
Searching Cycle-Disjoint Graphs

Boting Yang, Runtao Zhang, and Yi Cao

Department of Computer Science, University of Regina
{boting,zhang23r,caoyi200}@cs.uregina.ca

Abstract. In this paper, we study the problem of computing the mini-
mum number of searchers who can capture an intruder hiding in a graph.
We propose a linear time algorithm for computing the vertex separation
and the optimal layout for a unicyclic graph. The best algorithm known
so far is given by Ellis et al. (2004) and needs O(n log n) time, where n
is the number of vertices in the graph. By a linear-time transformation,
we can compute the search number and the optimal search strategy for
a unicyclic graph in linear time. We show how to compute the search
number for a k-ary cycle-disjoint graph. We also present some results on
approximation algorithms.

1 Introduction

Given a graph in which an intruder is hiding on vertices or edges, the searching
problem is to find the minimum number of searchers to capture the intruder.
The graph searching problem has many applications [4,5,7].

Let G be a graph without loops and multiple edges. Initially, all vertices and
edges of G are contaminated, which means an intruder can hide on any vertices or
anywhere along edges. There are three actions for searchers: (1) place a searcher
on a vertex; (2) remove a searcher from a vertex; and (3) slide a searcher along
an edge from one end vertex to the other. A search strategy is a sequence of
actions designed so that the final action leaves all edges of G cleared. An edge
uv in G can be cleared in one of two ways by a sliding action: (1) two searchers
are located on vertex u, and one of them slides along uv from u to v; or (2) a
searcher is located on vertex u, where all edges incident with u, other than uv,
are already cleared, and the searcher slides from u to v. The intruder can move
along a path that contains no searcher at a great speed at any time. For a graph
G, the minimum number of searchers required to clear G is called the search
number, denoted by s(G). A search strategy for a graph G is optimal if this
strategy can clear G using s(G) searchers. Let E(i) be the set of cleared edges
just after action i. A search strategy is said to be monotonic if E(i) ⊆ E(i + 1)
for every i. LaPaugh [8] and Bienstock and Seymour [1] proved that for any
connected graph G, allowing recontamination cannot reduce the search number.
Thus, we only need to consider monotonic search strategies. Megiddo et al. [9]
showed that determining the search number of a graph G is NP-hard. They also
gave a linear time algorithm to compute the search number of a tree and an
O(n log n) time algorithm to find the optimal search strategy, where n is the

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 32–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Searching Cycle-Disjoint Graphs 33

number of vertices in the tree. Peng et al. [10] proposed a linear time algorithm
to compute the optimal search strategy of trees.

Search numbers are closely related to several other important graph parame-
ters, such as vertex separation and pathwidth. A layout of a connected graph
G(V, E) is a one to one mapping L: V → {1, 2, . . . , |V |}. Let VL(i) ={x : x ∈
V (G), and there exists y ∈ V (G) such that the edge xy ∈ E(G), L(x) ≤ i and
L(y) > i}. The vertex separation of G with respect to L, denoted by vsL(G), is
defined as vsL(G) = max{|VL(i)| : 1 ≤ i ≤ |V (G)|}. The vertex separation of
G is defined as vs(G) = min{vsL(G) : L is a layout of G}. We say that L is an
optimal layout if vsL(G) = vs(G). Kinnersley [6] showed that vs(G) equals the
pathwidth of G. Ellis et al. [2] proved that vs(G) ≤ s(G) ≤ vs(G)+2 for any con-
nected undirected graph G. They gave a transformation called 2-expansion from
G to G′ such that vs(G′) = s(G). They also described an algorithm for trees to
compute the vertex separation in linear time. Based on this algorithm, Ellis and
Markov [3] gave an O(n log n) algorithm for computing the vertex separation
and the optimal layout of a unicyclic graph.

The rest of this paper is organized as follows. In Section 2, we give definitions
and notation. In Section 3, we present a linear time algorithm for computing
the search number and the optimal search strategy for a tree by applying the
labeling method. In Section 4, we improve Ellis and Markov’s algorithm from
O(n log n) to O(n) for computing the vertex separation and the optimal layout of
a unicyclic graph. In Section 5, we show how to compute the search number of a
k-ary cycle-disjoint graph. In Section 6, we investigate approximation algorithms
for computing the search number of a cycle-disjoint graph.

2 Preliminaries

All graphs in this paper are finite without loops and multiple edges. A rooted
tree is a tree with one vertex designated as the root of the tree. We use T [r] to
denote a rooted tree T with root r. For any two vertices v1 and v2 in T [r], if
there is a path from r to v2 that contains v1, then we say v2 is a descendant of
v1; specifically, if v2 is adjacent to v1, we say v2 is a child of v1. Each vertex of
T [r] except r is a descendant of r. For any edge with end vertices u and v, if v
is the child of u, then we orient this edge with the direction from u to v. This
edge is denoted by (u, v). After this orientation, we obtain a directed rooted tree
T [r] such that the in-degree of r is 0 and the in-degree of any other vertex is 1.
For any vertex v of T [r], the subtree induced by v and all its descendant vertices
is called the vertex-branch at v, denoted by T [v]. T [r] can be considered as a
vertex-branch at r. For any directed edge (u, v), the graph T [v] + (u, v) is called
the edge-branch of (u, v), denoted by T [uv]. T [uv] is also called an edge-branch
at u.

A vertex-branch T [x] is said to be k-critical if s(T [x]) = k and there are
exactly two edge-disjoint edge-branches in T [x] such that they share a common
vertex and each has search number k. This common vertex is called a k-critical
vertex. An edge-branch T [xy] is k-critical if s(T [xy]) = k and T [xy] contains a

34 B. Yang, R. Zhang, and Y. Cao

k-critical vertex-branch. We use k+ to denote a critical element, where k is a
positive integer. The value of k+, denoted as |k+|, is equal to k.

Let T [r] be a rooted tree and v be a vertex in T [r]. If s(T [v]) = s1 and T [v]
is s1-critical, let v1 be the s1-critical vertex in T [v] and let T [v, v1] denote the
subtree obtained by deleting all edges and vertices (except v1) of T [v1] from T [v].
If s(T [v, v1]) = s2 and T [v, v1] is s2-critical, let v2 be the s2-critical vertex in
T [v, v1] and let T [v, v1, v2] denote the subtree obtained by deleting all edges and
vertices (except v2) of T [v2] from T [v, v1]. Repeat this process until we first en-
counter a subtree T [v, v1, . . . , vk] that is a single vertex v or whose search number
is equal to sk+1 and which is not sk+1-critical. If T [v, v1, . . . , vk] is a single vertex,
then the label of v, denoted by L(v), is defined by (s+

1 , s+
2 , . . . , s+

k); otherwise, the
label L(v) is defined by (s+

1 , s+
2 , . . . , s+

k , sk+1). Specifically, if s(T [v]) = s1 > 0
and T [v] is not s1-critical, then the label L(v) is defined by (s1). Let (u, v) be
an edge in T [r]. If s(T [uv]) = s1 and T [uv] is s1-critical, let v1 be the s1-critical
vertex in T [uv] and let T [uv, v1] denote the subtree obtained by deleting all edges
and vertices (except v1) of T [v1] from T [uv]. If s(T [uv, v1]) = s2 and T [uv, v1] is
s2-critical, let v2 be the s2-critical vertex in T [uv, v1] and let T [uv, v1, v2] denote
the subtree obtained by deleting all edges and vertices (except v2) of T [v2] from
T [uv, v1]. Repeat this process until we first encounter a subtree T [uv, v1, . . . , vk]
whose search number is equal to sk+1 and which is not sk+1-critical. The la-
bel of uv, denoted by L(uv), is defined by (s+

1 , s+
2 , . . . , s+

k , sk+1). Specifically, if
s(T [uv]) = s1 > 0 and T [uv] is not s1-critical, then the label of uv is defined by
(s1). Both vertex labels and edge labels have the following property.

Lemma 1. For a labeled tree, each vertex label or edge label consists of a se-
quence of strictly decreasing elements such that each element except the last one
must be a critical element.

3 Labeling Method for Trees

From [2], we know that the search number of a tree can be found in linear time
by computing the vertex separation of the 2-expansion of the tree. From [9], we
know that the search number of a tree can also be found in linear time by using
a hub-avenue method. However, in order to apply the labeling method proposed
in [2] to compute search numbers of other special graphs (refer to the full version
[11] of this paper), we modify this method so that it can compute the search
number of a tree directly.

For a tree T , if we know the search number of all edge-branches at a vertex
in T , then s(T) can be computed from combining these branches’ information.

Algorithm. SearchNumber(T [r])
Input: A rooted tree T [r].
Output: s(T [r]).

1. Assign label (0) to each leaf (except r if r is also a leaf) and assign label (1)
to each pendant edge in T [r].

Searching Cycle-Disjoint Graphs 35

2. if there is an unlabeled vertex v whose all out-going edges have been labeled,
then compute the label L(v);

if v has an in-coming edge (u, v), then
computer the label L(uv);

else stop and output the value of the first element in the label L(v).
repeat Step 2.

Because a rooted tree T [r] has a unique root r, every vertex except r has a
unique in-coming edge and r has no in-coming edge. Thus, if v has no in-coming
edge at line 3 of Step 2, then v must be the root r and the value of the first
element in its label is equal to the search number of T [r]. We can prove the
following results for rooted trees.

Lemma 2. For a rooted tree T [r] and a vertex v in T [r], let v1, v2, . . . , vk be all
the children of v. Let a = max{s(T [vvi]) | 1 ≤ i ≤ k} and b be the number of
edge-branches with search number a.
(i) If b ≥ 3, then s(T [v]) = a + 1.
(ii) If b = 2 and no edge-branch at v is a-critical, then s(T [v]) = a and T [v] is
a-critical.
(iii) If b = 2 and at least one branch at v is a-critical, then s(T [v]) = a + 1.
(iv) If b = 1 and no branch at v is a-critical, then s(T [v]) = a.
(v) If b = 1 and T [vvj] is a-critical, let u be the a-critical vertex in T [vvj],
and let T [v, u] be the subtree formed by deleting all edges of T [u] from T [v]. If
s(T [v, u]) = a, then s(T [v]) = a + 1; and if s(T [v, u]) < a, then s(T [v]) = a and
T [v] is a-critical.

In Step 2 of the algorithm SearchNumber(T [r]), let v1, v2, . . . , vk be all the
children of v. Each label L(vvi) contains the structure information of the edge-
branch T [vvi]. For example, if L(vvi) = (s+

1 , s+
2 , . . . , s+

m, sm+1), it means T [vvi]
has a s1-critical vertex u1, T [vvi, u1] has a s2-critical vertex u2, . . . , T [vvi, u1,
. . . , um−1] has a sm-critical vertex um, and T [vvi, u1, . . . , um] has search number
sm+1 and it is not sm+1-critical. From Lemma 2, we can compute L(v) that con-
tains the structure information of the vertex-branch T [v] by using the structure
information of all edge-branches at v. Since the label of an edge (x, y) contains
the information of the edge-branch T [y] + (x, y), we can compute L[xy] from
L[y]. By using appropriate data structures for storing labels, each loop in Step
2 can be performed in O(s(T [vv′]) + k) time, where T [vv′] is the edge-branch
that has the second largest search number among all edge-branches at v and
k is the number of children of v. By using a recursion to implement Step 2 of
SearchNumber(T [r]), we can prove the following result.

Theorem 1. If n is the number of vertices in a tree T , then the running time
of computing s(T) is O(n).

After we find the search number, we can use the information obtained in Algo-
rithm Search-Number(T [r]) to compute an optimal monotonic search strategy
in linear time.

36 B. Yang, R. Zhang, and Y. Cao

4 Unicyclic Graphs

Ellis and Markov [3] proposed an O(n log n) algorithm to compute the vertex
separation of a unicyclic graph. In this section we will give an improved algorithm
that can do the same work in O(n) time. All definitions and notation in this
section are from [3]. Their algorithm consists of three functions: main, vs uni and
vs reduced uni (see Fig. 28, 29 and 30 in [3] for their descriptions).

Let U be a unicyclic graph and e be a cycle edge of U . In function main, it
first computes the vertex separation of the tree U − e, and then invokes function
vs uni to decide whether vs(U) = vs(U − e). vs uni is a recursive function that
has O(log n) depth, and in each iteration it computes the vertex separation
of a reduced tree U ′ − e and this takes O(n) time. Thus, the running time of
vs uni is O(n log n). vs uni invokes the function vs reduced uni to decide whether a
unicyclic graph U is k-conforming. vs reduced uni is also a recursive function that
has O(log n) depth, and in each iteration it computes the vertex separation of
T1[a] and T1[b] and this takes O(n) time. Thus, the running time of vs reduced uni
is also O(n log n).

We will modify all three functions. The main improvements of our algorithm
are to preprocess the input of both vs uni and vs reduced uni so that we can
achieve O(n) running time. The following is our improved algorithm, which
computes the vertex separation and the corresponding layout for a unicyclic
graph U .

program main modified
1 For each constituent tree, compute its vertex separation, optimal layout and type.
2 Arbitrarily select a cycle edge e and a cycle vertex r. Let T [r] denote U − e with

root r. Compute vs(T [r]) and the corresponding layout X.
3 Let L be the label of r in T [r]. Set α ← vs(T [r]), k ← vs(T [r]).
4 while the first element of L is a k-critical element and the corresponding

k-critical vertex v is not a cycle vertex in U , do
Update U by deleting T [v] and update L by deleting its first element;
Update the constituent tree T [u] that contains v by deleting T [v]

and update the label of u in T [u] by deleting its first element;
k ← k − 1;

5 if (vs uni modified(U, k))
then output(α, the layout created by vs uni modified);
else output(α + 1, X);

function vs uni modified(U, k): Boolean
Case 1:U has one k-critical constituent tree;

compute vs(T ′);
if vs(T ′) = k, then return (false) else return (true);

Case 2:U has three or more non-critical k-trees;
return (false);

Case 3:U has exactly two non-critical k-trees Ti and Tj ;
compute vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
/* Assume that vs(T1) ≥ vs(T2). */
/* Let La be the label of a in T1[a], and Lb be the label of b in T1[b]. */

Searching Cycle-Disjoint Graphs 37

/* Let Lc be the label of c in T2[c], and Ld be the label of d in T2[d]. */
/* Let U ′ be U minus the bodies of Ti and Tj . */
return (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k));

Case 4:U has exactly one non-critical k-tree Ti;
/* let q be the number of (k − 1)-trees that is not type NC. */

Case 4.1: 0 ≤ q ≤ 1;
return (true);

Case 4.2: q = 2;
for each tree Tj from among the two (k − 1)-trees, do

compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 4.3: q = 3;

for each tree Tj from among the three (k − 1)-trees, do
compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 4.4: q ≥ 4;

return (false);
Case 5:U has no k-trees;

/* let q be the number of (k − 1)-trees that is not type NC. */
Case 5.1: 0 ≤ q ≤ 2;

return (true);
Case 5.2: q = 3;

for each choice of two trees Ti and Tj from the three (k − 1)-trees, do
compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 5.3: q = 4;

for each choice of two trees Ti and Tj from the four (k − 1)-trees, do
compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 5.4: q ≥ 5;

return (false).

function vs reduced uni modified(U, La, Lb, Lc, Ld, k)): Boolean
/* Let a1, b1, c1, d1 be the first elements of La, Lb, Lc, Ld respectively. */
/* Let |a1|, |b1|, |c1|, |d1| be the value of a1, b1, c1, d1 respectively. */
/* We assume that |a1| ≥ |c1|. */

Case 1: |a1| = k;
return (false).

Case 2: |a1| < k − 1;
return (true).

Case 3: |a1| = k − 1;
if both a1 and b1 are (k − 1)-critical elements, then

38 B. Yang, R. Zhang, and Y. Cao

/* Let u be the (k − 1)-critical vertex in T1[a]
and let v be the (k − 1)-critical vertex in T1[b]. */

if u = v and u is not a cycle vertex, then
update La and Lb by deleting their first elements;
update U by deleting T [u];
update the label of the root of the constituent tree containing u

by deleting its first element;
if |c1| is greater than the value of the first element in current La,

then return (vs reduced uni modified(U, Lc, Ld, La, Lb, k − 1).
else return (vs reduced uni modified(U, La, Lb, Lc, Ld, k − 1).

else /* (u = v and u is a cycle vertex) or (u �= v) */
return (T2 contains no k − 1 types other than NC constituents);

else return ((neither a1 nor d1 is (k − 1)-critical element)
or (neither b1 nor c1 is (k − 1)-critical element)).

Lemma 3. Let U be a unicyclic graph, e be a cycle edge and r be a cycle vertex
in U . Let T [r] denote the tree U − e with root r. If vs(T [r]) = k, then U has a
k-constituent tree of type Cb if and only if the first element in the label of r in
T [r] is a k-critical element and the corresponding k-critical vertex is not a cycle
vertex.

The correctness of the modified algorithm follows from the analysis in Sections 4
and 5 in [3]. We now compare the two algorithms. In our main modified function,
if the condition of the while-loop is satisfied, then by Lemma 3, U has a k-
constituent tree of type Cb that contains v. Let T ′[u] be this constituent tree
and u be the only cycle vertex in T ′[u]. The first element in the label of u in
T ′[u] must be k-critical element. Let L(r) be the label of r in T [r] and L(u)
be the label of u in T ′[u]. We can obtain the label of r in T [r] − T [v] and the
label of u in T ′[u] − T ′[v] by deleting the first element of each label, according
to the definition of labels [3]. This work can be done in constant time. However,
without choosing a cycle vertex as the root of T , their algorithm needs O(n)
time to compute these two labels. Function vs uni in [3] can only invoke itself in
Case 1 when U has a k-constituent tree of type Cb. Our main modified function
invokes function vs uni modified only when the condition of the while-loop is not
satisfied. By Lemma 3, in this case, U does not have a k-constituent tree of type
Cb. Thus in Case 1 of vs uni modified, the tree must be of type C, and recursion is
avoided. In their function vs reduced uni, vs(T1) and vs(T2) are computed using
O(n) time. However, we compute them before invoking vs reduced uni modified.
Let La, Lb, Lc and Ld be the label of a in T1[a], b in T1[b], c in T2[c] and d in
T2[d] respectively. All the information needed by vs reduced uni modified is these
four labels. While recursion occurs, we can obtain new labels by simply deleting
the first elements from the old ones, which requires only constant time. Hence,
the time complexity of vs reduced uni modified can be reduced to O(1) if we do
not count the recursive iterations.

We now analyze the running time of our modified algorithm. Since function
vs reduced uni modified only ever invokes itself and the depth of the recursion is
O(log n), its running time is O(log n). In function vs uni modified, Case 1 needs
O(n); Cases 3, 4.2, 4.3, 5.2 and 5.3 need O(n)+O(log n); and other cases can be

Searching Cycle-Disjoint Graphs 39

done in O(1). Thus, the running time of vs uni modified is O(n) + O(log n). In
the main modified function, all the work before invoking vs uni modified can be
done in O(n)+O(log n). Hence, the total running time of the modified algorithm
is O(n). Therefore, we have the following theorem.

Theorem 2. For a unicyclic graph G, the vertex separation and the optimal
layout of G can be computed in linear time.

For a graph G, the 2-expansion of G is the graph obtained by replacing each
edge of G by a path of length three. By Theorem 2.2 in [2], the search number
of G is equal to the vertex separation of the 2-expansion of G. From Theorem 2,
we have the following result.

Corollary 1. For a unicyclic graph G, the search number and the optimal search
strategy of G can be computed in linear time.

5 k-Ary Cycle-Disjoint Graphs

A graph G is called a cycle-disjoint graph (CDG) if it is connected and no pair
of cycles in G share a vertex. A complete k-ary tree T is a rooted k-ary tree in
which all leaves have the same depth and every internal vertex has k children. If
we replace each vertex of T with a (k+1)-cycle such that each vertex of internal
cycle has degree at most 3, then we obtain a cycle-disjoint graph G, which we
call a k-ary cycle-disjoint graph (k-ary CDG). In T , we define the level of the
root be 1 and the level of a leaf be the number of vertices in the path from the
root to that leaf. We use T h

k to denote a complete k-ary tree with level h and
Gh

k to denote the k-ary CDG obtained from T h
k . In this section, we will show

how to compute the search numbers of k-ary CDGs. Similar to [3], we have the
following lemmas.

Lemma 4. Let G be a graph containing three connected subgraphs G1, G2 and
G3, whose vertex sets are pairwise disjoint, such that for every pair Gi and Gj

there exists a path in G between Gi and Gj that contains no vertex in the third
subgraph. If s(G1) = s(G2) = s(G3) = k, then s(G) ≥ k + 1.

Lemma 5. For a connected graph G, let C = v1v2 . . . vmv1 be a cycle in G such
that each vi (1 ≤ i ≤ m) connects to a connected subgraph Xi by a bridge. If
s(Xi) ≤ k, 1 ≤ i ≤ m, then s(G) ≤ k + 2.

Lemma 6. For a connected graph G, let v1, v2, v3, v4 and v5 be five vertices on
a cycle C in G such that each vi (1 ≤ i ≤ 5) connects to a connected subgraph
Xi by a bridge. If s(Xi) ≥ k, 1 ≤ i ≤ 5, then s(G) ≥ k + 2.

Lemma 7. For a connected graph G, let C = v1v2v3v4v1 be a 4-cycle in G such
that each vi (1 ≤ i ≤ 4) connects to a connected subgraph Xi by a separation
edge. If s(G) = k + 1 and s(Xi) = k, 1 ≤ i ≤ 4, then for any optimal monotonic
search strategy of G, the first cleared vertex and the last cleared vertex must be
in two distinct graphs Xi + vi, 1 ≤ i ≤ 4.

40 B. Yang, R. Zhang, and Y. Cao

Lemma 8. For a CDG G with search number k, let S be an optimal monotonic
search strategy of G in which the first cleared vertex is a and the last cleared
vertex is b. If there are two cut-vertices a′ and b′ in G such that an edge-branch
Ga′ of a′ contains a and an edge-branch Gb′ of b′ contains b and the graph
G′ obtained by removing Ga′ and Gb′ from G is connected, then we can use k
searchers to clear G′ starting from a′ and ending at b′.

For a vertex v in G, if s(G) = k and there is no monotonic search strategy to
clear G starting from or ending at v using k searchers, then we say that v is a
bad vertex of G.

Lemma 9. Let G be a connected graph and C be a cycle of length at least four in
G, and v1 and v2 be two vertices on C such that each vi (1 ≤ i ≤ 2) connects to
a connected subgraph Xi by a bridge viv

′
i. If s(X1) = s(X2) = k and v′1 is a bad

vertex of X1 or v′2 is a bad vertex of X2, then we need at least k +2 searchers to
clear G starting from v3 and ending at v4, where v3 and v4 are any two vertices
on C other than v1 and v2.

Lemma 10. For a connected graph G, let v1, v2, v3 and v4 be four vertices on
a cycle C in G such that each vi (1 ≤ i ≤ 4) connects to a connected subgraph
Xi by a bridge viv

′
i. If s(Xi) = k, and v′i is a bad vertex of Xi, 1 ≤ i ≤ 4, then

s(G) ≥ k + 2.

From the above lemmas, we can prove the major result of this section.

Theorem 3. Let T h
k be a complete k-ary tree with level h and Gh

k be the corre-
sponding k-ary CDG.

(i) If k = 2 and h ≥ 3, then s(T h
2) = �h

2 � + 1 and s(Gh
2) = �h

2 � + 2.
(ii) If k = 3 and h ≥ 2, then s(T h

3) = h and s(Gh
3) = h + 1.

(iii) If k = 4 and h ≥ 2, then s(T h
4) = h and s(Gh

4) = h + 	h
2
.

(iv) If k ≥ 5 and h ≥ 2, then s(T h
k) = h and s(Gh

k) = 2h.

Proof. The search numbers of complete k-ary trees can be verified directly by
the algorithm SearchNumber(T [r]). Thus, we will only consider the search
numbers of k-ary CDGs.

(i) The search number of Gh
2 can be verified by a search strategy based on

SearchStrategy(T [r]).
(ii) We now prove s(Gh

3) = h + 1 by induction on h. Let R = r0r1r2r3r0 be
the cycle in Gh

3 that corresponds to the root of T h
3 . Suppose r0 is the vertex

without any outgoing edges. When h = 2, it is easy to see that s(G2
3) = 3 and

all four vertices of R are not bad vertices in G2
3. Suppose s(Gh

3) = h + 1 holds
when h < n and all four vertices of R are not bad vertices in Gh

3 . When h = n,
R has three edge-branches with search number n. It follows from Lemma 4 that
s(Gn

3) ≥ n + 1. We will show how to use n + 1 searchers to clear the graph
by the following strategy: use n searchers to clear G[r1] ending at r1; keep one
searcher on r1 and use n searchers to clear G[r2] ending at r2; use one searcher
to clear the edge r1r2; slide the searcher on r1 to r0 and slide the searcher on r2
to r3; use one searcher to clear the edge r0r3; then clear G[r3] with n searchers

Searching Cycle-Disjoint Graphs 41

starting from r3. This strategy never needs more than n + 1 searchers. Thus,
s(Gn

3) = n+1. From this strategy, it is easy to see that all four vertices of R are
not bad vertices in Gn

3 .
(iii) We will prove s(Gh

4) = h + 	h
2
 by induction on h. Let R = r0r1r2r3r4r0

be the cycle in Gh
4 that corresponds to the root of T h

4 . Suppose r0 is the vertex
without any outgoing edges. We want to show that if h is odd, then no bad
vertex is on R, and if h is even, then r0 is a bad vertex of Gh

4 .
When h = 2, it is easy to see that s(G2

4) = 3 and r0 is a bad vertex in G2
4.

When h = 3, by Lemma 10, s(G3
4) ≥ 5 and it is easy to verify that 5 searchers

can clear G3
4 starting from any one of the five vertices on R. Suppose these results

hold for Gh
4 when h < n. We now consider the two cases when h = n.

If n is odd, G[ri] has search number n − 1 + (n − 1)/2 and ri is a bad vertex
in G[ri], 1 ≤ i ≤ 4. By Lemma 10, we have s(Gn

4) ≥ n − 1 + (n − 1)/2 + 2 =
n + (n + 1)/2. We will show how to use n + (n + 1)/2 searchers to clear the
graph by the following strategy. Let v be any one of the cycle vertex of R. We
first place two searchers α and β on v and then slide β along R starting from v
and ending at v. Each time when β arrives a vertex of R, we clear the subgraph
attached to this vertex using n − 1 + (n − 1)/2 searchers. This strategy never
needs more than n + (n +1)/2 searchers. Thus, s(Gn

4) = n + (n + 1)/2. It is also
easy to see that all five vertices of R are not bad vertices in Gn

4 .
If n is even, G[ri] has search number n− 1+n/2 and ri is not a bad vertex in

G[ri], 1 ≤ i ≤ 4. By Lemma 4, we have s(Gn
4) ≥ n + n/2. We will show how to

use n+n/2 searchers to clear the graph by the following strategy: use n−1+n/2
searchers to clear G[r1] ending at r1; use n − 1 + n/2 searchers to clear G[r2]
ending at r2; use one searcher to clear the edge r1r2; slide the searcher on r1
along the path r1r0r4 to r4; slide the searcher on r2 to r3 along the edge r2r3; use
one searcher to clear the edge r3r4; clear G[r3] with n−1+n/2 searchers starting
from r3 and finally clear G[r4] with n − 1 + n/2 searchers starting from r4. This
strategy never needs more than n + n/2 searchers. Thus, s(Gn

4) = n + n/2 and,
by Lemma 7, r0 is a bad vertex in Gn

4 .
(iv) The search number of Gh

k , k ≥ 5, can be verified directly from Lemmas 5
and 6.

6 Approximation Algorithms

Megiddo et al. [9] introduced the concept of the hub and the avenue of a tree.
Given a tree T with s(T) = k, only one of the following two cases must happen:
(1) T has a vertex v such that all edge-branches of v have search number less
than k, this vertex is called a hub of T ; and (2) T has a unique path v1v2 . . . vt,
t > 1, such that v1 and vt each has exactly one edge-branch with search number
k and each vi, 1 < i < t, has exactly two edge-branches with search number k,
this unique path is called an avenue of T .

Theorem 4. Given a CDG G, if T is a tree obtained by contracting each cycle
of G into a vertex, then s(T) ≤ s(G) ≤ 2s(T).

42 B. Yang, R. Zhang, and Y. Cao

Corollary 2. For any CDG, there is a linear time approximation algorithm with
approximation ratio 2.

Lemma 11. Let G be a CDG in which every cycle has at most three vertices
with degree more than two. Let T be the tree obtained from G by contracting
every cycle of G into a vertex. If the degree of each cycle vertex in G is at most
three, then s(G) ≤ s(T) + 1.

Let S = (a1, . . . , ak) be an optimal monotonic search strategy for a graph. The
reversal of S, denoted as SR, is defined by SR = (ak, ak−1, . . . , a1), where each
ai, 1 ≤ i ≤ k, is the converse of ai, which is defined as follows: the action “place
a searcher on vertex v” and the action “remove a searcher from vertex v” are
converse with each other; and the action “move the searcher from v to u along
the edge vu” and the action “move the searcher from u to v along the edge uv”
are converse with each other.

Lemma 12. If S is an optimal monotonic search strategy of a graph G, then
SR is also an optimal monotonic search strategy of G.

Lemma 13. Given a graph G, for any two vertices a and b of G, there is a
search strategy that uses at most s(G) + 1 searchers to clear G starting from a
and ending at b.

Theorem 5. Let G be a connected graph and X1, X2, . . . , Xm be an edge parti-
tion of G such that each Xi is a connected subgraph and each pair of Xi share
at most one vertex. Let G∗ be a graph of m vertices such that each vertex of G∗

corresponds to a Xi and there is an edge between two vertices of G∗ if and only
if the corresponding two Xi share a common vertex. If G∗ is a tree, then there is
a search strategy that uses at most max1≤i≤m s(Xi)+	Δ(G∗)/2
s(G∗) searchers
to clear G, where Δ(G∗) is the maximum degree of G∗.

Proof. We prove the result by induction on s(G∗). If s(G∗) = 1, then G∗ is
a single vertex or a path, and 	Δ(G∗)/2
 = 1. Suppose that G∗ is the path
v1v2 . . . vm and vi corresponds to Xi, 1 ≤ i ≤ m. Let ai be the vertex shared by
Xi and Xi+1, 1 ≤ i ≤ m − 1 and let a0 be a vertex in X1 and am be a vertex in
Xm. By Lemma 13, we can use s(Xi)+1 searchers to clear each Xi starting from
ai−1 and ending at ai, for X1, X2, . . . , Xm. Therefore, there is a search strategy
uses at most maxi s(Xi) + 1 searchers to clear G. Suppose that this result holds
for s(G∗) ≤ n, n ≥ 2. When s(G∗) = n + 1, we consider the following two cases.

Case 1. G∗ has a hub v. Let X(v) be the subgraph of G that corresponds to
v and S be an optimal search strategy of X(v). Each subgraph that corresponds
to a neighbor of v in G∗ shares a vertex with X(v) in G. Divide these shared
vertices into 	deg(v)/2
 pairs such that for each pair of vertices ai and a′

i, ai

is cleared before a′
i is cleared in S, 1 ≤ i ≤ 	deg(v)/2
. Let vi (resp. v′i) be

the neighbor of v such that its corresponding subgraph of G, denoted by X(vi)
(resp. X(v′i)), shares ai (resp. a′

i) with X(v). Let v be the root of G∗, let Ti

(resp. T ′
i) be the vertex-branch of vi (resp. v′i) and let X(Ti) (resp. X(T ′

i)) be
the subgraph of G that is the union of the subgraphs that correspond to all

Searching Cycle-Disjoint Graphs 43

vertices in Ti (resp. T ′
i). Obviously ai (resp. a′

i) is the only vertex shared by
X(v) and X(Ti) (resp. X(T ′

i)). Since v is a hub of G∗, we know that s(Ti) ≤ n.
Thus, s(X(Ti)) ≤ maxi s(Xi) + 	Δ(Ti)/2
n ≤ maxi s(Xi) + 	Δ(G∗)/2
n. First,
we place a searcher on each ai, 1 ≤ i ≤ 	deg(v)/2
. Then use maxi s(Xi) +
	Δ(G∗)/2
n searchers to clear each subgraph X(Ti) separately. After that, we
perform S to clear X(v). Each time after some ai is cleared by S, we remove
the searcher on ai and place it on a′

i, 1 ≤ i ≤ 	deg(v)/2
. Finally, after X(v) is
cleared, we again use maxi s(Xi)+	Δ(G∗)/2
n searchers to clear each subgraph
X(T ′

i) separately. Therefore,we can clear G with no more than maxi s(Xi) +
	Δ(G∗)/2
n + 	deg(v)/2
 ≤ maxi s(Xi) + 	Δ(G∗)/2
(n + 1) searchers.

Case 2. G∗ has an avenue v1v2 . . . vt, t > 1. Let v0 be a neighbor of v1 other
than v2 and let vt+1 be a neighbor of vt other than vt−1. Let X(vi), 0 ≤ i ≤ t+1,
be the subgraph of G that corresponds to vi. For 0 ≤ i ≤ t, let bi be the vertex
shared by X(vi) and X(vi+1). For 1 ≤ i ≤ t, let Si be an optimal search strategy
of X(vi) such that bi−1 is cleared before bi is cleared. Thus, we can use a similar
search strategy described in Case 1 to clear each X(vi) and all the subgraphs
that correspond to the edge-branches of vi. Note that when we clear X(vi), bi−1
and bi form a pair as ai and a′

i in Case 1. In such a strategy we never need
more than maxi s(Xi) + 	Δ(G∗)/2
(n + 1) searchers.

In Theorem 5, if each Xi is a unicyclic graph, then we have a linear time ap-
proximation algorithm for cycle-disjoint graphs. We can design a linear time
approximation algorithm when each s(Xi) can be found in linear time.

References

1. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algo-
rithms 12, 239–245 (1991)

2. Ellis, J., Sudborough, I., Turner, J.: The vertex separation and search number of
a graph. Information and Computation 113, 50–79 (1994)

3. Ellis, J., Markov, M.: Computing the vertex separation of unicyclic graphs. Infor-
mation and Computation 192, 123–161 (2004)

4. Fellows, M., Langston, M.: On search, decision and the efficiency of polynomial
time algorithm. In: 21st ACM Symp. on Theory of Computing, pp. 501–512. ACM
Press, New York (1989)

5. Frankling, M., Galil, Z., Yung, M.: Eavesdropping games: A graph-theoretic ap-
proach to privacy in distributed systems. Journal of ACM 47, 225–243 (2000)

6. Kinnersley, N.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42, 345–350 (1992)

7. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theoretical Com-
puter Science 47, 205–218 (1986)

8. LaPaugh, A.S.: Recontamination does not help to search a graph. Journal of
ACM 40, 224–245 (1993)

9. Megiddo, N., Hakimi, S.L., Garey, M., Johnson, D., Papadimitriou, C.H.: The
complexity of searching a graph. Journal of ACM 35, 18–44 (1988)

10. Peng, S., Ho, C., Hsu, T., Ko, M., Tang, C.: Edge and node searching problems on
trees. Theoretical Computer Science 240, 429–446 (2000)

11. Yang, B., Zhang, R., Cao, Y.: Searching cycle-disjoint graphs. Technical report
CS-2006-05, Department of Computer Science, University of Regina (2006)

	Searching Cycle-Disjoint Graphs
	Introduction
	Preliminaries
	Labeling Method for Trees
	Unicyclic Graphs
	k-Ary Cycle-Disjoint Graphs
	Approximation Algorithms

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

