔ(T)<:boundΔ(T0)

Δ; Γ ; Λ �(T)e0∈T (T-CAST)

Δ; Γ ; Λ �e0∈T0 Δ �T ok

Δ��boundΔ(T0)<:boundΔ(T) and Δ��boundΔ(T)<:boundΔ(T0)

Δ; Γ ; Λ �(T)e0∈T (T-SCAST)

Method typing:

Δ=X<:N Γ=x�→T,this�→C<X> Λ=∅
Δ �T,T0 ok Δ; Γ ;Λ �e0 ∈S0 Δ �S0<:T0

CT (C)=class C<X�N>� T {...} Δ; Λ �override(m, T, T→T0))

T0 m (T x) { ↑e0; } OK IN C<X�N> (T-METH-S)

Δ=X<:N,Y<:P Γ=x�→V,this�→C<X> Λ=Xi �→〈Y, u, U0 n (U)〉
Xi ∈X Δ �P,U0,U,V0,V ok Δ; Γ ; Λ �e∈S0 Δ �S0<:U0

CT (C)=class C<X�N>�T { ... } Δ; Λ �override(n, T, V→V0)

<Y�P>[u]for(U0 n (U):Xi.methods) V0 n (V x) {↑e;} OK IN C<X�N> (T-METH-R)

Class typing:

Δ=X<:N Δ �N,T,T ok M OK IN C<X�N>

class C<X�N>� T { T f; M} OK (T-CLASS-S)

Δ=X<:N Δ �N,T,T ok M OK IN C<X�N> Xk ∈ X

for all Mi,Mj∈M,
Mi=<Y�P>[u]for(U0 ni (U): Xk.methods) ...

Mj=<Z�Q>[v]for(V0 nj (V): Xk.methods) ...

Λi=Xk �→〈Y, u, U0 ni (U)〉 Λj=Xk �→〈Z, v, V0 nj (V)〉
implies Δ,Y<:P,Z<:Q�disjoint(〈Λi,ni,Xk〉, 〈Λj ,nj ,Xk〉)

class C<X�N>�T { T f; M} OK (T-CLASS-R)

Well-formed types:

Δ �Object ok (WF-OBJECT)
X ∈ dom(Δ)

Δ � X ok
(WF-VAR)

CT (C)=class C<X�N>� T { ...} Δ �T ok Δ �T<:[T/X]N

Δ �C<T> ok (WF-CLASS)

Fig. 2. Typing Rules
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Method type lookup:

Λ(X)=〈Y, u, U0 n (U)〉
Δ; Λ 	mtype(n, X)=U→U0 (MT-VAR-R)

X�∈ dom(Λ) or Λ(X)=〈Y, u, V0 n′(V)〉
Δ; Λ 	mtype(n, boundΔ(X))=U→U0

Δ; Λ 	mtype(n, X) =U→U0 (MT-VAR-S)

CT (C)=class C<X�N>� T {... M}
Λ 	constn(n) implies U0 n (U x) {↑e;}∈M

Λ�	constn(n) implies Λ(C<T>)=〈Y, u, U0 n (U)〉
Δ; Λ 	mtype(n, C<T>) =[T/X](U→U0) (MT-CLASS-S)

CT (C)=class C<X�N>�T {... M}
<Y�P>[u′]for(U0 n′ (U):Xi.methods) S0 n′ (S x) {↑e;} ∈ M

Δ′=Δ,[T/X](Y<:P) Λ′=[T/X](Xi →〈Y, u′, U0 n′ (U)〉)
Δ′;M	subsumes(〈Λ′,n′,Ti〉, 〈Λ,n,Ti〉)

Δ; Λ 	mtype(n, C<T>)=[T/X](maptypeM (S)→maptypeM (S0)) (MT-CLASS-R)

CT (C)=class C<X�N>� T {... M}
(Λ 	constn(n) n �∈ M ) or (Λ�	constn(n) C<T>�∈dom(Λ))

Δ; Λ 	mtype(n, C<T>) = mtype(n, [T/X]T>) (MT-SUPER-S)

CT (C)=class C<X�N>�T {... M}
for all M∈M,

M=<Y�P>[u′]for(U0 n′ (U):Xi.methods) ...
Δ′=Δ,[T/X](Y<:P) Λ′=[T/X](Xi →〈Y, u′, U0 n′ (U)〉)

implies Δ′	disjoint(〈Λ′,n′,Ti〉, 〈Λ,n,Ti〉)
Δ; Λ 	mtype(n, C<T>) =mtype(n, [T/X]T) (MT-SUPER-R)

Valid method overriding:

Δ 	validRange(Λ, T) Δ; Λ 	mtype(n, T)=V→V0 implies V=U V0=U0

Δ; Λ 	override(n, T , U→U0)

Field lookup:

fields(Object) = •
CT (C)=class C<X�N>� T {S f; ... } fields(boundΔ([T/X]T))=D g

fields(C<T>) = D g,[T/X]S f

Fig. 3. Method type lookup, overriding and field lookup

C<X>, then mtype is defined to be the statically declared type of n, with proper
type substitutions of T for X. However, if n is a name variable in Λ, and C<T>
is the type that Λ iterates over, then the type of method covered by this name
variable is exactly the type defined in the method pattern of Λ. MT-SUPER-S
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Method range subsumption:

Δ �T1<:T2 Y=pmVars(Λ1)
Δ;Λ1�mtype(n1, T1)=U→U0 Δ;Λ2�mtype(n2, T2)=V→V0

Δ;M ;Y�tunify(U0:U, V0:V) 〈Λ2,n2〉
id〈Λ1,n1〉

Δ;M�subsumes(〈Λ1,n1,T1〉, 〈Λ2,n2,T2〉)

Method range disjointness:

Λ1 �constn(n1) Λ2 �constn(n2) n1 �=n2

Δ �disjoint(〈Λ1,n1,T1〉, 〈Λ2,n2,T2〉) (DS-NAME)

Δ;Λ1�mtype(n1, T1)=U→U0 Δ;Λ2�mtype(n2, T2)=V→V0

Λ1��constn(n1) or Λ2��constn(n2) Δ�T1<:T2 or Δ�T2<:T1

Y=pmVars(Λ1) Z=pmVars(Λ2)
for no M , Δ;M ;Y,Z�tunify(U0:U, V0:V)

Δ �disjoint(〈Λ1,n1,T1〉, 〈Λ2,n2,T2〉) (DS-TYPE)

Subtype range validity:

Δ �validRange(∅, T) (VR-NOREFL) Δ �validRange(X�→〈...〉, X) (VR-VAR)

CT (C)=class C<X�N>�S { ... M}
Δ �validRange(Λ, [T/X]S) Λ=T�→〈 ,n, 〉

for all M∈M

M=<Z�Q>[u′] for (S0 n′ (S) : Xi.methods) ...

Δ′=Δ,Z<:[T/X]Q Λ′=[T/X](Xi �→〈Z, u′, S0 n′ (S)〉)

implies

j
Δ; M � subsumes(〈Λ′, n′, Ti〉, 〈Λ, n, T〉) for some M or
Δ � disjoint(〈Λ′, n′, Ti〉, 〈Λ, n, T〉)

Δ �validRange(Λ, C<T>) (VR-CLASS)

Identifier subrange rules:

Λ2 � constn(n2) implies ( Λ1 � constn(n1) and n1=n2 )

〈Λ1, n1〉
id〈Λ2, n2〉

Constant name:
Λ=X�→〈 ,u, 〉 implies n�∈u

Λ �constn(n) (N-CONST)

Pattern matching type variables of Λ:
pmVars(∅)=• pmVars(T�→〈Y,...〉=Y)

Type mapping application:

T�∈dom(M)

maptypeM (T)=T (TM-VAR1)

M(X)=T

maptypeM (X)=maptypeM (T) (TM-VAR2)
maptypeM (T)=S

maptypeM (C<T>)=C<S> (TM-CLASS)

Fig. 4. Reflection related auxiliary functions

states that the type of n in C<T> is the same as its type in C<T>’s superclass, T,
when n is a constant name, but not the name of a statically defined method in
C<X>, or when n is a name variable, but C<T> is not the type Λ iterates over.
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Type Unification:

M ;Y	sunify(T, S) for all Yi∈Y, M(Yi)=T implies Δ;Y	T≺:Yi

Δ;M ;Y	tunify(T, S)

Pattern matching rules:
Δ;Y	T≺:T (PM-EQ)

Δ;Y	T≺:S
Δ;Y	C<T>≺:C<S> (PM-CLASS)

Y∈Y T�∈Y Δ;Y	T≺:[T/Y]boundΔ(Y)

Δ;Y	T≺:Y (PM-VAR1)

Y∈Y T�∈Y Δ	T<:T′ Δ;Y	T′≺:boundΔ(Y)

Δ;Y	T≺:Y (PM-VAR2)

Y1∈Y Y2∈Y
{

Δ; Y 	 [Y1/Y2]bound Δ(Y2) ≺: Y1 or
Δ; Y 	 [Y2/Y1]bound Δ(Y1) ≺: Y2

Δ;Y	Y1≺:Y2 (PM-VAR3)

Fig. 5. Type unification and pattern matching rules

Subtyping rules:
Δ 	T<:T (S-REFL) Δ 	X <: Δ(X) (S-VAR)

Δ 	S<:T Δ 	T<:U
Δ 	 S<:U (S-TRANS)

CT (C)=class C<X�N>� T {...}
Δ 	C<T> <: [T/X]T (S-CLASS)

Fig. 6. Subtyping rules

Rules MT-CLASS-R and MT-SUPER-R apply when we look for n in C<T>,
where C<X> has reflectively declared methods. As we explained in Section 3, the
key in determining whether a reflectively declared method exists is in determin-
ing that the range of n in the reference reflective environment is subsumed by
the range of some name in the declaration reflective environment. If subsump-
tion holds, the type of n is simply the type of the method whose name subsumes
n, with the proper type substitutions of [T/X], as well as the substitutions in
mapping environment M . (The substitution for type T using M is defined as
maptypeM (T), in Figure 4. It is a straightforward application of type mappings.)
MT-SUPER-R says that when the range of n in Λ is disjoint from every declared
method range in C<T>, n has the same type as it does in C<T>’s superclass.

Subsumption: Δ;M�subsumes(〈Λ1,n1,T1〉, 〈Λ2,n2,T2〉), defined in Figure 4,
determines whether, under the assumptions of Δ and M , the range of methods
represented by n1 in type T1 subsumes the range of methods represented by n2

in type T2, under their respective reflective iteration environments.
There are three conditions for subsumption. First, T1 must be a subtype of T2.

It only makes sense to compare ranges of methods if they are methods coming
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from the same class. Additionally, in defining reflective iterators, we interpret
methods of a class (e.g., X.methods) to be the methods declared in the class and
all of its superclasses, transitively. Thus, a subclass has more methods than its
superclass, potentially yielding a larger range.

Secondly, the name n1 must be less strict than the name n2. Since all name
variables can match any name, the only restriction on n2 is when n1 is a constant.
In this case, n2 must be equal to n1 (see �id in Figure 4).

Lastly, M must be a one-way unification mapping that maps the type sig-
nature of the larger range (U→U0) onto that of the smaller range (V→V0). This
is a one-way unification because we want to ensure that one range is larger
than the other and not just that their intersection is non-empty. subsumes uses
Δ;M ;Y�tunify(U0:U, V0:V) to determine whether M is a proper unification map-
ping. We discuss tunify in detail shortly. But the main point to note is that
its rules are quite general, and determine whether M is a two-way unification
between its arguments, using the given pattern matching type variables. We use
tunify to check one-way unification by using only Y (the pattern matching type
variables in the larger range) as the variables with respect to unification, ignoring
the pattern matching type variables of Λ2, which are considered constants.

Disjointness: disjoint (Figure 4) takes the same arguments as subsumes. The
goal of disjoint is to determine the non-overlap of the names of the two method
ranges. DS-NAME describes the easy case, when both ranges use constant names
in their method patterns, but the names are not equal to each other. DS-TYPE
describes disjointness conditions when at least one of the names is not a constant.
First, it stipulates that there can be no unification mapping between the types of
the two method ranges. Here again, we use tunify. However, note that we pass the
pattern matching type variables from both reflective ranges (Y and Z) to tunify—
we are looking for a two-way unification, in contrast to the one-way unification
that subsumes looks for. Lack of unification between the two type signatures
means that there is no method whose type signature is in both ranges. However,
this is not enough to determine the disjunction of the names covered by these
ranges—if the methods range over classes from completely different inheritance
hierarchies, they could have disjoint method types, but still the same names.
Thus, DS-TYPE requires that either T1 be a subtype of T2, or vice versa. If
methods from the same inheritance hierarchy have different types, then they
definitely have distinct names.

Unification: Δ;M ;Y�tunify(T, S), defined in Figure 5, determines whether
T and S can be unified by unification mapping M , using Y as the pattern
matching type variables. Δ is the type environment under which Y, T, and S
are properly defined. tunify first checks that M is a proper syntactic unifying
mapping. Syntactic unification is a common two-way unification such that, af-
ter the mapping is applied to T and S, the resulting type sequences T′and S′are
syntactically equivalent. The precise definition of sunify is elided for space rea-
sons. Interested readers can obtain the specifics from the technical report [14].
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What syntactic unification does not check, however, is whether a mapping from
pattern matching type variable Y to type T conforms to the bound of Y in Δ.
Thus, tunify uses the pattern matching relation, ≺:, to check that T can indeed
be matched by Y.

The pattern matching relation, Δ;Y�T≺:S (Figure 5), holds if there exists a
type that can be matched by both T and S. Y are the pattern matching type
variables, and Δ is the type environment under which all types are well-formed.
The interesting case is in determining whether a non-pattern-matching type T
can be matched by a pattern matching type Y. The intuition is that T can be
matched by Y if it is within the bound of Y. This means that, with proper type
substitutions, either T can be matched by the bound of Y (PM-VAR1), or T’s
superclass can be matched by the bound of Y (PM-VAR2). We use PM-VAR3 to
determine whether there is a type that can be matched by two pattern matching
type variables, Y1 and Y2. The intuition is that if there exists a type that can
be matched by both boundΔ(Y1) and Y2 (or boundΔ(Y2) and Y1), then there is
a type that can be matched by both Y1 and Y2.

4.3 Soundness

We prove soundness using the familiar subject reduction and progress theorems.

Theorem 1 [Subject Reduction]: If Δ; Γ ; Λ �e∈T and e → e′, then Δ; Γ ; Λ �e′∈S
and Δ �S<:T for some S.

Theorem 2 [Progress]: Let e be a well-typed expression. 1. If e has new
C<T>(e).f as a subexpression, then fields(C<T>) = U f, and f = fi. 2. If e
has new C<T>(e).m(d) as a subexpression, then mbody(m, C<T>) = (x, e0) and
|x| = |d|.
In addition, we must prove a lemma regarding the uniqueness of names—can
there be multiple methods declared with the same name? A closer inspection of
the MT-CLASS-R rule shows that there appears to be some non-determinism:
the second condition of the rule specifies that one of the reflective blocks in M
makes the conditions that follow true. We prove in the following lemma that
there can only be one such M in class C:

Lemma 1 [Name Uniqueness]: If C<T> ok, CT (C)=class C<X�N>�T { ... M},
then there can be at most one Mi∈M such that Δ; Λ �mtype(n, C<T>)=U→U0.

Full text of the proofs, reduction rules, and related functions are defined in the
technical report version of this paper[14].

5 Discussion

Design Discussion. MJ can be viewed as part of a general effort to bring meta-
programming constructs to mainstream programming languages, with smooth
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integration of features and modular type checking guarantees. In this sense, it is
interesting to discuss MJ’s design and implementation decisions in comparison
with our other concurrent project: cJ [15]. cJ is an extension of Java with a static-
if construct, allowing the configuration of generic classes based on properties of
their type parameters. For instance, cJ can express a List<X> class that imple-
ments Serializable only when its type parameter X implements Serializable.

cJ adds to Java a reflective “if”, whereas MJ adds a reflective “for”, as well
as the ability to create declarations with non-constant names. Thus, it should
not be a surprise that MJ is a more ambitious language with significantly more
complexity. This is reflected clearly in our design decisions. cJ is designed with
backward compatibility in mind, enabling an erasure-based translation. cJ lan-
guage constructs can be “erased” producing regular Java code in a one-to-one
correspondence between cJ generic classes and Java generic classes. Additionally,
cJ interacts smoothly with advanced features in the Java type system, such as
variance [24,17] and polymorphic methods. In contrast, MJ takes a more rad-
ical approach, favoring feature-richness and integration of ideas over backward
compatibility and implementation integration. This difference is most evident in
MJ’s implementation, which employs an expansion-based translation. MJ generic
classes produce one regular non-generic Java class per instantiation. This imple-
mentation approach is harder to support in conjunction with some of Java’s
features (e.g., dynamic loading) but yields more power—e.g., to express mix-
ins as generic subclasses. Furthermore, we have not concerned ourselves with
supporting features such as variance and polymorphic methods. Considering the
interaction of these features with MJ is part of future work. Overall, we do not
view MJ as a language extension that can be easily integrated in standard Java.
(After all, integrating with standard Java seems a near-hopeless proposition even
for more modest research proposals, as the Java language has matured and the
rate of change has decreased dramatically.) Instead, we view MJ as a more rad-
ical idea, intended to demonstrate the principles of morphing and to influence
future language designers. Our goal with MJ is to show the first morphing lan-
guage with a sound modular type checking system, and a smooth integration of
concepts in an object-oriented framework.

Contrast with Meta-Programming and AOP Tools. Generally, few language
mechanisms allow expressing what MJ does: writing one piece of code and hav-
ing it be applied to multiple methods with different signatures. In the past,
this has been the hallmark property of Meta-Object Protocols [9,18] and later
Aspect-Oriented Programming [20]. Neither mechanism offers modular safety
guarantees, however. The same capabilities can be achieved with traditional re-
flection and program generation but with lower-level means of syntax-matching
and, again, no safety guarantees.

An interesting special case of program generation is staging languages such as
MetaML [23] and MetaOCaml [7]. These languages offer modular type safety: the
generated code is guaranteed correct for any input, if the generator type-checks.
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Nevertheless, MetaML and MetaOCaml do not allow generating identifiers (e.g.,
names of variables) or types that are not constant. Generally, staging languages
target program specialization rather than full program generation: the program
must remain valid even when staging annotations are removed. It is interesting
that even recent meta-programming tools, such as Template Haskell [21] are
explicitly not modularly type safe—its authors acknowledge that they sacrifice
the MetaML guarantees for expressiveness.

6 Future Work and Conclusions

There are several interesting directions of further work on MJ. A major one is
the introduction of anti-patterns in addition to patterns. Several modular type
checking scenarios require not just matching all entities that satisfy a pattern,
but also ensuring that no entity exists that matches a certain other pattern.
Anti-patterns increase the expressiveness of a morphing language significantly.
For instance, they expand the possibilities for generating methods and fields
with guarantees that they will not conflict with existing members of a type. Our
introduction of anti-patterns will be based on the same type checking insights
as patterns, namely on checking of range disjointness and subsumption.

Overall, we consider MJ and the idea of morphing to be a significant step for-
ward in the expressiveness of modern programming languages. Morphing can be
viewed as an aspect-oriented technique, allowing the extension and adaptation of
existing code components, and enabling a single enhancement to affect multiple
code sites (e.g., all methods of a class, regardless of name). Yet morphing is also
deeply different from aspect-oriented programming, and can perhaps be seen as
a bridge between AOP and generic programming. Morphing does not introduce
functionality to unsuspecting code. Instead, it ensures that any extension is un-
der the full control of the programmer. The result of morphing is a new class or
interface, which the programmer is free to integrate in the application at will.
Morphing strives for smooth integration in the programming language, all the
way down to modular type checking. Thus, reasoning about morphed classes is
possible, unlike reasoning about and type checking of generic aspects, which can
typically only be done after their application to a specific code base. We thus
view morphing as an exciting new direction in programming language research
and MJ as an excellent ambassador of the approach.
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Abstract. Although classes are a fundamental concept in object-oriented pro-
gramming, a class itself cannot be built using general purpose classes as building
blocks in a practical manner. High-level concepts like associations, bounded val-
ues, graph structures, and infrastructure for event mechanisms which form the
foundation of a class cannot be reused conveniently as components for classes.
As a result, they are implemented over and over again.

We raise the abstraction level of the language with a code inheritance relation
for reusing general purpose classes as components for other classes. Features like
mass renaming, first-class relations, high-level dependencies, component param-
eters, and indirect inheritance ensure that maximal reuse can be achieved with
minimal effort.

A case study shows a reduction of the code between 21% and 36%, while the
closest competitor only reduces the size between 3% and 12%.

1 Introduction

Although increasing the reusability of software is one of the main goals of object-
oriented software development, an important group of software elements still cannot
be reused in a practical manner. These elements are implemented over and over again,
resulting in massive code duplication and all its related problems.

A class often consists of application specific functionality written on top of general
purpose characteristics like associations, values lying within bounds, lockable values,
graph structures, and infrastructure for event listeners. Most of them are well-known
high-level concepts which are easy to use during the design phase. But during the im-
plementation phase, these concepts are transformed into low-level code because current
reuse mechanisms cannot cope with such reuse in a convenient manner.

Most reuse mechanisms [4,6,7,9,42,32,35,39] differ little from a regular inheritance
relation with subtyping and code inheritance. But the requirements for building a class
from components differ in important areas from those for creating a subtype. Reusing a
class as a building block for another class requires activities such as removing unwanted
methods, wiring method dependencies, and especially renaming methods. But for creat-
ing subtypes, the first activity is forbidden, the second one is not required, and the third
one is required only infrequently. In addition, methods of different building blocks are
usually separated even if they have the same definition, while they are usually merged
in case of a multiple/repeated subtyping relation.

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 425–449, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Reuse mechanisms that focus on composition [26,36] create only shallow composi-
tions; the composition is just the sum of the parts. But a class is more than the sum of its
components; it adds application specific code and gives the components an application
specific meaning; it creates an abstract data type.

In this paper, we present an inheritance mechanism with two relations. The subtyp-
ing relation is used for traditional subtyping inheritance. The component relation allows
general purpose characteristics to be encapsulated in classes and be reused conveniently
as configurable building blocks for other classes. We analyze the requirements neces-
sary to realize this kind of reuse, and then introduce the required new features. We
introduce renaming parameters for mass renaming, and make the inheritance relation
first-class for accessing hidden functionality, treating components as separate objects,
and resolving method dependencies using high-level component connections. We eval-
uate the mechanism in a case study, where it is compared to existing approaches. We
also created a formal type system and proved the type soundness of the mechanism, but
due to space constraints, the formalization is not presented in this paper.

In Section 2, we analyze the requirements for the reuse mechanism, and discuss
existing mechanisms. In Section 3, we present the component relation, which is used
for code inheritance. In Section 4, we present the impact on the subtyping relation. We
evaluate the inheritance mechanism in Section 5 with an example and a case study. We
discuss related work and future work in Sections 6 and 7, and conclude in Section 8.

2 Requirements Analysis

In this section, we analyze which features are required in order to conveniently reuse
general purpose classes as a building block for other class. We use a simple banking
application to illustrate the requirements.

In this paper, we illustrate the features of the inheritance mechanism mostly with
components for modeling associations, which use a simple protocol to keep the asso-
ciation consistent. The proposed inheritance mechanism, however, can reuse general
abstract data types – which can use arbitrarily complex protocols – as components.

Figure 1 illustrates the application. It contains classes for persons, bank accounts,
and bank cards. The rectangles inside a class represent its characteristics. For exam-
ple, an account has a balance, which is a number that lies between the credit limit
and an upper bound. In addition, it has a unidirectional association with its account
number, and a bidirectional association with its owner. The associations for the parents
and children of a person form a graph offering different traversal strategies. Depen-
dencies between characteristics are represented by dashed arrows. For example, the
owner and accounts components need each other’s methods to keep the association
consistent.

Figure 2 shows a Java implementation of class BankAccount. More advanced
functionality like sending events, and constraints on the associations is not shown.

The problem with the implementation is that it consists entirely of functionality that
has already been implemented millions of times before. Associations and constrained
values are common characteristics, and although the exact names of the methods and
the used types may differ, the behavior is always the same.
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Fig. 1. High-level design of an application

class BankAccount {
public BankAccount(int number) {

this.creditLimit = -1000;
this.upperLimit = 1000000;
this.accountNumber = number;

}
private Person owner;
public Person getOwner() {

return owner;
}
public void setOwner(Person owner) {

if(this.owner != owner) {
registerOwner(owner);
if(owner != null)

owner.registerAccount(this);
}

}
protected void registerOwner(Person owner) {

if (this.owner != null)
this.owner.unregisterAccount();

this.owner = owner;
}
protected void unregisterOwner() {

owner = null;
}
private final int accountNumber;
public int getAccountNumber() {

return accountNumber;
}

private long balance;
private long upperLimit;
private long creditLimit;

public long getBalance() {
return balance;

}
public void deposit(long amt) {

if((amt > 0) &&
(balance<=Long.MAX VALUE-amt)
&&(balance + amt <= upperLimit))

balance += amt;
}
public void withdraw(long amt) {

if((amt > 0) &&
(balance>=Long.MIN VALUE+amt)
&&(balance - amt >= creditLimit))

balance -= amt;
}
public long getUpperLimit() {

return upperLimit;
}
public long getCreditLimit() {

return creditLimit;
}

}

Fig. 2. The Java version of BankAccount
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2.1 Requirements

The goal is to construct a reuse mechanism that allows high-level concepts to be en-
capsulated and reused to build a class. The reusable entity is called a component. The
mechanism must minimize the effort required to reuse a component, and maximize the
reusability of its functionality.

The requirements1 are illustrated using the example from Figures 1 and 2. They are
grouped to increase readability, but some features can be placed in multiple groups. We
omit features supported by all mechanisms, such as parameterized types.

Mandatory Features. The following features are mandatory for building a class by
reusing components.

1. ADT Components: A component must contribute to the abstract data type of the
reusing class, which rules out a simple has-a relation. Otherwise, the composition
is too difficult to use. For example, the methods of Person would be spread over
several objects at different depths depending on the nesting of the components, and
have names that are almost meaningless in the context of the application.

2. Multiple Reuse: A class must be able to reuse code from more than one compo-
nent. For example, class BankAccount has three general characteristics.

3. Repeated Reuse: Because a class can reuse multiple components of the same kind,
it must be able to reuse a component more than once. For example, class Person
has three bidirectional associations.

4. Renaming: Renaming is required to solve name conflicts caused by repeated reuse,
give the reused methods a meaningful name in the context of the reusing class, and
merge features. Name conflicts will occur because components can be reused more
than once by a single class, as for example in class Person.

Expressivity Features. These features reduce the amount of work needed to reuse
a component. The impact of a feature is shown using big O notation as activity :
Owithout → Owith. It shows the amount of work required for an activity without and
with that feature when reusing a component. Note that the activities are not independent
of each other.M is the number of methods in the component, F the number of fields.
Ms andFs are the number of methods and fields exported in the interface of the reusing
class,Mns andFns the number of non-exported methods and fields. The required work
of some features is explained further on in this paper, and is denoted with ‘. . . ’ for now.
Note that Fs + Fns = F ,Ms +Mns =M, and usually Fs 
 F (Ms <M.

5. State Reuse: Declaring fields: O(F) → O(1) Reusing the state of a component
prevents a lot of duplication. For example, the state of an association is almost
always a simple reference. It makes no sense to force a developer to separately
provide that state every time he uses an association component.

6. Interface Reuse: Constructing interface:O(Ms +Fs)→ O(1) Reusing the com-
ponent interface prevents duplication of its signatures. Aside from the exact method
names and types, which can be configured using renaming and type parameters, the
signatures in the reusing class are the same as those in the component interface.

1 Many of the requirements are presented in related work under slightly different names.
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7. Selective Interface Reuse: Resolving conflicts: O(M + F) → O(Ms + Fs)
A developer will usually expose only a part of the component interface based on
the intended use of the reusing class. Exposing its entire interface makes the reusing
class harder to understand if the component has a lot of functionality. In addition, it
can cause a large amount of name conflicts that must be solved even if the involved
methods and fields are not relevant in the context of the reusing class.

8. Powerful Selection: Selecting exported methods/fields: O(Ms + Fs) → O(. . .)
Being able to select which methods and fields are exported in the interface of the
reusing class is not enough. If hiding or selecting is done individually for each
method, it requires too much work.

9. Default Separation: Separating components:O(Mns+Fns)→ O(1) By default,
components – and thus their methods and instance variables – must be separated,
since that is how they are typically used. For example, the methods and fields of the
association components of Person must be kept separate. Separating all methods
manually is error-prone and requires separation of non-selected methods.

10. Mass Renaming: Renaming: O(Ms + Fs) → O(. . .) Many components have
patterns in the names of their methods. For example, the methods for associations
are typically named getX, setX, isValidX, and so on. If such a pattern can be
exploited, all of its occurrences can be replaced with a single declaration.

11. High-level Dependencies: Resolving method dependencies: O(DM) → O(. . .)
Some components depend on methods of other components. For example, a com-
ponent for bidirectional associations needs the method of the other end of the asso-
ciation to maintain consistency, but it does not know their final names. Resolving
these dependencies individually is tedious and error-prone. In addition, if additional
dependencies are added between two components, all classes that reuse them must
add additional wiring code. By directly connecting entire components to each other,
all dependencies between them are resolved at once, and additional dependencies
require no additional wiring code. In the formula, DM is the number of method
dependencies of the reused component.

Completeness Features. The following features increase the amount of functionality
of a component that can be reused.

12. Reuse of Hidden Functionality: Methods that are not exposed in the interface of
the reusing class – to prevent conflicts and interface bloat – may still be valuable to
clients. They should still be reusable, unless the developer explicitly forbids clients
to access them. Examples are advanced iteration methods for associations.

13. Reuse of Component Type: If an object cannot somehow be used as if it were
of the type of one of its components, certain methods cannot be reused. For ex-
ample, class BoundedValue has a method to transfer the remaining value to
another BoundedValue. If that method cannot be used to transfer the remain-
ing money from one bank account to another, it must be duplicated even though
BankAccount offers all required methods and fields. But if the bounded value
component of BankAccount can be used as a real BoundedValue, the transfer
method can be reused.
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Methodological Features. The following features prevent errors and confusion.

14. Reuse Without Subtyping: Mandatory subtyping causes confusion in case of re-
peated reuse, and it does not make sense for most components. For example, class
BankAccount is no bi/uni-directional association, or a bounded value. Similarly,
class Person is not three times a bidirectional association.

15. No Surprises: The mechanism must never automatically resolve a name conflict
unless one of the candidates overrides all others. Otherwise, methods are overridden
based only on the form of their signature, causing unexpected behavior at run-time
[37]. A good reuse mechanism exposes such errors, instead of hiding them.

Applicability Features. The last set of features concerns the applicability of the reuse
mechanism. They allow the reuse of a component even if it was not anticipated.

16. No Separate Concept: If a developer needs to reuse a class as a component, he
must be allowed to do so, even if such reuse was not anticipated. In addition, it
must be possible to instantiate non-abstract components. For example, there is no
reason to complicate the creation of an object that represents a bounded value. If
components and classes are the same, they are not limited to a single kind of reuse.

17. Override State: If the state of a component is not appropriate for the reusing class,
e.g. because it can be computed, it must be possible to override the state. Otherwise,
that class cannot reuse the component.

18. Merge State: The state of components can overlap in the context of the reusing
class. But if the overlapping parts cannot be merged, the components cannot be
reused. For example, if a class has two values lying within the same limits, and
there is no specific component offering such behavior, it must be possible to use
two BoundedValue components and merge their upper and lower limits.

2.2 Existing Reuse Mechanisms

Figure 3 shows the features that are supported by different reuse mechanisms. For lan-
guages with a separate code inheritance relation, we used that relation in the table. For
the other languages, the standard inheritance relation is used. The mechanisms are dis-
cussed in more detail in the related work in Section 6.

For delegation, the major problem is that the interface of a component cannot be
reused. Every method must be redefined in the reusing class to invoke the corresponding
method on the delegatee. The case study shows that this is a big disadvantage. Whether
or not state can be overridden or merged depends on the programming language.

The inheritance techniques – with or without subtyping – have poor support for the
required features, and very poor support for the expressivity and completeness features.
Only two mechanisms support the minimal requirements, and certain important expres-
sivity and completeness features are not supported by any of them. In the columns of
features that save of lot of work, there is a big gaping hole.

Our inheritance mechanism supports all the features, and makes the implementation
of the entire application as big as the traditional implementation of BankAccount.
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Delegation • • • • • • • • • • • •
SmartEiffel • • • • • • • • • •
Reppy Traits • • • • • • • • •
Traits • • • • • •
Cecil • • • • • • • •
C++ • • • • • • • •
Diesel • • • • • • • •
Mixins • • • • • •
Scala • • • • •
Java / C# • • • • • •
CaesarJ • • • • •
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Fig. 3. Feature matrix for different code reuse mechanisms

3 The Component Relation

The component relation is a code inheritance relation for easily reusing existing com-
ponents in a new class. To simplify the customization of general components for use
in a class, the relation offers a number of new features which are explained further on
in this section. We introduce renaming parameters for mass renaming the methods of
the component. We then turn the component relation into a first-class relation. The re-
lation can be given a name, which can be used to access non-selected functionality, use
components as separate objects, and resolve dependencies on a high level. These fea-
tures allow programmers to work easily with components on a high level of abstraction
instead of implementing them with low-level code.

Using the component relation, the banking application of Figure 1 can be imple-
mented by using a component relation for each component. This is illustrated in
Figure 4 for the class of bank accounts. The component relations state that the class
of bank accounts has a component named owner that behaves like a bidirectional
association with multiplicity 1, a component named balance that behaves like a
bounded value, and a component named accountNumber that behaves like a uni-
directional association. The assignments are used for renaming, and in this case rename
many methods at once by assigning values to renaming parameters. The owner com-
ponent is connected to the component at the other end of the bidirectional association by
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component BidiAssociation-1-Side<Account,Person> owner (accounts) [X=Owner]
component BoundedValue<long> balance [X=Balance,LOW=LowerLimit,HI=UpperLimit];
component UniAssociation-1<int> accountNumber

[X=AccountNumber, export private {setAccountNumber}]

Fig. 4. The component relations of BankAccount

ComponentClause:
AccessMod? component Type Config?

Config:
Name? CompParams? ConfigBlock?

Name:
AccessMod? Identifier

CompParams:
“(”Identifier (, Identifier)* “)”

ConfigBlock:
“[” ConfigClause (, ConfigClause)* “]”

ConfigClause:
Identifier = Identifier?
override “{” IdentifierList “}”
undefine “{” IdentifierList “}”
export AccessMod “{” IdentifierList “}”
direct “{” IdentifierList “}”
indirect “{” IdentifierList “}”

Fig. 5. Grammar for component relations

passing the name of the other component (accounts) to the relation. Finally, the setter
method for the account number is made private.

Figure 5 shows the syntax of the component relation. It consists of the keyword
component followed by the name of the inherited class, including any generic pa-
rameters. There can optionally be a name, component parameters, and a configuration
block. The access modifier of the relation determines if the type of the component is
visible to the client, which provides valuable information about its behavior. The access
modifier of the name determines if he can use the name of a visible component relation
to access it as a separate object or resolve dependencies. The configuration block is
similar to that of Eiffel. The assignment is used for renaming which is further explained
in Section 3.2, override if a feature2 is overridden, undefine to undefine a fea-
ture in case features are merged, and export for changing the visibility of a feature.
The inheritance name, component parameters, and direct and indirect clauses
are further discussed in Section 3.3.

3.1 General Semantics

If class A has a component relation with class B, A inherits the features of B, but not
its type. For example, the class of bank accounts inherits all features of a bounded
value, but a bank account is no bounded value. Despite the absence of subtyping, how-
ever, both methods and instance variables3 must conform to all features they override,
because the methods of the inherited class expect them to behave according to their
original signatures and contracts.

If a feature is inherited via different inheritance paths, a choice must be made to
decide if the feature is inherited once, or multiple times. The default policy for features

2 The features of a class are its instance variables and methods.
3 Instance variables are properties that can be overridden and merged.
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inherited via a component relation is duplication because, generally, the components
do not overlap. This means that if a feature is inherited via a component relation and
again via another inheritance relation, there is a conflict, even if the definitions are the
same. This conflict must be resolved explicitly, e.g. via merging or renaming. To avoid
an explosion of the number of renaming clauses, we introduce renaming parameters in
Section 3.2 and indirect inheritance in Section 3.3.

As in SmartEiffel, binding of features in inherited methods is done within the inher-
itance relation through which they are inherited. This is required to allow separation
of the components. For example, CheckingAccount inherits the getter method of
BidiAssociation-1-Side twice: once for the association with the owner, and
once for the association with the bank card. Both getters must of course use the in-
stance variable of their own component.

3.2 Renaming Parameters

Without intervention, using duplication as the default for the component relation would
force a developer to explicitly rename almost every method of the component. The
case study in Section 5 shows that renaming is a significant problem. We introduce a
lightweight macro system to minimize the effort of renaming features.

The names in the features of a component often exhibit patterns. For example, the
names of the methods of the N side of an association are getX, addX, removeX,
replaceX, containsX, and so on. To avoid these patterns from getting lost in
the implementation, we introduce renaming parameters. A renaming parameter can be
written in the names of non-private features, and allows an inheriting class to rename
all features that use the parameter with a single renaming declaration.

A renaming parameter is a parameter of a class and is written between square brack-
ets. It can be given a default value; otherwise its name serves as the default value. The
parameter can be used in feature names by writing its name between % characters. An
inheriting class can assign a value to the parameter in the configuration block of the
inheritance relation. The value of the parameter can be any string that is valid for all
feature names containing the parameter – which are all visible to the inheriting class.

Figure 6 illustrates the use of renaming parameters. Parameter X is used as the name
of the other end of the association and is initialized to the empty string. Parameter XS
represents the plural of X and by default equals the value of X appended with an ‘s’.
For the children component of Person both parameters are assigned because the
default value of XS is not appropriate.

We can now determine the amount of work required for renaming. Ps is the num-
ber of renaming parameters in the selected features. Ms,np and Fs,np are the number
of selected methods and fields without renaming parameters. The impact of renaming
parameters is O(Ms + Fs) → O(Ps +Ms,np + Fs,np).

More details about renaming parameters can be found in the technical report [46].

3.3 First-Class Component Relations

In this section, we introduce first-class component relations to solve a number of prob-
lems. We use them to connect components without resolving every individual depen-
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class BidiAssociation-N-Side <FROM,TO> . . . [X=,XS=%X%s] {
Set<TO> get %XS% {. . . }
void add %X% (TO x) {. . . }
void remove %X% (TO x) {. . . }
void replace %X% (TO x, TO y) {. . . }
. . .

}

class Person
component BidiAssociation-N-Side<Person, BankAccount> . . . [X=Account]
component BidiAssociation-N-Side<Person, Person> . . . [X=Parent]
component BidiAssociation-N-Side<Person, Person> . . . [X=Child,XS=Children]

{. . . }

Fig. 6. Using renaming parameters

class BankAccount
component BidiAssociation-1-Side<BankAccount, Person> owner . . .
. . .

class Person
component BidiAssociation-N-Side<Person, BankAccount> accounts . . .
. . .

Fig. 7. First-class component relations

dency, to access functionality that is not exposed in the interface of the reusing class,
and to use components as if they were separate objects.

A component relation can have a name, which typically represents the role of the
component in the reusing class. Figure 7 illustrates this for classes BankAccount
and Person. The association components of BankAccount and Person are named
owner and accounts.

Direct and Indirect Inheritance. As presented in Section 2, selective reuse of the
interface of a component is required for two reasons.

First, it prevents interface bloat in the reusing class. Take for example the associa-
tion components. In order to maximize code reuse, it is best to put many features in the
association classes. Examples include applying some action to all referenced elements,
a universal and an existential quantifier, accumulation, and validation. But for an inher-
iting class, this means that either its interface gets bloated, or its developer must do a
lot of work to hide the functionality, preventing reuse.

Second, because not all method and field names use renaming parameters, there are
still many name conflicts. For example, features like equals and hashCode in the
top-level class cause conflicts in every component relation. But if these features are not
interesting in the inheriting class, which is usually the case, the developer should not
have to resolve their conflicts.

To solve both problems, we make a distinction between directly and indirectly in-
herited features. A directly inherited feature is present in the interface of the inheriting
class, while an indirectly inherited feature is not, and thus cannot cause a conflict.
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Fig. 8. Indirect Inheritance

Person sandra = . . . ;
Person bruno = . . . ;
Person kato = . . . ;

// two identical method calls
sandra .children.add (kato);
sandra .addChild (kato);

bruno.addChild(kato);
kato.parents.applyTo(. . . );

Fig. 9. Using indirectly inherited features

An indirectly inherited feature, however, can still be accessed if the component
relation has been given a name. The feature can then be invoked as myObject.
inheritanceName.feature using its original name. It is as if the component
is an object referenced by a field in the reusing class. This way, the client resolves the
conflict by using the name of the component relation. It is, of course, the responsibility
of the programmer to give the reusing class a meaningful interface. Using inheritance
names to access features must not be the standard way of using a class.

Figures 8 and 9 illustrate this for class Person. For the children component,
only the add, remove, and get methods are inherited directly. The parents com-
ponent additionally inherits the replace and isValid methods. The other methods
must be invoked indirectly via the name of the inheritance relation. Note that the in-
vocations of children.add and addChild in Figure 9 are identical even if the
method has been overridden in Person.

The inheriting class must specify which features are inherited directly. This is done
in the configuration block either by including them with a direct declaration, or by
renaming or overriding them. All other features are inherited indirectly.

To facilitate selecting directly inherited features, the features of a class can be put in
groups as in Eiffel, Smalltalk, and C#. This way, inheriting classes can directly inherit
an entire group of methods with little effort. For example, the basic functionality of a
class can be put in one group while more advanced functionality can be put in others. To
select which features or groups are inherited directly, the programmer can use direct
and indirect declarations in the configuration block of the component relation. A
feature is inherited directly if it is listed in a direct declaration, and indirectly if it
is listed in an indirect declaration. If a feature is not listed in such a clause, it is
inherited directly if they are part of a group that is listed in a direct declaration,
and indirectly if its are part of a group that is listed in an indirect declaration.
Every component relation implicitly has a direct declaration for the group named
default. This is illustrated in Figure 10. The mechanism can be made more flexible,
but that is not in the scope of this paper.



436 M. van Dooren and E. Steegmans

class BidiAssociation-N-Side<FROM,TO> . . . [X,XS=%X%s]
boolean equals(Object other) {. . . }
int hashCode() {. . . }
group default {

Set<TO> get%XS% {. . . }
void add%X%(TO x) {. . . }
void remove%X%(TO x) {. . . }
void replace%X%(TO x, TO y) {. . . }

}
group iteration {

filter%XS%(. . . ) {. . . }
applyTo%XS%(Command<TO>) {. . . }
...

}
}

class Person
component BidiAssociation-N-Side<Person,Person> children (parents)

[X=Child,XS=Children, indirect{replaceChild} ]
component BidiAssociation-N-Side<Person,Person> parents (children)

[X=Parent, direct{isValidParent} ]
. . .

Fig. 10. Selecting directly inherited features

The impact of indirect inheritance is O(Ms + Fs) → O(Gs +Ms,ng +Mns,g +
Fs,ng + Fns,g) with Gs the number of selected groups, Ms,ng and Fs,ng the selected
methods and fields not in such a group, and Mns,g and Fns,g the unwanted methods
and fields in the selected groups.

Component References. Using indirect inheritance, the features of a component can
be accessed as if the component were an object referenced by an immutable4 instance
variable. To allow even more reuse, we allow the name of a component relation to be ac-
tually used as a reference to the subobject representing that component, similar to casts
in C++ [39]. Because we already require conformance between the actual component
and the inherited class, type-safety is not endangered.

Component references make it possible to reuse methods of which a formal parame-
ters has a type that is used as a component. For example, the class representing bounded
values has methods to compare it with another bounded value, to transfer the remaining
value to another bound value. Another example is the equals method for an asso-
ciation, which takes a similar association as its argument, to verify if two association
reference the same elements. Without component references, these features cannot be
reused if the class is used as a component for another class because there is no subtyping
relation between the reusing class and the component.

Figure 11 shows how such methods can be reused using component references. The
methods cannot take a Person or BankAccount as an argument, but by using the
names of the component relations, the components can be passed to the method.

4 Only the reference itself is immutable, the referenced object can still be modified.
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boolean eq = sandra.children.equals( bruno.children );
yourAccount.balance.transferRemainingValueTo( myAccount.balance );

Fig. 11. Using component references

Being able to use component references has an influence on how this is treated in
the context of a component relation. When a class A is reused through a component rela-
tion by class B, its this reference acts as if it were substituted by
this.inheritanceName. Otherwise, this would have type A in the context of
type B, which is not type-safe since B is not a subtype of A.

Consequently, a component cannot use the this reference to obtain a reference
to the object of the reusing class because that is a reference to the subobject for that
component. For example, the components for bidirectional associations need an object
of type FROM – a generic parameter – to pass it to the other end of the association.
Various techniques can be used to obtain that reference, e.g. storing it explicitly in a
field, self types as used in Eiffel, or a variant of the self types in Scala. More details on
techniques to obtain a reference to the object of the reusing class can be found in the
technical report [46].

Dependency Resolution. Some components depend on methods of other components.
Examples are the methods to set up and break down bidirectional associations, as
shown in Figure 12. The setOwner method of BankAccount must know which
register method to invoke on the Person to keep the association consistent. Sim-
ilar dependencies exist for the other methods. Because Person has multiple associa-
tions, these dependencies cannot be resolved automatically. The developer of
BankAccount must connect these methods to the appropriate methods in Person.
With existing inheritance mechanisms, this must be done with wiring code for each
individual method dependency.

To resolve these dependencies more elegantly, we use the names of the component
relations. Figure 13 illustrates the approach. The owner component of BankAccount
and the accounts component of Person are connected by resolving a single high-
level dependency on each side.

To specify high-level dependencies, a class can declare formal component param-
eters . They are declared after the generic parameters of a class between parentheses,
and have the form T → C cparam. In this declaration, T → C is a constraint on the

Fig. 12. Low-level dependencies Fig. 13. High-level dependencies
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class BidiAssociation-1-Side<FROM,TO> (TO → BidiAssociation<TO,FROM> otherEnd)
subtype BidiAssociation<FROM,TO> (otherEnd){

private TO other;
public void setX(TO other) {

. . .
other@otherEnd.register (expression for the object on this side of the association);
. . .

}
protected void register(TO other) {. . . }
. . .

}

Fig. 14. Component parameters

class BankAccount
component BidiAssociation-1-Side<BankAccount,Person> owner (accounts) . . .
. . .

class Person
component BidiAssociation-N-Side<Person,BankAccount> accounts (owner) . . .
. . .

Fig. 15. Implementing high-level dependency resolution

component relation passed through the parameter. T is the type containing the relation,
and C is the target type of the relation. Finally, cparam is the name of the parameter.

Figure 14 illustrates the declaration of a component parameters. The formal param-
eter expects the name of a relation that a) is a relation of the class at the other side
of the association (TO), and b) is a BidiAssociation representing an association
in the opposite direction (from TO to FROM). Figure 15 illustrates how two associ-
ation components are connected to each other. If we substitute the generic parame-
ters, we see that component relation owner requires the name of a component rela-
tion with type BidiAssociation<Person,BankAccount> that is contained
in Person. Since the accounts component of Person satisfies these constraints,
we can connect the owner component to the accounts component. Similarly, the
owner component satisfies the constraints of the accounts component. Con-
sequently, the owner component of BankAccount can be connected to the
accounts component of Person, and vice versa.

A component parameter can be used to invoke features of the actual component
passed through the parameter on objects of the type containing the component. Method
invocations and field accesses are performed using the following expressions: expr@
cparam.m(args) and expr@cparam.f. If cparam has T → C as constraint,
expr must be of type T, and m or f must be applicable to type C. In the context of
a component relation where actual component parameter aparam is used, cparam
is replaced with aparam. As a result, method aparam.m(args) or field access
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aparam.f are invoked on the result of expr. Note that any renaming or overrid-
ing of these features in the run-time type of expr is taken into account. We use a
symbol different from the dot to emphasize the difference with a regular invocation. In
addition, this avoids confusion about the meaning of expr.cparam if a feature with
name cparam is added to T.

The setX method in Figure 14 shows how the component parameter is used to
invoke methods. The invocation of register is applied to the otherEnd component
of other. The method that will be invoked, is the register method of the actual
component relation passed through the parameter, which may be overridden or renamed
in the actual class TO. In the example of Figure 15, the setOwnermethod inherited by
BankAccount will invoke the registerAccount method inherited by Person.

This approach has a number of advantages. First, it saves a lot of work by replac-
ing the individual dependencies with a smaller number of high-level dependencies. The
impact is O(DM) → O(DC) with DC the number of component dependencies and
DC 
 DM. Second, it ensures that the required methods are provided by a single
component and not by methods of different components, which is crucial in this ex-
ample. Third, if additional dependencies are added between two types of components,
the reusing classes need no modifications. For example, we can add an isSibling
method to BidiAssociation to check if some object is its sibling. This method
would invoke the contains method on the other end of the association, introducing
another dependency. Inheriting classes, however, do not need to be modified.

Visibility. By default, component relations are public because they are typically used
for the characteristics of a class. A public client can see their name, type, and configu-
ration. If a programmer knows the behavior of class C, he also knows the behavior of a
component of type C. But if the relation is not visible, he must study the contracts of the
inherited features again in order to understand their behavior. If the component relation
is used for traditional code inheritance, for example to implement a Stack using an
Array, it should be hidden from the client.

4 The Subtyping Relation

In this section, we briefly explain the most important differences with the subtyping
relation of SmartEiffel. The details can be found in the technical report [46].

Figure 16 shows the syntax of the subtyping relation. It consists of the keyword
subtype followed by the name of the super type, including any generic parameters.
There can optionally be a name for the relation, and a configuration block. The com-
ponent parameters are used to transfer compent parameters to the superclass, similar to
generic parameters. To ensure consistency, component parameters passed to the same
class via different subtyping relations must be identical. This is similar to the rule for
generic parameters in Java and SmartEiffel.

Because the subtyping relation is no longer used for pure code reuse, it can be simpli-
fied. Duplication is forbidden since it is inappropriate for subtyping, avoiding confusion
for diamond inheritance. In addition, the rule-of-dominance (as in C++ [39]) is used to
avoid needless undefine clauses to select a version of a method when there is a single
most specific version.
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SubtypeClause:
subtype Type Identifier? CompParams? ConfigBlock?

Fig. 16. Grammar for the subtyping relation

4.1 Overriding and Merging Components

For the same reasons why overriding and merging of state is required to ensure that a
component can always be reused, as discussed in Section 2, it must also be possible to
override and merge component relations. Similar to overriding and merging methods,
either an overriding component must be defined, or an existing one must be selected.

In both cases, the overriding or selected component must satisfy two rules. First,
standard subtyping conformance is required. The overriding component must not only
be a subtype of the target class of the component relation, but also of all overridden
components. Second, conformance of the component interface is required. This means
that every feature that is inherited directly in an overridden component relation must
be inherited directly in the overriding component relation. In addition, corresponding
features must be given the same name.

4.2 Reducing Hierarchy Dependencies

In [35], it is argued that super calls in languages with multiple inheritance increase
the dependency of code on the class hierarchy. In such languages, multiple methods
with the same name can be inherited by a class, so in order to disambiguate super
calls to such methods, they must be qualified with the name of the direct super class
containing the method that must be invoked. Examples of languages using this approach
are C++, Cecil, Eiffel, and SmartEiffel. This problem does not occur with inheritance
mechanisms that linearize the class hierarchy, or in the prototype-based language Self
[8], where super calls can be directed to a named parent slot.

These dependencies can be removed by also giving a name to a subtyping relation.
It is possible to qualify a super call using the name of that inheritance relation instead
of the name of the super class. Consequently, the call remains valid if the actual super
class for that relation is changed, as long as an appropriate method is available in the
new super class. The name of a subtyping relation is private since only the inheriting
class can invoke super calls.

Technically, reuse variables in Timor also reduce this dependency, but in their paper
[19], the authors do not present this insight.

5 Evaluation

In this section, we evaluate the complexity and the effectiveness of the proposed inher-
itance mechanism.

5.1 Complexity

Even though our inheritance mechanism introduces a number of new features, it is
still easy to use, and it reduces overall complexity. Programmers already deal with



A Higher Abstraction Level Using First-Class Inheritance Relations 441

high-level characteristics, dependencies, and name patterns, but they must encode them
using complicated low-level code instead of writing simple high-level code. The fea-
tures introduced in this paper allow programmers to easily reuse, configure, and connect
components to build a class. With the creation of a graphical editor, this can even be
done by simply drawing a diagram similar to Figure 1. Components can be dropped
on classes, configured by filling in the type and name patterns, and connected to each
other.

As an additional advantage, the subtyping inheritance relation can be simplified as it
is no longer used just for code reuse. More specifically, forbidding duplication prevents
confusion in case of diamond inheritance, and the rule-of-dominance resolves unneces-
sary conflicts that must otherwise be resolved by the programmer.

5.2 The Banking Application

Figure 17 shows the entire implementation of Figure 1. The names of the association
classes are abbreviated for reasons of space. The implementation is done almost com-
pletely by configuring existing components. Only the constructors are actually imple-
mented. This is an important result, because it means that this implementation can be
done by drawing a class diagram, and filling in the parameters. Although the example
does not contain any application specific behavior, it illustrates what can be achieved
with our approach. A realistic case study is presented further on.

In addition, the high-level concepts of the diagram cannot get lost because they are
directly present in the code. In current CASE tools, such concepts can get lost because
they are translated into low-level code, leading to synchronization problems.

5.3 Case Study

We compared our inheritance mechanism with manual delegation, and the inheritance
mechanisms of Java, SmartEiffel, and Reppy traits, which support repeated inheritance
[32], by comparing their impact on the size of an application. We used Jnome [43], our
metamodel for Java, and Chameleon [43], our framework for metamodels of program-
ming languages. Together they contain 9763 lines of Java code.We must note that the
reduction in code size is not the same as the reduction in complexity. Renaming clauses
and manual delegation are much simpler than the reused methods.

We modified the Java programs using our inheritance mechanism5, and then calcu-
lated the size for the other techniques based on the overhead of renaming, dependency
resolution, encapsulation of state, and manual delegation for each technique. Note that
only the inheritance relations and wiring code differ for the participating mechanisms.
All other code is identical, so all effects are due to differences in the reuse mechanisms.

To study the impact of the size and the nature of extensions of the components, we
repeated the experiment for two kinds of extensions. In the first extension, all associ-
ations send events when they are modified. This extension is application independent
because managing the listeners and invoking notify is always the same. In the second

5 We must note that the resulting code does not currently compile because our compiler is not
yet complete.
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class BankAccount
component BoundedValue<long> balance

[Value=Balance, Lower=Credit, increaseBalance=deposit,
decreaseBalance=withdraw,
export private {setUpperLimit,setLowerLimit,setBalance}]

component Bidi-1-Side<BankAccount,Person> owner (accounts) [X=Owner]
component Uni-1<int> accountNumber

[X=AccountNumber, export private {setAccountNumber}]
{

public BankAccount(int accountID) {
balance.super(0,-1000,1000000);
accountNumber.super(accountID);

}
}

class CheckingAccount
subtype BankAccount
component Bidi-1-Side<CheckingAccount, BankCard> bankCard (account) [X=BankCard]

{
public BankAccount(int number) {

super(number);
}

}

class Person
component Bidi-N-Side<Person,BankAccount> accounts (owner) [X=Accounts]
component Bidi-N-Side<Person,Person> parents (children) [X=Parents]
component Bidi-N-Side<Person,Person> children (parents) [X=Children]
component Uni-1<String> [X=Name]
component Graph<Person> family (parents,children)

{
public Person(String name, Person mother, Person father) {

setName(name);
addParent(mother);
addParent(father);

}
}

class BankCard
component Bidi-1-Side<BankCard,CheckingAccount> account (bankCard) [X=Account]
component Uni-1<int> [X=PinCode]

{}

Fig. 17. Implementation of the banking application of Figure 1

extension, which builds on the first one, the associations also check the validity of the
elements. For this extension, the validity condition is application specific and must be
overridden, while other supporting code can be reused.
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Fig. 19. Reduction Compared to Java

Figure 18 shows the code size for the different techniques and code bases. Figure 19
shows the reduction in size compared to Java. Almost all of the reduction is obtained
in the domain model, which takes up 70% of the software. The other 30% consists of
input and output algorithms.

Both figures clearly show that our inheritance mechanism results in a much bigger
reduction than the other mechanisms. The difference is caused by the additional over-
head mentioned above. Manual delegation and code inheritance in SmartEiffel reduce
the size much less than our mechanism, but are still a big improvement over the Java
version. Using Reppy traits, however, the code size even increases. The additional get-
ter and setter methods – traits cannot contain state – cause so much additional overhead
that the application becomes even bigger than the original Java application.

An important result is the impact of adding functionality that is not overridden in the
application. Adding support for sending events requires no modification of the version
using our inheritance mechanism. The renaming parameters, component parameters,
and indirect inheritance avoid the need for additional code if all methods and variables
added to the default group contain existing renaming parameters. With the other
techniques, code must be added to the applications for renaming clauses, manual dele-
gations, dependency methods, or state encapsulation. The more functionality is offered
by the component, the more modifications are required by other techniques. This is a
very important practical result. It shows that the developer of a component can usually
add functionality without breaking client code if it is not added to the default group
or if it uses renaming parameters. In addition, he can now provide lots of functionality
without putting a huge burden on his clients.

Another important result shows up if validation is added to the associations, and
specific validation rules are implemented in the applications. The version using our
inheritance mechanism is the only one in which less code must be added than in the
Java version, as shown by the gradients in the right part of Figure 19. This means that it
is still beneficial to reuse small components, or small parts of bigger components, using
our inheritance mechanism. Using the other techniques, the additional overhead makes
reuse unattractive in these scenarios.
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6 Related Work

In [28], Odersky and Zenger identify three scalable component abstractions for re-
moving hard references from components to increase their reusability: abstract type
members, selftype annotations, and modular mixin composition. Abstract type mem-
bers and selftypes specify the required services of a component, and mixins perform
the composition. But while these abstractions are scalable with respect to the size of
the components, they are not scalable in the way components are used. The problem
is that both selftypes, and mixins as used in Scala, prohibit any composition involv-
ing multiple components of the same kind, or components containing features with the
same name. Despite the claim that these abstractions can lift an arbitrary assembly of
static program parts to a component system, they already fail for our simple example
application, which is little more than an assembly of four kinds of static program parts.
The authors argue that nesting of classes is essential because otherwise, the amount of
wiring would become substantial. This contradicts our findings. In this paper, we built
an application using components without using nested classes. So while nested classes
provide certain benefits, they are not a requirement for component composition.

In [44], we introduced anchored exception declarations to remove hard references
from the exceptional specification of a component. They allow the exceptional speci-
fication of a method to be declared relative to other methods. This increases both the
adaptability and reusability of code using checked exceptions. In the context of this
paper, they allow a component to specify its exceptional behavior in terms of the ex-
ceptional behavior of its dependencies. As a result, the compiler can determine more
precisely which exceptions can be thrown for a particular composition.

In [3], Bierman and Wren present a language construct for first-class full-blown rela-
tionships. A similar construct is advocated by Rumbaugh in [33]. With our inheritance
mechanism, it can be replaced by a library of classes. In this paper, we used relation-
ships without attributes, but classes for full-blown relationships can be built on top of
them. An example implementation is given in the technical report [46]. Another lan-
guage construct that can be replaced by a class are C# events [13].

In [31], Pearce and Noble provide support for relationships using AspectJ [20]. The
authors offer a library of relationship aspects, similar to our association components,
which are inserted into the application using a point-cut for each relationship in the
model. Support for static relationships – relationships that are part of the participating
classes – is limited because name conflict for the introduced methods and fields cannot
be resolved. As such, AspectJ cannot be used to create and reuse abstract data type
components. An advantage of the approach is that components can be added externally
to existing classes, but using a form of higher order hierarchies as in [29,30,14,27,28],
this can also be achieved with an object-oriented approach.

In the 1997 version of Eiffel [25], the inheritance relation is used both for subtyping
and code inheritance. It is possible to duplicate features when inheriting more than once
from the same class, which is confusing for subtyping. The resulting diamond prob-
lem for repeated inheritance is often considered to make the language more difficult
[4,34]. In addition, a subclass can use covariant argument types for a method, or even
remove features, which makes a whole program analysis required to ensure type safety.
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In SmartEiffel 2.2 [9] and the new Eiffel specification [42], the inheritance mechanism
has been extended with non-conforming inheritance. In SmartEiffel 2.2, duplication of
features and narrowing their visibility is no longer permitted. Using covariant argument
types, however, remains possible. SmartEiffel ensures type-safety by type-checking the
code of an inserted class in the context of the inheriting class, but this violates the mod-
ularity principle. Because sharing is the default policy for the insert relation, accidental
merging of components is possible.

Timor [19] and Sather [40] separate types and classes, and the relations between
them. Types can inherit from multiple other types. Classes can include other classes
for code inheritance, and they can implement types. Timor further uses named subtyp-
ing relations [19] to support repeated inheritance. We think it is very confusing for an
object to be 1.9 times a CassettePlayer, as in their example. They also use the
inheritance names to disambiguate conflicting names, but for reusing components this
approach is not practical. A severe problem with their mechanism is that name conflicts
are automatically resolved by removing direct access to the involved methods. As a re-
sult, adding a subtyping relation, or even adding a method to an inherited type can break
existing clients without even a warning because conflicts can be introduced. Timor also
has support for reuse variables. Features of the classes referenced by such variables are
inherited if they are needed for the types implemented by the class. If they are not in-
herited, however, they are not available to clients since they are not part of the types via
which the class can be used. The mechanism can be seen as delegation-by-value. Reuse
variables also reduce the dependency of the implementation of a class on its hierarchy,
but the authors do not present this insight.

Traits [35] not only use a separate relation for code inheritance, but also a separate
concept – a trait – for a set of methods that can be reused via code inheritance. Unlike
traits, we do not have a separate concept to represent a component, it is just a class.
If the component relation could only be used with special building blocks, unantici-
pated reuse would be impossible. On top of that, programmers must deal with an extra
concept which is just a degenerate abstract class. Another motivation for our choice is
the possibility to instantiate components. We see no reason to forbid a programmer to
create an object that represents a bounded value. In addition, classification of charac-
teristics is necessary. To reuse almost any kind of association, it is necessary to create
a hierarchy of association classes. The relation between classes capturing choices like
mutability and arity, and the class Association is a subtyping relation, not just a
code inheritance relation. Methods inherited via traits automatically override methods
inherited from classes although there is no relation between them. This form of struc-
tural subtyping can lead to bugs that are hard to find. In addition, dependencies of traits
must be resolved individually, and repeated trait-inheritance is not possible. As such,
traits allow far less code reuse than our inheritance mechanism.

In [32], Reppy and Turon present trait-based metaprogramming. They add renaming
and hiding to traits to allow using a trait more than once in a class. Similar to SmartEif-
fel, name conflicts and dependencies must be resolved one at a time. But because traits
cannot contain state, the overhead is larger than in SmartEiffel.

Languages like CLOS [12], most mixin-based [4] languages like Scala [28], and
many others use linearized multiple inheritance. The linearization of the class
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hierarchy, however, complicates its use [37,8,35]. It is not possible to determine the
meaning of a single inheritance relation of a class without looking at the others be-
cause some of its methods may be overridden by methods of other classes that happen
to have the same name. This makes it easy for methods to be overridden by accident
[37]. Repeated inheritance, which is required for composition of classes is impossible
in these languages. The abstract super class of a mixin, however, allows for reusable
refinements, which cannot easily be created using our approach.

Cecil [6] supports multiple inheritance. Repeated inheritance, however, is forbidden,
and name conflicts result in compilation errors. The language uses properties for in-
stance variables, making it possible to override them. Subtyping and code inheritance
relations can be used both separately or combined.

In Self [8], inheritance relations are given a priority. For relations with identical pri-
orities, name conflicts result in an error. For relations with different priorities, conflicts
are resolved automatically by inheriting the feature of the relation with the highest pri-
ority. The Sender Path Tiebreaker Rule resolves additional conflicts by giving priority
to methods within the same inheritance path in case of ambiguities. Renaming is not
supported. Directed resends do not increase the dependency between the implementa-
tion and the inheritance hierarchy because they are sent to named slots, which is very
similar to using named inheritance relations.

C++ [39] has limited support for repeated inheritance. A class cannot inherit from
the same base class more than once, making it unsuitable for building classes from
components. In addition, it has no support for renaming, forcing clients to resolve name
conflicts. The language supports separation of subtyping and code inheritance through
public and private inheritance.

Some design patterns can benefit from the component relation, but most cannot.
Patterns that require the introduction of certain methods benefit from using a component
for each of the participants. Examples are composite, singleton, observer, and memento.
Frequently used template method patterns, such as patterns for caching and locking, can
also be captured in a component. The visitor and iterator patterns benefit from the use
of association or relationship components which provide navigation methods. The state
and adapter patterns cannot currently benefit from our approach because the component
would have to be interchangeable at run-time as in Darwin and Lava [21].

A split object [2] consists of a collection of pieces. Pieces represent particular view-
points or roles of the split object, and are organized in a delegation hierarchy. Unlike
the split object, however, pieces have no identity. Invoking methods is done by select-
ing a viewpoint to send the message to. The main difference with our approach is that
component relations are used to build an abstract data type, whereas pieces are used
to model different viewpoints on an object. This difference in purpose results in addi-
tional technical differences. The hierarchies of both approaches have an opposite order
with respect to overriding. For pieces, the leaves are the most specific parts, whereas
for component relations, the root – the composition – is the most specific part. In addi-
tion, features in pieces cannot be merged, whereas features inherited through different
component relations can be merged. Finally, pieces are added dynamically, whereas
component relations are declared statically.
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7 Future Work

An important task is to finish our compiler and create a library of reusable components.
These include, but are not limited to, a hierarchy of association classes allowing choices
like multiplicity, value or reference semantics, mutability, constraints. With these asso-
ciations, graphs can be built to reuse any iteration over an object structure.

The error handling strategy of a class is fixed at this moment. For example, class
BoundedValuemust choose how to deal with invalid input: use preconditions, throw
exceptions, or provide a default behavior. That means that to provide all choices to
an application developer, we need three versions of the same characteristic. It would be
more interesting to have a single version that provides a number of strategies for dealing
with errors, and allowing the application developer to choose one.

8 Conclusion

We have shown that current object-oriented programming languages do not offer the
abstraction level required to use general purpose classes as building blocks for other
classes in a practical manner. This prevents a developer from reusing high-level con-
cepts like associations, bounded values, and graphs.

We showed which features are required to encapsulate and reuse such concepts, cat-
egorized them, and showed how current reuse mechanisms support them. We then inte-
grated those features in a new inheritance mechanism.

Our inheritance mechanism is the first to make this kind of reuse practical. By using
renaming parameters and making component relations first-class citizens, we eliminate
the problems encountered with existing mechanisms. They allow a programmer to eas-
ily exploit name patterns, connect components, provide both a simple class interface
and lots of functionality, and use components as if they were separate objects. Together,
these improvements raise the abstraction level of the programming language, since it is
no longer required to create a new language construct or write lots of low-level code to
reuse a high-level characteristic. Of course, the component relation can also be used for
traditional code inheritance as used in traits, SmartEiffel, and Cecil.

The case study confirms that our inheritance mechanism yields much better results
(21% to 36% reduction) than other inheritance mechanisms (3% to 12% reduction),
and delegation (11% to 17% reduction). It also shows that our inheritance mechanism
is more robust with respect to extensions of components. In addition, it is still benefi-
cial to reuse small components, or small parts of big components with our inheritance
mechanism, contrary to the other techniques.
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“Architecture is the fundamental organization of a system, embodied in its com-
ponents, their relationships to each other and the environment, and the principles
governing its design and evolution” - ANSI/IEEE Std 1471-2000.

Getting the architecture of a software system right is increasingly recognized
as crucial to that system’s success. Effective software architects must not only
make appropriate architectural decisions, but also assure that the final system
correctly embodies those decisions. This task is especially difficult for object-
oriented systems, for two reasons. First, much of software architecture’s design
terminology derives from hardware circuit diagrams, which might be a reason-
able match for C programs but are a far cry from today’s highly dynamic ob-
ject architectures. Second, the same facilities that make object-oriented software
robust and flexible—dynamism, aliasing, inheritance, and reentrancy—greatly
complicate the assurance of architectural properties.

This talk explores architectural abstractions for object-oriented programs, and
approaches for recognizing and assuring those abstractions in object-oriented
code. Studying a number of real-world systems and frameworks provides in-
sight into what kinds of structural and behavioral properties are important in
object-oriented architectures. I will discuss how common approaches to assuring
software architecture, while successful in other settings, are often incompatible
with essential object-oriented architectural practices. Overcoming these incom-
patibilities requires new abstractions both for expressing and assuring software
architectures. Several recently developed abstractions show promise in captur-
ing architectural design intent, but a number of challenges to realizing the full
potential of object-oriented architecture remain.
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Abstract. Aspect-oriented advice increases the number of places one must con-
sider during reasoning, since advice may affect all method calls and field ac-
cesses. MAO, a new variant of AspectJ, demonstrates how to simplify reasoning
by allowing programmers, if they choose, to declare limits on the control and heap
effects of advice. Heap effects, such as assignment to object fields, are specified
using concern domains—declared partitions of the heap. By declaring the con-
cern domains affected by methods and advice, programmers can separate objects
owned by the base program and by various aspects. When desired, programmers
can also use such concern domain annotations to check that advice cannot inter-
fere with the base program or with other aspects. Besides allowing programmers
to declare how concerns interact in a program, concern domains also support a
simple kind of semantic pointcut. These features make reasoning about control
and heap effects easier.

1 Introduction

Serve the People!1

Aspect-oriented software development [13] (and its conjugates such as subjectivity,
generative programming, Model-Driven Architecture and so on) are changing the way
programs are structured. Rather than a program being a hierarchy, with each module or
class defined in one place, a program becomes a heterarchy, where multiple crosscutting
aspects contribute to the definition of multiple components. Aspect-oriented designs can
help increase cohesion by reducing code scattering and tangling. This can positively af-
fect a system’s maintainability; each crosscutting concern can be dealt with in a single
module, making it much easier to change the policies that govern that concern.

In this paper we describe Modular Aspects with Ownership, MAO, a variant of As-
pectJ 5 that helps programmers state and enforce restrictions on control and heap ef-
fects. Control effects are caused by advice that perturbs the program’s control flow.
Heap effects are modifications to object fields. Giving programmers the ability to state
and enforce restrictions on these effects allows more effective reasoning in MAO than

1 Mao Tse-tung’s quotes are from http://art-bin.com/art/omaotoc.html . Use of these quo-
tations in no way indicates our approval of Mao or his actions.

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 451–475, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://art-bin.com/art/omaotoc.html


452 C. Clifton, G.T. Leavens, and J. Noble

is generally possible in aspect-oriented languages such as ApsectJ. By “reasoning” we
mean both informal checks, including desk-checking of code, and formal proofs.

MAO makes the following contributions:

1. Surround Advice. We introduce surround and curbing advice annotations that
allow programmers to declare that their advice makes no (or limited) changes to
the advised control flow. Surround advice can be used in spectator aspects to ensure
they do not perturb the control flow of the base program [7, 9].

2. Concern Domains. We use a shallow ownership type and effect system [2, 5] to
identify explicitly the concerns that own each object or aspect in the program. Pro-
grammers and tools can inspect the domain declarations and so statically determine
how an aspect will interact with objects, or if two aspects may potentially interfere.

3. Writes Pointcut Designator. We introduce a new semantic pointcut designator,
writes, which uses the ownership and effect system to provide a robust declaration
for advice that matches all join points that may modify a particular concern domain.

4. Spectator Aspects. We state precise conditions on spectator aspects [7, 9]. Spec-
tator aspects write only their own concern domains and use only surround advice,
ensuring that they cannot affect the observable behavior of any other aspect or class
in the program.

MAO’s design is supported by MiniMAO3, a formal model of MAO. The full details
of MiniMAO3 are described within Clifton’s dissertation [7], including details we omit,
such as a proof of type soundness and an ownership invariant for concern domains.

The paper proceeds as follows: The next section briefly presents the problem. Then,
we informally introduce our solution with three sections describing the design of MAO.
We give a high-level overview of our formal results and discuss a practical evaluation
of our work. Finally, we conclude with a comparison to related work.

2 A Tale of Two Aspects

New things always have to experience difficulties and setbacks as they grow.

The key problem this paper addresses is reasoning about whether one module (class,
method, aspect, advice) may potentially affect the behavior of another module. This is
especially interesting for aspect-oriented programs, since interference among aspects
and between aspects and other code can be quite subtle. Consider the venerable aster-
oids game [3]. The positions and vectors of a spaceship and some asteroids are managed
by an N-body simulation — the spaceship can be influenced by player input. A Model
class runs the simulation and stores spaceships, asteroids, missiles and so on.

Adding a user interface to this game is done with the OutputWindow aspect in Fig. 1.
This aspect’s advice runs after the simulation updates, when it reads data from the
model, and then updates its output window. Reasoning about this aspect requires some
assumptions that are not explicit in its code.

First, suppose we want to find control effects of the OutputWindow aspect. A control
effect is a perturbation of the program’s flow of control, such as throwing an excep-
tion, or stopping the call of a method. Since this aspect uses after advice, it does not
seem to have any control effects. But that reasoning is not sufficient — we also have to
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aspect OutputWindow {

private SpacewarWindow w = new SpacewarWindow();

after(Model m): target(m) && (call(void Model.set*())
|| call(void Model.moveShip())

|| call(void Model.updateAsteroids())) {
w.reset();
Spaceship s = m.getSpaceship();

w.drawSpaceship(s.getX(), s.getY(), s.getHeading());
for (Asteroid a : m.getAsteroids()) {

w.drawAsteroid(a.x, a.y, a.size); }

w.update();
}}

Fig. 1. The OutputWindow aspect

determine that the advice will not throw an exception that may affect the continuation
of the program after the advice returns. This requires determining what exceptions can
be thrown by the methods called in the advice, which are not explicit if the code calls
methods that can throw unchecked exceptions.

Second, suppose we want to find the heap effects of the OutputWindow aspect. A
heap effect is an assignment to some object fields.2 The advice has no direct assign-
ments to object fields, but we must also determine the potential side effects of the
methods it calls. Methods like reset presumably have heap effects, and methods like
getSpaceship presumably do not, though in practice we would need to verify that.
Once we determine what method calls may have side effects the question becomes,
what objects are affected? It matters if the object affected is owned by the advice, such
as the window w, or not. In this case only w seems to be affected, but determining the
heap effects of methods is not obvious from the code.

Finally, to determine when the advice will execute, we must understand its point-
cut. The pointcut specifies when the display is to be updated. It does this by matching
methods that may change the state of the model. This is quite a large design-level de-
pendency on the program — we assume that the execution of any setter methods, plus a
couple of specific methods on the Model class (such as moveShip or updateAsteroids)
capture all effects on the model that need to be reflected. The problems with explicit
naming and syntactic patterns are well known [21, 30]. The core issue here is that the
pointcut specification is at the wrong level of abstraction. This advice should not match
“all calls where the first three characters of the method name are ‘set’, or where the
method is named moveShip or updateAsteroids”, instead what we need to express is:
“all calls to methods that may change the Model.” Such a heap effect dependency cannot
be expressed directly in AspectJ. While it could be expressed with XPIs [15, 31], the
XPI mechanism for expressing this is again an AspectJ pointcut, and does not provide
a way of checking that the methods in the pointcut accurately express the dependency.

We can compare the benign OutputWindow aspect with the Cheat aspect in Fig. 2 on
the following page. This aspect aims to override the collision detection function in the

2 Heap effects implicitly include I/O, since object fields are used to represent I/O devices.
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program, so that when the player’s Spaceship hits something the collision is ignored
and the ship’s shields are activated, rather than the ship being destroyed and the player
losing! Compared with the OutputWindow aspect there are three main differences. First,
the aspect certainly has control effects: the around advice may return “false” rather than
calling proceed. Second, by looking at the code of raiseShields we could determine
that the advice also has heap effects on objects in the base program. On the other hand,
the pointcut in this aspect — which matches calls to the collision method — is not
expressing a heap effect dependency: it simply picks out a single method’s execution.

aspect Cheat {
boolean around(Model m, Thing one, Thing two) :

call(boolean Model.collision(Thing,Thing)) && target(m) && args(one,two) {

if ((one == m.getSpaceship()) || (two == m.getSpaceship())) {
m.getSpaceship().raiseShields();
return false;

} else { return proceed(m, one, two); }
}}

Fig. 2. The Cheat aspect

These two aspects illustrate the three problems we address in this paper:

1. How can programmers find the control effects of advice?
2. How can programmers find the heap effects of advice?
3. How can programmers select join points according to their effects on the heap?

MAO provides solutions to each of these problems: control-limited advice mitigates
control effects, concern domains describe heap effects, and effect pointcut designators
select join points according to their effects on the heap. Compared with other work,
MAO is designed as an extension to AspectJ, rather than as a more idealized AO lan-
guage [11], and relies on types and annotations that can be checked locally, rather than
global control and dataflow analyses [19, 29].

3 Control-Limited Advice

We cannot do without freedom, nor can we do without discipline.

The first problem we address is how to make finding the control effects of advice easier.
All kinds of advice in AspectJ can cause control effects directly by throwing excep-
tions. (However, we do not consider errors, which inherit from Error, to be exceptions.
Since errors indicate failures of the virtual machine, they are outside the scope of our
analysis.) Around advice can also perturb control flow by not calling proceed, or by
calling it several times. It is also convenient to consider changing the result returned by
a computation (in around advice) to be a control effect. In AspectJ one can also change
the target (receiver) object in a method call with around advice, which causes a control
effect. The Cheat aspect in section 2 has two kinds of control effects, since it does not
call proceed in some cases, and in those cases it supplies a new return value.
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MAO allows programmers to declare that a piece of advice (or a whole aspect) has
no control effects, or that those effects are limited to exceptional cases. We call such
advice control-limited advice. MAO has two annotations for declaring that a piece of
advice is control-limited: @surround and @curbing.

Advice marked with @surround has no control effects. When invoked in a particular
state, @surround advice will proceed to the same join point, with the same arguments,
and return the same value or throw the same exception, as it would in absence of the
advice. (Note that this allows extra join points to be introduced, both within the advice
and within the advised code.) For example, the advice in the OutputWindow (Fig. 1
on page 453) could have been declared using @surround, but not the Cheat aspect (of
Fig. 2).

Advice whose only control effects are potentially to throw one or more exceptions
that would not have been thrown otherwise can be marked with the @curbing annota-
tion. Curbing advice can stop control flowing through a join point, but cannot augment
it or change it in any other way. Curbing advice can be used, for example, to check
authorizations or preconditions. The @surround and @curbing annotations can also be
applied to entire aspects: thus requiring all their advice to be curbing or surrounding.

MAO uses simple desugarings and conservative criteria to modularly check that ad-
vice declared as control-limited actually is control-limited. These checks work differ-
ently for different kinds of advice.

For before and after advice annotated with @surround, MAO translates the advice
body in such a way that all exceptions that might potentially be thrown out of their
bodies are caught and discarded. The user does not have to write code to catch these
exceptions, though she certainly may. But MAO automatically places the body inside a
statement of the form “try /∗body∗/ catch (Exception e) { ; }”, which discards
all exceptions that might otherwise perturb the control flow.

Since around advice is inherently more powerful, it requires stronger checks. MAO
checks that the advice has a body that is the sequential composition of a before part, a
top-level call to proceed, and an after part that returns the result of the call to proceed
(if any). No call to proceed may occur in either the before or the after part. MAO
statically checks that surround advice always proceeds exactly once to the advised join
point, unless the before part fails to terminate (e.g., loops forever). MAO automatically
translates the before and after parts, as above, to automatically discard exceptions that
occur in the code before and after the mandatory proceed call. Because the call to
proceed is at the top-level, exceptions from the call to proceed cannot be caught; they
must be propagated up the call stack as they would be in the absence of the advice.
Fig. 3 on the following page gives an example satisfying the restrictions.

MAO checks that any arguments passed to the join point are always the original
arguments and that the original arguments are declared to be final and @readonly (see
Sec. 4.4), so surround advice cannot mutate the arguments and cannot pass along new
arguments. The result returned from executing a piece of surround advice must be (if
the return type is not void) saved in a final, @readonly variable named reply, and must
be returned at the end of the after part. The after part expression has read-only access
to reply. From these restrictions it follows that the before and after parts of surround
advice are evaluated solely for their heap effects. Another way to think of such around
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@surround Object around() : call( Object *(..) ) {

// before part
int event_no = Logger.nextEventNumber();
this.log.append("before" + event_no);

// mandatory proceed to advised code
@readonly final Object reply = proceed();

// after part
this.log.append("after" + event_no + "reply:" + reply);
return reply;

}

Fig. 3. Example of @surround for around advice

advice is as paired before and after advice, where the before part can declare variables
that the after part can access.

Checks on @curbing advice also differ depending on the advice type. Before or after
advice declared to be @curbing is unchanged from AspectJ, since control effects that
cause exceptions are permitted. Around advice that is declared to be @curbing must
satisfy all of MAO’s checks for @surround advice, but does not have exceptions that
arise in the before and after parts automatically caught and discarded. In particular it
must have the form illustrated in Fig. 3, so that it proceeds exactly once (unless the
before part throws an exception).

Control-limited advice makes reasoning about aspect-oriented programs easier in
three ways. First, by declaring a piece of advice as @surround or @curbing, program-
mers can express guaranteed limits on the control effects of their advice. MAO can
ensure an advice’s implementation matches the annotations on its declaration with an
efficient, local analysis. The straightforward tests required — and the error messages
MAO will produce if advice does not meet the conditions — should be easily com-
prehensible by programmers. Because the syntactic conditions can be checked locally,
requiring only the code of the advice, changes to other parts of the program will not
affect whether a particular piece of advice is surrounding or curbing.3

Second, because @surround and @curbing annotations are part of the interface of
advice, programmers can immediately tell, by examining that interface, whether the ad-
vice does perturb the existing control flow. Thus when reasoning about control effects,
one can simply ignore @surround advice. Furthermore one only has to look at @curbing
advice in reasoning about exceptions; when reasoning about other kinds of control flow
perturbation, one can also ignore @curbing advice.

Third, on a larger scale the search for control effects can be limited to non-spectator
and non-surround aspects, since only such aspects may contain non-@surround advice.
All of these represent some modest gains in effectiveness of reasoning.

3 Of course, other advice that is not control-limited can cause control effects that occur at join
points within control-limited advice. However, those control effects can be blamed on the
advice that is not control-limited; that is, if all advice in a program is control-limited advice,
then no control effects will affect the base program code.
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4 Concern Domains

Qualitatively different contradictions
can only be resolved by qualitatively different methods.

To identify the heap effects of advice and ease reasoning about interference among
and between aspect and base program code, MAO uses an ownership type-and-effect
system we call concern domains. As with other ownership and confined type systems
[2, 4, 12, 24, 27] concern domains require programmers to identify objects with a par-
ticular owner — in this case, a particular concern domain. For this reason, concern
domains partition the program’s heap, and so help answer the question of what object
fields may be read and written by a piece of advice.

4.1 Declaring Concern Domains

Concern domains themselves are declared by classes or aspects. Unlike many owner-
ship systems (but more like confined types [32]), concern domains are static: a particular
system configuration will have a fixed set of concern domains. Following Generic Con-
finement and Generic Ownership, we reify domains using inert marker classes [27, 28].

Programmers explicitly declare concern domains by declaring an empty, final class
that implements the interface Domain. Explicitly declared domains may be either pub-
licly available, or may be private to a class or aspect [2]. To keep them static, however,
they cannot be inner classes, although they can be static, nested classes.

Each concrete aspect implicitly defines a concern domain; that is the name of a con-
crete aspect can be used as a concern domain. This is appropriate because each such
aspect is often associated with a concern in a well-designed program. Note that all
instances of a particular non-singleton aspect, such as instances created per-cflow, all
share a common concern domain. This sharing does not cause problems for MAO’s
effect analysis, though it does make it coarser.

MAO’s concern domain World owns all objects not owned by other domains.

4.2 Using Concern Domains

Every object creation expression names the new object’s owner, which may be a public
concern domain, or a private one visible in the class (or aspect) instantiating the object.
The ownership domain of every expression is statically tracked by the ownership type
system, and objects owned by private domains are inaccessible outside the scope of
those private domains (i.e. the class or package declaring the private domain).

The types of objects in the program can be annotated to describe the concern domains
to which they belong. Classes and abstract aspects can be made ownership-parametric
— in class and abstract aspect declarations a list of concern domain variables are given
following the class or aspect name. The first concern domain variable listed, typically
called Owner, represents the owner domain for instances of the class or aspect, that is,
the domains to which they belong. Other concern domain variables allow referencing
objects in other domains.

For example, the following code shows how the Model class could be defined with a
domain parameter named Owner. The Spaceship and Vectors of Asteroids within Model
are all stored in the same domain (Owner) as the Model object containing them.
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class Model<Owner extends Domain> { /∗ ... ∗/
private Spaceship<Owner> s = new Spaceship<Owner>();
private Vector<Owner,Asteroids<Owner>> v =

new Vector<Owner,Asteroids<Owner>>();

}

Then we declare a new concern domain MODEL and in it allocate a new Model instance.

final class MODEL implements Domain {}
static Model<MODEL> myModel = new Model<MODEL>();

Thanks to the field declarations in the Model class, a new Spaceship and Vector are also
instantiated in the MODEL domain.

Instances of classes declared without domain annotations are owned by World.

4.3 Concern Domains and Aspects

As with classes, MAO aspects require ownership parameters to give them access to con-
cern domains. Because MAO extends AspectJ 5, generic (and hence abstract) aspects
cannot be instantiated directly, rather a concrete aspect extends the generic aspect while
instantiating the generic aspect’s type parameters. Thus, a concrete aspect cannot have
ownership parameters (or any other type parameters), rather, the concrete aspect binds
parameters of a generic aspect from which it inherits. Finally, so that aspects can have
their own private data, each concrete aspect has its own domain, and the name of the
concrete aspect is the name of that domain.

We rewrite the OutputWindow example (compare Fig. 1) in Fig. 4 on the next page,
using the ownership type parameter Owner for the aspect’s own concern domain, and
parameter Other for the type of the exposed context m.4 Note how the ownership types
describe the concern domains to which each variable or argument must belong. For
example the private field w belongs to the same concern domain as the aspect (its Owner)
while the model m is in the Other domain. To use this aspect, we instantiate it by making
a concrete aspect, binding the domain variables:

aspect ConcreteOutputWindow extends OutputWindow<ConcreteOutputWindow,MODEL>{}

the Owner variable is bound to the aspect’s domain, and the Other variable to the MODEL
domain. The Other domain could alternatively have been bound to any (public) domain
in the program, including the default World domain, or a public domain belonging to
another aspect (to support mutually-crosscutting aspects).

4.4 Effect Declarations

Concern domains and domain parameters separate expressions owned by different do-
mains via their types: within the annotated OutputWindow aspect, we know which ex-
pressions belong to the aspect (concern domain Owner) and which to the base program
(Other). To track aspect interference, we also need to determine when a method or ad-
vice execution may have a potential heap effect on the fields in a particular domain. For

4 AspectJ 1.5.3 does not allow Other to be used as a type parameter in advice formals and PCDs.
We leave compilation techniques that overcome this limitation as future work.
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@readonlyDomains({"Other"}) @depends({ @varies({"Owner", "Other"}) })

abstract aspect OutputWindow<Owner extends Domain,
Other extends Domain> {

private SpacewarWindow<Owner> w = new SpacewarWindow<Owner>();

@curbing @writes({"Owner"})
after(@readonly Model<Other> m):

target(m) && call(void Model<Other>.*()) && writes(Other) {

w.reset();
Spaceship<Other> s = m.getSpaceship();
w.drawSpaceship(s.getX(), s.getY(), s.getHeading());

for (Asteroid<Other> a : m.getAsteroids()) {
w.drawAsteroid(a.x, a.y, a.size); }

w.update();

}}

Fig. 4. The OutputWindow aspect with annotations

this we augment the ownership type system with effects [5]. The basic effect annota-
tions are @writes, which is attached to method and advice declarations, and @readonly,
which is a type modifier.

The @writes annotation declares the concern domains that a particular method or
piece of advice can potentially mutate. Due to limitations of Java 5 annotations, this
annotation contains an array literal, with a comma-separated list of strings naming con-
cern domains or parameters. For example, the advice in the above example is allowed to
write into the Owner domain (which will be the ConcreteOutputWindow domain in that
concrete subaspect). Since Other is not named by this @writes annotation, however,
the advice is not allowed to write that domain—or MODEL in the concrete subaspect.
(Due to the inherent differences in how one reasons about methods, which are explic-
itly called, and advice, which is triggered implicitly, we do not consider the effects of
proceed as belonging to the effects of the advice. These effects do play a role in domain
dependencies discussed below).

The @readonly annotation applies to types. Read-only fields and parameters can-
not be written into, although they can be read from. For example, the model m in the
above example is read-only, and hence the advice cannot mutate any field of an object
reachable through that reference — so @readonly is transitive.

As a shorthand, a method (or piece of advice) can be annotated with @pure, meaning
that all of its parameters (or variables in an advice’s exposed context) are read-only. It
is an error for a @pure method (or advice) to have a @writes annotation.

The programmer declares an ownership parameter of a class or aspect to be read-only
using the @readonlyDomains annotation; this annotation is then effective wherever that
parameter is used.5 Such a read-only concern domain cannot be mentioned in a @writes
annotation, making the whole concern domain read-only within the scope of that own-
ership parameter’s declaration. If a method or advice has no @writes annotation, then
by default it can write to any non-read-only concern domain in scope.

5 Planned Java enhancements (JSR 308) will allow @readonly annotations on type parameters.
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In Fig. 4, for example, the advice is annotated @writes("Owner") because it writes
to the output window, which is allocated within the aspect’s own concern domain. The
important point is that the Other domain — representing the base program holding
the model — is a read-only domain, to which the aspect cannot write. In this way, the
effect annotations let programmers make their intentions clear and checkable. (The fact
that the Other domain is read-only means that the @readonly annotation on m’s type is
actually redundant in this example).

Programmers using MAO can state their intention in another way also. In Fig. 4, the
@depends annotation on the aspect says that the Owner domain is allowed to vary when-
ever Other may. This dependency declaration allows the after advice in the example to
mutate the Owner domain while advising methods that mutate the Other domain. This
dependency is used both to check the @writes annotation on the advice and to reason
about potential effects without considering the internal details of the advice.

The effect annotations illustrate a key benefit of MAO’s ownership types: by inspect-
ing only the aspects and their annotations, we can be sure that OutputWindow does not
change any object owned by the base program. MAO’s type system enforces a non-
interference property so that a static, signature-level search can identify all the code
that might mutate a particular concern domain. By “static” we mean that the search can
be confined to areas of the program where the concern domain in question is visible,
either because it is directly visible or because it was passed as a domain parameter. By
“signature-level”, we mean that only method and advice headers, and not their bodies,
must be considered. In fact, if a programmer is just concerned about the effects of as-
pects on a method call, she can consider just the headers of aspects apart from their
advice. Thus MAO statically identifies code tangling, based on a separation of concerns
defined by the programmer.

Finally, we can combine concern domains with the control-limited advice from
Sec. 3 to define spectator aspects [10]. A @spectator aspect contains advice that
is (implicitly) @surround, all ownership parameters other than Owner are (implicitly)
@readonly, and the concrete concern domain used to instantiate a spectator aspect can-
not be shared. Thus, a spectator aspect concisely specifies advice that has no control
effects, and whose heap effects are confined within the aspect’s own concern domain.
In Sec. 6, we formally show that spectator aspects do not cause heap interference. Since
lack of control effects is direct from the definition of @surround advice, spectators do
not affect the execution of the base program in any way.

4.5 Annotating Base Code

We consider that annotating aspects with ownership types and effects is a necessary
price to pay for the tighter granularity of reasoning.

An important advantage of AOP, however, is that aspects can be attached to base
code that is oblivious to the aspects, that is the base code should not need to be changed
to have aspects applied to it. Thus it will often be infeasible to annotate preexisting
base code. MAO’s World domain, and the default that instances of unannotated classes
are owned by this domain, offers a broad brush solution to this problem. Because all
objects created in the base program are owned by World, the base program still type
checks. Despite the coarseness of the World domain, MAO still has more than enough
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information to separate base program objects from objects belonging to aspects, as the
OutputWindow example above illustrates.

5 Effect Pointcut Designators

If you want knowledge, you must take part in the practice of changing reality.

To select join points according to their effects on the heap, MAO introduces a new kind
of pointcut designator (PCD), writes. It allows programmers to use concern domain
declarations to refine their aspect’s pointcut definitions. We call this PCD an effects
PCD, as it matches join points with heap effects on a given concern domain. Unlike
AspectJ set and get PCDs, which describe heap effects and accesses syntactically (in
terms of concrete field names or patterns), effects PCDs describe effects semantically
(in terms of concern domains). Another difference is that they can work at the level of
methods and advice, instead of just at the lower level of individual operations on fields.

A MAO PCD of the form writes(D) expresses heap effect dependencies by match-
ing all join points that may write to concern domain D. MAO statically calculates the
heap effect of field sets based on the owner domain of the field type. MAO also stati-
cally calculates the heap effect of a method or advice, either from an explicit @writes
or @pure annotation, or from its default (see Sec. 4.4). Note that these PCDs do not de-
scribe method or advice call or execution join points that actually do write to a specific
concern domain, but to those that may possibly write to that concern domain.

For example, MAO’s writes PCD lets programmers express the heap effect depen-
dency implicit in Fig. 1 on page 453. Instead of saying that the call should be to meth-
ods whose name matches a method pattern (set*) or one of the two named methods
(moveShip or updateAsteriods), we can rewrite this PCD as in Fig. 4 on page 459,
using the Other concern domain:

target(m) && call(void Model<Other>.*()) && writes(Other)

Given that the set*, moveShip, and updateAsteriods methods and so on are anno-
tated with effects annotations, and that the OutputWindow aspect is instantiated with
an appropriate domain binding (see Sec. 4.3), then this pointcut will match exactly
the same methods as the previous explicit pointcut from Fig. 1. More importantly, if
there are other methods that are declared as writing the Other concern domain, this
pointcut will match those methods too. As the program evolves, if more methods are
added that write that domain, this pointcut will stay valid. Because the effect PCDs are
tied to the appropriate concern domain (MODEL which is bound to Other), these kind of
pointcut designators are more closely tied to the program’s semantics and can be auto-
matically checked. Automatic checking ensures they are maintained when the program
changes, unlike other, programmer-constructed pointcut abstractions, such as explicit
advice points from open modules [1] or design rules [15].

The main disadvantage of effects pointcuts is that currently they can only apply to
classes (and aspects) that have been annotated with concern domains and effect clauses.
Defaulting base programs to a single World domain — while very effective for separat-
ing aspects from unmodified based programs — is almost completely ineffective here:
we can assign all base program objects to a single domain only because that assignment
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is so indiscriminate. We expect that using a confined-types-style analysis [16] to assign
e.g., individual Java packages into their own domain, should make enough distinctions
to be useful in many cases.

6 Formal Model: MiniMAO3

When we look at a thing, we must examine its essence . . .

MiniMAO3 provides a formal model of MAO’s design, building on Clifton’s and
Leaven’s earlier formal model (MiniMAO1) that described around advice [8]. Space
constraints keep us from fully detailing MiniMAO3 here, but we aim to illuminate the
important issues. Clifton’s dissertation [7] provides full details of MiniMAO3.

6.1 The MiniMAO3 Language

The object-oriented core of MiniMAO3 is based on Featherweight Java (FJ) [18]. As
such, a MiniMAO3 program includes of a list of class declarations followed by an ex-
pression, which represents the main method in a Java program. Like FJ, class declara-
tions in MiniMAO3 contain a list of field declarations and a list of method declarations.

MiniMAO3 departs from FJ in several ways to support our study of heap effects
in aspect-oriented programs. As described in our earlier work on MiniMAO1 [8], we
use an imperative formal language with features from Classic Java [14]. Among other
things, this choice admits null values for fields, so we omit constructors from the lan-
guage. MiniMAO3 includes concern domain annotations on types and class declara-
tions. It also includes declaration forms that model MAO’s aspects, spectator aspects,
around and surround advice, domain dependencies, and ground concern domains.

Figure 5 gives the surface syntax of MiniMAO3. A program consists of a series of
declarations—of classes, regular aspects, and spectator aspects. These type declarations
are followed by a list of public concern domain declarations, like domain MODEL. The
public concern domains form the set of ground domains for the program and corre-
spond to MAO’s inert classes that implement the Domain interface. After the public
concern domain declarations, a program gives a list of aspect instantiation statements,
like use OutputWindow〈self,MODEL〉, that model MAO’s generic aspect instantiation.
In our formalism, all classes and aspects are polymorphic with respect to concern do-
mains. Class and aspect declarations give a list of concern domain variables, denoted by
the metavariable G in Figure 5. These variables are instantiated with ground domains
when the program is evaluated. The usual new expression instantiates a class; the new
use statement instantiates an aspect.

As mentioned, class and aspect declarations include a list of concern domain vari-
ables, 〈G∗〉, following the class or aspect name. The first concern domain variable listed
represents the home domain for instances of the class or aspect. The remaining vari-
ables are used to endow instances with permission to access objects in other domains,
like concern domain parameters in MAO. For spectator aspects, we always write self
as the first concern domain variable. This is a special variable that represents the private
concern domain of the spectator. Each spectator instance has its own unique concern
domain as in MAO. Only the spectator instance, and any objects it creates in self, may



MAO: Ownership and Effects for More Effective Reasoning About Aspects 463

P :: = decl∗ {domain∗asp∗e}

decl :: = class c〈G∗〉 extends c〈G∗〉 {field∗ meth∗}

| aspect a〈G∗〉 {dep∗ field∗ adv∗}

| spectator a〈self, G∗〉 {field∗ surr ∗}

field :: = t f;

meth :: = t m(form∗) eff {e}

dep :: = γ varies with γ;

adv :: = t around(form∗) eff : pcd {e}

surr :: = surround (form∗) : pcd {e; proceed; e}

eff :: = writes 〈γ∗〉
pcd :: = call(pat) | execution(pat) | writes(γ∗) | args(form∗)

| this(form) | target(form) | pcd && pcd | ! pcd | pcd || pcd

pat :: = t idPat(..)

form :: = t var , where var /∈ {this, reply}
e :: = new c〈γ∗〉() | var | null | e.m(e∗) | e.f | e.f = e

| cast t e | e; e | e.proceed(e∗)

t, s, u :: = δ∗ T 〈γ∗〉
δ :: = ε | readonly, where ε represents the empty string

T :: = c | a

γ :: = g | G | self

domains :: = domain g;, where g /∈ Gself

asp :: = use a〈g∗〉; | use a〈self, g∗〉;, where g /∈ Gself

G ∈ Gvar , the set of concern domain variable names

Gself = {selfloc · loc ∈ L} , the set of private concern domain names

g ∈ G ∪ Gself, where G is the set of public concern domain names

c, d, a, f, m ∈ I, the set of identifiers

var ∈ {this, reply} ∪ V , where V is the set of variable names

idPat ∈ IP , the set of identifier patterns

Fig. 5. Surface Syntax of MiniMAO3

write to this private domain. Furthermore, the spectator and its progeny may only write
to this domain. These restrictions are enforced by MiniMAO3’s static type system.

Like MAO, regular aspects in MiniMAO3 include dependency declarations. These
declarations allow an aspect to declare that one concern domain may be modified when
code is executed that might modify some other domain. This allows an aspect to modify
its own accessible concern domains, like a concrete output window, when advising code
that modifies another concern domain, like the model in our game example. We would
indicate this like ConcreteOutputWindow varies with MODEL. Dependency declara-
tions allow—thanks to the aspect instantiation instructions—a static analysis of what
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e :: = . . . | v | (l (e∗)) | 〈e〉δ,γ̂ | e � e

| joinpt j(e∗) | chain B̄, j(e∗) | under e

v :: = locδ∗ | nullδ∗

l :: = fun m〈var∗〉.e : τ � γ̂
τ :: = t× . . . ×t → t

t, s, u :: = . . . | �

γ̂ ∈ P(G ∪ Gvar ∪ Gself)

ĝ ∈ P(G ∪ Gself)

Fig. 6. Syntax Extensions for the Operational Semantics of MiniMAO3

domains might be modified by any operation. Spectator aspects do not include depen-
dency declarations, because we assume a spectator’s private concern domain can always
vary. But since objects not owned by the spectator cannot observe the private concern
domain, this mutability does not matter for reasoning.

The writes clause specifies all the concern domains that a method or advice decla-
ration may modify. The type system ensures that only these domains, and those transi-
tively reachable through dependency declarations, can be modified when the method or
advice executes. These features ensure that the modifiable domains for any operation
can be determined from a global “signature-level” analysis of the code, the bodies of
methods and advice need not be considered. The bodies are checked through local rules.

Spectator aspects may only include surround advice. Surround advice differs from
around advice by syntactically enforcing the restrictions described above for MAO’s
@surround advice. Note that in MiniMAO3, the proceed that separates the before and
after parts of surround advice is not an expression. It merely serves as a mnemonic
for the semantics of surround advice, which is to evaluate the before part, proceed to
the advised join point with the original arguments, evaluate the after part for its side-
effects, then return the value from the advised join point. The after part may use the
reserved variable reference reply to refer to the result of the advised code. Because of
this semantics no return type is declared for surround advice. Furthermore, surround
advice does not include a writes clause; every piece of surround advice implicitly
writes self and no other concern domains.

Types in MiniMAO3 have the form δ∗ T 〈γ1, . . . , γq〉, where δ is either readonly or
the empty string, T is a valid class or aspect name, and γ ranges over concern domain
variables and ground domains. Since readonly is idempotent, using δ∗ for multiple
such annotations lets us write readonly t to confer read-only status on any type t.

Other than including our new writes pointcut descriptor, the join point model for
MiniMAO3 is standard. Similarly, its expressions need no additional explanation.

6.2 Operational Semantics

Like most small-step operational semantics, that of MiniMAO3 relies on some addi-
tional syntax to represent intermediate states of computation. Figure 6 presents these
syntax extensions. We give the intuition behind these expressions here.

Two new expressions, locδ∗ and nullδ∗ , represent values. The meta-variable v ranges
over values. The store in MiniMAO3, denoted by S, maps locations, loc ∈ L, to objects.
Values carry a subscript δ∗ that denotes whether the reference is read-only.
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The other new expressions represent intermediate computation states. To model
method execution independently from method calls [8], we use a function application
expression, (l(e∗)), that represents a method and its operands. The meta-variable l
ranges over method representations. A context-sensitive translation converts method
declarations to more convenient method representations. For example, the declaration

boolean collision(Thing one, Thing two) writes 〈cache〉 { false }

inside a class Model is represented by

fun collision 〈one,two〉.false :
Model × Thing × Thing → boolean . {cache}.

Tagged expressions, written 〈e〉δ,γ̂ , propagate effect constraints through the seman-
tics (necessary for the soundness proof). In a tagged expression, the set γ̂ says which
concern domains may be mutated during the evaluation of e, and the subscript δ gives
the read-only status of any value that results from any (non-divergent) evaluation.

Leap expressions, written e1 � e2, represent intermediate evaluation of surround ad-
vice, with e1 representing the advised code and e2 the after part of the advice. The
semantics first evaluates e1, then e2 for its side effects, replacing any occurrences of
reply in e2 with the value of e1. The result of the whole expression is the value arrived
at from evaluating e1—the value of e1 “leaps” over the value of e2.

As in MiniMAO1 [8], joinpt, chain, and under expressions are used to represent
the intermediate stages of advice matching, execution, and proceeding to advised code.
A joinpt expression reifies a join point for advice binding. The meta-variable j ranges
over join points and records a join point kind and optional data including things like
the current this object, the method executing, and the writable concern domains in the
current context. The operational semantics also maintains a join point stack, a list of
join points that records dynamic context information needed for advice matching. The
join point stack is a formal analogue of the call stack information that can be matched
by AspectJ advice. A chain expression records the bodies of all advice matched at
a join point. The meta-variable B ranges over advice body representations. We elide
the details here, but it suffices to think of the advice body representations as like the
method representations in that they record all necessary context-sensitive information
about advice needed during evaluation. Finally, the operational semantics uses under
expressions to pop join points from the join-point stack when evaluation of the code
under the join point is complete.

The evaluation relation for MiniMAO3 has the form: 〈e, J, S〉 ↪→ 〈e′, J ′, S′〉. It
takes an expression, a join point stack, and a store and produces a new expression or
an exception, plus a new stack and a new store. The exceptional results, NullPointer-
Exception and ClassCastException, handle dereferencing null pointers and bad casts.

6.3 Static Semantics of MiniMAO3

The static semantics of MiniMAO3 checks the restrictions of the concern domains type
system, read-only annotations, and effects clauses.

Like Featherweight Java [18], a global class table, denoted CT , records all the
class declarations in a MiniMAO3 program. MiniMAO3 extends the class table to
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record aspect declarations as well. Additionally, an evaluation dependency table, DT ,
records the information embedded in the “varies with” dependency declarations, rei-
fied according to the aspect instantiation instructions. A dependency table is a re-
flexive, transitive relation on concern domain names and variables. It has the type
(G ∪ Gvar ∪ Gself) → (G ∪ Gvar ∪ Gself). Intuitively, for any pair of concern domain
names (g, g′) ∈ DT , code that is allowed to mutate g may also trigger mutation of g′.

We use the notation t � s to denote that the type t is a subtype of the type s. The
subtyping relationship starts with the reflexive and transitive closure induced by the
extends declarations of classes, with every type a subtype of ). To this we add a few
additional tweaks. A couple of these handle read-only objects: t � readonly t, al-
lowing writable objects to be passed where read-only ones are expected, but not the
converse; and t � s implies that readonly t � readonly s, allowing a read-only
object of a subtype to be passed where a read-only object of a supertype is expected,
which is necessary for subsumption. The other tweak handles concern domains: follow-
ing Aldrich and Chambers [2], a subtype must have at least as many concern domains
as its supertype and the concern domains must be positionally invariant. For example,
IterImpl〈H,E,D〉 � Iterator〈H,E〉.

The typing judgment for expressions in MiniMAO3 has the form Γ � γ̂ �DT e : t. This
says that, given the type environment Γ , the set of writable concern domain domains γ̂,
and the concern dependency table DT , we can derive that the expression e has type t.

For example, the typing rule for set expressions is:

T-SET

Γ � γ̂ �DT e1 : T 〈γ1, . . . ,γn〉
γ1 ∈ γ̂ fieldsOf (T 〈γ1, . . . ,γn〉) (f) = t Γ � γ̂ �DT e2 : s s � t

Γ � γ̂ �DT e1.f = e2 : s

This is mostly standard except for the hypothesis γ1 ∈ γ̂ that ensures that the domain
containing the object to be mutated is in the set of writable concern domains.

As another example, the typing rule for method calls is:

T-CALL

Γ � γ̂ �DT e0 : δ T0〈γ1, . . . ,γp〉 ∀i ∈ {1..n} · Γ � γ̂ �DT ei : ui

methodType(δ T0〈γ1, . . . ,γp〉, m) = t1× . . .×tn → t
writable(δ T0〈γ1, . . . ,γp〉, m) = γ̂′

depCloseDT (γ̂′) ⊆ γ̂ (δ = readonly) =⇒ (γ̂′ = ∅) ∀i ∈ {1..n} · ui � ti

Γ � γ̂ �DT e0.m(e1, . . . ,en) : t

Again, much of this is standard. Interestingly, if the read-only status δ of the receiver
expression is in fact readonly, the second to last hypothesis ensures that no domains
are writable in the body of the called method. The hypothesis depCloseDT (γ̂′) ⊆ γ̂
ensures that the potentially writable domains in the body of the method form a subset
of those writable in the context of the method call. The dependency closure function,
depCloseDT , operates on a dependency table and a set of concern domains. It places
a bound on the concern domains that might be modified by a given method call in the
presence of a given set of advice.
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depCloseDT (γ̂) = {γ′ · ∃γ ∈ γ̂ · (γ, γ′) ∈ DT}
∪ {selfloc · (∃loc ∈ L · (selfloc, selfloc) ∈ DT )} .

6.4 Meta-theory of MiniMAO3

This section highlights the key theorems in the meta-theory of MiniMAO3. These in-
clude static type safety and two theorems related to effects and the (un-)observability
of mutations made by spectators.

Type safety is proved using the standard subject reduction and progress theorems.
In the meta-theory, the type environment maps variables and store locations to types.

Additionally, the type environment records the ground concern domains, so that for a
ground concern domain g, Γ (g) = domain. A type environment Γ is concern complete
for a program P if every ground concern domain in P is in the domain of Γ .

A type environment Γ is consistent with a store S, written Γ ≈ S, if all objects in
the store conform to their types, both as declared and as given by Γ , and if the sets of
locations in the domains of both Γ and S are the same. A valid store for a program
P contains objects (with the appropriate concrete concern domains) representing every
aspect instantiated in P . Additionally, for a store to be valid there must exist some type
environment consistent with it. Similarly, a join point stack J is consistent with a store
S, written J ≈ S, if all locations named in J appear in S’s domain.

The Subject Reduction theorem says that, given a configuration that meets appropri-
ate initial conditions including having a well-typed expression, single-step evaluation
results in a new configuration that satisfies the same conditions and that has an expres-
sion that is a subtype of the original expression.

Theorem 1 (Subject Reduction). Given a well-typed program P with public concern
domains ĝ and private concern domains ĝ′, for an expression e, a valid store S, a stack
J consistent with S, a concern-complete type environment Γ consistent with S, a set of
concern domains γ̂ with ĝ′ ⊆ γ̂ ⊆ (ĝ ∪ ĝ′), and the evaluation dependency table, DT ,
of P , if Γ � γ̂ �DT e : t and 〈e, J, S〉 ↪→ 〈e′, J ′, S′〉, then J ′ ≈ S′, S′ is valid, and there
exist concern-complete Γ ′ ≈ S′ and t′ � t, such that Γ ′ � γ̂ �DT e′ : t′.

The Progress theorem says that, given a configuration that meets these same conditions,
the expression is either a value or can be evaluated in a single step to a configuration
giving a new expression or an exception.

Theorem 2 (Progress). Given a well-typed program, P , with public concern domains
ĝ and private concern domains ĝ′, for an expression e, a valid store S, a stack J consis-
tent with S, a concern-complete type environment Γ consistent with S, a set of concern
domains γ̂ such that ĝ′ ⊆ γ̂ ⊆ (ĝ ∪ ĝ′), and the evaluation dependency table DT , such
that the triple 〈e, J, S〉 is reached in the evaluation of P , if Γ � γ̂ �DT e : t then either:

– e = locδ for some δ and loc ∈ dom(S),
– e = nullδ for some δ, or
– one of the following hold:
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• 〈e, J, S〉 ↪→ 〈e′, J ′, S′〉,
• 〈e, J, S〉 ↪→ 〈NullPointerException, J ′, S′〉, or
• 〈e, J, S〉 ↪→ 〈ClassCastException, J ′, S′〉.

The Type Safety theorem says that a well-typed program either diverges or evaluates to
a value or exception.

Theorem 3 (Type Safety). Given a program P , with main expression e, concern do-
mains ĝ, � P OK, and a valid store S0, then either the evaluation of e diverges or else

〈e, •, S0〉
∗

↪→ 〈x, J, S〉 and one of the following hold for x:

– x = locδ for some δ and loc ∈ dom(S),
– x = nullδ for some δ,
– x = NullPointerException, or
– x = ClassCastException

Besides static type safety, MiniMAO3 provably enforces the constraints given by ef-
fects clauses and concern domain dependency declarations. The central theorem here is
called Tag Frame Soundness. It states that for any concern domain g that is not directly
or transitively declared to be mutable for a given expression e, the portion of the store
corresponding to g will be unchanged when e is evaluated to a value.

The formal statement of this theorem demands just a bit more terminology. Like
Classic Java, we use evaluation context rules, denoted by E to implicitly define the
congruence rules and give a non-constructive definition of evaluation order [14]. The
rules are completely standard and are omitted here. To refer to the portion of the store
S corresponding to a particular ground concern domain g, we write S|g, which is the
set of all mappings in the store where the owner domain of the mapped object is g.

Theorem 4 (Tag Frame Soundness). Let P be a well-typed program with concern do-
mains ĝ and evaluation dependency table DT . If the configuration 〈E[〈e〉δ,γ̂ ], J, S〉 ap-

pears in an evaluation of P , then either the evaluation diverges or 〈E[〈e〉δ,γ̂ ], J, S〉 ∗
↪→

〈E[v], J ′, S′〉, where ∀g ∈ (ĝ \ depCloseDT (γ̂)) · S|g = S′|g.

The last theorem we discuss here applies to programs that meet a particular restriction,
discussed below. In such programs, no mutation is possible by dereferencing a read-
only location. This is different than Tag Frame Soundness in that it says a read-only
reference may not be used for mutation even if it points to a writable domain.

The formal statement of this theorem uses several auxiliary functions. Intuitively,
domainsS(loc) gives the set of ground concern domains for the object pointed to by loc
in the store S; locations(e) gives every location appearing syntactically in e; GS(loc)
is the “object graph” of a location, whose nodes are locations and whose edges are
field references; repS(loc) gives the nodes in GS(loc); and writeReach(S) is the re-
flexive, transitive closure of all the write-enabled field references in the store. That is,(
loc, loc′

)
∈ writeReach(S) implies that a program with a reference to loc can obtain

a write-enabled reference to loc′ by a series of field references.
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Given all that, the theorem assumes an intermediate state with expression e in the
evaluation of a program and some location loc that only names public, not private,
concern domains. Then—supposing that any references from e to loc are read-only
(assumption 1), that e does not have any aliases into the object graph of loc (assumption
2), and certain restrictions on the program hold (assumption 3)—we can conclude that
the evaluation of e to a value will not mutate the object graph of loc.

Theorem 5 (Read-only Soundness). Suppose the configuration 〈E[e], J, S〉 appears
in the evaluation of a well-typed program P . Let loc be a location in dom(S) such that
domainsS(loc) ⊂ G, i.e., S(loc) only names public concern domains. Let GS(loc) =
(L, E), and let the following assumptions hold:

1. ∀δ · (locδ ∈ locations (e)) =⇒ (δ = readonly).
2. ∀loc′δ ∈ locations (e) ·

(δ = ε) =⇒
(
∀loc′′ ∈ repS(loc) ·

(
loc′, loc ′′) /∈ writeReach(S)

)
.

3. ∀loc′ ∈ dom (S) · S
(
loc′
)

= [t � F ] =⇒ isClass(t) ∨ isSpectator (t).

If 〈E[e], J, S〉 ∗
↪→ 〈E[v], J ′, S′〉, then GS(loc) = GS′(loc).

So what is this restricted class of programs? Just those that do not contain regular as-
pects! These non-spectator aspects can “leak” pointers into the computation without
being explicitly referenced. Thus, the restrictions on aliasing in assumption 2, which
are sufficient without regular aspects, are not sufficient in their presence.

By Read-only Soundness, spectators can be used in a program without breaking the
read-only references mechanism. The first two assumptions of the theorem are local
properties of an expression. The other assumption just restricts the sorts of programs
that are considered. So the statement of the theorem can be viewed as a formalization
of local reasoning about the expression. Said another way, we need whole-program
knowledge at the level of effects clauses, aspect instantiation, and dependency declara-
tions to reason about the effects of regular aspects. But with just spectator aspects, we
can reason about the effects of a method call solely based on its effects clause—aspect
instantiation and dependency declarations are not necessary.

The Tag Frame Soundness theorem allows unseen, private concern domains to be
modified during method or advice execution, since the dependency closure of the eval-
uation dependency table includes all private concern domains. However, because of the
(elided) Respect for Privacy theorem—which states that only a spectator and objects di-
rectly or transitively created by the spectator may appear in or reference the spectator’s
private concern domain—one can still reason about the effects of a method or piece of
advice. To reason about the execution of a method or piece of advice one must know
its signature including its effects clause, the concern domains of the target object, and
the configuration of non-spectator aspects in the program, as represented by the aspect
instantiation instructions and dependency declarations. By Respect for Privacy, if the
concern domains of the target object do not include any private concern domains, then
no changes made by unseen spectators will be visible in the code being considered.
The side effects of spectators are effectively sequestered. Thus, spectators can be used
non-invasively.
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7 Evaluation

Many things . . . may become encumbrances if we cling to them blindly and uncritically.

The theoretical analysis above demonstrates the soundness of MAO’s effect specifica-
tions. However, this says nothing about MAO’s usefulness — that is, the extent to which
MAO’s annotations benefit programmers. In this section, we present a small case study
that attempts to give a preliminary answer to this question.

Our case study is based on packages in version 1.5.3 of the AspectJ Programmer’s
Guide [3]. We omitted introduction and ltw, since these very small packages are just
for demonstrating AspectJ tools. For the other 7 packages, we specified each aspect
using MAO annotations, and then examined the result to determine how much these
specifications aided reasoning. The case study’s files are available at http://www.cs.
iastate.edu/∼leavens/modular-aop/ajpg-153-examples/.

7.1 Case Study Data

This subsection presents the raw data from our case study in a pair of tables. The sub-
sequent subsection analyzes the data.

Basic statistics about the packages we studied are presented in Table 1. We counted:
(1) the number of .java files, but in the tracing package we only counted files for
version 3; (2) the number of lines in these files, with the first 12 lines for each file (a
copyright notice) omitted; (3) the number of aspects and (4) abstract aspects; (5) the
number of lines (determined by inspection) in the original AspectJ code that would
need to be searched to determine control and heap effects of the aspect’s advice — this
equals the number of lines in advice and method bodies in all aspects6; (6) the number
of lines (by inspection) in the MAO code that would need to be searched for control
effects — this is 0 for @surround advice, and 1 for @curbing advice, and otherwise
includes all lines in advice and method bodies called, if those are part of the aspect; and
(7) the number of lines (by inspection) in the MAO code that would need to be searched
for heap effects — this is 1 for advice or methods with @writes or @pure annotations,
otherwise it includes all lines in other advice and method bodies.

Table 2 presents some statistics on the use of various features in MAO. We counted:
(1) the number of times the @surround annotation was used — not counting implicit
uses in spectator aspects (2) the number of times @curbing was used, (3) the number
of times @writes was used as a method or advice annotation — we only used this
within aspects and did not count implicit uses in spectator aspects, (4) the number of
times @spectator was used, (5) the number of lines that would have to be searched in
AspectJ, within the relevant classes, to determine all the methods that would correspond
to the writes PCDs that the MAO code used. The MAO code used writes once in each
of the two relevant packages.

7.2 Lessons Learned from the Case Study

Table 2 contains lessons about MAO annotation usage. We found many instances of
@surround advice, especially if one counts the implicit uses of @surround in aspects

6 This assumes, pessimistically, that all code in an aspect can have control and heap effects.

http://www.cs.iastate.edu/~leavens/modular-aop/ajpg-153-examples/
http://www.cs.iastate.edu/~leavens/modular-aop/ajpg-153-examples/


MAO: Ownership and Effects for More Effective Reasoning About Aspects 471

Table 1. Basic statistics about the packages studied

Original Original Aspects Abstract AspectJ lines MAO search MAO search
Files Lines aspects to search for control for heap

Package for effects effects effects

tjp 2 62 1 17 0 1
tracing (v3) 6 352 2 1 18 0 0
bean 3 203 1 9 2 2
observer 8 164 2 1 9 0 1
telecom 13 593 3 20 0 4
spacewar 19 2049 8 177 19 23
coordination 8 673 1 1 118 0 0

Table 2. Usage statistics on the packages studied

MAO count MAO count MAO count MAO count AspectJ lines to
use of use of use of use of search for equivalent

Package @surround @curbing @writes @spectator of @writes PCDs

tjp 1 1
tracing (v3) 0 2
bean 0 3 1
observer 1 2 18
telecom 4 4 1
spacewar 5 2 27 27
coordination 1

that are annotated with @spectator or @surround. By contrast, @curbing was only used
twice. There were also many uses of @writes, especially in spacewar’s Debug aspect.
Moreover, each of the uses of @spectator on an aspect suppresses several uses of the
@writes annotation. While we found several spectators, we found three aspects, like
spacewar’s Debug aspect, do not qualify, principally because they perform I/O and have
heap effects on the GUI. For these three aspects it was convenient to use @surround at
the aspect-level, which is a shorthand for listing @surround on each piece of advice.

Lessons about reasoning can be drawn from Table 1. First, the use of MAO’s features
significantly cuts down the number of lines that need to be inspected to determine con-
trol and heap effects. This is important, as we noticed that for examples as large as the
telecom package or larger it becomes quite difficult to determine the control and heap
effects of advice by hand. Thus we believe that a person trying to understand a program,
even of such a modest size as telecom, would benefit from the use of annotations on
advice. The real problem here is not the efficiency of the analysis: it is that without
MAO’s modular aspect interfaces, any analysis to determine control and heap effects
must depend upon fine implementation details of advice body code. Relatively sophis-
ticated static techniques [11, 29] can certainly compute these dependencies, and IDEs
present it to programmers [6, 22] but these dependencies will be fragile: whenever the
configuration of the system, the implementation of the base program, and (especially)
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the internals of an aspect changes, then this analysis must be repeated and the results
may change in nonlocal, unpredictable ways. The advantage of MAO’s effect specifi-
cations are, ultimately, that they provide aspects with specifications that act both as a
unit of analysis and as a boundary to changes. By writing such specifications in MAO
annotations, a programmer can make their intentions clear: a tracing aspect can be de-
clared be a spectator upon the program, with no control nor heap effects. If subsequent
evolution of the aspect invalidates this intention, the change can be detected statically.

We also found that using the default ownership domain of World for everything
outside an aspect worked well. This gives some hope that the annotation burden may
mostly fall on aspects, and not on the base program, which is usually much larger. It
also gives some hope that annotations are not necessary for Java libraries.

In summary, the case study gives some preliminary indications that the features of
MAO help in reasoning about control and heap effects in aspect-oriented code. The case
study does not contain enough places where the writes pointcut designator is used to
make even much of a preliminary estimate as to its utility.

8 Related Work

All reactionaries are paper tigers. In appearance, the reactionaries are terrifying, but
in reality they are not so powerful.

Mulet, Malenfant, and Cointe [25] identified a similar problem: composing metaobjects.
They offer language mechanisms that make composition possible, but offer no language
mechanisms to help programmers control interference.

Dantas and Walker’s Harmless Advice [11] is probably the closest formal system to
MAO. Harmless advice is similar to our notion of spectators but allows advice to have
“curbing” control effects and to write to what we would call a system I/O domain. So,
while technically spectators are more restrictive than harmless aspects, both restrict as-
pects to make reasoning about heap effects easier. Harmless Advice is formalized using
an information flow analysis that establishes that the computation in advice cannot af-
fect the base program’s computation. As the name implies, all the advice in this system
is harmless, and the user-level calculus offers only one protection domain for the base
program. MAO does not restrict advice to be harmless, as it can document different
kinds of advice. MAO also has a more precise set of annotations, separately docu-
menting control and heap effects, and allowing more fine-grained specification of heap
effects. Thus MAO allows specification of control and heap effects that are outside the
range allowed by Harmless Advice, but are useful in AspectJ programs (for example, in
the spacewar example). MAO’s explicit domain declarations and aspect domain param-
eters allow concern domains to cross-cut the program’s modularity structure, whereas
the protection domain structure of Harmless Advice is tied to the program’s structure.

Kiczales and Mezini [22] take a different approach to the problem of reasoning about
aspect-oriented software, by introducing “aspect-aware interfaces.” These interfaces are
computed from a whole program’s configuration and provide a bi-directional mapping
from methods to associated advice, and from advice to advised methods. This certainly
is helpful in reasoning about control effects of advice that may apply at a given join
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point or program point. As such it could be used in conjunction with MAO’s annotations
to determine whether the advice being applied has potential control effects. Aspect-
aware interfaces give no help in reasoning about potential heap effects of advice or in
reasoning, apart from helping one find what advice might have to be considered. By
contrast MAO’s annotations can provide more help with such questions.

Another route towards helping people reason about aspect-oriented software is pro-
vided by research that establishes interfaces for aspect-oriented program modules. Gen-
erally, these systems attach interfaces to base code elements that either permit or pro-
hibit advice from being applied, or describe what advice has been applied. So, Pointcut
Interfaces [17], Open Modules [1, 26], Aspectual Collaborations [23], and XPIs [15, 31]
all require code to declare or specify the join points to which aspects may be attached.
In contrast our focus is on specifying aspects and their effects. That is, MAO allows
programmers to specify aspects to make reasoning about their effects easier, instead of
restricting what they can do. Thus, in MAO, rather than describing potential pointcuts
in the base code, programmers describe the important properties of their designs, such
as what concerns exist, what advice writes what concerns, etc. These annotations are
contained within existing interfaces in their code. MAO allows the use of some of these
annotations in writing semantic PCDs, with its writes PCD. Furthermore, MAO’s stati-
cally checked annotations help make reasoning about control and heap effects easier.

MAO is also related to a range of work on categorizing and classifying aspects
[19, 20, 29]. Generally, this work identifies a number of (relatively) fine-grained as-
pect categories, either via manual or automatic analysis. MAO, however, does not ad-
dress categorization per se: rather, our aim is to provide practical language constructs
programmers can use to express properties of their aspects.

In terms of language mechanisms, MAO and especially its concern domains are
closely related to other ownership and confined type systems [2, 4, 5, 12, 16, 24, 27,
28, 32]. MAO’s novelty here is in demonstrating how ownership types can be used to
capture the concerns in an aspect-oriented system: the techniques providing concern
domains (a statically fixed set of ownership domains; objects tied to domains by type
parameterization and defaults; domains for effect disjointness) are now well known.
MAO shows how even a such a simple ownership type and effect system can aid rea-
soning about the subtle heap effects that may occur in aspect-oriented systems.

9 Conclusion

Conclusions invariably come after investigation, and not before.

In this paper, we have presented Modular Aspects with Ownership, MAO. MAO makes
four contributions to the design of Aspect-Oriented languages, to make it easier for
programmers to determine how aspects will affect the base code of the program, and
how they interfere with each other.

First, surround advice uses simple syntactic restrictions so that programmers can en-
sure that an aspect will not perturb the control flow of the program to which it is bound.
Second, concern domains provide an ownership type and effect system to make clear
whether aspects modify data structures in the base program, and if so, what parts of the



474 C. Clifton, G.T. Leavens, and J. Noble

data they modify. Third, the writes PCD leverages concern domains to provide succinct,
precise designations for pointcuts that modify data. Finally, MAO is underpinned with
a formal model and demonstrates that spectator aspects (defining only surround advice,
and writing only their own concern domain) cannot materially affect the execution of
other classes or aspects in the program.

Using MAO, programmers can specify the full range of their aspects’ interactions
with the base program and their interference with one another, making aspect oriented
programs more precisely documented and easier to reason about.
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Abstract. Aspect-Oriented Programming languages allow pointcut descriptors 
to quantify over the implementation points of a system. Such pointcuts are 
problematic with respect to independent development because they introduce 
strong mutual coupling between base modules and aspects. This paper 
introduces a new joinpoint selection mechanism based on state machine 
specifications. Module interfaces include behavioral specifications defined as 
protocol state machines. These specifications are not defined with respect to 
potential aspects, but are used to model and simulate the architecture of a 
system and act as behavioral contracts between the modules of the system. We 
show how a smart joinpoint selection mechanism is able to infer points that 
might be located deep inside the implementation of a module, given pointcuts 
that are expressed entirely in terms of behavioral specification elements. We 
present a tool, the Motorola WEAVR, which implements this technique in a 
Model-Driven Engineering environment. 

Keywords: Aspect-Oriented Software Development, Model-Driven Software 
Engineering, Modules and Interfaces. 

1   Introduction 

Since the inception of Aspect-Oriented Software Development (AOSD) in 1997, it 
has been known that Aspect-Oriented Programming (AOP) languages introduce 
strong coupling between base modules and aspects. AOP languages allow pointcut 
descriptors to refer directly to the implementations of modules to capture joinpoints, 
points where aspects inject behavior through advices. This practice is problematic 
with respect to modularity and independent development.  Modules that are advised 
by aspects become hard to evolve independently. Small refactorings are susceptible to 
modify the way an aspect interacts with a module, breaking the semantics of the 
aspect. Consequently, the deployment of AOP practices has been mostly restricted to 
small cohesive teams of expert programmers.  



 Joinpoint Inference from Behavioral Specification to Implementation 477 

There are three main research directions in addressing this problem. The first 
direction of research advocates restricting the expressiveness of aspects by forfeiting 
the obliviousness of modules. Approaches such as Open Modules [1] or Crosscutting 
Interfaces [2] propose to move aspect pointcut descriptors from the aspect definition 
to the interfaces of modules. Aspects are only allowed to advice joinpoints that are 
explicitly published in modules interfaces. These approaches prepare modules for 
specific, anticipated aspects by making a commitment about particular points in the 
module implementation, or by organizing the structure of the module in a way that 
these points are easily captured by specific aspects [3]. 

A second approach favors investigating alternative ways to modular reasoning in 
the presence of aspects. In [4], the authors argue that a global analysis of the system 
configuration is required before the interfaces of the system modules can be 
determined. The approach supports modular reasoning after aspect deployment but is 
not applicable to design-time interfaces, and hence, it does not support independent 
development well.  

Coupling between base system and aspects is closely related to the fragility of the 
pointcut descriptors used in AOP languages. A third direction of research focuses on 
methods that allow pointcut descriptors to be defined at a higher level of abstraction, 
in terms of the program semantics [5].  

The approach presented in this paper is in line with the last direction of research. 
We propose a technique to infer joinpoints located deep inside the implementation of 
modules from pointcut descriptors that are defined in terms of behavioral descriptions 
of the system modules.  

Traditional interfaces are generally not sufficient to enable independent 
development of the sub-components of large complex systems. System modules 
interact according to specific protocols, which need to be publicized in their 
interfaces. These protocols are generally captured as state machine contracts, called 
Protocol State Machines. They describe the observable behavior of a module and the 
effects of method invocations on its state in an intuitive and precise way. 

We show through some non-trivial examples that it is possible to derive 
implementation level joinpoints from pointcut descriptors that capture properties of 
the behavioral description of a module. The approach therefore maintains much of the 
expressiveness of aspects without compromising the modularity of base modules.  

Behavioral specifications do not need to be defined with respect to potential 
aspects. They appear naturally in the early stages of the software development 
lifecycle. This approach works particularly well in the context of Model-Driven 
Software Engineering (MDSE), especially in domains where the use of state machines 
is well established, such as in the telecom industry.  

Yet, the approach could be generalized to programming languages using interface 
specifications such as typestates [6], predicates or interfaces expressed in domain-
specific languages. 

The paper is organized as follows. First, we introduce some of the model-driven 
engineering practices in industry to develop large telecom infrastructure software. We 
distinguish between protocol state machines, used for modeling and system 
validation, and implementation-level state machines, used for system verification and 
code generation. We present an aspect-oriented modeling tool for the UML 2.0, the 
Motorola WEAVR. The tool performs weaving of aspects at the modeling level, 
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before code generation, and is currently being deployed in production at Motorola, in 
the network infrastructure business unit.  

Section 3 illustrates the approach through examples that take on some of the 
concerns presented in the AO Challenge paper [7]. The AO Challenge consists of a 
series of fine-grained concerns that are required to implement fault tolerance through 
transactional mechanisms. These concerns depend on each other and interact in subtle 
ways which makes their aspect-oriented implementation problematic. The solution 
presented is fully implemented in terms of the behavioral specification of the system 
but addresses the problem in a way that would be difficult, if not impossible to match 
using an AOP language such as AspectJ. 

Section 4 details the joinpoint selection mechanism that enables the WEAVR to 
infer implementation points of the system in terms of its specification and some of the 
issues associated with the selection mechanism are discussed. 

Section 5 discusses related work and finally, Section 6 concludes this paper. 

2   Aspect-Oriented and Model-Driven Software Engineering  

2.1   Model-Driven Software Engineering 

A model of a system is an abstract specification of its structure and behavior. A model 
defines the observable behavior of the system components and specifies how they 
interact, without detailing how the different tasks of the system are performed. 
System modeling aims at defining and validating the architecture of the system. 
Validation of the system architecture is performed by executing the system models in 
a simulation environment. Once the architecture has been validated, the component 
models define a contract that must be honored by the component implementations.  

In this paper, Model-Driven Software Engineering (MDSE) is discussed in the 
context of fully automated code generation from precise behavioral models, a.k.a 
translation of models into executable artifacts [8]. The style of UML modeling used 
is highly influenced by the ITU Specification and Description Language (SDL) [9]. 
Abstract models of the system are iteratively refined and transformed until they can 
be executed on the target platforms. 

The telecom industry has a long tradition of MDSE. It pioneered the field starting 
in the 70’s, with the SDL.  The SDL was initially conceived as a specification 
language to unambiguously describe the behavior of reactive, discrete systems in 
terms of communicating extended finite state machines. Since then, it was extended 
with mechanisms supporting object-orientation and has adopted a formal semantics 
described in terms of abstract state machines.  

The use of the SDL has rapidly expanded from the area of system specification and 
documentation to the realm of system design and implementation. The unambiguous 
semantics of the SDL has enabled the industry to develop powerful code generators 
that take models as input and deliver highly optimized platform specific code, mostly 
in C and C++.  Optimizing code generation has had an important effect on the system 
development process. The structure of the generated code is very different from the 
structure of the system models and prohibits the manual refinement of the system at 
the level of the code.  
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The UML 2.0 has adopted many of the language features of the SDL, including the 
composite-structure architecture diagrams, support for transition-oriented state 
machines, and parts of the SDL action language semantics. This makes it possible to 
interpret UML 2.0 models as SDL-like specifications using a lightweight profile, and 
automatically generate executables. This is exactly what is performed by tools such as 
Telelogic TAU [10] and the Motorola Mousetrap code generator [11]. 

The next section presents the different phases of development lifecycle used in this 
context, and discusses the use of AOSD. 

2.2   System Modeling and Simulation 

The requirements of the system are captured using use cases expressed as Message 
Sequence Charts (MSC) or UML sequence diagrams. These use cases are translated 
into test case definitions expressed in a notation such as the TTCN (Testing and Test 
Control Notation) [12]. The test case definitions drive the design and implementation 
process at different levels of granularity.  

It is absolutely essential to be able to validate the system design and architecture as 
early as possible in the lifecycle. For large systems, validation is essentially 
performed through modeling, simulation and testing. There is therefore an important 
emphasis on the executability of early system models. Executability in conformance 
with the test cases is an important property that needs to be maintained through all 
phases of the development process.  

The architecture of the system is defined using composite-structure diagrams, 
protocol state machines along with class diagrams. 

2.2.1   Composite-Structure Diagrams 
During the architectural phase, composite-structure diagrams are used to identify and 
model the different subcomponents of the system. These subcomponents generally 
become the basic units of independent development of the system.  Composite-
structure diagrams define a hierarchical run-time decomposition of the system. They 
define the internal run-time structure of an active class (a process definition), in terms 
of other active classes instances, referred to as parts. A Connector specifies a medium 
that enables communication between parts of an active class or between the 
environment of an active class and one of its parts.  

Figure 1 illustrates the composite structure diagram of a simple resource access 
server.  An instance of a server is composed of two subcomponents, one dispatcher 
and a pool of request handlers. The dispatcher is responsible for forwarding external 
requests to a request handler picked from the pool. Request handlers maintain 
sessions through a context id, (CID_t) and access resources delivered by resource 
managers, identified by a resource id (RID_t). 

This architecture is typical for high-availability distributed system, as well as 
general-purpose web servers. For this example, we assume that we can reuse the 
implementation of a dispatcher to drive the simulation and we focus on the models of 
a request handler and a resource manager.  
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         Architecture Diagram active class SimpleServer {2/2}

EnvPort

setupSession, 
endSession,
resource_request

 access_error 
 

OutPort

 

resource_ack
 

-rh : RequestHandler[0.. *]/ 0
RHPort

RHDPort

request, kill

RHSPort

access

 

d : DispatcherDPort

DRHPort

request, kill

EnvToD

 

  

 

- rm : ResourceManager[0 .. 3]

SRHPort

access

EnvToRH

 

  

 

Fig. 1. Composite-structure architecture diagram for a simple resource access server 

2.2.2   Protocol State Machines 
The observable behavior of each part is specified using protocol state machines. 
These state machines are not fully executable. They specify what the state transitions 
of the system are, their triggers and what output they produce. They do not define 
how this output is produced or what actions are executed along state transitions. Yet, 
such models can be simulated.  

In its initial phases, the simulation is initially performed by stepping through of the 
execution of the model, while manually taking decisions about the completion of the 
execution whenever the system is not fed with enough information. During this phase 
the initial architecture is refined as to satisfy the requirement use-cases. Once the 
architecture converges, different execution paths are encoded into tests to drive the 
simulation automatically and perform analysis.  

Figure 2 shows the interfaces for a request handler and a resource manager, along 
with their protocol state machine specifications. The state machine of Figure 2.a 
defines a transition that is triggered by a request and produces a resource access. The 
state machine of Figure 2.b defines two distinct transitions triggered by an access, one 
transition to a ‘success’ state and another to a ‘failure’ state. It does not specify how 
the decision is made whether a resource access occurred successfully or not. The path 
followed during execution needs to be provided either by the user or by the test case 
that drives the simulation. Figure 3 shows a trace that has been generated by the 
simulator during validation, in the case of a successful resource access.  

<<interface>>

ResourceManager

initialize ()
signal access ()

<<interface>>

RequestHander

initialize ()
signal request ( r : RID_t)

Init Init
request(rid)/access();

Init 'SUCCESS, FAILURE'
access()

2.b 2.a

 

Fig. 2. Protocol state machines for request handlers and resource managers 
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sd Trace interaction DebugTrace1 {1/1}

rh[1] rm[2]d[1]
env[1]

<<actor>>

Sequence diagram trace
generated for Server

Idle

Idle

Idle

Idle

setupSession(CID_t (.id = 1245.))

Init

SUCCESS

ss()

Init

Init

rh ((. 1245 .))

resource_request(CID_t (.id = 1245.), RID_t (.id = 2.))

request(RID_t (.id = 2.))
access()

endSession(CID_t (.id = 1245.))

kill()

 

Fig. 3. Trace generated by the model simulator for the validation of the system model 

2.2.3   State Machine Refinement, Inheritance and Realization Mappings 
State machines can inherit from other state machines. A specialized state machine 
may add features or change features of the original state machine. Features that may 
be added include states, transitions, variables and other entities that can be declared in 
a state machine. State machine inheritance is a natural way to refine protocol state 
machines down to the implementation. 

In addition, we propose a particular type of realization relationship between 
protocol state machines. A state machine can be the realization of a more abstract 
state machine according to a realization mapping. Figure 4 shows two protocol state 
machines for two different types of resource managers, LinkManagerIf in Figure 4.a 
and ChannelManagerIf in Figure 4.b. Both protocol state machines can be mapped to 
the ResourceManager state machine specification by mapping the transitions of 
LinkManagerIf and ChannelManagerIf to the transitions of ResourceManager. This 
mapping is a function from transitions of one state machine to transitions of another. 

State machine realization relationships offer a powerful abstraction mechanism. A 
protocol state machine can be a particular perspective of another one. This perspective 
focuses on the properties that are relevant to the concern captured by the 
specification. Transitions that are not relevant can be omitted from the mapping. State 
machine specifications can realize multiple other specifications, each of those 
focusing on a different property.  

Realization of state machines also favors reuse. Third party components can be 
integrated in  system by mapping their protocol state machine to an abstract protocol 
state machine. For example, the interaction of the request handler with the 
LinkManager and ChannelManager resource managers can be expressed in terms of 
the resource manager specification given the realization mappings illustrated in 
Figure 4. 
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<<interface>>

LinkManagerIf
<<interface>>

ChannelManagerIf

LinkManager ChannelManager

<<interface>>

ResourceManager

MobilityHandler

- hsignals0 .. * - hchannels0 .. *- hLink - channel

<<interface>>

RequestHander

Init 'SUCCESS, FAILURE'
access()

Init
lockSignal(r,ph)/output lostAccess(c);

'Locked, OutofFreqRange, NoCode, OutofPhase'

map (LinkManagerIf): ResourceManager {
{Init} lockSignal/* {Locked} realizes {Init} access {SUCCESS}
{Init} lockSignal/* {OutofFreqRange, NoCode, OutofPhase}

realizes {Init} access {FAILURE}
}

Closed 'Open, Closed'
setup(auth)/ack(I_CAP);ack(P_DEN);

map (ChannelManagerIf): ResourceManager {
{Closed} setup/* {Open} realizes {Init} access {SUCCESS}
{Closed} setup/* {Closed} realizes {Init} access {FAILURE}

map(ChannelManagerIf):
ResourceManager

map(LinkManagerIf):
ResourceManager

 

Fig. 4. Realization relationship between the protocol state machines of link and channel 
managers and the protocol state machine of a resource manager 

2.3   System Implementation and Verification 

The implementation state machines that define the behavior of the LinkManager and 
ChannelManager resource managers inherit from the specification state machines of 
the LinkManagerIf and ChannelManagerIf interfaces. This inheritance relationship 
enforces that the transitions defined in the specifications are maintained at the level of 
the implementation. This enforcement is critical to the verification of the system, 
ensuring that the implementation of the system conforms to its specification. 

The implementation of LinkManager and ChannelManager are defined using 
transition-oriented state machines, as illustrated in Figure 5. Transition-oriented state 
machines provide a better view of the control flow and the communication aspects of 
state transitions. They are used for defining the detailed internal behavior of a reactive 
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component. Transition-oriented state machines use explicit symbols for different 
actions that can be performed during the transition. They make the control flow 
explicit using decision actions, represented as diamonds. 

The behavior of the request handler is defined in Figure 5.a. It starts up by 
instantiating some resources (i.0). Upon receiving a request, it accesses a resource that 
is indexed by a resource id (i.1), instantiates it if necessary (i.1.i), and accesses some 
of its own resources (i.2, i.3). 

The behavior of LinkManager and ChannelManager is partially defined in Figure 5.b 
and 5.c. We only illustrate the behavior that is relevant to this discussion.  

Statechart Diagram statemachine MobilityHandler :: initialize( CID_t cid) {1/2}
 

Idle

Idle

hsignals.append(new LinkManager
hLink = offspring;
hchannels.append(new ChannelMana
channel = offspring;

request(rid)

if(links[rid] == NULL){
    hsignals.append(new LinkManager());
    links[rid] = offspring;
}

OctetString octetString;
OctetString header;

output hLink.lockSignal(10, 90);
header = hLink.getData();

output channel.setup(auth);
output channel.push(auth, header+'00'h+octetString);
output channel.close(auth);

Idle

output links[rid].lockSignal(10, 90);
octetString = links[rid].getData();

 

 

 statemachine LinkManager :: {1/1}

Init

 

f = 1000;
ph = 0;
c = 1;

Integer f;
Integer ph;
Integer c;

Init

lockSignal(f,ph)

LockFrequency(f)

lockCode(c)

[==false]

NoCode

lostAccess(c)

[==false]

OutOfFreqRange

[==true]

lockPhase(ph)

[==true]

Locked

[==true]

OutOfPhase

[==false]

StatechartDiagram1 statemachine ChannelManager :: {1/1}

 

Closed

Closed

setup(auth)

auth_t auth;

checkPermissions(auth)

setupChannel()

 
[==true]

err(P_DEN)

[==false]

Closed

err(I_CAP)

[==false]

ClosedActive

[==true]

 

    5.a. 

    5.b. 

    5.c. 

( i.0) 

( i.1.i) 

( i.1) 

( i.2) 

( i.3) 

 

Fig. 5. Partial implementations of RequestHandler, LinkManager and ChannelManager as 
transition-oriented state machines 
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Access to the resources triggers internal state transitions, whose outcome is 
controlled by a decision tree. These decisions are internal to the component behavior 
and are not exposed in its behavioral interface. Yet, decision actions capture 
important semantics because they determine the outcome of a transition and directly 
affect the future behavior of the component.  

2.4   Model Translation and Code Generation 

Once the system has been validated and thoroughly tested in the simulator, the models 
are translated into platform-specific executables and tested in the field. The code 
generators used can be highly optimized for different target platforms. They handle 
the specificities and the configurations of the platforms and integrate additional 
concerns that are not explicitly handled in the models. In particular, the specific 
libraries that are used do not have to be referred to in the models. Examples are 
threading libraries, operating system API’s or the use of a particular transport 
protocol. The code generation also performs various source code level optimizations 
that involve code motion and dead code elimination. 

The structure of the generated code is very different from the structure of the 
models. Code generators do not map modeling concepts such as state machines into 
structures that are friendly to manual inspection. Code optimization further destroys 
the structural and syntactic correspondence between the system models and the 
generated code and may modify the overall decomposition of the system to improve 
performance. Manual inspection and refinement of the generated code is therefore not 
a viable practice. 

2.5   Weaving Aspects into Models 

Code generation can automatically integrate crosscutting concerns such as tracing, 
logging or recurring platform specificities with the base system. These concerns are 
activated and deployed through the configuration of the code generator. Yet, there are 
concerns, such as fault tolerance, security or timing constraints that are highly 
dependent on the application logic and cannot be handled in a systematic way through 
code generation. The implementation of these concerns depends on the application.  

Concerns that interact with the control flow of multiple state machines are hard to 
modularize using the abstractions of the UML. Alternative use cases or fault tolerance 
concerns tend to introduce new states and new decision actions in multiple state 
machines, across different development teams. State machine inheritance mechanisms 
do not support these kinds of refinements. Each development team therefore needs to 
re-implement this logic within multiple state machines. In practice, different teams 
implement the same concern slightly differently, which leads to inconsistencies and a 
significant replication of effort. We estimate that model size could be reduced by an 
average 40% if the replication of behavior within and across state machines could be 
avoided [28]. 

There is therefore a strong motivation to provide a means to modularize application 
level concerns that interact with the control flow of state machines at multiple 
locations. For the reasons mentioned in the previous section, the use of an AOP 
language at the level of the generated code is not an option. Generated code lacks the 
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necessary structure to apply aspects. Crosscutting concerns need to be fully 
coordinated with the base system at the level of the models. The Motorola WEAVR is 
a model transformation engine that enables aspects to be defined at the modeling level 
and to be completely woven with the base models before code generation. 

3   Motorola WEAVR: Weaving Aspects into Models 

The Motorola WEAVR provides language constructs to capture aspects in UML 2.0 
and perform weaving of state machines before code generation. In a large industrial 
setting, the most important benefits from aspect orientation are obtained when aspects 
can be deployed across components of a system that are developed by independent 
development teams.  These components communicate through well defined interfaces, 
with which state machines are associated.  

The state machines that define the implementation of those components evolve 
quickly from one iteration to another. In this context, it is critical that aspects be 
defined exclusively in terms of the specification elements of the system.  

This section illustrates by example how joinpoints that might be located deep 
inside the implementation of a module can be inferred from state machine 
specifications. This capability is essential to apply the full expressiveness of aspects 
in a context where information hiding is strictly enforced. We also illustrate the 
language constructs used in WEAVR and some of its more advanced features. The 
joinpoint selection mechanism itself is discussed in detail in Section 4. 

The examples presented are simplified interpretations of some the AO Challenge 
[7] concerns applied in a distributed setting. The concerns handled relate to exception 
handling and recovery, applied to the example presented in Section 2. The aspects 
presented are Exception Handling, Recoverability, Atomicity and Distributed 
Transaction. Each of those aspects depends on the functionality introduced by the 
previous one.   

3.1   WEAVR Pointcuts Descriptors 

WEAVR support two distinct types of pointcut descriptors: action pointcuts and 
transition pointcuts. The pointcut descriptors strictly refer to actions and transition 
declared in the protocol state machines of the system. 

The notation used for both types of pointcuts is identical: a pointcut is always 
represented as a transition from a set of source states to a set of target states, triggered 
by an input expression. The transition can contain one action expression. Wildcards 
can be used to quantify over both the source and target states of the transition. The 
trigger and action expressions are used to match the signatures of transition triggers 
and the signatures of actions executed in the context of a transition. Figure 6 
illustrates a pointcut descriptor that matches two types of joinpoints. When interpreted 
as an action pointcut, it matches all actions executed in the context of any transition. 
When interpreted as a transition pointcut, it matches all transitions that execute any 
action in their context. The context relationship between action and transition 
joinpoints could also be extended to a cflow relationship when needed. 
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<<ActionPointcut,TransitionPointcut>> {1/1}

* ' * '
'\*'('...')/'\*'('...');

 

Fig. 6. A WEAVR pointcut descriptor 

3.2   Exception Handling Aspect 

The protocol state machine of Figure 2.b indicates that a resource access can either 
succeed or fail. This specification corresponds to a particular mapping, or 
interpretation of what is considered a failure in the context of the application. The 
specification does not constrain what the response of the resource is in case of failure. 

The exception handling aspect enforces this response across all the components of 
the system. In case of exception handling, it is important to abort the execution as early 
as possible, from the point at which the exception is inevitable. This example illustrates 
how the joinpoint selection mechanism introduces advices within the implementation 
body of the module, at locations that are inferred from protocol state machines. 

Figure 7 defines a WEAVR aspect. It states that whenever the system is about to 
reach a state considered as a failure in the specification of Figure 2.b, an 
acknowledgement containing an error code should be sent back to sender of the 
access request, without proceeding with the execution of the transition. 

 <<Aspect>>class ExceptionAspect {1/2}

<<operation,TransitionPointcut>>

failure
<<operation,Advice>>

throwException <<binds>>

<<interface>>

ThrowsException

signal ack ( err: ERR_t)
initialize()

<<operation,Advice>>

sendAcknowledgment
<<binds>> <<operation,TransitionPointcut>>

success

<<operation,ActionPointcut>>

invocation
<<operation,Advice>>

handleException
<<binds>>

<<binds>>

<<binds>>

 <<Advice>> void throwException() {1/2}

FAILURE

sender.ack(FAILURE)

 <<TransitionPointcut>> void failure() {1/1}

FAILURE*
access()

 <<Advice>> void handleException() {1/2}

//WAIT_FOR_ACKproceed();

ack(err)
//WAIT_FOR_ACK

 <<ActionPointcut>> void invocation() {1/1}

* ' * '
*/access();

7.a.

7.b. 7.c.

7.e.7.d.
 

Fig. 7. The Exception Aspect binding diagram, the failure pointcut and the throwException 
advice, the  invocation() pointcut and the handleException() advice 
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The aspect introduces a new interface, ThrowsException, which is bound to the 
object instance that contains joinpoints for the success and failure pointcuts.  This 
interface declares the acknowledgement signal and the corresponding error codes.  
The aspect also includes pointcuts and advices. Advices are bound to pointcuts 
through a dependency that is annotated with the binds stereotype. Advices are 
instantiated for each joinpoint that matches a pointcut descriptor. The binding 
dependency specifies how arguments and parameters are passed from joinpoints to 
instances of the advice. 

The failure pointcut of Figure 7.c matches a selection of execution paths in the 
state machines. These selections are shown in Figure 8. The shaded thin rectangles 
delimit portions of the execution paths that match the pointcut of Figure 7.c. The 
marks that occur first in the execution path correspond to before joinpoints whereas 
the second marks correspond to the after joinpoints.  

The joinpoint selection mechanism places the before mark at the first location in 
the execution paths for which the only reachable next states match the target state of 
the pointcut descriptors, from a state that matches its initial state, when triggered by a 
signal that matches the trigger of the pointcut definition. The matching mechanism is 
resolved with respect to the realization mappings. 

Figure 7.b illustrates an advice that is connected to the execution statements that 
precede the selection, aborts the current execution (it does not call the proceed 
keyword) and forces the state machine in a state that is already defined in the state 
machine implementation where it is instantiated, the failure state (Failure is declared 
in the pointcut it is bound to). The paths selections are deleted by the advice and 
replaced by a direct transition to the failure state. In particular, the lockCode() 
decision action is not executed anymore in Figure 8.a. 

statemachine LinkManager :: {1/1}

Initf = 1000;
ph = 0;
c = 1;

Integer f;
Integer ph;
Integer c;

Init

lockSignal(f,ph)

LockFrequency(f)

lockCode(c)

NoCode

lostAccess(c)
[==false]

OutOfFreqRange

[==true]
lockPhase(ph)

[==true]

Locked

[==true]

OutOfPhase

[==false]

                [==false]

statemachine ChannelManager {1/1}

Closed

Closed

setup(auth)

auth_t auth;

checkPermissions(auth)

setupChannel()

[==true]

err(P_DEN)

[==false]

Closed

err(I_CAP)

                                  
                            [==false]

ClosedActive

[==true]

8.a. 8.b. 

 

Fig. 8. The shaded thin rectangles delimit selections of executions paths in the state machine 
that match the pointcut of Figure 7.c 

Property. Transition pointcuts can capture joinpoints that might be located deep 
inside the implementation of state machines. These pointcuts are entirely defined in 
terms of protocol state machines. The joinpoint selection mechanism performs static 
control flow analysis to determine the earliest points in the implementation that match 
the pointcut definition, according to the mappings that are defined in the system.   
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Figure 7.d illustrates the use of action pointcuts. The invocation pointcut selects 
send signal actions, remote procedure calls (calls to active classes) or simple method 
invocations (calls to passive classes) that match the access methods of the 
ResourceManager interface. The handleException advice waits for the response 
provided by the resource manager and recovers the returned value in the err variable. 
 
Property. Caller side pointcuts can abstract from the particular invocation 
mechanism. This is achieved through the use of implicit states followed by a trigger 
(as shown by the commented out state name). In the case where the pointcut matches 
a send signal action, the joinpoint is replaced by a remote procedure call. 

3.3   Recovery Aspect 

The Recovery aspect is dependent on the ThrowsException Aspect. It illustrates the 
ability to introduce new transitions in state machines. 

 <<Aspect>>class RecoveryAspect {1/1}

<<operation,TransitionPointcut>>

access
<<operation,Advice>>

backupRestore
<<binds>>

<<interface>>

Recoverable

initialize ()
signal restore ()

* Init
restore()

 <<TransitionPointcut>> void access() {1/1}

' * 'Init
ThrowsException::access()

 <<Advice>> void backupRestore() {1/2}

counter = counter+1;
name = thisJoinPoint::getName();
thisClassName = thisJoinPoint::getThisClassName();
id = thisClassName+this+name+counter;

backupToStorage(id);

proceed();

*

restore()

id =thisClassName+this+name+counter;
counter = counter - 1;

restoreFromStorage(id);

Init

9.a.

9.c.

9.d. 

9.b. 

 

Fig. 9. The Recovery Aspect 
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The Recovery aspect backs up the state of resource instances before an access 
invocation is processed. The backupRestore advice of Figure 9.d. is applied before 
any transition proceeds, from the Init state to any other state, as indicated by the 
wildcard used in the name of the target state of pointcut 9.c. The advice also adds the 
ability to respond to a restore trigger to recover the state of the system, by calling the 
.restoreFromStorage method. It introduces new transitions from any state back to the 
Init state. The restore transition is publicized in the protocol state machine of Figure 
9.b., defined in the interface of aspect. 

 
Property. The effects of the advice on the behavior of the base models are specified 
as protocol state machines. This makes it possible to reason about aspect/base 
composition in terms of specification elements: the interface of the system, the 
interfaces of aspects and their pointcuts. 

3.4   Atomicity Aspect 

The Atomicity Aspect ensures that all the transitions that access resources proceed in 
an atomic way. When a resource access fails, the aspect ensures that the resources 
previously accessed along that transition are restored to the state in which they where 
before the transition was triggered. 

This aspect depends on the deployment of the Exception Handling Aspect and the 
Recovery Aspect. A resource must notify the caller that an exception occurred and 
needs to provide the recovery capability. The Atomicity Aspect illustrates how 
aspects can introduce new states and new labels into state machines. Labels are 
represented as ellipses. They correspond to goto labels and are used to organize 
transitions into transition sections. State and label introduction is a powerful 
mechanism that allows aspects to build up complex static control flow structures. 

Figure 10 depicts the Atomicity Aspect. The pointcut of Figure 10.b intercepts the 
access to recoverable resource managers. The advice of Figure 10.c builds up a static 
control flow structure that handles the failure of a resource access. A resource access 
failure is handled by recovering all the resources previously accessed along the 
current state transition execution.  The advice of Figure 10.d builds up the rollback 
transition. Figure 11 illustrates the result of weaving the Exception Handling, 
Recovery and Atomicity Aspects in the request handler model. In practice, woven 
models are not supposed to be manually inspected. The weaving really occurs on the 
model, and is not applied to its presentation entities. 

A state or label introduction occurs when an advice refers to a state or a label that 
is not declared in the pointcut descriptor it is bound to. When introducing states and 
labels into state machines, the scope of the introduction needs to be specified. States 
and labels can be introduced per State Machine, per Transition or per Joinpoint.  

A state that is introduced per state machine, thisStateMachine<state_name>, is 
shared among all advice instances in the scope of a same state machine. A state that is 
introduces per transition, thisTransition<state_name> is shared by all advice instances  
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bound to joinpoints of the same transition. A state that is introduced per Joinpoint, 
thisJoinPoint<state_name>, is unique to the advice instance bound to a specific 
joinpoint.  

The joinpoints of a transition are partially ordered. In the case of per Joinpoint 
states, it is possible to refer to states that have been introduced by the advice bound to 
the previous joinpoint. This is accomplished using the previousJoinPoint<state_name, 
default_state> notation, which resolves to a default state in the case the previous 
joinpoint is not defined (the joinpoint is the first joinpoint occurring in a transition). 

When referring to states or labels introduced by previous joinpoints the WEAVR 
can construct control structure statically, as shown in Figure 11 or dynamically. In the 
general case, this can only be achieved dynamically as discussed in Section 4.6. 

 
 <<Aspect>>class AtomicityAspect {1/2}

<<operation,ActionPointcut>>

accessResource

return ERR_t

<<operation,Advice>>

repair

return ERR_t

<<operation,Advice>>

rollback

return ERR_t

<<binds>>

<<binds>> <<interface>>

Atomic

 

initialize()
signal rollback ( rid : RID_t)

 

 <<ActionPointcut>> ERR_t accessResource() {1/1}

* ' * '
*/Recoverable::access();

Idle

 
 <<Advice>> ERR_t repair() {1/3}

 

err = proceed();

 

err

[==OK]

'thisJoinpoint<L>'

[==FAILURE]

'thisTransition<L>'

'thisTransition<FAILURE>'

'thisJoinpoint<L>'

 'previousJoinpoint<L, thisTransition<L>>'

(thisJoinPoint::getTarget()).restore()

 <<Advice>> ERR_t rollback() {1/3}

Idle

rollback(rid)

'thisJoinpoint<R>'

'thisJoinpoint<R>'

(thisJoinPoint::getTarget()).restore()

'previousJoinpoint<R, thisTransition<R>>'

'thisTransition<R>'

Idle
 

Fig. 10. The Atomicity Aspect 
 

10.a. 

10.c. 10.d. 

10.b. 
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StatechartDiagram1 statemachine MobilityHandler :: initialize( CID_t cid) {2/2}

 

header = hLink.getData();

OctetString octetString;
OctetString header;

hsignals.append(new LinkManager());
hLink = offspring;
hchannels.append(new ChannelManag
channel = offspring;

if(links[rid] == NULL){
    hsignals.append(new LinkManager());
    links[rid] = offspring;
}

Idle

Idle

request(rid)

output channel.push(auth, header+'00'h+octetString);
output channel.close(auth);
 

Idle

err

octetString = links[rid].getData();

[==OK]

err

output hLink.lockSignal(10, 90);

[==OK]

output channel.setup(auth);

err

[==OK]

FAILURE_request

output links[rid].restore();

[else]

L_request

L_request

L_request_1

L_request_1

output hLink.restore();

L_request_2

L_request_2

output channel.restore();

L_request_3

L_request_3

[else]

L_request_2

[else]

L_request_1
//WAIT_FOR_ACK_1

err(err)

ERR_t err;

//WAIT_FOR_ACK_2

err(err)

err(err)

//WAIT_FOR_ACK_3

rollback(rid)

Idle

R_request_2

R_request_3

output channel.restore();

R_request_1

R_request_2

output hLink.restore();

output links[rid].restore();

R_request

R_request_1

R_request

Idle

R_request_3

output links[rid].lockSignal(10, 90);

 

Fig. 11. Representation of the result of weaving the Exception Handling, Recovery and 
Atomicity Aspects in the request handler 

Property. The control flow structures provided by state machines (states, decision 
actions and labels) make it possible to declare flow dependencies that span multiple 
advice instantiations. This allows aspects to introduce complex execution paths in the 
system. In the case of Atomicity, the aspect is able to introduce the repair and rollback 
functionality directly, while AOP implementations would need to define runtime 
structures explicitly in the advice implementation and perform application 
monitoring. 
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active <<Aspect>>class Transactional {1/1}

<<operation,TransitionPointcut>>

RequestSuccess
<<operation,Adv ice>>

Commit
<<binds>>

<<operation,TransitionPointcut>>

RequestFailure
<<operation,Adv ice>>

Abort
<<binds>>

<<interf ace>>

Transactional

initialize ()
signal resource_abort ( CID_t, RID_t)
signal resource_commit ( CID_t, RID_t)
signal resource_ack ( CID_t, RID_t)
signal commit ( RID_t)

<<operation,TransitionPointcut>>

RequestRollback
<<operation,Adv ice>>

Rollback

<<binds>>

 <<TransitionPointcut>> void RequestSuccess(
RID t )

{1/1}

Idle Idle
Atomic::request(r)

 <<TransitionPointcut>> void RequestRollback(
RID )

{1/1}

Idle Idle
Atomic::rollback(r)

 <<Advice>> void Commit( RID_t r) {1/1}

Idle

commit(r)

resource_ack(cid, r)

'thisTransition<Ready>'

'thisTransition<Ready>'

resource_commit(cid, r)

proceed();

 <<Advice>> void Rollback( RID_t r) {1/2}

resource_ack(cid,r)

Idle

proceed(r);

'thisTransition<Ready>'

abort(r)

 

Fig. 12. Implementation of the Two-Phase Commit Aspect 

3.5   Distributed Transaction Aspect 

The deployment of the Atomicity Aspect provides the necessary structure that allows 
a distributed transactional protocol such as Two-Phase Commit to be deployed 
transparently on the resource handlers. The aspect for Two-Phase Commit is 
presented in Figure 12. The aspect only needs to introduce a per Transition Ready 
state, which delimits the first phase of the protocol and declare the signals that drive 
the phases of the protocol and send acknowledgements to the transaction coordinator. 

3.6 Discussion 

The Two-Phase Commit problem presented in the previous section is a simplified 
representation of a real problem encountered in production models. One of the 
systems under development is composed of a large number of distributed 
subcomponents. For an interaction to occur successfully, all those components need to 
operate in a synchronized fashion. If one resource or communication channel in the 
system cannot be accessed safely, the interaction needs to be aborted or delayed. As a 
result, each component needs to implement a variant of 2PC, for each component it 
communicates with, which amounts to a number of 2PC request handlers that is 
quadratic to the number of components. Each development team needs therefore to re-
implement 2PC in the context of the specific resources that are managed. In practice, 
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different teams would implement the same concern slightly different, which leads to 
inconsistencies and important replication of effort. 

Transparent deployment of fault tolerance behavior is not considered as a practice 
that is desirable through aspect-oriented programming techniques [7]. We believe that 
aspect-oriented techniques can achieve a better separation of concerns at the level of 
state machines compared with code level techniques, especially in the domains of 
fault tolerance and concurrency. State machine specifications provide more 
information about the behavior of the modules, which allows aspects to get a better 
semantic grip on the module. The awareness of the base model with respect to the 
fault tolerance is implicitly captured by its state machine specification. This 
specification should not be declared with respect to potential aspects, but should 
appear naturally in the early design phases. Aspects can also introduce new state 
machine specifications and realization mappings in the system. Aspects can therefore 
explicitly declare the perspective of the system that is relevant to the behavior injected 
by the aspect. Section 4 details some of the mechanisms of joinpoint inference used in 
the Motorola WEAVR. 

4   Inference of Joinpoints from Specification to Implementation 

4.1   Joinpoint Model and Selection 

The weaver needs to perform a mapping between specifications that describe what 
state transitions are to be triggered and the logic that implements how these transitions 

are executed. A transition from a state S to a state T, triggered by an event i, )( TS
i

→  

corresponds to a tree of possible runtime traces, whose roots are triggers from state S  
and whose leaves are next state actions to state T. The nodes of this tree are points in 
the execution where the control flow affects the reachability of states. These are either 
decision actions or jumps statements to labels. This tree of possible traces maps to 
execution paths in the state machine implementation. The unit of weaving is a 
selection of those execution paths. A selection corresponds to a subtree of possible 
traces, whose leaves are next state actions. 

The correspondence between the tree of traces and the graph of execution paths in 
the state machine can be obtained by performing a depth-first search on the state 
machines, starting from triggers that match the pointcut designator.  
 

Definition. The pointcut designator *)(
i

Spct →  refers to transitions from state S to any 

state, triggered by an event i. It matches a tree of traces whose root is a trigger i from 
state S. The corresponding execution paths are obtained by performing a DFS, starting 
from a root trigger i from state S. The leaves of the DFS tree are all reachable next 
state actions. This pointcut therefore always resolves to a single selection of execution 
paths within a state machine. 

                      h *)}({*)(
ii

SpathSpct →⇒→                                         (1) 

Before advices are located after the trigger. After advices are located before the next 
state actions.  
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Definition. The pointcut designator )( TSpct
i

→  refers to transitions from state S to state 

T, triggered by an event i. It defines the set of the largest subtrees of *)(
i

Spct → , for 

which all leaves are next state actions to state T. This constraint can be expressed as 
follows. 

                            }))(({\}*)({)( hh TNOTSpathSpathTSpct
iii

→→⇒→             (2) 

The pointcut defines a set of selections.  In the case )})(({h TNOTSpath
i

→  is an empty 

set, it defines only one selection whose root is the trigger i on state S. Otherwise, it 
defines a set of trees whose roots are decision actions and whose leaves are next state 
actions to T. Before advices are located right after the decision action. After advices 
are located before the next state actions. 
 
Property. The root of a selection is never contained within a cycle in the state 
machine graph. A cycle is formed when a jump statement (a goto label statement) 
refers to one of its ancestors. The jump statement can only be part of the selection if 
all its reachable states match the pointcut end state. The ancestor is therefore also part 
of the selection. 

4.2   Discussion 

This matching method is very expressive because it can localize the important 
decision points in the execution of a state machine.  

Decision points represent conditional statements that have a significant outcome on 
the state of the system, and on its future behavior. Conditional statements, in general, 
are hard to match directly, because they can be implemented in different ways, are 
prone to refactorings, and do not have an identifier. Signature-based matching of 
conditional statements is therefore not a good idea, and is rarely implemented in AOP 
languages.  

Yet, decision points tend to be important crosscutting points. They are points 
where different use cases interact. As a result, aspects based on the procedural 
decomposition need to write complicated pointcuts that essentially attempt to detect 
those decisions points indirectly, which leads to brittle aspects. We consider the work 
on Stateful aspects [25] and Trace-Based pointcuts [26] as being proposals that 
attempt to address this problem at the code level. The transition selection mechanism 
allows semantically significant decision points to be identified in terms of state 
machine states and triggers, which are stable elements in the system, and have an 
intuitive semantic meaning.  

The technique has proven particularly useful in practice to log the execution of 
particular branches of the system and to perform exception handling. 

4.3   Quantification over States and Triggers 

The definition of a pointcut selection (2) naturally supports quantification. The start 
state S and the end state T can refer to multistates, or sets of states. Multi states are 
supported by the UML 2.0 and heavily used in the SDL. Pointcuts can therefore 
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quantify over states, which is easily extended to quantification over triggers and 

states. Figure 13.a represents the selection )21( PORPP
foo

→  and illustrates matching 

based on multistates. 
 

Definition. A pointcut *)(
i

S →  whose start state S is a multistate defines multiple 

selections. These selections correspond to all the trace trees that start with a trigger i 
and matches multistate S. A selection is uniquely defined by the root of the 
corresponding trace tree. 

P

P1

f1(x,y,z)

foo(x,y,z)

P2

f3(x,y,z);
f5(x,y,z);

f2(x,y,z);
f4(x,y,z);

P1 P2

foo(x,y,z) foo(x,y,z)

f2(x,y,z);
f3(x,y,z);

f4(x,y,z);
f0(x,y,z);

Q

f5(x,y,z);
f1(x,y,z);

[==false]
[==true]

f0(x,y,z)
[==true] / {
 
}

[==false]

  

 

P

P1

f1(x,y,z)

foo(x,y,z)

P2

f3(x,y,z);
f5(x,y,z);

f2(x,y,z);
f4(x,y,z);

P1 P2

foo(x,y,z) foo(x,y,z)

f2(x,y,z);
f3(x,y,z);

f4(x,y,z);
f0(x,y,z);

Q

f5(x,y,z);
f1(x,y,z);

[==false]
[==true]

f0(x,y,z)

[==false]

  

 

 

 

  

Fig. 13. (a) Selection for ))21(( PORPPpct
foo

→ . (b) Selections for )*)21((
foo

PORPORPpct → . 

Figure 13.b represents 3 distinct selections over trigger foo: a selection *)(
foo

P→ , a 

selection *)1(
foo

P →  and a selection *)2(
foo

P → . 
 

Definition. A pointcut )( TS
i

→  whose start state S is a state and whose end state T is a 

multistate defines multiple selections as defined in (2). 

4.4   Pointcut Composition 

The definition of a pointcut selection (2) also supports pointcut composition through 
the logical AND and OR operators. The weaver simply performs the intersection or 
union of selections. WEAVR pointcut composition in general is discussed in [29]. 

4.5   Isolation of Selections 

The unit on which weaving is performed is a selection of execution paths. It is 
important to isolate the effects of the weaving between selections because different 
selections can refer to the same portions of execution paths within a state machine. 
Advices introduce behavior that is instantiated in the context of each selection 
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matched. An advice might contain reflective calls proper to the next state actions of 
the selection. 

The weaver therefore performs state machine expansion. The state machine of 
Figure 13 contains behavior that is common to all transitions. This behavior is 
executed whenever a transition ends up in Q. An advice that affects this common 
behavior should be isolated from transitions that do not match the pointcuts it is 
bound to. 

Figure 14 shows how the common behavior is replicated in order to introduce the 
after advice correctly. The weaving is performed on the selection, and the woven 
selection replaces the old one. Paths that did not match the pointcut are not affected.  

The WEAVR performs some optimizations to avoid expanding the size of the 
model too much. In certain cases it might be better to insert a dynamic check around 
the advice execution rather than expanding the decision tree. This depends on the 
configuration of the application and the constraints on the model size.   

P

P1

f1(x,y,z)

foo(x,y,z)

P2

f3(x,y,z);
f5(x,y,z);

f2(x,y,z);
f4(x,y,z);

P1 P2

foo(x,y,z) foo(x,y,z)

f2(x,y,z);
f3(x,y,z);

f4(x,y,z);
f0(x,y,z);

Q

f5(x,y,z);
f1(x,y,z);

[==false]
[==true]

f0(x,y,z)

[==false]

  

 

 

 

Q

f5(x,y,z);
f1(x,y,z);

  

Fig. 14. Isolation of the selection matching ))21(( QORPORPPpct
foo

→ . The behavior that is 

common to paths that do not match the pointcut has been replicated to apply the after advice 
correctly. 

4.6 Ordering of Joinpoints and Control Structures 

Advices can introduce new states and new labels into state machines. States and 
labels can be introduced per State Machine, per Transition or per Joinpoint. In the 
case of per Joinpoint states or labels, it is possible to refer to states that have been 
introduced by the advice bound to the previous joinpoint in the transition. This 
technique enables aspects to construct complex control flow structures. This is 
illustrated by the Atomicity Aspect of Figure 10. Figure 11 shows the effects of the 
aspect on the implementation model of Figure 5.a.  

The representation of the woven model shows the case where the control structure 
introduced by the aspect can be determined statically. This is not possible in the 
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general case where the transition decision tree includes forward edges, back edges or 
cross edges. For example, the implementation of Figure 5.a could contain a loop 
which invokes resource access multiple times. In these cases the WEAVR maintains a 
runtime jump table that is ordered according to joinpoint ancestor relationship in the 
execution trace of the transition. 

5   Related Work 

We discuss two categories of related work. First, we relate to other approaches to 
aspect-oriented modeling (AOM). Second, we discuss how this work relates to 
Stateful aspects and pointcut composition mechanism that capture sequences of 
events in the trace of the system. 

Most approaches to AOM focus on system architecture, design and validation 
rather than implementation, code generation and verification. In general, AOM 
approaches can be classified in two main categories [13].  

Approaches that emphasize model weaving see AOM as a model transformation 
technique. Aspects enable crosscutting concerns appearing in models to be 
modularized and abstracted out. Platform-specific models and code are fully or semi 
automatically generated. It is therefore beneficial to weave aspects directly at the 
model level rather than the code level. Typically, these approaches do not aim at 
generating code-level aspects from models; weaving is fully supported at the 
modeling level. Examples of model weavers are C-SAW [15] and MDA Query-View-
Transformation (QVT) [18] based approaches such as the ATL ModelWeaver [19]. 

Other approaches propose modeling notations to represent code-level crosscutting 
concerns at the modeling level. Tool support focuses on analysis tools, code skeleton 
generators that target AOP languages and round-trip engineering tools to keep model-
level aspects and code-level aspects synchronized. The generated code needs to be 
inspected and manually refined. Behavioral model weaving is therefore not an option; 
aspects have to maintain their modular structure throughout the development process. 
Examples of AOM approaches that fall in this category are Theme UML [20] or 
Jacobson’s use case based approach [21]. We think these approaches are more 
suitable for requirement analysis and early design, rather than Model-Driven 
Engineering. 

Related work concerning the application of AOSD to Harel Statecharts [24] 
includes the Aspect-Oriented Statechart Framework (AOSF) [22][23]. The AOSF 
targets early design models and validation using state-oriented state machines, as 
opposed to system implementation and verification. The AOSF supports the weaving 
of independent state charts into a composite state chart, where each of the original 
state charts resides in its own orthogonal region. The joinpoint model proposed is not 
based on the states of the system, but on individual transition, that are identified by 
their trigger. Rules specify which transitions trigger crosscutting transitions, in an 
orthogonal region. 

The work on Stateful aspects [25][26] and more advanced control flow pointcut 
composition operators is also relevant to this work. Stateful aspects can capture a 
sequence of events in a system. The history of the system is recognized as an 
important property that should be captured by pointcut designators. Stateful aspects 
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allow important state transitions to be identified through the recognition of a pattern 
of successive events. We consider the need for such pointcut designators as a 
symptom that the system implements reactive behavior. As such, the system would be 
better decomposed using the natural decomposition for reactive systems, state 
machines.  

Finally, the path selection mechanism bears resemblances to the predictive pcflow 
[5][27]. Again, pcflow is based on a method-based joinpoint model and is expressed 
in terms of the implementation of the path, rather than in terms of the properties of the 
path, as it is the case with state transitions.  

6   Conclusion 

We demonstrate a technique that allow joinpoints located deep inside the 
implementation of a module to be inferred from pointcut descriptors that are entirely 
defined in terms of behavioral specifications. Traditional interfaces do not provide 
sufficient information about the runtime behavior of their components. This forces an 
aspect-oriented programming language to refer directly to the implementation of 
modules rather than their specification.  

We show through some examples that it is possible to define expressive aspects 
without compromising the modularity of base modules, by taking advantage of the 
abstraction provided by state machine specifications. We believe that aspect-oriented 
techniques can achieve a better separation of concerns at the level of state machines 
compared with code level techniques, especially in the domains of fault tolerance and 
concurrency. State machine specifications provide more information about the 
behavior of the modules, which allows aspects to get a better semantic grip on the 
module. The awareness of the base model with respect to the fault tolerance is 
implicitly captured by its state machine specification. 

Behavioral specifications do not need to be defined with respect to potential 
aspects. They should appear naturally in the early stages of the software development 
lifecycle. This approach works particularly well in the context of Model-Driven 
Engineering because there is a direct mapping from the system specification to its 
implementation. The particular technique discussed is by no means the only way 
implementation joinpoints can be inferred from behavioral specifications. Also, the 
approach could be generalized to programming languages using interface 
specifications such as Typestates or predicates. 

The inference method discussed in the paper is very expressive because it can 
localize important decision points in the implementation of a state machine. Decision 
points represent conditional statements that have a significant outcome on the state of 
the system, and on its future behavior. Conditional statements, in general, are hard to 
match directly, because they can be implemented in different ways and are prone to 
refactorings. Signature-based matching of conditional statements is therefore not a 
good practice, and is rarely implemented in AOP languages.  

Yet, decision points tend to be important crosscutting points. They are points 
where different use cases interact. As a result, aspects based on the procedural 
decomposition need to write complicated pointcuts that essentially attempt to detect 
those decisions points indirectly, which leads to brittle aspects. We consider the work 
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on Stateful Aspects as being proposals that attempt to address this problem at the code 
level. The transition selection mechanism allows semantically significant decision 
points to be identified in terms of state machine states and triggers, which are stable 
elements in the system, and have an intuitive semantic meaning.  

We also introduce an AOM tool that implements the joinpoint selection 
mechanism in UML 2.0, the Motorola WEAVR. The tool performs weaving of 
aspects at the modeling level and is currently being deployed at in production at 
Motorola, in the network infrastructure business unit.  
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Abstract. Aspect-oriented programming languages usually are exten-
sions of object-oriented ones, and their compilation target is usually the
(virtual) machine model of the language they extend. While that model
elegantly supports core object-oriented language mechanisms such as
virtual method dispatch, it provides no direct support for core aspect-
oriented language mechanisms such as advice application. Hence, current
implementations of aspect-oriented languages bring about insufficient
and inelegant solutions. This paper introduces a lightweight, object-
based machine model for aspect-oriented languages based on object-
oriented ones. It is centered around delegation and relies on a very
dynamic notion of join points as loci of late-bound dispatch of function-
ality. The model is shown to naturally support an important number of
aspect-oriented language mechanisms. Additionally, a formal semantics
is presented as an extension to the object-based δ calculus.

1 Introduction

The progress of the aspect-oriented programming (AOP) paradigm [43,27] has
spawned a wide variety of AOP languages and corresponding implementations
[13]. Such languages are usually formulated as extensions of object-oriented
“base” programming languages; and they are usually implemented by expressing
AOP core mechanisms (such as advice application at join points) [22] in terms
of the base language mechanisms.

For example, AspectJ [42,4] is an extension of Java [31,47]. AspectJ compilers
generate Java bytecodes. The same holds for other Java-based AOP languages
and systems [3,67,52].

In other words, the machine models targeted by compilers for object-oriented
and aspect-oriented programs are the same. AOP languages’ core mechanisms
are transformed into a representation using only object-oriented mechanisms, be-
cause those are the only ones that the target machine understands. Consequently,

� Research Assistant of the Research Foundation, Flanders (FWO).

E. Ernst (Ed.): ECOOP 2007, LNAI 4609, pp. 501–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



502 M. Haupt and H. Schippers

representations of aspect-oriented core mechanisms tend to be “verbose” in their
object-oriented executable representation, as workarounds have to be found for
mechanisms that cannot be directly expressed by the target machine.

For instance, regard the application of a before advice at a method execution
join point. In AspectJ, it is transformed into two method calls that are inserted
at the beginning of each affected method: one call to retrieve an appropriate
instance of the aspect, and one to invoke the advice. The latter is implemented
as a method in a class representing the aspect [13,35].

The transformation of aspect-oriented code to fit an object-oriented target
machine model introduces a semantic gap between the language’s expressions
and their realisation. It is especially apparent when regarding the target rep-
resentation of join points. Join points are well-defined points in the execution
graph of a running application [42,43,27]: points at which functionality defined
in aspects is made effective. Transformation of aspect-oriented code to an object-
oriented target machine model usually represents them in the form of join point
shadows [35]: locations in application code where join points potentially occur
at run-time.

Most AOP language implementations follow an approach centered around this
notion, i. e., they regard applications during weaving solely in terms of their static
representation in code. This contradicts the accepted view on join points as being
inherently dynamic. In essence, conceptual and technical views on join points
and the realisation of attaching advice functionality to them are unnaturally
different: dynamic properties are ultimately expressed using static means, such
as code locations.

The aforementioned semantic gap has been observed earlier [9] and led to the
development of dedicated virtual-machine level support for AOP in the form of
the Steamloom VM [9,34,33]. While Steamloom set out to bridge the gap, it
has achieved less. On the one hand, several techniques dedicated to offer explicit
support for core AOP mechanisms have been devised [33,10,7]. On the other
hand, Steamloom operates at bytecode level, still expressing AOP mechanisms
targeting an object-oriented machine model. Recent advances in virtual machine-
level weaving support [7] still follow this direction.

To effectively bridge the gap, it is required to devise an aspect-oriented ma-
chine model that can directly be targeted by AOP language compilers. This
paper’s contribution is a first version of such a model.

As the foundation for the model, we propose the notion of virtual join points1.
The notion of a join point as a point in the execution flow of a program suggests
to regard it as a locus of late binding. This view has been mentioned several times
[42,49,14] but, to the best of our knowledge, not been consequently adopted in
implementations so far.

At every join point—seen as a locus of late binding of functionality or value
to messages—, dispatch takes place, even though it leads, in most cases, to the
execution of the join point’s “original” functionality. Dispatch is oriented along
multiple dimensions, i. e., relies on one or more different properties from the

1 Some of the core ideas have been formulated in a workshop paper [8].
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program state at the time a particular join point is reached. One such dimension
is equivalent to virtual method dispatch, where the dynamic type of the object
receiving a message send determines the operation to be executed.

In AOP, dispatch dimensions are manifold, and numerous dynamic properties
come into question, e. g., the current control flow in case of cflow, the current
thread, sending/receiving instance, or others. Of course, static properties, such
as the message sent in the case of call or execution join points are also viable
candidates.

Viewing join points as loci of late binding yields a consistent point of view,
enabling a fresh view on the execution of aspect-oriented programs, and on
the implementation of execution environments for aspect-oriented programming
languages. If a running application is regarded as a sequence of join points [42],
adopting the aforementioned notion suggests to also regard it as a series of
late-binding events, of virtual functionality dispatch. In the following, we will
elaborate on AOP implementations and how they adhere to the new view on
join points mentioned above.

Based on the notion of virtual join points, we propose a machine model for
AOP languages called delegation-based AOP that faithfully obeys the view on
join points as loci of late binding. It is formulated as an extension of a prototype-
based object model and uses delegation to achieve late binding.

It is important to note that the proposed model is indeed the core of a machine
model for AOP; it is not a programming language. The model can be thought of
as the internal representation of “AOP assembler” in a (virtual) machine with
dedicated direct support for AOP mechanisms.

The structure of this paper is as follows. In the next section, we introduce the
concept of virtual join points in detail. After that, in Sec. 3, we present the execu-
tion model of delegation-based AOP in a purely prototype-based setting, as well
as a description of how the model can be extended to support, at the language-
implementation level, AOP in class-based languages. An operational semantics
is presented as an extension to the δ calculus [2] in Sec. 4. Sec. 5 discusses related
work. Finally, Sec. 6 summarises the paper and outlines future work.

2 Virtual Join Points

A join point is an inherently dynamic element of a running application, and it
is a locus of late binding. To facilitate late binding at join points, a dispatch
mechanism is required; this is similar to virtual methods in object-oriented pro-
gramming languages. To motivate this claim and further explain it, we shortly
describe virtual method dispatch.

Fig. 1(a) shows a program using no procedural abstraction at all: the code of
different concerns appears sequentially, possibly several times, in the program.
A choice between two concerns—depicted by the “either/or” alternative—is, in
such an approach, usually implemented using an if statement.

When procedures are introduced into the program, each concern is refactored
into one procedure and the original code is replaced by a call to the procedure,
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} else {

}

if( ) {

either
or

either
or

if( ) {

}

either
or} else {

if( ) {

}

} else { , }{

(a) inlined
procedures

(b) called procedures (c) dispatched methods

functionality static call dispatch {a,b,...}   choice

Fig. 1. Sketch of code that uses (a) no procedures, (b) procedures that are early-bound,
(c) virtual methods that are late-bound

as seen in part (b). However, the procedure is still statically bound to the call
site and there is no variability of which procedure is called at run-time. The
concern choice is, in the procedure, also still explicitly represented.

Finally, in part (c), we show the program’s shape when virtual methods are
used instead of procedures. At each call site, there is a set of potential tar-
get methods—which one is executed at run-time is only decided just before the
method is called. The explicit implementation of the either/or choice has van-
ished and is replaced by an implicit process called dispatching.

The first programming style’s disadvantage is that code is replicated and
consequently not well modularised. The second style improves modularity by
refactoring replicated code into procedures, while dispatching is still coded in
the application. Finally, with virtual methods, the flexibility of late-binding is
provided implicitly by the execution environment.

We see a close resemblance between the concepts of procedures and virtual
methods on the one hand, and that of join points on the other. In fact, we claim
we can seamlessly replace procedure and method in Fig. 1 with join point, in the
sense of a semantic action to be executed (we will use the term join point action
to denote this action). When an advice is bound to a join point, the latter’s
semantic action consists of the advice execution as well as the original action if
it is not omitted, e. g., by an around advice that does not proceed.

From an aspect-oriented point of view, a program looks like in (a) if it is not
written in an AOP language: crosscutting concerns are tangled with the applica-
tion and scattered over it. AOP languages allow to localise these concerns, but
current implementations of these languages for the most part early-bind advice to
join points, sometimes guarded by conditional, so-called residual [42] logic. The
target code these implementations generate resembles part (b) from the figure.
Although conditional logic is generated by the AOP language implementation, it
is part of the application code. An implicit dispatch for join points in the target
code as in part (c) should be the goal of AOP language implementations.

A logical consequence is to regard every single join point as a locus of late
binding, i. e., as a virtual join point. An, in this regard, conceptually clean imple-
mentation of a run-time environment for aspect-oriented programming languages
implicitly represents join points as virtual join point “calls”. Each such call is
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dispatched at run-time and one target is selected according to the current run-
time state. The original join point action is, among possibly applicable advice,
contained in the set of potential targets. If no advice apply to the join point, there
is only one potential target: the default join point action. This is comparable to
a virtual method that is not overwritten.

We will now consider how powerful dispatch has to be. In object-oriented
programming languages, the standard case is to dispatch a method call only
based on the receiver object’s type. This can be realised by using a dispatch
table. Multi dispatch [20], where the receiver and argument types are taken into
account, requires extended mapping from multiple types to a method. Predicate
dispatch [26,50] is the most general notion, attaching an arbitrary predicate to
a method: if it evaluates to true, the method is executed.

When a virtual method table is used, only one run-time object can influence dis-
patch, usually the method call receiver. However, AOP languages allow for richer
semantics in pointcuts, and pointcut expressions are usually more complex, so that
dispatch is oriented alongmore than one dimension. In the following, we will briefly
discuss which dimensions of dispatch are met in existing AOP languages.

AspectJ [42,4] provides dynamic pointcut designators cflow, target, this
and args, which specify the current control flow, dynamic type of receiver, active
or argument objects, respectively. Consequently, dispatch has to regard these.

Other AOP implementations like CaesarJ [3,17], JAsCo [67,66], Association
Aspects [60], Steamloom [33,34,9], PROSE [56,57,52,58] or EOS [59] also allow
for deploying an aspect, e. g., only in certain threads or for certain objects. As a
result, the current thread can be a dimension of dispatch, as well as the active
or receiver objects themselves—not only their types.

Even more dimensions are conceivable that hint at the capabilities of upcom-
ing and future AOP languages. If, for example, a pointcut language regards the
history of execution [66,1,55] or the interconnections of objects on the heap [55],
dispatch dimensions come into scope that are laborious to implement with a
purely object-oriented target machine. The generalised concept of virtual join
point dispatch, when realised at the core of an execution environment, delivers
a more powerful basis on which such languages can be built.

3 Delegation-Based AOP

In this section, we will first introduce the delegation-based AOP machine model
in its simplest form, i. e., in a purely prototype-based setting. After that, we
will show how the purely prototype-based model can be extended to support
class-based languages. A brief discussion and summary close this section.

3.1 Prerequisites

The machine model for AOP proposed here is based on the concepts of proto-
types and delegation [46]. The join point model’s granularity is that of messages,
i. e., each message send constitutes a join point. Both method invocations and
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member accesses are equally modelled as messages sent to receiver objects. It
is this feature by which the model facilitates late binding at all join points: the
exact locus of late binding is message reception.

In Fig. 2(a), a single object obj is shown. It has three slots responding to the
messages foo, bar, and baz. The implementation of the message bar sends the
message foo to self, i. e., to the very object that received the bar message.
The parent of obj—parent references are represented as arrows—is some object
further up the delegation chain of objects.

obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

... actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...

obj

(a) (b)

Fig. 2. (a) A single object with an unspecified parent, (b) an object and its proxy

In the context of the execution model for AOP proposed herein, an object is
not referenced directly, but through a proxy, as shown in Fig. 2(b). The proxy,
by default, does not understand any particular messages, but transparently del-
egates all messages sent to it to the object it stands for. In the figure, obj is the
proxy object by the name of which the actual object actual_obj is known.

Technically, the proxy object determines the actual object’s identity at all
times: objects might be inserted to or removed from the delegation chain, but
since the proxy object will always remain up front, references to it will never
need to be updated.

Additionally, as calls are delegated up the delegation chain, self will always
be bound to the proxy object. For example, when bar is sent to obj, the call is
delegated to actual_obj, where the message is understood. Its implementation
sends foo to self. The latter, because bar was delegated to actual_obj, is still
bound to obj.

3.2 Introducing Aspects

We will now turn to showing how the common mechanism of delegation can be
used to late-bind advice to join points. Assume there are two aspects asp_a and
asp_b. Both affect different messages in obj: asp_a adds a before advice to bar
and an around advice to baz, asp_b adds an after advice to both foo and bar.
Both aspects are dynamically deployed at different moments in time while the
application is running.

Fig. 3 shows the situation after asp_a has been deployed. An additional object,
named asp_a_proxy, has been inserted in the delegation chain between the proxy
and the actual object. This so-called aspect proxy understands the two messages
augmented by the corresponding aspect, namely bar and baz.

The effect of this delegation chain modification is that all messages sent to
the actual object via its proxy are first understood by the aspect proxy, bringing
about the application of advice. From here on, the aspect proxy acts as a smart
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actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...obj
asp_a_proxy

bar = (<advice>, resend)
baz = (<advice>, resend, <advice>)

Fig. 3. The aspect asp_a has been deployed

reference (hence our usage of the term proxy [30]) to the actual object: it performs
actions of its own, as well as possibly addressing actual_obj. For example, bar is
understood in asp_a_proxy. The aspect proxy’s implementation of the message
applies advice functionality before it resends the message, i. e., passes on the
message while self remains bound to the original receiver, obj. This means
that the original implementation of bar in actual_obj, when it is eventually
executed, correctly sends foo to obj.

Please note that the figures do not make any assumptions as to where advice
functionality is actually implemented; it may be given in-place, i. e., in the aspect
proxies themselves, or the latter may call other objects to execute advice.

Next, asp_b is deployed as well. The resulting situation is shown in Fig. 4.
The aspect proxy for asp_b has been inserted in the delegation chain between
the aspect proxy for asp_a and the actual object.

actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...obj

asp_a_proxy
bar = (<advice>, resend)

baz = (<advice>, resend, <advice>)

asp_b_proxy
foo = (resend, <advice>)
bar = (resend, <advice>)

Fig. 4. Both asp_a and asp_b have been deployed

The situation after the deployment of asp_b is especially interesting with
regard to the messages bar and foo. The former is subject to a before and an
after advice introduced by asp_a and asp_b, respectively. The use of delegation
in the machine model facilitates transparent advice application to foo: when
bar’s original implementation sends foo to self, the message is routed through
the proxy obj and both aspect proxies, leading to its interception in asp_b.

In the example, the aspect proxy of the last-deployed aspect was inserted
immediately before the actual object in the delegation chain, which means that
the first-deployed aspect applies first. Different orders of advice application are
straightforward to achieve by reordering aspect proxies in the delegation chain.
Aspect precedence can thus easily be dealt with: it basically is a matter of proxy
ordering.

The need for a proxy is now apparent. All modifications due to dynamic
weaving affect the delegation chain leading to the decorated object. Without the
proxy, all references to that object would have to be updated upon dynamic
aspect deployment. The proxy ensures a unique reference at all times, making
delegation chain modifications between itself and the actual object transparent.

The above examples employ before, after and around advice. In the figures,
all advice actions are subsumed under <advice>. It is obvious that delegation-
based AOP easily facilitates all three types of advice in that it treats before and
after advice as special cases of around advice.
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A crucial part of all message implementations in aspect proxies is the exe-
cution of the decorated join point. In delegation-based AOP, this is achieved
by resending the respective message to the next object in the delegation chain,
during which self still remains bound to the original message receiver.

3.3 Adding the Thread Dimension

So far, the description of the model has only shown how late binding is facilitated
along two dimensions, namely the identity of the receiver of a message send,
and the message itself. We will now show how additional dimensions can be
supported, and we will use thread locality as the first example for this.

Thread locality can be observed in existing AOP implementations in two
forms. On the one hand, aspects can be scoped to a single given thread, or a
number of threads. That is, their advice apply to join points only when the latter
occur in the execution of the respective thread(s). This feature is, for example,
directly supported in CaesarJ [3] and Steamloom [33]. On the other hand, thread
locality may imply that different (advice or residual [42]) functionality must be
executed depending on the thread at hand. For example, the AWED language
[51] allows for per-thread aspect instantiation. It also is a core requirement for
cflow residues to be thread-local, i. e., to maintain control flow information per
thread.

The current thread is thus added as a dimension of dispatch at join points.
The delegation-based AOP machine model allows for addressing both forms of
thread locality in a uniform way. To that end, the parent reference of each
object is defined to be a function of the current thread rather than a static
reference. That way, an object’s parent can be different, depending on the cur-
rent thread. Essentially, the delegation chain itself becomes a property of the
thread.

For illustration, Fig. 5 shows, again, the sample object actual_obj and its
proxy, obj. This time, two aspects asp_c and asp_d have been deployed. The
former introduces a before advice to foo that only applies in a thread T1, the
latter introduces a before advice to bar that applies globally.

actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...
obj

asp_c_proxy
foo = (<advice>, resend)

asp_d_proxy
bar = (<advice>, resend)

T1

Fig. 5. The aspect asp_c is scoped to the thread T1, asp_d applies globally

In the figure, the dashed line with the annotation “T1” denotes a delegation
link that applies in the thread T1, while solid lines denote unconditionally effec-
tual links. It can be seen how asp_c_proxy delegates to asp_d_proxy, effecting
the application of asp_d in all threads.
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actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...obj
asp_e_cw_proxy

bar = (<activate>, resend, <deactivate>)

(a) control flow not yet entered

actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...

obj
asp_e_cw_proxy

bar = (<activate>, resend, <deactivate>)

(b) control flow entered in T1

asp_e_proxy
foo = (<advice>, resend)

T1

actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...

obj
asp_e_cw_proxy

bar = (<activate>, resend, <deactivate>)

(c) control flow entered in T1 and T2

asp_e_proxy
foo = (<advice>, resend)

T1, T2

Fig. 6. Dispatch along the control flow dimension through continuous weaving

3.4 Adding the Control Flow Dimension

Next, we will show how the introduced model mechanisms can be used to support
yet another dimension of dispatch, namely the current control flow. This basically
models the cflow construct known from AspectJ [42].

The sample aspect in this case, asp_e, applies a before advice to foo only if
this message is sent in the control flow of an execution of bar. In the model,
this is achieved using continuous weaving [32], i. e., the corresponding aspect
proxies are dynamically inserted into and removed from the delegation chain as
the control flow in question is entered and left. It is important to note that this
has to take place per thread : when the control flow is entered in T1 but not in
T2, only the delegation chain of T1 is to be affected.

Consider Fig. 6 for illustration. In part (a), the situation is shown where asp_e
is deployed but no thread is currently in the control flow of executing bar. Still,
asp_e_cw_proxy—a continuous weaving proxy pertaining to asp_e—has been
inserted in the delegation chain. It serves the purpose to dynamically deploy the
actual aspect proxies whenever a thread enters or leaves the respective control
flow. Note that the <activate> and <deactivate> functionality surrounds the
resend of the control-flow constituting message like an around advice.

Fig. 6(b) shows the situation after bar has been sent to obj in a thread T1.
For that thread, the delegation chain is different now; sends of the foo message
are understood in asp_e_proxy, where advice functionality is applied. Note that
the continuous weaving proxy is not in the delegation chain for T1, so as to avoid
multiple insertions of the aspect proxy due to recursive entries of the control flow.

In Fig. 6(c), another thread, T2, has entered the control flow. The continuous
weaving proxy has reacted to this by simply adding T2 to the set of threads for
which the “parent function” of obj yields the aspect proxy asp_e_proxy. That
way, advice apply to foo in both T1 and T2, but in no other thread.

This approach to handling the actual aspect proxy guarantees that the aspect
proxy is inserted into the delegation chain at most once. The model’s prop-
erty of regarding parent references as functions allows for adding and removing
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particular threads to the set of threads for which the parent function yields the
aspect proxy. The aspect proxy is not removed until the last thread leaves the
respective control flow. This is taken care of in the continuous weaving proxy.

It is important to stress that no extra features were introduced to the model
in order to support the control flow dimension. A continuous weaving proxy is
technically identical to any other aspect proxy, or indeed any other object. The
only requirement is the capability to dynamically modify an object’s delegation
chain, while the delegation mechanism handles message flow.

3.5 Supporting Class-Based Languages

The delegation-based AOP machine model is originally based on prototypes. We
will now show how the model can easily be extended to support class-based
languages while retaining all benefits from the prototype-based version, such as
instance-local and thread-local aspect deployment.

It is easy to emulate the class-instance relationship known from class-based
languages in a prototype-based setting [64,12]: any class is represented by an
object defining the class behaviour, while any instance of a class, represented
by an object whose parent slot points to the class, only carries its state. The
instantiation of an object is done by cloning a prototype.

In the extended delegation-based AOP model, objects have references to their
classes, and the way methods are invoked along these references can be modified
by modifying the path to the class. Fig. 7 shows how the basic principle works:
every object (c in the figure), as seen before, is represented by a proxy that
references the actual object (actual_c). The actual object contains instance-
specific attributes, i. e., member fields. The actual object in turn does not di-
rectly reference its class, but it does so via another proxy, the so-called class proxy
(proxy_C) whose purpose will be clarified below. Finally, the class is represented
by an object (C) that defines the messages any instance of the class understands.

c

C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c
x = ...
y = ...

proxy_C ...

Fig. 7. Objects representing the class C and an instance thereof

If an aspect asp_f with a class-wide before advice for the message C.bar
is inserted, the delegation chain is modified as seen in Fig. 8. An aspect proxy
asp_f_proxy is inserted in between the class proxy and the class. The proxy
understands, exactly in the fashion of the execution model as presented above,
the message bar and applies advice before resending it.

So, the default class proxy is needed because inserting a class-wide aspect
without having this proxy would involve changing the parent links of all currently
existing instances of the respective class, as well as those of all instances of the
class that are created while the aspect is deployed. Hence, the class proxy exists
for the same reasons as the default object proxy introduced above.



A Machine Model for Aspect-Oriented Programming 511

c

C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c
x = ...
y = ...

proxy_C ...
asp_f_proxy

bar = (<advice>, resend)

Fig. 8. The aspect asp_f introduces a class-wide advice for C.bar

There is no interference of the mechanisms for class-wide aspects with those
for instance-specific decoration. In fact, class-wide and instance-local decorations
can be seamlessly combined. The underlying mechanism is always delegation of
messages through proxies. In Fig. 9, there are two instances c1 and c2 of the
class C. Both are connected to their corresponding class object via the default
class proxy. However, there is another proxy on the delegation path for c1. In
fact, this proxy object implements the message bar to form aspectual behaviour,
but this new behaviour takes effect only if bar is sent to c1. In the same way,
the message foo is affected by a before advice—but this advice applies to all
instances of C because its place in the delegation chain is after the class proxy.

c2

C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c2
x = ...
y = ...

proxy_C

...c1
actual_c1

x = ...
y = ...

asp_h_proxy
bar = (<advice>, resend)

asp_i_proxy
foo = (<advice>, resend)

Fig. 9. Two instances of C, where one is affected by the aspect asp_h, and a class-wide
aspect asp_i

Proxies for instance decoration are always well isolated from proxies for class
decoration, as the latter are inserted between the class proxy and the class, while
the former are inserted between the decorated instance and the class proxy. Due
to this, instance decorations always dominate class decorations.

The concepts relating to extended support for dispatch dimensions introduced
earlier also apply in this setting: advice can be restricted to particular threads
by making the corresponding parent references functions of the thread. This is
illustrated in Fig. 10, where asp_g applies only in the thread T1.

c
C

foo = (...)
bar = (..., self foo, ...)

baz = (...)

actual_c
x = ...
y = ... proxy_C

...

asp_g_proxy
bar = (<advice>, resend)

T1

Fig. 10. asp_g applies only in the thread T1

3.6 Introductions

The delegation-based AOP machine model does not only support pointcut-and-
advice-flavoured AOP [48]. We will now show how it easily facilitates introduction
of fields and methods.
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c1
C

foo = (...)
bar = (..., self foo, ...)

baz = (...)

actual_c1
x = ...
y = ...

proxy_C ...

(a) nothing introduced yet

c2 actual_c2
x = ...
y = ...

c1 C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c1
x = ...
y = ...

proxy_C

...

(b) an aspect with introductions is deployed

c2 actual_c2
x = ...
y = ...

asp_int_proxy
f = (...)

msg = (...)

c1 C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c1
x = ...
y = ...

proxy_C

...

(c) the field f has been introduced to c2

c2 actual_c2
x = ...
y = ...

asp_int_proxy
f = (...)

msg = (...)asp_int_c2
f = ...

Fig. 11. Introductions in delegation-based AOP

Assume an aspect asp_int introducing a field f and message msg to the
class C. The situation just after the aspect’s deployment is shown in Fig. 11(b)
(part (a) shows the situation before deployment). An aspect proxy,
asp_int_proxy, has been inserted in the usual fashion in between the class
proxy for C and C itself. The proxy understands two messages, namely msg and
f. No fields have been added yet to either c1 or c2. This is done dynamically,
as we will see next.

Above, it was mentioned that asp_int introduces a field f. However, the
inserted aspect proxy understands a message of that name which is realised as
a method. The purpose of this method is to facilitate the dynamic on-demand
introduction of fields to objects.

Consider what happens when the field f of the object c2 shall be accessed:
the message f is delegated until it is understood in asp_int_proxy. The imple-
mentation of f inserts an instance-local aspect proxy for c2 which solely contains
the new field f, establishing the situation shown in Fig. 11(c).

f is now realised as a field, which has no method-like functionality to execute
and hence does not proceed, like advice implementations. Thus, whenever the
message f is sent to c2 in order to access the field, the message is understood in
asp_int_c2 and not delegated further up the delegation chain.

3.7 Discussion and Summary

The machine model for AOP introduced above is based on the well-known con-
cepts of prototypes and delegation, which have been augmented with the ad-
ditional property that parent references can actually be functions. In fact, the
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model allows for such a function to determine its result based on arbitrary param-
eters, not just the current thread, to realise dispatch along multiple dimensions.

The model, being object-oriented itself, can be used as an execution layer for
object-oriented programming languages. As seen in Sec. 3.5, class-based object-
oriented languages can easily be supported. We argue that the strengths of the
model fully come into play when languages are to be implemented that require
extensive use of late binding. Thus, it is especially well suited to support aspect-
oriented programming languages.

The model supports the pointcut-and-advice flavour of AOP [48] straightfor-
wardly. Apart from that, the model allows for implementing extended features.
Scoping aspect applicability to single instances comes as a natural feature of the
model. Yet, other features such as thread-local scoping and per-thread advice—
illustrated by the first and second examples, respectively, in Sec. 3.4—are also
supported in a unified way: both are done implicitly through parent functions.

Delegation-based AOP also provides very simple mechanisms for realising
different aspect precedence strategies. The order of aspect proxies in the delega-
tion chain may depend on several factors, such as the order in which deployment
occurs, or explicitly declared precedence. The model also naturally supports dy-
namic weaving through its reflective capabilities. Proxies can, at all times, be
dynamically inserted in and removed from delegation chains.

Set aside the features of pointcut-and-advice AOP, the model also supports
introduction of fields and methods to existing objects and classes. This is easily
achieved simply by exploiting the model’s inherent mechanisms. In a nutshell,
the delegation-based AOP machine model represents a uniform approach to im-
plementing AOP, based on some simple yet powerful mechanisms.

A proof-of-concept implementation for the delegation-based AOP machine
model has been developed as well. Emphasising elegance and simplicity more
than efficiency, the relatively young, dynamic Io programming language [37] was
used for this purpose. Regarding an efficient implementation, we refer to ex-
isting work on efficiently implementing dynamic languages that was achieved
in the course of implementing the Self language [65,18,61] and the Strongtalk
Smalltalk implementation [63]. In those projects, very efficient compiler technol-
ogy for dynamic languages has been developed. Adopting their achievements for
delegation-based AOP is a core topic of future work.

4 Semantics

We will now introduce the δ [2] calculus, followed by a number of modifications
and extensions in order to use it as a formal foundation for our model.

4.1 The δ Calculus

δ is a simple calculus providing a formal foundation for an imperative, object-
based system with delegation. It is defined through an operational semantics
function �δ, which is a finite mapping of expressions and stores onto pairs of
addresses and stores:



514 M. Haupt and H. Schippers

�δ: Exp× Store �→fin Address × Store

A store is basically a lookup table which maps addresses to objects, and stores
the self pointer:

Store = ({self} �→ Address) ∪ (Address �→fin Obj)

Finally, an object contains a list of addresses, pointing to its parents (δ indeed
allows for multiple parent objects), which are each associated with an identifier,
as well as a list of method names with their bodies, and are represented as
o ≡ �d1 = ι1 . . . dk = ιk‖m1 = b1 . . .mn = bn�:

Obj = (DelegateID �→fin Address) ∪ (MethodID �→fin Exp)

A number of operations are defined as well which determine the way expres-
sions are constructed, and of which the following are most relevant in the context
of this paper:

(Addr)

ι, σ �δ ι, σ

(Clone)
a, σ �δ ι, σ′

ι′ /∈ dom(σ′)
σ′′ = σ′[ι′ �→ σ′(ι)]
clone(a), σ �δ ι′, σ′′

(Select)
a, σ �δ ι, σ′

Look(σ′, ι, m) = {b}
σ′′ = σ′[self �→ ι]
b, σ′′ �δ ι′, σ′′′

σ′′′′ = σ′′′[self �→ σ(self)]
a.m, σ �δ ι′, σ′′′′

(Addr) is the basic case, where an address evaluates to itself without mod-
ifying the store. (Clone) performs a copy-by-value of an object’s parents and
methods, and stores the result at a new address. Finally, (Select) models mes-
sage sending and makes sure self is initialised to point to the message receiver.
The Look function basically looks up the method body associated with m, either
in the receiver object itself, or in one of its parents. It is assumed that only one
candidate is found.

The delegation semantics are thus incorporated in the Look function, but as
the latter will be modified to better fit the context of this paper (cf. Sec. 4.2), its
original definition is omitted here.

4.2 Modifications and Extensions for Delegation-Based AOP

For δ to be convenient as a formal foundation for delegation-based AOP, a num-
ber of adaptations need to be made. First of all, a simplification can be applied,
in that it turns out to be sufficient for each object to have maximally one parent
instead of n. This is because (Select) will exhibit the same behaviour if a mes-
sage is sent to an object �d1 = ιa, d2 = ιb‖ . . .� as if the same message were sent
to �d1 = ιa‖ . . .� where σ(ιa) = �d1 = ιb‖ . . .�. Indeed, in both cases, lookup will
check b’s methods only after it failed to find a suitable candidate in a. However,
in order to allow an object’s parent to vary depending on the context (for ex-
ample the current thread), a function Del is introduced, which associates every
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object with another function. The latter, in turn, determines the object’s parent
based on the context. Consequently, parents will no longer appear in an object’s
representation:

Del : Address �→fin (Context �→ Address)
o ≡ �m1 = b1, m2 = b2 . . .�

Note that the Context domain is not defined in more detail in order to allow it
to be used for any information considered applicable in a particular situation.
Furthermore, the notation Delι will be used from now on as an abbreviation for
Del(ι) and, in case Del(ι) is a constant function, even for that constant value.
For convenience, Delι is assumed to be stored together with the actual object
in the store at address ι.

Next, (Clone) should be updated to make sure objects are automatically
associated with a proxy, and can be referenced through this proxy:

(Clone)
a, σ �δ ι, σ′

ι′ /∈ dom(σ′)
σ′′ = σ′[ι′ �→ σ′(ι)]
ι′′ /∈ dom(σ′′)
σ′′′ = σ′′[ι′′ �→ (� �; Delι′′(context) = ι′)]
clone(a), σ �δ ι′′, σ′′′

Note that Delι′′ is set to be a constant function here. This means that the
parent of the proxy object will always be the actual object, regardless of context.
Furthermore, the proxy object has got no methods of its own. Thus, all messages
sent to it are automatically delegated to its parent.

Also note that the semantics of (Clone) as defined here may not be suitable
in all cases, for example to create an aspect proxy object which does not need
another proxy of its own. For such cases, the old (Clone), or even yet another
variant, might be more appropriate. The current version demonstrates what it
means for a proxy to be attached to an object, as well as how and when this
might be realised.

As stated before, delegation semantics are incorporated in the Look function,
which is now adapted to take the Del function into account. More specifically,
it should look for a method m in the object at address ι or any object found
by recursively applying the Del function, and return its body together with the
address of the object where m was eventually encountered:

Look(σ, ι, m) =
{
{(b, ι)} if σ(ι) = �. . . m = b . . .�
Look(σ, Delι(context), m) otherwise

Note that Look(σ, ι, m) is undefined if at some point an application of Delι is
undefined as well. This will happen in case an object has no parent.

At this point, delegation semantics are suitable for delegation-based AOP.
The next issue is that there is no resend mechanism yet. In order to incorporate
this, two new pseudovariables msg and cur are introduced, which, similarly to
self , are only relevant during a message send:
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(V ar)

self, σ�δ σ(self), σ
cur, σ �δ σ(cur), σ
msg, σ �δ σ(msg), σ

Indeed, a resend is only possible within the body of a method, and msg and
cur respectively serve to hold the name of the message currently being handled,
and the address of the object where the body of this message was found by
the Look function. Consequently, (Select) is now modified to correctly initialise
these new variables, and the definition of a store is updated as well:

(Select)
a, σ �δ ι, σ′

Look(σ′, ι, m) = (b, ιd)
σ′′ = σ′[self �→ ι][msg �→ m][cur �→ ιd]
b, σ′′ �δ ι′, σ′′′

σ′′′′ = σ′′′[self �→ σ(self)][msg �→ σ(msg)][cur �→ σ(cur)]
a.m, σ �δ ι′, σ′′′′

Store =
({self} �→ Address) ∪ ({cur} �→ Address)∪

({msg} �→ MethodID) ∪ (Address �→fin Obj)

At this point, (Resend) can be modelled to select msg on the parent of cur,
while self is not modified, and thus remains bound to the original receiver:

(Resend)
Look(σ, Delcur(context), msg) = (b, ιd)
σ′ = σ[cur �→ ιd]
b, σ′ �δ ι′, σ′′

σ′′′ = σ′′[cur �→ σ(cur)]
resend, σ �δ ι′, σ′′′

Note that cur is updated during (Resend). This is necessary to cover the case
where the evaluation of the newly found b triggers yet another resend.

Finally, a couple of dedicated aspect-oriented operations can be defined. It
turns out that deploying an aspect is just a matter of rewiring a couple of
parents, while aspect undeployment boils down to resetting this rewiring:

(Deploy Aspect)
a, σ �δ ι, σ′

asp, σ′ �δ ι′, σ′′

σ′′′ = σ′′[Delι′(context) = Delι]
σ′′′′ = σ′′′[Delι(context) = ι′]
deploy(asp, a), σ�δ ι, σ′′′′

(Undeploy Aspect)
a, σ �δ ι, σ′

asp, σ′ �δ ι′, σ′′

σ′′′ = σ′′[Delι(context) = Delι′]
undeploy(asp, a), σ�δ ι, σ′′′



A Machine Model for Aspect-Oriented Programming 517

4.3 Example

As an example, consider the scenario shown in Figs. 2(b) and 3 from Sec. 3. We
start out with an object obj = σ(ιobj) = � � and Delιobj

= ιactual obj where
σ(ιactual obj) = �foo = . . . , bar = [. . . , self foo, . . .], baz = . . .�. Thus, obj is a
proxy object with its parent pointing to actual obj.

Next, aspA is deployed using (Deploy Aspect):

deploy(ιaspA, ιobj), σ �δ ιobj , σ
′

The Delιobj
function is now set to always evaluate to the constant value ιaspA,

but this need not necessarily be the case. The slightly more advanced situation
where aspA is applied locally to thread T1 (cf. Sec. 3.3) is easily covered by a
minor change to the (Deploy Aspect) operation, where Delιobj

is set to the
following instead (t is the current thread):

Delιobj
(t) =

{
ιaspA if t = T1

Udf otherwise

Of course, in case t �= T1, the result might just as well be yet another object,
rather than undefined. The latter models the case where obj has no parent.

5 Related Work

The discussion of related work is done in two parts. First, we will focus on work
that also supports the notion of join points as loci of late binding. We will then
turn to presenting implementations or implementation ideas that exploit mecha-
nisms resembling an actual late-binding approach as presented in the preceding
sections.

5.1 Join Points as Loci of Late Binding

Join points as loci of late binding have been alluded to in numerous publications
presenting formalisms for aspect-oriented programming. A number of these ap-
proaches regard join points as events [68,15,25,29,28] to which advice essentially
react. While this can be regarded as a form of late binding, the notions of join
points used in the aforementioned publications still differ from our idea in that
they assume that certain join points are selectively activated as events during
a weaving step [25], or that additional conditional logic is executed whenever
such an event is signalled to determine whether advice are actually applicable
[68]. The application is under observation, it is being monitored by some entity
pertaining to AOP infrastructure. Conversely, our model regards all potential
join points as being “active” and thus implicitly as loci of late binding at all
times. Moreover, additional conditionals are not required in delegation-based
AOP because late binding is done implicitly through the appropriate insertion
of proxies in the delegation chain.
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In the AOSD-Europe project, a generic meta-model for aspect-oriented pro-
gramming languages has been developed [14]. It explicitly regards join points
as points where advice functionality may be late-bound. The model comes with
a prototype implementation in the form of an interpreter, which checks for ad-
vice applicability at all join points it encounters. This corresponds to an “eager”
checking for the applicability of advice. Application of advice is thus less implicit
than in delegation-based AOP.

Some formalisms explicitly address dispatch mechanisms to model join points
and advice application at them [53,45,38]. The Fred language [53] combines
concepts from object-oriented and aspect-oriented programming as well as pred-
icate dispatch [26]. This approach is close to delegation-based AOP regarding its
derivation. Still, it requires the definition of conditions for dispatch at application
level instead of applying dispatch implicitly, like our model.

Lämmel introduces method call interception (MCI) as a fundamental language
mechanism [45]. MCI allows for superimposing method calls with additional
functionality. The MCI model is, however, restricted to method calls only and
does not aim at representing a general model for AOP.

The calculus of untyped aspect-oriented programs presented by Jagadeesan
et al. [38] is very closely related to the delegation-based AOP model presented
in this paper. It models all advice applying at a join point as ordered units of
behaviour, each of which is essentially an around advice. Such an advice unit
closely resembles an aspect proxy in delegation-based AOP. Advice are also
implicitly applied at join points. Only method calls, which can be expressed
using message sends, are considered as join points in the calculus.

The parameterised aspect calculus [19] regards each reduction step as a po-
tential join point. Still, the semantics consults a pointcut language element at
all reduction steps, leading to eager explicit checking for advice applicability like
observed above for the AOSD-Europe meta-model.

The common aspect semantics base (CASB) [23] regards every instruction as
a potential join point, applying a two-staged function at all instructions. The
first function determines whether the current instruction may be subject to
decoration with advice. If so, the second function is applied to check whether
the present dynamic state calls for applying advice at the join point at hand.
An instruction is hence treated like an AspectJ join point shadow. The view on
a running application therefore closely resembles the one found in AspectJ.

In Pluggable AOP [44], aspect language mechanisms are modelled as mixins
that transform interpreter base mechanisms. Said mixins are represented in the
form of proxy objects, and composition with the base interpreter functionality is
achieved through proxy insertion in delegation chains that are part of the inter-
preter’s logic. The similarities with the machine model for AOP presented in this
paper are of a technical nature. Pluggable AOP augments interpreter base mecha-
nisms by means of proxies and delegation. Conversely, delegation-based AOP has
proxies and delegation as the interpreter’s core mechanisms. In other words, Plug-
gable AOP transforms the interpreter, whilst delegation-based AOP transforms
application structures subject to execution by a never-changing interpreter.
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Ossher [54] proposes to represent application objects as “constellation[s] of
a number of fragments” that each contribute part of an object’s functionality.
Fragments delegate to each other in case a piece of desired functionality is not
implemented by one. Crosscutting concerns can be dynamically woven in and
out by adding fragments to, or removing them from, the delegation chain. His
proposal is a suggestion for research directions for virtual machine support for
concern composition. The machine model presented herein obviously matches
with these ideas.

5.2 Related Implementations

There are several actual AOP language implementations that use techniques
related to late binding at join points. None of them is as radical as the model
presented in Sec. 3, but certain resemblances exist.

Envelopes as in envelope-based weaving [16] wrap potential join point shadows
in methods introduced at load-time. They closely resemble virtual join points but
are limited in that they basically just map virtual join points to virtual methods.
Some AOP implementations utilise a less consequent form of envelopes to realise
dynamic weaving. AspectWerkz [5,11] does not replace all potential join point
shadows with envelopes, but those that are, at class loading time, known to be
in the scope of aspects that may be put to use during run-time. Each join point
shadow is replaced with a call to a method in a dedicated so-called join point
class. Dynamic weaving is achieved by replacing said methods using HotSwap
[24,41]. AspectWerkz’ approach is described in more detail in [13]. JAsCo [67,66],
in its run-time weaver [39], follows a similar approach.

One variant of PROSE [57] decorates each join point shadow with advice dis-
patch logic, effectively realising a powerful dispatch mechanism. However, the
approach brought about severe performance penalties, as the chosen implemen-
tation strategy was nothing like virtual method dispatch. In fact, advice dispatch
logic was implemented as an unconditional callback into the AOP framework of
PROSE, leading to the execution of costly functionality at all join points.

Implementing AOP languages using proxies is an approach chosen by numer-
ous AOP frameworks, of which Spring AOP [40,62] is one of the most popular.
Frameworks like Spring AOP create proxies that replace the original application
objects and implement the same interface as the latter, but apply advice in their
implementations of the respective methods. Proxy-based AOP is technically close
to the delegation-based AOP model for yet some more reasons. Aspect prece-
dence is easily expressed by ordering proxies appropriately. Also, proxies can be
applied—introduced and withdrawn—dynamically, allowing for dynamic weav-
ing. The main difference between proxy-based and delegation-based AOP lies in
the level at which the approaches are realised: proxy-based AOP implementa-
tions operate at application level. That is, all AOP-related operations are part
of the running application, imposing significant performance penalties on join
points where advice functionality applies [33]. Conversely, delegation-based AOP
is intended to be realised at the level of the run-time environment, promising
significantly better performance.
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The composition filters [6] approach is related to proxies in that filters are
applied to messages. Filters may impose additional functionality on message
evaluation, thereby effecting advice. Execution of such functionality may also
depend on conditions specified in filters. Composition filters relate to delegation-
based AOP in the same way proxies do: filtering is specified at language instead
of machine level.

Finally, there are implementations that do not affect application code as such,
but that manipulate meta-level entities to let aspect-related constructs take ef-
fect. Systems falling in this category are AspectS [36] and context-oriented pro-
gramming (COP) [21]. Their relation to delegation-based AOP is apparent: both
do modify system-internal dispatch data structures, such as virtual method ta-
bles or method dictionaries, to augment functionality at join points. The main
difference to delegation-based AOP lies in that they do not explicitly regard all
join points as loci of late binding—this characteristic is introduced by installing
aspects (in AspectS) or activating layers (in COP).

6 Summary and Future Work

Based on the notion of join points as loci of late binding, we have presented a ma-
chine model for the implementation of aspect-oriented programming languages
called delegation-based AOP. The model not only facilitates the implementation
of the pointcut-and-advice AOP flavour, but also that of numerous other AOP
features, such as aspect scoping (to threads and instances) or introductions. The
model is simple and exploits few simple basic concepts—delegation, prototypes,
parent reference functions—to achieve all of its goals.

Future work will focus on several issues. An implementation of the model is
to be developed in the form of a virtual machine for a high-level aspect-oriented
programming language. The machine will support some standard bytecode set
(e. g., Java or Smalltalk), but will moreover offer dedicated bytecode instruc-
tions supporting the core aspect-oriented features of the machine model. Exist-
ing aspect-oriented programming languages are to be mapped to it by means
of compilers that target the machine’s instruction set. To achieve good perfor-
mance, existing work on providing efficient run-time environments for dynamic
languages is going to be used as a foundation.
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ment. Addison-Wesley, Reading (2005)

28. Filman, R.E., Friedman, D.P.: Aspect-Oriented Programming is Quantification and
Obliviousness. Technical Report 01.12, RIACS, May 2001 (2001)

29. Filman, R.E., Havelund, K.: Source-Code Instrumentation and Quantification of
Events. In: Leavens, G.T., Cytron, R. (eds.) FOAL 2002 Workshop (at AOSD
2002), pp. 45–49 (2002)

30. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns — Elements of
Reusable Object-Oriented Software, pp. 87–95. Addison-Wesley, Reading (1994)

31. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison-Wesley,
Reading (1996)

32. Hanenberg, S., Hirschfeld, R., Unland, R.: Morphing Aspects: Incompletely Woven
Aspects and Continuous Weaving. In: Proc. AOSD 2004, ACM Press, New York
(2004)

33. Haupt, M.: Virtual Machine Support for Aspect-Oriented Programming Lan-
guages. PhD thesis, Software Technology Group, Darmstadt University of Tech-
nology (2006)

34. Haupt, M., Mezini, M., Bockisch, C., Dinkelaker, T., Eichberg, M., Krebs, M.:
An Execution Layer for Aspect-Oriented Programming Languages. In: Proc. VEE
2005, 2005, ACM Press, New York (2005)

35. Hilsdale, E., Hugunin, J.: Advice Weaving in AspectJ. In: Proc. AOSD 2004, ACM
Press, New York (2004)

36. Hirschfeld, R.: AspectS - Aspect-Oriented Programming with Squeak. In: Aksit,
M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 216–232.
Springer, Heidelberg (2003)

37. Io Home Page, http://www.iolanguage.com/
38. Jagadeesan, R., Jeffrey, A., Riely, J.: A Calculus of Untyped Aspect-Oriented Pro-

grams. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg
(2003)

39. JAsCo Home Page, http://ssel.vub.ac.be/jasco/
40. Johnson, R., Hoeller, J.: Expert One-on-One J2EE Development without EJB.

Wiley, Chichester (2004)

http://www.aosd-europe.net/ deliverables/ d40.pdf
http://www.iolanguage.com/
http://ssel.vub.ac.be/jasco/


A Machine Model for Aspect-Oriented Programming 523

41. Java Platform Debugger Architecture Home Page, http://java.sun.com/
j2se/1.4.1/docs/guide/jpda/index.html

42. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

43. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

44. Kojarski, S., Lorenz, D.H.: Pluggable aop: Designing aspect mechanisms for third-
party composition. In: Proc. OOPSLA ’05, pp. 247–263. ACM Press, New York
(2005)
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Abstract. In runtime monitoring, a programmer specifies a piece of
code to execute when a trace of events occurs during program execution.
Our work is based on tracematches, an extension to AspectJ, which al-
lows programmers to specify traces via regular expressions with free vari-
ables. In this paper we present a staged static analysis which speeds up
trace matching by reducing the required runtime instrumentation.

The first stage is a simple analysis that rules out entire tracematches,
just based on the names of symbols. In the second stage, a points-to
analysis is used, along with a flow-insensitive analysis that eliminates
instrumentation points with inconsistent variable bindings. In the third
stage the points-to analysis is combined with a flow-sensitive analysis
that also takes into consideration the order in which the symbols may
execute.

To examine the effectiveness of each stage, we experimented with a
set of nine tracematches applied to the DaCapo benchmark suite. We
found that about 25% of the tracematch/benchmark combinations had
instrumentation overheads greater than 10%. In these cases the first two
stages work well for certain classes of tracematches, often leading to
significant performance improvements. Somewhat surprisingly, we found
the third, flow-sensitive, stage did not add any improvements.

1 Introduction

Various mechanisms have been proposed for monitoring programs as they run.
Aspect-oriented programming (AOP) is one approach where a programmer speci-
fies which events should be intercepted and what actions should be taken at those
interception points. More recently, this concept of event matching has been fur-
ther expanded to include matching of traces of events [1,21,26, 30]. While this
expanded notion of matching on traces is much more powerful, it can also lead
to larger runtime overheads since some information about the runtime history
must be maintained in order to detect matching traces. Also, instrumentation
needs to be put in place in order to update this information at events of interest.

In this paper, we examine the problem of improving runtime performance of
tracematches. Tracematches are an extension to AspectJ which allows program-
mers to specify traces via regular expressions of symbols with free variables [1].
Those variables can bind objects at runtime, a crucial feature for reasoning about
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object-oriented programs. When a trace is matched by a tracematch, with con-
sistent variable bindings, the action associated with the tracematch executes.
Trace matching is implemented via a finite-state-based runtime monitor. Each
event of the execution trace that matches a declared symbol in a tracematch
causes the runtime monitor to update its internal state. When the monitor finds
a consistent match for a trace, it executes its associated action.

There are two complementary approaches to reducing the overhead for this
kind of runtime monitoring. The first line of attack is to optimize the monitor
itself so that each update to the monitor is as inexpensive as possible and so that
unnecessary state history is eliminated. Avgustinov et al. were able to show that
these approaches greatly reduce overheads in many cases [5,6]. However, as our
experimental results show, there remain a number of cases where the overhead
is still quite large.

Our work is the second line of attack, to be used when significant overheads
remain. Our approach is based on analysis of both the tracematch specification
and the whole program being monitored. The analysis determines which events
do not need to be monitored, i.e. which instrumentation points can be eliminated.
In the best case, we can determine that a tracematch never matches and all
overhead can be removed. In other cases, our objective is to minimize the number
of instrumentation points required, thus reducing the overhead.

In developing our analyses, we decided to take a staged approach, applying
a sequence of analyses, starting with the simplest and fastest methods and pro-
gressing to more expensive and more precise analyses. An important aspect of
our research is to determine if the later stages are worth implementing, or if the
earlier stages can achieve most of the benefit. We have developed three stages
where each stage adds precision to our abstraction. The first stage, called the
quick check, is a simple method for ruling out entire tracematches, just using
the names of symbols. Our second stage uses a demand-driven [24] points-to
analysis [11, 15], along with a flow-insensitive analysis of the program, to elimi-
nate instrumentation points with inconsistent variable bindings. The third stage
combines the points-to analysis with a flow-sensitive analysis that takes into
consideration the order in which events may occur during runtime.

We have evaluated our approach using the DaCapo benchmark suite [7] and
a set of 9 tracematches. We found that even though previous techniques often
kept the runtime overhead reasonable, there were a significant number of bench-
mark/tracematch combinations which led to a runtime overhead greater than
10%. We focused on these cases and found that our first two stages worked well
for certain classes of tracematches. We were somewhat surprised to find that
our third stage did not add any further accuracy, even though it was the only
flow-sensitive analysis, and we provide some discussion of why this is so.

This paper is organized as follows. Section 2 introduces tracematches, explains
how they apply to Java programs, and gives some examples of where monitoring
instrumentation can statically be shown to be unnecessary. In Section 3 we
present our staged static analysis which performs such detection automatically.
We carefully evaluate our work in Section 4, showing which problem cases our
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analysis can handle well, but also which cases might need more work or will
probably never be statically analyzable. In Section 5 we discuss related analyses,
finally concluding in Section 6. There we also briefly discuss our intended scope
for future work on the topic.

2 Background

A tracematch defines a runtime monitor using a declarative specification in the
form of a regular expression. The alphabet of this regular expression consists
of a set of symbols, where one defines each symbol via an AspectJ pointcut. A
pointcut is, in general, a predicate over joinpoints, a joinpoint in AspectJ being
an event in the program execution. Common pointcuts can be used to specify a
pattern to match against the name of the currently executing method or against
the currently executing type. Special pointcuts also allow one to expose parts
of the execution context. For instance, in the original AspectJ language the
programmer can bind the caller and callee objects as well as all call arguments
for each method call. We however use our own implementation of AspectJ in
form of the AspectBench Compiler (abc) [3], which implements tracematches
and with respect to context exposure also allows one to access any objects that
can be reached or computed from the objects one can bind in plain AspectJ, or
from static members [5]. For more details regarding pointcuts in AspectJ, see [2].

An example is shown in Figure 1. This tracematch checks for illegal program
executions where a vector is updated while an enumeration is iterating over the
same vector. First, in lines 2-5 it defines a plain AspectJ pointcut capturing
all possible ways in which a vector could be updated. The actual tracematch
follows in lines 7-13. In its header (line 7) it declares that it will bind a Vector v
and an Enumeration e. Then, in lines 8-10 it defines the alphabet of its regular
expression by stating the symbols create, next and update. The first one, create,
is declared to match whenever any enumeration e for v is created, while next

matches when the program advances e and update on any modification of v.
Line 12 declares a regular expression that states when the tracematch body

(also line 12) should execute. This should be the case whenever an enumeration
was created, then possibly advanced multiple times and then at least one update
to the vector occurs, lastly followed by another call to Enumeration.nextElement().

The declarative semantics of tracematches state that the tracematch body
should be executed for any sub-sequence of the program execution trace that is
matched by the regular expression with a consistent variable binding. A variable
binding is consistent when at every joinpoint in the sub-sequence each variable
is bound to the same object.

Internally, each tracematch is implemented using a finite state machine. Such
state machines are similar to state machines that can be used for verification of
typestate properties [27]. In such a property, a state machine can be associated
with a single object. Whenever certain methods on that object are invoked, this
state machine is updated according to its transition table. If during the execution
a special error state is reached, the typestate property is violated.
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1 aspect FailSafeEnum {
2 pointcut vector update() :
3 call(∗ Vector.add∗(..)) || call(∗ Vector.clear ()) ||
4 call(∗ Vector.insertElementAt(..)) || call(∗ Vector.remove∗(..)) ||
5 call(∗ Vector. retainAll (..)) || call(∗ Vector.set ∗(..));
6

7 tracematch(Vector v, Enumeration e) {
8 sym create after returning(e) : call(∗ Vector+.elements()) && target(v);
9 sym next before : call(Object Enumeration.nextElement()) && target(e);

10 sym update after : vector update() && target(v);
11

12 create next∗ update+ next { /∗ handle error ∗/ }
13 }
14 }

Fig. 1. Safe enumeration tracematch

Tracematches can be seen as an implementation of checkers for generalized
typestate properties [18]. While ordinary typestate properties only reason about
a single object, the generalized ones allow reasoning about groups of objects.
Consequently, the tracematch implementation needs to associate a state not
with a single object but rather with a group of objects, stored as mapping from
tracematch variables to Java objects. Due to their semantic foundations [1],
those mappings are called disjuncts. Because multiple such groups of objects
can be associated with the same automaton state at the same time, each state of
the automaton is associated with a set of disjuncts, which we call a constraint.
(Semantically, as shown in [1], this implementation represents storing object
constraints in Disjunctive Normal Form).

When compiling a program that contains a tracematch, the compiler firstly
generates program code for the related state machine and secondly instruments
the program such that it notifies the state machine about any joinpoint of inter-
est, i.e. any joinpoint that matches any of the declared symbols of the tracematch.
When such a notification occurs, the related state machine updates its internal
state accordingly, i.e. propagates disjuncts from one state to another, generates
possibly new disjuncts or discards disjuncts.

Figure 2 shows the automaton for the safe enumeration tracematch. As one
can see, it looks very much like the most intuitive automaton for this pattern but

q0 q1 q2 q3
create update next

next update

create
update

create
next

Fig. 2. Finite automaton for safe enumeration tracematch of Figure 1
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q0 q1 q2
next next

hasNext

Fig. 3. Finite automaton for tracematch pattern HasNext

augmented with additional loops (here dashed) on each non-initial and non-final
state. Those loops here appear dashed, because they are of a special kind and
have different semantics from usual edges. They are called skip loops.

The purpose of skip loops is to discard partial matches. The safe enumeration
pattern is unfortunately one of the few where their relevance is somewhat hidden.
Hence, in order to explain the purpose of skip loops, consider Figure 3. This figure
shows the automaton for the tracematch HasNext which uses a pattern “next

next” over a symbol alphabet {next,hasNext}.
The intent of this tracematch is to find all cases where there are two calls to

Iterator .next(), with no call to hasNext() in between. Since the tracematch alpha-
bet contains both the next and hasNext symbols, matching on the pattern “next

next” implies that there was no call to hasNext() between the two next events.
This implicit negation is formulated in tracematches by including a symbol in
the alphabet but not in the pattern, just like it is done with hasNext here. During
runtime, when next() is called on a particular iterator i1, a disjunct {i �→ i1} is
generated on state q1. Now, if another call to hasNext() follows, this binding can
be discarded, because at least for the moment for this particular iterator i1 the
requirement is fulfilled. This is exactly what the skip loop on state q1 achieves.
When hasNext() is called on i1, it discards the partial match for i1 by deleting
its disjunct from q1. (An alternative implementation could move disjuncts back
to the initial state, but discarding the disjunct saves memory).

Running example. To get a better feeling for the semantics of tracematches
and the implications of our optimization, let us look at the following running
example. Assume that we want to evaluate the safe enumeration tracematch over
the code shown in Figure 4. The code does not do anything meaningful but it
allows us to explain how tracematches work and which cases the different stages
of our analysis can handle. In lines 5-10, the program modifies and iterates over
the vector, vector, and does so in a safe way. In lines 12-15 it modifies and iterates
over another vector, globalVec. It also calls doEvil (..) , modifying globalVec while
the enumeration is used. This is a case which the tracematch should capture. In
lines 17-18 a third vector and an enumeration over this vector are created.

The comments on the right-hand side of the figure label allocation sites, i.e.
places where vectors or enumerations are allocated. We use those labels to denote
objects. An object is labelled with the site at which it was allocated.

In our static analysis, we attempt to remove unnecessary instrumentation
points in the base program that trigger the tracematch at a point where it can
statically be decided that the particular event can never be part of a complete
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1 class Main {
2 Vector globalVector = new Vector(); //v2
3

4 void someMethod() {
5 Vector vector = new Vector(); //v1
6 vector.add(”something”);
7 for (Enumeration iter = vector.elements(); iter .hasMoreElements();) { //e1
8 Object o = iter.nextElement();
9 doSomething(o);

10 }
11

12 globalVector.add(”something else”);
13 Enumeration it2 = globalVector.elements(); //e2
14 doEvil(o);
15 it2 .nextElement();
16

17 Vector copyVector = new Vector(globalVec); //v3
18 Enumeration it3 = copyVector.elements(); //e3
19 }
20

21 void doSomething(Object o)
22 { /∗ does not touch globalVector ∗/ }
23

24 void doEvil(Object o)
25 { globalVector.remove(o); }
26 }

Fig. 4. An example program

match. Such instrumentation points are commonly called shadows in aspect-
oriented programming [22, 14], and hence we will also use that term in the re-
mainder of this paper. To see how one could identify unnecessary shadows, let
us first manually find such places in the code for our running example.

Shadows occur wherever a tracematch symbol matches a part of the program.
In our example, this means that we have shadows at each creation of an enu-
meration, each update of a vector and each call to Enumeration.nextElement().
However, when looking at the code more carefully, it should become clear that
not all of the shadows are necessary for the example program.

In particular, the first sequence of statements in the lines 5-10 is safe in the
sense that the pair of vector and enumeration is used correctly and the trace-
match will not be triggered. Consequently, no shadows need to be inserted for
this part of the program. Lines 12 to 15 and line 25 show an unsafe enumeration
that should trigger the tracematch. So generally, shadows here need to stay in
place. However, looking at the code more carefully, one can see that actually the
shadow at line 12 is also superfluous, because the match that triggers the trace-
match does not start before line 13, where the enumeration is actually created.
In lines 17 to 18 we have a pair of vector and enumeration where the vector is
never even updated. For this piece of code it should be obvious that no shadows
are required.
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In the next section we describe our static program analyses which automati-
cally identify the unnecessary shadows.

3 Staged Analysis

Our analysis is implemented using the reweaving framework [4] in abc. The
basic idea is that the compiler first determines all shadows, i.e. all points in the
program where instrumentation should be woven. This procedure returns what
we call a weaving plan. This plan tells the weaver what needs to be woven at
which shadows. In order to determine which shadows are unnecessary, a first
weaving is done according to the original weaving plan. This results in a woven
program on which our proposed staged analyses are performed. The analysis
determines which shadows are unnecessary and removes them from the weaving
plan. The program is then rewoven according to this new plan, resulting in a
more efficient woven program.

The analyses are performed on the Jimple1 representation of the woven pro-
gram. In this representation, all instructions corresponding to tracematch shad-
ows are specially marked so that they can be recognized.

An outline of the staged analyses is shown in Figure 5. Each stage uses its
own abstract representation of the program and applies an analysis to this repre-
sentation in order to find unnecessary shadows. After each stage, those shadows
are removed so that subsequent stages do not have to consider them any more
in their analyses.

The crucial point of this approach is that the earlier stages (on the top of
the figure) are more coarse-grained than later ones. Hence they use a more
lightweight abstract representation of the program and execute much faster. By
applying stages in this order we make sure that at each stage only those shadows
remain active which could not be proven unnecessary using an easier approach.

Figure 5 shows the three analysis stages we apply here as boxes. First we apply
a quick check that determines if a tracematch can apply to a given program at
all, just by looking at shadow counters, which are already computed during the
initial weaving process. The second stage uses points-to information in order to
find groups of shadows which could during runtime possibly lead to a complete
match by possibly referring to a consistent variable binding. The third and final
stage is flow-sensitive, meaning that we look at all those groups of shadows and
try to determine in which order their shadows could possibly be executed when
the program is run. In many cases, all shadows might already be removed in
an early stage. When this happens, later stages are not executed at all. In any
case, however, the code is eventually rewoven using the updated weaving plan,
i.e. weaving only those shadows that have not been disabled before.

As the figure suggests, in general it can make sense to iterate the analysis and
reweaving phases. In our experiments for this paper, we used however empty
bodies for all tracematches, simply because we were only interested in the cost
1 Jimple is a fully typed three-address code representation of Java bytecode provided

by Soot [29], which is an integral part of abc.



532 E. Bodden, L. Hendren, and O. Lhoták

weaving 
plan weaver woven 

program
original 
program

<<stage>>

quick check

<<stage>>
flow-insensitive

consistent-
shadows analysis
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trigger reweaving
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final code

Fig. 5. Outline of the staged analysis

of matching, not executing a tracematch. If all tracematch bodies are empty, the
tracematches themselves can trigger no joinpoints and hence their removal does
not affect the analysis result in the first iteration.

In the following subsections, we explain all three stages as well as their re-
quired program abstractions in more detail.

3.1 Quick Check

One use of tracematches is to specify behavioural constraints for Java interfaces.
When developing a library, for example, one could ship it together with a set
of tracematches in order to enforce that objects of that library are used in a
certain way or in certain combinations. Consequently, it might often be the case
that certain tracematches might never match or that only some of their symbols
match, simply because the client uses only parts of the library.

For example, imagine a program which uses vectors but no enumerations. In
this case, when applying the safe enumeration tracematch, abc would normally
instrument all locations where a vector is updated, although an analysis of the
whole program would show that the tracematch can never match.

The abstract program representation used by the quick check is simply a
mapping from tracematch symbols to number of shadows at which the trace-
match symbol may match. Those numbers are obtained during the initial weav-
ing phase. For our running example, we would obtain the following mapping
because enumerations are created at three places, they are advanced at two
places and vectors are updated at three places.

{create �→ 3, next �→ 2, update �→ 3}
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We use these counts, plus the tracematch automaton to determine if the trace-
match could ever match. The key idea is that if a symbol that is necessary to
reach a final state in the automaton has a count of 0 (i.e. no instances in the
program under analysis exist), then there is no possibility that the tracematch
could match.

We implement this check as follows. For each tracematch, we remove edges
from its automaton whose label has a shadow count of 0. Then we check to see
if a final state can still be reached. If the final state can’t be reached, the entire
tracematch is removed and all its associated shadows are disabled.

If the quick check fails for a tracematch, i.e. all necessary symbols were applied
at least once, we have to change to a more detailed level of abstraction which
leads us to the flow-insensitive analysis.

3.2 Flow-Insensitive Consistent-Shadows Analysis

A tracematch can only match a trace if the trace refers to symbols with consis-
tent variable bindings. In the quick check we just used the names of the sym-
bols and did not use any information about variable bindings. In contrast, the
flow-insensitive consistent-shadows analysis uses points-to analysis results to de-
termine when shadows cannot refer to the same object and thus cannot lead to
consistent variable bindings. The analysis is flow-insensitive in the sense that we
do not consider the order in which the shadows execute.

Preparation: In order to prepare for this analysis, we first need points-to infor-
mation for each variable involved in the tracematches. We compute the required
points-to information as follows.

First we build a call graph using the Soot/abc internal Spark [19] framework.
Spark builds a call graph for the whole program on-the-fly, i.e. by computing
points-to information at the same time as discovering new call edges due to
new points-to relationships. This first phase results in a complete call graph and
context-insensitive points-to information for the whole program.

In our preliminary experiments we found that the context-insensitive points-
to analysis was not always precise enough, and so we added a second phase
that computes context-sensitive points-to analysis for those variables bound by
shadows. For this second phase we use Sridharan and Bod́ık’s demand-driven
refinement analysis for points-to sets [24]. This algorithm starts with the call
graph and context-insensitive results from the first phase and computes context
information for a given set of variables, often yielding more precise points-to
information for these variables. The advantage of this approach is that we need
to perform this rather expensive computation only for variables that are really
bound by shadows. In all our benchmarks this was fewer than 5% of the total
number of variables. (For exact numbers, see Section 4.)

Our running example illustrates quite clearly why context-sensitive points-to
analysis is required. In this case, context information is necessary to distinguish
the different enumerations from each other. Since all are created within the fac-
tory method elements(), without such context-sensitivity, all enumerations would
be modelled as the same abstract object — their common creation site inside
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q0 q1 q2 q3
create update next

create
update

create
next

Fig. 6. Automaton from Figure 2 with loops due to Kleene-* sub-expressions removed

the method elements(). Allocation sites e1, e2 and e3 would collapse, and so the
analysis would have to assume that all three enumerations might actually be one
and the same, penalizing the opportunities for shadow removal.

Building path infos: At runtime, a tracematch matches when a sequence of
events is executed which is matched by the given regular expression, however
only if those events occurred with a consistent variable binding. The idea of
the flow-insensitive analysis stage is to identify groups of shadows which could
potentially lead to such a consistent variable binding at runtime.

At runtime, a final state in the tracematch automaton can be reached from
any initial state, generally over multiple paths. A first observation is that edges
which originate from symbols within a Kleene-* sub-expression are always op-
tional. For example, in the safe enumeration tracematch (Figure 1), the initial
next∗ may, but does not have to, match a joinpoint in order for a sequence
to lead to a complete match. Hence, we first generate an automaton using a
customized Thompson construction [28] that omits “starred” sub-expressions,
modelling them with an ε-edges (which are then later on inlined).

Figure 6 shows the fail safe enumeration automaton after this transformation.
We call this representation the reduced automaton. Note that skip loops are pre-
served in this representation, however no other strongly-connected components
remain. Hence, we can enumerate all paths through this automaton which do
not lead through a skip loop.

Then, for each such path we compute a path info. A path info consists of
two components. The first holds information about which symbols the edges on
the path are labelled with. The second records all labels of skip-loops that are
attached to states on that path. For the labels of non-skip edges, we will later
on also need the information of how often such a label occurs on the path. This
yields the following definition.

Definition 1 (Path info). Let path be a path from an initial to a final state
in the reduced automaton. A path info info consists of a set skip-labels(info)
and a multi-set labels(info), defined as follows. Assume we define for each state
q the set skip-labels(q) as the set of labels of all skip-loops on q. Then, if path =
(p1, l1, q1) . . . (pn, ln, qn), then

labels :=
⊎

1≤i≤n

{li}

skip-labels :=
⋃

1≤i≤n

(skip-labels(pi) ∪ skip-labels(qi))
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where
⊎

denotes the union for multi-sets. (A multi-set or bag is a similar to a
set but can hold the same object multiple times.) In the following, we denote
multi-sets with square brackets of the form [a, a, b].

For a tracematch tm, we denote the set of all its path infos by infos(tm). It is
defined as the set of all path infos for all paths through its reduced automaton.

For the fail safe enumeration tracematch in our example, only one path exists:
(q0, create, q1), (q1, update, q2), (q2, next, q3). Hence the set infos has the follow-
ing form.

infos(FailSafeEnum) =
{( labels = [create, update, next], skip-labels = {create, update, next} )}

The reader should not be misled by this example. In general, labels and skip-labels
do not have to coincide. For example, for the automaton in Figure 3, we would
have a single path info with labels = [next, next] and skip-labels = {hasNext}.

Building groups of shadows with possibly consistent binding: With the
path infos computed, we have information about what combinations of shadows
are required for a complete match. In the next step we try to find groups of
shadows that fulfil this requirement. This means that we look for groups of
shadows which contain the labels of the labels field of a path info and, in addition,
share a possibly consistent binding. But before we define shadow groups, let us
first formally define how a single shadow is modelled.

Definition 2 (Shadow). A shadow s of a tracematch tm is a pair (labs, binds)
where labs is the label of a declared symbol of tm and binds is a variable binding,
modelled as a mapping from variables to points-to sets. In the following we
assume that the mapping binds is extended to a total function that maps each
variable to the full points-to set ) if no other binding is defined:

binds(v) :=

{
binds(v), if binds(v) explicitly defined
), otherwise

Here, ) is defined as the points-to set for which holds that for all points-to sets
s : s ∩ ) = s.

In our running example, the update shadow in line 6 would be denoted by
(update, {v �→ {v1}}) as the only objects v can point to are objects being created
at creation site v1.

Definition 3 (Shadow group). A shadow group is a pair of a multi-set of
shadows called label-shadows and a set of shadows called skip-shadows . We call
a shadow group complete if it holds that: (1) its set of labels of label-shadows con-
tains all labels of a path info of a given tracematch; and (2) its set of skip-shadows
contains all shadows which have the label of a skip loop of a state on this path
and a points-to set that overlaps with the one of a label shadow.
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This definition implies that a complete shadow group has: (1) enough shadows
in its label-shadows to drive a tracematch state machine into a final state; and (2)
that all shadows that could interfere with a match via skip loops are contained
in skip-shadows .

Definition 4 (Consistent shadow group). A consistent shadow group g is
a shadow group for which all variable bindings of all shadows in the group have
overlapping points-to sets for each variable. More formally, if vars is the set of
all variables of all shadows in g, then it must hold that:

∀s1, s2 ∈ (label-shadows ∪ skip-shadows) ∀v ∈ vars : binds1(v) ∩ binds2(v) �= ∅

Conceptually, a complete and consistent shadow group is the static representa-
tion of a possibly complete match at runtime. For such a shadow group, there is
a possibility that if the label shadows in this group are executed in a particular
order at runtime, the related tracematch could match. Skip shadows in the same
group could prevent such a match when executed.

In particular, if a shadow group has a multi-set of label shadows which is not
consistent this means that no matter in which order those shadows are executed
at runtime, this group of shadows can never lead to a complete match. Conse-
quently, we can safely disable all shadows which are not part of any consistent
shadow group. The complete algorithm for the construction of complete and
consistent shadow sets is given in the technical report version of this paper [8].

Based on the consistent shadow groups, flow-insensitive shadow removal is
then quite easy. For each shadow that exists in the program, we look up if it is
member of at least one consistent shadow group (i.e. it is either a label-shadow
or a skip shadow of that group). If this is not the case, the shadow can never be
part of a complete, consistent match and can safely be removed.

In our running example, this is true for the shadow in line 18. Since for this
create-shadow there exists neither an update shadow for the same vector nor a
next-shadow for the same enumeration, there can no complete and consistent
shadow set be computed that contains the create-shadow.

Here we can also see that context information for points-to sets is important.
As noted earlier, without context information, all enumerations would be mod-
elled by the same abstract object. Hence, in this case, the points-to sets for those
shadows would overlap and the shadow in line 18 could be part of a complete
and consistent match, in combination with one of the vectors globalVector or
vector.

If after this stage there are still shadows remaining we know that there exist
groups of shadows which have a possibly consistent variable binding. This means
that if such shadows are executed in a particular order at runtime, the related
tracematch could indeed be triggered. Hence, it is only natural that in the next
stage we compute information that tells us whether those shadows could can
actually be executed in the required order or not. This leads us to the flow-
sensitive consistent-shadows analysis stage.
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3.3 Flow-Sensitive Active-Shadows Analysis

As input to this stage we expect a set of complete and consistent shadow groups
as well as a complete call graph, both of which were already computed earlier. (In
the following, when we refer to a shadow group, we always assume it is complete
and consistent).

In order to determine in which order shadows could be executed during run-
time, we need a flow-sensitive representation of the entire program. It is a
challenge to build such a representation efficiently. Since any Java program is po-
tentially multi-threaded, we also have to take into account that shadows could be
executed by multiple threads. This makes it more difficult to determine whether
a shadow may run before or after another.

A tracematch can be defined to be per-thread or global. For a per-thread
tracematch, a separate automaton is executed for each thread, and only events
from that one thread affect the automaton. A global tracematch is implemented
using a single automaton which processes events from all threads. Hence, for
global tracematches, our analysis must handle multi-threading soundly.

Also, a whole program abstraction may potentially be very large. There might
potentially be thousands of shadows spread over hundreds of methods. Hence it
is important that we keep our program abstraction concise at all times.

Handling of multi-threading: We handle the first problem of multi-threading
conservatively. In the preparation phase for the flow-insensitive analysis stage,
we already constructed a complete call graph. In this call graph, call edges that
spawn a thread are already specially marked. Using this information, we can
easily determine by which threads a given shadow can be executed.

Then, in an initial preprocessing step, we filter the list of all shadow groups in
the following way. If a shadow group is associated with a global tracematch and
contains shadows which are possibly executed by multiple threads, we “lock” all
its shadows (i.e. they will never be removed, not by this stage nor by subsequent
stages) and remove the group from the list. The locking makes the analysis
conservative with respect to threads. For the resulting list of shadow groups we
then know that all shadows contained in a group are only executed by a single
thread each. Hence, no additional treatment of multi-threading is necessary.

A flow-sensitive whole-program representation: In the next step, we build
a flow-sensitive representation of the whole program. Such a representation nat-
urally has to depend on the static call graph of the program.

Call graph filtering. In order to adhere to our principle of keeping our abstraction
as small as possible at all times, we first filter this call graph in the following
way. If in the call graph there is an outgoing call edge in whose transitive closure
there is never any method of interest reachable (i.e. a method that contains a
shadow), this edge and its entire transitive closure is removed.

Per-method state machines. For each method that remains in this filtered call
graph, we know that either it is “interesting” because it contains a shadow or
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Fig. 7. complete state machine for the running example during construction; for illus-
trative purposes, the shadow labels are attached with their respective line numbers

it calls another interesting method. For those methods we do need control flow
information, i.e. information about the order in which shadows may be executed
during runtime and in which other methods may be called.

We encode such flow-information by a finite state machine that represents
the abstract transition structure of the whole program. Due to space limitations
we cannot give any details about this construction here. We refer the interested
reader to the technical report version of this paper [8]. Figure 7 shows the result
of this construction for our running example. This state machine consists of
per-method state machines for the methods doSomething(), someMethod() and
doEvil(). Those then become inter-procedurally combined using ε-transitions

Note that this way of combining automata is context-insensitive. In the result-
ing automaton there exist more paths than are actually realizable at runtime.
One could branch out from a call statement c1 to a possible call target t but
then return to another caller c2 of the same call target. This way of automaton
construction is relatively cheap but gives away precision, as Section 4 will show.

Abstract interpretation via fixed point iteration. This whole-program state ma-
chine is the input to our actual flow-sensitive analysis. The task of this analysis
is to compute if some part of this state machine contains such a path that when
executing the program along this path at runtime, the tracematch could match.
To us, it appeared that the most sensible way to do so is to perform a complete
abstract interpretation of the actual tracematch machinery.

This abstract interpretation evaluates an abstract counterpart of the actual
tracematch automaton (i.e. the one that is evaluated at runtime) over the whole-
program state machine. Since the latter can have cycles, we employ, as is usually
done in data-flow analysis [16], a fixed-point iteration.
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The only two differences of the abstract interpretation in comparison to the
evaluation at runtime are the following. Firstly, wherever the actual implementa-
tion binds variables to objects, the abstract interpretation binds them to points-
to sets. Consequently, where at runtime, the implementation checks for reference
equality, the abstract interpretation checks for overlapping points-to sets. In the
case of skip loops, variable bindings are not updated at all (due to the lack of
must-alias information, see below).

The other difference is that while during runtime, the implementation ex-
poses no explicit information about where partial matches occurred, the static
abstraction needs to determine which shadows were visited on the way to a final
state. Hence, in each disjunct, we store an additional history component: the set
of shadows which this disjunct was propagated through. When such a disjunct
reaches a final state, we can inspect its history and so determine which shadows
need to be kept active in order to trigger the match for this disjunct at runtime.
The history is also updated in case a skip loop is visited.

We start off with an initial tracematch configuration in the unique initial
state of this whole-program state machine, which represents the fact that when
the program starts, the tracematch is in its initial configuration. In terms of
Figure 7, this would associate the following configuration with the initial node
of the whole-program state machine.

(q0 �→ true, q1 �→ false, q2 �→ false, q3 �→ false)}

Here true is the constraint {(∅, ∅)} consisting of a single disjunct with empty
variable binding and history while false is the empty constraint (modelled by
the empty set of disjuncts).

This configuration is then driven through the whole-program state machine
until a fixed-point is reached. Whenever a disjunct is propagated, its history
component is updated with the shadow that triggered the propagation. Due to
internals of the tracematch machinery, this is only the case if a constraint really
moves to a new state. For example at node number 1 (of method someMethod())
in Figure 7, the configuration is still same the initial configuration as above. At
node number 2, one would get

(q0 �→ true, q1 �→ {({v �→ v1, e �→ e1}, {create7})}, q2 �→ false, q3 �→ false)}

stating that the abstract tracematch automaton has one single partial match in
state 1 with a variable mapping of {v �→ v1, e �→ e1} which was produced by
shadow create7.

At merge-points (here only the same node number 2), configurations are
merged by joining their constraints per state, i.e. two constraints with map-
pings qi �→ {d1, d2} and qi �→ {d2, d3} (for disjuncts d1, d2, d3) is merged to a
constraint with mapping qi �→ {d1, d2, d3}.

During the computation of the fixed point, whenever a disjunct reaches a final
state of a configuration, we copy its history to a global set of active shadows.
When the fixed point is reached, we know that all shadows in this set may lead
to a complete match, with the binding that is stored in the disjunct, and hence
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have to be retained. All shadows which are never added to this set during the
fixed point computation can safely be discarded.

Performance improvements. The aforementioned fixed point computation gen-
erally works but it might not be very efficient. Hence, we apply two different
performance optimizations, one of which does not sacrifice precision and one of
which does. The general idea is that it is sometimes sound not to iterate through
certain groups of shadows, given that we “lock” them, i.e. define those shadows
as not to be disabled. Refer to [8] for details about these optimizations.

Handling of skip loops. One important issue that has not yet been explained is
the handling of skip loops. As explained earlier, the purpose of a skip-loop is to
discard partial matches under certain circumstances. In the example we gave in
Section 2, this is the case when a disjunct of the form {i �→ i1} exists and then
hasNext is invoked on the iterator i1.

At runtime, we can remove this partial match because we know that for the
object i1 the property is currently fulfilled. The automaton can be “reset” to its
initial configuration with respect to i1. At compile time, we are only allowed to
apply the same strong update of the automaton constraints if we know for sure
that the object referenced by variable i at the hasNext event must be the same
as the object referenced by i as the previous next event. In other words, we have
to know if the references to variable i at both locations in the code must be
aliased.

As there is currently no must-alias analysis in Soot, we perform a weak update
on skip-loops that does not discard partial matches. Unfortunately, this makes
it impossible to rule out patterns as the one mentioned above merely by looking
at the possible execution order. (Still, we can rule out skip-loops that are only
executed on paths that never lead to a final state.) Our next phase of work will
investigate the kinds of must-alias analyses we need to handle skip loops more
precisely. Fink et al. show in their work [12] what a general solution could look
like for the case of typestates, where one only reasons about one object at a time.

4 Benchmarks

In order to evaluate the feasibility and effectiveness of our approach we applied
our analysis to a combination of nine different tracematches, applied to version
2006-10 of the DaCapo benchmark suite [7]. The tracematches validate generic
safety and liveness properties over common data structures in the Java runtime
library. They are briefly described in Table 1. As usual, all our benchmarks
are available on http://www.aspectbench.org/, along with a version of abc
implementing our optimization. In the near future we also plan to integrate the
analysis into the main abc build stream.

The reader should note that we chose some of our tracematches because we
knew they would be particularly challenging. For example, the HashMap trace-
match binds a hash code, which is an integer value. We found it interesting to see

http://www.aspectbench.org/
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Table 1. description of tracematch patterns

pattern name description

ASyncIteration only iterate a synchronized collection c when owning a lock on c
FailSafeEnum do not update a vector while iterating over it

FailSafeIter do not update a collection while iterating over it
HashMap do not change an object’s hash code while it is in a hash map

HasNextElem always call hasNextElem before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator

LeakingSync only access a synchronized collection using its synchronized wrapper
Reader don’t use a Reader after it’s InputStream was closed
Writer don’t use a Writer after it’s OutputStream was closed

what effect the presence of a non-pointer variable would have on our pointer-
based analyses. The ASyncIteration benchmark uses an if-pointcut accessing
the native method Thread.holdsLock(Object). This is challenging because there is
no chance to generally evaluate such a pointcut at compile time. The question
is whether this fact generally impedes the analysis or not.

The tracematches HasNext and HasNextElem specify properties where some-
thing must always happen in order to avoid a match. After a call to next(),
hasNext() must be called before the next call to next(). (In the verification com-
munity, such properties are often called liveness properties [17].) As mentioned
in Section 3.3, the flow-sensitive analysis cannot remove shadows for such prop-
erties without using must-alias information. The flow-insensitive analysis would
also perform badly on those particular properties, simply because on virtually
every iterator hasNext() is called if and only if next() is called. Hence, for those
benchmarks we expected a very low shadow removal ratio. Yet, the benchmarks
helped us to validate the completeness of our implementation because we knew
that in those cases neither the flow-insensitive nor the flow-sensitive stage should
remove any shadows.

For our experiments we used the IBM J9 JVM version 1.5.0 SR3 (64bit) with
2GB RAM on a machine with AMD Athlon 64 X2 Dual Core Processor 3800+.
We used the -converge option of the DaCapo suite which runs each benchmark
multiple times to assure that the reported execution times are within a confidence
interval of 3%.

Table 2 shows the run times of the benchmarks without our optimizations, but
with the optimizations mentioned in [5] already enabled. The leftmost column
shows the benchmark name, then follows the raw runtime with no tracematch
present (in milliseconds). The other columns show the overheads in percent over
this baseline. We marked all cells with values larger than 10% as boldface, values
within the confidence interval appear gray. The benchmark bloat/FailSafeIter
was stopped after around 8 hours of benchmarking time. This benchmark is
very hard to handle, dynamically as well as statically, because it makes extraor-
dinarily heavy use of long-lived iterators and collections. We shall return to this
benchmark later, when we discuss the precision of our analysis.
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Table 2. Runtime overheads of the benchmarks before applying our optimizations
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antlr 4098 1.42 2.20 0.93 0.44 6.54 -0.15 25.28 966.98 108.76
bloat 9348 99.17 0.75 >8h 139.08 0.58 3872.66 497.35 -2.95 92.52
chart 13646 0.39 0.01 20.73 0.15 0.13 0.99 345.30 0.32 0.29

eclipse 50003 2.36 1.10 3.44 2.36 0.53 4.81 2.61 0.28 -1.21
fop 3102 -9.96 -8.67 1.06 5.35 -4.13 -9.93 589.30 0.71 6.74

hsqldb 12322 0.00 -0.32 0.03 0.19 0.07 -0.16 0.79 0.32 -0.06
jython 11133 1.47 2.04 6.57 1.05 -1.17 2.67 -11.17 -0.89 0.50
lucene 17068 1.29 30.36 9.57 3.40 17.17 2.22 422.52 1.78 1.12

pmd 12977 2.96 -0.11 157.61 -0.83 -1.85 158.23 31.26 2.43 -0.21
xalan 13083 1.86 0.20 0.71 1.35 -0.41 2.34 4.20 1.70 0.47

As we can see from the table, some benchmarks expose a significant over-
head.2 In these cases the whole program optimizations presented in this paper
are worth applying. In particular, given the sometimes large runtime overhead,
the programmer might well want to trade some of this overhead for compile time.

We applied our analysis to all 90 benchmarks, and in Table 3 we report on
the improvements for the 18 interesting cases with an overhead of more than
10%. We captured the optimized program after each stage in order to see how
many shadows were removed and are still remaining and in order to evaluate
the runtime impact of the shadow removal for that stage. The table shows per
benchmark five different shadow counts: all shadows, shadows remaining after
the quick check, reachable shadows remaining after call graph construction (note
that removing unreachable shadows has no impact on the runtime), and finally
shadows remaining after the last two analysis stages. The rightmost column
shows the last stage that was applied.

The table is split vertically into multiple parts. For the benchmarks in the first
part (rows 1-7), the quick check was able to eliminate all shadows. For row 8, the
flow-insensitive analysis removed all 294 reachable shadows. In the benchmarks
in rows 9-13, the flow-insensitive analysis removed at least some shadows, most
often all but a few. In the benchmarks in row 14-16, the flow-insensitive analysis
was ineffective. In benchmarks 17 and 18, the analysis failed to complete in a
reasonable time or aborted due to insufficient memory.

2 The speedups for fop and jython apparently originate from the fact that those bench-
marks are bistable. Depending on scheduling order they settle down in one of two
different highly predictable states. Additional instrumentation can sometimes affect
this order and make the benchmark settle into a more favourable state, i.e. make
the benchmark execute faster. This interpretation was suggested by Robin Garner,
one of the developers of the DaCapo benchmark suite.
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Table 3. Number of active shadows after applying each stage

# benchmark all quick reachable flow-ins. flow-sens. final stage

1 antlr/LeakingSync 170 0 0 0 0 quick check

2 antlr/Writer 56 0 0 0 0 quick check

3 bloat/ASyncIteration 419 0 0 0 0 quick check

4 bloat/LeakingSync 2145 0 0 0 0 quick check

5 chart/LeakingSync 920 0 0 0 0 quick check

6 fop/LeakingSync 2347 0 0 0 0 quick check

7 pmd/LeakingSync 986 0 0 0 0 quick check

8 lucene/LeakingSync 653 653 294 0 0 flow-ins.

9 antlr/Reader 53 53 46 15 15 flow-sens.

10 bloat/HashMap 57 57 16 2 2 flow-sens.

11 bloat/Writer 206 206 87 8 8 flow-sens.

12 lucene/FailSafeEnum 61 61 41 5 5 flow-sens.

13 pmd/FailSafeIter 529 529 129 90 90 flow-sens.

14 chart/FailSafeIter 469 469 105 105 105 flow-sens.

15 lucene/HasNextElem 22 22 14 14 14 flow-sens.

16 pmd/HasNext 346 346 87 86 86 flow-sens.

17 bloat/FailSafeIter 1500 1500 1015 1015 1015 aborted

18 bloat/HasNext 947 947 639 639 639 aborted

The results show that the quick-check is very effective, removing all shadows
in seven benchmarks. The flow-insensitive stage is generally very effective too,
reducing the instrumentation and runtime overhead in another seven cases. We
wish to point out that even in the case of bloat/HashMap, where primitive
values are bound, the flow-insensitive analysis can still rule out many shadows
by relating those remaining variables which bind objects. In one case (number 8),
it is even able to prove the program correct, i.e. that all synchronized collections
are only accessed via their synchronized wrapper.

The reader should note that optimizations as we propose here would be hope-
less to perform on a a hand-coded monitor in plain AspectJ. Consequently at
least in cases 1-8 where we remove all shadows, the optimized benchmark runs
faster than it could ever be achieved using not tracematches but AspectJ only.

Looking at the flow-sensitive stage, we were very disappointed to see that it
did not manage to remove more instrumentation over the flow-insensitive stage.
While in some microbenchmarks which we used for testing, it yielded significant
improvements, in the DaCapo benchmark suite it was not even able to remove a
single additional shadow. We were able to identify three different factors that lead
to this behaviour. We hope that these observations will lead to better analyses
which can find further improvements.

Firstly, if a lot of shadows remain after the flow-insensitive analysis, this often
indicates that for some reason there is a large overlap between points-to sets.
When this is the case, it is however equally hard for the flow-sensitive analysis to
tell different objects apart and hence to relate events on those objects temporally.
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Table 4. Runtimes of the analysis (left, in m:ss) and runtime overheads of the bench-
marks (right, in percent) after applying each stage

# benchmark analysis pre-opt. quick flow-ins. flow-sens.

1 antlr/LeakingSync < 0:01 25.28 0.15 -0.07 -1.00

2 antlr/Writer < 0:01 108.76 3.44 4.00 2.76

3 bloat/ASyncIteration < 0:01 99.17 18.44 18.68 18.59

4 bloat/LeakingSync < 0:01 497.35 16.69 16.04 16.78

5 chart/LeakingSync < 0:01 345.30 1.82 1.83 1.60

6 fop/LeakingSync < 0:01 589.30 -9.16 -7.03 -9.77

7 pmd/LeakingSync < 0:01 31.26 -0.73 -0.66 -1.09

8 lucene/LeakingSync 2:17 422.52 448.69 -4.04 -4.93

9 antlr/Reader 2:03 966.98 408.93 20.60 20.40

10 bloat/HashMap 7:02 139.08 134.11 2.57 3.61

11 bloat/Writer 7:34 92.52 280.03 4.11 3.59

12 lucene/FailSafeEnum 1:56 30.36 27.84 -1.80 -2.86

13 pmd/FailSafeIter 20:47 157.61 161.27 78.16 79.04

14 chart/FailSafeIter 7:52 20.73 20.52 22.36 20.56

15 lucene/HasNextElem 1:52 17.17 13.18 12.42 11.92

16 pmd/HasNext 4:20 158.23 167.73 169.08 158.13

17 bloat/FailSafeIter aborted 307987.29 307987.29 n/a n/a

18 bloat/HasNext aborted 3872.66 3895.18 4013.53 n/a

As noted in Section 3.3, in such situations we often only perform a lightweight
fixed point computation which treats skip shadows conservatively. In cases like
pmd/FailSafeIter unfortunately, this seems to give away a lot of crucial precision.

Secondly, as we explained in Section 3.3, our whole-program state machine
is context-insensitive, meaning that we over-approximate the set of actually re-
alizable paths by not explicitly outgoing with returning call edges. This seems
to lose precision in those cases where overlapping points-to sets are actually not
the problem.

Thirdly, we handle multi-threading in a very conservative way. In benchmarks
like lucene, the program does not trigger the tracematch only because it uses
explicit wait/notify. Without analyzing such lock patterns explicitly, there is
little hope for any more precision in those cases.

Case 14, chart/FailSafeIter, could also not be improved upon because of multi-
threading. In addition, points-to sets largely overlapped due to the use of reflec-
tion which caused a safe over-approximation of points-to sets.

In the cases of bloat/FailSafeIter and bloat/HasNext, the analysis ran out
of memory. The problem with bloat is3 that it uses extraordinarily many iter-
ator accesses and modifications of collections. In addition, almost all iterators

3 Just before submitting the final version of this paper, through personal communica-
tion with Feng Chen [9] we found out that bloat within DaCapo apparently processes
parts of itself as input (bloat is another bytecode transformation package). Hence,
it might also be the case that our instrumentation modified bloat’s input.
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and collections are very long-lived, so that points-to sets vastly overlap. The
construction of the whole-program state machine suffers even more from the
fact that bloat defines its own collections which delegate to collections of the
Java runtime (JRE). Usually, collection classes are defined inside the JRE and
thus not weavable and produce no shadows. Hence, due to the call graph ab-
straction, calls to hasNext() or updates to collections produce no edges in the
whole-program state machine. In bloat, all those optimizations fail, making the
problem of efficient model construction very hard to solve.

Table 4 shows the runtimes of those 18 optimized benchmarks. As we can
observe, there is most often a very direct relation between the number of shadows
removed and the speedup gained by the optimization. After applying all three
optimization stages, all but the benchmarks in rows 13 and 16-18 execute almost
as fast as the un-instrumented program.

Per-thread tracematches. We further analyzed per-thread versions of the trace-
matches HasNext and HasNextElem (in our eyes, the per-thread modifier makes
no sense for the other configurations). Unfortunately, this seemed to yield no
improvements in terms of precision and shortened the execution time of the
analysis only marginally.

4.1 Execution Time of the Analysis

The analysis was run on the same machine configuration as the benchmarks but
with a maximal heap space of 3GB. Total runtimes of the analysis are shown
on the left hand side of Table 4. The longest successful analysis run we had was
pmd/FailSafeIter with a total analysis time of almost 21 minutes. The different
stages of this run are distributed as follows (m:ss).
– 0:01 - quick check
– 2:27 - call graph construction, points-to set creation, call graph abstraction
– 0:03 - flow-insensitive analysis
– 0:20 - creation of per-method state machines
– 1:48 - creation of whole-program state machine
– 15:51 - flow-sensitive fixed-point iteration

As we can see, the most expensive phase is the flow-sensitive fixed point itera-
tion, followed by the time spent in the construction of the call graph and points-to
sets. The quick-check is so fast that it is always worthwhile. The flow-insensitive
analysis, in combination with its preparation phase, still runs in reasonable time.
As Table 4 shows, usually the runtime is between 3 and 10 times shorter.

It proved very sensible to make use of the demand-driven refinement-based
points-to analysis. For example, in pmd/FailSafeIter, we queried points-to sets
for 691 variables only, where a full context-sensitive points-to analysis would
have had to compute context-sensitive points-to sets for all 33993 locals in the
pmd benchmark.

The flow-sensitive analysis generally adds a large computational burden and
our results show that it does not find any improvements over the cheaper flow-
insensitive stage. We plan to further refine that phase in future work to see if it
is really worthwhile pursuing.
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5 Related Work

While a lot of related work has been done in static program analysis and ver-
ification (model checking), there has been little previous work on using those
techniques to speed up runtime monitoring. We list notable exceptions here.

Typestate properties. Typestate properties [27] have been widely studied in the
past. Very recently, Fink et al. presented a static optimization for runtime check-
ing of typestate properties [12]. The analysis they present is in flavour similar to
ours. In particular it is also implemented in multiple stages, one of which is flow-
sensitive. However typestate properties allow one to express temporal constraints
about one single object only, making their flow-insensitive and flow-sensitive
stages simpler than ours. The authors paid special attention to the handling of
strong updates, using must-alias information, which we leave to future work.
The analysis Fink et al. present did not address the issue of multi-threading.

In terms of expressiveness, we believe that tracematches are equivalent to
generalized typestate properties [18]. While normal typestate properties allow to
reason about a single object each, generalized typestate properties allow to rea-
son about multiple objects in combination. The only difference to tracematches
seems to be the syntax (state machines vs. regular expressions).

PQL. In [21], Martin et al. present their Program Query Language, PQL. They
experimented with a flow-insensitive analysis similar to our consistent-shadows
analysis. However, their analysis is still not integrated within the PQL tool, mak-
ing effective comparisons impossible at the current time. We suspect, that their
flow-insensitive analysis performs very similarly to ours since they made simi-
lar design decisions. In particular they also do not take must-alias information
into account. However, our analysis should in the general case be much faster,
because unlike the analysis for PQL ours is staged, employing a very effective
quick check first. Also we compute context for points-to sets for certain variables
only while they apply this very expensive computation for all program variables.

History based pointcut languages. Various other pointcut languages have been
proposed that allow to match on histories of events, both in the aspect-oriented
programming [10,23,30] and runtime verification community [9,13,25]. While we
believe that for most such languages, depending on their expressiveness, similar
analysis could be constructed, one crucial ingredient to the success of such a
project is the use of an integrated compiler. For instance, one needs to be able
to disable shadows that were proven unnecessary. Without access to an aspect-
oriented compiler like abc, this seems almost impossible. Consequently we are
not aware of any related work by other research groups on that topic, apart from
the ones mentioned above.

6 Discussion and Future Work

In this work we have proposed a staged static analysis for reducing the over-
head of finite-state monitors. We have presented three stages including a very



A Program Analysis to Improve the Performance of Runtime Monitoring 547

coarse-grain and inexpensive quick check based only on shadows matching sym-
bol names, a flow-insensitive consistent-shadows analysis that finds all shadows
with consistent points-to sets, and a flow-sensitive active-shadows analysis that
also takes into consideration the order in which shadows execute.

As is often the case in program analysis, we were somewhat surprised that
the first two simpler stages were the most effective. The quick check analysis is
very simple and also quite effective in eliminating tracematches that can never
match a base program. We believe that this test will be very useful in situations
where whole libraries of tracematches are routinely applied to software as it is
developed. For example, libraries can be associated with a collection of trace-
matches specifying constraints on how the library should be used. In these cases
we expect that only some tracematches will actually apply to the program under
analysis, and the quick check is a sound and simple way to eliminate those that
don’t apply. We expect this check to become a standard part of the abc compiler
and it will be enabled by default at the -O level of optimization.

The second stage, flow-insensitive analysis to find consistent shadows, was
also effective in some cases, and is also not a very complex analysis once one
has a good points-to analysis available. We did find that a context-sensitive
points-to analysis was necessary and this turned out to be an ideal use case for
demand-driven context-sensitive analysis since we were only interested in the
points-to information of variables involved in shadows. Based on our results, we
think that this consistent-shadows analysis should be available at a higher-level
optimization level (-O3), to be used when run-time overheads are high. In many
cases we expect the overheads of a program optimized that way to be lower than
those of programs using a hand-coded AspectJ monitor which is not analyzable.

Although we expected that the third stage, the flow-sensitive active-shadows
analysis, would give us even more improvement, we found that it did not. To
implement and test this analysis we developed a lot of machinery to represent
the inter-procedural abstraction of the matching automata, and techniques to
soundly approximate even in the presence of threads. To our surprise, the end
result is that this extra machinery did not lead to more precise shadow removal.
However, this exercise did provide an analysis basis and some new insight into
the problem and we think that further refinements to this approach are worth
further investigations. We plan to work on this by experimenting with new kinds
of must and hybrid points-to abstractions and by improving upon the treatment
of multi-threading, perhaps by using the May Happen in Parallel (MHP) analysis
which is currently being integrated into Soot [20].
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Abstract. Java(X) is a framework for type refinement. It extends Java’s
type language with annotations drawn from an algebra X and structural
subtyping in terms of the annotations. Each instantiation of X yields a
different refinement type system with guaranteed soundness. The paper
presents some applications, formalizes a core language, states a generic
type soundness result, and sketches the extensions required for the full
Java language (without generics).

The main technical innovation of Java(X) is its concept of activity an-
notations paired with the notion of droppability. An activity annotation
is a capability which can grant exclusive write permission for a field in an
object and thus facilitates a typestate change (strong update). Propaga-
tion of capabilities is either linear or affine (if they are droppable). Thus,
Java(X) can perform protocol checking as well as refinement typing.
Aliasing is addressed with a novel splitting relation on types.

1 Introduction

A programming language with a static type system eliminates common program-
ming errors right from the start. For instance, the type system may guarantee
that no operation receives an illegal argument. Each type system introduces ab-
straction to make types statically checkable. Thus, there are always programs
that would run without errors but which are nevertheless rejected by the type
system.

However, the information provided by the type system is not always sufficient
to avoid a run-time error. For example, taking the head of a list may lead to a
run-time error if the list is empty but this information is not represented in the
list type. While there are refinement type systems capturing such information
[15,30], they are not widely used in production programming languages.

A related problem arises with non-trivial object life cycles [24]. Many objects
progress through distinct states during their lifetime with state changes caused
by method calls. In each state certain methods are disabled and calling them
causes a run-time error. A standard type system cannot avoid such run-time
errors because it is not aware of the evolving object states. Enhancing a type
system to track these state changes is not straightforward because it requires
assigning the same variable different types at different places in the program.
Such a typestate change causes problems in the presence of aliases that keep
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obsolete type assumptions. The main challenge here is to keep track of aliasing
to the extent that the change of typing is possible.

A type system with additional structure can supply the information needed for
such applications. The first application is a type refinement setting that restricts
the semantics of programs by incorporating explicit tests for predicates that
refine the underlying types. The type soundness property for the extended system
becomes more expressive because it guarantees that these predicates are always
satisfied. The second kind requires extending refinement typing with accurate
state tracking as provided, e.g., by a linear type system [28]. Unfortunately,
most systems do not provide a seamless integration, let alone migration, between
standard types and linear types.

Our framework Java(X) addresses these issues with a family of annotated
type systems and an automatic promotion of standard properties to linear ones.
An annotated type system extends the type language of some existing system
with value annotations. A value annotation restricts the meaning of the type it
is attached to and thus enables the type soundness proof to express additional
properties.1 As refinements are domain specific, they are not hardwired into the
system. Java(X) is parametrized over a partially ordered set (poset) of value
annotations X, which a programmer can change and extend them easily.

An alternative approach might rely on pre-/post-conditions and invariants,
which are stated as logical formulas, but annotations place less burden on the
programmer. For our system, a refinement designer chooses a set of predicates
on objects and abstracts them to a value annotation poset X. This poset can be
tailored to the needs of a particular application domain. Thus, the annotations
correspond to domain-specific, shrink-wrapped combinations of predicates that
are lightweight and ready to use for the programmer, who has to understand the
annotations but does not have to be an expert in logics.

In addition to the value annotations, Java(X) has a built-in notion of ca-
pabilities that can promote a value annotation to a linear or affine annotation.
Capabilities are independent of the chosen annotation poset X. They are at-
tached to individual field references via the activity annotations on a type. If a
variable has an object type with an active capability for a field (and everything
reachable from it), then the program may update the field with a new value
through this variable.

Active capabilities are propagated in a linear manner, that is, at each time
and for each field of a reachable object, there exists one access path (starting
with a variable), the type of which has the active capability for this field, through
which the field can be updated. Any other access path to the same field may
only read the field but not update it. The Java(X) type system maintains the
invariant that only one access path has the update privilege for an active field.

Beyond the update privilege, an active capability carries the most accurate
value annotation for the current contents of the field. Hence, active capabilities
are well suited for typestate changes. An update only changes the field type for
the access path with the active capability. The types of the other access paths

1 Thus, Java(X) performs type-based program analysis [22] in some sense.
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(the aliases) do not have to change because they have sufficiently less accurate
information.

Thus, active capabilities enable the linear handling of resources such as objects
that change their state in reaction to method invocations. However, as described
up to now, the system does not seem to allow us to discard such state changing
objects because it insists on the invariant that there is always one access path
with an active capability for the object. For this reason, Java(X) includes the
notion of droppability. The analysis designer can declare certain states (that is,
subsets of annotations) as droppable. If an object is in a droppable state, then
its reference can be discarded regardless of its capabilities. In effect, an object in
a droppable state is handled in an affine manner: its state is tracked accurately,
its active capability cannot be duplicated, but the object may be discarded at
any time. An object may switch between droppable and nondroppable states
during its life time, just think of a file handle that must not be discarded as long
as it is open (see Section 2.2).

Contributions. Java(X) is an extension of Java 1.4 with a parametrized an-
notated type system. Its annotations are drawn from a poset X of value annota-
tions. There is a parametrized type soundness proof for a fully formalized subset
MiniJava(X). Once a refinement designer supplies a new annotation poset X ,
a programmer can immediately take advantage of the new invariants guaranteed
through it.

We have built a proof-of-concept implementation of a type checker for Mini-

Java(X).2 The type checker processes all examples of Section 2.
The main novelty of Java(X) is the concept of an activity annotation as

a capability for updating a field in an object. Activity annotations enable the
promotion of the properties described by X to linear and affine properties, which
can be tracked accurately and facilitate typestate change. The main technical
innovation is the handling of aliasing via a splitting relation. This relation splits
the capability for a resource between different access paths to it on a per-field
basis.

Overview. Section 2 introduces Java(X) with two examples. Section 3 defines
the essential core of the language Java(X) and its type system formally. Section 4
sketches the type soundness proof. Section 5 explains the extensions needed for
the full Java system, and Section 6 discusses related work. Finally, Section 7
concludes.

2 Examples

We introduce our framework with two examples. The first defines an affine
instance of the framework providing a refined typing discipline for an XML-
processing library. The second is a linear instance tracking operations on files.
We defer the formal definition of an instance of the framework to Section 3.2.
2 http://proglang.informatik.uni-freiburg.de/projects/access-control/



Tracking Linear and Affine Resources with Java(X) 553

2.1 JDOM Type Analysis

JDOM3 is a popular Java API for manipulating XML. It views an XML docu-
ment as a tree composed of nodes of types like Element and Attribute. Each
node (except the root) has a parent field p indicating the element that it is
attached to. JDOM’s Element type provides a number of operations for ma-
nipulating the tree structure. The method Element setAttribute(Attribute
attr), which attaches an attribute node to an element node, serves as a typical
example.

JDOM informally imposes a number of invariants on its XML representa-
tion. One of them is that “JDOM nodes may not be shared”. JDOM enforces
this invariant dynamically by checking a detachment property: If the attribute
node has a non-null parent field then the setAttribute method throws an
IllegalAddException. This exception occurs in the last line of the following
example because it attempts to attach the node attr a second time.

Element p1 = new Element("a");
Element p2 = new Element("a");
Attribute attr = new Attribute("href", "http://www.jdom.org");
p1.setAttribute(attr); // consumes attr; now attached
p2.setAttribute(attr); // raises IllegalAddException

We now describe an instance of Java(X) which statically tracks the detachment
property and rejects uses of setAttribute(attr) unless it is clear that attr is
detached. The instance raises a type error for the example just shown.

In earlier work [27], one of the authors has proposed a type system for
DOM. While the earlier system covers properties other than detachment, the
present system obtains significantly stronger guarantees for detachment (see
Section 6).

Detached Nodes. Static checking of the detachment property requires anno-
tations to the Attribute type, which abstract over the state of the parent field
p as in Attribute{p : 〈aa, Element〉}.4 The type shows that placing the anno-
tations requires expanding the types to (potentially recursive) record types. The
activity annotation aa ranges over the set {(va),�,♦} where va is drawn from
a value annotation poset XElement = (P({N,D}),⊆) with P denoting the power
set. We abbreviate {N} to N, {D} to D, and {N,D} to ND. The elements of
the poset abstract from the possible states of an Element reference. In XElement,
N stands for “is null” and D for “defined” (is not null).

The activity annotation aa provides the access capability. If an Attribute
reference has its p field typed with an active annotation (va), then the parent
3 http://www.jdom.org
4 In the full type, both the Attribute and the Element type carry an additional

value annotation and there is a record describing the fields of the Element, too:
〈vaA, Attribute{p : 〈aa , 〈vaE , Element{. . . }〉〉}〉. In what follows, we concentrate
on Attribute and generally omit the extra value annotations and the field types of
Element for readability.

http://www.jdom.org
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field may be modified through this reference and this modification changes the
value annotation va in the type of the reference. If the annotation is inactive
�, then the field is read-only through this reference and there is no extra value
annotation. The semi-active annotation ♦ allows for unrestricted assignment,
but does not provide any information through a value annotation. We ignore ♦
for a moment and come back to it on page 555.

The enclosed value annotation va approximates the status of the attribute’s
parent reference at run time. It is flow-sensitive and may be different for different
uses of the same attribute. Between uses, the system propagates the information
whether a node is detached in an affine manner: At most one reference to an
attribute may carry definitive, active information about the node’s parent field.
Any other, aliasing reference must have an inactive type for its parent field.

Writing a signature for a method such as setAttribute of class Element
requires one more ingredient. The signature must specify the effect of the method
on the state of the object. This effect change the activity annotations only, the
underlying Java type does not change:5

Element setAttribute(Attribute{p : 〈(N� D), Element〉} attr).

The N� D annotation states that the p of the attr argument must be null (N)
before the method call and is not null (D) afterwards. Thus, N � D describes
the effect of a method call like the pre- and post-condition of a specification.
Effects only apply to active annotations because modifications are only allowed
through active references.

Type checking the example from the beginning of this section with the
setAttribute signature just given leads to a type error. The typing assumes
that new Attribute(...) creates an attribute node without a parent, i.e., its
p field has annotation (N). The comments indicate the typing after execution
of the respective statement.

Element p1 = ...;
Element p2 = ...;
Attribute attr = new Attribute(...); // attr : Attribute{p : 〈�(N), Element〉}
p1.setAttribute(attr); // attr : Attribute{p : 〈�(D), Element〉}
p2.setAttribute(attr); // type error: N required, D given

Aliasing. Let us now abstract over the pattern. Suppose there is a method set2
that accepts two Attributes and attaches each to its own element.

void set2 (Element p1, Element p2,
Attribute{p : 〈(N)� (D), Element〉} a1,
Attribute{p : 〈(N)� (D), Element〉} a2)

{ p1.setAttribute(a1); p2.setAttribute(a2); }

5 Again, we take the liberty of abbreviating the full syntax, which defines the effect
as a change of the type. The full argument type duplicates the whole structure:
Attribute{p : 〈(N), Element〉}� Attribute{p : 〈(D),Element〉}.
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It is not possible to invoke set2 with two aliases of the same attribute:

Attribute attr = new Attribute(...); // attr : Attribute{p : 〈�(N), Element〉}
set2(p1, p2, attr, attr); // type error!

The type error occurs because Java(X) splits the type of attr at every point
of use such that no active annotation is duplicated. Splitting is driven by a
ternary relation · - · | · on activity annotations. For the active annotation it
holds that (va) - (va) | � and (va) - � | (va) so that  can only be split
into itself and the inactive annotation �; the inactive annotation can only split
into itself. Hence, the initial type of attr is split into the two types

Attribute{p : 〈(N), Element〉} -
Attribute{p : 〈(N), Element〉} | Attribute{p : 〈�, Element〉}

one of which is assigned to each of the two occurrences of attr in the argument
list of set2. Thus, one occurrence has a suitable argument type for this method,
the other one has a mismatch between the required (N) and the provided �.

JDOM also has API methods that introduce aliasing. For example, the
detach() method removes an attribute from the element it is attached to (if
any) and leaves it in a detached state. The method modifies its receiver object
and returns it, too. One possible type signature is

Attribute{p : 〈(N), Element〉}
[Attribute{p : 〈(ND)� �, Element〉}] detach()

where the type change in the square brackets specifies the effect of a method
invocation on the receiver type. Before calling detach, the receiver object must
have an active parent field in arbitrary state, that is, the receiver may be de-
tached or attached. (We have N ⊆ ND and D ⊆ ND in our annotation poset
XElement.) After the call, the receiver’s parent field type is inactive. The method
returns a detached active reference.

This type is not the only possible choice. We could just as well leave the
receiver active and make the return type inactive. Each choice fixes a particular
usage pattern, but there is no reason to prefer one over the other. Section 5
introduces annotation polymorphism which allows to defer this choice.

In summary, there are two invariants that guarantee soundness in the presence
of aliases. If there is a reference to an object carrying an active annotation for
some field, then all aliases have a type with an inactive annotation for this field.
Updates are only possible for fields with an active annotation. Such an update
also changes the active value annotation of the field.

Unrestricted Assignment. The active and inactive annotations that we have
seen so far do not allow a field to be updated through multiple references. As
realistic programs contain unrestricted assignments, we need the semi-active
annotation ♦. This annotation neither imposes nor grants access restrictions;
like �, it does not track value annotations exactly. Splitting does not affect
semi-activity, i.e., ♦ - ♦ | ♦. If an alias for an object has a semi-active field, no
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other alias can have an active annotation for this field. Semi-active fields behave
like ordinary instance variables in Java or C#. Hence, semi-active is the default
annotation for fields.

Semi-active annotations enable the incremental transition to refined types. For
example, the JDOM method Element setAttribute(Attribute attr) may
initially receive the signature

Element setAttribute(Attribute{p : 〈♦, Element〉} attr).

Once we decide to track detachment, we switch to the active annotation discussed
in the previous subsection.

2.2 File Access

The detachment property of the preceding section is affine because we can always
drop an attribute node. We now give an example of a linear property where only
values carrying a distinguished annotation may be dropped.

The problem statement is as follows. Opening a file creates an open file handle
on which the program can perform read operations until the file handle is closed.
No further operation can be performed on a closed file handle. Furthermore, file
handles must not be discarded while they are open.

We use the value annotation poset XFStat = P({O,C}) for the file access
example, where O stands for “open” and C stands for “closed”. As before, we
write O, C, and OC for the evident elements of XFStat. Droppability of files is
defined in terms of a droppability predicate, ρFStat ⊆ XFStat. Because an open
file must not be discarded, we define ρFStat as {∅,C}.

To be able to change the status of a file, we do not attach these value
annotations directly to the File class but to a private instance field FStat
status.There are two distinguished FStat objects, namely open : 〈O, FStat{}〉,
and closed : 〈C, FStat{}〉. The outermost value annotation of a type, which we
have ignored until now, describes a persistent property of the values inhabiting
the type. By assigning one of these two values to the status field, the implemen-
tation of the File class communicates its internal status to the outside world.
The operations provided by File are as follows:

File{status : 〈(O), FStat〉}(String name) // constructor

int [File{status : 〈(O), FStat〉}] read()
void [File{status : 〈(O)� (C), FStat〉}] close()

These method types implement exactly the specification given at the begin-
ning of this subsection: read() is only possible in state O and close() changes
the state to C. An open file handle cannot be dropped because O /∈ ρFStat. A
closed file handle can be dropped because C ∈ ρFStat.

With these signatures, the following statements result in a type error.

File{status : 〈(O), FStat〉} f = new File("/etc/passwd");
f.read();
f.close(); // f now has type File{status : 〈�(C), FStat〉}
f.read(); // type error: O expected, C given
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3 The Language MiniJava(X)

The language MiniJava(X) is an object-oriented language with classes and
methods but without inheritance, interfaces, casts, and abstract methods.
Its formalization is inspired by ClassicJava [13]. Section 5 discusses the
extensions needed for all of Java 1.4.

3.1 Syntax

Figure 1 defines the syntax of MiniJava(X) and some auxiliary functions for
accessing pieces of syntax. The notation zi stands for z1, . . . , zn, where z is a
syntactic entity. The index i can be omitted if no ambiguity arises. We write
zi

i∈M and zi
i
=j to constrain the index set.

A program consists of a list of class definitions and a main expression. A
class definition contains definitions for fields and methods. A method definition
t [t′ � t′′]m(ti � t′i x) { e } specifies the type t′ of its receiver in the square
brackets [t′ � t′′]. Calling the method changes the receiver type from t′ to t′′

and the argument types from ti to t′i, respectively. The type change only refers
to a change of the annotations, the underlying class type remains unchanged.
The type syntax has three levels:

– A simple type, u, packages a class name c with a field environment; the
field environment records for every field f its field type s and its variance
ς, which specifies if the field is only read (ς = r), only written (ς = w), or
both (ς = b).

Fig. 1. Syntax and lookup functions
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– An annotated type, t, attaches a value annotation va to a simple type u
to describe a persistent property of the objects of type u in a summary
approximation. The annotation va is drawn from a type-specific annotation
poset (Xc , · ≤ ·) where c is the class of u. The instantiation of the framework
determines X .

– A field type, s, attaches an activity annotation aa to an annotated type
t. If a reference to an object has the field type f : s[ς] and s carries the
active annotation (va), that is, s = 〈(va), va ′, u〉 := 〈(va), 〈va ′, u〉〉,
then the field f may be updated through this reference and va describes the
current field value. The annotation va is at least as precise as the summary
approximation va ′ because assignments change va but leave va ′ constant.
The well-formedness predicate on types (see Figure 3) ensures that va ≤ va ′.

The activity annotation may also be semi-active ♦, which allows updates,
or inactive �, which indicates that a field is read-only. In both cases, the
system maintains only a summary approximation for the field value.

An activity annotation acts locally on a single field. It does not affect
sibling fields nor descendants: their annotations are completely independent.
The activity annotation is also reference specific: each alias for the same
object may have a different (but compatible) activity annotation on its type.
For instance, compatibility enforces that only one alias may have an active
annotation for a certain field of an object.

As customary for modeling object types [6], a type may be recursive through its
field environment. The syntax does not have explicit operators to introduce or
eliminate such recursive types. Instead, the rules of the type grammar have a
coinductive interpretation.

A type environment A binds variables x to annotated types t. When writing
A, x : t we assume that A does not already bind x .

Expressions e are in a particular restricted form (which resembles A-normal
form [12]) to maximize the amount of information that typing can extract and
to simplify the soundness proof. In this form, all essential computations only
take values v as operands (that is, a variable or null) and sequencing is made
explicit using let (and field access/modification). Any expression in, say, Java
syntax can be easily transformed into this form without changing its meaning.

The expression language comprises values, object creation, method invocation,
field access, field modification, let expression, a conditional which tests for null,
and an intermediate join expression join v = v.f from e which does not occur in
programs but which arises during execution.

Every new expression carries a unique label �, so that the initial value anno-
tation of an object may depend on the place of the new expression in the source
program.

Field access let x = v.f in e is combined with variable binding to increase the
precision of the system. The idea is that the binding of x “lends” capabilities
from v.f while evaluating e. Afterwards, the lent capabilities are joined back to
v.f ’s using a join expression.
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Field update set v.f = v′ in e first sets the field and then evaluates e. It does
not return a result because doing so would create an alias for v′, which would
further complicate its typing rule.

3.2 Instances of MiniJava(X)

An instance of MiniJava(X) specifies, for each class c,

– a partially ordered set (Xc,≤) with least element for the value annotations;
– a non-empty predicate ρc ⊆ Xc of droppable annotations such that b ∈ ρc

if a ∈ ρc and b ≤ a (for all a, b ∈ Xc);
– predicates Rnew


,c , Rnull
c ⊆ Xc , for each label �, such that b ∈ Rnew


,c (b ∈ Rnull
c )

if a ∈ Rnew

,c (a ∈ Rnull

c ) and a ≤ b (for all a, b ∈ Xc).

We assume that c �= c′ implies Xc ∩Xc′ = ∅ and set ρ := ∪cρc .
The predicates Rnull

c and Rnew

,c provide the persistent annotations for the null

reference and for objects created at program location �, respectively. Indeed, the
motivation for including � in the formal presentation at all is the ability to
define predicates that depend on the creation location. Otherwise, the system
would only be able to capture the nullness property. Several instances of value
annotations may easily be combined using the Cartesian product.

Examples. The nullness analysis required for the JDOM detachment property
works on the poset XElement = (P({N,D}),⊆) with ρElement = XElement and the
two predicates Rnull

Element(va) ⇔ {N} ≤ va and Rnew

,Element(va) ⇔ {D} ≤ va. That

is, every object is droppable regardless of whether it has a parent object. Further,
the value annotation for null must contain N, and the annotation of a newly
created object must contain D.

The file access example uses the poset XFStat = (P({O,C}),⊆) with
ρFStat = {{C}, ∅}. The two predicates are defined as Rnull

FStat(va) ⇔ False and
Rnew


,FStat(va) ⇔ (� = �o ⇒ {O} ≤ va) ∧ (� = �c ⇒ {C} ≤ va) where �o and
�c are the program locations where the FStat object open and closed are de-
fined, respectively. That is, a file handle is droppable as long as its status cannot
be open. The value annotation of a file status object must contain O if it was
created at location �o and analogously for C and �c.

3.3 Dynamic Semantics

Figure 2 defines the dynamic semantics of MiniJava(X) as a small-step opera-
tional semantics. Its judgment P � 〈e,S〉 ↪→ 〈e′,S′〉 describes a single evaluation
step of an expression e under store S governed by program P . The evaluation
step produces a new expression e′, and a new store S′.

A store S is a mapping from locations l to objects 〈c, �,F〉 where c is the class
of the object, � is the place where the object was created, and the field map F
records the values w of its instance fields. The notation S, l �→ 〈c, �,F〉 assumes
that S does not bind l, whereas F [f �→ w] implies that F contains a binding for
f which is updated to w. The reduction rules for new, let, and if are standard.
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Fig. 2. Dynamic semantics

The reductions for letx = v.f in e and joinw = l.f fromw′ belong together.
They implement the aforementioned lending of the field’s capabilities to x. Re-
ducing the let leaves behind a join expression that remembers the lending for
the duration of e’s evaluation. Once the body of the let/join is reduced to a
value, the join reduces. Thus, the join expression has no operational significance,
it’s just there to make the type system happy.

The reduction for set is standard but it is sequenced with the evaluation of
another expression to avoid returning a value from set.

A method invocation reduces to the corresponding method body wrapped
in let expressions that bind the formal parameters to the actual ones. Opera-
tionally, this wrapping is not necessary but it simplifies the soundness proof by
separating concerns.

Beyond the explicit errors, an expression becomes stuck if it tries to access a
non-existent field of an object or invoke a non-existent method. The latter errors
are already captured by the underlying standard type system.

3.4 Static Semantics

This section specifies the static semantics of MiniJava(X). Figure 3 defines
various relations on types, annotations, and environments. Because types are
defined coinductively, all rules involving types have a coinductive interpretation.
Figure 4 defines the typing rules for expressions and some auxiliary judgments,
Figure 5 lists additional typing rules for intermediate expressions that only arise
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during the evaluation of a program. Figure 6 contains the remaining rules for
programs. Boxed premises in the rules serve as extension points provided by an
instance of the framework.

Droppability. A program can only discard a reference if its type is droppable. This
policy ensures that the program keeps at least one reference to each “precious”
resource, which it recognizes by an active annotation with a non-droppable value
annotation. Technically, an object is droppable if all its fields have droppable
types. An active field type is droppable if its annotation is. A field which is
semi-active or inactive can always be dropped: A semi-active field can only have
droppable annotations (by well-formedness of types), and an object is never
responsible for the contents of its inactive fields.

Splitting. If a program uses the same variable multiple times, then each use
of the variable receives a different type where the activity annotations on the
original type of the variable are split among all uses. If field type s splits into s′

and s′′ (s - s′ | s′′), then s, s′, and s′′ are structurally equivalent and differ only
in their activity annotations. So it is sufficient to define splitting on the activity
annotations. Splitting of � and ♦ is trivial. An active annotation splits into one
active and one inactive annotation: both (va) - (va) | � and (va) - � |
(va) are acceptable. Splitting ensures that at most one type for a field reference
receives an active annotation.

Well-formedness. The well-formedness relation ensures that the value part of an
active annotation of a field type is not weaker then the summary approximation
for that field; that a semi-active field type is droppable; that a value annotation
is taken from the appropriate annotation poset; and that a field environment is
correct with respect to the field declarations of the corresponding class.

Subtyping. Subtyping is structural and derived from the annotation orderings.
Moreover, an active field type can be treated as semi-active or inactive if it is
droppable. The subtyping of field environments takes the variance ς into account:
if a field is only read (ς = r), then it can be treated covariantly; if it is only
written (ς = w), then contravariantly; if it is read and written (ς = b), then it
must be treated invariantly (Pierce [23, Chapter 15.5] attributes this technique
to Reynolds).

Effect application. The effect application relation �A A := A′ ↓ vi : ti � t′i is
used in the rules for method application and for a restricted version of the
let expression. Its purpose is to transfer the type state changes from one alias
that goes out of scope to another. For example, the expression letx = y in e
introduces a new alias x for y. Inside e, the same object may be updated through
both x and y which also changes their types. When leaving the scope of x, the
type changes to x are lost with the standard let rule, but the effect application
in the restricted rule merges the final type of x back into y’s type.

Technically, the relation defines how type changes ti � t′i for values vi affect
an environment A′. If vj is null then nothing happens. If vj is a variable x , then
the new type for x is t defined as �t t := A′(x ) ↓ tj � t′j . The effect application
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Fig. 3. Relations on types, annotations, and environments. (The rules for types have
a coinductive interpretation).
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relation on types, �t t := t′ ↓ t′′ � t′′′, changes at most the annotations of
t′ for which the corresponding annotation of t′′ is active but leaves the other
annotations of t′ intact.

Expressions. The judgment for expressions, P ;A �e e : t � A′, assigns a type
t and an updated environment A′ (after e’s evaluation) to expression e in the
context of program P and environment A (see Figures 4 and 5).

– In the variable rule, each use of a variable splits of the properties needed
and passes the remaining properties on to subsequent uses.

– The rule for null relies on an auxiliary judgment P �null t which ensures
that t is well-formed and carries a suitable annotation.

– The rule for new determines an annotation for the newly created object with
Rnew. The judgment P ;A �e v : t � A′ types the constructor arguments.

– The rule for accessing field f performs the already mentioned lending of
capabilities. The type of the the dereferenced object lends its capabilities at
field f through the type access judgment ty = t′y |f tx to the extracted value.
After typing the body expression e with the resulting types it merges the
final types back into the type of the reference.

This rule has a number of related rules in Figure 5. They treat the case
that the dereferenced object is null and the join expression that arises from
reducing the field access. There is a special rule for a join expression where
the extracted value is null.

– Field assignment set x .f = v in e changes the type of field f in x ’s type
using the type update judgment P ; u � f ← t � u′ which states that field f
of an object with type u can be assigned a value of type t while modifying
the object’s type to u′. Two rules define this judgment:
• The first rule allows a strong update of f which may change its type.

It requires the old type of f to be entirely active (judgment  �s s). If
there was a semi-active or inactive field, then the field might be updated
through an alias thus invalidating the change in the type.

• The second rule deals with “ordinary” updates. It requires that the old
type of f is semi-active (judgment ♦ �s s) because overwriting an inac-
tive field would result in an invalid typing assumption about a reference
carrying an active annotation for this field.

– The rule for method calls uses the effect application relation to propagate
the type changes of the method signature to the resulting type environment.

– There are two rules for let expressions. The standard one ensures that the
type of the let-bound variable is droppable after evaluating the body of the
let expression. The restricted one requires a value in its header, so that a
restricted let creates an alias of a variable. In this case, the rule implements
lending of capabilities just like described for the field access rule. It uses
effect application to merge the changes of the alias back into the type of the
original reference.
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Fig. 4. Typing rules for expressions
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Fig. 5. Typing rules for intermediate expressions

Fig. 6. Typing rules for programs

4 Soundness

We prove type soundness using the standard syntactic technique [29]. To apply
it, we first have to extend typing to configurations 〈e;S〉. To this end, we have
to introduce an Urtype assumption A. This assumption assigns to each loca-
tion/object its activity annotated type before it is used in the program. Every
activity annotated type of a use of a particular location in the program must
be split off the Urtype for the location. The Urtype assumption changes during
evaluation to reflect changes of the field values of an object with active fields.
The most important point about the Urtype assumption is that it guarantees
consistent use and distribution of the activity annotations throughout the uses
of the locations in the program.

We start by introducing a function RL,S ∈ P(Loc) → P(Loc) so that its
smallest fixed point μRL,S is the set of locations reachable from L ⊆ Loc through
S. The predicate drop-ok (e, A,S) indicates whether all locations with a non-
droppable type are reachable from e.
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RL,S(M) = (L ∪
⋃
{ran(F) | l′ ∈ M,S(l′) = 〈c, �,F〉}) ∩ dom(S)

drop-ok(e, A,S) = ∀l ∈ dom(S). �t ρ(A(l)) ∨ l ∈ μRfv(e),S

Let Path range over finite access paths f of field names. The notation f ⊕ f ′
attaches f to the front of path f ′. The predicate

aliases-ok (l,A, A,S)⇔ A(l),S(l) � {|A(li).fi | S(li).fi|}

relates all type assumptions about a single location l with an Urtype assump-
tion A. Every active annotation in the typing must be sanctioned by an active
annotation in the Urtype assumption. The Urtype assumption for a location is
responsible (1) for the local activity annotation of fields that refer to defined
locations and (2) for the full type of fields that contain null. The definition col-
lects relevant types in a multiset (indicated by {| . . . |}) because each occurrence
of a type contributes to the activity. Thus, the aliases-ok predicate ensures that
there is at most one active annotation in all type assumptions about l.

Some auxiliary notation is needed to define the action of access paths on types
and stores:

t.ε = t
t = 〈va, c{fi : si[ςi]}〉 sj = 〈aa , tj〉

t.(fj ⊕ fji) = tj .fji

S(w).ε = w
S(l) = 〈c, �, fi �→ wi〉

S(l).(fj ⊕ fji) = S(lj).fji

It remains to define the “sanctions” relation between an entry in an Urtype
assumption (an annotated type), an entry in a store, and a multiset of annotated
types. Its first stage projects out, for each field, the corresponding field type, the
stored value, and the multiset of field types.

(∀i) si, wi � {|sι
i | ι ∈ J |}

〈va, c{fi : si[ςi]}〉, 〈c, �, fi �→ wi〉 � {|〈vaι, c{fi : sι
i[ς

ι
i ]}〉 | ι ∈ J |}

Its second stage states that the annotation from the Urtype assumption splits
into the multiset of the activity annotations. For each null value, the multiset
of types is also split from the type in the Urtype assumption.

aa - {|aaι | ι ∈ J |} w = null⇒ t - {|tι | ι ∈ J |}
〈aa , t〉, w � {|〈aaι, tι〉 | ι ∈ J |}

The typing judgment P ;A; A �c 〈e; L;S〉 : t � A′ for configurations 〈e;S〉 in
context L (a multiset of locations) formalizes the main invariant of the preser-
vation lemma. It holds if the store is consistently typed, the expression is well
typed, the program is well-formed, the locations occurring in the expression are
all defined in the store, every location which is not reachable from L and the
locations in the expression must have a droppable type, the locations in L are
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all typed and use up enough capabilities of the final assumptions A′ so that all
types in the remaining assumption A′′ are droppable.

P ;A �S S : A P ; A �e e : t � A′ � P fv(e) ⊆ dom(S)
drop-ok (fv(e) + L, A,S) L ⊆ dom(A′) P ; A′ �e L : t � A′′ ρ(A′′)

P ;A; A �c 〈e; L;S〉 : t � A′

dom(S) ⊆ dom(A)
dom(A) = dom(A) (∀l ∈ dom(S)) P ;A; A;S �l l : A(l)

P ;A �S S : A

S(l) = 〈c, �,F〉 Rnew

,c (va) ran(F) ⊆ dom(S) ∪ {null}

(∀i) F(fi) = null⇒ P �null si (∀i) P �s wf (si) aliases -ok(l,A, A,S)

P ;A; A;S �l l : 〈va, c{fi : si[ςi]}〉

The judgment �S , which states the consistency of the assumptions about the
store, has a standard inductive reading despite the presence of cyclic structures
in the store. All potentially cyclic references are broken by the explicit use of
the type environment A.

The preservation lemma uses an extension relation � between Urtype as-
sumptions, which holds between successive configurations. It basically states
that active capabilities cannot be created from nothing.

domA1 ⊆ domA2 (∀l ∈ domA1) A1(l) � A2(l)
A1 � A2

(∀i) si � s′i
〈va , c{fi : si[ςi]}〉 � 〈va ′, c{fi : s′i[ςi]}〉

(aa = (va) ∨ aa = aa ′) t � t′

〈aa, t〉 � 〈aa ′, t′〉

The type preservation lemma states that reducing an expression does not change
its type. The notation A	M denotes the environment obtained by restricting A
to the variables in M .

Lemma 1 (Preservation). Suppose P ;A1; A1 �c 〈e1; L;S1〉 : t � A′
1 and P �

〈e1;S1〉 ↪→ 〈e2;S2〉. Then there exist A2, A2, and A′
2 with A1 � A2, dom(A′

1) ⊆
dom(A′

2), and �A A′
2	dom(A′

1)
≤ A′

1 such that P ;A2; A2 �c 〈e2; L;S2〉 : t � A′
2.

Proof. By induction on the definition of ↪→.

The progress lemma ensures that a well-typed expression is not stuck.

Lemma 2 (Progress). Suppose P ;A; A �c 〈e; L;S〉 : t � A′. Then either e is
a value, or there exists 〈e′;S′〉 such that P � 〈e;S〉 ↪→ 〈e′;S′〉, or P � 〈e;S〉 ↪→
〈error: dereferenced null,S〉.

Proof. By structural induction on e.
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5 From MiniJava(X) to Java(X)

The formalization of MiniJava(X) covers the core expression language of Java
1.4 and imperative field update. This section discusses the extensions necessary
for the full system Java(X) with inheritance, subtyping, and with constrained
parametric polymorphism over annotations in the style of HM(X) [21].

We have refrained from formally specifying the extensions in this paper be-
cause they add technical complication and obscure the simplicity of the approach
by cluttering the presentation.

5.1 Polymorphism

The extension to polymorphism essentially adds annotation variables to the type
language and allows constrained abstraction over them. The splitting, droppabil-
ity, and subtyping relations become constraints, which can be abstracted over. In
fact, the addition of polymorphism to a monomorphic type-based program anal-
ysis is a schematic, but tedious effort. Our extension is modeled after the HM(X)
framework [21] which provides a parameterized extension of Hindley-Milner typ-
ing (including type inference) by suitable constraint theories and subtyping.

The resulting constrained polymorphism adds technical complication, but it
greatly increases the expressiveness. As an example, we revisit the typing of the
detach() method of the JDOM API. In Section 2.1, we had to decide on one
particular usage pattern for detach(). Either the typing made the method return
the active reference or it modified the active receiver object. With annotation
polymorphism, the system can postpone the decision by abstracting over the
annotations and making the required splitting into a constraint. Here is the
resulting type abstracting over the activity annotation variables ψ′ and ψ′′:

∀ψ′ψ′′. (N) - ψ′ | ψ′′ ⇒
Attribute{p : 〈ψ′′, Element〉}

[Attribute{p : 〈(ND)� ψ′, Element〉}] detach()

The splitting constraint (N) - ψ′ | ψ′′ fixes the relationship between ψ′ and
ψ′′. The two type signatures for detach() suggested in Section 2.1 are the only
instances of the above parameterized type.

5.2 Inheritance

Inheritance and interfaces can be treated with a minor—but important—
extension as in RAJA [16]. In MiniJava(X), the type of an object includes
only the descriptions of the fields belonging to the object’s class. In Java(X),
with subtyping and a cast operation, the type of an object includes descriptions
of all fields of all classes and a cast changes the class type but leaves the field
environment untouched. Figure 7 contains the rule for a cast; the subsumption
rule changes so that it can also raise the class type (as well as the annotations
as shown in Figure 4). Interface types can be treated in the same way. Their
addition just affects Java’s subtyping relation.



Tracking Linear and Affine Resources with Java(X) 569

Fig. 7. Type cast rule for Java(X)

The expanded class type is required for type checking cast operations in a
meaningful way. Suppose that class A is a subclass of class B:

class B {}
class A extends B {
Object mystate;
public A (Object state) {...}

}

and the following use of an A object:

B b = new A (init);
A a = (A) b;

Suppose the newly created A object has type A{mystate : 〈(init), . . . 〉}. If each
class type only had the fields of its own class, then the subsumption to B would
strip away the information about the mystate field. This information would be
lost forever and the subsequent upcast back to A would have to invent some
information about mystate.

With our choice, a cast or subsumption never changes the field map but only
changes the static class name associated with it. Thus, information is neither
lost nor reinvented.

Another issue is method consistency. If a subclass overrides a method of a
superclass, then the annotated type in the superclass must subsume the one in
the subclass as in method specialization [19].

6 Related Work

There are two closely related lines of work in type systems: refinement and
ownership. Refinement types add extra information to an existing type system
to check additional properties at compile time. Ownership types enforce access
restrictions by providing extra structure on reference types.

Freeman and Pfenning [15] have proposed refinement types as an extension to
ML with union and intersection types. Their approach attaches a property lattice
to each type as we do, but they do not distinguish linear and non-linear resources.
Their ideas have been further refined in various directions. For example, indexed
types can express invariants of data types [30]. Type state checking [26,25] is a
precursor of refinement typing using similar techniques but for a more restricted
first-order imperative language.
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Another direction is the development of a logical system to model properties
on top of the type system, as in the work of Mandelbaum et al. [18]. They graft a
fragment of intuitionistic linear logic on top of the ML type system adapted for
use with the monadic metalanguage. While this approach is highly expressive, it
requires a lot of program modifications. Our work encodes the logical properties
in annotations and has a built-in mechanism (activity annotations) to transform
standard properties to linear properties.

Type qualifications are similar to type annotations. A typical work on type
qualifications is the paper by Foster et al. [14] which enables the flow-sensitive
checking of atomic properties that refine standard types. They present an effi-
cient inference algorithm for their system. The goal of their work is similar to
ours, however, our work combines flow-sensitive and flow-insensitive aspects.

Semantic type qualifiers [7] share some concerns with our work. They allow the
specification of a type qualifier together with a logical formula defining its mean-
ing in terms of the program state. They automatically discharge the resulting
proof obligation and thus obtain a correct system automatically. However, their
properties only correspond to our value annotations and they do not support
the notion of strong update.

A number of works solve specific problems with ad-hoc constructed type sys-
tems and may be viewed as specializations of one of the above frameworks, in
particular exploiting flow-sensitivity. Examples are the work on atomicity and
race detection [10,11], the work on Vault [8], and many others.

JavaCOP [1] is a tool for implementing certain annotated type systems for
Java. It provides a language for defining predicates on typed abstract syntax
trees for Java. JavaCOP is integrated with a Java compiler that checks the
defined predicates before generating code. While JavaCOP provides a flexible
and convenient framework for implementing such systems, it is a purely syntactic
tool: it neither provides any soundness guarantees nor does it have a notion of
flow dependency which would be necessary to track linear resource use. Java(X)

provides both. Both JavaCOP and Java(X) make the important distinction
between analysis designers (who define predicate/design annotation posets) and
programmer (who work in terms of annotations).

The Fugue system [9] implements typestate assertions and checking for C�. It
structures the state of an object in different frames corresponding to the nesting
of subclasses. For each frame, the programmer can state formulae in first-order
predicate logic. In comparison to Java(X), Fugue has a different approach of
handling aliases, it introduces extra program constructs to expose typestate, it
requires the programmer to writer formulae instead of predefined abstract values,
and there is no soundness proof.

Another related system is the Hob system [17]. It basically allows the specifi-
cation of pre- and postconditions using an abstract specification language based
on sets. However, the underlying interpretation of this language is configurable
to different logical systems and there is an aspect-oriented mechanism to simplify
authoring of specifications. Java(X) manages abstraction the other way round.
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An analysis designer carves out domain-specific abstract values from predicates,
thus hiding some complexity from the programmer.

The goal of an ownership type system is to improve modularity by parti-
tioning the state of a system in a hierarchical manner. Such a system restricts
inter-object accesses to those that are compatible with the hierarchy. Although
Java(X) was not conceived with ownership in mind, it turns out that notions
like unique and borrowed references are closely related to our notion of active
and inactive references.

There is a lot of work on ownership types and related notions [2,31,20] but
we focus only on the most closely related work by Boyland and others. In a
series of articles culminating in 2005 [5], Boyland and others have established
a notion of permissions which are attached to an object type along with an
effect system to abstract the state dependencies of a method call. The per-
missions govern whether a reference is readable or writable. In earlier work,
Boyland [3] has proposed splitting of permissions in fractions where only the
full permission “1” allows full read/write access and proper fractions only allow
read access. This kind of permission seems to be related to our notions of ac-
tive, inactive, and semi-active. Effects are also present in our system, albeit in
the form of explicit state transitions on the argument and receiver types of a
method.

It is also instructive to compare the notions of active, semi-active, and in-
active with similar notions in the realm of ownership type systems as catego-
rized by Boyland and others [4]. Their categorization includes the permissions
R (read), W (write), R̄ (exclusive read), and W̄ (exclusive write: no other alias
may write)6. Active corresponds to RWW̄ (read, write, and exclusive write per-
mission), semi-active to RW , and inactive to R (transposed to a per-field setting;
their original work categorizes variables).

In previous work [27], we have proposed an annotated type system for a Java
subset without inheritance that provides improved types for the DOM interface.
The previous work has inspired the example in Section 2.1 but it is limited
in several respects: It is tied to one particular amalgamation of annotation and
activity, it can only keep track of one affine state of a resource (either the resource
is in this state or nothing is known about it; there is no notion of droppability),
it does not support type state change, and it does not treat inheritance. The
present work overcomes all these weaknesses.

Hofmann and Jost [16] have defined a type-based analysis to predict the con-
sumption of heap space by Java methods. Their system RAJA is inspired by
amortized complexity analysis. The underlying design ideas of their type sys-
tem are similar to ours, however, the details are different and our work has
been developed independently. For example, splitting works very differently and
Java(X)’s annotations of arguments may change through method calls whereas
RAJA’s annotations are simply used up because they denote a potential passed
to a method invocation through the parameters.

6 Their remaining permissions O, I , and Ī are not important here.
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7 Conclusion

Java(X) extends the type system of Java 1.4 with an annotation framework for
tracking value-based properties as well as affine and linear properties. A transient
property of an object is always tied to the value of a particular field of the object.
The system only requires the specification of posets for the properties of field
values and adds the tracking of linear and affine uses of references in a generic
way. Linear and affine uses of references improve the accuracy of the properties
because they are subject to type state change.

Our first experiences with the type checker are encouraging. Future work
includes extending the type checker to full Java(X) and implementing some
form of type inference. We also would like to connect some notion of semantics
to our purely syntactic annotations and to investigate further variations of the
activity annotations.
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Abstract. This paper describes the ableJ extensible language frame-
work, a tool that allows one to create new domain-adapted languages
by importing domain-specific language extensions into an extensible im-
plementation of Java 1.4. Language extensions may define the syntax,
semantic analysis, and optimizations of new language constructs. Java
and the language extensions are specified as higher-order attribute gram-
mars.

We describe several language extensions and their implementation in
the framework. For example, one extension embeds the SQL database
query language into Java and statically checks for syntax and type er-
rors in SQL queries. The tool supports the modular specification of
composable language extensions so that programmers can import into
Java the unique set of extensions that they desire. When extensions fol-
low certain restrictions, they can be composed without requiring any
implementation-level knowledge of the language extensions. The tools
automatically compose the selected extensions and the Java host lan-
guage specification.

1 Introduction

One impediment in developing software is the wide semantic gap between the
programmer’s high-level (often domain specific) understanding of a problem’s
solution and the relatively low-level language in which the solution must be
encoded. General purpose languages provide features such as classes, gener-
ics/parametric polymorphism, and higher-order functions that programmers can
use to specify abstractions for a given problem or problem domain, but these
provide only the functionality of the desired abstractions. Domain-specific lan-
guages (DSLs) can be employed to provide this functionality, but they can also
provide domain-specific language constructs (new syntax) for the abstractions.
These constructs raise the level of abstraction of the language to that of the
specific domain and thus help to reduce the semantic gap. As importantly, do-
main specific languages also provide domain-specific optimizations and analyses
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that are either impossible or quite difficult to specify for programs written in
general purpose languages. But problems often cross multiple domains and no
language will contain all of the general-purpose and domain-specific features
needed to address all of the problem’s aspects, thus the fundamental problem
remains — programmers cannot “say what they mean” but must encode their
solution ideas as programming idioms at a lower level of abstraction. This process
is time-consuming and can be the source of errors.

ableJ is a language processing tool that addresses this fundamental problem.
It supports the creation of extended, domain-adapted variants of Java by adding
domain-specific language extensions to an extensible implementation of Java 1.4.
An extended language defined by this process has features that raise the level of
abstraction to that of a particular problem. These features may be new language
constructs, semantic analyses, or optimizing program transformations, and are
packaged as modular language extensions. Language extensions can be as simple
as the Java 1.5 enhanced-for loop or the more sophisticated set of SQL language
constructs that statically check for syntax and type errors in SQL queries. We
have also developed domain-specific extensions to support the development of
efficient and robust computational geometry programs and extensions that in-
troduce condition tables (useful for understanding complex boolean expressions)
from the modeling language RSML−e [22]. Extensions can also be general pur-
pose in nature; we have defined extensions that add algebraic datatypes and
pattern matching from Pizza [18], add concrete syntax for lists, and others that
add the automatic boxing and unboxing of Java primitive types.

ableJ is an attribute grammar-based extensible language framework in which
an extensible host language is specified as a complete attribute grammar (AG)
and the language extensions are specified as attribute grammar fragments. These
are written in Silver [25], an attribute grammar specification language developed
to support this process. The attribute grammars define semantics of the host
language and the language extensions. Silver also supports the specification of
concrete syntax that is utilized by parser and scanner generators. The Silver
extensible compiler tools combine the AG specifications of the host language
and the programmer selected language extension to create an AG specification
for the custom extended language desired by the programmer. An attribute
grammar evaluator for this grammar implements the compiler for the extended
language. Concrete syntax specifications are similarly composed.

It is important that constructs implemented as language extensions have the
same “look-and-feel” of host language constructs. That is, their syntax should
fit naturally with the host language, error messages should be reported in terms
of the extension constructs used by the programmer, not in terms of their trans-
lations to some implementation as is the case with macros. Also, extension
constructs should be efficient and thus generate efficient translations. Forward-
ing [26], an extension to higher-order AGs [32], facilitates the modular defini-
tion of languages and supports the implementation of constructs that satisfy
this look-and-feel criteria. One can implicitly specify the semantics of new con-
structs by translation to semantically equivalent constructs in the host Java 1.4
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language. For example, an SQL query translates to calls to the JDBC library.
But it also allows the explicit specification of semantics since attributes can be
defined on productions defining language constructs to, for example, check for
errors at the extension level, as is done with the SQL extension.

In Silver, attribute grammars are packaged as modules defining either a host
language or an extension to the host language. Module names, like Java packages,
are based on Internet domains to avoid name clashes. The module
edu:umn:cs:melt:java14 defines Java 1.4 and defines the concrete syntax of
the language, the abstract syntax, and the semantic analyses required to do
most type checking analyses and to do package/type/expression name disam-
biguation. The grammar defines most aspects of a Java compiler but it does
not specify byte-code generation. Language extensions add new constructs and
their translation to Java 1.4 code; a traditional Java compiler then converts this
to byte-code for execution. Thus, ableJ is a preprocessor that performs type
checking and other semantic analysis. The static analysis we perform supports
the analysis of extensions to ensure that any statically detectable errors (such as
type errors and access violations) in the extended Java language can be caught
so that erroneous code is not generated. Programmers should not be expected
to look at the generated Java code; errors should be reported on the code that
they write.

Of particular interest are language extensions designed to be composable with
other extensions, possibly developed by different parties. Such extensions may be
imported by a programmer into Java without requiring any implementation level
knowledge of the extensions. Thus, we make a distinction between two activities:
(i) implementing a language extension, which is performed by a domain-expert
feature designer and (ii) selecting the language extensions that will be imported
into an extensible language specification in order to create an extended language.
When extensions are composable, this activity can be performed by a program-
mer. This distinction is analogous to the distinction between library writers and
library users. Thus a programmer, facing a geometric problem in which the geo-
metric data is stored in a relational database may import into Java both the SQL
extension and the computational geometry extension to create a unique domain-
adapted version of Java that has features to support both of these aspects of his
or her problem.

The goal of composability does restrict the kind of features that can be added
to a language in a composable language extension. The primary determinant is
the type of transformations (global or local) that are used to translate the high-
level extension constructs into the implementation language of Java 1.4. If global
transformations are required in translating to the host language then the order
in which these reductions are made may matter and selecting this ordering would
require that the programmer have some implementation level knowledge of the
implementation of the extensions being imported. Thus, composable extensions
(which include those listed above) use primarily local transformations.

Contributions. The paper shows how general purpose languages, in this case
Java 1.4, can be implemented in such a way that rich domain-specific and
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general purpose language features can be imported to create new extended lan-
guages adapted to particular problems and domains. Two key characteristics of
the extensions presented here are that they perform semantic analysis at the
language extension level and that they are composable. Thus, it is feasible that
programmers, with no implementation-level knowledge of the extensions, can
import the set of extensions that address a particular problem. Note however
that ableJ can also be used to define non-composable extensions that introduce
features that require fundamental alteration or replacement of host language con-
structs. The rest of the paper is structured as follows: Section 2 shows several
sample language extensions; Section 3 describes the attribute grammar based
implementation of Java 1.4 and some selected extensions to illustrate how the
semantic analyses of the host and extensions can be combined. Section 4 shows
how extensions are composed and discusses analyses of extension specifications.
Although the composition of AG based semantic analyses is the focus of this pa-
per, Section 4 also briefly describes an integrated parser/scanner that supports
composition of concrete syntax specifications. Section 5 describes related and
future work and concludes.

2 Sample Language Extensions

Several composable extensions have been specified and implemented for the host
Java 1.4 language; we describe several of them here. Sample uses and their trans-
lations to the host language are given, as well as short descriptions of the unique
characteristics of each extension. Others are described during the description of
the Java 1.4 host language specification in Section 3.

SQL: Our first extension embeds the database query language SQL into Java,
allowing queries to be written in a natural syntax. The extension also statically
detects syntax and type errors in embedded queries. A previous workshop pa-
per [24] reports the details of this language extension; we discuss it here and
in Section 3.3 to describe how it interacts with and extends the environment
(symbol-table) defined in the Java attribute grammar. Figure 1 shows an ex-
ample of code written using the SQL extension to Java 1.4. The import table
construct defines the table person and its columns along with their types. For
example, the column person id has SQL type INTEGER. This information is used
to statically type check the SQL query in the using ... query construct. Thus,
if the column age had type VARCHAR (an SQL string type) instead of INTEGER the
extension would report the appropriate type error on the > expression at compile
time instead of at run-time as is done in the JDBC library-based approach. The
extension translates SQL constructs to pure Java 1.4 constructs that use the
JDBC library as shown in Figure 2. Here the SQL query is passed as a Java
String to the database server for execution. When queries are written this way,
statically checking for syntax or type errors requires extracting queries from the
Java strings and reconstructing them. This is much more difficult than when the
query constructs can be examined directly as is possible in the SQL extension.
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public class Demo {
public static void main(String args) {

import table person [ person_id INTEGER, first_name VARCHAR,
last_name VARCHAR, age INTEGER ] ;

int limit = 25 ;
connection c = "jdbc:/db/testdb;";
ResultSet rs = using c query

{SELECT last_name FROM person WHERE age > limit } ; } }

Fig. 1. Code using the SQL extension to Java 1.4

public class Demo {
public static void main(String args) {

int limit = 25 ;
Connection c = DriverManager.getConnection("jdbc:/db/testdb;");
ResultSet rs = c.createStatement().executeQuery((

"SELECT "+" last_name "+" FROM "+" person "+" WHERE "+" age "+
" > " + (limit) )) ; } }

Fig. 2. Equivalent code in Java 1.4

Complex Numbers: This extension adds complex numbers as a new primitive
type to Java 1.4. This extension specifies the new type, means for writing com-
plex number literals, and subtype relations with existing host language types
(e.g., that the new type is a super-type of the host language double type.)
It also specifies productions to coerce double-typed values into the new type.
Thus, in the code fragment double d; complex c; d = 1.4; c = d + 1.7;
c = complex(1.2,2.3); written in a version of Java extended with the com-
plex number type the first assignment to c first translates to c = complex(d +
1.7,0.0); after which the complex literal translates to calls to constructors for
the Java class Complex constructor that implements the complex number type.
Finally, this extension also overloads the arithmetic operators, such as + and *.
It is further described in Section 3.2.

C++ allows operator overloading as well. But in the attribute grammar-based
extensible language approach proposed here, there are mechanisms for optimiz-
ing new numeric types that do not exist in C++. Thus, the production for
complex addition may optimize the operands before performing the addition.

Computational Geometry: More interesting opportunities for optimization
are prevalent in the domain of computational geometry; we have specified nu-
merical types for unbound-precision integers in a language extension [27] for this
domain. This extension was developed for a small C-like language and takes ad-
vantage of domain knowledge that is unavailable in general purpose languages
and library-based implementations. It uses this information to perform opti-
mizations that generate C language code that is 3 to 20 times faster than the
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equivalent code utilizing the CGAL geometric library - typically regarded as the
best C++ template library for the domain.

Algebraic Datatypes: ableJ can
also be used to specify general pur-

algebraic class List {
case Nil;
case Cons (char, List);
public List append (List ys) {

switch (this) {
case Nil:

return ys;
case Cons (x, xs):

return new Cons (x,
xs.append (ys));

}
return null; }

}

Fig. 3. Code using a version of Java ex-
tended with Pizza-style algebraic datatypes

pose language extensions. We have
written an extension that extends
Java 1.4 with Pizza-style [18] alge-
braic datatypes. Figure 3 shows code
in this extended version of Java in-
spired by the examples in [18]. The
extension translates this to pure Java
1.4 code that includes new Nil and
Cons subclasses of List. The sub-
classes have a tag field used to iden-
tify them as nil or cons objects. There
are fields on Cons for the char and
List parameters to the Cons
constructor as shown in Figure 3. The
translation of the pattern matching
switch statement is a nested
if-then -else construct that uses the tag field to determine the constructor in
place of pattern matching.

3 Extensible Java and Java Extension Specifications

In this section we describe the Silver AG specifications that define the host
language Java 1.4 and describe several composable language extensions. We have
simplified some minor features of the grammar to aid presentation and to focus
on aspects that are important while specifying extensions. For example, the
interaction of the extensions with the type checking and environment (symbol-
table) specifications are highlighted.

Silver [25] supports higher-order attributes [32], forwarding [26], collection
attributes [3], various general-purpose constructs such as pattern matching and
type-safe polymorphic lists, as well as the traditional AG constructs introduced
by Knuth [15]. Silver also has mechanisms for specifying the concrete syntax
of language constructs. These specifications are used to generate a parser and
scanner for the specified language. Language extensions are specified as AG frag-
ments, also written in Silver. New productions define new language constructs,
new attributes and their definitions on productions define semantic analyses such
as type checking and the construction of optimized translations of constructs
(using higher-order attributes). Silver’s module system combines the specifica-
tions of the host language and the selected language extensions to create the
AG specification defining the new extended language. This process is described
in Section 4.1. A Silver module names a directory, not a file, and the module
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consists of all Silver files (with extension .sv) in that directory. The scope of a
declaration includes all files in the module.

Section 3.1 describes part of the Java 1.4 host language AG specification.
Section 3.2 describes how extensions interact with the typing and subtyping in-
formation collected and processed by the host language AG. Section 3.3 shows
how extensions interact with and extend the environment (symbol-table) de-
fined by the host language AG. Due to space considerations, these specifications
are necessarily brief and have been simplified so that the main concepts are
not obscured by the intricacies of building real languages. All specifications are
available online at www.melt.cs.umn.edu.

3.1 Java Attribute Grammar Specification

A simplified portion of the Java 1.4 host-language AG specification is shown in
Figure 4. A Silver file consists of the grammar name, grammar import state-
ments (there are none here) and an unordered sequence of AG declarations. The
specification first defines a collection of non-terminal symbols; the non-terminal
CompilationUnit is the start symbol of the grammar and represents a .java file.
Nonterminals Stmt, Expr, and Type represent Java statements, expressions, and
type expressions respectively. Other nonterminals are declared (but not shown)
for class and member declarations. The nonterminal TypeRep is used by abstract
productions to represent types. Next is the declaration for the terminal symbol
Id that matches identifiers with an associated regular expression. Mechanisms
to give lexical precedence to keywords over identifiers are provided in Silver but
are left out here. The terminal declaration for the while-loop keyword follows
and provides the fixed string that it matches (indicated by single quotes).

Concrete productions and the incident nonterminals and terminals are used to
generate a parser and scanner. The parser/scanner system is further discussed
in Section 4.3. In the specification here, attribute evaluation is done on the
concrete syntax as this simplifies the presentation. In the actual AG the concrete
syntax productions are used only to generate the abstract syntax trees over which
attribute evaluation is actually performed. Aspect productions, which are used
later, allow new attribute definitions to be added to existing concrete or abstract
productions from a different file or grammar module.

Several synthesized attributes are also defined. A pretty-print String at-
tribute pp decorates (occurs on) the nonterminals Expr, Stmt, and others. The
errors attribute is a list of Strings and occurs on nearly all nonterminals.
The typerep attribute is the representation of the type used internally for type-
checking. It is a data structure (implemented as a tree) of type TypeRep and
decorates Type and Expr nonterminals. For each nonterminal NT in the host
language there is a synthesized attribute hostNT of type NT. On a node of
type NT it holds that node’s translation to the host language. These attributes
are used to extract the host language Java 1.4 tree from the tree of an extended
Java program. This is discussed further in the context of extensions below.

Following these are two productions, one defining the while loop, the other
defining local variable declarations. The environment attributes defs and env
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grammar edu:umn:cs:melt:java14;

start nonterminal CompilationUnit ;
nonterminal Expr, Stmt, Type, TypeRep ;
terminal Id / [a-zA-Z][a-zA-Z0-9_]* / ;
terminal While_t ’while’ ;

synthesized attribute pp :: String occurs on Expr, Stmt, Type ...;
synthesized attribute errors :: [ String ] occurs on Expr, ... ;
synthesized attribute typerep :: TypeRep occurs on Type, Expr ;
synthesized attribute hostStmt :: Stmt occurs on Stmt ;
synthesized attribute hostExpr :: Expr occurs on Expr ;
synthesized attribute hostType :: Type occurs on Type ;

concrete production while
s::Stmt ::= ’while’ ’(’ cond::Expr ’)’ body::Stmt
{ s.pp = "while (" ++ cond.pp ++ ") \n" ++ body.pp ;
cond.env = s.env ; body.env = s.env ;
s.errors = case cond.typerep of

booleanTypeRep() => [ ]
| _ => [ "Error: condition must be boolean"]
end ++ cond.errors ++ body.errors ;

s.hostStmt = while(cond.hostExpr,body.hostStmt); }

concrete production local_var_dcl s::Stmt ::= t::Type id::Id ’;’
{ s.pp = t.pp ++ " " ++ id.lexeme ++ ";"
s.defs = [ varBinding (id.lexeme, t.typerep) ] ;
s.hostStmt = local_var_dcl(t.hostType,id); }

concrete production idRef e::Expr ::= id::Id
{ e.typerep = ... extacted from e.env ... ;
e.errors = ... ; e.hostExpr = idRef(id); }

synthesized attribute superTypes :: [ SubTypeRes ] collect with ++ ;
attribute superTypes occurs on TypeRep ;

concrete production doubleType dt::Type ::= ’double’ ;
{ dt.pp = "double"; dt.typerep = doubleTypeRep() ; }

abstract production doubleTypeRep dtr::TypeRep ::=
{ tr.name = "double" ; tr.superTypes := [ ] ; }

abstract production arrayTypeRep atr::TypeRep ::= elem::TypeRep
{ tr.name = "array" ; tr.superTypes := [ ] ; }

Fig. 4. Simplified Java host language Silver specification
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implement a symbol table and are described further in Section 3.3. Silver pro-
ductions name the left hand side nonterminal and right hand side parameters
(terminals, nonterminals, or other types) and borrow the Haskell “has type”
syntax :: to specify, for example, that the third parameter to the while produc-
tion is named cond and is a tree of type nonterminal Expr. Attribute definitions
(between curly braces) follow the production’s signature. For the while loop the
definition of the errors attribute uses pattern matching to check that condition
is of type Boolean. Pattern matching in Silver is similar to pattern matching
in ML and Haskell. In Silver, nonterminals play the role of algebraic types and
productions play the role of value constructors.

Type representations (trees of type TypeRep) are constructed by the produc-
tions doubleTypeRep and arrayTypeRep and used to create type representations
on Type nodes, as in doubleType. One attribute on a typerep is superTypes,
which is a list of supertypes of that particular type along with the means for
converting to the supertype if runtime conversion is required. This attribute is
a collection attribute (similar to those defined by Boyland [3]). It allows as-
pect productions to contribute additional elements to the attribute value. In the
doubleTypeRep production, the superTypes attribute is given an initial value
(using the distinct assignment operator :=) of the empty list since it has no
super types in Java 1.4. The complex number extension will specify an aspect
production on doubleTypeRep and contribute to this list of super types to indi-
cate that the complex number type is a super type of double. This is described
in Section 3.2. We have omitted some details here since the manner in which
type representations are implemented is not as important as how extensions can
interact with the Java AG to define new types.

3.2 Types and Subtyping in Java AG and Its Extensions

Types and subtyping are important aspects of Java and therefore of extensions
to Java. Thus the host language specification must provide the mechanisms for
examining the types of expressions, defining new types, specifying new subtype
relationships, and checking if one type is the subtype of another. For example,
if a new type for complex number is specified in an extension how can this new
type interact with existing host language types? How can we specify that the
Java double type is a subtype of the new complex number type? How can this
be done in a composable manner? This section shows the Java AG for examining
and creating types through the specification of two composable extensions: the
enhanced-for loop in Java 1.5 and a complex number type.

Enhanced-for Loop Extension: Here, we show how to add the enhanced-for
loop from Java 1.5 as a composable extension to the Java 1.4 AG specifica-
tion. This extension is quite simple and not very compelling since the construct
now exists in Java 1.5. However, we discuss it because its semantics are well
understood and it illustrates several concepts in writing extensions and using
parts of the type checking infrastructure of the Java AG. The construct allows
the programmer to specify loops that iterate over the members of any array or
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ArrayList herd = ... ;
for (Cow c: herd) {
c.milk ();

}

(a)

ArrayList herd = ... ;
for (Iterator _it_0 = herd.iterator();

_it_0.hasNext();) {
Cow c = (Cow) _it_0.next(); c.milk(); }

(b)

Fig. 5. Use of enhanced-for statement (a), and its translation to Java 1.4 (b)

expression of type Collection1 that implements the iterator, hasNext and
next methods. Figure 5(a) shows a fragment of code that uses the enhanced-for
construct. It uses forwarding to translate this code into the Java 1.4 code in
Figure 5(b) that makes explicit calls to methods in the Collection interface.

The grammar module edu:umn:cs:melt:java14:exts:foreach contains the
specification of the enhanced-for extension and defines a new production and
attribute definitions. Figure 6 shows part of the specification. This grammar im-
ports the host Java language grammar since it utilizes constructs and attributes
defined in that grammar. The concrete production enhanced for defines the
concrete syntax of the new construct and provides explicit definitions for the pp
and errors attributes. The extension does not declare any new terminals, non-
terminals or attributes but uses those defined in the host language. The definition
of the pp attribute is straightforward and is used in the generated error message
if a type-error exists. This occurs if the type of the expression coll is not a sub-
type of the Collection interface or is not an array type. This check is realized
by examining the node (stored in local attribute st res of type SubTypeRes)
returned by the subTypeCheck function and pattern matching the type against
the arrayTypeRep( ) tree. The SubTypeRes node is decorated with a boolean
attribute isSubType that specifies if coll.typerep is a subtype of the TypeRep
for Java Collection interface returned by the helper function getTypeRep.

The subTypeCheck function, the SubTypeRes nonterminal, and productions
for building trees of this type are part of the Java host language AG framework
that extension writers use to access the typing information maintained by the
host language. This use of semantic information at the language extension level
distinguishes AG based extensions that use forwarding from macros.

The enhanced for production also uses forwarding [26], an enhancement to
higher-order AGs, to specify the Java 1.4 tree that the node constructed by the
enhanced for production translates to. Pattern matching and st res are used
again here in determining whether the enhanced-for translates to a for loop with
iterators (stored in the local attribute for with iterators) or a for loop that
increments an integer index to march across an array (stored in the attribute
for over array). The definitions of these attributes are omitted here but use
host language productions and the trees t, id, coll, and body to construct
the appropriate tree as expected. The value of for with iterators for the
enhanced-for in Figure 5(a) can be seen in Figure 5(b).

1 Java 1.5 introduces the Iterable type for use in the enhanced-for loop. Since
Collection is the similar type in Java 1.4, we use it here.
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grammar edu:umn:cs:melt:java14:exts:foreach;
import edu:umn:cs:melt:java14;

concrete production enhanced_for
f::Stmt ::= ’for’ ’(’ t::Type id::Id ’:’ coll::Expr ’)’ body::Stmt {
f.pp = ...
f.errors=if st_res.isSubType||match(e.typerep,arrayTypeRep(_)) then [ ]
else["Enhanced-for "++f.pp++" must iterate over Collections or arrays."];
forwards to if st_res.isSubType then for_with_iterators

else case e.typerep of
arrayTypeRep(_) => for_over_array

| _ => skip() end ;
local attribute st_res :: SubTypeRes ;
st_res = subtypeCheck(coll.typerep, getTypeRep("Collection" ) ;
local attribute for_with_iterators :: Stmt ;
for_with_iterators = ... ;
local attribute for_over_array :: Stmt ;
for_over_array = ... ; }

Fig. 6. Silver code that implements the enhanced-for statement

Forwarding provides an implicit definition for all synthesized attributes not
explicitly defined by the production. When an enhanced-for node is queried for its
hostStmt attribute (its representation as a host language construct) it forwards
that query to the pure Java 1.4 construct defined in the forwards to clause.
That tree then returns its translation. The Java 1.4 tree does not simply return
a copy of itself since its children, body for example, may contain instances of
extension constructs that must be “translated away” in a similar fashion. Some
optional features present in the Java 1.5 enhanced-for loop, namely variable
modifiers and statement labels, have been omitted here for reasons of clarity
and space. These are easily handled; the extra concrete syntax specification
that parses the labels and passes them to the enhanced-for abstract production
is the only real complication. The complete specification may be accessed at
www.melt.cs.umn.edu.

Complex Numbers. Adding a new complex number type as a language ex-
tension requires specifying new type expressions and adding new subtype rela-
tionships – in this case, specifying that the Java double type is a subtype of
the introduced complex type. So that complex numbers types can be present in,
for example, local variable declarations, the complex number extension gram-
mar defines the terminal symbol Complex t which matches the single string
“complex” and the production complexType seen in Figure 7. The complex type
constructs are translated via forwarding to references to a Java class Complex
that implements complex numbers. This is packaged with the language exten-
sion. The type representation typerep of complex numbers is constructed by the
production complexTypeRep. The production complexLiteral specifies com-
plex number literals. It defines such expressions to have the type (typerep) of
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grammar edu:umn:cs:melt:java14:exts:complex ;
import edu:umn:cs:melt:java14;
terminal Complex_t ’complex’ ;
concrete production complexType t::Type ::= ’complex’
{ t.typerep = complexTypeRep(); forwards to ‘‘Complex number class’’ }
concrete production complex_literal
c::Expr ::= ’complex’ ’(’ r::Expr ’,’ i::Expr ’)’
{ c.pp = "complex (" ++ r.pp ++ "," ++ i.pp ++ ")" ;

c.errors = ... check that r and i have type double ... ;
forwards to ‘‘new Complex( r, i)’’ ; }

abstract production complexTypeRep tr::TypeRep ::=
{ d.superTypes := [ mkComplexToComplex() ] ; }
aspect production doubleTypeRep d::TypeRep ::=
{ d.superTypes <- [ mkDoubleToComplex() ] ; }
abstract production mkDoubleToComplex t::SubTypeRes ::=
{ t.isSubType = true ; t.supertype = complexTypeRep() ;

t.converted = complex_literal(‘‘complex’’, ‘‘(’’, t.toConvert,
‘‘,’’, ‘‘0.0’’, ‘‘)’’); }

Fig. 7. Portion of complex number language extension specification

Complex numbers (complexTypeRep()) and checks that r and i have the correct
type. The definition of the errors attribute is omitted here but it uses pattern
matching as was done earlier in the while loop in Figure 4.

Adding New Subtype Relationships: To achieve a natural, close integration of the
extension and the host language, the host language AG provides mechanisms
for specifying new subtype relations and means for run-time conversion. Host
language productions like the assignment production utilize this information to
implement the complex number translation steps illustrated in Section 2.

The aspect production doubleTypeRep in Figure 7 adds a new super type
to Java doubles. This is realized by contributing a new super type element (of
type SubTypeRes, constructed by production mkDoubleToComplex) to the col-
lection attribute superTypes that decorates TypeReps. The information in each
super type in doubleTypeRep’s superTypes is used by the Java AG function
subTypeCheck to determine if doubleTypeRep is a subtype of another specified
type. If so, the function returns the super type (SubTypeRes) tree, which in-
cludes functionality for run-time conversion, if needed. The mkDoubleToComplex
production builds a tree that sets the isSubType attribute to true and the
supertype attributes to the complex number TypeRep. It plays the role of a
function that creates the Expr tree that performs the run-time conversion of a
yet-to-be-specified input double-typed Expr. The inherited attribute toConvert
plays the role of the function input and the synthesized attribute converted
plays the role of the output. It is set to the complex literal constructed from the
input double expression and the literal 0.0. The terminal symbols and literal
0.0 are shown as strings in the stylized definition of converted. In the actual
specification they need to be properly typed terminals and Expr nonterminals.
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grammar edu:umn:cs:melt:java14 ;
nonterminal SubTypeRes ;
synthesized attribute superType :: TypeRep ;
synthesized attribute converted :: Expr ;
inherited attribute toConvert :: Expr ;

concrete production assign
a::StmtExpr ::= lhs::Expr ’=’ rhs::Expr ’;’ {
a.pp = lhs.pp ++ " = " ++ rhs.pp ++ ";" ;
local attribute res :: SubTypeRes ;
res = subTypeCheck(lhs.typerep,rhs.typerep);
res.toConvert = rhs ;

a.errors = if length(transformed) == 1 then [ ]
else if length(transformed) == 0 then [...type error...]
else [... internal error, multiple translations ....];

production attribute transformed :: [ StmtExpr ] collect with ++ ;
transformed := if ! res.isSubType then [ ]

else [ converted_assign(lhs, res.converted) ] ;
forwards to if length (transformed) != 1 then skip()

else head (transformed) ; }
abstract production converted_assign a::StmtExpr::=l::Expr r::Expr {...}

Fig. 8. Portion of Java host language specification

To see how this information is used, consider the host language assignment
production assign specified in Figure 8. It calls subTypeCheck to check if the
type of the expression on the right hand side (rhs.typerep) is a subtype of the
type of the left hand side expression (lhs.typerep). The synthesized attribute
converted and inherited attribute toConvert, both of type Expr act as the func-
tion described above that creates the expression tree whose type is lhs.typerep
and performs any run-time conversion on the rhs to give it the type of lhs. For
Java 1.4 classes, res.converted is the same tree as res.toConvert since no
source-level conversion are needed. This provides the extension point or “hook”
that language extensions that introduce new types will use.

The assign production forwards to an assignment in which the run-time con-
version is applied to the rhs tree. This forwarded-to assignment is created by
the converted assign production. The production attribute transformed is a
collection that holds the trees to which the initial assignment assign will for-
ward. If lhs is a subtype of rhs then the new assignment is added to the list,
otherwise it is initially empty. If transformed has exactly one element, then no
errors are generated. If it is empty, then the lhs and rhs are not compatible. It is
possible for aspect productions on assign to add new elements to transformed
(as the autoboxing/unboxing extension does below) so that if there is more than
one element, then an error is raised since a decision cannot be made as to which
one to forward to. If transformed has exactly one element, then that is what
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aspect production assign a::StmtExpr ::= lhs::Expr ’=’ rhs::Expr ’;’
{ transformed <- if match(lhs.typerep, getTypeRep("Integer")) &&

match (rhs.typerep, intTypeRep())
then [converted_assign ( l, ‘‘new Integer ( rhs )’’)] else [ ]; }

Fig. 9. Portion of the autoboxing/unboxing extension specification

assign forwards to – otherwise an error will have been raised and it forwards to
the skip statement. Similar productions for other “copy” operations (parameter
passing) exist in the Java AG and can be similarly extended.

The definition of the host language assignment is not trivial - but the complex-
ity arises because it is designed to be extended later and we want the definitions
of the extensions to be the simpler ones to write. If there is no discipline in
adding new elements to the subtype relationship, then extension composition
could introduce non-trivial circular subtype relations. This can be avoided if ex-
tension writers adhere to the guideline of not adding a set of subtype relations
in which a host type is both the subtype and the supertype.

Autoboxing/Unboxing. Java 1.5 automatic boxing and unboxing can also be
added as an extension to the Java 1.4 host language. This is done by adding
to the transformed collection attribute on the assign production in Figure 8.
The aspect production in Figure 9 adds the boxing of primitive type int to
class Integer by checking that lhs and rhs have the appropriate types. When
they do, the transformed attribute in assign will contain only the assignment
constructed by the converted assign production and the use of the Integer
class constructor shown in the contribution to the attribute. (The <- operator
adds the value of the following expression to the collection attribute, folding
up all such values using the specified collect with operator, ++ in the case of
transformed.) Note that this production is not adding to the subtype relation-
ship, but simply overloading the assignment operator when lhs and rhs have
the specified types. Overloading of other operators is accomplished similarly.

3.3 Using and Extending the Java Environment

Semantic analysis performed on a node in the syntax tree often requires in-
formation from another node. For example type-checking a variable expression
requires information from the syntax tree node where the variable was declared.
Similarly, access to an object might depend on its permission level, again set on
its declaration. Attribute grammars pass such information around the abstract
syntax tree using a combination of synthesized and inherited attributes.

In ableJ, declarations for the environment are collected using the synthe-
sized attribute defs which is a list of environment items (EnvItem). These are
passed up the tree up to a production that defines a new local scope, such
as the enhanced-for production in Figure 6. It adds the definitions to the in-
herited environment attribute env that is passed down the tree for use by, for
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nonterminal EnvItem ;
synthesized attribute env_items :: [ EnvItem ];
nonterminal Scope with scope_type, env_items;
synthesized attribute defs :: [ EnvItem ] ;
inherited attribute env :: [ Scope ];
abstract production varBinding
e::EnvItem ::= name::String dcl::TypeRep {...}

function addLocalScope
[Scope] ::= items::[EnvItem] enclosing_env::[Scope] {...}

-- lookUp returns typereps of name from nearest matching enclosing scope
function lookUpVar [ TypeRep ] ::= name::String env::[ Scope ] {...}

Fig. 10. The API of the ableJ environment

example, variable references. In the enhanced-for production, the following at-
tribute definition performs this task:

body.env=addLocalScope([varBinding(id.lexeme,t.typerep)], f.env);

The varBinding production is used to create the data-structure binding the
name of the identifier to its type representation. (In practice, more information
than just the identifier’s type is needed, but we have omitted those details here.)
Figure 10 contains a partial specification of the nonterminals, productions, and
functions used to pass declaration information to the parts of the syntax tree
where it is used. It is important that language extensions, such as the enhanced-
for, can contribute to this process.

The env attribute is a list of scopes; each stores bindings of various kinds for
a particular scope in the object program as a list of EnvItems in the attribute
env items, as seen in Figure 10. These bindings are represented by trees created
by different productions, varBinding being one example. The environment con-
tains scopes for top level declarations in the current file, declarations from other
files in the same package, single-type named imports, and on-demand imports.
Other scopes may be created and added to when needed, for example within
methods and inner class definitions.

While the enhanced-for loop only uses existing host language constructs for
manipulating the environment, other extensions may want to add new kinds of
information to the environment. The SQL extension extends the environment to
contain the type representations of the tables and columns defined in the import
table constructs shown above. As the environment is defined, the specifications
in the enhanced-for loop and the SQL extension work together so that an SQL
query enclosed in an enhanced-for loop can extract from the environment the
definitions added by any import table constructs.

Figure 11 shows a small portion of the Silver specification of the SQL language
extension. Of interest is that the import-table construct adds to the environment
(via defs) a variable binding with a new kind of TypeRep tree constructed by the
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grammar edu:umn:cs:melt:java14:exts:sql ;
import edu:umn:cs:melt:java14 ;

concrete production sqlImport
s::Stmt ::= ’import’ ’table’ t::Id ’[’ columns::SqlColTypes ’]’ ’;’ {
s.defs = [ varBinding (t.lexeme, tableTypeRep (columns.defs)) ]; }

abstract production tableTypeRep tr::TypeRep ::= col::[EnvItem] { ... }
inherited attribute sql_env :: [EnvItem];
concrete production sqlQuery
e::Expr ::= ’using’ c::Conn ’query’ ’{’ q::SqlQuery ’}’ { ... }

concrete production sqlSelect
q::SqlQuery::=’SELECT’ flds::SqlExprs ’FROM’ t::Id ’WHERE’ cond::SqlExpr{
local attribute result :: [ TypeRep ] ;
result = lookUp (table.lexeme, q.env);
q.errors = flds.errors ++ cond.errors ++
...ensure that result has length 1 indicating precisely 1 decl for t...;
columns = if length(result) == 1

then case (head(result)).typerep of
tableTypeRep (cols) => cols
| _ => [ ]; -- error raised above.

else [ ] ;
flds.sql_env = columns; cond.sql_env = columns;
cond.env = q.env; }

Fig. 11. Portion of Silver specification of the SQL extension

the production tableTypeRep defined in the SQL grammar. This information
propagates up the syntax tree through host language defined productions to an
enclosing scope-defining production that adds this information to an inherited
env attribute. From here, it flows down the tree, through the sqlQuery construct
to a sqlSelect construct which uses the lookUpVar function to get the list of
type representations bound to t in the nearest enclosing scope that binds t. This
list should have length 1, otherwise an error is generated and columns will be the
empty list. The local attribute columns is a simplified SQL environment sql env
built as a list of EnvItems that are passed to the fields flds and condition cond.

The SQL extension uses pattern matching to extract the value for columns
from the TypeRep bound to t. The use of the production name tableTypeRep
which is defined in this grammar and is not visible to other extensions ensures
that the value extracted is what the SQL extension added in the sqlImport pro-
duction. Although other extensions may inappropriately remove bindings from
an environment they may not subtly alter its contents in a manner that is un-
detected by the SQL extension. Similarly, since the production tableTypeRep
is unknown to other extensions, any information contained in the type repre-
sentation is not accessible to other extensions. This ensures that values added
to the environment by one extension construct (SQL import-table) are passed
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correctly to another construct (SQL query) even if they pass through constructs
defined in a different extension (enhanced-for). Extensions may incorrectly re-
move elements from the environment, but this type of mistake is dramatic and
tends to arise in all uses of the offending extensions.

4 Composition of Language Extensions

4.1 Composing Host Language and Extension Specifications

The declarative syntax and specifications in Silver are easily composed to form
the specification of a new extended language. Figure 12 contains the Silver spec-
ification for Java extended with the SQL and the computational geometry ex-
tension that implements the randomized linear perturbation (rlp) scheme for
handling data degeneracies in geometric algorithms. The details of the features
provided by the rlp extension are not of interest here. This composed extended
language has features to support both the domains of relational database queries
and computational geometry. The import statements import the grammar spec-
ifications of the named Silver module. The with syntax clauses import the
concrete syntax specifications from the named modules to build the parser for
the extended language. The main production is similar in intent to the C main
function; here it delegates to the main production java main in the java14 host
specification. The parse value passed to java main is the parser constructed
from the concrete syntax specifications imported into the module. This is a
boiler-plate Silver specification that can easily enough be generated from the
names of the extension grammar modules which are to be imported into the
Java 1.4 host language.

grammar edu:umn:cs:melt:composed:java_sql_cg ;
import core ;
import edu:umn:cs:melt:java14 with syntax ;
import edu:umn:cs:melt:java14:exts:sql with syntax ;
import edu:umn:cs:melt:java14:exts:rlp with syntax ;

abstract production main top::Main ::= args::String
{ forwards to java_main(args, parse) ; }

Fig. 12. Composed language Silver specification

4.2 Issues in Composition

Even though the process of composing language specifications, for both concrete
syntax and AG-based semantics, is a straightforward union of the components
and can be performed automatically, there may be no guarantee that the result-
ing language specification is well-defined. For example, an undisciplined compo-
sition of concrete syntax productions may lead to ambiguous grammars or may
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introduce conflicts (shift-reduce or reduce-reduce) into the parse tables for LR-
style parsers. In terms of semantics, combining AG specifications may result in
circular AGs in which an attribute instance may be defined such that its value
depends on itself. If programmers are going to compose extended languages from
the composable, modular language extensions proposed here, then detecting or
better yet preventing these sorts of problems becomes critical. There are some
analyses that can be performed at different times that provide some assurance
that the composed language is well-defined.

The table in Figure 13 identifies tools and techniques that perform some
analysis and points in time in which they are performed. The first two analyses
listed along the top relate to syntax specifications, the last two to semantics.
Analysis can be performed by the extension designer during development, it can
be performed when the extensions are composed (perhaps by a programmer)
with the host language specification, or it can be performed dynamically – during
parsing or AG evaluation. (We do not consider analysis during execution of a
program written in an extended language.) These analyses may differ for different
tools and techniques and are thus not precisely the same (or even applicable)
for all approaches. The table is meant to provide a framework for comparing
approaches and understanding the goal of composability in extensible languages.

If an analysis can be performed when the extension designer is implementing
an extension (at design time), then information from that analysis may be used
by the designer to fix any discovered problems. Alternatively, an analysis can
be performed when the set of extensions is composed with the host language.
These analyses may prevent a programmer from using an ill-defined language,
but this analysis may be done too late as the person directing the composition
of the extension may not be the extension designer and may not be able to make
use of the information to fix the problem.

analyses → lexical syntactic AG termination of
points in time ↓ determinism determinism non-circularity tree construction

Ext. design Copper Copper

Ext. composition Yacc Knuth [15], Vogt [32]

Parse/ AG Eval. GLR GLR JastAddII

Fig. 13. Analyses and points in time for analysis

A language recognizer, traditionally a scanner, exhibits lexical determinism
if for non-erroneous input it returns exactly one token. A recognizer, tradition-
ally a parser, is syntactically deterministic if for non-erroneous input it returns
exactly one syntax tree [15,32]. An AG specification is non-circular if for any
syntactically valid syntax tree, no attribute instance has a circular definition.
Similar analyses exist for AGs with forwarding [26]. A general termination anal-
ysis may ensure that a finite number of trees are created (via forwarding or in
higher-order attributes in AG systems, or in term rewriting systems).

Visser’s scannerless generalized LR (GLR) parsers [30] do not have a separate
scanner but parse down to the character level. For any context free grammar
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(including ambiguous ones) a GLR parser can be created that will parse any valid
phrase in the language of the grammar and return all syntax trees corresponding
to the phrase – for ambiguous grammars more than one tree may be returned
for some phrases. Thus, one does not know until parse time if a single tree
will be generated for a correct input phrase. Disambiguation filters [23] can be
written to filter out undesired trees on ambiguous parses but there is no static
guarantee for the grammar designer that the specified filters ensure syntactic
determinism. Yacc [13] is deterministic and an analysis at composition time
exists, but LALR(1) parsers are somewhat brittle in that seemingly innocuous
additions to a grammar may cause conflicts. This problem is exacerbated when
multiple extensions that add new syntax are combined. Thus, Yacc-like tools may
not be suitable for extensible languages. In Section 4.3 we describe an integrated
parsing and scanning system (called Copper) that places some restrictions on
the type of concrete syntax that extension designers can specify. These ensure at
extension design time that no conflicts are created when the host language syntax
and syntax from other extensions observing the restrictions are composed.

For attribute evaluation, circularity/definedness tests are known for standard
AGs [15], higher-order AGs [32], and AGs with forwarding [26]. These can be
performed when grammars are composed, but are in essence whole-program
analyses that require examining the entire grammar. JastAddII [7] is a Java-
based AG system that employs reference attributes [11]. These can be thought of
as attributes that contain pointers (references) to other nodes in the syntax tree
and have been shown to be especially useful in linking a variable reference node to
its declaration. There is no static analysis to ensure that such grammars are not
circular however and thus JastAddII uses a dynamic check. This system has also
been used to build an extensible Java 1.4 compiler. The lack of a static check may
be less critical than in the case of parsing. Adding new constructs/productions
tend to not add new types of attribute dependencies and thus AGs are much
less “brittle” and more easily extended than LALR(1) grammars.

Also of interest are analyses that ensure that a finite number of trees are
constructed via forwarding or as higher-order attributes. We are investigating
approaches which extract rewrite rules from the attribute grammar specification
in such a way that if the rewrite rules can be shown to terminate, then forward-
ing will terminate. The approach then determines orderings on term constructors
(productions in AGs) to show that the extracted rules terminate. Such an anal-
ysis combined with the circularity/definedness analysis provides a guarantee of
termination during attribute evaluation.

4.3 Parser-Context Based Lexical Disambiguation

Our integrated parser/scanner system (called Copper) uses a standard LR pars-
ing algorithm that is slightly modified in the manner in which it calls the scanner:
it passes to the scanner the set of terminal symbols that are “valid lookahead”
for the current state of the parser, viz., those that have non-error entries (shift,
reduce, or accept) in the parse table for the current parser state. Simply put,
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the parser passes out what it can match and gets back what does match. The
scanner’s use of the parser state for disambiguation allows the parser to deter-
mine what terminal a certain string matches based on the context.

Crafting the concrete syntax specification of an extension that when com-
bined with the concrete syntax specification of the host language results in a
deterministic LR specification is not trivial but can be accomplished by the
extension designer. Our goal, during composition of several extensions with
the host language, is to maintain the deterministic nature of the grammar.
This characteristic is maintained by restricting the type of syntax that can be
added in the extension and depends on the integrated nature of the parser
and scanner. The parser-context based lexical disambiguation is key to the
process.

The analysis that an extension, say E1, will not introduce shift-reduce or
reduce-reduce conflicts in the parse table of a language composed from the host
and extensions E1 and others, say E2, ..., En, is based on an examination of the
parser table of the host language and the parse table of the host composed just
with E1. The details of this analysis will appear in a technical report [29], but
the essence of the analysis is that the extension E1 is allowed to (i) add new
states in the parser table that are used solely in parsing extension constructs
and (ii) add a restricted set of items to existing host states that only allow a
shift-action to a new extension-added state. The critical characteristic of the
composed parse table is that the states are partitioned so that every state is
associated with exactly one grammar: either the host or one of the extensions.

Each production introduced by extension E that has a host nonterminal,
say H , on the left side must have a right hand side that begins with what is
called a “marking token” for that extension. The marking tokens are used to
obtain the partitioning of the parser states as described above. These are not
to be referenced elsewhere in the extension. For example, in the SQL exten-
sion the concrete production sqlQuery with signature Expr ::= ’using’ Conn
’query’ ’{’ SqlQuery ’}’ the marking token is ’using’. These productions
provide the shift-action, based on the marking token, mentioned above that take
the parser from a “host state” to an “extension state”.

Additionally, restrictions are made on “back references” to host language non-
terminals on the right hand side of extension productions. If these restrictions
are not followed, the analysis is likely to fail. Each extension production with
a host nonterminal H on the right-hand side should adhere to one of these two
forms:

– E → μLHμR, where μL is a host or extension terminal such that E does
not derive μLX for any X �= HμR, and μR is a host terminal, preferably
one that would be commonly found after an H-expression, such as a right
parenthesis after a math expression.

– E → μLH , where μL is under the same restrictions as before, and the H is
when derived invariably at the end of the extension expression — e.g., the
loop body in an extension defining the enhanced-for loop.
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The goal of these restrictions is to limit the ways that extensions can affect
the host language parse table so that conflicts are not introduced. Because ableJ
provides mechanisms for overloading the operator symbols, the syntax specifica-
tions of most extensions (such as the SQL extension) meet these restrictions.

But due to the partitioning of the LALR(1) DFA described above, in a context-
filtered system, most extension terminals will not show up in the same context
as a host terminal; for example, in our SQL extension, as only host states have
Java identifiers in their valid lookahead and only SQL extension states have the
keyword select, the two tokens are never together in the valid lookahead set of
any parser state. Hence, no disambiguation is needed between select and Java
identifiers. Thus, “select” can still be used as a variable name in the Java code
(but not as a column name in the SQL query.)

It is worth noting that even if extensions do not pass these tests, the integrated
parser/scanner approach has, in our experience, been much less brittle than stan-
dard LALR(1) approaches since it avoids many of the lexical ambiguities that
would exist in traditional disjoint approaches. In fact the set of grammars that
are deterministic in the integrated approach is strictly larger than those that
are classified as LALR(1). Thus, performing the deterministic check at compo-
sition time is more likely to succeed. The enhanced-for loop production shown
in Figure 6 does not meet the above restrictions because it does not introduce
an extension defined marking token but instead reuses the host language defined
’for’ terminal. Yet in composing several different extensions this production
has not introduced any conflicts into the parser table. Additional details are
available in the technical report [29].

The key to checking for lexical determinism is the partitioning of parser states
into states associated with the host or a single extension grammar. This restricts
the type of lexical conflicts (terminals with overlapping defining regular expres-
sions) to one of two types. The first type is a conflict between an extension
defined terminal and a host language defined terminal or another terminal de-
fined in the same extension. In this case, the extension writer can use several
techniques to resolve the ambiguity. Copper provides several precedence setting
constructs and a means for writing Silver expressions to perform the disambigua-
tion at parse time. We will not go into these details here; the key point is that
the extension writer can be made aware of the ambiguity at extension design
time and fix it. This disambiguation is then maintained during composition.

The second possible type of conflict is between the marking tokens of two
different extensions. These are unavoidable and must be resolved “on the fly”
by the programmer. We introduce the notion of transparent prefixes to enable
the programmer to do this without knowledge of the language grammars. Trans-
parent prefixes allow a disambiguating prefix (typically based on the name of
the extension) to precede the actual lexeme of tokens in the program, without
being visible to the parser. This prefix then directs the scanner to recognize the
following lexeme as coming from that grammar. This approach is motivated by
the use of fully qualified names in Java in which classes with the same name
from different packages are distinguished by specifying the package name.
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5 Discussion

There have been many efforts to build tools for extensible compilers for Java and
other languages. Some of these, like ableJ, are attribute grammar-based. Others
are based on traditional rewrite systems or pass-based processors.

Attribute Grammar Based Tools: Much previous work has investigated the use
of attribute grammars as framework for the modular specifications of languages
[9,14,8,1,20]. There are also several well-developed AG-based language specifi-
cation tools: such as LRC [16], JastAddII [7], and Eli [10]. These systems im-
plement transformations in different ways, some are functional while others are
object-oriented. They do not support forwarding and thus the modularity and
ease-of-composition of language features specified as AG fragments is achieved by
writing attribute definitions that “glue” new fragments into the host language
AG. JastAddII and Eli do not have the general purpose features of pattern
matching and polymorphic lists in Silver and instead use a “back-door” to their
implementation languages (Java and C) for general-purpose computations.

JastAddII [7] is based on rewritable reference attribute grammars and has
been used to develop an extensible Java 1.5 compiler [6]. To the best of our
knowledge Silver and JastAddII are the only AG systems that allow for the
implicit specification of semantics by translation to a host language. JastAddII
does so by the application of (destructive) rewrite rules. But since rewriting
of a subtree takes place before attributes may be accessed from the that tree,
one cannot both explicitly and implicitly specify a construct’s semantics. For
example, consider the enhanced-for loop extension described in Section 3.2. With
JastAddII, any semantic analysis is performed only after rewriting is done and
the equivalent host language for-loop is generated. Thus all semantics are implicit
(except for the attributes that are computed during rewriting that may be used
to guide rewriting). With forwarding, rewriting is non-destructive. Extensions
and forwards-to trees exist side-by-side allowing some semantics to be specified
explicitly by the extension while others are specified implicitly via forwarding. On
the other hand, the rewrite rules in JastAddII are more general than forwarding
and can be used in a wider of variety of language processing applications, such
as using rewrite rules to implement optimizing transformations. In Silver, such
transformations must be encoded as definitions of higher-order attributes.

Other Approaches to Extensibility: Embedded domain-specific languages [12]
and macro systems (traditional syntactic, hygienic and programmable [33]) allow
the addition of new constructs to a language but lack an effective way to spec-
ify semantic analysis and report domain specific error messages. However, some
modern macro systems have more advanced error-reporting facilities, e.g. [2].
Traditional pass-based approaches such as Polyglot [17] require an explicit spec-
ification of the order in which analysis and translation passes are performed on
the syntax tree. Requiring this level of implementation level detail to compose
extensions is what we hope to avoid.

JavaBorg is an extensible Java tool that uses MetaBorg [4], an embedding
tool that allows one to extend a host language by adding concrete syntax for
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objects. It is based on the Stratego/XT rewriting system [31] that allows for the
specification of conditional abstract syntax tree rewriting rules to process pro-
grams. In addition, it allows for the specification of composable rewrite strategies
that allow the user to program the manner in which the rewrites are performed.
These rewrites can be used to perform generative as well as optimizing transfor-
mations – both general purpose and domain-specific. Rules and strategies may
be bundled into libraries and composed. MetaBorg is well-suited for performing
transformative optimizations since its rewrites are destructive and performed
in-place. However, specifying semantic analyses like error checking, even when
using dynamically generated rules and annotations [19], is less straightforward
than using attributes. Although these can perform the same functions as synthe-
sized and inherited attributes, there is no static analysis to ensure type-safety
and termination (circularity/definedness [26] analysis) as there is with attribute
grammars. It is also not clear that different extensions can be so easily combined.
MetaBorg uses scannerless GLR parsers [30].

Intentional Programming originated in Microsoft Research and proposed for-
warding in a non-attribute grammar setting. The original and more recent
work [21] uses a highly-developed structure editor for program input since tra-
ditional LR parsing of extensible languages was not seen as viable. But our in-
tegrated parsing/scanning approach [29] suggests that deterministic LR-parsing
methods are viable. Similarly, other work [5] based on meta-object protocols for
language extension uses the GUI facilities in Eclipse for program input.

6 Ongoing Work and Conclusions

The ableJ framework aims to report all errors that a traditional Java compiler
would report. As of this writing there are two types of errors that are not yet
reported. The first is definite assignment errors, which may be handled by an an
extension to Silver that constructs control flow graphs for imperative programs
and performs data flow analysis by model checking these graphs [28]. Second,
a relatively few productions in the Java AG specification propagate the errors
attribute up the syntax tree but do not add their own errors. These are being
completed. We are building a version of Java 1.5, in which most new constructs
(other than generics) 2 are specified as modular language extensions to Java 1.4.

One reason that libraries are a successful means for introducing new abstrac-
tions in functional languages, is that the programmer can freely import the set
of libraries that address his or her particular problem at hand. It is our belief
that for language extension techniques (either those proposed here or others de-
scribed in Section 5) to have real-world impact they must be composable in a
manner that is similar to libraries. In this paper we have shown that it is pos-
sible to implement languages and composable language extensions so that new,
2 While nearly all of Java 1.5 generics can be translated to Java 1.4 by type-erasure,

methods with type parameters in the return type are an exception and must be either
translated to bytecode or to incorrect Java 1.4 code (with method-overloading errors)
from which it may be possible to generate executable bytecode.
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customized, domain-adapted languages can be created from the host language
and selected language extensions with no implementation level knowledge of the
extension.

An important area of future work centers on means for ensuring, either by
analysis of specifications or by restricting the types of extensions that can be
described, that language extensions that have the look-and-feel of the host lan-
guage can be easily composed by the programmer.
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Abstract. Like other software artefacts, metamodels evolve over time.
We propose a transformational approach to assist metamodel evolution
by stepwise adaptation. In the first part of the paper, we adopt ideas
from grammar engineering to define several semantics- and instance-
preservation properties in terms of metamodel relations. This part is not
restricted to any metamodel formalism. In the second part, we present
a library of QVT Relations for the stepwise adaptation of MOF com-
pliant metamodels. Transformations from this library separate preserva-
tion properties. We distinguish three kinds of adaptation according to
these properties; namely refactoring, construction, and destruction. Co-
adaptation of models is discussed with respect to instance-preservation.
In most cases, co-adaptation is achieved automatically. Finally, we point
out applications in the areas of metamodel design, implementation, re-
finement, maintenance, and recovery.

1 Introduction

Metamodel Evolution. In Model-Driven Architecture (MDA) [1], metamodels
are a fundamental building block. Models occurring in a MDA process comply to
metamodels, constraints are expressed at the meta-level, and model transforma-
tions are based on source and target metamodels. Like other software artefacts,
metamodels evolve over time [2] due to several reasons: During design, alterna-
tive metamodel versions are developed and well-known solutions are customised
for new applications. During implementation, metamodels are adapted to a con-
crete metamodel formalism supported by a tool. During maintenance, errors in
a metamodel are corrected. Furthermore, parts of the metamodel are redesigned
due to a better understanding or to facilitate reuse.

Example 1 (Petri net metamodel evolution). Fig. 1 illustrates the evolution of
a metamodel for Petri nets. A Petri net consists of any number of places and
transitions. Each transition has at least one input and one output place. The
initial metamodel μ0 captures these facts. Since a Petri net without any places
and transitions is of no avail, we restrict Net to comprise at least one place and
one transition. This results in a new metamodel μ1. In a next step, we make arcs
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μ0 :

μ1 :

μ2 :

μ3 :

μ4 :

μ5 :

Fig. 1. Petri net metamodel evolution

between places and transitions explicit. The extraction of PTArc and TPArc yields
μ2. This step might be useful if we want to annotate metaclasses with means for
graphical or textual description in order to assist automatic tool generation. As
PTArc and TPArc both represent arcs, we state this in μ3 with a generalisation
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Fig. 2. Simple Petri net

Arc. In an extended Petri net formalism, arcs might be annotated with weights.
We can easily reproduce this extension by introducing a new attribute weight
in μ4. Until now, we cover only static aspects of Petri nets. To model dynamic
aspects, places need to be marked with tokens as captured in μ5.

Metamodel evolution is usually performed manually by stepwise adaptation. In
this paper, we provide a theoretical basis to study the effects of metamodel evolu-
tion in terms of metamodel relations. We employ well-defined evolutionary steps
for metamodels compliant to OMG’s Meta Object Facility (MOF) [3]. The steps
are implemented as transformations in QVT Relations, the relational part of
OMG’s Query-View-Transformation language [4]. Each step forms a metamodel
adaptation and is classified according to its semantics- and instance-preservation
properties. This work is mainly inspired by the ideas of object-oriented refactor-
ing [5,6,7] and grammar adaptation [8,9].

Co-evolution. Models need to co-evolve in order to remain compliant with the
metamodel [2]. Without co-evolution, these artefacts become invalid.

Example 2 (Petri net model co-evolution). Fig. 2 contains a simple example of a
Petri net. Models of this Petri net compliant to metamodels introduced in Exam-
ple 1 are given in Figure 3. These models co-evolve with their metamodels. While
the first model ι0 is compliant to μ0 and μ1, new metaclasses in μ2 enforce new
instance objects in ι1, which complies with μ3, too. The introduction of weight
in μ4 necessitates the introduction of default values in the corresponding model
ι2. This model is also an instance of μ5 because it provides an empty marking.

Like metamodel evolution, co-evolution is typically performed manually. This is
an error-prone task leading to inconsistencies between the metamodel and related
artefacts. From the fields of software architecture and language definition, we
learnt that these inconsistencies usually lead to irremediable erosion where arte-
facts are not longer updated [2]. In this paper, we aim at automatic co-evolution
steps deduced from well-defined evolution steps [10]. This co-adaptation prevents
inconsistencies and metamodel erosion.

Transformational Approach. In this paper, we propose a transformational
approach to assist metamodel evolution by stepwise adaptation. Transforma-
tional metamodel adaptation has several advantages over manual ad hoc
adaptation. First, changes become explicit. Thus, transformations provide doc-
umentation and traceability. Second, we state several preservation properties of
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ι0 :

ι1 :

ι2 :

Fig. 3. Petri net instance co-evolution

transformations. This allows one to qualify an adaptation according to semantics-
or instance-preservation. The co-adaptation of models is achieved automatically
by co-transformations. Finally, adaptation scripts are pieces of software on their
own. They can be reused in similar adaptation scenarios or be modified to alter
adaptation decisions. Generalisations of those scripts define new transformations.

Structure of the Paper. In Section 2, the origins of our work, i.e. object-
oriented refactoring and language engineering, are discussed. In Section 3, we
present a set of binary metamodel relations. Based on these relations, we de-
fine several forms of semantics- and instance-preservation properties for meta-
model transformations. In Section 4, we develop a set of QVT Relations that
assist the evolution of MOF 2.0 compliant metamodels. In Section 5, we address
co-evolution of models. In Section 6, we discuss the benefits of a transforma-
tional approach in the context of metamodel design, metamodel implementa-
tion, metamodel maintenance, and metamodel recovery. The paper is concluded
in Section 7.

2 Background

In this section, we discuss the origins of our work. These are the refactoring of
object-oriented software and the adaptation of context-free grammars.

2.1 Object-Oriented Refactoring

Refactoring Object-Oriented Code. Nowadays, software refactoring [11] is a com-
mon practice. It forms a central concept for agile development processes, e.g.



604 G. Wachsmuth

eXtreme Programming [12] and Rational Unified Process [13]. As the first au-
thor, Opdyke formalised refactorings for object-oriented frameworks concerned
with behaviour preservation [5]. Roberts carried on these ideas and designed
the Refactoring Browser for Smalltalk programs [6]. In another thesis, Bravo
developed a method for automatic detection of design flaws in object-oriented
software [14]. These bad smells advise refactorings between which a user can
choose. Fowler et al. captured these ideas and common refactorings in a practi-
cal guide to improve the design of object-oriented code [7].

The refactoring of an object-oriented program might result in the evolution
of the schema for persistent data. Thus, persistent data needs to co-evolve. The
problem of schema evolution was tackled for object-oriented database manage-
ment systems [15,16] as well as for object-oriented programs [17,18].

Refactoring UML Class Diagrams. Most examples in the book by Fowler et
al. are illustrated by UML class diagrams. Boger et al. extended the idea of
refactoring to UML models and developed a refactoring browser for UML di-
agrams [19]. Sunye et al. presented behaviour preserving refactorings for UML
class and interaction diagrams [20]. Then, Markovic took OCL annotations in
UML class diagrams into account [21]. He presented a set of QVT Relations
for the refactoring of OCL annotated class diagrams. All these works address
software development. Before, refactoring techniques dealt mainly with imple-
mentation code. Now, refactoring can be applied in the design of object oriented
software, too. In the tradition of code refactoring, UML diagram refactoring is
concerned with behaviour preservation.

MOF compliant metamodels are closely related to UML class diagrams. Since
metamodels describe the structure of models, behaviour-preservation properties
do not characterise metamodel refactoring accordingly. In this paper, we discuss
semantics-preservation for such structural descriptions. We define semantics-
preservation properties in terms of modelling concepts of a metamodel and its set
of possible instances. Instance-preservation properties are useful to characterise
co-evolution problems. Moreover, pure refactoring is insufficient to assist meta-
model evolution. We extend structural metamodel refactoring with construction
and destruction operators. Thereby, we rely on ideas from grammar engineering.
These are discussed next.

2.2 Grammar Engineering

Grammar Adaptation. In their efforts to establish an engineering discipline for
grammarware [22], Klint et al. suppose a transformational setting for stepwise
grammar adaptation as a central concept. In his works, Lämmel gives a formal-
isation for this approach [8]. He develops several relations between grammars to
characterise a framework of grammar transformations by its preservation proper-
ties. The framework proved to be valuable for the semi-formal recovery of a VS-
Cobol-II grammar [23,9]. Besides work on generic refactorings [24,25], Lämmel
suggests the approach to be applicable to any structure description formalism,
e.g. algebraic type declarations or UML class diagrams. In this paper, we follow
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this suggestion and adopt these ideas for metamodels. We combine these ideas
with object-oriented refactoring techniques to provide a transformation library
for stepwise metamodel adaptation.

Co-adaptation. Co-adaptation is a well-known problem in grammar engineer-
ing. In format evolution, documents need to co-evolve with evolving structure
descriptions [26]. Grammar transformation rules need to be migrated after gram-
mar extension [27]. Lämmel stated the problem of coupled transformations in a
more general context [10].

2.3 Metamodel Evolution

Metamodel evolution and coupled co-evolution of other software artefacts like
constraints, transformation rules, and models are well-known problems in model-
driven software development [2,28]. Hößler et al. propose a generic instance model
to handle evolution on all meta levels [29]. Other approaches suppose difference
models as a solution to handle co-evolution [30,31]. Metamodels are changed man-
ually. Then, the difference to the last version is calculated. This difference model
is used to derive automatic transformations for instance co-evolution.

In contrast to these approaches, we envision a transformational setting for
stepwise metamodel adaptation. Each transformation implements a typical adap-
tation step typically performed manually. We classify these transformations
according to preservation properties. Thus, the effect of each adaptation step
is made explicit. Differences between metamodels are traceable without calcu-
lation. For each transformation, we provide corresponding co-transformations.
Thereby, we provide instant co-adaptation of models. At each step these models
conform to the actual metamodel version.

3 Preservation Properties

We are interested in preservation properties of metamodel transformations. We
generalise ideas from grammar engineering [8] and define various metamodel
relations starting from equivalence. In a next step, we employ these relations to
define miscellaneous forms of semantics- and instance-preservation. Finally, we
point out the correlation between semantics- and instance-preservation.

3.1 Metamodels

Though we deal particularly with MOF 2.0 metamodels in this paper, we do not
rely on a concrete metamodel formalism in this section. Generally, the set of all
metamodels conforming to a given metamodel formalism M is denoted as:

MM := {μ |= M}

We use CM (μ) to denote the concepts defined by a metamodel μ ∈MM . For
MOF 2.0 [3], we treat qualified names of non-abstract metaclasses as those
concepts:
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Definition 1 (MOF 2.0 concepts). The set of concepts CMOF (μ) defined by
a MOF 2.0 compliant metamodel μ ∈MMOF is the result of the OCL query

Class.allInstances() ->
reject(c | c.isAbstract) ->

collect(c | c.qualifiedName)

The set of all metamodel instances conforming to a metamodel μ is denoted
as:

I(μ) := {ι |= μ}

This set might be restricted to those instances relying only on a given set of
concepts C:

IC(μ) ⊆ I(μ)

Example 3 (Instance set restriction). In Figure 1, it holds

CMOF (μ4) = {Net, Place, Transition, PTArc, TPArc}
CMOF (μ5) = CMOF (μ4) ∪ {Token}

The restriction of I(μ5) to instances only relying on concepts in CMOF (μ4) yields
all models not instantiating Token. These are exactly the instances of μ4, i.e. it
holds

ICMOF (μ4)(μ5) = I(μ4)

Note that the suggested notion can be applied to a wider range of metamodel
formalisms. For example, MG might be the set of context-free grammars with
CG(γ) yielding the nonterminals occurring in a grammar γ.

3.2 Metamodel Relations

We now define some relations between metamodels. The metamodels presented
in Figure 1 (cf. Example 1) exemplify these relations.

Definition 2 (Equivalence (≡)). μ1 ∈ M and μ2 ∈ M are equivalent (μ1 ≡
μ2) iff:

1. I(μ1) = I(μ2).

In Figure 1, it holds μ2 ≡ μ3, since the abstract generalisation does not affect
the set of instances. A less strict definition of equivalence can be obtained by
claiming a bijective mapping between instance sets instead of equality.

Definition 3 (Variation relation (≡ϕ)). μ1 ∈ M and μ2 ∈ M are variants
modulo ϕ (μ1 ≡ϕ μ2) iff:

1. ϕ : I(μ1) → I(μ2) is a bijective function.
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Fig. 4. Bidirectional transformation between model instances of μ1 and μ2

Variation is useful to characterise extraction and inlining of properties. For ex-
ample, μ1 ≡ϕ μ2 applies to Figure 1 where ϕ is presented in Figure 4 as a set of
QVT Relations. Equivalence and variation both relate metamodels with isomor-
phic sets of instances. This is often too restrictive to characterise related meta-
models. We now define some relations between metamodels with non-isomorphic
instance sets.

Definition 4 (Sub-metamodel relation (
<≡)). μ1 ∈ M is a sub-metamodel

of μ2 ∈M (μ1
<≡ μ2) iff:

1. C(μ1) ⊆ C(μ2),
2. I(μ1) = IC(μ1)(μ2).

A sub-metamodel offers only some of the concepts of its super-metamodel. The
instance set of the super-metamodel is restricted to those instances, only in-
stantiating concepts offered by the sub-metamodel. A sub-metamodel lacks only
instances of its super-metamodel because of the lack of concepts. For example,
in Figure 1, it holds μ4

<≡ μ5. A new metaclass Token is defined in μ5. Instances



608 G. Wachsmuth

of μ5 instantiating this metaclass cannot be instances of μ4. On the other hand,
all instances of μ5 not instantiating the new metaclass are instances of μ4.

A super-metamodel allows for more instances by providing more concepts. In
contrast, enrichment and extension are concerned with metamodels that provide
the same concepts.

Definition 5 (Enrichment relation (
⊂≡)). μ2 ∈ M is richer than μ1 ∈ M

(μ1
⊂≡ μ2) iff:

1. C(μ1) = C(μ2),
2. I(μ1) ⊆ I(μ2).

A metamodel is richer than another one, if it has at least the same instance set
and the same set of concepts. For MOF compliant metamodels, this is useful
to characterise generalisation and restriction of properties. In Figure 1, it holds
μ1

⊂≡ μ0. Both metamodels define the same metaclasses and all Petri net models
conforming to μ1 conform also to μ0. Because μ0 allows to model a Petri net
without any transition or place, μ0 is richer than μ1 which restricts its instances
to have at least one place and transition.

Definition 6 (Extension relation (
⊂≡ϕ)). μ2 ∈ M extends μ1 ∈ M by ϕ

(μ1
⊂≡ϕ μ2) iff:

1. C(μ1) = C(μ2),
2. ϕ : I(μ1) → I(μ2) is an injective function.

Extension does for enrichment what variation does for equivalence. The instances
of the extended metamodel are not instances of the extension (as for enrichment),
but they are mapped into the new instance set by an injection ϕ. In Figure 1,
it holds μ3

⊂≡ϕ μ4. Instances of μ3 are no longer instances of μ4 because they
do not provide the new mandatory weight for arcs. Nevertheless, those instances
can be easily mapped into the new instance set by providing a default weight.

The relations presented so far are useful to characterise metamodel adapta-
tion. To characterise co-adaptation, only the instance sets of two metamodels
have to be considered. Therefore, we define two more metamodel relations.

Definition 7 (Instance-preservation relation (
�≡)). μ2 ∈ M preserves in-

stances of μ1 ∈ M (μ1
�≡ μ2) iff:

1. I(μ1) ⊆ I(μ2).

Definition 8 (Instance-variation relation (
�≡ϕ)). μ2 ∈ M varies instances

of μ1 ∈M by ϕ (μ1
�≡ϕ μ2) iff:

1. ϕ : I(μ1) → I(μ2) is an injective function.

Again, we distinguish strict preservation and injection. The metamodel relations
discussed so far correlate with both of these new relations.
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Theorem 1 (Correlation of metamodel relations)

1. ≡ ⊂ �≡,
2.

<≡ ⊂ �≡,
3.

⊂≡ ⊂ �≡,
4. ≡ϕ ⊂

�≡ϕ,

5.
⊂≡ϕ ⊂

�≡ϕ.

These correlations result directly from the definitions given in this section. For
example, it holds I(μ1) = IC(μ1)(μ2) for μ1

<≡ μ2 accordingly to Definition 4.
This implies I(μ1) ⊆ I(μ2) since a restriction of an instance set subsets the
complete instance set (ref. Section 3.1). Thus, it follows μ1

�≡ μ2 accordingly to
Definition 7. Other correlations stated in Theorem 1 can be proven in a similar
way.

3.3 Semantics-Preservation

We can now employ the metamodel relations defined so far in this section to
define properties concerning semantics-preservation for metamodel transforma-
tions. We model a metamodel transformation as a relation between metamodels.

Definition 9 (Semantics-preservation properties). A metamodel relation
R ⊂M×M is

1. strictly semantics-preserving iff R ⊆ ≡,
2. semantics-preserving modulo variation ϕ iff R ⊆ ≡ϕ,

3. introducing iff R ⊆ <≡,

4. eliminating iff R ⊆ <≡
−1

,
5. increasing iff R ⊆ ⊂≡,

6. decreasing iff R ⊆ ⊂≡
−1

,
7. increasing modulo variation ϕ iff R ⊆ ⊂≡ϕ,

8. decreasing modulo variation ϕ iff R ⊆ ⊂≡
−1

ϕ−1 .

A metamodel transformation is strictly semantics-preserving iff it results always
in an equivalent metamodel. It is semantics-preserving modulo variation iff it
results always in a variant of the original metamodel. A transformation is intro-
ducing (respectively eliminating) iff it results always in a super-metamodel (re-
spectively sub-metamodel) of its input. It is increasing (respectively decreasing)
iff its result is always richer (respectively less rich) than its input metamodel. The
transformation is introducing modulo variation iff its result is always an exten-
sion of the original metamodel. Respectively, it is eliminating modulo variation
iff the original metamodel is always an extension of the result.

In the next section of the paper, we present a library of transformations be-
tween MOF compliant metamodels which separate these preservation properties.
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3.4 Instance-Preservation

Semantics-preservation properties characterise metamodel transformations ac-
cordingly to the offered modelling concepts and possible instances. With respect
to the need for co-adaptation, we need to characterise the preservation of existing
instances. We now define some properties concerning instance-preservation.

Definition 10 (Instance-preservation properties). A metamodel relation
R ⊂M×M is

1. strictly instance-preserving iff R ⊆ �≡,

2. partially instance-preserving iff R ⊆ �≡
−1

,
3. instance-preserving modulo variation ϕ iff R ⊆ �≡ϕ,

4. partially instance-preserving modulo variation ϕ iff R ⊆ �≡
−1

ϕ−1 ,

A transformation is strictly instance-preserving iff its result preserves always
the instances of the original metamodel. It is partially instance-preserving iff
all instances of the resulting metamodel are always preserved instances of the
input metamodel. The transformation is instance-preserving modulo variation
iff its result always varies the instances of the original metamodel. It is partially
instance-preserving modulo variation iff all instances of the resulting metamodel
are always varied instances of the input metamodel.

Due to Theorem 1, semantics-preservation properties imply a certain instance-
preservation property.

Theorem 2 (Correlation of preservation properties). A metamodel rela-
tion R ⊂M×M is

1. strictly instance-preserving if it is strictly semantics-preserving, introducing,
or increasing;

2. partially instance-preserving if it is eliminating, or decreasing;
3. instance-preserving modulo variation ϕ if it is semantics-preserving modulo

variation ϕ, or increasing modulo variation ϕ;
4. partially instance-preserving modulo variation ϕ if it is decreasing modulo

variation ϕ.

In the remainder of the paper, we will use instance-preservation properties to
identify co-adaptation scenarios. There are two cases where co-adaptation is
necessary. First, a variation ϕ hints a co-adaptation. Second, partial instance-
preservation might be extended to complete instance-preservation.

4 Transformational Adaptation of MOF Compliant
Metamodels

4.1 Overview

In this section, we present a transformation library for the stepwise
adaptation of MOF compliant metamodels. The transformations separate
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Table 1. Semantics-preservation properties of presented transformations

Adaptation Semantics-preservation Inverse
Refactoring

rename element preserving modulo variation rename element
move property preserving modulo variation move property
extract class preserving modulo variation inline class
inline class preserving modulo variation extract class
association to class preserving modulo variation class to association
class to association preserving modulo variation association to class

Construction
introduce class introducing eliminate class
introduce property increasing modulo variation eliminate property
generalise property increasing restrict property
pull property increasing modulo variation push property
extract superclass introducing flatten hierarchy

Destruction
eliminate class eliminating introduce class
eliminate property decreasing modulo variation introduce property
restrict property decreasing generalise property
push property decreasing modulo variation pull property
flatten hierarchy eliminating extract superclass

semantics-preservation properties introduced in the last section. Thereby, we
can distinguish three kinds of transformations. First, we identify transforma-
tions for semantics-preserving (by variation) refactoring. Second, introducing
and increasing transformations assist metamodel construction. Finally, elimi-
nating and decreasing transformations allow for metamodel destruction. Table 1
groups the transformations presented in this section by this classification. It also
gives semantics-preservation properties and inverse transformations.

We give the transformations as QVT Relations [4]. Thereby, we use its graph-
ical notation. In the remainder of this section, we discuss each transformation in
detail. We start with constructors and accordant destructors. Since most trans-
formations for refactoring rely on construction and destruction, they are pre-
sented subsequently.

4.2 Construction and Destruction

Introduce/Eliminate Class. Introducing a new metaclass into a package is
a common step in metamodel construction [5]. Figure 5 shows an implemen-
tation of this adaptation. As a precondition, elements in the package must be
distinguishable and the package must not own the metaclass already. After-
wards, the package owns the metaclass while elements in the package must stay
distinguishable.

In general, this adaptation is introducing. The new metaclass offers a new
concept and allows thereby for new instances. Instances of other metaclasses are
not affected. If the new metaclass is abstract, the adaptation is strictly semantics-
preserving since the set of instances persists.
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Fig. 5. QVT Relations implementing metamodel construction and destruction

The QVT Relation presented in Figure 5 can also be applied right-to-left.
This way, a metaclass is eliminated from a package. Afterwards, elements in the
package are still distinguishable and the package does not own the metaclass
anymore. As a precondition, the metaclass must not have any subclasses and it
must not be referred by other classes. This ensures the elimination is reversible by
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introducing the metaclass. Thus, the adaptation is strictly semantics-preserving
particularly for abstract metaclasses and eliminating in general.

Introduce/Eliminate Property. Introducing a new property into a metaclass
is another common metamodel construction [5]. Its implementation as shown in
Figure 5 is quite similar to the one for introducing a new metaclass. As a pre- and
postcondition, elements from the namespace defined by the metaclass must be
distinguishable. Thus, the new property is distinguishable from other properties
owned by the metaclass itself or its superclasses.

Only for the particular case of an abstract metaclass without non-abstract
subclasses, this adaptation is strictly semantics-preserving. In general, it is in-
creasing modulo variation since the concerned metaclass and its subclasses allow
for new instances. Only instances of the concerned metaclass and its subclasses
are affected. Variation is needed if the property introduced is obligatory. This
can be achieved by providing a default value for the property introduced.

Again, the relation can be applied right-to-left eliminating a property from a
metaclass. Once more, strict semantics-preservation holds only for an abstract
metaclass without non-abstract subclasses. The destruction is generally decreas-
ing modulo variation. Variation can be performed by eliminating all slots of the
property.

Generalise/Restrict Property. Property generalisation and restriction are
two adaptations we adopt from grammar adaptation [8]. A property can be
generalised or restricted in terms of its multiplicity and its type. As the imple-
mentation in Figure 5 states, types of association ends must not be generalised
since this would affect both association ends.

Generalising a property is an increasing adaptation. Without offering new con-
cepts, it allows for new instances. Old instances are not affected, so co-adaptation
is not needed. Contrarily, restricting a property is decreasing. Some of the old
instances will meet the restriction. Other instances need to be co-adapted. Re-
stricting the upper bound of the multiplicity requires a selection of certain values.
This can be achieved automatically. Restricting the lower bound requires new
values for the property usually provided manually. Restricting the type of a
property requires type conversion for each value.

Pull/Push Property. Pushing a property into subclasses respectively pulling
a property into a subclass are well known object-oriented refactorings [5,7]. An
implementation realising both of them is given in Figure 5. To push a property
into subclasses, the property is eliminated in the superclass1 and a clone of it is
introduced in each subclass.

Combining decreasing elimination and increasing introduction, this adapta-
tion is generally decreasing modulo variation. Only for abstract superclasses, it is
strictly semantics-preserving. Otherwise, instances of the superclass are affected
by elimination. Instances of subclasses are not affected. Co-adaptation can be
performed as for property elimination.
1 Here, eliminateProperty refers a right-to-left execution of introduceProperty.
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As the inverse adaptation, pulling a property into the superclass can be per-
formed by right-to-left execution. Thereby, the property is introduced into the
superclass and its clones in the subclasses are eliminated.

For non-abstract superclasses, the adaptation is increasing modulo variation.
In this general case, the superclass allows for new instances. Co-adaptation is
needed only for old instances of the superclass. As for property introduction,
this can be done by providing a default value.

Extract Superclass/Flatten Hierarchy. Superclass extraction and its coun-
terpart of hierarchy flattening are other well-known object-oriented refactor-
ings [5,7]. Figure 5 gives an implementation for superclass extraction. The trans-
formation extracts a set of properties common to a set of classes into a new
superclass. This metaclass is introduced into a specified package. Then, each
property is pulled into the new superclass. In another implementation the new
superclass might be integrated into the class hierarchy.

This adaptation would be strictly semantics-preserving for an abstract super-
class. However, to use the implementation right-to-left to flatten hierarchy we
abstain from this restriction. Thus, preservation properties can be derived from
class introduction. The adaptation is introducing since the superclass offers a
new concept. Since instances of the subclasses are not affected, no co-adaptation
is needed. On the other hand, flatten hierarchy by eliminating a superclass and
pushing all its properties into the subclasses is an eliminating adaptation. In-
stances of the subclasses are preserved.

4.3 Refactoring

Rename Element. Element renaming is a very simple and common refac-
toring [5,7]. In Figure 6, we present a QVT implementation. As a precondition,
elements in each namespace of the element to rename need to be distinguishable.
As a postcondition, this still holds after renaming.

The adaptation is semantics-preserving modulo variation. Co-adaptation is
achieved automatically by a simple mapping from the old element to the renamed
one.

Move Property. Moving a property is another simple refactoring. In contrast
to the refactoring presented by Fowler et al. [7], we follow Opdyke [5] by moving
a property along a one-to-one association as shown in Figure 6. The implemen-
tation simply eliminates the property from the source metaclass and introduces
it in the target metaclass.

This adaptation is semantics-preserving modulo variation. Instances of the
affected metaclass can be automatically co-adapted by moving property values
along the link between instances of source and target metaclasses.

Extract/Inline Class. Extraction and inlining are generic refactorings [24]. In
object-oriented refactoring, properties are extracted along generalisation or del-
egation. We already mentioned extraction along generalisation as superclass ex-
traction. Extraction along delegation is often referred to as class extraction [5,7].
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Fig. 6. QVT Relations implementing metamodel refactoring

An implementation is given in Figure 6. To extract a set of properties, a new
metaclass is introduced. Then, a one-to-one association between this container
class and the affected metaclass is established. Finally, the properties are moved
along this association into the new class. Extraction of an association between
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two classes into a new class is a similar refactoring. An implementation is also
given in Figure 6.

Both extractions are semantics-preserving modulo variation. Instances of the
affected metaclasses can be automatically co-adapted by instantiating the con-
tainer class, linking the affected instances with this new instance, and moving
property values into the container instance.

As the inverse transformations, class inlining is achieved by right-to-left ex-
ecution. Both adaptations are semantics-preserving modulo variation as well.
Co-adaptation is performed as right-to-left extraction co-adaptation.

5 Co-adaptation of Models

In the last section, we presented metamodel transformations for stepwise meta-
model adaptation. Thereby, we touched already on co-adaptation of models. We
now discuss co-adaptation of models in detail.

5.1 Transformation Patterns

Like metamodel adaptation, we exploit transformations to describe model co-
adaptation. A co-transformation depends on its triggering metamodel transfor-
mation. Therefore, we describe co-transformations by transformation patterns.
A transformation pattern is a QVT Relation with parameters for metamodel el-
ements, e.g. metaclasses or properties. A metamodel transformation instantiates
a co-transformation pattern to derive a corresponding co-transformation.

Example 4 (Transformation pattern). It its left part, Figure 7 shows a
co-transformation pattern for property introduction. It contains three param-
eters: C for the affected metaclass, P for the introduced property, and Query for
a OCL query specifying a value. These parameters are instantiated by a con-
crete property introduction. The right part of Figure 7 shows the resulting QVT
Relation for introducing a property age into a metaclass Person.

5.2 Co-construction

Introduce property and pull property are the only constructors concerned with
co-adaptation. Instances of the affected metaclass become invalid if a

Fig. 7. Co-transformation pattern for property introduction
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Fig. 8. Transformation patterns for model co-refactoring

mandatory property is introduced. Therefore, co-adaptation needs to introduce
a value for the new property into each instance of the metaclass. The according
co-transformation pattern was given in Figure 7. The corresponding metamodel
transformation can instantiate the pattern with the affected metaclass and the
introduced property. Furthermore, the user has to specify an OCL query pro-
viding a value for the introduced property.

Due to Theorem 2, all other constructors are strictly instance-preserving.
Thus, co-adaptation is needless.

5.3 Co-refactoring

All refactoring transformations are semantics-preserving modulo variation and
thereby instance-preserving modulo variation. We present co-transformation pat-
terns for each transformation in Figure 8. For rename element, we give an im-
plementation for property renaming. Implementations for the renaming of other
elements are quite similar. To preserve the instances of the metamodel, instances
of the renamed element are mapped onto instances of the the new named element.

Co-adaptation for move property preserves instances by moving values of the
property along a link that instantiates the association from the adaptation. For
extract class, an instance of the container class is created additionally. The same
co-adaptation can be used right-to-left for inline class. Co-adaptation for asso-
ciation to class and its inverse is similar to this.

5.4 Co-destruction

Eliminate class and flatten hierarchy are partially instance-preserving destruc-
tors. Thus, some metamodel instances are preserved. These are all those meta-
model instances that do not contain instances of the eliminated class.
Co-adaptation for the remaining metamodel instances is achieved by removing
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instances of the class from these models. We deal with eliminate property and
push property in a similar way. Both destructors are partially instance-preserving
by variation. To co-adapt metamodel instances, slots of the eliminated property
are removed from objects occurring in a model.

Automatic co-adaptation for the instance-preserving destructor restrict prop-
erty is somewhat more difficult. If the upper bound of the property is restricted,
metamodel instances containing objects that exceed this bound need to be co-
adapted. This can be done automatically by removing elements until the upper
bound is met. The user might assist this by an OCL query specifying preserved
elements. For lower bound restrictions, new values are needed to co-adapt models
containing objects that fall short of this bound. As for introduce property, new
values are specified by an OCL query given by the user. Considering type re-
striction, things get even more complicated. A pragmatic approach is to remove
all mistyped elements from objects in a co-adapted model. This might introduce
lower bound shortfalls. New values might overcome this problem. Again, these
values are specified by the user in terms of an OCL query. This query can take
the mistyped elements into account. Thus, these elements might be casted to
the restricted type in a user defined way. In a somehow simplier approach, co-
adaptation is completely deferred to the user. In this case, the user specifies in
an OCL query new elements for affected slots in terms of old elements.

6 Applications

6.1 Metamodel Design

The transformational approach facilitates a well-defined stepwise metamodel de-
sign. Starting from basic features, new features are introduced by construction.
Exhaustive usage of this principle leads to an agile process. Refactoring en-
ables generalisation of metamodel features. This way, common concepts become
explicit. Construction allows to reuse these concepts by specialisation. General-
isation and specialisation permit a pattern-based metamodel design [32]. Fur-
thermore, scripts of consecutive adaptation steps document design decisions. By
changing particular steps, metamodel designers can alternate designs.

6.2 Metamodel Implementation

Metamodel-dependent model processors, e.g. editors, compilers, simulators, de-
buggers, code generators, documentation generators, or pretty-printers, should
be generated semi-automatically. This ensures conformance between tools and
metamodels. Metamodel erosion is avoided [2]. Grammar-based tool generators
are well known for specification languages relying on restricted grammar for-
malisms, e.g. by prohibiting left recursion. To use such generators, language
engineers need to develop compliant versions of their grammars. The same
phenomenon is observable for metamodel-based tool generators and metamod-
elling tools in general. The MOF specification [3] itself provides two different
metametamodels, i.e. Essential MOF (EMOF) as a minimal specification and
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Complete MOF (CMOF) as an extension to the former one. Several metamod-
elling tools rely on their own metametamodels, e.g. the Eclipse Modeling Frame-
work on Ecore [33], Kermeta on the Kermeta language [34], and the ATLAS
Transformation Language on KM3 [35]. To use these tools, metamodels need to
comply to these metametamodels. Refactoring ensures equivalence to original
versions. According to the tool, one can switch between metamodel variations.
Co-adaptation ensures preservation of models.

6.3 Metamodel Refinement

In [36], Staikopoulos and Bordbar propose a method called One Step Refine-
ment for bridging technical spaces or domains. The authors suggest a successive
refinement of the target metamodel to meet a richer source metamodel. In each
step, the target model is extended by a new concept which is constructed out
of old concepts. The process is repeated until an extension is created, such that
all concepts of the source metamodel can be easily mapped into concepts of the
extended target metamodel. As a side effect, an overall transformation from the
source metamodel to the original target metamodel is derived.

The transformational setting presented in this paper assist this approach. The
target metamodel is extended by introducing new concepts while the overall
transformation can be derived from co-transformations.

6.4 Metamodel Maintenance

Like other software, metamodels are subject to maintenance. This includes rem-
edying defects, reengineering to improve design, and meeting changes in require-
ments. Metamodel maintenance also benefits from a transformational setting.
Erroneous features can be corrected by construction and destruction. Due to
the local character of transformations, other features stay unchanged. Refactor-
ing provides for reengineering a metamodel design without introducing defects.
Scripts of adaptation steps can be adapted and reused in a similar context. Gen-
eralisation of those scripts leads to definitions for new transformations. This
can be used to implement common redesigns, e.g. subsequent introduction of
patterns [32]. Construction and destruction assist adjustment to changing re-
quirements.

6.5 Metamodel Recovery

Often, language knowledge resides only in language-dependent tools or semi-
formal language references. Language recovery is concerned with the derivation
of a formal language specification from such sources. This comprises both, gram-
mar recovery [23] and metamodel recovery [2]. For grammar recovery, a trans-
formational approach already proved to be valuable [8]. In a similar way, the
presented transformational setting assists metamodel recovery.
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7 Conclusion

Contribution. In this paper, we combined ideas from object-oriented refactor-
ing and grammar adaptation to provide a basis for automatic metamodel evo-
lution. We defined several relations between metamodels to characterise meta-
model evolution. These were employed to deduce properties for semantics- and
instance-preservation of metamodel transformations. We do not restrict meta-
model relations and preservation properties to object-oriented, e.g. MOF com-
pliant, metamodels. The notions presented are useful for other structural de-
scriptions, e.g. grammars, as well. Furthermore, we presented a set of QVT
Relations to assist automatic metamodel evolution by stepwise adaptation. The
transformations were classified in three groups accordingly to their preservation
properties, namely refactoring, construction, and destruction. Implementation
and preservation properties were discussed for each transformation. The prob-
lem of co-evolution was stated. It was shown how automatic co-adaptation can
solve this problem for metamodel instances.

To prove the relevance of our work, we proposed applications in metamodel
design, metamodel implementation, metamodel refinement, and metamodel re-
covery.

Future Work. From a theoretical point of view, we will focus our ongoing re-
search on the evolution and co-evolution of constraints and transformation rules.
Another interesting topic will be the question when a metamodel needs to be
adapted. In our practical work, we concentrate on two prototypical implemen-
tations. Furthermore, we employ our transformational approach for metamodel-
based development of domain-specific languages. In a practical setting, we need
to deal with several versions of metamodels and models. This is another inter-
esting research topic. We will now discuss each of the topics mentioned more in
detail.

Evolution of Constraints and Transformations. In this paper, we were con-
cerned with co-adaptation of models. Constraints and transformation rules also
co-evolve triggered by metamodel evolution. Furthermore, constraints and trans-
formation rules evolve on their own. Constraints might be adapted to be more
or less restrictive. Transformation patterns might be adapted to match more or
less instances. Again, a library supporting automatic stepwise adaptation while
guaranteeing certain preservation properties will be valuable. For metamodel
adaptation, it would be interesting to express co-adaptation in terms of this
library.

The Smell of Structure. As stated in the subtitle of the book by Fowler et al. [7],
one of the main goals in object-oriented refactoring is to improve the design of
existing code. Often, a refactoring is indicated by a bad smell [14], e.g. duplicate
code, long methods, or message chains. These smells are almost all code-centric.
For metamodel evolution, we are concerned with the question if structure can
indicate an adaptation. How does structure smell? Works on object-oriented
metrics [37,38,39] might be a good starting point for further research.
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Tool Support. Our first attempts to provide a prototypical implementation rely-
ing on ModelMorf [40] failed due to missing support for in-place transformations.
We are now working with an implementation of QVT’s relational part provided
by ikv [41], an industrial partner of our research group. The implementation was
applied in a project between ikv and the biggest consumer electronic vendor in
Korea in the area of embedded systems for in-place model to model transforma-
tions. The implementation was ported by ikv to the Eclipse Modeling Framework
(EMF) [33]. This enables us to make metamodel adaptation available for EMF.

Furthermore, we started a prototypical implementation providing metamodel
adaptation for CMOF. This tool is implemented as an Eclipse plugin in Java.
It is built upon a Java implementation of CMOF [42] and the Eclipse Language
Toolkit.

For both tools, we envision four editing modes for metamodels: First, a free
mode allows for arbitrary manual changes. Second, an adaptation mode allows
only for transformational adaptation. Third, a construction mode restricts the
user to construction and refactoring. Finally, a refactoring mode is even more
restrictive and allows only for refactoring.

DSL Development. We started to employ an adaptive development process for
domain-specific languages based on metamodels. In our work, we are concerned
with languages from the domain of disaster management [43]. We are working
on two case studies. The first study is concerned with the development of a
new language. Metamodel adaptation is used to develop alternative designs, to
meet requirement changes, and to maintain the language. The second study
is concerned with language recovery. Metamodel adaptation is used to capture
implicit language knowledge explicitly in a metamodel.

Versioning. In a practical setting, one has to deal with several metamodel ver-
sions. For each metamodel version different model versions need to be taken into
account. Co-adaptation might affect all these model versions. On the other hand,
only few versions of a model might indicate a metamodel adaptation leading to
a new metamodel version. Finally, co-adaptation might join different model ver-
sions. Thus, further research is needed to integrate metamodel adaptation with
versioning approaches [44].
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