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Abstract. The constrained minimum vertex cover problem on bipartite
graphs (the Min-CVCB problem), with important applications in the
study of reconfigurable arrays in VLSI design, is an NP-hard problem
and has attracted considerable attention in the literature. Based on a
deeper and more careful analysis on the structures of bipartite graphs, we
develop an exact algorithm of running time O((ku+kl)|G|+1.1892ku+kl),
which improves the best previous algorithm of running time O((ku +
kl)|G| + 1.26ku+kl) for the problem.

1 Introduction

With the development of VLSI technology, the scale of electric circuit chip be-
comes larger and larger, and the possibility of introducing defects also increases
along with the manufacture craft. With the increasing in the chip integration,
it is not allowed that the wrong memory element appears in the manufacture
process. A better solution is to use reconfigurable arrays. A typical reconfig-
urable memory array consists of a rectangular array plus a set of ku spare rows
and kl spare columns. A defective element is repaired by replacing the row or the
column containing the element with a spare row or a spare column. Therefore,
to repair a reconfigurable array with defective elements, we need to decide how
the rows and columns in the array are selected and replaced by spare rows and
columns. The constraint here is that we only have ku spare rows and kl spare
columns. It has now become well-known that this problem can be formulated as
a constrained minimum vertex cover problem on bipartite graphs [1], as follows.

Definition 1 (Constrained minimum vertex cover in bipartite graphs
(Min-CVCB)). Given a bipartite graph G = (V, E) with the vertex bipartition
V = U ∪ L and two integers ku and kl, determine whether there is a minimum
vertex cover of G with at most ku vertices in U and at most kl vertices in L.
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The problem is NP-complete [9], therefore has no efficient algorithms in general.
On the other hand, in practice the number of spare rows and spare columns is
much smaller than the size of the reconfigurable array: typically, a reconfigurable
array is a 1000×1000 matrix plus 20 spare rows and 20 spare columns [1]. There-
fore, it is practically important, and theoretically interesting, to develop efficient
algorithms for the Min-CVCB problem, assuming ku and kl much smaller than
the size of the graph G.

Hasan and Liu [1] introduced the concept of critical set to develop a branch-
and-bound algorithm for solving the Min-CVCB problem, based on the A∗ al-
gorithm [2]. No explicit analysis was given in [1] for the running time of the
algorithm, but it is not hard to see that in the worst-case the running time of
the algorithm is at least of order of 2ku+kl + mn1/2. Following the work in [1],
the Min-CVCB problem has been extensively studied in last two decades. Most
of these studies were focused on heuristic algorithms for the problem [3-6].

More recently, people have become interested in developing parameterized
algorithms for the Min-CVCB problem [8-9]. Fernau and Niedermeier [8] used
a branching search technology and developed an algorithm with running time
O((ku + kl)n+1.3999ku+kl) for the problem. Chen and Kanj [9] proved that the
Min-CVCB problem is NP-complete, and developed an improved algorithm of
running time O((ku + kl)|G| + 1.26ku+kl) for the problem. The algorithm given
in [9] made use of a number of classical results in matching theory and recently
developed techniques in parameterized algorithms, which is currently the best
algorithm for the problem.

In this paper, we perform a deeper and more careful analysis on related
structures of bipartite graphs. Based on the analysis, we effectively integrate
the techniques of chain implication, branching search, and dynamic program-
ming, and develop an improved parameterized algorithm EACI of running time
O((ku + kl)|G| + 1.1892ku+kl) for the Min-CVCB problem.

2 Related Lemmas

For further discussion of our algorithm EACI, we first give some definitions and
describe certain known results that are related to the Min-CVCB problem and
to our algorithm.

Definition 2 (Bipartite graph). A graph G is bipartite if its vertex set can be
partitioned into two sets U (the “upper part”) and L (the “lower part”) such that
every edge in G has one endpoint in U and the other endpoint in L. A bipartite
graph is written as G = (U ∪ L, E) to indicate the vertex bipartition. The vertex
sets U and L are called the U -part and the L-part of the graph. A vertex is a
U -vertex (resp. an L-vertex) if it is in the U -part (resp. the L-part) of the graph.

Let G = (U ∪ L, E) be a bipartite graph with a perfect matching. The graph
G is elementary if every edge in G is contained in a perfect matching in G. It
is known that an elementary bipartite graph has exactly two minimum vertex
covers, namely U and L, without any other possibility [10].
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Lemma 1. [9] The time complexity for solving an instance < G; ku, kl > of
Min-CVCB problem, where G is a bipartite graph of n vertices and m edges, is
bounded by O(mn1/2 + t(ku + kl)), where t(ku + kl) is the time complexity for
solving an instance < G′; k′

u, k′
l > of Min-CVCB, with k′

u < ku, k′
l < kl and G′

having perfect matchings and containing at most 2(k′
u + k′

l) vertices.

Lemma 2. (The Dulmage-Mendelsohn Decomposition theorem [10]). A bipar-
tite graph G = (U ∪L, E) with perfect matchings can be decomposed and indexed
into elementary subgraphs Bi = (Ui ∪ Li, Ei), i = 1, 2, . . . r, such that every
edge in G from a subgraph Bi to a subgraph Bj with i < j must have one end-
point in the U -part of Bi and the other endpoint in the L-part of Bj. Such a
decomposition can be constructed in time O(|E|2).

The elementary subgraphs Bi will be called (elementary) blocks. The block Bi

is a d-block if |Ui| = |Li| = d. Edges connecting vertices in two different blocks
will be called inter-block edges. Let Bi be a block. The number λin of blocks Bj

such that i �= j and there is an inter-block edge from the U -part of Bi to the
L-part of Bj is called the in-degree of Bi. Similarly, the number λout of blocks
Bj such that i �= j and there is an inter-block edge from the U -part of Bj to the
L-part of Bi is called the out-degree of Bi.

Lemma 3. [10] Let G be a bipartite graph with perfect matchings, and let B1,
. . ., Br be the blocks of G given by the Dulmage-Mendelsohn Decomposition.
Then any minimum vertex cover for G is the union of minimum vertex covers
of the blocks B1, B2, . . . , Br.

By Lemma 1, in order to solve a general instance 〈G; ku, kl〉 of the Min-CVCB
problem, we only need to concentrate on a “normalized”instance 〈G′; k′

u, k′
l〉 of

the problem, in which G′ has a perfect matching and contains at most 2(k′
u +k′

l)
vertices. By Lemma 2, the graph G′ with perfect matchings can be decomposed
and represented as a directed acyclic graph (DAG) D in which each node cor-
responds to a block in G′ and each edge corresponds to a group of inter-block
edges from the U -part of a block to the L-part of another block. By Lemma 3, a
minimum vertex cover of the graph G′ is the union of minimum vertex covers of
the blocks B1, . . ., Br. All these are very helpful and useful when we construct
a desired minimum vertex cover in the originally given bipartite graph G.

3 The Strategy for Reducing the Search Space in
Algorithm EACI

Algorithm EACI is based on the DAG D constructed above and its execution is
depicted by a search tree whose leaves correspond to the potential constrained
minimum vertex covers K (shortly K) of the graph G with at most ku U -
vertices and at most kl L-vertices. For a given instance of Min-CVCB problem, let
f(ku+kl) be the number of leaves in the search tree, if in a step we can break the
original problem into two sub-problems, and in each sub-problem the parameter
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scale can reduce a and b respectively, then we would establish a recurrence
relation f(ku+kl) ≤ f(ku+kl−a)+f(ku+kl−b). When constructing search tree,
we could include some blocks’ U -part or L-part into K, until in a certain step
breaks DAG D’s NP-Hard structure, then uses dynamic programming technology
to solve the surplus partial in the polynomial time.

In order to speed up the searching process, we will applythe technology of
chain implication[9] , which makes full use of the block’s adjacency relations to
speed up the searching process significantly. Let [B′

1, B
′
2, . . . , B

′
h] be a path in

the DAG D. If we include the L-part of the block B′
1 in K, then the U -part of

the B′
1 must be excluded from K. Since there is an edge in G from the U -part

of B′
1 to L-part of the block B′

2, we must also include the L-part of the block B′
2

in K, which, in consequence, will imply that the L-part of the block B′
3 must be

in K, and so on. In particular, the L-part of the block B′
1 in K implies that the

L-parts of all blocks B′
2, . . . , B

′
h on the path must be in K. Similarly, the U -part

of the block B′
h in K implies that U -parts of all blocks B′

1, .., B
′
h−1 must be in

K. This technology enables us to handle many cases very efficiently.
The particular operation of the algorithm is to list all the possible adjacency

of the blocks in which we branch in the search process. First we analysis the
corresponding branching of the blocks whose weight is no less than 4, then
analysis all the possible joint of block whose weight is 3 to establish the searching
tree. For the block whose weight is 3, first listing the possible joint of the block in
a case-by-case exhaustive manner, and then makes the best of bounded search-
trees technology to construct new recurrence relations. Let λin(Bi) be the in-
degree of the block Bi, λout(Bi) be the out-degree of Bi, w(Bi) be the weight
of Bi, and w(PBi ) be the weight of all the blocks that have a directed path to
the block Bi. We would divide it into two situations as follows according to the
block B0’s weight.

1. w(B0) ≥ 4. Since the constrained minimum vertex cover K of the DAG D
either contains the entire Ui-part and is disjoint from the Li-part, or contains
the entire Li-part and is disjoint from the Ui-part of the block Bi, we branch
in this case by either including the entire Ui-part in K (and remove the Li-part
from the graph) or including the entire Li-part in K (and removing the Ui-part
from the graph). In each case, we add at least 4 vertices in K and remove block
B0 from DAG D. Thus, this branch satisfies the recurrence relation

f(ku + kl) ≤ 2f(ku + kl − 4) (1)

2. w(B0) = 3. According to the value of in-degree and out-degree of block B0,
we would divide it into four situations as follows.

2.1 λin(B0) ≥ 1 and λout(B0) ≥ 1. If we include the U -part of B0 in K, it
forces at least 3 + λin(B0) vertices in K by the chain implication. If we include
the L-part of B0 in K, it also forces at least 3+ λout(B0) vertices in K. Thus in
this case, the branching satisfies recurrence relation (1).

2.2 λout(B0) ≥ 1 and λin(B0) = 0. According to the out-degree of B0 and
w(PB0 ), we would divide it into three situations as follows.

2.2.1 w(PB0 ) ≥ 3. If we included the U -part of B0 in K, it forces at least 3
vertices in K by the “chain implication”. If we include the L-part of B0 in K,
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it forces at least 6 vertices in K. Thus, this branching satisfies the recurrence
relation

f(ku + kl) ≤ f(ku + kl − 3) + f(ku + kl − 6) (2)

2.2.2 w(PB0 ) = 2. In this case, all the connections of block B0 have eight
cases shown in Fig.1, after excluding B0 ’s isolated connections. From Fig.1(a)
to Fig.1(g), let the two connected blocks of B0 be B1 and B2. When λin(B1) ≥ 2,
the connected blocks is B3, when λin(B2) ≥ 2, the connected blocks is B4. In
Fig.1(h), let the blocks connected with B1 is B3. We’ll give an analysis of how
to establish a bounded search tree in the following.

2.2.2.1 In Fig.1(a), B0 is connected with two connected blocks B1 and B2
whose weight are 1, and λin(B1) ≥ 2, λin(B2) ≥ 3. When w(B3) > 1, the
time complexity of the branching is lower than the one when w(B3) = 1, so
we only need to consider the situation when w(B3) = 1. It is also the same in
the following context. In general, we only have to analyze the equal situation.
When the situation of λin(B1) ≥ 1 is analyzed, the time complexity of branching
is also lower than the situation when λin(B1) = 1. Also, in the following, if it
is required to analyze the in-degree or out-degree of a block whether the value
is larger or equal to a constant, we only have to analyze the equal situation is
enough.

Let the block B1 be the core of branching: if the U -part of block B1 is in K,
it can be concluded by the chain implication that: the U -part of the block B0
and B3 are also in K, thus it equals that 5 vertices are included in the K. If
the L-part vertices of block B1 are in K, the block B0 and B2 become “isolated
block”. Thus, it equals that 5 vertices are included in the K. So, the branching
is at least (5, 5), and the corresponding recurrence is just as formula

f(ku + kl) ≤ 2f(ku + kl − 5) (3)

2.2.2.2 In Fig.1(b), B0 is connected with two connected blocks B1 and B2
whose weight are 1, and λin(B1) ≥ 2,λin(B2) = 2.

Let B2 be the core of branching, the problem under this situation is exactly
the same as the (2.2.2.1), so the analysis is identical, and it can be branched at
least (6, 5), and the corresponding recurrence is just as formula

f(ku + kl) ≤ f(ku + kl − 6) + f(ku + kl − 5) (4)

(b)

Ui

Li

Ui

Li

B2B2B2 B2B1

B4B3

B0 B2B1

B3

B0 B2B1

B4

B0 B1

B3

B0

B3B3

B2B1B0

(c)

B4B4B3B3

B2B1B0

B4B4

B1B0 B0 B1

(a) (e)(d)

B3B3

B2

(f) (g) (h)

Fig. 1. All possible connections in DAG D when w(PB0) = 2
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2.2.2.3 In Fig.1(c), B0 is connected with two connected blocks B1 and B2
whose weight are 1, and λin(B1) = 1,λin(B2) ≥ 3.

Let B2 be the core of branching, the problem under this situation is exactly
the same as the (2.2.2.1), so the analysis is identical, so it can be branched at
least (6, 5), and the corresponding recurrence is just as formula (4).

2.2.2.4 In Fig.1(d), B0 is connected with two blocks B1 and B2 with no con-
nections whose weight are 1, and λin(B1) ≥ 2, λin(B2) = 1.

Let B1 be the core of branching, if U -part of block B1 is in K, it can be
concluded from the chain implication that: the U -part of the block B0 and B4
are also in K. thus, the K contains at least 5 vertices and the block B2 becomes
the “isolated block”. Thus it equals that 6 vertices are included in the K. If the
L-part vertices of block B1 are in K, the block B0 and B2 become “isolated
block”. Thus, it means that 5 vertices are included in the K. So the branching
is at least (6, 5), and the corresponding recurrence is just as formula (4).

2.2.2.5 In Fig.1(e), B0 is connected with two blocks B1 and B2 whose weight
are 1 with no connections, and λin(B1) ≥ 2, λin(B2) ≥ 2.

From the “vertex folding” in Ref.[11], to contain the edges among the blocks
B0, B1, B2, B3, B4, one is to make the U -part vertices be included in K, which
is equal to putting at least 4 vertices into K(corresponding to the situation that
B3and B4 are in the same block, and Fig.1(de) gives an exact connection); the
other is to make the L-part vertices be included in K, and it will make the block
B0 become the “isolated block”, thus, it equals to includes at least 5 vertices
into K. so branch is (4, 5), and the corresponding recurrence relation is formula

f(ku + kl) ≤ f(ku + kl − 4) + f(ku + kl − 5) (5)

2.2.2.6 In Fig.1(f), B0 is connected with two blocks B1 and B2 which has no
connections, and λin(B1) ≥ 2, λin(B2) = 2.

Let B1 be the core of branching, if the U -part of block B1 are in K, it can be
concluded by the chain implication that: the U -part of the block B0 and B2are
also in K. Thus, the K contains at least 5 vertices and the block B2 becomes
the “isolated block”. Thus it equals that 6 vertices are included in the K. If the
L-part vertices of block B1 are in K, it can be contained at least 2 vertices in
K and B0 becomes “isolated block”. Thus it equals that 5 vertices are included
in K. So it can be branched at least (6, 5), and the corresponding recurrence is
just as formula (4).

2.2.2.7 In Fig.1(g), B0 is connected with two blocks B1 and B2 whose weight
is 1 and has no connections, and λin(B1) = 1, λin(B2) ≥ 2.

To make the block B2 as the core of branching, the problem under this situation
is exactly the same as the (2.2.2.6), so the analysis is identical, so the branching
is at least (6, 5), and the corresponding recurrence is just as formula (4).

2.2.2.8 In Fig.1(h), B0 is connected with a blocks B1 whose weight is 2, and
λin(B1) ≥ 2.

Let B1 be the core of branching, the problem under this situation is exactly
the same as the (2.2.2.6), so the analysis is identical, and the branching is at
least (6, 5), the corresponding recurrence is just as formula (4).
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2.2.3 w(PB0 ) = 1
From w(PB0 ) = 1, we know that B0 is connected with a blocks B1 whose

weight is 1, let another block that connects with B1 is B2 (when λin(B1), block
B0, B1 become “isolated block”). Let B1 be the core of branching, the problem
under this situation is exactly the same as (2.2.2.6), so the analysis is identical,
and the branching is at least (4, 5), the corresponding recurrence is just as
formula (5).

2.3 λin(B0) ≥ 1 and λout(B0) = 0
Under this situation, all kinds of connection in the DAG D is entirely symme-

try like (2.2), so the handling method is just the same and we can get the same
recurrence relation.

2.4 λin(B0) = 0 and λout(B0) = 0
The block B0 becomes the “isolated block” and we can make full use of the

dynamic programming technology to solve it in polynomial time in the fourth
part.

Considering all the recurrence relations above, it is obvious that formula (1)
is the strictest one. So a theorem can be presented as follows:

Theorem 1. When a block B0 in the DAG D satisfies the inequality w(B0) ≥ 3,
the branching recurrence relation brought out by the branching process at least
satisfies the formula f(ku + kl) ≤ 2f(ku + kl − 4).

4 Algorithm EACI-dyn

After processing the blocks of weight larger than 3, the remain DAG D contains
only isolated blocks of weight 3 and connected subgraphs that are composed by
blocks of weight 1 or 2. We can solve the Min-CVCB problem on this structure
by dynamic programming. The corresponding algorithm is EACI-dyn. Let the
connected subgraphs in the remaining DAG D be G′

i, 1 ≤ i ≤ r (r be the number
of the connected subgraphs). Let G0 = G′

1 + G′
2 + . . . + G′

r, and let the number
of vertices in the connected subgraph Gi be 2ni. Therefore, the total number
of vertices in the graph G0 is 2n0 = 2n1 + · · · + 2nr. We show that all the
possible minimum vertex covers in each connected subgraph can be enumerated
in polynomial time. Then the dynamic programming algorithm is used to find
the minimum vertex cover in G0 satisfying the constraints.

After enumerating all possible minimum vertex covers in each connected sub-
graph G′

i, the next step is to find a minimum vertex cover of size (ku, kl) in the
graph G0. Obviously, G0 has the minimum vertex cover of size (ku, kl) if and only
if each connected subgraph G′

i has a minimum vertex cover of size (k(i)
u , k

(i)
l ),

such that k
(1)
u + . . . + k

(r)
u ≤ ku, and k

(1)
l + . . . + k

(r)
l ≤ kl.

The procedure that finds a minimum vertex cover of size (ku, kl) in the graph
G0 is as follows: let c̄ = c1 + . . .+ci, 1 ≤ i ≤ r, and A[1 . . . r, 0 . . . ku] be a matrix
of size r∗(ku + 1). Each element A[i, j] in the matrix is to record a minimum
vertex cover of size (j, c̄ − j) in the graph G′

1 + · · · + G′
i. The matrix A can be

constructed by the dynamic programming algorithm in Fig. 2.
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Input: the connected graphs of G′
1, G

′
2 . . . G′

r after section 3’s branching
Output: a minimum vertex cover K of G with at most ku U -vertices and at

most kl L-vertices if such a minimum vertex cover exists
1. list all the possible minimum vertex cover of G′

1, G
′
2 . . . G′

r;
2. foreach 1 ≤ i ≤ r,0 ≤ j ≤ ku do

A[i, j] = φ;
3. foreach (k(1)

u , k
(1)
l )-minimum vertex cover of C′

1 of G’1 do
A[1, k

(1)
u ] = C′

1;
4. for i = 1...r − 1 do

for j = 0...ku do
if A[i, j] �= φ then

let [i, j] = Vu ∪ Vl, Vu ⊆ U, Vl ⊆ L);
foreach (k(i+1)

u , k
(i+1)
l )-minimum vertex cover,C′

i+1 = V
(i+1)

u ∪ V
(i+1)

l of
G′

i+1 in the list Li+1 do
A[i + 1, j + k

(i+1)
u ] = (Vu ∪ V

(i+1)
u ) ∪ (Vl ∪ V

(i+1)
l );

5. for j = 0...ku do
if (j ≤ ku)&(n0 − j ≤ kl)&[r, j] �= φ) then

then return A[r, j];
6. return φ;

Fig. 2. Algorithm. EACI-dyn.

Theorem 2. The time complexity of the algorithm EACI-dyn is O((ku +kl)k2
u).

Proof. After the branching process in section 3, the remaining DAG D is com-
posed of isolated blocks of weight 3 and blocks of weight 1 or 2. First, all possible
minimum vertex covers of each connected subgraph G′

i, 1 ≤ i ≤ r, can be listed
in linear time, then the matrix A can be constructed by the dynamic program-
ming algorithm to find the constrained minimum vertex cover. In the dynamic
programming algorithm, the number of the minimum vertex covers in every row
Li of the matrix A is at most ku, and the value of the next row depends on the
value of the above one, so the time complexity of constructing the matrix A is
O(rk2

u), Since r be the number of the connected subgraphs, and r ≤ (ku + kl),
So, the running time of the algorithm EACI-dyn is bounded by O((ku + kl)k2

u).

5 Putting All Together

With all the previous discussions combined, an algorithm EACI is given in Fig.3,
which solves the Min-CVCB problem. We explain the steps of the algorithm as
follows.

Step 1 is the initialization of the vertex cover K. Steps 2 and 3 make immediate
decisions on high-degree vertices. If a U -vertices u of degree larger than kl is not
in the minimum vertex cover K, then all neighbors of u should be in K, which
would exceed the bound kl. Thus, every U -vertex of degree larger than kl should
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Input: a bipartite graph G = (U, L, E) and two integers ku and kl

Output: a minimum vertex cover K of G with at most ku U -vertices and at
most kl L-vertices, or report no such a vertex cover exists

1. K = φ;
2. foreach U-vertex u of degree larger than kl do

include u in K and remove u from G; ku = ku − 1;
3. foreach L-vertex v of degree larger than ku do

include v in K and remove v from G; kl = kl − 1;
4. apply lemma 1 to reduce the instance so that G is a bipartite graph with

perfect matching and with at most 2(ku + kl) vertices (with the integers ku and
kl and the minimum vertex cover K also properly updated);

5. apply lemma 2 to decompose the graph G into elementary blocks
B1, B2, . . . , Br, sorted topologically;

6. for connections that contain the block Bi in DAG D has weight at least 3,
branching it according in section 3;

7. All other cases not in section3, we can use algorithm EACI-dyn to solve it in
polynomial time in section 4;

Fig. 3. Algorithm. EACI.

be automatically included in K. Similar justification applies to L-vertices of
degree larger than ku. Of course, if ku or kl becomes negative in step 2 or step 3,
then we should stop and claim the nonexistence of the desired minimum vertex
cover. After these steps, the degree of the vertices in the graph is bounded by
k′ = max{ku, kl}. Since now each vertex can cover at most k′ edges, the number
of edges in the resulting graph must be bounded by k′(ku + kl) ≤ (ku + kl)2,
otherwise the graph cannot have a minimum vertex cover of no more than ku+kl

vertices. In step 4, Lemma 1 allows us to further reduce the bipartite graph G
so that G has a perfect matching (the integers ku and kl are also properly
reduced). The number of vertices in the graph G now is bounded by 2(ku + kl).
Step 5 applies Lemma 2 to decompose the graph G into blocks. Step 6 is to
analyze all the possible minimum vertex covers on the condition that the weight
of the blocks in the connected sub-graphs is no less than 3, then use “chain
implication” and bounded search technology to reduce the searching space in
order to construct the bounded-search tree. Step 7 further analyzes the possible
minimum vertex cover of the connected sub-graphs after step 6, and then applies
algorithm EACI-dyn to search for the constraint minimum vertex cover.

Theorem 3. The algorithm EACI runs in time O((ku + kl)|G| + 1.1892ku+kl),
i.e, the Min-CVCB problem is solvable in time O((ku + kl)|G| + 1.1892ku+kl).

Proof. As explained above, the algorithm EACI solves the Min-CVCB problem
correctly. Thus, we only need to verify the running time of the algorithm.

It is easy to verify that the total running time of steps 1-3 of the algorithm
is bounded by O((ku + kl)|G|). Step 4 applies Lemma 1 to further reduce the
bipartite graph G, and the running time of this step is bounded by (ku + kl)3
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(note that in this step, the number m of edges in the graph G is bounded by
(ku +kl)2 and the number n of vertices in the graph G is bounded by 2(ku +kl)).
Step 5 applies Lemma 2 to decompose the graph G into elementary bipartite sub-
graphs and it takes time O(|E|2). Since |E| is the number of edges in G, and
|E| ≤ (ku + kl)2, step 5 takes time O((ku + kl)4). In step 7, by Theorem 2, the
running time of the algorithm EACI-dyn is bounded by O((ku + kl)k2

u).
The only place the algorithm EACI branches is in step 6. Let f(ku + kl) =

xku+kl be the function in Theorem 1. By Theorem 1, we have

f(ku + kl) ≤ 2f(ku + kl − 4)

Solving this recurrence relation gives us f(ku + kl) ≤ 1.1892ku+kl . Combining
all steps together, we derive that the running time of the algorithm EACI is
bounded by O((ku+kl)|G|)+(ku+kl)3+(ku+kl)4|+1.1892ku+kl +(ku+kl)k2

u) =
O((ku + kl)|G| + 1.1892ku+kl), i.e., the Min-CVCB problem could be solved in
O((ku + kl)|G| + 1.1892ku+kl).

6 Conclusions

In this paper, we study the Min-CVCB problem that has important applications
in the area of VLSI manufacturing. We develop an improved parameterized al-
gorithm for the problem based on a deeper and more careful analysis on the
structures of bipartite graphs. We propose new techniques to handle blocks of
weight bounded by 3, and use new branch search technology to reduce searching
space. Our improved algorithm is achieved by integrating these new techniques
with the known techniques developed by other researchers. The running time of
our algorithm is O((ku + kl)|G| + 1.1892ku+kl), compared to the previous best
algorithm for the problem of running time O((ku + kl)|G| + 1.26ku+kl).
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