
Tailoring Solver-Independent Constraint Models:
A Case Study with Essence

′ and Minion

Ian P. Gent, Ian Miguel, and Andrea Rendl

School of Computer Science, University of St Andrews, UK
{ipg, ianm, andrea}@cs.st-andrews.ac.uk

Abstract. In order to apply constraint programming to a particular
domain, the problem must first be modelled as a constraint satisfaction
problem. There are typically many alternative models of a given problem,
and formulating an effective model requires a great deal of expertise. To
reduce this bottleneck, the Essence language allows the specification
of a problem abstractly, i.e. without making modelling decisions. This
specification is refined automatically by the Conjure system to a solver-
independent constraint modelling language Essence

′. However, there is
still significant work involved in translating an Essence

′ model for use
with a particular constraint solver. This paper discusses this ‘tailoring’
process with reference to the constraint solver Minion.

1 Introduction

Constraint programming is a successful technology for tackling a wide variety
of combinatorial problems. To use constraint technology to solve a problem,
the problem must first be described in terms of a constraint model suitable for
input to a constraint solver, which then searches for solutions automatically. The
process of formulating an effective constraint model (i.e. for which the intended
constraint solver is able to find solutions efficiently) is notoriously difficult and
is one of the major bottlenecks preventing the wider use of constraint solving.

Hence, automating constraint modelling is highly desirable. In one approach
the user provides an abstract problem specification in which detailed modelling
decisions have not yet been taken. This specification is then refined automati-
cally into a constraint model. The Essence abstract constraint specification lan-
guage [2] and Conjure automated refinement system [4] embody this approach.
The constraint models produced by Conjure are in the language Essence

′,
which has a level of abstraction supported by existing constraint solvers.

Essence
′ is, however, a solver-independent constraint language; Essence

′

models must undergo a further translation step to produce input suitable for any
particular constraint solver. The difficulty of this task depends on the facilities
offered by the intended solver. Moreover, as shown by Prosser and Selenksy [10],
individual constraint solvers have differing strengths and weaknesses. Therefore,
an Essence

′ model must be tailored to an individual solver to maximise effi-
ciency. This paper considers the tailoring process, with particular reference to
the constraint solver Minion [6]. This is a particular challenge, since Minion

has been deliberately pared down to increase solving efficiency.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 184–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tailoring Solver-Independent Constraint Models 185

2 Background

We begin by providing the necessary background in constraint modelling and
solving before describing the Essence

′ language and Minion constraint solver.

2.1 Constraint Satisfaction Problems and the Modelling Bottleneck

The finite-domain constraint satisfaction problem (CSP) consists of: a finite set
of decision variables, X ; for each variable x ∈ X , a finite set D(x) of values
(its domain); and a finite set C of constraints on the variables, where each con-
straint c ∈ C is defined over a subset of {xi, . . . , xj} of X (its scope, denoted
scope(c)) by a subset of the Cartesian product D(xi) × · · · × D(xj) giving the
set of allowed combinations of values. A constraint can be specified extension-
ally, by listing these tuples, or intensionally as an expression with an associated
propagation algorithm that is executed by the constraint solver to determine
satisfaction/violation. A solution to a CSP assigns values to all variables such
that all constraints are satisfied.

A constraint model maps the features of a combinatorial problem onto the
features of a CSP. The CSP is input to a constraint solver, which searches for a
solution (or solutions). The constraint model is then used to map the solution(s)
back onto the original problem. Constraint languages and solvers commonly
provide a rich library of constraints from which to choose. Typically, therefore,
many models are possible for a given problem. This choice is both complex and
important: it can mean the difference between the problem being solved quickly
and not being solvable in a practical amount of time. Hence, constraint modelling
is difficult and requires a great deal of expertise.

The constraint specification language Essence [2] addresses this modelling
bottleneck. It enables the specification of a combinatorial problem abstractly,
without making constraint modelling decisions. This is achieved by supporting
decision variables whose domain elements are the combinatorial objects (e.g.
functions, relations) that a combinatorial problem commonly requires us to find,
but which are not directly supported by existing constraint solvers.

To illustrate, consider Langford’s problem (CSPlib problem 24), which is to
arrange n sets of positive integers 1..k into a sequence such that, following the
first occurrence of an integer i, each subsequent occurrence of i appears i + 1
indices later than the last. For example, if k is 4 and n is 2, then a solution
is 41312432. The problem may be viewed as requiring us to find a bijection
from the values to their positions in the sequence. This can be stated directly in
Essence, as Figure 1 shows. For simplicity, we set n = 2, hence the sequence

given k : int(1 ...)
find positions : int(1..2 ∗ k) → (bijective) int(1..2 ∗ k)
such that forall i : int(1..k) . positions(i + k) − positions(i) = i + 1

Fig. 1. An Essence specification of a simplified version of Langford’s problem

186 I.P. Gent, I. Miguel, and A. Rendl

has length 2k. We use 2k values to represent the elements of the sequence. The
first occurrence of integer i is represented by i itself, and the second occurrence
by i+k. The key feature of this specification is that it contains just one decision
variable, positions, whose domain is the set of possible bijections from 1..2k onto
1..2k. The single constraint ensures that the pairs of elements are the requisite
number of indices apart. The bijection in this specification can be modelled in a
variety of ways [9], but Essence does not force the user to make this decision.

2.2 The Essence
′ Solver-Independent Modelling Language

Given an Essence specification, constraint modelling consists in encoding the
abstract decision variables and the constraints on them as constrained collections
of CSP variables. The Conjure [4] automated refinement system performs this
step automatically, producing a constraint model in a subset of Essence called
Essence

′. Essence
′ is a solver-independent constraint modelling language with

a level of abstraction that is supported by existing constraint solvers. Essence
′ is

intended to be very nearly an object-level language. However, as we demonstrate
in this paper, there remain issues in translating to a specific language that must
be resolved carefully to avoid affecting performance adversely.

Decision variables are specified individually or as elements of multi-dimensional
matrices. Their domains may contain integers or Booleans only, in contrast with
the abstract decision variables offered by Essence. The available constraint li-
brary includes basic building blocks, such as the ability to specify constraints
extensionally, and arithmetic and logical operators, which can be nested to form
arbitrarily complex constraint expressions. It also includes commonly-used in-
tensional constraints such as the all-different constraint [11], which constrains
a matrix of variables to take distinct values, and the lexicographic ordering
constraint [3], which can be used to deal with symmetry in constraint models.
Existential and Universal quantifiers are also supported and may be nested.

To illustrate, Figure 2 shows an Essence
′ model of the simplified Langford’s

problem specified in Figure 1. The refinement here is simple: the function is mod-
elled using a matrix of decision variables indexed by the values in the sequence.
The domain of each decision variable is the set of possible positions. Note the
use of the all-different constraint to ensure that the bijective property holds.

1 given k : int(1..)
2 find positions : matrix indexed by [int(1..2*k)] of int(1..2*k)
3 such that
4 forall i : int(1..k) .
5 positions[i+k] = positions[i] + i+1,
6 allDifferent(positions)

Fig. 2. Essence
′ model of a simplified version of Langford’s problem

Tailoring Solver-Independent Constraint Models 187

2.3 The Minion Constraint Solver

The Minion [6] constraint solver is designed to promote solving efficiency. Con-
sequently, its input language is relatively restricted, but it does offer the option
to tune various low-level features that are not commonly accessible.

Like Essence
′, Minion supports decision variables with integer domains,

which can be collected in multi-dimensional matrices. It also provides fine con-
trol over domain representation. Minion supports four individually-optimised
integer domain types: 0/1 domains, commonly used for logical expressions and
counting; bounds domains, which maintain only the lower and upper bound of
the domain; sparse domains, where domain values need not be adjacent, e.g.
{2, 7, 11}; and discrete domains, which are defined initially by lower and upper
bounds but which support the removal of values from between the bounds.

Table 1. Minion constraints: x and r refer to decision variables, v to a decision vari-
able vector, and c refers to a constant. Lists of decision variables [x1,..,xn] may be
replaced by vectors and rows or columns of matrices.

Minion Constraints Meaning
sumleq([x1,x2,...,xn], r) x1 + x2 + ... + xn ≤ r
sumgeq([x1,x2,...,xn], r) x1 + x2 + ... + xn ≥ r
weightedsumleq([x1,...,xn],[c1,...,cn], r) x1 ∗ c1 + ... + xn ∗ cn ≤ r
weightedsumgeq([x1,...,xn],[c1,...,cn], r) x1 ∗ c1 + ... + xn ∗ cn ≥ r
product(x1, x2, r) x1 ∗ x2 = r
eq(x1,x2) x1 = x2
diseq(x1,x2) x1 �= x2
ineq(x1,x2,c) x1 ≤ x2 + c
max([x1,...,xn],r) max(x1, ..., xn) = r
min([x1,...,xn],r) min(x1, ..., xn) = r
element(v,i,r) v[i] = r
alldiff(x1,...,xn) x1 �= x2 �= . . . �= xn

reify(constraint,r) if(constraint) then r = 1 else r = 0
table(matrix, tuple) an extensional constraint

1 0
2 8
3 1 8 8
4 0
5 0

...
6 1
7 [x0,x1,x2,x3,x4, x5, x6, x7],

...

...
8 sumgeq([x0, 2], x4)
9 sumleq([x0, 2], x4)
10 sumgeq([x1, 3], x5)
11 sumleq([x1, 3], x5)
12 sumgeq([x2, 4], x6)
13 sumleq([x2, 4], x6)
14 sumleq([x3, 5], x7)
15 sumleq([x3, 5], x7)
16 alldiff(v0)

Fig. 3. Partial Minion instance of the simplified Langford’s problem (k = 4)

Minion offers a broadly similar set of constraints (summarised in Table 1)
compared with Essence

′, but again provides controls as to how they are imple-
mented, as will be explained below. A key difference is that Minion supports
neither quantification nor nested constraint expressions. It also allows the state-
ment of individual instances only, rather than parameterised problem classes.

188 I.P. Gent, I. Miguel, and A. Rendl

To illustrate, Figure 3 presents part of the Minion input file for the instance of
Langford’s problem when k = 4. The Minion manual [8] contains full details of
the input format. Briefly, in a model with n variables, each variable is identified
by ‘xi’, for i in 0..(n − 1). Minion insists that variables of each type described
above are declared in turn. In the example there are 8 bounds variables with
lower bound 1 and upper bound 8 (lines 2-3). These variables are collected in
the vector v0 (lines 6-7). The single universally-quantified constraint from the
Essence

′ model is expanded into a set of individual sum constraints (lines 8-15).
Note that Minion requires that each equality constraint is decomposed into a
pair of sum constraints. The all-different constraint is added directly (line 16).

3 Tailoring Essence
′ to Minion: Overview

Since Minion expects individual instances, the input to the tailoring process is
a pair: an Essence

′ model, and a set of values for the parameters of the model
sufficient to determine a particular instance. The first (straightforward) step in
the tailoring process is therefore to parse the Essence

′ model and, for each
parameter, substitute its given value for each of its occurrences in the model.
Following substitution, a simplification step is performed to evaluate expressions
now composed entirely of constants. These pre-processing steps are independent
of the target solver.

In translating Essence
′ to Minion, we make use of a MinionModel structure,

a four-tuple 〈V, A, C, M〉 where: V is the set of Minion decision variables; A is
the set of Minion matrices, whose elements are drawn from V ; C is the set of
Minion constraints; and M is a bijection between the elements of V and the
original Essence

′ variables. The function M is important both for mapping
solutions produced by Minion back onto the Essence

′ model and to avoid the
repeated introduction of Minion variables for a single Essence

′ variable that
occurs in several constraints.

We define a translation function τ as follows:

τ : 〈μ, e〉 → μ′

where μ is an instance of a MinionModel and e is an Essence
′ expression. This

pair is mapped to a new MinionModel instance μ′. The effect of applying τ is to
increase monotonically the four elements of the MinionModel. Beginning with
an empty MinionModel, tailoring of an Essence

′ model proceeds through the
constraint-wise application of τ , incrementally constructing the final model.

Since Essence
′ is the richer language, typically each Essence

′ constraint
corresponds to a set of Minion constraints. Variables are introduced into the
MinionModel both to correspond to the variables in the original Essence

′ model
(in which case the correspondence is recorded in the mapping M) and to support
the decomposition of an Essence

′ expression. Decomposition is necessary to
deal both with nested expressions and with the quantifiers and constraints not
directly supported by Minion, as is described in the following sections.

Tailoring Solver-Independent Constraint Models 189

4 Arithmetic Constraints

We begin by discussing the translation of arithmetic expressions. As noted, Min-

ion provides the small set of constraints given in Table 1. Essence
′ constraints

of exactly this form require no translation. For the remainder, simple reformu-
lation steps are performed. Note, for example, that Minion does not provide a
division operator. Hence, division in Essence

′ is translated by rewriting division
to multiplication. In general an Essence

′ arithmetic expression is translated via
combinations of the primitive constraints in Table 1, sometimes connected by in-
troducing auxiliary variables. A very simple example can be seen in the Minion

instance of Langford’s problem (Figure 3): to constrain a sum of variables and
constants to be equal to a variable or a constant, a pair of sumgeq and sumleq
constraints is used (e.g. lines 8-9). Equality of weighted sums is treated similarly.

Commonly, Essence
′ arithmetic constraints are translated by flattening

nested expressions. That is, an Essence
′ expression is decomposed into sub-

expressions for which Minion provides a corresponding constraint. All Minion

constraints used for this purpose are expressed in terms of equality or inequal-
ity relations, as per the examples in Table 1. Hence, an auxiliary variable is
constrained to be equal to each sub-expression. Constraints among the auxiliary
variables are added as necessary to create a set of Minion constraints equivalent
(i.e. collectively allowing the same set of assignments) to the original Essence

′

constraint.
To illustrate, consider an Essence

′ constraint that constrains the sum of n
variables to be not equal to some variable r. Minion provides a binary disequality
constraint, but no direct way to express a disequality on a sum. Hence, it is
natural to introduce an auxiliary variable constrained, in the same way as above,
to be equal to the sum of the n variables and to be not equal to r:

Essence
′

Minion

sumleq([x1,x2,...,xn], a)
x1 + . . . + xn �= r sumgeq([x1,x2,...,xn], a)

diseq(a, r)

Equality and disequality of weighted sums are treated similarly.
When an auxiliary variable is introduced it must be given an appropriate

domain. In doing so, we can exploit our knowledge of the Minion solver. Propa-
gation of each of the constraints in Table 1 affects only the bounds of the variable
r. Hence, it is sufficient to use an efficient bounds domain (see Section 2.3) for
each auxiliary variable introduced in translating an arithmetic expression. The
lower and upper bound of the domain of an auxiliary variable is determined
by examining the lower and upper bounds of the expression to which it is con-
strained to be equal. Hence, in the current example the domain of a ranges from
the sum of the lower bounds of x1, ..., xn to the sum of their upper bounds.

Our general method of translating nested Essence
′ expressions proceeds from

the parse tree as follows:

190 I.P. Gent, I. Miguel, and A. Rendl

1. Consider the nested Essence
′ expression a tree with variables and constants

as leaves, operators as nodes and the tree branched according to the operator
precedences where the operator with lowest precedence is root.

2. Take an operator node op with highest depth that connects leaves l1..ln.
Generate the corresponding Minion constraint(s) for op(l1, .., ln) = v where
v is a auxiliary variable. Add the generated constraints to C and v to V .

3. If the tree contains at least another leaf, replace node op by leaf v and go to
2., otherwise stop.

To minimise the generated overhead of variables and constraints during flat-
tening, we can apply simple and effective rules: directly match Minion primitives
to the expression tree structure, such as (weighted) sums or products. With a
subtree matching an iterated sum structure with n leaves, this strategy reduces
the number of auxiliary variables from n − 1 (or n for the whole tree) to 1.

5 Logical Constraints

Boolean Essence
′ expressions are translated using 0/1 variables and arithmetic

constraints. Table 2 summarises how the common logical connectives are trans-
lated for Minion. As in the arithmetic case, flattening is required for nested
logical expressions. This operates in broadly the same way as for arithmetic,
but differs in that it requires reification. Reification can be viewed as a ‘meta’
constraint in that it equates the satisfaction of some constraint c with a Boolean
variable. Minion provides reification using 0/1 variables and the constraint:
reify(c, x1), meaning x1 is assigned 1 if and only if c is satisfied.

To illustrate, consider the Essence
′ expression (x1 = x2) ⇒ (x3 = 0). Min-

ion does not provide a constraint of this form, so flattening is required. To do
so, we decompose the implication into left- and right-hand sides and reify them
into two auxiliary 0/1 variables: reify(eq(x1, x2), a1), reify(eq(x3, 0),
a2). The implication can now be stated using an inequality: ineq(a1, a2, 0).

Not all constraints in Minion can be reified, hence care must be taken to
employ only reifiable constraints for a subexpression if it will be reified. In order

Table 2. Basic logical connectives and their equivalents using Minion 0/1 variables.
‘n’ is a unary operator on a Minion 0/1 variable x that returns 1−x. Clearly, the
sum constraint is only necessary to express conjunction arising in some nested sub-
expression. Otherwise e1 and e2 can simply be imposed separately, since a solution
requires all constraints to be satisfied. ‘ineq(x1, x2, c)’ is interpreted x1 ≤ x2 + c. If
the ei are nested expressions, flattening is required.

Logical Expression Minion Constraint
¬e nx
e1 ∧ e2 sumgeq([x1, x2], 2)
e1 ∨ e2 sumgeq([x1, x2], 1)
e1 => e2 ineq(x1, x2, 0)
e1 <=> e2 eq(x1, x2)

Tailoring Solver-Independent Constraint Models 191

to determine if a subexpression will be reified or not, we need to have informa-
tion about its context. This is why we introduce a reification flag, that indicates
when true that the currently translated expression will to be reified. The reifi-
cation flag is initially false, retains its state as we traverse certain constraints
(e.g. a conjunction) but becomes true when we traverse other constraints (e.g. a
disjunction).

An interesting case of reformulation occurs with negation: Essence
′ supports

negation of logical expressions while Minion only allows the negation of single
variables (see Table 2). This is why negation is applied to expressions before
translation. Negated relational expressions are reformulated by applying the cor-
responding complementary operator, for example ¬(x = y) is reformulated to
x �= y. Negated Boolean expressions are reformulated by applying Boolean ax-
ioms: ¬(x∧y) results in ¬x∨¬y. In the last case the negation operator is passed
down a level in the expression tree, eventually being applied to a variable or
relational expression. Hence, the reformulation process halts, even though the
worst case may take exponential time in the depth of the expression tree.

Generally, flattening of logical expressions proceeds directly from the parse
tree, as described in Section 4, but making use of reification rather than arith-
metic constraints for decomposition. However, care must be taken in the pres-
ence of universal and/or existential quantification. Quantified expressions in
Essence

′ have the form q i1, . . . , in ∈ D. e(i1, . . . , in) where q ∈ {∀, ∃} is a
quantifier, i1, . . . in are binding variables that range over the finite integer do-
main D and e(i1, . . . , in) is an arbitrary relational expression involving i1..in.
Translation of quantified expressions is further complicated by the fact that
nesting is allowed, i.e. e may also contain quantified expressions. In what fol-
lows, we describe a general, effective approach to translating arbitrarily-nested
quantified Essence

′ expressions into Minion.

5.1 Singly-Quantified Expressions

We first define a basic approach for translating quantified expressions. Univer-
sal quantification can be treated as a conjunction, existential quantification as
a disjunction of expressions. Consider the example ∀i∈[1..5].(m[i] �= i). It corre-
sponds to the conjunction (m[1] �= 1) ∧ .. ∧ (m[5] �= 5), and can be translated
to 5 separate constraints. Now consider ∃i∈[1..5].(m[i] �= i) that corresponds to a
disjunction (m[1] �= 1)∨ ..∨ (m[5] �= 5). In this case we need to apply reification.
Imposing reify(diseq(m[1],1), x1) gives us a reified variable x1 that is set
to 1 if diseq(m[1],1) holds and 0 if not. So the disjunction is satisfied, if at
least one reified variable equals to 1. We can enforce that by imposing another
constraint, stating that the maximum of all reified variables has to equal 1:
sumgeq([x1,x2,x3,x4,x5],1). Conjunction can be translated by insisting that
the sum of the k reified variables equals k. Thus the translation of disjunction
introduces n auxiliary variables and n + 1 reification constraints with n =| D |
where D is the domain of binding variable i. Hence, in the general case with
m binding variables over domain D, we get nm additional variables, nm + 1
reification constraints, and nm expressions to translate.

192 I.P. Gent, I. Miguel, and A. Rendl

Table 3. Translation of quantifications; m : e → c returns the Minion constraint
corresponding to Essence

′ expression e and k = |D|n

Essence
′ expression Minion constraints Auxiliary variables

∃i1..in ∈ D.(e) { reify(m(e(i1, ..in)), xi) | i1..in ∈ D } x1..xk
sumgeq([x1, ..xk], 1)

∀i1..in ∈ D.(e) { m(e(i1, ..in)) | i1..in ∈ D } none
reify = false

∀i1..in ∈ D.(e) { reify(m(e(i1, ..in)), xi) | i1..in ∈ D } x1..xk
reify = true sumgeq([x1, ..xk], k)

sumleq([x1, ..xk], k)

5.2 Nested Quantification

While existential quantification, as a form of disjunction, can only be translated
using reification, universal quantification is a form of conjunction and some-
times can be translated without reification. We saw above that the expression
∀i∈[1..5].(m[i] �= i) can be translated without reification. Generally, a translation
without reification is to be preferred as being simpler and allowing propagation
more easily. Unfortunately, reification is sometimes necessary where universally
quantified constraints are nested. For example, if x is some constrained variable,
the expression x = 1 ⇒ ∀i∈[1..5].(m[i] �= i) will require the universal constraint
to be reified to a variable r and then the constraint x = 1 ⇒ r = 1 posted. This
shows another application of the reification flag.

Generally, we translate quantifiers by inserting values for their binding vari-
ables and translate the resulting expressions according to the imposed quanti-
fiers. We apply values for binding variables recursively, starting with the outmost
quantifier, and then stepwise increase the values, beginning with the first vari-
able of the innermost quantifier. If a variable has reached its upper bound, it
is reset to its lower bound and the next variable’s value is increased. When the
last binding variable of the outmost quantifier has reached its upper bound, we
stop. During this value-insertion process we build the resulting constraints from
the inside out: Depending on the quantifier and the reification flag, we generate
a set of constraints. Consider the quantification ∃i∈[0..5]∀j∈[1..3].m[j] �= i, that
corresponds to a disjunction of conjunctions of m[j] �= i, as shown below.

∃i∈[0..5]∀j∈[1..3].(m[j] �= i) =∨
m[1] �= 0 ∧ m[2] �= 0 ∧ m[3] �= 0∨
m[1] �= 1 ∧ m[2] �= 1 ∧ m[3] �= 1∨
...∨
m[1] �= 5 ∧ m[2] �= 5 ∧ m[3] �= 5

The conjoined expressions m[j] �= i are in a disjunctive context because of the
outermost existential, so we set the reification flag to be true. First we insert
lower bounds of variables i, j and then increase j’s value until we reach its upper
bound, getting the set of expressions m[1] �= 0, m[2] �= 0, m[3] �= 0. We impose the

Tailoring Solver-Independent Constraint Models 193

innermost quantifier, ∀, giving us a conjunction to translate: m[1] �= 0 ∧ m[2] �=
0∧m[3] �= 0. With the reification flag being true, we have to reify the expressions
and get 3 reification constraints reify(m[1] �= 0,x1) ... reify(m[3] �= 0,x3)
and a sum constraint sumgeq([x1,x2,x3], 3), introducing 3 auxiliary vari-
ables x1, x2, x3. Since i can take 6 different values, we have 6 conjunctions
to translate, resulting to 18 reification constraints and 6 sum constraints. We
now impose the ∃ quantifier on our set of conjunctions. Each conjunction is rep-
resented by a sum constraint that we reify: reify(sumgeq([x1,x2,x3], 3),
x00), .. reify(sumgeq([x16,x17,x18], 3), x05) and express disjunction
by the sum sumgeq([x00,x01,x02,x03,x04,x05],1) over the auxiliary vari-
ables x00 .. x05, according to Table 3.

5.3 Treating Special Cases

These rules are all applied in the basic implementation. They allow us to trans-
late expression “on the fly”, since it can be immediately determined which rule
to apply and the translation does not depend on future events (the translation is
causal). Consequently, we only employ a small amount of memory during trans-
lation. However, there are cases where we translate quantified expressions that
are later shown to be redundant. Consider the example ∃i∈[1..n].e ∨ i = n where
e is an arbitrary expression. Since n is in the range of i, the expression will eval-
uate to true. The existential quantification, corresponding to disjunction, also
becomes true. Please note, that this case may only be spotted at instance level,
since the domain of a binding variable may depend on a parameter value. To
detect cases where quantified expressions are always satisfied or violated requires
significant effort. We will investigate this procedure in future, but are aware that
the overhead might outweigh the benefit gained.

6 Global Constraints

Global Constraints [13] represent general problem patterns, e.g. that every el-
ement of a datastructure has a distinct value is captured by the global con-
straint alldifferent [11]. Constraint solvers usually provide efficient propagators
for global constraints. Essence

′ provides a range of global constraints which
can be directly mapped to the corresponding Minion global constraint, or an
equivalent set of constraints added if no exact equivalent is available.

Minion provides different versions of some constraints, giving us choices we
have to make. In most cases the differences arise from the type of propagation,
through the use ‘watched literals’, a recently-introduced method for writing con-
straint propagators [7]. Examples are sum and element. Watched literal-based
constraints can reduce the search time drastically [7]. However, classical prop-
agators can still be more effective in some cases. We generally choose watched
literal-based constraints, but give the user the possibility to force unwatched
constraints to be applied by setting a flag. The current version of Minion does
not support reification of watched literal-based constraints, so unwatched con-
straints are always chosen in a context where the reification flag is true.

194 I.P. Gent, I. Miguel, and A. Rendl

Minion provides matrix indexing by decision variables using the element
constraint, element(matrix,index,elem), stating that the element at position
index of (one- or multidimensional) matrix matrix equals to (the assignment of)
elem [12]. We use this to translate matrix indexing in Essence

′. For example,
the simple expression m[1, x] = n can be expressed by element(row(m,1),x,n).
If dynamically indexed matrices occur in nested expressions, we need to intro-
duce an auxiliary variable to represent the indexed matrix element. Furthermore,
we are able to nest dynamic indexing and express a k − 1 times nested index-
ing with k element constraints. For instance, m[1, v[x]] = n, which is nested
once, can be reformulated to 2 element constraints, element(row(m,1), tmp,
n) and element(v, x, tmp) by introducing the auxiliary variable tmp.

Matrices that are entirely indexed by decision variables need to be flattened.
We illustrate this case by considering the Mutually Orthogonal Latin Squares
(MOLS) problem [15]: a latin square is an m×m matrix of elements 1..m where
each row and column has distinct elements. Two latin squares A and B are
mutually orthogonal, if each pair of elements (A(i, j), B(i, j)) occurs exactly
once, as illustrated in the example below. We model this problem by introducing
two auxiliary matrices X and Y , holding the row and column indices of A and
B’s elements such that A[X [i, j], Y [i, j]] = i and B[X [i, j], Y [i, j]] = j. If such
matrices X, Y exist, then A and B are mutually orthogonal.

element is restricted to one index parameter, hence translating an expression
A[x, y] = c requires flattening matrix A to a vector A′ where A[i, j] = A′[i ∗ r + j]
and r corresponds to the amount of rows in matrix A. Hence we obtain the element
constraint element(A’,i,c) with an adjusted index i = x∗r+y. Indexing matri-
ces with decision variables without the need to flatten them by hand is essential,
because it allows to express further constraints that are more easily expressed over
matrix structures: consider the MOLS problem again, where we need to impose
alldifferent on all rows and columns of matrices A and B. This can be more easily
expressed over a matrix structure than a flattened vector structure.

7 Variable Translation

As mentioned in Section 2.3, Minion has different types of integer decision vari-
ables: bounds- and discrete-domain variables. Discrete domain variables allow
deletion of values inside the bounds during search, which can be very effective, for
instance in combination with the alldifferent constraint. Where constraints such
as this are used, use of bounds-domain variables in Minion risks run-time errors
on attempted value removals. In Essence

′ there is no such distinction of bound
variables, and so we generally translate decision variables to discrete-domain
variables. We allow the user to select bounds-domain variables for translation
by a flag if they are confident that discrete domains are unnecessary.

A =

�
�

1 2 3
2 3 1
3 1 2

�
� B =

�
�

1 2 3
3 1 2
2 3 1

�
� (A(i, j), B(i, j)) =

�
�

(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

�
�

Tailoring Solver-Independent Constraint Models 195

When a variable x is assigned to another variable y, such as in the Essence
′

expression y = x, we can ‘reuse’ x by substituting x for any occurrence of y.
This procedure can also be applied for (parts of) matrices, since in Minion

decision variables can occur in several different matrices. Consider the example
∀i∈1..10.v[i] = u[i+1], where we assign every second element of vector u to vector
v. Here we construct vector v out of the corresponding elements of u.

8 Experimental Results

We have implemented a translator from Essence
′ to Minion in Java 1.5.0 10. In

this section we report results using Minion on translated instances. Our transla-
tor is under active development and can be found at minion.sourceforge.net.

In this section we present some problems that we have specified in Essence
′

and tailored to a set of Minion instances. We compare these instances with op-
timised benchmarks produced by problem-specific instance generators provided
by Minion. These generators have been implemented by experts in both con-
straint modelling and Minion. Hence we are comparing automatically tailored
instances with human expertise. We performed our experiments on a 3GHZ Pen-
tium 4 with 2GB RAM using Minion version 0.4.1 compiled with g++ 4.0.2
under Linux. The translator takes a neglegible amount of time for translation,
hence we do not include its runtime and focus on how competitive the resulting
instances are.

8.1 The Balanced Incomplete Block Design (BIBD)

The BIBD (CSPlib problem 28) is defined by a 5-tuple of positive integers
〈v, b, r, k, λ〉: assign v objects to b blocks such that each block contains k dif-
ferent objects and exactly r objects occur in each block and every two distinct
objects occur in exactly λ blocks. A typical problem model consists of a 0/1
matrix m with b columns (blocks) and v rows (objects), where an element mij is
assigned 1 if block i contains object j. Each row is constrained to the sum r and
each column to the sum k. The scalar product of each two rows corresponds to
λ. We order rows and columns lexicographically to break symmetry partially.

As summarised in Table 4, we compared generated Minion instances with
BIBD instances generated by the hand coded BIBD-instance generator provided
by Minion, with constraints using watched literals and without. Our translator
produced almost identical instances to those produced by the instance-generator,

Table 4. Results for solving the BIBD problem

Unwatched Watched
Time(sec) Nodes Time(sec) Nodes

b, v, r, k, λ Gen. Trans. Gen. Trans. Gen. Trans. Gen. Trans.
140,7,60,3,20 0.51 0.51 17235 17235 0.67 0.7 17235 17235
210,7,90,3,30 2.08 2.04 67040 67040 3.03 3.07 67040 67040
280,7,120,3,40 6.73 6.51 182970 182970 9.45 9.34 182970 182970
315,7,135,4,45 10.73 10.67 278310 278310 15.14 15.32 278310 278310

196 I.P. Gent, I. Miguel, and A. Rendl

Table 5. Results for finding a solution to the n-Queens problem

Time(sec) Nodes
Generator Translator Generator Translator

n discrete var. discrete var. bounds var. discrete var. discrete var. bounds var.
12 < 0.01 < 0.01 < 0.01 60 59 1,840
15 < 0.01 < 0.01 0.02 249 248 12,687
17 0.01 0.02 0.13 1,187 1,186 62,382
19 < 0.01 0.01 0.07 583 582 34,595
20 0.48 0.65 5.63 37331 37,330 2,857,524
22 3.84 5.19 55.74 269,370 269,369 28,458,527
24 1.01 1.34 15.19 63,791 63,790 7,528,769
25 0.12 0.16 2.08 7,272 7,271 943,172
26 0.96 1.27 16.97 55,592 55,591 8,057,222
27 1.16 1.56 20.47 67,231 67,230 9,723,687
29 3.94 5.09 72.69 212,276 212,275 35,867,550
30 141.24 193.57 >45min 7,472,996 7,472,995 1,379,220,754

performing almost exactly the same in means of time and identically in amount
of search nodes used. This demonstrates the effectiveness of the tailoring process
for the BIBD problem.

8.2 The n-Queens Problem

The n queens problem is to place n queens on a n × n chess board without
attacking each other. In the problem model, the queens are represented by a
vector v of length n where the element vi corresponds to the column of the
queen placed in row i. No queen may be placed on the same diagonal as an-
other, which is specified using two auxiliary vectors of same length n. Each
element of the auxiliary vectors has a distinct domain, which cannot be en-
coded in Essence

′ and therefore has to be restricted by additional constraints.
We produce instances with both bound-domain and discrete-domain variables
and compare them to instances generated by an n-queens instance-generator for
the same model provided wth the Minion distribution. This generator creates
instances with discrete-domain variables and distinct bounds for the auxiliary
variables. Results are given in Table 5. We see that the run times are notably
slower than the hand-written generator, up to just under 40% in the largest in-
stance. Nodes searched is always exactly one less. In general terms, these results
show that we produce good models, but unsurprisingly there can be scope for
further optimisation if writing a specialised generator. We can also observe the
drawback of bound-domain variables with this problem.

8.3 The Quasigroup Problem

An m order quasigroup is an m × m multiplication table of integers 1..m, where
each element occurrs exactly once in each row and column and certain multiplica-
tion axoims hold. The quasigroup problem (CSPLib problem 3) is concerned with
the existence of such a group of order m. We compared instances of the generator
and translator with and without a special variable ordering. Variable orderings
have been added by hand after the translation process since Essence

′ has, at
the time of writing, no facilities to specify variable orderings. Both instances

Tailoring Solver-Independent Constraint Models 197

Table 6. Results for solving the QuasiGroup7 existence problem of order m

with Ordering without Ordering
Time(sec) Nodes Time(sec) Nodes

m Trans. Gen. Trans. Gen. Trans. Gen. Trans. Gen.
7 < 0.01 < 0.01 756 844 0.03 0.03 3,275 3,272
8 0.1 0.1 11,949 12,450 1.94 1.89 171,203 169,078
9 < 0.01 < 0.01 238 233 5.15 5.23 458,062 454,512
10 249.6 250.02 30,549,274 31,383,717 >1h >1h - -

apply the same specified ordering. As demonstrated by the results in Table 6,
an efficient variable ordering is crucial for solving the problem efficiently. Such
an ordering can easily be added by the user in the Minion instance. Our tailored
instances have shown a slightly better performance with variable orderings and
are therefore highly competitive to the generated ones.

8.4 Summary

Our experimental results are not extensive, but show that instances tailored
by our translator tend to perform well in comparison with those produced by
instance generators implemented by modelling experts. Developing a generator
takes significantly more time and knowledge about Minion than simply express-
ing a problem in Essence

′. We see in one case that the hand-coded generator
runs faster, showing that (as expected) we cannot always attain optimal en-
codings automatically. Finally, our quasigroup results raise an important issue.
Specifying good heuristics is often not considered to be a part of modelling but is
well known to be essential to success. The more successful tools such as Conjure

and our translator become, the more important it will be to specify heuristics
during this process, either manually or automatically.

There are a number of outstanding issues. The most important of these is that
the only global constraints supported are alldifferent and element. To correct this
is trivial for global constraints supported by Minion (e.g. table) but requires
implementing an encoding of constraints which are not supported directly (e.g.
global cardinality).

9 Conclusion

This paper has discussed the issues arising in tailoring models in a solver-
independent constraint language, Essence

′, to the constraint solver Minion.
This process may be compared with that of translating OPL to Ilog Solver,
which formed part of a commercial product from Ilog. However, to the best of
our knowledge, details of the OPL to Solver translation are unpublished. Fur-
thermore OPL lacks, for example, existential quantification which, when nested,
significantly complicates the translation process, as we have seen. Charnley et
al [1] describe a process of translating problems stated in first order logic to the
Sicstus constraint solver. This is significantly easier than the translation process
we have considered because the source language is less rich than Essence

′ and

198 I.P. Gent, I. Miguel, and A. Rendl

the target language is significantly richer than the input language of Minion.
Rafeh et al. present the mapping process of Zinc [14], a modelling language, to
design models that apply different solving techniques. Though Essence

′ and
Zinc are both on the same level of abstraction, the mapping targets are quite
diverse. We would like to incorporate further reformulations into the tailoring
process to enhance the final model. We will draw on our work on Cgrass [5] for
this, which focused on the reformulation of individual problem instances.

Acknowledgements. Ian Miguel is supported by a UK Royal Academy of En-
gineering/EPSRC Research Fellowship. Andrea Rendl is supported by a DOC
fFORTE scholarship of the Austrian Academy of Sciences and UK EPSRC grant
EP/D030145/1. We thank Chris Jefferson for his advice on Minion.

References

1. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: European Conference on Artificial Intelligence (ECAI), pp. 73–77 (2006)

2. Frisch, A.M., Grum, M., Jefferson, C., Mart́ınez Hernández, B., Miguel, I.: The
design of essence: A constraint language for specifying combinatorial problems. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp. 80–87 (2007)

3. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algo-
rithms for lexicographic ordering constraints. Artificial Intelligence 170(10), 803–
834 (2006)

4. Frisch, A.M., Jefferson, C., Mart́ınez Hernández, B., Miguel, I.: The rules of con-
straint modelling. In: International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 109–116 (2005)

5. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A system for transforming con-
straint satisfaction problems. In: International Workshop on Constraint Solving
and Constraint Logic Programming, pp. 15–30 (2002)

6. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
European Conference on Artificial Intelligence (ECAI), pp. 98–102 (2006)

7. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer,
Heidelberg (2006)

8. Gent, I.P., Jefferson, C.A., Miguel, I., Petrie, K., Rendl, A.: Minion manual, version
0.4.1., http://minion.sourceforge.net

9. Hnich, B., Walsh, T., Smith, B.M.: Dual modelling of permutation and injection
problems. Journal of Artificial Intelligence Research (JAIR) 21, 357–391 (2004)

10. Prosser, P., Selensky, E.: A study of encodings of constraint satisfaction problems
with 0/1 variables. In: International Workshop on Constraint Solving and Con-
straint Logic Programming, pp. 121–131 (2002)

11. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: National
Conference on Artificial Intelligence (AAAI), pp. 362–367 (1994)

12. Van Hentenryck, P., Carillon, J.-P.: Generality versus specificity: An experience
with AI and OR techniques. In: National Conference on Artificial Intelligence
(AAAI), pp. 660–664 (1988)

http://minion.sourceforge.net

Tailoring Solver-Independent Constraint Models 199

13. van Hoeve, W.-J., Katriel, I.: Global constraints. In: Handbook of constraint pro-
gramming, Elsevier (2006)

14. de la Banda, M.G., Marriott, K., Rafeh, R., Wallace, M.: From Zinc to Design
Model. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 215–229. Springer,
Heidelberg (2006)

15. Harvey, W., Winterer, T.: Solving the MOLR and Social Golfers Problems. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 286–300. Springer, Heidelberg (2005)

	Tailoring Solver-Independent Constraint Models: A Case Study with Essence$'$ and Minion
	Introduction
	Background
	Constraint Satisfaction Problems and the Modelling Bottleneck
	The ESSENCE' Solver-Independent Modelling Language
	The MINION Constraint Solver

	Tailoring ESSENCE' to MINION: Overview
	Arithmetic Constraints
	Logical Constraints
	Singly-Quantified Expressions
	Nested Quantification
	Treating Special Cases

	Global Constraints
	Variable Translation
	Experimental Results
	The Balanced Incomplete Block Design (BIBD)
	The n-Queens Problem
	The Quasigroup Problem
	Summary

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

