

Lecture Notes in Artificial Intelligence 4612
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ian Miguel Wheeler Ruml (Eds.)

Abstraction,
Reformulation,
and Approximation

7th International Symposium, SARA 2007
Whistler, Canada, July 18-21, 2007
Proceedings

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Ian Miguel
University of St.Andrews
School of Computer Science
North Haugh, KY16 9SX, St.Andrews, UK
E-mail: ianm@cs.st-and.ac.uk

Wheeler Ruml
Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA
E-mail: ruml@acm.org

Library of Congress Control Number: 2007930461

CR Subject Classification (1998): I.2, F.4.1, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-73579-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73579-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12089598 06/3180 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

It has been recognized since the inception of artificial intelligence that abstrac-
tions, problem reformulations and approximations (AR&A) are central to hu-
man common-sense reasoning and problem solving and to the ability of systems
to reason effectively in complex domains. AR&A techniques have been used in
a variety of problem-solving settings, including automated reasoning, cognitive
modelling, constraint programming, design, diagnosis, machine learning, model-
based reasoning, planning, reasoning, scheduling, search, theorem proving, and
intelligent tutoring. The primary use of AR&A techniques in such settings has
been to overcome computational intractability by decreasing the combinatorial
costs associated with searching large spaces. In addition, AR&A techniques are
useful for knowledge acquisition and explanation generation in complex domains.

The considerable interest in AR&A techniques has led to a series of successful
symposia over the last decade, the Symposium on Abstraction, Reformulation,
and Approximation (SARA). Its aim is to provide a forum for intensive interac-
tion among researchers in all areas of artificial intelligence and computer science
interested in the different aspects of AR&A. AAAI workshops in 1990 and 1992
focused on selecting, constructing, and using abstractions and approximations,
while a series of workshops in 1988, 1990, and 1992 focused on problem reformu-
lations. The two series were then combined since there was considerable overlap
in their attendees and topics. The present symposium is the seventh in this new
series, following successful symposia in 1994, 1995, 1998, 2000, 2002, and 2005.
The diverse backgrounds of participants of the symposia lead to a rich and lively
exchange of ideas, allow the comparison of goals, techniques, and paradigms be-
tween resesarchers who might not otherwise be aware of each others’ work, and
help identify important research issues and engineering hurdles.

This volume contains the proceedings of SARA 2007, the seventh sympo-
sium, held at Whistler Village, British Columbia, Canada, July 18-21. Three
distinguished speakers were invited to give keynote presentations, and their ab-
stracts are included herein: Vadim Bulitko of the University of Alberta, Canada;
Alan Frisch of the University of York, UK; and John Hooker of Carnegie Mel-
lon University, USA. We thank all the authors of submitted papers for their
efforts in preparing an impressive corpus of work, the Programme Committee
and auxiliary reviewers for their thorough evaluation and considered selection
of presentations for SARA, and the SARA Steering Committee for its advice
and guidance. We are also very grateful to Google, the Pacific Institute for the
Mathematical Sciences, and the Palo Alto Research Center for their generous
support of the symposium, and to the Association for the Advancement of Ar-
tificial Intelligence (AAAI), with which SARA 2007 is affiliated.

July 2007 Ian Miguel
Wheeler Ruml

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

Steering Committee

Berthe Choueiry (University of Nebraska-Lincoln, USA)
Fausto Giunchighlia (University of Trento, Italy)
Michael Genesereth (Stanford University, USA)
Robert Holte (University of Alberta, Canada)
Ian Miguel (University of St. Andrews, UK)
Michael Lowry (NASA, USA)
Wheeler Ruml (Palo Alto Research Center, USA)
Lorenza Saitta (Università del Piemonte Orientale, Italy)
Sven Koenig (University of Southern California, USA)
Toby Walsh (University of New South Wales, Australia)

Organizing Committee

Conference Chairs Ian Miguel (University of St. Andrews, UK)
Wheeler Ruml (Palo Alto Research Center,

USA)
Publicity Chair Karen Petrie (University of Oxford, UK)
Sponsorship Chair Peter Nightingale (University of St. Andrews,

UK)

Programme Committee

J. Christopher Beck (University of Toronto, Canada)
Berthe Choueiry (University of Nebraska-Lincoln, USA)
Johan de Kleer (Palo Alto Research Center, USA)
Marie desJardins (University of Maryland, Baltimore County, USA)
Stefan Edelkamp (Universität Dortmund, Germany)
Boi Faltings (Ecole Polytechnique Federale de Lausanne, Switzerland)
Ariel Felner (Ben-Gurion University, Israel)
Alan Frisch (University of York, UK)
Hector Geffner (Universitat Pompeu Fabra, Spain)
Michael Genesereth (Stanford University, USA)
Fausto Giunchiglia (University of Trento, Italy)
Brahim Hnich (Izmir University, Turkey)
Daniel Kayser (Université Paris-Nord, France)
Sven Koenig (University of Southern California, USA)
Derek Long (University of Strathclyde, UK)
Michael Lowry (NASA, USA)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

Peter Revesz (University of Nebraska-Lincoln, USA)
Marie-Christine (Rousset University of Grenoble, France)
Lorenza Saitta (Università del Piemonte Orientale, Italy)
Bart Selman (Cornell University, USA)
Barbara Smith (Cork Constraint Computation Centre, Ireland)
Miroslav Velev (Carnegie Mellon University, USA)
Toby Walsh (University of New South Wales, Australia)
Weixiong Zhang (Washington University, USA)
Rong Zhou (Palo Alto Research Center, USA)
Robert Zimmer (Goldsmiths College, University of London, UK)
Jean-Daniel Zucker (Université Paris 13/UR 079 GEODES, France)

Additional Referees

Sebastian Brand
Kenneth Daniel
George Katsirelos
Zeynep Kiziltan

Peter Nightingale
Claude-Guy Quimper
Pietro Torasso
Gianluca Torta

Xiaoming Zheng

Sponsoring Institutions

The Association for the Advancement of Artificial Intelligence
Google, Inc.
The Pacific Institute for the Mathematical Sciences
The Palo Alto Research Center

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Invited Talks (Abstracts)

State Abstraction in Real-Time Heuristic Search . 1
Vadim Bulitko

Abstraction and Reformulation in the Generation of Constraint
Models . 2

Alan M. Frisch

A Framework for Integrating Optimization and Constraint
Programming . 4

John N. Hooker

Research Papers

DFS-Tree Based Heuristic Search . 5
Montserrat Abril, Miguel A. Salido, and Federico Barber

Partial Pattern Databases . 20
Kenneth Anderson, Robert Holte, and Jonathan Schaeffer

CDB-PV: A Constraint Database-Based Program Verifier 35
Scot Anderson and Peter Revesz

Generating Implied Boolean Constraints Via Singleton Consistency 50
Roman Barták

Reformulating Constraint Satisfaction Problems to Improve
Scalability . 64

Kenneth M. Bayer, Martin Michalowski, Berthe Y. Choueiry, and
Craig A. Knoblock

Reformulating Global Constraints: The Slide and Regular
Constraints . 80

Christian Bessiere, Emmanuel Hebrard, Brahim Hnich,
Zeynep Kiziltan, Claude-Guy Quimper, and Toby Walsh

Relaxation of Qualitative Constraint Networks . 93
Dominique D’Almeida, Jean-François Condotta,
Christophe Lecoutre, and Lakhdar Säıs

Dynamic Domain Abstraction Through Meta-diagnosis 109
Johan de Kleer

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Table of Contents

Channeling Abstraction . 124
Stijn De Saeger and Atsushi Shimojima

Approximate Model-Based Diagnosis Using Greedy Stochastic Search . . . 139
Alexander Feldman, Gregory Provan, and Arjan van Gemund

Combining Perimeter Search and Pattern Database Abstractions 155
Ariel Felner and Nir Ofek

Solving Satisfiability in Ground Logic with Equality by Efficient
Conversion to Propositional Logic . 169

Igor Gammer and Eyal Amir

Tailoring Solver-Independent Constraint Models: A Case Study with
Essence′ and Minion . 184

Ian P. Gent, Ian Miguel, and Andrea Rendl

A Meta-CSP Model for Optimal Planning . 200
Peter Gregory, Derek Long, and Maria Fox

Reformulation for Extensional Reasoning . 215
Timothy L. Hinrichs and Michael R. Genesereth

An Abstract Theory and Ontology of Motion Based on the Regions
Connection Calculus . 230

Zina M. Ibrahim and Ahmed Y. Tawfik

Computing and Using Lower and Upper Bounds for Action Elimination
in MDP Planning . 243

Ugur Kuter and Jiaqiao Hu

Model-Based Exploration in Continuous State Spaces 258
Nicholas K. Jong and Peter Stone

Active Learning of Dynamic Bayesian Networks in Markov Decision
Processes . 273

Anders Jonsson and Andrew Barto

Boosting MUS Extraction . 285
Santiago Macho González and Pedro Meseguer

Homogeneous Hierarchical Composition of Areas in Multi-robot Area
Coverage . 300

Sriram Raghavan and Ravindran B

Formalizing the Abstraction Process in Model-Based Diagnosis 314
Lorenza Saitta, Pietro Torasso, and Gianluca Torta

Boolean Approximation Revisited . 329
Peter Schachte and Harald Søndergaard

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XI

An Analysis of Map-Based Abstraction and Refinement 344
Nathan Sturtevant and Renee Jansen

Solving Difficult SAT Instances Using Greedy Clique Decomposition 359
Pavel Surynek

Abstraction and Complexity Measures . 375
Lorenza Saitta and Jean-Daniel Zucker

Research Summaries

Abstraction, Emergence, and Thought . 391
Russ Abbott

What’s Your Problem? The Problem of Problem Definition 393
J. Christopher Beck and Michael Gruninger

A Reformulation-Based Approach to Explanation in Constraint
Satisfaction . 395

Hadrien Cambazard and Barry O’Sullivan

Integration of Constraint Programming and Metaheuristics 397
Broderick Crawford, Carlos Castro, and Eric Monfroy

Rule-Based Reasoning Via Abstraction . 399
David C. Haley

Extensional Reasoning . 400
Timothy L. Hinrichs

Reformulating Constraint Models Using Input Data 402
Martin Michalowski, Craig A. Knoblock, and Berthe Y. Choueiry

Using Analogy Discovery to Create Abstractions . 405
Marc Pickett

Distributed CSPs: Why It Is Assumed a Variable per Agent? 407
Miguel A. Salido

Decomposition of Games for Efficient Reasoning . 409
Eric Schkufza

Generalized Constraint Acquisition . 411
Xuan-Ha Vu and Barry O’Sullivan

Using Infeasibility to Improve Abstraction-Based Heuristics 413
Fan Yang, Joseph Culberson, and Robert Holte

Leveraging Graph Locality Via Abstraction . 415
Rong Zhou

Author Index . 417

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

State Abstraction in Real-Time Heuristic Search

Vadim Bulitko

University of Alberta, ****, Canada
bulitko@ualberta.ca

Abstract. Real-time heuristic search methods, such as LRTA*, are used
by situated agents in applications that require the amount of planning
per move to be independent of the problem size. Such agents plan only
a few actions at a time in a local search space and avoid getting trapped
in local minima by improving their heuristic function over time. In this
talk we present recent extensions to LRTA* based on automated state
abstraction – an idea that has proved powerful in other areas of search
and learning. In one of the extensions, learning performance of LRTA* is
improved by running it in a smaller abstract search space. The resulting
algorithm retains real-time performance and completeness/ convergence
properties. Empirically, the abstraction is found to improve efficiency by
trading off planning time, learning speed and other antagonistic perfor-
mance measures. The talk will be illustrated with applications to path-
planning in computer video games.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Reformulation in the

Generation of Constraint Models�

(Extended Abstract)

Alan M. Frisch

University of York, York YO10 5DD, UK
frisch@cs.york.ac.uk

Many and diverse combinatorial problems have been solved with great success us-
ing constraint programming. However, to employ constraint programming tech-
nology to solve a problem, the problem first must be characterised, or modelled,
by a set of constraints that its solutions must satisfy. Generating a correct model
can be difficult; generating one that is easier to solve than its alternatives is even
more difficult, often requiring considerable expertise. This so-called “modelling
bottleneck” has inhibited the wider use of constraint programming technology.

Our work has addressed this modelling bottleneck by designing a rule-based
system, called Conjure, that automatically generates constraint models by re-
formulating problem specifications given in an abstract language, called Essence.
This talk introduces and discusses the design of Conjure and Essence, em-
phasising the central roles of abstraction and reformulation.

Essence is a new language for specifying combinatorial (decision or optimi-
sation) problems at a high level of abstraction. It is the result of our attempt
to design a formal language that enables problem specifications that are similar
to rigorous specifications that use a mixture of natural language and discrete
mathematics, such as those catalogued by Garey and Johnson [1]. Its most im-
portant facility for abstraction is the provision of decision variables whose values
can be combinatorial objects, such as tuples, sets, multisets, relations, partitions
and functions. Essence also allows these combinatorial objects to be nested to
arbitrary depth, thus providing, for example, sets of partitions, sets of sets of
partitions, and so forth. Thus, a problem that requires finding a combinatorial
object of a certain type can be specified directly in the language by using a
decision variable of that type, thereby eliminating the need to model the object
by a collection of variables of simple types.

Using a set of recursive rules, Conjure can reformulate a problem specified
in Essence into a set of alternative constraint models. Each of these is a correct
model of the problem formulated at a level of abstraction supported by existing
constraint toolkits. The development of Conjure required designing reformula-
tion rules whose recursive structure could handle the nested types of Essence.
� The work report here was done in collaboration with Matthew Grum, Chris Jefferson,

Bernadette Mart́ınez Hernández and Ian Miguel.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 2–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Reformulation in the Generation of Constraint Models 3

This talk explains why this is a difficult problem and how we ultimately solved
it.

Further information on Essence and Conjure can be found within [2] and
[3] and at http://www.cs.york.ac.uk/aig/constraints/AutoModel.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New
York (1979)

2. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design of
Essence: A language for specifying combinatorial problems. In: Proc. of the Twen-
tieth Int. Joint Conf. on Artificial Intelligence (2007)

3. Frisch, A.M., Jefferson, C., Hernández, B.M., Miguel, I.: The rules of constraint
modelling. In: Proc. of the Nineteenth Int. Joint Conf. on Artificial Intelligence, pp.
109–116 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Framework for Integrating Optimization and

Constraint Programming

J.N. Hooker

Carnegie Mellon University, USA
john@hooker.tepper.cmu.edu

Abstract. This talk begins with a description of the modeling and com-
putational advantages that can be obtained by combining optimization
and constraint programming in a principled way. It then presents a frame-
work for integration based on three elements: a search-infer-and-relax
algorithmic paradigm, a unifying theory of duality, and the use of meta-
constraints (a generalization of global constraints) for modeling. Infer-
ence techniques from constraint programming and relaxation techniques
from mathematical programming are combined in both branch-and-relax
search and constraint-based (nogood-based) search. The talk illustrates
these ideas with examples in freight shipment, employee scheduling, con-
tinuous global optimization, airline crew scheduling, the propositional
satisfiability problem, and multiple machine scheduling.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, p. 4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search�

Montserrat Abril, Miguel A. Salido, and Federico Barber

Dpt. of Information Systems and Computation, Technical University of Valencia
Camino de Vera s/n, 46022, Valencia, Spain
{mabril, msalido, fbarber}@dsic.upv.es

Abstract. In constraint satisfaction, local search is an incomplete me-
thod for finding a solution to a problem. Solving a general constraint
satisfaction problem (CSP) is known to be NP-complete; so that heuris-
tic techniques are usually used. The main contribution of this work is
twofold: (i) a technique for de-composing a CSP into a DFS-tree CSP
structure; (ii) an heuristic search technique for solving DFS-tree CSP
structures. This heuristic search technique has been empirically evalu-
ated with random CSPs. The evaluation results show that the behavior
of our heuristic outperforms than the behavior of a centralized algorithm.

Keywords: Constraint Satisfaction Problems, CSP Decomposition,
heuristic search, DFS-tree.

1 Introduction

One of the research areas in computer science that has gained increasing inter-
est during last years is constraint satisfaction, mainly because many problems
like planning, reasoning, diagnosis, decision support, scheduling, etc., can be for-
mulated as constraint satisfaction problems (CSPs) and can be solved by using
constraint programming techniques in an efficient way.

Many techniques to solve CSPs have been developed; some originate from
solving other types of problems and some are specifically for solving CSPs. Ba-
sic CSP solving techniques include: search algorithms, problem reduction, and
heuristic strategies.

The more basic sound and complete search technique is Chronological Back-
tracking. It systematically traverses the entire search space in a depth-first man-
ner. It instantiates one variable at a time until it either finds a solution or proves
no solutions exist. However, it can be inefficient because of thrashing. To improve
efficiency during search, some basic stochastic algorithms have been developed.
Random guessing algorithm is the most naive stochastic search. Like blindly
throwing darts, it repeatedly ’guesses’ a complete assignment and checks if the
assignment satisfies the constraints until it finds a solution or reaches timeout
� This work has been partially supported by the research projects TIN2004-06354-

C02- 01 (Min. de Educacion y Ciencia, Spain-FEDER), FOM- 70022/T05 (Min. de
Fomento, Spain), GV/2007/274 (Generalidad Valenciana) and by the Future and
Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-
021235-2 (project ARRIVAL).

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 5–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 M. Abril, M.A. Salido, and F. Barber

(or some maximum number of iterations). Since the algorithm assigns variables
in a non-systematic way, it neither avoids checking for the same assignment re-
peatedly, nor guarantees to verify all possible assignments. Because it does not
guarantee to check all possible assignments, the algorithm is incomplete and so
it cannot guarantee a solution or prove no solution exists.

However, searching for solutions can be very time consuming, especially if the
search space is large and the solutions are distributed in a haphazard way. To
improve the efficiency, one can sometimes trim the size of the search space and
simplify the original problem. Problem reduction [11] is such a method that can
be used at the beginning of a search or during search. Once a problem becomes
smaller and simpler, search algorithms can go through the space faster. In some
cases, problem reduction can solve CSPs without searching [11].

Because neither basic search nor consistency checks alone can always solve
CSPs in a timely manner, adding heuristics and using hybrid algorithms are
often used to improve efficiency. For instance, a common strategy is to vary
the order in which variables, domain values and constraint are searched. Some
algorithms incorporate features such as ordering heuristics, (variable ordering
and value ordering [7], and constraint ordering [12], [8]). Furthermore, some
stochastic local search techniques have also been developed for solving CSPs
(tabu search, iterated local search, ant colony, etc. [10],[9]).

Furthermore, many researchers are working on graph partitioning [4], [6]. The
main objective of graph partitioning is to divide the graph into a set of regions
such that each region has roughly the same number of nodes and the sum of
all edges connecting different regions is minimized. Achieving this objective is a
hard problem, although many heuristic may solve this problem efficiently. For
instance, graphs with over 14000 nodes and 410000 edges can be partitioned in
under 2 seconds [5]. Therefore, we can apply graph partitioning techniques to
decompose a binary CSP into semi-independent sub-CSPs.

In this paper, we present a method for structuring and solving binary CSPs.
To this end, first, the binary CSP is decomposed into a DFS-tree CSP structure,
where each node represents a subproblem. Then, we introduce a heuristic search
algorithm which carries out the search in each node according to the partial
solution of parent node and the pruning information of children nodes.

In the following section, we present some definitions about CSPs and clas-
sify them in three categories. A method of decomposition into a DFS-tree CSP
structure is presented in section 3. A heuristic search technique for solving the
DFS-tree CSP structure is presented in section 4. An evaluation of our heuristic
search technique is carried out in section 5. Finally, we summarize the conclu-
sions in section 6.

2 Centralized, Distributed and Decomposed CSPs

In this section, we present some basic definitions related to CSPs.
A CSP consists of: a set of variables X = {x1, ..., xn}; each variable xi ∈ X

has a set Di of possible values (its domain); a finite collection of constraints
C = {c1, ..., cp} restricting the values that the variables can simultaneously take.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 7

A solution to a CSP is an assignment of values to all the variables so that
all constraints are satisfied; a problem with a solution is termed satisfiable or
consistent.

A binary constraint network is one in which every constraint subset in-
volves at most two variables. In this case the network can be associated with a
constraint graph, where each node represents a variable, and the arcs connect
nodes whose variables are explicitly constrained [1].

A DFS-tree CSP structure is a tree whose nodes are composed by subprob-
lems, where each subproblem is a CSP (sub-CSPs). Each node of the DFS-tree
CSP structure is a DFS-node and each individual and atomic node of each sub-
CSP is a single-node; each single-node represents a variable, and each DFS-
node is made up of one or several single-nodes. Each constraint between two
single-nodes of different DFS-nodes is called inter-constraint . Each constraint
between two single-nodes of the same DFS-node is called intra-constraint .

Partition : A partition of a set C is a set of disjoint subsets of C whose union
is C. The subsets are called the blocks of the partition.

Distributed CSP : A distributed CSP (DCSP) is a CSP in which the variables
and constraints are distributed among automated agents [13].

Each agent has a set of variables; it knows the domains of its variables and a
set of intra-constraints, ant it attempts to determine the values of its variables.
However, there are inter-constraints and the value assignment must also satisfy
these inter-constraints.

2.1 Decomposition of CSPs

There exist many ways for solving a CSP. However, we can classified these prob-
lems into three categories: Centralized problems, Distributed problems and De-
composable problems.

– A CSP is a centralized CSP when there is no privacy/security rules between
parts of the problem and all knowledge about the problem can be gathered
into one process. It is commonly recognized that centralized CSPs must be
solved by centralized CSP solvers. Many problems are represented as typical
examples to be modelled as a centralized CSP and solved using constraint
programming techniques. Some examples are: sudoku, n-queens, map color-
ing, etc.

– A CSP is a distributed CSP when the variables, domains and constraints
of the underlying network are inherently distributed among agents. This
distribution is due entities are identified into the problem (which group a
set of variables and constraints among them), constraints may be strategic
information that should not be revealed to competitors, or even to a central
authority; a failure of one agent can be less critical and other agents might
be able to find a solution without the failed agent. Examples of such systems
are sensor networks, meeting scheduling, web-based applications, etc.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 M. Abril, M.A. Salido, and F. Barber

– A CSP is a decomposable CSP when the problem can be divided into smaller
problems (subproblems) and a coordinating (master-) entity. For example,
the search space of a CSP can be decomposed into several regions and a
solution could be found by using parallel computing.

Note that centralized and distributed problems are inherent features of prob-
lems. Therefore, a distributed CSP can not be solved by a centralized technique.
However, can be solved an inherently centralized CSP by a distributed tech-
nique? The answer is ’yes’ if we previously decompose the CSP.

Usually, real problems imply models with a great number of variables and
constraints, causing dense network of inter-relations. This kind of problems can
be handled as a whole only at overwhelming computational cost. Thus, it could
be an advantage to decompose this kind of problems to several simpler intercon-
nected sub-problems which can be more easily solved.

In the following example we show that a centralized CSP could be decomposed
into several subproblems in order to obtain simpler sub-CSPs. In this way, we
can apply a distributed technique to solve the decomposed CSP.

The map coloring problem is a typically centralized problem. The goal of a
map coloring problem is to color a map so that regions sharing a common border
have different colors. Let’s suppose that we must to color each country of Europe.
In Figure 1 (1) shows a colored portion of Europe. This problem can be solved
by a centralized CSP solver. However, if the problem is to color each region of
each country (Spain, Figure 1(3); France, Figure 1(4)) of Europe, it is easy to
think that the problem can be decomposed into a set of subproblems, grouped
by clusters). This problem can be solved as a distributed problem, even when
the problem is not inherently distributed.

A map coloring problem can be solved by first converting the map into a
graph where each region is a vertex, and an edge connects two vertices if and
only if the corresponding regions share a border. In our problem of coloring the
regions of each country of Europe, it can be observed that the corresponding
graph maintains clusters (Spain, Figure 1(3); France, Figure 1(4)) representing
each country. Thus, the problems can be solved in a distributed way.

Following, we present a technique for i) decomposing a binary CSP into sev-
eral sub-CSPs and ii) structuring the obtained sub-CSPs into a DFS-tree CSP
structure. Then, in section 4, we propose a heuristic search technique for solving
DFS-tree CSP structures.

3 How to Decompose a Binary CSP into a DFS-Tree
CSP Structure

Given any binary CSP, it can be translated into a DFS-tree CSP structure. How-
ever, there exist many ways to decompose a graph into a DFS-tree. Depending
on the user requirements, it may be desirable to obtain balanced DFS-nodes,
that is, each DFS-node maintains roughly the same number of single-nodes; or
it may be desirable to obtains DFS-nodes in such a way that the number of
edges connecting two single-trees is minimized.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 9

(1) (2)

(3) (4)

Fig. 1. Map coloring of Europe

We present a proposal which is focused on decomposing the problem by using
graph partitioning techniques. Specifically, the problem decomposition is carried
out by means of a graph partitioning software called METIS [5]. METIS provides
two programs pmetis and kmetis for partitioning an unstructured graph into
k roughly equal partitions, such that the number of edges connecting nodes
in different partitions is minimized. We use METIS to decompose a CSP into
several sub-CSPs so that inter-constraints among variables of each sub-CSP are
minimized. Each DFS-node will be composed by a sub-CSP.

The next step is to build the DFS-tree CSP structure with k DFS-nodes in
order to be studied by agents. This DFS-tree CSP structure is used as a hierar-
chy to communicate messages between DFS-nodes. The DFS-tree CSP structure
is built using Algorithm 1. The nodes and edges of graph G are respectively the
DFS-nodes and inter-constraints obtained after the CSP decomposition. The
root DFS-node is obtained by selecting the most constrained DFS-node. DF-
SStructure algorithm then simply put DFS-node v into DFS-tree CSP structure
(process(v)), initializes a set of markers so we can tell which vertices are visited,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 M. Abril, M.A. Salido, and F. Barber

chooses a new DFS-node i, and calls recursively DFSStructure(i). If a DFS-node
has several adjacent DFS-nodes, it would be equally correct to choose them in
any order, but it is very important to delay the test for whether a DFS-nodes is
visited until the recursive calls for previous DFS-nodes are finished.

Algorithm DFSStructure(G,v)

Input: Graph G, originally all nodes are unvisited. Start DFS-node v of G
Output: DFS-Tree CSP structure

process(v);
mark v as visisted;
forall DFS-node i adjacent1 to v not visited do

DFSStructure(i);
end
/* (1) DFS-node i is adjacent to DFS-node v if at least one

inter-constraint exists between i and v. */

Algorithm 1. DFSStructure Algorithm

3.1 Example of DFS-Tree CSP Structure

Figure 2 shows two different representation of an example of CSP generated by
a random generator module generateR(C, n, k, p, q)1, where C is the constraint
network; n is the number of variables in network; k is the number of values in
each of the domains; p is the probability of a non-trivial edge; q is the probability
of an allowable pair in a constraint. This figure represents the constraint network
< C, 20, 50, 0.1, 0.1 >. This problem is very hard to solved with well-known CSP
solver methods: Forward-Checking (FC) and Backjumping (BJ). We can see
that this problem can be divided into several cluster (see Figure 3) and it can be
converted into a DFS-tree CSP structure (see Figure 3). By using our DFS-tree
heuristic, it is solved in less than one seconds, and by using FC, this problem
has not been solved in several minutes.

In Figure 4 we can see a specific sequence of nodes (a numeric order). Following
this sequence, FC algorithm has a great drawback due to the variables without
in-links (link with a previous variable): 1, 2, 3, 6, 7, 8, 9, 10, 11 and 16 (see Figure
4). Theses variables have not bounded domains, thus provoking the exploration
of all their domains when the algorithm backtracks. This kind of variables is
an extreme case of variables with their domain weakly bounded. An example
of this situation can be seen in Figure 4, where the variable 12 has its domain
bounded by the variable 6. When the bounded domain of the variable 12 has
not a valid assignment, FC algorithm backtracks to change the values of the
bounded domain, but it will need examine completely the domain of variables
11, 10, 9, 8 and 7 before it changes the assignment of variable 6. In this example,
with domain size = 50, it involves 505 assignments in vain.
1 A library of routines for experimenting with different techniques for solving binary

CSPs is available at http://ai.uwaterloo.ca/∼vanbeek/software/software.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 11

Fig. 2. Random CSP < n = 20, d = 50, p = 0.1, q = 0.1 >

Fig. 3. Left: Decomposed Problem. Right: DFS-Tree CSP structure.

4 DFS-Tree Based Heuristic Search (DTH)

In section 3 we have presented a method for structuring a binary CSP into
a DFS-Tree CSP structure. In this section we propose a new heuristic search
technique for solving DFS-Tree CSP structures.

Our Heuristic called DFS-Tree Based Heuristic Search (DTH) can be consid-
ered as a distributed and asynchronous technique. In the specialized literature,
there are many works about distributed CSPs. In [13], Yokoo et al. present a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

12 M. Abril, M.A. Salido, and F. Barber

Fig. 4. Sequence of nodes for Forward-Checking Algorithm

formalization and algorithms for solving distributed CSPs. These algorithms can
be classified as either centralized methods, synchronous or asynchronous back-
tracking [13].

DTH is committed to solve the DFS-tree CSP structure in a Depth-First
Search Tree (DFS Tree) where the root DFS-node is composed by the most
constrained sub-CSP, in the sense that this sub-CSP maintains a higher number
of single-nodes. DFS trees have already been investigated as a means to boost
search [2]. Due to the relative independence of nodes lying in different branches
of the DFS tree, it is possible to perform search in parallel on these independent
branches.

Once the variables are divided and arranged, the problem can be considered
as a distributed CSP, where a group of agents manages each sub-CSP with its
variables (single-nodes) and its constraints (edges). Each agent is in charge of
solving its own sub-CSP by means of a search. Each subproblem is composed by
its CSP subject to the variable assignment generated by the ancestor agents in
the DFS-tree CSP structure.

Thus, the root agent works on its subproblem (root meta-node). If the root
agent finds a solution then it sends the consistent partial state to its children
agents in the DFS-tree, and all children work concurrently to solve their specific
subproblems knowing consistent partial states assigned by the root agent. When
a child agent finds a consistent partial state it sends again this partial state
to its children and so on. Finally, leaf agents try to find a solution to its own
subproblems. If each leaf agent finds a consistent partial state, it sends an OK

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 13

Problem Solutions

Pr
ob

le
m

 S
ol

ut
io

n
 S

ol
ut

io
n

 S
ol

ut
io

n

SS 4...

...

11

S11 S S21 3

41++

+

S12 S+

S12 S22+ S12 S23+S11

S11 S12

S21+

+ ...S12 S S22 3+ + S12 S S23 31+ +
 S

ol
ut

io
n

N
og

oo
d

N
og

oo
d

St
op

3 7 8 9 11 13 14 15 16 19 24 25 2322212017 1812106541 21

METIS-
Decomposition

Agents

DFS-Tree CSP
structure

Partition
Constraintc(2): block2

c(1): block1

c(3): block3
c(4): block4

Time steps

a

a

a

a3

2
4

1

c(1)

c(2)

c(3)

c(4)

a1

a2

a3

a4

Fig. 5. Decomposing Technique and DFS-Tree Based Heuristic Search

message to its parent agent. When all leaf agents answer with OK messages to
their parents, a solution to the entire problem is found. When a child agent does
not find a solution, it sends a Nogood message to the parent agent. The Nogood
message contains the variables which empty the variable domains of the child
agent. When the parent agent receives a Nogood message, it stops the search of
the children and it tries to find a new solution taking into account the Nogood
information and so on. Depending on the management of this information, the
search space is differently pruned. If a parent agent finds a new solution, it will
start the same process again sending this new solution to its children. Each agent
works in the same way with its children in the DFS-tree. However, if the root
agent does not find solution, then DTH returns no solution found.

The heuristic technique is based on Nogood information, which allows us to
prune search space. First, DTH uses Nogood information to prune the search
space jumping to the variable involved in the Nogood within the lowest level in
the search sequence. Furthermore, DTH does not backtracks in the inverse order
of the search, but it jumps directly to other variable involved in the Nogood.
Therefore, the search space is pruned in this level of the search sequence and
solutions can be deleted. This heuristic technique is not complete. Its level of
completeness depend on how Nogood information is used.

Figure 5 shows our technique for de-composing a CSP into a DFS-tree CSP
structure. Then, DTH is carried out. The root agent (a1) starts the search

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 M. Abril, M.A. Salido, and F. Barber

process finding a partial solution. Then, it sends this partial solution to its
children. The agents, which are brothers, are committed to concurrently finding
the partial solutions of their subproblem. Each agent sends the partial problem
solutions to its children agents. A problem solution is found when all leaf agents
find their partial solution. For example, (state s12 +s41) + (state s12 +s23 +s31)
is a problem solution. The concurrence can be seen in Figure 5 in Time step 4
in which agents a2 and a4 are concurrently working. Agent a4 sends a Nogood
message to its parent (agent a1) in step 9 because it does not find a partial
solution. Then, agent a1 stops the search process of all its children, and it finds
a new partial solution which is again sent to its children. Now, agent a4 finds
its partial solution, and agent a2 works with its child, agent a3, to find their
partial problem solution. When agent a3 finds its partial solution, a solution of
the global problem will be found. It happens in Time step 25.

Let’s see an example to analyze the behavior of DTH (Figure 6). First the
constraint network of Figure 6(1) is partitioned in 3 sub-CSPs and the DFS tree
CSP structure is built (Figure 6(2)). Agent a finds its first partial solution (X1 =
1, X2 = 1) and sends it to its children: agent b and agent c (see Figure 6(3)).
This is a good partial solution for agent c (Figure 6(4)), but this partial solution
empties the X3 variable domain, thus agent b sends a Nogood message to its
father (Nogood (X1 = 1)) (Figure 6(5)). Then, agent a processes the Nogood
message, prunes its search space, finds a new partial solution (X1 = 2, X2 = 2)
and sends it to its children (Figure 6(6)). At this point in the process, agent c
sends a Nogood message to its father (Nogood (X1 = 2)) because X5 variable
domain is empty (Figure 6(7)). Agent a stops the search of agent b (Figure 6(8))
and then it processes the Nogood message, prunes its search space, finds a new
partial solution (X1 = 3, X2 = 3) and sends it to its children (Figure 6(9)). This
last partial solution is good for both children, thus they respond with a OK
message and the search finishes (Figure 6(10)).

4.1 DTH: Soundness

If no solution is found, this algorithm terminates. For instance, in Figure 6(10),
if agent b and agent c send Nogood messages, then the root agent empties its
domain and terminates with ”no solution found”.

For the agents to reach a consistent state, all their assigned variable values
must satisfy all constraints (inter-constraints and intra-constraints). Thus, the
soundness of DTH is clear.

What remains is that we need to show that DTH must reach one of these
conclusions in finite time. The only way that DTH might not reach a conclusion
is at least one agent is cycling among its possible values in an infinite processing
loop. Given DTH, we can prove by induction that this cannot happen as follows.

In the base case, assume that root agent is in an infinite loop. Because it is the
root agent, it only receives Nogood messages. When it proposes a possible partial
state, it either receives a Nogood message back, or else gets no message back. If

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 15

Fig. 6. Example of DTH

it receives Nogood messages for all possible values of its variables, then it will
generate an empty domain (any choice leads to a constraint violation) and DTH
will terminate. If it does not receive a Nogood message for a proposed partial
state, then it will not change that partial state. Either way, it cannot be in an
infinite loop. Now, assume that from root agent to agent in level k−1 in the tree
(k > 2) maintain a consistent partial state, and agent in level k is in an infinite
processing loop. In this case, the only messages that agent in level k receives are
Nogood messages from its children. Agent in level k will change instantiation
of its variables with different values. Because its variable’s domain is finite, this
agent in level k will exhaust the possible values in a finite number of steps and
sends a Nogood message to its parent (which contradicts the assumption that
agent in level k is in a infinite loop). Thus, by contradiction, agent in level k
cannot be in an infinite processing loop.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 M. Abril, M.A. Salido, and F. Barber

5 Evaluation

In this section, we carry out an evaluation between DTH and a complete CSP
solver. To this end, we have used a well-known centralized CSP solver called
Forward Checking (FC)2.

Experiments were conducted on random distributed networks of binary con-
straints defined by the 8-tuple < a, n, k, t, p1, p2, q1, q2 >, where a was the num-
ber of sub-CSPs, n was the number of variables on each sub-CSP, k the values
in each domain, t was the probability of connection between two sub-CSPs,
p1 was the inter-constraint density for each connection between two sub-CSPs
(probability of a non-trivial edge between sub-CSPs), p2 was the intra-constraint
density on each sub-CSP (probability of a non-trivial edge on each sub-CSP),
q1 was the tightness of inter-constraints (probability of a forbidden value pair
in an inter-constraint) and q2 was the tightness of intra-constraints (probability
of a forbidden value pair in an intra-constraint). These parameters are currently
used in experimental evaluations of binary Distributed CSP algorithms [3]. The
problems were randomly generated by using the generator library in [3] and by
modifying these parameters. For each 8-tuple < a, n, k, t, p1, p2, q1, q2 >, we have
tested these algorithms with 50 problem instances of random CSPs. Each prob-
lem instance execution has a limited CPU-time (TIME OUT) of 900 seconds.

% FC TIME_OUT % DTH TIME_OUT

0

100

200

300

400

500

600

700

800

900

(10 x 5) (15 x 5) (20 x 5) (25 x 5) (30 x 5) (35 x 5) (40 x 5)

Variables

T
im

e
(s

ec
o

n
d

s)

FC DTH

Fig. 7. Running Times and percentage of solution over TIME OUT = 900 seconds
with different variable number

In Figures 7 and 8 we compare the running time of DTH with a well-known
complete algorithm: Forward Checking. In Figure 7, number of variables on
each sub-CSP was increased from 10 to 40, the rest of parameters were fixed (<
5, n, 8, 0.2, 0.01, 0.2, 0.9, 0.3 >). We can observe that DTH outperformed the FC
algorithm in all instances. DTH running times were lower than FC running times.
Furthermore, DTH had less TIME OUT executions than FC. As the number of
2 FC was obtained from: http://ai.uwaterloo.ca/ vanbeek/software/software.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 17

% FC TIME_OUT % DTH TIME_OUT

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35 40

Domains

T
im

e
(s

ec
o

n
d

s)

FC DTH

Fig. 8. Running Times and percentage of solution over TIME OUT = 900 seconds
with different domain size

variables increased, the number of problem instance executions which achieve
TIME OUT was increased, that is precisely why running time increase more
slowly when number of variables increases.

In Figure 8, the domain size was increased from 5 to 40, the rest of parameters
were fixed (< 5, 15, d, 0.2, 0.01, 0.2, 0.9, 0.3 >). It can be observed that DTH out-
performed FC in all cases. As the domain remained greater, the computational
cost of DTH and FC also increased. As the domain size increased, the number
of problem instance execution which achieve TIME OUT was increased. Again,
DTH had less TIME OUT executions than FC.

Figure 9 shows the behavior of DTH and FC by increasing q2 in several in-
stances of q1 with 5 sub-CSPs, 15 variables and domain size of 10 (< 5, 15, 10, 0.2,
0.01, 0.2, q1, q2 >). It can be observed that:

– independently of q1 and q2, DTH maintained better behaviors than FC.
– As q1 increased, problem complexity increased and running time also in-

creased. However, as problem complexity increased, DTH carried out a bet-
ter pruning. Thus, DTH running times were rather better than FC running
times as q1 increased.

– Problem complexity also depend on q2. With regard to q2, the most complex
problems were those problems generated, in general, with half-values of q2
(q2 = 0.3 and q2 = 0.5). Moreover, for high values of q1, problems were also
complex with low values of q2 (q2 = 0.1). In all these cases, DTH had the
best behaviors.

Figure 10 shows the percentages of unsolved problems by DTH when tightness
of q1 increased, that is, problem complexity increased. Problem instances are the
same as Figure 9 instances. When problem complexity increased, the number of
unsolved solution also increased. However the number of unsolved solution by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 M. Abril, M.A. Salido, and F. Barber

0

20

40

60

80

100

120

0,1 0,3 0,5 0,7 0,9

q 2

DTH FC

0

20

40

60

80

100

120

0,1 0,3 0,5 0,7 0,9

q 2

DTH FC

0

20

40

60

80

100

120

0,1 0,3 0,5 0,7 0,9

q 2

DTH FC

0

20

40

60

80

100

120

0,1 0,3 0,5 0,7 0,9

q 2

DTH FC

0

20

40

60

80

100

120

0,1 0,3 0,5 0,7 0,9

q 2

DTH FC

Fig. 9. Running Times with different q1 and q2

0

1

2

3

4

5

6

7

0,1 0,3 0,5 0,7 0,9

q1

% DTH Lost-Solutions

% FC TIME_OUTs

Fig. 10. Percentage of unsolved problems by DTH and percentage of FC TIME OUTs
with different values of q1

DTH was always smaller than the number of TIME OUTs when we run FC
algorithm. Therefore, our heuristic search is a good option for solving complex
decomposable CSPs when we have a time limit.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DFS-Tree Based Heuristic Search 19

6 Conclusions

We have proposed an heuristic approach for solving distributed CSP. First, we
translate the original CSP into a DFS-tree CSP structure, where each node in
the DFS-tree is a sub-CSP. Our heuristic proposal is a distributed heuristic for
solving the resultant DFS-tree CSP structure. This heuristic exploits the Nogood
information for pruning the search space. DTH is sound but not complete. The
evaluation shows a good behavior in decomposable CSPs; particularly, the results
of the heuristic search are better as problem complexity increases. Furthermore,
completeness degree of the heuristics is appropriate for solving decomposable
CSPs. Thus, this technique became suitable for solving centralized problems
that can be decomposed in smaller subproblems in order to improve solution
search.

References

1. Dechter, R.: Constraint networks (survey). Encyclopedia Artificial Intelligence ,
276–285 (1992)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
3. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, E.-H.: Dischoco: A platform

for distributed constraint programming. In: Proceedings of IJCAI-2007 Eighth In-
ternational Workshop on Distributed Constraint Reasoning (DCR’07), pp. 16–27
(2007)

4. Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs.
Supercomputing (1995)

5. Karypis, G., Kumar, V.: Using METIS and parMETIS (1995)
6. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and

sparse matrix ordering. Journal of Parallel and Distributed Computing , 71–95
(1998)

7. Sadeh, N., Fox, M.S.: Variable and value ordering heuristics for activity-based
jobshop scheduling. In: proc. of Fourth International Conference on Expert Systems
in Production and Operations Management, pp. 134–144 (1990)

8. Salido, M.A., Barber, F.: A constraint ordering heuristic for scheduling problems.
In: Proceeding of the 1st Multidisciplinary International Conference on Scheduling:
Theory and Applications, vol. 2, pp. 476–490 (2003)

9. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on
Evalutionary Computation 6, 347–357 (2002)

10. Stutzle, T.: Tabu search and iterated local search for constraint satisfaction prob-
lems, Technischer Bericht AIDA9711, FG Intellektik, TU Darmstadt (1997)

11. Tsang, E.: Foundation of Constraint Satisfaction. Academic Press, London and
San Diego (1993)

12. Wallace, R., Freuder, E.: Ordering heuristics for arc consistency algorithms. In:
Proc. of Ninth Canad. Conf. on A.I., pp. 163–169 (1992)

13. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3, 185–207 (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases

Kenneth Anderson, Robert Holte, and Jonathan Schaeffer

University of Alberta, Computing Science Department,
Edmonton, Alberta, T6G 2E8, Canada

{anderson, holte, jonathan}@cs.ualberta.ca

Abstract. Perimeters and pattern databases are two similar memory-
based techniques used in single-agent search problems. We present partial
pattern databases, which unify the two approaches into a single memory-
based heuristic table. Our approach allows the use of any abstraction
level. We achieve a three-fold reduction in the average number of nodes
generated on the 13-pancake puzzle and a 27% reduction on the 15-
puzzle.

1 Introduction

Perimeters and pattern databases (PDBs) are two successful techniques that
improve forward search in single-agent search problems. They have proven ef-
fective at improving search performance when combined with minimal-memory,
depth-first search techniques such as IDA* [12]. Pattern databases, in particular,
have been used to great effect in solving puzzle, DNA sequence alignment, and
planning problems [2,18,4].

Perimeters and pattern databases are very similar in their approach to speed-
ing up search. Both techniques use retrograde (reverse) search to fill a memory-
based heuristic table. However, pattern databases use abstraction when filling
this table, whereas perimeters use none. Also, the memory limit determines the
abstraction level for pattern databases; the full PDB must completely fit in
memory. Perimeters on the other hand, are built without any abstraction; the
perimeter stops being expanded when a memory limit is reached.

We present two general techniques that allow the use of arbitrary abstraction
levels in between the two extremes. Partial pattern databases use memory sim-
ilarly to the perimeters, storing part of the space in a hash table. Compressed
partial PDBs use memory more efficiently, like pattern databases. Our unifying
approach allows flexibility when choosing the abstraction level. Through testing,
we can determine the best abstraction level for our domains.

We test on two complimentary puzzle domains: the K-pancake puzzle, which
has a large branching factor, and the 15-puzzle, which has a small branching
factor. Our techniques are compared against full pattern databases, which have
proven very effective on these domains. On the 13-pancake puzzle, keeping mem-
ory constant, we reduce the average number of generated nodes by a factor of
three. On the 15-puzzle, keeping memory constant, we reduce the average num-
ber of nodes generated by 27%.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 20–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 21

Section 2 examines related work on perimeters, pattern databases, and pre-
vious attempts at combining the two approaches. Partial pattern databases and
compressed partial PDBs are introduced in Section 3. Results on the K-pancake
puzzle and 15-puzzle are shown in Section 4 and Section 5, respectively. Section
6 presents our final analysis and possible extensions to our approach.

2 Background

The domains used in this paper are the K-pancake puzzle and the 15-puzzle.
The K-pancake puzzle consists of a stack of K pancakes all of different sizes,
numbered 0 to K − 1 (Figure 1). There are K − 1 operators, where operator
k (1 ≤ k ≤ K − 1) reverses the order of the top k pancakes. We refer to an
individual pancake as a tile and its placement in the stack as a location.

The 15-puzzle is comprised of a 4 by 4 grid of tiles, with one location empty.
The empty location is called the blank. Valid operations include swapping the
blank with one of up to 4 adjacent tiles. Figure 1 shows a possible arrangement
of tiles for the 15-puzzle.

7

6

5

4

3

2

1

0

2

76

8 9 11

15141312

1 3

54

10

Fig. 1. Goal node for 8-pancake (left) and 15-puzzle (right)

A node is a unique arrangement of tiles. Given a start and goal node, we
wish to find a path (series of operators) of minimal cost leading to the goal
node. In our domains, operators have unit cost. However, the ideas in this paper
are applicable to any domain that can be structured as a graph with directed,
weighted edges of non-negative cost.

IDA* is a traditional search technique proven to work well in these two do-
mains. IDA* is a depth-first search method that finds optimal solution paths
through a directed weighted graph [12]. Nodes are pruned if the total cost
through a node, f(n), exceeds a bound flimit according to the definition f(n) =
g(n)+h(n), where g(n) is the actual cost to node n and h is the heuristic estimate
of the remaining cost to the goal. IDA* iteratively increases the bound, flimit,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 K. Anderson, R. Holte, and J. Schaeffer

and re-searches until the goal is found. If h is admissible, does not overestimate
the cost to the goal, then IDA* guarantees finding an optimal path, provided
that one exists.

If a heuristic is consistent, then the change in heuristic between any two nodes
in the graph is less than or equal to the cost between the two nodes. Consistency
implies admissibility. If IDA* is used with an inconsistent heuristic, heuristic
values can be improved through the use of bidirectional-pathmax (BPMX) [8].
BPMX propagates heuristic inconsistencies through the search tree from parent-
to-child and child-to-parent, increasing heuristic values when appropriate. This
technique uses no extra memory in IDA* and takes very little time.

The original space, S, consists of the set of nodes that can reach the goal
through a series of operators. An abstract space is a set of abstract nodes and
all applicable operators, where every node in the original space maps to some
corresponding node in the abstract space. We use domain abstraction as our
abstraction technique [10]. The abstraction is created by renaming specific tiles
to the same name, x. These re-named tiles are called don’t-care tiles while the
other tiles are called unique tiles. In the case of the 15-puzzle, the blank will
always be a unique tile. When we refer to abstraction-N , we refer to a specific
abstraction with N unique tiles (the actual tiles vary with the domain). A coarse-
grained abstraction has fewer unique tiles (and hence covers more abstract nodes)
than a fine-grained abstraction.

The following are memory-based heuristic methods. Both techniques use ret-
rograde (backwards) search from the goal to improve or create heuristic values,
but they achieve this in quite different ways.

2.1 Perimeters

Perimeter search is a type of bidirectional search technique and requires a prede-
cessor function. Originally proposed by Dillenburg and Nelson, perimeter search
performs two successive searches [3]. The first search proceeds in the backwards
direction from the goal, forming a set of perimeter nodes P , which encompass
the goal. A node n is on the perimeter if n ∈ P , inside the perimeter if it
was expanded during perimeter creation, and outside the perimeter if it was
not expanded. Any node outside the perimeter must pass through some node
in the perimeter to reach the goal. Many techniques can be applied to generate
the perimeter: Breadth-first search creates a constant-depth perimeter [3,14]; A*
creates a constant-evaluation perimeter [3]; and expansion based on heuristic
difference creates another kind of perimeter [11].

If the perimeter is generated for one problem instance, then the backward and
forward searches are performed in series. The backward search forms a perimeter
and, if the start node is not found, it is followed by the forward search. However,
if the perimeter is constructed for use on multiple problem instances with the
same goal, then the interior of the perimeter, set A, is stored. When the forward
search begins, if the start is in set A, the actual cost to the goal is known so the
heuristic is corrected to this value. Otherwise the start is outside the perimeter
and the forward search begins.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 23

The second, forward search progresses either from the start to the perimeter,
called front-to-front evaluation, or from the start to the goal, called front-to-goal
evaluation. Front-to-front evaluation calculates the heuristic value of a node
based on the estimated cost through every node on the perimeter. Although
larger perimeters provide better heuristic values, the heuristic takes increasingly
longer to compute. Additionally, front-to-front evaluation requires a heuristic to
exist between any two distinct nodes.

By contrast, search using front-to-goal evaluation requires only a heuristic to
the goal. The heuristic of nodes found to be inside the perimeter is corrected
using the exact cost to the goal. The heuristic of nodes outside the perimeter
can sometimes be corrected; here are two different approaches for correcting the
heuristic values using front-to-goal evaluation. Using a depth-limited perimeter
where d is the cost bound, d is a lower bound on the true cost to the goal for
all nodes outside the perimeter [1]. Or, given a consistent heuristic, a correction
factor is equal to the lowest difference between the actual cost to the goal and
the estimated heuristic cost to the goal [11]. The correction factor is now added
to the original heuristic if outside the perimeter.

Any search technique will work for the forward search, but IDA* and similar
low-memory search techniques are most commonly employed for their adaptabil-
ity, scalability, and low memory requirements [3,14,11]. We use IDA* throughout
this paper.

2.2 Pattern Databases

Introduced by Culberson and Schaeffer, pattern databases use abstraction to
create a heuristic lookup table [2]. Retrograde search starts from the abstract
goal. The search proceeds backwards applying all applicable reverse operators
until the space is covered. The costs from the abstract goal in the abstract
space are recorded in a table and used as a heuristic in the forward search. This
produces an admissible and consistent heuristic.

Holte et al. have investigated generating and caching parts of pattern data-
bases during search in [9]. Similarly, Zhou and Hansen have demonstrated a
technique whereby provably unnecessary parts of the PDB are not generated
(given an initial consistent heuristic and an upper bound on solution length) [17].
Felner and Adler further iterated upon on this procedure using instance depen-
dent pattern databases [5]. We approach this problem from the opposite position;
how can we create and use part of a pattern databases and/or a perimeter over
multiple problem instances?

2.3 Perimeter and PDB Comparison

Perimeters and pattern databases are similar in many respects. Both perimeters
and pattern databases require a predecessor function. This predecessor function
enables retrograde search from the goal. Both procedures can also be improved
by using domain-specific properties: perimeters by using a heuristic function

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 K. Anderson, R. Holte, and J. Schaeffer

between two arbitrary nodes, and pattern databases through symmetry [2], ad-
ditivity [6], and duality [8,16].

The two techniques also differ in critical ways. First, pattern databases require
a node abstraction mechanism, which perimeters avoid. This freedom allows
perimeters to be applied to domains without any known abstraction. On the
other hand, where perimeter search requires an available heuristic between any
two nodes, pattern databases can generate a heuristic for domains where one is
not known. Finally, PDBs cover the entire space, while perimeters only cover
part of it (Figure 2). As a result, each node in the perimeter must store a node
identifier as well as the cost to the goal. In general, any partial set of the original
or abstract space requires extra memory to store the node identifier information.
Perimeters fall into this category, as do instance-dependent pattern databases.
On the other hand, because pattern databases cover the entire domain space,
heuristic values may be indexed by their nodeID (the node need not be stored
for each entry (Figure 3)).

2.4 Combining Perimeters with PDBs

Perimeter search works well for correcting pre-existing heuristics [3,14,11], while
pattern databases prove valuable for creating a heuristic to the goal node [2]. In
the remainder of this paper, we propose and investigate a new, general method
for combining these two techniques into a single lookup table.

Culberson and Schaeffer use a pattern database as a heuristic simultaneously
with a perimeter [1]. Because the pattern database only provides a heuristic to
the goal node, perimeter search must use a front-to-goal evaluation technique. If
a node is in the perimeter, we know the actual cost to the goal and use that for
the heuristic value. A perimeter with cost-bound d has the following property:
d equals the minimum cost to the goal of all nodes outside the perimeter. This
means that for any node n not inside this perimeter, h(n) ≥ d and is corrected
accordingly. In fact, as long as d is defined as above, this can be applied to any
shaped perimeter.

In a concurrent submission to this SARA symposium, Ariel Felner uses a
perimeter to seed a pattern database [7]. The pattern database is built using
the perimeter as the goal node. This represents an alternative procedure for
combining the techniques of perimeter search with pattern databases, but differs
significantly from the approach that we present in Section 3.

For every node on the perimeter, Kaindl and Kainz track the difference be-
tween the actual cost to the goal and the heuristic value [11]. We call the minimal
difference value for all nodes on the perimeter the heuristic correction factor. The
perimeter is build by expanding the node with the smallest difference, to increase
the heuristic correction factor. If the heuristic is consistent, they admissibly add
the heuristic correction factor to every node outside the perimeter. A pattern
database is a consistent heuristic, so this technique is applicable. However, Felner
has shown the following is true for the 15 puzzle using our abstraction method:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 25

given an abstract node a with an abstract cost c to the abstract goal, there exists
a node in the original space mapping to a with a cost c from the goal [7]. The same
is true for the K-pancake puzzle. Consider using a perimeter built by expanding
nodes with the lowest heuristic value [11]. To obtain a correctional factor equal
to one, the perimeter must have at least as many entries as the pattern space.
Because of the additional memory required by perimeters to store the nodeID
(see Figure 3), this method is impractical for our domains.

3 Partial Pattern Databases

Research in pattern databases is beginning to incorporate approaches typically
seen in perimeter search. Specifically, subsets of full pattern databases are be-
ing stored in the form of instance-specific PDBs and caching in hierarchical
search [17,5,9]. We take this one step further by storing part of a full PDB.
Our approach is not instance-specific; it reuses the same database over multiple
search instances with a fixed goal.

A partial pattern database consists of a set of abstract nodes A and their cost
to the goal, where A contains all nodes in S with cost to goal less than d. d is a
lower bound on the cost of any abstract node not contained in A. In essence, a
partial pattern database is a perimeter in the abstract space (with the interior
nodes stored). Any node n in the original space has a heuristic estimate to the
goal: if n is in the partial PDB, return the recorded cost; if n is not in the partial
PDB, return d. This heuristic is both admissible and consistent.

Building a partial PDB is similar to building a perimeter, only in the ab-
stract space. Retrograde search is performed starting from the abstract goal.
The heuristic values are recorded. When a memory limit is reached, the partial
PDB building stops and heuristic values are used for the forward search. Depth
d is the minimum cost of all abstract nodes outside the partial PDB. Note that
all abstract nodes in A with cost equal to d can be removed from the partial
PDB to save memory. This will not affect the heuristic.

On one extreme, a partial PDB with no abstraction reverts to exactly a
perimeter (with the interior nodes stored). On the other extreme, a partial
PDB with a coarse-grained abstraction will cover the entire space, and per-
forms exactly like a full PDB. However, a partial PDB does not store the data
as efficiently as a full PDB.

3.1 Memory Requirements

A full PDB encompasses the entire space (Figure 2); every node visited during
the forward search has a corresponding heuristic value in the lookup table. The
PDB abstraction level is determined by the amount of available memory. Finer-
grained abstraction levels are not possible because the memory requirements
increase exponentially with finer abstractions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 K. Anderson, R. Holte, and J. Schaeffer

φ1(goal)

PPDB

φ2(goal)

Perimeter

h = d1
h = d2

goal

State SpaceState Space State Space

Full PDB

Fig. 2. Coverage of original space by lookup tables (full PDB on left, partial PDB in
middle, and perimeter on right)

Partial PDBs, as perimeters, generally do not cover the entire space. During
the forward search, if a node is not contained in the partial PDB lookup table,
d is returned. Partial PDBs add flexibility over full PDBs by allowing the use
of any abstraction level. However, there are drawbacks with respect to memory
requirements.

Because full pattern databases cover the entire domain space, the heuristic
values in the lookup table are indexed by their unique node identifier (nodeID).
Therefore, a table of the exact size of the abstract space can be used and there
is no need to store the nodeID (Figure 3(a)). Memory is only used to store the
abstract cost to the goal. On the other hand, perimeters, instance-dependent
PDBs [17,5], and partial PDBs only cover part the space. As a result, each node
in the perimeter must store the nodeID in addition to the abstract cost to the
goal (Figure 3(b)). This requires extra memory for every table entry.

In our domains, the 15-puzzle and the pancake puzzle, partial pattern data-
base entries require nine times more memory than full pattern database entries.
This is a severe limitation on the effective use of partial pattern databases.

��
��
��

3

5

1

h(nodeID)

nodeID

(a) Full PDBs

�
�
�
�

�
�
�
�

�
�
�
�

3

5

1

h(nodeID)

hash(nodeID) nodeID

nodeID

nodeID

(b) Partial PDBs �
�
�
��
�
�
�

�
�
�
�

3

5

1

hash(nodeID)

min∀n∈hash{h(n)}

(c) Compressed Partial
PDBs

Fig. 3. PDB storage strategies

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 27

3.2 Compressed Partial PDBs

For perimeters and partial pattern databases, the added cost of storing a node’s
identification information is an expensive use of memory. To maintain efficiency,
the hash table should have a reasonable fill-factor, but space is inevitably wasted
on empty table positions. We therefore present a compressed version of a partial
PDB that does not store the nodeID and can be filled to any convenient fill-
factor.

Given an abstraction granularity, our hash function maps each abstract node
to a location. For all abstract nodes mapped to the same location, we store
the minimum heuristic value (to preserve admissibility) (Figure 3(c)). When we
query for a node’s heuristic value, we return the value stored in the table at that
node’s hashed location. This heuristic value is guaranteed to be admissible, but
it may be inconsistent.

The creation of compressed partial PDBs occurs as a preprocessing step.
Therefore, we can take a large amount of time, use machines with more available
memory, or use disk-based algorithms. The simplest technique is to use iterative-
deepening depth-first search from the abstract goal, filling a value in the table
if it is lower than the existing entry. However, unlike with full PDBs, if a node’s
heuristic value is larger than the entry in the table, it cannot be cut-off with-
out breaking admissibility. Therefore, this depth-first construction method must
use a complimentary technique to remove transpositions; we use a transposition
table [15]. This is the technique used in Section 4.

A second technique is to use breadth-first search. This removes transpositions,
but uses a large amount of memory for construction. However, delayed duplicate-
detection is an efficient disk-based algorithm that can be used to do this [13]. In
the interest of simplicity, we did not attempt this technique.

A third alternative is to build a full PDB at a fine-grained level using a ma-
chine with a large amount of memory. Full pattern databases can be computed
very efficiently using iterative-deepening depth-first search with only a small
amount of excess memory. This is the approach used in Section 5. The main
drawback to this approach is that it does not scale well to very fine-grained
abstractions. However, our results in Section 4 show that very fine-grained ab-
stractions are not necessary.

One item worth consideration is the hashing function. As the authors found
out, a simple modular hashing scheme can introduce regularity in the table. In
the worst case, a fine-grained compressed partial PDB can revert to exactly the
coarser-grained version. Also, depending on the hash function, the table may not
fill to 100%.

4 Experiments on the K-Pancake Puzzle

The abstractions used for the K-pancake puzzle have don’t-care tiles as the
low-indexed tiles. For example, abstraction-7 for the 12-pancake puzzle refers to
the abstraction ‘x x x x x 5 6 7 8 9 10 11,’ with x as a don’t-care. Note that
abstraction-11 is the finest-grained abstraction and is the same as the original

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 K. Anderson, R. Holte, and J. Schaeffer

space because there are 12 distinct tiles. We use the depth-first construction
technique to create the compressed PDBs.

4.1 Performance with Constant a Number of Entries

Throughout this section, we report the average number of nodes generated during
the forward search as our metric. Each data point is an average of 100 random start-
ing nodes. Partial pattern databases of various abstraction levels are used for the
heuristic. The number of entries in the partial PDB remains constant (specified in
the results tables), while the level of abstraction varies. IDA* with BPMX is used
for the forward search. Recall that BPMX only has an effect if the heuristic is in-
consistent; therefore, only the compressed partial pattern database will be affected
by using BPMX. Also, note that this is only a comparison between partial pattern
databases; full pattern databases make much more efficient use of memory. We will
cross-compare techniques in Section 4.2.

Table 1 shows the average number of nodes generated on the 8, 10, 12, and 13-
pancake puzzles. Each puzzle fixes the number of entries in the partial PDB to
exactly the number of entries of a full PDB with �K/2� unique tiles. For instance,
the 12-pancake puzzle partial PDBs each have 665,280 entries (six unique tiles).
The top data point of each column generates the same number of nodes as a
full pattern database, while the bottom data point generates the same number
of nodes as a perimeter.

Table 1. Average number of nodes generated using a single Partial PDB on K-Pancake
puzzle

Number of 8-Pancake 10-Pancake 12-Pancake 13-Pancake
Unique Tiles 1,680 entries 30,240 entries 665,280 entries 1,235,520 entries

(cost-bound d) (cost-bound d) (cost-bound d) (cost-bound d)

4 2,065 (7)

5 682 (5) 48,408 (9)

6 403 (5) 14,268 (6) 1,316,273 (11) 25,833,998 (12)

7 335 (5) 8,251 (6) 178,464 (8) 3,106,345 (8)
8 7,370 (6) 183,172 (7) 4,097,683 (7)

9 7,242 (6) 167,584 (7) 3,851,260 (7)

10 165,390 (7) 3,820,667 (7)

11 164,951 (7) 3,816,931 (7)

12 3,819,909 (7)

We see that with the same number of entries, but using a finer granularity
partial PDB, the average number of nodes generated reduces. Note however, that
in the 12-pancake puzzle, abstraction-7 produced fewer nodes than abstraction-
8. Search performance is very sensitive to the cost-bound of the partial pattern
database. The increase in nodes generated from abstraction-7 to abstraction-8
occurs because abstraction-7 has a larger cost-bound d than abstraction-8.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 29

Consider two partial pattern databases with the same cost-bound d, but one
being based on a coarser granularity than the other. The finer-grained database
will dominate the coarser-grained one because for every node n in the space,
hfine(n) ≥ hcoarse(n). Abstraction-8, 9, 10, and 11 on the 12-pancake puzzle
demonstrate this principle.

We will continue to see this trade-off between abstraction granularity and
database cost-bound throughout the results. We can think of this intuitively as
follows: making a partial PDB finer-grained improves the heuristic value of nodes
inside the database at the cost of nodes outside the database (if d gets smaller).
At some point the heuristic outside the partial PDB becomes so inaccurate that
the performance is dominated by these nodes. Refining the abstraction further
from this point generally produces worse performance. Analogous results are doc-
umented in [10], where increasing small heuristic values improves performance,
but only up to a point.

Table 2. Average number of nodes generated using a single compressed partial PDB
filled to 70% on K-Pancake puzzle

Number of 8-Pancake 10-Pancake 12-Pancake 13-Pancake
Unique Tiles 1,680 entries 30,240 entries 665,280 entries 1,235,520 entries

(cost-bound d) (cost-bound d) (cost-bound d) (cost-bound d)

4 2,065 (7)

5 1,024 (6) 48,414 (8)

6 1,227 (6) 18,026 (8) 1,316,284 (10) 25,834,132 (10)

7 1,564 (6) 22,117 (7) 358,585 (9) 6,481,829 (9)
8 29,867 (7) 379,655 (9) 6,599,913 (9)

9 39,080 (7) 520,648 (8) 10,142,002 (9)

10 677,805 (8) 15,214,336 (8)

11 841,576 (8) 22,068,332 (8)

12 27,498,382 (8)

Table 2 shows the average number of nodes generated over 100 search instances
using compressed partial PDBs. The compressed database is filled to 70% full.
We examine the 8, 10, and 12-pancake puzzles.

The top entry of each column matches closely with the performance of a full
pattern database (shown at the top of the corresponding columns in Table 1).
At this abstraction level, each entry corresponds to one abstract node; if the
compressed partial PDB were filled to 100% and had no hash collisions, then
it would be identical to a full PDB. However, these conditions do not hold in
general, so the top entries in each table do not match exactly.

Let us examine another two corresponding entries in each table, 12-Pancake
at abstraction-7. For the partial pattern database (Table 1), there is an average
of 178,464 nodes generated. For the compressed partial PDB (Table 2), there
are 358,585 generated nodes on average. Keep in mind that both tables have the
same number of entries, but the entries themselves are different.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 K. Anderson, R. Holte, and J. Schaeffer

The compressed partial PDB generates more nodes for three reasons. First,
the table is only filled to 70% full, but this has a small effect because the un-
reached entries are filled with d, limiting the heuristic error. Second, the heuristic
values in the perimeter are degraded by taking the minimal value of all nodes
hashed to the same location. Third and most importantly, the heuristic correc-
tion of d is not applied to all nodes outside the perimeter. Because we store the
minimum heuristic value, nodes outside the perimeter overlap with nodes inside
the perimeter, reducing the effect of the heuristic correction factor.

However, because of the construction method, the partial PDB does not nec-
essarily dominate the compressed partial PDB. The compressed partial PDB is
filled until 70% full. Overlapping nodes cause the table to fill more slowly than
the partial PDB. Thus the final cost-bound d may be greater in the compressed
partial PDB than the partial PDB. This is seen in our example with the 12-
Pancake puzzle at abstraction-7: the partial PDB is built to d = 8 while the
compressed partial PDB is built to d = 9.

As the granularity becomes finer, we quickly reach the point of diminishing
returns. In all examples, this occurs after adding one more unique tile to the orig-
inal PDB abstraction. For the 8, 10, 12, and 13-pancakes, the optimal granularity
is 5, 6, 7, and 8 unique tiles respectively. Further refining of the abstraction only
causes the number of generated nodes to increase. This is caused by the poor,
high-valued heuristics.

The improvement factor is the improvement over the original abstraction (top
entry in Table 1). This factor increases with puzzle size. The 8, 10, 12, and 13-
pancake puzzles’ best performance factors are 50%, 63%, 73%, and 75%. This
indicates that savings may scale favorably to larger problems.

4.2 Performance with Constant Memory

As stated, partial pattern databases need extra memory to store the nodeID.
In the case of the 10-pancake puzzle, the amount of memory used to store the
nodeID is about eight times larger than the heuristic value that is stored. To
directly compare partial PDBs with full PDBs and compressed partial PDBs, we
need to keep memory constant. So we limit the number of entries in the partial
PDB appropriately.

Each full PDB entry consists of one byte, as does each compressed partial
PDB entry. Each partial PDB entry consists of 9 bytes (1 for the heuristic value
and 8 for the node id) plus extra room in the hash table for empty entries
(fill factor). We therefore calculate an approximate number of entries for the
partial PDB that fits into the designated number of bytes using the formula:
entriespartialPDB = bytes/9 ∗ 0.7.

Table 3 directly compares the performance of the three heuristic techniques
(full PDBs, partial PDBs, and compressed partial PDBs) on the 10-pancake
puzzle while keeping memory constant. Each data entry is the average number of
generated nodes over 100 random instances. For the partial PDB and compressed
partial PDB, we tested from one to nine unique tiles; this table shows only the
best result. The associated number in parentheses depicts the number of unique

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 31

Table 3. Average number of nodes generated using a single PDB of the best abstraction
granularity. The tests are performed on the 10-Pancake puzzle while keeping memory
constant.

10-Pancake Puzzle

Memory Limit Normal PDB Best Partial PDB Best Compressed Partial PDB
(unique tiles) (unique tiles) (unique tiles)

3,628,800 bytes 40 (9) 2,003 (7) 40 (9)
1,814,400 bytes 200 (8) 4,628 (7) 70 (9)
604,800 bytes 1,216 (7) 16,147 (6) 417 (8)
151,200 bytes 7,756 (6) 78,073 (5) 2,695 (7)
30,240 bytes 48,408 (5) 511,794 (5) 18,026 (6)
5,040 bytes 337,021 (4) 3,299,716 (4) 135,352 (5)

tiles used to generate the data point. For each memory limit, we show the best-
performing database in bold.

Partial PDBs by themselves are not an efficient use of memory; as in all tested
cases, partial PDBs generate at least an order of magnitude more nodes than full
PDBs. However, the compressed partial PDBs are an efficient use of memory.
The top row covers the entire space at the finest granularity; this is a perfect
heuristic. In this case the full PDB has slightly better performance because the
compressed partial PDB is only filled to 70% (this is not apparent in the table
because of averaging). The improvement factor for every row except the first is
between 60% and 65%, indicating similar performance gains when the memory
limit is smaller than the size of the abstract space.

5 Experiments on the 15-Puzzle

The abstractions used for the 15-puzzle are as follows: abstraction-8 is the
fringe [2], ‘b x x 3 x x x 7 x x x 11 12 13 14 15’; and abstraction-9 adds
one more unique tile, ‘b x x 3 x x x 7 x x 10 11 12 13 14 15’. The heuristic used
is the maximum of Manhattan Distance and the PDB or compressed partial
PDB lookup. No symmetries or other search enhancements are used.

Each test is run over all 100 Korf problem instances [12]. The databases
compared are the full pattern database with abstraction-8 (PDB8) and the
compressed partial pattern database using abstraction-9 (PPDB9). PPDB9 is
created from the full PDB using abstraction-9. We use IDA* with bidirectional
pathmax (BPMX) to take advantage of the inconsistency in the compressed
partial PDBs.

The columns of Table 4 are as follows:

– The PDB is the type of pattern database used: either the full pattern data-
base PDB8 or the compressed partial pattern database PPDB9.

– Memory is the number of bytes in the database: in this case held constant
at 518,918,400 bytes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 K. Anderson, R. Holte, and J. Schaeffer

Table 4. Nodes generated on the 15-puzzle using a single PDB technique and Man-
hattan Distance while keeping memory constant

PDB Memory BPMX Fill d small medium large total

PDB8 518,918,400 DC 100 64 283,309 6,929,803 80,291,808 1,067,439,170

PPDB9 518,918,400 Yes 50 38 792,425 14,465,508 123,546,247 1,840,334,929
PPDB9 518,918,400 Yes 60 39 651,152 12,181,920 101,463,007 1,525,898,811
PPDB9 518,918,400 Yes 70 40 554,045 10,529,666 86,096,055 1,304,112,453
PPDB9 518,918,400 Yes 80 41 487,551 9,361,520 75,459,248 1,149,450,912
PPDB9 518,918,400 Yes 90 43 409,084 7,943,644 62,933,272 965,285,000
PPDB9 518,918,400 Yes 98 66 330,510 6,473,794 50,611,367 780,456,393

PPDB9 518,918,400 No 98 66 539,065 9,917,842 82,560,198 1,242,278,013

– BPMX tells whether bidirectional pathmax is used: Yes it is used, No it is
not used, and DC (don’t care) means that BPMX has no effect.

– Fill shows the percentage of memory that is expanded when creating the
pattern database. Because of the hashing scheme, however, even when filled
completely, 2% of PPDB9 remains unexpanded.

– For PDB8, d is the largest value in the database. For PPDB9, d is the cost
bound (as defined in Section 3).

– The small problems are the problems that result in searches with less than
1,000,000 generated nodes when solving with PDB8. Medium problems are
between 1,000,000 and 31,999,999 generated nodes. The hard problems are
greater than or equal to 32,000,000 generated nodes. There are 43 small
problems, 48 medium problems, and 9 hard problems. We report the average
number of nodes expanded in each of the three problem sets.

– total is the sum of all generated nodes over the 100 Korf problem instances.

At less than 90% full, using BPMX, PPDB9 generates more total nodes than
PDB8. PPDB9 generates slightly fewer nodes when at 90% full, and at 98%
full the total number of generated nodes is decreased by 27%. However, this
result can be slightly misleading, since the total is dominated by the largest
searches (which build over three orders of magnitude larger search trees). Thus,
we also examine the problems grouped by difficulty. With and without BPMX,
the small problems have worse performance using PPDB9 than PDB8. However,
the large problems have improved performance when using BPMX and filled to
80% or more. When PPDB9 is 98% full, the small, medium, and large problems
have -95%, 6%, and 36% improvement respectively, in average number of nodes
generated. Not only does the total number of generated nodes decrease by 27%,
but the hard instances are improved the most.

The last row shows the importance of using BPMX in the 15-puzzle to im-
prove performance. Using BPMX leads to a 37% reduction in the total number
of nodes generated when PPDB9 is 98% full. This pushes the performance ahead

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partial Pattern Databases 33

of PDB8. Small, medium, and large instances benefit equally from BPMX, im-
proving the number of generated nodes by 39%, 35%, and 39% respectively. This
indicates that the influence of BPMX may not depend on instance difficulty.

6 Conclusions

This paper presents partial pattern databases, a general approach that merges
the ideas of front-to-goal perimeter search and full pattern databases. Our ap-
proach decouples the abstraction granularity from the database size, freeing the
programmer to use the best abstraction for a given domain and amount of mem-
ory. Partial PDBs are applicable to domains with a predecessor function and a
space abstraction technique and can be re-used over multiple problem instances
with the same goal.

Two versions are presented: the original partial pattern databases, which store
the heuristic value and the nodeID; and the more memory-efficient compressed
partial PDBs, which store only one heuristic value. Two complementary puzzle
domains are tested: the K-pancake puzzle, which has a large branching factor
of K − 2, and the 15-puzzle, which has an average branching factor of 2.1.

Compressed partial pattern databases are shown to be most effective on the
K-pancake puzzle; the number of nodes generated on the 13-pancake puzzle is
reduced by three-fold. Uncompressed partial pattern databases are not shown to
be effective for this domain because of the memory inefficiency.

On the 15-puzzle, compressed partial PDBs in combination with the Man-
hattan Distance heuristic are slightly less successful. This is because MD often
corrects a PDB’s low heuristic values, which is one of the primary benefits of
using partial PDBs. However, in combination with BPMX, and filled to 98%, we
are able to reduce total number of nodes generated by 27%. Interestingly, hard
problem instances are better improved than small instances.

This paper presents, implements, and tests partial PDBs in general terms.
This technique can be further incorporated with other general methods. For ex-
ample, the maximum can be taken over multiple heuristic lookup tables, whether
they be PDBs, partial PDBs, or compressed partial PDBs [10]. As well, domain-
specific adaptations and improvements can be integrated into this framework.
Two glaring examples are additivity in the 15-puzzle and duality in the pan-
cake puzzle. On the 15-puzzle, partial PDBs can always be made into additive
versions by ignoring don’t-care tile movements. Compressed partial PDBs can
effectively compress larger full additive pattern databases into memory-efficient
versions. On the pancake puzzle, we can use any pattern database technique to
get a heuristic to the goal. By using the general duality principal [8], we can get
get an admissible heuristic between any two nodes (map the operator sequence
Π between two nodes onto the goal to get node nd, and look up h(nd) from the
PDB). This would allow for front-to-front heuristic improvement using a partial
pattern database, effectively coming full-circle back to the original perimeter
search technique.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 K. Anderson, R. Holte, and J. Schaeffer

Acknowledgments

We would like to express our thanks and appreciation to the reviewers for their
comments and corrections, Cameron Bruce Fraser and David Thue for proof-
reading, and Ariel Felner for his thought-provoking discussions. This work was
supported by NSERC and iCORE.

References

1. Culberson, J.C., Schaeffer, J.: Efficiently searching the 15-puzzle. Technical Report
TR 94-08, Department of Computing Science, University of Alberta (1994)

2. Culberson, J.C., Schaeffer, J.: Searching with pattern databases. In: Canadian
Conference on AI, pp. 402–416 (1996)

3. Dillenburg, J.F., Nelson, P.C.: Perimeter search. Artificial Intelligence 65(1), 165–
178 (1994)

4. Edelkamp, S.: Planning with pattern databases. In: ECP: European Conference on
Planning, Toledo, pp. 13–34 (2001)

5. Felner, A., Adler, A.: Solving the 24 puzzle with instance dependent pattern data-
bases. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp.
248–260. Springer, Heidelberg (2005)

6. Felner, A., Korf, R.E., Hanan, S.: Additive pattern database heuristics. JAIR:
Journal of Artificial Intelligence Research 22, 279–318 (2004)

7. Ariel Felner and Nir Ofek. Combining perimeter search and pattern database
abstractions. In: Symposium on Abstraction Reformulation and Approximation
(SARA) (2007)

8. Felner, A., Zahavi, U., Schaeffer, J., Holte, R.: Dual lookups in pattern databases.
In: IJCAI, pp. 103–108 (2005)

9. Holte, R.C., Grajkowski, J., Tanner, B.: Hierarchical heuristic search revisited. In:
Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 121–133.
Springer, Heidelberg (2005)

10. Holte, R.C., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern
databases. In: ICAPS, pp. 122–131 (2004)

11. Kaindl, H., Kainz, G.: Bidirectional heuristic search reconsidered. Journal of Arti-
ficial Intelligence Research 7, 283–317 (1997)

12. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Ar-
tifificial Intelligence 27(1), 97–109 (1985)

13. Korf, R.E.: Delayed duplicate detection: Extended abstract. In: Gottlob, G., Walsh,
T. (eds.) IJCAI, pp. 1539–1541. Morgan Kaufmann, San Francisco (2003)

14. Manzini, G.: BIDA: An improved perimeter search algorithm. Artificial Intelli-
gence 75(2), 347–360 (1995)

15. Reinefeld, A., Marsland, T.A.: Enhanced iterative-deepening search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 16(7), 701–710 (1994)

16. Zahavi, U., Felner, A., Holte, R., Schaeffer, J.: Dual search in permutation state
spaces. In: AAAI, pp. 1076–1081 (2006)

17. Zhou, R., Hansen, E.A.: Space-efficient memory-based heuristics. In: AAAI, pp.
677–682 (2004)

18. Zhou, R., Hansen, E.A.: External-memory pattern databases using structured du-
plicate detection. In: AAAI, pp. 1398–1405 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CDB-PV: A Constraint Database-Based Program
Verifier�

Scot Anderson1 and Peter Revesz2

1 Southern Adventist University, Collegedale, TN 37315, USA
scot@southern.edu

2 University of Nebraska-Lincoln, NE 68588, USA
revesz@cse.unl.edu

Abstract. In this paper we present a new system called CDB-PV that uses con-
straint databases (CDBs) for program verification (PV). The CDB-PV system
was implemented in C++ and tested on several sample programs that are difficult
to verify using other methods. The CDB-PV system also runs efficiently for the
sample programs. The CDB-PV approach is similar to abstract interpretation but
it allows non-convex approximations.

1 Introduction

Programs increasingly control many aspects of our daily lives such as air traffic control
(ATC) systems. Failures such as the computer controlled Airbus A320 crash on June
26, 1988 [1] show that programs need thorough debugging and verification before risk-
ing lives. We propose a new constraint database approach to program debugging and
verification.

Verifying the correctness of programs is undecidable in general. That is easy to see by
looking at the well-known halting problem, which is the problem of deciding whether a
given program with a given input will terminate. Since the halting problem is undecid-
able in general and termination of programs is usually considered one of the conditions
of correctness, it is clear that program verification is also undecidable in general.

However, let us take a deeper look at program verification and identify what can be
done. We start with the following definitions.

Definition 1 (Program State). A program state is a pair consisting of the values as-
signed to the program variables and the specific location of the program code where
such an assignment occurs during an execution of the program.

We call the meaning of the program the semantics of the program. In this paper we are
concerned with the following semantics, called the collecting semantics1.

Definition 2. Define the collecting semantics as a set of all possible program states
that may occur for some execution and some input.

� This research was supported in part by a NSF grant and a NASA Space and EPSCoR grant.
1 See Cousot lecture notes: http://www.cs.wisc.edu/ cs704-1/LectureNotes/
9.AbstractInterpretation.txt

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 35–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/6 {OT1/ptm/m/n/9 }OT1/ptm/m/n/6 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/ptm/m/n/6 {OT1/ptm/m/n/9 }OT1/ptm/m/n/6 size@update enc@update http://www.cs.wisc.edu/~cs704-1/LectureNotes/9.AbstractInterpretation.txt
protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://www.cs.wisc.edu/~cs704-1/LectureNotes/9.AbstractInterpretation.txt

36 S. Anderson and P. Revesz

A key idea in program verification is that the collecting semantics can be approximated
using a terminating program that takes as input the program and some approximation
parameters and gives either an under-approximation or an over-approximation, which
we define as follows.

Definition 3 (Over-Approximation). Let S be the semantics of a program. We say that
any P l where S ⊆ P l is an over-approximation.

Definition 4 (Under-Approximation). Let S be the semantics of a program. We say
that any Pl where Pl ⊆ S is an under-approximation.

The approximation is often useful to check certain concerns about the program. These
concerns are expressed as some conditions called error states that need to be avoided
by the program to be considered correct.

If the over-approximation does not contain the error states, then the program is con-
sidered correct. However, error states contained in an over-approximation may be spu-
rious. Hence they do not prove the program incorrect.

The spurious error states may be avoided by tightening the over-approximation. If
repeated tightening fails to eliminate the error states, then we may suspect that the
program is incorrect. By using an under-approximation, we can often prove that the
program is incorrect, i.e., falsify it. If an under-approximation of the semantics contains
some error state, then the program is incorrect. Falsification identifies some of the errors
in the program, hence it is a useful aid in debugging the program.

Our program verification approach falls into the category of Abstract Interpretation.
The abstract interpretation technique provides the framework for extracting
abstract collecting-semantics of a program [2,3,4,5,6,7,8]. The abstraction usually over-
approximates the values of the program variables in a convex state space that models all
possible program states and makes verification of correctness possible. Many different
abstractions and combinations of abstractions evolved over the years and hence no suc-
cinct definition of abstract interpretation exists2. Rather, abstract interpretation gathers
information about programs in order to provide sound answers to questions about their
run-time behaviors. These semantics can then be used to design automatic program an-
alyzers [5]. Abstract interpretation is often understood in terms of abstract-evaluation
using an abstract interpreter on an abstraction of the program.

Definition 5 (Semantic operator). Let P be a program written in a language L. Define
the semantic operator S as a mapping from L to the semantic domain of L denoted D.

S : L → D (1)

We usually write the semantics of P as S[P] ∈ D.

Definition 2 gives an example representation for the semantic domain.

Definition 6 (Abstraction operator). The abstraction of a program P written in a
language L maps the semantics of P in D to an abstract domain D�

α : D → D� (2)

2 See www.di.ens.fr/∼cousot/AI/ for Cousot’s overview of Abstract Interpretation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

www.di.ens.fr/~cousot/AI/

CDB-PV: A Constraint Database-Based Program Verifier 37

The purpose of the abstract domain it to provide a decidable domain of that can be used
to evaluate the program.

Definition 7 (Abstract Evaluation). Given a program P and an abstraction operator
α, α[S[P]] is an abstract evaluation if it halts with an over-approximation of P .

In the constraint database approach we perform abstract evaluation by creating a Dat-
alog query for a constraint database and execute the query using constraint database
approximation techniques.

The constraint database approach to program verification is a widely applicable
method similar to abstract interpretation. However, while abstract interpretation meth-
ods usually rely on widening operators that yield convex approximations, the constraint
database approach can yield non-convex approximations. This extra precision still al-
lows an efficient calculation of approximate program semantics, which are crucial to
the problem of program verification.

The remainder of the paper is organized as follows: Section 2 gives a review of con-
straint database approximation techniques. Section 3 describes the constraint database
approach to verifying programs. Section 4 gives experimental results for three sample
programs and uses them as a comparison to other techniques. Section 5 discusses the
running time of the method and gives the running time for verifying each of the sample
programs. Finally, Section 6 gives conclusions and future work.

2 Review of Constraint Database Approximation

The constraint logic programming languages proposed by Jaffar and Lassez [9], whose
work led to CLP(R) [10], by Colmerauer [11] within Prolog III, and by Dincbas et
al. [12] within CHIP, were Turing-complete. Kanellakis, Kuper, and Revesz [13] con-
sidered those to be impractical for use in database systems and proposed less expressive
constraint query languages that have nice properties in terms of guaranteed and efficient
evaluations. Many researchers advocated extensions of those languages while trying to
keep termination guaranteed. For example, the least fixed point semantics of Datalog
(Prolog without function symbols and negation) with integer gap-order constraint pro-
grams can always be evaluated in a finite constraint database representation [14].3

Definition 8 (Addition Constraints). Addition constraints [15] have the form:

±x ± y θ b or ± x θ b (3)

where x and y are integer variables and b is an integer constant called a bound, and θ
is either ≥ or >.

By allowing addition constraints, it is easy to express a Datalog program that will not
terminate using a standard bottom-up evaluation [15]. Consider the following Datalog
program:

3 A gap-order is a constraint of the form x − y ≥ c or ±x ≥ c where x and y are variables and
c is a non-negative integer constant.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 S. Anderson and P. Revesz

D(x, y, z) :— x − y ≤ 0, − x + y ≤ 0, z ≤ 0, − z ≤ 0.
D(x, y, z) :— D(x′, y, z′), x − x′ ≤ 1, − x + x′ ≤ −1,

z − z′ ≤ 1, − z + z′ ≤ −1.
(4)

This expresses that the Difference of x and y is z. Further, based on Equation (4) we
can also express a Multiplication relation as follows:

M(x, y, z) :— x ≤ 0, − x ≤ 0, y ≤ 0, − y ≤ 0, z ≤ 0.
M(x, y, z) :— M(x′, y, z′), D(z, z′, y), x − x′ ≤ 1, − x + x′ ≤ −1
M(x, y, z) :— M(x, y′, z′), D(z, z′, x), y − y′ ≤ 1, − y + y′ ≤ −1

(5)

Using Equations (4) and (5) we can express Diophantine equations which by [16] is
Turing complete. Hence, in the limit as l → −∞, this method is Turing complete and
can express any program. In this paper we limit ourselves to verifying programs with
integer variables.

The D and M recursive programs must be evaluated until no new facts are discov-
ered. This leads to the well known least fixed point definition.

Theorem 1 (Tarski’s fixed point Theorem [17]). Let (L, ⊆) be any complete lattice.
Suppose F : L → L is monotone increasing. Then the set of all fixed points of f is a
complete lattice with respect to ⊆.

Let F be the set of facts discovered after evaluation of the Datalog rule given in Equa-
tion (4). Repeated application of Dn(F) will not reach a point where it has discovered
all the facts. If Dn(F) = Dn+1(F), D will have reached a least fixed point.

Definition 9 (Least Fixed Point). The least fixed point of a function f is a fixpoint v
such that v is smaller than or equal to every other fixpoint of f .

However the programs from (4) and (5) will never reach a fixed point. For example
applying the recursive rule D gives the following facts where the bound on the right
continues to increase to infinity.

D(x, y, z) :— x − y = 0, z = 0.

D(x, y, z) :— x − y = 1, z = 1.

D(x, y, z) :— x − y = 2, z = 2.

...

For Datalog, we always have a least fixed point [18], but when we add addition
constraints there must be an approximation method that terminates the evaluation to
find an approximation.

For constraint databases, Revesz [19,15] introduced two methods for approximating
the least fixpoint evaluation of addition constraints by modifying the standard bottom-
up evaluation.

Definition 10 (Lower-Bound Modification). Let l < 0 be any fixed integer constant.
We change in the constraint tuples the value of any bound b to be max(b, l). Given a
Datalog program P the result of a bottom-up evaluation of P using this modification is
denoted Pl.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CDB-PV: A Constraint Database-Based Program Verifier 39

Definition 11 (Upper-Bound Modification). Let l < 0 be any fixed integer constant.
We delete from each constraint tuple any constraint with a bound that is less than l.
Given a Datalog program P the result of a bottom-up evaluation of P using this modi-
fication is denoted P l.

Example 1 (Lower/Upper-Bound Modification). Consider the difference relation D and
suppose that we set an approximation bound at b = −2. The lower bound approximation
changes in the constraint tuple the value of any bound b to be max(b, u). This value will
not cause the evaluation given in Equation (6) to change until the bound a bound is equal
to 3. Perform the evaluation as follows:

D(x, y, z) :— x′ − y ≤ 2, − x′ + y ≤ −2, − z′ ≤ 2, − z′ ≤ −2 (6)

x − x′ ≤ 1, − x + x′ ≤ −1, z − z′ ≤ 1, − z + z′ ≤ −1.

Simplifying results in bounds that cause a problem.

D(x, y, z) :— x − y ≤ 3, − x + y ≤ −3, z ≤ 3, − z ≤ −3 (7)

Applying the lower bound rule, change the any bound greater than 3 to be 2. This results
in the following:

D(x, y, z) : − x − y ≤ 2, −x + y ≤ −3, z ≤ 2, −z ≤ −3 (8)

The last step in the requires checking the satisfiability of the modified clause. Combin-
ing the first two and last two constraints results in:

D(x, y, z) :— 0 ≤ −1 (9)

Since Equation (9) is not satisfiable, the evaluation does not add a clause to the relation,
and the evaluation of the recursive clause halts.

Applying the upper bound rule, to Equation (7), requires that we delete the second
and fourth constraints which gives:

D(x, y, z) :— x − y ≤ 3, z ≤ 3 (10)

This fact is added to the relation and we use it in the recursive call:

D(x, y, z) :— x′ − y ≤ 3, z′ ≤ 3
x − x′ ≤ 1, −x + x′ ≤ −1, z − z′ ≤ 1, − z + z′ ≤ −1.

The result of this is
D(x, y, z) :— x − y ≤ 4, z ≤ 4 (11)

This constraint is not added to the relation because it is subsumed by (10). Trying all
the other facts in the recursive clause also results in a subsumed fact and hence the
evaluation halts.

These modifications lead to the following approximation theorem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 S. Anderson and P. Revesz

Theorem 2 (Revesz [15]). For any Datalog program P and constant l < 0 the follow-
ing is true:

Pl ⊆ lfp(P) ⊆ P l (12)

where lfp(P) is the least fixed point of P . Further, Pl and P l can be computed in finite
time.

Hence l can be considered a parameter that controls how tight the over/under-
approximation will be.

We implemented these two constraint modifications in CDB-PV to allow the over-
approximation and under-approximation of the semantics of Datalog with addition con-
straints for program verification.

3 The Constraint Database Approach to Verification

CDB-PV is built on the MLPQ [20] constraint database system which provides a high
degree of precision by allowing non-convex and disjoint regions to represent collecting
semantics. We control the level of approximation by a single parameter l which corre-
sponds to the parameters used in Definitions 10 and 11. Figure 1 provides an overview
of the constraint database approach to the verification of programs [21].

The first two steps form the framework that translates a program into Datalog. The
next step calculates an over-approximation given the bounding parameter l. The results
from the over-approximation (or under-approximation) often contain a large set of data
due to the disjoint representation of variable values. The constraint database approach
simplifies interpretation of results by providing native facilities to query the results for
error states using Datalog or SQL. Not finding the error state in the over-approximation
verifies program correctness. If we suspect that the error state is present, we perform
the under-approximation. Finding the error state in the under-approximation falsifies
the program.

In theory the constraint database approach can reach arbitrary precision by calculat-
ing the under-approximation and over-approximation repeatedly as l → −∞. Hence
this method approaches a precise evaluation. While this may not be possible for every
constraint in an invariant, it may be reasonable to lower l to a point where the constraint
in the over-approximation and under-approximation that identifies an error state con-
verges. This method provides a way to find constraints in invariants that converge in
parallel with constraints that do not even though a precise evaluation is not possible in
general.

The framework for translating a program to Datalog adapts the standard pre-condition
transition system used in static analysis and compiler optimization techniques.

Definition 12 (Transition System). A transition system is a tuple (S, ∧, →) where S
is a set of states, ∧ is a set of labels and →⊆ S × ∧ ×S is a ternary relation of labeled
transitions. If p, q ∈ S and β ∈ ∧, then (p, β, q) ∈→ is written as:

p
β→ q

where β is a set of conditions and operations to the source state variables that must be
made to enter the target state.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CDB-PV: A Constraint Database-Based Program Verifier 41

Error States: E
No

Yes: Decrease l

Approximation
Try Over−

Again?

No

Yes

No

Yes: Decrease l

Not known

Find an under−approximation

semantics of D

Program considered incorrect

Try Under−
Approximation

Again?

Translate T into a Datalog
program D that uses
Addition Constraints.

Input Program P

System T.

Yes

Program considered correct

Translate P into a transition

 semantics of D
P l of the least fixpoint

E ∩ P l = ∅

E ∩ Pl = ∅

Find an over-approximation

Pl of the least fixpoint

Fig. 1. Constraint Database Approach

The abstract domain we use consists of addition constraints. The framework trans-
lates a program into Datalog in the first two steps shown in Figure 1.

Given a program P with n lines of code and m variables, step (1) gives the transition
system where a program statement (or state) pi ∈ S denotes the program statement

on line i about to be executed. A transition from some state pj to pi denoted pj
β→ pi

represents the rule to enter state pi where β contains the “execution” of the program
statement on line j. The values changed by β affect the values available for execution in
pi. How the new values affect the values of variables in state pi will determine the type
of approximation. In Datalog these values will be added to the set of existing values. In
abstract interpretation the new values cause widening of the existing invariants.

For example, Miné [22] defines an abstract interpretation widening technique as
follows:

Definition 13 (Widening Operator of [22]). Let M and N be two ABMs. Then the
widening of M by N , written as M∇N is defined as:

[M ∨ N][i, j] =
{

M [i, j] if M [i, j] ≤ N [i, j]
−∞ if N [i, j] ≤ M [i, j]

}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 S. Anderson and P. Revesz

Example 2. The simple program shown in Table 1 is translated into Datalog where
transition system is given in Figure 2. The constraint relations L2 - L7 shown at the
right represent the variable values prior to the execution of the corresponding lines at
the left. L1 remains undefined because no variables have been assigned prior to the
execution of Line 1.

Table 1. Simple Goto Program

1. a ← 0
2. a ← a + 1
3. if a > 2 then goto 6
4. if a = 2 then goto 7
5. goto 2
6. ...
7. ...

→

begin%RECURSIVE%

L2(a) :- a=0.
L2(a) :- L5(a).
L3(a) :- L2(a1), a-a1=1.
L4(a) :- L3(a), a≤2.
L5(a) :- L4(a), a<2.
L5(a) :- L4(a), a>2.
L6(a) :- L3(a), a>2.
L7(a) :- L4(a), a=2.

end%RECURSIVE%

4 Experiments and Results

We tested the constraint database approach on three different examples. The first exam-
ple compares our constraint database approach the widening technique of Miné using
the simple code example from Example 2. The second experiment gives a tight bound
for the automaton from [6]. The final example demonstrates the verification of a search
algorithm involving Euclidean distance calculations. We give an examination of running
time for the method and each individual sample program in Section 5.

The left side of Table 2 shows invariants found by two abstract evaluation passes
using the Miné widening technique given in Example 2. In the second entry, an invariant
of a ≥ 1 entering line (3) indicates that line (6) is executed.

We recursively evaluate the Datalog program in MLPQ with l = −2 and either over-
approximation or under-approximation to obtain the result on the right in Table 2. The
resulting invariants for line 3 never indicate that a > 2 and hence we find that the
L6(a) relation is missing. Suppose that line (6) identifies an error, then our program
technique identifies the unentered error state correctly where the abstract interpretation
method of Miné does not.

Consider the subway train speed regulation system in Figure 3 described by [6]. Each
train detects “beacons” that are marks placed along the track and receives a “second”
signal from a central clock.

Let b and s be counter variables for the number of beacons and second signals re-
ceived. Further, let d be a counter variable that describes how long the train is decelerating

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CDB-PV: A Constraint Database-Based Program Verifier 43

Initial L2

L3

a ← 1

a ← a + 1

L4L5
a �= 2

a ≤ 2

a > 2
L6

L7
a = 2

ε

Fig. 2. Transition System for the Simple Program

Table 2. Invariants Obtained by Miné Widening

Miné Widening Results
Line 1st Entry 2nd Entry

2 0 ≤ a ≤ 0 0 ≤ a

1 ≤ a
3 1 ≤ a ≤ 1 if condition a > 2 true

goto 6

4 1 ≤ a ≤ 1

5 1 ≤ a ≤ 1

MLPQ output
L2(a) :— a=0.
L2(a) :— a=1.
L3(a) :— a=1.
L3(a) :— a=2.
L4(a) :— a=1.
L4(a) :— a=2.
L5(a) :— a=1.
L7(a) :— a=2.

by applying its brake. The goal of the speed regulation system is to keep | b − s |≤ 20
while the train is running.

The speed of the train is adjusted as follows. When s+10 ≤ b, then the train notices
it is early and applies the brake as long as b > s. Continuously braking causes the train
to stop before encountering 10 beacons.

When b + 10 ≤ s the train is late and will be considered late as long as b < s. As
long as any train is late, the central clock will not emit the second signal.

The counter automaton enforces the conditions described above using guard con-
straints followed by question marks, and x + + and x − − as abbreviations for the
assignments x := x + 1 and x := x − 1, respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 S. Anderson and P. Revesz

b := s := d := 0

STOPPEDINITIAL

LATE ON TIME BRAKE

b−s < −1?, b++

b−s = −1?, b++

b−s = −9?, s++

b−s < 9?, b++ b−s > −9?, s++

b−s = 9?, b++, d:=0

b−s = 1?, s++

b−s> 1 ?, s++ d < 9?, b++, d++

b−s = 1?, s++ d <= 9?, b++

b−s > 1?, s++

Fig. 3. Subway Automaton

The subway counter automaton from Figure 3 can be translated into the Datalog
program shown in Table 3. It expresses the semantics (combinations of states and state
variable values) of the automaton using difference constraints.

Error Condition: Suppose that this automaton is correct if |b − s| < 20 in all states at
all times. Then this automaton is incorrect if |b − s| ≥ 20 at least in one state at one
time. The table below shows the result of the under-approximation using the MLPQ
constraint database system.

MLPQ Under Approximation

BRAKE LATE ONTIME STOPPED

1 ≤ b − s ≤ 19 −10 ≤ b − s ≤ −1 −9 ≤ b − s ≤ 9 1 ≤ b − s ≤ 20
10 ≤ b ≤ 19 10 ≤ s ≤ 19 0 ≤ b ≤ 9 11 ≤ b ≤ 20
0 ≤ s ≤ 18 0 ≤ d ≤ 9 0 ≤ s ≤ 18 0 ≤ s ≤ 9
0 ≤ d ≤ 9 0 ≤ d ≤ 9 0 ≤ d ≤ 9

The above was obtained by using an approximation bound of l = −30. If l is de-
creased, then the upper bounds of b and s increase. Therefore, in the limit those upper
bounds can be dropped.

Further, since the above is a under approximation, any possible integer solution of the
constraints below the state names must occur at some time. For example, the STOPPED

relation must contain the case b − s = 20 at some time. Therefore, this automaton is
incorrect by our earlier assumption.

The Verimag laboratory has software for testing program correctness using abstract
interpretation. [6] gave the following over approximation derived using Verimag’s soft-
ware for the subway automaton.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CDB-PV: A Constraint Database-Based Program Verifier 45

Table 3. Subway Datalog Program

//Subway Automaton
begin%RECURSIVE%

ONTIME(b,s,d) :- b=0, s=0, d=0.
ONTIME(b,s,d) :- STOPPED(b,s1,d), b-s1=1, s-s1=1.
ONTIME(b,s,d) :- ONTIME(b1,s,d), b1-s<9, b-b1=1.
ONTIME(b,s,d) :- ONTIME(b,s1,d), b-s1>-9, s-s1=1.
ONTIME(b,s,d) :- ONBRAKE(b,s1,d), b-s1=1, s-s1=1.
ONTIME(b,s,d) :- LATE(b1,s,d), b1-s=-1, b-b1=1.
ONBRAKE(b,s,d) :- ONTIME(b1,s,d1), b1-s=9, b-b1=1, d=0.
ONBRAKE(b,s,d) :- ONBRAKE(b1,s,d1), d1<9, b-b1=1, d-d1=1.
ONBRAKE(b,s,d) :- ONBRAKE(b,s1,d), b-s1>1, s-s1=1.
STOPPED(b,s,d) :- ONBRAKE(b1,s,d), d≤9, b-b1=1.
STOPPED(b,s,d) :- STOPPED(b,s1,d), b-s1>1, s-s1=1.
LATE(b,s,d) :- ONTIME(b,s1,d), b-s1=-9, s-s1=1.
LATE(b,s,d) :- LATE(b1,s,d), b1-s<-1, b-b1=1.

end%RECURSIVE%

Verimag Over Approximation

BRAKE LATE ONTIME STOPPED

1 ≤ b − s ≤ d + 10 −10 ≤ b − s ≤ −1 −9 ≤ b − s ≤ 9 1 ≤ b − s ≤ 19
d + 10 ≤ b s ≥ 10 b ≥ 0 19 ≤ 9s + b
0 ≤ d ≤ 9 s ≥ 0 b ≥ 10

We showed in [23] that the Verimag system produced incorrect results. However a
over-approximation still needs to be found to verify the automaton. We made several
runs with different l values ranging from −10 to −30 for both over and under approxi-
mations. By increasing the l value to −20 alone and performing the evaluation with both
approximations, we derive a tight bound −10 ≤ b − s ≤ 20 across the four constraint
relations.

Suppose a yacht is traveling through the ocean between two ports. The yacht does
not have enough supplies to make the trip, hence it must resupply at several possible
locations. The program shown in Table 4 determines if a point (22, 19) can be reached
from a starting position of (0, 0). It includes the Depot relation containing possible
resupply locations. The Leg and Reach rules calculate Euclidian distance using the
D (difference) and M (multiplication) relations. The approximation value l limits the
evaluation of D and M which may be pre-computed to save time. The reach relation
determines if the destination can be reached. This example can be extended by adding
a relation for multiple destinations. In that case knowing error destinations would allow
us to query the reach relation for incorrect values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 S. Anderson and P. Revesz

The results of running this program in MLPQ verify that the reach relation contains
the values x = 22 and y = 19. This verifies the Resupply Depot program as correct.

Table 4. Yacht Resupply Example

begin%SupplyDepotOptimized%

Depot(id,x,y):- id=1, x=0, y=19.
Depot(id,x,y):- id=2, x=6, y=8.
Depot(id,x,y):- id=3, x=15, y=12.
Depot(id,x,y):- id=4, x=25, y=5.
D(x,y,z) :- x-y=0, z=0.
D(x,y,z) :- D(x1,y,z1), x-x1=1, z-z1=1.
D(x,y,z) :- D(x1,y,z1), x-x1=-1, z0z1=-1
M(x,y,z) :- x=0, y=0, z=0.
M(x,y,z) :- M(x1,y,z1), D(z,z1,y), x-x1≥1, x1-x≥-1.
M(x,y,z) :- M(x,y1,z1), D(z,z1,x), y-y1≥1, y1-y≥-1.
Leg(x,y) :- x=0, y=0.
Leg(x,y) :- Leg(x1,y1), Depot(id,x,y), AD(x,x1,dx),

AD(y,y1,dy), M(dx,dx,dx2), M(dy,dy,dy2),
dx2+dy2≤100 ,dx≤10, dy≤10.

Reach(x,y) :- x=22, y=19, Leg(x1,y1), AD(x,x1,dx),
AD(y,y1,dy), M(dx,dx,dx2), M(dy,dy,dy2),
dx2+dy2≤100, dx≤10, dy≤10.

end%SupplyDepotOptimized%

5 Running Time of Methods and Sample Programs

Calculating the lfp of a Datalog program is exponential in the worst case. However, the
running time depends on the amount of recursion in the Datalog program. We also note
that a program need only be verified once and longer running times may be tolerated
for program verification. The running times we report below indicate the time for the
Datalog query to complete. The CDB-PV system uses 4,368kb of memory with no
program loaded. The memory usage reported indicates the memory usage of the CDB-
PV system when running the particular example and includes the 4,368kb. All runs were
performed on an AMD Athlon 2000 with 1 GB or RAM except the Subway program
which was run on an AMD X2 64bit computer with 1 GB of RAM.

The simple program from Table 2 can be evaluated precisely or with the under/over-
approximation in the same running time. As this program has no recursion, the running
time is less than our ability to measure (e.g. < 0.001 seconds) and the memory used is
5,556kb.

The yacht example from Table 4 depends on the D and M relations given in Equa-
tions (4) and (5). The under-approximation and over-approximation converge with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CDB-PV: A Constraint Database-Based Program Verifier 47

Table 5. Yacht Program Running Times (seconds) and Memory Usage (KB)

Bound Under-Approximation Over-Approximation
Time Memory Time Memory

-10 1.969 5680 33.593 7020
-11 2.297 5716 37.886 7176
-12 2.922 5712 20.395 6716
-13 3.375 5724 25.014 7012
-14 3.966 5752 31.869 7336
-15 5.106 5764 35.538 7704

l = −15. We executed the query with l = −10, ... − 15. In this more complicated
example we still have good running times and memory usage as shown in Table 6.

These results show a dip on the over-approximation at l = −12. We believe that runs
with larger l values require more calculations to find the upper bound of the Reach re-
lation. With l < −12, the calculation cost of D and M dominate the time and memory.

The subway Datalog program from Table 3 has more recursion and complicated
calculations. We expect it to take the longest time. The running times and memory
usage for various runs are given in Table 6.

Table 6. Subway Automaton Running Times (hh:mm:ss) and Memory Usage (KB)

Bound Under-Approximation Over-Approximation
Time Memory Time Memory

-18 0:07:01 25,900 1:14:35 237,744
-19 0:09:32 31,028 1:15:50 231,596
-20 0:12:51 32,364 1:33:16 277,648
-21 0:16:35 43,308 1:43:28 286,264
-22 0:20:48 50,164 1:55:09 312,396

6 Conclusion and Future Work

We implemented an arbitrarily precise program verification and falsification method
using constraint databases and approximation. The experiments showed that the con-
straint database method can more accurately approximate collecting semantics than
other methods using widening techniques. Using over- and under-approximation we
showed that our previous under-approximation constraint for the subway automaton is
tight. In the ship resupply problem we showed our method is powerful enough to ex-
plore more complex mathematical expressions. While simple programs can be verified
quickly, more complex programs may take longer as seen in the subway automaton ver-
ification. However, this method does provide precision beyond other techniques. Future
work includes improving running time and memory efficiency while maintaining high
precision and accuracy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 S. Anderson and P. Revesz

References

1. Kilroy, C.: Investigation: Air france 296 (1997), http://www.airdisaster.com/
investigations/af296/af296.shtml

2. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceed-
ings of the Second International Symposium on Programming, 106–130 (1976)

3. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation of Fixpoints. In: Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages, pp. 238–
252. ACM Press, New York (1977)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 84–96. ACM Press, New York (1978)

5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4), 511–547
(1992)

6. Halbwachs, N.: Delay analysis in synchronous programs. In: Courcoubetis, C. (ed.) CAV
1993. LNCS, vol. 697, pp. 333–346. Springer, Heidelberg (1993)

7. Kerbrat, A.: Reachable state space analysis of lotos specifications. In: Proceedings of the 7th
IFIP WG6.1 International Conference on Formal Description Techniques VII, London, UK,
pp. 181–196. Chapman & Hall, Ltd., Sydney, Australia (1995)

8. Cousot, P.: Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

9. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: POPL ’87: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, New York,
NY, USA, pp. 111–119. ACM Press, New York (1987)

10. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and system. ACM
Trans. Program. Lang. Syst. 14(3), 339–395 (1992)

11. Colmerauer, A.: Note sur prolog iii. In: SPLT’86, Séminaire Programmation en Logique,
159–174 (1986)

12. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The Con-
straint Logic Programming Language CHIP. In: Proceedings of the International Conference
on Fifth Generation Computer Systems, vol. 2, pp. 693–702 (1988)

13. Kanellakis, P., Kuper, G., Revesz, P.: Constraint Query Languages. Journal of Computer and
System Science 51(1), 26–52 (1995)

14. Revesz, P.: A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Con-
straints. Theoretical Computer Science 116(1-2), 117–149 (1993)

15. Revesz, P.: Introduction to Constraint Databases. Springer-Verlag, London (2002)
16. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
17. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math 5(2),

285–309 (1955)
18. Ullman, J.: Principles of database and knowledge-base systems. Computer Science Press,

Rockville, Md (1988)
19. Revesz, P.Z.: Reformulation and approximation in model checking. In: Koenig, S., Holte,

R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 202–218. Springer, Heidelberg (2002)
20. Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., Wang, Y.: The MLPQ/GIS constraint data-

base system. In: ACM SIGMOD International Conference on Management of Data (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.airdisaster.com/investigations/af296/af296.shtml
http://www.airdisaster.com/investigations/af296/af296.shtml

CDB-PV: A Constraint Database-Based Program Verifier 49

21. Revesz, P.: The constraint database approach to software verification. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 329–345. Springer, Heidelberg (2007)

22. Miné, A.: The octagon abstract domain. In: Proceedings Analysis, Slicing and Transforma-
tion, pp. 310–319. IEEE Press, New York (2001)

23. Anderson, S., Revesz, P.: Verifying the incorrectness of programs and automata. In: Zucker,
J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 1–13. Springer, Heidelberg
(2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 50–63, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generating Implied Boolean Constraints
Via Singleton Consistency

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

roman.bartak@mff.cuni.cz

Abstract. Though there exist some rules of thumb for design of good models
for solving constraint satisfaction problems, the modeling process still belongs
more to art than to science. Moreover, as new global constraints and search
techniques are being developed, the modeling process is becoming even more
complicated and a lot of effort and experience is required from the user. Hence
(semi-) automated tools for improving efficiency of constraint models are
highly desirable. The paper presents a low-information technique for
discovering implied Boolean constraints in the form of equivalences,
exclusions, and dependencies for any constraint model with (some) Boolean
variables. The technique is not only completely independent of the constraint
model (therefore a low-information technique), but it is also easy to implement
because it is based on ideas of singleton consistency. Despite its simplicity, the
proposed technique proved itself to be surprisingly efficient in our experiments.

Keywords: implied constraints, reformulation, singleton consistency, SAT.

1 Introduction

Problem formulation is critical for efficient problem solving in formalisms like SAT
(satisfiability testing), LP (linear programming), or CS (constraint satisfaction). LP
and SAT formalisms are quite restricted, to linear inequalities in LP and logical
formulas in SAT. Hence problem formulation is studied for a long time in LP and
SAT because it is not always easy to express real-life constraints using linear
inequalities or logical formulas. We cay say that the problem formulation is the core
of courses for normal users of LP and SAT, while the solving techniques are studied
primarily by experts and researchers contributing to improving the solving techniques.
Opposite to SAT and LP, the CS formalism is very rich concerning its expressivity
(any constraint can be directly modeled there). Hence the users get a big freedom in
expressing their problems as constraint satisfaction problems which has some
negative consequences. First, because the solvers need to cover the generality of the
problem formulation, it is hard to improve their efficiency, and, actually, we have not
observed the dramatic increase of speed of constraint solvers similar to SAT and LP
solvers. Second, the main burden on efficient problem solving is on the user who
must understand the details of the solving process to formulate the problem in an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 51

efficient way. Note that sometimes a small change in the model, such as adding a
single constraint, may dramatically influence efficiency of problem solving which
makes the modeling task even more complicated. There exist some rules of thumb
how to design efficient constraint models [10,13], but constraint modeling is still
assumed to be more art than science. There exist some automated techniques for on-
fly problem re-formulation such as detecting and breaking symmetries during search
(for a short survey see [13]) or no-good recording (introduced in [14] and formally
described in [6]). Usually the problem (re-)formulation is up to the user by using
techniques such as adding symmetry breaking or implied constraints, encoding parts
of the problem using specialized global constraints, or adding dominance rules.

In this paper, we address the problem of fully automated generation of useful
implied constraints in constraint satisfaction problems. Informally speaking, by a
useful implied constraint we mean a constraint than is deduced from the existing
model (hence implied) and that positively contributes to faster problem solving (hence
useful). A fully automated technique means that the implied constraints are generated
for any given constraint model without any user intervention. According to the
principle that the best constraint model will be the one in which information is
propagated first [10] we are trying to generate implied constraints that propagate more
than the existing constraints (remove more inconsistencies from the model). Recall
that more inconsistencies can be easily removed from any constraint model by
applying a stronger consistency technique, for example by using path consistency
instead of arc consistency. However, the main problem with stronger consistency
techniques is their time and space complexity which disqualifies these techniques
from being used repeatedly in the nodes of the search tree. Naturally, stronger
consistency techniques can be applied once before the search starts but then their
effect is limited to removing initially inconsistent values from variables’ domains. We
propose to exploit information from these stronger consistency techniques in the form
of implied constraints that are deduced during the initial consistency process and
added to the constraint model. In particular, we propose to use singleton arc
consistency [5] to deduce new constraints between Boolean variables in the problem.
The rationale for using singleton arc consistency (SAC) is that this meta-technique is
easy to implement on top of any constraint model (singleton consistency is a meta-
technique because it works on top of other “plain” consistency techniques such as arc
consistency or path consistency). The reasons for restricting to Boolean variables are
twofold. First, singleton consistency is an expensive technique especially when
applied to variables with large domains so Boolean variables seem to be a good
compromise. Second, we need to specify the particular form of constraints that we are
learning, which is easier for Boolean variables. To be more specific, at this stage we
are learning only the equivalence, implication, and exclusion constraints. In [1] we
already showed that SAC over Boolean variables contributes a lot to removing initial
inconsistencies so our hope is that the constraints derived from SAC can further help
in problem solving.

The paper is organized as follows. After giving the initial motivation for our work,
we will define more formally the used notions and techniques. Then we will present
the core of the proposed technique and the paper will be concluded by an
experimental section showing the benefits and detriments of the proposed method.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

52 R. Barták

For now, we can reveal that despite the simplicity of the proposed method, the
experiments showed surprising speed-ups for some problems.

2 Motivation

In [2] we proposed a novel constraint model for description of temporal networks
with alternative routes similar to [4]. Briefly speaking, this model consists of a
directed acyclic graph or in general a Simple Temporal Network [7], where the nodes
are annotated by Boolean validity variables. There are special constraints between the
validity variables describing logical relations between the nodes (we call them parallel
and alternative branching). These constraints specify which nodes should be selected
together to form one of the possible alternative routes through the network. Figure 1
shows an example of alternative branching together with a constraint model
describing the relations between the validity variables.

Fig. 1. A simple graph with alternative branching (left) and its formulation as a constraint
satisfaction problem (left) over the validity variables

The above model is useful for description of manufacturing scheduling problems,
but it suffers from several drawbacks. The main issue is that the problem of deciding
which nodes are valid in the network is NP-complete in general [2]. Hence, opposite
to Simple Temporal Networks [7] we cannot expect a complete polynomial constraint
propagation technique that removes all inconsistencies from the constraint model. For
example, the constraint model in Figure 1 cannot discover, using standard
(generalized) arc consistency, that VA = 1 if VD is set to 1 (and vice versa). In [3] we
proposed some pre-processing rules that can deduce implied constraints improving
the filtering power of the constraint model. In particular, we focused on discovering
(some) equivalent nodes, that is, the nodes whose validity status is identical in all
feasible solutions (such as nodes A and D in Figure 1). Unfortunately, we also
showed there that the problem whether two nodes are equivalent is also NP-hard. Our
pre-processing rules from [3] are based on contracting the graph describing the
problem and it is not easy to implement them and to extend them to other problems.
Moreover, this method is looking only for equivalent nodes and ignores other useful
relations such as dependencies and exclusions.

The above problem is not the only problem combining Boolean and temporal
variables. Fages [8] studies a constraint model for describing and solving min-cutset
problems and log-based reconciliation problems. Again, there are Boolean validity
variables, which can be connected by dependency constraints in case of log-based
reconciliation problems, and ordering variables describing the order of the nodes in a
linear sequence of nodes (to model acyclicity of the selected sub-graph). We believe

B

A D

C

ALT ALT
VA = VB + VC

VD = VB + VC

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 53

that there are many other real-life problems where Boolean variables are combined
with numerical variables. Our learning method might be useful for such problems to
discover implied constraints between the Boolean variables that also take in account
the other constraints. Naturally, we can learn implied constraints in problems with
Boolean variables only, such as SAT problems.

3 Preliminaries

A constraint satisfaction problem (CSP) P is a triple (X, D, C), where X is a finite set
of decision variables, for each xi ∈ X, Di ∈ D is a finite set of possible values for the
variable xi (the domain), and C is a finite set of constraints. A constraint is a relation
over a subset of variables that restricts possible combinations of values to be assigned
to the variables. Formally, a constraint is a subset of the Cartesian product of the
domains of the constrained variables. We call the variable Boolean if its domain
consists of two values {0, 1} (or similarly {false, true}). A solution to a CSP is a
complete assignment of values to the variables such that the values are taken from
respective domains and all the constraints are satisfied. We say that a constraint C is
(generalized) arc consistent if for any value in the domain of any constrained
variable, there exist values in the domains of the remaining constrained variables in
such a way that the value tuple satisfies the constraint. This value tuple is called a
support for the value. Note that the notion arc consistency is usually used for binary
constraints only, while generalized arc consistency is used for n-ary constraints. For
simplicity reasons we will use the term arc consistency independently of constraint’s
arity. The CSP is arc consistent (AC) if all the constraints are arc consistent and no
domain is empty. To make the problem arc consistent, it is enough to remove values
that have no support (in some constraint) until only values with a support (in each
constraint) remain in the domains. If any domain becomes empty then the problem
has no solution. We say that a value a in the domain of some variable xi is singleton
arc consistent if the problem P|xi=a can be made arc consistent, where P|xi=a is a CSP
derived from P by reducing the domain of variable xi to {a}. The CSP is singleton arc
consistent (SAC) if all values in variables’ domains are singleton arc consistent.
Again, the problem can be made SAC by removing all SAC inconsistent values from
the domains. Figure 2 shows an example of a CSP and its AC and SAC forms.

Fig. 2. A graph representation of a CSP, an arc consistent problem, and a singleton arc
consistent problem (from left to right)

Assume now the constraint satisfaction problem with Boolean variables A, B, C,
and D and with constraints A = B + C and D = B + C (like in Figure 1). This problem
is both AC and SAC. Now assume that we assign value 1 to variable A. The problem

{a,b}

{a,b}

{a,b,c}{c}

≠ ≠

≠
≠

≠

{a,b,c}

{a,b,c}

{a,b,c} {c}

≠ ≠

≠
≠

≠

{a,b}

{a,b}

{c} {c}

≠ ≠

≠
≠

≠

CSP AC SAC

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 R. Barták

remains AC but it is not SAC because value 0 cannot be assigned to variable D. This
is an example of weak domain pruning in our temporal networks with alternatives. If
we now include constraint A = D and make the extended problem AC then value 0 is
removed from the domain of D by AC. Clearly, any assignment satisfying the original
constraints also satisfies this added constraint. Hence we call this constraint implied,
because the constraint is logically implied by the original constraints (sometimes,
these constraints are also called redundant). Our goal is to find such implied
constraints that contribute to stronger domain filtering.

4 Learning Via SAC

As we already mentioned in the introduction and motivation, our original research
goal was to easily identify some equivalent nodes in the temporal networks with
alternatives. Recall, that finding all equivalent nodes is an NP-hard problem [3] so we
focused only on finding equivalences similar to those presented in Figure 1 (nodes A
and D). An easy way, how to identify such equivalences, is a trial-and-error method
similar to shallow backtracking or SAC. Basically, we will try to assign values to
pairs of variables and if we find that only identical values can be assigned to the
variables then we deduce that the variables are equivalent (they must be assigned to
the same value in any solution). As a side effect, we can also discover some
dependencies between the variables (if 1 is assigned to B then 1 must be assigned to
A) and exclusions between the variables (either B or C must be assigned to 0 or in
other words it is not possible to assign 1 to both variables B and C).

We will now present the learning method for an arbitrary constraint satisfaction
problem P. Recall, that we will only learn specific logical relations between the
Boolean variables of P. We will gradually try to assign values to variables and each
time we try the assignment, this assignment is propagated to other variables (the
problem is made AC). If the assignment leads to a failure then we know that the other
value in the domain must be assigned to the variable (recall that we are working with
Boolean variables). The whole learning process consists of two stages.

First, we collect information about which variables are instantiated after assigning
value 1 to some variable A. We distinguish between directly instantiated variables,
that is, those variables that are instantiated by making the problem P|A=1 arc consistent
(one value in the variable domain is refuted by AC so the other value is used), and
indirectly instantiated variables, that is, those variables where we found their value
by refuting the other value in a SAC-like style (AC did not prune the domain, but
when we try to assign a particular value to the variable it leads to a failure so the other
value is used). Informally speaking, if we assign value 1 to variable A and make the
problem arc consistent then all variables that are newly instantiated are directly
instantiated variables. Indirectly instantiated variables are those variables B that are
not instantiated by AC in P|A=1 but for which only one value is compatible with A = 1
because if the other value is assigned to B, it leads to a failure after making the
problem AC (see procedure Learn below). More formally, let B be a non-
instantiated (free) Boolean variable in AC(P|A=1), where AC(P) is the arc consistent
form of problem P (inconsistent values are removed from the domains of variables). If
P|A=1,B=0 is not arc consistent then value 0 cannot be assigned to B, hence value 1 must

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 55

be used for B. Symmetrically, we can deduce that value 0 must be assigned to B if
P|A=1,B=1 is not arc consistent. Together, we can deduce which value must be used for
B if value 1 is assigned to A. If both values for B are feasible then no information is
deduced. If no value for B is feasible then value 1 cannot be used for A and hence A
must be instantiated to 0. Note that information about indirectly instantiated variables
is very important because it will help us to deduce implied constraints that improve
propagation of the original constraint model. More formally, we are looking for
implied constraints C such that AC(P|C) ⊂ AC(P), where P|C is a problem P with
added constraint C and the subset relation means that all domains in AC(P|C) are
subsets of relevant domains in AC(P) and at least one domain in AC(P|C) is a strict
subset of the relevant domain in AC(P). In other words, constraint C helps in
removing more inconsistencies from problem P.

The learning stage deduces three types of implied constraints. If B = 0 is indirectly
deduced from the assignment A = 1 and A = 0 is indirectly deduced from the
assignment B = 1 then the pair {A, B} forms an exclusion, which is an implied
exclusion constraint (A = 0 ∨ B = 0). Notice that this constraint really improves
propagation because for example if 1 is assigned to A then the constraint immediately
deduces B = 0, while the original set of constraints deduced no pruning for B.
Similarly, if B = 1 is indirectly deduced from the assignment A = 1 then B depends on
A, which is an implied dependency constraint (A = 1 ⇒ B = 1). Again, this constraint
improves propagation. Note that we introduce this constraint only if variables A and
B are not found to be equivalent. The equivalent variables are found using the
following procedure. We construct a directed acyclic graph where the nodes
correspond to the variables and the arcs correspond to the dependencies between the
variables. These dependencies are found in the first stage, we assume both direct
dependencies discovered by the AC propagation and indirect dependencies discovered
by the SAC-like propagation. Strongly connected components of this graph form
equivalence classes of variables. Note that if A and B are in a strongly connected
component then (A = 1 ⇒* B = 1) and (B = 1 ⇒* A = 1), where ⇒* is a transitive
closure of relation ⇒. All equivalent variables must be assigned to the same value in
any solution so we can put equality constraint between these variables.

The following code of procedure Learn shows both the data collecting stage and
the learning stage of our method. BoolVars(P) is a set of not-yet instantiated Boolean
variables in P, doms(P) are domains of P, DX = {V} means that the domain of
variable X consists of one element V, and AC(P) is the arc consistent form of problem
P (AC(P) = fail if problem P cannot be made arc consistent).

The main advantage of the proposed method is simplicity and generality. Thanks to
meta-nature of singleton consistency it can be implemented easily in any constraint
solver and it works with any constraint satisfaction problem (even if global
constraints and non-Boolean variables are included). The time complexity of the data
collection stage is O(n2.|AC|), where n is the number of Boolean variables and |AC| is
the complexity to make the problem arc consistent. Strongly connected components
of the dependency graph can be found in time not greater than O(n2) and exclusions
and dependencies are generated in time O(n2). Clearly, majority of time to learn
implied constraints by the above method is spent by collection information using the
SAC-like method.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 R. Barták

procedure Learn (P: CSP)
 for each A in BoolVars(P) do // data collecting stage
 Q ← AC(P|

A=1
)

 Direct(A) ← { X/V | D
X
 = {V} in doms(Q)}

 for each B in BoolVars(Q) s.t. A ≠ B & Q ≠ fail do
 if AC(Q|

B=0
) = fail then

 Q ← AC(Q|
B=1
)

 else if AC(Q|
B=1
) = fail then

 Q ← AC(Q|
B=0
)

 end for
 Indirect(A) ← { X/V | D

X
 = {V} in doms(Q)} – Direct(A)

 if Q = fail then
 P ← AC(P|

A=0
)

 if P = fail then stop with failure
 end for
 // learning stage
 G ← (BoolVars(P), {(A,B) | B/1 ∈ Direct(A) ∪ Indirect(A)})
 Equiv ← StronglyConnectedComponents(G)
 Excl ← { {A,B} | B/0 ∈ Indirect(A) & A/0 ∈ Indirect(B)}
 Deps ← { (A,B) | B/1 ∈ Indirect(A) & ¬ {A,B} ⊆ X ∈ Equiv}
 return (Equiv, Excl, Deps)
end Learn

5 Implementation and Experiments

To evaluate whether our learning technique is useful for problem solving we
implemented the learning technique in SICStus Prolog 3.12.3 and tested it on 1.8 GHz
Pentium 4 machine running under Windows XP. Note that we used a naïve (non-
optimal) implementation of the SAC algorithm that is called SAC-1 [5]. This
algorithm simply assigns a value to the variable and propagates this assignment via
standard arc-consistency algorithm. The algorithm does not pass any data structures
between several runs which makes it non-optimal. Nevertheless, its greatest
advantage is that the implementation is very easy and can be realized in virtually any
constraint solver. For the experiments we used existing benchmarks for min-cutset
problems [11] and a dozen of benchmarks for SAT problems [9].

5.1 Learning for CSP

In our first experiment, we compared efficiency of the original constraint model for
min-cutset problems from [8] with the same constraint model enhanced by the learned
implied constraints. Note that these constraint models contain both Boolean variables
(validity) and integer variables (ordering of nodes). Recall that the min-cutset
problem consists of finding the largest subset of nodes such that the sub-graph
induced by these nodes does not contain a cycle. So it is an optimization problem. We
used the data set from [11] with 50 activities and a variable number of precedence
relations. Figure 3 shows the comparison of above models both in the runtime
(milliseconds) and in the number of backtracks. It is important to say that the runtime

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 57

for the enhanced model consists of the time to learn the implied constraints and the
time to solve the problem to optimality (using the branch-and-bound method). The
time to learn the implied constraints is negligible there (from 80 to 841 milliseconds)
and hence we do not show that time separately in the graphs. We used the well-known
Brélaz variable ordering heuristic also known as dom+deg heuristic (the variables
with the smallest domain are instantiated first, ties broken by preferring the most
constrained variables).

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

ru
n

ti
m

e
(m

s)

original

enhanced

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

b
ac

kt
ra

ck
s

original

enhanced

Fig. 3. Comparison of runtimes (milliseconds) and the number of backtracks for the original
model of min-cutset problems and the model enhanced by the learned implied constraints with
the Brélaz variable ordering heuristic

The graphs in Figure 3 show a significant decrease of the runtime and of the
number of backtracks, which is a promising result especially taking in account that
the time to learn is included in the overall time. This decrease is mainly due to the
learned exclusion constraints which capture cycles in the graph (one node in the
exclusion must be invalid to make the graph acyclic). Clearly, the Brélaz heuristic
is also influenced by adding constraints to the model so the implied constraints may
change the ordering of variables during search and hence influence efficiency. As
we want to see also the effect of implied constraints on pruning the search space,
we need to use exactly the same search procedure for both models. The
straightforward approach is to use a static variable ordering. Figure 4 shows the
comparison of both models using the static variable ordering heuristic. Again, we
used the branch-and-bound method to solve the problem to optimality. Due to time
reasons, we used a cut-off limit 300 000 000 milliseconds (>83 hours) for a single
run so the most complex problems (200 - 300, and 600 precedences) were not
solved to optimality for the original model and hence information about the number
of backtracks is missing.

Again, the enhanced model beats the original model and shows a significant
speedup. Moreover, by comparing both experiments, we can see that the learned
constraints not only pruned more the search space by stronger domain filtering (which
was our original goal) but in combination with the Brélaz heuristic they also make the
search faster by focusing the search algorithm to critical (the most constrained)
variables.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 R. Barták

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

ru
n

ti
m

e
(m

s)

original

enhanced

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

b
ac

kt
ra

ck
s

original

enhanced

Fig. 4. Comparison of runtimes (milliseconds) and the number of backtracks for the original
model of min-cutset problems and the model enhanced by the learned implied constraints with
the static variable ordering heuristic (a logarithmic scale)

5.2 Learning for SAT Problems

Because our method works primarily with Boolean variables, the natural benchmark
to test efficiency of the method was using SAT problems. We take several problem
classes from [9], namely logistics problems from AI planning, all-interval problems,
and quasigroup (Latin square) problems and encoded the problems in a
straightforward way as CSPs. The choice of problem classes was driven by the idea
that structured problems may lead to more and stronger implied constraints. It would
be surely better to do more extensive tests with other problem classes, but a limited
computation time forced us to select only few most promising classes. Again we used
the Brélaz variable ordering heuristic in the search procedure which was backtracking
search with maintaining arc consistency. Table 1 summarizes the results, it shows the
problem size (the number of Boolean variables), the number of backtracks and the
time to solve the problems (for the enhanced model the time includes both the time to
learn as well as the time solve the problem), and the time for learning.

The experimental results show some interesting features of the method. First, the
model enhanced by the learned implied constraints was frequently solved faster and
using a smaller number of backtracks than the original model. The smaller number of
backtracks is not that surprising, because the implied constraints contribute to pruning the
search space. However, a shorter overall runtime for the enhanced model is a nice result,
especially taking in account that the overall runtime includes the time to learn the implied
constraints. The speed-up is especially interesting in the logistics problems, where the
learning method deduced many exclusion constraints (probably thanks to the nature of
the problem) which contributed a lot to decreasing the search space. The few examples
when solving required more backtracks for the enhanced model (ais8, qg1-08, and qg7-
13) can be explained by “confusing” the variable ordering heuristic by the implied
constraints. Figure 3 and 4 showed that adding implied constraints influenced
significantly the Brélaz variable ordering heuristic which is clear – the labeled variables
have Boolean domains so the not-yet instantiated variables are ordered primarily by
using the number of constraints in which they are involved. It may happen that in some
problems this may lead to a wrong decision as no heuristic is perfect for all problems. It
will be interesting to study further how the added implied constraints influence structure-
guided variable ordering heuristics.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 59

Table 1. Comparison of solving efficiency of the original and enhanced constraint models for
selected SAT problems (the smallest #backtracks / runtime is in bold)

original enhanced instance size
backtracks runtime

(ms)
backtracks overall time

(ms)
time to

learn (ms)
logistics.a 828 >159827502 >60000000 4 53677 53657
logistics.b 843 >107546059 >60000000 38494 91622 65955
logistics.c 1141 >95990563 >60000000 26195 165537 150776
logistics.d 4713 >38809049 >60000000 5738102 28866167 16116604
ais6 61 16 10 3 400 390
ais8 113 178 120 523 3435 3155
ais10 181 3008 2914 118 14911 14811
ais12 265 66119 80386 140 49091 48921
qg1-07 343 26 811 0 146371 146291
qg1-08 512 331474 12445947 1791551 59608683 886605
qg2-07 343 34 1061 0 178987 178906
qg2-08 512 213992 8005862 213992 7980054 1053394
qg3-08 512 26 170 22 68018 67908
qg3-09 729 357521 2216758 25246 343845 233917
qg4-08 512 2956 12839 367 68088 66556
qg4-09 729 614 3925 86 225324 224934
qg5-09 729 1525 22573 0 1933 1933
qg5-10 1000 119894 2647697 0 61318 61318
qg5-11 1331 >1741008 >60000000 0 855000 854880
qg5-12 1728 >1195753 >60000000 0 6467810 6467810
qg5-13 2197 >802393 >60000000 41641 23622817 21695532
qg6-09 729 177 2304 0 51143 51113
qg6-10 1000 12234 238493 0 63732 63732
qg6-11 1331 1668478 34617658 4545 3233200 3153716
qg6-12 1728 >2512643 >60000000 586472 22669216 7159264
qg7-09 729 0 40 0 53337 53297
qg7-10 1000 348 6930 0 46557 46557
qg7-11 1331 27777 674701 0 429658 429658
qg7-12 1728 >2239230 >60000000 148648 10344354 6560683
qg7-13 2197 261 14101 525428 31893597 13893597

A second interesting feature is that for several quasigroup problems which have
no feasible solution, the learning method proved infeasibility (in italics in Table 1)
so no subsequent search was necessary to solve the problem. Again in most
problems it was still faster than using the original constraint model. Finally, though
we almost always improved the solving time, the overhead added by the learning
method (the additional time to learn) was not negligible and the total time to solve
the problem was sometimes worse than using the original model. This is especially
visible in simple problems, where we spent a lot of time by learning, while in the
meantime the backtracking search found easily the solution in the original model.
This leads to a straightforward conclusion that if the original constraint model is
easy to solve, it is useless to spent time by improving the model, for example by
adding the implied constraints. Of course, the open question is how to find if the
model is easy to solve.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 R. Barták

5.3 Reformulation for SAT Solvers

In the previous section, we used SAT problems to demonstrate how the proposed
learning method improves the solving time for these problems. However, we modeled
the SAT problems using constraints and we used constraint satisfaction techniques to
solve such models (combination of backtrack search and constraint propagation), which
is surely not the best way to solve SAT problems. In the era of very fast SAT solvers, it
might be interesting to find out if the implied constraints, that we learned using a
constraint model, can also improve efficiency of the SAT solvers. We used one of the
winning solvers in the SAT-RACE 2006 competition, RSat [12], to validate our
hypothesis, that the learned constraints may also improve efficiency of SAT solvers.
Table 2 shows the comparison of the number of backtracks, the number of decision
(choice) points, and runtime for the original SAT problem and for the SAT problem
with the added implied constraints. Again, we used the problem classes from [9].

There is clear evidence that the implied constraints decrease significantly the
number of choice points of the RSat solver (and in most cases also the number of
backtracks). This is an interesting result, because the RSat solver is using different
solving techniques than the CSP solvers, to which our learning algorithm is targeted.
Nevertheless, regarding the runtime the situation is different. Thought the difference
is not big, the model enhanced by the implied constraints is slower in most cases. This
may be explained by the additional overhead for processing a larger number of

Table 2. Comparison of solving efficiency of the original model and the model with learned
constraints solved by RSAT solver (the smallest #backtracks / #decisions / runtime is in bold)

original enhanced instance
backtracks decisions runtime

(ms)
backtracks decisions runtime

(ms)
logistics.a 137 1394 40 31 176 50
logistics.b 251 2019 60 119 558 90
logistics.c 238 2999 75 126 617 80
logistics.d 33 547 130 42 377 1022
ais6 14 46 5 0 11 0
ais8 20 74 10 0 22 10
ais10 1142 1877 90 0 37 20
ais12 19 152 25 0 56 30
qg1-07 105 134 140 44 72 130
qg1-08 4732 5608 1542 18288 20528 8142
qg2-07 35 54 130 37 53 130
qg2-08 14017 16270 6228 45678 52308 31320
qg3-08 122 175 40 122 153 50
qg3-09 57294 65736 26137 38434 44384 19027
qg4-08 638 737 100 586 667 110
qg4-09 8 30 60 6 23 60
qg5-11 44 78 230 0 4 370
qg5-13 38617 48396 36111 32971 38733 39046
qg6-09 0 15 70 0 3 130
qg6-12 12386 14426 7731 11171 13230 7761
qg7-09 1 7 70 0 3 130
qg7-12 4052 5042 1862 3360 4104 1912
qg7-13 2716 4139 1592 1375 1935 1131

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 61

clauses. Note that for some models, the percent of the implied constraints is 20-30%
of the original number of constraints so if the solver is fast, this increase of the model
size will surely influence the runtime. Still, it is interesting to see that the learned
implied constraints are generally useful to prune the search space and perhaps, for
more complicated problems, their detection may pay-off even if we assume time to
learn these constraints (Table 1).

5.4 Learning Efficiency

The critical feature of the proposed method is efficiency of learning, that is, how
much time we need to learn the implied constraints. In our current implementation,
this time is given be the repeated calls to the SAC algorithm so the time depends a lot
on the number of involved Boolean variables and also on the complexity of
propagation (the number of constraints). The following figure shows the time for
learning as a function of the number of involved Boolean variables for experiments
from the previous sections (plus some additional SAT problems).

Clearly, due to the complexity of SAC, the proposed method is not appropriate for
problems with a large number of Boolean variables. Based on our experiments, as a
rough guideline, we can say that the method is reasonably applicable to problems with
less than a thousand of Boolean variables. This seems small for SAT problems, but
we believe it is a reasonable number of Boolean variables in CSP problems where
non-Boolean variables are also included.

10

100

1000

10000

100000

1000000

10000000

100000000

0 500 1000 1500 2000 2500

number of variables

ti
m

e
to

 l
ea

rn
 (

m
s)

Fig. 5. Time to learn (in milliseconds) as a function of the number of involved Boolean
variables (a logarithmic scale)

6 Conclusions

In the paper we proposed an easy to implement method for learning implied
constraints over the Boolean variables in constraint satisfaction problems and we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 R. Barták

presented some preliminary experiments showing a surprisingly good behavior of this
method. In the experiments we used naïve hand-crafted constraint models, that is, the
models that a “standard” user would use to describe the problem as a CSP, so the nice
speed-up is probably partly thanks to weak propagation in these models. Nevertheless,
recall the holly grail of constraint processing – the user states the constraints and the
solver provides a solution. For most users, it is natural to use the simplest constraint
model to describe their problem and we showed that for such models, we can improve
the speed of problem of solving.

To summarize the main advantages of the proposed method: it is easy to
implement, it is independent of the input constraint model, and it contributes to speed-
up of problem solving. The experiments also showed the significant drawback of the
method – a long time to learn (an expected feature due to using SAC techniques).
Clearly, the method is not appropriate for easy-to-solve problems where the time to
learn is much larger than the time to solve the original constraint model. On the other
hand, we did the majority of experiments with the SAT problems where all variables
are Boolean, while the method is targeted to problem where only a fraction of
variables is Boolean, such as the min-cutset problem. We believe that the method is
appropriate to learn implied constraints for the base constraint model which is then
extended by additional constraints to define a particular problem instance. So learning
is done just once while solving is repeated many times. Then the time to learn is
amortized by the repeated attempts to solve the problem. The time to learn can also be
decreased by identifying the pairs of variables that could be logically dependent. This
may decrease the number of SAC checks. We did some preliminary experiments with
the SAT problems, where we tried to check only the pairs of variables that are not “far
each from other”, but the results were disappointing – the system learned fewer
implied constraints. Still, restricting the number of checked pairs of variables may be
useful for some particular problems.

Note finally that the ideas presented in this paper for learning Boolean constraints
using SAC can be extended to learning other type of constraints using other
consistency techniques. However, as our experiments showed, it is necessary to find a
trade-off between the time complexity and the benefit of learning.

Acknowledgments. The research is supported by the Czech Science Foundation
under the contract no. 201/07/0205.

References

1. Barták, R.: A Flexible Constraint Model for Validating Plans with Durative Actions. In:
Planning, Scheduling and Constraint Satisfaction: From Theory to Practice. Frontiers in
Artificial Intelligence and Applications, vol. 117, pp. 39–48. IOS Press, Amsterdam (2005)

2. Barták, R., Čepek, O.: Temporal Networks with Alternatives: Complexity and Model. In:
Proceedings of the Twentieth International Florida AI Research Society Conference
(FLAIRS 2007), AAAI Press (2007)

3. Barták, R., Čepek, O., Surynek, P.: Modelling Alternatives in Temporal Networks. In:
Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling
(CI-Sched 2007), pp. 129–136. IEEE Press (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Generating Implied Boolean Constraints Via Singleton Consistency 63

4. Beck, J.Ch., Fox, M.S.: Scheduling Alternative Activities. In: Proceedings of the National
Conference on Artificial Intelligence, pp. 680–687. AAAI Press (1999)

5. Debruyne, R., Bessière, C.: Some Practicable Filtering Techniques for the Constraint
Satisfaction Problem. In: Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI), pp. 412–417. Morgan Kaufmann, San Francisco (1997)

6. Dechter, R.: Learning while searching in constraint satisfaction problems. In: Proceedings
of the Fifth National Conference on Artificial Intelligence, pp. 178–183. AAAI Press
(1986)

7. Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelligence 49,
61–95 (1991)

8. Fages, F.: CLP versus LS on log-based reconciliation problems for nomadic applications.
In: Proceedings of ERCIM/CompulogNet Workshop on Constraints, Praha (2001)

9. Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: SAT
2000, pp. 283–292. IOS Press, Amsterdam (2000), SATLIB is available online at
www.satlib.org

10. Mariot, K., Stuckey, P.J.: Programming with Constraints: An Introduction. The MIT Press,
Cambridge (1998)

11. Pardalos, P.M., Qian, T., Resende, M.G.: A greedy randomized adaptive search procedure
for the feedback vertex set problem. Journal of Combinatorial Optimization 2, 399–412
(1999)

12. Pipatsrisawat, T., Darwiche, A.: RSat Solver, version 1.03. accesessed in March (2007),
http://reasoning.cs.ucla.edu/rsat/

13. Smith, B.: Modelling. A chapter in Handbook of Constraint Programming, pp. 377–406.
Elsevier (2006)

14. Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking
in a system for computer-aided circuit analysis. Artificial Intelligence 9, 135–196 (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to
Improve Scalability

Kenneth M. Bayer1, Martin Michalowski2, Berthe Y. Choueiry1,2,
and Craig A. Knoblock2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln
{kbayer,choueiry}@cse.unl.edu

2 University of Southern California, Information Sciences Institute
{martinm,knoblock}@isi.edu

Abstract. Constraint Programming is a powerful approach for modeling and
solving many combinatorial problems, scalability, however, remains an issue in
practice. Abstraction and reformulation techniques are often sought to overcome
the complexity barrier. In this paper we introduce four reformulation techniques
that operate on the various components of a Constraint Satisfaction Problem
(CSP) in order to reduce the cost of problem solving and facilitate scalability.
Our reformulations modify one or more component of the CSP (i.e., the query,
variables domains, constraints) and detect symmetrical solutions to avoid gener-
ating them. We describe each of these reformulations in the context of CSPs, then
evaluate their performance and effects in on the building identification problem
introduced by Michalowski and Knoblock [1].

1 Introduction

Choueiry et al. [2] proposed to characterize a reformulation as a transformation of a
problem P from one encoding to another, where a problem is given by a formulation
and a query, P = 〈F , Q〉. The transformation may change the query and/or any of the
components of the formulation. The goal of the transformation is to ‘simplify’ problem
solving, where the benefit of the ‘simplification’ and other effects of the transformation
are clearly articulated in the particular problem-solving context.

In this paper, we propose four reformulation techniques that operate on various as-
pects of a Constraint Satisfaction Problem (CSP) in order to improve the performance
of problem solving. The problem formulation of a CSP is given by F = (V , D, C)
where V= {Vi} is a set of variables, D= {DVi} the set of their respective domains, and
C a set of constraints. A constraint is a relation over a subset of the variables specify-
ing the allowable combinations of values for the variables in its scope. A solution is an
assignment to the variables such that all constraints are satisfied. The query is usually
to find one satisfying solution, in which case the problem is in NP-complete in general.
Alternatively, the query could be to find all possible solutions.

In this paper, we describe a reformulation of a CSP as a transformation of the original
problem Po = 〈Fo, Qo〉 into the reformulated problem Pr = 〈Fr, Qr〉, where Fi indi-
cates a formulation and Qi indicates a query, as illustrated in Figure 1. While our refor-
mulations apply to a variety of resource allocation problems, in this paper we describe
their application to the building identification problem (BID) proposed by Michalowski

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 64–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 65

rP

oQQuery:

oP
o=(V o,Do,C)F o r=(V r ,Dr ,C)F rFormulation:

Query: rQ
ReformulationFormulation:

Fig. 1. The general pattern of a CSP transformation

and Knoblock [1]. The task is to assign a list of postal addresses to buildings appearing
in a satellite image. A map provides the names of the streets and the positions of the
buildings, but we do not know the addresses of the buildings or, for a building located
on a street corner, on which street the building’s address lies. The original work estab-
lished the feasibility of modeling and solving this problem as a CSP. However, their
work did not scale well to larger problems [1]. We show that the reformulations we in-
troduce allow us to solve larger problems. The largest problem solved by Michalowski
and Knoblock included 34 buildings. In this paper, we scale up to problems involving
206 buildings.

This paper is structured as follows. In Section 2 we introduce a new type of global
constraint and describe how to use symbolic values to reformulate the domains of vari-
ables in the scope of this constraint. In Section 3 we present a reformulated query that
reduces runtime in practice. In Section 4 we describe how relaxing an assignment prob-
lem into a matching problem can be used to improve the performance of backtrack
search used to solve the assignment problem. We also describe a symmetry detection
process for generating all solutions to a maximum matching in a bipartite graph from a
single solution to the matching. In Section 5 we apply these techniques to the building
identification problem (BID). We present experimental results that demonstrate their ef-
fectiveness in Section 6. Section 7 discusses related reformulation work and Section 8
contains our conclusions and future research directions.

2 Domain Reformulation Using Symbolic Values

We propose ALLDIFF-ATMOST as a global constraint useful for resource allocation
problems. In this section we first describe this constraint. We then discuss how to re-
formulate the domains of the variables in the scope of this constraint in order to reduce
their size both for general and totally ordered domains. Section 5.2 illustrates the use of
this constraint and its reformulation in a practical resource allocation problem.

2.1 ALLDIFF-ATMOST

Example 1. An emerging country received an aid to build 7 hospitals on its territory,
but does not want to put more than 2 hospitals in areas with high volcanic activity.

We propose the constraint ALLDIFF-ATMOST to model this situation. Given a set of
variables A = {V1, V2, ..., Vn} with domains DVi , ALLDIFF-ATMOST(A, k, d), where
d⊆DVi , k∈N, and k≤|d|, requires that (1) all variables be different and (2) at most k
variables in A have values from d. Note that while the domains DVi may be different, d
must be a subset of each one of them and DVi , and d and DVi may be finite or infinite.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 K.M. Bayer et al.

Example 2. Consider with the variables A={V1, V2, V3, V4} of a CSP, with Di={1,
2, . . . , 8} and the constraint ALLDIFF-ATMOST(A, 2, {1, 3, 4, 5, 8}). The assignment
V1←5, V2←2, V3←7, V4←4, and V5←3 satisfies the constraint.

2.2 ALLDIFF-ATMOST Reformulation

Our first reformulation technique applies to the ALLDIFF-ATMOST and the domains
of the variables in its scope. The transformation, which we describe next, is theorem
constant, in the sense that solutions to the reformulated problem map to solutions to
the original problem [3]. The benefit of this reformulation is the reduction of the do-
main sizes. Because the complexity of many CP techniques depends on the sizes of the
domains, the reformulation improves the solver performance.

We reformulate the domains of the variables in the scope of the constraint ALLDIFF-
ATMOST(A, k, d) by introducing k values sl that we call symbolic values as follows:

∀ Vi ∈ A DVir = {s1, s2, . . . , sk} ∪ (DVi \ d) (1)

where the symbolic values sj (1 ≤ j ≤ k) can take any distinct values in d. Applying
this reformulation on Example 2 yields the following domains for all four variables:
DVi={s1, s2, 2, 6, 7}, where s1, s2 can take any different values in {1, 3, 4, 5, 8}. In
Example 1, the domains become {s1, s2} ∪ {sites in non-volcanic areas} where s1, s2
are different and range over sites with volcanic activities.

This reformulation procedure operates on the problem formulation and affects both
the ALLDIFF-ATMOST constraints and the domains of the variables in their scope, see
Figure 2. However the most significant modification is the domain reformulation. We
transform Do to Dr, where in Dr the domains of variables in A are reformulated ac-
cording to Equation (1). Replacing d in the original domains with k symbolic values
reduces their sizes by |d| − k, which is useful when d is large or infinite.

=(V o,C)oo o,DF
oP

rF
rD
rC

Pr

Formulation:
Formulation:

: Replace AllDiff−Atmost with AllDiff
: Smaller domains with symbolic values

Fig. 2. The reformulation of ALLDIFF-ATMOST

This operation is particularly useful during backtrack search where the domain val-
ues are enumerated. If we want to assign ‘ground’ values to each symbolic value, we
can do so as a post-processing step while ensuring that two symbolic values are always
mapped back to distinct ground values. While a solution to the reformulated problem
does not map to a unique solution to the original problem, we can generate any solution
to the original problem from some solution to the reformulated problem.

Of particular concern is the interaction between this reformulation and the other
constraints in the problem. When all the constraints in a problem can be checked on
the symbolic values, as in the case of the BID, the reformulation is sound. When one or
more constraints in a problem must be checked on the ‘ground’ values, then propagation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 67

must run on the appropriate representation for each constraint and, as soon as domain
filtering causes |d| ≤ k, then reformulated domains should be dropped and ALLDIFF-
ATMOST replaced with a ALLDIFF constraint.

2.3 Symbolic Intervals

When the values in the variables domains follow a total order, as in numeric domains,
the domains are commonly represented as intervals and constraint propagation is typ-
ically restricted to the endpoints of these intervals, as in box-consistency algorithms.
The reformulation of an ALLDIFF-ATMOST in the presence of totally ordered domains
obviously remains valid. However, in order to restrict propagation to the endpoints of
the intervals representing the domains, the following is needed:

1. We require the values in d to form a convex interval.
2. We must add ordering constraints between two consecutive si: s1 < s2 < . . . < sk.
3. We must add total ordering constraints between the two extreme symbolic values,

s1 and sk, and their closest neighbors in the reformulated domains, which is ac-
complished as follows. Let Dl

Vir
and Dr

Vir
be respectively the intervals of DVi\d

to the left and right of, and adjacent to, d. The right endpoint of Dl
Vir

must be less
than s1, and the left endpoint of Dr

Vir
must be greater than sk. See Figure 3.

{ }
i

Do
Vi

VDref
i

D= V
ref,l Dref,r

Vi
, ,1 2 , ... ks ss

...

d

∪∪

Fig. 3. ALLDIFF-ATMOST reformulation for totally ordered domains

4. When mapping the symbolic values back to ground values, the ground values must
respect the total ordering imposed on the symbolic values.

Section 5.2 illustrates the use of ALLDIFF-ATMOST and its reformulation on the BID.

3 Query Reformulation

In a CSP, the query is usually to find a single solution (satisfiability problem) or all solu-
tions (enumeration problem). However, in some applications, we may not be interested
in entire solutions, but rather all the values that each variable takes in any solution. We
call the problem corresponding to this query a per-variable solutions.1 Thus, we re-
formulate the query from Qo, enumerating all solutions, to Qr, finding a per-variable
solution. Formally, we define Qr as ∀ Vi, x ∈ DVi , find if Po ∧ (Vi ← x) is satis-
fiable. Figure 4 illustrates this reformulation. This reformulation changes the problem,
because the solution returned will be different. However, in some cases, the per-variable
solution is an acceptable alternative. This transformation changes the complexity class
of the problem from a counting problem to a satisfiability one.

1 Formally, this query corresponds to finding the minimal CSP.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 K.M. Bayer et al.

oQ
oP

Query: = Enumerate all solutions
The problem is a counting problem

rQ
rP

Query: = Find a per−variable solution
The problem is a satisfiability problem

Fig. 4. Query reformulation

In this section we propose an algorithm to find per-variable solutions, and describe
how this algorithm can be used to enforce high levels of relational consistency.

3.1 Per-variable Solutions

We can find the set of possible assignments to each variable in a CSP by solving the
enumeration problem, that is finding all solutions and then iterating through the solution
set to collect the values taken by each variable. However, the number of solutions to a
CSP is O(dn), where n is the number of variables and d is the maximum domain size.
Thus, finding all solutions may be prohibitively expensive.

We replace the query of finding all solutions (an enumeration problem) with the
query of finding if a solution exists for every combination of variable-value pair (a
polynomial number of satisfiability problems). Algorithm 1 tests for every variable-
value pair (Vi, x) if the CSP with Vi←x is solvable. When a solution exist, x is added
to the data structure returned by the algorithm. The algorithm returns the set of variables
along with all their values that appear in a solution.

Input: P =(V, D, C)
Output: S, a per-variable solution
foreach Vi ∈ V do1

S[Vi] ← ∅2

end3

foreach Vi ∈ V do4

foreach x ∈ DVi do5

if P with Vi←x has a solution then6

S[Vi] ← S[Vi] ∪ {x}7

end8

end9

if |S[v]| = 0 then10

return P has no solutions11

end12

end13

return S14

Algorithm 1. Finding the per-variable solutions

The inner loop of the algorithm runs O(nd) times. Each iteration requires determin-
ing the satisfiability of a CSP. This operation appears costly, but in cases where the
original CSP has significantly more than nd solutions, Algorithm 1 can perform signif-
icantly better than enumerating all solutions to the CSP.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 69

3.2 Relational Consistency

When solving a CSP, it is often beneficial to make the constraint network arc-consistent.
Enforcing arc-consistency filters values from the variable domains that cannot exist in
any solution to the problem. We can perform even more filtering by considering higher
levels of consistency. Dechter and van Beek introduced relational (i, m)-consistency
as the consistency of m non-binary constraints over every subset of i variables in the
CSP [4]. Dechter [5] proposed the algorithm RC(i,m) for computing relational (i, m)-
consistency. RC(i,m) works as follows. For every set Cm of m constraints in a con-
straint network, compute the join of the m constraints and project the result onto each
subset of i variables. The algorithm is not practical for high values of m, because the
memory requirements for computing and storing a join of m constraints rises exponen-
tially with the number of variables.

Algorithm 1 computes a minimal network, which means that every value remain-
ing in the network appears in at least one solution. Thus, the resulting network is the
same as if we had executed RC(1,m). The difference between the two algorithms is that
Algorithm 1 is polynomial space, whereas RC(1,m) is exponential space. We could gen-
eralize Algorithm 1 to consider sets of up to i variables rather than unique ones. This
extension would allow the algorithm to produce the same results as RC(i,m), where the
memory requirement rises with i, which quickly becomes impractical.

4 Constraint Relaxation for Problem Reformulation

At the core of many resource allocation problems lies the problem of matching between
the elements of two sets: the tasks and the resources. In general, the problem may be
complex (and likely intractable). However, in some cases, we may be able to identify
constraints that can be removed to reduce the original problem into a matching problem
in a bipartite graph.

Removing (or adding) a constraint in a problem formulation to yield a necessary (or
sufficient) tractable approximation of the problem is a typical reformulation strategy.
Examples abound and include: In AI, admissible heuristics generation for A∗ [6] and
theory approximation [7]; in mathematical programming, linear relaxation of integer
programs, Lagrangian relaxation [8], and the cutting-plane method.

In this section we first describe the relaxation of a resource allocation problem into a
matching problem in a bipartite graph. Then, we describe techniques that take advantage
of this reformulation when performing search for solving a CSP. Finally, we describe a
symmetry detection technique that allows us to generates all the possible matchings in
a bipartite graph from a single matching.

4.1 Matching as a Relaxation

Let G = (X ∪ Y, E) be a bipartite graph with edge set E, vertex set V = X ∪ Y , and
partitions X and Y , which are independent sets of vertices. We define a match count
for each vertex in v ∈ V , which we denote m(v), to be a positive (non-null) integer. A
matching in G is a set of edges M ⊆ E such that ∀v ∈ V there exists at most one edge
e ∈ M incident to v. In this paper we consider a matching in G to be a set of edges

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 K.M. Bayer et al.

Po Pr

o=(V o,Do,C)oFFormulation:
Query: Q o = Is the problem satisfiable?

Formulation:
Query: Q r = Is there a matching saturating a partition of V?

G = (V,E)

Fig. 5. Relaxation of a CSP as a matching problem

M ⊆ E such that ∀v ∈ V there exists at most m(v) edges e ∈ M incident to v. Further,
we say that a matching M saturates vertex v iff M has exactly m(v) edges incident to v;
and a matching M saturates a set S iff M saturates all vertices in S. Finding a matching
that saturates S can be done in polynomial time (see Section 5.5).

We propose to reformulate a resource allocation problem by relaxing it into a match-
ing problem in a bipartite graph that saturates one of the graph’s two partitions. Figure 5
illustrates this relaxation. While the original problem may be intractable, the reformu-
lated one can be efficiently solved (i.e., in polynomial time). When the reformulated
problem is not solvable, the more constrained original problem is not solvable. How-
ever, the solvability of the reformulated problem does not guarantee that of the original
problem. Our reformulation is thus a necessary approximation [9].

4.2 Integrating the Matching Relaxation in Backtrack Search

When modeling a resource allocation problem as a CSP and solving it with backtrack
search, we can take advantage of the relaxed problem in two ways:

1. As a preprocessing step prior to search, and
2. As a lookahead mechanism during search to filter out, from the domains of the

future variables, those values that cannot yield a solution.

Prior to search, if we determine that the relaxed problem is not soluble, we can safely
avoid using search. Further, during search, we can adapt the algorithm of Régin [10],
which finds all edges of the bipartite graph that do not participate in any covering match-
ing, to identify, in one step, all values in the domains of all future variables that do not
participate in any saturating matching. This single operation allows us to filter the do-
mains of all future variables in one step.

The reformulation into a matching problem is especially useful when finding per-
variable solutions, because Algorithm 1 executes nd satisfiability tests. We propose to
test, after line 5 in Algorithm 1, whether the relaxed problem is solvable, and proceed
to line 6 only if this test succeeds. Otherwise, we return to line 5.

4.3 Generating Solutions by Symmetry

The set of maximum matchings in a bipartite graph can be obtained by enumerating all
maximum matchings using an algorithm such as the one proposed by Uno [11]. In this
section, we characterize all maximum matchings in a bipartite graph as symmetric to a
single base matching, and proposed to use this symmetry to enumerate all solutions.

Our symmetry detection relies on two graph constructions described by Berge [12]:
alternating cycles (AltCyc) and even alternating paths starting at a free vertex (EvAltP).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 71

An AltCyc or EvAltP in a graph G relative to a matching M alternate between edges
in M and edges not in M . If we take a maximum matching M and a AltCyc or EvAltP
P , we can produce another maximum matching M ′ by computing the symmetric dif-
ference of M and P , denoted MΔP . We use that mechanism to identify all maximum
matchings in a bipartite graph G as symmetric of a single maximum matching M . Let
S be the set of all AltCyc’s and EvAltP’s relative to M . We construct another maxi-
mum matching Mi by choosing a disjoint subset Si ⊆ S and computing MΔSi. Mi

is symmetrical to M in that it is identical to M in all edges except those in Si. In
fact, for any maximum matching Mj of G, we prove that there exists an Sj such that
Mj = MΔSj using Lemma 3.1.9 of [13]. We generate S by first orienting G using
the construction described by Hopcroft and Karp [14]. From the oriented graph, we
enumerate the alternating paths by finding all EvAltP’s, as defined by Berge [12]. We
enumerate the AltCyc’s from the strongly connected components in the oriented graph
as described by Régin [10]. Thus, to store the information necessary to enumerate all
alternating paths and cycles, and therefore all maximum matchings, we only need to
store a single base matching, the set of free vertices, and the set of strongly connected
components2.

Consider the bipartite graph G = (X ∪ Y, E), where X = {x1, x2, x3, x4}, Y =
{y1, y2, y3}, and E={(x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), (x4, y2), (x4, y3)}.
Figure 6 (a) shows a maximum matching M in G. P = x1y1x2 is an alternating path
and C = x3y2x4y3x3 is an alternating cycle. We find other maximum matchings using
the symmetric difference operator. Figure 6 (b) show MΔP , Figure 6 (c) shows MΔC,
and Figure 6 (d) shows MΔ(C ∪ P).

1x

x2

x3

4x

X

y3

Y

y1

y2

(a)

y3

1x

x2

x3

4x
(b)

Y

y1

y2

X

1x

x2

x3

4x

X

y3

(c)

Y

y1

y2

1x

x2

x3

4x

X

y3

(d)

Y

y1

y2

Fig. 6. Multiple matchings saturating Y

Formulation:
−A maximum matching M
−The set of strongly connected components in the oriented graph
−The set of free vertices in the oriented graph

Formulation:
Query: Q r = Enumerate all maximum matchings in G

G = (V,E)
oP Pr1

Pr2

Formulation: The set of all maximum matchings in G

Uno’s algorithm

Fig. 7. Finding all maximum matchings

Figure 7 illustrates the two reformulations of Po, the problem of enumerating all
maximum matchings. We can reformulate Po as Pr1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reformulate the problem as Pr2,
a base matching and its corresponding sets of strongly connected components and
free vertices. All matchings can be enumerated from Pr2 as needed. Our construction
has the same time complexity as Uno’s, which is linear in the number of maximum
matching. However, our characterization of the solutions as symmetries is a valuable
one:

2 An improvement suggested by a anonymous reviewer.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 K.M. Bayer et al.

1. It provides a more compact representation of the set of solutions. Rather than stor-
ing all matchings, we store a single matching, a set of strongly connected compo-
nents, and a set of free vertices.

2. In case one is indeed seeking all, or a given number of, the solutions to BID (sim-
ilarly, to a resource allocation problem that has a maximum matching relaxation),
we can generate every symmetric to that known single matching and test if it sat-
isfies the additional constraints of the non-relaxed problem, when it does not, the
matching is a solution to the non-relaxed problem found without search. Naturally,
the number of maximum matchings can be large.

We do not currently exploit those features, but they deserve further investigations.

5 Application to the Building Identification Problem

We apply the four techniques presented above to the BID [1]. The task is to assign a
list of addresses from a phone book to buildings appearing in a satellite image. Each
address consists of the combination of a street name and a number. A map provides the
names of the streets and the positions of the buildings. The map could come from an
online source or a satellite image. We know the street names and the positions of the
buildings, but we do not know the addresses of the buildings or, for a building located
on a street corner, on which street the building’s address lies. A variety of data sources,
such as a phone books, gazetteers, or property records, provide at least a partial list of
addresses in a region. We generically refer to the addresses given as input as phone-book
addresses regardless of their actual source. Figure 8 shows a BID instance.

B6

B3

B8

B4

B9

B1
S1#1, S1#4,
S1#8, S2#7,
S2#8, S3#1,
S3#2, S3#3,

S3#15, S3#18

B2

B5
B7 B10

= Building
= Corner building

Si = Street

S1 S2

S3

Fig. 8. An example of the BID problem

In general, the phone book may be incomplete, listing fewer addresses than there
are buildings in the image, but the reverse does not hold. We must map every phone-
book address to a building in the image. Michalowski and Knoblock established the
feasibility of modeling and solving this problem as a CSP. However, their work did not
scale well to larger problems. We show in Section 6 that the reformulations we propose
allow us to solve larger problems.

5.1 CSP Model

Below we describe the variables and constraints in our CSP model of the BID, which
improves on the one proposed in [1].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 73

Our model uses three types of variables: orientation variables, corner variables, and
building variables. In general, there are four Boolean orientation variables: Increas-
ingNorth, IncreasingEast, OddOnEastSide, and OddOnNorthSide. The first two are
ordering variables and indicate whether or not addresses increase in value when mov-
ing toward the north and to the east. The remaining two are parity variables and indicate
on which side of the street odd addresses occur. The corner variables represent the pos-
sible streets on which a corner building might be. We generate one corner variable for
each corner building, whose domain is the list of streets on which the building could
lie, and has size 2 in most cases. The corner buildings are natural ‘articulations’ in the
constraint network: once the solver assigns values to all corner buildings, the constraint
network degenerates into a set of chains (corresponding to buildings along street seg-
ments) that can be solved in a backtrack-free manner. Michalowski and Knoblock too
noted this feature [1]. Thus, the solver instantiates corner buildings as soon as possi-
ble. The building variables represent the addresses (i.e., numbers) of the buildings. We
generate a building variable for every building on the map. The domain of a variable is
every possible address on the building’s streets.

Our model has five types of constraints: parity, ordering, corner, phone book, and
grid. Parity constraints are binary constraints and ensure that the numbers assigned
to buildings respect the values assigned to the parity (orientation) variables. Order-
ing constraints are ternary constraints, and link an ordering variable to two building
variables along the same street. These constraints ensure that the addresses assigned to
the building variables respect the ordering specified by the ordering variable. Corner
constraints link the the corner and building variables of a corner building and ensure
that the address assigned to the building is consistent with the street chosen for the
building. Phone-book constraints exist for each street on the map. These constraints
ensure that the solver assigns every address in the phone book to some building along
that street. These constraints usually have a high arity, because their scope is the set
of buildings along the street. Grid constraints exist between buildings across certain
artificial grid-lines, depending on the region we are modeling. These constraints ensure
that the addresses of adjacent buildings across the grid-lines are in separate numeric
increments. For example, in many cities in the United States, addresses increase to the
next increment of 100 across intersections.

5.2 Symbolic Values

If the phone book is incomplete, we must infer the missing numbers to add to the vari-
ables’ domains. Michalowski and Knoblock proposed to enumerate all numbers be-
tween 1 and the largest address that appears on the street [1]. Their approach has two
problems. First, the choice of the upper limit is arbitrary. When the largest address is
not in the phone book, this approach may yield incorrect solutions. The second prob-
lem with this approach is that the size of the domains becomes prohibitively large on
real-world data. Using symbolic values in phone-book constraint solves both problems.

Let S be a street, PS its set of phone-book addresses of a given parity, BS the set of
buildings on the side of S of that parity, and [min,max] the range of address numbers on
that side of S. The address numbers in PS partition [min,max] into consecutive convex
intervals. In any such interval (i1, i2), we cannot use more than |BS |−|PS | addresses,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 K.M. Bayer et al.

which we express as ALLDIFF-ATMOST(BS, ka, (i1, i2)) with ka=minimum(|BS|-
|PS |, � (i2−i1)−1

2 �). We reduce the variables’ domains using the reformulation of Sec-
tion 2 on each of these intervals. For example, assume we have, on the even side of
S, BS={B1, B2, . . ., B5}, PS={S#12,S#18}, min=2, and max=624. An assignment
cannot use more than 3 numbers in each of [2,12), ([12,18), and (18,624], yielding 3
ALLDIFF-ATMOST constraints with the following arguments (BS , 3, [2,12)), (BS , 2,
(12,18)), and (BS , 3, (18,624]). We replace the domain [1,624] of each variable with
the significantly smaller set {s1, s2, s3, 12, s4, s5, 18, s6, s7, s8} where s1, s2, s3 ∈
[2,12), s4, s5 ∈ (12,18), and s6, s7, s8 ∈ (18,624] and si<sj for i<j, see Figure 9. This
process allows us to choose an arbitrarily large upper bound (max) on a given street.

{s 1, s 2, s 3, 12, s 4, s 5, 18, s 6, s 7, s 8 }

{2, 4, ..., 8, 10, 12, 14, 16, 18, 20, 22, ..., 622, 624 }Original Domain

Reformulated Domain

Fig. 9. Domain reformulation for the BID

5.3 Query Reformulation

Another challenge of real-world BID instances is the large number of solutions. If the
phone book is incomplete, the problem is under-constrained, yielding a large number
of solutions. One possible query would be to enumerate all the solutions to collect
the acceptable list of addresses for each building [1]. By reformulating the query as
proposed in Section 3, we can use Algorithm 1 to obtain the same result at a much
cheaper cost. In summary, we replace the query: “Enumerate all solutions and collect
the addresses taken by the buildings in these solutions” with the query “Find all the
addresses that a given building can take.”

5.4 Constraint Relaxation for Problem Reformulation

We show below that, when no grid constraints exist, the BID problem can be mod-
eled as a matching in a bipartite graph, and is thus tractable. The CSP approach of
Michalowski and Knoblock remains pertinent in that it allows one to represent arbitrary
street-addressing schemas used around the world, such as grid constraints. We propose
the removal of grid constraints as a tractable relaxation of the BID.

Given an instance of this problem without grid constraints, we construct a bipartite
graph G = (B ∪ S, E) as follows. First, assume an assignment to the orientation vari-
ables (there are 24 such assignments). For each building β in the problem, add a vertex
b to B. For each street σ in the problem, add two vertices sodd and seven to S, one for
each side of the street. For each building β, add an edge between vertex b and the street
vertex corresponding to the street side on which β may be. (Note that corner buildings
are on two streets.) Assuming odd numbers appear on the North and West sides of the
street, Figure 10 shows the construction of G for the map in Figure 8. We can show
that a matching in this graph that saturates S corresponds to a satisfactory assignment
of streets to corner buildings.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 75

B5 B6 B7 B8 B9 B10B4B3B2B1

S2_evenS2_odd S3_odd S3_evenS1_evenS1_odd

Fig. 10. Graph construction for Figure 8

S2_odd
(1)

S2_even
(1)

S3_odd
(3)

S3_even
(2)

S1_odd
(1)

S1_even
(2)

B2
(1)

B3
(1)

B4
(1)

B5
(1)

B6
(1)

B7
(1)

B8
(1)

B9
(1)(1)

B1 B10
(1)

Fig. 11. Satisfying matching for Figure 10

Figure 11 shows a satisfying matching for the graph from Figure 10, where the edges
included in the matching are darkened. The numbers in parentheses indicate the match
count of the vertex. This matching corresponds to an assignment of buildings to streets.
Thus, we can now construct a solution to the problem as a post-processing step, where
we simply assign numbers to each building along each street.

While the matching approach is powerful, it cannot model the grid constraint. Whether
the problem with the grid constraints can be solved efficiently remains an open question.
We propose to use the matching in 2 ways: (1) directly solve problems that have no grid
constraints, and (2) use the relaxation to detect unsolvability (both as a preprocessing
step and for lookahead as discussed in Section 4).

5.5 Solvers

It was simply impossible to solve any of our real-world data sets using the original
query. We could solve them only with the reformulated query, using Algorithm 1.

We implemented two solvers: a matching-based solver and a search-based solver.
The former finds a maximum matching using an O(n5/2) algorithm by Hopcroft and
Karp [14] after replacing each vertex in the bipartite graph by as many vertices as its
match count. The latter uses backtrack search (BT) with nFC3, a look-ahead strategy for
non-binary CSPs [15], and conflict-directed backjumping [16]. In BT, we implemented
a hybrid representation of the domains: enumerated values and intervals. We use the
interval representation to propagate ordering constraints (i.e., less-than constraints), and
restrict this propagation to the bounds of the intervals without loss of pruning power.
This representation improved our runtime by one order of magnitude.

When the problem given as input has no grid constraint, we use the matching solver
in line 6 of Algorithm 1, which computes one matching in each of the nd loops. Thus,
the solver runs in polynomial time, which is a significant improvement compared with
the exponential-time backtrack search based solver. When the problem instance has grid
constraints, we proceed as follows:

1. Preprocessing: We insert a call to the matching solver after line 5 in Algorithm 1
and proceed to line 6 if we find a matching, otherwise return to line 5.

2. Backtrack search (BT): We use the search-based solver in line 6.
3. Lookahead: In addition to nFC3, we filter in one step the domains of all future

variables given the current path in the search (see Section 4).
Figure 12 illustrates the behavior of the solvers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 K.M. Bayer et al.

6 Experiments

Table 1 describes the properties of the regions of the city of El Segundo (CA), on which
we ran our experiments. The number of calls refers to the total number of times to line 6
of Algorithm 1. Each call to line 6 was timed out after one hour. We report the number
of timed out executions.

The completeness of the phone book indicates what percent of the buildings on the
map have a corresponding address in the phone book. We created the complete phone
books using property-tax data, and the incomplete phone books using the real-world
phone-book.

Effect of domain reformulation. Table 2 shows the benefit of domain reformulation
by comparing the performance when using the original domains or the reformulated
domains. The experiment uses backtrack search (BT), but does not take into consider-
ation the grid constraints. When the phone book is complete, no ALLDIFF-ATMOST

constraints are present, and thus the reformulation does nothing. The advantage of the
reformulation is clear when using the incomplete phone book.

only orientation and corner variables

Build the matching model

saturating matching
Does a

exist?

Does the
problem contain grid

constraints?

Build the CSP model
− Domain reformulation

Execute the matching solver

Execute backtrack search

−Special variable ordering: instantiates
−Lookahead with nFC3

−Lookahead using matching relaxation
−Domains implemented as a list of intervals

−MAC−CBJ

Yes

Yes

No

No

satisfiable?
Is the CSP

Yes

No

No solution exists

No solution exists

A BID instance + vvp

Solution exists

Fig. 12. Implementing Line 6 of Algorithm 1

Table 1. Case studies used in experiments

Case study Phone book Number of
completeness bldgs crnr bldgs blks calls

NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 17 4
1857

NSeg206-c 100.0% 4879
NSeg206-i 50.5%

206 28 7
10009

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 36 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 46 12
2477

Table 2. Effect of domain reformulation

Case study Avg. domain size Runtime [sec] Timeouts
Orig. Ref. Orig. Ref. Orig. Ref.

NSeg125-i 1103.1 236.1 2943.7 744.7 0 0
NSeg206-i 1102.0 438.8 14818.9 5533.8 0 0
SSeg131-i 792.9 192.9 67910.1 66901.1 18 17
SSeg178-i 785.5 186.3 119002.4 117826.7 32 29

Table 3. Solvers’ performance (no grid)

Runtime [sec]

BT Matching
Matching +

Case study
Symmetry

NSeg125-c 139.2 4.8 0.03
NSeg125-i 744.7 2.5 *
NSeg206-c 4971.2 16.3 0.06
NSeg206-i 5533.8 8.5 *
SSeg131-c 38618.3 7.3 0.26
SSeg131-i 66901.1 3.1 *
SSeg178-c 117279.1 22.5 0.41
SSeg178-i 117826.7 4.9 *
* Did not finish in 1 hour.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 77

Effect of query reformulation. As stated in Section 5.5, the sheer number of solutions
made it impossible to solve problem instances with incomplete phone-books using the
query of enumerating all solutions. Thus, without the query reformulation, we would
not have been able to solve the incomplete phone-book instances.

Effect of finding symmetrical maximum matchings. In the absence of grid constraints,
the BID can be solved in polynomial time by the matching solver. Here we compare
backtrack search, a solver that uses Algorithm 1 with a matching solver, and a solver
that uses the reformulation of symmetric matchings from section 4.3. Finding all sym-
metric matchings requires enumerating all matchings, which isn’t feasible for the under-
constrained incomplete phone-book problems. Thus, those problem instances timed out
and are indicated by asterisks. However, when the number of solutions was small, such
as when the phone-book is complete, the symmetry solver had significantly better per-
formance than the per-variable matching solver. The benefit in terms of runtime reduc-
tion is shown in Table 3.

Effect of relaxing a CSP into a matching problem. To test the use of the matching re-
laxation as a preprocessing step and lookahead mechanism, we added grid constraints
to each region. Table 4 shows the results of these experiments, comparing the perfor-
mance of: (1) the backtrack search (BT), (2) BT with matching for preprocessing (Pre-
proc+BT), (3) BT with matching for lookahead (Lkhd+BT), and (4) BT with matching
for both purposes (Preproc+BT+Lkhd). We report runtime, number of timeouts, and
number of calls to the CSP solver saved by the preprocessing. In all cases, the same so-
lutions were found. Our results indicate that, in general, the integration of the matching
and BT improves performance. There are exceptions, when the cost of the additional
processing exceeds the gains in terms of reduced search space. However, even when we
saw performance degradation, the degradation was minimal.

Table 4. Improvements due to preprocessing and lookahead

NSeg125-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 -

Preprocessing+BT 33.2 0 97.0%
BT+Lkhd 140.2 0 -

Preproc+BT+Lkhd 39.6 0 97.0%
NSeg125-i + grid CPU [sec] #Timeouts Calls saved

BT 1232.5 0 -
Preprocessing+BT 1159.1 0 62.6%

BT+Lkhd 726.6 0 -
Preproc+BT+Lkhd 701.1 0 62.6%

NSeg206-c + grid CPU [sec] #Timeouts Calls saved
BT 2277.5 0 -

Preprocessing+BT 614.2 0 98.9%
BT+Lkhd 1559.2 0 -

Preproc+BT+Lkhd 443.8 0 98.9%
NSeg206-i + grid CPU [sec] #Timeouts Calls saved

BT 4052.8 0 -
Preprocessing+BT 3806.7 0 87.8%

BT+Lkhd 3499.5 0 -
Preproc+BT+Lkhd 3510.0 0 87.8%

SSeg131-c + grid CPU [sec] #Timeouts Calls saved
BT 17063.3 0 -

Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 9745.8 0 -

Preproc+BT+Lkhd 4256.0 0 92.5%
SSeg131-i + grid CPU [sec] #Timeouts Calls saved

BT 114405.9 30 -
Preprocessing+BT 114141.3 29 74.2%

BT+Lkhd 107896.3 30 -
Preproc+BT+Lkhd 108646.5 30 74.2%

SSeg178-c + grid CPU [sec] #Timeouts Calls saved
BT 78528.6 14 -

Preprocessing+BT 15717.9 1 91.9%
BT+Lkhd 74172.0 14 -

Preproc+BT+Lkhd 13961.1 1 91.9%
SSeg178-i + grid CPU [sec] #Timeouts Calls saved

BT 138404.2 35 -
Preprocessing+BT 103244.7 25 72.7%

BT+Lkhd 121492.4 32 -
Preproc+BT+Lkhd 85185.9 22 72.7%

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 K.M. Bayer et al.

7 Related Work

Reformulation has been applied to a wide range of CSP problems with much success.
The literature encompasses also approaches to modeling, abstraction, approximation,
and symmetry detection. Nadel studied 8 different models of the n-Queens problem,
some of which much easier to solve than others [17]. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 1874 [18]. This topic has recently received
increased attention, for example in the work of Puget [19] and Ellman [9]. Holte and
Choueiry provide a general discussion on abstraction and reformulation in AI including
CSPs [20]. Razgon et al. [21] introduced a class of problems they called Two Fami-
lies of Sets constraints (TFOS), and a technique for reformulating TFOS problems into
network flow problems. Conceptually, the relaxed problem we study in Section 4 con-
stitutes a special case of the TFOS problem.

8 Conclusions and Future Work

We introduced four general reformulation techniques for CSP, and integrated them in
a a comprehensive framework for solving the BID while highlighting their usefulness
for general CSPs. For example, our query reformulation facilitates a much wider use
of relational consistency algorithms than was possible before. In the future, we intend
to evaluate these techniques in other application settings. For example, we believe that
many resource allocation problems have matching relaxations like we described.

Acknowledgments. Experiments were conducted on the Research Computing Facil-
ity at UNL. This research is supported by NSF CAREER Award #0133568 and the
Air Force Office of Scientific Research under grant numbers FA9550-04-1-0105 and
FA9550-07-1-0416. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of any of the above organizations or any
person connected with them.

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaction Approach to Geospatial Reason-
ing. In: Proc. of AAAI 2005, pp. 423–429 (2005)

2. Choueiry, B.Y., Iwasaki, Y., McIlraith, S.: Towards a Practical Theory of Reformulation for
Reasoning About Physical Systems. Artificial Intelligence 162 (1–2), 145–204 (2005)

3. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence 57(2-3), 323–389
(1992)

4. Dechter, R., van Beek, P.: Local and global relational consistency. Journal of Theoretical
Computer Science (1996)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
6. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. In: Artificial Intelligence:

A Modern Approach, p. 107. Prentice-Hall, Englewood Cliffs (2003)
7. Selman, B., Kautz, H.: Knowledge Compilation and Theory Approximation. Journal of the

ACM 43(2), 193–224 (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Satisfaction Problems to Improve Scalability 79

8. Milano, M.(ed.).: Constraint and Integer Programming: Toward a Unified Methodology.
Kluwer Academic Publishers, Dordrecht (2004)

9. Ellman, T.: Abstraction via Approximate Symmetry. In: IJCAI 93, pp. 916–921 (1993)
10. Régin, J.: A filtering algorithm for constraints of difference in csps. In: AAAI 1994, pp.

362–367 (1994)
11. Uno, T.: Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in

Bipartite Graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350,
pp. 92–101. Springer, Heidelberg (1997)

12. Berge, C.: Graphs and Hypergraphs. Elsevier, Amsterdam (1973)
13. West, D.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)
14. Hopcroft, J.E., Karp, R.M.: An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs.

SIAM 2, 225–231 (1973)
15. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: On Forward Checking for Non-binary

Constraint Satisfaction. In: Jaffar, J. (ed.) Principles and Practice of Constraint Programming
– CP’99. LNCS, vol. 1713, pp. 88–102. Springer, Heidelberg (1999)

16. Prosser, P.: MAC-CBJ: Maintaining Arc Consistency with Conflict-Directed Backjumping.
Technical Report 95/177, Univ. of Strathclyde (1995)

17. Nadel, B.: Representation Selection for Constraint Satisfaction: A Case Study Using n-
Queens. IEEE Expert 5(3), 16–24 (1990)

18. Glaisher, J.: On the Problem of the Eight Queens. Philosophical Magazine 4(48), 457–467
(1874)

19. Puget, J.: On the satisfiability of symmetrical constraint satisfaction problems. In: Ko-
morowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361. Springer, Hei-
delberg (1993)

20. Holte, R.C., Choueiry, B.Y.: Abstraction and Reformulation in Artificial Intelligence. Philo-
sophical Trans. of the Royal Society Sec. Biological Sciences 358(1435), 1197–1204 (2003)

21. Razgon, I., O’Sullivan, B., Provan, G.: Generalizing Global Constraints Based on Network
Flows. In: Workshop on Constraint Modelling and Reformulation, pp. 74–87 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints:

The Slide and Regular Constraints

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
Claude-Guy Quimper5, and Toby Walsh6

1 LIRMM, University of Montpellier, France
bessiere@lirmm.fr

2 Emmanuel Hebrard, 4C, University College Cork, Ireland
ehebrard@4c.ucc.ie

3 Brahim Hnich, Faculty of Computer Science, Izmir University of Economics, Turkey
brahim.hnich@ieu.edu.tr

4 Zeynep Kiziltan, Department of Computer Science, University of Bologna, Italy
zeynep@cs.unibo.it

5 Claude-Guy Quimper, Omega Optimisation, Canada
quimper@alumni.uwaterloo.ca

6 Toby Walsh NICTA and University of New South Wales, Sydney, Australia
tw@cse.unsw.edu.au

Abstract. Global constraints are useful for modelling and reasoning
about real-world combinatorial problems. Unfortunately, developing
propagation algorithms to reason about global constraints efficiently and
effectively is usually a difficult and complex process. In this paper, we
show that reformulation may be helpful in building such propagators.
We consider both hard and soft forms of two powerful global constraints,
Slide and Regular. These global constraints are useful to represent a
wide range of problems like rostering and scheduling where we have a
sequence of decision variables and some constraint that holds along the
sequence. We show that the different forms of Slide and Regular can
all be reformulated as each other. We also show that reformulation is an
effective method to incorporate such global constraints within an exist-
ing constraint toolkit. Finally, this study provides insight into the close
relationship between these two important global constraints.

1 Introduction

Global constraints are one of the most important features of constraint pro-
gramming. Global constraints capture common patterns occurring in models of
complex, real-life combinatorial problems. For instance, a common pattern in
rostering problems is that sequences of night shifts must be followed by several
days off, and that no one is allowed to work more than a certain number of
consecutive night shifts. Such patterns can be modelled using a Regular con-
straint [6]. More recently, we have proposed the global Slide to model a wide
range of patterns appearing in sequencing and other problems [3]. In this paper,
we explore the relationship between these two global constraints in depth. We

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 80–92, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints 81

show that the Slide constraint can be efficiently reformulated as the Regular
constraint and vice versa.

In many real-world problems, it is not possible to find a feasible solution that
satisfies all the constraints and preferences of the user. Consider the problem
of allocating reviewers for papers submitted to a conference. Typically, a paper
must be reviewed by a certain number of reviewers and each reviewer must
have a certain number of papers. Reviewers also indicate preferences over the
papers that they would be happy to review. Finding an allocation that satisfies
the assignment constraints as well as all the reviewer preferences may not be
possible. We may however give an additional paper to some reviewers and may
assign a paper to a reviewer even if she is not enthusiastic about it, as long as
she did not indicate a “conflict of interest”. Soft versions of global constraints
are useful to model and solve such over-constrained problems.

A recent direction is to convert over-constrained problems into constraint op-
timization problems by treating constraint violations as costs. To reason about
such problems, we can design specific cost-based propagators. Several such soft
global constraints have been proposed to model and solve over-constrained prob-
lems effectively and efficiently (e.g., [7,9,10,12]). Whilst efficient propagators
have been developed for both the Slide and Regular constraint and are avail-
able in a number of solvers, there has been less work about soft versions of these
constraints. For example, no GAC propagators have yet been developed for soft
versions of the Slide constraint. One of our contributions in this paper is to
propose the first such propagators. We show that reformulation is an attractive
mechanism also to implement soft versions of the Slide and Regular global
constraints.

This rest of this paper is structured as follows. After giving the necessary
formal background in Section 2, we explain in detail in Section 3 the Slide and
Regular constraints. Then we show in Section 4 how Slide can be efficiently
reformulated as the Regular constraint and vice versa. In Section 5, we focus
on the soft versions of these global constraints and in Section 6 demonstrate that
the different types of SoftSlide constraints can be reformulated as hard forms
of the Slide or soft form of the Regular constraints. We provide experimental
proof in Section 7 that reformulating global constraints could be useful. We
report related work in Section 8 and conclude in Section 9.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for some subset of variables. We consider finite domain integer variables,
and use capital letters for variables (e.g. X) and lower case for values (e.g. d). We
write D(X) for the domain of a variable X . A constraint C defined on variables
[Xi, . . . , Xj] is indicated as C(Xi, . . . , Xj).

Constraint solvers typically explore partial assignments enforcing a local
consistency property using either specialised or general purpose algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 C. Bessiere et al.

A constraint C is generalised arc consistent (GAC) iff when a variable is as-
signed any of the values in its domain, there exist compatible values in the
domains of all the other variables of C. For binary constraints, generalised arc
consistency is often called simply arc consistency (AC). A constraint C is bound
consistent (BC) iff when a variable is assigned the maximum (or minimum)
value in its domain, there exist compatible values between the maximum and
minimum domain value for all the other variables of C.

A deterministic finite automaton (DFA) is described by a 5-tuple A =
〈Q, QF , q0, δ, Σ〉 where Σ is an alphabet, Q is a set of states, q0 ∈ Q is the
initial state, QF ⊆ Q is a set of final states, and δ ⊆ Q × Σ × Q is a transition
table. A sequence s1, . . . , sn is accepted by the automaton A if there exists a
sequence of states t0, . . . , tn such that t0 = q0 is the initial state, tn ∈ QF is a
final state, and 〈ti−1, si, ti〉 ∈ δ is a transition in the transition table. A language
L ⊆ Σ∗ is a (possibly infinite) set of sequences taken from an alphabet Σ. A
regular language is the set of sequences accepted by a DFA.

The Hamming distance between two strings s1 and s2 of the same length is the
number of positions in which they differ. The Hamming distance is denoted by
H(s1, s2). For example, the Hamming distance between the strings abc and adc
is 1 as they differ only on the second position. The Hamming distance between
a string s and a language L is min{H(s, t) | t ∈ L}. If L does not contain any
string of the same length as s, the distance between s and L is undefined. The
edit distance between two strings s1 and s2 is the minimum number of character
insertions, deletions, and replacements to string s1 in order to obtain s2. The
edit distance is denoted by E(s1, s2). For example, the edit distance between the
strings abc and aadc is 2 as we can replace the character b of the string abc by a
and insert a d before c to obtain aadc. The edit distance between a string s and
a language L is min{E(s, t) | t ∈ L}. If L is empty, the distance between s and
L is undefined.

3 Slide and Regular Constraints

The global Regular constraint was introduced by Pesant to model problems
in scheduling and rostering [6]. The constraint is specified in terms of a finite
automaton which accepts the string of values spelled out by the sequence of vari-
ables. More precisely, Regular(A, [X1, . . . , Xn]) holds iff X1 to Xn form a string
accepted by the DFA A. Such a global constraint can be used to ensure certain
patterns do (or do not) occur over time. For example, in shift rostering, we might
have that we cannot work more than three night shifts in a row and once a se-
quence of night shifts ends, we must have at least two days off. This can easily be
specified using a finite automaton. We have a finite automaton A with the states
n1, n2, n3, o1 and any. The transition table is: 〈any, day, any〉, 〈any, night, n1〉,
〈any, off, any〉, 〈ni, night, ni+1〉, 〈ni, off, o1〉, and 〈o1, off, any〉. For instance,
if we are in state any, we go to state n1 with input night. Pesant gives a propaga-
tor for the Regular constraint based on dynamic programming which achieves
GAC in O(nd|Q|) time where |Q| is the number of states of the automaton [6].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints 83

More recently, we introduced the global Slide constraint [3]. We begin with
its simplest form. If C is a constraint of arity k then Slide(C, [X1, . . . , Xn]) holds
iff C(Xi, . . . , Xi+k−1) itself holds for 1 ≤ i ≤ n − k + 1. That is, we slide the
constraint C down the sequence of variables, X1 to Xn. For example, consider
the car sequencing problem (prob001 in CSPLib) where we need to decide the
order in which to build cars on an assembly line. We might want to ensure that
no more than one out of every two cars has the sun roof option as it takes extra
time to fit a sun roof. This can easily be specified with a Slide constraint. We
slide a binary constraint down a sequence of decision variables representing the
order in which cars will be produced. This binary constraint ensures that one of
or both of the variables within its scope does not represent a car with the sun
roof option. A variation of the dual encoding can be used to maintain GAC on
such a Slide constraint in O(nkdk) time [3].

A more complex form of the Slide constraint permits us to slide down two or
more sequences of variables at the same time. For instance, if C is a constraint of
arity 2k then Slide(C, [X1, . . . , Xn], [Y1, . . . , Yn]) holds iff C(Xi, . . . , Xi+k−1, Yi,
. . . , Yi+k−1,) itself holds for 1 ≤ i ≤ n−k+1. That is, we slide the constraint C
down the two sequences of variables. Consider, for example, the global contiguity
constraint [5]. This ensures that within a sequence of 0/1 variables, X1 to Xn, the
1’s occur in a continuous block. We can model this by a Slide constraint down
two sequences of 0/1 variables, X1 to Xn and Y1 to Yn. The second sequence
of variables, Y1 to Yn record if we have met the block of 1’s yet or not. The
constraint being slid, C(Xi, Xi+1, Yi, Yi+1) holds iff (Yi = 0, Xi = 0, Xi+1 =
Yi+1) or (Yi = Yi+1 = 1 and Xi ≥ Xi+1). Such more complex forms of Slide can
be reformulated as the simple form of Slide down a single sequence. We merely
need to interleave the different sequences and then slide a suitably modified
constraint over these interleaved sequences. (See [3] for details.)

4 Reformulating Slide and Regular

We first show that Slide and Regular can be reformulated as each other. As
well as providing insight into the relationship between the two global constraints,
these reformulations will be useful in providing propagators for soft versions of
these global constraints.

4.1 Regular as Slide

In [8],we give a simple reformulation of theRegularconstraint in terms of aSlide
constraint. In addition to the sequence of variables along which the Regular con-
straint is defined, we introduce a sequence of variables for the state of the automa-
ton. We then slide the transition relation down the two sequences of variables. For
instance, consider again the shift rosteringproblem fromthe last section.Wecan re-
formulate Regular(A, [X1, . . . , Xn]) as Slide(C, [X1, . . . , Xn+1], [Q1, . . . , Qn])
where Xn+1 is a dummy variable, Qi are variables representing the state of the
automaton, and C(Xi, Xi+1, Qi, Qi+1) holds iff we move from state Qi to Qi+1 on

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 C. Bessiere et al.

seeing Xi. Observe that Xi+1 is not used in the definition of C. We let it in its scope
just tobe consistentwith the simplifiedpresentationofSlideonmultiple sequences
that we presented in Section 3.

Enforcing GAC on this reformulation achieves GAC on the original Regular
constraint. Hence, reformulation does not hinder propagation. This reformula-
tion is also optimal in the sense that, we can enforce GAC on either the Regular
constraint or its reformulation into Slide in O(nd|Q|) time. This complexity is
lower than the complexity of Slide in general because of the characteristics of
the constraint being slid (see [3] for details). As we show in the experimental
section, this reformulation is also a practical means to propagate the Regular
constraint. By reformulating Regular as a Slide constraint, we get an effi-
cient and incremental propagator that can outperform Pesant’s propagator for
Regular based on dynamic programming.

4.2 Slide as Regular

The reverse is also possible. That is, we can reformulate any instance of the
Slide constraint using a Regular constraint. Again this is optimal in the sense
that we can enforce GAC on either the Slide constraint or the reformulation
into Regular in O(nkdk) time. We prove this claim by constructing a DFA A
recognizing the language accepted by a Slide constraint.

Let Σ =
⋃n

i=1 D(Xi) be the alphabet and k be the arity of the constraint
C. The states of A are given by the set of sequences Q =

⋃k−1
i=0 Σi. The empty

sequence ε ∈ Q is the initial state. Any sequence of length k − 1 is a final state.
Let T = {[s1, . . . , sk] | C([s1, . . . , sk])} be the set of sequences accepted by the
constraint C. We construct the transition table δ of A as follows. Let w be a
sequence of length strictly smaller than k − 1 and c ∈ Σ be a character from the
alphabet. Let wc be the concatenation of the sequence w and the character c.
We have a transition 〈w, c, wc〉 ∈ δ if there exists a sequence in T starting with
wc. Let a, b ∈ Σ be two characters and w ∈ Σk−2 be a sequence of length k − 2
such that awb is a sequence in T . Then we have the transition 〈aw, b, wb〉 ∈ δ.
Notice that a state w can only be visited after parsing the sub-sequence w.

Example 1. Consider the alphabet Σ = {a, b} and the constraint C that accepts
any sequence of length three but the sequences aaa and bbb. We obtain the DFA
depicted in Figure 1.

The DFA A constructed in this way represents the Slide constraint.

Theorem 1. If n is greater than or equal to the arity of C, then the lan-
guage {X1 . . . Xn | Slide(C, [X1, . . . , Xn])} formed by the sequences satisfying
the Slide constraint is equal to the set of sequences of length n recognized by the
DFA A.

Proof. We first prove that every sequence s of length n accepted by A is also
accepted by the Slide constraint. Let w be the first k − 1 characters in s. By
construction of A after reading these k−1 characters, the current state is w and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints 85

bb

ab

ba

a

b

ε

aa
a

a

b

b

b

b

b

a

a

a

b
a

Fig. 1. DFA corresponding to Example 1

there exists a sequence in T starting with w. Assume that the k − 1 characters
following a position i in s are given by aw where a is a character and w is a
sequence of length k − 2. Also assume that there exists a sequence in T starting
with aw and that after reading aw, A is in state aw. By construction of A when
reading the character b at position i, the state of A changes from aw to wb. The
transition guarantees that the sequence awb belongs to T and that the constraint
C is satisfied at position i. By inductively repeating the argument, we conclude
that the constraint C is satisfied at every position and that consequently, the
Slide constraint is satisfied.

We now prove that if the sequence s satisfies the Slide constraint, then it
is accepted by A. Let awb be the first k characters of s where a and b are two
characters and w is a sequence of k − 2 characters. Since the Slide constraint
is satisfied, the sequence awb satisfies the constraint C and belongs to the set
T . Therefore, there is a series of states q0, . . . , qk−1 that parses the sequence aw
where state qi is the first i characters of aw. Suppose that the ith character to be
parsed is b, that the last k−1 parsed characters are the character a followed by the
sequence w, and that A is in state aw. Since the Slide constraint is satisfied, the
sequence awb satisfies C. Therefore, there exists a transition 〈aw, b, wb〉 ∈ δ that
parses the character b and leads to the state wb. Notice that wb are the last k−1
parsed characters. By inductively repeating the argument, we conclude that there
exists a parsing for any sequence satisfying the slide constraint. Consequently,
the sequence s is accepted by A. �	

5 Softening Slide and Regular

Aswediscussed in the introduction, realworldproblemsare oftenover-constrained.
One mechanism to deal with such over-constrained problems is to introduce a cost

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 C. Bessiere et al.

function, and find a solution of minimal cost from a feasible solution. We will for-
malize this process as follows. Let C(X1, . . . , Xn) be a hard global constraint like
SlideorRegular.Given a distance functiondbetween strings, the soft constraint
Csoft(X1, . . . , Xn, Z)holds iffZ = min{d(a1, . . . , an, b1, . . . , bm) |ai ∈ D(Xi)∀i ∈
1..n & C(b1, . . . , bm)}. Distance might, for instance, be Hamming (in which case
n = m) or edit distance. As stated in Section 2, d is not defined if the set of strings
satisfying C is empty.

As an example, the constraint SoftSlideH(C, [X1, . . . , Xn], D) holds iff D is
the Hamming-distance between the sequence [X1, . . . , Xn] and the language ac-
cepted by the Slide constraint. Similarly, the constraint SoftSlideE(C, [X1,
. . . , Xn], D) holds iff D is the edit-distance between the sequence [X1, . . . , Xn]
and the language accepted by the Slide constraint. Similarly, SoftRegularH

and SoftRegularE are soft forms of Regular obtained by applying Hamming
and edit distance based violations to Regular respectively [10]. For example,
SoftRegularE(A, [X1, . . . , Xn], D) is satisfied iff D is the edit-distance between
the sequence [X1, . . . , Xn] and the language accepted by A. In [10], the propagation
algorithm for Regular based on dynamic programming is modified in two differ-
ent ways to maintain GAC on SoftRegularH and SoftRegularE ,
respectively.

6 SoftSlide Constraint

We will show that the different types of SoftSlide constraints can be refor-
mulated as hard forms of the Slide or soft form of the Regular constraints.
Reformulation thus provides a simple mechanism to propagate the soft forms of
these global constraints.

6.1 SoftSlideH as Slide

Let us consider a SoftSlideH(C, [X1, . . . , Xn], D) where the arity of constraint
C is k and where n ≥ k. In order to reformulate this SoftSlide constraint as a
Slide constraint, we introduce two sequences of extra variables.

The first sequence contains n+k−1 variables [S1, . . . , Sn+k−1] that we build in
such a way that S1, . . . , Sn can be any string accepted by Slide(C, [S1, . . . , Sn]).
The domain of each Si contains all the values that appear in at least one tuple
belonging to C. The variables Sn+1 to Sn+k−1 must not be forced to satisfy the
constraint being slid. Hence, a dummy value ’∗’ is added to the domain of every
Si, i > n. Furthermore, C′ is defined as a relaxation of C that contains a tuple t
iff t belongs to C or t contains at least one dummy value ’∗’. For instance, if C is a
ternary constraint allowing the following set of tuples {〈a, b, a〉, 〈b, c, a〉, 〈a, b, c〉},
then the domain of each Si, i ≤ n, is {a, b, c}, the domain of each Si, i > n, is
{a, b, c, ∗}, and C′ = C ∪ {〈d1, d2, d3〉 | ∃i ∈ 1..3, di = ∗}.

The second sequence of variables contains n+1 variables [D1, . . . , Dn+1] which
provide the cumulative count of the number of discrepancies with respect to the
previous sequence. Then we introduce the following k + 3-ary constraint:

CH(Xi, Si, . . . , Si+k−1, Di, Di+1) ⇔ C′(Si, . . . , Si+k−1) ∧ Di+1 = Di + (Si �= Xi)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints 87

This constraint ensures that C′ is satisfied by the sequence [Si, . . . , Si+k−1]
(that is, [Si, . . . , Si+k−1] satisfies C if i + k − 1 ≤ n), and Di+1 = Di if Si = Xi,
otherwise Di+1 = Di + 1. Using the more complex form of Slide over multiple
sequences, we can thus reformulate the SoftSlideH constraint by sliding CH

over the three sequences [S1, . . . , Sn+k−1], [X1, . . . , Xn], and [D1, . . . , Dn+1] and
by constraining D1 to be 0 and Dn+1 to be equal to D. That is, we have:

SoftSlideH(C, [X1, . . . , Xn], D)

⇔
Slide(CH , [S1, . . . , Sn+k−1], [X1, . . . , Xn], [0, D2 . . . , Dn, D])

Enforcing GAC on Slide is in O(nkdk), where n is the length of the sequence
and k the arity of the constraint being slid. In the case of the reformulation
of SoftSlideH as Slide, the constraint to be slid has arity k + 3. Thus, the
time complexity of enforcing GAC on SoftSlideH using this reformulation is
in O(nkdk+3) where d is the number of values that are used in tuples allowed
by the constraint C.

Note that for this encoding to work correctly, the variables [S1, . . . , Sn+k−1]
should not be constrained by other constraints, so that GAC on Slide(C, [S1,
. . . , Sn+k−1]) guarantees a solution. Since such variables are introduced during
the reformulation, they will be invisible to the users of the SoftSlideH con-
straint, hence such an assumption is reasonable.

6.2 SoftSlideE as SoftRegularE

By using the same reformulation we proposed of Slide as Regular, we can
reformulate SoftSlideE as SoftRegularE . The set of strings accepted by
the hard version of the SoftSlideE constraint must not be empty because
the propagator of SoftRegularE described in [10] is defined for automata
accepting a non empty language. This propagator achieves GAC on the vari-
ables Xi for 1 ≤ i ≤ n and BC on D in O(n|δ| + n|Q| log(n|Q|)) steps. The
DFA A has O(|Σ|i) states labelled with a sequence of length i for a total of
|Q| =

∑k−1
i=0 O(|Σ|i) = O(|Σ|k) states. The outgoing degree of every state

is bounded by |Σ|. We therefore have |δ| = O(|Σ|k+1) transitions. Filtering
the SoftSlideE constraint therefore requires O(n|Σ|k+1 + n|Σ|k log(n|Σ|k)) =
O(n|Σ|k+1 + nk|Σ|k log(n|Σ|)) time.

7 Experimental Analysis

We now show that reformulation is an effective mechanism to provide propaga-
tors for Slide and Regular constraints. First, we compare reasoning about a
Regular constraint encoded as Slide, with reasoning about it directly using
Pesant’s GAC propagator [6]. Then, we analyse the reverse reformulation and
compare reasoning a Slide constraint reformulated as a Regular, with rea-
soning about it directly using the GAC propagator given in [3]. Pesant presents

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 C. Bessiere et al.

two propagators. We implemented the one that keeps track of all supports for
each value in the domain of every variable. Whilst the first set of experiments
are done using ILOG Solver 6.1 on a 900 MHz Pentium running Linux Debian,
the second set is done using ILOG Solver 6.2 on a 2.8GHz Intel Xeon computer
running Linux FC2.

7.1 Regular as Slide

As in [6], we generated random automata with |Q| states and an alphabet of
size |Σ|. We selected 30% of all possible tuples (c, qi) ∈ Σ × Q and randomly
chose a state qj ∈ Q to form the transition T (c, qi) = qj . We obtained the
set of final states F by randomly selecting 50% of the states in Q. Following
Pesant, we used a random variable ordering and random value selection. All
experiments are averaged over 30 runs. Table 1 shows the results. We observe
that the reformulation of Regular constraints in terms of Slide is as efficient
as and most of the times slightly more efficient than propagating directly the
Regular constraints. The propagator for Slide uses a sequence of built-in
Table constraints. We conjecture that these are highly optimized and contribute
to the performance offered by Slide.

We also ran experiments on a model for the Mystery Shopper problem due
to Helmut Simonis that appears in CSPLib (prob004). This model contains a
large number of Among constraints. We represented these Among constraints
using Regular constraints, and again either reasoned with these Regular
constraints directly using Pesant’s propagator or reformulated them using Slide
constraints.

Results are given in Table 2. All instances solved in the experiments use a time
limit of 5 minutes. Both methods achieve GAC on the Among constraint, so the
search trees are identical and it is only the efficiency of the propagator which
differ. Again, reformulation of Regular using Slide is slightly more efficient.

7.2 Slide as Regular

We consider a variant of the Nurse Scheduling Problem [4] that consists of gen-
erating a schedule for each nurse of shifts duties and days off within a short-term
planning period. There are three types of shifts (day, evening, and night). We
ensure that (1) each nurse should take a day off or be assigned to an available
shift; (2) each shift has a minimum required number of nurses; (3) each nurse
work load should be between specific lower and upper bounds; (4) each nurse
can work at most 5 consecutive days; (5) each nurse must have at least 12 hours
of break between two shifts; (6) the shift assigned to a nurse cannot change more
than once every three days. We develop two models to solve this problem. In
both, we introduce one variable for each nurse and each day, indicating to what
type of shift, if any, this nurse is affected on this day. The constraints (1)-(3)
are enforced using a set of global cardinality constraints. The constraints (4),
(5) and (6) form sequences of respectively 6-ary, binary and ternary constraints.
Notice that (4) is monotone, hence we simply post these constraints in both

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints 89

Table 1. Time in seconds to find a sequence satisfying a randomly generated automa-
ton either using Pesant’s propagator for the Regular constraint or reformulating it
as a Slide constraint

n |Σ| |Q| Regular Regular as Slide

25 5 10 0.0032 0.0031
20 0.0029 0.0025
40 0.0052 0.0046
80 0.0079 0.0041

25 10 10 0.0053 0.0038
20 0.0099 0.0063
40 0.0165 0.0087
80 0.0284 0.0136

25 20 10 0.0113 0.0057
20 0.0195 0.0083
40 0.0399 0.0140
80 0.0812 0.0226

n |Σ| |Q| Regular Regular as Slide

50 5 10 0.0047 0.0051
20 0.0047 0.0037
40 0.0101 0.0086
80 0.0168 0.0087

50 10 10 0.0105 0.0071
20 0.0207 0.0129
40 0.0359 0.0185
80 0.0631 0.0301

50 20 10 0.0232 0.0119
20 0.0396 0.0177
40 0.0814 0.0289
80 0.1655 0.0457

models. The conjunction of constraints (5) and (6) is slid using the tuple encod-
ing of Slide in the first model, and an encoding of Slide using Regular in the
second model.

We test the models by using the instances available at http://www.projectman-
agement.ugent.be/nsp.php in which nurses have no maximum workload, but a
set of preferences is to be optimised. We ignore these preferences and post a
constraint for bounding the maximum workload to at most 5 day shifts, 4 evening
shifts and 2 night shifts per nurses and per week. Similarly, each nurse must have
at least 2 rest days per week. We solve a sample of 99 instances involving a crew
of 30 nurses to schedule over 28 days. We use the same static variable ordering
for both models. The days are scheduled in chronological order, and within each
day, we allocate a shift to every nurse in lex order. Initial experiments show that
this simple heuristic is more efficient than dynamic minimum domain heuristic.

In Table 3, we report the mean fails and cpu time required to solve the in-
stances. We observe that the first model is about 15% faster than the second
model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 C. Bessiere et al.

Table 2. Mystery Shopper problem, Regular v. Regular as Slide. #fails and cpu
time are only averaged on instances solved by both methods.

Regular Regular as Slide

Size #fails cpu time #solved #fails cpu time #solved

10 6 0.01022 9/10 6 0.00755 9/10
15 8342 1.19897 32/52 8342 1.15954 32/52
20 12960 5.63347 21/35 12960 3.40063 21/35
25 6186 1.41279 4/20 6186 0.87862 4/20
30 1438 0.72189 3/10 1438 0.47626 3/10
35 6297 3.73623 20/56 6297 2.36849 20/56

Table 3. Nurse scheduling problem (30 nurses, 28 days), Slide v. Slide as Regular.
#fails and cpu time are only averaged on instances solved by both methods.

Slide Slide as Regular

instances solved 56/99 56/99
time 3.77 4.39
backtracks 4761 4761

8 Related Work

Reformulating new global constraints in terms of those that already available
within the constraint toolkit has started to gain attention within the constraint
programming community. For instance, in [11], the AmongSeq constraint used
in car sequencing on a production line is studied and alternative propagation
methods are discussed. One approach reformulates AmongSeq as a Regular
constraint. This reformulation is shown to be the most efficient in practice com-
pared to the other proposed propagators.

Given the large number of global constraints that have been identified, another
direction of study is “general-purpose” global constraints. Such constraints can
be used in conjunction with the primitive constraints to reformulate a wide
range of global constraints without the need to extend the constraint toolkits.
This is especially useful if a constraint toolkit does not provide a propagator for
the global constraint or if the constraint is difficult to propagate. Slide is such
a general constraint because it helps encode and propagate many sequencing
constraints [3]. Other examples of general constraints are Range and Roots
[2]. They are shown to be very useful for reformulating diverse global constraints
appearing in counting and occurrence problems.

One of the simplest ways to soften the Slide constraint is to relax the number
of times the slid constraint holds on the sequence. This gives the CardPath con-
straint. CardPath(C, [X1, . . . , Xn], N) holds iff C holds N times on the sequence
[X1, . . . , Xn] [1]. Interestingly, the CardPath constraint can itself be reformu-
lated as a Slide constraint [3]. We can therefore use the propagator for Slide to
propagate the CardPath constraint. In fact, this reformulation is the first and
only method proposed so far in the literature for enforcing GAC on CardPath.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Global Constraints 91

SoftRegular

Regular

Slide

SoftSlide

Fig. 2. The relationship between Slide, SoftSlide, Regular, and SoftRegular
constraints

9 Conclusions

To model real-world constraint problems and to solve them efficiently, many
global constraints have been proposed in recent years. In this paper, we have
focused on two important global constraints, Slide and Regular which are
useful for encoding and propagating a wide range of rostering and sequencing
problems. Since problems are often over-constrained, we have also studied soft
forms of these global constraints. We showed that the different forms of Slide
and Regular can all be reformulated as each other. We also showed that re-
formulation is an effective method to incorporate such global constraints within
an existing constraint toolkit. This study has provided insight into the close
relationship between these two important global constraints.

The relationships depicted in Figure 2 demonstrate the close links between
the hard and soft versions of the Slide and Regular constraints. An arrow
from a constraint Ci to a constraint Cj indicates in the figure that Ci can be
reformulated as Cj . A thick arrow is either due to findings in this paper or due to
the fact that a soft form of a constraint can be used to propagate its hard form
by not allowing any violation. The dashed arrows can be obtained by transitivity
from the thick arrows. For instance, given that Regular can be reformulated
as Slide which can itself be reformulated as SoftSlide, we can derive that
Regular can be reformulated as SoftSlide.

References

1. Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introduc-
ing cardinality-path constraint family. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, pp. 59–73. Springer, Heidelberg (2001)

2. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The range and roots
constraints: Specifying counting and occurrence problems. In: Proc. of IJCAI’05,
pp. 60–65. Professional Book Center (2005)

3. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Slide Meta-
Constraint. Comic technical report, 2006 (available at http://homes.ieu.edu.tr/
bhnich/comic/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://homes.ieu.edu.tr/bhnich/comic/
http://homes.ieu.edu.tr/bhnich/comic/

92 C. Bessiere et al.

4. Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the
art of nurse rostering. Journal of Scheduling 7(6), 441–499 (2004)

5. Maher, M.: Analysis of a global contiguity constraint. In: Van Hentenryck, P. (ed.)
CP 2002. LNCS, vol. 2470, Springer, Heidelberg (2002)

6. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–295. Springer,
Heidelberg (2004)

7. Petit, T., Régin, J-C., Bessière, C.: Specific filtering algorithms for over-constrained
problems. In: Drira, K., Martelli, A., Villemur, T. (eds.) Cooperative Environments
for Distributed Systems Engineering. LNCS, vol. 2236, pp. 451–463. Springer, Hei-
delberg (2001)

8. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

9. van Hoeve, W-J.: A hyper-arc consistency algorithm for the soft alldifferent con-
straint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 679–689. Springer,
Heidelberg (2004)

10. van Hoeve, W-J., Pesant, G., Rousseau, L-M.: On global warming: Flow-based soft
global constaints. Journal of Heuristics 12(4-5), 347–373 (2006)

11. van Hoeve, W-J., Pesant, G., Rousseau, L-M., Sabharwal, A.: Revisiting the se-
quence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634.
Springer, Heidelberg (2006)

12. Zanarini, A., Milano, M., Pesant, G.: Improved algorithm for the soft global car-
dinality constraint. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, pp. 288–299. Springer, Heidelberg (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks

Dominique D’Almeida, Jean-François Condotta,
Christophe Lecoutre, and Lakhdar Saïs

CRIL-CNRS, Université d’Artois, rue de l’Université, 62307 Lens, France
{dalmeida,condotta,lecoutre,sais}@cril.univ-artois.fr

Abstract. In this paper, we propose to study the interest of relaxing
qualitative constraints networks by using the formalism of discrete Con-
straint Satisfaction Problem (CSP). This allows us to avoid the intro-
duction of new definitions and properties in the domain of qualitative
reasoning. We first propose a general (but incomplete) approach to show
the unsatisfiability of qualitative networks, by using a relaxation on any
set of relations. Interestingly enough, for some qualitative calculi, the
proposed scheme can be extended to determine the satisfiability of any
qualitative network, leading to an original, simple and complete method.
However, as the efficiency of our approach depends on the chosen relax-
ation, total relations should be preferred due to their connections with
the hardness of constraint networks. We then present some preliminary
experimental results, with respect to unsatisfiability, which show some
promising improvements on some classes of random qualitative networks.

1 Introduction

The need for reasoning about time and space arises in many areas of Artificial
Intelligence, including computer vision, natural language understanding, geo-
graphic information systems (GIS), scheduling, planning, diagnosis and genetics.
Numerous formalisms for representing and reasoning about time and space in a
qualitative way have been proposed in the past two decades [1,28,22,3,27,19,4].

Those formalisms involve a finite set of basic relations denoting qualitative
relationships between temporal or spatial entities. Intersection, overlapping, con-
tainment, precedence are examples of such qualitative relationships. For instance,
in the field of qualitative reasoning about temporal data, there is a well-known
formalism called Allen’s calculus [1]. It is based on intervals of the rational line
for representing temporal entities and thirteen basic relations between such in-
tervals are used to represent the qualitative situations between temporal entities:
an interval can follow another one, meet another one, and so on.

Typically, Qualitative Constraint Networks (QCNs) are used to express infor-
mation on a spatial or temporal situation. Each constraint of a QCN represents
a set of acceptable qualitative configurations between some temporal or spatial
entities and is defined by a set of basic relations. The total relation, which is the
set of all basic relations, is the term used to describe a total uncertainty in the
configurations. The density of such relations in a qualitative networks can take
part to the difficulty to solve those problems.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 93–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 D. D’Almeida et al.

The aim of this paper is to demonstrate that a relaxation of some relations
can lead, in some cases, to a significant computational speed up of the satis-
fiability checking task. To avoid the introduction of new particular definitions
(and properties) in qualitative reasoning, when relaxation is applied, a discrete
encoding preserving the chosen relations of qualitative constraint networks is
used. Using a relaxation on any set of relations, it is then possible to show the
unsatisfiability of some networks. Interestingly enough, for some qualitative cal-
culi, this basic relaxation scheme is extended to determine the satisfiability of
any qualitative constraint network leading to an original, simple and complete
method. Nevertheless, even if the approach can be used in the general case, we
focus our attention on relaxing total relations since these relations are intuitively
related to computational efficiency.

Relaxation based approaches are widely used in many domains ranging from
constraint satisfaction to linear programming and knowledge representation. For
example, in constraint satisfaction, relaxations are used to solve dynamic [20],
over-constrained [21] and distributed [31] constraint networks. Some other works
are based on concepts of abstract interpretation [14,23], theory of abstraction [16]
or theory approximation [8,29]. Whereas in [9], abstract interpretation [14,23] is
exploited to improve constraint solving in an object-oriented context, the concept
of Galois insertion (at the heart of abstract interpretation) has also been used
to deal with flexible constraints [5,6]. Generally speaking, many abstractions
(e.g. [15,10,30,11]) proposed in the literature can be seen as a kind of value or
variable clustering. The framework introduced in [24] allows to deal with general
clustering which means that an element (a value or a variable) can belong to
several clusters.

The paper is organized as follows. In the next section, some background on
qualitative and discrete formalisms is provided. Then we present the general
relaxation scheme that we propose. Before concluding, some experimental results
on some classes of random qualitative constraint networks are presented.

2 Technical Background

In this section, we provide the technical background useful for the reading of this
paper. First, we present the concept of qualitative calculus before introducing
qualitative constraint networks. Then, we introduce discrete constraint networks
and describe an encoding of qualitative constraint networks into discrete ones.

2.1 Qualitative Calculus

A qualitative calculus involves a finite set B of binary1 relations, called ba-
sic relations, defined on a domain D. The elements of D represent temporal
or spatial entities. Each basic relation of B corresponds to a particular possi-
ble configuration between two temporal or spatial entities. The relations of B

1 In this paper, we focus on binary relations but this work can be extended to non-
binary ones.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks 95

are jointly exhaustive and pairwise disjoint, which means that any pair of ele-
ments of D belongs to exactly one basic relation in B. Moreover, for each basic
relation B ∈ B there exists another basic relation of B, denoted by B∼, corre-
sponding to the transposition of B. In addition, we suppose that a particular
relation of B, denoted by Id, is the identity relation on D. The set A is defined
as the set of relations corresponding to all possible unions of the basic relations:
A = {

⋃
E : E ⊆ B}. It is customary to represent an element B1 ∪ . . .∪Bm (with

Bi ∈ B for each i such that 1 ≤ i ≤ m) of A by the set {B1, . . . , Bm} belonging
to 2B. Hence, we make no distinction between A and 2B in the rest of this paper.

As an example, consider the well-known temporal qualitative formalism called
Allen’s calculus [2]. It uses intervals of the rational line for representing tem-
poral entities. Hence, D is the set {(x−, x+) ∈ Q × Q : x− < x+}. The
set of basic relations consists of a set of thirteen binary relations B =
{eq, b, bi, m, mi, o, oi, s, si, d, di, f, fi} corresponding to all possible configura-
tions between two intervals. These basic relations are depicted in Figure 1. We
have Id = eq.

Relation

precedes

meets

overlaps

starts

during

finishes

equals

Meaning

b

m

o

s

d

f

eq

Inverse

bi

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y
X

Y

Symbol

Fig. 1. The basic relations of Allen’s calculus

As a set of subsets, A is equipped with the usual set-theoretic operations
including intersection (∩) and union (∪). As a set of binary relations, it is also
equipped with the operation of converse (∼) and an operation of composition
(◦) sometimes called weak composition or qualitative composition. The converse
of a relation R in A is the union of the transpositions of the basic relations
contained in R. The composition A ◦ B of two basic relations A and B is the
relation R = {C ∈ B | ∃x, y, z ∈ D3, x A y, y B z and x C z}. The composition
R◦S of R, S ∈ A is the relation T =

⋃
A∈R,B∈S{A◦B}. Computing the results of

these various operations for relations of 2B can be done efficiently by using tables
giving the results of these operations for the basic relations of B. For instance,
consider the relations R = {eq, b, o, si} and S = {d, f, s} of Allen’s calculus, we
have R∼ = {eq, bi, oi, s}. The relation R ◦ S is {d, f, s, b, o, m, eq, si, oi}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 D. D’Almeida et al.

2.2 Qualitative Constraint Networks

A qualitative constraint network (QCN) is a pair composed of a set of variables
and a set of constraints. Each variable represents a spatial or temporal entity of
the problem that is represented, and each constraint consists of a set of accept-
able basic relations (the possible configurations) between two variables. More
formally, a QCN is defined in the following way:

Definition 1. A QCN N is a pair (V, Q) where V = {v1, . . . , vn} is a finite set
of n variables and Q is a map that assigns to each pair (vi, vj) of V × V a set
Q(vi, vj) ∈ 2B of basic relations. Q(vi, vj) will also be denoted by Qij. Q is such
that Qii ⊆ {Id} and Qij = Q∼ji for all vi, vj ∈ V .

A solution of a QCN N is a map σ from V to D such that (σ(vi), σ(vj)) satisfies
Qij for all vi, vj ∈ V . N is consistent iff it admits a solution. A QCN N ′ =
(V ′, Q′) is a sub-QCN of N (denoted by N ′ ⊆ N) if and only if V = V ′ and
Q′ij ⊆ Qij for all vi, vj ∈ V . A QCN N ′ = (V ′, Q′) is equivalent to N if and
only if V = V ′ and both networks have the same solutions. N is atomic iff each
constraint of N contains exactly one basic relation. A scenario of N is an atomic
sub-QCN of N . We will denote by scen(N) and sol(N) a scenario and a solution
of N , respectively.

Given a QCN N , the main issue to be addressed is the consistency problem: to
decide whether or not N admits (at least) a solution. Most of the algorithms used
for solving this problem are based on a method that we call the ◦-closure method,
also called weak composition closure and denoted WC. The ◦-closure method
is a constraint propagation method allowing to enforce the (0, 3)-consistency of
N , which means that all restrictions of N to 3-variables are consistent. The ◦-
closure method involves iteratively performing the following operation: Qij :=
Qij ∩ (Qik ◦ Qkj), for all vi, vj , vk of V , until a fix-point is reached. This method
yields a sub-QCN N ′ = (V, Q′) of N which is equivalent to it, and such that
Q′ij ⊆ Q′ik ◦ Q′kj , for all vi, vj , vk of V . This last condition is expressed by saying
that the sub-network is ◦-closed (to simplify, we will assume that a ◦-closed QCN
does not contain the empty relation associated with a constraint).

2.3 Discrete Constraints Networks

Definition 2. A Discrete Constraint Network (DCN) P is a pair (X, C) where
X is a finite set of variables and C a finite set of constraints. Each variable
x ∈ X has an associated domain, denoted domP(x), which represents the set of
values allowed for x. Each constraint c ∈ C involves a subset of variables of X,
called scope and denoted scp(c), and has an associated relation denoted relP(c),
which represents the set of tuples allowed for the variables of its scope.

When possible, we will write dom(x) and rel(c) instead of domP (x) and relP(c).
If P and P ′ are two DCNs defined on the same sets of variables X and constraints
C, then we will write P
 P ′ (and we will say that P is a subnetwork of P ′)
iff ∀x ∈ X , domP (x) ⊆ domP

′
(x). A solution to a discrete constraint network

is an assignment of values to all the variables such that all the constraints are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks 97

satisfied. A constraint network is said to be satisfiable or consistent iff it admits
at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint network is satisfiable.
A CSP instance is then defined by a constraint network, and solving it involves
either finding one (or more) solution or determining its unsatisfiability.

To solve a CSP instance, one can apply inference or search methods. Usually,
domains of variables are reduced by removing inconsistent values, i.e. values that
can not occur in any solution. Indeed, it is possible to filter domains by consider-
ing some properties of constraint networks. Generalized Arc Consistency (GAC)
remains the central property of constraint networks and establishing GAC on
a given network P involves removing all values that are not generalized arc-
consistent. Remark that for binary constraint networks, GAC is simply referred
as AC (Arc Consistency).

Definition 3. Let P = (X, C) be a DCN. A pair (x, a), with x ∈ X and a ∈
dom(x), is generalized arc-consistent (GAC) iff ∀c ∈ C | x ∈ scp(c), there exists
a support of (x, a) in c, i.e. a tuple t ∈ rel(c) such that t[x] = a and t[y] ∈ dom(y)
∀y ∈ scp(c)2. P is GAC iff ∀x ∈ X, dom(x) �= ∅ and ∀a ∈ dom(x), (x, a) is
GAC.

We will denote by GAC(P) the constraint network obtained after enforcing GAC
on P . Inconsistency proved when applying GAC is denoted by GAC(P) = ⊥.

2.4 From Qualitative to Discrete Constraints Networks

In this paper, we propose to use an encoding to map a qualitative constraint
network N into a discrete one P . Each constraint of N is mapped to a variable
of P whose domain corresponds to the atomic relations of the constraint (and,
as a consequence, a subset of B), and each triple of constraints of N is mapped
to a ternary constraint of P such that the associated relation contains all valid
3-tuples satisfying the weak composition. More formally, we obtain:

Definition 4. Let N = (V, Q) be a QCN. TDCN(N) is the DCN P = (X, C)
defined as follows:

– for each pair of variables vi, vj ∈ V with 1 ≤ i ≤ j ≤ n, X contains a
variable xij such that dom(xij) = Qij ;

– for each triple of variables vi, vj , vk ∈ V with 1 ≤ i < k < j ≤ n, C
contains a ternary constraint cijk such that scp(cijk) = {xij , xik, xkj} and
rel(cijk) = {(a, b, c) ∈ B3 : a ∈ b ◦ c}.

The idea of mapping qualitative networks into discrete ones is quite natural, and
has been formalized in [26,12]. Interestingly, there are some relationships between
the two frameworks. For example, if a QCN N is consistent, then TDCN(N) is
consistent [12]. Unfortunately, the encoding is not complete for some qualitative
calculi (e.g. the cyclic interval algebra [18,4]): the qualitative network N can be
2 t[x] denotes the value assigned to x in t.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 D. D’Almeida et al.

inconsistent whereas the discrete network TDCN(N) is consistent. Nevertheless,
we have the following weaker property: if TDCN(N) is consistent then N admits
a ◦-closed scenario. Besides, introducing the concept of so-called nice qualitative
calculus, i.e. a calculus for which a scenario is consistent if and only if it is ◦-
closed, we can establish that: a QCN N defined in a nice qualitative calculus
is consistent iff TDCN(N) is consistent. It is important to remark that many
qualitative calculi are nice, and in particular the well-known Allen’s calculus.

It is possible to obtain a qualitative network from a discrete network using
the following operator TQCN .

Definition 5. Let N = (V, Q) be a QCN and P = (X, C) be a DCN such that
P
 TDCN (N). TQCN(P) is the QCN (V, Q′) defined by Q′ij = dom(xij) and
Q′ji = (Q′ij)

∼ for all 1 ≤ i ≤ j ≤ n.

This operator is useful to show the connections existing between qualitative and
discrete local consistencies. Indeed, we can prove [12] that if TDCN(N) is GAC
then N is ◦-closed. As a consequence, a way to obtain the ◦-closure of a QCN
is to transform it into a DCN (via TDCN), apply a GAC algorithm and get back
the result (via TQCN) under the form of a DCN. This is illustrated in Figure 2.

P = TDCN(N)

GAC

P ′N ′ = TQCN(P ′)

◦-closure

N

Fig. 2. Relationship between ◦-closure and GAC

The interest of encoding qualitative networks into discrete ones is two-fold.
First, we can benefit from some state-of-the-art generic CSP solvers that are
freely available. Second, the formalism classically used for qualitative algebra
is based on networks whose macro-structure corresponds to complete graphs.
Here, introducing relaxation in qualitative networks would require extending
current qualitative definitions and properties. The major part of QCN solvers
works with matrices as data structures to represent qualitative constraints. For
example, QAT (a qualitative algebra toolkit [13]) uses such a data structure.
With these solvers, the representation of a relaxed QCN is not a trivial task and
implies heavy changes concerning the methods used for reasoning.

3 Relaxing Qualitative Constraints Networks

There is a particular relation in any qualitative algebra: the total relation that
we will denote by ψ. This relation, which is such that ψ = B, represents the fact

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks 99

that we have no information about the configuration of any two variables. When
solving a QCN, ψ relations may represent an overhead for the resolution since
they must be taken into account while not participating (at least, initially) to
filter the search space. This is why we are going to propose to relax qualitative
constraint networks by simply discarding all ψ relations.

In order to make our approach quite general, we introduce relaxation and
restriction with respect to a subset of relations R ⊆ 2B (even if we will choose R =
ψ for our experimentation). From now on, we will consider given the qualitative
calculus as well as R (assumed to be closed for the converse operation). Then,
we present a general scheme, as well as an algorithm, that can be followed when
the qualitative calculus respects some conditions.

3.1 Theoretical Results

To perform our relaxation, we propose a generalization of the mapping operator
introduced in Definition 4. The relaxation involves only taking into account
variables (of the discrete network) whose domain does not belong to R. More
formally, the definition of the new operator, denoted by T−R

DCN , is given by:

Definition 6. Let N = (V, Q) be a QCN. The discrete relaxation T−R
DCN(N) of

N is the DCN P = (X, C) defined as follows:

– for each pair of variables vi, vj ∈ V with 1 ≤ i ≤ j ≤ n such as Qij /∈ R, X
contains a variable xij such that dom(xij) = Qij ;

– for each triple of variables vi, vj , vk ∈ V with 1 ≤ i < k < j ≤ n, C
contains a ternary constraint Cijk , such that scp(Cijk) = {xij , xik, xkj} and
rel(cijk) = {(a, b, c) ∈ B3 : a ∈ b ◦ c}, iff xij , xik and xkj belong to X.

It is immediate to see that T−R
DCN is equivalent to TDCN when R = ∅. Also,

T−R
DCN(N) is clearly a sub-network of TDCN(N).
The following proposition shows that it is possible to exploit discrete relax-

ations to prove the unsatisfiability of a qualitative network. The proof is imme-
diate since T−R

DCN(N) is a sub-network of TDCN(N) which is equivalent to N
with respect to satisfiability.

Proposition 1. Let N be a QCN. If T−R
DCN(N) is unsatisfiable then N is

unsatisfiable.

Figure 3 shows an illustration of discrete relaxations of a qualitative constraint
network (from Allen’s calculus). On the left, we have the discrete network that
corresponds to the direct mapping (according to Definition 4) of the QCN pre-
sented at the top of the figure: each constraint becomes a variable and each triple
of variables becomes a ternary constraint. On the right, we have the discrete net-
work that corresponds to the discrete relaxation based on the total relation. The
variable x2,3 has been discarded since it corresponds to the total relation Q2,3.
Consequently, ternary constraints that may involve x2,3 have been discarded
too. Trivially, both networks are unsatisfiable. Indeed, we have v1 before v4 and
v1 after v4. Hence, in the relaxed discrete network, dom(x1,4) is restricted to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 D. D’Almeida et al.

x2,4

{b, a}
ψ

T −ψ
DCN

TDCN

{b}

{b}

{a}

{a}

v4

v3

x1,2

x3,4

v1

x3,4

x1,4

v2

x1,2

x2,3 x2,4

x1,4x1,3 x1,3

Fig. 3. Illustration of discrete encodings (with and without relaxation)

the before value (using the ternary constraint c1,2,4) and also to the after value
(using the ternary constraint c1,3,4).

Once a discrete network using T−R
DCN has been generated, it is possible to use

any CSP solver to find solutions, if any. As mentioned above, if no solution is
found, it means that the initial qualitative network is unsatisfiable. However,
for any found solution I (i.e. consistent instantiation), it may be interesting to
exploit it in the qualitative network. Of course, in the general case, each solution
does not correspond to a piece of a consistent scenario of the qualitative network,
but by considering each of them in turn, it is possible to render the approach
complete. Indeed, if no consistent scenario can be built from all solutions of the
discrete relaxation, the qualitative network is proved to be unsatisfiable.

To do this, we need to propose a generalization of the mapping operator
introduced in Definition 5.

Definition 7. Let N = (V, Q) be a QCN, R be a subset of 2B and P = (X, C)
be a DCN such that P
 T−R

DCN(N). The qualitative restriction T +R
QCN (P) of P

is the QCN N ′ = (V, Q′) defined by:

– ∀ 1 ≤ i ≤ n, Q′ii = {Id};
– ∀ 1 ≤ i < k < j ≤ n, Q′ij = dom(xij) and Q′ji = (Q′ij)

∼ if xij ∈ X, and
Q′ij = Qij and Q′ji = Qji, otherwise.

We can apply this operator to any solution found in P . Indeed, by considering
I as a DCN (the domain of each variable being reduced to a single value), we
can build the qualitative restriction of I and then obtain a qualitative network
N ′. It is interesting to note that in this case, the constraints of N ′ are basically
composed of relations of R as well as atomic relations. This can contribute to
facilitate our task (i.e. determining the satisfiability/unsatisfiability of N). In-
deed, there exists a class H ⊂ 2B of relations, called ORD-Horn relations [25],
such that, for some qualitative calculi, weak composition closure is complete with
respect to satisfiability. QCN only composed of ORD-Horn relations are called
ORD-Horn QCN. We have the following proposition.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks 101

is inconsistent?

NO

is sat?
complete solverNO

YES

(solution)

YES

WC

N
SAT

T−R
DCN

P

N

UNSAT
N

N ′
T+R

QCN

I

Fig. 4. A general scheme to determine the satisfiability of a QCN N

Proposition 2. Let N be a QCN and I be a solution of T−R
DCN(N). If R is a

subset of ORD-Horn relations and T +R
QCN(I) is closed by weak composition, then

N is satisfiable.

The proof can be derived from the elements introduced above. This proposition
can be directly exploited by some qualitative calculi, e.g. the Allen’s one. Indeed,
for the Allen’s calculus, the set of ORD-Horn relations is closed with respect to
composition, intersection and converse. It implies that, applying a weak com-
position closure algorithm on an ORD-Horn network yields another ORD-Horn
network. In other words, for the Allen’s algebra, Propositions 1 and 2 provide
us with an original way to determine the satisfiability of a qualitative network
by using two simple mapping operators, a CSP solver and a weak composition
closure algorithm.

3.2 General Scheme

A general scheme about the exploitation of discrete networks to deal with the
relaxation of qualitative networks is given in Figure 4. This scheme holds if the
qualitative calculus is such that all atomic relations are ORD-Horn relations
and the weak composition closure is complete with respect to satisfiability. Re-
mark that the closure of the set of ORD-Horn relations for composition and
intersection may improve the applicability of this scheme.

The aim of the scheme is to determine the satisfiability of a given qualitative
network N . Using the operator T−R

DCN (see Definition 6), we first obtain a discrete
network P . Then, we use a complete solver to search for a solution. If no solution
is found, then N is proved to be unsatisfiable (see Proposition 1). Otherwise,
a solution I is returned by the solver. Using the operator T +R

QCN (see Definition

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 D. D’Almeida et al.

7), we can then obtain a new qualitative network N ′. If this network can be
enforced to be ◦-closed, it means that the satisfiability of N has been proved
(see Proposition 2). If this is not the case, we just ask the complete solver to
search for the next solution.

Algorithm 1. checkSatisfiability
Data: QCN N
Result: the satisfiability of N
begin

P = T −ψ
DCN(N)

/* we assume that solve(P), called iteratively, returns the
solutions of P, one by one */

solution ← solve(P)
while solution �= null do

if GAC(solution ∩ TDCN(N)) �= ⊥ then
return SAT

solution ← solve(P)

return UNSAT
end

We will instantiate this general scheme by using the total relation as re-
laxation (i.e. by choosing R = ψ) and considering the Allen’s calculus whose
atomic and total relations belong to the set of ORD-Horn relations, which con-
sequently satisfies the previous requirements. More precisely, we will use the
function checkSatisfiability depicted by Algorithm 1. The main difference be-
tween this algorithm and the scheme presented above is the fact that, instead of
using the operator T +R

QCN and the ◦-closure operation, we use a GAC algorithm.
Indeed, if we consider the network obtained by restricting TDCN(N) with respect
to the last found solution, and if we apply GAC, then we obtain the same result
as the one obtained by applying the ◦-closure on T +R

QCN(solution) (see Figure 2).

4 Experiments

To study the practical interest of our proposed relaxation framework, some pre-
liminary experiments on unsatisfiability detection have been conducted using
total relations relaxation. Some qualitative constraint networks have been ran-
domly generated and converted to discrete constraint networks using the qualita-
tive algebra toolkit QAT [13].We have limited our attention to random networks
because of the absence of structured qualitative instances. Then, Abscon, a state-
of-the-art generic CSP solver (see http://www.cril.univ-artois.fr/CPAI06)
has been run on the obtained discrete instances. Note that the satisfiability
detection part of our general framework is currently under development.

In our experiments, as path consistency (which corresponds to weak compo-
sition) on qualitative constraint networks can lead to the elimination of some
total relations (replaced by implied ones), two different relaxation modes have

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.cril.univ-artois.fr/CPAI06

Relaxation of Qualitative Constraint Networks 103

been considered. For the first one, relaxation corresponds to the elimination of
all total relations: this will be called strong relaxation. For the second one, relax-
ation (elimination of total relations) is done after achieving weak composition:
this will be called weak relaxation. Of course, the strong relaxation can elimi-
nate more total relations than the weak one. Using these two relaxation modes,
an experimental comparison has been conducted against a direct resolution (no
relaxation).

To generate random QCN instances, we have used three parameters : the
number of variables (N), the density of non-total relations (D) and the average
number of basic relations for those constraints (L). The generated QCN instances
are composed of 50 variables built from the well-known Allen’s calculus (which
is composed of 13 basic relations). For each instance, the number of atomic
relations in each constraint has been fixed to L1 = 3.25 and L2 = 6.5 while the
density of non-total relations has been varied from 0.01 to 0.99 with a step of
0.01. For each parameter setting, 100 networks have been generated.

Comparison is done according to the percentage of detected unsatisfiable in-
stances and average cpu time (in ms) needed to solve such instances. The first
measure is used to show the precision of our relaxation framework i.e. the highest
this percentage is, the better our approximation is.

Figure 4 indicates that for L1 (figure on top) and L2 (figure on bottom), the
strong relaxation is far less efficient, in term of precision (i.e. detected unsat-
isfiable instances), than the weak one. Note that for L1, 100% of unsatisfiable
instances have been detected by the weak relaxation, and that for L2, the gap
between weak and strong relaxations is increasing. It then appears that applying
weak composition before relaxation improves the precision of our unsatisfiabil-
ity detection method. Note that these experiments are only presented around
the threshold which is the most interesting area. Of course, beyond the highest
density mentioned in Figure 4, the accuracy of both relaxation methods always
reaches 100%.

It is interesting to see that in term of cpu time, the two relaxation modes
present totally different behaviours. This can be observed for both strong and
weak relaxations in Figures 6 and 7, respectively. One could imagine that strong
relaxation is faster than weak relaxation on detected unsatisfiable instances, but
here, we have to be aware that the average computation is not done on the
same basis. Indeed, we make our computation by only keeping the instances
that were detected unsatisfiable by, on the one hand (Figure 6), both the strong
relaxation and the direct resolution, and on the other hand (Figure 7), both the
weak relaxation and the direct resolution. Note that, as the density increases, the
two relaxations tend to be very close to the behaviour of the direct resolution.
Also, remark that in Figure 7 (on bottom), at a density set to 0.18, we obtain a
significant gain in term of cpu time when using the weak relaxation.

Finally, to make our experimental protocol more significant, we have con-
ducted another series of experiments on a sample of hard QCN instances
above the threshold. To this end, a number of atomic relations per constraint
(L3 = 9.75) and a non-total relations density (D = 0.65) have been chosen
such that the generated networks are difficult to solve. As we can observe in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 D. D’Almeida et al.

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2

P
ro

po
rt

io
n

of
 d

et
ec

te
d

un
sa

tis
fia

bl
e

in
st

an
ce

s
(%

)

Density (L1=3.25)

No relaxation
Strong relaxation
Weak relaxation

 0

 20

 40

 60

 80

 100

 0.1 0.15 0.2 0.25 0.3 0.35

P
ro

po
rt

io
n

of
 d

et
ec

te
d

un
sa

tis
fia

bl
e

in
st

an
ce

s
(%

)

Density (L2=6.5)

No relaxation
Strong relaxation

Weak composition

Fig. 5. Proportion of instances detected as unsatisfiable

Table 1. Results on a sample of difficult instances

Method No relaxation Strong relaxation Weak relaxation
instances 65 65 65

Time Out (TO) 32 16 16
Sat 0 0 0

Unsat 33 49 49
Time Out / # instances 49,23% 24,62% 24,62%
Total Time (33 unsat) in s 14,572 3,765 4,016
Avg Time (33 unsat) in s 441.5 114.1 121.7

Ratio 0,00% 74,16% 72,43%

Table 1, our approach is very efficient for detecting the unsatisfiability of these
hard instances. Indeed, without relaxation, 49.23% of instances are not solved
within the allowed cpu time (1200s), whereas on the same networks only 24.62%

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks 105

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

Density (L1=3.25)

No relaxation
Strong relaxation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

Density (L2=6.5)

No relaxation
Strong relaxation

Fig. 6. Average cpu time to detect unsatisfiability (strong relaxation)

of instances are not detected to be unsatisfiable by our approach. Interestingly
enough, on such detected instances a huge gain (up to a four-fold improvement)
is obtained with respect to cpu time. On these hard instances, the weak and
strong relaxations present very close performances.

5 Future Works and Conclusions

In this paper, a general and complete relaxation framework for qualitative rea-
soning is proposed. It allows the user to consider any kind of relaxation and any
type of relations. Its originality comes from the fact that we exploit a mapping
towards discrete constraint networks. Considering total relations for relaxation,
promising preliminary results have been obtained with respect to unsatisfiability.

The generality and flexibility behind our approach offer some rooms for further
improvements. It can be strengthened by integrating results from constraint

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 D. D’Almeida et al.

 480

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

Density (L1=3.25)

No relaxation
Weak relaxation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.1 0.15 0.2 0.25 0.3 0.35

tim
e

(m
s)

Density (L2=6.5)

No relaxation
Weak relaxation

Fig. 7. Average cpu time to detect unsatisfiability (strong relaxation)

satisfaction and satisfiability problems. For example, the completeness can be
efficiently addressed by exploiting advanced methods in satisfiability problems
(e.g. randomisation and restarts [17]). We can also imagine the integration of
different forms of restriction in order to reintroduce some of the previous relaxed
relations. This could be done, for example, by using constraint weighting [7] to
select the best relations that might be added.

References

1. Allen, J.F.: An interval-based representation of temporal knowledge. In: Proceed-
ings of IJCAI’81, pp. 221–226 (1981)

2. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relaxation of Qualitative Constraint Networks 107

3. Balbiani, P., Condotta, J.F., Fariñas del Cerro, L.: A model for reasoning about
bidimensional temporal relations. In: Proceedings of KR’98, pp. 124–130 (1998)

4. Balbiani, P., Osmani, A.: A model for reasoning about topologic relations between
cyclic intervals. In: Proceedings of KR’00, pp. 378–385 (2000)

5. Bistarelli, S., Codognet, P., Rossi, F.: An abstraction framework for soft constraints
and its relationship with constraint propagation. In: Choueiry, B.Y., Walsh, T.
(eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 71–86. Springer, Heidelberg (2000)

6. Bistarelli, S., Codognet, P., Rossi, F.: Abstracting soft constraints: framework,
properties, examples. Artificial Intelligence 139, 175–211 (2002)

7. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI’04, pp. 146–150 (2004)

8. Cadoli, M.: Tractable Reasoning in Aritificial Intelligence.LNCS, vol. 941, Springer,
Heidelberg (1995)

9. Caseau, Y.: Abstract interpretation of constraints on order-sorted domains. In:
Proceedings of ISLP’91, pp. 435–452 (1991)

10. Choueiry, B., Faltings, B., Weigel, R.: Abstraction by interchangeability in resource
allocation. In: Proceedings of IJCAI’95, pp. 1694–1710 (1995)

11. Choueiry, B., Noubir, G.: On the computation of local interchangeability in discrete
constraint satisfaction problems. In: Proceedings of AAAI’98, pp. 326–333 (1998)

12. Condotta, J.F., Dalmeida, D., Lecoutre, C., Sais, L.: From qualitative to discrete
constraint networks. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS
(LNAI), vol. 4314, pp. 54–64. Springer, Heidelberg (2007)

13. Condotta, J.F., Ligozat, G., Saade, M.: The QAT: A Qualitative Algebra Toolkit.
In: Proceedings of TIME’2006, pp. 69–77 (2006)

14. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Logic and Computa-
tion 2(4), 447–511 (1992)

15. Freuder, E., Sabin, D.: Interchangeability supports abstraction and reformulation
for constraint satisfaction. In: Proceedings of SARA’95 (1995)

16. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2-3),
323–390 (1992)

17. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfi-
ability and constraint satisfaction problems. Journal of Automated Reasoning 24,
67–100 (2000)

18. Hornsby, K., Egenhofer, M.J., Hayes, P.J.: Modeling cyclic change. In: Proceedings
of REIS’99, pp. 98–109 (2006)

19. Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using
ternary relation algebras. Artificial Intelligence 122(1–2), 137–187 (2000)

20. Jussien, N.: Relaxation de Contraintes pour les problémes dynamiques. PhD thesis,
Universitè de Rennes I (1997)

21. Jussien, N., Boizumault, P.: Implementing constraint relaxation over finite domains
using ATMS. In: Jampel, M., Maher, M.J., Freuder, E.C. (eds.) Over-Constrained
Systems. LNCS, vol. 1106, Springer, Heidelberg (1996)

22. Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and
Computing 1(9), 23–44 (1998)

23. Marriott, K.: Frameworks for abstract interpretation. Acta Informatica 30, 103–129
(1993)

24. Merchez, S., Lecoutre, C., Boussemart, F.: Abstraction de réseaux de contraintes.
Revue d’Intelligence Artificielle 20(1), 31–62 (2006)

25. Nebel, B., Bürckert, H.J.: Reasoning About Temporal Relations: A Maximal
Tractable Subclass of Allen’s Interval Algebra. Journal of the ACM 42(1), 43–66
(1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 D. D’Almeida et al.

26. Pham, D.N., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning
as propositional satisfiablitly. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
117–131. Springer, Heidelberg (2005)

27. Pujari, A.K., Kumari, G.V., Sattar, A.: Indu: An interval and duration network.
In: Proceedings of the Australian Joint Conference on Artificial Intelligence, pp.
291–303 (1999)

28. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Proceedings of KR’92, pp. 165–176 (1992)

29. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal
of the ACM 43(2), 193–224 (1996)

30. Shrag, R., Miranker, D.: Abstraction and the csp phase transition boundary.
In: Proceedings of the 4th International Symposium on Artificial Intelligence and
Mathematics, pp.138–141, 1996.

31. Yokoo, M.: Constraint relaxation in distributed constraint satisfaction problems.
In: Proceedings of ICTAI’03, pp. 56–63 (1993)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through

Meta-diagnosis

Johan de Kleer

Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto, CA 94304 USA

dekleer@parc.com

Abstract. One of the most powerful tools designers have at their dis-
posal is abstraction. By abstracting from the detailed properties of a
system, the complexity of the overall design task becomes manageable.
Unfortunately, faults in a system need not obey the neat abstraction lev-
els of the designer. This paper presents an approach for identifying the
abstraction level which is as simple as possible yet sufficient to address
the task at hand. The approach chooses the desired abstraction level
through applying model-based diagnosis at the meta-level, i.e., to the
abstraction assumptions themselves.

Keywords: Abstraction, diagnosis, qualitative reasoning, model-based
reasoning.

1 Introduction

Of the many tools designers have at their disposal, abstraction is one of the
most powerful. By abstracting from the detailed properties of a system, the
complexity of the overall design task becomes manageable. For example, a com-
puter engineer can focus on the logic level without concern for the properties of
the individual transistors which make up a particular gate, and a chip designer
can layout a chip without being concerned with the fabrication steps needed to
construct it. Abstraction allow designers to partition concerns into independent
black boxes and is one of the most important ideas underlying the design of
modern technology.

Unfortunately, faults in a system need not obey the neat abstraction levels of
the designer. A fault in a few transistors can cause an Intel Pentium processor to
generate an ocasional incorrect floating point result. To understand this fault re-
quires transcending the many abstraction levels between software and hardware.
A PC designer can focus on functional layout without being concerned about
the physical layout and its thermal properties. However, a technician must de-
termine that the processor crashed because dust sucked into the processor fan
clogged the heatsink and allowed the processor temperature to rise to such a dan-
gerous level that the PC automatically shut down. As a consequence diagnostic
reasoning is inherently messy and complex, as it involves crossing abstraction
boundaries never contemplated by the designers.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 109–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 J. de Kleer

Existing model-based reasoning has addressed a number of types of
abstraction.

– Range abstraction. The ranges of variables are abstracted, e.g., instead of a
continuous quanity it might be represented by the qualitative values of −, 0
or +. [1,2,3,4]

– Structural abstraction. Groups of components are abstracted to form hier-
archies [5,6].

– Model selection. Approaches to choosing among a collection of hand-
constructed models [7,8]

In this paper we present a new type of abstraction (domain abstraction): chang-
ing the physical principles which underlie models, such as moving from the 0/1
level to currents and voltages and providing a systematic approach to choosing
the appropriate domain for the diagnostic task.

Choosing the right domain abstraction level requires balancing two opposing
desiderata. Reasoning at the highest abstraction level is the simplest. Unfortu-
nately, it may be inadequate to analyze or troubleshoot the system. Instead, the
system needs to be analyzed at a more detailed level. On the other hand, reason-
ing at too low of a level can require enormously more computational resources
and difficult to obtain parameters, and it generates more complicated analyses.
As Albert Einstein reportedly said: “Make everything as simple as possible, but
not simpler.”

Technicians expect that systems are non-intermittent and that the schematic
is an accurate description of the physical system. Consider the simple analog
circuit of Fig. 1. Suppose a technician measures the current to be 0 ampere (1 is
expected), which leads to an inference that the resistor is faulty, but repeating
the measurement gives 1 ampere. Either the resistor is intermittent or there
is a fault in the connections. The technician must change abstraction level to
diagnose this system further by, for example, checking the connections or further
tests on resistor R itself.

Consider a circuit of three logic inverters in sequence, with its output fedback
to its input (Fig. 2). At the usual gate level of analysis, an inverter simply
complements its input. This circuit has no inputs, so we need to consider the
possible values at the connecting nodes. Assume the input to inverter A is 0. Its

V =10

R=10
Ohms

I

Fig. 1. Simple analog diagnosis problem

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 111

A B D

Fig. 2. A very simple circuit which yields a contradiction when analyzed as combina-
tional logic; yet its a perfectly reasonable fault-free circuit with well-defined behavior

output must be 1. The output of B must be 0. The output of D must be 1. This
is impossible, as we assumed it was 0. Conversely, assume the input to inverter
A is 1. Its output must be 0. The output of B must be 1. The output of D must
be 0. This is impossible, as we assumed it was 1. Therefore, the input of inverter
A can neither be 0 or 1. Also, the inputs of inverters B or D cannot be 0 or
1. Somehow the circuit is contradictory when modeled as logic gates. Thus, one
of the components A, B or D must be faulted. Suppose the technician chooses
to systematically remove and check each of these three components for proper
functioning. If each component is confirmed to be correct, the technician has
encountered an impasse.

Analyses that result in contradictions are the most important indicator that
the level of abstraction used is too simplistic. In this paper we present a gen-
eral reasoner which automatically descends abstraction layers to perform needed
analyses, and which does not descend abstraction levels needlessly. This approach
is broadly applicable, but we explore these ideas in the context of digital cir-
cuits with messier models that include failures in connections, intermittents, and
temporal behaviors.

2 Meta-diagnosis

Fig. 3 characterizes the basic architecture of a typical model-based, component-
based diagnosis engine. Given the component topology (e.g., the schematic for
analog circuits), component models (e.g., resistors obey ohm’s law) and obser-
vations (e.g., the voltage across resistor R6 is 4 volts), it computes diagnoses
which explain all the observations. Observations inconsistent with expectations
guide the discovery of diagnoses. When the MBD engine can find no diagnoses
it signals a failure.

Suppose we need to troubleshoot the circuit of Fig. 2. Most diagnosis systems
would immediately conclude that some subset of the components {A, B, D} is
faulted. However, testing each inverter individually demonstrates that all the
components are good. As a consequence, most algorithms would report an un-
resolvable contradiction.

The architecture of Fig. 4 includes two model-based diagnosis engines. The
top model is used to identify the best abstraction level, and the bottom model
performs the actual system diagnosis. This composite architecture has the same
inputs as the basic architecture with one additional input: the abstraction library.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 J. de Kleer

Component
Topology

DiagnosesMBD
Engine

Component Model
Library

Observations

Failure

Fig. 3. Basic architecture of a model-based diagnosis engine

The ‘Applicable Models’ module identifies all the applicable abstractions for the
component topology. The ‘Modeler’ module uses the preferred meta-diagnosis
to construct conventional model-based diagnosis models using the ‘Component
Model Library.’

Consider the example of Fig. 2. The component topology is simply the circuit
schematic as before. The system observations are as before (e.g., the output of A
is 1). The component model library contains different models for gate behavior
(e.g., boolean, analog, thermal, temporal, etc.). The new input, the abstrac-
tion library, is the set of all possible abstractions. Instead of a usual component
topology, the abstraction MBD engine is provided with a set of possible ab-
stractions applicable to the given system to be diagnosed. Initially, there are
no meta-observations, so the preferred diagnosis is the one at the most abstract
level (analogous to all components working). Therefore, the domain MBD engine

Component
Topology

Preferred Meta-Diagnosis

Abstraction Library

Meta-Observations

Failure

Diagnoses

Domain

MBD

Component Models

System Observations

Failure

Modeler

Component Model
Library

Abstraction
MBD

Applicable
Models

Meta-Conflicts

Fig. 4. Architecture of an abstraction-based, model-based diagnosis engine

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 113

will perform diagnosis in the usual way with the most abstract models. Suppose
each gate is physically checked, leading to the observations that A, B and D
are working correctly. The domain model-based engine now fails as it has found
an unresolvable contradiction. This invokes the abstraction MBD engine as an
observation. As analysis proceeds, the preferred meta-diagnosis will descend ab-
straction levels. For the purposes of this paper, the preferred meta-diagnosis is
one minimal cardinality meta-diagnosis.

3 Formalization

This section summarizes the formal framework for model-based diagnosis we
use in the rest of the paper [9,10]. In order to distinguish between domain and
abstraction AB literals, we state the usual framework in terms of domain ABd

literals.

Definition 1. A system is a triple (SD,COMPS, OBS) where:

1. SD, the system description, is a set of first-order sentences.
2. COMPS, the system components, is a finite set of constants.
3. OBS, a set of observations, is a set of first-order sentences.

In Fig. 3 SD is the component topology and component model library, and
COMPS is the set of components in the component topology.

Definition 2. Given two sets of components Cp and Cn define Dd(Cp, Cn) to
be the conjunction:

[∧
c∈Cp

ABd(c)
]

∧
[∧

c∈Cn

¬ABd(c)
]
.

Where ABd(x) represents that the component x is ABnormal (faulted).
A diagnosis is a sentence describing one possible state of the system, where

this state is an assignment of the status normal or abnormal to each system
component.

Definition 3. Let Δ ⊆COMPS. A diagnosis for (SD,COMPS,OBS) is Dd(Δ,
COMPS − Δ) such that the following is satisfiable:

SD ∪ OBS ∪ {Dd(Δ, COMPS − Δ)}

Definition 4. An ABd-literal is ABd(c) or ¬ABd(c) for some c ∈ COMPS.

Definition 5. An ABd-clause is a disjunction of ABd-literals containing no
complementary pair of ABd-literals.

Definition 6. A conflict of (SD,COMPS,OBS) is an ABd-clause entailed by
SD ∪ OBS.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 J. de Kleer

3.1 Formalizing Abstraction

The abstraction MBD is defined analogously:

Definition 7. An abstraction system is a triple (SD,ABS, OBS) where:

1. SD, constraints among possible abstractions, is a set of first-order sentences.
2. ABS, the applicable abstractions, is a finite set of constants.
3. OBS, a set of meta-observations, is a set of first-order sentences.

Definition 8. Given two sets of abstractions Cp and Cn define Da(Cp, Cn) to
be the conjunction:

[∧
c∈Cp

ABa(c)
]

∧
[∧

c∈Cn

¬ABa(c)
]
.

Where ABa(x) represents that the abstraction x is ABnormal (cannot be used).
A meta-diagnosis is a sentence describing one possible state of the system,

where this state is an assignment of the status normal or abnormal to each
system component.

Definition 9. Let Δ ⊆ABS. A meta-diagnosis for (SD,ABS,OBS) is Da(Δ,
ABS − Δ) such that the following is satisfiable:

SD ∪ OBS ∪ {Da(Δ, ABS − Δ)}

Definition 10. An ABa-literal is ABa(c) or ¬ABa(c) for some c ∈ ABS.

Definition 11. An ABa-clause is a disjunction of ABa-literals containing no
complementary pair of ABa-literals.

Definition 12. A meta-conflict of (SD,ABS,OBS) is an ABa-clause entailed by
SD ∪ OBS.

4 Example of a Lattice of Models

To illustrate these ideas we use 3 axes of abstraction:

– Model of connections as in [11] which is an improvement over [12,13].
– Model of non-intermittency [14] or intermittency [15]
– Model of time [16].

The corresponding ABa literals are:

– ¬ABa(C) represents the abstraction that connections need not be modeled.
– ¬ABa(I) represents the abstraction that the system is non-intermittent.
– ¬ABa(T) represents the abstraction that temporal behavior need not be

modeled.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 115

T C I

TCI

TC TI CI

ø

T C I

TCI

TC TI CI

ø

co
m

pl
ex

ity

(a) (b)

Fig. 5. (a) Meta-Diagnosis lattices for digital gates. T indicates temporal models; C
indicates connection models; I indicates intermittent models. (b) The meta-conflict
ABa(T) ∨ ABa(C) rules out all meta-diagnoses below the curved line. The minimal
meta-diagnoses are T and C.

Fig. 5(a) shows a portion of the abstraction space for digital circuits along three
of the axes of abstraction. This lattice is identical in structure to the ones used in
conventional model-based diagnosis for system diagnoses. In conventional model-
based diagnosis, each node represents a candidate diagnosis which explains the
observations. Each node in Fig. 5(b) represents a candidate meta-diagnosis. The
bottom node in the figure represents the meta-diagnosis in which connections,
time, and intermittency are not relevant: ¬ABa(T)∧¬ABa(C)∧¬ABa(I). Under
the principle that we want to find the simplest meta-diagnosis which explains
the observations (and no simpler), we are primarily interested in the minimal
diagnoses. For brevity sake, we name meta-diagnoses with the letters corre-
sponding to the abstractions which are ABa. For example, the meta-diagnosis
¬ABa(T) ∧ ¬ABa(C) ∧ ABa(I) is named by I.

For the example in Fig. 2, analysis immediately detects a contradiction and the
meta-conflict: ABa(T)∨ABa(C). (This contradiction cannot depend on ABa(I)
as there is only one observation time so far). Fig. 5b illustrates the resulting
meta-diagnosis lattice. Every meta-diagnosis below the curve is eliminated. The
minimal meta-diagnoses are T and C.

5 Modeling Components

The conventional MBD model for an inverter is (presuming the usual background
axioms define the appropriate functions, domains, and ranges):

INVERTER(x) →
[
¬ABd(x) → [in(x, t) = 0 ≡ out(x, t) = 1]

]
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 J. de Kleer

As this model presumes connections and temporal behavior need not be modeled,
in our new framework it is written as:

¬ABa(T) ∧ ¬ABa(C) →[
INVERTER(x) →

[
¬ABd(x) → [in(x, t) = 0 ≡ out(x, t) = 1]

]]
.

When modeling an inverter as having a delay Δ, the model changes to (labeled
T in Fig. 5):

ABa(T) ∧ ¬ABa(C) →[
INVERTER(x) →

[
¬ABd(x) → [in(x, t) = 0 ≡ out(x, t + Δ) = 1]

]]
.

5.1 Connection Models

To model the inverter to accommodate faults in connections, including bridge
faults, requires the introduction of new formalisms. What follows is a brief sum-
mary of the formalism presented in [11]. Each terminal of a component is mod-
eled with two variables, one which models how the component is attempting
to influence its output (roughly analogous to current), and the other which
characterizes the result (roughly analogous to voltage). There are 5, mutually
inconsistent, qualitative values for the influence of a component on a node (we
refer to these as “drivers”).

– d(−∞) indicates a direct short to ground.
– d(0) pull towards ground (i.e., 0).
– d(R) presents a high (i.e., draws little current) passive resistive load.
– d(1) pull towards power (i.e., 1).
– d(+∞) indicates a direct short to power.

There are three possible qualitative values for the resulting signal:

– s(0) the result is close enough to ground to be sensed as a digital 0.
– s(x) the result is neither a 0 or 1.
– s(1) the result is close enough to power to be sensed as a digital 1.

Using this formalism produces considerably more detailed component models.
We need to expand the A ≡ B in the inverter model to (A → B) ∧ (B → A).
The left half of the inverter model is:

¬ABa(T) ∧ ABa(C) →
[
INVERTER(x) →

[
¬ABd(x) →[

[s(in(x, t)) = s(0) → d(out(x, t)) = d(1)]
∧[s(in(x, t)) = s(1) → d(out(x, t)) = d(0)]

∧d(in(x, t)) = d(R) ∧ [d(out(x, t)) = d(0) ∨ d(out(x, t)) = d(1)]
]]]

.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 117

We need explicit models to describe how the digital signal at a the node is
determined from its drivers. Let R(v) be the resulting signal at node v and S(v)
be the collection of drivers of node v. Intuitively, the model for a node is:

– If d(−∞) ∈ S(v), then R(v) = s(0).
– If d(+∞) ∈ S(v), then R(v) = s(1).
– If d(0) ∈ S(v), then R(v) = s(0).
– Else, if all drivers are known, and the preceding 3 rules do not apply, then

R(v) = s(1).

The resulting model for the node x will depend on ¬ABd(x) and ABa(C).
Modeling the inverter to more accurately describe both temporal and causal

behavior (labeled TC in Fig. 5):

ABa(T) ∧ ABa(C) →
[
INVERTER(x) →

[
¬ABd(x) →[

[s(in(x, t)) = s(0) → d(out(x, t + Δ)) = d(1)]
∧[s(in(x, t)) = s(1) → d(out(x, t + Δ)) = d(0)]

∧d(in(x, t)) = d(R) ∧ [d(out(x, t + Δ)) = d(0) ∨ d(out(x, t + Δ)) = d(1)]
]]]

.

The connection models also allow arbitrary bridge faults among circuit nodes.
These are described in much more detail in [11].

5.2 Modeling Non-intermittency

Fig. 6 shows an example where assuming non-intermittency improves diagnostic
discrimination. The circuit’s inputs and outputs are marked with values observed
at times: T1 and T2. Note that at T1, the circuit outputs a correct value and that
at T2, the circuit outputs an incorrect one. By assuming the Or gate behaves
non-intermittently, we can establish that the Xor gate is faulty as follows:

If Xor is good, then In1(Xor, T1) = 1. This follows from In2(Xor, T1) = 0,
Out(Xor, T1) = 1 and the behavior of Xor. Similarly, if Xor is good, then
In1(Xor) = 0 at T2. However, if Or behaves non-intermittently, then
In1(Xor, T2) = 1. This follows because Or has the same inputs at both T1 and
T2 and must produce the same output. Thus we have two contradictory pre-
dictions for the value of In1(Xor, T2). Either Xor is faulty or Or is behaving
intermittently. Assuming non-intermittency means Xor is faulty.

All the inferences follow from the defining of non-intermittency:

Definition 13. [14] A component behaves non-intermittently if its outputs are
a function of its inputs.

This definition sanctions the following inference: if an input vector X is applied
to an intermittent component at time T , and output Z is observed, then in any
other observation T ′, if X is supplied as input, Z will be observed as output.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 J. de Kleer

Fig. 6. The power of non-intermittency

For the Or-Xor example, the axioms added are:

∀t.Out(Or, t) = F (Or, In1(Or, t), In2(Or, t))

∀t.Out(Xor, t) = F (Xor, In1(Xor, t), In2(Xor, t))

F is a single fixed function for all non-intermittency axioms.
These axioms are implemented in the ATMS/HTMS-based reasoner by deriv-

ing prime implicates as follows. At time T1:

ABd(Xor) ∨ [F (Or, 1, 1) = 1].

At time T2:
ABd(Xor) ∨ [F (Or, 1, 1) = 0].

Which combine to yield ABd(Xor).
In the intermittent case, the observation at T1 equally weights Xor and Or

as being correct. If there were other components in the system not affected by
the measurement, the observation at T1 lowers the posterior fault probabilities
of Xor and Or.

5.3 Automatic Generation of Models

The more detailed component models can usually be generated automatically
from the most abstract models in a systematic way. In our implementation, the
T , C, and I models are automatically derived from the basic ∅ models by a set
of modeling schemas. Consider the most abstract model of an inverter:

INVERTER(x) →
[
¬ABd(x) → [in(x, t) = 0 ≡ out(x, t) = 1]

]
.

We use the convention that the function in refers to inputs, and the function out
refers to outputs. A non-temporal model can be converted to a simple gate-delay
model by replacing every occurrence of out(x, t) (or outj(x, t)) with out(x, t+Δ).

A non-connection model can be converted to a connection one by first ex-
panding implications, replacing all in(x, t) = y with s(in(x, t)) = s(y) and
d(in(x, t)) = d(R) and replacing all out(x, t) = y with d(out(x, t)) = d(y), and
adding the usual domain axioms for new variable values.

Non-intermittency requires no change to the component models themselves,
but the axioms of Section 5.2 need to be added to the models supplied to the
domain MBD.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 119

6 The Meta-diagnosis Loop

6.1 ∅ → T

Consider the three inverter example of Fig. 2. The most abstract meta-
diagnosis is:

¬ABa(T) ∧ ¬ABa(C) ∧ ¬ABa(I).

This meta-diagnosis is supplied to the ‘Modeler’ module for Fig. 4 which chooses
the component models at the meta-diagnosis level. The models for all three
inverters are given by the TC model of Section 5. This produces a failure because
all components are known to be good. The ‘Meta-Conflicts’ module of Fig. 4 will
construct the meta-conflict:

ABa(T) ∨ ABa(C).

ABa(I) is trivially excluded from the meta-conflict because non-intermittency
inferences can only arise when the system has been observed at multiple times.

The abstraction MBD identifies two minimal meta-diagnoses T and C. If both
are equally likely, it arbitrarily picks one. Suppose C is chosen. The C models
do not resolve the inconsistency either. Fig. 7 illustrates the following sequence
of inferences with the connection models: (1) Assume the input of A is 1, (2)
the causal inverter model drives its output down towards 0, (3) the input of gate
B presents a high resistance (low-current) load to its node, (4) the connection
model sets the node to 0, (5) the inverter model on B drives its output towards
1, (6) gate C presents a high resistance (low current) load, (7) the connection
model sets its node to 1, (8) the inverter drives its output to 0, (9) gate A
presents a low resistance (low current) load, and (10) the node model sets the
node to 0 which contradicts the input of A being 1. An analogous analysis for the
input of A being 0, yields a contradiction as well. The only remaining possible
cardinality one diagnosis is T .

Using the temporal T models for the inverters produces a consistent analysis
demonstrated in Table 1. This circuit is the familiar ring oscillator [17].

Fig. 7. Modeling connections does not remove the failure

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

120 J. de Kleer

Table 1. Outputs of the inverters of a ring oscillator after t gate delays. The oscillator
takes 6 gate delays to return to its initial state, thus the output is a square wave with
a period of 6 times the gate delay.

t 0 1 2 3 4 5 6

A 1 1 1 0 0 0 1

B 1 0 0 0 1 1 1

C 0 0 1 1 1 0 0

6.2 ∅ → I

Consider the Or − Xor circuit again (Fig. 6). For clarity assume the circuit has
one fault. As derived in the Section 5.2, under the ∅ models, Xor must be faulted.
Suppose we measure the output of the Or gate at T1 and T2 to be 1 and then 0
respectively. In this case, we have derived the meta-conflict:

ABa(T) ∨ ABa(C) ∨ ABa(I).

There are now three minimal candidate meta-diagnoses: T ,C,I. The T meta-
diagnosis immediately results in a failure yielding the meta-conflict:

ABa(C) ∨ ABa(I).

The meta-diagnosis I yields a consistent point of view: Or is failing intermit-
tently. The C meta-diagnosis cannot explain the observation:

ABa(T) ∨ ABa(I).

6.3 ∅ → C

Consider the Or−Xor example again before the output of the Or gate is observed.
Again, for clarity assume the circuit has one fault. Suppose Xor is replaced and
the same symptoms reoccur. In this case, both the C and I meta-diagnoses are
consistent. Under the I meta-diagnosis, the circuit contains two possible faults:

– Xor is faulted.
– Or is faulted.

The C meta-diagnosis is consistent, with 3 possible faults:

– The node at the output of Xor is shorted to power.
– The connection from the output Xor gate to the node is open and thus it

floats to 1.
– The connection to in2(Xor) is shorted to ground.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 121

6.4 ∅ → TCI

Tasks which require a TCI preferred meta-diagnosis are complicated, but they
do occur. Consider the four inverter system of Fig. 8. The input to inverter
Z is held constant at 0. We assume single faults. Observing the output D is
usually 0, but outputs 1s with no pattern. The observation D = 1 indicates that
one of Z, A, B, D is faulted. However, a subsequent observation of D = 0 is
inconsistent yielding the meta-conflict: ABa(T) ∨ ABa(C) ∨ ABa(I). No fault
in the connections can produce the observations, therefore: ABa(T) ∨ ABa(I).
No temporal fault can lead to this behavior either, so: ABa(I). Under meta-
diagnosis I, the output of A is measured — it is usually 0, but sometimes 1.
The output of Z is measured — it is usually 1, but sometimes 0. Therefore Z
must be intermittently faulted (under meta-diagnosis I), but replacing it does
not change the symptoms. This yields the meta-conflict: ABa(T)∨ABa(C). The
CI meta-diagnosis also leads to an inconsistency. There is no fault within the
connections that can explain the observations. Likewise there is no fault within
the TI meta-diagnosis. The only meta-diagnosis that can explain the symptoms
is TCI. The actual fault is an intermittent short between the output of D and
output of Z. As the input to Z is 0, its output is 1. The connection models for
digital gates are 0-dominant, so that, if a 0 from the output of D were fedback
through an intermittent short, it would drive the input to A to 0. Thus for those
times in which the intermittent short was manifest, the circuit would be a ring
oscillator.

A B DZ0 1/0

Fig. 8. A very simple circuit containing a very hard to pinpoint fault

7 Implementation

The analyses described in this paper have been implemented within the ATMS/
HTMS framework [9,18]. Each domain or abstraction literal is represented by
an explicit ATMS assumption in one ATMS instance. A fuller description of
the T , C, and I abstractions can be found in [14,11,15,16]. The ATMS/HTMS
architecture provides a unified framework to reason over any assumptions, be
they about components or abstractions.

8 Related Work

Automated model abstraction has a long tradition in Artificial Intelligence. The
graph of models ([7]) is similar to the meta-diagnosis lattice (Fig. 5) and analyzes
conflicts to identify which modeling parameters to change. It is focused on design
and analysis and the models that are constructed by hand. It does not use

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 J. de Kleer

diagnosis to guide the search for models, nor is it applied to diagnosis in some
domain. Work on compositional modeling ([8]) also uses ATMS assumptions
to represent domain abstractions and conflicts to guide the search for models.
Again, the models are constructed by hand and do not use diagnosis at the
domain or meta-levels. In context-dependent modeling ([19]) there is typically
a much larger space of model fragments to choose from and explicit context
information is used to guide the selection of the domain models. The task is
to construct the best causal explanation for a physical phenomena. Yet again,
the models are constructed by hand and do not use diagnosis at the domain or
meta-levels.

In the model-based diagnosis literature, there has been considerable work
on diagnostic assumptions and selecting appropriate models for a diagnostic
task [1,2]. This paper focuses primarily on assumptions associated with choosing
domain abstractions.

There has been considerable research on structural abstraction [5,6] where
groups of components are combined to form larger systems to reduce computa-
tional complexity. [3] describes how the task can be used to partition the value of
a variable into the qualitative values needed to solve a task. [4] presents another
approach to partition the value of a variable into qualitative ranges to reduce
complexity when there is limited observability of the variables.

9 Conclusions

This paper has presented a general approach to selecting the best domain ab-
straction level to address a task and has demonstrated it within the context of
digital gates. In the case of digital gates the component models can be automat-
ically generated from the basic models using domain schemas.

Acknowledgments. Daniel G. Bobrow and Elisabeth de Kleer provided many
useful comments.

References

1. Struss, P.: What’s in SD? Towards a theory of modeling for diagnosis. In: Console,
L., (ed.) Working Notes of the 2st Int. Workshop on Principles of Diagnosis. Tech-
nical Report RT/DI/91-10-7, Dipartimento di Informatica, Universitá di Torino,
Torino, Italy, 41–51 (1991)

2. Struss, P.: A theory of model simplification and abstraction for diagnosis. In: Proc.
5th Int. Workshop on Qualitative Physics, Austin, TX (1991)

3. Sachenbacher, M., Struss, P.: Task-dependent qualitative domain abstraction. Ar-
tif. Intell. 162(1-2), 121–143 (2005)

4. Torta, G., Torasso, P.: Automatic abstraction in component-based diagnosis driven
by system observability. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 394–402.
Morgan Kaufmann, San Francisco (2003)

5. Chittaro, L., Ranon, R.: Hierarchical model-based diagnosis based on structural
abstraction. Artif. Intell. 155(1-2), 147–182 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamic Domain Abstraction Through Meta-diagnosis 123

6. Hamscher, W.C.: XDE: Diagnosing devices with hierarchic structure and known
component failure modes. In: Proc. 6th IEEE Conf. on A.I. Applications, Santa
Barbara, CA, pp. 48–54. IEEE Computer Society Press, Los Alamitos (1990)

7. Addanki, S., Cremonini, R., Penberthy, J.S.: Reasoning about assumptions in
graphs of models. In: Proc. 11th Int. Joint Conf. on Artificial Intelligence, De-
troit, MI, pp. 1432–1438 (1989)

8. Falkenhainer, B., Forbus, K.D.: Compositional modeling: Finding the right model
for the job. Artificial Intelligence 51 95–143 (1991) Also In: de Kleer, J., Williams,
B. (eds.) Qualitative Reasoning about Physical Systems II, pp. 95–143. North-
Holland 1991/ MIT Press 1992, Amsterdam/Cambridge (1992)

9. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32
97–130 (1987) (Also). In: Ginsberg, M.L. (ed.) Readings in NonMonotonic Rea-
soning, pp. 280–297. Morgan Kaufmann, San Francisco (1987)

10. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems.
Artificial Intelligence 56(2-3), 197–222 (1992)

11. de Kleer, J.: Modeling when connections are the problem. In: Proc. 20th IJCAI,
Hyderabad, India, pp. 311–317 (2007)

12. Böttcher, C.: No faults in structure? how to diagnose hidden interactions. In: IJ-
CAI, pp. 1728–1735 (1995)

13. Böttcher, C., Dague, P., Taillibert, P.: Hidden interactions in analog circuits. In:
Abu-Hakima, S. (ed.) Working Papers of the Seventh International Workshop on
Principles of Diagnosis, Val Morin, Quebec, Canada, pp. 36–43 (1996)

14. Raiman, O., de Kleer, J., Saraswat, V., Shirley, M.H.: Characterizing non-
intermittent faults. In: Proc. 9th National Conf. on Artificial Intelligence, Anaheim,
CA, pp. 849–854 (1991)

15. de Kleer, J.: Diagnosing intermittent faults. In: 18th International Workshop on
Principles of Diagnosis, Nashville, USA, pp. 45–51 (2007)

16. de Kleer, J.: Troubleshooting temporal behavior in combinational circuits. In:
18th International Workshop on Principles of Diagnosis, Nashville, USA pp. 52–58
(2007)

17. Wikipedia: Ring oscillator — Wikipedia, the free encyclopedia (2007) [Online;
accessed 12-February-2007]

18. de Kleer, J.: A hybrid truth maintenance system. PARC Technical Report (January
1992)

19. Nayak, P.P.: Automated Modeling of Physical Systems. LNCS, vol. 1003, Springer,
Heidelberg (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction

Stijn De Saeger1 and Atsushi Shimojima2

1 School of Information Science, Japan Advanced Institute of Science and Technology
stijn@jaist.ac.jp�

2 Faculty of Culture and Information Science, Doshisha University
ashimoji@mail.doshisha.ac.jp

Abstract. This paper presents work on the formalization of abstrac-
tion in knowledge representation. It is part of ongoing research on what
might be termed “functional context dependence” or the relation be-
tween abstraction and idealization on the one hand, and approximation
and the granularity of representation on the other. For the purpose of
this paper we focus solely on abstraction. We briefly survey some exist-
ing theories, present an alternative framework for modeling abstraction
based on channel theory and discuss two possible interpretations of the
abstraction process — abstraction as a mapping between representations
of different granularity, and abstraction as a theory.

1 Introduction: Vagueness and Granularity

“Two is company, three’s a crowd.”
(anonymous)

A large class of problems in philosophy and epistemology go under the header of
“vagueness”. Specifically, giving a meaningful interpretation to vague terms like
tall, bald, smart, blue and the like presents a real problem for classical first-order
logic and its set theoretic semantics. To give an example, many if not most people
are not clearly smart or clearly non-smart. The professed vagueness of these
predicates is traditionally spelled out in terms of three related characteristics:
(i) the existence of borderline cases, (ii) the absence of crisp boundaries for their
applicability, and (iii) the fact that they all admit (some variation of) the sorites
paradox. We refer the interested reader to [10] for a comprehensive overview of
the literature on vagueness, and the sorites paradox in particular.

In the cognitive science and logical AI communities on the other hand, vague-
ness presents itself in a somewhat different guise. There the problem presented
by vague descriptions is not so much an inherent inability to determine their
precise extension, but the somewhat less exciting fact that people usually can-
not be bothered to. Thus, the perceived vagueness of a proposition like “Mount

� Stijn De Saeger gratefully acknowledges support by the 21st Century COE program
‘Verifiable and Evolvable e-Society’ at JAIST. We thank the referees for their careful
reviews and helpful comments.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 124–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 125

Everest is about 8800m high” is not due to the fact that the exact height of
Mount Everest is in principle indeterminate or unknowable, or that it is a mat-
ter of subjective opinion. More likely, it is due to implicit standards of precision
that are in place in the context the utterance was made. In other words, this
kind of vagueness is in a sense “functional”, and it can be restated in terms of
abstraction and the level of granularity of a description.

1.1 Granularity and Knowledge Representation

The concept of granularity is closely related to the nature of knowledge rep-
resentation itself. The formal representation of a given body of knowledge is
characterized in [5] as the incremental process of determining an appropriate
universe of discourse as domain, and formally interpreting its relevant entities
in terms of some class of mathematical objects. Subsequently one defines a lan-
guage for talking about the objects in this domain of discourse, together with a
mapping from expressions in this language to the formal domain model. Exactly
which aspects of the target domain are preserved and which are ignored in this
process depends, among other things, on the purpose it serves us. The following
quote by Davis et al. (1993, [2]) spells out this intuition.

“A knowledge representation is most fundamentally a surrogate, a sub-
stitute for the thing itself, used to enable an entity to determine conse-
quences by thinking rather than acting, i.e. by reasoning about the world
rather than taking action in it.” (Davis, [2])

By performing (mental) operations on a representation we can reason about
the consequences of some specific state of affairs, action or event in the domain
represented. To the extent that they lend themselves easily to such operations,
knowledge representations exhibit obvious qualitative differences. For instance,
a map or diagram is generally a more efficient representation than running text
when attempting to follow some itinerary or reach some location. Any represen-
tation of potentially useful or relevant information then, whether it be sentences
in some natural language or data in the knowledge base of some intelligent sys-
tem, is a balancing act — it represents a trade-off between completer, more
exhaustive descriptions of information on the one hand, and more economic but
less qualified and potentially less general representations on the other. As such,
abstraction is a tool for managing the complexity of a representation, and de-
pending on its concrete use the same fact may be represented as widely different
levels of abstraction.

In logical AI, abstraction has generated some interest as a mechanism of
dynamically filtering out those aspects of a knowledge representation that are
not immediately relevant to the problem at hand (see for instance [12,7,8,6,4]).
Needless to say, any representation is an abstraction, in the sense that it repre-
sents some local optimum in a continuum of ever more detailed and fine-grained
representations of the universe of discourse.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 S. De Saeger and A. Shimojima

2 Abstraction as a Mapping

Throughout most of the literature ([12,7,8,4]), abstraction has predominantly
been analyzed in terms of a mapping between two representations, i.e. from the
base or “ground” representation to the abstract representation.

Giunchiglia and Walsh ([7,8]) define an abstraction Σ0 ⇒ Σ1 as a pair of for-
mal systems Σ0 = 〈L0, Δ0, Ω0〉 and Σ1 = 〈L1, Δ1, Ω1〉, together with a function
fL : L0 → L1. Here Li is the formal language (set of well-formed formulae), Δi

the deductive machinery (set of inference rules), and Ωi ⊂ Li the set of axioms
of Σi (for i ∈ {0, 1}). They add the further requirement that abstractions be to-
tal, effective and surjective functions. Total, because we should be able to apply
the abstraction procedure to any given formula ϕ in the ground language and
obtain its abstract version fL(ϕ); effective because this whole process is useful
only in so far as the abstraction fL(ϕ) can actually be computed, and surjective
because we want to use fL to actually “generate” the abstract representation
from the ground one.

A novel contribution of [7,8] is the analysis of abstractions in terms of which
properties of the ground representation they preserve. Writing TH(Σi) to denote
the set of theorems derivable in a formal system Σi, they distinguish between
the following cases:

Definition 1 (T ∗abstractions). An abstraction f : Σ0 ⇒ Σ1 is a

(i) TC abstraction when ∀ϕ ∈ L0 : ϕ ∈ TH(Σ0) iff fL(ϕ) ∈ TH(Σ1);
(ii) TD abstraction when ∀ϕ ∈ L0 : if fL(ϕ) ∈ TH(Σ1) then ϕ ∈ TH(Σ0);

(iii) TI abstraction when ∀ϕ ∈ L0 : if ϕ ∈ TH(Σ0) then fL(ϕ) ∈ TH(Σ1).

So, any TC abstraction (“Theorem Constant”) is in fact both TD (“Theorem
Decreasing”) and TI (“Theorem Increasing”). As Giunchiglia and Walsh investi-
gate abstraction for its potential applications in theorem proving and automated
proof search, their interest is mainly in TI abstractions, which serve as simplifi-
cations of some (possibly intractable) theory.

Nayak and Levy argue in ([12]) instead that abstractions are modeled more
naturally by mappings between representations at the semantic level, rather
than the syntactic level. One reason is that a naive translation approach may
introduce unwarranted or even inconsistent conclusions in the abstract theory.
The example they give concerns the following base theory ([12]):

JapaneseCar(x) ⇒ Car(x)
EuropeanCar(x) ⇒ Car(x)
Toyota(x) ⇒ JapaneseCar(x)
BMW(x) ⇒ EuropeanCar(x)

(1)

We can imagine reasoning tasks though for which the difference between
Japanese and European cars is inconsequential, and in those cases we may want
to abstract over them using a more general predicate ForeignCar, giving the
simplified knowledge base in 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 127

ForeignCar(x) ⇒ Car(x)
Toyota(x) ⇒ ForeignCar(x)
BMW(x) ⇒ ForeignCar(x)

(2)

If however the original knowledge base contained additional axioms like the ones
below, the abstraction process is no longer sound:

EuropeanCar(x) ⇒ Fast(x)
JapaneseCar(x) ⇒ Reliable(x)

This would now allow one to derive, among other things, that ForeignCar(x) ⇒
Fast(x) and therefore also Toyota(x) ⇒ Fast(x), a conclusion not warranted by the
base theory. As explained in [12], the reason such anomalies occur becomes clear
when recalling the modus operandi of formal knowledge representation. One first
captures the entities of interest in some target domain in a class of appropriate
mathematical objects (sets, relations,. . .), over which a formal language is then
defined inductively as a set of logical formulae. Abstraction as a mere syntax
level mapping between formal languages is prone to “alignment errors”, not
with respect to the actual translation but with respect to the intended target
domain, as is the case above.

Instead, Nayak and Levy propose to treat abstractions as model mappings.
If Lbase and Labs are the base language and abstraction language respectively,
then abstractions are defined in [12] as functions π from (sets of) interpretations
of Lbase to (sets of) interpretations of Labs:

π : Interpretations(Lbase) → Interpretations(Labs) (3)

Given a theory (i.e. set of formulae) Tbase in the ground language then, a
theory Tabs is the abstract image of Tbase under π if and only if for every
model I ∈ Interpretations(Lbase) that is a model of Tbase, its image π(I) ∈
Interpretations(Labs) is a model of Tabs.

Formally, an interpretation mapping π is defined in terms of an auxiliary
function fπ relating formulae ϕ′ ∈ Labs to formulae ϕ ∈ Lbase, such that the
denotation of ϕ′ can be defined as π(Interpretations(fπ(ϕ′))). The abstraction
then consists of a wff π∀ with one free variable (whose extension is used to define
the abstract domain), and for each n-ary predicate P in Labs a wff πP with n
free variables such that, for any I ∈ Interpretations(Tbase), πP denotes an n-ary
relation in dom(I). Then P ’s denotation in π(I) is just this relation restricted to
the domain of π∀. For instance, in the car theory in example 1, π preserves the
domain of discourse (just take any tautology for π∀). fπ(ForeignCar) becomes the
wff JapaneseCar(x)∨EuropeanCar(x), and all other predicates (except JapaneseCar
and EuropeanCar, who are not in Labs) are simply mapped to themselves. Fur-
thermore, fπ is defined inductively on the structure of composite formulae, and
fπ(∀x.ϕ) becomes ∀x.π∀(x) ⇒ fπ(ϕ) in order to enforce the domain restriction
(π∀) associated with the abstraction.

Nayak and Levy call these mappings Model Increasing (MI) abstractions, in
analogywith Giunchiglia and Walsh’s classification. In fact, given Nayak and Levy’s

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 S. De Saeger and A. Shimojima

requirement for abstractions that preserve the non-validity of theorems across π
mappings, MI abstractions correspond to a strict subset of TD abstractions.

To summarize, both theories conceive of abstraction as a mapping process be-
tween different formal representations. Giunchiglia and Walsh define this map-
ping at the syntactic level: given formal systems Σ0 and Σ1, an abstraction is a
function mapping L0 onto L1, thereby fully generating the abstract representa-
tion from the ground one. The advantage of this approach is clear: abstractions
can be generated mechanically, possibly even at run-time. The flip side of this
coin is that such mechanical process may introduce theorems not licensed by
the original base theory. Often this effect is intended; Giunchiglia and Walsh
are interested in abstractions as computationally tractable reformulations of a
given base theory, under certain simplifying assumptions. As Nayak and Levy’s
example demonstrates though, without a corresponding semantic interpretation,
the effects of these so-called “simplifying assumptions” are difficult to contain
or control. Instead, Nayak and Levy propose a mapping at the level of domain
interpretations. While this approach is able to keep close tabs on the soundness
of the resulting abstract theory, it does so at the cost of introducing several
additional levels of indirection in the abstraction process.

Recently Giunchiglia and Ghidini ([4]) have proposed a promising theory of
abstraction grounded in local models semantics ([3]). Here again abstraction is
modeled as a syntax-level mapping much as in [7,8] but given a rigorous se-
mantics in terms of domain relations, i.e. compatibility constraints between the
domains of the respective ground and abstract representations. While techni-
cally local models semantics is rather different from the formal model we are
about to introduce in the following sections, we believe many of the underlying
assumptions and ideas to be compatible, and plan to investigate the respective
strengths and weaknesses of both frameworks in future research.

3 Abstraction in Channel Theory

Analogous to the discussion in the previous section, we treat abstraction as a
mapping between formal representations for now. In the next section, we will
explore an alternative approach of modeling abstractions as theories in their own
right.

Channel theory (Barwise and Seligman, [1]) was conceived as a mathemati-
cal framework for analyzing the flow of information in distributed systems. In
contrast to Shannon’s information theory though, channel theory is essentially
a qualitative theory of information — rather than raw quantity (in bits), it is
concerned with what kind of information may flow between components in a
given distributed system. The components themselves are represented through
objects called classifications.

Definition 2 (Classification). A classification C is a triple 〈typ(C), tok(C), |=〉,
where typ(C) and tok(C) are sets respectively called the types and tokens of C,
and |= ⊆ tok(C) × typ(C) is a binary classification relation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 129

At the heart, classifications express a very general and indeed simple idea. Formal
knowledge representations, and logics in particular, are special cases of classifi-
cations 〈L, M, |=〉, where L is a formal language (a set of formulae), M is a set
of semantic structures (models in which to evaluate formulae of L), and |= is
the usual satisfaction relation, defined inductively on the structure of formulae
ϕ ∈ L. Note that characterizing logics in terms of classifications does not commit
us to any specific outlook of the logic — L can be a set of attributes closed under
propositional connectives, in which case we take M as a set of truth assignments
to the atoms of L. In case L also contains modal operators, M may be a Kripke
frame, i.e. a set of worlds W with some internal structure ≺ defined on it. Or L
can be a first-order language, in which case M is a class of first-order structures
〈dom, I〉, and so forth.

By abuse of notation, let’s take Γ |=m Δ (for some m ∈ M) to mean that
when m |= γ for all formulae γ ∈ Γ , then m |= δ for some formula δ ∈ Δ.
Furthermore, we write Γ |=X Δ when Γ |=m Δ for all m ∈ X ⊂ M , and Γ |= Δ
proper when X = M . As a general result then, any classification relation |=
satisfies the following:1

Identity: ϕ |= ϕ (for ϕ ∈ L)
Weakening: if Γ |= Δ then Γ, Γ ′ |= Δ, Δ′ (for Γ, Γ ′, Δ, Δ′ ⊆ L)
Global Cut: if Γ, Σ0 |= Δ, Σ1 for each partition

〈Σ0, Σ1〉 of Σ, then Γ |= Δ (for Γ, Δ, Σ ⊆ L)

Generalizing, any consequence relation � on L is said to be regular when
it satisfies these three structural rules of Identity, Weakening and Global Cut
above. The resemblance to Gentzen-style sequent notation is of course intended.
The idea of a consequence relation on the types of a classification C gives rise to
the notion of a local logic.

Definition 3 (Local logic). A local logic L is a triple 〈C, �, N〉, consisting of a
classification C, a consequence relation � ⊆ typ(C)×typ(C), and a set N ⊆ tok(C)
called the “normal models” of L.

The normal models in N represent the set of situations the theory of L is intended
to capture, i.e. “is about”. For our current purpose we only consider consistent
theories, so we require that Γ |=N Δ whenever Γ � Δ. In case N = tok(C), we
say the logic L is sound. Dually, L is complete iff Γ � Δ whenever Γ |=N Δ, and
globally complete when N = tok(C). We now try to recast Nayak and Levy’s car
theory in this setting.

Example 1. Let CB be a (base) classification 〈LB, MB, |=B〉. Nayak and Levy’s
example in 2 does not seem to require a full first-order theory, so we just define
LB as a formal language built from a set of variables V ar = {x, y, z} (pos-
sibly subscripted) and a set of (unary) predicates Pred = {Car, JapaneseCar,
EuropeanCar, Fast, Reliable, Toyota, BMW} closed under the usual connectives.

Let MB be a set of first-order structures 〈dom, I〉, where dom is a non-empty
set. Unless stated otherwise, we take the domain of discourse dom to be fixed for
1 See [1], p.119.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 S. De Saeger and A. Shimojima

all members of MB and thus refer to structures simply by their interpretation
function I. Further simplifying the standard first-order semantics, we will treat I
straightforwardly as a function assigning an element [[v]]I ∈ dom to each variable
v in V ar, and subsets [[P]]I of dom to the predicates. Then the classification
relation |=B is defined on the structure of formulae as:

I |=B P (v) iff [[v]]I ∈ [[P]]I (for P ∈ Pred, v ∈ V ar).
I |=B ¬ϕ iff I |=B ϕ.
I |=B ϕ ∧ ψ iff I |=B ϕ and I |=B ψ.

Further connectives ∨, ⇒ and ⇔ are given as the usual abbreviations. Then
the ground theory given in 2 can be represented as a local logic LB = 〈CB, �B, NB〉,
where �B is defined as the regular closure of the following theory:

JapaneseCar(x) � Car(x)
EuropeanCar(x) � Car(x)

Toyota(x) � JapaneseCar(x)
BMW(x) � EuropeanCar(x)

(4)

Its normal models NB contains all models I ∈ MB such that I |=B

∧
Γ ⇒

∨
Δ

for all constraints 〈Γ, Δ〉 in �B.
The corresponding abstract classification CA is defined analogously, as a triple

〈LA, MA, |=A〉. Here we take LA to be similar to LB, except for consisting of
predicates {Car, ForeignCar, Fast, Reliable, Toyota, BMW}. The set of models
MA for this language and the corresponding classification relation |=A looks as
can be expected from the definition of CB, modulo differences in their respective
languages.

In order to set up the abstraction mapping between CB and CA, we need to
introduce some further machinery.

Definition 4 (Infomorphism). Given classifications C = 〈typ(C), tok(C), |=C〉
and C′ = 〈typ(C′), tok(C′), |=C′〉, an infomorphism f : C � C′ from C to C′ is a
pair of functions 〈f∧, f∨〉 satisfying the following biconditional:

∀σ ∈ typ(C), s ∈ tok(C′) : f∨(s) |=C σ iff s |=C′ f∧(σ)

A more visual way of expressing the infomorphism condition is to require that
the diagram in Fig. (1) commutes (note the different directions of functions f∧

and f∨).
Infomorphisms formalize a basic correspondence in the information structure

of two separate classifications — they state that the way these classifications cap-
ture regularities in the target domain is fundamentally compatible. Additionally,
infomorphisms allow to move sequents and indeed entire local logics back and
forth across classifications, precisely keeping track of when and where soundness
and/or completeness of the logic in question is compromised. To see how this
works in practice we turn back to our example, involving the car classifications
CB and CA.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 131

typ(C)

|=C

f∧
�� typ(C′)

|=C′

tok(C) tok(C′)
f∨

��

Fig. 1. Infomorphism f : C � C′

Example 2. Let f : CB � CA be an infomorphism between classifications CB and
CA, as defined in example 1. Concretely, let f consist of the following functions
on tokens and types.

(i) f∧(ϕ) : LB → LA =

��������
�������

¬f∧(ψ) if ϕ = ¬ψ

f∧(ψ) ⊗ f∧(ψ′) if ϕ = ψ ⊗ ψ′ and ⊗ ∈ {∧, ∨, ⇒, ⇔}
ForeignCar(v) if ϕ = EuropeanCar(v) (for v ∈ V ar)

ForeignCar(v) if ϕ = JapaneseCar(v) (for v ∈ V ar)

ϕ otherwise

(ii) f∨(〈dom, I〉) : MA → MB = 〈dom′, I ′〉 where dom′ = dom and I ′ = I except

[[JapaneseCar]]I
′
= [[EuropeanCar]]I

′
= [[ForeignCar]]I .

Here f∧ is the language-level abstraction function. In fact, it can easily be
seen to correspond to so-called atomic abstractions in the terminology of [4], as
the abstraction mapping is defined on the atoms of the language while preserving
the structure of formulae. As discussed in [4], this kind of abstraction between
languages represents a sort of ideal-case scenario. In the next section we will have
a look at some less straightforward cases, where the abstraction is not merely a
function but rather a theory on the alignment of two classifications, which can
itself subsequently be reasoned about — a form of “higher-order” abstraction,
if you will.

If f∧ is a syntax-level mapping, f∨ is its dual defined at the level of mod-
els. Note that its definition closely mirrors that of f∧, be it at the semantic
level. To verify that f indeed satisfies the infomorphism condition, consider
a formula EuropeanCar(z) ∈ LB and an arbitrary model I ∈ MA. If I |=A

f∧(EuropeanCar(z)) (i.e. I |=A ForeignCar(z)) then [[z]]I ∈ [[ForeignCar]]I and
thus by virtue of the definition of f∨, [[z]]f

∨(I) is a member of [[EuropeanCar]]f
∨(I).

It is straightforward to show that the same reasoning applies to any arbitrary
formula ϕ in LB.2

As we hinted at above, infomorphisms interact with local logics in interesting
ways. By extension, the image of a sequent 〈Γ, Δ〉 under f∧ is 〈f∧(Γ), f∧(Δ)〉.
Transporting sequents back and forth between classifications over infomorphisms

2 Exercise for the reader: what happens in the case of a formula like EuropeanCar(x)∧
¬JapaneseCar(x)?

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 S. De Saeger and A. Shimojima

then can take the form of an inference rule. Formally, given f : C � C′, and two
logics L and L′ on C and C′ respectively, define two associated inference rules:

Γ �L Δ
f -Intro

f∧(Γ) �L′ f∧(Δ)

f∧(Γ) �L′ f∧(Δ)
f -Elim

Γ �L Δ
(5)

This transfer of reasoning between classifications over an interpretation func-
tion f extends all the way up to the concept of local logics — the image of a
local logic L = 〈C, �, N〉 under f (written f [L]) is defined as L′ = 〈C′, �′, N ′〉
where:

(i) �′ = {〈f∧(Γ), f∧(Δ)〉 | Γ � Δ}
(ii) N ′ = {s ∈ tok(C′) | f∨(s) ∈ N}

Similarly, the inverse image of L′ (written f−1[L′]) has the following theory
� and normal models N :

(i) � = {〈Γ, Δ〉 | f∧(Γ) �′ f∧(Δ)}
(ii) N = {f∨(s) ∈ tok(C) | s ∈ N ′}

Thus, the inference rules f -Intro and f -Elim allow for reasoning to switch
between the base representation to a more abstract representation of some do-
main. As we have seen, this process of abstraction sometimes introduces errors
and inaccuracies, either intended or not. It is important therefore to have a firm
handle on the specific conditions under which these errors arise. Recalling some
general results from [1], consider again two arbitrary local logics L and L′ on C
and C′, and let f : C � C′. Due to the infomorphism condition, an application
of f -Intro can be seen to preserve soundness in case f∨(N ′) ⊆ N , and complete-
ness (i.e. non-validity of inferences) when f∨(N ′) ⊇ N . Dually, using f -Elim to
reason against the direction of the abstraction is sound when N ⊆ f∨(N ′), and
complete when N ⊇ f∨(N ′).

Example 3. Returning to the car theory example, and the local logic LB repre-
senting the original ground theory depicted in (4). Its associated abstract local
logic LA = f [LB] corresponds to Nayak and Levy’s abstract theory given in (2).

JapaneseCar(x) �B Car(x)
f∧

�−→ ForeignCar(x) �A Car(x)

EuropeanCar(x) �B Car(x)
f∧

�−→ ForeignCar(x) �A Car(x)

Toyota(x) �B JapaneseCar(x)
f∧

�−→ Toyota(x) �A ForeignCar(x)

BMW(x) �B EuropeanCar(x)
f∧

�−→ BMW(x) �A ForeignCar(x)

(6)

In general, LB does not hold for the entire class of models MB ; the set of
normal models NB represents those situations for which the theory was intended.
Because of the above discussion then, we know LA is at least as sound as LB

— NA contains only models whose image under f∨ are members of NB, and
therefore f∨(NA) ⊆ NB holds trivially.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 133

In contrast, abstraction over f -Intro is known to preserve non-validity only
in case f∨(NA) ⊇ NB, as f∨ being surjective on NB would guarantee that any
possible counterexample model I ∈ NB to some invalid sequent Γ �B Δ is the
image of some counterexample f∧−1(I) ∈ NA. In our example, f∨ is clearly not
surjective on MB — the only ground interpretations I in its range are those
in which [[JapaneseCar]]I is equal to [[EuropeanCar]]I . And so an invalid sequent
BMW(y) �B JapaneseCar(y) in LB becomes valid when abstracted to BMW(y) �A

ForeignCar(y). Similarly, as Nayak and Levy’s analysis in [12] points out, if the
base theory were to contain further information like EuropeanCar(x) �B Fast(x),
the regular closure (see 3) of f [LB] augmented with this specific sequent would
indeed yield unwarranted inferences like the one below.

EuropeanCar(x) �B Fast(x)
f -Intro

ForeignCar(x) �A Fast(x)

Toyota(x) �B JapaneseCar(x)
f -Intro

Toyota(x) �A ForeignCar(x)
gc

Toyota(x) �A Fast(x)

Indeed, in terms of Giunchiglia and Walsh’s characterization in [7,8], abstraction
tends to be a theorem-increasing process, at least in the general case. Among
other things, this connects the notion of abstraction with that of idealization,
as discussed by Hobbs in [9]. An abstraction serves as an idealization when
it knowingly introduces unsound inferences for the sake of simplifying certain
regularities in the target domain.

In fact, by virtue of the infomorphic relation between the base and abstract
representation, the abstraction process can act as an important source of feed-
back concerning possible “holes” in the base theory as well. As argued in [11],
local logics often behave as contexts, in the sense that they encode implicit
assumptions and background conditions. Thought of as contexts, local logics
consist of a logical theory and a set of models or situations taken to be “normal”
with respect to this theory. Strengthening a local logic by adding to its theory
is therefore offset by a decrease in normal models, given the requirement that
Γ |=N ′ Δ when Γ �′ Δ. For two logics L = 〈C, �, N〉 and L′ = 〈C, �′, N ′〉, L′ is a
stronger logic than L (written L � L′) when � ⊆ �′ and N ⊇ N ′. This natural
order � on the set of local logics on C is known to form a complete lattice, with
meet and join operations as given below ([1], 12.26).3

L � L′ =def 〈C, Reg(� ∩ �′), N ∪ N ′〉
L � L′ =def 〈C, Reg(� ∪ �′), N ∩ N ′〉

This has interesting implications for the abstraction process, and our car ex-
ample in particular. Recall the abstract car theory LA = f [LB]. The set of normal
models NA of LA is not empty; however, every model I ∈ NA that is normal with
respect to LA is one whose interpretation as a normal model of the base the-
ory f∨(I) collapses the extents of predicates JapaneseCar and EuropeanCar. This
3 Here Reg(S) is the regular closure of a set of sequents S, as introduced in (3).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 S. De Saeger and A. Shimojima

is possible because at no point did we specify anything about the relation be-
tween predicates EuropeanCar and JapaneseCar. Intuitively though, we can easily
imagine being interested instead in the stronger base logic L′B � LB in which
EuropeanCar and JapaneseCar are in fact disjoint concepts, that is, the local
logic whose normal models I ∈ N ′B all have in common that [[EuropeanCar]]I ∩
[[JapaneseCar]]I = ∅. Let L′B be the local logic obtained by extending the orig-

inal theory in LB with a sequent “〈{JapaneseCar(x), EuropeanCar(x)} , ∅〉” (i.e.
¬(JapaneseCar(x) ∧ EuropeanCar(x))) and computing its regular closure. Now,
the corresponding abstract theory L′A = f [L′B] is no longer satisfiable: given
that no model I ∈ MA has an image that is a normal model of L′B, N ′A = ∅.

4 Abstraction as a Theory

As we saw in the previous section, mapping based abstraction methods provide
an elegant solution in those cases where the abstraction in question can be de-
fined straightforwardly on the atoms of the ground representation. Sometimes
though, matters are not so simple. Or rather, as in the example above, sometimes
we wish to be able to reason explicitly about specific background conditions un-
der which we deem the abstraction process appropriate. Intuitively, the idea is
to represent and ultimately reason with the abstraction itself as a theory on the
alignment of two representations — the ground and the abstract one. As we al-
ready have a way of representing theories (i.e. local logics), the formal machinery
introduced so far will suffice. We just introduce some further terminology.

Definition 5 (Channel). A channel is a classification that serves to connect
other classifications. Formally, a channel is a tuple

〈
C, {fi : Ci � C}i∈I

〉
consist-

ing of an indexed family of infomorphisms fi (for some index I) with a common
co-domain classification C, called the channel “core”.

For our purposes, we will restrict the discussion to binary channels, which are
classifications connecting pairs of classifications. Then, instead of thinking of
abstractions as a mapping between classifications, we now think of abstractions
as local logics on a channel core CC, to which the respective base and abstract
theories have been lifted via infomorphisms f : CB � CC and g : CA � CC.

While there are many ways to set up such a construction, the “canonical” way
is to define CC simply as the sum classification CB + CA (see [1], p.81). In the in-
terest of being able to compute the abstract theory generically from the ground
theory, this seems like a good way to proceed. Let CC = CB + CA be a classifica-
tion 〈MC, LC, |=C〉, where LC is the disjoint union of LB and LA, in which each
atomic proposition is indexed according to the original language it was taken
from. Thus, LC will contain both predicates FastB and FastA, where FastB corre-
sponds to Fast ∈ LB and FastA is the respective version from LA. At the semantic
level, members of MC are pairs of models 〈I, I ′〉 (for I ∈ MB, I ′ ∈ MA) — that is,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 135

MC is the Cartesian product MB × MA. Then the classification relation |=C is
defined compositionally for 〈I, I ′〉 ∈ MC as:

〈I, I ′〉 |=C ϕB iff I |=B ϕ

〈I, I ′〉 |=C ϕA iff I ′ |=A ϕ

Together with infomorphisms f : CB � CC and g : CA � CC, something
like the picture in Fig. 2 emerges. Both f∧ and g∧ map formulae ϕ to their
indexed version in LC, and f∨ and g∨ act simply as accessor functions, returning
respectively the left or right component model of a pair 〈I, I ′〉 ∈ MC.

LB ∪ LA

|=C

LB

|=B

f∧
������������������������
MB × MA

f∨

�����������������������

g∨

����������������������� LA

|=A

g∧
������������������������

MB MA

Fig. 2. A binary channel CC = CB + CA

In this setting, we can now represent the reasoning behind the abstraction
process itself as a logical theory on the alignment of CB and CA. Let LC =
〈CC, �C, NC〉 be such a local logic. The theory �C of LC might initially contain
the following constraints (again, closed under regularity).

FastB(x) �C FastA(x)
FastA(x) �C FastB(x)
CarB(x) �C CarA(x)
CarA(x) �C CarB(x)

...
EuropeanCarB(x) �C ForeignCarA(x)
JapaneseCarB(x) �C ForeignCarA(x)
ForeignCarA(x) �C JapaneseCarB(x), EuropeanCarB(x)

(7)

Note that as a logical theory, �C now translates between CB and CA in both
directions, mapping formulae from LB to LA and vice versa. In other words,
abstraction now behaves as a bi-directional mapping between LB and LA. The
normal models of NC consists of those pairs of models 〈I, I ′〉 that satisfy the
theory above, that is, all combinations of base models I ∈ MB and abstract
models I ′ ∈ MA that are properly “aligned” according to the theory of LC.

So given our original base theory LB, we can compute its corresponding ab-
stract theory by lifting LB into CC over f , computing the implications of joining

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 S. De Saeger and A. Shimojima

f [LB] with the abstraction logic LC, and finally exporting the resulting theory
to CA via the inverse of g.

LA = g−1[f [LB] � LC] (8)

Furthermore, because both f∨ and g∨ are surjective on MB and MA by de-
finition, applications of the inference rules f -Intro, f -Elim, g-Intro and g-Elim
are all guaranteed to be sound and complete. A little example of reasoning with
abstraction theories is given in Fig. 3.

BMW(x) �B EuropeanCar(x)
f -Intro

BMWB(x) �f [LB] EuropeanCarB(x) EuropeanCarB(x) �C ForeignCarA(x)
gc

BMWB(x) �f [LB]�LC ForeignCarA(x) BMWA(x) �C BMWB(x)
gc

BMWA(x) �f [LB]�LC ForeignCarA(x)
g-Elim

BMW(x) �g−1[f [LB]�LC] ForeignCar(x)

Fig. 3. Reasoning with abstractions as theories

As the theory in �C can contain sequents of arbitrary complexity, represent-
ing the abstraction itself as a local logic gives a genuinely more expressive way
of modeling the abstraction process than an atomic level mapping between lan-
guages. In addition, because they are local logics we can now strengthen or
weaken the abstraction itself, depending on whether the concrete situations we
encounter can be regarded as “normal” with respect to the intent of the abstrac-
tion process. For example, we may wish to define a second local logic L′C � LC

on CC, representing a stronger abstraction theory than LC. This logic L′C can
contain additional constraints to the ones in LC, say for instance:

EuropeanCarB(x) �′C ¬JapaneseCarB(x)
JapaneseCarB(x) �′C ¬EuropeanCarB(x)

(9)

The normal models of L′C will then be a strict subset of those in LC. Specifically,
it will exclude undesirable combinations 〈I, I ′〉 where [[EuropeanCarB]]〈I,I′〉 ∩
[[JapaneseCarB]]〈I,I′〉 = ∅ as abnormal.

5 Discussion

In this paper we have sketched the beginnings of a theory of abstraction based on
the notion of information flow introduced in [1]. As one referee correctly pointed
out, it is no silver bullet — it still does not generate the abstract representation
for us, and based on the data it is given to work with, the model still does not
tell us that Japanese cars cannot be European cars. Indeed, short of providing
it with a set of real data to learn from, we don’t see how it could. However,
if desirable such observation-based logics could be incorporated in the current

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Channeling Abstraction 137

model rather easily: just add a new classification (Ccars, say) classifying real
car tokens {c1, . . . , cn} according to their observed attributes (c23 |=cars BMW,
c41 |=cars Fast, . . .). The local logics L in this classification Ccars and their
associated “car theories” will be fully generated by the data, and therefore if
our intuitions about cars are correct the sequent JapaneseCar, EuropeanCar �L ∅
will be a theorem of every logic L with a non-empty set N of normal car tokens.
If we then plugged this classification into the model as just another component
(via some appropriate infomorphism) these “empirical” local logics can be lifted
up to the system level, and the validity of various candidate abstractions can be
checked against them in essentially the same way as we have described higher.
The flexibility in which various flavors of logics can be freely combined and
interleaved using the “information flow in distributed systems” metaphor is one
of the original strengths of channel theory, and we believe its potential range of
applications as a knowledge representation formalism is not yet fully explored.

The example discussed in this paper was limited to the case of symbolic
abstraction (see [7,8] and [4]). The high degree of generality and modularity of
the current approach however leads us to believe that the model can be extended
more or less straightforwardly to independently cover arity abstractions and
truth abstractions as well, though this will have to be confirmed in subsequent
work. In future research we also plan to compare our framework with the theory
of abstraction proposed in [4].

References

1. Barwise, J., Seligman, J.: Information Flow. The Logic of Distributed Systems. In:
Cambridge Tracts in Theoretical Computer Science, Cambridge University Press,
Cambridge (1997)

2. Davis, R., Shrobe, H.E., Szolovits, P.: What is a knowledge representation? AI
Magazine 14(1), 17–33 (1993)

3. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence 127(2), 221–259 (2001)

4. C. Ghidini and F. Giunchiglia. A semantics for abstraction. In: ECAI proceedings
(2004)

5. Giunchiglia, F., Bouquet, P.: Introduction to contextual reasoning. an artificial
intelligence perspective. Perspectives on Cognitive Science 3, 138–159 (1997)

6. Giunchiglia, F., Sebastiani, R., Villafiorita, A., Walsh, T.: A general purpose rea-
soner for abstraction. In: Canadian Conference on AI, pp. 323–335 (1996)

7. Giunchiglia, F., Walsh, T.: Using abstraction. In: Proc. of the Eighth Conference
of the Society for the Study of Artificial Intelligence and Simulation of Behaviour
(AISB’91), pp. 225–234, Leeds, England (1991)

8. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 57(2-3),
323–389 (1992)

9. Hobbs, J.R.: Readings in Qualitative Reasoning about Physical Systems. In: Weld,
D.S., de Kleer, J. (eds.), pp. 542–545. Kaufmann, San Mateo, CA (1990)

10. Keefe, R.: Vagueness. Cambridge University Press, Cambridge (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 S. De Saeger and A. Shimojima

11. De Saeger, S., Shimojima, A.: Contextual reasoning in agent systems (Revised
Selected and Invited Papers). In: Inoue, K., Satoh, K., Toni, F. (eds.) Computa-
tional Logic in Multi-Agent Systems. LNCS (LNAI), vol. 4371, Springer, Heidelberg
(2007)

12. Nayak, P.P., Levy, A.: A semantic theory of abstractions. In: Mellish, C. (ed.)
Proc. of the Fourteenth International Joint Conference on Artificial Intelligence,
pp. 196–203. Morgan Kaufmann, San Francisco (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using

Greedy Stochastic Search

Alexander Feldman1, Gregory Provan2, and Arjan van Gemund1

1 Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science,

Mekelweg 4, 2628 CD, Delft, The Netherlands
{a.b.feldman,a.j.c.vangemund}@tudelft.nl�

2 University College Cork, Department of Computer Science,
College Road, Cork, Ireland

g.provan@cs.ucc.ie��

Abstract. Most algorithms for computing diagnoses within a model-
based diagnosis framework are deterministic. Such algorithms guarantee
soundness and completeness, but are NP-hard. To overcome this com-
plexity problem, we propose a novel approximation approach for multiple-
fault diagnosis, based on a greedy stochastic algorithm called Safari
(StochAstic Fault diagnosis AlgoRIthm). Safari sacrifices guarantees of
optimality, but for models in which component failure modes are de-
fined solely in terms of a deviation from nominal behavior (known as
weak fault models), it can compute 80-90% of all cardinality-minimal
diagnoses, several orders of magnitude faster than state-of-the-art de-
terministic algorithms. We have applied this algorithm to the 74XXX
and ISCAS-85 suites of benchmark combinatorial circuits, demonstrating
order-of-magnitude speedup over a well-known deterministic algorithm,
CDA∗, for multiple-fault diagnoses.

1 Introduction

Model-Based Diagnosis (MBD) is an area of abductive or model-based inference
in which a system model is used, together with observations about system be-
havior, to isolate sets of faulty components (diagnoses) that explain the observed
behavior. The standard MBD formalization [1] frames a diagnostic problem in
terms of a set of logical clauses that include mode-variables describing the nomi-
nal and fault status of system components; from this the diagnostic status of the
system can be computed given an observation (OBS) of the system’s sensors.
MBD provides a sound and complete approach to enumerating multiple-fault
diagnoses, and exact algorithms can guarantee finding a diagnosis optimal with
respect to the number of faulty components, probabilistic likelihood, etc.

However, the biggest challenge (and impediment to industrial deployment) is
the computational complexity of the MBD problem. The MBD problem of iso-
lating multiple-fault diagnoses is known to be ΣP

1 -complete [2,3]. Since almost
� Supported by STW grant DES.7015.

�� Supported by SFI grant 04/IN3/I524.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 139–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 A. Feldman, G. Provan, and A. van Gemund

all proposed MBD algorithms have been complete and exact (with some authors
proposing possible trade-offs between completeness and faster consistency check-
ing by employing methods such as BCP [4]), the complexity problem remains a
major challenge to MBD.

To overcome this complexity problem, we propose a novel approximation ap-
proach for multiple-fault diagnosis, based on stochastic algorithms. Safari (Sto-
chAstic Fault diagnosis AlgoRIthm) sacrifices guarantees of optimality, but for
diagnostic systems in which faults are described in terms of an arbitrary devi-
ation from nominal behavior Safari can compute diagnoses several orders of
magnitude faster than competing algorithms.

Our contributions are as follows. (1) This paper introduces an approxima-
tion algorithm for computing diagnoses within an MBD framework, based on
a greedy stochastic algorithm. (2) We show the theoretical justification for the
success of this algorithm, i.e., that minimal-cardinality diagnosis over weak fault
models can be solved in poly-time (calling the incomplete SAT-solver BCP), and
that more general frameworks are also amenable to this class of algorithm. (3)
We apply this algorithm to a suite of benchmark combinatorial circuits, demon-
strating order-of-magnitude speedup over a well-known deterministic algorithm,
CDA∗, for multiple-fault diagnoses. Moreover, whereas the search complexity for
the deterministic algorithms tested increases exponentially with fault cardinality,
the search complexity for this stochastic algorithm appears to be independent
of fault cardinality. Safari is of great practical significance, as it can compute
a large fraction of cardinality-minimal diagnoses for discrete systems too large
or complex to be diagnosed by existing deterministic algorithms.

2 Related Work

MBD is an instance of constraint optimization, with particular constraints over
failure variables, as we will describe. MBD has developed algorithms to exploit
these domain properties, and our proposed approach differs significantly with
almost all MBD algorithms that appear in the literature. While most advanced
MBD algorithms make use of preferences, e.g., fault-mode probabilities, to im-
prove search efficiency, the algorithms themselves are deterministic, and use the
preferences to identify the most-preferred solutions. This contrasts with stochas-
tic SAT algorithms, which rather than backtracking may randomly flip variable
assignments to determine a satisfying assignment.

The most closely-related diagnostic approach is that of Vatan et al. [5], who
map the diagnosis problem into the monotone SAT problem, and then propose
to use efficient SAT algorithms for computing diagnoses. The approach of Vatan
et al. has shown speedups in comparison with other diagnosis algorithms; the
main drawback is the number of extra variables and clauses that must be added
in the SAT encoding, which is even more significant for strong fault models and
multi-valued variables. In contrast, our approach works directly on the given
diagnosis model and requires no conversion to another representation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 141

Stochastic algorithms have been discussed in the framework of constraint
satisfaction [6] and Bayesian network inference [7]. The latter two approaches
can be used for solving suitably translated MBD problems. It is often the case,
though, that these encodings are more difficult for search than specialized ones.

3 Technical Background

The discussion starts by formalizing some basic notions in MBD, extending the
notions proposed by de Kleer et al. [8]. A model of an artifact is represented as
a propositional Wff over some set of variables V . Discerning disjoint subsets of
them as failure-mode variables (assumables) and observable variables (observ-
ables) gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic system DS is defined as the
triple DS = 〈SD, COMPS, OBS〉, where SD is a propositional theory describing
the behavior of the system, COMPS is a set of assumable variables in SD, and
OBS is a set of some observable variables in SD.

Throughout this paper we will assume that OBS ∩ COMPS = ∅ and SD �|=⊥.

3.1 A Running Example

The Boolean circuit shown in Fig. 1 provides some intuitions behind Safari.
The subtractor consists of seven components: an inverter, two or-gates, two xor-
gates, and two and-gates.

b
p

l

X1

O1
A1j

i

brwO2

A2

X2
dif

m

k

a

I

Fig. 1. A subtractor circuit

The expression h ⇒ (o ⇔ ¬i) models an inverter, where the variables i, o,
and h represent input, output and health respectively. Similarly, an and-gate is
modeled as h ⇒ (o ⇔ i1 ∧ i2) and an or-gate is h ⇒ (o ⇔ i1 ∨ i2). Finally, an
xor-gate is specified as h ⇒ (o ⇔ ¬(i1 ⇔ i2)).

These propositional formulae are copied for each gate in Fig. 1 and their
variables renamed in such a way as to properly connect the circuit and disam-
biguate the assumables, thus receiving a propositional formula for SD, given by
X1 ⇒ (i ⇔ ¬(b ⇔ p)), X2 ⇒ (dif ⇔ ¬(a ⇔ i)), O1 ⇒ (j ⇔ b ∨ p), O2 ⇒
(brw ⇔ m ∨ k), A1 ⇒ (m ⇔ l ∧ j), A2 ⇒ (k ⇔ b ∧ p), I ⇒ (a ⇔ ¬l). The set of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 A. Feldman, G. Provan, and A. van Gemund

component (assumable) variables is COMPS = {X1, X2, O1, O2, A1, A2, I}. The
set of observable variables is OBS = {a, b, p, dif , brw}.

3.2 Minimal Diagnosis and Fault Modes

The traditional query in MBD results in finding terms of assumable variables
which are explanations for the system description and an observation. The first
definition of diagnosis uses a set notation.

Definition 2 (Diagnosis). Given a system DS = 〈SD, COMPS, OBS〉 and an
observation term α over the variables in OBS, a diagnosis for DS and α is a set
D ⊆ COMPS such that:

SD ∧ α ∧
[∧

c∈D

¬hc

]
∧

⎡
⎣ ∧

c∈(COMPS\D)

hc

⎤
⎦ �|=⊥

In the MBD literature, a range of types of “preferred” diagnosis have been
proposed. The first ordering we consider is a subset-ordering:

Definition 3 (Subset-Minimal Diagnosis). A diagnosis D is subset-mini-
mal, if no proper subset D′ ⊂ D exists such that D′ is also a diagnosis.

Throughout this paper we interchangeably use a propositional notation for ex-
pressing diagnoses. In this case we simply construct a conjunction of liter-
als, each literal having a negative sign if its respective variable is in D and
a positive sign otherwise. Consider the example from Fig. 1 and an observa-
tion α = a ∧ b ∧ p ∧ ¬dif ∧ ¬brw . In this case D1 = {A1, A2, X1} is a diag-
nosis and D2 = {A1, X1} is a minimal diagnosis (there are seven more min-
imal diagnoses for SD ∧ α). Alternatively, instead of D1 we may write D′1 =
¬X1 ∧ X2 ∧ O1 ∧ O2 ∧ ¬A1 ∧ ¬A2 ∧ I.

The cardinality of a diagnosis D is the size of D and is denoted as |D|. It
represents the number of faulty components in COMPS given SD and α. Next
to computing minimal diagnoses, it is of interest to MBD to compute some or
all minimal-cardinality diagnoses, given a diagnostic problem.

Definition 4 (Cardinality-Minimal Diagnosis). A diagnosis D is a cardi-
nality-minimal diagnosis if it is a minimal diagnosis and no other diagnosis D′

exists such that |D| < |D′|.

The cardinality of a cardinality-minimal diagnosis computed from a system de-
scription SD and an observation α is denoted as MinCard (SD ∧ α). For our
example and the observation α = a ∧ b ∧ p ∧ ¬dif ∧ ¬brw , it follows that
MinCard(SD ∧ α) = 2. Note that in this case all minimal diagnoses are also
cardinality-minimal diagnoses.

There are subset-minimal diagnoses which are not cardinality-minimal diag-
noses. Consider, for example, the diagnostic system DS = 〈SD, COMPS, OBS〉,
where SD = (h1 ∧ h2 ∧ x) ∨ (h4 ∧ x), COMPS = {h1, h2, h3, h4}, OBS = {x},
and α = x. In this case, D1 = {h1, h2, h3} is a non-subset-minimal diagnosis,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 143

D2 = {h1, h2} and D3 = {h4} are subset-minimal diagnoses, but only D3 is a
cardinality-minimal diagnosis.

Another important diagnosis preference relation that we consider is one in-
duced by a probability distribution over failure mode instantiations, γ, i.e.,
Pr : γ → [0, 1]. If we assume that all components fail independently, then the
probability of a multiple-fault F is just the product of the component probabil-
ities, i.e., Pr (F) =

∏
Fi∈F Pr(Fi).

Definition 5 (Probability-Minimal Diagnosis). Given a non-trivial proba-
bility assignment to component failure modes, a probability-maximal diagnosis ω
is a fault-mode such that � ∃ any other diagnosis ω′ such that Pr(ω′) > Pr(ω).

In the following, we will focus on subset-minimal and cardinality-minimal diag-
noses; these two relationships mean that our results will also hold for a proba-
bility-minimal diagnosis.

MBD defines two broad classes of fault models, based on weak and strong
modeling assumptions for abnormal behavior.

Weak-fault models define normative behavior of their components only, i.e.,
models which specify no fault-modes.

Definition 6 (Weak Fault Model). A diagnostic system DS belongs to the
class WFM iff SD is in the form (h1 ⇒ F1) ∧ . . . ∧ (hn ⇒ Fn) such that for
1 ≤ i, j ≤ n, {hi} ⊆ COMPS, Fj ∈ Wff , and none of hi appears in Fj.

In contrast, strong fault models specify the faulty behavior of their components.
One way to define such a model is by partitioning the set of observable vari-
ables OBS into two subsets IN and OUT (denoting input and output variables
respectively). Defining values to IN and COMPS then allows us to find a unique
assignment to the values in OUT.

Definition 7 (Strong Fault Model). Given a system DS and a partition
OBS = IN ∪ OUT, DS ∈ SFM if for any instantiation φ of all variables in
IN ∪ COMPS, it holds that there is exactly one term ψ such that φ |= SD ∧ ψ
and ψ is an instantiation of all variables in OUT.

In the following we show how our stochastic algorithm can compute subset- and
cardinality-minimal diagnoses for SD such that SD ∈ WFM, and indicate how
the algorithm can be generalized to cover SD ∈ SFM.

4 Stochastic MBD Algorithm

In this section we discuss an algorithm for computing multiple-fault diagnoses
using stochastic search.

4.1 A Simple Example (Continued)

We now show what happens when we apply A∗ and stochastic search to our
running example.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 A. Feldman, G. Provan, and A. van Gemund

A deterministic A∗ search for the above diagnosis discovers it after expanding
127 nodes and performing 19 consistency checks. Even enabling conflict focusing
may not result in a small number of generated nodes and consistency checks
(this depends on the model, observation and conflict extraction mechanism),
which shows how deterministic diagnosis search becomes impractical with bigger
systems.

We will now show a two-step diagnostic process that requires fewer variable
assignments and consistency checks. Step 1 involves randomly choosing candi-
dates. Step 2 attempts to minimize the fault cardinality in these candidates.

In step 1, the stochastic diagnostic search for the subtractor example will start
from a random quintuple candidate1. In this particular version of our algorithm,
once a component is marked as healthy, it cannot be changed back to faulty. To
compensate for that, we perform multiple restarts from a random candidate. In
our subtractor example and for α = a ∧ b ∧ p ∧ ¬dif ∧ ¬brw , if X1 ∧ X2 is in
the initial “guess” it will prove inconsistent with SD ∧ α and another quintuple
fault candidate will be guessed.

Assume that the second candidate is ω′2 = ¬X1∧¬X2∧O1∧¬O2∧¬A1∧¬A2∧
I. Clearly, SD ∧ α ∧ ω′ �|=⊥. The search algorithm may next try to improve the
diagnosis by “flipping” A2. The candidate ω′3 = ¬X1 ∧¬X2 ∧ O1 ∧ ¬O2 ∧ ¬A1 ∧
A2 ∧ I is a valid quadruple fault diagnosis and it can be improved twice more by
“flipping” X2 and O2. This gives us the final double-fault ω′6 = ¬X1 ∧X2 ∧O1 ∧
O2∧¬A1 ∧A2∧I. The actual algorithm is somewhat more involved as during the
variable flipping it is normal to find inconsistencies. Instead of restarting, it will
simply discard these inconsistent candidates until some termination criterion is
satisfied.

Intuitively, from our example, due to the large number of double fault di-
agnoses explaining the same observation, it is not difficult to randomly guess
sequences of variables which need to be false in order to explain the observation.

4.2 A Greedy Stochastic Algorithm

The greedy stochastic algorithm, which we introduce next, finds multiple cardi-
nality-minimal diagnoses (if such exist).

The stochastic algorithm presented in this paper uses the valuation function
Pr : γ → [0, 1]. In the analysis of our algorithm we use Pr to determine if
an assignment to a health variable denotes a failure or a healthy mode. The
complexity of the algorithm presented in this paper is not sensitive to Pr and
the only use of the probabilities is to guide the search for a better efficiency.

The randomized search process performed by Safari has two parameters, M
and N . There are N independent searches that start from randomly generated
candidates. After an initial candidate ω is found to be consistent with SD∧α, i.e.,
ω is a diagnosis, the algorithm tries to improve the cardinality of the diagnosis
(while preserving its consistency) by randomly “flipping” fault literals.

1 In the formal description of the algorithm we describe a method for determining the
initial candidates.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 145

Algorithm 1. Safari: A stochastic hill climbing algorithm for approximating
a set of cardinality-minimal diagnoses.
1: function HillClimb(DS, α, M, N,Pr) returns a trie

inputs: DS = 〈SD, COMPS, OBS〉, a diagnostic system
α, term, observation
M , integer, climb restart limit
N , integer, number of tries
Pr , a valuation function

local variables: m, n, integers
ω, ω′, terms
R, a trie

2: n ← 0
3: while n < N do
4: ω ← RandomCandidate(Pr)
5: if SD ∧ α ∧ ω �|=⊥ then
6: m ← 0
7: while m < M do
8: ω′ ← ImproveDiagnosis(Pr , ω)
9: if SD ∧ α ∧ ω′ �|=⊥ then

10: ω ← ω′

11: m ← 0
12: else
13: m ← m + 1
14: end if
15: end while
16: unless IsSubsumed(R, ω) then
17: AddToTrie(R,ω)
18: RemoveSubsumed(R,ω)
19: end unless
20: n ← n + 1
21: end if
22: end while
23: return R
24: end function

Each attempt to find a cardinality-minimal diagnosis terminates after M un-
successful attempts to change the value of a fault variable to healthy state. Thus,
increasing M will lead to a better exploitation of the search space and possibly
diagnoses of lower cardinality, while decreasing it will improve the overall speed
of the algorithm.

Similar to deterministic methods for MBD, Safari uses a SAT-based pro-
cedure for checking the consistency of SD ∧ α ∧ ω. Because SD and α do not
change in consistency checks, using an LTMS [9] can improve search efficiency.
The implementation of Safari combines a BCP-based LTMS to check for in-
consistencies. If a candidate is consistent, a second DPLL-based check is invoked
for completeness.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 A. Feldman, G. Provan, and A. van Gemund

The RandomCandidate function generates a candidate diagnosis, used for
“seeding” the diagnostic search. The valuation function can be modified to pro-
vide a more informed starting point, thus decreasing the number of “climbing”
steps. The initial diagnosis ω should be of high cardinality, to increase the like-
lihood of SD ∧ α ∧ ω �|=⊥. In order to do that, we generate an instantiation of ω
by using Pr and scaling the a priori probabilities in Pr to bias the probability
density function (pdf) from which we draw the initial candidates. Consider an
example in which each component h ∈ COMPS fails with a probability of 5%.
The valuation function is Pr(h = False) = 0.05. We may use a scaling coefficient
k = 5 which would lead to RandomCandidate returning a candidate with a
quarter of the components failing.

The biasing of Pr can improve the efficiency of Safari by exploiting knowl-
edge about the likelihood of the cardinality of the cardinality-minimal diagnosis.
In particular, when expecting cardinality-minimal diagnoses of high cardinality
Pr should be configured to return an initial fault of higher cardinality. If the
expected faults are of small cardinality, the search may start from a candidate
with fewer faulty components, in which case more attempts (increased N) would
be necessary to find local diagnoses close to the global optimum.

The ImproveDiagnosis function generates a candidate ω′ of smaller cardi-
nality than the diagnosis ω, supplied as an argument. This is done by flipping
a random faulty literal in ω. The probability of flipping a faulty literal l in ω
is inverse proportional to the a priori probability Pr(l). Consider a diagnosis
ω = ¬h1 ∧ ¬h2 ∧ ¬h3 ∧ ¬h4, where Pr(h1 = False) = Pr(h2 = False) = 0.1
and Pr(h3 = False) = Pr (h4 = False) = 0.025. In this case ImproveDiag-
nosis would return ω′ = h1 ∧ ¬h2 ∧ ¬h3 ∧ ¬h4 or ω′ = ¬h1 ∧ h2 ∧ ¬h3 ∧ ¬h4,
each of the two with probability of 0.4, and ω′ = ¬h1 ∧ ¬h2 ∧ h3 ∧ ¬h4 or
ω′ = ¬h1 ∧ ¬h2 ∧ ¬h3 ∧ h4 the latter with probability 0.1.

There is no guarantee that two diagnostic searches, starting from a random
diagnoses, would not lead to the same cardinality-minimal diagnosis. To prevent
this, we store the generated diagnoses in a trie R [10], from which it is straight-
forwards to extract the resulting diagnoses by recursively visiting its nodes. A
diagnosis ω is added to the trie R by the function AddToTrie, iff no subsuming
diagnosis is contained in R (the IsSubsumed subroutine checks on that condi-
tion). After adding a diagnosis ω to the resulting trie R, all diagnoses contained
in R and subsumed by ω are removed by a call to RemoveSubsumed.

5 Optimality and Complexity of Greedy Stochastic
Algorithm

One of the key factors in the success of the proposed algorithm is the exploitation
of the continuity of the search-space of weak fault models, where by continuity we
mean that we can monotonically reduce the cardinality a non-minimal diagnosis.
This section shows that our algorithm can guarantee finding minimal diagnoses
in weak fault models in polynomial time (given a SAT oracle such as BCP), and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 147

trades off optimality in more general diagnostic frameworks, such as cardinality-
minimal diagnostic inference or strong fault models.

5.1 Cardinality-Minimal Diagnosis in Weak-Fault Models

We will show some properties of minimal diagnoses. These properties are also
true for fault-modes with a slight adaptation of the notation.

Hypothesis 1 (Minimal Diagnosis Hypothesis) Let SD be a system de-
scription and D′ a diagnosis. The Minimal Diagnosis Hypothesis (MDH) holds
in SD if for any D such that D ⊃ D′ it holds that D is also a diagnosis.

It has been shown in [8] that if a model SD ∈ WFM (cf. Def. 6), then the
Minimal Diagnosis Hypothesis (MDH) holds. There are other theories SD′ �∈
WFM for which MDH holds. Unfortunately, no necessary condition is known
for MDH to hold in an arbitrary SD′.

Using MDH together with Def. 3, if SD ∈ WFM then we immediately have
the following lemma.

Lemma 1. If D is a diagnosis of a diagnosis problem DS and MDH holds for
DS, then there is a subset-minimal diagnosis D′ that subsumes D, i.e., D′ ⊆ D.

Our greedy algorithm starts with a “seed” diagnosis and then randomly flips
faulty component variables. We now use the MDH property to show that, start-
ing with a non-minimal diagnosis D, the greedy stochastic diagnosis algorithm
can monotonically reduce the size of “seed” diagnosis to obtain a minimal di-
agnosis through appropriately flipping a fault variable from faulty to healthy; if
we view this flipping as search, then this search is continuous in the diagnosis
space.2

Theorem 1. Given a a weak fault model SD ∈ WFM and a non-subset-min-
imal diagnosis D with |D| = μ ≤ n faulty components, the greedy stochastic
diagnosis algorithm is guaranteed to compute a minimal diagnosis.

We can now prove the following correctness result:

Theorem 2. The greedy stochastic diagnosis algorithm is guaranteed to compute
a subset-minimal diagnosis for a weak fault model with |OBS| = n in O(Θn)
time, where O(Θ) is the complexity of a consistency check.

Since consistency-checking for this model class can be done in polynomial time
(using BCP propagation), we have just demonstrated a polynomial-time algo-
rithm for computing minimal diagnoses in a weak-fault-model system description
(WFM). This result has been shown in the literature for a divide-and-conquer
approach [12], but to our knowledge no current algorithm takes advantage of
this approach.

We now provide a brief intuition behind the performance of the Safari algo-
rithm. A formal derivation of the performance/cost model is beyond the scope
of this paper and appears in [11].
2 We omit proofs due to space limitations, but refer the reader to [11] for all proofs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 A. Feldman, G. Provan, and A. van Gemund

Assume we have an MBD problem with S optimal diagnoses of cardinality
C. A key to the good performance of the algorithm is the fact that the pdf
of the number of successful consecutive steps j = 0, 1, . . . toward the optimal
solution (j = |COMPS| − C), is generally an increasing function, rather than
decreasing; i.e., the probability mass is concentrated near the optimum solution.
This somewhat counter-intuitive fact is caused by two phenomena. First, the
retry mechanism has a huge impact on the shape (slope) of the pdf. Whereas
for M = 0 (no retries) the pdf is still close to a geometric distribution (i.e., a
decreasing function), even for relatively small M (e.g., M = 4, as in our exper-
iments) the retry process turns the slope into an increasing function. Second,
the fact that there are usually multiple (S > 1) C-fault diagnoses implies that
the attained j value is essentially the maximum of the j values per individ-
ual C-fault solution. The associated, order-statistical effect further increases the
positive slope of the pdf. Thus, even for one run, the probability of reaching the
optimum solution is quite high.

The effect of N (taking the maximum of the attained j over multiple runs)
also translates into an order-statistical effect. However, this third effect is not
nearly as powerful as the effect of M (and S). Hence, optimizing Safari’s per-
formance/cost ratio is primarily a matter of increasing M , rather than N .

Finally, note that the number of retries also guarantees optimality in those
cases where the attained solution cardinality is less or equal to M . For instance,
when a solution with C = 4 is found (where M = 4), it must be optimal, as the
remaining of lower-cardinality solutions have all been (unsuccesfully) tried.

5.2 More General Diagnostic Frameworks

This section now addresses how the algorithm will perform in more general diag-
nostic frameworks, such as computing cardinality-minimal diagnoses or dealing
with strong fault models. In generalizing beyond subset-minimal diagnosis com-
putation, less restrictive definitions are computationally harder [3].

We can modify Safari to compute a wide variety of diagnoses, e.g., subset-
minimal, non-minimal, cardinality-minimal, etc., by modifying the type of diag-
nosis computed together with the trie maintenance and subsumption testing of
lines 16-18 of the pseudo-code.

The complexity of Safari is derived in a straightforward way.

Proposition 1. The time complexity of Alg. 1 is O(MN log NΘ), where Θ is
the complexity of the consistency checking procedure.

The log N factor comes from the trie maintenance, which contains a maximum
number of N diagnoses with some ordering imposed on their literals. Note that
the average case complexity of consistency checking, although exponential in the
worst case, is low polynomial when incomplete methods like BCP are used [13]
or when the model is highly-observable.

In this more general case we have no completeness guarantee, as we do for
subset-minimal diagnoses. Note that this is effectively a polynomial-time algo-
rithm that trades off some small amount of completeness and optimality for sig-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 149

nificant improvements in efficiency relative to deterministic diagnosis algorithms.
In these more general frameworks, from a theoretical perspective one can only
provide probabilistic arguments about the likelihood of finding particular classes
of diagnosis; this is a topic of future work. The experimental results presented
later in this article show that significant speedups over complete algorithms are
possible while losing relatively little diagnostic completeness.

In generalizing from weak to strong fault models, the key difference is the
increased difficulty in “guessing” the initial diagnosis for Safari. For a weak
fault model, we are guaranteed to find a subset-minimal diagnosis by choosing an
initial diagnosis with all components faulty,3 but this guess is not guaranteed to
be consistent in a strong fault model. Developing a robust diagnosis initialization
algorithm for strong fault models is a topic for future research.

6 Experimental Results

Next, we discuss some empirical results measured from an implementation of
Safari. In the following, for any models SD, it holds that SD ∈ WFM.

We have implemented Safari in approximately 700 lines of C code (excluding
LTMS and DPLL) and it is a part of the Lydia4 package.

Table 1. Test model sizes

Name Description H V Cw O

74182 4-bit CLA 19 47 75 14
74283 4-bit adder 40 89 130 14
74L85 4-bit comparator 41 93 134 14
74181 4-bit ALU 62 138 216 22

c432 27-channel interrupt controller 160 356 514 43
c499 32-bit SEC circuit 202 445 714 73
c880 8-bit ALU 383 826 1 112 86
c1355 32-bit SEC circuit 546 1 133 1 610 73
c1908 16-bit SEC/DEC 880 1 793 2 378 58
c2670 12-bit ALU 1 193 2 543 3 269 221
c3540 8-bit ALU 1 669 3 388 4 608 72
c5315 9-bit ALU 2 307 4 792 6 693 301
c6288 32-bit multiplier 2 416 4 864 7 216 64
c7552 32-bit adder 3 512 7 230 9 656 313

Table 1 summarizes the benchmark suite. All models are derived from the 74XXX
and ISCAS85 family of benchmark circuits. We have added an assumable variable
to each gate in each model. The benchmark implements weak fault models for
3 We start with half the components faulty and use the parameter M to restart if our

initial guess is incorrect.
4 Lydia can be downloaded from http://fdir.org/lydia/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

150 A. Feldman, G. Provan, and A. van Gemund

each component, in a way similar to the example. The same valuation function
Pr has been used in all the experiments. In particular, Pr(h = False) = 0.01,
and Pr (h = True) = 0.99.

The number of assumable variables is denoted as H . The total number of
variables is denoted V and the number of clauses in the CNF representation is
denoted as Cw . The number of observable variables is denoted as O.

All the experiments described in this paper are performed on a host with 1.86
GHz Pentium M CPU and 2 Gb of RAM.

6.1 Comparison to HA∗ and Multiple-Fault Scalability

We compare the efficiency of Safari to HA∗ [14] with Max-Fault Min-Cardinal-
ity (MFMC) observation vectors [15]. MFMC observation vectors maximize the
number of faults in the cardinality-minimal diagnoses consistent with a model.
From the deterministic algorithms, HA∗ performs better than CDA∗ [4] in find-
ing cardinality-minimal diagnoses of high cardinality. On the other hand, CDA∗

is very fast in finding faults of small cardinality (single and double faults) and
we will then compare Safari to CDA∗.

First, we use small models with observations maximizing the number of faults
in a cardinality-minimal diagnosis. The results, shown in Table 2, illustrate an ad-
vantage of Safari: its performance does not degrade when the fault cardinality
increases. We have run two groups of experiments: finding a single cardinality-
minimal diagnosis and finding all cardinality-minimal diagnoses.

Table 2. Times [ms] for diagnosing MFMC faults by Alg. 1 and HDA∗

Single Diagnosis Multiple Diagnoses

Name MFMC Th T C K T ′
h T ′ K′ N ′ M ′

74182 5 38 2 5 300 171 143 242 800 4
74283 5 4 708 4 5.5 814 27 606 5759 665 10 000 4
74L85 3 143 4 3 100 1 281 184 90 400 4
74181 7 106 386 9 7 3 817 634 739 31 377 3 236.7 20 000 8

Next, we describe the notation in the column headings of Table 2. MFMC is the
number of faults in the cardinality-minimal diagnosis consistent with the MFMC
observation. Th is the time for finding a single diagnosis by the HA∗ algorithm.
T is the time for finding a single diagnosis by Alg. 1. C is the cardinality of
the diagnosis generated by Safari. K is the number of cardinality-minimal
diagnoses as counted by the deterministic algorithm HA∗. The time for finding
all of these diagnoses by HA∗ is denoted as T ′h. T ′ is the time for Safari to find
K ′ multiple cardinality-minimal diagnoses.

Safari is designed to find multiple cardinality-minimal diagnosis. In these
experiments, we have configured it with a number N of runs in order to return
a small number of diagnoses, and we have ignored all but the first diagnosis.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 151

5 10 15 20 25 30
0

100

200

300

400

500

600

d
H
(α, α

n
)

t[m
s]

20 40 60 80 100
3

4

5

6

7

8

9
x 10

4

d
H
(α, α

n
)

t[m
s]

c7552c880

Fig. 2. Diagnosis time of Safari with multiple observation vectors

We performed the single fault experiments, shown in Table 2, with N = 8 and
M = 4. For the multiple diagnoses, the algorithm is configured with M = M ′

and N = N ′ as described in Table 2.
We have averaged the results of all the experiments involving Safari over 10

runs. Safari is a local search algorithm, and hence it can compute a suboptimal
diagnosis. This was the case in the 74283 model experiments, in which 5 out of
10 runs returned a cardinality-minimal diagnosis with 6 faults, while the global
optimum has 5 faults, resulting in the 5.5 value for C in Table 2.

Table 2 demonstrates the main advantage of Safari, that its performance
does not depend on the number of faults in the cardinality-minimal diagnoses.
Furthermore, Safari finds a good coverage of all cardinality-minimal diagnoses.
This coverage varies from 81% in 74182 to 90% in 74L85.

We have also run Safari on bigger circuits. Figure 2 shows the time for
finding multiple-fault diagnosis for c880 and c7552. The diagnosis was run k
times where k is the number of outputs in each circuit. For run x = 0, we have
assigned random values to the inputs and computed (by using propagation) the
values of all the outputs. For x = 1 we have flipped one output in α, for x = 2
two outputs, etc. Thus on the horizontal axis in Fig. 2 we have the Hamming
distance between α and an observation consistent with a no-fault (nominal)
diagnosis. Again, Safari showed no dependency on α, only a small increase in
the diagnostic time for c7552 due to the difficulty of finding an initial diagnosis.
The latter can be easily overcome by scaling the initial a-priori probabilities.

6.2 Comparison to CDA∗

Table 3 shows the result from finding single and double faults with arbitrary
(manually computed) observations. Finding single faults is known to be trivial
in MBD and CDA∗ performs well on these simple problems. The time for finding
a single fault by CDA∗ is shown in column T ∗1 . The time for the CDA∗ algorithm
to find a double fault is shown in column T ∗2 . The CDA∗ algorithm could not
compute a double fault diagnosis in less than 10 min time for the five biggest
circuits, in which cases we have interrupted the search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 A. Feldman, G. Provan, and A. van Gemund

Table 3. Running times [ms] of CDA∗ and Alg. 1

Single-Fault Double-Fault

Name T ∗
1 T1 C1 T ∗

2 T2 C2

c432 9 32 1 5 34 2
c499 3 53 1 152 64 2
c1908 34 95 1 509 94 2
c880 18 186 1 62 068 186 2
c1355 11 285 1 4 300 310 2
c2670 1 425 1 362 1 − 1 352 2
c3540 3 050 3 080 1 − 3 115 2
c5315 13 849 19 322 1 − 19 764 2
c6288 18 317 11 070 1.4 − 11 366 2.2
c7552 35 801 37 269 1 − 37 585 2.2

The times for the stochastic algorithm to discover a single and a double fault
are denoted as T1 and T2 respectively. We have used M = 4 and N = 8 for
the search, that is, maximum number of four retries before giving up the climb,
and a total of 4 attempts. In some of the cases, our stochastic algorithm could
not find a cardinality-minimal diagnosis, but a suboptimal one. We have shown
the cardinality of the results for single and double faults in columns C1 and C2,
respectively. Again, the values of T1, C1, T2, and C2 are averaged over 10 runs.

The relatively small number of restarts lead to small overall search time and in
a very few cases to suboptimal result for the diagnosis cardinality. Increasing N
would lead to finding a global cardinality-minimal diagnosis in all the cases. We
note that increasing M would not help to finding a diagnosis of lower cardinality.

As is visible from Table 3, in the single fault scenario, CDA∗ performs better
than the stochastic algorithm, which is not surprising as in CDA∗ all single fault
candidates are tested first. On the other hand, the stochastic method performed
8 independent attempts to find a cardinality-minimal diagnosis which, having
the overhead of consistency checking, led to the slightly worse performance for
computing single fault diagnoses.

Again, the performance of Safari does not degrade when the number of faults
increases. This is not the case with deterministic algorithms like CDA∗ or HA∗.
The time for the stochastic algorithm to find a double fault is the same as for
finding a single fault, while CDA∗ suffers from a combinatorial explosion.

7 Conclusion and Future Work

We have described a greedy stochastic algorithm for computing diagnoses within
a model-based diagnosis framework. We have shown that subset-minimal diag-
noses can be computed optimally in weak fault models, and that almost all
cardinality-minimal diagnoses can be computed for more general fault models.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Model-Based Diagnosis Using Greedy Stochastic Search 153

We have applied this algorithm to a suite of benchmark combinatorial cir-
cuits encoded using weak fault models, and shown significant performance im-
provements for multiple-fault diagnoses, compared to a well-known determinis-
tic algorithm, CDA∗. Our results indicate that, although the greedy stochastic
algorithm is outperformed for the single-fault diagnoses, it shows at least an
order-of-magnitude speedup over CDA∗ for multiple-fault diagnoses. Moreover,
whereas the search complexity for the deterministic algorithms tested increases
exponentially with fault cardinality, the search complexity for this stochastic
algorithm appears to be independent of fault cardinality.

We have demonstrated the superior performance (over deterministic algo-
rithms) of Safari for the class of discrete circuits specified using weak fault
models. We argue that Safari can be of broad practical significance, as it can
compute a significant fraction of cardinality-minimal diagnoses for systems too
large or complex to be diagnosed by existing deterministic algorithms.

In future work, we plan to experiment on models with a combination of
weak and strong failure-mode descriptions. We also plan on experimenting with
a wider variety of stochastic methods, such as simulated annealing and ge-
netic search, using a larger set of benchmark models. Last, we plan to ap-
ply our algorithms to a wider class of abduction and constraint optimization
problems.

References

1. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

2. Bylander, T., Allemang, D., Tanner, M., Josephson, J.: The computational com-
plexity of abduction. Artificial Intelligence 49, 25–60 (1991)

3. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault models.
In: Proc. AAAI (1990)

4. Williams, B., Ragno, R.: Conflict-directed A* and its role in model-based embedded
systems. Journal of Discrete Applied Mathematics (2004)

5. Vatan, F., Barrett, A., James, M., Williams, C., Mackey, R.: A novel model-based
diagnosis engine: Theory and applications. In: IEEE Aerospace Conf., IEEE Com-
puter Society Press, Los Alamitos (2003)

6. Freuder, E.C., Dechter, R., Ginsberg, B., Selman, B., Tsang, E.P.K.: Systematic
versus stochastic constraint satisfaction. In: Proc. IJCAI 95, vol. 2 (1995)

7. Kask, K., Dechter, R.: Stochastic local search for Bayesian networks. In: Proc.
AISTAT’99 (1999)

8. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems.
Artificial Intelligence 56(8), 197–222 (1992)

9. McAllester, D.: Truth maintenance. In: Proc. AAAI’90, vol. 2 (1990)
10. Forbus, K., de Kleer, J.: Building Problem Solvers. MIT Press, Cambridge (1993)
11. Feldman, A., Provan, G., van Gemund, A.: On the performance of Safari algo-

rithms. Technical Report TUD-SERG-2007-011, TU Delft (2007)
12. Mozetič, I.: A polynomial-time algorithm for model-based diagnosis. In: Proc.

ECAI’92, pp. 729–733 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 A. Feldman, G. Provan, and A. van Gemund

13. Zabih, R., McAllester, D.: A rearrangement search strategy for determining propo-
sitional satisfiability. In: Proc. AAAI’88, pp. 155–160 (1988)

14. Feldman, A., van Gemund, A.: A two-step hierarchical algorithm for model-based
diagnosis. In: Proc. AAAI’06 (July 2006)

15. Feldman, A., Provan, G., van Gemund, A.: Generating manifestations of max-fault
min-cardinality diagnoses. In: Proc. DX’07 (May 2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database
Abstractions

Ariel Felner and Nir Ofek

Deustche Telekom AG labs at Ben-Gurion University of the Negev, Beer-Sheva, 84105
{felner,nirofek}@bgu.ac.il

Abstract. A pattern database abstraction (PDB) is a heuristic function in a form
of a lookup table. A PDB stores the cost of optimal solutions for instances of
abstract problems (subproblems). These costs are used as admissible heuristics
for the original problem. Perimeter search (PS) is a form of bidirectional search.
First, a breadth-first search is performed backwards from the goal state. Then, a
forward search is executed towards the nodes of the perimeter. In this paper we
study the effect of combining these two techniques. We describe two methods
for doing this. The simplified method uses a regular PDB (towards a single goal
state) but uses the perimeter to correct heuristics of nodes outside the perimeter.
The second, more advanced method is to build a PDB that stores the cost of
reaching any node of the perimeter from a given pattern. Although one might
see great potential for speedup in the advanced method, we theoretically show
that surprisingly most of the benefit of combining perimeter and PDBs is already
exploited by the first method. We also provide experimental results that confirm
our findings. We then study the behavior of our new approach when combined
with methods for using multiple PDBs such as maxing and adding.

1 Introduction and Overview

Heuristic search algorithms such as A* and IDA* find optimal solutions to state-space
search problems. They are guided by the cost function f(n) = g(n)+h(n), where g(n)
is the actual distance from the initial state to state n and h(n) is a heuristic function
estimating the cost from n to a goal state. If h(s) is “admissible” (i.e., is always a lower
bound) then these algorithms are guaranteed to find optimal paths.

Two general directions are usually taken in order to reduce the search effort. The first
direction is to introduce advanced search algorithms that better decide which node of
the search tree to expand next. The second direction is the developing of more accurate
heuristic functions. Hopefully, the new heuristics will produce larger f -values for many
nodes of the search tree and more subtrees in the search tree will be pruned.

An interesting work in the first direction is Perimeter Search (PS) where the search
is performed towards a set of nodes surrounding the goal state [3,12]. This set of nodes
(called the perimeter) is generated in a preprocessing phase by performing a breadth-
first search backwards from the goal state up to a given depth d. In addition, a new
technique for obtaining accurate heuristic function is by using pattern database ab-
stractions (PDBs) [2]. PDBs are lookup tables that store the optimal solutions for all
instances of a simplified problem abstracted from the original problem. These values
are used as admissible heuristics for the original (non abstracted) problem.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 155–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 A. Felner and N. Ofek

The two directions of perimeter search and PDBs are orthogonal. In this paper we
study the effect of combining these two techniques and introduce two methods for do-
ing this. In the first, simplified method we generate a PDB in the regular way and use
the perimeter nodes to correct mistaken low heuristic values. In the second method, in-
stead of building a regular PDB with a single goal state, we use the perimeter nodes as
a set of multiple goals and build a PDB to predict the distance to the closest node on
the perimeter. At a first glance, one might see a great potential for further reduction in
the search effort when using the second method. Indeed, during the past years, many
researchers informally suggested that this idea should be explored as the potential for
speedup in the search seems large1. Surprisingly, we found that there are only limited
or no benefits in the second method and that most of the potential benefit of combining
perimeter and PDBs is already exploited by the first method. In this paper we theo-
retically explain this phenomenon and provide experimental results to confirm it. We
then study the behavior of our new approach when combined with methods for using
multiple PDBs such as maxing and adding.

2 Background

We begin with providing some background on the different techniques that are studies
in this paper. We first describe the TopSpin problem which is our leading testbed in this
paper.

2.1 The TopSpin Domain

The (N ,K)-TopSpin puzzle has N tokens arranged in a ring. Any set of K consecutive
tokens can be reversed (rotated 180 degrees in the physical puzzle). Our encoding of
this puzzle has N operators, one for each possible reversal/rotation. Each operator has a
cost of one. The (14, 4)-TopSpin puzzle is shown in Figure 1 in its goal state. The bold
frame indicates a possible reversal of 4 adjacent tokens. There are n! different possible
ways to permute the tokens into the locations. However, since the puzzle is cyclic only
the relative location of the different tokens matters and thus there are only (n − 1)!
different states in practice.

13 1 2 3 4 514

Fig. 1. (9,4)-TopSpin states

2.2 Problem Spaces

A problem space is usually described abstractly as a set of atomic states, and a set of
operators that map states to states. In addition, a specific problem instance is a problem

1 Personal discussion with a number of different researchers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database Abstractions 157

(a) The goal state of Top Spin

1 2 3 * * 5 4 * *

(d) The abstract pattern for (b) (b) Location 4−7 are revesed

1 2 3 7 6 5 4 8 9

(c) The goal pattern

1 2 3 4 5 * * * *1 2 3 4 5 6 7 8 9

Fig. 2. (9,4)-TopSpin states

space together with a particular initial state and a (set of) goal state(s). The task is to
find an optimal path from the initial state to a goal state.

A state in problem spaces can be usually described (for combinatorial problems) as a
vector of state variables, each of which is assigned a particular value. For the Top-Spin
puzzle, there is a variable for each token, whose value indicates it position.

An operator in this formulation is a partial function from a state vector to a state
vector. An operator changes the values of some of the variables, 4 in the case of TopSpin
used in this paper.

The goal state is a specified state or a set of states. For problems, such as Top-Spin,
the goal state is usually a canonical state where object i is in location i. This goal state
is shown in figure 2.a.

2.3 Pattern Database Abstractions

Given a vector of state variables, a subset of the variables defines an abstract problem
(or subproblem) where we only assign values to variables in the subset, called pattern
variables, while the values of the other remaining variables are treated as don’t cares.
For example, in Top-Spin, a subproblem would only include a subset of the tokens (e.g.,
1-5 as in figure 2) and ignore the others.

A pattern (abstract state) is a specific assignment of values to the pattern variables.
The pattern space or abstract space is the set of all the different reachable patterns of a
given abstract problem.

Each state in the original state space is projected/abstracted to a pattern of the pat-
tern space by only considering the pattern variables, and ignoring the others. The goal
pattern is the pattern which is the projection of the goal state. Figure 2 shows states and
their projected patterns for the (14, 4)-TopSpin.

There is an edge between two different patterns p1 and p2 in the pattern space if
and only if there exist two states s1 and s2 of the original problem, such that p1 is
the projection of s1, p2 is the projection of s2, and there is an operator of the original
problem space that connects s1 to s2.

The shortest distance between two patterns p1 and p2 in the pattern space is therefore
a lower bound on the shortest distance in the original space between any pair of states
s1 and s2 such that p1 is the projection of s1 and p2 is the projection of s2.

A pattern database (PDB) is a lookup table that includes an entry for each pattern
of the pattern space. The value stored for a pattern p is the distance in the pattern space

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 A. Felner and N. Ofek

from p to the goal pattern. A PDB value stored for a given pattern is therefore an ad-
missible heuristic for all the states that are projected to that pattern. PDBs were first
introduced by Culberson and Schaeffer in the context of the 15 puzzle [2].

Typically, a PDB is built in a preprocessing phase by searching backwards, breadth-
first, from the goal pattern until the entire pattern space is spanned. Given a state S
in the original space, an admissible heuristic value for S, h(S), is computed using a
pattern database in two steps. First, S is projected to the corresponding pattern. Then,
this pattern is looked up in the PDB and the corresponding value is returned as the value
for h(S).

PDBs have proven very useful in optimally solving combinatorial puzzles and other
problems [2,9,10,6,8,4,5,14,13]. In many cases a number of different PDBs can be built.
During the search, we might consult them all and take their maximum as the heuristic
[9,7]. Furthermore, in special circumstances, we can partition the variables of the do-
main into disjoint subsets, build a PDB for each of them and these values can be added
and are still admissible. The conditions and applications of disjoint additive PDBs are
discussed in [10,6].

In the rest of this paper we will refer to the traditional PDB with a single goal state
(i.e., without combining a perimeter) as a Regular PDB (R PDB).

2.4 Perimeter Search

Perimeter Search (PS), a version of bidirectional search, was introduced by Dillen-
burg and Nelson in [3] and is sketched in figure 3. First, in a preprocessing phase, a
breadth-first search from the goal node is performed to a fixed depth d and all the nodes
surrounding the goal node at that depth are stored in a hash table. This set of nodes,
denoted as P , is called the perimeter nodes. It is important to note that throughout this
paper, we assume that the initial state is outside the perimeter. This can be assumed if
we also store all the nodes around the goal with depth smaller than d (called the inner
nodes) and whenever we choose to expand one of the stored nodes the search halts.

After the perimeter is built, a forward search from the initial state is performed until
one of the nodes in the perimeter is reached. The heuristic function used in PS is the
estimation of the distance between a node n and the closest node to it in the perimeter.
That is, for a given state n and the set of perimeter states P , the perimeter heuristic

perimeter

s
����������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

g
�����
�����
�����

�����
�����
�����

The search wave d

Fig. 3. Perimeter Search

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database Abstractions 159

hP (n) is defined as h(n) = minp∈P (h(n, p)). Adding this amount to g(n) and to the
depth of the perimeter results in a higher f -value than a regular search [3]. The reason is
as follows. In a regular search f(n) = g(n)+h(n) while in PS f(n) = g(n)+hP (n)+d
where d is the depth of the perimeter. In regular search g(n) is a true value while h(n) is
a lower bound. In PS both g(n) and d are true values and only hP (n) is a lower bound
on the true value. Therefore, in PS, a lower bound is given for a smaller portion of the
solution path.

The disadvantage of PS is that for each new generated node n we need to perform a
large number of heuristic evaluations (from n to all nodes in the perimeter) in order to
find the minimum. Thus, there is a tradeoff here. Using larger perimeters might produce
higher f -values at the cost of a large number of heuristic calculations for each node. In
order to achieve best time performance, [3] show how to calculate the optimal perimeter
depth given different characteristics of the domain.

BIDA* - an advanced version of perimeter search was introduced by Manzini [12].
He showed that it is not necessary to perform heuristic calculations between n and all
the nodes in P . The minimal heuristic can be found by only calculating the heuristics
from node n towards a subset of nodes from the perimeter (called the active set).

3 Combining Perimeter Search and Pattern Database Abstractions

Our main new idea in this paper is to combine the usage of a perimeter with heuristics
obtained by pattern database abstractions. We present two methods for doing this, a
simplified method and an advanced method.

3.1 Simplified Method for Combining Perimeter with PDBs

We would first like to point out the following observation. During the search, a new node
n is first matched against all nodes stored in the perimeter table (including inner nodes
of depth smaller than d). If the match was negative, then we know that n is outside the
perimeter and we can use d + 1 as an admissible heuristic even if our regular heuristic
is smaller than d + 1.

This suggests the simplified version for combining PDBs and perimeters2. In this
simplified perimeter PDB (denoted as SP PDB) we use the regular PDB (R PDB) as
our main heuristic but we also store a table with all the nodes of the perimeter (as
well as the inner nodes). The heuristic for node n (outside the perimeter) would be
h(n) = max(R PDB(n), d + 1). In this version we can see the perimeter as cor-
recting mistaken low heuristic values. For any node n outside the perimeter where
R PDB(n) ≤ d then SP PDB(n) corrects it to d + 1.

3.2 Multiple-Goal PDB

Before introducing the advanced method we first describe the notion of multiple-goal
PDB. In a regular PDB (R PDB), we assumed that there is only a single goal state which

2 In fact this is applicable for any kind of admissible heuristic and not only to PDBs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 A. Felner and N. Ofek

was projected/abstracted to a single goal pattern . The PDB stores distances from all the
possible patterns to that specific goal pattern. However, PDBs can be generalized to the
case where there are multiple goals. Here we first project/abstract all the goal states and
obtain a set of goal patterns. We seed the breadth-first search queue with all these goal
patterns (as level 0). We then start the breadth-first search process until the entire pattern
space is spanned. The first level that each pattern is reached, is its minimal distance to
one of the goal patterns. We call this Multiple-goal Pattern Database. MG PDB.

Korf and Felner used such multiple-goal PDB (MG PDB) to perform half-way search
on the 4-peg Towers of Hanoi domain [11]. Due to the symmetry of this domain there
exists a given set of possible states which must be in the exact middle of any optimal
solution path. Thus, it is sufficient to search and reach one of these states. They built
MG PDB towards this set of middle states and obtained a significant reduction in the
search effort of a number of orders of magnitude. See [11] for more details.

3.3 Advanced Perimeter Pattern Database (P PDB)

The nodes of the perimeter can be seen as a set of (multiple) goal states. This fur-
ther suggests to use MG PDB where the goal states are the perimeter nodes. First, the
preprocessing phase of building the perimeter of depth d is performed. Then we seed
the breadth-first search queue of the PDB generator with all the patterns that are ab-
stracted from the nodes of the perimeter3. The resulting PDB will store the minimal
distance to any of the patterns abstracted from the perimeter states. We call this Perime-
ter PDB and denote it as (P PDB). The search is performed using heuristic values from
the P PDB and is halted when it reaches one of the perimeter nodes and chooses it for
expansion.

At first sight one might recognize a large potential for speedup in the search when
using P PDB. The main problem of the traditional perimeter search (PS) [3] was that
a large number of heuristic calculations must be performed in order to find the closest
estimated perimeter node. With P PDB, however, only a single PDB lookup should be
performed in order to get the minimal heuristic towards the perimeter. Surprisingly, as
explained and demonstrated below, only limited benefits can be obtained with P PDB as
most of the potential reduction in the search effort is already achieved by the simplified
version of SP PDB.

In formal, P PDB is built in the following steps:

1. Build a perimeter P of states of depth d around the goal node g in the original
search space.

2. Abstract/project each node p ∈ P to its pattern tp and seed a breadth-first search
queue with all the patterns projected from nodes in P at level 0.

3. Run a breadth-first search in the pattern space until the entire pattern space is
spanned. Each new pattern arrived is inserted to a P PDB. Its level in the breadth-
first search corresponds to the distance to the closet pattern that was seeded. This
becomes its values on the P PDB which admissibly estimates the distance to the
closest node on the perimeter P .

3 Of course, only the frontier nodes P are seeded and not all the inner nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database Abstractions 161

We now perform the forward search which halts when one of the nodes of the perime-
ter is chosen for expansion. When a new node n is generated, the following steps are
taken in order to calculate its heuristic:

1. We abstract n to its pattern tn.
2. We look up this pattern in the P PDB and retrieve the value P PDB(tn).
3. The heuristic used for n is h(n) = P PDB(tn)+d. In fact, we can already add d to

the values in P PDB in the early step of creating the P PDB. Below, for simplicity,
we assume that indeed d was already added to all entries in the P PDB. Thus, the
seeded patterns have a value of d.

4 Analysis of P PDB

We now provide theoretical analysis of the behavior of P PDB demonstrated on the
(12,4)-TopSpin puzzle. We first would like to make the following definition. Assume
that we build a PDB for tokens {0, 1, 2, 3, 4, 5}. Operators/edges of this state space can
be divided to operators that affect the tokens of the pattern (i.e., that move some of the
tokens of 0, 1, 2, 3, 4, 5) and to operators that do not affect them, (e.g., an operator that
moves tokens {6, 7, 8, 9, 10, 11}). We call them affecting operators and non-affecting
operators respectively.

Next, we analyze the behavior of P PDB by identifying three cases. Assume that
we build a perimeter of depth d as well as the corresponding P PDB and compare this
P PDB to R PDB (the regular PDB with no perimeter). Given a state n there are three
possible cases for the relation between values obtained by R PDB and the depth of the
perimeter d.

4.1 Case 1: R PDB(n) ≥ d

Let n be a node, tn its abstract/projected pattern and let R PDB(tn) and P PDB(tn)
be its value in R PDB and P PDB respectively. Assume that R PDB(tn) ≥ d.

Claim 1: If R PDB(tn) ≥ d then P PDB(tn) = R PDB(tn)

Proof: Let’s call our current pattern t5 and assume without loss of generality that
R PDB(t5) = 5, d = 3 and that A = {t0, t1, t2, t3, t4, t5} is the shortest path
in the pattern space from the goal pattern t0 to the current pattern t5. Assume also
that {o1, o2, o3, o4, o5} is the sequence of operators (of the pattern space) that travels
through A. That is, applying o1 to t0 gets to t1 etc. If we apply {o1, o2, o3} to the goal
node of the original search space we get to node x which is on the perimeter. It is easy
to see that t3 is the abstract pattern of x. Thus, t3 is seeded into the breadth-first search
queue. Two levels away on the breadth-first search (after applying o4, o5) we get to t5.
Thus, we also have that P PDB(t5) = 5 (after adding d). Therefore, for states n where
R PDB(tn) ≥ d P PDB cannot improve on R PDB since they have the same heuristic
values. The same logic applies if R PDB(tn) = d. Therefore, the only possibility to
get improvement by P PDB is to have higher values for states outside the perimeter
whose R PDB(tn) < d. We have two such possible cases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

162 A. Felner and N. Ofek

4.2 Case 2: R PDB(tn) < d and P PDB(tn) = d

In both case 2 and case 3 R PDB(tn) < d but in case 2 P PDB(tn) = d, that is, tn
will be a projection of a node on the perimeter, while in case 3 P PDB(tn) > d. Case
2 happens in the following scenario.

Let’s call our current pattern t2 and assume without loss of generality that
R PDB(t2) = 2, d = 3 and that A = {t0, t1, t2} is the shortest path in the pat-
tern space from the goal pattern t0 to the current pattern t2. Assume also that o1, o2 is
the sequence of operators (of the pattern space) that travels through A. If we can find
a sequence of 3 moves (in the original space) which includes o1 and o2 and another
non-affecting operator then when we apply that sequence of moves to the goal state
(of the original search space) we get to a node x on the perimeter of depth 3 whose
abstract pattern is t2. Therefore, t2 is seeded in the queue its value on the P PDB will
be P PDB(t2) = 3 (as wee added the depth to the PDB). As explained below, this is
still not enough to obtain an improvement in the search effort over SP PDB.

4.3 Case 3: R PDB(tn) < d and P PDB(tn) > d

In case 3:- the sequence of 3 moves with a non-affecting operator described in case 2
is not applicable in this domain. Thus, t2 is not on the perimeter of depth 3. The value
P PDB(t2) will be the first occurrence of t2 outside the perimeter. Here, we also have
two cases:

1. Case 3.1 t2 first occurs at depth d + 1.
2. Case 3.2 t2 first occurs at depth greater than d + 1.

The distinction between case 3.1 and case 3.2 will be clear below and we will show
that only in case 3.2 a reduction in the search effort can be seen.

4.4 Comparing P PDB to SP PDB

We would like to compare SP PDB to P PDB. Note that in both cases, we stop the
search as soon as we hit the first node on the perimeter. It is easy to see that only in case
3.2 P PDB can be larger than SP PDB. That is, only for nodes outside the perimeter
with R PDB value smaller than d and new P PDB value is at least d + 2 we can obtain
a higher lower bound than SP PDB. In the two other cases (2 and 3.1), P PDB will
produce the same final heuristic value as SP PDB since d + 1 is used for nodes outside
the perimeter anyway and there is no benefit in using the sophisticated P PDB unless
it provides values of d + 2 or higher (for nodes where R PDB returned values smaller
than d). Experimental results below show that case 3.2 is very rare and its contribution
is many times rather negligible.

5 Experimental Results for TopSpin

Table 1 presents results for (12,4)-TopSpin with a PDB of 9 tokens for perimeters of
depths up to 5. Each line corresponds to a different depth of perimeter where the first

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database Abstractions 163

Table 1. P PDB and SP PDB with 9 tokens on the (12,4)-TopSpin

P-Depth P-Nodes P-Patterns SP PDB-9 P PDB-9
0 1 1 3186 3186
1 12 12 2703 2703
2 102 102 2183 2183
3 784 784 1669 1669
4 5,725 5,725 1188 1188
5 39,990 39,990 758 758

Table 2. P PDB and SP PDB with 5-tokens on the (12,4)-TopSpin

P-Depth P-Nodes Patterns SP PDB-5 P PDB-5
0 1 1 1,226,292 1,226,292
1 12 9 853,617 853,617
2 102 63 517,759 517,759
3 784 637 259,038 259,038
4 5,725 1,688 93,873 93,873
5 39,990 5,112 19,578 19,578

line (perimeter 0) is actually R PDB. The first column, ”P-Nodes”, counts the number
of nodes at each perimeter depth. The next column, ”P-Patterns”, presents the number of
unique patterns that were abstracted from the perimeter (and were seeded into breadth-
first search queue of the P PDB). Note that for a PDB of size 9 these two numbers are
identical since there are no non-affecting operators, i.e., each operator must affect at
least one of the 9 tokens of the PDBs. The next two columns give the number of nodes
generated by IDA* with SP PDB and P PDB respectively. The numbers are the average
over 100 random instances.

The SP PDB column shows that the number of nodes decrease with large perimeters
from 3186 with R PDB to only 758 with SP PDB of depth 5. It turns out, however,
that the the results for P PDB are exactly the same as those of SP PDB - the two cor-
responding columns in the table show identical number of generated nodes. Thus, the
improvement of P PDB over R PDB exclusively belongs to the fact that we stored the
perimeter (and used d + 1 for heuristics for nodes outside the perimeter that had low
R PDB values). This means that there was not even a single node in our search (of 3.2)
where P PDB was better than SP PDB. In other words, all patterns with R PDB smaller
than the depth of the perimeter, also occur either at the perimeter or one level away.

We have iterated through the 9-token R PDB and P PDB of depth 5 and found the
following. There are 6,652,800 different entries in these PDBs. However, in only 375
entries P PDB had larger values than SP PDB (case 3.2 above). In 357 of such entries
P PDB had a value of 7 and only 18 entries had value of 8 (In R PDB these values
were smaller than 5 and they were raised to 6 by SP PDB). We solved all problem
instances where the initial states had such values of 8 for P PDB. For these particular
initial states P PDB did outperform SP PDB with 28,230 and 29,745 generated nodes
on average respectively. This is only a very small reduction.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 A. Felner and N. Ofek

Table 3. P PDB and SP PDB with 9-token on the (17,4)-TopSpin

P-Depth P-Nodes Patterns SP PDB-9 P PDB-9
0 1 1 36,525,684 36,525,684
1 17 13 30,379,288 30,379,288
2 187 121 23,963,702 23,963,702
3 1734 990 18,039,530 18,039,530
4 14,841 7,533 12,950,178 12,950,178
5 121,261 54,271 8,783,743 8,783,743

Table 2 presents similar results but this time for a 5-token PDBs for the (12,4)-
TopSpin puzzle. Here, for P PDB the number of patterns abstracted from the perimeter
(and seeded in the breadth-first search queue) is smaller than the number of nodes on
the perimeter. This is because in this setting there are non-affecting operators, e.g.,
when the PDB tokens are {0, 1, 2, 3, 4} an operator that moves tokens {8, 9, 10, 11}
is a non-affecting operator. The 5-token P PDB improves with larger perimeters in a
larger factor than the improvement of the 9-token PDB. This is because a heuristic of
5 tokens is weaker and thus the perimeter corrected the heuristics for a larger fraction
of nodes. Again, as can be seem in the last two columns P PDB generated exactly the
same number of nodes as SP PDB.

Table 3 presents results for the 9-token PDB on the (17, 4) − TopSpin. The general
tendency is the same as the (12,4)-TopSpin with 5-token PDB. Here too, P PDB was
identical to SP PDB. In both cases the size of a pattern was nearly half the size of the
domain. In contrast, in the (12,4)-TopSpin with 9-token PDB the size of the pattern was
3/4 of the domain.

Since P PDB is never worse than SP PDB we only use P PDB in the rest of this
paper.

6 Experiments with Multiple PDBs on Rubik’s Cube

We also performed experiments with P PDB on Rubik’s cube (shown in figure 4) which
has about 4×1019 different reachable states. There are 20 movable sub-cubes (or cubies)
and 6 stable cubies in the center of each face. The movable cubies can be divided into
eight corner cubies, with three faces each, and twelve edge cubies, with two faces each.
Corner cubies can only move among corner positions, and edge cubies can only move
among edge positions. This problem was first solved by Korf in [9]. He used three
different PDBs. One PDB for the 8 corners cubies and two PDB of 6 edge cubies each.
During the search, all these PDBs are consulted and the maximum value is used as an
admissible heuristic.

Our aim is to test influence of P PDB when maxing a number of PDBs. We used the
same PDB abstractions for Rubik’s cube and built P PDBs for perimeters of size 0 to 6.

Table 4 presents the results of these experiments. Each row corresponds to a different
perimeter. The first column presents the number of Rubik’s cube nodes on each perime-
ter. The next two columns present the number of unique corner and edges patterns that
were seeded in the breadth-first search queue that built the P PDB.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database Abstractions 165

Fig. 4. 3 × 3 × 3 Rubik’s cube

Table 4. P PDB for Rubik’s cube

Perimeter P-nodes P-corners P-edges Corners P PDB All P PDBs
0 1 1 1 6,847,015,626 42,926,347
1 18 18 16 5,310,262,275 42,926,311
2 243 243 197 3,606,961,019 42,926,288
3 3,240 2,874 2,400 2,085,111,540 42,926,166
4 43,239 29,911 27,717 983,789,791 42,924,315
5 574,908 235,049 286,529 377,920,023 42,858,624
6 7,618,438 1,404,636 2,452,120 119,100,311 41,366,838

The last two rows present the number of generated nodes when we solved the prob-
lem with IDA* using P PDB as the heuristic. The ”Corners P PDB” column is the case
when we only used the corners P PDB while the ”All P PDBs” column is the case
where all three P PDBs were used and we took their maximum as the heuristic. All
data numbers in these columns are average over 100 instances that were generated by
14 random moves.

As can be seen, when using only a single abstraction (of corners), the usage of P PDB
with perimeter of depth 6 reduced the number of generated nodes over R PDB by up to
a factor of 57 . However, when using all three PDB’s then the effect of using P PDB is
almost insignificant.

The explanation for this is that a single PDB may be very inaccurate in many cases.
For example, assume that a state is 6 moves away from the goal state but all the corner
cubies are in their goal location. Thus, when using only the regular corners PDB (with-
out the perimeter) we will get a heuristic of 0. Adding any other information to correct
this misleading heuristic is beneficial. This can be done either by a introducing more
PDBs (such as the edges PDBs) or by using a P PDB. If we also query the edges PDBs
(in addition to querying the corner PDB) then the edges PDB heuristics will reveal that
the edges are rather far away from their goal. Alternatively, if we use a perimeter, the
P PDB and the perimeter will reveal that we are outside the perimeter.

It turns out that for the special case of Rubik’s cube, adding two more PDBs is more
beneficial than adding a perimeter and using a P PDB.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 A. Felner and N. Ofek

7 Combining Perimeter with Disjoint PDBs

One of the classic examples in the AI literature of a single-agent path-finding problem is
the sliding-tile puzzle. It consist of a square frame containing a set of numbered square
tiles, and an empty position called the blank. The legal operators are to slide any tile that
is horizontally or vertically adjacent to the blank into the blank position. The problem
is to rearrange the tiles from some random initial configuration into a particular desired
goal configuration. The 4 × 4 15-puzzle contains about 1013 reachable states.

5−5−5 partitioning 7−8 partitioning

Fig. 5. The 5-5-5 and 7-8 disjoint partitioning of the 15 puzzles

Additive disjoint pattern databases provide the current best admissible heuristic for
the sliding-tile puzzles [6,10]. The tiles are partitioned into disjoint sets (patterns) of
tiles and a PDB is built for each set. The PDB stores the cost of moving the tiles in the
given subproblem from any given arrangement to their goal positions. If for each set of
tiles only the moves of tiles from the given set are counted, then values from different
disjoint PDBs can be added and the result is still admissible. An x−y−z partitioning is
a partition of the tiles into disjoint sets with cardinalities of x, y and z. Figure 5 presents
the 5 − 5 − 5 and 7 − 8 partitionings for the 15-puzzle which were first used in [6].

The benefit of using disjoint additive P PDBs is limited. This is because the fol-
lowing reason. Let’s assume that we have two disjoint P PDBs PDBa and PDBb

which for a given node, n, return heuristic values of 1 and 2 respectively. Thus, we take
h = 1 + 2 + d (and not h = 1 + 2 + 2d) as an admissible heuristic. Here we cannot
add d to the values of all the PDBs because d must be added only once. However, we
might lose information here. Assume that PDBa(n) = 1 because the tiles of PDBa

in S are very close to node Pa from the perimeter and that PDBb(n) = 1 because tiles
of PDBb in n are close to node Pb from the perimeter. The optimal solution path will
only reach one node at the perimeter while we got values from two different perimeter
nodes.

A trivial case for that would be a set of 15 disjoint P PDBs, one for each tile (sim-
ulating Manhattan distance). Now, assume that tile 3 is in location 5. There might be a
node on the perimeter where tile 3 is also in location 5. Thus, for tile 3 we get a value
of 0. If the perimeter is large enough we might get 0 for all the tiles. Therefore, the idea
of P PDB is only limited to small perimeters where disjoint PDBs are used.

Table 5 presents results for the 5-5-5 PDB and 7-8 PDB disjoint PDBs of the 15 puz-
zle. Each line corresponds to a different depth of perimeter. No symmetries or reflec-
tions were taken here. The different rows correspond to different depth of perimeters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combining Perimeter Search and Pattern Database Abstractions 167

Table 5. P PDB for disjoint partitioning of the 15 puzzle

Perimeter Nodes Seconds heuristic
5-5-5 PDB

0 16,826,097 3.60 39.72
1 8,551,956 1.82 40.04
2 7,002,163 1.49 40.34
3 12,499,815 2.66 39.55
4 30,687,664 6.54 38.45

7-8 PDB
0 136,289 0.20 44.75
1 94,028 0.12 45.04
2 179,533 0.23 44.26
3 269,284 0.35 43.66

The two middle columns present the average number of generated nodes and the aver-
age time in seconds of solving the set of the random 1000 initial states.

The table shows that the P PDB idea is only beneficial for small perimeter depths.
The best variation is a perimeter of depth 2 for the 5-5-5 PDB and of depth 1 for the
7-8 PDB. With larger perimeters, the heuristics become less accurate and the number
of nodes increase.

8 Summary and Future Work

We studied two methods for combining perimeter search and pattern databases - the
simplified version, SP PDB, and advanced version, P PDB. At first glance a great po-
tential might be seen for P PDB. In practice, however, only limited (if any) improve-
ment and reduction in the search effort of P PDB was seen over SP PDB. In this paper
we explained why this is the case. Only for cases, where the heuristic value is increased
from inside the perimeter (in R PDB) to outside by more than 1 (by P PDB), as in
case 3.2 above, a benefit can be achieved and this only happens rarely. Furthermore,
advance methods for using PDBs such as maxing and adding a number of PDBs are ei-
ther competing with the perimeter for additional information (maxing) or provide more
difficulties for using a perimeter (adding) and thus limited benefits are seen when us-
ing a perimeter in conjunction with these methods. However, for a single PDB using a
perimeter might be useful.

A related idea is called partial PDB. Here, one builds a PDB for an abstract problem
but runs the PDB generator only up to a certain depth d. During the search, we consult
the PDB and if the corresponding pattern does not have an entry in the PDB, we can
use d + 1 as the heuristic. This idea is independently studied by [1].

Another question which needs to be addresses is the memory requirements. Storing a
perimeter consumes memory and given a fixed amount of memory there is a competition
between the perimeter table and the PDB over the available memory. Future research
can study the tradeoff between the sizes of these two lookup tables.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 A. Felner and N. Ofek

Acknowledgements

This research was supported by the Israel Science Foundation (ISF) under grant number
728/06 to Ariel Felner.

References

1. Anderson, K., Schaeffer, J., Holte, R.: Partial pattern databases. In: SARA-07 (to appear)
2. Cullberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(3), 318–334

(1998)
3. Dillenburg, J.F., Nelson, P.C.: Perimeter search. Artificial Intelligence 65, 165–178 (1994)
4. Edelkamp, S.: Planning with pattern databases. In: Proceedings of the 6th European Confer-

ence on Planning (ECP-01), pp. 13–34 (2001)
5. Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: International Con-

ference on AI Planning and Scheduling (AIPS), pp. 274–293 (2002)
6. Felner, A., Korf, R.E., Hanan, S.: Additive pattern database heuristics. Journal of Artificial

Intelligence Research (JAIR) 22, 279–318 (2004)
7. Holte, R.C., Felner, A., Newton, J., Meshulam, R., Furcy, D.: Maximizing over multiple

pattern databases speeds up heuristic search. Artificial Intelligence 170, 1123–1136 (2006)
8. Holte, R.C., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern databases. In:

ICAPS, pp. 122–131 (2004)
9. Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases. In: Proceed-

ings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pp. 700–
705 (1997)

10. Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Artificial Intelligence 134, 9–22
(2002)

11. Korf, R.E., Felner, A.: Recent progress in heuristic search: A case study of the four-peg tow-
ers of hanoi problem. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), pp. 2324–2329 (2007)

12. Manzini, G.: BIDA*: an improved perimeter search algorithm. Artificial Intelligence 75,
347–360 (1995)

13. Zhou, R., Hansen, E.: Space-efficient memory-based heuristics. In: Proceedings of the Nine-
teenth National Conference on Artificial Intelligence (AAAI-04), pp. 677–682 (2004)

14. Zhou, R., Hansen, E.: Structured duplicate detection in external-memory graph search. In:
Proc. AAAI-04, pp. 683–689 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with

Equality by Efficient Conversion to
Propositional Logic

Igor Gammer and Eyal Amir

Department of Computer Science
University of Illinois, Urbana-Champaign

{igammer2,eyal}@uiuc.edu

Abstract. Ground Logic with Equality (GL=) is a subset of First-Order
Logic (FOL) in which functions or quantifiers are excluded, but equality
is preserved. We argue about GL=’s unique position (in terms of expres-
siveness and ease of decidability) between FOL and Propositional Logic
(PL). We aim to solve satisfiability (SAT) problems formulated in GL=

by converting them into PL using a satisfiability-preserving conversion
algorithms, and running a general SAT solver on the resulting PL Knowl-
edge Base (KB). We introduce two conversion algorithms, with the latter
utilizing the former as a subroutine, and prove their correctness - that
is, that the translation preserves satisfiability. The main contribution of
this work is in utilizing input fragmentation to yield PL KBs that are
smaller than possible prior to our work, thus resulting in the ability to
solve GL= SAT problems faster than was possible before.

1 Introduction

Satisfiability in PL is well-studied in Computer Science because of its theoretical
significance and the multitude of practical applications that it has. A significant
number of real-world problems can be modeled in or translated to propositional
knowledge bases (KBs), such that solution to SAT on the PL KB can be easily
translated to a solution of the original problem. As a consequence, modern-
day PL SAT solvers operate very efficiently in many practical cases. Although
the general problem of satisfiability in PL is NP-complete in the number of
variables, the best practical SAT solvers applied to moderately-sized problems
can terminate in minutes and hours, not years.

However, PL is not a sufficiently complex language for some problems. It is
generally well understood that every representation language faces a trade-off
between expressive power (which determines the subset of real-world applica-
tions that can be reasonably modeled in that language) and complexity (which
determines, among other, the running time of the algorithms performing infer-
ence in that language). For example, PL has no notion of equality, a fundamental
notion which is required in many applications, such as game playing (and specif-
ically game playing with partial information such as Kriegspiel[1]), where one
needs to assert and reason that two positions or game pieces are equal.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 169–183, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 I. Gammer and E. Amir

A natural solution is to use a language with more expressive power, and the
usual choice for many applications is FOL. The price of much higher expressive
power, however, is complexity of algorithms; even though reasoning algorithms
for FOL exist ([2] is one example), they are less efficient than PL SAT solvers.
Even assuming the best progress in improving the algorithms, theoretical results
challenge for FOL inference as FOL, unlike PL, is only semi-decidable.

GL= can be seen as a compromise between complexity and expressive power.
Many problems that require equality do not, however, need the full expressive-
ness of FOL and can be well-expressed in GL=. Having strictly more expressive
power than PL (any PL KB can be easily translated to an equivalent KB in
GL= by choosing a constant for each proposition in L of PL; choosing no predi-
cates; and fixing {true, false} as the domain) but still being sufficiently simple to
permit efficient inference, GL= establishes itself at a favorable level of formalism.

In this paper, we explore the inference in GL=, and particularly solving SAT
problems. Rather than introducing a brand-new SAT solving routine in GL=, we
will investigate algorithms for translating arbitrary KBs in GL= into ”equivalent”
KBs in PL, where equivalence is defined as preserving satisfiability. That is, the
resulting KB in PL will be satisfiable if and only if the original KB in GL= was
satisfiable. Having an efficient algorithm for performing such translation easily
leads us to solving SAT in GL= by utilizing highly efficient, off-the-shelf PL SAT
solvers. This approach has an added benefit of automatically improving as SAT
solvers improve, and thus can be seen as gaining power ”for free” as the field of SAT
solving progresses (whereas a new GL= SAT algorithm would have to be manually
improved to include any new ideas the SAT solving community introduces).

To accomplish the conversion, we first describe a ”naive” encoding of GL=

KBs into PL. The encoding is naive only in the sense of being natural, and
thus not very efficient; its correctness, however, is proved. The last section de-
scribes the main contribution of this paper: an advanced encoding algorithm
that employs divide-and-conquer approach while using the naive encoding as a
subprocedure. Our proposed algorithm has an added advantage of being inde-
pendent of the actual encoding subprocedure used, so long as that subprocedure
is satisfiabilty-equivalent (in the sense defined later). As such, our algorithm will
benefit from any improvement to the underlying procedure without any explicit
change being necessary.

The rest of the paper is organized as follows. In Section 2, we give a brief
overview of fundamentals associated with the topic at hand. Section 3 proposes
a simple yet effective conversion algorithm, proves its correctness, and then an-
alyzes its efficiency. Section 4, which form the core of this paper, introduces the
more efficient algorithm mentioned above, which functions by fragmenting the
input and using the previously formulated algorithm on the fragments. We prove
that this algorithm is correct - that is, even though some information appears
to be missing from the encoding (which fact is chiefly responsible for the lower
encoding size and thus higher SAT solving efficiency), satisfiability is preserved.
Finally, Section 6 presents an overview of related work, examines our future
plans, and provides a summary for this paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 171

2 Fundamentals

2.1 Ground Logic with Equality

Ground Logic with Equality (GL=) is a subset of FOL which excludes quantifiers
and functions, but keeps constants and predicates, as well as equality. The only
other element of FOL - variables - is not specifically excluded, but becomes
synonymous with constants due to the exclusion of quantifiers. No additional
restrictions are placed on the formulas or KBs.

In this section, we give formal definitions necessary to establish a framework
within which the discussion of the rest of this paper will occur. All of these
definitions are adapted from the corresponding definitions of FOL, with changes
required to accommodate the lack of functions and quantifiers. In particular, it
is worthwhile to mention the basic terms of FOL which are missing from GL=.

Besides variables, three other terms of FOL are no longer applicable: free
occurrence, sentences and terms. In FOL, a variable is said to occur free if it is
not bound by a quantifier; since we don’t have quantifiers, we don’t distinguish
between free and bound occurrences. A sentence is a special case of formula
which contains no free variables; in GL=, every formula is a sentence. Finally,
a term of FOL is an entity which is interpreted as an element in the universe -
that is, either a ground term (variable or constant), or a function symbol applied
to terms. Because we do not have functions (or variables), our terms will always
be constant symbols, and thus do not deserve a definition of their own.

We will use the standard definitions from formal logic, with their standard
meanings. The same terms applied to GL= will be assumed to hold naturally
derived meaning as well. We will talk about languages, formulas (and sets of
formulas, which we will denote as Knowledge Bases (KBs)), interpretations and
models, as well as satisfiability and unsatisfiability. The most important defini-
tions are reproduced below.

Definition 1 (Syntax). A formula in GL= with language L is obtained in one
of the six following ways:

a. x = y, where x and y are constants.
b. P kx1...xk, where P k is a k-ary predicate in L, and for each i, xi is a constant

in L.
c. F1 ∨ F2, where F1 and F2 are formulas.
d. F1 ∧ F2, where F1 and F2 are formulas.
e. ¬F , where F is a formula.
f. (F), where F is a formula.

Definition 2 (Interpretation). An interpretation in GL= with language L is
a pair (A, β), where

a. A is an arbitrary set, also referred to as domain or universe.
b. β is a map (also referred to as an assignment) on L, defined as follows:

(a) For each constant x from L, β assigns an element of A.
(b) For each k-ary predicate P from L, β assigns a subset of Ak.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 I. Gammer and E. Amir

Definition 3 (Semantics). Let F be a formula in GL= with language L, and
let I = (A, β) be an interpretation on L. Then F is said to hold (alternatively,
to be true) under I if and only if:

a. x = y: β(x) = β(y); that is, the assignment β maps x and y into the same
element of the domain A.

b. P kx1...xk: (β(x1), ..., β(xk)) ∈ β(P k); that is, the k-tuple obtained by map-
ping each of the predicate arguments is an element of the subset (of all k-
tuples of the domain) to which the assignment maps the predicate.

c. The remaining cases are obvious and are omitted here for space.

If F does not hold, it is also said to be false.

3 Naive Conversion

In this section, we explore the naive conversion of a GL= KB into a PL KB.
Note that ”naiveness” applies only to efficiency; the correctness of the conver-
sion is preserved. We first describe the algorithm and then state and prove the
correctness theorem.

3.1 Algorithm

The basic premise of the conversion is to associate a proposition with every
instance of a predicate or equality. This in particular means that the original
KB determines the language of the resulting PL KB. The increased expressive
power of GL= compared to PL is responsible for this increase in complexity.

Our final goal is to find an efficient (that is, generating as small an output as
possible) conversion that preserves satisfiability. We define this precisely.

Definition 4 (Conversion Algorithm). A conversion algorithm is one that
accepts as input a KB in GL= and outputs a KB in PL. Alternatively, a conver-
sion function is one with domain of all KBs in GL= and codomain of all KBs
in PL.

Definition 5 (Satisfiability Equivalence for Formulas and Algorithms).
We define satisfiability equivalence for both formulas and algorithms.

a. Given a GL= KB Φ and a PL KB Φ′, we call Φ and Φ′ satisfiability equiv-
alent, or SAT-EQ, if Φ and Φ′ are either both satisfiable, or both unsatis-
fiable.

b. A conversion algorithm A with the property that, for every GL= KB Φ, when-
ever A(Φ) = Φ′, then Φ and Φ′ are satisfiability equivalent, is satisfiability
equivalent.

We define the translation of a single formula first.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 173

Definition 6 (Naive Translation). Let φ be a formula in GL= with language
L. The Naive Translation of φ, NT(φ), is a formula φ′ in PL with language L′

defined on the structure of φ as follows:

a. x = y: A new proposition EXY , which is created and added to L′ if it is not
already there.

b. P kx1...xk: A new proposition PX1...Xk, which is created and added to L′ if
it is not already there.

c. F1 ∨ F2: NT(F1) ∨ NT(F2).
d. F1 ∧ F2: NT(F1) ∧ NT(F2).
e. ¬F : ¬NT(F).
f. (F): (NT(F)).

As defined above, L′ contains a unique proposition for each instance of equality
and for each instance of predicate in φ.

If the original formula does not contain equality, this translation is indeed a
satisfiability-equivalent algorithm. However, as soon as equality is introduced,
this property no longer holds. To illustrate this, consider a simple counterex-
ample with a GL= KB whose language contains one binary predicate and three
constants, consisting of three formulas: {Pxy, ¬Pxz, y = z}. Clearly, this KB is
UNSAT (any interpretation of this KB would have to map y and z to the same
element in its domain A, and then the pairs (x, y) and (x, z) would have to be
mapped to the same pair in A2; but that pair cannot both belong and not belong
to a subset of A2 to which the interpretation maps P). However, Naive Transla-
tion of this KB produces a PL KB containing three propositions {PXY , ¬PXZ,
EY Z} with no additional constraints between them. This KB is satisfiable, for
example by an assignment {PXY → true, PXZ → false, EY Z → true}.

In order to preserve satisfiability, we need to encode additional constraints
intepreting equality in propositional logic. In general, there are three ways of
dealing with equality in inference ([3]): adding additional formulas, using special
rules (such as demodulation and paramodulation), and modifying the inference
rule to be informed of equality (such as by introducing superposition into rule
calculus). While the last two ways are useful for general inference, it is not imme-
diately clear how to implement either of them for conversion into PL. Therefore,
we will explicitly add formulas that capture the precise meaning of equality.

Definition 7 (Equality Semantics). Let L be a GL= language. Then the
Equality Semantics (ES) of L is a set of GL= formulas defined as the union of:

a. For every constant x in L: x = x.
b. For every pair of constants x, y in L: x = y → y = x.
c. For every triple of constants x, y, and z in L: (x = y ∧ y = z) → (x = z)
d. For every k-ary predicate P k and for every 2k-tuple of variables (a1, ..., ak,

b1, ..., bk) in L:

((a1 = b1) ∧ ... ∧ (ak = bk)) → (P ka1...ak ↔ P kb1...bk) (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 I. Gammer and E. Amir

Note that the formulas which capture the notion of equality do not depend on
the contents of our KB, but only on the language. Nor are these formulas part
of the KB (although adding them will not affect satisfiability); instead, they will
be translated to PL using the mechanism defined above (NT) and added to the
PL KB.

Definition 8 (Naive Conversion). Let Φ be a KB in GL= with language L.
The Naive Conversion of Φ, NC(Φ), is a KB Φ′ in PL defined as:

Φ′ := NT (Φ) ∪ NT (ES(L)) (2)

It is instructive to revisit the earlier counterexample and ensure that it no longer
holds, which we will not do for space reasons.

3.2 Correctness

We now state and prove the main result of this section: the conversion defined
above preserves satisfiability. The proof will be an immediate application of two
analogous results. Given an interpretation in either GL= or PL, it is possible to
construct an interpretation in PL (resp. GL=) for which an important property
holds: if the original interpretation was a model for any KB in GL= (resp. PL),
then the constructed interpretation will also be a model for a KB in PL (resp.
GL=) related to the original interpretation by NC.

Theorem 9 (Naive Conversion is SAT-EQ). Let Φ be a KB in GL= with
language L, and let Φ′ be NC(Φ). Then Φ is satisfiable if and only if Φ′ is
satisfiable. That is, NC is SAT-EQ.

Proof. 1 The proof has two parts, each of which is further subdivided into two
sections. In first part, we first prove that SAT Φ → SAT Φ′, and in the second
part we prove the converse. Within each part, our proof will proceed as follows:
Given that a KB is SAT, there must exist an interpretation under which it holds.
We then (a) construct an interpretation for the other KB and (b) show that the
other KB holds under that interpretation. For space reasons, we only show the
construction in each case.

[SAT Φ → SAT Φ′] Assume that Φ is satisfiable. Then there exists an inter-
pretation I := (A, β) under which Φ holds. We will construct the PL assignment
β′ and show that Φ′ holds under this assignment. We define β′ as follows:

a. For every proposition EXY of the first kind, β′ assigns true if β(x) = β(y),
and false otherwise.

b. For every proposition PX1...Xk of the second kind, β′ assigns true if
(β(x1), ..., β(xk)) ∈ β(P), and false otherwise.

It is now possible to show that Φ′ holds under β′; the precise argument is omitted
for space.
1 Due to space concerns, we omit some proofs, and only show the brief outlines of the

others. Full versions of all proofs of this paper are available from the authors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 175

[SAT Φ′ → SAT Φ] Assume that Φ′ is satisfiable. Then there exists an
assignment β′ under which Φ′ holds. We will construct the GL= interpretation
I = (A, β) and show that Φ holds under this interpretation.

To define A, we need an intermediate result that will later help in our proof.

Lemma 10. Let Lconst be the subset of L containing precisely all constants of
L. Let R be a binary relation defined on Lconst as follows: for any constants a
and b from Lconst, R(a, b) holds if and only if β′(EAB) = true. Then R is an
equivalence relation.

Proof. Omitted for space; a simple argument showing reflexivity, symmetry and
transitivity directly suffices. �	

As an equivalence relation, R partitions Lconst into equivalence classes. Let N
be the total number of those classes (where 1 ≤ N ≤ |Lconst|). We define the
domain A to be {1, 2, ..., N}, the set of positive integers from 1 to N , inclusive.
Further, we associate with every equivalence class a unique number between 1
and N in any deterministic way. We now define β on Lconst as follows: for every
constant a, β assigns to a the unique number corresponding to the (unique)
equivalence class to which a belongs. Note that this is well-defined, because of
the properties of equivalence classes (namely, that a belongs to precisely one
equivalence class).

It remains to define β for predicates. Let P be a k-ary predicate of L. Then
we define β as follows:

β(P) := {(β(a1), ..., β(ak)) |β′(PA1...Ak) = true} (3)

That is, β defines P to contain precisely all those k-tuples of elements of A for
which the corresponding predicate of L′ is assigned true by β′.

This completes the construction of interpretation I = (A, β) for L. It remains
to show that I is a model of Φ; this is omitted for space. �	

We conclude this subsection by noticing two results that we have used in the
proof above, and extracting them to form separate lemmas. Both of these re-
sults will be useful further in discussing Craig’s Interpolation applications. The
correctness of both lemmas follows easily from the generality (independence of
particular Φ and Φ′, other than the relation Φ′ = NC(Φ) connecting them)
of construction and proof of the respective part of Theorem 9; the proofs are
omitted for space.

Lemma 11. Let I := (A, β) be a GL= interpretation. Then it is possible to
construct a PL assignment β′ such that, for any KB Ψ in GL=, if I is a model
of Ψ , then β′ is a model of NC(Ψ).

Lemma 12. Let β′ be a PL assignment. Then it is possible to construct a GL=

interpretation I := (A, β) such that, for any KB Ψ in GL=, if β′ is a model of
NC(Ψ), then I is a model of Ψ .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 I. Gammer and E. Amir

3.3 Analysis

The theorem’s statement and proof together form the first complete method
by which we can reach the goal of this paper: given a KB in GL=, construct
a SAT-EQ KB in PL. While the method is correct, it is not optimal. Recall
that our motivation was the ability to solve SAT in GL= using off-the-shelves
PL SAT solvers. Such solvers vary in efficiency, but invariably depend in the
execution time on the number of propositions in the PL KB. Thus, a measure
of the efficiency of any conversion algorithm can be presented by computing the
number of PL propositions this algorithm generates, as a function of its input.

Definition 13. Let C be a conversion algorithm. The size of C, denoted Size(C),
is a function which accepts the number of predicates m and the number of con-
stants n, and outputs the number of propositions which C generates from an
input having m predicates and n constants.

Suppose that the input GL= KB contains n constants and m predicates. We
wish to estimate Size(NC); that is, rather than arriving at a precise number,
we wish to obtain a complexity bound for the number of propositions generated.
By examining the construction described above (with detailed treatment omitted
for space), we can conclude that the upper bound on Size(NC) is n2 + mnk. In
a particular case of having only unary and binary predicates, this bound can be
further simplified to O(mn2).

4 Advanced Conversion by Partitioning

The previous section presented NC, a method to encode arbitrary GL= KBs,
and proved its correctness. Having analyzed the perfomance of NC, we will now
attempt to devise a more efficient procedure which uses the presented method
as a subroutine.

4.1 Motivation

While NC is correct, it generates a propositional encoding with size of O(n2 +
mnk). Since the size of a conversion algorithm is defined as the number of propo-
sitions it can generate, and since modern SAT solvers are designed so that their
efficiency depends greatly on the number of propositions in the input, we would
like to decrease the size of a conversion method while still ensuring its correct-
ness. In the worst case, a SAT solver will take time exponential2 in the number
of propositions, and hence, for NC, exponential in both n and m and super-
exponential in k3

2 Provided, of course, that P �= NP .
3 The latter is not as bad as it may seem, because typically k is bounded by a very

small number (in fact, the case of k bounded by 2 - that is, the case of having only
unary and binary predicates - is of importance by itself. For the case of k bounded
by 1, and thus having only unary predicates, see [4]). However, the former may act
as a severely limiting factor, since either n or m, or both, can be large in practical
applications.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 177

The above, however, is insufficient motivation for devising a better method,
which would use NC as a subprocedure, since we have so far only enumerated
the deficiencies of NC. The key observation that allows a better method to be
devised is that NC produces some extraneous propositions - those that are not
necessary to propagate the semantics of satisfiability. We will attempt to remove
as many as possible of those extraneous propositions while not violating the
satisfiability equivalence of our conversion algorithm.

4.2 Description

The concept of dividing the input into parts and applying some transformation
to those parts has long been among the standard tools for fighting complexity;
see, for example, [5] and [6]. The principal notion is that, even if the underlying
transformation is still exponential in the size of its input, applying that transfor-
mation to each of the partitions dramatically decreases that ”size of its input”.
We will adapt a simple algorithm: Given an input GL= KB, instead of applying
a conversion procedure4 to that entire KB, we will instead partition that KB
into two fragments, and apply the conversion procedure to each in turn. The
result, then, will be the union of the obtained results.

The primary potential concern is the possible loss of information resulting
from severing the connections between entities which are assigned to different
partitions. Intuitively, it might seem that such an algorithm will not provide
for a satisfiability-equivalent conversion, because some information will be lost
- specifically, it might be that while the input KB itself was unsatisfiable, the
two segments are satisfiable by themselves, and that their translations will also
be satisfiable, so that the union of the translations will fail to preserve the un-
satisfiability of the original KB. However, this reasoning fails to account for the
extra information generated by NC - specifically, that generates by equivalence
semantics processing. Indeed, in what follows we will show that the mere frag-
mentation, without any extra reasoning (other than the conversion procedure)
being performed on either of the fragments, is sufficient to maintain satisfiability
equivalences.

We conclude this subsection by formalizing our algorithm and stating (but
not yet proving) the associated correctness theorem.

Our precise algorithm for converting a GL= KB will thus be as follows:

a. Given a GL= KB Φ:
b. Separate Φ into two fragments, NC(Φ1) and NC(Φ1)5.

4 We will be using NC (the only conversion procedure we have so far presented), but
notice that this algorithm does not depend on the choice of a particular conver-
sion procedure. Indeed, this is an explicit strenght of this algorithm (and of the
divide-and-conquer algorithms in general), because any improvements to the under-
lying conversion procedure will be benefited from without any need to change our
algorithm, that is, ”for free”).

5 We leave the precise way of doing this unspecified for now. In the case of two frag-
ments, which is being considered here, any fragmentation is sufficient.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 I. Gammer and E. Amir

c. Run the conversion algorithm on the first fragment.
d. Run the conversion algorithm on the second fragment.
e. Join the results.

Thus, instead of computing NC(Φ), we will be computing NC(Φ1)∪NC(Φ2).
We need, of course, to show that this is satisfiability-equivalent. We thus formu-
late the result, which we hold to be the most important single contribution of
this paper, and which we will prove in the following subsection.

Theorem 14. Let Φ be a GL= KB partitioned into Φ1 and Φ2. Let Φ′ be a PL
KB obtained as follows:

Φ′ := NC(Φ1) ∪ NC(Φ2) (4)

Then, Φ and Φ′ are satisfiability-equivalent (Definition 5). Equivalently, a con-
version algorithm that applies (4) is satisfiability-equivalent.

We will develop the proof in the following subsections, after having introduced
the tools that we will use.

4.3 Craig’s Interpolation

Craig’s theorem, first published in [7], is a classical result that forms one of the
bases of many ”divide-and-conquer” approaches in FOL and its fragments. The
original result has been extended several times; however, the basic version will
be satisfactory for our purposes. The key property, which will be useful for us in
reducing the size of the conversion (our entire reason for even attempting to find
a conversion method different from the original NC), is that this message will
have a potentially greatly reduced language compared to that of each fragment.
The Craig’s interpolants, thus, will have only those predicates and constants
which appear in both fragments.

We state the form we will use here for future reference.

Proposition 15. Let Φ1 and Φ2 be two GL= KBs. Then there exists a GL= KB
Φ, referred to as a Craig’s interpolant, with the following properties:

a. Φ1 |= Φ.
b. If Φ1 is inconsistent with Φ2, then Φ is also inconsistent with Φ2.
c. The language of Φ is the intersection of the languages of Φ1 and Φ2. That

is, Φ contains only those predicates and only those constants that appear in
both Φ1 and Φ2.

Proof. Craig’s Interpolation for FOL is discussed in great detail in [7]. The only
concern here is that, since the original result is formulated for FOL, we need to
ensure that the interpolants of GL= formulas can be expressed in GL=; that is,
that the interpolants will not contain quantifiers so long as the input itself does
not. This is addressed in [8]. �	

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 179

4.4 Craig’s Interpolation and Partitioning

We will state and prove some auxiliary results first. The following result, which
postulates that NC respects entailment, forms the core of our argument.

Lemma 16. Let Φ1 and Φ2 be GL= KBs. If Φ1 |= Φ2, then NC(Φ1) |= NC(Φ2).

Proof. Let β be an arbitrary assignment that satisfies NC(Φ1). We need to
show that β also satisfies NC(Φ2). Let M = (A, α) be a GL= interpretation
constructed from β using the process described in the second half of Theorem
9. By Lemma 12, since β |= NC(Φ1), M |= Φ1. By hypothesis, Φ1 |= Φ2, so
M |= Φ2 as well. Let β′ be a PL assignment constructed from M using the
process described in the first half of Theorem 9. By Lemma 11, since M |= Φ2,
β′ |= NC(Φ2).

We will now show that β and β′ agree on L(NC(Φ2)); that is, that for every
proposition in the language of NC(Φ2), either both β and β′ assign true, or both
assign false. Intuitively, this is not at all surprising, for even though β was an
arbitrary assignment, it is related to β′ in that the latter was created from M
which in turn was created from the former. If both constructions are reasonable,
it is not unnatural to expect that they are ”reversible” in some sense, and that
β and β′ will indeed agree on all of the propositions we are interested in.

Because NC(Φ2) was created by applying NC, as described in Definition
8, the only propositions its language may contain are those created by NT ,
as described in Definition 6. Specifically, it may only contain propositions of
two forms, which we treat in order. For both forms, we consider the only two
possibilities for the truth value β′ assigns to that proposition, and for each such
possibility we ”unroll” the two construction, first deducing what must have been
true about M for β′ to obtain the value that it has; and then deducing what
must have been true about β for M to obtain the value that we have deduced it
must have. In all cases, we will show that the truth value that β assigns to the
proposition in question must be the same as that assigned by β′.

a. Propositions of form EAB:
(a) If β′ assigns true to EAB, then (by construction of β′ from M as de-

scribed by the first point of the first half of Theorem 9), it must have
been the case that α(a) = α(b). But then, because α was constructed
from β by the procedure described by the second half of Theorem 9, it
must have been the case that a and b were in the same equivalence class
with respect to the binary relation R defined in Lemma 10, so R(a, b)
must have held. However, because of the way in which R was defined,
this requires that β must have assigned true to EAB. Thus, in this case,
β and β′ indeed agree on the proposition in question.

(b) If β′ assigns false to EAB, then the argument is similar to the one above,
and is omitted for space.

b. Propositions of form PX1...Xk:
(a) If β′ assigns true to PX1...Xk, then (by construction of β′ from M as de-

scribed by the second point of the first half of Theorem 9), it must have

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 I. Gammer and E. Amir

been the case that the k-tuple (α(x1), ..., α(xk)) belongs to α(P), the
intepretation of predicate P under α. But α(P) is defined to include pre-
cisely those k-tuples of elements in A for which the corresponding predi-
cate is assigned true by β (by construction of second half of Theorem 9).
That is, α(P) has been defined to be {(α(a1), ..., α(ak))|β(PA1...Ak) =
true}. Because we have deduced that (α(x1), ..., α(xk)) belongs to α(P),
it must then have been the case that β assigns true to the proposition
PX1...Xk. Thus, in this case, β and β′ indeed agree on the proposition
in question.

(b) If β′ assigns false to PX1...Xk, then the argument is similar to the one
above, and is omitted for space.

We have shown that β and β′ assign the same truth value to all proposi-
tions occuring in NC(Φ2). Thus, β and β′ must either both satisfy or both fail
to satisfy NC(Φ2). Since we have concluded above that β′ |= NC(Φ2), we can
now conclude that β |= NC(Φ2). But β was an arbitrary assignment that satis-
fies NC(Φ1); we have shown that it also satisfies NC(Φ2). Thus, any model of
NC(Φ1) is also a model of NC(Φ2), and so NC(Φ1) |= NC(Φ2), completing the
proof. �	

We will also make use of the following result, which intuitively states that NC
respects basic contradiction notions. While we will only use the result once in
the following theorem, it is general enough to deserve being stated externally.

Lemma 17. For any GL= KB Ψ , NC(Ψ) ∪ NC(¬Ψ) is unsatisfiable.

Proof. Assume to the contrary. Then let Ψ be such a GL= KB. Since it is satis-
fiable, it has a model; call it M . Since M |= NC(Ψ) ∪ NC(¬Ψ), M is a model
for both NC(Ψ) and NC(¬Ψ) (a union of formulas is their conjunction, and
thus an assignment which satisfies the union must satisfy all individual formu-
las in the conjunction). Let M ′ be a GL= interpretation obtained by using the
construction described in the second part of Theorem 9. By the result shown
there, M ′ will satisfy a GL= KB Φ if M satisfies NC(Φ). Because M |= NC(Ψ),
M ′ |= Ψ ; and because M |= NC(¬Ψ), M ′ |= ¬Ψ . We now have M ′ |= Ψ ∪ ¬Ψ ,
a contradiction6, showing that our assumption was incorrect, which completes
the proof. �	

We are now ready to prove Theorem 18, which we restate here for reference.

Theorem 18. Let Φ be a GL= KB partitioned into Φ1 and Φ2. Let Φ′ be a PL
KB obtained as follows:

Φ′ := NC(Φ1) ∪ NC(Φ2) (5)

Then, Φ and Φ′ are satisfiability-equivalent (Definition 5). Equivalently, a con-
version algorithm that applies (5) is satisfiability-equivalent.
6 Note that we do not need to show that this is a contradiction in GL=, because we

know it to be a contradiction in FOL, and Ψ ∪ ¬Ψ is an FOL formula, whereas M ′

is an FOL interpretation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 181

Proof. It is easy to show that SAT Φ implies SAT Φ′. We show the other im-
plication; that is, that SAT Φ′ implies SAT Φ. We will show the contrapositive.
Assume UNSAT Φ; that is, UNSAT Φ1 ∪ Φ2. By Craig’s Theorem (Proposition
15), there exist some GL= KB γ such that:

a. Φ1 |= γ;
b. Φ2 is inconsistent with γ, from which we can conclude
c. Φ2 |= ¬γ; and
d. The language of γ is the intersection of the languages of Φ1 and Φ2.

Applying Lemma 16 to (a), we conclude (a’) NC(Φ1) |= NC(γ), and applying
it to (c), we conclude (b’) NC(Φ2) |= NC(¬γ). Assume, for contradiction, that
SAT NC(Φ1)∪NC(Φ2)). Then NC(Φ1)∪NC(Φ2) has a model, say M . Because
M is a model of the union (conjunction) of formulas, it must also be a model for
any subset of those formulas; thus, (c’) M |= NC(Φ1) and (d’) M |= NC(Φ2).
From (a’) and (c’), we can immediately conclude M |= NC(γ), and from (b’)
and (d’), we can immediately conclude M |= NC(¬γ). Combining these results,
we obtain M |= NC(γ)∪NC(¬γ), so in particular SAT NC(γ)∪NC(¬γ), which
contradicts Lemma 17. Thus, our assumption must have been incorrect, which
completes the proof. �	

The theoretical results achieved in this subsection allow us to create an intu-
itively significantly more efficient conversion method than the Naive Conversion,
because we are applying the costly algorithms to smaller inputs. In addition to
being a powerful result in the context of encoding GL= formulas, it is an in-
triguing theoretical result in its own right - one would not immediately expect
an particular conversion algorithm to behave properly when applied to the frag-
ments of its input.

5 Conclusion

In this section, we will describe related work, future work, and formulate a
summary for this paper.

5.1 Related Work

A similar problem is solved for a different fragment of FOL in [4]. That work
considers monadic FOL, which restricts predicates to being unary, but allows
quantifiers. Our work applies to a fragment that is simultaneously more restric-
tive (since we disallow quantifiers), and less restrictive (we allow arbitrary arity
of quantifiers; indeed, Section 3.3 provides an upper bound of the size of the
output as a (exponential) function of the predicate arity).

5.2 Future Work

In our future work, we plan to build on the achieved results in several ways.
The most obvious extension is to advance the partitioning to work recursively,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 I. Gammer and E. Amir

so that the input KB can be split into arbitrary large number of fragments,
which are then encoded using NC. Because, as Section 3.3 has shown, the size
of the output KB is directly dependent on size of the input GL= KB (and hence
the running time of the final PL SAT solver is highly dependent on that size),
employing NC on only small fragments can decrease the size of the resulting
KB tremendously, thus achieving considerable saving in the SAT solver running
time. The recursive fragmentation will be required to maintain the so-called
running intersection property[6]; we plan to use a partitioning program already
developed by one of us [9] for this purpose.

Noting that the ”base case” conversion (NC in our case) is orthogonal to the
partitioning mechanism, we also plan to improve the conversion algorithm to
generate smaller-sized KBs. NC generates a significant amount of information,
which represents a plethora of internal connections between the formulas of the
original KB; indeed, it is such richness that made our final result (Theorem 18)
possible. However, some of that information is extraneous for each particular
case; specifically, some of the equivalence semantics formulas generates may not
be required or even used in concrete cases. Any improvement in the underly-
ing algorithm will result in propagated efficiency improvements in the complete
application, because that underlying algorithm is invoked several times (two
times in the described method, and much more in the recursive fragmentation
extension proposed above, since NC will be used on every partition).

5.3 Summary

We have introduced GL=, a decidable fragment of FOL. We have argued that
GL= enjoys a unique position as being sufficiently expressive yet sufficiently
simple, a position not shared by either general FOL (which has more expressive
power, but suffers from inefficient deciding algorithms) or PL (which enjoys a
plethora of very efficient SAT solving methods, but lack many constructs of FOL
and thus can be hard to use for a particular application). In this context, we
have formulated and throughly investigated a solution to general satisfiability
problem by converting an arbitrary input knowledge base into a PL knowledge
base, mandating that such conversion does not change satisfiability. We have
presented several increasingly complex and increasingly efficient methods for
such conversions, starting from Naive Conversion (which translated the input
KB directly, ensuring both predicate and equality instance translation, and the
equality semantics translation), to using divide-and-conquer partitioning para-
digm in conjunction with Craig’s Lemma in two different ways: both by putting
the computed interpolants of one fragment into the resulting encoding, and by
using Craig’s Lemma to prove the ultimate contribution of this paper - Theorem
18. For each of these conversion methods, we have formulated the algorithm it-
self and proved that it preserves satisfiability. Specifically, Theorem 18 illustrates
a very interesting theoretical result, which may prove to be useful beyond this
paper - that an input KB can be divided into two fragments, which can then
be encoded individually, and the union of the resulting encodings is satisfiability
equivalent to the encoding of the entire KB. We believe that this theoretical

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Satisfiability in Ground Logic with Equality 183

result, besides its obvious applicability for the purposes of encoding a GL= KB
into PL, serves as an important example of the utility of the general divide-and-
conquer paradigm.

References

1. Nance, M., Adam Vogel, E.A.: Reasoning about partially observed actions. In: AAAI
(2006)

2. Baumgartner, P.: FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Proce-
dure. In: McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831,
pp. 200–219. Springer, Heidelberg (2000)

3. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-
Hall, Englewood Cliffs (2003)

4. Ramachandran, D., Amir, E.: Compact propositional encodings of first-order theo-
ries. In: AAAI, pp. 340–345 (2005)

5. Amir, E.: Dividing and Conquering Logic. PhD thesis, Stanford University (2002)
6. Amir, E., McIlraith, S.: Partition-based logical reasoning for first-order and propo-

sitional theories. Artificial Intelligence 162(1-2), 49–88 (2005)
7. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory

and proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957)
8. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–

121 (2005)
9. Amir, E.: Partitioning version 1.2. Technical report, Stanford University Software

description (2002), available at http://reason.cs.uiuc.edu/eyal/decomp/README

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://reason.cs.uiuc.edu/eyal/decomp/README

Tailoring Solver-Independent Constraint Models:

A Case Study with Essence′ and Minion

Ian P. Gent, Ian Miguel, and Andrea Rendl

School of Computer Science, University of St Andrews, UK
{ipg, ianm, andrea}@cs.st-andrews.ac.uk

Abstract. In order to apply constraint programming to a particular
domain, the problem must first be modelled as a constraint satisfaction
problem. There are typically many alternative models of a given problem,
and formulating an effective model requires a great deal of expertise. To
reduce this bottleneck, the Essence language allows the specification
of a problem abstractly, i.e. without making modelling decisions. This
specification is refined automatically by the Conjure system to a solver-
independent constraint modelling language Essence′. However, there is
still significant work involved in translating an Essence′ model for use
with a particular constraint solver. This paper discusses this ‘tailoring’
process with reference to the constraint solver Minion.

1 Introduction

Constraint programming is a successful technology for tackling a wide variety
of combinatorial problems. To use constraint technology to solve a problem,
the problem must first be described in terms of a constraint model suitable for
input to a constraint solver, which then searches for solutions automatically. The
process of formulating an effective constraint model (i.e. for which the intended
constraint solver is able to find solutions efficiently) is notoriously difficult and
is one of the major bottlenecks preventing the wider use of constraint solving.

Hence, automating constraint modelling is highly desirable. In one approach
the user provides an abstract problem specification in which detailed modelling
decisions have not yet been taken. This specification is then refined automati-
cally into a constraint model. The Essence abstract constraint specification lan-
guage [2] and Conjure automated refinement system [4] embody this approach.
The constraint models produced by Conjure are in the language Essence′,
which has a level of abstraction supported by existing constraint solvers.

Essence′ is, however, a solver-independent constraint language; Essence′

models must undergo a further translation step to produce input suitable for any
particular constraint solver. The difficulty of this task depends on the facilities
offered by the intended solver. Moreover, as shown by Prosser and Selenksy [10],
individual constraint solvers have differing strengths and weaknesses. Therefore,
an Essence′ model must be tailored to an individual solver to maximise effi-
ciency. This paper considers the tailoring process, with particular reference to
the constraint solver Minion [6]. This is a particular challenge, since Minion
has been deliberately pared down to increase solving efficiency.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 184–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 185

2 Background

We begin by providing the necessary background in constraint modelling and
solving before describing the Essence′ language and Minion constraint solver.

2.1 Constraint Satisfaction Problems and the Modelling Bottleneck

The finite-domain constraint satisfaction problem (CSP) consists of: a finite set
of decision variables, X ; for each variable x ∈ X , a finite set D(x) of values
(its domain); and a finite set C of constraints on the variables, where each con-
straint c ∈ C is defined over a subset of {xi, . . . , xj} of X (its scope, denoted
scope(c)) by a subset of the Cartesian product D(xi) × · · · × D(xj) giving the
set of allowed combinations of values. A constraint can be specified extension-
ally, by listing these tuples, or intensionally as an expression with an associated
propagation algorithm that is executed by the constraint solver to determine
satisfaction/violation. A solution to a CSP assigns values to all variables such
that all constraints are satisfied.

A constraint model maps the features of a combinatorial problem onto the
features of a CSP. The CSP is input to a constraint solver, which searches for a
solution (or solutions). The constraint model is then used to map the solution(s)
back onto the original problem. Constraint languages and solvers commonly
provide a rich library of constraints from which to choose. Typically, therefore,
many models are possible for a given problem. This choice is both complex and
important: it can mean the difference between the problem being solved quickly
and not being solvable in a practical amount of time. Hence, constraint modelling
is difficult and requires a great deal of expertise.

The constraint specification language Essence [2] addresses this modelling
bottleneck. It enables the specification of a combinatorial problem abstractly,
without making constraint modelling decisions. This is achieved by supporting
decision variables whose domain elements are the combinatorial objects (e.g.
functions, relations) that a combinatorial problem commonly requires us to find,
but which are not directly supported by existing constraint solvers.

To illustrate, consider Langford’s problem (CSPlib problem 24), which is to
arrange n sets of positive integers 1..k into a sequence such that, following the
first occurrence of an integer i, each subsequent occurrence of i appears i + 1
indices later than the last. For example, if k is 4 and n is 2, then a solution
is 41312432. The problem may be viewed as requiring us to find a bijection
from the values to their positions in the sequence. This can be stated directly in
Essence, as Figure 1 shows. For simplicity, we set n = 2, hence the sequence

given k : int(1 ...)
find positions : int(1..2 ∗ k) → (bijective) int(1..2 ∗ k)
such that forall i : int(1..k) . positions(i + k) − positions(i) = i + 1

Fig. 1. An Essence specification of a simplified version of Langford’s problem

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 I.P. Gent, I. Miguel, and A. Rendl

has length 2k. We use 2k values to represent the elements of the sequence. The
first occurrence of integer i is represented by i itself, and the second occurrence
by i+k. The key feature of this specification is that it contains just one decision
variable, positions, whose domain is the set of possible bijections from 1..2k onto
1..2k. The single constraint ensures that the pairs of elements are the requisite
number of indices apart. The bijection in this specification can be modelled in a
variety of ways [9], but Essence does not force the user to make this decision.

2.2 The Essence′ Solver-Independent Modelling Language

Given an Essence specification, constraint modelling consists in encoding the
abstract decision variables and the constraints on them as constrained collections
of CSP variables. The Conjure [4] automated refinement system performs this
step automatically, producing a constraint model in a subset of Essence called
Essence′. Essence′ is a solver-independent constraint modelling language with
a level of abstraction that is supported by existing constraint solvers. Essence′ is
intended to be very nearly an object-level language. However, as we demonstrate
in this paper, there remain issues in translating to a specific language that must
be resolved carefully to avoid affecting performance adversely.

Decision variables are specified individually or as elements of multi-dimensional
matrices. Their domains may contain integers or Booleans only, in contrast with
the abstract decision variables offered by Essence. The available constraint li-
brary includes basic building blocks, such as the ability to specify constraints
extensionally, and arithmetic and logical operators, which can be nested to form
arbitrarily complex constraint expressions. It also includes commonly-used in-
tensional constraints such as the all-different constraint [11], which constrains
a matrix of variables to take distinct values, and the lexicographic ordering
constraint [3], which can be used to deal with symmetry in constraint models.
Existential and Universal quantifiers are also supported and may be nested.

To illustrate, Figure 2 shows an Essence′ model of the simplified Langford’s
problem specified in Figure 1. The refinement here is simple: the function is mod-
elled using a matrix of decision variables indexed by the values in the sequence.
The domain of each decision variable is the set of possible positions. Note the
use of the all-different constraint to ensure that the bijective property holds.

1 given k : int(1..)
2 find positions : matrix indexed by [int(1..2*k)] of int(1..2*k)
3 such that
4 forall i : int(1..k) .
5 positions[i+k] = positions[i] + i+1,
6 allDifferent(positions)

Fig. 2. Essence′ model of a simplified version of Langford’s problem

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 187

2.3 The Minion Constraint Solver

The Minion [6] constraint solver is designed to promote solving efficiency. Con-
sequently, its input language is relatively restricted, but it does offer the option
to tune various low-level features that are not commonly accessible.

Like Essence′, Minion supports decision variables with integer domains,
which can be collected in multi-dimensional matrices. It also provides fine con-
trol over domain representation. Minion supports four individually-optimised
integer domain types: 0/1 domains, commonly used for logical expressions and
counting; bounds domains, which maintain only the lower and upper bound of
the domain; sparse domains, where domain values need not be adjacent, e.g.
{2, 7, 11}; and discrete domains, which are defined initially by lower and upper
bounds but which support the removal of values from between the bounds.

Table 1. Minion constraints: x and r refer to decision variables, v to a decision vari-
able vector, and c refers to a constant. Lists of decision variables [x1,..,xn] may be
replaced by vectors and rows or columns of matrices.

Minion Constraints Meaning
sumleq([x1,x2,...,xn], r) x1 + x2 + ... + xn ≤ r
sumgeq([x1,x2,...,xn], r) x1 + x2 + ... + xn ≥ r
weightedsumleq([x1,...,xn],[c1,...,cn], r) x1 ∗ c1 + ... + xn ∗ cn ≤ r
weightedsumgeq([x1,...,xn],[c1,...,cn], r) x1 ∗ c1 + ... + xn ∗ cn ≥ r
product(x1, x2, r) x1 ∗ x2 = r
eq(x1,x2) x1 = x2
diseq(x1,x2) x1 �= x2
ineq(x1,x2,c) x1 ≤ x2 + c
max([x1,...,xn],r) max(x1, ..., xn) = r
min([x1,...,xn],r) min(x1, ..., xn) = r
element(v,i,r) v[i] = r
alldiff(x1,...,xn) x1 �= x2 �= . . . �= xn

reify(constraint,r) if(constraint) then r = 1 else r = 0
table(matrix, tuple) an extensional constraint

1 0
2 8
3 1 8 8
4 0
5 0

...
6 1
7 [x0,x1,x2,x3,x4, x5, x6, x7],

...

...
8 sumgeq([x0, 2], x4)
9 sumleq([x0, 2], x4)
10 sumgeq([x1, 3], x5)
11 sumleq([x1, 3], x5)
12 sumgeq([x2, 4], x6)
13 sumleq([x2, 4], x6)
14 sumleq([x3, 5], x7)
15 sumleq([x3, 5], x7)
16 alldiff(v0)

Fig. 3. Partial Minion instance of the simplified Langford’s problem (k = 4)

Minion offers a broadly similar set of constraints (summarised in Table 1)
compared with Essence′, but again provides controls as to how they are imple-
mented, as will be explained below. A key difference is that Minion supports
neither quantification nor nested constraint expressions. It also allows the state-
ment of individual instances only, rather than parameterised problem classes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

188 I.P. Gent, I. Miguel, and A. Rendl

To illustrate, Figure 3 presents part of the Minion input file for the instance of
Langford’s problem when k = 4. The Minion manual [8] contains full details of
the input format. Briefly, in a model with n variables, each variable is identified
by ‘xi’, for i in 0..(n − 1). Minion insists that variables of each type described
above are declared in turn. In the example there are 8 bounds variables with
lower bound 1 and upper bound 8 (lines 2-3). These variables are collected in
the vector v0 (lines 6-7). The single universally-quantified constraint from the
Essence′ model is expanded into a set of individual sum constraints (lines 8-15).
Note that Minion requires that each equality constraint is decomposed into a
pair of sum constraints. The all-different constraint is added directly (line 16).

3 Tailoring Essence′ to Minion: Overview

Since Minion expects individual instances, the input to the tailoring process is
a pair: an Essence′ model, and a set of values for the parameters of the model
sufficient to determine a particular instance. The first (straightforward) step in
the tailoring process is therefore to parse the Essence′ model and, for each
parameter, substitute its given value for each of its occurrences in the model.
Following substitution, a simplification step is performed to evaluate expressions
now composed entirely of constants. These pre-processing steps are independent
of the target solver.

In translating Essence′ to Minion, we make use of a MinionModel structure,
a four-tuple 〈V, A, C, M〉 where: V is the set of Minion decision variables; A is
the set of Minion matrices, whose elements are drawn from V ; C is the set of
Minion constraints; and M is a bijection between the elements of V and the
original Essence′ variables. The function M is important both for mapping
solutions produced by Minion back onto the Essence′ model and to avoid the
repeated introduction of Minion variables for a single Essence′ variable that
occurs in several constraints.

We define a translation function τ as follows:

τ : 〈μ, e〉 → μ′

where μ is an instance of a MinionModel and e is an Essence′ expression. This
pair is mapped to a new MinionModel instance μ′. The effect of applying τ is to
increase monotonically the four elements of the MinionModel. Beginning with
an empty MinionModel, tailoring of an Essence′ model proceeds through the
constraint-wise application of τ , incrementally constructing the final model.

Since Essence′ is the richer language, typically each Essence′ constraint
corresponds to a set of Minion constraints. Variables are introduced into the
MinionModel both to correspond to the variables in the original Essence′ model
(in which case the correspondence is recorded in the mapping M) and to support
the decomposition of an Essence′ expression. Decomposition is necessary to
deal both with nested expressions and with the quantifiers and constraints not
directly supported by Minion, as is described in the following sections.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 189

4 Arithmetic Constraints

We begin by discussing the translation of arithmetic expressions. As noted, Min-
ion provides the small set of constraints given in Table 1. Essence′ constraints
of exactly this form require no translation. For the remainder, simple reformu-
lation steps are performed. Note, for example, that Minion does not provide a
division operator. Hence, division in Essence′ is translated by rewriting division
to multiplication. In general an Essence′ arithmetic expression is translated via
combinations of the primitive constraints in Table 1, sometimes connected by in-
troducing auxiliary variables. A very simple example can be seen in the Minion
instance of Langford’s problem (Figure 3): to constrain a sum of variables and
constants to be equal to a variable or a constant, a pair of sumgeq and sumleq
constraints is used (e.g. lines 8-9). Equality of weighted sums is treated similarly.

Commonly, Essence′ arithmetic constraints are translated by flattening
nested expressions. That is, an Essence′ expression is decomposed into sub-
expressions for which Minion provides a corresponding constraint. All Minion
constraints used for this purpose are expressed in terms of equality or inequal-
ity relations, as per the examples in Table 1. Hence, an auxiliary variable is
constrained to be equal to each sub-expression. Constraints among the auxiliary
variables are added as necessary to create a set of Minion constraints equivalent
(i.e. collectively allowing the same set of assignments) to the original Essence′

constraint.
To illustrate, consider an Essence′ constraint that constrains the sum of n

variables to be not equal to some variable r. Minion provides a binary disequality
constraint, but no direct way to express a disequality on a sum. Hence, it is
natural to introduce an auxiliary variable constrained, in the same way as above,
to be equal to the sum of the n variables and to be not equal to r:

Essence′ Minion
sumleq([x1,x2,...,xn], a)

x1 + . . . + xn �= r sumgeq([x1,x2,...,xn], a)
diseq(a, r)

Equality and disequality of weighted sums are treated similarly.
When an auxiliary variable is introduced it must be given an appropriate

domain. In doing so, we can exploit our knowledge of the Minion solver. Propa-
gation of each of the constraints in Table 1 affects only the bounds of the variable
r. Hence, it is sufficient to use an efficient bounds domain (see Section 2.3) for
each auxiliary variable introduced in translating an arithmetic expression. The
lower and upper bound of the domain of an auxiliary variable is determined
by examining the lower and upper bounds of the expression to which it is con-
strained to be equal. Hence, in the current example the domain of a ranges from
the sum of the lower bounds of x1, ..., xn to the sum of their upper bounds.

Our general method of translating nested Essence′ expressions proceeds from
the parse tree as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 I.P. Gent, I. Miguel, and A. Rendl

1. Consider the nested Essence′ expression a tree with variables and constants
as leaves, operators as nodes and the tree branched according to the operator
precedences where the operator with lowest precedence is root.

2. Take an operator node op with highest depth that connects leaves l1..ln.
Generate the corresponding Minion constraint(s) for op(l1, .., ln) = v where
v is a auxiliary variable. Add the generated constraints to C and v to V .

3. If the tree contains at least another leaf, replace node op by leaf v and go to
2., otherwise stop.

To minimise the generated overhead of variables and constraints during flat-
tening, we can apply simple and effective rules: directly match Minion primitives
to the expression tree structure, such as (weighted) sums or products. With a
subtree matching an iterated sum structure with n leaves, this strategy reduces
the number of auxiliary variables from n − 1 (or n for the whole tree) to 1.

5 Logical Constraints

Boolean Essence′ expressions are translated using 0/1 variables and arithmetic
constraints. Table 2 summarises how the common logical connectives are trans-
lated for Minion. As in the arithmetic case, flattening is required for nested
logical expressions. This operates in broadly the same way as for arithmetic,
but differs in that it requires reification. Reification can be viewed as a ‘meta’
constraint in that it equates the satisfaction of some constraint c with a Boolean
variable. Minion provides reification using 0/1 variables and the constraint:
reify(c, x1), meaning x1 is assigned 1 if and only if c is satisfied.

To illustrate, consider the Essence′ expression (x1 = x2) ⇒ (x3 = 0). Min-
ion does not provide a constraint of this form, so flattening is required. To do
so, we decompose the implication into left- and right-hand sides and reify them
into two auxiliary 0/1 variables: reify(eq(x1, x2), a1), reify(eq(x3, 0),
a2). The implication can now be stated using an inequality: ineq(a1, a2, 0).

Not all constraints in Minion can be reified, hence care must be taken to
employ only reifiable constraints for a subexpression if it will be reified. In order

Table 2. Basic logical connectives and their equivalents using Minion 0/1 variables.
‘n’ is a unary operator on a Minion 0/1 variable x that returns 1−x. Clearly, the
sum constraint is only necessary to express conjunction arising in some nested sub-
expression. Otherwise e1 and e2 can simply be imposed separately, since a solution
requires all constraints to be satisfied. ‘ineq(x1, x2, c)’ is interpreted x1 ≤ x2 + c. If
the ei are nested expressions, flattening is required.

Logical Expression Minion Constraint

¬e nx
e1 ∧ e2 sumgeq([x1, x2], 2)
e1 ∨ e2 sumgeq([x1, x2], 1)
e1 => e2 ineq(x1, x2, 0)
e1 <=> e2 eq(x1, x2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 191

to determine if a subexpression will be reified or not, we need to have informa-
tion about its context. This is why we introduce a reification flag, that indicates
when true that the currently translated expression will to be reified. The reifi-
cation flag is initially false, retains its state as we traverse certain constraints
(e.g. a conjunction) but becomes true when we traverse other constraints (e.g. a
disjunction).

An interesting case of reformulation occurs with negation: Essence′ supports
negation of logical expressions while Minion only allows the negation of single
variables (see Table 2). This is why negation is applied to expressions before
translation. Negated relational expressions are reformulated by applying the cor-
responding complementary operator, for example ¬(x = y) is reformulated to
x �= y. Negated Boolean expressions are reformulated by applying Boolean ax-
ioms: ¬(x∧y) results in ¬x∨¬y. In the last case the negation operator is passed
down a level in the expression tree, eventually being applied to a variable or
relational expression. Hence, the reformulation process halts, even though the
worst case may take exponential time in the depth of the expression tree.

Generally, flattening of logical expressions proceeds directly from the parse
tree, as described in Section 4, but making use of reification rather than arith-
metic constraints for decomposition. However, care must be taken in the pres-
ence of universal and/or existential quantification. Quantified expressions in
Essence′ have the form q i1, . . . , in ∈ D. e(i1, . . . , in) where q ∈ {∀, ∃} is a
quantifier, i1, . . . in are binding variables that range over the finite integer do-
main D and e(i1, . . . , in) is an arbitrary relational expression involving i1..in.
Translation of quantified expressions is further complicated by the fact that
nesting is allowed, i.e. e may also contain quantified expressions. In what fol-
lows, we describe a general, effective approach to translating arbitrarily-nested
quantified Essence′ expressions into Minion.

5.1 Singly-Quantified Expressions

We first define a basic approach for translating quantified expressions. Univer-
sal quantification can be treated as a conjunction, existential quantification as
a disjunction of expressions. Consider the example ∀i∈[1..5].(m[i] �= i). It corre-
sponds to the conjunction (m[1] �= 1) ∧ .. ∧ (m[5] �= 5), and can be translated
to 5 separate constraints. Now consider ∃i∈[1..5].(m[i] �= i) that corresponds to a
disjunction (m[1] �= 1)∨ ..∨ (m[5] �= 5). In this case we need to apply reification.
Imposing reify(diseq(m[1],1), x1) gives us a reified variable x1 that is set
to 1 if diseq(m[1],1) holds and 0 if not. So the disjunction is satisfied, if at
least one reified variable equals to 1. We can enforce that by imposing another
constraint, stating that the maximum of all reified variables has to equal 1:
sumgeq([x1,x2,x3,x4,x5],1). Conjunction can be translated by insisting that
the sum of the k reified variables equals k. Thus the translation of disjunction
introduces n auxiliary variables and n + 1 reification constraints with n =| D |
where D is the domain of binding variable i. Hence, in the general case with
m binding variables over domain D, we get nm additional variables, nm + 1
reification constraints, and nm expressions to translate.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 I.P. Gent, I. Miguel, and A. Rendl

Table 3. Translation of quantifications; m : e → c returns the Minion constraint
corresponding to Essence′ expression e and k = |D|n

Essence′ expression Minion constraints Auxiliary variables

∃i1..in ∈ D.(e) { reify(m(e(i1, ..in)), xi) | i1..in ∈ D } x1..xk
sumgeq([x1, ..xk], 1)

∀i1..in ∈ D.(e) { m(e(i1, ..in)) | i1..in ∈ D } none
reify = false

∀i1..in ∈ D.(e) { reify(m(e(i1, ..in)), xi) | i1..in ∈ D } x1..xk
reify = true sumgeq([x1, ..xk], k)

sumleq([x1, ..xk], k)

5.2 Nested Quantification

While existential quantification, as a form of disjunction, can only be translated
using reification, universal quantification is a form of conjunction and some-
times can be translated without reification. We saw above that the expression
∀i∈[1..5].(m[i] �= i) can be translated without reification. Generally, a translation
without reification is to be preferred as being simpler and allowing propagation
more easily. Unfortunately, reification is sometimes necessary where universally
quantified constraints are nested. For example, if x is some constrained variable,
the expression x = 1 ⇒ ∀i∈[1..5].(m[i] �= i) will require the universal constraint
to be reified to a variable r and then the constraint x = 1 ⇒ r = 1 posted. This
shows another application of the reification flag.

Generally, we translate quantifiers by inserting values for their binding vari-
ables and translate the resulting expressions according to the imposed quanti-
fiers. We apply values for binding variables recursively, starting with the outmost
quantifier, and then stepwise increase the values, beginning with the first vari-
able of the innermost quantifier. If a variable has reached its upper bound, it
is reset to its lower bound and the next variable’s value is increased. When the
last binding variable of the outmost quantifier has reached its upper bound, we
stop. During this value-insertion process we build the resulting constraints from
the inside out: Depending on the quantifier and the reification flag, we generate
a set of constraints. Consider the quantification ∃i∈[0..5]∀j∈[1..3].m[j] �= i, that
corresponds to a disjunction of conjunctions of m[j] �= i, as shown below.

∃i∈[0..5]∀j∈[1..3].(m[j] �= i) =∨
m[1] �= 0 ∧ m[2] �= 0 ∧ m[3] �= 0∨
m[1] �= 1 ∧ m[2] �= 1 ∧ m[3] �= 1∨
...∨
m[1] �= 5 ∧ m[2] �= 5 ∧ m[3] �= 5

The conjoined expressions m[j] �= i are in a disjunctive context because of the
outermost existential, so we set the reification flag to be true. First we insert
lower bounds of variables i, j and then increase j’s value until we reach its upper
bound, getting the set of expressions m[1] �= 0, m[2] �= 0, m[3] �= 0. We impose the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 193

innermost quantifier, ∀, giving us a conjunction to translate: m[1] �= 0 ∧ m[2] �=
0∧m[3] �= 0. With the reification flag being true, we have to reify the expressions
and get 3 reification constraints reify(m[1] �= 0,x1) ... reify(m[3] �= 0,x3)
and a sum constraint sumgeq([x1,x2,x3], 3), introducing 3 auxiliary vari-
ables x1, x2, x3. Since i can take 6 different values, we have 6 conjunctions
to translate, resulting to 18 reification constraints and 6 sum constraints. We
now impose the ∃ quantifier on our set of conjunctions. Each conjunction is rep-
resented by a sum constraint that we reify: reify(sumgeq([x1,x2,x3], 3),
x00), .. reify(sumgeq([x16,x17,x18], 3), x05) and express disjunction
by the sum sumgeq([x00,x01,x02,x03,x04,x05],1) over the auxiliary vari-
ables x00 .. x05, according to Table 3.

5.3 Treating Special Cases

These rules are all applied in the basic implementation. They allow us to trans-
late expression “on the fly”, since it can be immediately determined which rule
to apply and the translation does not depend on future events (the translation is
causal). Consequently, we only employ a small amount of memory during trans-
lation. However, there are cases where we translate quantified expressions that
are later shown to be redundant. Consider the example ∃i∈[1..n].e ∨ i = n where
e is an arbitrary expression. Since n is in the range of i, the expression will eval-
uate to true. The existential quantification, corresponding to disjunction, also
becomes true. Please note, that this case may only be spotted at instance level,
since the domain of a binding variable may depend on a parameter value. To
detect cases where quantified expressions are always satisfied or violated requires
significant effort. We will investigate this procedure in future, but are aware that
the overhead might outweigh the benefit gained.

6 Global Constraints

Global Constraints [13] represent general problem patterns, e.g. that every el-
ement of a datastructure has a distinct value is captured by the global con-
straint alldifferent [11]. Constraint solvers usually provide efficient propagators
for global constraints. Essence′ provides a range of global constraints which
can be directly mapped to the corresponding Minion global constraint, or an
equivalent set of constraints added if no exact equivalent is available.

Minion provides different versions of some constraints, giving us choices we
have to make. In most cases the differences arise from the type of propagation,
through the use ‘watched literals’, a recently-introduced method for writing con-
straint propagators [7]. Examples are sum and element. Watched literal-based
constraints can reduce the search time drastically [7]. However, classical prop-
agators can still be more effective in some cases. We generally choose watched
literal-based constraints, but give the user the possibility to force unwatched
constraints to be applied by setting a flag. The current version of Minion does
not support reification of watched literal-based constraints, so unwatched con-
straints are always chosen in a context where the reification flag is true.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 I.P. Gent, I. Miguel, and A. Rendl

Minion provides matrix indexing by decision variables using the element
constraint, element(matrix,index,elem), stating that the element at position
index of (one- or multidimensional) matrix matrix equals to (the assignment of)
elem [12]. We use this to translate matrix indexing in Essence′. For example,
the simple expression m[1, x] = n can be expressed by element(row(m,1),x,n).
If dynamically indexed matrices occur in nested expressions, we need to intro-
duce an auxiliary variable to represent the indexed matrix element. Furthermore,
we are able to nest dynamic indexing and express a k − 1 times nested index-
ing with k element constraints. For instance, m[1, v[x]] = n, which is nested
once, can be reformulated to 2 element constraints, element(row(m,1), tmp,
n) and element(v, x, tmp) by introducing the auxiliary variable tmp.

Matrices that are entirely indexed by decision variables need to be flattened.
We illustrate this case by considering the Mutually Orthogonal Latin Squares
(MOLS) problem [15]: a latin square is an m×m matrix of elements 1..m where
each row and column has distinct elements. Two latin squares A and B are
mutually orthogonal, if each pair of elements (A(i, j), B(i, j)) occurs exactly
once, as illustrated in the example below. We model this problem by introducing
two auxiliary matrices X and Y , holding the row and column indices of A and
B’s elements such that A[X [i, j], Y [i, j]] = i and B[X [i, j], Y [i, j]] = j. If such
matrices X, Y exist, then A and B are mutually orthogonal.

element is restricted to one index parameter, hence translating an expression
A[x, y] = c requires flattening matrix A to a vector A′ where A[i, j] = A′[i ∗ r + j]
and r corresponds to the amount of rows in matrix A. Hence we obtain the element
constraint element(A’,i,c) with an adjusted index i = x∗r+y. Indexing matri-
ces with decision variables without the need to flatten them by hand is essential,
because it allows to express further constraints that are more easily expressed over
matrix structures: consider the MOLS problem again, where we need to impose
alldifferent on all rows and columns of matrices A and B. This can be more easily
expressed over a matrix structure than a flattened vector structure.

7 Variable Translation

As mentioned in Section 2.3, Minion has different types of integer decision vari-
ables: bounds- and discrete-domain variables. Discrete domain variables allow
deletion of values inside the bounds during search, which can be very effective, for
instance in combination with the alldifferent constraint. Where constraints such
as this are used, use of bounds-domain variables in Minion risks run-time errors
on attempted value removals. In Essence′ there is no such distinction of bound
variables, and so we generally translate decision variables to discrete-domain
variables. We allow the user to select bounds-domain variables for translation
by a flag if they are confident that discrete domains are unnecessary.

A =

�
�

1 2 3
2 3 1
3 1 2

�
� B =

�
�

1 2 3
3 1 2
2 3 1

�
� (A(i, j), B(i, j)) =

�
�

(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

�
�

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 195

When a variable x is assigned to another variable y, such as in the Essence′

expression y = x, we can ‘reuse’ x by substituting x for any occurrence of y.
This procedure can also be applied for (parts of) matrices, since in Minion
decision variables can occur in several different matrices. Consider the example
∀i∈1..10.v[i] = u[i+1], where we assign every second element of vector u to vector
v. Here we construct vector v out of the corresponding elements of u.

8 Experimental Results

We have implemented a translator from Essence′ to Minion in Java 1.5.0 10. In
this section we report results using Minion on translated instances. Our transla-
tor is under active development and can be found at minion.sourceforge.net.

In this section we present some problems that we have specified in Essence′

and tailored to a set of Minion instances. We compare these instances with op-
timised benchmarks produced by problem-specific instance generators provided
by Minion. These generators have been implemented by experts in both con-
straint modelling and Minion. Hence we are comparing automatically tailored
instances with human expertise. We performed our experiments on a 3GHZ Pen-
tium 4 with 2GB RAM using Minion version 0.4.1 compiled with g++ 4.0.2
under Linux. The translator takes a neglegible amount of time for translation,
hence we do not include its runtime and focus on how competitive the resulting
instances are.

8.1 The Balanced Incomplete Block Design (BIBD)

The BIBD (CSPlib problem 28) is defined by a 5-tuple of positive integers
〈v, b, r, k, λ〉: assign v objects to b blocks such that each block contains k dif-
ferent objects and exactly r objects occur in each block and every two distinct
objects occur in exactly λ blocks. A typical problem model consists of a 0/1
matrix m with b columns (blocks) and v rows (objects), where an element mij is
assigned 1 if block i contains object j. Each row is constrained to the sum r and
each column to the sum k. The scalar product of each two rows corresponds to
λ. We order rows and columns lexicographically to break symmetry partially.

As summarised in Table 4, we compared generated Minion instances with
BIBD instances generated by the hand coded BIBD-instance generator provided
by Minion, with constraints using watched literals and without. Our translator
produced almost identical instances to those produced by the instance-generator,

Table 4. Results for solving the BIBD problem

Unwatched Watched
Time(sec) Nodes Time(sec) Nodes

b, v, r, k, λ Gen. Trans. Gen. Trans. Gen. Trans. Gen. Trans.
140,7,60,3,20 0.51 0.51 17235 17235 0.67 0.7 17235 17235
210,7,90,3,30 2.08 2.04 67040 67040 3.03 3.07 67040 67040
280,7,120,3,40 6.73 6.51 182970 182970 9.45 9.34 182970 182970
315,7,135,4,45 10.73 10.67 278310 278310 15.14 15.32 278310 278310

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 I.P. Gent, I. Miguel, and A. Rendl

Table 5. Results for finding a solution to the n-Queens problem

Time(sec) Nodes
Generator Translator Generator Translator

n discrete var. discrete var. bounds var. discrete var. discrete var. bounds var.
12 < 0.01 < 0.01 < 0.01 60 59 1,840
15 < 0.01 < 0.01 0.02 249 248 12,687
17 0.01 0.02 0.13 1,187 1,186 62,382
19 < 0.01 0.01 0.07 583 582 34,595
20 0.48 0.65 5.63 37331 37,330 2,857,524
22 3.84 5.19 55.74 269,370 269,369 28,458,527
24 1.01 1.34 15.19 63,791 63,790 7,528,769
25 0.12 0.16 2.08 7,272 7,271 943,172
26 0.96 1.27 16.97 55,592 55,591 8,057,222
27 1.16 1.56 20.47 67,231 67,230 9,723,687
29 3.94 5.09 72.69 212,276 212,275 35,867,550
30 141.24 193.57 >45min 7,472,996 7,472,995 1,379,220,754

performing almost exactly the same in means of time and identically in amount
of search nodes used. This demonstrates the effectiveness of the tailoring process
for the BIBD problem.

8.2 The n-Queens Problem

The n queens problem is to place n queens on a n × n chess board without
attacking each other. In the problem model, the queens are represented by a
vector v of length n where the element vi corresponds to the column of the
queen placed in row i. No queen may be placed on the same diagonal as an-
other, which is specified using two auxiliary vectors of same length n. Each
element of the auxiliary vectors has a distinct domain, which cannot be en-
coded in Essence′ and therefore has to be restricted by additional constraints.
We produce instances with both bound-domain and discrete-domain variables
and compare them to instances generated by an n-queens instance-generator for
the same model provided wth the Minion distribution. This generator creates
instances with discrete-domain variables and distinct bounds for the auxiliary
variables. Results are given in Table 5. We see that the run times are notably
slower than the hand-written generator, up to just under 40% in the largest in-
stance. Nodes searched is always exactly one less. In general terms, these results
show that we produce good models, but unsurprisingly there can be scope for
further optimisation if writing a specialised generator. We can also observe the
drawback of bound-domain variables with this problem.

8.3 The Quasigroup Problem

An m order quasigroup is an m × m multiplication table of integers 1..m, where
each element occurrs exactly once in each row and column and certain multiplica-
tion axoims hold. The quasigroup problem (CSPLib problem 3) is concerned with
the existence of such a group of order m. We compared instances of the generator
and translator with and without a special variable ordering. Variable orderings
have been added by hand after the translation process since Essence′ has, at
the time of writing, no facilities to specify variable orderings. Both instances

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tailoring Solver-Independent Constraint Models 197

Table 6. Results for solving the QuasiGroup7 existence problem of order m

with Ordering without Ordering
Time(sec) Nodes Time(sec) Nodes

m Trans. Gen. Trans. Gen. Trans. Gen. Trans. Gen.
7 < 0.01 < 0.01 756 844 0.03 0.03 3,275 3,272
8 0.1 0.1 11,949 12,450 1.94 1.89 171,203 169,078
9 < 0.01 < 0.01 238 233 5.15 5.23 458,062 454,512
10 249.6 250.02 30,549,274 31,383,717 >1h >1h - -

apply the same specified ordering. As demonstrated by the results in Table 6,
an efficient variable ordering is crucial for solving the problem efficiently. Such
an ordering can easily be added by the user in the Minion instance. Our tailored
instances have shown a slightly better performance with variable orderings and
are therefore highly competitive to the generated ones.

8.4 Summary

Our experimental results are not extensive, but show that instances tailored
by our translator tend to perform well in comparison with those produced by
instance generators implemented by modelling experts. Developing a generator
takes significantly more time and knowledge about Minion than simply express-
ing a problem in Essence′. We see in one case that the hand-coded generator
runs faster, showing that (as expected) we cannot always attain optimal en-
codings automatically. Finally, our quasigroup results raise an important issue.
Specifying good heuristics is often not considered to be a part of modelling but is
well known to be essential to success. The more successful tools such as Conjure
and our translator become, the more important it will be to specify heuristics
during this process, either manually or automatically.

There are a number of outstanding issues. The most important of these is that
the only global constraints supported are alldifferent and element. To correct this
is trivial for global constraints supported by Minion (e.g. table) but requires
implementing an encoding of constraints which are not supported directly (e.g.
global cardinality).

9 Conclusion

This paper has discussed the issues arising in tailoring models in a solver-
independent constraint language, Essence′, to the constraint solver Minion.
This process may be compared with that of translating OPL to Ilog Solver,
which formed part of a commercial product from Ilog. However, to the best of
our knowledge, details of the OPL to Solver translation are unpublished. Fur-
thermore OPL lacks, for example, existential quantification which, when nested,
significantly complicates the translation process, as we have seen. Charnley et
al [1] describe a process of translating problems stated in first order logic to the
Sicstus constraint solver. This is significantly easier than the translation process
we have considered because the source language is less rich than Essence′ and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 I.P. Gent, I. Miguel, and A. Rendl

the target language is significantly richer than the input language of Minion.
Rafeh et al. present the mapping process of Zinc [14], a modelling language, to
design models that apply different solving techniques. Though Essence′ and
Zinc are both on the same level of abstraction, the mapping targets are quite
diverse. We would like to incorporate further reformulations into the tailoring
process to enhance the final model. We will draw on our work on Cgrass [5] for
this, which focused on the reformulation of individual problem instances.

Acknowledgements. Ian Miguel is supported by a UK Royal Academy of En-
gineering/EPSRC Research Fellowship. Andrea Rendl is supported by a DOC
fFORTE scholarship of the Austrian Academy of Sciences and UK EPSRC grant
EP/D030145/1. We thank Chris Jefferson for his advice on Minion.

References

1. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: European Conference on Artificial Intelligence (ECAI), pp. 73–77 (2006)

2. Frisch, A.M., Grum, M., Jefferson, C., Mart́ınez Hernández, B., Miguel, I.: The
design of essence: A constraint language for specifying combinatorial problems. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp. 80–87 (2007)

3. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algo-
rithms for lexicographic ordering constraints. Artificial Intelligence 170(10), 803–
834 (2006)

4. Frisch, A.M., Jefferson, C., Mart́ınez Hernández, B., Miguel, I.: The rules of con-
straint modelling. In: International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 109–116 (2005)

5. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A system for transforming con-
straint satisfaction problems. In: International Workshop on Constraint Solving
and Constraint Logic Programming, pp. 15–30 (2002)

6. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
European Conference on Artificial Intelligence (ECAI), pp. 98–102 (2006)

7. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer,
Heidelberg (2006)

8. Gent, I.P., Jefferson, C.A., Miguel, I., Petrie, K., Rendl, A.: Minion manual, version
0.4.1., http://minion.sourceforge.net

9. Hnich, B., Walsh, T., Smith, B.M.: Dual modelling of permutation and injection
problems. Journal of Artificial Intelligence Research (JAIR) 21, 357–391 (2004)

10. Prosser, P., Selensky, E.: A study of encodings of constraint satisfaction problems
with 0/1 variables. In: International Workshop on Constraint Solving and Con-
straint Logic Programming, pp. 121–131 (2002)

11. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: National
Conference on Artificial Intelligence (AAAI), pp. 362–367 (1994)

12. Van Hentenryck, P., Carillon, J.-P.: Generality versus specificity: An experience
with AI and OR techniques. In: National Conference on Artificial Intelligence
(AAAI), pp. 660–664 (1988)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://minion.sourceforge.net

Tailoring Solver-Independent Constraint Models 199

13. van Hoeve, W.-J., Katriel, I.: Global constraints. In: Handbook of constraint pro-
gramming, Elsevier (2006)

14. de la Banda, M.G., Marriott, K., Rafeh, R., Wallace, M.: From Zinc to Design
Model. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 215–229. Springer,
Heidelberg (2006)

15. Harvey, W., Winterer, T.: Solving the MOLR and Social Golfers Problems. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 286–300. Springer, Heidelberg (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning

Peter Gregory, Derek Long, and Maria Fox

University of Strathclyde
Glasgow, UK

{firstname.lastname}@cis.strath.ac.uk

Abstract. One approach to optimal planning is to first start with a sub- optimal
solution as a seed plan, and then iteratively search for shorter plans. This approach
inevitably leads to an increase in the size of the model to be solved. We introduce
a reformulation of the planning problem in which the problem is described as a
meta-CSP, which controls the search of an underlying SAT solver. Our results
show that this approach solves a greater number of problems than both Maxplan
and Blackbox, and our analysis discusses the advantages and disadvantages of
searching in the backwards direction.

1 Introduction

Optimal AI planning is a PSPACE-complete problem in general. For many problems
studied in the planning literature, the plan optimisation problem has actually been
shown to be NP-hard [1,2], whilst the plan existence problem is sometimes only poly-
nomial time. For many years, optimal planning has really referred to Graphplan [3]
based planners. Successful optimal planners since Graphplan, have relied on its plan-
ning graph structure. Notable examples that have also relied on its search strategy are
IPP and STAN [4,5]. SAT based planners, including Blackbox [6], have relied on the
planning graph structure, but not the original Graphplan search strategy. These planners
convert the planning graph into a SAT model and then allow a SAT solver to search the
equivalent SAT instance. One part of the Graphplan search was always kept with these
planners, and that was the direction of search. Graphplan constructs the planning graph
forwards, until all goals appear non-mutex. It then tests if a solution exists, and if not,
then it extends the planning graph by a layer and checks again. This process is repeated
until the first satisfiable, and optimal, layer is reached.

Maxplan [7] took a different approach to this idea. It initially finds a suboptimal plan
using the planner FF [8], and uses this distance as an initial seed length. It then generates
the SAT model for the previous length and tries to find a satisfying assignment. Once
a satisfying assignment is found, then the previous layer is searched. This process is
repeated until the first non-satisfying layer is found. This model relies on FF finding
a solution initially, but since the problem of plan existence is often easier than that of
plan optimisation, then it is assumed that if a sub-optimal plan cannot be found, then
the chance of finding the optimal one are highly limited. It could be asked as to why
we would want to plan in this direction when it inevitably leads to larger models than
before. The justification is that it makes better use of the underlying SAT technology.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 200–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 201

Namely, learnt clauses can be shared between layers, if they are still in the context of
the previous layer when a satisfying assignment is found.

A problem with this approach is that often finding plans at suboptimal lengths means
building redundancy into plans. However, discovering these redundant paths in plans is
just as hard as finding a path that actually achieves something. If a goal is achieved
early in a plan, there is nothing to prevent the SAT solver from reversing its choice and
then later re-achieving the same goal. Especially because the SAT solver has no way of
distinguishing real actions and noops (actions that maintain a fact’s truth between two
timesteps). This leads to redundant search, and leads the SAT solver to explore areas of
the search space that are not interesting in terms of solving the problem. We introduce
a Meta-CSP reformulation of the planning problem in which the variables represent the
final achievers of goals. The values in those variables represent the possible final achiev-
ers of the goals, as the SAT variables that represent them. We compare the performance
of this model with Maxplan and Blackbox. Maxplan provides the best comparison for
the meta-CSP model as it uses a traditional SAT encoding with a backwards direction
of search, so any performance difference can be directly attributed to the model. The
comparison with Blackbox is slightly less straightforward as the direction of search is
different. It will provide some comparison between the two directions of search and
provide arguments for when each is more effective.

In Section 2 we introduce the planning problem, the planning graph, and the trans-
lation of the planning graph into a SAT formulation. The meta-CSP model is described
in detail in Section 3, comparing it Maxplan and Blackbox in detail. Section 4 and
Section 5 show and analyse extensive empirical results from three different problem
domains. Section 6 discusses related work and how performance of the model could be
improved in the future.

2 Background

Planning is one of the fundamental problems in Artificial Intelligence. The ability to
plan and to reason causally and temporally is one of the key features of intelligent
behaviour. The planning problem can be defined in the following way:

Definition 1. A STRIPS planning problem P = (O, I, G) has three parts: a set of
operators O, a set of conjoined facts I that represent the initial state and another set
of conjoined facts G that represent (a partial coverage of) the goal state.

The planning problem is to find a set of actions that transforms the initial state into a
state where all of the goal facts are true. An action is a particular instantiation of an
operator. An operator itself has three parts: a set of facts pre that represent the precon-
ditions that have to be true before an action is executed, a set of facts add (commonly
known as the add list) which is the set of facts that are added after an action is com-
pleted, and a final set of facts del which represents the facts that are removed from the
state when an action is executed. The facts in the operators contain free variables that
have to be instantiated for an action to be performed.

Planning problems in the real world include areas as diverse as robotic control, lo-
gistics and airport scheduling. Solutions to planning problems can be of any length.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 P. Gregory, D. Long, and M. Fox

This is one quality of planning problems that makes them difficult to solve. As the op-
timal length of a plan isn’t known beforehand, a single CSP cannot be constructed that
certainly finds a plan. However, a series of CSPs can be solved that eventually find a
solution.

A constraint satisfaction problem (CSP) P is defined as a triple, (X, D, C). X is
a finite set of n variables, X = {x1, x2, ..., xn}. D is a finite set of domains, D =
{D(x1), D(x2), ..., D(xn)}, such that D(xi) = {vi1 , vi2 , ..., vim} is the finite set of
possible values for variable xi and C is the set of constraints C = {C1, C2, ..., Cm}.
A constraint Ci is a relation over a subset of the variables Si ⊆ X that represents the
assignments to the variables in Si that are legal simultaneously. If Si = {xi1 , ..., xil

},
then Ci ⊆ Di1 × ... × Dil

.
An assignment to a variable is a pair 〈xi, v〉 such that (v ∈ D(xi)), meaning vari-

able xi is assigned the value v. A solution S to a CSP P is a set of assignments
S = {〈x1, v1〉, 〈x2, v2〉, ..., 〈xn, vn〉}, such that all constraints in C are satisfied.

2.1 Graphplan and SAT Planning

The Blackbox planner solves planning problems by translating them into a series of SAT
instances. Blackbox uses an intermediary representation in its translation to SAT. This
was introduced in 1995 in the Graphplan planner [3], and it is called the planning-graph.
It is hard to exaggerate the impact that Graphplan has had on the field of planning. The
benefit it gave was that of an exponential space compression of the search-space through
the planning-graph structure. The planning-graph construction algorithm is given in Al-
gorithm 1. The planning-graph is a layered graph. It has alternating action layers and
fact layers. The first of these is a fact layer, with all of the facts from the initial state.
The first fact layer contains all facts that can be achieved by applying actions to the
initial state. In addition, at each action layer, there is a special action for each fact in
the previous fact layers, called a noop (short for no-operation). A noop action maintains
the truth of a fact between layers; if no action deletes or adds a fact, then that fact is
supported by a noop. The second fact layer contains the union of the first fact layer and
the facts achieved by the first action layer. This process continues in the same way from
there.

Algorithm 1. The Planning-Graph Construction Algorithm
f-layer0 ← I
l ← 0
while Any two goals are mutex or f-mutex(l) �= f-mutex(l − 1) do

a-layerl+1 ← actions achievable at f-layerl
f-layerl+1 ← facts achieved by a-layerl+1

a-mutex(l + 1) ← {(a1, a2) | p ∈ dela1 , (p ∈ prea2 ∨ p ∈ adda2}∪
{(a1, a2) | p1 ∈ prea1 , p2 ∈ prea2 , (p1, p2) ∈ f-mutex(l)}

f-mutex(l + 1) ← {(f1, f2) | all achievers of f1 and f2 are mutex}
l ← l + 1

end while

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 203

At each layer of the graph, a set of mutual-exclusions (mutexes from here) are calcu-
lated. These are relationships between two facts or actions, meaning they cannot both
be true at the time associated with the level of the planning-graph. For example, the ac-
tions sit down and walk away will always be mutex, as one can’t perform both at once.
Whether or not other actions such as walk away and swing umbrella are mutex depends
on whether time has passed such that both of their preconditions can be achieved si-
multaneously. Two facts are mutex if all of their achievers are mutex. Two actions are
mutex if either of the following conditions hold:

– One action deletes one of the other’s preconditions or effects. This is the case with
sit down and walk away since both have the precondition standing still.

– One of the actions has a precondition that is mutex with a precondition of the second
action.

When the number of mutexes in two successive layers is equal, it is said that the
fixpoint is reached. If the graph construction continues until the fixpoint and there are
still goals remaining that are mutex, then there can be no solution. Since no more mu-
texes will be eliminated, then the two goals can never be satisfied at the same time. If at
some level l, the goals appear non-mutex with each other, then there may be a solution,
and the planning-graph can be searched (we refer to this level as the first search layer).
Graphplan used a backtracking search, starting with the goals and working backwards
through the planning-graph. If no plan is found then the graph is extended to length
l + 1, and so on. Blackbox provides a translation of the planning-graph into a SAT
model. The motivation behind the translation is that the SAT model can then take ad-
vantage of any new advances in SAT solving technology, with no extra work required.
To convert the planning-graph into CNF, firstly the structure (fact and action layers) has
to be represented. And secondly, the constraints (effects and mutexes), also have to be
represented. Each fact and action, at every layer, is represented by a SAT variable. If a
fact is true at some time point, then the SAT variable representing it is also true. The
same is true of actions: if a SAT variable representing an action is true, then that action
is part of the plan.

The goals and the initial state can be specified as unit clauses. Each action implies its
preconditions: that is, if an action is made true, then its preconditions are forced true. If
some action a has pre = p1, p2 then clauses (¬a ∨ p1) and (¬a ∨ p2) are added to the
model. Facts also imply that they have an achiever. For all of the achievers of a fact, f
including a noop if available (a1 . . . an, say), clause (¬f ∨a1 ∨ . . .∨an) is added. This
ensures that each fact is achieved by something at each layer, even if that something is a
noop. A mutex between two facts or actions x and y in the planning graph is represented
by the clause (¬x ∨ ¬y) in the SAT model.

2.2 Maxplan

Maxplan uses the same encoding as Blackbox, but diverges from the traditional direc-
tion of search employed by Graphplan derived planners. Instead of starting search at
the first layer that the goals appear non-mutex, Maxplan starts search at a higher layer.
It is initialised by a seed plan, generated by the sub-optimal planner FF [8]. Once a plan
is found then Maxplan iteratively searches for shorter plans, until the shortest is found.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 P. Gregory, D. Long, and M. Fox

One advantage to this search strategy over Blackbox is that it is in some sense an “any-
time” planning strategy. If it fails at some point due to resource restrictions, then so
long as the sub-optimal planner returns a solution, then at least a plan is returned, even
if sub-optimal. The planner MaxPlan plans in this way and it retains the same model as
BlackBox. It also adds “londex constraints”, these are long-distance mutual exclusion
relationships. In the Graphplan model, mutexes only act between facts or actions at the
same layer, londex constraints act between different layers, hence long-distance. These
constraints are not included in the meta-CSP model.

3 The Meta-CSP Model

The contribution of this work is to introduce a new constraint formulation of the plan-
ning problem. This model is a higher level description than the SAT description, it
captures a concept that the SAT model does not, that of final achievement of a goal.
This is important because in a planning problem, the first time a goal is achieved may
not be the final time it is achieved. Because of this, once a goal is achieved, the planner
has to enforce its noops explicitly until the end of the plan.

Definition 2. Given a planning problem, P = (O, I, G), the meta-CSP encoding is a
CSP in which |X | = |G|, where Di = {a | gi ∈ add(a)}. The only constraints on the
model are those implied by the underlying SAT encoding.

The meta-CSP model has a variable for each goal, gi ∈ G, each variable’s domain
contains the possible achievers of gi. These are the actions for which gi is in the add list.
An assignment, 〈xi, a〉, in the meta-CSP means that a is the final achiever of gi and no
actions that delete gi may appear later in the plan than a. The meta-CSP solver describes
the planning problem on two levels. The first level is the original BlackBox formula, the
second is the meta-CSP level, just described, where assignments to variables represent
the final achievers of goals.

3.1 Meta-CSP Search

To design a search algorithm, the structure of the model and the analysis that led to its
conception have to be considered. The motivation behind this model was an analysis
of the backdoors of planning problems at satisfiable levels of the planning-graph. This
means that the majority of search should be focused on satisfiable instances. Blackbox
searches forwards, exactly like Graphplan, from the fix-point layer forwards to the op-
timal layer. Planning forwards in this manner seems incompatible with the meta-CSP
model since all but the final layer will be unsatisfiable. In rejecting this option, the only
alternative is search backwards. From some known satisfiable layer, search for a solu-
tion in the previous layer. If no solution exists at some layer then the last plan found
must be optimal. When implemented in a modern SAT solver, one of the big advantages
to planning in this direction is that learnt clauses stay valid between layers. However,
this is only valid if the layers are incrementally decreased. If a binary search were used,
for example, then clause learning would have to be disabled. The fact that a planner
could search in this backwards direction highlights an important point about planning

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 205

research. There is almost without exception an assumption that the problem is satisfi-
able. If it were not for this assumption, then the idea of planning backwards would be
pointless as the level at which to start planning may never be found.

One potential complication is solved by the original Graphplan representation: that
of problems not having monotonically satisfiable plan lengths. For example, a problem
may have solutions at length five, but not at length six, and then again at length seven.
When searching backwards, it may seem intuitive that search would stop when no plan
at length six is found (and hence mistakenly inferring that the optimal plan is in fact
length seven). However, the noops in the plangraph structure mean that even if there
is a plan at an earlier level, but not at the current one, it can be found by enforcing
the noops to maintain the state at the end of the plan. The meta-CSP solver searches
in the same backwards direction as Maxplan. For this purpose, it is required to know
an upper bound for which it is known a plan exists. The chosen method for finding
this length is by using the sub-optimal planner FF. FF can find reasonable quality plans
very quickly. The length of this plan can be used to initialise backwards search. The
seed plan also provides a candidate goal ordering. The order in which the goals in the
planning problem are achieved is used as the variable ordering for the meta-CSP.

FF

d p

d p

achievers

orderC
N

F

BlackBox

Solver

Meta− CSP

Solver
SAT

Fig. 1. Architecture of the meta-CSP solver. Input d and p represent the domain and the problem,
respectively.

If the goals contain a necessary goal ordering, the order will be revealed in any valid
plan. If the plan is of high quality then it is possible that it reveals important resource
allocation and scheduling decisions. This constitutes the seeding process. The next step
is the actual search. Although the mechanics of search (propagation, clause learning,
etc) still operate in the SAT solver, the key decisions are made at a lifted level in the
meta-CSP solver. There is an interleaving between the SAT solver and the meta-CSP
solver. The SAT solver will request a decision from the meta-CSP. The meta-CSP solver
will then return a decision about what the next choice should be in the SAT solver.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 P. Gregory, D. Long, and M. Fox

The SAT solver applies this decision and propagate the outcome. There are then two
possibilities from here: the first being conflict. In this case, the meta-CSP backtracks,
and a new decision is requested. The alternative is that the decision does not lead to
conflict, in which case the next decision is requested from the meta-CSP.

During this process, it is possible that the meta-CSP has assigned to all of its vari-
ables but the SAT solver still has unassigned variables. In this case, the meta-CSP sub-
mits to the default decision-making process of the SAT solver. When the SAT solver
backtracks, it triggers a backtrack in the meta-CSP, so long as the decision backtracks
as high as the last meta-CSP decision. Clearly, if the meta-CSP returns no solution, then
there must be no solution since if no combination of potential goal achievers leads to
a successful plan, there must be no plan. The complete architecture of the system is
shown in Figure 1. The algorithm relies on three programs: the planner FF, a modified
version of Blackbox that outputs both CNF and information about possible goal achiev-
ers and a modified version of the zChaff SAT solver, controlled by an added meta-
CSP solver. FF provides an upper-bound, l, to plan down from, and a goal ordering.
Blackbox then calculates the CNF at length l, and separately outputs the variables that
represent:

– The potential final-achievers of each goal and
– the noops that would enforce a particular achieved goal until the end of the plan.

Then the meta-CSP solver orders its variables as they were achieved in the seed plan.
It then solves the problem and returns the optimal plan.

4 Results

The following section describes the experimental setup to test the performance of the
meta-CSP solver described in Section 3. All of the experiments are performed on a
dual-core Intel Pentium D 3.40GHz desktop computer. The meta-CSP solver will be
compared against the performance of Maxplan and Blackbox. The performance of each
planner will be measured in time taken to solve each problem. The time is taken to be
user-time + system-time, and is limited to a total of 1800 seconds (half of one hour).
Although the computer has 2GB of memory, the planners are limited to using 1.5GB.
The justification behind this is that if a program approaches 2GB, then CPU usage drops
significantly as the planner starts to swap memory. It then becomes very unlikely that
either a plan will be returned or that the CPU time will timeout without an unreasonable
wait.

Blocksworld, Grid and Driverlog are the three domains that have been selected to
test the meta-CSP solver. These will be described in the following sections. Graphs of
the results for all of the problem instances are also shown. The graphs are log-scaled on
both axes. Since the meta-CSP solver time is the x-axis and the competing planner is
the y-axis, any point plotted above the line y = x constitutes a “win” for the meta-CSP
solver (as it denotes the competitor took a greater time). To ease the discernment to the
eye, the line y = x is also plotted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 207

4.1 Blocksworld

The Blocksworld problem is a massive part of the planning literature and its history.
Although much studied (and occasionally derided), it retains interest because of its
interesting structural properties and its simplicity. The form of Blocksworld studied in
this work consists of a table on which any number of stacks of blocks can be made. The
initial state and goal state are two different configurations of the blocks, the problem
is to rearrange the blocks into the goal configuration. The problem is clearly easy to
satisfy: one approach could just be to unstack all of the blocks onto the table and then
stack them into the goal configuration. However, solving the problem optimally is a
difficult task.

Using the problem generator of Thiebaux and Slaney [9], 100 random instances for
each size of problem between 5 and 11 blocks were generated, giving 700 instances in
total. The results are shown in Figure 2(a) (Maxplan) and in Figure 2(b) (Blackbox).
The numbers of unsolved instances are shown in Table 1.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
ax

pl
an

 T
im

e
(s

ec
)

meta- CSP Solver Time (sec)

meta- CSP Solver vs Maxplan

(a) Maxplan

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
la

ck
bo

x
T

im
e

(s
ec

)

meta- CSP Solver Time (sec)

meta- CSP Solver vs Blackbox

(b) Blackbox

Fig. 2. Combined blocksworld instances

Table 1. Numbers of failed instances in the blocksworld domain. There are 100 problems in each
problem set, making 700 in total.

Problem Set meta-CSP Blackbox Maxplan
5 blocks 0 0 4
6 blocks 0 0 0
7 blocks 0 0 0
8 blocks 0 0 0
9 blocks 0 0 0
10 blocks 0 0 54
11 blocks 0 1 52
Total 0 1 110

4.2 Driverlog

Driverlog is a logistics style planning domain, first used in the 2002 International Plan-
ning Competition. A Driverlog problem contains four types of object: locations, trucks,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 P. Gregory, D. Long, and M. Fox

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
ax

pl
an

 T
im

e
(s

ec
)

Meta- CSP Time (sec)

Meta- CSP vs. Maxplan

(a) Maxplan

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
la

ck
bo

x
T

im
e

(s
ec

)

Meta- CSP Time (sec)

Meta- CSP vs. Blackbox

(b) Blackbox

Fig. 3. Combined Driverlog instances

drivers and packages. Locations are connected by roads and paths. Drivers can walk
along paths, whilst trucks can drive along roads. However, trucks cannot drive down
paths, and drivers cannot walk in the road. Packages have to be transported in trucks,
and trucks need to be driven by a driver in order to move anywhere. The typical goal
in a Driverlog problem is to move a subset of all drivers, trucks and packages to some
locations.

The problem set for the Driverlog domain is generated by a custom generator. This
generator differs from the one used in the 2002 IPC in two major respects: it only
generates planar graphs for the underlying maps and there is no extra location situ-
ated between two locations joined by a path. These changes were made because planar
graphs more realistically model a road network and the extra locations vastly increase
the number of ground actions when walking actions are not often very important parts
of Driverlog plans. The instances generated are all single driver, single truck problems
with 15 locations. The parameter to be varied is the number of packages to be delivered.
Each package, the driver and the truck each have a goal location, not equal to its start lo-
cation. The number of packages is varied between 5 and 15, with 10 instances for each
size. The results are shown in Figure 3(a) (Maxplan) and in Figure 3(b) (Blackbox).
The numbers of unsolved instances are shown in Table 2.

4.3 Grid

The Grid problem has similarities with Driverlog, in that it is a transportation problem.
It does differ from it in some crucial ways. The layout of the problem is a grid, with
each location connected to adjacent locations up, down, left and right of it in the grid.
The cargo in the Grid problem are no longer passive objects whose only role in a plan
is to be moved between locations. The cargo in Grid is a number of keys, and to get
keys to their desired locations requires different locations to be unlocked. However, the
key that unlocks a location may not be the key that needs to be delivered to that same
location.

The Grid problem generator is supplied with the FF planning system [8]. The para-
meters of a Grid problem are x-dimension, y-dimension, number of keys (k#), number
of locks (l#) and number of different types of key. Four different size grids will be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 209

Table 2. Numbers of failed instances in the Driverlog domain. There are 10 problems in each
problem set, making 150 in total.

Problem Set meta-CSP Blackbox Maxplan
Driverlog 1 0 0 5
Driverlog 2 0 1 7
Driverlog 3 0 2 9
Driverlog 4 0 7 9
Driverlog 5 0 9 10
Driverlog 6 0 10 10
Driverlog 7 0 10 10
Driverlog 8 1 10 10
Driverlog 9 4 10 10
Driverlog 10 2 10 10
Driverlog 11 6 10 10
Driverlog 12 7 10 10
Driverlog 13 6 10 10
Driverlog 14 7 10 10
Driverlog 15 10 10 10
Total 43 119 140

Table 3. Numbers of failed instances in the Grid domain. There are 160 problems in each problem
set, making 640 in total.

Problem Set meta-CSP Blackbox Maxplan
grid 3 × 3 0 8 34
grid 3 × 4 4 23 51
grid 4 × 4 4 31 57
grid 4 × 5 13 40 66
Total 21 102 208

studied, 3 × 3, 3 × 4, 4 × 4, 4 × 5. In each of these sizes, there will be ten problems
generated for each of the following parameter sets: {(k#, l#) | k# ∈ {1, 2, 3, 4}, l# ∈
{1, 2, 3, 4}} giving 640 total instances. The results are shown in Figure 4(a) (Maxplan)
and in Figure 4(b) (Blackbox). The numbers of unsolved instances are shown in Table 3.

5 Discussion

Comparing the meta-CSP solver and Maxplan is the best way to evaluate the perfor-
mance of the meta-CSP model. This is because the major difference between the two
planners is which model they use (meta-CSP or purely the SAT encoding). However, for
the sake of completeness, it is important to compare the results with another SAT plan-
ner. The comparison with Blackbox reveals some curious results, well worthy of discus-
sion. These can provide some explanations of when it is better to use a forwards search
direction and when to use a backwards search direction. When viewing the graphs, it

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 P. Gregory, D. Long, and M. Fox

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
ax

pl
an

 T
im

e
(s

ec
)

Meta- CSP Solver Time (sec)

meta- CSP Solver vs Maxplan

(a) Maxplan

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
la

ck
bo

x
T

im
e

(s
ec

)

Meta- CSP Solver Time (sec)

meta- CSP vs Blackbox

(b) Blackbox

Fig. 4. Combined Grid instances

is important to consider how many problems were unsolved by each planner, as these
points cannot be plotted.

5.1 Comparisons with Maxplan

The results were consistently better than those of Maxplan. In all three domains, the
meta-CSP solver solves more instances that Maxplan. As shown in Table 1, Table 2 and
Table 3, of the 1490 instances, the meta-CSP solver solved 1426 (95.7%) compared
to the 458 (30.7%) that Maxplan solved. The graphs clearly show that, except for a
few instances, the meta-CSP solver out-performs Maxplan. The graph for the Driverlog
instances (Figure 3(a)) is very sparse, and hence not as informative as the other graphs.
It does illustrate how few instances Maxplan was able to solve in this domain, however.

In the Driverlog domain, Maxplan failed to solve any instances with 5 or more
parcels. For the meta-CSP solver, the first time the solver fails to solve all of the in-
stances was when there were 15 parcels to deliver. To put this in context, problems
with 5 parcels are seeded by a plan length of approximately 30 steps, whereas problems
with 15 parcels the seed plans are approximately 70 steps. Also in the Blocksworld
instances, Maxplan had started to fail 50 percent of the time for number of blocks 10
and 11, where the meta-CSP solver solved every instance. In the Grid problems, both
planners suffered difficulties for the more difficult problems, although the meta-CSP
solver fared better, solving 619 of the 640 instances, compared to the 432 problems that
Maxplan solved. There are several of the harder instances in the Grid domain in which
Maxplan performs better than the meta-CSP solver. Any inference that these points in-
dicate that Maxplan is scaling better are is incorrect, however, considering the numbers
of instances that remain unsolved by Maxplan.

The strongest results were gained in the Driverlog domain. The meta-CSP approach
is suited to this domain because firstly, some of the goals are often achievable early in
the plan (especially as the numbers of parcels increases). This means that the mainte-
nance of the noops has an important impact on the planning process. Another reason
the meta-CSP has an advantage is the fact that the schedule is tight. This means that
once a final achiever is decided, propagation is more likely to lead to an outcome than
if there was a lot of slack in the problem. Because these problems had only one truck

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 211

and one achiever, the decision over resource allocation had already been decided, there
was one choice.

As such, the scheduling decisions of when to deliver the packages was the key de-
cision. This is demonstrated in the fact that the meta-CSP solver can solver larger, and
more, instances than can Maxplan. In the Grid domain, other decisions that have no
relation to the top-level goals are also important and so performance was closer.

5.2 Comparisons with Blackbox

As with Maxplan, Blackbox solved fewer instances than the meta-CSP solver. In total,
Blackbox solved 1268 of the 1490 problems. At 85.1%, that is still more than 10%
fewer instances solved than the meta-CSP solver. As the graphs illustrate, however,
Blackbox usually performs better for the majority of the solved instances. There are
several reasons that Blackbox performs better. There are overheads that searching in a
backwards direction brings with it:

– Before search, the sub-optimal planner that is used to seed the plan has to solve
the problem. Although this is typically trivial, it can be an overhead on the total
planning time, especially for simple problems, or problems that FF can perform
badly on.

– Creating the SAT model is often the dominant part of the meta-CSP search time.
Because FF can often overestimate the optimal length greatly, twinned with the
fact that in its current implementation, the meta-CSP solver is reliant on Blackbox
writing the model to disk (often creating CNF files > 100MB), then just generating
the model can take a long time.

It would be disingenuous to leave the discussion there: the difference in performance
cannot be entirely down to these overheads. There is a more interesting question of
when searching backwards is better than searching forwards. Looking at the individual
domains, it can easily be seen that it was in Driverlog that the meta-CSP performs best.
Blackbox solved no problems with more than 5 parcels to deliver, the meta-CSP solver
even solved some problems with as many as 14 parcels. On the other hand, Blackbox
certainly performs better on most Blocksworld instances. The Blocksworld results are
split up to show how the planners performed with different numbers of blocks. Notice
that although most of the instances that are difficult for Blackbox are of the longest
plans, there are some cases where the plans are not that long but still difficult.

The results for 6, 8 and 10 blocks are shown in Figure 5 and they reveal some intrigu-
ing behaviour. The variance in the time it takes Blackbox to solve the instances seems to
increase with the numbers of blocks, whereas the meta-CSP time seems to remain more
stable. With 10 blocks, Blackbox still solves many instances quickly (< 1 second), but
others can take several hundred seconds. It seems somewhat intuitive that the meta-
CSP solver might solve longer plans faster than Blackbox. This intuition coming from
the fact that the meta-CSP solver begins with an overestimate, so a plan close to that
estimate is better. The graph of the 11 block instances is plotted again in Figure 6(a),
this time annotated with the optimal plan lengths, which range from 5 to 18 steps. To
explain this result, it is necessary to also look at a different measure, the distance be-
tween the first time the goals appear non-mutex in the planning-graph and the optimal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

212 P. Gregory, D. Long, and M. Fox

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
la

ck
bo

x
T

im
e

(s
ec

)

meta- CSP Solver Time (sec)

meta- CSP Solver vs Blackbox

(a) 6 Blocks

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
la

ck
bo

x
T

im
e

(s
ec

)

meta- CSP Solver Time (sec)

meta- CSP Solver vs Blackbox

(b) 8 Blocks

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
la

ck
bo

x
T

im
e

(s
ec

)

meta- CSP Solver Time (sec)

meta- CSP Solver vs Blackbox

(c) 10 Blocks

Fig. 5. Blocksworld instances partitioned by size

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

5,6,7
8,9,10

11,12,13
14,15,16,18

(a) Optimal lengths

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

0,1
2,3
4,5
6,7

(b) Distance from first goals

Fig. 6. 11 block annotated Blocksworld instances. The x-axes are the meta-CSP timings, the y-
axes represent the Blackbox timings.

plan length. This is shown in Figure 6(b). Notice that it is exactly those instances that
are distant from the first search layer, that the meta-CSP solver wins over Blackbox.
Only one instance that was in the 6, 7 range was solved faster by Blackbox than by the
meta-CSP solver. In the previous range (4, 5), the meta-CSP solver performs better than
Blackbox in 14 of 20 instances. There is a large cluster of results that Blackbox solved
in the range of 0.1 and 1 seconds that are all solvable either at, ar at the next timepoint
from, the time the goals first become reachable. So, it seems that problems that are solv-
able close to the level that the goals first become pairwise non-mutex are best solved by
Blackbox, but the more distant problems are best solved by the meta-CSP solver.

One reason this could be is that even when finding sub-optimal plans, the meta-CSP
solver is learning information about earlier layers through the learning mechanism of
the SAT solver. Blackbox does not remember information between layers, and therefore
will often consider the same incorrect choices at each subsequent layer. This result not
only provides a good argument for when the meta-CSP solver is better than Blackbox,
it suggests an explanation of when planning backwards in the planning-graph is more
effective than planning forwards. The best results obtained by the meta-CSP solver
were in the Driverlog domain. Driverlog is exactly the type of domain in which all of
the goals quickly become pairwise non-mutex, but where the actual optimal level is
quite distant from that point.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Meta-CSP Model for Optimal Planning 213

6 Related Work and Future Work

The idea of solving a problem using a meta-CSP model was used in the BLUEBLOCKER

system that optimally solves rectangle packing problems [10]. An interesting feature of
this solver is that it models the rectangle packing problem as a disjunctive temporal
network, and each assignment in the meta-CSP represents the partial ordering of the
rectangles to be packed. Only when a consistent partial ordering has been found, does
the system attempt to find a concrete solution, though there may not be a valid solution
even then.

Although competitive as a planner, there is clear space for development of the meta-
CSP solver. The meta-CSP solver currently has a variable ordering heuristic based on
the order of which the goals are achieved in the seed plan. Currently the meta-CSP
solver has no value ordering heuristic. Since the variables can have large domains (one
goal can have many achievers), an ordering heuristic on the values could provide a per-
formance increase. The meta-CSP model was motivated by the study of backdoors in
planning problems. An observation being that the key scheduling decision of when to
finally achieve a goal cannot be made explicitly in the SAT solver. The current solver
searches across achieving actions of the goals. This means that decisions are also being
made about how goals are achieved, and not just when they are achieved. So, the deci-
sions that the meta-CSP is making are of a very course granularity. It may be that the
key decisions regard mainly resource allocation, or scheduling, decisions. It has also
been noted that some key decisions are allocation decisions that are completely unre-
lated to the goals (for instance, the keys in the Grid domain). The meta-CSP could be
altered such that variables represent this finer-grained structure, simply when a goal is
achieved, or which resources are used in its achievement.

Finally, a closer integration with planning technology could add power to the meta-
CSP. One direction the authors would like to pursue is a study into how landmarks
analysis [11] could improve search. Landmarks could be added as constraints in the
meta-CSP, and because the plan length is bounded, more landmarks could potentially
be found.

7 Conclusions

We have introduced a novel reformulation of the planning problem. This is based on a
constraint model that searches across the final achievers of the goals of the problem. We
have shown this model to be competitive when compared to other state of the art SAT
planners. It has been shown to solve more instances than both Maxplan and Blackbox
across three domains: Blocksworld, Driverlog and Grid. Time performance is almost al-
ways greater than Maxplan on the instances that Maxplan can solve. Often performance
is worse than that of Blackbox, but it appears that this has much to do with the distance
from the first search layer. Our analysis shows that the performance of Blackbox can
degrade when plans are distant from the first time the goals appear non-mutex in the
planning-graph. The results also demonstrate the fact that making the key scheduling
decision of when to achieve a goal can improve the efficiency of search over a flat SAT
model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 P. Gregory, D. Long, and M. Fox

References

1. Helmert, M.: Complexity results for standard benchmark domains in planning. Artificial In-
telligence 143(2), 219–262 (2003)

2. Helmert, M.: New complexity results for classical planning benchmarks. In: Proceedings
of the Sixteenth International Conference on Automated Planning and Scheduling (ICAPS
2006), pp. 52–61 (2006)

3. Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceedings of
the 14th International Joint Conference on Artificial Intelligence (IJCAI 95), pp. 1636–1642
(1995)

4. Nebel, B., Dimopoulos, Y., Koehler, J.: Ignoring Irrelevant Facts and Operators in Plan Gen-
eration. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 338–350. Springer, Heidelberg
(1997)

5. Long, D., Fox, M.: Efficient implementation of the plan graph in STAN. Journal of Artificial
Intelligence Research 10, 87–115 (1999)

6. Kautz, H.A., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proceed-
ings of the Fifth International Conference on the Principle of Knowledge Representation and
Reasoning (KR’96), pp. 374–384 (1996)

7. Xing, Z., Chen, Y., Zhang, W.: Maxplan: Optimal planning by decomposed satisfiability
and backward reduction. In: Proceedings of the Fifth International Planning Competition,
International Conference on Automated Planning and Scheduling (ICAPS’06) (2006)

8. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research (JAIR) 14, 253–302 (2001)

9. Slaney, J., Thiebaux, S.: Linear time near-optimal planning in the blocks world. In: AAAI-
96. Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland,
Oregon, USA, pp. 1208–1214. AAAI Press / The MIT Press, Cambridge (1996)

10. Moffitt, M.D., Pollack, M.E.: Optimal Rectangle Packing: A Meta-CSP Approach. In: Pro-
ceedings of the 16th International Conference on Automated Planning and Scheduling, pp.
93–102 (2006)

11. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered Landmarks in Planning. Journal of Artificial
Intelligence Research (JAIR) 22, 215–278 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning

Timothy L. Hinrichs and Michael R. Genesereth

Stanford University
{thinrich,genesereth}@cs.stanford.edu

Abstract. Relational databases have had great industrial success in
computer science. The power of the paradigm is made clear both by
its widespread adoption and by theoretical analysis. Today, automated
theorem provers are not able to take advantage of database query en-
gines and therefore do not routinely leverage that source of power. Ex-
tensional Reasoning (ER) is an approach to automated theorem proving
where the machine automatically translates a logical entailment query
into a database, a set of view definitions, and a database query such that
the entailment query can be answered by answering the database query.
The techniques developed for ER to date are applicable only when the
logical theory is axiomatically complete. This paper discusses techniques
for reformulating an incomplete theory into a complete theory so that
Extensional Reasoning techniques can be applied.

1 Introduction

Relational databases are one of the most successful applications in computer sci-
ence, yet today’s theorem provers fail to capitalize on that success. Extensional
Reasoning (ER)[1] is an approach to automated theorem proving where the sys-
tem automatically transforms a logical entailment query into a database (a set
of extensionally defined tables), a set of view definitions (a set of intensionally
defined tables), and a database query. Extensional Reasoning has been shown
to have powerful properties in the case of axiomatically complete theories, e.g.
orders of magnitude performance improvement and more predictable run-time
behavior than traditional techniques. This paper examines techniques for Ex-
tensional Reasoning that reformulate incomplete theories into complete theories
to achieve those same benefits.

Because theory-completion in the context of Extensional Reasoning is per-
formed solely for the sake of efficiency, there are constraints on how the theory
can be completed. To preserve soundness and completeness, a theory must be
completed so that any entailment query about the original theory can be trans-
formed into an entailment query about the completed theory where the answers
to the queries are the same. Handling incomplete theories in Extensional Rea-
soning therefore requires developing two transformation algorithms: one for the
query and one for the theory.

For example, suppose we have the query ∀x.(p(x) ⇒ q(x)) and the following
set of sentences about p and q.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 T.L. Hinrichs and M.R. Genesereth

∀x.(x = a ∨ x = b)
a �= b
¬p(a)
¬q(a)
q(b)

This premise set is incomplete because neither p(b) nor ¬p(b) is entailed;
however, the universal query ∀x.(p(x) ⇒ q(x)) is entailed. For Extensional Rea-
soning the premise set is converted into a complete theory that consists of two
definitions: one for all the possible (consistent) values of p and one for all the
possible values of q. The query is then rewritten in terms of those definitions.

∀x.(possp(x)(x) ⇒ possq(x)(x))

possp(x) is defined so that possp(x)(t) is true for all those t where p(t) is
consistent with the premise set; likewise for possq(x). Since every ground atom
is either consistent with the premises or not, the definitions for possp(x) and
possq(x) are complete.

possp(x)(x) ⇔ (x = b)
possq(x)(x) ⇔ (x = b)

The poss version of the query is entailed by the definitions for possp(x) and
possq(x) if and only if the original entailment query holds. By converting an
incomplete theory to a complete theory about poss and rewriting the query in
terms of poss, Extensional Reasoning can be employed to answer entailment
queries about incomplete theories. This approach uses what is possible to infer
what is necessarily true.

Similar techniques for theory completion (or perhaps more accurately theory
minimization) have been studied to great extent in the Nonmonotonic Reason-
ing literature, e.g. the Closed-World Assumption[2], Predicate Completion[3],
Circumscription[4]. Unlike Extensional Reasoning, these settings assume it is
acceptable (and in fact desirable) for the reformulation to change the logical con-
sequences of the theory. In contrast, ER completion is consequence-preserving
in the sense described above, thus making the Nonmonotonic work insufficient
for the purpose of ER.

While we hope Extensional Reasoning will eventually be applied to a wide
variety of logics, for the time being we have elected to focus on theories in a
decidable logic, placing the issue of efficiency front and center. The particular
logic we are studying is a fragment of first-order logic that is a perennial problem
in the theorem proving community: it includes the domain closure axiom, which
guarantees decidability while allowing arbitrary quantification. This logic, to
which the example above belongs, allows us to avoid issues of undecidability
at this early stage in the development of Extensional Reasoning, while at the
same time giving us the opportunity to make progress on an important class of
problems. It should be noted that this logic can be translated into propositional
logic, which allows entailment queries to be answered with a SAT solver; however,
the naive translation is exponential.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 217

Orthogonal to the choice of logic, Extensional Reasoning can be applied in a
variety of settings that differ in the way efficiency is measured. Our work thus far
measures efficiency the same way the theorem proving community does. Once
the machine has been given a premise set and a query the clock starts; the clock
stops once the machine returns an answer. We do not amortize reformulation
costs over multiple queries, and we do not assume the premises or query have
ever been seen before or will ever be seen again.

This paper presents theory-completion techniques that run in linear or
quadratic time and allow Extensional Reasoning to be performed on theories
whose incomplete portion is ground. The intent is to use fast reformulation
algorithms that put most of the burden for answering the entailment query on
industrial-strength database algorithms, thereby leveraging the many man-hours
spent developing them. Our technical contributions can be found in the sections
on query rewriting (4) and theory completion (5). The remaining sections discuss
background (2), examples (3), and future work (6).

2 Background

In our investigations of Extensional Reasoning thus far, the logic we have con-
sidered is function-free first-order logic with unique names axioms (UNA) and a
domain closure axiom (DCA). The UNA state that every pair of distinct object
constants in the vocabulary is unequal. The DCA states that every object in
the universe must be one of the object constants in the vocabulary. Together,
the UNA and DCA ensure that the only models that satisfy a given set of sen-
tences are the Herbrand models of those sentences, and because the language is
function-free, every such model has a finite universe. We call this logic Finite
Herbrand Logic (FHL). It is noteworthy that entailment in FHL is decidable.

Besides the existence of UNA and a DCA, the definitions for FHL are the
same as those for function-free first-order logic. Terms and sentences are defined
as usual. We say a sentence is closed whenever it has no free variables, and an
open sentence has at least one free variable. The definition for a model is the
usual one, but because all the models of FHL are finite Herbrand models, it is
often convenient to treat a model as a set of ground atoms. When we do that,
satisfaction is defined as follows.

Definition 1 (FHL Satisfaction). The definition for the satisfaction of closed
sentences, where the model M is represented as a set of ground atoms, is as
follows.

|=M s = t if and only if s and t are syntactically identical.
|=M p(t1, . . . , tn) if and only if p(t1, . . . , tn) ∈ M
|=M ¬ψ if and only if �|=M ψ
|=M ψ1 ∧ ψ2 if and only if |=M ψ1 and |=M ψ2
|=M ∀x.ψ(x) if and only if |=M ψ(a) for every object constant a.

An open sentence φ(x1, . . . , xn) with free variables x1, . . . , xn is satisfied by M
if and only if ∀x1 . . . xn.φ(x1, . . . , xn) is satisfied by M according to the above
definition.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 T.L. Hinrichs and M.R. Genesereth

A set of sentences in FHL constitutes an incomplete theory whenever there
is more than one Herbrand model that satisfies it. A set of sentences in FHL
constitutes a complete theory whenever there is at most one Herbrand model
that satisfies it. Logical entailment is defined as usual: Δ |= φ in FHL if and
only if every model that satisfies Δ also satisfies φ.

In this paper, we demonstrate how to transform an entailment query about
an incomplete theory into an entailment query about a complete theory, with
the eventual goal of transforming the complete theory into a database system.
Consequently, the complete theories we will be targeting have a specific form
that makes conversion to a database system straightforward. Every set of sen-
tences constituting a complete theory in this paper will be a set of biconditional
definitions such that no predicate is ever (transitively) defined in terms of itself,
i.e. a set of nonrecursive biconditional definitions.

Definition 2 (Biconditional Definition). A biconditional definition is a sen-
tence of the form r(x) ⇔ φ(x), where r is a predicate, x is a nonrepeating se-
quence of variables, and φ(x) is a sentence with free variables x. We refer to
r(x) as the head and φ(x) as the body.

Definition 3 (Nonrecursive biconditional definitions). A set of bicondi-
tional definitions Δ is nonrecursive if and only if the graph 〈V, E〉 is acyclic.

V : the set of predicates in Δ
E : 〈p, q〉 is a directed edge if and only if there is a biconditional in Δ with p

in the head and q in the body.

Theorem 1 (Biconditional Completeness [1]). Suppose Δ is a finite set
of nonrecursive, biconditional definitions in FHL, where there is exactly one
definition for each predicate in Δ and no definition for =. Δ is complete.

3 Example

In the case of complete theories, Extensional Reasoning can produce substantial
speedups when compared to traditional techniques. Consider the following set of
nonrecursive biconditional definitions that state which of the squares in Fig. 1
are located to the west of which other squares.

westof(x, y) ⇔ (duewest(x, y) ∨ ∃z.(samecolumn(x, z) ∧ duewest(z, y)))
samecolumn(x, y) ⇔ (duenorth(x, y) ∨ duenorth(y, x))

duewest(x, y) ⇔

⎛
⎝onewest(x, y) ∨

∃z.(onewest(x, z) ∧ onewest(z, y)) ∨
∃zw.(onewest(x, z) ∧ onewest(z, w) ∧ onewest(w, y))

⎞
⎠

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 219

Fig. 1. A Wumpus World snapshot with a shine to the west and a stench to the east

duenorth(x, y) ⇔

⎛
⎝onenorth(x, y) ∨

∃z.(onenorth(x, z) ∧ onenorth(z, y)) ∨
∃zw.(onenorth(x, z) ∧ onenorth(z, w) ∧ onenorth(w, y))

⎞
⎠

onewest(x, y) ⇔
(

(x = a ∧ y = b) ∨ (x = b ∧ y = c) ∨ (x = c ∧ y = d) ∨
(x = e ∧ y = f) ∨ (x = f ∧ y = g) ∨ . . .

)

onenorth(x, y) ⇔
(

(x = a ∧ y = e) ∨ (x = e ∧ y = i) ∨ (x = i ∧ y = m) ∨
(x = b ∧ y = f) ∨ (x = f ∧ y = j) ∨ . . .

)

Translating this set of biconditionals into a database system requires linear
time. We compared the time required to answer the query westof(a, p) using
the axioms as written above and Prover91, Otter’s successor, with the database
version and a homegrown implementation of top-down datalog¬ [5]. Prover9
found a proof in about 300 seconds, and the datalog¬ implementation found an
answer in 0.017 seconds (including translation), a speedup factor of 104. We also
compared times for the query westof(a, m), which is not entailed. Prover9 ran
for over 30 minutes without finishing, and the datalog¬ implementation finished
in 0.022 seconds, a speedup factor of at least 105.

Answering the database version of the query can sometimes be much faster
because the knowledge captured in the classical logic sentences has been orga-
nized into a special form that is amenable to processing. In a database system,
every predicate corresponds to exactly one table, and the system differentiates
between the explicit (extensional) predicates and the implicit (intensional) predi-
cates. Extensionally defined tables can be reasoned about very efficiently because
of smart indexing; intensionally defined tables can be reasoned about efficiently
because negation as failure is used.

Thus, using the techniques introduced in [1], complete theories can be rea-
soned about very efficiently using database systems. However, if one were to add
even just a small amount of incompleteness into a complete theory by extending
the theory with new predicates, those techniques could no longer be applied.
This is unfortunate since the speedups in the complete case seem to be large
enough to absorb some extra overhead for dealing with incomplete theories.

1 http://www.cs.unm.edu/∼mccune/prover9/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 T.L. Hinrichs and M.R. Genesereth

For example, suppose we add to the theory above the following set of
sentences.

gold(x) ∧ gold(y) ⇒ x = y
gold(a) ∨ gold(f) ∨ gold(i)
wumpus(x) ∧ wumpus(y) ⇒ x = y
wumpus(h) ∨ wumpus(k) ∨ wumpus(p)

Together these axioms describe the snapshot of Wumpus World shown in
Fig. 1, where an agent has visited two locations. Recall that the Wumpus World
contains a hidden pile of gold, the object that is sought, and a hidden wumpus,
the beast to be avoided. The percepts sensed in the western cell indicate the
gold is in cell a, f , or i, and the percepts in the eastern cell indicate the wumpus
is in cell h, k, or p. Consider then the entailment query, “Is the gold situated to
the west of the wumpus?”

∀xy.(gold(x) ∧ wumpus(y) ⇒ westof(x, y))

Clearly the answer is yes since each of the possible gold locations (a, f , and i)
is situated to the west of all the possible wumpus locations (h, k, and p).

To answer this query using Extensional Reasoning techniques, we must con-
struct a complete theory that faithfully represents the original. Our approach is
to construct complete definitions for new predicates that represent all the pos-
sible values for the incomplete predicates. The entailment query is rewritten so
that it is expressed in terms of these new predicates.

Consider just the sentences involving gold.

gold(x) ∧ gold(y) ⇒ x = y
gold(a) ∨ gold(f) ∨ gold(i)

We construct a predicate, possgold(x)(x) that represents all the gold tuples that
are consistent with the gold sentences above. In this case, gold(a), gold(f), and
gold(i) are the only consistent gold atoms.

possgold(x)(x) ⇔ (x = a ∨ x = f ∨ x = i)

Similar reasoning concludes that posswumpus(x) is true of h, k, and p.

posswumpus(y)(y) ⇔ (y = h ∨ y = k ∨ y = p)

The original entailment query, “Is the gold situated to the west of the wum-
pus?” is written in terms of possgold(x) and posswumpus(y).

∀xy.(possgold(x)(x) ∧ posswumpus(y)(y) ⇒ westof(x, y))

Because this query is about a complete theory (the biconditional definitions
for westof , and the two biconditionals for possgold(x) and posswumpus(x)), Ex-
tensional Reasoning techniques can be applied to answer the query using a data-
base system. We compared the time required to answer the query using the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 221

westof , gold, and wumpus axioms and Prover9 with the westof , possgold(x),
and posswumpus(y) axioms and our datalog¬ implementation. Prover9 found a
proof in about 350 seconds, and the datalog¬ implementation found an answer
in 0.050 seconds, a speedup factor of 103. For the query, “Is the wumpus situated
to the west of the gold?”, which is not entailed, Prover9 ran for over 35 minutes
without finishing, and the datalog¬ implementation finished in 0.020 seconds, a
speedup factor of at least 105.

This transformation of an incomplete theory to a complete poss theory can
be applied in general settings having nothing to do with the Wumpus World.
This paper introduces techniques for performing that transformation, using the
Wumpus World to illustrate throughout.

4 Reformulating the Query

Satisfiability has long been used in refutational theorem proving to answer logical
entailment queries: Δ |= φ if and only if Δ ∪ {¬φ} is unsatisfiable. Satisfiability
is usually leveraged solely at the meta-level by people who are trying to justify
the soundness and completeness of proof systems. In contrast, the techniques pre-
sented here use satisfiability within the logical theory, resulting in proof systems
reasoning about satisfiability directly. The central activities required for this ap-
proach are the construction and manipulation of definitions for new predicates,
each of which represents the satisfiability of a particular sentence in combina-
tion with a background theory. possφ, a predicate representing the satisfiability
of sentence φ, is true if and only if φ is consistent with the theory Δ. When
φ(x) has n free variables x, its poss predicate takes n arguments and is true of
t exactly when φ(t) is consistent with Δ.2

For example, suppose we wanted to know whether the following sentence were
consistent with the Wumpus World theory illustrated in Sect. 3.

∃xy.(gold(x) ∧ wumpus(y) ∧ ¬westof(x, y))

In the Extensional Reasoning approach, we would first construct a definition for
the 0-ary predicate

poss∃xy.(gold(x)∧wumpus(y)∧¬westof(x,y))

then convert that definition into a database system, and finally determine satis-
fiability by posing the database query poss∃xy.(gold(x)∧wumpus(y)∧¬westof(x,y)).

This particular satisfiability query is relevant to the Wumpus World example
from the last section because its negation is the entailment query posed there,
“Is the gold situated to the west of the wumpus?” Thus, if the above query is
inconsistent with the premises then the entailment query must be true. Because
2 In this paper, instead of writing out n variables as x1, . . . , xn, we will write x; likewise

terms t1, . . . , tn will be written t. Sometimes a predicate will take some number of
variables that we will want to group together; we will use similar shorthand. For
example, p(x1, . . . , xn, y1, . . . , ym) will be written p(x, y).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 T.L. Hinrichs and M.R. Genesereth

the definition for possφ is always complete, the above query is inconsistent if
and only if the following is true.

¬poss∃xy.(gold(x)∧wumpus(y)∧¬westof(x,y))

More generally, Δ |= φ if and only if ¬poss¬φ is true. This conversion of an
entailment query into a poss query is thus straightforward and can be applied to
every query, but the construction of poss definitions is more complicated. The
remainder of this section demonstrates how to simplify a poss query to make
constructing its definition easier.

Formally, the algorithm that constructs poss definitions, which we call
poss-construction, must abide by the following constraints.

Definition 4 (poss-construction). poss-construction[φ(x), Δ] is an oper-
ation on a sentence φ(x) with free variables x and a set of sentences Δ that
produces a typed, complete definition for possφ(x)(x) such that possφ(x)(t) is
true if and only φ(t) is consistent with Δ. possφ(x)(x) is typed so that it only
applies to object constants in Δ.

Note that possφ and possψ are logically equivalent if φ and ψ are logically
equivalent. This is the property of poss discussed earlier that allows us to equate
the two predicates shown below.

¬poss¬∀xy.(gold(x)∧wumpus(y)⇒westof(x,y))
⇔ ¬poss∃xy.(gold(x)∧wumpus(y)∧¬westof(x,y))

As a rule of thumb, the definition for possφ is easier to construct the shorter
the sentence φ. Fortunately, possφ can sometimes be broken up into predicates
possφ1 , . . . , possφn so that φi is shorter than φ for every i. For example, it turns
out that poss can be distributed across existential quantifiers: poss∃x.φ(x) is
equivalent to ∃x.possφ(x)(x).

Theorem 2 (poss distributes over ∃). In FHL, poss∃x.φ(x,y)(y) is logically
equivalent to ∃x.possφ(x,y)(x, y).

Proof. (⇒) Suppose poss∃x.φ(x,y)(t) is true. Then there is some model M that
satisfies ∃x.φ(x, t), which ensures there is some object constant u such that
|=M φ(u, t) since Δ is in FHL. By the definition of poss, possφ(x,y)(u, t) must
therefore be true, which implies ∃x.possφ(x,y)(x, t) must be true.

(⇐) Suppose ∃x.possφ(x,y)(x, t) is true. Then because of FHL semantics and
the completeness of poss definitions, there is some u such that possφ(x,y)(u, t) is
true. By the definition of poss, there must be some model that satisfies φ(u, t).
That same model certainly satisfies ∃x.φ(x, t), and serves as a witness for the
fact that poss∃x.φ(x,y)(t) is true.

Because we have shown equivalence for all instances of the theorem, by Her-
brand semantics, we have proven the theorem. ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 223

Continuing the Wumpus World example, we can distribute poss across the ex-
istential quantifier.

¬poss∃xy.(gold(x)∧wumpus(y)∧¬westof(x,y))
⇔ ¬∃xy.possgold(x)∧wumpus(y)∧¬westof(x,y)(x, y)

Because poss distributes across existential quantifiers, it is not surprising that
it distributes over disjunction because in FHL the two are interconvertible.

Theorem 3 (poss distributes over ∨). In FHL, possφ(x,y)∨ψ(x,z)(x, y, z) is
logically equivalent to possφ(x,y)(x, y) ∨ possψ(x,z)(x, z).

Proof. (⇒) Suppose possφ(x,y)∨ψ(x,z)(t1, t2, t3) is true. Then there is some model
M that satisfies φ(t1, t2) ∨ ψ(t1, t3). By the definition of disjunction, M must
therefore satisfy either disjunct or both disjuncts. If the model satisfies only one
of the disjuncts, then certainly poss for that disjunct is true, ensuring the dis-
junction of the two poss statements is true. If the model satisfies both, then the
conjunction of the two poss statements is true, which ensures their disjunction
is also true. In either case, possφ(x,y)(t1, t2) ∨ possψ(x,z)(t1, t3) is true.

(⇐) Suppose possφ(x,y)(t1, t2) ∨ possψ(x,z)(t1, t3) is true. Then either there is
a model that satisfies φ(t1, t2) or there is a model that satisfies ψ(t1, t3) or there
is a model that satisfies both. In the first case, since the model satisfies φ(t1, t2),
it must satisfy every disjunction including it as a disjunct. That model must
therefore satisfy φ(t1, t2)∨ψ(t1, t3). Likewise for the second case. The third case
guarantees the existence of a model that satisfies the conjunction and therefore
the disjunction. Therefore, in all three cases, we know that there is a model that
satisfies φ(t1, t2) ∨ ψ(t1, t3), which means possφ(x,y)∨ψ(x,z)(t1, t2, t3) is true.

Because we have shown equivalence for all instances of the theorem, by Her-
brand semantics, we have proven the theorem. ��

It turns out that poss does not always distribute over universal quantifiers, con-
junction, or negation. If poss did distribute over negation, it would also distribute
over universal quantifiers and conjunction; hence, the counterexample of nega-
tion is the most important. Consider the propositional sentence p in a theory
where both p and ¬p are consistent. In this theory both poss¬p and possp are
true. If poss could be distributed over ¬, then poss¬p implies ¬possp, which
contradicts the fact that possp is true.

Nevertheless, when comparing the Wumpus World poss query above with a
logically equivalent rewriting of the query from Sect. 3, shown below, we see that
poss can be distributed over conjunction in certain circumstances.

¬∃xy.(possgold(x)(x) ∧ posswumpus(y)(y) ∧ ¬westof(x, y))

Intuitively, the possible locations for the gold are entirely independent of the
possible locations for the wumpus. This intuition is materialized syntactically
by the fact that the sentences constraining gold never mention wumpus, and
the sentences constraining wumpus never mention gold. Thus if gold(t) were
satisfied by some model and wumpus(u) were satisfied by some model, there

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

224 T.L. Hinrichs and M.R. Genesereth

must be some model that satisfies gold(t) ∧ wumpus(u). We say that two such
sentences are independent.

Definition 5 (Sentence Independence). Let Δ be a sentence set in FHL and
φ(x, z) and ψ(y, z) be sentences whose vocabularies are subsets of the vocabulary
of Δ that share the variables z. φ(x, z) and ψ(y, z) are independent with respect
to Δ if and only if for every tuple of object constants t, u, and v, if φ(t, v)
is consistent with Δ and ψ(u, v) is consistent with Δ then φ(t, v) ∧ ψ(u, v) is
consistent with Δ.

Whenever two sentences are independent, poss distributes over their conjunction.

Theorem 4 (poss Distributes over Conjunctions of Independent Sen-
tences). In FHL, suppose φ(x, z) and ψ(y, z) are independent with respect to Δ.
Then possφ(x,z)∧ψ(y,z)(x, y, z) is equivalent to possφ(x,z)(x, z) ∧ possψ(y,z)(y, z).

Proof. (⇒) Suppose possφ(x,z)∧ψ(y,z)(t, u, v) is true. Then there is some model
that satisfies φ(t, v) ∧ ψ(u, v). That same model must then also satisfy φ(t, v)
and ψ(u, v) individually, ensuring possφ(x,z)(t, v) and possψ(y,z)(u, v) are both
true. Thus, their conjunction is true.

(⇐) Suppose possφ(x,z)(t, v) ∧ possψ(y,z)(u, v) is true. Then there must be
some model that satisfies φ(t, v) and some model that satisfies ψ(u, v). By the
independence of φ(x, z) and ψ(y, z), since φ(t, v) is consistent with Δ and ψ(u, v)
is consistent with Δ, φ(t, v) ∧ ψ(u, v) is consistent with Δ. Hence,
possφ(x,z)∧ψ(y,z)(t, u, v) is true.

Because we have shown equivalence for all instances of the theorem, by Her-
brand semantics, we have proven the theorem. ��

In light of the last theorem, independence is an important property. One suf-
ficient condition for determining whether p(x, z) and q(y, z) are independent is
syntactic: if the constraints on two predicates never (transitively) mention the
other predicate (where predicates with complete definitions can be ignored) then
the two predicates are independent. Formally, this condition can be defined by
examining the dependency graph of a sentence set.

Definition 6 (Undirected Dependency Graph). AnUndirectedDependency
Graph for a set of sentences Δ is a graph 〈V, E〉.

– u ∈ V if and only if u is a predicate in Δ without a complete definition

– The undirected edge (u, v) is in E if and only if there is some sentence in Δ
that uses both the predicates u and v.

Theorem 5 (Syntactic Independence). Let Δ be a satisfiable set of FHL
sentences, and let G be its Undirected Dependency Graph. Suppose that in G
each of the predicates used in φ(x, z) is in a different connected component than
every predicate in ψ(y, z). Then φ(x, z) and ψ(y, z) are independent with respect
to Δ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 225

Connected components can be computed in time linear in the size of the Undi-
rected Dependency Graph, and this graph is linear in the size of Δ.3 Given the
components, checking syntactic independence of two sentences is linear in their
size.

Going back to the Wumpus World example, syntactic independence guar-
antees that gold, wumpus, and westof are all independent. This pushes the
simplification one step further than before.

¬∃xy.possgold(x)∧wumpus(y)∧¬westof(x,y)(x, y)
⇔ ¬∃xy.(possgold(x)(x) ∧ posswumpus(y)(y) ∧ poss¬westof(x,y)(x, y))

The final step requires one more theorem. westof is a predicate with a com-
plete definition. Just as independence affects the properties of poss, completeness
affects those properties as well, and to an even greater extent. (1) A sentence
that is complete is independent of every other sentence. (2) possφ is logically
equivalent to φ when φ is complete.

Theorem 6 (Completeness Guarantees Independence). Let Δ be a sat-
isfiable set of FHL sentences complete with respect to φ(x), i.e. for every tuple of
object constants t, Δ |= φ(t) or Δ |= ¬φ(t). Then φ(x) is independent of every
other sentence ψ with respect to Δ.

Proof. Suppose that both φ(t) and ψ are individually consistent with Δ. Then
there must be a model M that satisfies φ(t) and a model N that satisfies ψ.
Because Δ entails either φ(t) or ¬φ(t) and M satisfies φ(t), Δ must entail φ(t)
(for M is a countermodel to Δ |= ¬φ(t)). Therefore, every model that satisfies
Δ must satisfy φ(t), including N . Hence, N must satisfy both φ(t) and ψ. Since
the argument was made for an arbitrary t, it holds for all t, and by Herbrand
semantics, φ(x) and ψ must therefore be independent wrt Δ. ��

Theorem 7 (Completeness and poss Redundancy). Let Δ be a satisfiable
set of FHL sentences complete with respect to φ(x), i.e. for all tuples t of object
constants in Δ, Δ entails φ(t) or Δ entails ¬φ(t). Then

Δ ∪ {poss-construction[φ(x), Δ]} |= possφ(x)(x) ⇔ φ(x)

Proof. (⇒) Suppose possφ(x)(t) is true. Then there is some model M that satis-
fies φ(t). Because Δ entails either φ(t) or its negation, Δ must entail φ(t) since
in the other case M is a countermodel.

(⇐) Suppose Δ |= φ(t). Then because Δ is satisfiable, there is some model
that satisfies Δ and, because entailment holds, that model satisfies φ(t). Thus,
possφ(x)(t) is true.

Because we have shown equivalence for all instances of the theorem, by Her-
brand semantics, we have proven the theorem. ��
3 Technically, an Undirected Dependency Graph might require a quadratic number of

edges but there is a linear graph sufficient for the purpose of computing connected
components.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 T.L. Hinrichs and M.R. Genesereth

Applying these two theorems to simplify a poss query requires knowing which
predicates have complete definitions in the theory. The algorithm investigated
in [1] detects whether an entire theory is complete using a variation of the well-
known CFG algorithm for checking emptiness. A simple variant of that procedure
is an anytime algorithm that attempts to find the predicates in a theory that
have complete definitions and when run to completion costs low-order polynomial
time in the size of the theory.

In the context of Wumpus World, the results above guarantee that (1) westof
is independent of every other sentence and (2) poss¬westof(x,y)(x, y) is logically
equivalent to ¬westof(x, y). Using all the theorems in this section, we see the
following sequence of poss simplifications of the Wumpus World query.

Δ |= ∀xy.(gold(x) ∧ wumpus(y) ⇒ westof(x, y))
⇔ ¬poss¬∀xy.(gold(x)∧wumpus(y)⇒westof(x,y)) (poss Semantics)
⇔ ¬poss∃xy.(gold(x)∧wumpus(y)∧¬westof(x,y)) (Log. Equiv.)
⇔ ¬∃xy.possgold(x)∧wumpus(y)∧¬westof(x,y)(x, y) (Distr. over ∃)
⇔ ¬∃xy.(possgold(x)(x) ∧ posswumpus(y)(y) ∧ poss¬westof(x,y)(x, y)) (Distr. over ∧)
⇔ ¬∃xy.(possgold(x)(x) ∧ posswumpus(y)(y) ∧ ¬westof(x, y)) (poss Redundancy)
⇔ ∀xy.(possgold(x)(x) ∧ posswumpus(y)(y) ⇒ westof(x, y)) (Log. Equiv.)

As demonstrated in this section, any logical entailment query can be written
as a poss query, and a poss query can sometimes be simplified by distributing
poss over logical connectives, thereby reducing the complexity of constructing
poss definitions. With the exception of the completeness computation, the sim-
plifications take time linear in the size of the poss sentence after spending time
linear in the size of the theory to compute which predicates are independent.

5 Completing the Theory

The previous section demonstrated how to transform an entailment query into a
poss query and enumerated some of the properties of poss that allow such a query
to be simplified. That simplification is important because it makes constructing
definitions for poss more efficient. Constructing poss definitions is a form of
theory-completion because every proper poss definition is complete: every sen-
tence is either consistent with a background theory or it is inconsistent with that
theory. This section demonstrates how to construct poss definitions for ground
clauses, where the cost of reformulation is quadratic.

Consider a set of ground clauses that constrain a single predicate p, where we
use [¬]p(. . .) to indicate that the literal may or may not be negated.

[¬]p(t11) ∨ . . . ∨ [¬]p(t1n1)
...

[¬]p(tm1) ∨ . . . ∨ [¬]p(tmnm)

Suppose we want to construct a definition for possp(x)(x), i.e. a sentence
φ(x) with free variables x such that φ(t) is true if and only if p(t) is consistent
with the clauses above. First notice that this set of disjunctions is satisfiable if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 227

and only if we can select one literal from each disjunction so that a literal and
its negation are not both selected. p(t) is satisfiable and therefore possp(x)(t)
is true if and only if there is a satisfying selection of literals that does not
include ¬p(t).

To construct a definition for possp(x)(x), we take advantage of these
observations by writing logical sentences that check whether there is a satis-
fying selection of literals that does not include ¬p(t). Because that check re-
quires analyzing the structure of the disjunctions at the metalevel, we reify the
structure so that analysis can take place within the logic. For each disjunction
[¬]p(ti1) ∨ . . . ∨ [¬]p(tini) we invent a new object constant, conveniently spelled
±ti1 . . . ± tini where the ± means that a + is used if the literal is positive and
a − is used if the literal is negative. In addition, we impose an ordering on the
disjunctions. The new binary predicate d is true of 〈k, c〉 if and only if c is the
object constant representing the kth disjunction.

d(x, y) ⇔

⎛
⎝ (x = 1 ∧ y = ±t11 . . . ± t1n1)

∨ . . . ∨
(x = m ∧ y = ±tm1 . . . ± tmnm)

⎞
⎠

This reification technique encodes incomplete information within a complete
definition. To extract that incomplete information, we use part, which also has a
complete definition. part is a ternary predicate such that part(±ti1 . . .±tini , x, y)
is true whenever y is one of the tij and x is its corresponding sign, i.e. + or -.

Using d and part, we can construct a definition for all consistent selections of
literals from the m disjunctions, where one literal is selected per disjunction. The
definition of sat1 is naturally recursive. Suppose we had a selection of literals
from the last m − 1 disjunctions. Then to select a literal from the remaining
disjunction requires simply finding a literal that is consistent with the selection
so far. The definition for selection from the last m − i disjunctions depends
on a definition for selecting from the last m − (i + 1) disjunctions. Often such a
definition is written recursively, but because at the time this definition is written,
the number of disjunctions is known, we can instead unroll the recursion and
write m definitions. This unrolling is important because when the definitions
are nonrecursive, they comprise a complete theory, which is the goal of this
reformulation.

sat1(x1, y1, . . . , xm, ym) ⇔

⎛
⎜⎜⎜⎜⎜⎜⎝

∃z.(d(1, z) ∧ part(z, x1, y1)) ∧
sat2(x2, y2, . . . , xm, ym) ∧
(y1 = y2 ⇒ x1 = x2) ∧
(y1 = y3 ⇒ x1 = x3)
∧ . . . ∧
(y1 = ym ⇒ x1 = xm)

⎞
⎟⎟⎟⎟⎟⎟⎠

...
satm(xm, ym) ⇔ ∃z.(d(m, z) ∧ part(z, xm, ym))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

228 T.L. Hinrichs and M.R. Genesereth

Finally we need a definition for possp(x)(x) that is true whenever there is some
sat1 where none of the arguments are x with sign −.

possp(x)(x) ⇔ ∃x1, y1, . . . , xm, ym.

⎛
⎜⎜⎝

sat1(x1, y1, . . . , xm, ym) ∧
¬(x1 = − ∧ y1 = x)
∧ . . .∧
¬(xm = − ∧ ym = x)

⎞
⎟⎟⎠

A constraint that says p may be true of no more than n tuples can be han-
dled by checking whether a satisfying selection of literals contains more than n
positive literals or not.

To illustrate, we use the Wumpus World, which includes ground clauses and
size constraints for gold and wumpus. Consider just the gold sentences.

gold(a) ∨ gold(f) ∨ gold(i)
gold(x) ∧ gold(y) ⇒ x = y

Because there is a single ground disjunction, the definitions for d and part are
particularly simple.

d(x, y) ⇔ (x = 1 ∧ y = +a + f + i)

part(x, y, z) ⇔

⎛
⎝ (x = +a + f + i ∧ y = + ∧ z = a) ∨

(x = +a + f + i ∧ y = + ∧ z = f) ∨
(x = +a + f + i ∧ y = + ∧ z = i)

⎞
⎠

Because there is one ground clause, there is just one sat predicate.

sat1(x1, y1) ⇔ ∃z.(d(1, z) ∧ part(z, x1, y1))

The definition for possgold(x)(x) is shown here, and takes into account the fact
that there can be only one value for gold.

possgold(x)(x) ⇔ ∃x1y1.

⎛
⎝ sat1(x1, y1) ∧

¬(x1 = − ∧ y1 = x) ∧
¬(x1 = + ∧ y1 �= x)

⎞
⎠

In general, the definitions prescribed in this section are fairly efficient to com-
pute. The definitions for d and part cost time linear in the size of the clause set.
The sat definitions altogether cost time quadratic in the number of clauses, and
the cost of computing possp(x)(x) is linear in the number of clauses.

This poss definition construction can be generalized to handle ground clauses
that constrain multiple predicates by including information in the new object
constants about not only the sign of the tuple but also the predicate it belongs
to, and the same complexity analysis holds.

6 Conclusion and Future Work

Extensional Reasoning is a promising new approach to automated theorem prov-
ing that leverages one of the most successful applications of logic today: the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulation for Extensional Reasoning 229

relational database. The two key insights discussed in this paper are (1) how
poss can be used to apply Extensional Reasoning to entailment queries about
incomplete theories and (2) how poss definitions can be constructed efficiently
by creating new object constants that represent syntactic features of an axiom
set. By reformulating a theory into a complete theory about poss, and rewriting
the query in terms of poss, ER techniques developed for complete theories can
sometimes be leveraged to answer entailment queries orders of magnitude more
quickly than traditional techniques.

The first and most obvious extension to the work presented here is an expan-
sion of the class of theories that can be completed using poss. Ground clauses
form a good starting point but are less compelling than we would like. We
have experimented with computing poss definitions via abduction, but because
our abduction algorithms relied on traditional proof techniques, run-times were
unpredictable, and for some problems a great deal of time was spent on the re-
formulation step. It is unclear at this point whether there are better techniques
for computing poss definitions in general.

The laws for distributing poss across logical connectives are relatively com-
plete, but further conditions that identify independent sentences may turn out
to be important. Such conditions would enlarge the class of cases for which poss
distributes over conjunction, thereby breaking the poss definition computation
up into smaller pieces.

Finally, there is the possibility that we could turn this work upside down.
Instead of viewing the task as using databases to speed-up theorem proving,
we could also view it as expanding traditional database techniques to allow for
disjunctive data and more flexible query languages. (We are currently analyzing
how this work relates to the work on incomplete databases, e.g. [5,6].)

References

1. Hinrichs, T.L., Genesereth, M.R.: Extensional reasoning. preparation (2007).
http://logic.stanford.edu/∼thinrich/papers/hinrichs2007extensional.pdf

2. Reiter, R.: On closed world data bases. Logic and Databases (1978)
3. Lloyd, J.: Foundations of Logic Programming. Springer, Heidelberg (1984)
4. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artificial In-

telligence (1980)
5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Lon-

don (1995)
6. Zimanyi, E., Pirotte, A.: Imperfect knowledge in databases. In: Motro, A., Smets, P.

(eds.) Uncertainty Management in Information Systems: From Needs to Solutions,
pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://logic.stanford.edu/~thinrich/papers/hinrichs2007ext ensional.pdf

An Abstract Theory and Ontology of Motion

Based on the Regions Connection Calculus

Zina M. Ibrahim and Ahmed Y. Tawfik

University of Windsor, 401 Sunset Avenue,
Windsor, Ontario N9B 3P4, Canada
{ibrahim,atawfik}@uwindsor.ca

Abstract. In this paper, we present a framework abstracting motion
by creating a qualitative representation of classes describing motion,
and use the continuity constraints implicitly embedded in the seman-
tics of these classes to create a framework that enables plausible reason-
ing about them. In particular, we propose a topology-based calculus of
motion whose primitive is a motion class. We subsequently construct a
set of primitive motion classes that exhaustively describes the change in
topology between two moving objects, and show how compound motion
classes are formed from these primitive motion classes using continuity
constraints we make explicit. We use composition tables to define queries
in the spatio-temporal domain and enable the extension of the classes to
reason about the change in topology among three objects as they move.

1 Introduction

Qualitative formalisms have been accepted as suitable methods for high-level
reasoning about spatial and spatio-temporal knowledge [2]. This is due to the
fact that the epistemic nature of spatio-temporal information renders it vague,
highly-dynamic or unknown, making it difficult to obtain the numerical val-
ues necessary for a quantitative representation. Because of this, numerical ap-
proaches to reasoning about the spatio-temporal domain are limited [2], and
qualitative formalisms that provide an abstraction of such domains have
prevailed [3].

The general principle of qualitative spatio-temporal representations is to cap-
ture one or more aspects of space, e.g. topology [1] [4] [5] [6], orientation [7] or
distance [9] and formulate a set of relations that represents the possible inter-
actions among two spatial objects with respect to the chosen aspect of space
[3]. The resulting set of relations is must satisfy the property of being Jointly
Exhaustive and Pairwise Disjoint (JEPD), which means that only one relation
may hold between any two spatial objects at a time, and that together, the
relations make up all forms of interaction among spatial objects [3]. Reasoning
is performed by means of a composition table [3], which uses known relations
between certain objects to predict unknown relations that may hold between
other objects.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 230–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Abstract Theory and Ontology of Motion 231

Because of the relational nature of the qualitative representations of space,
opposed to the absolute Newtonian numerical approaches, it seemed natural to
use to describe the elements of this calculi, and furthermore, use the elements of
the calculi provide natural language descriptions of motion with respect to the
calculi. For example [11] uses the topology-based qualitative theory of space of
[1] to construct a set of six motion classes consisting of leave, reach, cross, hit,
internal and external. [8] does the same but embeds vagueness in the represen-
tation of the regions under study to come up with a set of motion classes specific
to vague regions.

What is common among the above sets of classes of motion is that their
formulations were rather ad-hoc. More specifically, because they were directed
towards capturing some semantics of motion and not to use it as a construct
for a calculus of change, they did not necessitate that the set of motion classes
formulated possess the properties necessary for a calculus. More specifically, they
are all non-exhaustive, i.e. they do not represent all the forms that motion can
take, which renders them unusable for a calculus of motion.

In this paper, we present a qualitative calculus of motion. The paper aims at
formulating an abstract representation at motion by using a qualitative repre-
sentation of space to create its primitive, a motion class, presents a high-level
view of motion by ridding its of its quantitative aspects. We begin by defining the
necessary conditions for a set of classes to become the primitive of such calculus,
then we present a methodology for deriving the elements of the set of classes
constituting the calculus from a jointly-exhaustive and pairwise-disjoint set of
spatial relations. We follow by introducing reasoning mechanisms that enables
the prediction of the possible topologies between moving objects other than the
ones we have knowledge about.

Although the formalism we present is a general one and can be used to derive
motion classes from a qualitative spatial calculus that represents any aspect of
space, for readability purposes, we choose introduce it by deriving its constructs
from the well known spatial theory of the Region Connection Calculus (RCC8)
[12]. The result is an abstract theory of motion where topology determines the
spatial interactions among the objects under study.

The paper is organized as follows. Section 2 reviews the RCC8 calculus con-
centrating on the continuity properties it possesses, and how the RCC8 con-
ceptual neighborhood captures spatio-temporal relationships. Section 3 presents
the spatio-temporal representation based on motion classes and Section 4 shows
how to combine two motion classes to form a compound motion. Section 5 con-
structs reasoning mechanisms through the use of composition tables to formu-
late spatio-temporal queries about motion. Finally Section 6 present a summary,
some conclusions and future directions.

2 The Region Connection Calculus: RCC8 Set

Although many qualitative theories for dealing with space exist in the literature,
the RCC8 calculus [12] has attracted more attention within the QSR community

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 Z.M. Ibrahim and A.Y. Tawfik

Fig. 1. The RCC8 Relations

than others. RCC8 uses the notion of ’connectedness’ to formulate a set of JEPD
topological relations that may hold between two regions at any time. For any
two regions x and y, the topological relation that may exist between x and y
is represented by ri(x,y) ∈ RCC8 and can be one of the following: DC(x,y) (x
is disconnected from y), EC(x,y) (x is externally connected to y), PO(x,y) (x
partially overlaps y), EQ(x,y) (x is equal to y), TPP(x,y) (x is a tangential
proper part of y) and its inverse TPPI(x,y) (y is a tangential proper part of x),
NTPP(x,y) (x is a non-tangential proper part of y) and its inverse NTPPI(x,y)
(y is a non-tangential proper part of x). Figure 1 shows the complete set.

Reasoning is performed by means of a composition table [12], which generally
takes the form of answering the following query: for three spatial regions x, y
and z, and RCC8 relations rcci and rccj, if rcci(x,y) and rccj(y,z) hold, what
are the possible RCC8 relations that may hold between x and z?

In addition to its high expressive power and flexibility, the RCC8 relations
possess an inherit continuity property in which each relation can be mapped to
another from the set via a continuous transition. This property has been modeled
by what is known as the RCC8’s conceptual neighborhood graph (CNG) [12]
shown in figure 2.

Figure 2 shows the continuity of the process of transforming one RCC8 relation
to another. Transforming some rcci∈RCC8 to some rccj∈RCC8 can be done via
one direct transition (e.g. DC to PO), making rcci and rccj immediate conceptual
neighbors, or indirectly (e.g. PO and DC). In the indirect case, there must be
some sequence S of RCC8 relations that connect rcci and rccj . The fact that
S cannot be empty ensures the continuity of the transitions among members of
RCC8.

Because of the continuity properties explained above, the RCC8 relations can
be interpreted to model the topological relations between the spatio-temporal
evolutions of spatial regions in addition to topological relations between static
spatial regions. An example is shown in figure 3 where the relation PO (par-
tial overlap) between two regions x and y is shown to hold during the temporal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Abstract Theory and Ontology of Motion 233

Fig. 2. The RCC8 Conceptual Neighborhood

Fig. 3. Spatio-temporal Interpretation of PO

interval [t1, t2]. In the figure, the horizontal and vertical axes represent the
evolution of space and time respectively. Hence, the figure shows not the static
regions x and y, but the evolution of their spatial extents through time. Hence,
the relation PO(x,y) holds when the evolution of region x overlaps that of region
y during some interval, e.g. [t1, t2].

Because of its spatio-temporal nature, it is possible to construct from the
RCC8 set a set of motion class descriptions. In [11], six mutually exclusive classes
have been formulated. They are leave(z, x, y), reach(z, x, y), hit(z, x, y), cross(z,
x, y), internal(z, x, y) and external(z, x, y) representing in each case the motion
class that holds between two spatio-temporal moving regions x and y during
interval z.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 Z.M. Ibrahim and A.Y. Tawfik

Fig. 4. Muller’s Motion Classes

Figure 4 shows the six classes and is read as follows. The horizontal axis
represents the spatial extent of the region and the vertical axis represents the
temporal evolution. Hence, the beginning of interval z is located in its lowest t
value and its end is located at its highest t value. The spatial extents of regions
x and y evolve as time increases forming a motion class. We do not give the
formal definition of these classes. The interested reader can refer to [11].

3 A Qualitative Set of Motion Classes

In this section, we present the building blocks for a calculus which abstracts the
motion of one spatial region with respect to another by describing it via a set of
classes which it can take. More specifically, given two regions x and y moving dur-
ing the interval [t, t+Δ], we study the change in the topological relations that hold
between the two regions at the beginning and end of the interval, and use them
categorize motion by constructing a set of classes that it may belong to.

The topology at t and t+Δ is described by the RCC8 relations that hold
between x and y at t and t+Δ respectively. Because RCC8 has 8 relations, all
adhering to a continuous neighborhood structure, there exists a total of |RCC8|2
= 64 possible forms of motion. In this section, we construct the set MC, which
is an exhaustive set of motion classes, determined by the 64 possibilities.

Hence, our calculus consists of a topological spatial base (RCC8) and a set of
motion classes derived from it (MC). Before we introduce MC, we reformulate
the properties of the RCC8 set to make it compatible with our calculus.

3.1 The Spatial Base

Consists of the set RCC8= {DC, EC, PO, EQ, TPP, TPPI, NTPP, NTPPI}. In
this paper, we adopt the notation rcc[t,t+Δ](x,y) to denote the following:

1. RCC8 relation rcc holds between two regions x and y during the entire
duration of the interval [t,t + Δ].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Abstract Theory and Ontology of Motion 235

2. It is not prohibited for rcc to hold between x and y before [t,t + Δ] or to
persist after it. The knowledge of rcc before or after [t,t + Δ], however, is
not readily available.

Elements of the RCC8 set possess the following properties:

1. They are Jointly Exhaustive: Any topological relation that may hold between
two regions of space x and y during the interval [t,t+Δ] must belong to
RCC8.

∀rcc, rcc[t,t+Δ](x, y) → rcc ∈RCC8
2. They are Pairwise Disjoint: No two RCC8 relations can hold between two

spatial regions x and y at the same time.

∀rcc1, rcc2 ∈ RCC8 : (rcc1[t,t+Δ](x, y) ∧ rcc2[t,t+Δ](x, y)) → rcc1 = rcc2

3. They Adhere to a Conceptual Neighborhood structure:

∀rcc1 ∈ RCC8 , ∃rcc2 ∈ RCC8 : rcc1 �= rcc2 ∧ μ(rcc1, rcc2) = 1

Where μ(rcc1, rcc2) is the number of arcs separating rcc1 and rcc2 in RCC8’s
conceptual neighborhood graph.

3.2 The Set MC of Motion Classes

As explained above, the primitives of our calculus, the elements of MC = {mc1,
..., mcn} are characterized by the RCC8 relations that hold at the beginning
and end of the interval [t, t+Δ] during which they hold.

For this purpose, we define the predicates starts(mci, [t, t+Δ], x, y) and
ends(mci, [t, t+Δ], x, y), where starts(mci, [t, t+Δ], x, y) returns a subset
of RCC8 corresponding to the relations that can hold between spatio-temporal
objects x and y at the beginning of the interval [t, t + Δ] during which the class
mci correctly describes the change taking place (i.e. at time t), while ends(mci,
[t, t+Δ], x, y) gives the set of RCC8 relations that hold between spatio-temporal
objects x and y at the end of the interval [t, t+Δ] during which the class mci

holds (i.e. at t+Δ). They are both given in definitions 1 and 2 below:

Definition 1. starts(mci, [t, t + Δ], x, y) = {rcc | rcc ∈ RCC8 ∧ rcct(x,y)}.

Definition 2. ends(mci, [t, t+Δ], x, y) = {rcc | rcc ∈ RCC8 ∧ rcc(t+Δ)(x,y)}.

It is important to note before continuing, that the interval [t, t+Δ] is defined as
the minimal interval required to inflict spatial change. In other words, for some
motion class mc, if starts(mc, [t, t+Δ], x, y) = {DC} and ends(mc, [t, t+Δ], x,
y) = {PO}, then the only relations allowed during the interval are those relations
that lie between DC and PO in RCC8’s conceptual neighborhood graph, which
are the relations necessary for the change to occur. Also, these relations should
only hold in the order that allows for mc to hold during the interval.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

236 Z.M. Ibrahim and A.Y. Tawfik

3.3 Constructing the Set MC

The construction of MC is initiated by the fact that the elements of the set
RCC82 do not uniquely describe |RCC8|2=64 classes of motion. For example,
any motion that starts with the regions being in any configuration except dis-
connected and ends with the regions being disconnected represents that one
region left the other. Hence, there exists a one-to-many mapping between MC
and RCC82. This mapping is defined below.

We define the set j = {j1,..., jn}, where for each motion class mci ∈ MC,
there exists ji = {(rcc1,rcc2), ... (rccr,rccs) } ∈ j representing the subset of
RCC82 that describes all the possible pairs of spatial relations that hold at the
beginning and end of the interval during which the class mcci holds (e.g. rcc1 ∈
starts(mci, [t, t+Δ], x, y) and rcc2 ∈ ends(mci, [t, t+Δ], x, y) for two regions
x and y moving during interval [t, t + Δ]). Unlike the case with RCC8, there
exists a one-to-one correspondence between j and MC. Property 3.3.1 formalizes
the above concept.

Property 3.3.1. ∀mci ∈ MC, ∃ji = {(rcc1, rcc2), ..., (rccr , rccs)} ∈ j: ∀ (rccl,
rccm) ∈ ji, rccl ∈ starts(mci) ∧ rccm ∈ ends(mci).

As a result, nine motion classes have been identified and are given in table 1. The
motion classes are LEAVE, REACH, HIT, SPLIT, PERIPHERAL, EXPAND,
SHRINK, INTERNAL and EXTERNAL. In the table, the rows correspond to
the RCC8 relation which belongs to the set starts(mci, [t, t+Δ], x, y) while the
column corresponds to the RCC8 relation which belongs to the set ends(mci,
[t, t+Δ], x, y). Each intersection of a row and a column presents the resulting
motion class when the corresponding RCC8 relations at the beginning and end
of the interval hold.

Table 1. The Set MC of Motion Classes

3.4 Properties of MC

In order for the elements of the set MC to be useful in being primitives in a
calculus of motion classes, they must, along with the spatial base RCC8, ex-
haustively describe all possible forms of motion between two regions x and y
during interval [t, t + Δ], and possess continuity properties by having a concep-
tual neighborhood structure. Below we outline these properties and show that
elements of MC indeed possess them.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Abstract Theory and Ontology of Motion 237

Completeness

Claim 3.4.1 MC exhausts all forms of spatio-temporal change during a given
interval. In other words, MC covers RCC82.

Justification:
By construction, the set j covers RCC82. As a result⋃

ji∈j

ji = RCC82

Since there exists a one-to-one correspondence between j and MC, MC in turn
covers RCC82.

Continuity

Claim 3.4.2 The set of motion classes MC adheres to a conceptual neighbor-
hood structure. In other words, for every class mci ∈ MC, there must exist
another class mcj ∈ MC which represents the linguistic continuation of mci.

Justification:

1. Existence:
Dictated by definitions 1 and 2, for all motion classes mci and mcj ∈ MC,
starts(mci), ends(mci), starts (mcj), ends(mcj) ∈ RCC8.

However, because the RCC8 adheres to a conceptual neighborhood struc-
ture, for every RCC8 relation rcci, there exists another RCC8 relation rccj

such that rcci and rccj are conceptual neighbors in RCC8’s conceptual neigh-
borhood graph.

As a result, mci and mcj are conceptual neighbors if ends(mci) and
starts (mcj) are conceptual neighbors in RCC8’s conceptual neighborhood
graph. Now, since members of MC cover RCC82, the pair (ends(mci),
starts(mcj)) must belong to RCC82. Hence, the motion class mcj that
represents the continuous extension of mcj must exist.

2. Necessity:
Assume that for three motion classes mci, mcj and mck ∈ MC, mci and mcj

are conceptual neighbors, mcj and mck are conceptual neighbors, while mci

and mck are not conceptual neighbors. Also, assume that mci has evolved
to mck without going through the motion class mcj .

This means that ends(mci) and starts(mck) must be conceptual neigh-
bors in the RCC8’s conceptual neighborhood graph. However, this forms a
contradiction, because if this is true, then mci and mck would have been
conceptual neighbors.

Therefore, members of MC adhere to constraints specified by their con-
ceptual neighborhood but forming only continuous transitions.

Having justified the existence of MC’s conceptual neighborhood graph, we now
give a formal definition of two motion classes being conceptual neighbors. The
definition is given in 3 and is read as follows: motion classes mci holding during

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 Z.M. Ibrahim and A.Y. Tawfik

interval [t, t+Δ] and mcj holding during the interval which immediately follows
[t, t+Δ] (i.e. interval [t+Δ, t+Δ+δ] in the definition) are conceptual neighbors
if one of the RCC8 relations that may hold at the end of mci is a conceptual
neighbor of one of the RCC8 relations that may hold at the beginning of mcj in
RCC8’s conceptual neighborhood graph.

Definition 3. conc neigh (mci [t, t + Δ] x, y), (mcj [t + Δ, t + Δ + δ] x, y) if
∃ s1 =starts(mcj [t + Δ, t + Δ + δ] x, y), s2 = ends(mci [t, t + Δ] x, y)) ∧ ∃ r1
∈s1 ∧ r2 ∈ s2: 0 ≤ μ(r1,r2)≤ 1.

We show the conceptual neighborhoods of the set MC in table 2 below. We resort
to the table notation instead of the well-known conceptual neighborhood graph
for visibility purposes. The table should be read as follows. The rows represent

Table 2. MC’s Conceptual Neighbors

Motion Class Conceptual Neighbors
LEAVE All

REACH All but Hit and External

HIT Leave, Reach, Split, Peripheral, External

SPLIT Reach, Hit, Peripheral, External

PERIPHERAL Leave, Reach, Hit, Split, External

EXPAND Leave, Reach, Shrink, Internal

SHRINK Leave, Reach, Expand, Internal

INTERNAL Leave, Reach, Expand, Shrink

EXTERNAL Reach, Hit, Split, Peripheral

4 Compound Motion Classes

As the name implies, a compound motion consists of two primitive motions.
However, to be able to compose two primitive motions, the following conditions
should be satisfied:

1. Motion continuity dictates that the spatial relation that holds at the end
of the first motion also holds for the start of the second motion. Formally,
to compose mci and mcj , there should exist rcci ∈ RCC8 such that rcci ∈
ends(mci) and rcci ∈ starts(mcj). For example, it is possible to form a
compound motion from HIT and SPLIT but it is not possible to combine
HIT and INTERNAL.

2. To eliminate redundancy, the two motions forming the compound motion
should not be subsumed by a primitive motion. Formally, this condition im-
plies that for the sequence of RCC8 relationships visited by the compound
motion composed of mci and mcj does not correspond to the sequence gen-
erated from any single motion mck. For example, REACH subsumes the
composition of HIT and REACH.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Abstract Theory and Ontology of Motion 239

Fig. 5. Compound Motion Classes

Figure 5 illustrates five compound motion classes satisfying the two above condi-
tions. These compound motions include REACH-LEAVE (or CROSS), PERIPH-
ERAL -REACH, LEAVE-REACH, PERIPHERAL-LEAVE, and HIT- SPLIT
(or TOUCH). In the figure, the dotted lines represent the trajectory of the mov-
ing region with respect to another region. The start and end of each constituent
motion are marked with dark bullets.

5 Queries About Motion Classes

Now that we have established the set of motion classes, and we have shown that
they are exhaustive to the set RCC82, and that they adhere to a conceptual
neighborhood structure, we can now use composition tables to reason about the
set MC2 to obtain spatio-temporal information regarding three objects in motion
as illustrated in section 5.1 below.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 Z.M. Ibrahim and A.Y. Tawfik

Table 3. Composition Table Representing Spatio-temporal Queries

Motion LEAVE REACH HIT SPLIT PERIPHERAL

LEAVE Ext. Leave Ext. Ext. Ext. Hit Ext. Split
Int. Reach

REACH Ext. Reach Int. Hit Periph. Ext. Hit Ext.
Ext.

HIT Ext. Int. Periph. Hit Int. Ext. Leave Ext. Reach

SPLIT Leave Int. Ext. Ext. Int. Ext. Leave Ext.

PERIPHERAL Ext. Hit Reach Ext. Ext. Ext.
Leave Reach Leave Int.

EXPAND Ext. Reach Reach Hit Reach Reach
Leave Exp. Ext.

SHRINK Leave Leave, Reach Ext. Leave Leave
Ext. Ext.

INTERNAL Leave Ext. Reach Ext. Ext. Ext. Ext.
Split Hit

EXTERNAL All but All but All but All but All but
Shrink Expand Expand Shrink Exp. & Shrink

Table 4. Composition Table Representing Spatio-temporal Queries

Motion INTERNAL EXTERNAL EXPAND SHRINK

LEAVE Int. Reach Ext. Leave Leave Peri. Split
Leave Hit Int. Int. Ext.

REACH Reach Int. Leave Split Ext. Reach Reach

HIT Reach Int. Leave Ext. Split External Reach

SPLIT Int. Leave Reach Hit Ext. Leave Ext.

PERIPHERAL Int. Leave Reach Leave Reach
Hit Split Ext.

EXPAND Int. Ext. Expand Int. Reach
Leave Reach Hit Expand

SHRINK Shrink Ext. Int. Leave Shrink
Int. Leave Split

INTERNAL Int. Ext. Leave Reach
Int. Expand Int. Shrink

EXTERNAL Ext. Int. All Ext. Ext.
Leave Reach Leave Reach
Hit Split Split Hit
Shrink

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Abstract Theory and Ontology of Motion 241

5.1 Queries About Spatio-temporal Knowledge: Composition
Tables

During interval [t,t+Δ], given three objects x, y and z undergoing motion, where
mci(x,y) holds and mcj(y,z) holds, what are the possibilities for the motion class
between x and z?

Tables 3 and 4 answer this question for all members of MC. In the table, the
rows represent the possibilities for the motion class mci(x,y) while the columns
represent mcj(y,z). The intersection of a row and a column represent the possible
motion classes mck(x,z) during the interval [t,t + Δ].

6 Conclusions and Future Research

Continuity of spatio-temporal evolutions as encoded in the conceptual neigh-
borhood graph is an important property that can be exploited to represent and
reason about motion. This paper has proposed a framework for exploiting conti-
nuity in the regions connection calculus RCC8 to define an abstract framework
that represents motion based on classes. The framework distinguishes between
a set of simple or primitive motion classes that can be combined to form com-
pound motion. In addition, the paper shows how to use the set of motion class
to answer queries in the spatio-temporal domain based on composition tables.
Extending the proposed framework to handle probabilistic and uncertain spatio-
temporal evolutions; and exploring applications for the proposed framework are
two directions of future investigation.

Acknowledgements

The authors would like to acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) through the discovery grants
program and the support of the Ontario Graduate Scholarship (OGS) program.

References

1. Asher, N., Vieu, L.: Toward a Geometry for Common Sense: A Semantics and a
Complete Axiomatization for Mereotopology. In: Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence. pp. 846–852 (1995)

2. Bailey-Kellog, C., Zhao, F.: Qualitative Spatial Reasoning: Extracting and Rea-
soning with Spatial Aggregates. AI Magazine 24(4), 47–60 (2003)

3. Cohn, A., Hazarika, S.: Qualitative Spatial Representation and Reasoning: An
Overview. Fundamenta Informatica 46(1-2), 2–32 (2001)

4. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic based on Regions and Connection.
In: Proceedings of the International Conference on Knowledge Representation and
Reasoning, pp. 165–176 (1992)

5. Egenhofer, M., Frenzosa, R.: On the Equivalence of Topological Relations. Inter-
national Journal of Geographical Information Systems 9(2), 133–152 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 Z.M. Ibrahim and A.Y. Tawfik

6. Guesgen, H.: When Regions Start to Move. Proceedings of the Florida Conference
on Artificial Intelligenc, pp. 465–469 (2003)

7. Hernandez, D.: Qualitative Representation of Spatial Knowledge. LNCS, vol. 804,
Springer, Heidelberg (1994)

8. Ibrahim, Z., Tawfik, A.: Spatio-temporal Reasoning for Vague Regions. In: Pro-
ceedings of the Canadian Conference on Artificial Intelligence, pp. 308–320 (2004)

9. Köhler, C.: The Occlusion Calculus. In: Cognitive Vision Workshop (2002)
10. Muller, P.: Topological spatiotemporal reasoning and representation. Computa-

tional Intelligence 18(3), 420–450 (2002)
11. Muller, P.: A Qualitative Theory of Motion Based on Spatio-temporal Primitives.

In: Proceedings of the International Conference on Knowledge Representation and
Reasoning (1998)

12. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic based on Regions and Connection.
In: Proceedings of the International Conference on Knowledge Representation and
Reasoning, pp. 165–176 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds

for Action Elimination in MDP Planning

Ugur Kuter1 and Jiaqiao Hu2

1 University of Maryland Institute for Advanced Computer Studies,
University of Maryland at College Park,

College Park, MD 20742, USA
ukuter@cs.umd.edu

2 Department of Applied Mathematics and Statistics,
State University of New York at Stony Brook,

Stony Brook, NY 11794, USA
jqhu@ams.sunysb.edu

Abstract. We describe a way to improve the performance of MDP plan-
ners by modifying them to use lower and upper bounds to eliminate
non-optimal actions during their search. First, we discuss a particular
state-abstraction formulation of MDP planning problems and how to
use that formulation to compute bounds on the Q-functions of those
planning problems. Then, we describe how to incorporate those bounds
into a large class of MDP planning algorithms to control their search dur-
ing planning. We provide theorems establishing the correctness of this
technique and an experimental evaluation to demonstrate its effective-
ness. We incorporated our ideas into two MDP planners: the Real Time
Dynamic Programming (RTDP) algorithm [1] and the Adaptive Multi-
stage (AMS) sampling algorithm [2], taken respectively from automated
planning and operations research communities. Our experiments on an
Unmanned Aerial Vehicles (UAVs) path planning problem demonstrate
that our action-elimination technique provides significant speed-ups in
the performance of both RTDP and AMS.

1 Introduction

In planning under uncertainty, the planner’s objective is to find a policy that
optimizes some expected utility. Most approaches for finding such policies are
based on Markov Decision Process (MDP) models. Despite their general applica-
bility and mathematical soundness, the problem of generating optimal policies
in MDPs is often computationally challenging due to the typical requirement of
enumerating the entire state and/or action spaces. In order to address this issue,
many general MDP-based solution methods have been developed: examples in-
clude state abstraction and aggregation techniques [3,4,5,6,7], feature extraction
methods [8], value function approximations [9,10], heuristic and greedy search
[1,11], and various simulation-based techniques [12,13,14,2].

The key idea throughout the above works is to reduce the size of the search
space while preserving the correctness of the planning algorithms, and in doing

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 243–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 U. Kuter and J. Hu

so, to generate solutions to MDP planning problems within reasonable running
times. Despite these advances, MDP planning problems still pose a computa-
tional challenge due to the need to explore all or most of the state space.

This paper focuses on a way to improve the efficiency of planning on MDPs
by computing lower and upper bounds on the Q-functions of MDP planning
problems and using these bounds during planning to identify and eliminate ac-
tions that are guaranteed not to appear in optimal policies. We combine ideas
from two different previous approaches: using state abstractions for MDPs to
generate abstract versions of the original planning problems and using bounds
for controlling the search of MDP planners. Our technique is a tightly-coupled
framework based on a form of state abstraction that enables planning algorithms
to identify and eliminate sub-optimal actions from MDPs and allows them to
search the reduced MDP for effective planning.

In particular, our contributions are as follows:

• We discuss a particular state-abstraction formulation of MDP planning prob-
lems. In a large class of MDPs, the state space admits a factored representation
[15], i.e., each state can be represented as a collection of state variables. In
such planning problems where the state space is factored, often the cost of
each action will not depend on all of the state variables, but only on some of
them. Our technique exploits this property and generates equivalence classes
of states (or equivalently, it generates a particular partition of the MDP) by
examining the actions and the immediate cost of applying them.

• We describe how to compute lower and upper bounds on the Q-function of
an MDP based on the equivalence classes over the states of that MDP. We
also provide general conditions under which our technique can be incorporated
into the existing MDP planning algorithms and can still guarantee to generate
optimal solutions in the modified algorithms.

• We have applied our approach to the RTDP [1] and AMS [2] algorithms and
performed several experiments with the modified planners. This study demon-
strates that the modified algorithms generate solutions about two or three
orders of magnitude faster than the original ones in a simplified version of an
Unmanned Aerial Vehicles (UAVs) path planning domain.

2 Definitions and Notation

We consider MDP planning problems of the form P = (S, A, T, γ, Pr, C, S0, G),
where S is a finite set of states and A is a finite set of actions. T : S ×A → 2S is
the state transition function, γ is a discount factor, Pr is a transition-probability
function, C is a bounded one-stage cost function, S0 is a set of initial states,
and G is a set of goal states. The set of all actions applicable to a state s is
AT (s) = {a : T (s, a) �= ∅}. If a ∈ AT (s), then Pr(s, a, s′) is the probability of
going to the state s′ if one applies the action a in s.

Although a policy is often defined to be a function π : S → A, π need not
always be total. If a state in S is unreachable from S0 using π, then it can
safely be omitted from the domain of π. Thus, we define a policy to be a partial

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 245

function from S into A (i.e., a function from some set Sπ ⊆ S into A) such that
S0 ⊆ Sπ and Sπ is closed under π and A (i.e., if s ∈ Sπ and s′ ∈ T (s, π(s)), then
s′ ∈ Sπ).

Given a policy π, the value function V π(s) is the expected sum of the future
discounted costs, i.e., V π(s) = Eπ[

∑∞
t=0 γt C(st, π(st)) |s0 = s], where st is the

state of the MDP at time t, and Eπ [·] is understood with respect to the sample
space induced by the transition probabilities.

An optimal solution is a policy π∗ such that when executed in the initial state
s0, π∗ reaches a goal state in G with probability 1, and no other policy π′ has
both the same property and a lower expected cost. It is well-known [16] that the
optimal value V π∗

(s) for state s can be computed by solving

V π∗
(s) =

{
0, if s ∈ G
mina∈AT (s) Q(s, a), otherwise, (1)

Q(s, a) = C(s, a) + γ
∑

s′∈T (s,a)

Pr(s, a, s′)V π∗
(s′). (2)

Since we have defined policies to be partial functions from S into A, it follows
that the domain of the value function V π∗

is Sπ∗ .
In this paper, we assume that the state space S of an MDP planning problem

admits a factored representation [15]; i.e., S can be represented by using a finite
set of state variables X = {x1, x2, . . . , xn}, where each state variable xi ∈ X
takes values from a finite domain dom(xi). Every state s ∈ S is a set of variable
assignments {x1 = v1, . . . , xn = vn}. Note that if s and s′ are two states, then
s ∩ s′ is the set of all variable assignments xi = vi that appear in both s and s′.

Our key assumption is that the cost C(s, a) of applying an action a to a state
s only depends on some of the state-variable assignments in s, not on all of them.
There are many cases where this assumption holds. For example, if we are at a
store and are trying to decide between two different items that both have the
same price p, then we can safely assume that the price we pay for either of them
will still be p regardless of whether the traffic light outside is red or green.

As another example, consider a simplified version of an Unmanned Aerial Ve-
hicle (UAV) path planning application described in [17]. The planning domain
is modeled as an N × N grid world. There are three kinds of entities: a UAV, a
number of objects whose photos need to be collected by the UAV, and a number
of threats that are hazardous for the UAV. Figure 1 shows a possible configura-
tion of the entities in the UAV world. The UAV has five actions: North, South,
East, West, and CollectPhoto. A threat location is a location such that there is
a possibility that the UAV may get destroyed if it enters that location. In this
problem, the immediate cost of applying an action in a grid location is deter-
mined by only some of the state-variables that describe the world. For example,
in Figure 1, the immediate cost of performing a North action from the UAV
position shown on the grid depends only on the level of the adjacent threat to
the north of the UAV; it does not depend on the levels of the other threats.

Based on the above assumption, we formalize the notion of an equivalence
class as follows. Given a state s and an action a, let sa ⊆ s be the set of all of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

246 U. Kuter and J. Hu

 O

 T

 T

 T

 O

 U T O

Fig. 1. An instance of a 5 × 5 UAV domain. Above, “U” represents the UAV, “O”
represents an object to be collected by the UAV, and “T” represents a threat location.

the state-variable assignments needed to determine C(s, a). Let [sa] be the set of
all states s′ such that sa ⊆ s′. Then for every state si ∈ [sa], C(si, a) = C(s, a)
and [sa

i] = [sa]. Thus, the set Sa = {[sa] : s ∈ S} is a partition, and for each s,
[sa] is an equivalence class in that partition.

3 Computing Lower and Upper Bounds

Given an MDP planning problem P in a factored representation, we compute
the set D of all possible equivalence classes, by examining the description of each
action a of the input MDP and identifying each equivalence class [sa]. Note that
the state-variables that are relevant to the applicability of a in a state and the
cost of a in that state are often given in the MDP planning problem description.
For example, in problems represented as Probabilistic STRIPS operators [18],
the relevant state variables appear in the preconditions and the effects of the
planning operators. In problems represented as 2TBNs [19], the state variables
can be extracted directly from the 2TBN.

Once we have the set D of the equivalence classes for P , we proceed with com-
puting the lower and upper bounds on the Q function of P . Figure 2 shows our
algorithm, called Generate-LowerBounds (gLB), for generating the lower bounds
on the Q function. Formally, gLB generates a positive real number c(s, a):

c(s, a) = C(s, a) + min
s′∈T (s,a),a′∈AT (s′)

c(s′, a′),

for every state s ∈ [sa] and action a applicable in those states, and c(s, a) =
0, ∀a ∈ AT (s) if s ∈ G.

The inputs of gLB are D, DS0 , and DG, where DS0 ⊆ D is the set of all
equivalence classes that contain an initial state s ∈ S0, and DG ⊆ D is the set
of all equivalence classes that contains a goal state. The algorithm computes the
lower bound defined above by doing successive backward breadth-first searches
over the equivalence classes in D, starting from the goal DG towards DS0 .

In Figure 2, the set F denotes the set of equivalence classes that have been
visited by the backward search. That is, F is a set of pairs of the form ([sa], c)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 247

Procedure Generate-LowerBounds(D, DS0 , DG)
F ← ∅
repeat
F ′ ← F
F ← F ∪ {([sa], 0) | [sa] ∈ DG}
F ← ComputeLowerBounds(Preimage(F, D))

until F = F ′

if DS0 ⊆ {[sa] | ([sa], c) ∈ F} then return F
return failure

Fig. 2. The Generate-LowerBounds (gLB) procedure

where [sa] is an equivalence class and c is the minimum cost of reaching a goal
by applying a in the states of [sa] computed so far. Initially, F is the empty set.

At each iteration, gLB first takes F at the current iteration and adds the
equivalence classes corresponding to the goal states, G, of the input MDP plan-
ning problem. Note that the lower bound of the costs associated with the goal
states is 0, since we do not apply any action to a goal state. Then, gLB performs
a Preimage computation, which is the core of the algorithm. Intuitively, Preimage
computes the set of equivalence classes in D such that for each equivalence class
[sa] in Preimage(F, D), there exists an equivalence class in F that is reachable
by one or more of the effects of the action a.

Formally, Preimage is defined as follows:

Preimage(F, D) = {([sa], c′ + C([sa])) | [sa] ∈ D, ([sai

i], c′) ∈ F, si ∈ T (s, a),
and ai ∈ A},

where D is the set of all equivalence classes computed for the input MDP plan-
ning problem, and A, T , and C are the set of all actions, the state-transition
function, and the cost function of the input MDP. Note that the Preimage compu-
tation generates all possible cost-to-go values for an equivalence class [sa] given
the set F at this iteration. Thus, as a next step, gLB computes the minimum
of all the cost-to-go values obtained via Preimage computations and assigns this
minimum cost-to-go value to [sa]. In Figure 2, the ComputeLowerBounds sub-
routine is responsible for performing this task for all equivalence classes in the
result of Preimage.1

The backward search of gLB terminates when there are no other possible
updates to F ; i.e., the procedure cannot generate any more equivalence classes
and it cannot update the cost-to-go values associated with each equivalence class
in F . In that case, the cost-to-go values specified in F are lower bounds on the
cost-to-go values computed for each [sa] ∈ F from which an equivalence class
that contains a goal state is reachable. That is, if F = F ′ then the procedure
1 Here, we presented ComputeLowerBounds as a separate subroutine for clarity; how-

ever, note that the computation of ComputeLowerBounds can also be embedded in
the Preimage subroutine.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

248 U. Kuter and J. Hu

has generated a lower bound c for applying an action a in the states [sa] in the
execution structure K, and there is no other c′ < c for [sa]. In this case, gLB
checks whether the lower bounds in the Q(s, a) values for the states in the initial
equivalence classes in DS0 are computed. If so, the procedure returns the set F .
Otherwise, it returns failure.

Generate-UpperBounds (gUB), the procedure to compute upper bounds, works
in the same way except that it computes maxima instead of minima. Formally,
gUB computes the upper bounds defined as follows:

c(s, a) = C(s, a) + max
s′∈T (s,a),a′∈AT (s′)

c(s′, a′),

for every state s ∈ [sa] and action a applicable in those states, and c(s, a) =
0, ∀a ∈ AT (s) if s ∈ G.

The following theorem establishes the correctness of gLB and gUB:

Theorem 1. Let P = (S, A, T, γ, Pr, C, S0, G) be a planning problem that
satisfies the assumptions in Section 2. Suppose gLB returns a set
{([sa1

1], c1), . . . , {([san
n], cn)}. Then for every i and s ∈ [si], ci ≤ Q(s, ai).

Similarly, if gUB returns a set {([sa1
1], c1), . . . , {([san

n], cn)}, then for every i
and s ∈ [si], ci ≥ Q(s, ai).

4 Using the Lower and Upper Bounds in MDP Planners

On MDP planning problems that satisfy the assumptions stated in Section 2, the
lower and upper bounds computed as above can be used in any MDP planning
algorithm that (i) generates the set of applicable actions AT (s) for every state s
it visits, (ii) computes the Q(s, a) values for those actions, (iii) chooses the ac-
tion that satisfies some optimization criteria (e.g., the action with the minimum
Q(s, a) value in a minimization problem), and finally iterates over (i), (ii), and
(iii) until it generates a solution to the input MDP planning problem.

Planners like RTDP [1] fit directly into this format. RTDP repeatedly (i) does
a greedy forward search in the state space, and (ii) updates the cost values
associated with the visited states in a dynamic-programming fashion. Another
example is the well known Value Iteration (VI) algorithm [20]. Other examples of
planning algorithms that fit into this characterization also include reinforcement
learning techniques such as Q-Learning [21] and its variants.

Even the optimization techniques such as Adaptive Multi-Stage Sampling
(AMS) [2] from operations research can be fit into the above format and used as
an MDP planning algorithm. AMS was designed for solving finite-horizon MDPs
with large state spaces [2]. The algorithm can be interpreted as a search of a
decision tree, where each node of the tree represents a state (with the root node
corresponding to the initial state) and each edge signifies a sampling of a given
action. AMS employs a depth first search for generating sample paths from the
initial state until the given finite horizon is reached, and uses backtracking to
estimate the value functions at the visited states. It uses the ideas from multi-
armed bandit problems to adaptively sample applicable actions during the search

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 249

process. The algorithm’s input includes the number N of samples to be used at
each stage. Which action to sample at a state s is determined by the current es-
timated Q function values plus some confidence bounds of all applicable actions
in AT (s). AMS can be used as a planner by modifying its depth-first search so
that each search trace of the depth-first search is a sample path that ends when
the goals are reached; rather than to stop at a fixed depth as in the original
version of the algorithm. For an extensive discussion on AMS, see [2].

During planning, at each state the planner visits, it needs to know the set
of all applicable actions in that state. For example, Value Iteration iterates over
all of the applicable actions. RTDP chooses whichever action has the currently
best Q value. AMS performs adaptive stochastic sampling (where the previous
samples affect the future ones) over the set of applicable actions.

We modify an MDP planning algorithm as follows: every time the algorithm
needs to know the set of applicable actions A(s) in a state s, we eliminate each
action a from A(s) if there is another action a′ in A(s) such that the lower
bound we computed in the previous section for a is larger than the upper bound
computed for a′. In this way, the modified algorithms do not consider any sub-
optimal actions in their computation, and in effect, solve a reduced MDP for the
original planning problem.

5 Formal Properties and Discussion

Let P = (S, A, T, γ, Pr, C, S0, G) be an MDP planning problem. The modified
MDP planning algorithms described above solve a reduced version PR of P
defined by the lower and upper bounds computed as above. The reduced MDP
planning problem PR is the same as P , except that TR, the state-transition func-
tion of PR, is defined as follows: TR(s, a) = ∅ if our action-elimination technique
eliminates the action a for the state s, and TR(s, a) = T (s, a) otherwise. The
following theorem establishes that P and PR have the same optimal solutions:

Theorem 2. Let P = (S, A, T, γ, Pr, C, S0, G) be an MDP planning
problem that satisfies the assumptions in Section 2, and let PR =
(S, A, TR, γ, Pr, C, S0, G) be the reduced planning problem produced by our
action-elimination technique given P as described above. Let π∗ and π∗R be the
optimal solutions for P and PR, respectively. Then V π∗

(s0) = V π∗
R(s0), ∀s0 ∈ S0.

Consequently, we can use the bounds computed by the gLB and gUB procedures
in order to eliminate actions in the existing MDP algorithms, and still get optimal
solutions. Although this is correct for any planning problem that satisfies our
assumptions, the gLB and gUB may be time-consuming to compute in some
cases. However, there are certain kinds of planning problems in which they can
be computed very efficiently and we now discuss two such cases:
• Suppose P can be divided into a set of independent subproblems {P1, . . . , Pk}.

Then we can compute lower and upper bounds separately for each of the
subproblems, generate a solution for each subproblem using those bounds,
and combine those solutions to get an solution for P . In this case, the bounds

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 U. Kuter and J. Hu

for each Pi are exactly those that would be computed by calling gLB and gUB
directly on P , hence Theorem 2 guarantees that if we use these bounds to
do action elimination, we still get optimal solutions for P by combining the
solutions for its subproblems.

• Suppose P can be divided into a sequence of serializable subproblems
〈P1, . . . , Pk〉 (see [22]). As before, we can use gLB and gUB separately for each
of the subproblems and generate a solution for each subproblem using those
bounds. These policies can then be combined into a near-optimal solution for
the original problem.
As an example, consider again the UAV world described in Section 2. The

task for the UAV is to start from an initial location and collect photos of all
of the objects, by avoiding the threats as much as possible (i.e., by minimizing
the harm that may be induced by the threats). Suppose the UAV’s memory is
large enough to keep all n photos. Then for each object, collecting its photo is a
subproblem of the overall problem, and these subproblems are serializable—i.e.,
once the UAV collects a photo of one object, it does not lose that photo when
it collects the subsequent photos. Thus we can use gLB and gUB seperately,
generate a solution for each subproblem, and combine the solutions into a near-
optimal solution for the original problem. The reason why the solution is only
near-optimal rather than optimal is that the cost of solving a subproblem may
depend on the cost of solving another subproblem.

6 Experimental Evaluation

In our experiments, we used the UAV world described above in the paper. As
mentioned above, the UAV has five possible actions: North, South, East, West,
and CollectPhoto. The first four actions move the UAV from one location to an
adjacent location. The action CollectPhoto can be applied only when the UAV
is in the same location as an object. We assume that an object cannot be at a
threat location in the world.

The task for the UAV is to start from an initial location and collect photos of
all of the objects, by minimizing the harm that may be induced by the threats.
We assumed that the photos of the objects in a planning problem are collected
according to the ordering specified in a planning problem statement.

A threat location is a location such that there is a possibility that the UAV
may get destroyed if it enters that location. Each threat location has a level
L = 1, . . . , 5, from being the least hazardous to being the most hazardous threat
to the survival of the UAV. A threat can be at any level at any time; for instance,
if a threat is at level L = 1 at time t, then it may be in any of 5 levels at time
t+1. For each threat level L = 1, . . . , 5, the probability PrL that the threat is in
level L is 0.1, 0.2, 0.4, 0.2, and 0.1, respectively. The threat levels are modeled
as the cost of an action that moves the UAV to a threat location and they are
taken to be CL = 5, 10, 25, 50, and 100, for L = 1, . . . , 5.

For our experiments described below, we used the reduced (i.e., abstracted)
MDP formulation for the UAV domain mentioned previously and described more

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 251

in detail as follows. For each grid location and a possible action a that is ap-
plicable in that location, we define an equivalence class of states in the original
MDP by a set of state-variable assignments that specify first that the UAV is in
that grid location. Also, if there is a threat in the grid location that the UAV
will be in after executing the action a, then the state-variable assignments spec-
ify the possible threat level of that successor grid location. This partial set of
state-variable assignments together specify an equivalence class given the cur-
rent grid location and the action. The set of all such equivalence classes for each
grid location and each possible action in those location constitute our reduced
MDP formulation of the original UAV world.

Note that the size of the state space (i.e., the set of all possible states) in the
UAV planning problems without any abstraction is in the order of O(n22kLm),
where n is the number of grids in one dimension of the UAV world, k is the
number of objects in the world, m is the number of threat locations, and L is
the number of threat levels. This is because a state in the UAV world specifies
the location of the UAV, whether the photos of the objects are taken or not, and
the combinations of the threat levels. Note that the locations of the objects and
the threats are fixed in a UAV problem. For example, if we have a 10 × 10 grid
world with n = 10, and we have 5 objects and 5 threat locations with 5 levels
for each threat in that world, the size of the state space is ≈ 102 ×25 ×55 = 107.

In our reduced formulation based on equivalence classes, the size of the state
space is O(kL|A|n2), where |A| is the number of actions in the planning problem.
In particular, in the above setting, the size of the state space is ≈ 5×5×5×102 =
12, 500, since (1) for each robot location, there may be five actions applicable,
and if there is a threat in the grid that the UAV transitions by applying an action,
then that threat can be in five possible levels; and (2) the UAV problems are
serializable; i.e., we can process the objects in a particular order, and combine
the results. The gLB and gUB procedures exploit this serializability property
in the UAV problems, and they further reduce size of the search space of the
planners by eliminating those equivalence classes defined by state-action pairs
that are guaranteed not to be in a solution.

In our experimental results shown below, these two factors in abstracting
away from the state space of the original MDP for the UAV world provided
huge perfomance gains. In the following, we discuss our results in detail. In all
of the experiments reported below, we used a HP Pavilion 900MHz laptop with
256MB memory, running Linux Fedora Core 2.

Experiments with AMS. We implemented both the original AMS algorithm
and our modified version, called AMS X, that incorporates the action-elimination
technique. We compared the running-time performance of both algorithms in
the following two sets of experiments. For both AMS and AMS X, the number
of samples at each node of the search tree was set to k = 50.

In the experiments, we fixed the number of threats to 5 and varied the number
of objects, n = 1, . . . , 10, in a 5×5 grid. For each experimental case n = 1, . . . , 10,
we randomly generated 50 planning problems by randomly locating the UAV,
the objects, and the threats on the grid.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 U. Kuter and J. Hu

AMS

AMS_X

0

20

40

60

80

100

120

140

160

180

o=1 o=2 o=3 o=4 o=5 o=6 o=7 o=8 o=9 o=10

Number of Objects

A
vg

. C
P

U
 T

im
es

 (s
ec

.'s
)

AMS AMS_X

Fig. 3. Running times on UAV path-planning problems with increasing the number of
objects, with 5 threats and 5 × 5 grid. Each data point is the average of 50 problems.

Figure 3 shows the average running times of AMS and AMS X. The data
points in the figure also include the times to compute the lower and the upper
bounds on the Q functions of the experimental problems. The running times
of both algorithms increase as the number of objects grows, but this increase
is much slower in AMS X due to the action-elimination technique described in
the previous section. In particular, in the case of 10 objects, AMS X was able to
solve the problem approximately 130 times faster than AMS.

In order to investigate the effect of the state space size on the running times
of our algorithms, we performed another set of experiments, where we fixed both
the number of objects and the number of threats to 5, and varied the size of the
grid. Table 1 shows the performances of both algorithms, where (−) indicates
that a solution was not returned in 30 minutes. It can be seen that AMS X is
far more efficient than AMS. To further test the performance of our approach
to larger test instances, we also applied AMS X to problems with grid sizes of
20×20 and 30×30. The approximate running times are 7 seconds for the former
case, and 20 seconds for the latter case.

Experiments with RTDP. We implemented both the RTDP algorithm de-
scribed in [1] and our modified version, called RTDP X, that uses action elim-
ination via bounds. The original RTDP algorithm uses the Bellman Equation
(i.e., Equation 2) as described in Section 2, which specifies a deterministic cost
value for each state-action pair; i.e., C(s, a) is fixed in advance before the plan-
ning process starts. However, the UAV path planning problems require stochastic
cost functions defined over state-action pairs. Thus, we used the following variant
of the Bellman Equation in both RTDP and our modified version of it:

Q(s, a) = [
∑

L=1,...,5

PrLCL(s, a)] + γ
∑

s′∈T (s,a)

Pr(s, a, s′)V (s′), (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 253

Table 1. Running times of AMS and AMS X on UAV path-planning problems with 5
objects and 5 threats. n is the size of the grid. Each data point is the average of 50
problems, where (−) indicates that a solution was not returned in 30 minutes.

n = 4 5 6 7 8 9 10

AMS 12.3952 70.6416 - - - - -
AMS X 0.6492 0.7236 0.9474 0.9442 1.265 1.6542 1.9844

where L = 1, . . . , 5 specifies the possible threat levels and PrL is the probability
that the cost of applying the action a in the state s is the value CL(s, a), as
described above. In effect, we computed the expected cost value for each state-
action pair and use those values as deterministic costs in RTDP.

In these experiments, we fixed the number of threats to 3 and varied the
number of objects, n = 1, . . . , 10, in a 6 × 6 grid. The reason for the change in
the size of the grid and the number of threats is that RTDP, when it commences
in its learning of the Q function, sees the treat locations as unpassable obstacles
since it uses a greedy search. Thus, we wanted to ensure that in our randomly-
generated problems, there are no inaccessible areas on the map such that an
object might be inaccessible from where the UAV initially is.

For each experimental case n = 1, . . . , 10, we randomly generated 20 planning
problems by randomly locating the UAV, the objects and the threats on the
grid.2 For both planners, we used a termination criterion ε = 10−8 to guarantee
that they do not terminate before finding the best (near-optimal) solution.

Figure 4 shows the average running times of RTDP and RTDP X. The data
points in the figure also include the times to compute the lower and the upper
bounds on the Q functions of the experimental problems. The running times of
both algorithms increase as the number of objects grows, but this increase is
much slower in RTDP X due to the action-elimination technique described in
the previous section. For example, in the experiments with 6 objects, RTDP X
has about 1/2500 of the running time of the original algorithm Figure 4 does not
show any results for RTDP beyond experiments with 6 objects in the planning
problems because RTDP in those cases exceeded the time limit of 1 hour CPU
time (on 5 of the planning problems with 7 objects, RTDP took around 2.5
hours each, so we did not run the algorithm with the rest of experimental suite).
RTDP X, on the other hand, was able to solve all of the problems in our test
suite in the order of few seconds.

Note that although RTDP always chooses the best action among the pos-
sible applicable actions in a state, it still does not perform very well because
the branching factor in a state is given by all of the possible applicable actions
in that state, especially at the early stages of the algorithm when the Q val-
ues are converged. Our modified version of RTDP, on the other hand, reduces
that branching factor by using the lower and upper bounds during the planning
2 The reason that we used less number of random problems in these experiments was

to ensure the completion of the experimental suite due to the long run times required
the original RTDP algorithm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 U. Kuter and J. Hu

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Number of objects

A
v
g
.

C
P
U

 T
im

e
s
 (

s
e
c
.'
s
)

RTDP RTDP_X

RTDP_X

RTDP

Fig. 4. Running times on UAV path-planning problems with increasing the number of
objects, with 3 threats and 6 × 6 grid. Each data point is the average of 20 problems.

process, since any applicable action in a state whose Q value is not within the
bounds is not considered for that state at all.

7 Related Work

Action elimination in MDPs was addressed in early work by MacQueen [13],
who used some inequality forms of Bellman’s equation together with bounds on
the optimal value function to eliminate non-optimal actions in order to reduce
the size of the action space of an MDP. Since then, the method has been applied
to several standard MDP solution techniques such as value iteration and policy
iteration, see e.g., [16] for a review. Recently, the idea of eliminating non-optimal
actions has been explored in [14] in a reinforcement learning context where the
explicit mathematical model of the underlying system is unknown. Unlike the
action-elimination technique we described in this paper, all these approaches are
designed for solving general MDPs, thus they do not exploit the structure of the
underlying planning problems. Note that it is possible to combine more than one
action-elimination technique, in order to get an even more efficient MDP-based
planning framework, and we will investigate such possibilities in the near future.

In addition to the RTDP algorithm described earlier, another similar algo-
rithm that uses a heuristic search for MDP planning is LAO* [11]. LAO* is a
generalization of the well-known AO* search algorithm for solving MDPs, us-
ing Value Iteration and/or Policy Iteration in order to update the values of the
states in the search space. In several experimental studies, RTDP has shown to
outperform LAO*, thus, we have not considered LAO* in our experiments.

State aggregation (or state abstraction) has been well studied in artifical in-
telligence community [23]. Some important advances include the homomorphism
method of [24], the bisimulation technique of [25,7], and the use of Bellman resid-
uals [20] and hierarchical abstractions [26]. A review of these techniques can be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 255

found in [27], where various abstraction techniques are categorized into several
general classes. Our notion of equivalent classes in this paper uses ideas from
factored MDPs and state aggregation based on similarity between two (groups
of) states’ cost functions. Thus, our approach can be viewed as a particular
technique for model-irrelevance abstraction [27], but it explores and exploits the
structure of the underlying state space. Therefore, in cases where the state space
admits a factored representation, our technique will in general be more efficient
than a generic model-irrelevance abstraction technique. Moreover, it has been
shown in [27] that a model irrelevance abstraction will preserve the optimality of
the original MDP; this is consistent with the result we obtained in Theorem 2.

Finally, in deterministic search and planning, a very promising approach have
been the use of pattern databases (PDBs) in order to prune the search space. Pat-
tern databases were introduced in [28] as a method for defining effective heuristic
functions for search and planning in deterministic domains [29,30]. Our action-
elimination technique is similar the notion of computing a PDB in that both our
technique and PDB computations are defined by a goal state and an abstraction
of the state space. However, an important distinction between our work and
the previous work on PDBs is that to the best of our knowledge, PDBs have
been designed and used only for deterministic search and planning problems, not
for MDP planning problems. However, our algorithms for bound computations
are specifically designed with nondeterministic actions and cost functions as in
MDPs; e.g., the nondeterministic nature of MDPs was the main reason for using
both lower and upper bounds for eliminating non-optimal actions.

8 Conclusions and Future Work

In this paper, we have described a way to improve the efficiency of a large
class of existing MDP planning algorithms. Based on the cost function of an
MDP planning problem, we first generate a particular partitioning of the MDP
represented in a factored form. Then, we compute lower and upper bounds on
the Q function of the MDP by doing a backward breadth-first search over the
partitioning computed in the previous step. We then take these bounds and
incorporate them into any MDP planning algorithm. As a result of this process,
the modified planners search a reduced MDP by identifying and eliminating
sub-optimal actions, improving the performance.

We have presented theorems showing that our action-elimination technique
is correct; i.e., the lower and upper bounds generated by the techniques only
eliminate actions that are guaranteed not to be part of an optimal solution, and
thus, our technique preserves optimality in the modified MDP planners.

We have presented an experimental evaluation of our ideas in an Unmanned
Aerial Vehicle (UAV) path planning domain, using two MDP planning algo-
rithms – namely, RTDP [1] and AMS [2] – that has been demonstrated to be
very successful in the automated planning and operations research communities,
respectively. Our results demonstrate that our technique can provide significant
advantages in speed and scalability. In particular, our modified version of AMS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 U. Kuter and J. Hu

was able to solve the problem approximately 130 times faster than the origi-
nal one. Similarly, in the largest problems that RTDP could solve, our modified
version of RTDP was approximately 2, 500 times faster than the original one.

In the near future, we will conduct an extensive experimental evaluation of
our technique, using other MDP planning domains and other MDP planning
algorithms such as Q-Learning and LAO*. We are also currently investigating in
detail different state-abstraction techniques based on pattern databases [28] and
bisimulation [7] that has been very successful in their respective research areas
and developing ideas on how to combine them with our technique to generate
bounds for action elimination in MDPs. Finally, as we noted in the paper, we
are planning to work on combining other existing action-elimination techniques
such as the one described in [14] with our framework.

Acknowledgments. We thank to Michael Fu, Steve Marcus, and Dana Nau
for several useful discussions on the ideas in this paper and to our anonymous
reviewers for their helpful comments. This work was supported in part by NSF
grant IIS0412812, DARPA’s REAL initiative, and ISR seed funding. The opin-
ions expressed in this paper are those of authors and do not necessarily reflect
the opinions of the funders.

References

1. Bonet, B., Geffner, H.: Labeled RTDP: Improving the Convergence of Real-Time
Dynamic Programming. In: ICAPS-03, pp. 12–21 (2003)

2. Chang, H.S., Fu, M.C., Hu, J., Marcus, S.I.: An adaptive samping algorithm for
solving markov decision processes. Operations Research 53(1), 126–139 (2005)

3. Bertsekas, D.P., Castañon, D.A.: Adaptive aggregation methods for infinite horizon
dynamic programming. IEEE Trans. on Automatic Control 34(6), 589–598 (1989)

4. Dearden, R., Boutilier, C.: Abstraction and approximate decision-theoretic plan-
ning. Artificial Intelligence 89(1-2), 219–283 (1997)

5. Dean, T., Kaelbling, L.P., Kirman, J., Nicholson, A.: Planning under time con-
straints in stochastic domains. Artificial Intelligence 76(1–2), 35–74 (1995)

6. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic dynamic programming with
factored representations. Artificial Intelligence 121(1-2), 49–107 (2000)

7. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence 147(1-2), 163–233 (2003)

8. Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large-scale dynamic pro-
gramming. Machine Learning 22, 59–94 (1996)

9. de Farias, D.P., Van Roy, B.: The linear programming approach to approximate
dynamic programming. Operations Research 51(6), 850–865 (2003)

10. Trick, M., Zin, S.: Spline approximations to value functions: A linear programming
approach. Macroeconomic Dynamics 1, 255–277 (1997)

11. Hansen, E.A., Zilberstein, S.: LAO*: A Heuristic Search Algorithm that Finds
Solutions With Loops. Artificial Intelligence 129, 35–62 (2001)

12. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing and Using Lower and Upper Bounds 257

13. MacQueen, J.: A modified dynamic programming method for markovian decision
problems. J. Math. Anal. Appl. 14, 38–43 (1966)

14. Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions
for reinforcement learning. In: ICML-03 (2003)

15. Boutilier, C., Dean, T., Hanks, S.: Decision theoretic planning: Structural assump-
tions and computational leverage. JAIR 11, 1–94 (1999)

16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley & Sons, Inc, New York (1994)

17. Jum, M., Andrea, R.D.: Path Planning for Unmanned Aerial Vehicles in Uncertain
and Adversarial Environments. In: Cooperative Control: Models, Applications and
Algorithms, Kluwer, Dordrecht (2002)

18. Hanks, S., McDermott, D.: Modeling a dynamic and uncertain world I: Symbolic
and probabilistic reasoning about change. Technical Report TR-93-06-10, U. of
Washington, Dept. of Computer Science and Engineering (1993)

19. Boutilier, C., Dean, T.L., Hanks, S.: Planning under uncertainty: Structural as-
sumptions and computational leverage. In: Ghallab, Milani (eds.) New Directions
in AI planning, pp. 157–171. IOS Press, Amsterdam (1996)

20. Berstekas, D.: Dynamic Programming and Optimal Control. Athena Scientific
(1995)

21. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, University of
Cambridge (1989)

22. Korf, R.E.: Optimal Path Finding Algorithms. Search in AI, pp. 223–267 (1988)
23. Guinchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 57(2-3),

323–390 (1992)
24. Ravindran, B., Barto, A.: Smdp homomorphisms: An algebraic approach to ab-

straction in semi-markov decision processes. In: IJCAI-03, pp. 1011–1016 (2003)
25. Dean, T., Givan, R., Leach, S.: Model reduction techniques for computing approx-

imately optimal solutions for markov decision processes. In: UAI-97, pp. 124–131
(1997)

26. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. JAIR 13, 227–303 (2000)

27. Li, L., Walsh, T., Littman, M.: Towards a unified theory of state abstraction for
mdps. In: AI and Math-06 (2006)

28. Culberson, J.C., Schaeffer, J.: Efficiently searching the 15-puzzle. Technical report,
Department of Computer Science, University of Alberta (1994)

29. Korf, R.E.: Finding optimal solutions to rubikös cube using pattern databases. In:
AAAI-97, pp. 700–705 (1997)

30. Edelkamp, S.: Planning with pattern databases. In: Proceedings of the European
Conference on Planning (ECP), pp. 13–24 (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State

Spaces

Nicholas K. Jong and Peter Stone

The University of Texas at Austin, Austin TX 78712, USA
{nkj,pstone}@cs.utexas.edu

http://www.cs.utexas.edu/users/{nkj,pstone}

Abstract. Modern reinforcement learning algorithms effectively exploit
experience data sampled from an unknown controlled dynamical sys-
tem to compute a good control policy, but to obtain the necessary data
they typically rely on naive exploration mechansisms or human domain
knowledge. Approaches that first learn a model offer improved explo-
ration in finite problems, but discrete model representations do not ex-
tend directly to continuous problems. This paper develops a method
for approximating continuous models by fitting data to a finite sam-
ple of states, leading to finite representations compatible with existing
model-based exploration mechanisms. Experiments with the resulting
family of fitted-model reinforcement learning algorithms reveals the crit-
ical importance of how the continuous model is generalized from finite
data. This paper demonstrates instantiations of fitted-model algorithms
that lead to faster learning on benchmark problems than contemporary
model-free RL algorithms that only apply generalization in estimating
action values. Finally, the paper concludes that in continuous problems,
the exploration-exploitation tradeoff is better construed as a balance be-
tween exploration and generalization.

1 Introduction

Reinforcement learning (RL) algorithms must balance two motives in select-
ing actions in controlled systems: exploration and exploitation [1]. Exploratory
actions attempt to gather useful data about the system; exploitative actions
attempt to maximize expected rewards given the data. Effective exploration re-
mains a challenging research problem, with many RL implementations relying on
relatively naive approaches. For example, the seminal Q-learning algorithm [2],
which underlies a large fraction of ongoing RL research and most current RL ap-
plications, promises asymptotic convergence to an optimal control policy, given
an exploration policy that attempts every action in every state infinitely often.
In practice, most implementations explore by relying on random deviations from
the learned policy. Any sequence of actions is possible in such a scheme, but a
sequence becomes exponentially unlikely the longer it deviates from the learned
policy. Such inefficient exploration methods help to explain the limitations of
applying RL methods to real-world problems, which demand fast convergence
to reasonable policies in large or infinite state spaces.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 258–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 259

Model-based approaches to RL facilitate more informed exploration by explic-
itly estimating the dynamics of the system before attempting to estimate the
optimal policy. Uncertainty in the learned model can direct the learning algo-
rithm to seek the data most likely to improve exploitation. Such approaches led
to the first probabilistic convergence guarantees to near-optimal policies with fi-
nite amounts of data [3]. However, this body of research usually relies on tabular
representations of models that presuppose discrete problems; model learning for
continuous problems has been restricted to the case of deterministic dynamics [4].
Partly for this reason, state-of-the-art algorithms for continuous problems, such
as LSPI [5], rely on model-free techniques, which approximate the long-term
value of each action in every state directly from data. However, these algorithms
still rely on random exploration to acquire this data. To make matters worse,
many modern algorithms employ computationally expensive supervised learning
mechanisms, which permit them to update their exploration policies very in-
termittently. In contrast, model-based algorithms typically support incremental
updates that permit immediate changes to the exploration policy in response to
each new piece of data.

This paper develops model-based algorithms suitable for continuous problems.
It addresses the question of how to represent the transition model for an action,
which must specify for infinitely many states a successor state distribution over
an infinite set. The successor state distribution may be approximated with a
finite sample generalized from the data, but this distribution must still be pa-
rameterized by the infinite state set. However, if this transition model is used
with fitted value iteration [6], an algorithm for computing policies in infinite
problems using a finite state sample, then it suffices to represent the transition
model explicitly at only a finite number of points. The resulting fitted model
permits the application of the simple but effective exploration mechanism from
R-max [7], a model-based algorithm designed for finite problems.

2 Background

Most RL algorithms assume that the controlled system constitutes a Markov
decision process (MDP) [8]. An MDP 〈S, A, P , R〉 comprises a set of states S,
a finite set of actions A, a transition function P : S × A → ΔS, and a reward
function R : S × A → IR. For all s ∈ S and a ∈ A, P(s, a) = Psa gives
the probability density function over successor states s′ given that action a is
executed in state s, so Pr(s′|s, a) = Psa(s′). The reward function gives the
expected reward E[r|s, a] = R(s, a) = Rsa for executing action a in state s.
Finally, MDPs satisfy the Markov assumption, which states that the successor
state s′ and the reward r depend only on s and a. In other words, s′ and r are
conditionally independent of all other variables given s and a.

In this paper, it will be necessary to reason about the composition of Markov-
ian transition functions, similar to the composition of MDPs in [6]. To this end,
suppose f : Y → ΔX and g : Z → ΔY are transition functions from Y to X and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

260 N.K. Jong and P. Stone

from Z to Y , respectively. Then the composition of f and g, f ◦ g : Z → ΔX is
obtained by marginalizing over the values of Y :

(f ◦ g)z(x) = Pr(x|z) =
∫

y

Pr(x ∧ y|z) dy =
∫

y

Pr(x|y, z) Pr(y|z) dy (1)

=
∫

y

Pr(x|y) Pr(y|z) dy (2)

=
∫

y

fy(x)gz(y) dy, (3)

where (2) follows from the conditional independence of x from z given y.1 Note
that for the finite case, the composition of transition functions corresponds di-
rectly to the multiplication of the appropriate transition matrices.

The optimal value function V : S → IR for an MDP specifies the maximum
possible expected cumulative reward V (s) given optimal behavior and starting
from state s ∈ S. This value function satisfies the Bellman optimality equations:
for all s ∈ S,

V (s) = max
a∈A

[
Rsa +

∫
s′∈S

Psa(s′)V (s′) ds′
]

. (4)

(A discount factor γ ∈ [0, 1] may be used to ensure that this system has a
solution.) Given V , an optimal policy π : S → A may be defined by π(s) =
argmaxa∈AQ(s, a), where Q(s, a) = Rsa +

∫
s′∈S Psa(s′)V (s′) ds′.

3 Model Approximation

Model-based RL algorithms estimate the transition and reward functions P and
R from experience data. They can then use these estimates relatively directly
with (4) to compute the optimal value function and policy. For concreteness,
let s0, a0, r1, s1, . . . , rt, st be the data, with t being the current time step. In
episodic tasks, a special state sterminal /∈ S designates the end of an episode.
If si = sterminal, then ai and ri+1 are undefined, and si+1 is the initial state
in the next episode. Additionally, define the set of transition instances D ={
i | 0 ≤ i < t ∧ si 	= sterminal

}
. For convenience, we also define subsets of D that

condition the data on specific actions and states. Let Da = {i ∈ D | ai = a} be
the set of instances that match action a, let Da

s = {i ∈ Da | si = s} be the set of
instances that also matches state s, and let Da

ss′ = {i ∈ Da
s | si+1 = s′} be the

set of instances that also matches successor state s′.
For finite MDPs, straightforward maximum likelihood estimation of P and R

is both simple and effective. The model may be computed from D as P̂sa(s′) =
|Da

ss′ |
|Da

s | and R̂sa =
�

i∈Da
s

ri+1

|Da
s | . Initially, Da

s will be quite small everywhere, but by

1 f ◦ g is not strictly a Markovian transition function, since x is not conditionally
independent of y given z, but this subtlety is not relevant to the results of this
paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 261

the pigeonhole principle the estimate will become quite reliable at some state-
action sa. Reliable regions of the model enable a model-based exploration mech-
anism to direct the agent to regions of the state space where more data is needed,
until adequate data exists to estimate the model at every reachable state. This
approach to exploration in finite problems is precisely the one taken explicitly
in E3 [3] and implicitly in prioritized sweeping [9] and R-max [7].

In very large finite MDPs, the updating the model for only one state-action at
a time may require too much data in practice. In infinite MDPs, the algorithm
may never visit the same state twice, precluding accurate estimation of the
model parameters entirely. One of the primary contributions of this paper is a
robust method for approximating the maximum likelihood model from data. The
method decomposes the estimated transition function into the composition of
components that can be computed easily from the data. A key feature of the final
method will be that one of these components generalizes the model across nearby
states, but for the sake of clarity the initial description of the decomposition will
address the case without generalization.

3.1 Decomposition of the Transition Function

Consider the task of estimating the effect of executing action a in state s, given
data D. Instead of directly estimating the transitions as a probability distribution
over S as a function of S × A, define a two-stage transition function that first
transitions from state-action sa to a state-instance si ∈ S × D, then from state-
instance si to a successor state s′ ∈ S. A dynamic Bayesian network of this
formulation appears in Fig. 1.

t+1s

s sisa t

E

Mπ

Fig. 1. Dynamic Bayesian network showing the decomposition of the transition func-
tion for an approximated MDP. The policy π determines the conditional distribution of
sa given s. The model instance transition function M determines the conditional distri-
bution of si given sa. The action effect transition function E determines the conditional
distribution of s at time t + 1 given si from time t.

A model instance transition function M : S × A → Δ(S × D) maps each
state-action sa to a state-instance si with probability Msa(s, i). Intuitively, M
replaces the action component of sa with a specific instance i from the agent’s
experience that represents the predicted effect of a. The state-instance si implies
that the same thing that happened at time step i will happen again, this time
at state s. This transition function thus accounts for the stochasticity in the
domain, by replacing the potentially stochastic action a with a specific outcome

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

262 N.K. Jong and P. Stone

i. Note that M preserves the value of the state s when it transitions a state-
action sa to a state-instance si.

In the absence of generalization, the agent has no reason to believe that the
action effect at instance i will recur at state s unless si = s and ai = a. Hence,
the exact model instance transition function is

Mexact
sa (s, i) ∝ δssiδaai , (5)

where δxy = 1 if x = y and 0 otherwise. In the same vein, given state-instance si
and s = si, it must be the case that s′ = si+1, since the transition to si accounted
for any nondeterminism. The absolute effect transition function Eabs

si : S × D →
ΔS reflects this expectation:

Eabs
si (s′) = δs′si+1 . (6)

It can be verified that the composition of Eabs
si and Mexact

sa yields the maximum
likelihood estimator for P given above:

(
Eabs ◦ Mexact)

sa
(s′) =

∑
i∈D

δs′si+1

δssiδaai∑
i∈D δssiδaai

=
∑
i∈D

δs′si+1δssiδaai

|Da
s |

=
|Da

ss′ |
|Da

s |
= P̂a

s (s′).

3.2 Model Generalization

The preceding section presented a novel computation of the exact maximum
likelihood estimator for P , but as discussed at the beginning of Sect. 3, in very
large or infinite MDPs this estimator is impractical. This section describes alter-
native definitions of the model instance transition function M and action effect
transition function E that are more useful in continuous problems. To predict
the effects of actions at infinitely many states given only finite data, the learned
model must use some form of generalization and hence inductive bias. This sec-
tion of the paper places additional assumptions on the state space of the MDP
to be learned. In particular, it assumes the state space is a bounded subset of
some Euclidean space, and it assumes that nearby states tend to induce similar
dynamics and reward for each action.

The approximate model lifts the restriction that the exact model imposes,
allowing a state-action sa to transition to a state-instance si such that si 	= s.
However, the model weights each transition according to a decreasing function
of the euclidean distance |si − s| between si and s. This paper uses Gaussian
weighting:

Mapprox
sa (s, i) ∝ δaaie

−
�

|s−si|
b

�2

, (7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 263

where b is a parameter that controls the breadth of generalization across the state
space. This parameter critically affects learning performance. A large degree of
generalization permits very rapid learning, but in some cases overgeneralization
can prevent the algorithm from ever finding a good policy.

Even moderate amounts of generalization suggest a modification to the ab-
solute action effect transition function Eabs defined in Sect. 3.1, as shown in
Fig. 2. For a given state-instance si, predicted the successor state to be si+1,
the actual successor state for the instance i, makes less sense the farther si is
from s. Early experiments demonstrated that the breadth of generalization can
be quite large relative to the distance traveled in one time step. Otherwise, the
amount of data required may be prohibitive, despite potential regularities in the
system’s dynamics. For example, a mobile robot whose state includes its pose
should be able to generalize its action model over large regions of free space.
The relative action effect transition function thus attempts to isolate for a given
instance i the contribution of the action ai from the contribution of the state si

on the successor si+1:

Erel
si (s′) =

⎧⎨
⎩

1, if si+1 = sterminal ∧ s′ = sterminal

1, if s′ = s + (si+1 − si)
0, otherwise.

(8)

si

s

si+1 si+1

s s s + si+1 − si

(a) (b) (c)

Fig. 2. The action effect transition function E can determine the fidelity of the ap-
proximated model to the true dynamics. (a) Approximating the effect of some action
a at a given state s using three nearby instances. (b) Absolute action effects predict
transitions to the exact successor states previously visited. (c) Relative action effects
better capture the dynamics of the system by applying the appropriate vectors to the
present state s.

Finally, the approximation of the reward function Rapprox is similar to the
approximation of the model approximation transition function. For a given state-
action sa, the approximated expected reward is a weighted average of the rewards
for the instances used to approximate a near s:

Rapprox
sa =

∑
i∈D

ri+1Mapprox
sa (s, i). (9)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 N.K. Jong and P. Stone

4 Fitted-Model Learning Algorithms

Section 3 gave an approximation of the transition and reward functions for an
unknown continuous-state MDP, but a complete model-based algorithm also
requires a practical method for computing the value function from the model and
an exploration mechanism. This section integrates the contributions of Sect. 3
with existing algorithms that play each of these roles.

4.1 Fitted Models

The approximate model instance transition function Mapprox induces a contin-
uous MDP 〈S, A, Papprox, Rapprox〉, with Papprox = Erel ◦ Mapprox and Rapprox

given by (9). Computing the optimal value function for even this approximate
model is impossible in general, since the transition and reward functions still
vary continuously over the infinite state-action space S × A.

Fitted value iteration [6] provides an algorithm for approximating the opti-
mal value function of continuous-state MDPs. The algorithm uses a finite sam-
ple X ⊂ S of states to represent the value function, for an arbitrary value
function approximation scheme that represents the value of any state s ∈ S as
some weighted average of the values of X . That is, the function approximator
must compute the value of a state s ∈ S as V (s) =

∑
x∈X Fs(x)V (x), where∑

x∈X Fs(x) = 1 and Fs(x) ≥ 0. In other words, F : S → ΔX must be a
transition function that transitions every state in S to one of the states in the
finite sample X . Then interleaving steps of value iteration with fitting the value
function to the function approximation scheme is equivalent to applying stan-
dard value iteration [10] to the derived MDP 〈X, A, F ◦ P , R〉, as diagrammed
in Fig. 3 and 4. This equivalence ensures that function approximation does not
cause the value function computation to diverge.

To compute a value function for the approximate model defined in (7) and (9),
it suffices to substitute Papprox for P and Rapprox for R in fitted value iteration.
Approximating the value function for the learned model is thus equivalent to

state
sample

model

function
approximation

x4x2 x3 x5

x3a1

x2x1 x3

x3a2

x4 x5

a1 a2

{s′}

x1

Fig. 3. This diagram shows a continuous MDP with two actions being fitted to a state
sample of size 5. For clarity, only the transitions for state s3 are shown.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 265

derived
model

a1

x1 x2 x3 x4 x5

a2

Fig. 4. This diagram shows the finite MDP derived from fitting the continuous MDP
in Fig. 3.

computing the exact value function for the finite MDP 〈X, A, F ◦ E ◦ M, R〉.
Fig. 5 illustrates this decomposition.

Many function approximation schemes are possible for choosing X and defin-
ing F . In all the experiments described in this paper, X is a uniform grid span-
ning the state space, and Fs′(x) gives the coefficients for multilinear interpolation
of s′ from the 2d corners of the hypercube containing s′, where d is the dimen-
sionality of the state space. Preliminary experiments showed that this simple
function approximation scheme performed better than a number of alternatives,
including instance-based approaches that added either visited states st to X or
predicted successors s′ to X as necessary.

x

x xixa t

t+1

EMπ
s′

F

Fig. 5. Dynamic Bayesian network showing the decomposition of transitions in the
derived MDP, solved using standard value iteration, into components of the model
approximation.

4.2 Fitted R-Max

Section 4.1 showed how to estimate the optimal value function from data by first
approximating a model, but one of the primary motivations behind extending
model-based methods to continuous problems is to take advantage of intelligent
exploration methods. This section describes one simple but effective model-based
algorithm for finite problems and shows how to incorporate its exploration mech-
anism into fitted value iteration.

R-max is a relatively simple model-based algorithm that implements a stan-
dard principle of exploration: optimism in the face of uncertainty [7]. It maintains
maximum-likelihood estimates of the model parameters P̂sa(·) and R̂sa for every
state s and action a, but it only employs these estimates given sufficient data to
have confidence in their accuracy. Let n(s, a) denote the number of times action
a has been executed in state s. Then R-max estimates the value function using

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 N.K. Jong and P. Stone

Q̂(s, a) =
{

V max if n(s, a) < m

R̂sa +
∑

s′∈S P̂sa(s′)V̂ (s′) if n(s, a) ≥ m
(10)

where V̂ = maxa∈A Q̂(s, a), V max is an upper bound on the value function,2

and m is a constant. The modified Bellman equations can still be solved using
a standard MDP planning algorithm, such as value iteration.

The optimistic value function explicitly rewards the algorithm for executing
actions in uncertain states. The parameter m determines the amount of explo-
ration required before the algorithm is certain about the effects of a state-action
pair. Furthermore, augmenting the value function in this manner causes the
agent to seek out states that are either actually high in value or where “explo-
ration bonuses” are available for executing unfamiliar state-actions. [11] showed
how the exploration threshold m relates to the likely error in the estimates P̂ ,
leading to bounds on the amount of exploration required before converging to a
probably approximately optimal policy.

Although the use of generalization in approximating a fitted model eliminates
such guarantees of convergence to optimal behavior, the exploration mechanism
of R-max can still be applied to fitted value iteration simply by substituting in
the parameters of the derived finite MDP into (10) and appropriately defining
an approximation of n(s, a). This latter quantity denotes the number of times
a was executed in state s, so the logical analog is the sum of the unnormalized
kernel values used to weight the transitions from a state s to each i ∈ D:

ñ(s, a) =
∑
i∈D

δaaie
−
�

|s−si|
b

�2

. (11)

Thus n(s, a) now counts both the actual data for a at s as well as “partial”
data generalized from executions of a near s. The fitted R-max algorithm thus
computes the following value function:

Q(s, a) =

�
V max if n(s, a) < m

Rapprox
sa +

�
x′∈X

�
F ◦ Erelative ◦ Mapprox

�
sa

(x′)V (x′) if n(x, a) ≥ m

(12)

At each time step, fitted R-max adds the just observed transition to D, up-
dates Mapprox and F , and then applies value iteration to solve (10). The algo-
rithm then behaves greedily with respect to Q(st, ·). In practice, the composi-
tion P̃ = F ◦ Erelative ◦ Mapprox need not be recomputed after each time step.
By caching the appropriate intermediary values, the finite transition function
P̃ : X × A → ΔX can be repaired to reflect each new instance i. In the same
spirit, prioritized sweeping [9] can be used to update the value function efficiently
to reflect changes in the approximate model.

2 [7] reasons with Rmax, an upper bound on the one-step reward, since its version of
the algorithm computes finite-horizon value functions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 267

5 Experimental Results

Fitted R-max learns with good data efficiency by using a combination of model-
based exploration and stable function approximation. This section describes ex-
periments demonstrating that fitted R-max converges more rapidly to near-
optimal policies than several other recent RL algorithms evaluated on some
benchmark problems with continuous state spaces. It then examines the im-
portance of the relative action effect transition function Erel compared to the
absolute version Eabs. Finally, it investigates the importance of the generaliza-
tion breadth parameter, b.

5.1 Implementation Details

A primary practical concern for any instance-based algorithm is computational
complexity. The computationally intensive step of fitted R-max is the incremen-
tal update to the derived finite model. In general, these steps require running
time linear in the size of D, which is equal to the number of times the agent has
acted.

The experimental implementation achieves a substantial reduction in the con-
stant factor of this O(|D|) running time by observing that the each newly sam-
pled transition only changes the model appreciably in a local region of the state
space. It sets the minimum nonzero value of the (unnormalized) Gaussian weight-
ing to 0.01 in (7). Thus the addition of a new transition from s only affects those
sample states x ∈ X within distance b

√
− log 0.01 = 2.146b from s. The im-

plementation also prunes each averager φ so that the smallest nonzero value of
Mapprox

sa (s, i) is 0.01 (and renormalizes the remaining values), bounding to 100
the number of instances used to approximate s. Note that this pruning does
not bias the approximation, which essentially becomes k-nearest neighbors with
k = 100 and Gaussian weighting whenever sufficient data exists to override op-
timism. The precise thresholds used to prune did not significantly affect the
performance of the algorithm.

5.2 Benchmark Performance

This section compares the performance of fitted R-max to algorithms submitted
to the RL benchmarking workshop held at NIPS 2005 [12]. This event invited
researchers to implement algorithms in a common interface for online RL. Partic-
ipants computed their results locally, but direct comparisons are possible due to
the standardized environment code, which presents the same sequence of initial
states to each algorithm. This sections examines two of the benchmark domains
and gives the fitted R-max parameters used to solve them. It then evaluates the
performance of fitted R-max against selected algorithms.

Mountain Car. In the Mountain Car simulation [1], an underpowered car must
escape a valley (Fig. 6a) by backing up the left slope to build sufficient energy

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 N.K. Jong and P. Stone

to reach the top of the right slope. The agent has two state variables, horizontal
position x and horizontal velocity v. The three available actions are reverse,
neutral, and forward, which add −0.001, 0, and 0.001 to v, respectively. In
addition, gravity adds −0.0025 cos(3x) to v at each time step. The agent receives
a reward of −1 for each time step before reaching the goal state. Episodes begin
in a uniformly random initial position x and with v = 0, and they last for at
most 300 time steps. The only domain knowledge available is the upper bound
V max = 0 on the value function and the minimum and maximum values of each
state variable: −1.2 and 0.5 for x and −0.07 and 0.07 for v.

Fitted R-max scaled both state variables to [0, 1]. The generalization breadth
b was 0.08. X consisted of uniform 64 × 64 grid overlaying the state space.
Since Mountain Car is deterministic, the exploration thresholds was m = 1. To
compute the value function, fitted R-max applied at most 1000 updates with
minimum priority 0.01 after each transition.

(a) (b)

Fig. 6. Two of the domains from the NIPS benchmarking workshop: (a) Mountain Car
and (b) Puddle World

Puddle World. The Puddle World [13] is a continuous grid world with the goal
in the upper-right corner and two oval puddles (Fig. 6b). The two state variables
are the x and y coordinates, and the four actions correspond to the four cardinal
directions. Each action moves the agent 0.05 in the indicated direction, with
Gaussian noise added to each dimension with σ = 0.01. The agent receives a −1
reward for each action outside of the two puddles, with have radius 0.1 from two
line segments, one from (0.1, 0.75) to (0.45, 0.75) and the other from (0.45, 0.4)
to (0.45, 0.8). Being in a puddle incurs a negative reward equal to 400 times the
distance inside the puddle. The goal region satisfies x + y ≥ 0.95 + 0.95.

For this domain, fitted R-max used generalization breadth b = 0.08. A 64×64
grid was again used for X . Although Puddle World is stochastic, thresholds
m = 1 continued to suffice. Fitted R-max used at most 1000 updates after each
transition, with minimum priority 0.01.

Benchmark Results. Figure 7 compares the performance of fitted R-max to
three selected algorithms. (Each point is the average of fifty sequential episodes,
as reported to the NIPS workshop.) These three algorithms, implemented and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 269

parameterized by other researchers, were among the most competitive submit-
ted. One is a model-based approach applied to a fixed discretization of the state
space. This algorithm employed the same exploration mechanism as Prioritized
Sweeping, but it lacked the instance-based representation and averager-based
generalization of fitted R-max. Least Squares Policy Iteration [5] is similar to
fitted R-max in that it uses a given sample of transitions to compute the parame-
ters of a function approximator that best approximates the true value function.
However, LSPI relies on random exploration and a fixed set of kernels to rep-
resent the state space. XAI (eXplore and Allocate, Incrementally) is a method
that represents the value function with a network of radial basis functions, al-
located online as the agent reaches unexplored regions of the state space [12].
It thus resembles fitted R-max in its instance-based use of Gaussian weighting
for approximation, but XAI is a model-free method that uses gradient descent
and Sarsa(λ) to update the value function. None of these algorithms achieves the
same level of performance as fitted R-max, which combines instance-based model
approximation, stable function approximation, and model-based exploration.

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max
XAI

Least Squares Policy Iteration
discretized models

-500

-400

-300

-200

-100

 0

 0 200 400 600 800 1000

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max
XAI

discretized models
Least Squares Policy Iteration

(a) (b)

Fig. 7. Learning curves for (a) Mountain Car and (b) Puddle World

5.3 Ablation Study

This section illustrates the benefit of fitted R-max’s approach to model-based
RL in infinite systems. It compares three algorithms. The first is fitted R-max,
employing the relative action effect transition function Erel given in (8). The
second is a version of fitted R-max that uses the absolute action effect transition
function Eabs given in (6), to measure the importance of action effect component
of the transition function. The third algorithm is the original discrete R-max
algorithm [7], to measure the importance of the novel decomposition of the
transition function.

Figure 8 shows the performance of each algorithm, averaged over 50 inde-
pendent trials in the Mountain Car domain. This implementation of Prioritized
Sweeping uses the same parameters as the finite model-based algorithm submit-
ted to the NIPS workshop: it discretizes each state dimension into 100 intervals
and uses m = 1. Fitted R-max used the same parameters described in Sect. 5.2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 N.K. Jong and P. Stone

-300

-250

-200

-150

-100

-50

 0

 0 100 200 300 400 500

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max, relative effects

Fitted R-max, absolute effects

Discrete R-max

Fig. 8. Learning curves for Mountain Car. Each curve is the average of 50 independent
trials.

Absolute-transition fitted R-maxconverges much more quickly than discrete
Prioritized Sweeping, but at the expense of converging to suboptimal policies.
Further experimentation has shown that decreasing b improves the average qual-
ity of the final policy but quickly decreases the learning speed of the algorithm.
The standard version of fitted R-max uses the more accurate relative transition
generalization to preserve fast convergence while achieving near-optimal poli-
cies in this domain. For comparison, Figure 9 illustrates typical learned policies
for both versions of fitted R-max. An optimal policy would execute forward
roughly when the velocity is positive, in the upper half of the state-space dia-
gram, and it would execute reverse roughly when the velocity is negative, in
the lower half of the state-space diagram. This run of absolute-transition fitted
R-max incorrectly selects reverse in a large region with positive velocity. In-
spection of the relevant states revealed that the local neighborhood of the sample
Sreverse happened to contain more high-value states. The absolute transition
model incorrectly concluded that the reverse action would transition to this
higher-value region; the relative transition model correctly concluded that this
action decreases the value of any state in the neighborhood.

6 Discussion and Related Work

The primary contribution of this paper is its integration of model-based ex-
ploration with stable function approximation. Fitted R-max extends the data
efficiency of model-based methods to continuous systems, which previously pre-
sented the difficulty of representing continuous models. [4] addressed this prob-
lem in the deterministic case, also using locally weighted learning from instances.
Their application of locally weighted regression estimated the average successor
state for each state-action pair; fitted R-max approximates the distribution over
successor states and thus copes with forms of stochasticity beyond simple noise.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Exploration in Continuous State Spaces 271

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V
el

oc
ity

Position

Reverse
Neutral

Forward
-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V
el

oc
ity

Position

Reverse
Neutral

Forward

(a) (b)

Fig. 9. Mountain-Car policies learned using (a) absolute-transition fitted R-maxand
(b) standard fitted R-max. The solid region of the state space indicates where the
policy selects the forward action; the hatched region indicates where it selects the
reverse action.

They also did not address the issue of exploration in continuous systems. Fit-
ted R-max permits the application of intelligent exploration mechanisms origi-
nally designed for finite systems. It employs the same mechanism as Prioritized
Sweeping [9] and R-max [7], perhaps opening the door for generalizing the latter
algorithm’s polynomial-time PAC convergence guarantees to certain continuous
systems.

Introducing model-based reasoning to function approximation also provides
novel insight into the problem of generalizing from finite data to knowledge of
an infinite system. Most approaches to function approximation rely on a static
scheme for generalizing the value function directly, despite the difficulty in intu-
iting the structure of value functions. Fitted R-max explicitly generalizes first in
a model of the system, where intuitions may be easier to represent. For example,
a high degree of generalization is possible in the model for Mountain Car, since
the effect of an action changes smoothly with the current state. In contrast,
the optimal value function for this system includes large discontinuities in lo-
cations that are impossible to predict without first knowing the optimal policy:
the discontinuity separates those regions of the state space where the agent has
sufficient energy to escape the valley and from those regions where it must first
build energy. Approaches that only generalize the value function must use little
enough generalization to represent this discontinuity accurately; fitted R-max
uses a learned model to generalize both broadly and accurately.

7 Conclusion

Reinforcement learning in infinite systems requires accurate generalization from
finite data, but standard approaches only apply generalization directly to the
value function. Many systems of interest exhibit more intuitive structure in their
one-step dynamics than in the optimal value function. This observation suggests

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

272 N.K. Jong and P. Stone

a model-based solution that generalizes first from data to a model. Fitted-model
algorithms such as fitted R-max apply generalization both to the model and to
the value function. They derive a finite representation of the system that both
allows efficient planning and intelligent exploration. These attributes allow fitted
R-max to learn some standard benchmark systems more efficiently than many
contemporary RL algorithms.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Watkins, C.: Learning From Delayed Rewards. PhD thesis, University of Cambridge
(1989)

3. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time. In:
Proceedings of the Fifteenth International Conference on Machine Learning, pp.
260–268 (1998)

4. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control.
Artificial Intelligence Review 11, 75–113 (1997)

5. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine
Learning Research 4, 1107–1149 (2003)

6. Gordon, G.J.: Stable function approximation in dynamic programming. In: Pro-
ceedings of the Twelfth International Conference on Machine Learning (1995)

7. Brafman, R.I., Tennenholtz, M.: R-max – a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research 3,
213–231 (2002)

8. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., West Sussex, England (1994)

9. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning 13, 103–130 (1993)

10. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov
decision problems. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence (1995)

11. Kekade, S.M.: On the Sample Complexity of Reinforcement Learning. PhD thesis,
University College London (2003)

12. Dutech, A., Edmunds, T., Kok, J., Lagoudakis, M., Littman, M., Riedmiller, M.,
Russell, B., Scherrer, B., Sutton, R., Timmer, S., Vlassis, N., White, A., White-
son, S.: Reinforcement learning benchmarks and bake-offs II (2005) http://
www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/bakeoffs05.pdf

13. Sutton, R.S.: Generalization in reinforcement learning: Successful examples using
sparse coarse coding. Advances in Neural Information Processing Systems 8 (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/bakeoffs05.pdf
http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/bakeoffs05.pdf

Active Learning of Dynamic Bayesian Networks in
Markov Decision Processes

Anders Jonsson1 and Andrew Barto2

1 Department of Information and Communication Technologies
Universitat Pompeu Fabra

Passeig de Circumval·lació, 8
08003 Barcelona, Spain

anders.jonsson@upf.edu
2 Autonomous Learning Laboratory

Department of Computer Science
University of Massachusetts
Amherst MA 01003, USA
barto@cs.umass.edu

Abstract. Several recent techniques for solving Markov decision processes use
dynamic Bayesian networks to compactly represent tasks. The dynamic Bayesian
network representation may not be given, in which case it is necessary to learn
it if one wants to apply these techniques. We develop an algorithm for learning
dynamic Bayesian network representations of Markov decision processes using
data collected through exploration in the environment. To accelerate data collec-
tion we develop a novel scheme for active learning of the networks. We assume
that it is not possible to sample the process in arbitrary states, only along trajec-
tories, which prevents us from applying existing active learning techniques. Our
active learning scheme selects actions that maximize the total entropy of distrib-
utions used to evaluate potential refinements of the networks.

1 Introduction

Existing solution techniques for Markov decision processes, or MDPs, scale poorly to
tasks with large state spaces. A major research challenge is to develop techniques that
exploit the structure of a task and reduce the size of the state space. A common type
of structure is factored state, which means that the available information belongs to
distinct categories. For example, a robot navigating through a building can usually dis-
tinguish between its location, the object it is holding, and the energy level of its battery,
instead of perceiving the current situation as a single observation. Factored MDPs use
a set of state variables to represent the state in a way that is more appropriate for tasks
of this type. Dynamic Bayesian networks, or DBNs [1], are particularly well suited for
exploiting structure in factored MDPs by capturing conditional independence between
state variables as a result of executing actions. Several researchers have developed algo-
rithms for solving factored MDPs that exploit structure expressed by DBNs [2,3,4,5,6].

It is unrealistic to assume that a DBN model is always available prior to solving an
MDP. We address the non-trivial problem of learning DBNs from experience. There

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 273–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 A. Jonsson and A. Barto

exist algorithms in the literature for learning the structure of Bayesian networks [7,8,9].
However, these algorithms assume that a data set is given, whereas solution techniques
for MDPs typically have to gather data in the form of transitions and reward through
interaction with the environment. The complexity of learning DBNs depends heavily on
the time it takes to collect data. It is possible to accelerate data collection by selecting
high-quality data instances through a process called active learning. There exist several
techniques for active learning of Bayesian networks [10,11,12]. These techniques per-
form experiments by clamping a subset of the variables to fixed values and sampling
over the remaining variables.

A robot exploring its environment for the first time cannot transport itself to any
location instantaneously. Instead, it must wander around to try the effect of different
actions in different places. In this work, we assume that it is only possible to sample
MDPs along trajectories, not in arbitrary states. In other words, the only way to gather
information about transitions and reward is by repeatedly executing an action in the
current state. Since it is not possible to simulate the effect of actions in hypothetical
states, we cannot perform experiments by clamping a subset of the variables to fixed
values. Consequently, we cannot apply existing techniques for active learning. However,
there is still an opportunity to perform active learning of DBNs in factored MDPs.
Because the DBN model of a factored MDP consists of one DBN for each action, by
selecting an action we effectively select a DBN to collect data for. As a consequence,
we can consider policies for action selection whose aim is to gather data as quickly and
efficiently as possible. As far as we know, there exists no previous work for learning
DBN models of factored MDPs under these assumptions.

1.1 Overview of our Work

We use trees to represent the conditional probabilities of the DBNs, and develop an
algorithm that implicitly learns the DBNs by growing the conditional probability trees.
Our algorithm collects data instances by executing actions and grows the trees as soon
as a minimum number of data instances correspond to each relevant value of each
split variable. The minimum number is defined by a threshold parameter, and poten-
tial refinements are evaluated as soon as the threshold is exceeded. The algorithm uses
the Bayesian Information Criterion (BIC) [13] and the likelihood-equivalent Bayesian
Dirichlet metric (BDe) [9] to evaluate potential refinements. We assume that no data is
available to begin with and develop a technique for active learning of DBNs to accel-
erate data collection. The time to collect data is minimized if the distribution of data
instances across values of each potential split variable is perfectly uniform. We use the
entropy of the distributions to measure uniformity and select actions that maximize the
total entropy of the distributions.

In some tasks, the BIC and BDe scores fail to detect most of the refinements neces-
sary to learn an accurate DBN model. This typically happens when the effect of actions
depends on many state variables. Since the BIC and BDe scores penalize trees with
many leaves, the algorithm prefers to keep the size of the trees small instead of con-
tinuing to refine the trees. This is a serious issue since algorithms that take advantage
of DBNs to solve factored MDPs depend on an accurate DBN model. We address this
issue by applying regularization [14] to the BIC score. The BIC score is composed of a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning of Dynamic Bayesian Networks in Markov Decision Processes 275

log likelihood term and a penalty term. This quantity fits nicely into the regularization
framework if we multiply the penalty term by a parameter λ. Results show that varying
λ can increase the accuracy of the learned DBN model.

Our work is related to the problem of exploration in reinforcement learning [15].
Existing exploration techniques do not learn DBN models of MDPs. Since there exist
several efficient algorithms that use DBNs to solve factored MDPs, there is a benefit
to learning this representation. Ours is an undirected approach that does not require
enumeration of the state space, as opposed to directed exploration, which maintains
relevant information for each state. Since we want to scale to large state spaces, we do
not want to store quantities whose size is proportional to the number of states.

2 Bayesian Networks

Let X be a set of discrete variables, and let x be an assignment of values to the variables
in X. Let fY, Y ⊆ X, be a projection such that if x is an assignment to X, fY(x) is
x’s assignment to Y. A Bayesian network (BN) B = 〈G, θ〉 consists of a directed
acyclic graph G with one node per variable Xi ∈ X and a set of parameters θ defining
the conditional probabilities of the variables. The joint probability distribution of the
variables is given by:

P (x) =
∏

i

P (Xi = f{Xi}(x) | Pa(Xi) = fPa(Xi)(x)),

where Pa(Xi) ⊂ X is the subset of parent variables of Xi, i.e., variables with edges to
Xi in G, and the probabilities P (Xi = f{Xi}(x) | Pa(Xi) = fPa(Xi)(x)) are defined
by parameters in θ.

A dynamic Bayesian network, or DBN [1], is a Bayesian network that models the
evolution of a set of variables in a temporal process. The directed acyclic graph of a
DBN has two layers of nodes: one layer representing the current values of the variables,
and one layer representing the next values of the variables. The edges between layers
are unidirectional and always point from the current layer to the next layer. There can
also be edges between nodes within a layer.

Structure learning is the problem of finding the BN that best fits a data set D =
{x1, . . . ,xn}. A common approach is to compute the posterior probability distribution
P (B | D) over BNs and choose the BN that maximizes P (B | D). Two common
approximations of P (B | D) are the Bayesian Information Criterion (BIC) [13] and
the likelihood-equivalent Bayesian Dirichlet metric (BDe) [9]. From Bayes theorem it
follows that P (B | D) ∝ P (D | B)P (B). The BIC score makes the approximation

log[P (D | B)P (B)] ≈ L(D | B) − |θ|
2

log |D|, (1)

where L(D | B) is the log likelihood of D given B. If the data set D contains no
missing values, the log likelihood decomposes as

L(D | B) =
∑

i

∑
j

∑
k

Nijk log θijk,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 A. Jonsson and A. Barto

X1

X1 X2 0 1

θ θ210 211

θθ100 101

θθ 201200

[,]

[,] [,]

a) b) c)

Fig. 1. a) Graph G of a BN with two variables; conditional probability trees for b) X1, c) X2

where Nijk is the number of data points x ∈ D such that fPa(Xi)(x) = j and
f{Xi}(x) = k, and θijk = P (Xi = k | Pa(Xi) = j). The log likelihood is maxi-
mized for θijk = Nijk/

∑
k Nijk . The BDe score makes the approximation

P (D | B)P (B) ≈
∏

i

∏
j

Γ (
∑

k N ′ijk)
Γ (

∑
k[N ′ijk + Nijk])

∏
k

Γ (N ′ijk + Nijk)
Γ (N ′ijk)

, (2)

where N ′ijk are hyperparameters of a Dirichlet prior and Γ (x) is the Gamma function.
Finding the BN with highest BIC or BDe score is NP-complete [16]. However, both

scores decompose into a sum of terms for each variable Xi and each value j and k
(we need to take the logarithm of BDe first). The score only changes locally when we
add or remove edges between variables in G. Researchers have developed hill-climbing
algorithms that perform greedy search to find high-scoring BNs by repeatedly adding
or removing edges between variables in G [7,9]. These algorithms have been extended
to DBNs [8].

As an example, consider a BN with two binary variables X1 and X2. Assume that we
have collected three data points (0, 0), (0, 1), and (1, 1). Also assume that the BN has
an edge from X1 to X2, and that we use trees to store the conditional probabilities of
X1 and X2. Figure 1 shows the graph G of the BN as well as the conditional probability
trees for X1 and X2. Since X1 has no parents in G, the count N100 simply indicates the
number of data points that assign 0 to X1. In this case, N100 = 2 and N101 = 1. The
log likelihood is maximized for θ100 = N100/(N100 + N101) = 2/3 and θ101 = 1/3.
One data point, (0, 0), assigns the value 0 to X1 and 0 to X2, so N200 = 1. Likewise,
N201 = 1, N210 = 0, and N211 = 1. The log likelihood is maximized for θ200 =
N200/(N200 + N201) = 1/2, θ201 = 1/2, θ210 = 0, and θ211 = 1.

The BIC score for the BN is given by the expression

∑
i

∑
j

∑
k

Nijk log θijk − |θ|
2

log |D| =

= 2 log
2
3

+ 1 log
1
3

+ 1 log
1
2

+ 1 log
1
2

+ 0 + 1 log 1 − 6
2

log 3.

Note that each leaf of the conditional probability tree for variable Xi contributes to the
BIC score with a term

∑
k Nijk log θijk − |Dom(Xi)|

2 log |D|, where Dom(Xi) is the
domain of Xi and j is the assignment of values to the parents of Xi in G as indicated

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning of Dynamic Bayesian Networks in Markov Decision Processes 277

by the path from the root to the leaf. Also note that the contribution from each leaf is
smaller than 0, and that it is maximized when all data points assign the same value to
Xi, in which case the first term equals 0. For example, the contribution from the right
leaf in the conditional probability tree for X2 is 0 + 1 log 1 − 2

2 log 3 = 0 − log 3. The
intuition is that the higher the BIC score, the more accurately we can predict the value
of Xi given the values of its parents in G.

3 Markov Decision Processes

A finite Markov decision process (MDP) is a tuple M = 〈S, A, Ψ, P, R〉, where S is a
finite set of states, A is a finite set of actions, Ψ ⊆ S × A is a set of admissible state-
action pairs, P is a transition probability function, and R is an expected reward function.
As a result of executing action a ∈ As ≡ {a′ ∈ A | (s, a′) ∈ Ψ} in state s ∈ S, the
process transitions to state s′ ∈ S with probability P (s′ | s, a) and receives an expected
reward R(s, a). In the discounted case, a solution to an MDP is a stochastic policy π
that, for each t > 0, maximizes the expected return Rt = E{

∑∞
k=t γk−tR(sk, ak)},

where γ ∈ (0, 1] is a discount factor, by selecting action ak with probability π(sk, ak)
in each state sk.

A factored MDP is described by a set of state variables S. We use the coffee task
[2], in which a robot has to deliver coffee to its user, as an example of a factored MDP.
The coffee task is described by six binary state variables: SL, the robot’s location (office
or coffee shop); SU, whether the robot has an umbrella; SR, whether it is raining; SW,
whether the robot is wet; SC, whether the robot has coffee; and SH, whether the user
has coffee. Let {i, i} be the values of state variable Si, where L is the office and L the
coffee shop. An example state is s = (L, U, R, W, C, H). The robot has four actions:
GO, causing its location to change and the robot to get wet if it is raining and it does not
have an umbrella; BC (buy coffee) causing it to hold coffee if it is in the coffee shop; GU
(get umbrella) causing it to hold an umbrella if it is in the office; and DC (deliver coffee)
causing the user to hold coffee if the robot has coffee and is in the office. All actions
have a chance of failing. The robot gets a reward of 0.9 when the user has coffee plus a
reward of 0.1 when it is dry.

3.1 DBN Model of Factored MDPs

The DBN model of a factored MDP [2] contains one DBN for each action a ∈ A. Like
the original model, we assume that the conditional probabilities of the DBNs are repre-
sented using trees as opposed to tables. This allows for a more compact representation
of the conditional probabilities. Figure 2 shows the DBN for action GO in the coffee task.
Assuming action GO is executed at time t, the DBN determines the resulting values of
state variables at time t+1. For each state variable Si, there are two nodes in the DBN:
one node St

i representing the value of Si at time t, and one node St+1
i representing its

value at time t + 1. The same is true for the expected reward R. The value of Si at time
t + 1 depends on the values of state variables that have edges to St+1

i in the DBN. A
dashed line indicates that a state variable is unaffected by GO.

Figure 2 also illustrates the conditional probability tree associated with state variable
SW and action GO, which we denote T GO

W . At each leaf, the first value represents the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 A. Jonsson and A. Barto

[.8, .2][0, 1]

[1, 0]

[0, 1]

t+1R

R

U

W

R

U

W

St

St

St

W

R

U

S

S

S

S

SU

R

W

C

H
t+1

t+1

t+1

t+1

t+1

SL
t+1SL

t

St
U

St
R

St
W

St
C

St
H

Rt

Fig. 2. The DBN for action GO in the coffee task

probability that the robot is wet after executing GO, while the second value represents the
probability that the robot is dry. At time t, if the robot is not wet (W), it is raining (R),
and the robot does not have an umbrella (U), the conditional probability tree indicates
that the robot is wet at time t + 1 with probability 0.8. We assume that there are no
edges between state variables at a same time step. The transition probabilities are given
by P (st+1 | st, a) =

∏
i Pa(St+1

i = f{St+1
i }(s

t+1) | Pa(St+1
i) = fPa(St+1

i)(s
t)),

where Pa is the joint probability distribution represented by the DBN for action a.

4 Learning a DBN Model

We develop an algorithm for learning DBN models of factored MDPs through inter-
action with the environment. Our algorithm builds a tree T a

i for each pair of a state
variable Si and action a, approximating the conditional probabilities of St+1

i as a re-
sult of executing a. The family of trees for a implicitly defines the DBN for a. There
is an edge between state variables St

j and St+1
i in the DBN if at least one node in T a

i

distinguishes between values of St
j . To build the tree T a

i , the algorithm starts with a
small tree and collects data by executing actions in the environment. Each time action
a is executed, the algorithm records a data instance consisting of the former state, the
resulting state, and the reward received. Each data instance maps to exactly one leaf of
T a

i , at which it is stored. We say that a leaf is empty if its corresponding set of data
instances is empty.

A refinement at a leaf distinguishes between values of a state variable St
j and intro-

duces a new leaf of T a
i for each value of St

j . St
j is only considered for refinement if no

internal nodes on the path from the root to the leaf of T a
i already distinguish between

values of St
j . As we have already mentioned, the BIC and BDe scores decompose into

a local score for each leaf. Our algorithm evaluates a refinement by comparing the total
score of the new leaves with the score of the old leaf. If at least one refinement in-
creases the overall score, the algorithm retains the refinement that results in the largest
increase. Regardless of the outcome, data instances at the old leaf are discarded. Our

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning of Dynamic Bayesian Networks in Markov Decision Processes 279

approach is more sophisticated than adding edges in the graph of the DBN, since trees
store conditional probabilities more compactly than tables.

Evaluating a refinement using the BIC and BDe scores really amounts to performing
a statistical test to compare the posterior probabilities of two Bayesian networks given
the data. It is well known that the accuracy of statistical tests, such as Chi-square, de-
pends on having enough examples in each bin. At each leaf, and for each potential split
variable St

j , the algorithm maintains a distribution vector M . Each entry Mk of the vec-
tor indicates the number of data instances at the leaf that assign the value k to St

j . When
the algorithm evaluates a refinement over St

j , the distribution vector M determines how
the data instances at the leaf will be distributed to the new leaves of T a

i . We define a
threshold parameter K and let our algorithm evaluate a refinement as soon as at least
K data instances map to each non-empty leaf for each split variable.

In some tasks, the BIC and BDe scores fail to detect most of the refinements neces-
sary to learn an accurate DBN model. The BIC score in Equation (1) is composed of
a log likelihood term, which measures the likelihood of the data given a network, and
a penalty term, which penalizes a network for having many parameters. The penalty
term causes the BIC score to be less sensitive to improvements to the log likelihood
since each refinement increases the number of parameters. We use regularization [14]
to address this issue. In regularization, a functional is defined as the sum of a fidelity
term and a stabilizer term. The stabilizer term is weighted by a parameter λ. We can
multiply the penalty term of the BIC score by a parameter λ to put it in the form of a
fidelity term and a stabilizer term:

log[P (D | B)P (B)] ≈ L(D | B) − λ
|θ|
2

log |D|, (3)

such that λ controls the magnitude of the penalty for having many parameters.

4.1 Active Learning

Efficient data collection should gather sufficient data as quickly as possible. Since our
algorithm requires at least K data instances to map to each non-empty leaf, the distrib-
ution of data instances across potential new leaves should be as uniform as possible for
each possible refinement. The more skewed the distribution, the longer it takes to col-
lect sufficient data to evaluate refinements. We devise the following scheme for active
learning of DBNs. Before executing action a, the current state determines which leaf of
T a

i the resulting data instance will map to. When deciding which action to execute, we
look at how the distribution vectors at corresponding leaves would change as a result of
executing each action. To evaluate the change, we compute the entropy H(M) of each
distribution vector M :

H(M) = −
∑

k

θk log θk,

where θk = Mk/
∑

j Mj . H(M) is a non-negative function which is maximized when
all entries of M are equal. An increase in H(M) means that the distribution is becoming
more uniform; a decrease means that it is becoming more skewed. The change in H(M)
can be computed in constant time. In each state, the active learning scheme selects the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 A. Jonsson and A. Barto

action with largest total increase in the value of H(M). With probability ε ∈ [0, 1], or
if no action results in an increase of H(M), the scheme selects a random action.

By maximizing the entropy, our active learning scheme maintains uniform distrib-
utions at the leaves, which in turn causes evaluation to occur as quickly as possible.
However, the time it takes to collect data also depends on how often leaves are vis-
ited. The proposed scheme only implicitly affects the frequency with which leaves are
visited, and assumes that each leaf is visited relatively frequently. Our approach is mo-
tivated by the fact that we want to use local information only to guide exploration. We
believe that under this constraint, the entropy measure is best suited for the problem. By
storing global information about the frequency with which leaves have been visited, it
would be possible to try to steer exploration towards the least visited areas of the state
space, although it is unclear how the system would know how to get to these areas.

5 Results

We ran experiments with our DBN learning approach in the coffee task [2], the Taxi
task [17], and a simplified autonomous guided vehicle (AGV) task [18]. In each task,
we compared our active learning scheme with passive learning, i.e., random action se-
lection. In both cases, we used our approach for growing the conditional probability
trees to implicitly learn the DBNs. Note that because of our assumption regarding data
collection there is no meaningful way to compare our results to existing techniques for
active learning. We had access to the true DBN model of each task and knew how many
refinements of the trees were necessary to learn the true model. Figure 3 shows results
of our experiments in the coffee task. The graph shows the number of correct refine-
ments (out of 7) detected over time, averaged over 100 trials. Time is measured as the
number of actions executed, not actual computer runtime. For each tree T a

i , we used
the parameter values ε = 0.3, K = 50|Dom(Si)|, where Dom(Si) is the domain of
the state variable Si whose conditional probabilities T a

i approximates. Note that active
learning outperformed passive learning and that the BIC and BDe scores performed
almost identically.

In the Taxi task [17], a taxi agent has to deliver passengers from a pick-up loca-
tion to their destination. In this case, the BIC and BDe scores fail to detect most of
the refinements necessary to learn the true DBN model. We tested our modification to
the BIC score in Equation (3) to see if regularization can improve the accuracy of the
learned DBN model. Figure 4 shows results of the experiments in the Taxi task, aver-
aged over 25 trials. In the Taxi task, the true DBN model requires 21 refinements. We
used ε = 0.6, K = 50|Dom(Si)|, and report results of the BIC score for λ = 0.1 and
λ = 1. The BDe score performed identically to the BIC score for λ = 1. Note that
active and passive learning using the original BIC score (λ = 1) failed to detect many
of the refinements of the true DBN model. With λ = 0.1, active and passive learning
detected all of the refinements, with the active learning scheme being faster. We tested
for values of λ between 0 and 1 in increments of 0.05, and λ = 0.1 gave the best results
empirically, although we did not perform any sensitivity analysis.

In the AGV task [18], an autonomous guided vehicle has to transport parts between
machines in a manufacturing workshop. We simplified the task by reducing the number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning of Dynamic Bayesian Networks in Markov Decision Processes 281

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

1

2

3

4

5

6

7

8

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC
Passive BIC
Active BDe
Passive BDe

Fig. 3. Results in the coffee task

0 2 4 6 8 10 12

x 10
5

0

5

10

15

20

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC, λ=.1
Passive BIC, λ=.1
Active BIC, λ=1.0
Passive BIC, λ=1.0

Fig. 4. Results in the Taxi task

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 A. Jonsson and A. Barto

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
8

0

10

20

30

40

50

60

70

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC, λ=.1
Passive BIC, λ=.1
Active BIC, λ=1.0
Passive BIC, λ=1.0

Fig. 5. Results in the AGV task

of machines to 2 and made it fully observable by setting the processing time of machines
to 0. The resulting task has 75,000 states and 6 actions, and the true DBN model requires
162 refinements. Figure 5 shows results of the experiments in the AGV task, averaged
over 5 trials. We used ε = 0.6, K = 50|Dom(Si)|, and report results of the BIC score
for λ = 0.1 and λ = 1. There are several interesting things to notice. First, learning
was very slow. We collected data for 200,000,000 time steps, and it is not clear that
the graphs even converged. The learned DBN model did not come close to the true
model, even for λ = 0.1. Also, passive learning actually outperformed active learning
in the AGV task. We believe this is due to the fact that our active learning scheme
selects actions based on local information, which we elaborate on in the conclusion.
The results of the experiments in the AGV task indicate that learning DBN models of
factored MDPs is a challenging problem, even using state-of-the-art metrics such as the
BIC and BDe scores.

6 Conclusion

We have presented an algorithm for active learning of dynamic Bayesian networks in
factored MDPs. Our approach is to learn DBNs by growing trees that represent the con-
ditional probabilities of the DBNs. The algorithm stops to evaluate possible refinements
of the trees as soon as a minimum number of data instances map to each relevant value
of each potential split variable. To learn DBNs quickly, the distributions of data in-
stances over values of each potential split variable should be uniform. We developed an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning of Dynamic Bayesian Networks in Markov Decision Processes 283

active learning scheme that selects actions with the goal of maintaining the distributions
as uniform as possible.

Our active learning scheme selects actions based on local information, i.e., how the
distributions change locally as a result of executing actions. This works well in tasks
with limited size when all states are visited relatively frequently. However, in large tasks
our scheme may fail to explore large regions of the state space, prefering to maintain
uniformity in the current region. We believe this accounts for the results in the AGV
task. To ensure that most or all of the state space is visited it is necessary to select
actions based on global information. If global information is stored using trees its size is
proportional to the number of leaves of the trees, not to the number of states, facilitating
scaling. Reaching a specific region of the state space is difficult when we can only
sample the current trajectory since we may not know which actions will get us there.
Temporally-extended actions may provide a useful tool to achieve this. Although our
work is an important first step, it needs to combine with further research to achieve
accurate learning of DBNs in factored MDPs.

Acknowledgements. This work was partially funded by NSF grants ECS-0218125 and
CCF-0432143. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

1. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Computa-
tional Intelligence 5(3), 142–150 (1989)

2. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construction. In:
Proceedings of the International Joint Conference on Artificial Intelligence. vol. 14, pp.
1104–1113 (1995)

3. Feng, Z., Hansen, E., Zilberstein, Z.: Symbolic Generalization for On-line Planning. In: Pro-
ceedings of Uncertainty in Artificial Intelligence. vol. 19, pp. 209–216 (2003)

4. Guestrin, C., Koller, D., Parr, R.: Max-norm Projections for Factored MDPs. In: Proceedings
of the International Joint Conference on Artificial Intelligence. vol. 17, pp. 673–680 (2001)

5. Jonsson, A., Barto, A.: Causal Graph Based Decomposition of Factored MDPs. Journal of
Machine Learning Research 7, 2259–2301 (2006)

6. Kearns, M., Koller, D.: Efficient Reinforcement Learning in Factored MDPs. In: Proceedings
of the International Joint Conference on Artificial Intelligence. vol. 16, pp. 740–747 (1999)

7. Buntime, W.: Theory refinement on Bayesian networks. In: Proceedings of Uncertainty in
Artificial Intelligence. vol. 7, pp. 52–60 (1991)

8. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic net-
works. In: Proceedings of Uncertainty in Artificial Intelligence. vol. 14, pp. 139–147 (1998)

9. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

10. Murphy, K.: Active learning of causal Bayes net structure. Technical report, Computer Sci-
ence Division, University of Berkeley (2001)

11. Steck, H., Jaakkola, T.: Unsupervised active learning in large domains. In: Proceedings of
Uncertainty in Artificial Intelligence. vol. 18, pp. 469–476 (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

284 A. Jonsson and A. Barto

12. Tong, S., Koller, D.: Active learning for structure in Bayesian networks. In: Proceedings of
the International Joint Conference on Artificial Intelligence. vol. 17, pp. 863–869 (2001)

13. Schwartz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)
14. Poggio, T., Girosi, F.: Regularization Algorithms for Learning that are Equivalent to Multi-

layer Networks. Science 247, 978–982 (1990)
15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge

(1998)
16. Chickering, D., Geiger, D., Heckerman, D.: Learning Bayesian networks: search methods

and experimental results. In: Proceedings of Artificial Intelligence and Statistics. vol. 5, pp.
112–128 (1995)

17. Dietterich, T.: Hierarchical reinforcement learning with the MAXQ value function decom-
position. Journal of Artificial Intelligence Research 13, 227–303 (2000)

18. Ghavamzadeh, M., Mahadevan, S.: Continuous-Time Hierarchical Reinforcement Learning.
In: Proceedings of the International Conference on Machine Learning. vol. 18, pp. 186–193
(2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction

Santiago Macho González and Pedro Meseguer

IIIA, Institut d’Investigació en Intel.ligència Artificial
CSIC, Consejo Superior de Investigaciones Cient́ıficas

Campus UAB, 08193 Bellaterra, Catalonia, Spain
{smacho,pedro}@iiia.csic.es

Abstract. If a CSP instance has no solution, it contains a smaller un-
solvable subproblem that makes unsolvable the whole problem. When
solving such instance, instead of just returning the “no solution” mes-
sage, it is of interest to return an unsolvable subproblem. The detection
of such unsolvable subproblems has many applications: failure expla-
nation, error diagnosis, planning, intelligent backtracking, etc. In this
paper, we give a method for extracting a Minimal Unsolvable Subprob-
lem (MUS) from a CSP based on a Forward Checking algorithm with
Dynamic Variable Ordering (FC-DVO). We propose an approach that
improves existing techniques using a two steps algorithm. In the first
step, we detect an unsolvable subproblem selecting a set of constraints,
while in the second step we refine this unsolvable subproblem until a
MUS is obtained. We provide experimental results that show how our
approach improves other approaches based on MAC-DVO algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs) have been applied with great success
to tasks dealing with resource allocation, scheduling, planning, configuration and
others. When a CSP instance has solution, the solver returns an assignment of
values to variables such that all constraints are satisfied. But when a CSP in-
stance is unsolvable, often the solver just returns a “no solution” message. In
recent years, conflict-based reasoning is gaining interest in the field of constraint
satisfaction. Instead of just certify that a CSP instance is unsolvable, more in-
teresting is explaining why this instance has no solution. These explanations are
useful in many settings: interactive applications, error diagnosis, planning, intel-
ligent backtracking, etc. In early years, several authors focused on conflict based
reasoning [19,8,22]. More recent work [13] focuses on extracting a minimal un-
solvable subset (MUS) from the unsolvable problem, where minimal means that
all subproblems of the MUS are solvable and all superproblems are unsolvable.

In the SAT field (Boolean satisfiability), many methods for finding MUSes have
beendeveloped.Earlywork [4,3,18,23]was limited to finda single unsatisfiable sub-
formula (US) but without guaranteeing its minimality. These unsatisfiable subfor-
mula can be minimized into a MUS using the “Minimal Unsatisfiability Prover”
developed in [11]. Very interesting is the work presented in [15] where authors de-
veloped a sound and complete technique for finding all MUSes of a CNF formula,

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 285–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 S. Macho González and P. Meseguer

based on a strong relationship between maximal satisfiability and minimal unsat-
isfiability [17]. This relationship also was noted by [1].

The notion of Maximal Satisfiable Subset(MSS) as a complement of a MUS is
presented in [16]. The authors show that MUSes and MSS are implicit encoding
one of the other. They have shown that a the complement of a MSS (CoMSS)
is a hitting set of the set of MUSes and contains the minimal set of constraints
that should be removed in order to restore consistency.

We have to mention the approach presented in [10] that computes a MUS using
a two-step algorithm. Firstly they filter constraints that will not participate in
the no-solution condition, obtaining an unsolvable subset of the original CSP.
This subset is used in the second step, to identify the constraints that belong
to a MUS. In order to have a competitive algorithm, authors use a solver that
implements a MAC algorithm with dynamic variable ordering (DVO). Up to
our knowledge, this combination achieves the highest efficiency among published
approaches for MUS extraction.

The contribution that we present in this paper follows a similar strategy.
Given a CSP instance without solution, in a first step we obtain an unsolv-
able subproblem by performing a forward checking search with dynamic vari-
able ordering (FC-DVO), and computing the hitting set among the subsets of
constraints involved in the no-solution condition. This process is iterated while
getting unsatisfiable subproblems of lower size, with the help of a heuristic to
select variables that are likely to be in a MUS. In a second step, once a MUS can-
didate has been selected, it is refined until obtaining a true MUS, as the second
step of [10]. Experimentally, we obtain a significant improvement in performance
with respect to the results of [10].

This paper is organized as follows. In Section 2, we discuss the relation of our
approach with abstraction in constraint processing. In Section 3 we introduce
the theoretical background needed for the paper. The detailed algorithm appears
in Section 4, while the experimental results are in Section 5. There, we compare
the performance of our approach against the algorithm described in [10] that is
the most efficient implementation we have found to calculate a MUS. Finally in
Section 6, we summarize our approach and discuss future work.

2 MUS and Abstraction

In the constraint reasoning literature, a new contribution to CSP solving is usu-
ally given at low level : typically, a new algorithm, heuristic, or combination of
solving methods is presented in every detail, showing how the individual ele-
ments of a CSP instance (variables, values, constraints) evolve to find a solution
or to show that none exists. On the other hand, contributions that see a CSP
instance as a collection of subproblems that interact among them are much more
scarce. We call these high level descriptions, where the emphasis is not on the
atomic components of the instance, but on subproblems, as an intermediate en-
tity between individual elements and the whole instance. High level descriptions
provide an alternative view on CSPs, allowing for a kind of reasoning different

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction 287

from the one based on atomic elements. For instance, one may want to find a sub-
problem having a particular property. This may generate heuristics of variable
ordering, original ways of constraint processing or unexpected solving strategies.
Although infrequent, this approach is not new in the constraint literature. With-
out trying to be exhaustive, we mention as representative examples the following
works [6] [21] [5].

A simple example of high level description is the analysis of unsolvable CSP
instances. If an instance has no solution, it contains at least one minimal un-
satisfiable subproblem (MUS). Until this MUS is not solved (modifying it by
removing some constraints or enlarging domains), the whole instance will re-
main without solution. Therefore, once we have seen that the original instance
has no solution, the identification and extraction of this MUS by efficient algo-
rithms is a primary goal, if we want to be able to solve the original CSP instance
(in fact, an instance closer to the original instance, since this one is unsolvable).

High level descriptions can be seen as abstractions, where the emphasis is put
on subproblem properties and particular details of atomic elements are ignored.
Abstractions provide new perspectives on the problem, and allow for useful rea-
soning mechanisms. By no means we are advocating to consider reasoning at
high level only, and forgetting the low level description. We stress the usefulness
of reasoning at high level, but once it is done, you have to go down the low level
and perform the work there. In some sense, reasoning at high level drives the
computational activity to be performed at low level.

This paper combines reasoning at both levels. Our goal is to find an efficient
way to extract a MUS, once the original instance has been proven unsolvable.
Efficiency is crucial here, because after MUS extraction, the new instance has to
be solved again. Without an efficient MUS extraction, the whole approach would
be practically unfeasible. Reasoning at high level, we have devised an heuristic
for selecting candidate variables for an hypothetical MUS. This heuristic is ap-
plied at low level, combined with a forward checking algorithm [9]. We obtain
a unsolvable subproblem, which is later refined to obtain a true MUS, using an
already known approach. Experimentally, we have seen that this heuristic gives
quite good results, improving the efficiency of the most performant approach
published up to date [10].

3 Theoretical Background

This Section provides the reader with the notions needed to follow the paper.

Definition 1 (CSP). A CSP is defined by a tuple 〈X, D, C〉 where,

– X = {x1, x2, ..., xn} is a set of n variables.
– D = {D1, D2, ..., Dn} is a set of n domains, where variable xk takes values

in Dk.
– C = {c1, c2, . . . , cr} is a set of r constraints. A constraint c involves a se-

quence of variables var(c) = 〈xp, . . . , xq〉 denominated its scope. The exten-
sion of c is the relation rel(c) defined on var(c), formed by the permitted
value tuples on the constraint scope.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

288 S. Macho González and P. Meseguer

A solution of the CSP is an instantiation of values to all variables such that the
assigned values belong to the corresponding domains, and this instantiation sat-
isfies all constraints in C. Sometimes, it is not possible to find such instantiation,
in that case the problem is unsolvable.

Definition 2 (Subproblem). Let P = 〈X, D, C〉 be a CSP. A subset of vari-
ables S ⊂ X defines the subproblem P |S = 〈S, D|S , C|S〉, where D|S is the subset
of domains of variables in S and C|S is the subset of constraints with their scopes
in S. The size of the subproblem is |S|.

When a CSP is unsolvable, instead of return the message of “no solution”, could
be interesting to return the unsolvable subproblem that makes unsolvable the
whole problem. If we refine this unsolvable subproblem, identifying the minimal
subset of constraints causing that the problem has no solution, we obtain a
subproblem useful in many applications: explanation, diagnosis, planning, etc.

Definition 3 (Minimal Unsolvable Subproblem). Let P = 〈X, D, C〉 be
a CSP without solution. A minimal unsolvable subproblem is determined by a
subset of variables S ⊂ X such that P |S is unsolvable, but for any proper subset
S′ � S, P |S′ is solvable.

Definition 4 (Hitting Set). Given a collection of sets S = {S1, . . . , Sn}, a
hitting set of S, HST (S), is a set that contains at least one element from each
set S1, . . . , Sn, that is, ∀Si ∈ S, HST (S) ∩ Si �= ∅.

Example 1. Let S = {S1, S2, S3} where S1 = {c12} S2 = {c03, c23, c13} S3 =
{c23, c13}. There are several hitting sets of S, i.e: HST1(S)
= {c12, c23} HST2(S) = {c12, c13} HST3(S) = {c12, c13, c03}.

The hitting set problem can be prove to be NP-complete by a reduction from
the vertex cover problem [7].

Proposition 1. Let P = 〈X, D, C〉 be a CSP without solution, explored by the
forward checking (FC) algorithm. Let CONS ⊂ X be the subset of variables
that have been assigned by FC. Let EMPTY ⊂ X be the subset of variables for
which an empty domain has been detected. Calling S = CONS ∪ EMPTY , the
subproblem Q = 〈S, D|S , C′〉, where C′ = {c ∈ C|c is responsible for eliminating
values of the domain of a variable that either was assigned or became empty at
each branch} is unsolvable.

Proof. To prove this result, it is enough to realize that FC only assigns variables
in CONS and only requires variables in EMPTY to detect that there is no
solution, using constraints of C′. Therefore, if S = CONS ∪ EMPTY , FC will
find that Q has no solution, by simply repeating the variable instantiation order
used in the FC execution on P . �

Thus, following proposition 1, we can obtain an equivalent unsolvable subprob-
lem of the original unsolvable CSP using a FC Solver. It is important to remark
that proposition 1 is true either for static or dynamic variable ordering.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction 289

(a) (b)

Fig. 1. (a) CSP (b) Its search tree generated by the FC algorithm

Example 2. Let MUS = {x0, x1, x2} be a minimal unsolvable subset of the CSP
shown in Figure 1(a) where constraints indicate allowed values between variables.
Figure 1(b) shows the corresponding search tree generated by FC algorithm with
static order x1, x0, x3, x2. Here CONS = {x1, x0}, EMPTY = {x2, x0, x3}.

Example 3. Figure 2 shows the generated unsolvable subproblem following
proposition 1. This subproblem is made by the union of the failed constraints of
all branches. In the example, C = {c01 ∧ c02, c01 ∧ c03, c01 ∧ c02, c01, c13, c01, c13}
that is equivalent to C = {c01, c02, c03, c13}. In this example, the unsolvable
subproblem obtained is equal than the original CSP.

We notice in example 3 that the selected constraints are more than enough to
guarantee the no-solution condition. If we study in more detail the search tree of
the Figure 1(b), in every failed branch we have a disjunction of constraints, i.e:

Fig. 2. An unsolvable subproblem of the CSP shown in Figure 1(a)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 S. Macho González and P. Meseguer

the leftmost branch has as failed constraints {c01 ∧ c02, c01 ∧ c03}. That means
that in this branch, only the constraint c01 ∧ c02 or the constraint c01 ∧ c03 is
necessary to produce an empty domain in variable x2. The same analysis is valid
for all branches of the search tree. Thus, if we select at least one constraint
from each branch, the resulting set will be an unsatisfiable subset of the original
problem. This is the definition of Hitting Set. The set of constraints of every
branch, CCi, is made by selecting the constraints C′ that justify failure in each
branch as explained in proposition 1. This generates the following result.

Proposition 2. Let 〈X, D, C〉 be a CSP without solution, explored by FC. Let
CC be the collection of subsets of constraints that justify failure at each branch.
Then, 〈X, D, HTS(CC)〉 is unsolvable.

Proof. CC = {CC1, ..., CCk} is the collection of subsets of constraints justifying
failure, one for each branch. The structure of one of these subsets is CCi =
{{ci1 , ..., cip}, ..., {cir , ..., cit}}, meaning that each element of CCi is enough to
justify failure in its branch. Since HTS(CC) takes at least one element of each
subset CCi, FC on the subproblem 〈X, D, HTS(CC)〉 will also fail in every
branch. So this subproblem has no solution. �

Example 4. In the CSP of the Figure 1(a), let CCi represents the set of the
selected failed constraints by proposition 1. From the leftmost branch to the
rightmost branch of the search tree 1(b), we obtain: CC1 = {c01 ∧ c02, c01 ∧
c03}, CC2 = {c01 ∧ c02}, CC3 = {c01, c13}, CC4 = {c01}, CC5 = {c13}. Let CC =
{CC1, CC2, CC3, CC4, CC5}. Every Hitting Set of CC produces an unsolvable
subset. i.e: HST (CC) = {c01, c02, c13} as shown in Figure 3.

Thus, we can develop an algorithm to obtain an unsolvable subset, firstly se-
lecting the constraints that justify failure at every branch of the search tree and
afterwards calculating its HST. In addition, if the variables that are likely to be
in a MUS are put first in the search tree, the subproblem size tend to be smaller.
The following result helps to detect such variables.

Fig. 3. An unsolvable subproblem of the CSP shown in Figure 1(a)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction 291

Proposition 3. Let a CSP without solution, explored by FC-SVO. Let
EMPTY ⊂ X be the subset of variables for which an empty domain has been
detected during search. EMPTY contains a variable of a MUS.

Proof. Let us consider the deepest branch instantiated by FC-SVO, formed by
the ordered set of variables {x1, ..., xk}. From the FC-SVO search, we know that
{x1, ..., xk} ∪ EMPTY is unsolvable. But the subset of variables {x1, ..., xk} is
solvable, because FC-SVO has instantiated it. Therefore, it should exist at least
one variable in EMPTY , the other subset of variables, that makes the whole
subproblem unsolvable. To see that it must belong to a minimal unsolvable
subproblem, it is enough to realize that inside any unsolvable subproblem there
is a minimal unsolvable one. �

We will use this result, valid for static variable ordering only, as a heuristic when
forward checking uses dynamic variable ordering. This heuristic will help trying
to detect MUS variables, as we will see in the next Section.

4 The CORE-FC Algorithm

In this Section we present the algorithm CORE-FC, that implements our ap-
proach. It extracts a MUS from an unsolvable CSP instance, using the theo-
retical background previously introduced. Having an unsolvable CSP, the basic
idea of CORE-FC (algorithm 1) is first to generate an unsolvable subset us-
ing the function CORE-FC1 and afterwards refine this subset with function
CORE-FC2 until a minimal subset is found. We describe these algorithms in
the following.

4.1 The CORE-FC1 Algorithm

As mentioned before, the goal of CORE-FC1 (algorithm 2) is to obtain an
unsolvable subproblem (not necessary minimal) of an unsolvable CSP instance.
This algorithm is based on propositions 2 and 3. We decided to use a solver based
on a Forward Checking algorithm with Dynamic Variable Ordering (FC-DVO),
where variables are selected according to the popular minimum domain heuristic
[9]. The reason for this choice is that using a solver based on a backtracking with
DVO is not competitive. A solver based on MAC-DVO is competitive, but we
notice that we can select a smaller subset of constraints involved in a MUS by
using a solver based on FC-DVO. Experiments show that FC-DVO tends to

Algorithm 1. The CORE-FC algorithm
Require: X, D, C is an unsolvable problem
1: procedure CORE-FC(X, D, C)
2: Xus, Dus, Cus ← CORE-FC1(X, D, C) {Xus, Dus, Cus is an unsolvable subset of X, D, C}
3: Xmus, Dmus, Cmus ← CORE-FC2(Xus, Dus, Cus)
4: return Xmus, Dmus, Cmus

Ensure: Xmus, Dmus, Cmus is a minimal unsolvable subset of X, D, C

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

292 S. Macho González and P. Meseguer

find smaller MUS candidates than MAC-DVO. We explain this fact as follows.
MAC performs arc-consistency on every constraint. When MAC realizes that
the instance has no solution, it has to include each constraint that is responsible
for removing a value into the MUS candidate (this includes constraints among
variables that never have been instantiated). On the other hand, FC propagation
is simpler: it performs arc consistency on constraints connecting assigned and
unassigned variables at any stage of search. In particular, constraints among
variables that have never been instantiated are not considered. For this reason,
we believe that FC focuses better than MAC on suitable MUS candidates. This
intuition is confirmed in practice (see Section 5).

CORE-FC1 works as follows. It takes as input an unsolvable CSP instance. It
returns as output an unsolvable subproblem of that instance. Firstly, it pass the
instance to a modified FC-DVO solver. This solver takes as input a CSP instance
and a variable (line 5). This variable is forced to be the first one instantiated by
the solver although the DVO criteria does not select it first. The reason for this
will become apparent later. As output, it returns a variable with empty domain
in the deepest branch explored by FC-DVO.

In CC we collect the subsets of constraints that justify failure at each branch
of FC-DVO (line 6). By proposition 2, we know that the subproblem generated
by the hitting set of CC, HTS(CC), has no solution. Therefore, we replace the
input instance by this subproblem. Algorithm 3 computes the Hitting Set of a
set of constraints. This function is used by the algorithm 2 in order to obtain an
unsolvable subproblem (line 7).

To decrement the size of the unsolvable subproblem, one can repeat the above
process with a different variable ordering. If variables that belong to a MUS are
instantiated at the first levels of the FC search tree, the resulting unsolvable
subproblem tend to be smaller. Following this idea, we consider that a variable
with empty domain in the deepest branch explored by FC-DVO in the current
iteration it is likely to be in a MUS. This is based on proposition 3, which
expresses a result valid for SVO, while we use it here as heuristic for DVO.
Then, we take that variable to be instantiated first at the next iteration (line
8). This variable is returned by the FC-DVO solver. The whole process iterates
until the unsolvable subproblem does no longer decrement its size (line 9).

Algorithm 2. The CORE-FC1 algorithm
Require: X, D, C is an unsolvable problem
1: function CORE-FC1(X, D, C)
2: uscur ← C
3: repeat
4: usprev ← uscur

5: xk ← solveCSP-FC-DVO(X, D, C, x1) { xk is candidate to belong to the MUS}
6: CC ← collection of subsets of constraints that justify failure at each branch of FC-DVO
7: uscur ← HST (CC)
8: reorder variables so that xk becomes x1
9: until |usprev | ≤ |uscur |

10: < Xus, Dus, Cus >← generateCSP (usprev)
11: return < Xus, Dus, Cus >

Ensure: < Xus, Dus, Cus > is an unsolvable subset of < X, D, C >

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction 293

Algorithm 3. The Hitting Set algorithm
1: procedure HST(CC)
2: hittingSet ← ∅
3: CC ← initialPurge(CC)
4: while ¬isHittingSet(hittingSet) do
5: c← chooseConstraint(CC)
6: hittingSet ← hittingSet ∪ {c}
7: CC ← purge(CC)
8: end while

9: return hittingSet

We are interested in a hitting set algorithm that minimizes the number of
variables that are added to the HST when a new constraint is included. Un-
fortunately [14] shows that calculating the minimal hitting set is an NP-hard
problem. We implement a strategy to minimize the number of variables that are
included in the hitting set using the function chooseConstraint. This function se-
lects the constraint that minimizes the number of variables that we include in the
HST. Note that this heuristic does not guarantee that the resulting hitting set
has a minimum number of variables, but empirically it works well and provides
good results. The purge function remove sets that are superset of others.

4.2 The CORE-FC2 Algorithm

CORE-FC2 (algorithm 4) refines the unsolvable instance that takes as input,
and returns a MUS of that instance. It is based on the dcMUC function shown
in [10]. The algorithm enters in a loop (lines 4 - 12) where new variables that
belongs to the MUS are discovered using the DichotomicSearch function (line
5). When a new variable xk is discovered, it is included in the MUS candidate
(line 6). If this candidate has no solution (line 9), then it is confirmed as MUS
(line 10) and the loop ends. Otherwise, the original instance is searched again for
more variables in the MUS, looking into the subproblems that at least contain
{x0, . . . , xk+1} (line 12).

Algorithm 4. The CORE-FC2 algorithm
Require: X, D, C is a superset of a MUS
1: function CORE-FC2(X,D,C)
2: XMUS ← ∅, DMUS ← ∅, CMUS ← ∅
3: MUS ← false, k ← 0
4: while ¬MUS do
5: xk ← DichotomicSearch(X, D, C, k)
6: XMUS ← XMUS ∪ {xk} {we include this var to the MUS}
7: CMUS ← CMUS ∪ {cik} {cik is a set of constraints involving variable xk}
8: DMUS ← DMUS ∪ {dk}
9: if solveCSP-MAC-DVO(XMUS , DMUS, CMUS) = UNSAT then

10: MUS ← true
11: end if
12: k ← k + 1
13: end while
14: return XMUS, DMUS , CMUS {minimal unsolvable subproblem}
Ensure: XMUS , DMUS , CMUS is a MUS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 S. Macho González and P. Meseguer

Algorithm 5. The Dichotomic Search algorithm
1: procedure DichotomicSearch(X,D,C,k)
2: min ← k, max← |X|
3: while min �= max do
4: center ← (min + max)/2
5: XDIC ← {x0, . . . , xcenter}
6: CDIC ← set of constraints involving vars {x0, . . . , xcenter}
7: DDIC ← {d0, . . . , dcenter}
8: if solveCSP-MAC-DVO(XDIC , DDIC , CDIC) = SAT then
9: min ← center + 1

10: else
11: max← center
12: end if
13: end while

14: return xmin

In order to identify a variable that belongs to a MUS, the next procedure can
be used. Starting from the first variable in the given order, add at every step one
more variable until the CSP becomes unsatisfiable. When that occurs the last
added variable belongs to a MUS. If we want to speed up this algorithm, we can
use a dichotomic search. The DichotomicSearch function (algorithm 5) starts a
dichotomic search in order to find a variable that belongs to the MUS (similar
to function dcTransition described in [10]). It searches this variable in the set
{xmin, . . . , xmax}. Initially, index min takes value k, while max takes the total
number of variables. Parameter k is the limit between the discovered variables of
the MUS and the undiscovered ones. The algorithm enters in a loop between lines
3-12 until a variable of the MUS is discovered. It takes the set {x0, . . . , xcenter}
and checks if it is solvable or not. If it is solvable, it searches for the variable of the
MUS among the set {xcenter+1, . . . , xmax}. If the problem is unsolvable then the
variable belongs to the set {xmin, . . . , xcenter}. Doing this procedure, the variable
that belongs to the MUS is obtained when xmax = xmin (line 3).

5 Experimental Results

In this section we have performed several experiments in order to compare the per-
formance of our approach against the PCORE+WCORE algorithm described
in [10], that at the present seems to be the most performant published algorithm.
We use non competitive FC and MAC solvers based on the JCL library [12,20].

The PCORE+WCORE described in [10] works as follows. This is a 2-
step algorithm, the PCORE step and the WCORE step. In the PCORE step, a
MAC-DVO solver is used to return an unsolvable subproblem made by all the
constraints that during the search removed at least one value in the domain
of a variable. A dom/wdeg heuristic is used to choose the order in which vari-
ables will be instantiated. Calls to the MAC-DVO solver are done (updating
the heuristic at every call) until the size of the obtained subproblem does not
longer decrease. Once the PCORE step returns an unsolvable subproblem (not
minimal), the WCORE step extract a MUS from this unsolvable subproblem,
using a dichotomic search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction 295

Table 1. Results for the PCORE+WCORE algorithm

BENCHMARK PCORE + WCORE
Name VARS CONS SIZE CHECKS SIZE TIME CHECKS VIS

US MUS NODES
PCORE PCORE WCORE

randomB-25-58 25 58 19 4181 8 9.3s 60731 569
randomB-16-90 16 90 16 2648 7 4.2s 25072 364
randomB-26-6 26 63 17 7591 6 3.7s 17534 228
randomB-31-347 31 347 20 2550 8 9.8s 55033 582
randomB-43-176 43 176 35 34859 15 50.7s 381684 2012
randomB-36-470 36 470 21 1116 7 5.8s 10719 314
randomB-48-220 48 220 29 39116 16 47.1s 410452 1992
randomB-45-739 45 739 19 1818 7 8.3s 13725 426
pigeons5 5 10 5 1400 5 0.23s 3903 250
pigeons6 6 15 6 8250 6 0.76s 19683 883
pigeons7 7 21 7 52092 7 3.73s 102378 4219
pigeons8 8 28 8 369446 8 25.22s 618219 26825
pigeons9 9 36 9 2963760 9 219.54s 4597144 209178
pigeons10 10 55 10 26686962 10 2458s 40353999 1872587
pigeons11 11 55 11 266889620 11 26324s 400961870 18708727
dual-ehi-85-297-0 297 4094 60 120167 25 742.98s 1489447 10001
dual-ehi-85-297-1 297 4112 83 143760 19 738.69s 988227 7136
dual-ehi-85-297-7 297 4111 82 152272 18 627.45s 1167588 6030
dual-ehi-85-297-9 297 4118 64 55215 20 599.06s 911398 6322
dual-ehi-85-297-18 297 4120 69 144520 18 683.49s 927860 6577
dual-ehi-85-297-20 297 4106 72 85655 20 576.08s 1033272 6166
dual-ehi-85-297-24 297 4105 70 89563 19 694.70s 1037183 6703
dual-ehi-85-297-26 297 4102 19 115150 19 282.94s 1032841 6876
dual-ehi-85-297-27 297 4120 57 80516 20 575.42s 939922 6399
dual-ehi-85-297-44 297 4130 70 96148 16 474.16s 639734 4677
dual-ehi-85-297-49 297 4124 61 118023 22 495.73s 1255883 7603
dual-ehi-85-297-65 297 4116 74 147270 21 539.22s 975204 7997
dual-ehi-85-297-83 297 4099 90 169078 20 802.28s 1789755 8064
dual-ehi-85-297-88 297 4119 69 114815 18 603.50s 758366 6306
dual-ehi-85-297-92 297 4106 65 142880 20 595.57s 947950 7133
dual-ehi-85-297-99 297 4115 117 124209 19 710.32s 1319022 7371

We ran three different set of benchmarks. Firstly, we have generated unsolv-
able subproblems using a modified random model B generator, where we forced
the random generator to return unsolvable CSPs. The second set of constraints
is the well known problem of the pigeons, where we have to put n pigeons into
n-1 boxes, one pigeon per box. These pigeons problems are interesting, because
the whole problem is a MUS. Finally we ran experiments on the dual-ehi bench-
marks that are 3-SAT instances converted to binary CSP instances using the
dual method. The pigeons and the dual-ehi benchmarks can be found in [2].

Table 1 shows the performance of the algorithm proposed in [10], while table 2
shows the performance of our approach described in the previous section. The
columns indicates: the name of the benchmark, the number of variables and
constraints the benchmark has, the size of the US (not minimal) and the number
of checks after the first step, the size of the obtained MUS, the execution time
in seconds, the total number of checks and the number of visited nodes.

We study separately the results for the three different types of benchmarks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

296 S. Macho González and P. Meseguer

Table 2. Results for the CORE-FC1+CORE-FC2 algorithm

BENCHMARK CORE-FC1 + CORE-FC2
Name VARS CONS SIZE CHECKS SIZE TIME CHECKS VIS

US CORE- MUS NODES
CORE- FC1 CORE-
FC1 FC2

randomB-25-58 25 58 11 4452 7 1.32s 10931 391
randomB-16-90 16 90 8 2602 8 1.05s 12355 359
randomB-26-63 26 63 9 1176 8 1.19s 15498 271
randomB-31-347 31 347 8 5803 7 1.53s 9056 248
randomB-43-176 43 176 12 7705 10 4.40s 41842 974
randomB-36-470 36 470 7 2592 7 1.54s 3987 112
randomB-48-220 48 220 6 2954 5 1.78s 6110 230
randomB-45-739 45 739 7 3645 7 2.58s 5418 138
pigeons5 5 10 5 584 5 0.24s 3041 298
pigeons6 6 15 6 3170 6 0.79s 14489 1123
pigeons7 7 21 7 19452 7 4.45s 69506 5659
pigeons8 8 28 8 136850 8 36.75s 385201 36905
pigeons9 9 36 9 1095824 9 381.78s 2728478 289818
pigeons10 10 55 10 9863874 10 4161.96s 23529833 2598347
pigeons11 11 55 11 98640740 11 47335.87s 232711461 25966327
dual-ehi-85-297-0 297 4094 25 42881 25 252.39s 555210 7461
dual-ehi-85-297-1 297 4112 19 31790 19 227.96s 224513 4164
dual-ehi-85-297-7 297 4111 18 22259 18 236.66s 163585 3061
dual-ehi-85-297-9 297 4118 21 25756 20 187.65s 186456 3985
dual-ehi-85-297-18 297 4120 18 20782 18 187.22s 207200 3165
dual-ehi-85-297-20 297 4106 20 22432 20 187.95s 218315 3969
dual-ehi-85-297-24 297 4105 19 50346 19 248.93s 186793 5327
dual-ehi-85-297-26 297 4102 19 32803 19 241.15s 180389 4005
dual-ehi-85-297-27 297 4120 20 44817 20 198.32s 202829 5585
dual-ehi-85-297-44 297 4130 16 20296 16 232.46s 119877 1930
dual-ehi-85-297-49 297 4124 22 20971 22 248.95s 312244 4909
dual-ehi-85-297-65 297 4116 21 22402 21 245.80s 304262 4291
dual-ehi-85-297-83 297 4099 20 15077 20 189.53s 310092 3778
dual-ehi-85-297-88 297 4119 18 25994 18 186.60s 174942 3390
dual-ehi-85-297-92 297 4106 20 29802 20 189.48s 217860 4103
dual-ehi-85-297-99 297 4115 19 11820 19 185.97s 242962 3178

5.1 Random Benchmarks

We generated several unsolvable random problems using the model B. We have
modified our generator in order to force it to return unsolvable instances. The
generated problems have between 15 to 48 variables and from 58 to 739 con-
straints. It is important to point that we cannot control if the generated prob-
lems have more than one unsolvable subproblem, thus, it is possible that the
algorithms find different MUSes. Comparing the benchmarks where both algo-
rithms returns the same MUS, randomB-36-470 and randomB-45-739, we notice
that our first step returns smaller unsolvable subproblems than the first step of
the PCORE+WCORE algorithm. The second step are equivalent for both al-
gorithms, but our approach has the advantage that the unsolvable subproblem
that is the input of the second step is smaller than the unsolvable subprob-
lem of the PCORE+WCORE algorithm. Experiments show that our approach
reduces the execution time, the number of checks and the number of visited
nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boosting MUS Extraction 297

5.2 Pigeons Benchmarks

The pigeons benchmarks are problems where we have to put n pigeons into n-
1 boxes, one pigeon per box. These problems have the characteristic that any
proper subproblem is solvable (the whole problem is a MUS). Tables 1 and 2
show that with these benchmarks our algorithm has a worse performance in time
than the PCORE+WCORE approach. We notice that the first step makes the
difference; while our algorithm uses a FC-DVO solver, the PCORE+WCORE
approach uses a MAC-DVO solver. In both approaches all constraints will be
selected (the whole problem is unsolvable). The MAC-DVO solver is faster than
the FC-DVO solver, thus there is an important gain in time at the end of the
first step for the PCORE+WCORE algorithm over our approach. Our approach
has a better number of checks because a FC solver does less checks that a MAC
solver. In the opposite, the number of visited nodes is greater for the FC than
the MAC due to the MAC propagation.

5.3 Dual-ehi Benchmarks

The dual-ehi benchmarks are problems where benchmarks that are 3-SAT in-
stances are converted to binary CSP instances using the dual method. We ran
several experiments with 297 variables and between 4094 to 4130 constraints.
Tables 1 and 2 show that our algorithm has a better performance. In these
benchmarks, we decrease the execution time by a factor of 3, also decreasing the
number of checks and the number of visited nodes. It is interesting to point that
very often the unsatisfiable subset obtained at the first step is a MUS. There-
fore our second step is faster than the PCORE+WCORE approach, where the
output of the first step is a bigger unsolvable subproblem.

6 Conclusions

We have developed a new approach for extracting a MUS from an unsolvable
CSP instance. It is based on a two-step algorithm. In the first step, an unsolvable
subproblem is obtained, using a FC-DVO solver combined with the computation
of a hitting set on the constraints responsible for the no solution condition. To
remove variables which do not belong to the minimal version of this subprob-
lem, this process is iterated with the help of a heuristic to identify variables
that are likely to be in a MUS. The iteration ends when the computed unsolv-
able subproblem does no longer decrement its size. The second step refines this
unsolvable subproblem using a dichotomic search until a true MUS is found.

We compared our approach with the best approach we have found so far
called PCORE + WCORE [10] which is also a two-step algorithm. The main
difference between these two approaches occurs in the first step. While PCORE
+ WCORE iterates using a MAC-DVO solver, our approach iterates using a
FC-DVO solver combined with the hitting set computation and the heuristic to
select likely MUS variables. As result, our approach is able to compute MUS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 S. Macho González and P. Meseguer

candidates of smaller size (first step of CORE-FC), with less computational
effort. As consequence, the effort required in the second step is also smaller.
Experimental results show that our approach is beneficial in most benchmarks,
although in some benchmarks (pigeons) our approach is not competitive. It is
worth realizing that each pigeon instance is itself a MUS, so we hypothesize that
when the original unsolvable instance is already minimal, our approach is not
competitive (in that case, the hitting set computation and the heuristic do not
bring any benefit, they add overhead only). But we believe that this is not the
general case. Usually, unsolvable instances contain smaller MUSes, for which we
believe that our approach is adequate. Our intuition behind the claim that a
FC algorithm is better that a MAC algorithm for finding MUSes is that whilst
a FC just considers constraints between past and future constraints a MAC
algorithm tends to maintain the consistency of the CSP. Thus a MAC algorithm
will select more candidate constraints than a FC algorithm. This is explain why
our algorithm finds a smaller and better unsolvable candidate.

The capacity of reasoning at subproblem level has been crucial to develop
this approach. The hitting set idea considers the different subsets of constraints
that are responsible for the no solution condition of the whole subproblem. The
heuristic for variables likely to be in a MUS is inspired in a property of the
complete subproblem. This view abstracts atomic CSP components, focusing on
subproblems. We believe that this perspective offers new and interesting ways of
reasoning in constraint solving, able to improve existing techniques or to develop
new ones.

Acknowledgements

Authors thank anonymous reviewers for their constructive criticisms.

References

1. Bailey, J., Stuckey, P.J.: Discovery of Minimal Unsatisfiable Subsets of Constraints
Using Hitting Set Dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Prac-
tical Aspects of Declarative Languages. LNCS, vol. 3350, pp. 174–186. Springer,
Heidelberg (2005)

2. Benchmark problems. http://cpai.ucc.ie/05/Benchmarks.html
3. Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive

core search. Discrete App. Math. Journal, vol. 130, pp. 85–100. Elsevier Science
Publishers, B.V. (2003)

4. Bruni, R., Sassano, A.: Restoring Satisfiability or Maintaining Unsatisfiability by
Finding Small Unsatisfiable Subformulae. In: Bruni, R., Sassano, A. (eds.) SAT
2001 (LICS) 2001 Workshop on Theory and Applications of Satisfiability Testing,
Boston, Massachusetts, USA, June 14-15, 2001, pp. 14–15. Elsevier Science Pub.,
North-Holland, Amsterdam (2001)

5. Faltings, B., Macho-Gonzalez, S.: Open Constraint Programming. Artificial Intel-
ligence, vol 161, pp. 181–208 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://cpai.ucc.ie/05/Benchmarks.html

Boosting MUS Extraction 299

6. Freuder, E., Hubbe, P.: Extracting Constraint Satisfaction Subproblems. In: Proc.
of the 14th International Joint Conference on Artificial Intelligence. pp. 548–555
(1995)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

8. Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Re-
search 1, 25–46 (1993)

9. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14, 263–313 (1980)

10. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from con-
straint networks. In: Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI’06) (2006)

11. Huang, J.: MUP: a minimal unsatisfiability prover. In: Huang, J. (ed.) ASP-DAC
’05. Proceedings of the 2005 conference on Asia South Pacific design automation,
Shanghai, China, pp. 432–437. ACM Press, NewYork (2005)

12. Java Constraint Library (JCL): http://liawww.epfl.ch/JCL/
13. Junker, U.: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Prop-

agation Algorithms. In: IJCAI’01 Workshop on Modelling and Solving problems
with constraints (CONS-1) (2001)

14. Kar, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, pp. 85–103 (1972)

15. Liffiton, M.H., Andraus, Z.S., Sakallah, K.A.: From Max-SAT to Min-UNSAT:
Insights and Applications. Technical Report CSE-TR-506-05 (February 2005)

16. Liffiton, M.H., Moffitt, M.D., Pollack, M.E., Sakallah, K.A.: Identifying Conflicts in
Overconstrained Temporal Problems. In: Proc. IJCAI-05, pp. 205–211, Edinburgh,
Scotland (2005)

17. Liffiton, M.H., Sakallah, K.A.: On Finding All Minimally Unsatisfiable Subformu-
las. In: Proc. 8th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT-2005), pp. 173–186 (June 2005)

18. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE:
a minimally-unsatisfiable subformula extractor. In: DAC ’04. Proceedings of the
41st annual conference on Design automation, pp. 518–523. ACM Press, New York
(2004)

19. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence 9, 268–299 (1993)

20. Torrens, M., Weigel, R., Faltings, B.: Java constraint library: Bringing constraints
technology on the Internet using the java language. In: Constraints and Agents:
Papers from the 1997 AAAI Workshop, Menlo Park, California, pp. 21–25 (1997)

21. Verfaillie, G., Lemaitre, M., Schiex, T.: Russian Doll Search. In: Proc. of the 13th
National Conference on Artificial Intelligence, pp. 181–187 (1996)

22. Yokoo, M.: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS,
vol. 976, pp. 88–102. Springer, Heidelberg (1995)

23. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, Springer, Heidelberg (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://liawww.epfl.ch/JCL/

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 300–313, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Homogeneous Hierarchical Composition of Areas in
Multi-robot Area Coverage

Sriram Raghavan1 and Ravindran B2

1 Intel India
sriram.raghavan@intel.com

2 Department of Computer Science & Engineering, IIT Madras
ravi@cs.iitm.ernet.in

Abstract. Multi-robot area coverage poses several research challenges. The
challenge of coordinating multiple robots’ actions coupled with the challenge of
minimizing the overlap in coverage across robots becomes even more complex
and critical when large teams and large areas are involved. In fact, the effi-
ciency critically hinges on the coordination algorithms used and the robot
capabilities.

Multi-robot coverage of such large areas can be tackled by the divide-and-
conquer policy; decomposing the coverage area into several small coverage
grids. It is fairly simple to devise algorithms to minimize the overlap in small
grids by making simple assumptions. If the overlap ratio of these small grids
can be controlled, one may be able to integrate them appropriately to cover the
large grid.

In this paper, we introduce homogeneous hierarchical composition grids to
decompose a coverage area into several small coverage primitives with appro-
priately sized robot teams. These coverage grids are viewed as cells at a Meta
level and composed hierarchically with such teams functioning as a single unit.
We state and prove an associated theorem that provides very good scaling prop-
erties to large grids. We have performed simulated studies to validate the claims
and study performance.

1 Introduction

Multi-Robot Area Coverage involves visiting every point within a given area by a
team of mobile robots. Such tasks are typical to coordinated tasks such as Robotic
vacuuming, Robotic de-mining or Robotic rescue. In such applications, it is sufficient
if any one member of the team visits a particular point in the coverage area as re-
peated visits provides no additional information or value. Revisits are considered as
overhead on the task completion. Such coverage tasks are usually characterized by
few points for entry and no a priori knowledge about the terrain for the area. How-
ever, it is reasonable to assume that periphery can be identified through vision or
radio beacons.

Consider a situation where a group of rescue robots form a rescue team to evacuate
survivors from a building which is devastated by natural calamity. In such a situation,
it is required that the team coordinates its actions so as to rescue as many survivors as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 301

possible, quickly. We assume, for sake of simplicity, that all searches are restricted to
searching on planar space. It is typical of such a scenario to round up the area (periph-
ery of coverage area is known) and scan extensively within. In order to be effective,
the team members must spread out after entering the area and avoid revisits to a loca-
tion. Coordination also necessitates the need to set up a common reference during
communication which requires a coordination architecture [1] to be built into these
robot team members. This is then achieved thru exchange of messages to decide on
future course of action. Since the robots are mobile, the coordination architecture
must support one or more wireless communication technologies.

Once these are in place, the robots should use a common protocol or coordination
algorithm to exchange their findings and status (robot states) to decide the optimal
next step. While it is best if robots synchronized with each other after every step to
take the optimal next step, it results in significant communication overhead. The
tradeoff between the periodicity of communication and the level of optimality in robot
actions is decided based on application needs. If the area is very vast, then the robots
are divided into smaller teams and are made to cover smaller regions in parallel. This
technique has three distinct advantages, viz., coordination in smaller teams is simpler
and faster, the robots can cover the smaller regions using simple and efficient algo-
rithms to minimize overlap and if regions do overlap, it is restricted to the smaller
team and not the entire robot group.

Area coverage, in literature, is performed using two kinds of area decomposition:
approximate cellular decomposition [4,10,14] where the coverage area is approxi-
mated as a grid of cells and exact cellular decomposition [2,7] where it is exactly
mapped by one or more such grids. The cell is the footprint of a robot and the area
covered by it in one unit of time. Increasing the size of the cell implies increase in
robot coverage ability in unit time which may be required to support advanced
applications.

. . .

. . .

. .
.

Fig. 1. Illustrating concept of hierarchy by building up using small areas

In this paper, we introduce the concept of teams of robots and coverage primitives
which form the building blocks of coverage. These robots are simple in design with lim-
ited sensing and computational capabilities being easy to program and cheap to build.
However, they cannot use conventional coordination techniques owing to their limited
capabilities.This paper briefly discusses various coordination algorithms developed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 S. Raghavan and B. Ravindran

by us to suit different contexts and robot capabilities. These algorithms quantitatively
measure the overlap using a parameter called the overlap_ratio and attempt to minimize it
using various strategies in the different contexts. A team will employ an appropriate
algorithm to cover a primitive and move from one primitive to another after coverage.
The algorithm is selected based on the application needs and individual robot capabili-
ties. Since a team of robots move from one primitive to another during coverage, these
primitives may be equated to ‘large’ cells being covered by robots with greater degrees of
freedom. We use this concept and compose very large areas using primitives and divide
the robots as appropriate directed by application needs. This will give rise to hierarchical
composition of the area where we prove that the total overlap_ratio of the coverage area
is the sum of overlap_ratios of immediate two sublevels levels and this result is scalable
to any number of levels in hierarchy.

The rest of the paper is organized as follows. In section 2, we present the state-of-
the-art in multi-robot are coverage. In section 3, we describe the different classes of
multi-robot coordination algorithms we have developed that successively reduce the
overlap in coverage across robots and also state the assumptions on which these algo-
rithms are based. We also classify these algorithms and categorize the same. In sec-
tion 4, we present the homogeneous hierarchical composition theorem and discuss the
test cases studied. In section 5, we discuss the experimental setup, summarize the
results and discuss our findings. In section 6, we conclude by providing a brief sum-
mary of the work achieved in this paper.

2 State-of-the-Art in Multi-robot Area Coverage

There are three dimensions in which mobile robot coordination for achieving a cover-
age task can be classified. They are: Coverage Problem, Coordination Problem, and
Communication Problem. Cao et al. [13] provide a classification of multi-agent robot-
ics along the dimensions of communication, computation and other capabilities.
Choset surveys the area coverage problem [7] and introduces some basic coverage
heuristics. Butler et al. [8] describe algorithms that guarantee coverage of rectilinear
environments by a team of robots. Rekleitis et al [9] describe a graph-based multi-
robot exploration and mapping approach which keeps two robots in closely-coupled
coordination each robot is always in line-of-sight of the other.

Solanas and Garcia [2] present an unsupervised clustering algorithm that partitions
the unknown space into as many cells as the number of mobile robots. The assign-
ment of regions to the various robots is based on bids that are estimates of information
gain traded-off against traveling costs to that region. Simmons et al. [11] describe a
centralized exploration and mapping algorithm that uses maximum likelihood to find
maps maximally consistent with the sensor data from the region. Zlot et al. [4] present
a totally distributed exploration algorithm in mobile robots based on the market econ-
omy which minimizes traveling costs and maximizes information gain.

In ant-robot based terrain coverage [6], simple robots with minimal sensory capa-
bilities perform at least once-coverage or continual coverage of an unknown terrain.
The terrain is exactly decomposed into cells, each of which is the size of a robot. The
work assumes that multiple robots may visit a single cell simultaneously without
hindering the coverage path of other robots. Robots move in perfect synchronization

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 303

during coverage without communicating with one another but rely on pheromone
trails left by other robots earlier at that location. The action selection mechanism is
based on an arbitrary function used to select the action that minimizes some cost func-
tion known a priori. Kube and Bonabeau have also looked at ant-like movements for
robot exploration [10] where a leader is elected and the remaining robots follow the
leader along some arbitrary path. But the objective function in such techniques is
either at least once coverage or continual coverage of a terrain, both of which are not
the goal of our thesis. Our work attempts to avoid revisits to cells during terrain cov-
erage whenever possible.

3 Multi-robot Area Coverage Algorithms

A coverage area can be visualized as a grid consisting of M × N cells, each of square
geometry and identical size. Representing an area in this form is called the occupancy
grid representation. In this representation, a zero denotes free unexplored space and a
non-zero value denotes either a covered cell or obstacles, as the case may be. Typi-
cally, positive numbers are used to represent robot visits and negative numbers are
used to represent obstacles. A team of M homogeneous mobile robots, which can
communicate with each other, is deployed for coverage. Each robot is identified with
a globally unique ID. When the robots communicate, they exchange ‘state’ informa-
tion. We assume that the robots have the capability to sense the locations (or cell) and
the boundaries when they reach them.

The presence of fewer entry points into the area requires that the team enter the re-
gion and spread out as quickly as possible to cover the grid while minimizing overlap.
Overlap is defined as a visit by a robot to an already covered cell and by definition, it
is cumulative. To measure this, we introduce a parameter called the overlap_ratio
which is formally defined in eqn. (1). In order to minimize overlap, negotiation
strategies must distribute work among the robots in a fair manner and ensure that
robots independently cover as much area as possible before coordinating their actions
to cover the remaining area. This requires robots to exchange and process a lot of
information before they cover cell independently. It also necessitates robots to be
predictable in their actions for which they must follow deterministic coverage pat-
terns. As this is difficult to achieve and implement in simple communicating robots
capable of scanning and maintaining cell status, we treat coordination as the exchange
of a single message or a sequence of messages between the robots in the team, de-
pending on their states.

overlap_ratio = Number of cells in overlap / Total number of cells in grid (1)

Another challenge is that the robots often have knowledge only about the extent of
this area and can sense/detect the adjacent cells. It forces the robots to take coverage
decisions based on their knowledge of the environment. In such tasks, robots often do
not have complete information about the area required to perform coverage optimally.

We have developed a class of multi-robot area coverage algorithms (on-line and
off-line computations) to coordinate the robots for covering given areas minimizing
repetitive visits to cells, measured using the overlap_ratio. Each algorithm is suited to
specific types of robots and contexts. These are summarized in table 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 S. Raghavan and B. Ravindran

Table 1. Area coverage algorithms and their requirements at a glance

Algorithm Commu-
nication

Collision
Avoidance

Minimum
Distance

Computa-
tion

NCC No No No On-line

OSC Yes No No On-line

OSCARD Yes Yes No On-line

NJ Yes Yes Yes On-line

AAA No Yes Yes Off-line

In the NCC algorithm, each robot randomly decides its next step for movement. It
is naïve, easy to implement and forms our basis for comparison with other multi-robot
coverage algorithms. The next set of algorithms (except AAA) are all online algo-
rithms based on the assumption that robots communicate at every step to synchronize
their actions in order to minimize overlap. When a decision is taken, it is assessed by
other team members thru inter-robot communication. If the action is acceptable to all
robots in the team, then this action is performed by that robot. Acceptable refers to the
act of ensuring that two or more robots are not present in the same cell at the same
time. If such a situation occurs, a collision is deemed to have taken place.

Current
State

Next
State

Motion
Predictor

Accept
Action

Already Selected action list

Communicate

Evaluate
action

list

All actions rejected

Fig. 2. Coordinated Robot Movement Strategy

The OSC algorithm employs one-step communication with other robots to avoid
collisions. OSCARD employs one-step communication and assumes the capability for
each robot to recognize already covered cells. Since, all robots are homogeneous, they
cover a cell in identical manner and this information is exploited in this algorithm.
The NJ algorithm maintains a fixed inter-robot distance in addition to having all ca-
pabilities and requirements of OSCARD. The threshold for inter-robot distance is
determined by the grid size and number of robots in the team. Figure 2 summarizes
the robot movement strategy of these online coordination algorithms.

Each algorithm is a different implementation of the “motion predictor module”
which helps robots to avoid visiting already covered cells. Despite avoiding visited
cells, a robot might get trapped and the algorithms have ways of breaking the dead-
lock at the cost of increased overlap. The AAA is an offline algorithm that assumes
global grid knowledge and computes each robot’s initial position in the grid using an
equally-likely distribution. The robots then move in a deterministic manner to those

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 305

positions and perform coverage along the axis of the grid. Their orientation is known
a priori and the robots maintain the same throughout coverage.

4 Homogeneous Hierarchical Composition of Areas

Typical area coverage scenarios require a team of robots to cover very large areas. In
such scenarios minimizing global overlap with distributed coordination mechanisms
can be very difficult. One solution to this problem would be to try and localize the
coordination required by adopting a divide and conquer approach. We accomplish
that by dividing our robots into teams and spread the teams out to cover smaller units
of the grid in parallel. In the context of multi-robot area coverage, the coverage grid
can be split into smaller grids of fixed sizes where overlap ratio is controlled and
repeat that pattern until coverage is complete in the entire grid. Each team will have a
leader who is responsible to coordinating his team’s actions with other teams in order
to minimize overlap. This leader can be elected using any known leader election
[12,15] methods. Multiple teams could, therefore, work independently while coordi-
nating among themselves while performing coverage. This has a significant impact on
saving communication cost between the robots during coordination. In our work on
area coverage, we have devised a methodology to scale the algorithms to cover very
large grids using algorithms described in section 3.

In hierarchies, we define the smallest grid used to decompose the area as a primi-
tive which is covered by a team of robots. A team is defined as a group of robots us-
ing the same algorithm covering the same grid. The coverage of each primitive is
achieved by the team synchronously. Grids formed as a consequence of stacking the
primitives together give rise to larger grids which are called grid-cells at the higher
levels in the hierarchy. A grid-cell can also be considered as a primitive grid at these
higher levels covered by a larger team of robots. Hence, the rules that apply to a
primitive apply at all the intermediate levels in the hierarchy. This is illustrated in
Fig. 3.

Several such teams of robots occupy and cover the primitives in an order directed
by some meta-level area coverage algorithm and in effect cover the entire area. In the
level immediately above the primitives in the hierarchy, each primitive can also be
treated as a cell and the each team of robots covering the primitive may be treated as
a single “more powerful” robot covering that “cell”. We may then use the same set of
algorithms to cover the area at the next higher level in hierarchy. The coverage algo-
rithms used within a team and across teams are totally decoupled and the best combi-
nation may be employed to minimize overlap. It is then sufficient to compute the
optimal decomposition of a given coverage grid in terms of these small grids and
obtain their initial positioning. We now present the crux of our work and introduce the
hierarchical composition theorem (H2C theorem) for theoretically computing the
overlap ratio in very large grids using the empirical results obtained from overlap
ratio for small grids of different configurations.

Theorem 1. The overlap_ratio in covering an N × N grid using some n × n as the
coverage primitive for two levels in a hierarchical manner is given by sum of the
overlap ratios in the grids at the two levels.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 S. Raghavan and B. Ravindran

Theorem 2. The overlap ratio, as obtained from Homogeneous Hierarchical Compo-
sition Theorem, in covering a region using smaller coverage grids in a multi-level
hierarchy is given by

O(m): x0 + x1 + x2 + … + xm
where O(m) is the overlap ratio obtained at the mth level in the hierarchy and x0
through xm are the overlap ratios obtained at the corresponding levels using the
primitive grids
Note: Formal proof to the theorems is given in Appendix 1.

. . .

. . .

. .
.

. . .

. . .

. .
.

2x2 Primitive Grid

2x2 Grid cell

Fig. 3. Illustration of Hierarchical Area Composition and Meta-level view

4.1 Implication of Homogeneous Hierarchical Composition

An important consequence of the theorems stated above is that a grid may be decom-
posed into as many levels in hierarchy as required and in any order so as to minimize
overlap. However, the number of levels in hierarchy will impact the number of robots
needed and in turn the inter-robot communication cost to maintain synchrony. An-
other consequence is that, any coordination algorithm that satisfies the requirements
in table 1 and performs cohesive team movement from one primitive to another can
be used at any level(s) in coverage.

The theoretical and experimental results for overlap_ratio obtained through hierar-
chical decomposition deviate from one another as the experimental overlap had to
take the team relocation into account while shifting from one sub-grid to another.
These robot movements were assumed to be deterministic across the primitives and
require communication between the various primitive team leaders to coordinate their
respective team movements and minimize overlap. It can be shown that this deviation
is bounded by a factor m (n-1)/2n2, where m is size of small robot team and n is the
size of primitive grid. For values of m and n chosen such that m ≤ n, this factor is
always less than 0.5. Therefore, the hierarchical composition framework effectively
spreads the robots into teams across the grid and achieves coverage at acceptable
levels of overlap ratio. Our framework was validated on large grids of size
1024×1024 for various team sizes and the results clearly indicated that the system
can save over 90% of effort (computed as number of robot movements) even using
the naïve NCC algorithm in covering the area.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 307

4.2 Limitations of Homogeneous Hierarchical Composition

According to the theorems, we assume that the team of robots operating within one
primitive grid function as a single unit at the immediate next higher level. This im-
plies that while moving from one primitive to the next, all the robots must move as a
cohesive unit from the current primitive to the same next primitive grid and in a de-
terministic manner. This requires the robots to maintain close coordination between
them (even for naïve NCC coverage algorithm!). One should note that when the ro-
bot-collision avoidance is performed at an intermediate level in the hierarchy, it corre-
sponds to a team of robots avoiding another team while shifting across primitives.
This requires the leaders to communicate between themselves and maintain the re-
quired distance between their corresponding teams as dictated by the meta-level cov-
erage algorithm. If the meta-level algorithm does not mandate communication, then
leaders will perform basic communication to ensure that robot collisions and overlap
across teams are minimized. While this operation amounts to overhead for using the
hierarchical framework in area coverage, the alternative (direct coverage of the large
grid) requires all robots to communicate with each other until they moved into mutu-
ally undisturbed positions. The overhead involved in achieving the latter far exceeds
the cost of coverage in terms of number of steps to complete coverage or resources
required. In comparison, the complexity would reduce by several orders of magnitude
by using the leader election technique for inter-team coordination. It is always possi-
ble to restrict the number of such teams sent in to cover a given area and effectively
reduce the communication overhead.

5 Homogeneous Hierarchical Composition Applied to large areas

The power of the H2C theorem is highlighted when we study its performance in com-
parison to direct coverage of large grids using the same algorithms. In each of the
following figures shown, the algorithm indicated was used in performing direct cov-
erage as well as in hierarchical coverage. In the case of hierarchical coverage with
several levels of hierarchy, the same algorithm was employed at all the levels with
equal number of robots at the lower and each higher level.

Overlap Ratio Vs Algorithms (8 Robots)

0

20

40

60

80

100

N
C

C

 O
S

C

 O
S

C
A

R
D

 N
J

 A
A

A

Algorithms

O
ve

rl
ap

 R
at

io

Direct Coverage

Hierarchical
Coverage

Overlap Ratio Vs Algorithms (16 Robots)

0

20

40

60

80

100

N
C

C

 O
S

C

 O
S

C
A

R
D

 N
J

 A
A

A

Algorithms

O
ve

rl
a

p
R

at
io

Direct Coverage

Hierarchical
Coverage

Fig. 4. Direct Vs Hierarchical Coverage of
64× 64 Grid (8 Robots)

Fig. 5. Direct Vs Hierarchical Coverage of
64× 64 Grid 16 Robots

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

308 S. Raghavan and B. Ravindran

Overlap Ratio Vs Algorithms (32 Robots)

0

20

40

60

80

100

N
C

C

 O
S

C

 O
S

C
A

R
D

 N
J

 A
A

A

Algorithms

O
ve

rl
ap

 R
at

io
Direct Coverage

Hierarchical
Coverage

Fig. 6. Direct Vs Hierarchical Coverage of 64× 64 Grid 32 Robots

Direct Vs Hierarchical Coverage (64x64)

0

20

40

60

80

100

N
C

C

 O
S

C

 O
S

C
A

R
D

 N
J

 A
A

A

Algorithms

O
ve

rl
ap

 R
at

io Direct Coverage

H2C 8x8-8R

H2C 4x4-2R

H2C 2x2-2R

Fig. 7. Direct Vs Hierarchical Coverage of 64× 64 Grid

Overlap Ratio Vs Algorithms (81x81 - 16 Robots)

0

20

40

60

80

100

NCC OSC OSCARD NJ AAA

Algorithms

O
ve

rl
ap

 R
at

io

Direct Coverage

Hierarchical Coverage

Overlap Ratio Vs Algorithms (81x81 - 81 Robots)

0

20

40

60

80

100

NCC OSC OSCARD NJ AAA

Algorithms

O
ve

rl
ap

 R
at

io

Direct Coverage

Hierarchical Coverage

Fig. 8. Direct Vs Hierarchical Coverage of
81× 81 Grid 16 Robots

Fig. 9. Direct Vs Hierarchical Coverage of
81×81 Grid Using 81 Robots

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 309

Overlap Ratio Vs Algorithms (1024x1024 - 64
Robots)

0

10

20

30

40

50

NCC OSC OSCSD OSCARD NJ AAA

Algorithms

O
ve

rl
ap

 R
at

io

Fig. 10. Performance of Hierarchical Coverage of 1024× 1024 Grid Using 64 Robots

5.1 Design of Experiments

It is noteworthy to mention that when the coverage related simulation experiments
were conducted on grids of very large sizes (256×256, 512×512 and 1024×1024,
for example), all algorithms other than the NCC algorithm did not run to completion
even when simulated for over 36 hours. We inferred that this behavior was because all
online algorithms barring the NCC algorithm require consensus through communica-
tion from all robots in the team at every step. This was significant communication
overhead on the system and the robots were busy most of the time communicating to
obtain acceptance. As a consequence, coverage rate was drastically slow and comple-
tion was never reached.

On the other hand, when the number of robots was decreased to an acceptable
number, there are lesser number to perform coverage, most of which were attempting
to cover the same section of the grid and unable to get out of this section. It must be

Direct Vs. Herarchical Coverage (1024x1024)

0

100

200

300

400

500

64 256 1024

Number of Robots

O
ve

rl
ap

 R
at

io

Direct Coverage

Hierarchical Coverage

Fig. 11. Comparing Performance of Coverage for varying robot team sizes in 1024× 1024 grid

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 S. Raghavan and B. Ravindran

noted that though the coverage algorithms (as compared with NCC) attempt to mini-
mize visits to already covered cells, they still select randomly when there is more than
one possibility. A comparison of the performance of direct coverage against hierar-
chical coverage is shown in Fig. 11 for 1024×1024 grid for varying number of robots
using the NCC algorithm. As mentioned before, NCC algorithm was applied at all
levels in the hierarchical case.

6 Summary and Conclusion

In this paper, we have discussed one approach to area coverage using multiple mobile
robots. In our work, we developed a methodology to solve this problem in a coordi-
nated manner using these robots. We briefly discussed the different coordination
algorithms we designed with small robot teams and successively refined them to
minimize overlap_ratio.

We then proposed a hierarchical framework for integrating these solutions for cov-
erage of small areas to cover arbitrarily large areas and stated the Homogeneous Hier-
archical Composition Theorem that states that the overlap ratio in coverage of a given
area consisting of a grid of multiple primitive grids is the sum of the overlap ratios in
coverage at the two levels. This result was further shown to be scalable to any number
of levels in hierarchy.

The design of the experiments was explained and the results were presented. The
performance of these algorithms was studied for varying number of robots in a team
and for varying grid sizes and the various observations were listed. Results clearly
indicate that this framework is very effective and for large grids, can save effort
(measured by number of robot actions) even using simple coverage algorithms.

In future we plan to extend the results discussed in this paper to arbitrary sized ar-
eas and varying decompositions. Work is currently underway to extend the coordina-
tion algorithms to heterogeneous robots under lossy communication channels.

References

1. Raghavan, S., Ravindran, B.: Profiling Pseudonet Architecture for Coordinating Mobile
Robots. In: Second International Conference on Communication System Software and
Middleware (COMSWARE), Jan 7-12, Bangalore, India (2007)

2. Solanas, A., Garcia, M.A.: Coordinated multi-robot exploration through unsupervised clus-
tering of unknown spaces. In: Proceedings of IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), vol. 1, pp. 717–721 (2004)

3. Farinelli, A., Iocchi, L., Nardi, D.: Multirobot Systems: A Classification Focused on Coor-
dination. IEEE Transactions on Systems, Man, Cybernetics-Part B 34(5) (2004)

4. Zlot, R., Stentz, A., Dias, M., Thayer, S.: Multi-Robot Exploration Controlled By A Mar-
ket Economy. In: Proceedings of IEEE International Conference on Robotics and Automa-
tion (ICRA) (2002)

5. Dudek, G., Jenkin, M., Milios, E.E.: Robot Teams: From Diversity to polymorphism - A
Taxonomy of Multirobot Systems, AK Peters, Wellesley MA (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 311

6. Koenig, S., Liu, Y.: Terrain Coverage with Ant Robots: A Simulation Study. In: Proceed-
ings of the International Conference on Autonomous Agents (AGENTS 2001), pp. 600–
607 (2001)

7. Choset, H.: Coverage for Robotics - A Survey of Recent Results. In: Annals of Mathemat-
ics and Artificial Intelligence. vol. 31, pp. 113–126. Kluwer, Norwell, MA (2001)

8. Butler, Z.J., Rizzi, A., Hollis, R.L.: Complete Distributed Coverage in Rectilinear Envi-
ronments. In: Peters, A.K.(ed.) Proc. of the Workshop on the Algorithmic Foundations of
Robotics (January 2001)

9. Rekleitis, I., Dudek, G., Milios, E.E.: Graph-based exploration using multiple robots. In:
Proceedings of the Fifth International Symposium of Distributed Autonomous Robotic
Systems (DARS), October 4-6, 2000, Knoxville, Tennessee, pp. 241–250 (2000)

10. Kube, C.R., Bonabeau, E.: Cooperative Transport by ants and robots. Journal of Robotics
and Autonomous Systems 30(1), 85–101 (2000)

11. Simmons, R., Burgard, W., Moors, M., Fox, D., Thrun, S.: Collaborative Multi-Robot Ex-
ploration. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), San Francisco, CA (2000)

12. Stoller, S.D.: Leader Election in Asynchronous Distributed Systems. In: Proceedings of
IEEE Transactions on Computers, vol. 49(3), pp. 283–284 (March 2000)

13. Cao, Y.U., Fukanga, A., Kahng, A.: Cooperative Mobile Robotics: Antecedents and Direc-
tions. Autonomous Robotics 4, 1–23 (1997)

14. Rekleitis, I.M., Dudek, G., Milios E.E.: Multi-robot exploration of an unknown environ-
ment: Efficiently Reducing the Odometry Error. In: Proceedings of 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pp. 1340–1345, Nagoya, Japan (August
1997)

15. Francis, P., Saxena, S.: Optimal Distributed Leader Election Algorithm for Synchronous
Complete Network. IEEE Transactions on Parallel and Distributed Systems 7(3) (1996)

Appendix 1: Homogeneous Hierarchical Composition Theorem

Proof for Theorem 1: Consider a square grid of area N×N being covered by a team
of M robots; let us assume that the grid can be composed using primitives of area n ×
n. Then the N × N grid consists of k2 = (N × N)/(n × n) primitives (say). We position
these k2 grids in the form of a square to cover the entire grid. Let M = a × b and let
each n × n grid be covered by ‘a’ robots. Then there are ‘b’ such teams to cover the
N × N grid. Let these b teams be deployed in the k2 grid for coverage. The problem is
illustrated in Fig 12.

Note: Although the proof refers to square grids for ease of exposition, these results apply
equally well to rectangular shaped grids.

Let us suppose that the coverage of k2 grid using a team of ‘b’ robots results in an
overlap ratio of x1. We obtain an overlap ratio of x0 in the coverage of each primitive
grid by a team of ‘a’ robots. Coverage of k × k grid necessitates the coverage of each
primitive n × n and together, they guarantee the coverage of the N × N grid, as
specified. Hence, the total number of cells in overlap is given by –

Number of cells in overlap
for the primitive grid coverage = (x0 × n2) × k2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 S. Raghavan and B. Ravindran

Number of grid-cells in overlap
during coverage of k × k grid = (x1 × k2)

N x N

‘a’ robots

. . .

. . .

n

n
k primitives

k
pr

im
iti

ve
s

M robots

Fig. 12. Illustration of the H2C theorem

Each cell of k × k grid is an
n × n grid. Hence number of
cells in overlap is given by – = (x1 × k2) × n2

Total number of cells in overlap = (x0 + x1) × k2 × n2

Overlap ratio (By Definition) = (Total number of cells in overlap

/ Total number of cells)
= (x0 + x1) × k2 × n2 / N2
= (x0 + x1) × N2 / N2
= (x0 + x1)

This concludes the proof for Homogeneous Hierarchical Composition Theorem for
obtaining the overlap in a large grid hierarchical composition of primitive grids. □

Proof for Theorem 2: Proof by Principle of Mathematical Induction (PMI)
P(1): The theorem holds true for single level in hierarchy.
O(1): = x0 + x1

Proof: Proved in Theorem 1. Therefore P(1) is true.
At the induction step, assume that the statement is true for some natural number m.
P(m): Theorem holds true for m levels in the coverage hierarchy. Therefore O(m): x0
+ x1 + x2 + … + xm is true.

To show that P(m+1) is true whenever P(m) is true. Then by PMI, statement P(N) is
true for all natural numbers N.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage 313

P(m+1): The theorem holds for m+1 levels in coverage hierarchy whenever P(m) is
true.

O(m+1): x0 + x1 + x2 + … + xm + x(m+1)

From P(m), it is evident that any coverage grid can be composed for m levels in hier-
archy and their overlap ratio can be obtained as the sum of overlap ratio at the corre-
sponding levels. Let us now construct a grid of r2 cells, each of which is an ‘m’ level
coverage grid in hierarchy with a total of L cells. Let the actual number of cells in its
side be M. Then we have the relation,
 M2 = r2×L2
Overlap ratio obtained in the L x L grid is given by –
 OL = [x0 + x1 + x2 + … + xm]

Let the overlap at the highest level in hierarchy (m+1) be x(m+1). The total number of
cells in overlap is then given by,

Overall Overlap = [(x0 + x1 + x2 + … + xm) × L2]× r2 + [x(m+1) × r2]×L2

 = [x0 + x1 + x2 + … + xm + x(m+1)] × r2×L2

 = [(x0 + x1 + x2 + … + xm + x(m+1)]× r2×L2/M2

Substituting from equation (1), we obtain,

 Overlap ratio = [x0 + x1 + x2 + … xm + x(m+1)],
 which proves our P(m+1) statement.

Therefore P(m+1) is true whenever P(m) is true. Hence, by PMI, statement P(N) is
true for all Natural Numbers. This concludes the proof of Generalized H2C theorem. □

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in

Model-Based Diagnosis

Lorenza Saitta1, Pietro Torasso2, and Gianluca Torta2

1 Dipartimento di Informatica, Università del Piemonte Orientale,
Via Bellini 25/G, 15100 Alessandria, Italy

saitta@mfn.unipmn.it
2 Dipartimento di Informatica, Università di Torino

Corso Svizzera 185, 10149 Torino, Italy
{torasso,torta}@di.unito.it

Abstract. Several theories have been proposed to capture the essence
of abstraction. Among these, the KRA model offers a framework where a
set of generic abstraction operators allows abstraction to be automated.

In this paper we show how to describe component-based abstraction
for the Model-Based Diagnosis task within the KRA framework, and we
discuss the benefits of such a formalization.

The clear and explicit partition of the system model into different
levels required by KRA (going from the perception level up to the the-
ory level) opens the way to explore richer and better founded kinds of
abstraction to apply to the MBD task.

Another noticeable advantage is that, by suitably personalizing the
generic abstraction operators of KRA, the whole abstraction process,
from the definition of abstract (macro)components to the computation
of their behaviors starting from those of the ground components, can
be performed automatically in such a way that important relationships
between ground and abstract diagnoses are guaranteed.

1 Introduction

Abstraction, intended as the ability to forget irrelevant details and to find sim-
pler descriptions, is a pervasive activity in human perception and reasoning. In
the Artificial Intelligence community, abstraction has been investigated mostly in
problem solving [1], planning [2], Model-Based Diagnosis [3] and in problem re-
formulation [4]. Various abstraction theories have been proposed in the attempt
to capture a general notion of abstraction. These theories are either syntactic [5],
or semantic [6], but they fail to characterize the practical aspects of the abstrac-
tion process. Following an idea of Korf [7], Saitta and Zucker [8] have proposed a
model of representation change that includes both syntactic reformulation (dif-
ferent formalisms, same information content) and abstraction (same formalism,
but reduced information content). The model, called KRA (from Knowledge
Reformulation and Abstraction), is designed to help both the conceptualization
phase of a problem and the automatic application of abstraction operators.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 314–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 315

In this paper we use the KRA model to formalize abstraction in Model-Based
Diagnosis (MBD). Starting from the seminal work by Mozetic [3], the main
motivation for deriving abstract models for MBD is to reduce the computational
complexity of the diagnostic process without loosing (too much) diagnosability.

We expect that formalizing the abstraction process in MBD within the KRA
framework will open the way to explore richer and better founded kinds of ab-
straction to apply to the MBD task. In particular, KRA requires that the sys-
tem model is explicitly described at different levels, ranging from the perception
level (that is peculiar to KRA) up to the semantic and syntactic levels; this
should make possible to express the given/desired abstractions at the appropri-
ate level(s) and to automatically propagate their effects as induced abstractions
on the other levels while preserving some desired properties.

To give a first demonstration of these benefits, in this paper we focus on a
well-known kind of abstraction that consists in aggregating elementary system
components into an abstract component, with the effect of merging combina-
tions of behaviors of the original components into a single abstract behavior
of the abstract component. Component aggregation will be modeled, inside the
KRA framework, through a set of aggregation operators, which automatically
perform all the required transformations, once the components to be aggregated
are specified. These transformations change the original ground description of
the system to be diagnosed into an abstract one involving macrocomponents.

In most applications of abstraction to MBD (e.g. [9], [10], [11]), the authors
aim to generating abstract models where the discrimination power among alter-
native diagnoses is fully preserved. We will briefly discuss how this particular
property can be easily guaranteed for aggregation of components within our
approach.

2 A Running Example

In the body of the paper we will use a running example to clarify the notions
we will introduce. In particular, we will consider the hydraulic system reported
in Figure 1, which is the same used in [10]. It includes five types of components,
i.e., pipes, valves, joins, splits, and pumps. Each component has ports that con-
nect components with each other (internal ports), or connect components to the
environment (external ports). In the case of pipes we have for each pipe two
inputs and two outputs, where flow and pressure (resistance) can be measured
respectively. Components can have commands applied to them, whose action is
set from the outside; in particular, each valve has a command intended to set
the valve to open or closed.

Each component can exhibit one among a set of pre-defined behaviors, each
one described by a model expressed in terms of qualitative deviations [12].

In Figure 3 the possible behaviors of pipes, valves, pumps, splits and joins are
reported. For example, when the pipe is in the behavioral mode PC (partially
clogged), the qualitative deviation Δfout of the flow at the end of the pipe is the
same as the qualitative deviation Δfin of the flow at the beginning of the pipe.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 L. Saitta, P. Torasso, and G. Torta

PUMP1

P2

P4

ΔrjoinΔs3 Δrsplit

Δfjoin

 P5

P1

P3

P6

V1 s1

Δfsplit

V2

SPLIT
JOIN

s2

Fig. 1. Hydraulic system used as a running example

P1

V1u1

s1
v1

u2

v2

u1’

v1’

u2’

v2’
PV1

u1

v1 v2’

u2’

s1

Fig. 2. Fragment of the system used as an example

For the pressure, instead, we have that Δrin = Δrout⊕+ where ⊕ is the addition
in the sign algebra (see again [12]). In other words, the pressure is qualitatively
increased at one end of the pipe with respect to the other end.

In the rest of the paper we will assume that a pipe has one nominal behavior
(OK) and three faulty modes PC (partially clogged), CL (clogged) and BR
(broken), while the valve can be in the OK mode (and, in this case, it behaves
in a different way depending on the external command s set to open or closed),
in the SO (stuck open) mode, or in the SC (stuck closed) mode. Splits and joins
are supposed to always be in the OK state, whereas the pumps, apart from the
nominal behavioral mode, may be in one of the following faulty modes: blocked
(BL), underpumping (UP) and overpumping (OP).

In the system considered in this paper, let us assume that the only observable
parameters are Δfsplit, Δrsplit, Δfjoin and Δrjoin, i.e., the qualitative deviations
of flow and resistance (pressure) before the split and after the join components.
We also assume that the s1 command is set to open whereas s2 is set to close.

In Figure 2 an expanded view of the subsystem enclosed in the dotted rectan-
gle in Figure 1 is reported. From now on, we will often refer to it for providing
detailed descriptions. In the left part we see that components P1 and V 1 are
connected together by means of ports (in particular, ports u2 and v2 of P1 are
attached to ports u′1 and v′1 of V 1 respectively). Since our goal in the abstrac-
tion process is to aggregate elementary components into abstract components,
we aim at automatically synthesizing the behaviour of such abstract compo-
nents. In particular we could be interested in abstracting the hydraulic system
model by aggregating the components P1 and V 1 into the abstract component
PV 1 reported in the right portion of figure 2. In such an abstract component
we still have ports u1, v1, u′2 and v′2 that allow the abstract component to be
connected with the rest of the system, while u2, v2, u′1 and v′1 have been hidden

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 317

OK(Pipe) Δfout = Δfin ; Δrin = Δrout

PC(Pipe) Δfout = Δfin ; Δrin = Δrout ⊕+
BR(Pipe) Δfout = − ; Δrin = −
CL(Pipe) Δfout = Δfin = − ; Δrin = +
OK(V alve) s(open)⇒ Δfout = Δfin ; Δrin = Δrout

s(close)⇒ Δfout = Δfin = − ; Δrin = +
SO(V alve) Δfout = Δfin ; Δrin = Δrout

SC(V alve) Δfout = Δfin = − ; Δrin = +
OK(Pump) Δfout = Δs �Δr ⊕Δfin

UP (Pump) Δfout = Δs �Δr ⊕Δfin ⊕−
OP (Pump) Δfout = Δs �Δr ⊕Δfin ⊕+
BL(Pump) Δfout = −
OK(Join) Δfout = Δfin1 ⊕Δfin2 ; Δrout = Δrin1 = Δrin2
OK(Split) Δfin = Δfout1 ⊕Δfout2 ; Δrin = Δrout1 = Δrout2

Fig. 3. Example of behavioral models of components. The term Δr for the pump has
to be intended as the resistance on the output, whereas the term Δs is the command
applied to the pump.

PUMP1

 P2

 P4

ΔrjoinΔs3 Δrsplit

Δfjoin

 P5

 PV1

 P3

 P6

s1

Δfsplit

 V2

SPLIT JOIN

s2

Fig. 4. Result of the aggregation of P1 and V 1 into PV 1

in the abstraction process. The abstract component PV 1 has an external com-
mand s1 that is exactly the same s1 controlling the valve V 1. The result of this
abstraction step is reported in Figure 4.

In the rest of the paper we will show how all the needed transformations for
synthesizing the abstract component can be done automatically by exploiting
appropriate aggregation operators defined in the KRA framework. One of the
most critical points is the (automatic) synthesis of the abstract behaviors of
the abstract component by merging combinations of behaviors of the original
components, which will be addressed in Section 6.

It is worth noting that once we have an abstract model of the hydraulic sys-
tem where P1 and V 1 are replaced by the abstract components PV 1, further
abstractions are possible, for example by aggregating the abstract component
PV 1 with P2 into a new more abstract component PVP1. In section 7 we will
show how far we can go with the abstraction process in the model of the hy-
draulic system and we will also provide information about the behaviors of the
abstracted components.

3 The KRA Model of Abstraction

In this section we briefly describe the KRA model of abstraction. More details
can be found in [13]. In the literature, transformations toward a more abstract

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 L. Saitta, P. Torasso, and G. Torta

world have been defined between theories [14], languages [5] or databases [6].
Defining abstraction at the theory level (formulas are abstracted into formulas) is
too powerful and hence of difficult application. More acceptable is the definition
at the language level (predicate to predicate) and at the database level (table to
table). However, all these proposals, trying to capture a very general notion of
abstraction, may become underconstrained and may suffer from the problem of
generating inconsistent abstract descriptions [15].

In order to face this problem, the KRA model proposes to ground abstraction
on perception (information coming from the outside world). Perception is a part
of a more comprehensive representation framework R = (P , D, L, T), describing
a world W at four levels: perception (P), database (D), language (L) and theory
(T). Informally, the perception acts as the interface between the system under
consideration and the outside world, and consists of two parts: the first contains
the ontology of the domain (generic types of objects, their attributes and their
relations), whereas the second one contains the description of the specific system
to be analysed, including the actual objects, the actual system topology, the
command values, the measurements provided by the sensors, and the tuples of
objects satisfying the functions and relations definitions. This second part is
grouped under the name observations.

More precisely, a perception P = (OBJ,ATT,FUNC,REL,OBS) is a 5-
ple, where OBJ contains the types of objects considered in W , ATT denotes
the types of attributes of the objects, FUNC specifies a set of functions (in par-
ticular the sensors used to acquire information from W and the control devices),
and REL is a set of relations among object types. These sets can be expressed
as follows:

– OBJ = {TYPEi|1 ≤ i ≤ N}
– ATT = {Aj : TYPEj → Λj|1 ≤ j ≤ M}
– FUNC = {fk : TYPEik × TYPEjk × ... → Ck|1 ≤ k ≤ S}
– REL = {rh ⊆ TYPEih × TYPEjh |1 ≤ h ≤ R}

The set OBS cannot be defined in general, because it refers to a particular
system. An example of it will be provided in Section 5.

Going back to the representation framework R, the database D contains the
extensional description of the system and of the observations, as well as any
intermediate and final results generated by automated reasoning processes that
may take place at the language and theory levels. The language L is used to
intensionally describe the contents of D and for performing inferences. Finally,
the theory T contains both general and domain-specific knowledge, independent
from the specific system under analysis. The content of the theory is described
via the language L.

Let us consider now two representation frameworks, Rg = (Pg, Dg, Lg, Tg)
and Ra = (Pa, Da, La, Ta). We call Rg a ground framework. An abstraction
mapping can be defined between Rg and Ra. Once Pg is given, any particular
system can be obtained by assigning values to an appropriate set of variables
(ranging over objects, attributes, pairs in functions and tuples in relations). Each
assignment to all of these variables is a configuration γg. Let Γg be the set of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 319

all the possible ground configurations. In an analogous way, we can define the
set Γa of all possible abstract configurations (for more details, see [13]). In other
words, a configuration is any of the possible worlds perceivable with Pg, including
measurements. The set OBS is exactly one among the possible configurations,
i.e., the one that is actually perceived. Using the above notions, we define an
abstraction as follows:

Definition 1. Given two representation frameworks Rg and Ra, if there exists
a mapping Γg → Γa, such that the mapping associates subsets of Γg to single
elements of Γa, we say that Ra is more abstract than Rg.

In Definition 1 abstraction is seen as a relative rather than an absolute notion,
and is defined between representation frameworks and not single objects. The
analysis of the meaning and implications of this definition is out of the scope
of this paper, and we will rely on its intuitive understanding. Substantially, the
definition says that abstraction performs some kind of information aggregation,
simplifying thus representation, and, possibly, the reasoning about configurations
(we refer again the reader to [13] for more details).

In practice, we only consider mappings that can be obtained from the ap-
plication of a set of abstraction operators, which generate abstract configura-
tions starting from ground ones. Some operators can be domain-independent,
and some are domain-specific. Considering abstraction as a process consisting
of operators application has the limit that not all possible mappings between
Rg and Ra can be defined, but it has the advantage that general properties
of abstractions (e.g. compatibility, see [13]) as well as task-specific properties of
abstractions (e.g. diagnosability) can be enforced simply by putting constraints
on operators. Finally, abstraction is a transitive relationship, and it induces a
partial order among representation frameworks.

The introduction of operators provides a constructive semantics to abstrac-
tion. In fact, constraining the abstract framework to be constructed through
operators has both the conceptual advantage of recognizing that abstraction is
the result of a process rather than being a state, and the practical advantage to
make abstraction operational.

4 Model-Based Diagnosis

In this section some basic notions of the Model-Based Diagnosis approach are
provided for the sake of self-consistency. As typical in MBD, a system model is
defined in terms of the system components and their connections.

Definition 2. A System Description (SD) is a triple (COMPS, TOP, DT)
where:

- COMPS is the set of components. For each component c a set of predicates
BMi(c) can be used to state that c is in behavioral mode BMi (1 ≤ i ≤ mc),
where mc is the number of behaviors of component c (there must be at least

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

320 L. Saitta, P. Torasso, and G. Torta

a predicate OK for denoting the nominal behavior and possibly one or more
predicates denoting faulty behaviors). The ports and exogenous commands of
each component are also defined, through suitable ground atoms.

- TOP is a set of ground atoms defining the connections between components
ports (i.e. the topology of the system). The topology partitions the components
ports into Pint (internal ports that connect components with each other) and
Pext (external ports that connect components with the external environment)

- DT (Domain Theory) is a set of logical formulas representing the relation
between the behavioral modes of components and the values of their ports and
exogenous commands.

The above characterization of system description is able to capture a wide va-
riety of static models, and in particular it does not require that the model is
deterministic.

A status S of the system is a set of ground atoms s.t. for each c ∈ COMPS ,
S contains exactly one element of the form BMi(c).

From the definition above it is easy to derive the more general notion of sub-
system, intended as a subset of components with their connections. In particular,
a subsystem Σ involving subset COMPSΣ ⊆ COMPS will have an associated
internal topology TOPΣ , a Domain Theory DTΣ, a set of ports and a set of
exogenous commands. In particular, the set of external ports PΣ,ext contains all
the ports of COMPSΣ ’s components that are connected with the external en-
vironment or with components that don’t belong to Σ, while the set of internal
ports PΣ,int contains the other ports of COMPSΣ components.

A status SΣ of subsystem Σ is a set of ground atoms s.t., for each c∈COMPSΣ ,
SΣ contains exactly one element of the form BMi(c).

We are now ready to formalize the notion of Diagnostic Problem and of
Diagnosis.

Definition 3. A Diagnostic Problem is a triple DP = (SD, X , O) where:
- SD is a System Description
- X is a set of ground atoms denoting the values of all the external commands
- O is a set of ground atoms expressing measurements on a subset PO of the
components ports

Definition 4. Given a diagnostic problem DP, a (consistency-based) diagnosis
for DP is a status D of the system s.t.:

DT ∪ X ∪ O ∪ D �	 ⊥

The above definition corresponds to the classical characterization of consistency
based diagnosis, requiring that the assignment of a behavioral mode to each
component c ∈ COMPS is logically consistent with X and O under constraints
imposed by DT.

The observability degree of the system is determined by the subset PO of
components ports that are actually observed. It is worth noting that, even though
perfect observability does not guarantee that a unique diagnosis can be found,
in general the lower is the observability, the larger the number of diagnoses.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 321

The following definition introduces a notion of indiscriminability among states
of a subsystem where the external ports of the subsystem are considered to be
observable while the measurements on the internal ports of the subsystem, if
any, are ignored.

Definition 5. Let Σ be a subsystem and XΣ be a set of ground atoms denoting
the values of the external commands of Σ. We say that two states SΣ, S′Σ of Σ
are XΣ-indiscriminable iff the following holds:

DTΣ ∪ XΣ ∪ SΣ ∪ PΣ 	 ⊥ ⇔ DTΣ ∪ XΣ ∪ S′Σ ∪ PΣ 	 ⊥
where PΣ is any set of ground atoms expressing measurements on the external
ports PΣ,ext of Σ.

According to this definition, two states SΣ, S′Σ of Σ are indiscriminable iff given
any set of values measured on the external ports of the subsystem, SΣ and S′Σ
are either both consistent or inconsistent with such measurements (under the
constraints imposed by DTΣ and XΣ).

5 The KRA Model Applied to MBD

In this section we will show how the KRA model can be applied to MBD,
by using the running example introduced before. In particular, in this section
we show how to capture the different entities needed for modeling the domain
at the various representation levels. In this section we will refer, for the sake
of exemplification, to the fragment of hydraulic system described in Figure 2,
namely a pipe connected to a valve.

Let Rg = (Pg, Dg, Lg, Tg) be the ground representation framework. The
ground perception Pg = (OBJg,ATTg,FUNCg,RELg,OBSg) can be speci-
fied as follows:
– OBJg = COMPg ∪ CTRDEV ∪ PORT ∪ where COMPg = PIPE ∪

VALVE
– ATTg = { ObjTypeg : OBJg → {comp, pipe, valve, ctrdev, port, ...},

Direction : PORT → {in, out},
Observable : PORT → {yes, no},
MeasureType : PORT → {pressure, flow}}

– FUNCg = { Bp : PIPE → {ok, pc, br, cl},
Bv : VALVE → {ok, so, sc},
Command : CTRDEV → {open, close},
ΔF lowV alue : PORT → {+, 0, −},
ΔPressureV alue : PORT → {+, 0, −}}

– RELg = { port–of ⊆ PORT × COMPg,
connected ⊆ PORT × PORT,
controls ⊆ CTRDEV × COMPg}

The set of objects is the set of possible system components, which in-
cludes pipes (PIPE), valves (VALVE), control devices (CTRDEV) and ports
(PORT)1. The set ATTg includes the type of the objects ObjTypeg, the
1 COMPg includes also pumps (PUMP), splits (SPLIT) and joins (JOIN) if the

whole hydraulic system is considered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 L. Saitta, P. Torasso, and G. Torta

Direction of ports, whether a port is Observable, and the type of sensors pos-
sibly attached to the port, namely MeasureType. For each attribute A, ΛA

denotes its range/set of values.
FUNCg includes the behavioral modes of pipes (Bp) and valves (Bv), the

function that opens/closes the valves (Command) and the qualitative measure-
ments on ports (ΔFlowV alue and ΔPressureV alue).

Finally, RELg includes three relations, namely, port-of (a port is attached
to a component), connected (two ports of different components are connected),
and controls (a device control is associated to a component).

The set OBSg contains the actual objects and their topology, and the mea-
surements provided by the sensors. Considering the fragment in Figure 2, we
obtain: OBSg = {(P1, V 1, s1, u1, v1, u2, ...), (ObjType(P1) = pipe,ObjType(u1) =

port, ...), (Direction(u1) = in, Direction(v1) = in, ...), (Observable(u1) =

yes, ...), (MeasureType(u1) = flow, ...), Command(s1) = open,

(ΔFlowV alue(u1) = +, ΔPressureV alue(v1) = +, ...),

(port-of(u1, P1), ...), (connected(u2, u
′
1), ...), controls(s1, V 1)} All values

provided by the perception are memorized in the database Dg, which contains
the tables:

- TableObj = (obj, objtype, direct, obser, measuretype), which describes objects
of the actual system and their attributes,

- TablePortOf = (port, comp), which states to what component a given port is
attached to,

- TableConnected= (port, port), which describes what ports are connected with
each other, and

- TableControls = (device, comp), which describes on what component a control
devices acts upon.

In the table TableObj some of the entries can be set to N/A (not applicable),
as not all attributes are meaningful for all objects. For the sake of space, only a
few rows of the table TableObj and the table TableConnected are provided as
exemplification.

TableObj

obj objtype direct obser measuretype

P1 pipe N/A N/A N/A
V 1 valve N/A N/A N/A
u1 port in yes flow
v′
2 port out yes pressure

...

TableConnected

port port

u2 u′
1

v2 v′
1

According to the usual approach in MBD, a logical language Lg is adopted;
in particular, Lg = (P,F,C), where P is the set of predicates:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 323

P = {comp(x), ctrdev(x), port(x), observable(x), in(x), out(x), flow(x),
pressure(x), port-of(x, y), connected(x, y), controls(x, y), ok(x), so(x), ...,
pipe(x, u1, u2, v1, v2), valve(x, s, u1, u2, v1, v2)},

F is the set of functions:

F = {Bp, Bv, Command, ΔFlowV alue, ΔPressureV alue},

and C is the set of constants:

C = {P1, V 1, ...} ∪ ΛBp ∪ . . . ∪ {open, close, +, −, 0}.

Some of the predicates occurring in P have been introduced for describ-
ing the perception, but some others are suggested by the theory (for instance,
valve and pipe), as it will be clarified later on. In an analogous way, the data-
base also contains tables that provide the semantics of predicates in the lan-
guage and of formulas in the theory. For instance, two tables TableValve =
(valve, ctrdev, in flow port, out flow port, in press port, out press port) and
TablePipe = (pipe, in flow port, out flow port, in press port, out press port)
are added to Dg in correspondence to the predicates valve and pipe.

In our example, the theory contains three types of knowledge: an algebra over
the qualitative measurement values {+, 0, −}, a description of the components,
and a set of rules specifying the components behaviors. As an example of the
first type of knowledge, the semantics of the qualitative sum ⊕ is given:

+⊕+ = +, +⊕ 0 = +, +⊕− = {+, 0,−} 0⊕ 0 = 0, 0⊕− = −, −⊕− = −
The second type of knowledge contains, for instance, the following structural
description relating a valve or a pipe to their ports and control devices:

valve(V, s, u1, u2, v1, v2) ⇔
comp(V)∧port(u1)∧port-of(u1, V)∧in(u1)∧flow(u1)∧port(u2)∧port-of(u2, V)∧
out(u2)∧flow(u2)∧port(v1)∧port-of(v1, V)∧in(v1)∧pressure(v1)∧port(v2)∧port-
of(v2, V) ∧ out(v2) ∧ pressure(u2) ∧ ctrdev(s) ∧ controls(s, V)

pipe(P, u1, u2, v1, v2) ⇔
comp(P)∧port(u1)∧port-of(u1, P)∧in(u1)∧flow(u1)∧port(u2)∧port-of(u2, P)∧
out(u2)∧flow(u2)∧port(v1)∧port-of(v1, P)∧in(v1)∧pressure(v1)∧port(v2)∧port-
of(v2, P) ∧ out(v2) ∧ pressure(u2)

Also the behavioral modes described with equations in Figure 3 can be rewritten
in logical terms in the theory. For instance:

pipe(P, u1, u2, v1, v2) ∧ ok(P) → (ΔFlowV alue(u1) = ΔFlowV alue(u2)) ∧
(ΔPressureV alue(v1) = ΔPressureV alue(v2))

6 Modelling Abstract Diagnosis with KRA

In this section we will describe how the KRA model can be used to formalize
an abstraction operation consisting of aggregating pipe P1 and valve V 1 (see
Figures 1 and 2), obtaining thus an abstract component PV 1. To this aim, an
operator ωser is defined at the perception level:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 L. Saitta, P. Torasso, and G. Torta

ωser : PIPE × VALVE → SPV

where the new component type SPV denotes a serial connection of a pipe and
valve.

Notice that the above operator applies to components connected in series;
for components connected in parallel, a different operator is to be defined. The
operator ωser(P1, V 1) generates an abstract representation of the fragment of
Figure 2 (also reported in the same figure). In the abstraction process the ports
connecting P1 and V 1 disappear, whereas the others remain accessible; hiding
these ports may imply a reduction in observability, and has the potential of
increasing the indiscriminability among diagnoses of the subsystem involving
P1, V 1. We will go back to this issue at the end of this section.

The abstract perception Pa is now the following one:

– OBJa = COMPa ∪ CTRDEV ∪ PORT ∪ where COMPa = PIPE ∪
VALVE ∪ SPV

– ATTa = ATTg − {ObjTypeg} ∪ {ObjTypea : COMPa → ΛObjTypeg ∪ {spv}}
– FUNCa = FUNCg ∪ {BSPV : SPV → CSPV }
– RELa = { port–of ⊆ PORT × COMPa,

connected ⊆ PORT × PORT,
controls ⊆ CTRDEV × COMPa}

Notice that in the abstract world the object types PIPE and VALVE are not
deleted, because, in the abstract system, non aggregated pipes and valves still
appear. Only, the new type SPV is added. The set of observations becomes
then:

OBSa = {(PV 1, s1, u1, v1, u
′
2, v

′
2, ...), (ObjType(PV 1) = spv, ObjType(u1) =

port, ...), (Direction(u1) = in, Direction(v1) = in, ...), (Observable(u1) =

yes, ...), (MeasureType(u1) = flow, ...), Command(s1) = open,

(ΔFlowV alue(u1) = +, ΔPressureV alue(v1) = +, ...),

(port-of(u1, PV 1), ...), controls(s1, PV 1)} Starting from the definition
of the aggregation operator at the perception level, the corresponding δser(Dg)
generates Da from the tables in Dg, by performing the following operations:

– Any row of TableObjg in which either P1 or V 1 appears is removed, and a
row with the object PV 1 is added, generating thus TableObja.

– Any row in any table of Dg, in which either P1 or V 1 appears, is deleted
using relational algebra operators, as well as the ports that connect P1 with
V 1 (these are found in TablePortOfg). External ports of P1 and V 1 are
attached to PV 1.

– Control devices acting either on P1 or on V 1 shall act upon PV 1.

All the above operations can be formalized and executed automatically through
application of relational algebra operators to Dg.

At the language level, as no object type disappears, there are no changes,
except that a new predicate SPV and a new constant pv1 are added. Also new
predicates corresponding to the behavioral modes of an abstract component of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 325

type PV need to be added; they are derived as a result of the abstraction at the
theory level (see below). More precisely, in La = (Pa,Fa,Ca) we have: Pa =
Pg ∪ {spv(x),oam1(x), ...}, Fa = Fg ∪ {Bspv}, and Ca = Cs ∪ {PV 1} ∪ ΛBspv .

At the theory level, formulas describing the structure and behavior of SPV
components must be synthesized and added to the abstract theory Ta. In par-
ticular:
spv(PV, s, u1, v1, u

′
2, v
′
2) ⇔ valve(V, s, u′1, u

′
2, v
′
1, v
′
2) ∧ pipe(P, u1, u2, v1, v2)∧

connected(u2, u
′
1) ∧ connected(v2, v

′
1) ∧ crtdev(s, PV) ∧ port-of(u1, PV)∧

port-of(v1, PV) ∧ port-of(u′2, PV) ∧ port-of(v′2, PV)
Once we have defined the structure of the abstract component SPV, we need

to compute its behavioural modes Bspv starting from Bp and Bv. This com-
putation can be done automatically, by combining the behaviors of PIPE and
VALVE and collecting the combinations that results in the same abstract pat-
terns, which are exactly the indiscriminable states (according to Definition 5) of
a subsystem composed by a pipe and a valve connected in series. To each one
of these combinations a new name (denoting a behavior of the abstract compo-
nent) is assigned, and, correspondingly, a new predicate is added to Pa in La.
For SPV, we obtain:

Oam1 ↔ {Bp(P1) = ok ,Bv (V1) = ok}, {Bp(P1) = ok ,Bv (V1) = so}
Oam2 ↔ {Bp(P1) = pc, Bv(V1) = ok}, {Bp(P1) = pc, Bv(V1) = so}
Oam3 ↔ {Bp(P1) = br , Bv(V1) = ok}, {Bp(P1) = br ,Bv (V1) = so},

{Bp(P1) = br , Bv(V1) = sc}
Oam4 ↔ {Bp(P1) = ok ,Bv (V1) = sc}, {Bp(P1) = pc, Bv(V1) = sc},

{Bp(P1) = cl , ok(V1)}, {Bp(P1) = cl ,Bv (V1) = so},

{Bp(P1) = cl ,Bv(V1) = sc}

Starting from a pipe and a valve serially connected, in principle the abstract
component could have 12 different behavioral modes. Actually, a large number
of behavioral assignments to the components P1 and V 1 collapse into the same
abstract mode of the abstract component PV 1; this is a strong indication that
the abstraction is not only possible but really useful.

Providing the system with only the definition of ωser, the KRA models al-
lows the needed transformations to be done automatically at all levels, both
concerning the structure and concerning the behaviors.

The application of ωser as defined above may hide some measurements on the
internal ports of the pipe-valve subsystems to which it is applied; in such cases
it can be shown that, by performing diagnosis with the abstract model, some
spurious diagnoses may be generated, i.e. diagnoses that would have been ruled
out by reasoning at the ground level.

Although space prevents us from giving details here, it turns out that adding
a simple constraint on ωser guarantees that no loss of discrimination power can
happen when performing diagnostic reasoning at the abstract level; in particular,
it is sufficient to require that ωser is applicable only when none of the internal
ports of the pipe-valve subsystem is observable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 L. Saitta, P. Torasso, and G. Torta

s1 = open
Oam1(pv1) Δfout = Δfin ; Δrin = Δrout

Oam2(pv1) Δfout = Δfin ; Δrin = Δrout ⊕+
Oam3(pv1) Δfout = − ; Δrin = −
Oam4(pv1) Δfout = Δfin = − ; Δrin = +

Fig. 5. Models of Abstract Component pv1 when s1 is set to open

7 A Test of the Approach

In this section we will briefly describe how the approach based on KRA is able
to perform a number of different abstractions starting from the ground model
of the hydraulic system introduced in Figure 1. As we have seen in the previous
section, the application of the aggregation operator ωser to P1 and V 1 produces
an abstract component PV 1 of type SPV with 4 behavioral modes when the
command s1 is set to open, (see Figure 5). The resulting abstract hydraulic
system is reported in Figure 4.

By aggregating the abstract component PV 1 with P2, we get a new abstract
component PV P1, characterized by only 5 behavioral modes (again when the
command s1 is set to open). In a similar way, by aggregating P3 with V 2,
and, then, the resulting abstract component PV 2 with P4, we get an abstract
component PV P2, again with 5 behavioral modes when the command s2 is set
to close. The abstract hydraulic system resulting from these abstraction steps
is depicted in the upper portion of Figure 6. The final abstraction step involves
the aggregation of the SPLIT , the JOIN and the abstract components PV P1
and PV P2 through the aggregation operator ωpar which aggregates components
connected in parallel. The resulting abstract component SJ1 is characterized by
only 9 behavioral modes (reported in Figure 7) when s1 is set to open and s2
is set to close, just a small fraction of the potential 48*48 different behavioral

PUMP1

ΔrjoinΔs3 Δrsplit

Δfjoin

P5 P6

s1

Δfsplit
s2

PUMP1

PVP1 ΔrjoinΔs3 Δrsplit

Δfjoin

P5 P6

s1

Δfsplit

SPLIT
JOIN

s2

PVP2

SJ1

Fig. 6. The Hydraulic System after the application of aggregation operators in series
(upper part) and the application of ωpar

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formalizing the Abstraction Process in Model-Based Diagnosis 327

am1(SJ1) Δfout = Δfin ; Δrin = Δrout

am2(SJ1) Δfout = Δfin ; Δrin = Δrout ⊕+
am3(SJ1) Δfout = − ; Δrin = −
am4(SJ1) Δfout = Δfin = − ; Δrin = +
am5(SJ1) Δfout = −
am6(SJ1) Δrin = Δrout = −
am7(SJ1) Δfout = Δfin ; Δrin = Δrout = +
am8(SJ1) Δrin = Δrout

am9(SJ1) Δfout = Δfin ; Δrin = +

Fig. 7. Model of the Abstract Component SJ1

modes that can be obtained by considering the cross product of the behavioral
modes of the components involved in the abstraction.

Note that in this example we have applied ωser (and ωpar) only to subsystems
whose internal ports where non-observable. In this way we adhere to the con-
straints discussed at the end of the previous section and therefore we can safely
use the abstract model for diagnostic reasoning without any risk of finding ad-
ditional (spurious) diagnoses w.r.t. the ones we would find by reasoning at the
ground level.

8 Conclusions

In this paper we have shown how the process of Model-Based Diagnosis can
profit from a formalization of the abstraction process. In recent years, new ap-
proaches have been proposed in MBD to exploit the degree of observability for
defining useful abstractions (e.g., [10]), while other works have started to investi-
gate the problem of automatic synthesis of abstract models (e.g., [9], [11]). While
these approaches have developed some interesting solutions to the problem of
abstracting models for MBD, they have failed to investigate the relations be-
tween proposed methods and general theories of abstraction. The present work
represents a step in the direction of filling this gap. In particular, the present
paper describes how the aggregation of components in MBD can be captured
within the KRA model, which has been originally introduced for modelling ab-
straction in concept representation tasks. This shows that the KRA model is
general and flexible enough for taking into consideration the requirements and
the characteristics of the diagnostic task.

On the other hand the KRA model offers a number of advantages in capturing
the process of building abstract models for MBD. In particular, the possibility
of defining aggregation operators at the perception level allows the automatic
synthesis of abstract models and, by taking into account the observability of the
system to be diagnosed, it is possible to preserve the diagnostic discrimination
power when moving from the ground to the abstract model. This is an impor-
tant step since it allows the behaviour of new complex abstract components to
be automatically learned, as sketched in the example of the hydraulic system. In
addition to the abstraction at the perception level, the model addresses the prob-
lem of automatically extending the representation changes to all levels needed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

328 L. Saitta, P. Torasso, and G. Torta

to perform the diagnostic tasks, namely the theory, the language and the data-
bases. Most previous works on modelling abstraction in MBD have focused on
either the language or the semantic levels, seldom considering their interactions
and never their compatibility with the observations from the external world.

References

1. Holte, R., Mkadmi, T., Zimmer, R., MacDonald, A.: Speeding up problem-solving
by abstraction: A graph-oriented approach. Art. Intelligence 85, 321–361 (1996)

2. Knoblock, C., Tenenberg, J., Qiang, Y.: A spectrum of abstraction hierarchies for
planning. In: Proc. AAAI WS on AGAA, pp. 24–35 (1990)

3. Mozetič, I.: Hierarchical model-based diagnosis. Int. Journal of Man-Machine Stud-
ies 35(3), 329–362 (1991)

4. Subramanian, D.: Automation of abstractions and approximations: Some chal-
lenges. In: Proc. AAAI WS on AGAA, pp. 76–77 (1990)

5. Giunchiglia, F., Walsh, T.: A theory of abstraction. Art. Intell. 57(2-3), 323–389
(1992)

6. Nayak, P., Levy, A.: A semantic theory of abstraction. In: Proc. IJCAI, pp. 196–202
(1995)

7. Korf, R.: Toward a model of representation changes. Art. Intell. 14, 41–78 (1980)
8. Saitta, L., Zucker, J.: Semantic abstraction for concept representation and learning.

In: Proc. SARA, pp. 103–120 (1998)
9. Sachenbacher, M., Struss, P.: Task-dependent qualitative domain abstraction. Art.

Intell. 162(1-2), 121–143 (2005)
10. Chittaro, L., Ranon, R.: Hierarchical model-based diagnosis based on structural

abstraction. Art. Intell. 155(1-2), 147–182 (2004)
11. Torta, G., Torasso, P.: Automatic abstraction in component-based diagnosis driven

by system observability. In: Proc. IJCAI, pp. 394–400 (2003)
12. Struss, P., Malik, A., Sachenbacher, M.: Qualitative modeling is the key to auto-

mated diagnosis. In: Proc. IFAC96 (1996)
13. Saitta, L., Zucker, J.D.: Abstraction and complexity measures. In: Proc. SARA-

2007 (2007)
14. Plaisted, D.: Theorem proving with abstraction. Art. Intelligence 16, 47–108 (1981)
15. Tenenberg, J.: Preserving consistency across abstraction mappings. In: Proc. IJCAI

1987, pp. 1011–1014 (1987)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited

Peter Schachte� and Harald Søndergaard

�NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Vic. 3010, Australia
{schachte,harald}@csse.unimelb.edu.au

Abstract. Most work to date on Boolean approximation assumes that
Boolean functions are represented by formulas in conjunctive normal
form. That assumption is appropriate for the classical applications of
Boolean approximation but potentially limits wider use. We revisit, in
a lattice-theoretic setting, so-called envelopes and cores in propositional
logic, identifying them with upper and lower closure operators, respec-
tively. This leads to recursive representation-independent characterisa-
tions of Boolean approximation for a large class of classes. We show that
Boolean development can be applied in a representation-independent set-
ting to develop approximation algorithms for a broad range of Boolean
classes, including Horn and Krom functions.

1 Introduction

Since the seminal work by Selman and Kautz [22] there has been considerable
interest in Horn approximations of propositional formulas. The original moti-
vation for Horn approximation was the fact that it could allow faster query
answering with propositional knowledge bases. But concepts of Boolean func-
tion “approximation” and “abstraction” are found in other fields of computer
science, including computational learning, symbolic problem-solving, property
testing and program analysis. A typical task in any of these may be to find the
best, say, monomial, monotone, or Horn theory supporting a given set of data,
or “covering” a given theory.

Selman and Kautz’s idea of querying (and performing deductions from) up-
per and lower Horn approximations of a knowledge-base has subsequently been
adapted and extended in various directions, and additional uses of Horn ap-
proximation have been suggested. Most notable is the recent contribution by
del Val [8]. Del Val shows that Kautz and Selman’s Horn envelope algorithm
carries over to all Boolean function classes closed under subsumption and he
proposes an improved algorithm that is applicable if, additionally, the comple-
ment of a class is closed under resolution. Moreover, del Val discusses the case
of first-order predicate logic, showing how the original concepts can be extended
in this direction too. Note that the concepts that are central to del Val [8], such
as closure under subsumption and resolution, reflect the underlying assumption
of clausal-form representation.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 329–343, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 P. Schachte and H. Søndergaard

Zanuttini [24,25] discusses the use of other classes of Boolean functions for
approximation, in particular affine functions, and also the use of approximations
in the setting of abduction. It is argued that affine approximations have certain
advantages over Horn approximations, most notably the fact that they do not
blow out in size. (Note, however, that the affine functions are very unevenly
distributed across the lattice of Boolean functions, having only sets of models
whose cardinality is 2n for some n. Hence with affine approximation, roughly
speaking the “weakest half” of the Boolean functions are all approximated to
the vacuous function “true”.) Zanuttini [24] proves that the affine envelope of a
relation R ∈ {0, 1}n can be computed in time O(|R|n3 + n4). He recalls a result
from Dechter and Pearl [7] that the Krom envelope can be computed in time
O(|R|n2).

There have been proposals for representations other than clausal form, such as
characteristic models [13]. Horiyama and Ibaraki [11] suggest the use of ROBDDs
for knowledge bases and give algorithms to recognise unate and Horn functions
represented as ROBDDs. Schachte and Søndergaard [20] give algorithms for the
approximation of Boolean functions represented as ROBDDs, covering several
classes, including monotone and Horn functions. Khardon [15] and Horiyama and
Ibaraki [12] are concerned with the translation between different representations
and establish many interesting results.

A large body of work (see for example Cadoli and Scarcello [3]) is primar-
ily interested in the problem of finding maximal lower Horn approximations.
While the results in this paper also apply to lower approximations, we are only
interested in the case where approximations are unique, and so we make no
contribution to the particular discussion about lower Horn bounds.

A large variety of special classes of Boolean functions, including Horn, are used
in program analysis, to automatically reason about runtime properties of pro-
grams. In all kinds of static program analysis, approximation plays a pivotal role.
The runtime properties of interest are almost always undecidable, so reasoning
is necessarily approximate, and abstraction is therefore integral to the definition
of a program analysis. Boolean approximation, in the sense of calculating the
strongest logical consequence, in some class, of a given Boolean function, is used
in at least two different ways. One is to accelerate convergence of the analysis
via so-called widening [6]. The other is where approximation finds a role in basic
operations on “runtime state descriptions”, as it happens in set-sharing analysis
for logic programs. In one view [4] this analysis uses positive Boolean functions
(those that evaluate to true when all arguments are true) to express how the
instantiation of one variable may affect other variables. For example, the for-
mula x ↔ y would express the constraint that any goal that further instantiated
program variable x would necessarily further instantiate y.

The ubiquity of applications of propositional logic, together with the fact that
concepts of Boolean function approximation are found in many different fields
of computer science, suggests that it may be fruitful to revisit the approxima-
tion problem outside the context of clausal-form representations. In this paper
we consider representation-independent aspects of approximation, as well as al-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 331

gorithms for Boolean approximation that can use a variety of data structures
to represent Boolean functions. We view the approximation problem under a
lattice-theoretic lens and suggest a general approach to finding approximation
algorithms for an important class of classes.

We assume the reader is familiar with propositional logic and elementary lat-
tice and order theory. Section 2 gives relevant definitions and introduces some
Boolean function classes of interest. In Section 3 we discuss the view of Boolean
classes as closure operators more formally. Section 4 introduces a class of classes,
for which a general approach to finding approximations is possible, and we ex-
plain the approach. In Section 5 we instantiate the general characterisation to
different classes, including Horn, Krom, monotone and antitone functions. Sec-
tion 6 concludes.

2 Preliminaries: Boolean Functions

Let B = {0, 1} and let V be a countably enumerable set of variables. A valuation
μ : V → B is an assignment of truth values to the variables in V . Let I = V → B
denote the set of V-valuations.

A Boolean function over V is a function ϕ : I → B. We let B denote the
set of all Boolean functions over V . The ordering on B is the usual: x ≤ y iff
x = 0 ∨ y = 1. B is ordered pointwise, so that the ordering relation corresponds
exactly to classical entailment, |=. It is convenient to overload the symbols for
truth and falsehood. Thus we let 1 denote the largest element of B (that is,
λμ.1) as well as of B. Similarly 0 also denotes the smallest element of B (that
is, λμ.0) as well as of B.

A valuation μ is a model for ϕ, denoted μ |= ϕ, if ϕ(μ) = 1. We use the
notation μ[x �→ i], where x ∈ V and i ∈ B, to denote the valuation μ updated to
map x to i, that is,

μ[x �→ i](v) =
{

i if v = x
μ(v) otherwise

Also, to facilitate a definition (in Section 4) of “unbiased” Boolean function
classes, that is, classes defined without reference to any specific variables, we
define the concept of “swapping” variables in a valuation:

μ[x�y](v) =

⎧⎨
⎩

μ(y) if v = x
μ(x) if v = y
μ(v) otherwise

We lift this to apply to Boolean functions by defining ϕ[x�y](μ) = ϕ(μ[x�y]).
That is, ϕ[x�y] simultaneously replaces all occurrences of x in ϕ with y and
occurrences of y with x.

For ϕ ∈ B we use ϕ to denote ϕ’s negation. Let V = {x | x ∈ V} be the set
of negated variables. A literal is a member of the set V ∪ V, that is, a variable
or a negated variable. We use ϕi

x to stand for ϕ with x instantiated to i, that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

332 P. Schachte and H. Søndergaard

is, ϕi
x(μ) = ϕ(μ[x �→ i]). We say that ϕ is independent of literal x (and also of

literal x) when ϕ0
x = ϕ1

x = ϕ, and we write this ϕ � x. We say that ϕ depends
on x iff ϕ is not independent of x.

The dual of a Boolean function ϕ is the function that is obtained by inter-
changing the roles of the truth values 0 and 1. A simple way of turning a formula
for ϕ into a formula for ϕ’s dual is to change the sign of every literal in ϕ and
negate the whole resulting formula. For example, the dual of x∧(y∨z) is x∨(y∧z)
— De Morgan’s laws can be regarded as duality laws.

Define ϕ̃ as the dual of ϕ. Following Halmos [10], we call ϕ̃ the contra-dual of
ϕ. Clearly, given a formula for ϕ, a formula for ϕ̃ is obtained by changing the sign
of each literal in ϕ. As an example, if ϕ = (x ↔ y) → z then ϕ̃ = (x ↔ y) → z.
Given a truth table for a Boolean function, the truth table for its contra-dual
is obtained by turning the result column upside down. The mapping ϕ �→ ϕ̃ is
an involution, and monotone: ψ |= ϕ iff ψ̃ |= ϕ̃. For any class Δ ⊆ B, we let Δ̃
denote the class {ϕ̃ | ϕ ∈ Δ}.

Function classes Δ central to this paper include:

H: A Horn function is one whose set of models is closed under pointwise con-
junction. That is, H (and only H) functions ϕ satisfy the requirement that
for all valuations μ and μ′, if μ |= ϕ and μ′ |= ϕ, then μ∧μ′ |= ϕ. H is the set
of functions that can be written in conjunctive normal form

∧
(�1 ∨ · · · ∨ �n),

n ≥ 0, with at most one positive literal � per clause.
H̃: A contra-dual Horn function ϕ satisfies the requirement that for all valua-

tions μ and μ′, if μ |= ϕ and μ′ |= ϕ, then μ ∨ μ′ |= ϕ. A H̃ function can be
written in CNF with each clause containing at most one negative literal.

M: A monotone function ϕ satisfies the requirement that for all valuations μ and
μ′, μ∨μ′ |= ϕ when μ |= ϕ. Here ∨ denotes pointwise disjunction. Monotone
functions are sometimes referred to as isotone. Syntactically the class is
most conveniently described as the functions generated by {∧, ∨, 0, 1}, see
for example Rudeanu’s [19] Theorem 11.3.

M̃: An antitone function ϕ has the property that, for all valuations μ and μ′,
if μ |= ϕ then μ ∧ μ′ |= ϕ.

K: A Krom function is one whose set of models is closed under pointwise ap-
plication of the majority-of-3 function λx, y, z.(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). It
is generated by formulas in CNF with a most two literals per clause, and its
members are also referred to as 2-CNF or bijunctive.

L: This is the class 1-CNF consisting of functions that can be written as con-
junctions of single-literal (or empty) clauses.

S: This is the intersection of H and H̃, that is, L extended with simple depen-
dencies of the form x → y.

V: This is L restricted to positive literals.
Ṽ: This is L restricted to negative literals.
P: A positive function is one that is satisfied by the unit valuation λv.1.
D: A definite function is one that is both positive and Horn.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 333

C: This class consists of the constant functions 0 and 1.
1: This is the class consisting of the constant function 1 only.

1

C

Ṽ V

L
M̃

S
M

H K H̃

B

P

D

Fig. 1. Boolean function classes

All of these classes, apart from P, D,
and 1, contain 0. It is immediate that M ⊆
H̃ and M̃ ⊆ H. Figure 1 shows the classes
as a Hasse diagram, ordered by the subset
ordering.

These classes find widespread use in
computer science and several play central
roles in the theory of propositional expres-
siveness, in computational complexity the-
ory, or both. M and P are the classes “A:a”
and “β” of Post’s functional completeness
result [18] (made more accessible by Pel-
letier and Martin [17]), Post’s remaining
three classes being the dual of P, the al-
ternating functions, and the self-dual func-
tions. Schaefer’s celebrated SAT dichotomy
result [21] makes use of six classes, five of
which are: H and H̃ (called “weakly neg-
ative” and “weakly positive” respectively),
P and its contra-dual (“1-valid” and “0-
valid”), and K (or “bijunctive”). The sixth
is the class of affine functions.

3 Approximation as Closure Operators

We are interested in the problem of approximating a Boolean function ϕ, in the
sense of finding, when it exists, the strongest function ψ from a given class Δ,
entailed by ϕ. This approximation is sometimes referred to as the “Δ envelope”
of ϕ [14]. We denote this Δ↑(ϕ). Also of interest, for some classes Δ, is the
weakest function ψ ∈ Δ which entails ϕ. Such a ψ is sometimes referred to as
the “Δ core” of ϕ, denoted Δ↓(ϕ).

What are the essential properties of an approximation operator ρ, whether it
produces envelopes or cores? A first natural requirement is that it is idempotent,
that is, ρ(ϕ) = ρ(ρ(ϕ)) for all ϕ ∈ B. In other words, ρ acts instantaneously
and is the identity function on the set of approximations ρ(B). A second natural
requirement is that it is monotone, that is, ϕ |= ϕ′ implies ρ(ϕ) |= ρ(ϕ′) for all
Boolean functions ϕ and ϕ′. In other words, ρ preserves entailment and thus
does not squander information. Together the two requirements say that ρ is a
retraction.

The only requirement remaining is the one that provides a direction for the
approximation. An upper approximation operator (yielding “envelopes”) is ex-
tensive, that is, ϕ |= ρ(ϕ) for all ϕ. A lower approximation operator (yielding

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

334 P. Schachte and H. Søndergaard

“cores”) is reductive, that is, ρ(ϕ) |= ϕ for all ϕ. An extensive retraction is known
as an upper closure operator, or uco, and a reductive retraction is a lower closure
operator, or lco. Retractions exists that are neither upper nor lower approxima-
tion operators, but they are not of interest here.

All these concepts are well known in lattice and order theory [1]. The definition
of approximation operators make sense for operators defined on lattices more
generally—B is just a special case.

3.1 Upper Closure Operators

General properties of closure operators [5,23] hold for B. If ρ : B → B is a uco
then ρ(B) is a (complete) lattice with least element ρ(0), greatest element 1,
greatest lower bound operation

∧
, and least upper bound operation λS.ρ(

∨
S).

It is a sublattice of L if and only if ρ is additive, that is, ρ(
∨

S) =
∨

ρ(S) for all
S ⊆ B. In any case,

ρ(
∧

S) |=
∧

ρ(S) = ρ(
∧

ρ(S)) (1)∨
ρ(S) |= ρ(

∨
S) = ρ(

∨
ρ(S)) (2)

It follows that ρ(B) always contains 1 and is closed under conjunction.1 Con-
versely, any Δ ⊆ B containing 1 and closed under conjunction uniquely deter-
mines a uco, defined by

Δ↑(ϕ) =
∧

{ψ | ψ ∈ Δ and ϕ |= ψ}

A family of ucos {∃v}v∈V ar is given by existential quantification on B: ∃x =
λϕ . ∃x.ϕ is a uco, as is easily verified.

Given two upper closure operators ρ and ρ′ on B, ρ ◦ ρ′ need not be an upper
closure operator. For example, with the uco ρ defined by

ρ(ϕ) =
{

x if ϕ |= x
1 otherwise

ρ ◦ ∃x is not idempotent, as ρ(∃x(0)) = x �= 1 = ∃x(ρ(x)). However, if ρ ◦ ρ′ =
ρ′ ◦ ρ then the composition is also an upper closure operator, and ρ(ρ′(B)) =
ρ′(ρ(B)) = ρ(B) ∩ ρ′(B) [9,16].

Proposition 1. Let Δ↑ be a uco on B. If ∃x ◦ Δ↑ = Δ↑ ◦ ∃x then Δ is closed
under ∃x.

Proof: Assume that ∃x ◦Δ↑ = Δ↑ ◦∃x. For ϕ ∈ Δ we have ∃x(ϕ) = ∃x(Δ↑(ϕ)) =
Δ↑(∃x(ϕ)). Hence ∃x(ϕ) is in Δ.
1 These consequences are also easy to show directly: Since 1 |= ρ(1), ρ(1) = 1. More-

over, by monotonicity, ρ(ϕ ∧ ϕ′) entails both ρ(ϕ) and ρ(ϕ′), and so ρ(ϕ ∧ ϕ′) |=
ρ(ϕ) ∧ ρ(ϕ′). If ϕ and ϕ′ are fixed points for ρ then the last statement reduces to
ρ(ϕ ∧ ϕ′) |= ϕ ∧ ϕ′. Since ϕ ∧ ϕ′ |= ρ(ϕ ∧ ϕ′), ϕ ∧ ϕ′ is also a fixed point. In other
words, if ϕ and ϕ′ are in ρ(B), so is ϕ ∧ ϕ′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 335

The converse does not hold. Take P, that class of Boolean functions satisfied by
the unit valuation λv. 1. As ∃x(ϕ) = ϕ0

x ∨ ϕ1
x, and ϕ1

x is in P whenever ϕ is, P
is closed under ∃x. However,

∃x(P↑(0)) = ∃x(
∧
v∈V

v) =
∧

v∈V\{x}
v �=

∧
v∈V

v = P↑(0) = P↑(∃x(0))

Also note that ∃x ◦ Δ↑ = Δ↑ ◦ ∃x does not imply closure under instantiation.
The uco induced by P ∪ {0} has the former property, but is not closed under
instantiation—for example, (y → x)0x = y.

3.2 Lower Closure Operators

We can develop analogous results for lower closure operators. We shall not do
that in detail, but note that a class of Boolean functions induced by an lco
contains 0 and is closed under disjunction. Conversely, any Δ ⊆ B containing 0
and closed under disjunction uniquely determines an lco

Δ↓(ϕ) =
∨

{ψ | ψ ∈ Δ and ψ |= ϕ}

A family of lcos is given by universal quantification, namely λϕ . ∀x.ϕ is an lco.

3.3 Boolean Development

The characterisations of envelopes that we develop in the next section have come
about by considering how closure operators can be applied to Boolean functions
expressed through Boolean development, that is, the principle2 that

ϕ = (x ∧ ϕ0
x) ∨ (x ∧ ϕ1

x) (3)

or, by duality,
ϕ = (x ∨ ϕ1

x) ∧ (x ∨ ϕ0
x) (4)

The latter form proves more useful in the context of upper closure operators.

4 Computing Approximations

The approximation techniques presented in this paper apply to a broad range
of Boolean classes. However, some restrictions must be imposed to permit the
approach to work.

4.1 Decomposable and Unbiased Classes

Definition 1. We say a set Δ ⊆ B is unbiased iff for all ψ ∈ Δ and variables
x, y ∈ V , ψ[x�y] ∈ Δ.

2 The principle, also known as Shannon expansion, goes back to Boole, albeit in the
equivalent form ϕ = (x ∧ ϕ0

x) + (x ∧ ϕ1
x) where ‘+’ denotes exclusive or.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 P. Schachte and H. Søndergaard

Thus an unbiased class does not treat any variable differently than any other.
An example of a class that is not unbiased is the class of functions that en-
tail y. However, all the usual Boolean classes are unbiased, and restricting our
attention to unbiased classes is not a significant limitation on the applicability
of our approach. “Unbiased” and “closed under existential quantification” are
independent concepts: neither entails the other or its negation.

Definition 2. We say a class Δ ⊆ B is decomposable iff for any ϕ, ψ ∈ B and
variable x ∈ V , if (x ∨ ϕ) ∧ (x ∨ ψ) ∈ Δ then x ∨ ϕ ∈ Δ and x ∨ ψ ∈ Δ.

Most well-known classes of Boolean functions are decomposable. For example, P,
H, M, and K are decomposable. Some classes, however, are not decomposable.
Section 2 mentioned the alternating and affine classes, and these fall outside the
scope of our method. To see that the alternating, and hence affine, classes are not
decomposable, note that (x ∨ y) ∧ (x ∨ y) is alternating, but neither conjunct is.

4.2 Quotient Classes

In the following definitions, we shall make use of certain classes, which we call
quotient classes, related to the class to which we want to approximate. We shall
see that, if we can approximate to a class’s quotient classes, we can approximate
to the class. Happily, a class’s quotient classes are generally easier to approximate
to than the class itself, as will be seen in Section 5.

Definition 3. For each class Δ ⊆ B we define the following quotient classes:

Δ∨ = {ψ | for all x ∈ V with ψ � x, (x ∨ ψ) ∈ Δ}

Δ
¬∨ = {ψ | for all x ∈ V with ψ � x, (x ∨ ψ) ∈ Δ}

Δ∧ = {ψ | for all x ∈ V with ψ � x, (x ∧ ψ) ∈ Δ}

Δ
¬∧ = {ψ | for all x ∈ V with ψ � x, (x ∧ ψ) ∈ Δ}

ΔC = Δ ∩ C

Note that ΔC is 0, 1, or C, according as 0, 1, or both are in C. The next results
shows that a quotient class is a closure operator when the original class is.

Proposition 2. For any Δ ⊆ B, if Δ is closed under conjunction and includes
1 , then the same is true of Δ∨, Δ

¬∨, and ΔC. Similarly, if 0 ∈ Δ and Δ is closed
under disjunction, then the same is true of Δ∧, Δ

¬∧, and ΔC.

Proof: Both claims trivially hold for ΔC, and 1 ∈ Δ∨, 1 ∈ Δ
¬∨, 0 ∈ Δ∧, and

0 ∈ Δ
¬∧ by construction.

We prove Δ∨ is closed under conjunction when Δ is; the proof for the other
classes is similar. Let Δ ⊆ B be any class closed under conjunction and ψ, ψ′ be
any members of Δ∨, and x ∈ V be any variable independent of ϕ and ψ. Then
x ∨ ψ and x ∨ ψ′ are in Δ, and so (x ∨ ψ) ∧ (x ∨ ψ′) = x ∨ (ψ ∧ ψ′) is in Δ. It
follows that ψ ∧ ψ′ ∈ Δ∨.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 337

4.3 The Approximation Scheme

Recall that for any Δ ⊆ B such that Δ is closed under conjunction, we can
define

Δ↑(ϕ) =
∧

{ψ | ψ ∈ Δ and ϕ |= ψ}

and for any Δ ⊆ B closed under disjunction, we can define

Δ↓(ϕ) =
∨

{ψ | ψ ∈ Δ and ψ |= ϕ}

Unfortunately, these definitions do not readily lend themselves to practical im-
plementation. However, if we restrict our attention to unbiased decomposable
classes, the following equivalent definitions, which are readily implemented, can
be used.

Definition 4. For Δ ⊆ B and ϕ ∈ B, we define:

U(ϕ) =
∧
x∈V

(
(Δ∨↑ (ϕ

0
x) ∨ x) ∧ (Δ

¬∨
↑ (ϕ

1
x) ∨ x)

)
∧ ΔC

↑ (ϕ)

L(ϕ) =
∨
x∈V

(
(Δ∧↓ (ϕ

0
x) ∧ x) ∨ (Δ

¬∧
↓ (ϕ

1
x) ∧ x)

)
∨ ΔC

↓ (ϕ)

Now we show that, for decomposable closure operators, these definitions indeed
specify the Δ envelope and core, respectively.

Theorem 1. For any decomposable class Δ ⊆ B such that 1 ∈ Δ and Δ is
closed under conjunction, Δ↑(ϕ) = U(ϕ), and for any decomposable class Δ ⊆ B
closed under disjunction and including 0, Δ↓(ϕ) = L(ϕ).

Proof: We prove only the first part; the second part is its dual. Assume decom-
posable class Δ ⊆ B is closed under conjunction.

Δ↑(ϕ) =
∧

{ζ | ζ ∈ Δ and ϕ |= ζ}

For every ζ except 0 , we can develop any variable. We handle 0 separately.

=
∧
v∈V

∧{
(v ∨ ψ)

∧ (v ∨ ψ′)

∣∣∣∣ (v ∨ ψ) ∧ (v ∨ ψ′) ∈ Δ, ψ, ψ′ � v
and ϕ |= (v ∨ ψ) ∧ (v ∨ ψ′)

}
∧ ΔC

↑ (ϕ)

Because Δ is decomposable, we can divide the class membership condition. We
can also divide the entailment condition, so we can divide the entire set compre-
hension into positive and negative halves.

=
∧
v∈V

(∧
{v ∨ ψ | v ∨ ψ ∈ Δ, ψ � v and ϕ |= v ∨ ψ}

∧
∧

{v ∨ ψ | v ∨ ψ ∈ Δ, ψ � v and ϕ |= v ∨ ψ}

)
∧ ΔC

↑ (ϕ)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

338 P. Schachte and H. Søndergaard

Δ is unbiased and ψ � v, so v ∨ ψ ∈ Δ iff ∀u.u ∨ ψ ∈ Δ, and similarly for v.
Also, ϕ |= v ∨ ψ exactly when v ∧ ϕ |= ψ.

=
∧
v∈V

(∧
{v ∨ ψ | ∀u.u ∨ ψ ∈ Δ, ψ � v and v ∧ ϕ |= ψ}

∧
∧

{v ∨ ψ | ∀u.u ∨ ψ ∈ Δ, ψ � v and v ∧ ϕ |= ψ}

)
∧ ΔC

↑ (ϕ)

Since the first set collects v ∨ ψ, cases of ψ making v false do not matter to
the result, and conversely for the second set. For these cases, we need consider
only consequences of ϕ0

v (ϕ1
v in the second set). We also observe that the class

membership constraint in each set exactly specifies a quotient class. Finally, we
factor out the common v∨ or v∨ from each set.

=
∧
v∈V

((
v ∨

∧
{ψ | ψ ∈ Δ∨ and ψ � v and ϕ0

v |= ψ}
)

∧
(
v ∨

∧
{ψ | ψ ∈ Δ

¬∨ and ψ � v and ϕ1
v |= ψ}

)
)

∧ ΔC
↑ (ϕ)

Each set exactly specifies a quotient upper closure operator.

=
∧
v∈V

(
(v ∨ Δ∨↑ (ϕ

0
v)) ∧ (v ∨ Δ

¬∨
↑ (ϕ

1
v))

)
∧ ΔC

↑ (ϕ)

= U(ϕ)

4.4 Closure Under Instantiation

The algorithms of del Val [8] apply only to classes closed under subsump-
tion. This concept presupposes a clausal representation; from a representation-
independent perspective, the equivalent concept is closure under instantiation.

Definition 5. We say a class Δ ⊆ B is closed under instantiation when for
every ψ ∈ Δ and v ∈ V , ψ0

v ∈ Δ and ψ1
v ∈ Δ.

While many important classes, such as H, M, K, and the affine functions are
closed under instantiation, some well-known and important classes are not. For
example, we can see that both P and D are not closed under instantiation by
observing that x → y is both positive and definite, but instantiating y to 0 leaves
x, which is neither positive nor definite.

The characterisations in Section 4.3 do not require closure under instantiation.
However, we note an interesting characteristic of classes that do happen to be
closed under instantiation.

Proposition 3. For any class Δ ⊆ B closed under instantiation, all the quotient
classes are subsets of Δ.

Proof: Firstly, ΔC ⊆ Δ by construction. To see that Δ∨ ⊆ Δ, consider some Δ
closed under instantiation, x ∈ V , and ψ ∈ B such that x ∨ ψ ∈ Δ and ψ � x;
we must show that ψ ∈ Δ. By closure under instantiation, (x ∨ ψ)0x ∈ Δ. But

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 339

(x ∨ ψ)0x = ψ0
x, and because ψ � x, ψ0

x = ψ. Thus ψ ∈ Δ. The argument for the
other quotient classes is similar.

5 Instantiating the Scheme

We can now use the representation-independent proposition from Section 4 to
express envelopes for a number of interesting classes. As is easily verified, H, H̃,
M, M̃, K, L, S, P, D, C, and 1 are all decomposable and unbiased, and all
contain 1 and are closed under conjunction.

5.1 Expressing the Envelopes

First we shall present the quotients of these classes, and then the characterisa-
tions of approximation that arise.

Proposition 4.

H∨ = M̃ H
¬∨ = H HC = C

H̃
∨

= H̃ H̃
¬∨

= M H̃
C

= C

M∨ = M M
¬∨ = 1 MC = C

M̃
∨

= 1 M̃
¬∨

= M̃ M̃
C

= C

K∨ = L K
¬∨ = L KC = C

L∨ = C L
¬∨ = C LC = C

S∨ = Ṽ S
¬∨ = V SC = C

V∨ = C V
¬∨ = 1 VC = C

Ṽ
∨

= 1 Ṽ
¬∨

= C Ṽ
C

= C

P∨ = B P
¬∨ = P PC = 1

D∨ = M̃ D
¬∨ = D DC = 1

Proof: All cases follow easily from the well-known syntactic characterisations of
the classes and the definitions of the quotient classes.

Now we are ready to show the instantiations of the general characterisation to
the individual classes. Note that where a quotient class is 1, it can be trivially
omitted, as it always returns 1 . Similarly, where a quotient class is B, it need
not be applied to its argument as it is the identity operator. Also note that
the conjunct C↑(ϕ) has no effect if ϕ is satisfiable, and for unsatisfiable ϕ, it
becomes 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

340 P. Schachte and H. Søndergaard

Corollary 1. Let ϕ be a Boolean function. Then

H↑(ϕ) =
∧
v∈V

((M̃↑(ϕ0
v) ∨ v) ∧ (H↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

H̃↑(ϕ) =
∧
v∈V

((H̃↑(ϕ0
v) ∨ v) ∧ (M↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

M↑(ϕ) =
∧
v∈V

((M↑(ϕ0
v) ∨ v) ∧ (1↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

M̃↑(ϕ) =
∧
v∈V

((1↑(ϕ0
v) ∨ v) ∧ (M̃↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

K↑(ϕ) =
∧
v∈V

((L↑(ϕ0
v) ∨ v) ∧ (L↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

L↑(ϕ) =
∧
v∈V

((C↑(ϕ0
v) ∨ v) ∧ (C↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

S↑(ϕ) =
∧
v∈V

((Ṽ↑(ϕ0
v) ∨ v) ∧ (V↑(ϕ1

v) ∨ v)) ∧ C↑(ϕ)

V↑(ϕ) =
∧
v∈V

(C↑(ϕ0
v) ∨ v) ∧ C↑(ϕ)

Ṽ↑(ϕ) =
∧
v∈V

(C↑(ϕ1
v) ∨ v) ∧ C↑(ϕ)

P↑(ϕ) =
∧
v∈V

((ϕ0
v ∨ v) ∧ (P↑(ϕ1

v) ∨ v))

D↑(ϕ) =
∧
v∈V

((M̃↑(ϕ0
v) ∨ v) ∧ (D↑(ϕ1

v) ∨ v))

Other instances exist, most notably we can generalise L (1-CNF) and K (2-CNF)

to k-CNF: (k + 1)-CNF∨ = (k + 1)-CNF
¬∨ = k-CNF, and (k + 1)-CNFC = C.

We can similarly extend these results to k-quasi-Horn.

5.2 Algorithmic Aspects

Corollary 1 characterises the envelopes for a number of interesting function
classes in a representation-independent manner. They do not always suggest
the most efficient way of calculating envelopes, which in general depends on
how Boolean functions are represented. We also note that there are cases where
an envelope cannot be provided in the absence of information about the “vari-
ables of interest”. For example, we cannot say what the D envelope of x is,
unless we know the set of variables of which x is supposed to be a function.
Using Church’s lambda notation helps; using it we can state for example that
D↑(λx, y.x) = x → y whereas D↑(λx, y, z.x) = x → (y ∧ z).

It is interesting to compare our characterisations, which were derived using
Boolean development, with recursive definitions used for ROBDDs (also resting

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 341

on Boolean development). We present below the algorithms for H and M̃—
algorithms for the other classes can be derived [20].

Recall that binary decision diagrams are defined inductively:

– 0 is a BDD.
– 1 is a BDD.
– If x ∈ V and R1 and R2 are BDDs then ite(x, R1, R2) is a BDD.

and the meaning of a BDD is given as follows.

[[0]] = 0
[[1]] = 1
[[ite(x, R1, R2)]] = (x ∧ [[R1]]) ∨ (x ∧ [[R2]])

ROBDDs are then BDDs with a fixed variable order, satisfying the constraints
that in any BDD ite(x, R1, R2), R1 �= R2, and that for any distinct BDDs
R1 and R2 appearing in R, [[R1]] �= [[R2]]. As is common, we use a function
mknd(x, R1, R2) to create all ROBDD nodes according to these rules:

1. If R1 = R2, return R1 instead of a new node, as [[ite(x, R1, R2)]] = [[R1]].
2. If an identical ROBDD was previously built, return that one instead of a new

one; this is accomplished by keeping a hash table, called the unique table, of
all previously created nodes [2].

3. Otherwise, return ite(x, R1, R2).

Algorithm 1. To find the Horn envelope of an ROBDD:

H↑(0) = 0 M̃↑(0) = 0
H↑(1) = 1 M̃↑(1) = 1
H↑(ite(x, R1, R2)) M̃↑(ite(x, R1, R2))

= mknd(x, Rt, Rf) = mknd(x, R′1, or(R
′
1, R

′
2))

where R′ = H↑(or(R1, R2))
and Rt = H↑(R1)
and Rf = and(M̃↑(R2), R′)

where R′1 = M̃↑(R1)
and R′2 = M̃↑(R2)

Note that M̃↑(ϕ ∨ ψ) = M̃↑(ϕ) ∨ M̃↑(ψ).

6 Discussion

Several contributors to the field of approximate knowledge compilation have
suggested departures from the classical setting, regarding both the classes of
Boolean functions used, and the data structures used to represent these func-
tions. The lattice-theoretic concepts of upper and lower closure operators provide
an abstract and useful lens for the study of envelopes and cores in propositional
logic, independent of representation. In the first half of this paper we have put
forward this view in greater detail. The framework is general. While we focus

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

342 P. Schachte and H. Søndergaard

on lattices of Boolean functions, note that no assumptions were made about the
properties of the lattices. In particular they need not be Boolean lattices, that
is, they are neither restricted to be complemented nor distributive. Indeed, the
majority of the function classes considered do not form complemented lattices,
and many are not distributive. For example, to see that H is not distributive,
note that x, y, and x ↔ y are all Horn, but

(x � y) � (x ↔ y) = 1 ∧ (x ↔ y) �= x ∧ y = (x � (x ↔ y)) � (y � (x ↔ y))

where � is the meet operation on H (that is, conjunction), and � is the join
(which is not disjunction).

Our main contribution, expressed as Theorem 1, is a generic characterisation
of envelopes and cores in a large variety of Boolean function classes. Many in-
stantiations of the theorem, including versions for Horn and Krom functions, are
provided in Section 5.

It remains to be seen to what extent the algorithms we have derived can
be made efficient for various representations. So far we are in the process of
implementing a range of the algorithms for ROBDDs, together with algorithms
for finding least upper bounds and greatest lower bounds for sets of functions
in various classes. (The use of the term “LUB” in much of the literature on
Horn approximation is somewhat incongruous with standard usage, and “GLB”
even more so.) Another challenge is to develop an algorithm to produce affine
envelopes of ROBDDs.

We would also like to better understand the relations between the framework
offered by del Val [8] and the one proposed here. For example, at least on the
surface it would seem that closure under subsumption corresponds exactly to
closure under instantiation (by the latter we mean ϕ0

x, ϕ1
x ∈ Δ whenever ϕ ∈ Δ,

for all x ∈ V). However, we note that our development of the generic algorithm
did not require an assumption about closure under instantiation.

References

1. Birkhoff, G.: Lattice Theory. American Mathematical Society, (3rd edn.) (1973)
2. Brace, K., Rudell, R., Bryant, R.: Efficient implementation of a BDD package. In:

Proc. Twenty-seventh ACM/IEEE Design Automation Conf., pp. 40–45 (1990)
3. Cadoli, M., Scarcello, F.: Semantical and computational aspects of Horn approxi-

mations. Artificial Intelligence 119, 1–17 (2000)
4. Codish, M., Søndergaard, H., Stuckey, P.J.: Sharing and groundness dependen-

cies in logic programs. ACM Transactions on Programming Languages and Sys-
tems 21(5), 948–976 (1999)

5. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Neuhold, E.J. (ed.) Formal Description of Programming Concepts,
pp. 237–277. North-Holland (1978)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proc. Sixth ACM Symp. Principles of Programming Languages, pp. 269–282. ACM
Press, New York (1979)

7. Dechter, R., Pearl, J.: Structure identification in relational data. Artificial Intelli-
gence 58, 237–270 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Boolean Approximation Revisited 343

8. del Val, A.: First order LUB approximations: Characterization and algorithms.
Artificial Intelligence 162, 7–48 (2005)

9. Giacobazzi, R.: Semantic Aspects of Logic Program Analysis. PhD thesis, Univer-
sity of Pisa, Italy (1993)

10. Halmos, P.R.: Lectures on Boolean Algebras. Springer, Heidelberg (1963)
11. Horiyama, T., Ibaraki, T.: Ordered binary decision diagrams as knowledge-bases.

Artificial Intelligence 136, 189–213 (2002)
12. Horiyama, T., Ibaraki, T.: Translation among CNFs, characteristic models and

ordered binary decision diagrams. Inf. Processing Letters 85, 191–198 (2003)
13. Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Arti-

ficial Intelligence 74, 129–145 (1995)
14. Kavvadias, D., Papadimitriou, C., Sideri, M.: On Horn envelopes and hypergraph

transversals. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L.
(eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993)

15. Khardon, R.: Translating between Horn representations and their characteristic
models. Journal of Artificial Intelligence Research 3, 349–372 (1995)

16. Ore, O.: Combinations of closure relations. Ann. Math. 44(3), 514–533 (1943)
17. Pelletier, F.J., Martin, N.M.: Post’s functional completeness theorem. Notre Dame

Journal of Formal Logic 31(2) (1990)
18. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic. Princeton

University Press, 1941. Reprinted in Davis, M., Solvability, Provability, Definabil-
ity: The Collected Works of Emil L. Post, pp. 249–374, Birkhaüser (1994)

19. Rudeanu, S.: Boolean Functions and Equations. North-Holland (1974)
20. Schachte, P., Søndergaard, H.: Closure operators for ROBDDs. In: Emerson, E.A.,

Namjoshi, K. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 1–16. Springer, Heidelberg
(2005)

21. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. Tenth Ann.
ACM Symp. Theory of Computing, pp. 216–226 (1978)

22. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal
of the ACM 43(2), 193–224 (1996)

23. Ward, M.: The closure operators of a lattice. Ann. Math. 43(2), 191–196 (1942)
24. Zanuttini, B.: Approximating propositional knowledge with affine formulas. In:

(ECAI’02). Proceedings of the Fifteenth European Conference on Artificial Intel-
ligence, pp. 287–291. IOS Press, Amsterdam (2002)

25. Zanuttini, B.: Approximation of relations by propositional formulas: Complex-
ity and semantics. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI),
vol. 2371, pp. 242–255. Springer, Heidelberg (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement

Nathan Sturtevant and Renee Jansen

Department of Computing Science, University of Alberta, Edmonton, Alberta, T6G 2E8, Canada
{nathanst,maaike}@cs.ualberta.ca

Abstract. A variety of techniques have been introduced over the last decade
for abstracting search graphs and then using these abstractions for search. While
some basic work has been done to predict the value of an abstraction mechanism,
the results have not been validated in practice. In this paper we analyze a variety
of old and new abstraction mechanisms in a pathfinding testbed and show that the
work done in abstraction-based refinement-style search can be predicted by the
diameter and size of abstract nodes.

1 Introduction

Search is a widely studied task in artificial intelligence, due to the fact that many prob-
lems such as pathfinding and scheduling can be solved using search techniques. The
traditional and widely used search algorithm is A* [1], which uses a heuristic func-
tion to guide its search. Unfortunately, this algorithm is computationally expensive: the
amount of work required can be exponential in the length of the solution.

One way to deal with this problem is by abstracting the search space. In particular,
it is possible to create a simpler search graph by representing a number of nodes of the
original search graph by a single node in an abstract search graph. Abstract edges are
then added based on the edges that exist in the original search graph. This can be done
recursively, giving a hierarchy of abstractions. An approximate solution can be found
by a search in the abstract graph, which can then be refined to a solution in the original
search space.

Abstraction methods have been studied in a number of places. For example, Holte
et al. proposed the STAR abstraction, in which a node and all nodes within some pre-
defined radius are abstracted together [2]. Botea et al. developed an abstraction method
specifically designed for gridworlds, which divides the grid into square clusters [3]. An-
other abstraction method, devised by Sturtevant and Buro, takes cliques in the original
search graph and abstracts them into a single node in the abstract graph [4]. Abstraction
has been used in other domains such as robotics [5] and planning [6].

Holte et al.’s STAR abstraction was developed as a result of a theoretical analysis of
the amount of work required to find a solution to a search problem using abstractions of
the search space [2]. The analysis shows that, in order to minimize the total amount of
work done, it is desirable to minimize the maximum length of a path between any two
nodes inside an abstract node, while maximizing the number of nodes that are combined
into a single abstract node.

The goal of this paper is to verify the analysis done by Holte et al. of the amount of
work done during a search which uses search space abstractions. We will first compare

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 344–358, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 345

the amount of work done with a variety of both new and old abstraction methods, and
then show that the analysis of Holte et al. holds in practice.

1.1 Problem Definition

A search problem can be formally defined as the tuple (S, A, c, s0, Sg), where S denotes
the set of states in the environment, A denotes the set of actions, c(s, a) is the cost of
taking action a ∈ A in state s ∈ S, s0 ∈ S is the start state, and Sg ⊆ S is the set of
goal states. The search space can be represented as a graph G = (V, E), where V is
the set of vertices (nodes), representing the set of states S, and E is the set of edges,
representing the actions A. The weight of an edge is defined as the cost of performing
action a in state s. In this paper, we will assume that the edges of the search graph are
undirected, implying that the cost of going from state s to state s′ is equal to the cost of
going from state s′ to s.

We look specifically at problems from the pathfinding domain. That is, underlying
the graph representation of the world there is a grid-based map. Cardinal moves on the
map (N, S, E, W) have cost 1 while diagonal moves have cost

√
2. We choose this

focus, because pathfinding is currently a widely studied and well-motivated area, with
applications in areas including robotics and computer games.

2 Abstraction Mechanisms

We first define an abstraction formally, and then present 5 different abstraction mecha-
nisms which we will use experimentally to test the predictions made by Holte et al. [2].
The radius and clique abstractions have been described elsewhere; the other abstraction
mechanisms are presented for the first time here.

2.1 Automatic State Abstraction

Formally, an abstraction is a graph homomorphism φ from a graph G1 to a graph G2
which maps nodes from G1 to nodes in G2. An edge e is added between two abstract
nodes s1 and s2 whenever there is at least one edge e′ between s′1 and s′2 such that
φ(s′1) = s1 and φ(s′2) = s2. We can abstract the search graph recursively, giving an
abstraction hierarchy of α levels, where level 0 is the original search graph and level α
is the topmost abstract level. We will introduce a variety of such homomorphisms.

While edge costs are well-defined in the original problem space, we define the loca-
tion of a node s in abstract space as the average location of all the nodes abstracted by s.
This means that we can use the location of abstract nodes as a heuristic for searching the
abstract graph. This heuristic will be admissible in abstract space, but not in the original
problem space. In domains other than pathfinding, edges can have uniform cost.

2.2 Clique Abstraction

The clique abstraction (CA) was initially introduced by Sturtevant and Buro [4]. The
idea behind this abstraction, as the name suggests, is to abstract cliques in each level of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

346 N. Sturtevant and R. Jansen

(a) (b) (c)

Fig. 1. Clique abstraction

Fig. 2. Uniform (left) and non-uniform (right) abstractions

the abstraction. Every node in a clique will be no more than one edge away from every
node, which is a desirable property, according to the theoretical evaluation discussed in
the next section. In a two-dimensional, octile-connected map, the maximum clique size
is 4 nodes, which makes the clique-finding problem tractable.

We illustrate the clique-abstraction process in Figure 1. The initial graph is shown
in the portion of this figure labeled (a). Two sample cliques are indicated with a dotted
line. The middle figure, (b), shows one possible way the first graph can be abstracted.
Note that where four-cliques cannot be abstracted, smaller cliques are removed instead.
This abstraction mechanism can be applied once more to (b) to obtain the graph in (c).
In (b), the marked clique is removed first, followed by the only other four-clique. The
remaining pairs of nodes will be abstracted together. Depending on the order in which
nodes are considered and the policy for abstracting nodes with only a single neighbor,
the final graph will either take one or two steps to abstract until it is represented by just
a single node.

In this paper we will use two different approaches for building a clique abstraction.
The first method, CA(n) [normalized], builds the abstract graph in a more uniform
manner by relying on knowledge of the underlying map. CA(n) first abstracts 4-cliques
in a uniform manner across open areas of the map before considering the rest of the
map. The second implementation of the clique abstraction, CA(i) [irregular], does not
rely on knowledge of an underlying map and thus builds less uniform abstractions. We
demonstrate the difference between a uniform and non-uniform abstraction in Figure 2.
The lines in this figure represent edges, with nodes implicit at the ends of edges. In the
left portion of the figure, most of the map has been abstracted in uniform squares. Only

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 347

(a) (b) (c)

Fig. 3. Sector abstraction

the edges of the map are less uniform. Because the underlying topology is not known
in the right portion of this figure, the abstraction is much less uniform.

There will be some cases where the abstraction procedure fails to find a clique among
the remaining unabstracted nodes. In this case, these nodes can be passed through to
the next abstraction level instead of being abstracted with their neighbors. In the case
of nodes with only a single neighbor, we choose to abstract them into their neighbor
regardless of whether they form a non-trivial clique or not.

2.3 Sector Abstraction

The sector abstraction (SA) is inspired by the abstraction used by HPA* [3], and is
limited to grid-based maps. The sector abstraction is parameterized by a fixed sector
size, k. At the first level of abstraction, sectors of size k × k are overlaid onto the map.
Within each sector, a breadth-first search is used to determine connected components,
each of which becomes an abstract node. At the ith level of abstraction, sectors of size
ki × ki are used. Note that with an empty map and a sector size of 2, the clique
abstraction and sector abstraction will be identical.

We demonstrate this abstraction mechanism with a sector size of 2 in Figure 3. In
this example, the clique abstraction and sector abstraction both abstract the initial graph
in the same manner. In graphs (a) and (b), two of the sectors (4×4) used for the building
graph (c) pass are marked by dotted lines. Because only nodes which form a connected
component within a single sector can be abstracted together, the top left sector becomes
two separate nodes when abstracted. This results in one extra node in the most abstract
graph on the right, (c). If we were to apply one more level of abstraction, the entire
graph would be immediately abstracted into a single node, because all nodes in this
graph are connected within an 8 × 8 sector.

2.4 Radius Abstraction

Holte et al. suggested an abstraction mechanism they called the STAR abstraction [2].
We use what is essentially the same mechanism, but refer to it as the radius abstraction
(RA), which we feel is a more evocative description. The radius abstraction works by
first selecting an unabstracted node. All neighboring nodes within a fixed radius, r, of
this node are then abstracted together into the same abstract node. The radius, r, is the
depth limit (in edges) on a breadth-first search which finds the neighbors to abstract. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

348 N. Sturtevant and R. Jansen

(a) (b) (c)

Fig. 4. Radius one abstraction

(a) (b) (c)

Fig. 5. Line abstraction

radius abstraction procedure is simple and can be applied to any graph. We demonstrate
the radius abstraction in Figure 4.

Our implementation of the radius abstraction chooses the next node to abstract at
random; however, in this example we choose the nodes to be abstracted quite carefully.
In the left part of Figure 4, (a), we mark in gray the nodes which are selected for ab-
straction. The immediate neighbors (r = 1) of these nodes are then abstracted together.
In the first abstract graph, (b), there are only 6 nodes, and again, we mark in gray the
nodes which are selected to drive the abstraction process. The resulting graph, (c), has
two nodes, and will be fully abstracted at the next level of abstraction. The radius ab-
straction will remove more nodes in each step than the clique abstraction. A radius 1
abstraction can be quite similar to a sector abstraction with k = 3.

2.5 Line Abstraction

The line abstraction (LA) finds sequences of nodes length k, and abstracts them to-
gether. In this paper we experiment with two variants of the line abstraction. One variant
abstracts the graph uniformly, as we will do in the example below. The other variant just
selects nodes to abstract at random and is much less uniform. We vary the maximum
length of the abstracted line between 2 and 6.

We demonstrate the line abstraction with k = 2 in Figure 5. First, we attempt to
abstract each node with its neighbor to the right. This takes the original graph, (a) and
transforms it into the graph (b). In the next step we attempt to abstract each node with
its neighbor below. This results in the graph on the far right, (c), which is identical to the
graph produced by clique-abstraction in a single step. When done uniformly, the line
abstraction proceeds in this manner, first abstracting horizontally and then vertically.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 349

2.6 Node-Limit Abstraction

The node limit abstraction (NLA) has a single parameter k, the number of nodes to
abstract together. Given an initial node, a breadth-first search is performed until k unab-
stracted nodes have been visited. These nodes are then abstracted into a single abstract
node. The node-limit abstraction and line abstraction are the same when k = 2. If k is
defined dynamically as the number of neighbors within a radius r, the node-limit ab-
straction will be the same as the radius abstraction. In this paper we use a fixed k for all
nodes.

3 Abstraction Analysis

In this section we analyze the complexity of using an abstraction hierarchy to find a path
through a search graph. For the moment we will consider using an algorithm which first
finds a path at the highest possible level of abstraction, and then successively refines
this path until a path is found in the original graph. This analysis is originally due to
Holte et al. [2] and we follow their derivation closely here.

During the refinement process, a node s at some abstract level i is replaced by a
series of nodes in level i−1. This is done by finding a path p in level i−1 consisting of
nodes which are mapped to s. In particular, if we let the neighbours of s along the path
at level i be t and u, the first and last nodes on path p must have neighbours t′ and u′

such that φ(t′) = t and φ(u′) = u. We say refinement is monotonic if no backtracking
needs to be done across levels. This will be the case throughout this paper.

The total amount of work done in finding a solution consists of the refinement costs
at each level. If we assume that every abstract graph is strictly smaller than the graph it
abstracts, the solution in the abstract graph at level α is trivial since this graph will only
have a single node (one node per connected component in the original graph). In each
refinement step, every node in the solution at level i is replaced by a sequence of nodes
at level i − 1. If we let the length of the path at level i be denoted by λi, and the work
required to replace a node at level i by a sequence of nodes at level i − 1 by ω, then the
total work done in refining from level i to level i − 1 is ωλi. The expansion factor χ is
defined to be λi/λi−1, giving λi = χλi−1 = χα−i.

If we let ω and χ be the worst cases, this gives a bound on the total work done to find
a solution:

Total Work ≤ ω
α∑

i=1

χα−i

This is equivalent to:

Total Work ≤ ω

α−1∑
i=0

χi

Furthermore, we know that χ is upper-bounded by d, the maximum diameter of any
abstract state. The diameter is the maximum distance between any two states in that
abstract state. (This distance is defined as the number of nodes on a path.) This gives:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 N. Sturtevant and R. Jansen

Total Work ≤ ω

α−1∑
i=0

di

The sum over di can be can be represented by the closed form formula (dα −1)/(d−
1). If the diameter is at least 2, we can replace this with dα. We will assume that n ≥ 2
and n is the same for all states. After replacing α with logn N , where n is the number
of states mapped to a single abstract state and N is the number of states in the original
space, the bound on the total work can then be expressed as:

Total Work ≤ ωn(lnN)/(ln d)

This function is symmetric in n and N , so we can swap them, giving:

Total Work ≤ ωN (lnn)/(ln d)

This shows that if we ignore ω, the total work can be minimized by minimizing d
and maximizing n, i.e.,by making the maximum distance between any two nodes in an
abstract state as small as possible and making the number of states which map to an
abstract state as large as possible.

Consider the case where we choose the d as small as possible, i.e., d = 2. In this case
there is an edge between any pair of nodes that make up the abstract node: the nodes
form a clique. Based on the above analysis we need to maximize the number of nodes
that are abstracted together; we want cliques that are as large as possible.

Whereas Holte et al. were interested in generating an upper bound on the amount
of work required to do refinement, we are also interested in finding a measure that
will be predictive of the actual work performed. We note that measuring the maximum
diameter of the abstraction, d, can be a poor estimate of the cost required to refine a
path through a node in practice. For abstractions that are relatively symmetric, such as
the clique abstraction, d is likely a good estimate of the cost of refinement. On the other
hand, the line abstraction will have d ≈ k, but there are many short paths through an
abstract node, so the average path length through an abstract node will be shorter than
d. (This can be verified by Table 1 later in the paper.)

We therefore propose a different measure of d, which we will call dE . Instead of
measuring the maximum distance between states abstracted within a node, we measure
the expected cost given that we enter the node from a random edge e1 and exit from a
different edge e2. For instance, in Figure 6 there are 11 edges at level i by which we
can enter or exit the node when doing refinement from level i+1 to level i. To enter the
edge marked e1 and exit the edge marked e2 we would have to traverse a single internal
edge. We also add the cost of entering on edge e1, so this path has cost 2. (Assuming
uniform edge costs.) The expected cost to refine the abstract node given that we enter
on edge e1 is 1×2+8×2

10 = 1.8. To compute dE in this example we would perform the
same computation for all edges at level i which are external to the abstract node at level
i + 1.

Finally, we note that this discussion has ignored the ω term, which is the work re-
quired to refine a single node. This is directly related to n, so that although we want to
increase n to minimize the total work, this has a secondary effect which increases work,
so increasing n may not be as effective as decreasing d.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 351

ii

Fig. 6. Measuring the expected diameter of an abstract node

4 Experimental Results

One goal of this paper is to experimentally analyze the previous theoretical results. We
begin by measuring properties from the previous section for the different abstractions
over 116 maps extracted from Baldur’s Gate II (a role-playing game) and Warcraft III (a
real-time strategy game). Two examples of these maps can be found in Figure 7. For our
experiments we scaled the maps to 512 × 512 so they are all similarly sized. In Table 1
we list the different abstraction types and the parameters used for each. We measured
each of the theoretical properties averaged over all nodes at all levels of the maps.

The values which describe for each abstraction type are not surprising. For instance,
the line abstraction (k = 2) abstracts, on average, just under two nodes at a time. The

Table 1. The abstraction properties for each abstraction type: average nodes abstracted, the aver-
age of the max diameter and the average of the expected diameter of an abstract node

Abstraction Type Abbrev. Avg. Nodes (n) Avg. Diameter (d) Expected Diameter (dE)
Clique (Non-uniform) CA(i) 3.60 0.96 1.72
Clique (Uniform) CA(n) 3.71 0.97 1.73
Sector 2 SA(2) 3.70 0.98 1.74
Sector 3 SA(3) 7.51 1.89 2.29
Radius 1 RA(1) 8.15 2.36 2.31
Radius 2 RA(2) 10.17 2.80 2.53
NodeLimited 3 NLA(3) 2.57 1.00 1.61
NodeLimited 5 NLA(5) 3.96 1.65 1.86
NodeLimited 6 NLA(6) 4.78 1.84 2.00
Line 2 (Non-uniform) LA(2, i) 1.86 0.86 1.46
Line 3 (Non-uniform) LA(3, i) 2.59 1.27 1.67
Line 4 (Non-uniform) LA(4, i) 3.18 1.65 1.80
Line 5 (Non-uniform) LA(5, i) 3.58 1.82 1.87
Line 6 (Non-uniform) LA(6, i) 3.78 1.87 1.87
Line 2 (Uniform) LA(2, n) 1.97 0.97 1.52
Line 3 (Uniform) LA(3, n) 2.89 1.86 1.90
Line 4 (Uniform) LA(4, n) 3.78 2.72 2.22
Line 5 (Uniform) LA(5, n) 4.50 3.35 2.45
Line 6 (Uniform) LA(6, n) 5.20 3.97 2.66

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

352 N. Sturtevant and R. Jansen

Fig. 7. Two of the maps used in the experiments

uniform abstractions abstract more nodes than the non-uniform abstractions, as seen in
Figure 2. The third column in Table 1, Avg. Diameter, is the maximum length of the
shortest path between any two states abstracted into a node. For the clique, line (k = 2),
and sector (k = 2) abstractions this value can be at most 1, but is 0 in the cases where
a single node cannot be abstracted with its neighbors, resulting in an average value
just below 1. We might expect the abstraction with the most nodes, RA(2), to have a
diameter of 4, twice the radius. However, since this abstraction is not performed in a
uniform manner, its average is lower than the maximum possible.

The final column is the expected number of edges that would be traversed given that
we randomly select an incoming and outgoing edge and then measure the number of
edges needed to traverse through the node, including the incoming edge. Because we
include the incoming edge, we expect this value to be at most 1 larger than the maximum
diameter. This value is more indicative of the cost of traveling through a node than the
maximum diameter of a node.

Consider, for instance, two nodes abstracted by the line abstraction (k = 2). If they
both have the same number of edges, we expect that a random path will pass through
a single node half the time (cost 1), and pass through both nodes half the time (cost
2). Thus, the expected diameter would be 1.5. The expected diameter is slightly higher
for the LA(2, n) abstraction because we do not consider the possibility of entering and
exiting from the same edge, as this can never be part of a refined path. So there is a
slightly higher chance of traveling through a node than entering and exiting it directly.

4.1 Abstraction-Based Search Algorithms

In this paper, we use the PRA* algorithm [4] to find paths in each of the abstraction
hierarchies. PRA* stands for Partial-Refinement A*, although we use the PRA*(∞)
variant, which does full refinement of paths. Given start and goal nodes, PRA* succes-
sively maps these nodes into the next higher abstract graph until the abstract start and
goal are connected by a single edge. If this occurs at level � in the abstraction hierarchy,
PRA* then uses A* at level �/2 to find a path between the abstract start and goal nodes.
A* is used to find paths at successively lower levels of abstraction as well, except that
it is constrained to a corridor. The corridor at level � includes all nodes which abstract
into either the solution at level � + 1 or which abstract into a node which neighbors the
solution at level � + 1. PRA* returns paths that are very close to optimal both because

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 353

it begins planning at the middle of the abstraction hierarchy, and because it widens the
corridor used for search.

As a comparison, we use a simple refinement algorithm which follows the theoretical
derivation from the last section more closely. This simple refinement algorithm is like
PRA* except that it starts at the top of the abstraction hierarchy, and does not expand
the corridor during the refinement portion of the search. This generally decreases the
work that must be done, but results in lower-quality (i.e., longer) paths.

4.2 Search Costs

Given that we have measured the properties of our abstraction, we are interested in
measuring the cost of pathfinding using these abstractions and comparing them to see
if there is a correlation between the number of abstracted nodes, n, and the diameter of
the abstraction, d or dE .

Our experiments were conducted as follows. We used the same 116 maps as above.
On each map, we chose random paths from length 1 to length 512, and placed 10 paths
in each of 128 buckets. The first bucket has paths length (0, 4], while the 128th bucket
has paths length (508, 512]. In total, we have 114,131 paths over all the maps. We then
computed a path between these nodes using PRA* and the simple refinement variant of
PRA* previously described. We did this for each of the abstractions in Table 1.

Table 2. A comparison of suboptimality with PRA*(∞) and simple refinement

PRA*(∞) Simple Refinement
suboptimality nodes suboptimality nodes

CA(n) 0.04 5301 12.04 1840
CA(i) 0.19 5228 15.81 2062
SA(2) 0.04 5416 6.85 1716
SA(3) 0.02 6232 6.19 1826
RA(1) 0.23 6790 14.76 2540
RA(2) 0.19 6930 11.18 2574
NLA(3) 0.48 5712 40.38 2316
NLA(5) 0.37 5627 27.43 2158
NLA(6) 0.34 5533 23.13 2137
LA(2, n) 0.50 6598 19.05 2378
LA(3, n) 0.95 6092 22.62 2238
LA(4, n) 0.61 6119 22.60 2359
LA(5, n) 0.60 6188 27.62 2473
LA(6, n) 1.07 6764 30.23 2693
LA(2, i) 0.35 7291 81.84 3248
LA(3, i) 0.38 6075 68.33 2261
LA(4, i) 0.39 5914 62.01 2215
LA(5, i) 0.49 5871 60.55 2213
LA(6, i) 0.56 5936 58.42 2269

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 N. Sturtevant and R. Jansen

In Table 2 we report the average number of nodes expanded in the last bucket (paths
of length 508-512) over all maps as well as the total suboptimality over all paths and all
maps. Suboptimality is measured as 100× (actual path length

optimal path length −1), i.e., the percentage
difference in length. While there is some correlation between the nodes expanded by
simple refinement and by PRA*, there are some differences as well. For instance, the
sector abstraction expands fewer nodes (relative to the other abstractions) with simple
refinement than with PRA*. This is due to the fact that simple refinement tends to
produce paths with less suboptimality in the sector abstraction, and shorter paths are
cheaper to refine. This is compared to the non-uniform line abstraction, which produces
paths which are up to 80% longer than optimal.

Due to space concerns, we cannot reproduce the full graphs of the nodes expanded
for all abstraction mechanisms here. However, we show the 5, 50 and 95th percentile
curves for nodes expanded using PRA* using six of the different abstraction mecha-
nisms in Figure 11. Some abstractions, like SA(3), produce a significantly wider spread
of best-case and worst-case paths than the clique abstraction. These are percentile
curves, so they are different than the average value which we report above. We also
show optimality for several abstraction, comparing PRA* and simple refinement in Fig-
ure 12. These graphs show the worst quality path found, as well as the quality of the
99.5, 98, 95 and 50th percentile. The 50th percentile line is not visible for PRA* and
falls just above the x-axis for simple refinement.

4.3 Predicting Total Work

We can now address the main point of our experimental results, which is to test whether
the average number of nodes expanded, n, and the diameter of an abstraction, d or dE ,
can be used to predict the total work needed to compute a path using an abstraction. For
the moment, we just consider dE .

First, recall that we are trying to minimize dE and maximize n. In order to simplify
our analysis, we look instead at the problem of minimizing both dE and 1

n . We normal-
ize d and 1

n over all abstractions to the range 0 . . . 1 and plot them in Figure 8. The size
of the point for each algorithm scaled by the number of nodes expanded by PRA* on
this abstraction. The figures are the same, the left one just includes labels of the data
points. By looking at sequences of algorithms, one can see the effect of the abstraction
parameters. The algorithms which abstract fewer nodes are found in the bottom right
corner, while the algorithms which abstract more nodes are a time are in the top-left of
the figure.

Because the total work is predicted to be correlated with both measures, we use
the distance from each point in this chart to the origin of the graph (which attempts
to minimize both measures equally) as a measure of the abstraction parameters. Since
the parameters may not be equally weighted, we also considered the distance from the
clique abstraction parameters as a secondary measure.

We plot these distances against the nodes expanded by simple refinement in Fig-
ure 9 and against the nodes expanded by PRA* in Figure 10. If these values are well-
correlated, then the measures of n and d are accurate in predicting total work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 355

LA(4, n)

LA(6, n)

LA(3, n)

LA(2, n)

LA(5, n)

LA(2, i)

RA(2)

RA(1)

SA(3)

NLA(3)

LA(3, i)

LA(4, i)

NLA(6)

NLA(5)

LA(6, i)
LA(5, i)

SA(2), CA(n) CA(i)

A
v
e
ra

g
e
 o

f
E
x
p
e
c
te

d
 R

a
d
iu

s

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 / Average Abstracted Nodes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LA(n)

LA(i)

CA()

SA()

RA()

NLA()

A
v
e
ra

g
e
 o

f
E
x
p
e
c
te

d
 R

a
d
iu

s

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 / Average Abstracted Nodes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 8. The trade-off between the size of each abstraction and the diameter

R = 0.8011N
od
es
E
xp
an
de
d

1500

2000

2500

3000

3500

Distance (radius/width cost space)
0.8 0.9 1.0 1.1 1.2

R = 0.7372N
od
es
E
xp
an
de
d

1500

2000

2500

3000

3500

Distance (radius/width cost space)
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 9. The correlation between abstraction parameters and work done using simple refinement.
The graph on the left measures the distance between the abstraction parameters relative to the
origin, while the graph on the right measures the distance relative to the CA(n) parameters.

R = 0.8137N
od
es
E
xp
an
de
d

5000

6000

7000

Distance (radius/width cost space)
0.8 0.9 1.0 1.1 1.2

R = 0.915N
od
es
E
xp
an
de
d

5000

6000

7000

Distance (radius/width cost space)
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 10. The correlation between abstraction parameters and work done using PRA*. The graph
on the left measures the distance between the abstraction parameters relative to the origin, while
the graph on the right measures the distance relative to the CA(n) parameters.

The best-fit line for search by the simple refinement algorithm has a correlation coef-
ficient 0.80 using the distance from origin metric and 0.74 using the distance from the
clique abstraction parameters. The best-fit line for work done by PRA* has a correla-
tion of 0.81 when using the distance from the origin metric, and 0.92 when using the
distance from the clique abstraction parameters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

356 N. Sturtevant and R. Jansen

Returning to the issue of whether it is better to use the maximum diameter, d, or
the expected diameter, dE , we ran the same predictions using both definitions of the
diameter and distance. We found that the correlation between the best-fit line and the
data was more accurate when using the expected diameter instead of the maximum
diameter for both algorithms and distance measures.

5 Conclusions

We have shown that the total work done when using a graph abstraction for search and
refinement can be predicted by two parameters, the diameter of abstract nodes, d, and
the total number of nodes abstracted into each abstract node, n. Thus, the theoretical
predictions of Holte et al. [2] are useful in practice as well. We have also shown that the
clique abstraction’s parameters are well suited for minimizing computation, particularly
for PRA*.

Additionally, we have introduced a new method for computing the expected diam-
eter of an abstract node, dE , and have shown that this is more accurate than using the
maximum diameter, d. Our analysis has also highlighted how small changes in how an
abstraction is built can influence the abstraction measures, n and d. This was shown in
the differences between uniform and non-uniform clique and line abstractions.

There are two specific areas for future research. First, we would like to expand these
results beyond the pathfinding domain. Secondly, we would like to better understand
the manner in which suboptimality is affected by the choice of abstraction and how it
influences the predictions of how much work must be done. While we have seen that
there is some influence, we have yet to describe this influence in detail.

References

1. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

2. Holte, R.C., Mkadmi, T., Zimmer, R.M., MacDonald, A.J.: Speeding up problem solving by
abstraction: A graph oriented approach. Artificial Intelligence 85, 321–361 (1996)

3. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path–finding. Journal of Game
Development 1(1), 7–28 (2004)

4. Sturtevant, N.R., Buro, M.: Partial pathfinding using map abstraction and refinement. In:
AAAI, pp. 1392–1397 (2005)

5. Fernandez, A., Gonzalez, J.: Multi-Hierarchical Representation of Large-Scale Space.
Kluwer Academic Publishers, Dordrecht (2001)

6. Yang, Q., Tenenberg, J., Woods, S.: On the implementation and evaluation of ABT weak.
Computational Intelligence Journal 12, 295–318 (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analysis of Map-Based Abstraction and Refinement 357

Fig. 11. Nodes expanded by 6 of the different abstraction mechanisms

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 N. Sturtevant and R. Jansen

Fig. 12. Path optimality using 3 of the different abstraction mechanisms and PRA*(∞) [left]
versus simple refinement [right]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 359 – 374, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Solving Difficult SAT Instances Using Greedy Clique
Decomposition*

Pavel Surynek

Charles University
Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic
surynek@ktiml.mff.cuni.cz

Abstract. We are dealing with solving difficult SAT instances in this paper. We
propose a method for preprocessing SAT instances (CNF formulas) by using
consistency techniques known from constraint programming methodology and
by using our own consistency technique based on clique decomposition of a
graph representing conflicts in the input formula. If the clique decomposition is
of a good quality (cliques are appropriately large) it then allows us to make a
strong reasoning over the SAT instance, which can in some cases even decide
the satisfiability of the SAT instance without search. We implemented our pre-
processing method in C++ and compared it with several state-of-the-art SAT
solvers on selected difficult SAT instances. The result was a speedup in the or-
der of magnitude compared to the tested SAT solvers.

Keywords: SAT, search, consistency, clique, difficult instances.

1 Introduction

The source of inspiration for this paper was a recent work [28] on artificial intelli-
gence planning problems [3]. We exploit the newly developed techniques proposed in
[28] for solving Boolean satisfiability problems (SAT). In [28] the problem of finding
supporting actions for a goal in the AI planning context is studied. The problem is
called a supports problem in short. This is some kind of an important sub-problem
which must be solved many times when solving AI planning problems using the plan-
ning graphs [6]. It was shown that the supports problem is NP-complete. In doing so a
conversion of an instance of the SAT problem to the instance of the supports problem
was used [28]. This proof uncovered some interesting similarities between the SAT
problem and the supports problem. Strictly speaking the similarities itself are neither
interesting nor useful. They become more interesting after connecting them with the
new method for solving supports problems based on a greedy clique decomposition
which was also proposed in the mentioned work. The positive experience made with

* This work is supported by the Czech Science Foundation under the contracts 201/07/0205 and

201/05/H014. I would like to thank anonymous reviewers for many useful comments and cor-
rections. I also would like to thank my advisor Roman Barták for valuable discussions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

360 P. Surynek

the method on planning problems and the observed similarity lead us to the idea of
adapting the technique of the greedy clique decomposition to solve SAT problems.

Boolean formula satisfaction problems and SAT solving techniques play an ex-
tremely important role in theoretical computer science as well as in practice. The
question of whether there exist a complete polynomial time SAT solver is a key ques-
tion for theoretical computer science and is open for many years (the P vs. NP prob-
lem) [7]. On the other hand the practical use of SAT problems and SAT solvers in real
life applications is also very intensive. Applications of SAT solving techniques range
from microprocessor verification [30] and field-programmable gate array design [23]
to solving AI planning problems by translating them into Boolean formulas [17].

An excellent performance breakthrough was done in solving SAT problems over
the past years. Thanks to new algorithms and implementation techniques focused on
real life SAT problems many of the today’s benchmark problems [18, 25] are solved
by state-of-the-art solvers [11, 12, 14, 15, 21, 27] in time proportional to the size of
the input. It seems that the difficulty of many SAT benchmark problems consists in
their size only. A lot of smaller benchmark problems are solved in real-time by to-
day’s state-of-the-art SAT solvers. The observation that can be deduced upon these
facts is that there is almost no chance to compete with the best SAT solvers by a
newly written SAT solver on these problems. That is why we are concentrating on
difficult instances of SAT problems only, where the word difficult means difficult for
today’s state-of-the-art SAT solvers.

A very valuable set of difficult (in the mentioned sense) problems was collected by
Aloul [1]. Although these problems are small in the length of the input formula they
are difficult to be answered. The detailed discussion about hardness of these problems
is given in [2]. One of the aspects of problem difficulty is that these problems are
mostly unsatisfiable (and this fact is well hidden in the problem). The solver cannot
guess a solution using its advanced techniques and heuristics in such a case and it
must really perform some search in order to prove that there is no solution. In the case
of a positive answer the satisfying valuation of variables serves a witness (of small
size) certifying existence of at least one solution. If the solver obtains (possibly by
guessing) a witness its task is finished. In contrast to this, there is no such small wit-
ness in the case of a negative answer so the search must be performed.

Our contribution to solving SAT problems consists of preprocessing and reformu-
lating of the input Boolean formula in the CNF (conjunctive normal form - conjunc-
tion of disjunctions). The result of this processing is the answer whether the input
formula is unsatisfiable or a new formula (hopefully simpler) with the same set of
satisfying valuations as that of the input one. If the input formula is not decided by the
preprocessing phase then the preprocessed formula is sent to the SAT solver of the
user’s choice. The idea behind this process is to make the task for the SAT solver
easier by deciding the input formula within the fast preprocessing phase or by provid-
ing an equivalent but simpler formula to the SAT solver. Experiments showed that the
solving process over the above mentioned difficult SAT benchmarks speeds up by the
order of magnitude after using our approach.

The reformulation within the preprocessing phase itself is simple. We are viewing
the input Boolean formula in CNF as a graph (with vertices and edges). For each
literal (variable or its negation) of the input formula we consider a vertex and for each
conflict between literals we consider an edge. Conflicting literals are those that cannot

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 361

be both satisfied in a single valuation of variables, for example positive and negative
literals of the same variable are conflicting. Generally, a set of literals of a formula is
conflicting if the formula entails that at most one of the literals can be true . To be
able to use our reasoning based on the clique decomposition we need a graph with
appropriately large complete sub-graphs (cliques). That is, we need some kind of a
good approximation of the sets of conflicting literals. Unfortunately the graph arising
from the above interpretation of the Boolean formula in CNF is rather sparse (the
largest clique is of size 2). That is why we apply further inference by which we de-
duce more conflicts between the literals and which allow us to introduce more edges
into the graph. We are using singleton arc-consistency [5] as the inference technique
for deducing new edges.

Having the graph constructed from the input CNF formula, a clique decomposition
of this graph is found by a greedy algorithm (we do not need an optimal clique de-
composition; we need just some of the reasonable quality). The important property of
the constructed clique decomposition is that at most one literal from each clique can
be assigned the value true . In this situation we perform some kind of literal contribu-
tion counting to rule out the literals that can never be true . To do this, the maximum
number of satisfied clauses by literals of each clique is calculated. Then a literal of a
certain clique can be ruled out if the literals from the other cliques together with the
selected literal do not satisfy enough clauses to satisfy the input formula.

Although this problem reformulation seems weak it provides a strong reasoning
about the dependencies among clauses of the CNF Boolean formula and about the
effect of the selection of a value for a variable on the overall satisfiability of the for-
mula. Moreover if all the literals are ruled out during the preprocessing phase the
input formula is obviously unsatisfiable. Experimental evaluation showed that this
happen frequently on difficult SAT problems. For other cases a new formula in the
CNF equivalent to the input formula is produced. The new formula is constructed
from the original one by adding clauses that capture all the dependencies inferred by
the initial singleton arc-consistency stage and by the literal contribution counting
based on the clique decomposition.

The paper is organized as follows. A detailed formal description of the reformula-
tion of a SAT instance using the greedy clique decomposition is given in section 2.
The subsequent section 3 is devoted to some experimental comparison of our ap-
proach with the existing state-of-the-art SAT solvers. We are discussing the contribu-
tion of our method within this section too. Finally we put our work in relation to simi-
lar works in the field of Boolean satisfiability and we propose some future research
directions of the studied topic.

2 SAT Reformulation Using Greedy Clique Decomposition

We will formally describe the details of the process of SAT problem reformulation in
this section. Let 1 1

imn i
i j jB x= == ∧ ∨ be the input Boolean formula in CNF where i

jx is a
literal (variable or its negation) for all possible i and j . A sub-formula 1

im i
j jx=∨ of the

input formula B for every possible i is called a clause. The thi clause of the formula
B will be denoted as iC in the following paragraphs. As it was mentioned in the
introduction, the basic idea of the SAT problem reformulation consists in viewing the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

362 P. Surynek

input formula as an undirected graph in which the internal structure of the formula is
captured in some way. To be more particular the graph will capture the pairs of con-
flicting literals and it will be constructed in several stages.

2.1 Inference of Conflicting Literals

We start by the construction of an undirected graph 1 1 1(,)B B BG V E= which will repre-
sent trivially conflicting literals. The graph will be called a graph of trivial conflicts.
The graph 1

BG will then undergo some further inference process by which the addi-
tional conflicts will be inferred. We will denote the resulting undirected graph as

2 2 2(,)B B BG V E= and call it an intermediate graph of conflicts.
The construction of the undirected graph 1

BG is simple. A vertex is introduced into
the graph 1

BG for each literal occurring in the formula B , that is 1
1 1

in m i
B ji jV x= ==∪ ∪

(notice that 1
BV is typically smaller than the length of the formula, since literals may

occur many times in the formula while only once in the graph). The construction of
the set of edges 1

BE is also straightforward. An edge { , }i k
j lx x is introduced into the

graph 1
BG if the literals i

jx are k
lx are trivially conflicting, that is if one is a variable

v and the other is v¬ for some Boolean variable v . The graph 1
BG is finished by

performing the above step for all possible pairs of conflicting literals. The interpreta-
tion of the graph of conflicts is that if a literal corresponding to a vertex is selected to
be assigned the value true all literals corresponding to the neighboring vertices must
be assigned the value false .

An example graph resulting from the described process over a selected benchmark
problem is shown in the left part of figure 1. The resulting graph is visibly sparse,
since there are edges only between the literals of the same variable. Hence it is not a
good starting point for our method and a further inference mechanism for discovering
more conflicting pairs of literals (more edges for the graph) must be applied. This
further inference mechanism takes the already constructed graph 1

BG and augments it
by adding new edges. The result of this stage is an intermediate graph of con-
flicts 2

BG .
The process of construction of graph 2

BG exploits techniques known from standard
SAT resolution approaches and from constraint programming [9] - unit propagation
[10, 31], arc-consistency (AC) [20] and singleton arc-consistency (SAC) [5]. Before
describing the construction of the graph 2

BG let us recall a modification of notions.
We modify the above concepts slightly for the SAT domain to prepare them for our
purposes. The following definitions assume the input formula B in CNF and a corre-
sponding graph of conflicts BG (for example the graph 1

BG expressing the trivial
conflicts).

Definition 1 (Arc-consistency in SAT instance w.r.t. the graph of conflicts). Con-
sider two clauses iC and kC for , {1,2, , }i k n∈ … , i k≠ of the formula B . A literal

i
jx ({1,2, , }ij m∈ …) from the clause iC is supported by the clause kC with respect

to the given graph of conflicts BG if there exists a literal k
lx ({1,2, , }kl m∈ …) from

the clause kC , such that the literals i
jx and k

lx are not in a conflict with respect to the
graph BG (not connected by an edge). An ordered pair of clauses (,)i kC C of the
formula B is called an arc in this context. An arc (,)i kC C for some , {1,2, , }i k n∈ …

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 363

is consistent (or arc-consistent) with respect to the graph of conflicts BG if all the
literals of the clause iC are supported by the clause kC with respect to the graph of
conflicts BG . The formula B is called arc-consistent with respect to the graph of
conflicts BG if all the arcs (,)i kC C for all , 1,2, ,i k n= … are arc-consistent with
respect to the graph of conflicts BG .

Let us note that our definition is based on a dual view of the satisfaction problem.
That is, we use the clauses of the formula as the CSP variables [9] instead of the origi-
nal Boolean variables. Having these CSP variables, (CSP) constraints necessary for
the definition of arc-consistency arise naturally.

The reason for the definition of arc-consistency is that the literals which are not
supported according to the definition cannot be assigned the value true (this means
that the corresponding variable cannot be assigned the value false in the case of a
negative literal). So the solver can rule out such literals from further attempts to as-
sign them the value true , which may reduce the size of the search space. Notice that
the definition has the graph of conflicts BG as a parameter. It is possible to put any
correct graph of conflicts as a parameter of this definition, whereas correct means,
that if { , }y z is the edge of the graph then B y z⇒ ≠ must be a tautology. This is
obviously true for the graph of trivial conflicts 1

BG . Notice also that if we use the
graph of trivial conflicts 1

BG the definition becomes identical to unit propagation
[10, 31].

Having the Boolean formula B the question is how to make it arc-consistent with
respect to the given graph of conflicts. For this purpose we adopt techniques devel-
oped in constraint programming and by SAT community, namely the arc-consistency
enforcing algorithms [9, 20] and unit propagation [10, 31]. There is a great variety of
such algorithms, however their common feature is the search for supports for every
value (literal) which is suspected of not being supported. The main difference among
these algorithms is the efficiency of the search for supports. If an unsupported literal
is detected it is ruled out. Ruling out an unsupported literal may cause that some other
literal loses its only support. This chain-like propagation of changes continues until a
stable state is reached. For purposes of the SAT domain this propagation process is
usually augmented by an additional simplification rule. If the consistency enforcing
algorithm detects that within some clause there is only one literal that can be selected
to be true , it is fixed to value true and the corresponding clause is cut out from fur-
ther reasoning (this is exactly the simplification rule from unit propagation).

Unfortunately the defined arc-consistency over Boolean formulas in the CNF form
is too weak to infer significantly more conflicts than that are already present in the
graph of trivial conflicts. Therefore we need to make the consistency stronger. Per-
haps the simplest way to do this is to make the selected consistency technique single-
ton [5]. The following definition again assumes the Boolean formula B and the
corresponding graph of conflicts BG (again the graph of trivial conflicts 1

BG can be
used).

Definition 2 (Singleton arc-consistency in a SAT instance w.r.t. the graph of con-
flicts). A literal k

lx ({1,2, , }kl m∈ …) from a clause kC for {1,2, , }k n∈ … of the
formula B is singleton arc-consistent with respect to the given graph of conflicts BG

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

364 P. Surynek

if the formula obtained from B by replacing the clause kC by the literal k
lx (the

resulting formula is 1
1 1 1 1))((i im mk i k n i

i j j l i k j jx x x−
= = = + =∧ ∧∧ ∨ ∧ ∨) is arc-consistent with

respect to the graph of conflicts BG .

Unsupported literals in the formula modified by replacing the clause kC by the literal

k
lx are in conflict with the literal k

lx . This is quite intuitive, the selection of the literal
k
lx to be assigned the value true rules out some other literals. Hence these literals are

in conflict with the selected literal k
lx . Having singleton arc-consistency we are ready

to infer new edges for the graph of conflicts.
The intermediate graph of conflicts 2

BG is constructed from the graph of trivial
conflicts 1

BG in the following way. Initially the graph 2
BG is identical to the graph

1
BG , that is we start with the initialization 2 1

B BV V← and 2 1
B BE E← . Then for every

literal 2
By V∈ singleton arc-consistency with respect to the graph of conflicts 1

BG
is enforced. If the consistency discovers some unsupported literals, say literals

1 2, , , mz z z… , edges { , }iy z for all 1,2, ,i m= … are added into the set of edges 2
BE .

An example of the resulting graph of conflicts is shown in the right part of the fig-
ure 1. It is constructed from the original graph of trivial conflicts from the left part of
the figure 1. The required complete sub-graphs of the graph are clearly visible.

Fig. 1. The left part of the figure shows a graph of trivial conflicts for the SAT benchmark
problem pigeon-hole principle number 6 (hole06.cnf). Vertices represents literals, edges are
between pairs of positive and negative literals of the same variable. The right part of the figure
shows an intermediate graph of conflicts inferred from the original graph of the left by single-
ton arc-consistency. The graph contains edges from the original graph plus the inferred edges.
Six complete sub-graphs each containing seven vertices are clearly visible and can be found by
a simple greedy algorithm.

The described process of inference of conflicting literals is relatively generic. Both
different initial graphs of trivial conflicts as well as different consistency techniques
than arc-consistency and singleton arc-consistency for inference of new edges can be
used. Both entities, graphs and consistency techniques, may be considered as parame-
ters of the method.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 365

2.2 Greedy Clique Decomposition and Literal Contribution Counting

To deduce yet more information from the graph of conflicts 2 2 2(,)B B BG V E= a clique
decomposition of the graph is constructed. Formally, a partition of vertices

2
1 2B sV K K K= ∪ ∪ ∪… such that each set of vertices iK for 1,2, ,i s= … induces a

clique over the set of edges 2
BE and i jK K∩ = ∅ for all , 1,2, , &i j s i j= ≠… . Let

iKE denotes the set of edges induced by the clique iK , let RE denotes the set of
edges outside the clique decomposition, that is 2

1 i

s
R B KiE E E== −∪ . Our inference

method based on literal contribution counting performs best if cliques of the decom-
position are as large as possible (that is s must be as small as possible) and the size of

RE is as small as possible. The better the quality of the decomposition is the stronger
results are produced by our inference method. Since the problem of finding the opti-
mal clique decomposition with respect to the above criterion is obviously NP-
complete on a general graph [16], we cannot afford to construct the optimal decompo-
sition and we must abandon this requirement. Nevertheless experiments showed that
the simple greedy algorithm can find a clique decomposition of acceptable quality
(with respect to clique sizes and the number of edges outside the decomposition).

Our greedy algorithm for finding a clique decomposition is based on the standard
greedy algorithm for finding the largest clique. The main loop of the greedy algorithm
repeatedly finds a largest clique. The largest clique is found in the following way. A
vertex of the highest degree is found in the graph and it is added to the constructed
clique which is empty at the beginning. Then the graph is restricted on the neighbor-
hood of the selected vertex and a vertex of the highest degree in this neighborhood is
selected as second. Then the graph is again restricted on the neighborhood of these
two vertices (that is the considered vertices are neighbors of both the first and the
second selected vertex) and the algorithm continues until the neighborhood of se-
lected vertices is empty. The constructed clique and its neighborhood are removed
from the graph and the next clique is constructed. This main loop continues until the
graph is empty.

The above described greedy algorithm performed over the graph from the right part
of the figure 1 finds the clique decomposition consisting of six cliques of size seven.
The fact that at most one literal from a clique can be selected to be assigned the value
true is used in our inference method.

For the following definitions we assume a Boolean formula 1 1
imn i

i j jB x= == ∧ ∨ and
the corresponding clique decomposition 2

1 2B sV K K K= ∪ ∪ ∪… of the intermediate
graph of conflicts 2 2 2(,)B B BG V E= . Next let {1,2, , }I n⊆ … be a set of indexes of some
clauses of the formula B . The set I defines a sub-formula IB of the formula B ,
where I i I iB C∈= ∧ .

Definition 3 (Literal contribution). A contribution of a literal y to the sub-formula

IB is defined as the number of clauses of IB in which the literal y occurs and it is
denoted as (,)c y I .

Definition 4 (Clique contribution). A contribution of a clique 1 2{ , , , }sK K K K∈ …
to the sub-formula IB is defined as max ((,))y K c y I∈ and it is denoted as (,)c K I .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

366 P. Surynek

The concept of clique contribution is helpful when we are trying to decide whether it
is possible to satisfy the sub-formula IB using the literals from the clique decomposi-
tion. If for instance (,)i I ic K I I∈ <∑ holds then the sub-formula IB cannot be satis-
fied and hence also B cannot be satisfied. Moreover we can handle a more general
case as it is described in the following definitions.

Definition 5 (Clique-consistent literal). A literal iy K∈ for {1,2, , }i n∈ … is said to
be clique-consistent with respect to the sub-formula IB if & (,)j I j i jc K I∈ ≠∑

(,)I c y I≥ − .

Definition 6 (Clique-consistent formula). A formula B is clique-consistent with
respect to the sub-formula IB if all the literals of the formula B are clique-consistent
with respect to IB .

It is easy to see that a clique-inconsistent literal with respect to some sub-formula of
B cannot be selected to be assigned the value true . Thus such literals can be ruled
out from further reasoning. The proof of this claim is provided in the technical report
[28]. In addition, this type of consistency is strictly stronger than the discussed unit
propagation, arc-consistency and singleton arc-consistency. The proof of this claim is
again given in [28].

The remaining question is how to select the described sub-formulas IB of B
which are used for computation of the clique-inconsistent literals. This selection is
crucial for the strength of the proposed clique-consistency. It is clear that we need to
rule out as many as possible inconsistent literals. As it is impossible to compute the
defined consistency with respect to all such sub-formulas of B , because there are too
many sub-formulas, we need to select a subset of them carefully. The experiments
carried out in [28] showed that a good strength of the clique-consistency can be ob-
tained by selecting clauses into the sub-formula IB which have the same number of
literals. More precisely, we use sub-formulas

r rI i I iB C∈= ∧ of B , where
{ {1,2, , }| }r iI i n m r= ∈ =… for all possible r ∈ for which

rIB is not empty (we
suppose that a clause of B does not contain an individual literal more than once). Let
us note that we do not know whether this selection is the best possible.

Theorem 1 (Complexity of clique-consistency enforcing algorithm). There exists a
polynomial time algorithm for enforcing clique-consistency with respect to a
sub-formula of a given input formula.

The proof of this theorem can be found in [28]. Having such an algorithm it is possi-
ble to extend it for multiple sub-formulas

rIB simply by running the algorithm for
each r ∈ for which

rIB is non-empty. Since r is proportional to the size of the
input the, resulting algorithm is also polynomial.

2.3 Output of the Reformulation Process

At this point everything is ready to introduce the final step of our reformulation
method. We will be constructing a modified formula β which is initially set to be
identical to B . We will further preprocess B by the singleton version of the defined
clique-consistency. Conflicts inferred by this further preprocessing will be stored in a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 367

new graph of conflicts 3 3 3(,)B B BG V E= which is initially set to be the same as the graph
2
BG . The graph 3

BG will be called a final graph of conflicts in this context.
Singleton clique-consistency is computed in the following way. For each literal y

of the input formula B we enforce clique-consistency for the formula obtained from
B by selecting a literal y to be assigned the value true . More precisely, clauses
containing y are removed and the negation of the literal y is removed from remain-
ing clauses of B (removal of a literal i

kx from the clause 1
im i

i j jxC == ∨ of the formula
B is defined as replacement of the clause iC by the clause 1

1 1) ()(imk i i
j j j k jx x−
= = +∨∨ ∨).

The clique-consistency is then enforced for the resulting formula. Some literals may
be found inconsistent during consistency enforcing. These literals are in conflict with
the literal y . If for some clause all its literals are found inconsistent with y then the
literal y cannot be selected to be true and a new clause y¬ is added to β
(yβ β← ∧ ¬). Otherwise the conflicting literals are stored in the graph of conflicts

3
BG as new edges (that is, if the literal y is in conflict with the literal z , the edge

{ , }y z is added to 3
BG).

If for some clause it is discovered by the clique-consistency that none of its literals
can be assigned the value true the process terminates with the answer that the for-
mula B cannot be satisfied. This outcome is ensured by the correctness of the
method. Our experiments showed that this situation is the most successful case, be-
cause an answer to the satisfiability is obtained in polynomial time without further
expensive search for a solution.

If the process does not terminate with the negative answer then all the edges of the
graph of conflicts 3

BG are translated into new clauses of the formula β . That is, for
every edge 3{ , } By z E∈ we add a clause y z∨ ¬ into the formula β
(()y zβ β← ∧ ∨ ¬). The resulting formula β is equivalent with the original input
formula B . Notice that the conflicts inferred by the preceding reformulation stages
are also reflected in the formula β , since the graph 3

BG subsumes the preceding
graphs of conflicts 1

BG and 2
BG . The formula β is finally sent to the SAT solver of

the user’s choice. Justification of this step is provided by the following corollary of
the correctness of the clique-consistency.

Fig. 2. A final graph of conflicts for the SAT benchmark problem pigeon-hole principle number
6 (hole06.cnf). The graph contains edges from the intermediate graph of conflicts from figure 1
plus the edges inferred by singleton clique-consistency.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

368 P. Surynek

Corollary 1 (Correctness of reformulation). The formula β resulting from the
described preprocessing has the same set of satisfying valuations as the original
 formula B .

The graph of conflicts 3
BG resulting from processing the intermediate graph of con-

flicts 2
BG for the SAT benchmark problem from figure 1 is shown in figure 2.

3 Experimental Results

We chose three state-of-the-art SAT solvers for comparison with our reformulation
method. The SAT solvers of our choice were zChaff [14, 21], HaifaSAT [15, 27]
and MiniSAT (a version with SATElite preprocessing integrated) [11, 12] (we
used the latest available versions to the time of writing this paper). Our choice was
guided by the results of several last SAT competitions [18, 25] in which these
solvers belonged to the winners. The secondary guidance was that complete source
code (in C/C++) for all these solvers is available on web pages of their authors. As
we implemented our method in C++ too, this fact allowed us to compile all source
codes by the same compiler with the same optimization options which guarantees
more equitable conditions for the comparison (a complete source code implement-
ing our method in C++ available at the web page: http://ktiml.mff.cuni.
cz/~surynek/software/ssat/ssat.html). All the tests were run on the machine with
two AMD Opteron 242 processors (1600 MHz) with 1GB of memory under Man-
driva Linux 10.2. Our method as well as the listed SAT solvers were compiled by
the gcc compiler version 3.4.3 with options provided maximum optimization for
the target testing machine (-O3 -mtune=opteron). Although the testing machine has
two processors no parallel processing was used.

3.1 Difficult SAT Instances Selected for Experiments

The testing set consisted of several difficult unsatisfiable SAT instances. This set of
benchmark problems was collected by Aloul [1] and it is provided at his research web
page. The details about hardness and construction of these instances are discussed in
[2], but let us briefly introduce the problems.

Pigeon Hole Instances. [hole] This is a standard SAT benchmark encoding the
pigeon hole principle problem. The problem asks whether it is possible to place 1n +
pigeons in n holes without two pigeons being in the same hole. The problem is
obviously unsatisfiable. We used six instances of this problem ranging from 6 to 12
holes.

Randomized Urquhart Instances. [urq] This set of benchmark problems contains
several artificially constructed hard unsatisfiable instances. More details about these
problems are provided in [29]. In addition, the problems were randomized for our
testing purposes. We used four instances of the problems of this type.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 369

Table 1. Experimental comparison of three SAT solvers over the selected difficult benchmark
SAT instances. We used the timeout of 10.0 minutes (600.00 seconds) for all the tests.

Instance Satisfiable
Number of vari-

ables / number of
clauses

MiniSAT
(seconds)

zChaff
(seconds)

HaifaSAT
(second)

chnl10_11 unsat 220/1122 34.30 7.54 > 600.00
chnl10_12 unsat 240/1344 101.81 9.11 > 600.00
chnl10_13 unsat 260/1586 200.30 11.47 > 600.00
chnl11_12 unsat 264/1476 > 600.00 33.49 > 600.00
chnl11_13 unsat 286/1472 > 600.00 187.08 > 600.00
chnl11_20 unsat 440/4220 > 600.00 329.57 > 600.00
urq3_5 unsat 46/470 95.04 > 600.00 > 600.00
urq4_5 unsat 74/694 > 600.00 > 600.00 > 600.00
urq5_5 unsat 121/1210 > 600.00 > 600.00 > 600.00
urq6_5 unsat 180/1756 > 600.00 > 600.00 > 600.00
hole6 unsat 42/133 0.01 0.01 0.01
hole7 unsat 56/204 0.09 0.04 0.02
hole8 unsat 72/297 0.49 0.23 0.94
hole9 unsat 90/415 3.64 1.46 478.16
hole10 unsat 110/561 39.24 7.53 > 600.00
hole11 unsat 132/738 > 600.00 32.36 > 600.00
hole12 unsat 156/949 > 600.00 372.18 > 600.00
fpga10_11 unsat 220/1122 44.77 12.58 > 600.00
fpga10_12 unsat 240/1344 119.26 33.82 > 600.00
fpga10_13 unsat 260/1586 362.24 76.15 > 600.00
fpga10_15 unsat 300/2130 > 600.00 274.84 > 600.00
fpga10_20 unsat 400/3840 > 600.00 546.00 > 600.00
fpga11_12 unsat 264/1476 > 600.00 55.70 > 600.00
fpga11_13 unsat 286/1742 > 600.00 237.54 > 600.00
fpga11_14 unsat 308/2030 > 600.00 > 600.00 > 600.00
fpga11_15 unsat 330/2340 > 600.00 > 600.00 > 600.00
fpga11_20 unsat 440/4220 > 600.00 > 600.00 > 600.00

Table 2. Experimental comparison of three SAT solvers with the method using clique- consis-
tency over the selected difficult benchmark SAT instances. Again timeout of 10.0 minutes
(600.00 seconds) for all the tests was used.

Instance Decided by
preprocessing

Cliques
(count x

size)

Decision
(seconds)

Speedup
ratio w.r.t.
MiniSAT

Speedup
ratio w.r.t

zChaff

Speedup
ratio w.r.t
HaifaSAT

chnl10_11 yes 20 x 11 0.43 79.76 17.53 > 1395.34
chnl10_12 yes 20 x 12 0.60 169.68 8.51 > 1000.00
chnl10_13 yes 20 x 13 0.78 256.79 14.70 > 769.23
chnl11_12 yes 22 x 12 0.70 > 857.14 47.84 > 857.14
chnl11_13 yes 22 x 13 0.92 > 652.17 203.34 > 652.17
chnl11_20 yes 22 x 20 5.74 > 104.42 57.41 > 104.42
urq3_5 no 47 x 2 130.15 0.73 N/A N/A
urq4_5 no 73 x 2 > 600.00 N/A N/A N/A
urq5_5 no 120 x 2 > 600.00 N/A N/A N/A
urq6_5 no 179 x 2 > 600.00 N/A N/A N/A
hole6 yes 6 x 7 0.01 1.0 1.0 1.0
hole7 yes 7 x 8 0.02 4.5 2.0 1.0
hole8 yes 8 x 9 0.04 12.25 5.75 23.5
hole9 yes 9 x 10 0.08 45.5 18.25 5977.00
hole10 yes 10 x 11 0.13 301.84 57.92 > 4615.38
hole11 yes 11 x 12 0.20 > 3000.00 161.8 > 3000.00
hole12 yes 12 x 13 0.30 > 2000.00 1240.6 > 2000.00
fpga10_11 yes 20 x 11 0.46 97.32 27.34 > 1304.34
fpga10_12 yes 20 x 12 0.64 186.34 52.84 > 937.50
fpga10_13 yes 20 x 13 0.84 431.23 90.65 > 714.28
fpga10_15 yes 20 x 15 1.39 > 431.65 197.72 > 431.65
fpga10_20 yes 20 x 20 4.72 > 127.11 115.67 > 127.11
fpga11_12 yes 22 x 12 0.76 > 789.47 73.28 > 789.47
fpga11_13 yes 22 x 13 1.01 > 594.05 235.18 > 594.05
fpga11_14 yes 22 x 14 1.30 > 461.53 > 461.53 > 461.53
fpga11_15 yes 22 x 15 1.67 > 359.28 > 359.28 > 359.28
fpga11_20 yes 22 x 20 5.96 > 100.67 > 100.67 > 100.67

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

370 P. Surynek

Field Programmable Gate Array Routing Instances. [fpga, chnl] This benchmark
problem resembles the pigeon hole problem. The question is whether it is possible to
route n connections through m tracks provided by the field programmable gate array
component. If n m> the problem cannot be satisfied. We used sixteen unsatisfiable
instances of this problem for various number of required routes and connections. Two
different encodings of the problem are used - denoted fpga and chnl. More details
about the encoding of this problem are provided in [23].

For each benchmark SAT instance we measured the overall time necessary to de-
cide its satisfiability. The results are shown in table 1 and table 2. The speedup ob-
tained by using our method compared to a selected SAT solver is also shown.

3.2 Effect of Problem Reformulation

As it is evident from our experiments the proposed method brings significant im-
provement in terms of time necessary for the decision of the selected difficult bench-
mark problems (Pigeon hole, FPGA routing instances). The improvements are in the
order of magnitude in comparison to all tested state-of-the-art SAT solvers. It seems
that the improvement on selected benchmarks is exponential with respect to the best
tested SAT solver. The conclusion is that there is still a space to improve SAT
solvers. However, the domain of the improvement is more likely in the difficult in-
stances of SAT problems which are typically unsatisfiable. It is also evident that the
clique-consistency is not an universal method for difficult SAT instances. There is no
improvement on instances where no cliques of reasonable size are found (randomized
Urquhart instances). The interesting feature of the tested SAT instances is that they
contain cliques of the same size. This may be accounted to the symmetrical formula-
tion of the problems.

In our further experiments we also performed the comparison with the RSAT
solver [24]. The results were very similar in the sense that the solver does not cope
well with these problems. Unfortunately the solver is provided without the source
code so we do not consider this test as a relevant one. Another SAT solver which
worth consideration for our tests (achieved good results in the SAT Race competition
[25]) - Eureka [22] - is not provided at all (no source code nor executables are
provided).

We also tested our approach on SAT instances where the preprocessing stage does
not terminate by the answer that the given SAT instance cannot be satisfied. This is
the situation when the problem is not decided by the preprocessing stage and a new
equivalent SAT instance is produced and sent to the solver. In such situations our
method does not provide competitive results. The resulting formula is typically solved
faster by the SAT solver but the preprocessing stage takes too much time. The unaf-
fordable time consumption in the preprocessing stage is caused by extensive propaga-
tion performed by the method by which huge numbers of conflicts are inferred. It
seems that on these problems the proposed approach is too strong and represents an
overhead only. The numbers of inferred conflicts is not proportional to the time saved
in the search for the solution stage. Moreover, as it was mentioned in the introduction,
there is almost no room for improving the SAT solvers on such easy (satisfiable) SAT
instances. However, this disadvantage may be overcome firstly by a better implemen-
tation of our technique (our current implementation is an experimental prototype and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 371

the quality of our code is uncompetitive with the quality of code of the tested SAT
solvers) and secondly by making the propagation less extensive on problems with
many conflicts (that is, not to infer all the conflicts).

The question may now be what to do with the method at current stage of imple-
mentation when we have a new problem of unknown difficulty. That is shall we use
the method or the SAT solver of our choice directly? Technically we can answer this
question as follows. We can run both the preprocessing method and the SAT solver in
parallel. On a machine with more than one processor we obtain an exponential
speedup (the method succeeds) or no improvement. On a machine with only one
processor we may obtain an exponential speedup at the expense of constant slow-
down. However, the ultimate goal of our implementing efforts is to answer this ques-
tion automatically within the preprocessing phase.

4 Related Works

Our method for SAT problem reformulation was originally proposed for solving
planning problems using planning graphs. It was named projection consistency and it
was described in the technical report [28] by Surynek. Clique-consistency proposed in
this paper is an adaptation of projection consistency for the SAT domain. In addition
to the description of projection consistency, the technical report contains theoretical
comparison of the proposed consistency with arc-consistency and singleton arc-
consistency (briefly said AC and SAC can be simulated by projection consistency;
moreover there are cases on which projection consistency propagates while AC and
SAC do not; the similar results hold for clique-consistency too).

The idea of exploiting structural information for solving problems is not new.
There is a lot of works concerning this topic. Many of these works are dealing with
methods for breaking symmetries [2, 4, 8]. We share the goal with these methods,
which is to reduce the search space. However, we differ in the way how we are doing
this. We are rather trying to infer what would happen if the search over the problem
proceeds in some way. And if that direction seems to be unpromising the correspond-
ing part of the search space is skipped. Symmetry breaking methods are rather trying
not to do the same work twice (or more times) by a clever transformation of the origi-
nal problem.

Our work was much influenced by the paper of Aloul, Markov and Sakallah [2].
We are studying the same set of difficult SAT problems. Nevertheless, it seems that
our method is simpler to implement and more effective on the set of selected testing
problems.

Another original approach to solving SAT problems is to exploit integer program-
ming (IP) techniques. An interesting combination of IP and SAT techniques is given
in [19]. The proposed IP approach is especially successful on difficult SAT problems.

Finally let us note that the detection of cliques in the structure of the problem is not
new. A work dealing with a consistency based on cliques of inequalities was pub-
lished by Sqalli and Freuder [26]. They use information about cliques to reach more
global reasoning about the problem. Another work dealing with the similar ideas is
[13] in which the authors use a graph structure of the problem to transform it into

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

372 P. Surynek

another formulation based on global constraints, which provide stronger propagation
than the original formulation.

5 Conclusions and Future Work

We proposed a method for preprocessing difficult (unsatisfiable) SAT instances based
on the greedy clique decomposition of the transformed input CNF formula. Although
the method is not universal it provides improvements in the order of magnitude com-
pared to the state-of-the-art SAT solvers on tested SAT instances. Moreover, our
method can be easily integrated into a SAT solver (new or existing) which may sig-
nificantly improve its performance on difficult SAT instances.

For future we plan to further tune the method to be able to cope better with the
problems having few edges in the graphs of conflicts (for example Urquhart in-
stances). This may be done by some alternative consistency technique instead of
singleton arc-consistency. We also plan to investigate the possibility to make the
preprocessing iterative. That is to further preprocess the formula resulting from the
previous preprocessing.

Another issue worth a deeper study is how the cliques of the clique decomposition
should look like in order to our method can succeed. Our further experiments showed
that better results can be obtained by using a clique decomposition where sizes of the
individual cliques differ little (having several cliques of the similar size is better than
having one large clique and several much smaller cliques).

We also plan to write an experimental SAT solver which would utilize the
clique-consistency during search. This may be useful for early determining that a
certain part of the search space does not contain a solution.

Finally an interesting research direction is some kind of a combination of existing
symmetry breaking methods and the proposed clique-consistency.

References

1. Aloul, F.A.: Fadi Aloul’s Home Page - SAT Benchmarks. Personal Web Page. University
of Michigan, USA (March 2007) http://www.eecs.umich.edu/ faloul/benchmarks.html

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving Difficult SAT Instances in
the Presence of Symmetry. In: (DAC 2002). Proceedings of the 39th Design Automation
Conference, USA, pp. 731–736. ACM Press, NewYork (2002)

3. Allen, J., Hendler, J., Tate, A. (eds.).: Readings in Planning. Morgan Kaufmann, San Fran-
cisco (1990)

4. Benhamou, B., Sais, L.: Tractability through Symmetries in Propositional Calculus. Jour-
nal of Automated Reasoning, vol. 12-1, pp. 89–102. Springer, Heidelberg (1994)

5. Bessière, C., Debruyne, R.: Optimal and Suboptimal Singleton Arc Consistency Algo-
rithms. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pp. 54–59, Canada, Professional Book Center (2005)

6. Blum, A.L., Furst, M.L.: Fast Planning through Planning Graph Analysis. In: Artificial In-
telligence 90, pp. 281–300. AAAI Press, Stanford, California, USA (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Difficult SAT Instances Using Greedy Clique Decomposition 373

7. Cook, S.A.: The Complexity of Theorem Proving Procedures. In: Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, USA, pp. 151–158. ACM Press,
NewYork (1971)

8. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-Breaking Predicates for
Search Problems. In: KR-96. Proceedings of the 5th International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp. 148–159. Morgan Kaufmann, San
Francisco (1996)

9. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
10. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of proposi-

tional Horn formulae. Journal of Logic Programming 1(3), 267–284 (1984)
11. Eén, N., Sörensson, N.: MiniSat — A SAT Solver with Conflict-Clause Minimization. In:

Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, Springer, Heidelberg (2005)
12. Eén, N., Sörensson, N.: The MiniSat Page. Research Web Page. Chalmers University,

Sweden (March 2007) http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
Main.html

13. Frisch, A.M., Miguel, I., Walsh, T., CGRASS,: A System for Transforming Constraint
Satisfaction Problems. In: O’Sullivan, B. (ed.) Recent Advances in Constraints. LNCS
(LNAI), vol. 2627, pp. 15–30. Springer, Heidelberg (2003)

14. Fu, Z., Marhajan, Y., Malik, S.: zChaff. Research Web Page. Princeton University, USA,
(March 2007) http://www.princeton.edu/~chaff/ zchaff.html

15. Gershman, R., Strichman, O.: HaifaSat – a new robust SAT solver. Research Web Page.
Technion Haifa, Israel, (March 2007) http://www.cs.technion.ac.il/~gershman/HaifaSat.
htm

16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London
(1980)

17. Kautz, H.A., Selman, B.: Planning as Satisfiability. In: ECAI-92. Proceedings of the 10th
European Conference on Artificial Intelligence, Austria, pp. 359–363. John Wiley and
Sons, Chichester (1992)

18. Le Berre, D., Simon, L.: SAT Competition 2005. Competition Web Page.Scotland (March
2007) http://www.satcompetition.org/2005/

19. Li, R., Zhou, D., Du, D.: Satisfiability and integer programming as complementary tools.
In: ASP-DAC 2004. Proceedings of the 2004 Conference on Asia South Pacific Design
Automation: Electronic Design and Solution Fair 2004, Japan, pp. 879–882. IEEE Press,
Orlando, Florida, USA (2004)

20. Mackworth, A.K.: Consistency in Networks of Relations. In: Artificial Intelligence, vol. 8,
pp. 99–118. AAAI Press, Stanford, California, USA (1977)

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: DAC-2001. Proceedings of the 38th Design Automation Confer-
ence, USA, pp. 530–535. ACM Press, NewYork (2001)

22. Nadel, A.: Alexander Nadel’s Page. Research Web Page. Tel Aviv University, Israel
(March 2007) http://www.cs.tau.ac.il/ ale1/

23. Nam, G.-J., Sakallah, K.A., Rutenbar, R.: A New FPGA Detailed Routing Approach via
Search-Based Boolean Satisfiability. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21-6, pp. 674–684. IEEE Press, Orlando, Florida,
USA (2002)

24. Pipatsrisawat, K., Darwiche, A.: RSat - ...veRSATile... Research Web Page. University of
California Los Angeles, USA (March 2007) http://reasoning.cs.ucla.edu/rsat/

25. Sinz, C.: SAT-Race 2006. Competition Web Page, USA, (March 2007) http://fmv.jku.at/
sat-race-2006/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

374 P. Surynek

26. Sqalli, M.H., Freuder, E.C.: Inference-Based Constraint Satisfaction Supports Explanation.
In: AAAI-96 / IAAI-96. Proceedings of the 13th National Conference on Artificial Intelli-
gence and 8th Innovative Applications of Artificial Intelligence Conference, pp. 318–325.
AAAI Press / The MIT Press, Stanford/Cambridge (1996)

27. Strichman, O., Gershman, R.: HaifaSat: a New Robust SAT Solver. In: Ur, S., Bin, E.,
Wolfsthal, Y. (eds.) Hardware and Software, Verification and Testing. LNCS, vol. 3875,
pp. 76–89. Springer, Heidelberg (2006)

28. Surynek, P.: Projection Global Consistency: An Application in AI Planning. Technical re-
port, ITI Series, 2007-333, Charles University, Prague, Czech Republic http://iti.mff.cuni.
cz/series (2007)

29. Urquhart, A.: Hard Examples for Resolution. In: Journal of the ACM, vol. 34, pp. 209–
219. ACM Press, NewYork (1987)

30. Velev, M.N., Bryant, R.E.: Effective Use of Boolean Satisfiability Procedures in the For-
mal Verification of Superscalar and VLIW Microprocessors. Journal of Symbolic Compu-
tation (JSC) 35-2, 73–106 (2003)

31. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. In: Proceedings of the
4th International Symposium on Artificial Intelligence and Mathematics, USA (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures

Lorenza Saitta1 and Jean-Daniel Zucker2,3

1 Università del Piemonte Orientale, Dipartimento di Informatica
Via Bellini 25/G, Alessandria, Italy

2 LIM&BIO, EA3502, Univ. Paris 13, 74 rue Marcel Cachin, 93017 Bobigny, France
3 UR 079 GEODES, IRD, 32 avenue Henri Varagnat, 93143 Bondy, France

Abstract. Abstraction is fundamental for both human and artificial
reasoning. The word denotes different activities and process, but all are
intuitively related to the notion of complexity/simplicity, which is as
elusive a notion as abstraction. From an analysis of the literature on ab-
straction and complexity it clearly appears that it is unrealistic to find
definitions valid in all disciplines and for all tasks. Hence, we consider a
particular model of abstraction, and try to investigate how complexity
measures could be mapped to it. Preliminary results show that abstrac-
tion and complexity are not monotonically coupled notions, and that
complexity may either increase or decrease with abstraction according
to the definition of both and to the specificities of the considered domain.

1 Introduction

Abstraction is an essential activity in human perception and reasoning. In Ar-
tificial Intelligence it has been investigated in problem solving [25,22,9,6,13], in
problem reformulation [18,31], and also in machine learning [3,20,8,16,1].

In all the disciplines where it plays an important role, abstraction is intuitively
related to the notion of complexity/simplicity, but this link does not make its
definition any easier, as complexity (or simplicity) seems to be an equally elusive
notion [19,29,5]. In fact, in the last decade a great number of different definitions
of complexity have been put forwards: in Complex System theory, in Physics and
in Biology the notion of complexity has been widely debated without arriving at
a received view.

Even from a superficial analysis of the literature on both abstraction and
complexity it clearly appears that it is unrealistic to hope to find a definition of
either abstraction or complexity valid in all disciplines and for all tasks. Nev-
ertheless, abstraction appears to be an ideal framework to investigate system
complexity, as it is related to all its important aspects, namely the scale, the
relevance and the organization degree. As several of the introduced measures of
complexity are actually uncomputable, we take a more practical approach, by
considering computable approximations of them, and then trying to investigate
how those measures could be possibly mapped to a specific model of abstraction.
Even though the investigation is very preliminary, it may be a starting point for
a fruitful cross-fertilization between works in abstraction and complexity.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 375–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

376 L. Saitta and J.-D. Zucker

Due to the difficulties of defining abstraction in general, recent work con-
centrated rather on abstraction as a hierarchical representation, or to its use
in concrete problem solving (see, for instance,[12],[4]). Most existing formal or
informal definitions of abstraction are somewhat circular: they define abstrac-
tion as a mapping from complex to simpler representations, without specifying
what the intended notion of simplicity is. The idea of this paper is to start
from a definition of abstraction that is not directly related to any specific no-
tion of complexity (yet being intuitively acceptable), and, afterwards, to use
this definition to investigate whether it matches some of the existing complexity
measures, sampled from the different approaches to the problem, in order to see
if abstraction is actually counter-varying w.r.t. complexity (i.e., more abstract
is less complex).

2 Theories of Abstraction

Before describing some models of abstraction proposed in the literature, we
briefly recall the representation framework R proposed by Saitta and Zucker
[27,28], which has the potential of unifying previously proposed approaches, and
is presented in Fig. 1. The framework is based on the observation that when a
concrete problem has to be solved, a conceptualization of the domain of interest is
necessary. This conceptualization involves both general knowledge, consisting of
time-invariant laws and statements, independent of the specific problem at hand
(we call this a theory T), and problem-specific, contingent knowledge, related to
the specific situation. Moreover, the knowledge involved can be represented both
intensionally (by means of a language L) and extensionally (in a database D).
The language is exactly the bridge between the two representations, the syntactic
and the semantic one. The model has already been used in several applications,
such as machine learning [8], cartographic generalization [20], databases [30],
symbol grounding in robotic vision [28], and model-based diagnosis [26].

In order to solve a problem or to perform a task, an interaction with the ex-
ternal world is necessary. We call the process of acquiring information from the

D

Databaseanchoring Interpretation

T

Theory

L

Language
P

Perception

memorisation

R = Representation Framework

description

Fig. 1. Representation Framework R. The theory T contains general knowledge, ex-
pressed by means of the language L. The database D contains the specification of the
particular individuals/objects considered in the domain, together with their attributes,
and a set of relations and functions involving them.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 377

external world a perception P . The perception includes both a description of the
specific context/problem at hand, and the type of sensors used to acquire the
information. The primary role of perception is to bias the knowledge represen-
tation and reasoning processes, as Goldstone and Barsalou [10] claim it happens
for human reasoning. Formally, we introduce the following:

Definition 1. A Representation Framework R is a 4-ple (P, D, L, T), where
P is a perception, D is a database, L is a language, and T is a theory.

In the past, abstraction mappings have been defined referring to single compo-
nents of R. In order to unify the description of these mappings, let us consider
a (part of the) world W to be analysed, and let Rg be a representation of W ,
which we call, conventionally, ground. Let Ra be another representation of W ,
which we call, instead, abstract. The relations between Rg and Ra are described
in Fig. 2. For each component in R we define a set of abstraction operators,
which transform a ground representation of the appropriate type into the cor-
responding abstract one. In particular, operators denoted by ω operate at the
perception level, operators denoted by δ operate at the database level, operators
denoted by λ operate at the language level, and operators denoted by τ operate
at the theory level.

Dg

Database

RFg ground description framework

anchoring
Interpretation/description

Tg

Theory

Lg

Language

Pg

Perception

Da

Database

RFa abstract description framework

Ta

Theory

Pa

Perception

La

Language

memorisation

Interpretation/descriptionmemorisation

Data
Abstraction

Data Abstraction
[Nayak & Levy, 99]

Predicate-
State

Abstraction
[Giunchiglia and Walsh, 92]

Formula/

Theory
Abstraction

[Plaisted,81]

Percepts
Abstraction

[Goldstone and Barsalou, 98]
[Hobbes,85; Imielisnky,87]

[Saitta & Zucker, 98]

Abstraction

anchoring

A
b
stra

ction
T
h
eory

Fig. 2. Relation between a ground and an abstract representation framework. Abstrac-
tion mappings can be defined for any of the components of the framework.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

378 L. Saitta and J.-D. Zucker

Informally, an abstraction is a transformation from a ground framework Rg to
an abstract one, Ra, i.e., Ra = A(Rg), where A = {ω, δ, λ, τ}, and Pa = ω(Pa),
Da = δ(Dg), La = λ(Lg), and Ta = τ(Tg).

Previous theories of abstraction mostly focused on one of this operator types.
For instance, Plaisted [22] has provided a foundation of theorem proving with
abstraction, which is seen as a mapping from a set of clauses to another one
that satisfies some properties. This approach, which corresponds to defining
some operator τ at the theory level, was not concerned with any other of the
representation components in Fig. 2.

Tenenberg [32] starts from Plaisted’s work and defines abstraction as a map-
ping between predicates, which preserves logical consistency. He defines an ab-
straction either as (i) a predicate mapping (a renaming of predicate symbols),
or (ii) a mapping of clauses based on predicate mapping, where only consistent
clauses are kept. Tenenberg’s definition of abstraction is therefore both at the
language level (operator type λ) and at the theory level (operator type τ).

Giunchiglia and Walsh [9] have extended Plaisted’s approach and reviewed
most of the work done at the time in reasoning with abstraction. They informally
define abstraction as a mapping from a ground representation onto an abstract
one, which preserves certain desirable properties and is simpler to handle. Like
in Tenenberg’s approach, Giunchiglia and Walsh’s abstraction is defined at the
level of language (λ) and theory (τ).

On the contrary, Nayak and Levy [21] proposed a semantic theory of ab-
straction. This theory defines abstraction as a model level mapping rather than
predicate mapping, i.e., abstraction is defined at the database level (operator
type δ). Nayak and Levy’s view of abstraction is a two-step process: the first
one consists in a limited abstraction of the domain model, and the second one in
constructing a set of abstract formulas to capture the abstracted domain model
(operator types λ and τ).

Finally, other approaches can be implicitly or explicitly cast at the ”percep-
tion” level; for instance, Hobbs [11] aimed at generating, out of an initial theory,
computationally more tractable ones, by focusing on the granularity of objects
or observations. In an analogous way, Imielinski [14] proposed an approximate
reasoning framework for abstraction, by defining an indistinguishability relation
among objects of a domain. Saitta and Zucker [27] proposed the KRA model,
introducing the possibility of defining abstraction also at the perception level.

The previously mentioned definitions of abstraction mappings are special cases
of the KRA model, which, in addition, offers the means to compare them across
all representation components.

3 The KRA Abstraction Model

In this section we briefly describe the KRA model. Discussing the merits/
drawbacks of this model is out of the scope of this paper and we take it as
a given framework for analysing abstraction.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 379

Let R = (P , D, L, T) be a representation framework, describing a world W in
view of performing some task. Relevant information from W is obtained via the
perception P , which consists of the 5-ple P = (OBJ,ATT,FUNC,REL,OBS),
where OBJ contains the types of objects considered in W , ATT denotes the types
of attributes of the objects, FUNC specifies a set of functions (in particular the
sensors used to acquire information from W), and REL is a set of relations among
object types. The set OBS of observations contains the actual measurements of
the specific problem/task, including the actual objects considered (having one of
the type in OBJ), the values of their attributes (which are described in ATT), the
values of the functions (which are described in FUNC), and the tuples of objects
satisfying the relations (which are described in REL).

More precisely, these sets can be expressed as follows:

– OBJ = {TYPEi|1 ≤ i ≤ N}
– ATT = {Aj : TYPEj → Λj|1 ≤ j ≤ M}
– FUNC = {fk : TYPEik × TYPEjk × ... → Ck|1 ≤ k ≤ S}
– REL = {rh ⊆ TYPEih × TYPEjh |1 ≤ h ≤ R}

The perception defines an ontology of the domain and grounds the theory. The
set OBS cannot be defined in general, because it refers to a particular system.
For the sake of exemplification we introduce a simple running example, that will
be used throughout the paper.

Example 1. Let us consider the world consisting of pictures with n × m pixels.
We can define the following perception:

– OBJ = PIXEL
– ATT = {x : PIXEL → X ; y : PIXEL → Y }
– FUNC = {color : PIXEL → PALETTE}
– REL = {samecolor ⊆ PIXEL × PIXEL}

The above perception states that our world consists of pictures composed by
nm pixels, each one specified by a unique identifier and by its coordinates (x, y).
A color sensor assigns to each pixel one element of a color palette. Finally,
a color comparator perceives that two pixels are of the same color. For the
co-domains of the functions we have: X = {1, 2, ..., n}, Y = {1, 2, ..., m}, and
PALETTE = {white, orange, pink, ..., black} [24].

Observations OBS includes the identifiers a1, ..., an·m of the pixels (ordered,
for instance, by rows), the values {x(ai), y(ai), color(ai)|1 ≤ i ≤ n · m}, and the
set of pairs {(ai, aj)|color(ai) = color(aj), 1 ≤ i, j ≤ n · m}.

Concerning the language, we choose a typed logical language L = {P,F,C},
with the set of predicates P = {pixel(v),x(v, i),y(v, j), color(v, λk), adj(u, v),
samecolor(u, v), equal(h, k)}, and the set of functions F = {color : PIXEL →
PALETTE, |h−k| : N×N → N, max(h, k) : N×N → N}. The functions |h−k|
and max(h, k), as well as the set N of nonnegative integers, have been introduced
because they are used in the theory.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

380 L. Saitta and J.-D. Zucker

The set of constants C coincides with the set of objects defined in OBS,
because we assume that the constants denoting the objects/values in L coincide
with their identifiers in the domain (for instance, pixel ai has name ai). The
theory consists of one formula, describing the adjacency of two pixels:

T = {adj(u, v) ← pixel(u) ∧ pixel(v) ∧ x(u, i1) ∧ y(u, j1) ∧
x(v, i2) ∧ y(v, j2) ∧ equal(max(|i2 − i1|, |j2 − j1|), 1)} (1)

Finally, we must define the database D. Tables in D are associated to predicates,
functions and formulas in the perception and in the theory. Some tables can be
derived from others using the operators of relational algebra. What to store
explicitly and what to leave to be derived on demand is up to the designer. In
the case of the example, we have considered the following tables:

D = {TablePixel, TableColor, TableSameColor, TableAdjacent},

where TablePixel= (pixel, x, y), TableColor= (pixel, color), TableSameColor
= (pixel1, pixel2, color), TableAdjacent(pixel1, pixel2).

Both TablePixel and TableColor are populated directly by OBS, by mea-
suring the coordinates of the pixels and registering their color. Using the op-
erators of relational algebra, TableSameColor can be derived from TableColor
through renaming, selection and projection operations.

Let us consider now two representation frameworks, Rg = (Pg, Dg, Lg, Tg) and
Ra = (Pa, Da, La, Ta). We call Rg a ground framework. An abstraction mapping
can be defined between Rg and Ra. Once Pg is given, any particular system (in
the chosen domain) can be obtained by assigning values to a set of variables
(representing objects, attributes, function values, and tuples in relations). Each
assignment to all these variables is a configuration γg. Let Γg be the set of the
possible ground configurations. In an analogous way, we can define the set Γa of
all possible abstract configurations (for more details, see [27]).

Then, we define an abstraction as follows:

Definition 2. Given two representation frameworks Rg and Ra, if there exists
a mapping Γg → Γa, such that the mapping associates subsets of Γg to single
elements of Γa, we say that Ra is more abstract than Rg.

In Definition 2 abstraction is seen as a relative rather than an absolute notion,
and is defined between representation frameworks and not single objects. The
analysis of the meaning and implications of this definition is out of the scope
of this paper, and we will rely on its intuitive understanding. Substantially, the
definition says that abstraction performs some kind of information aggregation,
simplifying thus representations, and, possibly, reasoning.

Concretely, we only consider mappings that can be obtained from the ap-
plication of a set of the above introduced abstraction operators, which gener-
ate abstract configurations starting from ground ones. Some operators can be
domain-independent, and some are domain-specific. Considering abstraction as
a process consisting of operators application has the limit that not all possible
mappings between Rg and Ra can be actually realized, but it has the advantage

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 381

that compatibility conditions can be requested, and quantities to be conserved
can be specified (for instance, diagnosability). Finally, abstraction is a transitive
relationship, and it induces a partial order among representation frameworks.
The introduction of operators provides a constructive semantics to abstraction.

The basic idea underlying this notion of abstraction tries to capture the variety
of a world, i.e., the number of possible alternative configurations. In fact, a world
with just one configuration would not be interesting at all, as nothing can happen
in it. On the other hand, less configurations means a greater ease to handle the
world. Then, abstraction makes a world easier to be reasoned about/acted upon,
but poorer in diversity.

In order to illustrate the idea, let us consider again the running example. If
we look at pictures with a less sensitive color detector, we may have the color of
each pixel categorized, for instance, into 8 classes, forming an abstract palette:

PALETTEa = {black, violet, blue, brown, green, red, yellow, white}.

In the abstract perception Pa the only changes, w.r.t. Pg, are the function
set FUNCa, which now contains a function colora : PIXEL → PALETTEa

instead of colorg : PIXEL → PALETTEg, and the observation OBSa, where
the color of each pixel belongs now to PALETTEa and not to PALETTEg.

The change in the perception is performed by an operator

ωcol(PALETTEg,PALETTEa),

which reduces the codomain PALETTEg of the function colorg(v) to
PALETTEa, by letting some of the elements of PALETTEg collapse into
single elements of PALETTEa.

In the database, the values belonging to PALETTEg occur in the column
”color” of both TableColor and TableSameColor. The operator

δcol(T, color,PALETTEg,PALETTEa),

corresponding to ωcol, changes the values of the color stored in column ”color”
of table T according to the mapping specified by ωcol. Operator δcol is applied
to TableColor and TableSameColor; the other tables remain unchanged.

Regarding the language La, it is easy to see that Pa = Pg,Fa = Fg −
{colorg(v)} ∪ {colora(v)},Ca = Cg − PALETTEg ∪ PALETTEa.

The abstract theory remains the same, namely Ta = Tg, because the single
formula in the theory does not depend on the color of the pixels.

4 Complexity Measures

The study of complex systems has raised a growing number of issues related
to the understanding of the very nature of complexity. Although there is no
general agreement on the definition of complexity, there is a convergence on
two basic idea: the first is that structure, organization, and diversity are key
features of complex systems, whereas the second is that complexity should not

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

382 L. Saitta and J.-D. Zucker

monotonically increase with disorder. In this section we mention a few of the
measures proposed in the literature, trying to link them to the notions introduced
in Section 3. The complexity measures have been sampled among the existing
ones, and are meant to be representative of different approaches to describe
complexity. In particular, we will consider measures based on Turing machines,
and statistical measures either related to order/disorder or to self-similarity.

4.1 Turing Machine-Based Complexity Measures

One of the first and better known measure of complexity is Kolmogorov-Chaitin
Algorithmic Complexity, also called Algorithmic Information Content (AIC),
which states that the complexity of an object x is the length, in bits, of the
shortest program that, run on a Universal Turing Machine, outputs x and halts.
Then, given a universal Turing machine U , we can write:

K(x) = min
π|U(π)=x

	(π) + O(1), (2)

where π is a program on U and 	(π) is its length in bits. The complexity K(x)
is machine-independent up to an additive constant. Unfortunately, Kolmogorov
complexity is not computable.

Starting from AIC, Vitanyi [33] observed that the information provided by
this measure can be divided into two parts: one accounting for the useful regular-
ities present in the object, i.e., the meaningful information, and one accounting
for the remaining accidental information. According to Vitanyi, it is the first
one which is most useful. An idea similar to Vitanyi’s has been proposed both
by Gell-Mann and Lloyd [7], who introduced the effective complexity (the length
of a highly compressed description of the regularities of an object), and by Kop-
pel [17], who called sophistication the useful part of the two-part code of the
description encoding.

All the above measures capture a complexity linked to the description of
an object, but tell nothing about how difficult it is to actually (re)construct
the object. Criticizing Kolmogorov’s approach, Bennett [2] invokes, as a better
notion of an object’s complexity, the time required by a Turing machine to
actually generate the object, which he call logical depth. The notion of complexity
defined by Bennett may be at odds with Kolmogorov’s one, as it is possible that
an increase in one measure corresponds to a decrease in the other. To complete
his definition, Bennett chooses, for computing the complexity of an object, a
program whose length is no more than s bits longer than the shortest one. It
is clear that the logical depth (or approximations thereof) also depends on a
Turing Machine, and, hence, cannot be computed.

4.2 Statistical Complexity Measures

Statistical measures of complexity tend to link complexity to disorder/order, and
usually they make use of the entropy of a system. Starting from the observation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 383

that both totally ordered systems and totally disordered ones are intuitively
simple, Lopez-Ruiz et al. [23] have proposed a complexity measure, called nor-
malized complexity, which is low in both those cases and increases in between.
This measure takes into account both the information stored in a system (its
entropy H), and its disequilibrium D, i.e., its distance from an equiprobable
distribution (N is the number of states):

D =
N∑

i=1

(
pi − 1

N

)2

(3)

The normalized complexity is then defined as CLMC = H · D.
Notwithstanding its intuitive appeal, this measure has been considered by

Feldman and Crutchfield [5] as inadequate to capture complexity, because the
disequilibrium term is a non extensive1 quantity. In order to overcome this draw-
back, these authors propose a modification to CLMC : they express D by means
of the Kullback-Leibler distance, obtaining thus:

C′(Y) = H(Y) · KL(Pr(y)‖1/N) (4)

In an attempt to unify a number of previously proposed complexity measures,
Shiner at al. [15] have proposed a parameterized measure, namely a simple mea-
sure of complexity Γ (αβ), which, by varying its two parameters α and β, shows
different types of behavior: increasing with order, increasing with disorder, or
reaching a maximum between order and disorder. The measure Γ (αβ) is easy to
compute and is independent from the system size. By defining the disorder as
Δ = H/Hmax, where H is the system entropy, and the order as Ω = 1 − Δ,
Γ (αβ) is defined as:

Γ (αβ) = Δα Ωβ (5)

Γ
(αβ)
g , as a function of Δ, is 0 at the extremes of the interval [0, 1] and has a

maximum at Δ = α
α+β .

A rather different approach is taken by Wolpert and Mcready [34], who base
their notion of complexity on the self-dissimilarity degree a system exhibits
when analysed at different scales. The idea is to consider an embedded sequence
of spaces (scales) Ωs. At a given scale, let πs be the probability distribution over
the system’s states. If two scales s2 > s1 are considered, the mapping between
the two is described by a set of mapping ρ

(i)
s1←s2 . The knowledge of πs2 and

ρ
(i)
s1←s2 allows the new distribution πs1 to be computed. In order to make a

comparison between the scales, these last are reduced to a single one by means
of the transformations s2 → sc and s1 → sc, where sc ≥ Max[s1, s2]. When the
tansformation is accomplished, the two resulting distributions can be compared,
using, for instance, the Kullback-Leibler distance.

1 An extensive quantity diverges as O(N) in the thermodynamical limit, i.e. when the
number of states N → ∞.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

384 L. Saitta and J.-D. Zucker

5 Abstraction and Complexity

Given an abstraction theory relating two frameworks, namely Ra = A(Rg), let
Γg → Γa be the abstraction mapping which it is based upon. In this section we
consider the relations between the abstraction defined in Section 3 and the com-
plexity measures mentioned in Section 4. The analysis will be mostly qualitative
in nature, but sufficient to point out that the relation between the two notions
is far from obvious.

5.1 Turing Machine-Based Complexity Measures

Let us consider first Kolmogorov complexity K(γ). Even though K(γ) is uncom-
putable, we can use an approximation of it by choosing a specific encoding for
the configurations in our domain. In fact, what we are interested in is not to find
the optimal (shortest) description of objects, but to see how a given encoding
changes across abstraction levels.

A very basic (but also general) encoding, independent of any consideration
about the type and frequency of the actual configurations γ ∈ Γ , is to establish a
one-to-one association between the elements of Γ and the integers between 1 and
N = |Γ | (codes). In this way, we can describe/transmit a particular γ simply
transmitting the integer that is its code. In this case, the cost in bits of the
description (its Kolmogorov complexity) is K(γ) = lg2N (ignoring the constant).
This value is the maximum needed to transmit ANY configuration. If the type
of the configurations is specified, other, more pertinent codings can be used, of
course. If we consider the two sets Γg and Γa, we obtain: K(γa) = lg2Na <
lg2Ng = K(γg). In fact, we have Na < Ng by definition. Then, Kolmogorov
complexity decreases when abstraction increases.

The same is true for Vitanyi’s meaningful information, Gell-Mann and Lloyd’s
effective complexity, and Koppel’s sophistication. In fact, the first part of a two-
part code for Γ is actually a program on a Turing machine, which describes the
regularities shared by many elements of it, leaving out exceptions (configura-
tions that the model does not match). Then, if M1 is the number of possible
models (with a given a-priori form) and N2 the number of exceptions, the com-
plexity of the above introduced coding is at most C(Γ) = lg2M1 + lg2

(
N
N2

)
.

Moving from Γg to Γa, existing regularities are conserved, so that the number of
possible models either decreases or remains constant. On the other hand, some
configurations that were exceptions in the ground space may by described by
the abstract model, so that their number either decreases or remains constant,
as well, without increasing M1.

For the sake of illustration, let us consider our running example. We have
Ng = Snm

g , with Sg = |PALETTEg|, and Na = Snm
a , with Sa = |PALETTEa|.

A configuration corresponds to a particular picture. Given any picture γg in the
ground space, it can be described with K(γg) = n · m · lg2Sg bits. If a user
receives this number, she is able to reconstruct the image, because she knows

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 385

which one it is. The abstract picture γa requires only K(γa) = n · m · lg2Sa bits
to be described. The complexity so evaluated is actually the one for printing
the picture, and is independent of the actual content (for instance, a uniformly
red picture and one with a complicated spatial distribution of colors require the
same number of bits).

Concerning the two-part code for describing the pictures, let us suppose that
we only consider ground pictures of sea, with rows m1 through m2 containing
only blue pixels (water), rows (m2 + 1) through m containing only hazel pixels
(sky), whereas the other rows may contain pixels of any colors. A model consists
of the pair (m1, m2). Then M1,g = m2−3m+2

2 . If the operator ωcol is applied,
the values ”blue” and ”hazel” collapse in the abstract space, and the model set
reduces to the pictures with the two upper strips collapsing. The number of
model is then M1,a = m − 1, which is smaller than M1,g for m � 4. At the same
time, some rows that had both blue and hazel pixels now became uniform, and
the corresponding picture, that was an exception in the ground space, is now
covered by the abstract model, reducing thus the number of exceptions.

The analysis of Bennett’s logical depth is more difficult. For simplicity, let us
assume that, given a configuration γ, its logical depth be the run time taken
by the program π, whose length is exactly its Kolmogorov complexity. Without
specifying the nature of the configurations, it is not possible to say whether
πa will run faster than πg. In fact, even though the abstract configurations are
”simpler” (according to Kolmogorov) than the ground ones, they may be more
difficult to generate. Then, the evaluation of the logical depth depends upon
the content of the considered world, and nothing can be said in general, except
that an abstract framework can be, according to Bennett, either simpler or more
complex than the ground one. This results derives from the fact that the logical
depth is a generative and not a descriptive measure of complexity.

5.2 Stochastic Measures of Complexity

In order to consider stochastic approaches to complexity, we need to extend the
representation framework described in Section 3 in order to accomodate prob-
ability. In particular, let us define a Stochastic Representation Framework SR
as a pair (R, π), where R is a representation framework, and π is a probability
distribution over the set Γ of configurations.

In order to compute the complexity in the abstract space, we have also to
extend the abstraction mapping:

Definition 3. Given two stochastic representation framework SRg = (Rg , πg)
and SRa = (Ra, πa), we require that

πa(γa) =
∑

γg∈Gg(γa) πg(γg) for each γa,

where Gg(γa) is the set of ground configurations that have γa as their image.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

386 L. Saitta and J.-D. Zucker

Let us consider now Lopez-Ruiz et al.’s normalized complexity CLMC , which
is the product of the entropy and the diversity of Γ . Then, the normalized
complexity of the ground space is:

CLMC(Γg) = H(Γg) · D(πg) =

= −
∑

γg∈Γg

πg(γg) log2πg(γg) ·
∑

γg∈Γg

(
πg(γg) − 1

Ng

)2

In the abstract space, we have instead:

CLMC(Γa) = H(Γa) · D(πa) =

= −
∑

γa∈Γa

πg(γa) log2πa(γa) ·
∑

γa∈Γa

(
πa(γa) − 1

Na

)2

Exploiting the properties of the entropy function, we get H(Γa) � H(Γg). For
what concerns the disequilibrium factor, we obtain D(Γa) � D(Γg) when:

∑
γa∈Γa

∑
γ1∈Sa

∑
γ2∈Sa,γ2 �=γ1

πg(γ1)πg(γ2) � 1
Na

− 1
Ng

(6)

Equation (6) may or may not be verified. As an example, if the probability
distribution over the ground configurations is uniform, then D(Γg) = 0, whereas
most likely D(Γa) �= 0; on the contrary, a uniform distribution over the abstract
configurations may not derive from a uniform distribution over Γg. Then, there is
no fixed relation between D(Γg) and D(Γa), and hence, CLMC(Γa) � CLMC(Γg).

Using our running example, let us assume that, for each pixel, all colors in
PALETTEg are equally likely, i.e., Pr(colorg(v) = λk) = 1

Sg
for each v ∈

PIXEL; moreover, colors are assigned to the pixels independently. Then, each
configuration γg has the same probability 1

Ng
= S−nm

g , because each of the nm

pixel has the same probability to be of any of the colors. In this case, the entropy
H(Γg) = nm log2Sg and D(Γg) = 0; then, CLMC(Γg) = 0.

Let us associate now, in PALETTEa, 2 ground colors to violet, 3 ground
colors to brown, 4 ground colors to green and red, and 5 ground colors to blue
and yellow, respectively, and keep black and white unchanged. The abstract
configurations, then, are no more equally likely. More precisely, the probability
distribution over abstract configurations only depends on the numbers of pixels
with a given color and not on their spatial distribution on the image. Then, the
probability distribution over Γa is a multinomial one:

πa(γa) = Pr(n1, ..., nSa) =
(

nm

n1 ... nSa

) Sa∏
k=1

pnk

k , (7)

where pk is the sum of the probabilities, in the ground space, associated to the
colors collapsed onto λk. Then, for Γa we have:

H(Γa) = −
∑

γa∈Γa

πa(γa) log2πa(γa)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 387

and

D(Γa) =
∑

γa∈Γa

(
πa(γa) − 1

Snm
a

)2

Finally:

CLMC(Γa) = −

⎡
⎣ ∑

γa∈Γa

πa(γa) log2πa(γa)

⎤
⎦

⎡
⎣ ∑

γa∈Γa

(
πa(γa) − 1

Snm
a

)2
⎤
⎦ > 0.

In this case, the normalized complexity increased with abstraction. If we want
that the opposite happens, we have to consider abstractions that tend to assign
probabilities to the abstract configurations as uniformly as possible.

If we consider the modification to the normalized complexity suggested by
Feldman and Crutchfield (see Section 4.2), the entropy in the new measure C′
does not changes, whereas the disequilibrium factor is replaced by the Kullback-
Leibler distance between the actual probability distribution over the configura-
tions and the uniform one. Then, in the ground space we have:

C′(Γg) = H(Γg) KL(πg(γg)‖1/Ng)

whereas in the abstract one:

C′(Γa) = H(Γa) KL(πa(γa)‖1/Ng)

Again, as either one of the distributions πg(γg) and πa(γa) can be closer to the
uniform one, there is no a fixed order between C′(Γg) and C′(Γa).

Let us consider Shiner at al.’s simple complexity. This measure is linked to
the notion of order/disorder of the system under consideration. Given Γg, its
maximum entropy is reached when all configurations have the same probabili-
ties, i.e., Hg,max(Γg) = log2Ng. The actual entropy of Γg is given by H(Γg) =
−

∑
γg∈Γg

πg(Γg) log2πa(γg). Then:

Δ(Γg) =
H(Γg)
Hg,max

and
Ω(Γg) = 1 − Δ(Γg)

The simple complexity Γ αβ assumes then the expression:

Γ αβ(Γg) =
(

H(Γg)
Hg,max

)α (
1 − H(Γg)

Hg,max

)β

The function Γ αβ(Γg) assume its maximum value when:

H(Γg) =
α

α + β
Hg,max

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

388 L. Saitta and J.-D. Zucker

In the abstract space we will have:

Γ αβ(Γa) =
(

H(Γa)
Ha,max

)α (
1 − H(Γa)

Ha,max

)β

The abstract simple complexity is lower than the ground one iff:

(
H(Γa)
Ha,max

)α (
1 − H(Γa)

Ha,max

)β

�
(

H(Γg)
Hg,max

)α (
1 − H(Γg)

Hg,max

)β

In other word:
(

H(Γa)
H(Γg)

)α (
Ha,mx − H(Γa)
Hg,max − H(Γg)

)β

�
(

log2Na

log2Ng

)α+β

(8)

Depending on the values of α and β and on the degree of uniformity of the
probability distributions over the ground and the abstract configurations, the
simple complexity may be larger in any of the two spaces.

As Wolpert and Mcready’s self-dissimilarity measure is based on the notion of
probability distribution difference across scales, this measure is not guaranteed
either to co-vary or counter-vary with abstraction.

6 Conclusions

In this paper we have started a preliminary investigation of the possible relations
between abstraction and complexity, suggested by the commonly accepted view
that abstraction, considered as a representation change, reduces complexity. To
this aim we have considered a particular model of abstraction, namely the KRA
model, which has the advantage of generalizing over several others.

Even from this limited study, it clearly emerges that the relations between
abstraction and complexity are articulated and far from obvious. In fact, accord-
ing to the complexity measure selected and the characteristics of the considered
representation space, complexity in the abstract space may increase, decrease or
stay the same, especially when probabilistic considerations are introduced. This
conclusion holds for all the statistical measures of complexity considered. Only
(an approximation of) Kolmogorov complexity decreases with abstraction.

This result suggests that the common understanding that abstraction reduces
complexity must be take with care, because it is necessary to explicitly define
what notion of complexity is taken into consideration. Moreover, this same re-
sult suggests that if specific requirements about the conservation of properties
across abstraction layers are requested, they can help selecting an appropriate
complexity measure, reflecting the specificity of the problem at hand. On the
opposite, choosing a complexity measure appropriate to a given problem may
act as powerful heuristic to limit the number of abstraction theories that are
possible in principle, if we want that complexity and abstraction counter-vary.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstraction and Complexity Measures 389

References

1. Anderson, S., Revesz, P.Z.: Verifying the incorrectness of programs and automata.
In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 1–13.
Springer, Heidelberg (2005)

2. Bennett, C.: Logical depth and physical complexity. In: Bennett, C. (ed.) The
Universal Turing Machine: A Half-Century Survey, pp. 227–257 (1988)

3. Bredeche, N., Shi, Z., Zucker, J-D.: Perceptual learning and abstraction in machine
learning: an application to autonomous robotics. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 36(2), 172–181 (2006)

4. Choueiry, B.Y., Iwasaki, Y., McIlraith, S.: Towards a practical theory of reformula-
tion for reasoning about physical systems. Artificial Intelligence 162(1-2), 145–204
(2006)

5. Feldman, D.P., Crutchfield, J.P.: Measures of statistical complexity: Why? Physics
Letters A 238, 244–252 (1998)

6. Ellman, T.: Synthesis of abstraction hierarchies for constraint satisfaction by clus-
tering approximatively equivalent objects. In: International Conference on Machine
Learning, Amherst, MA, Morgan Kaufmann, Seattle, Washington, USA (1993)

7. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total
information. Complexity 2(1), 44–52 (1996)

8. Giordana, A., Saitta, L.: Abstraction: a general framework for learning. In: Working
notes of the AAAI Workshop on Automated Generation of Approximations and
Abstraction, pp. 245–256, Boston, MA (1990)

9. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2-3),
323–390 (1992)

10. Goldstone, R., Barsalou, L.: Reuniting perception and conception. Cognition 65,
231–262 (1998)

11. Hobbs, J.: Granularity. In: Int. Joint Conf. on Artificial Intelligence, 432–435 (1985)
12. Holte, R.C., Grajkowski, J., Tanner, B.: Hierarchical heuristic search revisited. In:

SARA, pp. 121–133 (2005)
13. Holte, R.C., Mkadmi, T., Zimmer, R.M., MacDonald, A.J.: Speeding up problem-

solving by abstraction: A graph-oriented approach. Artificial Intelligence 85, 321–
361 (1996)

14. Imielinski, T.: Domain abstraction and limited reasoning. In: Proceedings of the
Intern. Joint Conf. on Artificial Intelligence, pp. 997–1003 (1987)

15. Shiner, J.S., Davison, M., Landsberg, P.T.: Simple measure for complexity. Physical
review E 59, 1459–1464 (1999)

16. Knoblock, C.: Learning hierarchies of abstraction spaces. In: 6th International
Workshop on Machine Learning, pp. 241–245, Ithaca, NY (1989)

17. Koppel, M.: Complexity, depth and sophistication. Complex Systems 1, 1087–1091
(1987)

18. Lowry, M.: The abstraction/implementation model of problem reformulation. In:
Int. Joint Conf. on Artificial Intelligence, pp. 1004–1010, Milano, Italy (1987)

19. Marczyk, J., Deshpande, B.: Measuring and tracking complexity in science. In:
Proceedings of the 6th International Conference on Complex Systems (2006)

20. Mustiere, S., Zucker, J.-D., Saitta, L.: An abstraction-based machine learning ap-
proach to cartographic generalization. In: Spatial Data Handling 2000 (SDH), pp.
150–163, Beijing, China (2000)

21. Nayak, P., Levy, A.: A semantic theory of abstraction. In: International Joint Con-
ference on Artificial Intelligence (IJCAI-95), pp. 192–196 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

390 L. Saitta and J.-D. Zucker

22. Plaisted, D.: Theorem proving with abstraction. Artificial Intelligence 16, 47–108
(1981)

23. Lopez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity.
Physics Letters A 209, 209–321 (1995)

24. Ravishankar, K.C., Prasad, B.G., Gupta, S.K., Biswas, K.K.: Dominant color re-
gion based indexing for cbir. In: iciap, 00:887 (1999)

25. Sacerdoti, E.: Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5,
115–135 (1974)

26. Saitta, L., Torasso, P., Torta, G.: Formalizing the abstraction process in model-
based diagnosis. Tr cs-2006/34, Univ. of Torino, Italy (2006)

27. Saitta, L., Zucker, J-D.: Semantic abstraction for concept representation and learn-
ing. In: Proc. of the Intern. Symposium on Approximation, Reformulation and
Abstraction (Asilomar, CA) (1998)

28. Saitta, L., Zucker, J.-D.: A model of abstraction in visual perception. Applied
Artificial Intelligence 15(8), 761–776 (2001)

29. Shalizi, C.: Methods and techniques of complex systems science: An overview. In:
Complex Systems Science in Biomedicine, pp. 33–114. Springer, NewYork (2006)

30. Sheeren, D., Mustiere, S., Zucker, J-D.: Consistency assessment between multi-
ple representations of geographical databases: a specification-based approach. In:
Fisher, P. (ed.) Developments in Spatial Data Handling, pp. 617–628. Springer,
Heidelberg (2004)

31. Subramanian, D.: A theory of justified reformulations. In: Paul, D. (ed.) Change
of Representation and Inductive Bias, pp. 147–167. Kluwer Academic Publishers,
Boston (1990)

32. Tenenberg, J.: Preserving consistency across abstraction mappings. In: Proceedings
of IJCAI-87, pp. 1011–1014, Milan, Italy (1987)

33. Vitanyi, P.: Meaningful information. IEEE Transactions on Information Theory 52,
4617–4630 (2006)

34. Wolpert, D., Macready, W.: Self-dissimilarity: An empirically observable complex-
ity measure. In: Proc. of the Intern. Conf. on Complex Systems (Nashua, NH)
(1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 391–392, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Abstraction, Emergence, and Thought

Russ Abbott

Department of Computer Science, California State University,
Los Angeles, Ca.

Russ.Abbott@GMail.com

Abstract. My research focuses on the relationships among abstraction, emer-
gence (as in the study of complex systems), and the externalization of thought
as software–in particular, on the application of computer science perspectives,
especially abstraction, to long-standing philosophical issues.

Keywords: Abstraction, emergence, thought externalization.

1 Emergence

A central issue in the study of complex systems is the nature of emergence, macro-
level effects from micro-level causes. The fundamental insight of [1] is that phenom-
ena that we tend to refer to as emergent are those that can be described independently
of their implementation, i.e., those that implement a level of abstraction. Although
levels of abstraction are common fare in computer science—and in some sense in
engineering, where they are known as requirements—we tend to be surprised when
we find that nature has implemented one without our help. Standard examples include
flocks of birds. We have focussed on such examples because we have discovered how
to create (something like) a flock abstraction with very simple implementation
mechanisms.

Even though emergence is the implementation of a level of abstraction, interactions
that occur according to the operations defined at a physically realized level of abstrac-
tion are epiphenomenal—just as interactions in software are also epiphenomenal. Both
are implemented in terms of lower level operations. Thus one is faced with the confus-
ing situation in which an abstraction is real but the actual interactions that realize op-
erations defined by the abstraction are epiphenomenal. This has led to what I refer to as
the blind spot of reductionism—the discarding of the baby of the abstraction with the
bathwater of the epiphenomenal interactions.

A second paper (in preparation) discusses the nature of physical entities. We define
a physical entity to be an instances of a level of abstraction. There are two kinds of
physical entities. Static entities such as atoms and molecules exist in energy wells and
have less mass than the aggregate mass of their components considered separately.
Dynamic entities such as hurricanes, biological organisms, and social and political
entities are famously far from equilibrium and depend on the importation of energy
from their environment to persist. Because of their persistent structure, they exhibit
reduced entropy. Hence physical entities so defined are objectively real.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

392 R. Abbott

Because they can be understood in isolation, static entities may be analyzed in
terms of their components. Supervenience is useful. Because they are necessarily
open to their environment, dynamic entities cannot be so analyzed. A flock (or a so-
cial club or a biological organism) persists even though the elements that compose it
may change. For these entities supervenience is not useful. It is their structure and
process that persist—maintained by energy acquired from their environment. It is the
task of the special sciences, i.e., those other than fundamental physics, to identify and
characterize the abstractions that nature implements.

2 Thought Externalization

Participants in the Conference on Unconventional Computation typically ask what
sorts of computations can be done using other than Von Neumann computers. In [2],
which won the conference best presentation award, I argued that one must first under-
stand what we mean by computation. My answer is that processes in the physical
world to which we apply the term computation are all externalized thought. Thus the
job of computer science is to find ways to express our thoughts in languages so that
when those expressions are performed by physical devices, the results are recognized
as a reasonable approximation to our original thoughts—or perhaps clarified variants
thereof. As such, computer science has rightfully been referred to as applied philoso-
phy, a field whose job is to clarify our thoughts sufficiently so that they may be ex-
pressed in an executable language. We have done an admirable job of creating ab-
stractions that are both executable and meaningful to us. The conceptual model of
every software library or application represents such a thought clarification process.
Similarly, most of the important sub-disciplines within computer science have devel-
oped a collection of abstractions that both (a) represent how we think about the im-
portant ideas of that sub-discipline and (b) provide guidance for how software that
imiplement those ideas may be written. To a great extent the goal of this conference is
to explore the more general abstractions that allow abstractions themselves to be rep-
resented in and manipulated by executable software.

Acknowledgment. I owe much to discussions with and the support of Debora Shuger.

References

1. Abbott, R.: Emergence Explained: Abstractions: Getting epiphenomena to do real work.
Complexity 12(1), 13–26 (2006)

2. Abbott, R.: If a tree casts a shadow is it telling the time. In: Calude, C.S., Dinneen, M.J.,
Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 41–56.
Springer, Heidelberg (2006) (A revised version to appear in the International Journal of Un-
conventional Computation.)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

What’s Your Problem?
The Problem of Problem Definition

J. Christopher Beck and Michael Gruninger

Department of Mechanical & Industrial Engineering
University of Toronto

{jcb,gruninger}@mie.utoronto.ca

Abstract. The first step in developing an application to solve a real world prob-
lem is to define the problem. Typically in applied mathematics, artificial intel-
ligence, and operations research, the definition process generates a well-defined
problem that is subsequently studied and, if the project is successful, solved (for
some appropriate definition of “solved”). Our thesis is that problem definition is
inherently a process of abstraction, reformulation, and approximation that has not
been deeply studied in the literature.1

1 A Definition of Problem Definition

Consultants and applied researchers are often faced with real-world objects: a chocolate-
bar factory or a set of operating theatres in a hospital to schedule, a classroom timetable at
a university to develop. For all but the most trivial such problems, the consultant is faced
with deciding what aspects of the situation should be included in a problem definition.
This is a critical set of decisions because the problem definition has a great influence on
the computational complexity of the eventual mathematical model of the problem as well
as the extent to which a solution to the problem is actually useful in the real world.

The problem definition process is inherently one of abstraction, approximation, and,
because it is likely to be iterative, reformulation. Can a production facility ignore the
variance in activity durations? Can it account for machine breakdown by only schedul-
ing machines at 80% capacity? Can we ignore tooling, the scheduling of human opera-
tors, upstream and downstream facilities? These issues are difficult to resolve because
the impact of the decisions are inter-dependent and may become known much later in
the development process (or never). Typically, it comes down to experience and, per-
haps, small-scale experiments with prototype systems.

Problem Definition �= Mathematical Modeling. The problem of problem definition
as sketched above is not the same as the “modeling problem” that has been extensively
studied in constraint programming and operations research. Modeling begins with a
complete problem definition and develops and compares different mathematical models
to solve the problem so defined.

1 This paper is less a research summary and more a description of what we think is an interesting
research direction. References to relevant work are solicited.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 393–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

394 J.C. Beck and M. Gruninger

2 Three Orthogonal Research Directions

An Experimental System. We do not know very much about the impact of problem
definition decisions on application success or failure. One, low-level direction, is to de-
velop a detailed simulation model of the real object such as a factory and use this as the
“real world” for experimentation.2 Given the simulation model, we could then develop
different problem definitions at different levels of abstraction and, crucially, evaluate
the impact of the levels of abstraction by solving the optimization models and “execut-
ing” the solutions in the simulation model. The primary question to investigate is the
trade-off between the quality of the executed solution vs. the computational complexity
of finding it and how the problem definition affects this trade-off.

Ontologies, Domain Modeling, and Problem Definition. An ontology is a set of
reusable, sharable logical definitions that can be used for knowledge representation.
With an ontology, such as Process Specification Language (PSL) [1], it is possible to
build a logical domain model of a given real-world problem. Nevertheless, the spec-
ification of a domain model is not easy; in particular, the problem definition must be
addressed: at what level of abstraction should the various real-world entities be rep-
resented? The answer, of course, is: at whatever level is sufficient for the application.
Sufficiency, however, must be judged by the outcome of the overall system. And so we
are left, again, to rely on judgment and experience.

However, an empirical approach may be possible. Imagine a set of applications in a
given area, such as production scheduling, that have both software systems and accom-
panying domain models. Based on differences (and changes during development) in
the software systems, the corresponding models, and the corresponding outcomes, we
may be able to begin to develop a predictive or advisory meta-system. Given a domain
model of a new production scheduling problem, the meta-system, by reasoning about
existing models and outcomes, may be able to provide predictions about performance
outcomes, advice on abstractions or refinements that might be useful, recommendations
for optimization technology, and “what-if” analysis.

A Methodology for System Engineering. Finally, given that the problem definition
problem appears AI-complete, it is likely to be a human activity for the foreseeable
future. The abstraction, approximation, and reformulation that is inherent in defining
and building software systems in general would seem to apply equally to optimization
systems.3 Building on software engineering, perhaps a methodology for system engi-
neering can be developed, incorporating ontologies and simulation prototypes.

References

1. Gruninger, M.: Ontology of the process specification language. In: Staab, S., Studer, R. (ed.)
Handbook of Ontologies, pp. 575–592 (2003)

2 The simulation model also requires a problem definition process. The hope is that it will be
more detailed and refined than any optimization model we would investigate.

3 Is building an optimization system different than building any other software system?

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Reformulation-Based Approach to Explanation
in Constraint Satisfaction

Hadrien Cambazard and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.cambazard,b.osullivan}@4c.ucc.ie

1 Introduction

Many approaches to explanation generation have been reported in the literature [1–5].
The dominant approach to explanation is based on computing minimal conflicting sets
of constraints. An explanation can be considered concise if it involves few constraints
of low arity. However, in many practical domains constraints are specified extensionally
as table constraints. From an explanation point of view, table constraints can prevent
us from finding concise explanations since the constraint may be specified over all the
variables in the problem. However, it is often possible to reformulate a large arity table
constraint into a set of low arity constraints whose join is logically equivalent to the
original table constraint. In this research we are concerned with finding reformulations
of large arity table constraints into low arity constraints in order to help find more
concise explanations in interactive applications such as product configuration or online
electronic commerce.

Example 1 (Reformulating a Positively Defined Table Constraint). Consider the follow-
ing table constraint which is defined by a set of allowed tuples:

C(x1, x2, x3, x4) ≡ {(0, 0, 0, 4), (1, 0, 0, 2), (2, 4, 1, 3), (0, 4, 2, 4), (2, 2, 3, 2)}.

The conjunction of the following constraints is logically equivalent to C:

C1(x1, x3) ≡ {(0, 0), (1, 0), (2, 1), (0, 2), (2, 3)},
C2(x1, x4) ≡ {(0, 4), (1, 2), (2, 3), (2, 2)},
C3(x2, x3) ≡ {(0, 0), (4, 1), (4, 2), (2, 3)},
C4(x2, x4) ≡ {(0, 4), (0, 2), (4, 3), (4, 4), (2, 2)}.

In the next section we explain how we compute the decomposition in this example. �

2 Reformulation for Explanation

We identify suitable reformulations of table constraints by exploiting functional depen-
dencies in the relation (the set of tuples) of the constraint. Functional dependencies
express the presence of structure in relations that can be useful to improve the design
of a database [6]. Given a relation R, a set of attributes X in R is said to functionally

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 395–396, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

396 H. Cambazard and B. O’Sullivan

determine another attribute y, also in R, written X → y, if and only if each X value is
associated with at most one y value. One can verify that {x1, x2} → x4 and {x3} → x2
are two functional dependencies that hold in constraint C of Example 1. Using the first
dependency, one can decompose C into: Ca(x1, x2, x4) and Cb(x1, x2, x3). Notice,
however, that x1 and x2 determine x4 independently, so the following decomposition
is also valid: C2(x1, x4), C4(x2, x4) and Cb(x1, x2, x3). Then by applying {x3} → x2
to Cb we get the final binary decomposition described in Example 1. Functional de-
pendencies can be determined using tools such as tane1. Approximate dependencies
can also be found, and are also useful for reformulating table constraints. We give an
example of the power of our approach for generating concise explanations.

Example 2 (Computing Concise Explanations using Functional Dependencies). Con-
sider the following three (positively defined) table constraints:

C1(x1, x2, x4, x5) ≡ {(0, 1, 1, 1), (1, 2, 2, 0), (1, 0, 0, 2), (2, 1, 1, 1)},
C2(x1, x3, x6, x7) ≡ {(2, 2, 0, 1), (1, 1, 0, 2), (1, 1, 2, 0), (2, 2, 1, 1)},
C3(x2, x3, x5, x7) ≡ {(0, 2, 1, 2), (1, 0, 2, 1), (1, 1, 2, 2), (2, 0, 0, 1)}.

This set of constraints is inconsistent. However, an explanation in the form of a minimal
conflict will contain all three 4-ary constraints. Constraint C1 can be decomposed, for
example, from the following functional dependencies: {x2} → x4 and {x2} → x5.
Using a reformulation based on functional dependencies we can decompose each of the
constraints as follows:

C1(x1, x2, x4, x5) ≡ C11(x1, x2) ∧ C12(x2, x4) ∧ C13(x2, x5),
C2(x1, x3, x6, x7) ≡ C21(x1, x3) ∧ C22(x1, x6, x7),
C3(x2, x3, x5, x7) ≡ C31(x2, x5) ∧ C32(x2, x3) ∧ C33(x3, x7).

where the relations of the constraints on the right are obtained by projecting their scopes
onto the relations of the constraints on the left. In this decomposition, we still have in-
consistency and an explanation of that is C11(x1, x2)∧C21(x1, x3)∧C32(x2, x3), which
is much more concise that the original explanation involving three 4-ary constraints. �

Acknowledgements. Supported by Science Foundation Ireland (Grant No. 05/IN/I886).

References

1. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic
CSPs application to configuration. Artif. Intell. 135(1-2), 199–234 (2002)

2. Junker, U.: QuickXplain: preferred explanations and relaxations for over-constrained prob-
lems. In: Proceedings of AAAI, pp. 167–172 (2004)

3. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations for inter-
active constraint satisfaction. In: Proceedings of CP, pp. 445–459 (2005)

4. O’Sullivan, B., Papadopolous, A., Faltings, B., Pu, P.: Representative explanations for over-
constrained problems. In: Proceedings of AAAI (forthcoming) (2007)

5. Sqalli, M.H., Freuder, E.C.: Inference-based constraint satisfaction supports explanation. In:
Proceedings of AAAI, pp. 318–325 (1996)

6. Ullman, J.D., Widom, J.D.: First Course in Database Systems. Prentice-Hall, Englewood
Cliffs (2002)

1 http://www.cs.helsinki.fi/research/fdk/datamining/tane/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integration of Constraint Programming and

Metaheuristics

Broderick Crawford1,2, Carlos Castro2, and Eric Monfroy2,3,�

1 Pontificia Universidad Católica de Valparáıso, Chile
FirstName.Name@ucv.cl

2 Universidad Técnica Federico Santa Maŕıa, Chile
FirstName.Name@inf.utfsm.cl

3 LINA, Université de Nantes, France
FirstName.Name@univ-nantes.fr

Abstract. Our research is focused on developing hybrid solvers for
Combinatorial Optimization Problems. We are concerned with the de-
sign of hybrid resolution approaches including Constraint Programming
and Metaheuristics. We have been working on that area during the last
years, exploring the different issues involved in algorithm design, imple-
mentation, tuning and experimental evaluation. We provide an overview
of the research we have completed as well as of the future work.

In order to be able to solve any combinatorial optimization problem it seems that
a good idea is to use both incomplete and complete techniques together. When
problems are easy enough to allow searching for the optimal solution, complete
techniques can be used. When problems become harder, incomplete techniques
represent a good alternative in order to solve approximately the problem. Par-
ticularly, promising possibilities of combining constraint programming (CP) and
metaheuristics are pointed out in [9,6,1,5].

Indeed, a complete search can guide constructive metaheuristics: constraint
propagation can be applied in order to restrict the neighborhood or prune the
search space. Complete techniques are also used in order to explore the neigh-
borhood of the current configuration selecting the next moves. Following these
ideas, in [2,3], we solve some benchmarks of subset problems with ant colony op-
timization (ACO) algorithms and some hybridizations of ACO with CP. Here, a
lookahead mechanism allows the incorporation of information on the anticipated
decisions that are beyond the immediate choice horizon. The ants solutions may
contain redundant components which can be eliminated by a fine tuning after
the solution, then we explore post processing procedures too. Computational
results are presented showing the advantages to use additional mechanisms to
ACO. In [4], we apply the same approach focus on the resolution of crew pairing
� The second author has been partially supported by the Chilean National Science

Fund through the project FONDECYT 1070268. The third author has been partially
supported by the Chilean National Science Fund through the project FONDECYT
1060373.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 397–398, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

398 B. Crawford, C. Castro, and E. Monfroy

optimization. We fix the difficulty of pure ant algorithms solving strongly con-
strained problems and we explore the addition of CP in the construction phase
of the ants, so they can complete their solutions.

From other point of view, metaheuristics and local search algorithms can
help a complete technique: in [8], we propose to use local search for guiding
enumeration. We extend the common variable selection strategies of CP and
we achieve the value selection based on a local search. Note that in constraint
programming, enumeration strategies (selection of a variable and a value of its
domain) are crucial for resolution performances.

At last, we plan to develop a software environment for prototyping hybrid
algorithms using dynamic strategies based on CP and metaheuristics [7].

References

1. Castro, C., Moossen, M., Riff, M.C.: A Cooperative Framework Based on Local
Search and Constraint Programming for Solving Discrete Global Optimisation. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 93–102.
Springer, Heidelberg (2004)

2. Crawford, B., Castro, C.: Improving the performance of Ant Algorithms using Con-
straint Programming. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 31–36.
Springer, Heidelberg (2006)

3. Crawford, B., Castro, C.: Integrating Lookahead and Post Processing Procedures
with ACO for Solving Set Partitioning and Covering Problems. In: Rutkowski, L.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI),
vol. 4029, pp. 1082–1090. Springer, Heidelberg (2006)

4. Crawford, B., Castro, C., Monfroy, E.: A constructive Hybrid Algorithm for Crew
Pairing Optimization. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS
(LNAI), vol. 4183, pp. 45–55. Springer, Heidelberg (2006)

5. Focacci, F., Laburthe, F., Lodi, A.: Local Search and Constraint Programming. In:
Handbook of metaheuristics, Kluwer Academic Publishers, Dordrecht (2002)

6. Meyer, B., Ernst, A.: Integrating ACO and Constraint Propagation. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)

7. Monfroy, E., Castro, C., Crawford, B.: Adaptive enumeration strategies and
metabacktracks for constraint solving. In: Yakhno, T., Neuhold, E.J. (eds.) AD-
VIS 2006. LNCS, vol. 4243, pp. 354–363. Springer, Heidelberg (2006)

8. Monfroy, E., Castro, C., Crawford, B.: Using local search for guiding enumeration in
constraint solving. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS (LNAI),
vol. 4183, pp. 56–65. Springer, Heidelberg (2006)

9. Monfroy, E., Saubion, F., Lambert, T.: Hybrid CSP Solving. In: Gramlich, B. (ed.)
Frontiers of Combining Systems. LNCS (LNAI), vol. 3717, pp. 138–167. Springer,
Heidelberg (2005) (Invited paper)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rule-Based Reasoning Via Abstraction

Research Summary

David C. Haley
Stanford Logic Group

Stanford University, Computer Science Department
Gates 226, 353 Serra Mall, Stanford, CA 94305

dhaley@cs.stanford.edu

The General Game Playing (GGP) project seeks to create software agents capa-
ble of receiving game rules hitherto unseen and, without human interaction, play
that game effectively. For the time being, we have chosen to restrict the class of
games to be multi-player, finite, deterministic and complete information. (This
is precisely the class of games that can be modeled by a finite-state machine.)
Due to the finiteness and deterministic restrictions, given the rules of a game it
is in principle possible to completely expand the game model and reason about
it using model-checking or traditional graph search techniques. In practice, how-
ever, the games can be intractably large, making these techniques inadequate;
games might also have special structure or properties implied by the rules, which
if discovered could mean considerable shortcuts in the search. For this reason,
we prefer reasoning about the game rules and only expand the game tree when
absolutely necessary, using any insight gained from the rules.

In this research, we seek to use theorem proving and mathematical induc-
tion to verify claims about the game. This is building on previous work in the
Stanford Logic Group by Timothy Hinrichs on proving playability1 of a game
by constructing an abstract representation of the state and proving that if some
hypothesis holds, every player has a legal move, and then proving by induction
that said hypothesis always holds. The abstract representation is constructed
such that if playability holds in the abstract, then it holds in the original game.
The advantage of using abstraction is that it reduces the size of the proof space,
for example when performing an inductive proof.

Now, we would like to prove more than playability: if the truth of some hypoth-
esis could lead to shortcuts in the search, we would like to prove that hypothesis.
For example, we could show that the truth of a set of facts entails an eventual
win or loss of a player, or that a set of facts entails that it is still possible but
not guaranteed for a player to win. With this additional knowledge, the search
could be pruned very aggressively by avoiding all states in which the ‘bad’ facts
appear and favoring states in which the ‘good’ facts appear.

The research, then, consists in making hypotheses about the game that would
help guide or prune the search, and checking them by building abstract represen-
tations of the game in which the proof search will be much less computationally
expensive.

1 The property that at every reachable state, every player has at least one move.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, p. 399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extensional Reasoning

Timothy L. Hinrichs

Stanford University
thinrich@cs.stanford.edu

Abstract. Relational databases are one of the most industrially suc-
cessful applications of formal logic in computer science. The power of
the paradigm is clear both because of its widespread adoption and be-
cause of theoretical analysis. Today, automated theorem provers are not
able to take advantage of database systems and therefore do not routinely
leverage that source of power. Extensional Reasoning is an approach to
automated theorem proving where the machine automatically translates
a logical entailment query into a database, a set of view definitions, and
a database query so that the entailment query can be answered by an-
swering the database query. In some cases this approach produces several
orders of magnitude performance improvement over traditional theorem
proving techniques.

Relational databases are one of the most successful applications in computer
science, yet today’s theorem provers fail to capitalize on that success. Extensional
Reasoning (ER) is an approach to automated theorem proving where the system
transforms a logical entailment query into a database (a set of extensionally
defined tables), a set of view definitions (a set of intensionally defined tables),
and a database query.

ER was developed because many problems can be solved efficiently using a
database but are most naturally expressed using classical logic. By allowing users
the ability to write problems down in a natural way, there are fewer encoding
errors; moreover, a system that allows more natural encodings is accessible to
users who are not necessarily experts in automated reasoning, e.g. machines.

For example, the map coloring problem is often stated as follows: given a map
and a set of colors, paint each region of the map so that no two adjacent regions
are the same color. One very natural way to encode this problem (according to
the introductory logic students at Stanford who offer up this formulation year
after year) centers around the following constraint.

color(X, C) ∧ adj(X, Y) ⇒ ¬color(Y, C)

When studied in the deductive database/logic programming community [1], a
different formulation is used. Fig. 1 shows a map with three regions and the cor-
responding database formulation using the colors red and blue. In Extensional
Reasoning, this transformation happens automatically, which allows all the re-
sults from (deductive) databases and logic programming to be brought to bear
on the problem.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 400–401, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extensional Reasoning 401

x y z

Query: next(X,Y) ∧ next(Y,Z)

Database:

next

red blue

blue red

Fig. 1. A 3-node graph and its corresponding database query

The techniques for performing Extensional Reasoning can be partitioned
into two classes: those for complete theories and those for incomplete theories.
A complete theory corresponds very naturally to a relational database because
there is essentially a single model to consider for the purpose of entailment.
Transforming a complete theory into a database amounts to choosing the portion
of that model to represent extensionally as the database, leaving the remainder
to be represented intensionally, as view definitions. Complete theories are rare,
and recognizing that a theory is complete can be nontrivial, but sometimes the
work is worth the effort, as the improvement in performance can be several orders
of magnitude.

Complete theories have powerful properties, but incomplete theories are the
norm. Transforming an incomplete theory into a database is problematic because
there are several models that must be taken into account for the purpose of en-
tailment. One could transform each model into a database system and check that
whether the database query is true in every database system, implementing the
definition of entailment directly, but because the number of models grows expo-
nentially, this approach is prohibitively expensive. The reformulation technique
illustrated by the map coloring example collapses models together, with the hope
that only the important differences between models are enumerated. This type of
reformulation lies at the heart of Extensional Reasoning for incomplete theories.

While we hope Extensional Reasoning will eventually be applied to a wide
variety of logics, for the time being we have elected to focus on theories in a
decidable logic, placing the issue of efficiency front and center. The particular
logic studied thus far is a fragment of first-order logic that is a perennial prob-
lem in the theorem proving community: it includes the domain closure axiom,
which guarantees decidability while allowing arbitrary quantification. This logic,
to which the map coloring example belongs, allows us to avoid issues of unde-
cidability at this early stage in the development of Extensional Reasoning, while
at the same time giving us the opportunity to make progress on an important
class of problems.

References

1. McCarthy, J.: Coloring maps and the Kowalski doctrine. Stanford Technical Report
(1982)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Models Using Input

Data�

Martin Michalowski1, Craig A. Knoblock1, and Berthe Y. Choueiry1,2

1 University of Southern California, Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292 USA

{martinm,knoblock}@isi.edu
2 Constraint Systems Laboratory, University of Nebraska-Lincoln

choueiry@cse.unl.edu

1 Motivation

Consider the problem of mapping postal addresses to buildings in satellite im-
agery using publicly available information, defined as the Building Identification
(BID) problem in [1]. This problem takes as input a bounding box that defines
the area of a satellite image, buildings identified in the image, vector information
that specifies streets in the image, and a set of phone-book entries for the area.
The task is to find the set of possible address assignments for each building. In
[1], we showed how the task can be framed as a Constraint Satisfaction Problem
(CSP), which we solved with an existing solver in [1] and a custom solver in [2].
The CSP is given by P = (V , D, C) where V is the set of buildings, D the set of
their respective potential addresses, and C a set of constraints that describe the
physical layout of the buildings on the map and address numbering strategies.

In the context of a web application, a typical BID scenario is as follows.
A user, presented with a map such as a Google map, either selects a specific
building in an area of interest and requests the address of the building, or he/she
provides an address and requests the buildings that could have this address.
This process is repeated for millions of areas throughout the United States. To
answer the entire spectrum of user queries, this application needs to contend
with the slight addressing variations found in cities across the US. For example,
some cities adhere to a block numbering scheme where addresses increment by
a fixed factor (i.e., 100 or 1000) across street blocks while others do not. The
direction in which addresses increase also varies, in some cities this occurs to the
east while in others it is to the west. In other cities, addresses along East-West
running streets increase to the West in one part of town but to the East in the
other. Finally, expanding this application to support the rest of the world would
require the set of constraints to model new addressing characteristics not seen
in the US. The globalization of addressing across continents ensures that some
general guidelines are followed, but this standardization is typically met with
regional/cultural customization such as the districting in Venice or the historical
numbering seen in Japan. The creation of individual models, for each city in the
� This research is supported in part by the Air Force Office of Scientific Research

under grant numbers FA9550-04-1-0105 and FA9550-07-1-0416.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 402–404, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reformulating Constraint Models Using Input Data 403

world, that account for all of the addressing constraints is an overwhelming and
unrealistic task. However, the work required of the expert to define constraints
that capture all of the characteristics of addressing seen to date is relatively
small and manageable. We propose a framework in which the constraint model
of the area of interest for a given user is dynamically built by augmenting the
set of basic constraints, which form the generic constraint model, with those
constraints that specify the addressing schema that governs the area of interest.

2 Research Approach

We propose to exploit the information found within a problem instance to enrich
the generic model of the CSP in order to identify the set of constraints that apply
in a given setting, as shown in Fig. 1.

Fig. 1. Left: Building the customized constraint model from the generic one. Right:
Comparing the solution sets of the generic & customized models.

The embedded information that we exploit is a set of instantiated variables,
which we call data points. Our framework tests the features −→F of these data
points in order to select, from a library of constraints CL, those constraints CI

that should be added to the generic constraint model CB of the problem. We
reduce the load on a human user by limiting their involvement to defining the li-
brary of constraints, which is leveraged over the repetitive use of the application
over various areas. Subsequently, we use the expert knowledge introduced by the
user along with the information found in the problem description to generate a
customized problem model that best represents the problem instance at hand.
This approach enables a more flexible approach to dynamically modeling prob-
lem instances by reformulating problem models and not requiring a collection of
individual models that represent all of the foreseeable variations of a problem
class. The set of constraints Cnew = CB ∪CI allows us to approach the most accu-
rate model and return more precise solutions (see Fig. 1). We also use constraint
propagation on CB in order to infer new data points.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

404 M. Michalowski, C.A. Knoblock, and B.Y. Choueiry

References

1. Michalowski, M., Knoblock, C.A.: A constraint satisfaction approach to geospatial
reasoning. In: Proc. of AAAI-05, pp. 423–429 (2005)

2. Bayer, K., Michalowski, M., Choueiry, B.Y., Knoblock, C.A.: Reformulating con-
straint satisfaction problems to improve scalability. In: Proc. of SARA-07 (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Analogy Discovery to Create Abstractions

Marc Pickett

Cognition, Robotics, and Learning
University of Maryland, Baltimore County

marc@coral.cs.umbc.edu

Concept formation is a form of abstraction that allows for knowledge transfer,
generalization, and compact representation. Concepts are useful for the creation
of a generally intelligent autonomous agent. If an autonomous agent is experienc-
ing a changing world, then nearly every experience it has will be unique in that
it will have at least slight differences from other experiences. Concepts allow an
agent to generalize these experiences and other data. In some applications, the
concepts that an agent uses are explicitly provided by a human programmer. A
problem with this approach is that the agent encounters difficulties when it faces
situations that the programmer had not anticipated. For this reason, it would be
useful for the agent to automatically form concepts in an unsupervised setting.
The agent should be able to depend as little as possible on representations tai-
lored by humans, and therefore it should develop its own representations from
raw uninterpreted data.

One purpose of concept formation (and abstraction in general) is to concisely
characterize a set of data [7]. With this view, one can use minimum descrip-
tion length as a guiding principle for concept formation. My research uses this
principle to form an ontology of concepts from a collection of data. This data
is a set (or a stream) of statements, where each statement is an ordered tuple
of symbols (representing relations). The symbols have no meaning for the pro-
gram other than they’re considered to be ground statements. For example, these
symbols can be raw sensor data, or raw descriptions of chess games.

For SARA 2005, Tim Oates and I developed an ontology formation algorithm
called The Cruncher [6] that works on attribute-value data. The Cruncher (an ex-
tension ofPolicyBlocks [5], an algorithm for discovering usefulmacro-actions inRe-
inforcement Learning that I developed with Andy Barto) is a simple representation
framework and algorithm based on minimum description length for automatically
forming an ontology of concepts from attribute-value data sets. Although unsu-
pervised, when The Cruncher is applied to the Zoo database from [1], it produces
a nearly zoologically accurate categorization. The Cruncher can also be applied to
find useful macro-actions in Reinforcement Learning, learn models from uninter-
preted sensor data, or form an ontology of documents based on word-frequency.

It’s useful to be able to develop relational concepts through analogy. Some
suggest that analogy may even be the “core of cognition” [3]. Analogy allows us
to focus on the relations among entities rather than superficial aspects of the
entities. For example, we might notice that a red ant killing a black ant and
stealing a piece of food it is analogous to a situation in Hamlet where Claudius
murders Hamlet’s father and usurps the throne of Denmark. In this situation, we

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 405–406, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

406 M. Pickett

must also be able to specify that the red ant corresponds to Claudius, the black
ant to Hamlet’s father, and the piece of food maps to the throne. Once found,
relational concepts can be useful for knowledge transfer: conclusions about one
domain can map to another domain.

Currently, I’m extending The Cruncher to work on relational data. The ex-
tended algorithm, The Übercruncher, discovers isomorphisms (or analogies) in
relational data, and forms concepts from the analogies to compress the data. Af-
ter finding a set of analogies, the best analogy is used to compress the Knowledge
Base, resulting in a shorter description. This entire process (finding analogies
and crunching with them) is repeated until no more useful analogies are found.
In practice, useful analogies are often found as parts of other analogies, which
produces a multi-tiered ontology.

The Übercruncher is related to the SUBDUE system [4] which compresses
graphs by finding common substructures. Both SUBDUE and The Übercruncher
work ondata that’s not presegmented, andbothuseminimumdescription length as
the guiding principle by which substructures are evaluated. Like The Über-
cruncher, SUBDUE also does induction in the sense that frequently occurring sub-
structures are replaced by a node that symbolizes the full substructure. However,
SUBDUE uses a potentially slow beam search, upon which The Übercruncher im-
proves by building a conceptual structure that can be used to accelerate learning
and classification into a current ontology. Additionally, The Übercruncher repre-
sents both concepts and meta-concepts in the same framework so that the same
algorithm can be used to find analogies in both data and meta-data. Ignoring dif-
ferences in representation and search strategy, SUBDUE is essentially a strictly
bottom-up version of The Übercruncher, which also uses top-down guidance for
classification, similar to that described by [2].

Future work involves developing a full cognitive architecture, dubbed The
Marchitecture, that uses the ontology developed by The Übercruncher for rea-
soning, planning, classification, and explanation, and integrates these processes
with formation of the ontology.

References

1. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
2. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (2004)
3. Hofstadter, D.R.: Analogy as the core of cognition. The Analogical Mind: Perspec-

tives from Cognitive Science, pp. 499–538 (2001)
4. Holder, L., Cook, D., Djoko, S.: Substructure discovery in the subdue system. In:

Proceedings of the Workshop on Knowledge Discovery in Databases (1994)
5. Pickett, M., Barto, A.: Policyblocks: An algorithm for creating useful macro-actions

in reinforcement learning. In: Proceedings of the International Conference on Ma-
chine Learning (2002)

6. Pickett, M., Oates, T.: The cruncher: Automatic concept formation using minimum
description length. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI),
vol. 3607, Springer, Heidelberg (2005)

7. Wolff, J.G.: Information compression by multiple alignment, unification and search
as a unifying principle in computing and cognition. Artif. Intell. Rev. (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed CSPs: Why It Is Assumed a

Variable per Agent?�

Miguel A. Salido

DSIC, Technical University of Valencia
Camino de Vera s/n, 46071, Valencia, Spain

msalido@dsic.upv.es

Abstract. Nowadays, many real problems can be formalized as Distrib-
uted CSPs. A distributed constraint satisfaction problem (DisCSP) is a
CSP in which variables and constraints are distributed among multi-
ple automated agents. Many researchers assume for simplicity that each
agent has exactly one variable. For real distributed problem these tech-
niques require a large amount of messages passed among agents, so these
problems are very difficult to solve. In this research summary, we ques-
tion why the lack of works to manage large-scale problems.

Keywords: Distributed Constraint Satisfaction Problems.

1 Introduction

In recent years we have seen an increasing interest in Distributed Constraint Sat-
isfaction Problem (DisCSP) formulations to model combinatorial problems (see
the special issue on Distributed Constraint Satisfaction in Artificial Intelligence
journal, vol 161, 2005). There is a rich set of real-world distributed applications,
such as networked systems, planning, scheduling, etc, for which the DisCSP
paradigm is particularly useful. In such distributed applications, privacy issues,
knowledge transfer costs, robustness against failure, etc preclude the adoption
of a centralized approach [3].

A distributed CSP is a CSP in which the variables and constraints are dis-
tributed among automated agents. Finding a value assignment to variables that
satisfies inter-agent constraints can be viewed as achieving coherence or consis-
tency among agents.

The more cited papers related to DisCSP make the following assumptions for
simplicity in describing the algorithms:

1. Each agent has exactly one variable.
2. All constraints are binary.
3. Each agent knows all constraint predicates relevant to its variable.

� This work has been partially supported by the research projects TIN2004-06354-C02-
01 (Min. de Educacion y Ciencia, Spain-FEDER) and GV/2007/274 (G. Valenciana).

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 407–408, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

408 M.A. Salido

Although the great majority of real problems are naturally modelled as non-
binary CSPs, the second assumption is comprehensible due to there exist some
techniques that translate any non-binary CSP into a equivalent binary one [1].

However, the first assumption in too restrictive and the main basic research
is focused to small instances and little work has been done to solve real-life
problems.

2 From Basic Research Toward Applied Research

One of the pioneer researchers in DisCSP said ”So far, we assume that each agent
has only one local variable. Although the developed algorithms can be applied
to the situation where one agent has multiple local variables by the following
methods, both methods are neither efficient nor scalable to large problems” [5].

– Method 1: each agent finds all solutions to its local problem first. By finding
all solutions, the given problem can be re-formalized as a distributed CSP,
in which each agent has one local variable whose domain is a set of obtained
local solutions. Then, agents can apply algorithms for the case of a single
local variable. The drawback of this method is that when a local problem be-
comes large and complex, finding all the solutions of a local problem becomes
virtually impossible.

– Method 2: an agent creates multiple virtual agents, each of which corresponds
to one local variable, and simulates the activities of these virtual agents.
However, since communicating with other agents is usually more expensive
than performing local computations, it is wasteful to simulate the activities of
multiple virtual agents without distinguishing the communications between
virtual agents within a single real agent, and the communications between
real agents.

In spite of significant progress in distributed CSP, the following question is
straightforward: Why it is assumed a Variable per Agent?

Only some works include a set of variables into an agent [4],[2]. Therefore,
more research must be done to solve more realistic problems.

References

1. Bacchus, F., van Beek, P.: On the conversion between non-binary and binary con-
straint satisfaction problems. In: proceeding of AAAI-98, pp. 311–318 (1998)

2. Bessiére, C., Belaissaoui, M., Ezzahir, R., Bouyakhf, El-H.: Dischoco: A platform
for distributed constraint programming. In: Proceedings of IJCAI-07 Workshop on
Distributed Constraint Reasoning (2007)

3. Faltings, B., Yokoo, M.: Introduction: Special issue on distributed constraint satis-
faction. Artificial Intelligence 161, 1–5 (2005)

4. Salido, M.A., Barber, F.: Distributed CSPs by graph partitioning. Applied Mathe-
matics and Computation 183, 491–498 (2006)

5. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A re-
view. Autonomous Agents and Multi-Agent Systems 3, 185–207 (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decomposition of Games for Efficient Reasoning

Eric Schkufza

Stanford University
eschkufz@stanford.edu

Abstract. General Game Playing (GGP) is an area of research in ar-
tificial intelligence that focuses on the representation of games in terms
of an abstract language known as Game Description Language (GDL).
The abstract nature of that language allows for the development of in-
telligent agents that without modification can perform competently on
games that they have never seen before based on known properties of
GDL’s uniform and compact syntax. Although GDL is an effective tool
for communication, it is less useful as a representational framework for
reasoning about games. In its place, the Stanford Logic Group has devel-
oped a new class of behavioral models, called Propositional Nets (PNs),
with which an algorithm has been designed for determining whether
games can be decomposed into independent sub-systems that can be
reasoned about independently of one another.

GGP focuses on discrete, multi-player, deterministic, complete-information gam-
es. GDL represents game states by keeping track of the set of propositions that
are true of the world (part of the description of tic-tac-toe for instance, might be a
proposition used to represent whether or not there is an X in the center cell). GDL
represents game dynamics as sets of actions that players can perform. Players
are each permitted to make one move per turn, where the legality of a move is a
function of the propositions that are true prior to its being made (in tic-tac-toe,
a player may place an X in the center square if he is playing the role of X, it is his
turn, and the square is currently empty).

Perhaps the most natural representational formalism that might be used to
reason about the type of games that can be expressed in GDL is a finite state
machine (FSM). However, FSMs have certain properties that make them inap-
propriate for use by general game playing systems. First, the number of states
required to describe an FSM is in general exponential in the number of logi-
cal propositions required to encode each of those states. Thus, for all but the
simplest games encoded in GDL, the size of the corresponding FSM would be
intractably large. Second, FSMs are highly uniform structures; to describe a sys-
tem, each state must in general associate a truth value to each of the propositions
required to exhaustively describe it. Thus, even if a game encoded in GDL were
to exhibit substantial independence and decomposability of substructures, it is
unclear how that structure might efficiently be uncovered from an exponentially
large set of states and a transition function alone.

Propositional Nets were designed by the Stanford Logic Group to address
the above shortcomings. A PN is a bipartite graph consisting of nodes used to

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 409–410, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

410 E. Schkufza

represent propositions alternating with either logical connectives (AND, OR, or
NOT gates) or transitions. The propositions in a PN can be partitioned into
three classes: input propositions, whose truth values can be set by agents, base
propositions, whose truth values are a function of incoming connections from
transitions, and view propositions, whose truth values are a function of incom-
ing connections from logic gates. The state of a PN is the set of truth values
associated with its base propositions. Similarly, the dynamics of a PN are defined
by the transitions that serve as inputs to those base propositions. State updates
are accomplished by setting base propositions to be true if and only if the transi-
tions that they are connected to have an incoming connection from a proposition
that is true just prior to that update. Unlike FSMs, PNs are representationally
compact; the number of propositions required to encode a system is linear in the
number of facts required to represent the state of that system. Furthermore, the
graphical structure of PNs makes it a straightforward process to determine the
functional relationship between propositions; the consequences of changing the
truth value of a proposition can be determined by simply following the outgoing
arcs that emanate from it.

If a game expressed in GDL can be translated into a PN, then the topological
structure of that PN can be used to perform a computationally efficient analysis
of whether or not some of the propositions that it contains are independent of
one another. Specifically, if there is no directed path between two propositions,
then they can be reasoned about independently of one another, as neither one’s
truth value can ever affect the other’s. Furthermore, if it can be shown that
that PN is composed of two or more entirely disjoint subgraphs, then each of
those subgraphs can be reasoned about independently of each other, as separate
games. The potential computational savings associated with such a discovery
are substantial. Consider the case of a game expressed in GDL that involves the
simultaneous play of two games, one with m legal moves, and the other with n,
both of which last for t moves. The complete search tree for such a game would
contain (mn)t fringe nodes. However, if such a discovery were made and those
games were considered separately from one another, then that search space could
be reduced to one of two trees containing a combined mt + nt fringe nodes.

The results described above suggest that PNs are a representational frame-
work deserving of continued attention. Future research in the area will include
further investigation of the mathematical properties of PNs as well as continued
development of algorithms along the lines of the one presented in this summary.

References

1. Love, H., Genesereth.: General Game Playing: Game Description Language Specifi-
cation. Technical report, Stanford University (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Constraint Acquisition

Xuan-Ha Vu and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{ha.vu,b.osullivan}@4c.ucc.ie

1 Introduction

Constraint programming is an approach to problem solving that relies on a
combination of inference and search to solve real-world problems formulated as
constraint satisfaction problems (CSPs). Many methods for solving CSPs have
been developed. However, the specification of a CSP is sometimes not available,
but may have to be learned from a training set, which is given, for instance, as a
set of examples of its solutions and non-solutions. The motivating applications
for constraint acquisition are many. For example, often one may wish to find a
compact representation of a CSP instance for purposes such as explanation gen-
eration, requirements gathering, and specification. Acquiring soft constraints,
which we focus on here, can be regarded as learning about preferences, uncer-
tainty or costs in a combinatorial setting.

2 Related Work

One may apply techniques from the field of machine learning to acquire an appro-
priate formulation of a problem as aCSP. However, genericmachine learningmeth-
ods do not take the characteristics of CSPs into account, and are therefore often
inefficient for acquiringCSPs. As a result, a new class of learning methods with em-
phasis on the characteristics of CSPs, called constraint acquisition, has been stud-
ied in recent years to learn CSPs. In [1], a specialized instance of the Candidate-
Elimination learning method [2] has been devised to learn classical CSPs, where
the hypothesis space of CSPs is maintained by exploiting a partial order over con-
straints. This algorithm has been improved further by exploiting constraint redun-
dancy in CSPs [3]. Later, in [4], the CSP acquisition task has been reformulated as
a satisfiability problem and solved more efficiently using SAT techniques.

3 Our Approach

Existing constraint acquisition methods, though useful for finding CSPs that
fully agree with the training set, are limited to learning classical CSPs only
and provide no useful information in the case where a CSP that fully agrees
with the training set does not exist in the hypothesis space. This deficiency
has motivated us to develop a new framework in which one can acquire CSPs

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 411–412, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

412 X.-H. Vu and B. O’Sullivan

that minimally differ, according to a predefined measure, from the training set.
Moreover, different types of constraints have been generalized into a unifying
concept, the semiring-based framework for soft constraints, which allows one to
extend many existing techniques for solving different types of CSPs in a standard
and uniform way [5,6]. This has inspired us to develop a new unifying framework
for constraint acquisition based on the concept of semiring-based soft constraints.
In combination with the framework of semiring-based constraint satisfaction, our
new framework enables users to exploit constraint satisfaction, optimization and
acquisition techniques in a uniform way, thus reducing the effort required to
develop analogous techniques for different classes of constraints.

The main objective of our research is to provide a general framework to unify
acquisition algorithms for different types of constraints. In the past, acquisition
algorithms were developed in an ad-hoc manner. Using our proposed framework,
we can get the same, or even better, formulations by simply instantiating the
framework.

Our new framework allows us to (i) uniformly formulate constraint acquisi-
tion problems as optimization problems; (ii) concisely derive existing constraint
acquisition techniques from the framework; and (iii) formulate new, more gen-
eral, constraint acquisition techniques as optimization problems. The framework
is generic: it can be instantiated to obtain specific formulations for acquiring
classical, fuzzy, weighted, or probabilistic CSPs. Specially, a new formulation for
classical constraint acquisition with tolerance for violation, which allows us to
find all CSPs that minimize the number of examples violated by them, can be
developed as an instance of the framework. This formulation is equivalent to
a simple pseudo-Boolean optimization (PBO) problem, which can be efficiently
solved using many available tools.

Acknowledgements. This work was supported by the Embark Initiative and
Science Foundation Ireland (Grant Number 05/IN/I886).

References

1. Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton,
J.: Constraint Acquisition as Semi-Automatic Modeling. In: Gedeon, T.D., Fung,
L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 111–124. Springer, Heidelberg
(2003)

2. Mitchell, T.M.: Generalization as Search. Artificial Intell. 18(2), 203–226 (1982)
3. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the Learning

Power of Examples in Automated Constraint Acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004)

4. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-Based Version Space
Algorithm for Acquiring Constraint Satisfaction Problems. In: Fürnkranz, J., Schef-
fer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 23–34.
Springer, Heidelberg (2006)

5. Bistarelli, S., Montanari, U., Rossi, F.: Constraint solving over semirings. In: IJCAI
(1), pp. 624–630 (1995)

6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-Based Constraint Satisfaction and
Optimization. Journal of the ACM 44(2), 201–236 (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Infeasibility to Improve

Abstraction-Based Heuristics

Fan Yang, Joseph Culberson, and Robert Holte

Computing Science Department, University of Alberta
Edmonton, Alberta T6G 2E8 Canada
{fyang,joe,holte}@cs.ualberta.ca

The contribution of our research is to show that the accuracy of the heuristics
generated by abstraction can be improved by checking for infeasibility. What do
we mean by infeasible heuristics? For a state t, the heuristic value h is infeasible
if it is proved that the cost of a solution for t cannot be h. Take the sliding
puzzle for example, assuming that the manhattan heuristic for state t is md(t),
if md(t) is even, any odd number is infeasible. To substantiate our approach,
we begin with formal definitions and lemmas. Then empirical results show the
effectiveness of the approach. For more details please refer to our longer work[5].

A state space is a weighted directed graph with a set of states, a set of directed
edges (ordered pairs of states) and the edge cost function. For example, a set
of states may be defined by the set of all possible assignments to a set of state
variables, and the edges and the edge cost function will depend on the operations
on the variable sets. An abstraction system includes a state space, a set of ab-
stract state spaces and a set of mappings Ψ = {ψ1, . . . , ψk} from the initial state
space to abstract spaces. Our definition is similar to the work of Prieditis[4]. The
key difference is that here we split each edge cost into two costs: the primary
cost Ci and a residual cost Ri. Given a path p from t to g in the initial state
space, for each abstract space Ai, pi is the corresponding abstract path from ti
to gi, where ti = ψi(t) and gi = ψi(g). To guarantee admissibility, we require
that for any path p from t to g, C(p) ≥ Ci(pi) + Ri(pi). We say that abstrac-
tions are additive if the cost of each edge in the original space is larger than or
equal to the sum of Ci of corresponding edges in all abstract state spaces. This
definition generalizes those in [1,2,3,4]. C∗i (ti, gi) is the minimum primary cost
of an abstract path from ti to gi. Define R∗i (ti, gi) to be the minimum residual
cost among the paths whose primary cost is minimal. Given a goal state g, the
heuristic of state t defined by k additive abstractions is h(t) =

∑k
i=1 C∗i (ti, gi).

Lemma 1 gives a test for infeasibility of additive abstraction-based heuristics.

Lemma 1. Given k additive abstractions, if for some j, 1 ≤ j ≤ k, we have
h(t) < C∗j (tj , gj) + R∗j (tj , gj), then h(t) is infeasible.

Figure 1 is an example test for infeasibility. Table 1 indicates that additive
heuristics may be improved by checking for infeasibility. The performance of
IDA* using additive heuristics with/without checking for infeasibility can be
compared in the first two rows and the last two rows. The average running time
of IDA* using the heuristics enhanced by checking for infeasible additive values

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 413–414, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

414 F. Yang, J. Culberson, and R. Holte

Fig. 1. The primary cost C∗ is defined by the total moves of numbered tiles in the
abstract state (i.e. distinguished moves) and the residual cost R∗ is the number of
moves of other tiles. (C∗

1 , R∗
1) = (9, 9), (C∗

2 , R∗
2) = (5, 7). h =

�2
i=1 C∗

i < (C∗
1 + R∗

1).
So h=14 is an infeasible heuristic value. h can be improved to be 16.

Table 1. 15 sliding tile puzzle results

Tile Partition Check Infeasibility Average H Average Nodes Average Sec

Yes 42.10 1,453,358 0.312
5-5-5 No 41.56 3,186,654 0.642

Yes 42.78 784,145 0.171
6-6-3 No 42.13 1,858,899 0.379

is over 2 times faster than the running time required on average without checking
for infeasibility on the same machine.

References

1. Edelkamp, S.: Planning with pattern databases. In: Proceedings of the 6th European
Conference on Planning, pp. 13–34 (2001)

2. Felner, A., Korf, E., Hanan, S.: Additive pattern database heuristics. Journal of
Artificial Intelligence Research. 22, 279–318 (2004)

3. Korf, E., Felner, A.: Disjoint pattern database heuristics. Artificial Intelligence. 134,
9–22 (2002)

4. Prieditis, A.E.: Machine discovery of effective admissible heuristics. Machine Learn-
ing 12, 117–141 (1993)

5. Yang, F., Culberson, J., Holte, R.: A general additive search abstraction. Technical
Report TR07-06. Department of Computing Science, University of Alberta (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Leveraging Graph Locality Via Abstraction

Rong Zhou

Intelligent Systems Laboratory
Palo Alto Research Center, Palo Alto CA 94304, USA

rzhou@parc.com

The use of abstraction to speedup problem solving is ubiquitous in AI, especially
in the field of heuristic search where abstraction has proven a crucial technique
for creating highly accurate memory-based heuristics known as pattern databases
(PDBs). While PDBs are intrinsically based on problem abstractions [1], the
converse is not necessarily true, and this suggests that abstraction should play
a much bigger role than simply improving the quality of the heuristic.

This has inspired the development of a technique called structured duplicate
detection, which uses abstraction to reveal as well as leverage the local structure
of a search problem. Unlike PDBs, structured duplicate detection considers the
neighborhood of an abstract state in the final search, and uses this information to
localize memory references in duplicate detection. Using a locality-preserving ab-
straction function, structure duplicate detection can (i) limit the number of slow
disk I/O operations in external-memory graph search, and (ii) reduce the syn-
chronization (or communication) overhead in parallel graph search. The success
of structured duplicate detection in areas such as disk-based search [2], external-
memory heuristics [3], domain-independent STRIPS planning [4], and parallel
graph search [5] speaks for the generality and effectiveness of using abstraction
beyond its application to regular pattern databases.

An important focus of my research is on the exploitation of graph locality
to improve the memory efficiency of various shortest-path algorithms, including
breadth-first search, Dijkstra’s algorithm, and A*. For example, breadth-first
heuristic search [6] exploits the locality between different layers of a graph, in
order to determine the minimum number of layers that must be stored in memory
to ensure duplicate detection. Thus, algorithms such as breadth-first iterative-
deepening A* [7] and divide-and-conquer beam-stack search [8] exploit a kind
of inter-layer graph locality. On the other hand, because structured duplicate
detection uses state-space abstraction to determine a subset of nodes within a
layer that must be stored for duplicate detection, it exploits a kind of inner-layer
graph locality.

A key advantage of using abstraction to exploit graph locality is that it of-
fers a flexible way to uncover the kind (and amount) of local structure needed by
structured duplicate detection. For example, changing the granularity of the ab-
straction function can effectively control the size of the largest duplicate-detection
scope, which reflects the minimum internal-memory requirement of structured
duplicate detection. The same approach can also be used to control the maxi-
mum number of independent processors that are allowed to perform concurrent
duplicate detection without excessive synchronization in parallel graph search [5].

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 415–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

416 R. Zhou

Another advantage of exploiting abstraction-based graph locality is that it is
effective for both informed and uninformed search. This can prove particularly
useful in areas such as domain-independent planning and model checking where
the best admissible heuristic function is rather weak or expensive to compute.

Because good locality-preserving abstractions can be found automatically, this
approach to leveraging local problem structure can be integrated with a domain-
independent planner [4]. Although in the worst case a problem may not have any
intrinsic local structure, using a technique called edge partitioning [9] it is always
possible to create “artificial” graph locality that can be leveraged by structured
duplicate detection, thereby making this approach fully general.

References

1. Zhou, R., Hansen, E.: Space-efficient memory-based heuristics. In: Proceedings of the
19th National Conference on Artificial Intelligence (AAAI-04), pp. 677–682 (2004)

2. Zhou, R., Hansen, E.: Structured duplicate detection in external-memory graph
search. In: Proceedings of the 19th National Conference on Artificial Intelligence
(AAAI-04), pp. 683–688 (2004)

3. Zhou, R., Hansen, E.: External-memory pattern databases using structured dupli-
cate detection. In: Proc. of the 20th National Conference on Artificial Intelligence
(AAAI-05) pp. 1398–1405 (2005)

4. Zhou, R., Hansen, E.: Domain-independent structured duplicate detection. In: Proc.
of the 21st National Conference on Artificial Intelligence (AAAI-06), pp. 1082–1087
(2006)

5. Zhou, R., Hansen, E.: Parallel structured duplicate detection. In: Proc. of the 22nd
National Conference on Artificial Intelligence (AAAI-07) (to appear)

6. Zhou, R., Hansen, E.: Breadth-first heuristic search. Artificial Intelligence 170, 385–
408 (2006)

7. Zhou, R., Hansen, E.: Breadth-first heuristic search. In: Proceedings of the 14th
International Conference on Automated Planning and Scheduling (ICAPS-04), pp.
92–100 (2004)

8. Zhou, R., Hansen, E.: Beam-stack search: Integrating backtracking with beam
search. In: Proceedings of the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05), pp. 90–98 (2005)

9. Zhou, R., Hansen, E.: Edge partitioning in external-memory graph search. In: Proc.
of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07), pp.
2410–2416 (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Abbott, Russ 391
Abril, Montserrat 5
Anderson, Kenneth 20
Anderson, Scot 35

B, Ravindran 300
Barber, Federico 5
Barták, Roman 50
Barto, Andrew 273
Bayer, Kenneth M. 64
Beck, J. Christopher 393
Bessiere, Christian 80
Bulitko, Vadim 1

Cambazard, Hadrien 395
Castro, Carlos 397
Choueiry, Berthe Y. 64, 402
Condotta, Jean-François 93
Crawford, Broderick 397
Culberson, Joseph 413

D’Almeida, Dominique 93
de Kleer, Johan 109
De Saeger, Stijn 124

Eyal, Amir 169

Feldman, Alexander 139
Felner, Ariel 155
Fox, Maria 200
Frisch, Alan M. 2

Gammer, Igor 169
Genesereth, Michael R. 215
Gent, Ian P. 184
Gregory, Peter 200
Gruninger, Michael 393

Haley, David C. 399
Hebrard, Emmanuel 80
Hinrichs, Timothy L. 215, 400
Hnich, Brahim 80
Holte, Robert 20, 413
Hooker, John N. 4
Hu, Jiaqiao 243

Ibrahim, Zina M. 230

Jansen, Renee 344
Jonathan, Schaeffer 20
Jong, Nicholas K. 258
Jonsson, Anders 273

Kiziltan, Zeynep 80
Knoblock, Craig A. 64, 402
Kuter, Ugur 243

Lecoutre, Christophe 93
Long, Derek 200

Macho González, Santiago 285
Meseguer, Pedro 285
Michalowski, Martin 64, 402
Miguel, Ian 184
Monfroy, Eric 397

O’Sullivan, Barry 395, 411
Ofek, Nir 155

Pickett, Marc 405
Provan, Gregory 139

Quimper, Claude-Guy 80

Raghavan, Sriram 300
Rendl, Andrea 184
Revesz, Peter 35

Säıs, Lakhdar 93
Saitta, Lorenza 314, 375
Salido, Miguel A. 5, 407
Schachte, Peter 329
Schkufza, Eric 409
Shimojima, Atsushi 124
Søndergaard, Harald 329
Stone, Peter 258
Sturtevant, Nathan 344
Surynek, Pavel 359

Tawfik, Ahmed Y. 230
Torasso, Pietro 314
Torta, Gianluca 314

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

418 Author Index

van Gemund, Arjan 139
Vu, Xuan-Ha 411

Walsh, Toby 80

Yang, Fan 413

Zhou, Rong 415
Zucker, Jean-Daniel 375

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title Page
	Preface
	Organization
	Table of Contents
	State Abstraction in Real-Time Heuristic Search
	Abstraction and Reformulation in the Generation of Constraint Models
	A Framework for Integrating Optimization and Constraint Programming
	DFS-Tree Based Heuristic Search
	Introduction
	Centralized, Distributed and Decomposed CSPs
	Decomposition of CSPs

	How to Decompose a Binary CSP into a DFS-Tree CSP Structure
	Example of DFS-Tree CSP Structure

	DFS-Tree Based Heuristic Search (DTH)
	DTH: Soundness

	Evaluation
	Conclusions

	Partial Pattern Databases
	Introduction
	Background
	Perimeters
	Pattern Databases
	Perimeter and PDB Comparison
	Combining Perimeters with PDBs

	Partial Pattern Databases
	Memory Requirements
	Compressed Partial PDBs

	Experiments on the K-Pancake Puzzle
	 Performance with Constant a Number of Entries
	 Performance with Constant Memory

	Experiments on the 15-Puzzle
	Conclusions

	CDB-PV: A Constraint Database-Based Program Verifier
	Introduction
	Review of Constraint Database Approximation
	The Constraint Database Approach to Verification
	Experiments and Results
	Running Time of Methods and Sample Programs
	Conclusion and Future Work

	Generating Implied Boolean Constraints Via Singleton Consistency
	Introduction
	Motivation
	Preliminaries
	Learning Via SAC
	Implementation and Experiments
	Learning for CSP
	Learning for SAT Problems
	Reformulation for SAT Solvers
	Learning Efficiency

	Conclusions
	References

	Reformulating Constraint Satisfaction Problems to Improve Scalability
	Introduction
	Domain Reformulation Using Symbolic Values
	$ALLDIFF-ATMOST$
	$ALLDIFF-ATMOST$ Reformulation
	Symbolic Intervals

	Query Reformulation
	Per-variable Solutions
	Relational Consistency

	Constraint Relaxation for Problem Reformulation
	Matching as a Relaxation
	Integrating the Matching Relaxation in Backtrack Search
	Generating Solutions by Symmetry

	Application to the Building Identification Problem
	CSP Model
	Symbolic Values
	Query Reformulation
	Constraint Relaxation for Problem Reformulation
	Solvers

	Experiments
	Related Work
	Conclusions and Future Work

	Reformulating Global Constraints: The $Slide$ and $Regular$ Constraints
	Introduction
	Formal Background
	$Slide$ and $Regular$ Constraints
	Reformulating $SLIDE$ and $REGULAR$
	$REGULAR$ as $SLIDE$
	$SLIDE$ as $REGULAR$

	Softening $SLIDE$ and $REGULAR$
	$SOFTSLIDE$ Constraint
	$SOFTSLIDE$_H as $SLIDE$
	$SOFTSLIDE$_E as $SOFTREGULAR$_E

	Experimental Analysis
	$REGULAR$ as $SLIDE$
	$SLIDE$ as $REGULAR$

	Related Work
	Conclusions

	Relaxation of Qualitative Constraint Networks
	Introduction
	Technical Background
	Qualitative Calculus
	Qualitative Constraint Networks
	Discrete Constraints Networks
	From Qualitative to Discrete Constraints Networks

	Relaxing Qualitative Constraints Networks
	Theoretical Results
	General Scheme

	Experiments
	Future Works and Conclusions

	Dynamic Domain Abstraction Through Meta-diagnosis
	Introduction
	Meta-diagnosis
	Formalization
	Formalizing Abstraction

	Example of a Lattice of Models
	Modeling Components
	Connection Models
	Modeling Non-intermittency
	Automatic Generation of Models

	The Meta-diagnosis Loop
	$\emptyset \rightarrow T$
	$\emptyset \rightarrow I$
	$\emptyset\rightarrow C$
	$\emptyset \rightarrow TCI$

	Implementation
	Related Work
	Conclusions

	Channeling Abstraction
	Introduction: Vagueness and Granularity
	Granularity and Knowledge Representation

	Abstraction as a Mapping
	Abstraction in Channel Theory
	Abstraction as a Theory
	Discussion

	Approximate Model-Based Diagnosis Using Greedy Stochastic Search
	Introduction
	Related Work
	Technical Background
	A Running Example
	Minimal Diagnosis and Fault Modes

	Stochastic MBD Algorithm
	A Simple Example (Continued)
	A Greedy Stochastic Algorithm

	Optimality and Complexity of Greedy Stochastic Algorithm
	Cardinality-Minimal Diagnosis in Weak-Fault Models
	More General Diagnostic Frameworks

	Experimental Results
	Comparison to HA* and Multiple-Fault Scalability
	Comparison to CDA*

	Conclusion and Future Work

	Combining Perimeter Search and Pattern Database Abstractions
	Introduction and Overview
	Background
	The TopSpin Domain
	Problem Spaces
	Pattern Database Abstractions
	Perimeter Search

	Combining Perimeter Search and Pattern Database Abstractions
	Simplified Method for Combining Perimeter with PDBs
	Multiple-Goal PDB
	Advanced Perimeter Pattern Database (P_PDB)

	Analysis of P_PDB
	Case 1: $R_PDB(n) \geq d$
	Case 2: $R_PDB(t_n)<d$ and $P_PDB(t_n)=d$
	Case 3: $R_PDB(t_n)<d$ and $P_PDB(t_n)>d$
	Comparing P_PDB to SP_PDB

	Experimental Results for TopSpin
	Experiments with Multiple PDBs on Rubik's Cube
	Combining Perimeter with Disjoint PDBs
	Summary and Future Work

	Solving Satisfiability in Ground Logic with Equality by Efficient Conversion to Propositional Logic
	Introduction
	Fundamentals
	Ground Logic with Equality

	Naive Conversion
	Algorithm
	Correctness
	Analysis

	Advanced Conversion by Partitioning
	Motivation
	Description
	Craig's Interpolation
	Craig's Interpolation and Partitioning

	Conclusion
	Related Work
	Future Work
	Summary

	Tailoring Solver-Independent Constraint Models: A Case Study with Essence$'$ and Minion
	Introduction
	Background
	Constraint Satisfaction Problems and the Modelling Bottleneck
	The ESSENCE' Solver-Independent Modelling Language
	The MINION Constraint Solver

	Tailoring ESSENCE' to MINION: Overview
	Arithmetic Constraints
	Logical Constraints
	Singly-Quantified Expressions
	Nested Quantification
	Treating Special Cases

	Global Constraints
	Variable Translation
	Experimental Results
	The Balanced Incomplete Block Design (BIBD)
	The n-Queens Problem
	The Quasigroup Problem
	Summary

	Conclusion

	A Meta-CSP Model for Optimal Planning
	Introduction
	Background
	Graphplan and SAT Planning
	Maxplan

	The Meta-CSP Model
	Meta-CSP Search

	Results
	Blocksworld
	Driverlog
	Grid

	Discussion
	Comparisons with Maxplan
	Comparisons with Blackbox

	Related Work and Future Work
	Conclusions

	Reformulation for Extensional Reasoning
	Introduction
	Background
	Example
	Reformulating the Query
	Completing the Theory
	Conclusion and Future Work

	An Abstract Theory and Ontology of Motion Based on the Regions Connection Calculus
	Introduction
	The Region Connection Calculus: RCC8 Set
	A Qualitative Set of Motion Classes
	The Spatial Base
	The Set MC of Motion Classes
	Constructing the Set MC
	Properties of MC

	Compound Motion Classes
	Queries About Motion Classes
	Queries About Spatio-temporal Knowledge: Composition Tables

	Conclusions and Future Research

	Computing and Using Lower and Upper Bounds for Action Elimination in MDP Planning
	Introduction
	Definitions and Notation
	Computing Lower and Upper Bounds
	Using the Lower and Upper Bounds in MDP Planners
	Formal Properties and Discussion
	Experimental Evaluation
	Related Work
	Conclusions and Future Work

	Model-Based Exploration in Continuous State Spaces
	Introduction
	Background
	Model Approximation
	Decomposition of the Transition Function
	Model Generalization

	Fitted-Model Learning Algorithms
	Fitted Models
	Fitted R-Max

	Experimental Results
	Implementation Details
	Benchmark Performance
	Ablation Study

	Discussion and Related Work
	Conclusion

	Active Learning of Dynamic Bayesian Networks in Markov Decision Processes
	Introduction
	Overview of our Work

	Bayesian Networks
	Markov Decision Processes
	DBN Model of Factored MDPs

	Learning a DBN Model
	Active Learning

	Results
	Conclusion

	Boosting MUS Extraction
	Introduction
	MUS and Abstraction
	Theoretical Background
	The CORE-FC Algorithm
	The CORE-FC1 Algorithm
	The CORE-FC2 Algorithm

	Experimental Results
	Random Benchmarks
	Pigeons Benchmarks
	Dual-ehi Benchmarks

	Conclusions

	Homogeneous Hierarchical Composition of Areas in Multi-robot Area Coverage
	Introduction
	State-of-the-Art in Multi-robot Area Coverage
	Multi-robot Area Coverage Algorithms
	Homogeneous Hierarchical Composition of Areas
	Implication of Homogeneous Hierarchical Composition
	Limitations of Homogeneous Hierarchical Composition

	Homogeneous Hierarchical Composition Applied to large areas
	Design of Experiments

	Summary and Conclusion
	References
	Appendix 1: Homogeneous Hierarchical Composition Theorem

	Formalizing the Abstraction Process in Model-Based Diagnosis
	Introduction
	A Running Example
	The KRA Model of Abstraction
	Model-Based Diagnosis
	The KRA Model Applied to MBD
	Modelling Abstract Diagnosis with KRA
	A Test of the Approach
	Conclusions

	Boolean Approximation Revisited
	Introduction
	Preliminaries: Boolean Functions
	Approximation as Closure Operators
	Upper Closure Operators
	Lower Closure Operators
	Boolean Development

	Computing Approximations
	Decomposable and Unbiased Classes
	Quotient Classes
	The Approximation Scheme
	Closure Under Instantiation

	Instantiating the Scheme
	Expressing the Envelopes
	Algorithmic Aspects

	Discussion

	An Analysis of Map-Based Abstraction and Refinement
	Introduction
	Problem Definition

	Abstraction Mechanisms
	Automatic State Abstraction
	Clique Abstraction
	Sector Abstraction
	Radius Abstraction
	Line Abstraction
	Node-Limit Abstraction

	Abstraction Analysis
	Experimental Results
	Abstraction-Based Search Algorithms
	Search Costs
	Predicting Total Work

	Conclusions

	Solving Difficult SAT Instances Using Greedy Clique Decomposition
	Introduction
	SAT Reformulation Using Greedy Clique Decomposition
	Inference of Conflicting Literals
	Greedy Clique Decomposition and Literal Contribution Counting
	Output of the Reformulation Process

	Experimental Results
	Difficult SAT Instances Selected for Experiments
	Effect of Problem Reformulation

	Related Works
	Conclusions and Future Work
	References

	Abstraction and Complexity Measures
	Introduction
	Theories of Abstraction
	The KRA Abstraction Model
	Complexity Measures
	Turing Machine-Based Complexity Measures
	Statistical Complexity Measures

	Abstraction and Complexity
	Turing Machine-Based Complexity Measures
	Stochastic Measures of Complexity

	Conclusions

	Abstraction, Emergence, and Thought
	Emergence
	Thought Externalization
	References

	What’s Your Problem? The Problem of Problem Definition
	A Definition of Problem Definition
	Three Orthogonal Research Directions

	A Reformulation-Based Approach to Explanation in Constraint Satisfaction
	Introduction
	Reformulation for Explanation
	References

	Integration of Constraint Programming and Metaheuristics
	Rule-Based Reasoning Via Abstraction Research Summary
	Extensional Reasoning
	Reformulating Constraint Models Using Input Data
	Motivation
	Research Approach

	Using Analogy Discovery to Create Abstractions
	Distributed CSPs: Why It Is Assumed a Variable per Agent?
	Introduction
	From Basic Research Toward Applied Research

	Decomposition of Games for Efficient Reasoning
	Generalized Constraint Acquisition
	Introduction
	Related Work
	Our Approach

	Using Infeasibility to Improve Abstraction-Based Heuristics
	Leveraging Graph Locality Via Abstraction
	Author Index

