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Preface

The papers in this volume were presented at the 1st International Conference
on Combinatorial Optimization and Applications (COCOA 2007), held August
12-15, 2007, in Xi’an, China. The topics cover most areas in combinatorial opti-
mization and applications.

Submissions to the conference this year were conducted electronically. A to-
tal of 114 papers were submitted, of which 29 were accepted. The papers were
evaluated by an International Program Committee consisting of Tetsuo Asano,
Kyung-Yong Chwa, Bill Chen, Bo Chen, Andreas Dress, Pater Eades, Omer
Egecioglu, Rudolf Fleischer, Bin Fu, Mordecai Golin, Ron Graham, Pavol Hell,
Xiao-Dong Hu, Marek Karpinski, Minghui Jiang, Michael Langston, Hanno Lef-
mann, Ko-Wei Lih, Andy Mirzaian, Brendan Mumey, Mauricio G.C. Resende,
Takao Nishizeki, Mike Steel, Zheng Sun, My T. Thai, Kanliang Wang, Michael
Waterman, Gerhard Woeginger, Yinfeng Xu, Boting Yang, Wenan Zang, Alex
Zelikovsky and Binhai Zhu. It is expected that most of the accepted papers will
appear in a more complete form in scientific journals.

The submitted papers are from Australia, Canada, China, France, Germany,
Greece, Hong Kong, Japan, Korea, Mexico, Poland, Romania, Russia, Switzer-
land, Tunisia, Turkey and USA. Each paper was evaluated by at least two Pro-
gram Committee members (and in some cases by as many as seven Program
Committee members), assisted in some cases by subreferees. In addition to se-
lected papers, the conference also included two invited presentations, by Bailin
Hao and Kurt Mehlhorn, and eight invited papers.

We thank all the people who made this meeting possible: the authors for sub-
mitting papers, the Program Committee members and external referees (listed
in the proceedings) for their excellent work, and the two invited speakers. Fi-
nally, we thank Xi’an Jiaotong University and NSF of China for the support and
local organizers and colleagues for their assistance.

August 2007 Andreas Dress
Yinfeng Xu
Binhai Zhu
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Matchings in Graphs
Variations of the Problem

Kurt Mehlhorn

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 86

66123 Saarbrücken
Germany

melhorn@mpi-inf.mpg.de
http://www.mpi-inf.mpg.de/~melhorn

Many real-life optimization problems are naturally formulated as questions about
matchings in (bipartite) graphs.

– We have a bipartite graph. The edge set is partitioned into classes E1, E2,
. . . , Er. For a matching M , let si be the number of edges in M ∩ Ei. A
rank-maximal matching maximizes the vector (s1, s2, . . . , sr). We show how
to compute a rank-maximal matching in time O(r

√
nm) [IKM+06].

– We have a bipartite graph. The vertices on one side of the graph rank the
vertices on the other side; there are no ties. We call a matching M more pop-
ular than a matching N if the number of nodes preferring M over N is larger
than the number of nodes preferring N over M . We call a matching popular,
if there is no matching which is more popular. We characterize the instances
with a popular matching, decide the existence of a popular matching, and
compute a popular matching (if one exists) in time O(

√
nm) [AIKM05].

– We have a bipartite graph. The vertices on both sides rank the edges incident
to them with ties allowed. A matching M is stable if there is no pair (a, b) ∈
E \M such that a prefers b over her mate in M and b prefers a over his mate
in M or is indifferent between a and his mate. We show how to compute
stable matchings in time O(nm) [KMMP04].

– In a random graph, edges are present with probability p independent of
other edges. We show that for p ≥ c0/n and c0 a suitable constant, every
non-maximal matching has a logarithmic length augmenting path. As a con-
sequence the average running time of matching algorithms on random graphs
is O(m log n) [BMSH05].

References

[AIKM05] Abraham, D., Irving, R., Kavitha, T., Mehlhorn, K.: Popular Matchings.
SODA, pp. 424–432 (2005)
(http://www.mpi-sb.mpg.de/∼mehlhorn/ftp/PopularMatchings.ps)
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Combinatorics from Bacterial Genomes

Bailin Hao

T-Life Research Center, Fudan University, Shanghai 200433, China
and

Santa Fe Institute, Santa Fe, NM 87501, USA

By visualizing bacterial genome data we have encountered a few neat mathemat-
ical problems. The first problem concerns the number of longer missing strings
(of length K + i, i ≥ 1) taken away by the absence of one or more K-strings.
The exact solution of the problem may be obtained by using the Golden-Jackson
cluster method in combinatorics and by making use of a special kind of formal
languages, namely, the factorizable language. The second problem consists in ex-
plaining the fine structure observed in one-dimensional K-string histograms of
some randomized genomes. The third problem is the uniqueness of reconstruct-
ing a protein sequence from its constituent K-peptides. The latter problem has a
natural connection with the number of Eulerian loops in a graph. To tell whether
a protein sequence has a unique reconstruction at a given K the factorizable lan-
guage again comes to our help.

References
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An Algorithm for Computing Virtual Cut Points
in Finite Metric Spaces

Andreas W.M. Dress1, Katharina T. Huber2, Jacobus Koolen3,
and Vincent Moulton4

1 CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road,
200031 Shanghai, China
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2 School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
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3 Department of Mathematics, POSTECH, Pohang, South Korea
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4 School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
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Abstract. In this note, we consider algorithms for computing virtual
cut points in finite metric spaces and explain how these points can
be used to study compatible decompositions of metrics generalizing
the well-known decomposition of a tree metric into a sum of pairwise
compatible split metrics.

Mathematics Subject Classification codes: 05C05, 05C12, 92B10.

1 Terminology

A metric D defined on a set X is a map D : X2 → R : (x, y) �→ xy from the
set X2 := {(x, y) : x, y ∈ X} of all (ordered) pairs of elements from X into the
real number field R such that xx = 0 and xy ≤ xz + yz (and, therefore, also
0 ≤ xy = yx) holds for all x, y, z ∈ X . A metric D is called a proper metric if
xy 	= 0 holds for any two distinct points x, y ∈ X . Further, given X and D as
above, we denote

(i) by ∼D the binary relation defined on X by putting x ∼D y ⇐⇒ xy = 0
which, in view of the fact that xy = 0 ⇐⇒ ∀a∈X xa = ya holds for all
x, y ∈ X , is clearly an equivalence relation,

(ii) by x/D the equivalence class of x relative to this equivalence relation, and
(iii) by X/D the set {x/D : x ∈ X} of all such equivalence classes.

In case D is proper, the pair M = MD := (X, D) is also called a metric space,
X is called the point set of that space – and every element x ∈ X a point of M .

Further, given any metric space M = (X, D), we denote

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 4–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Algorithm for Computing Virtual Cut Points in Finite Metric Spaces 5

(D1) by [x, y], for all x, y ∈ X , the interval between x and y, i.e., the set

[x, y] := {z ∈ X : xy = xz + zy},

(D2) by Prox(M) = (X, E(M)) the (abstract) proximity graph of M (some-
times also called the underlying graph of M , cf. [11]), that is, the graph
with vertex set X and edge set

E(M) :=
{
{u, v} ∈

(
X

2

)
: [u, v] = {u, v}

}
.

(D3) by Cx(y), in case x and y are two distinct points in X , the connected
component of the induced graph

Prox(M |x) := Prox(M)|X−{x} :=
(
X − {x}, E(M) ∩

(
X − {x}

2

))

containing y, and by Cx(y) := Cx(y) ∪ {x} the “augmented” connected
component of Prox(M |x) containing y, i.e., the union of Cx(y) and the
one-point set {x},

(D4) and we denote by

πx := {Cx(y) : y ∈ X − {x}}

the collection of connected components of Prox(M |x), and by

πx := {Cx(y) : y ∈ X − {x}}

the corresponding collection of “augmented” connected components of
Prox(M |x).

Note that

(i) [x, z] ⊆ [x, y] holds for all x, y, z ∈ X with z ∈ [x, y],

and that, in case X is finite,

(ii) Prox(M) = (X, E(M)) is connected,
(iii) Cx(y) = Cx(y′) holds for all y, y′ ∈ X − {x} with x 	∈ [y, y′],
(iv) and Cx(y) ∪ Cy(x) = X holds for any two distinct x, y ∈ X

(
indeed,

z ∈ X−Cx(y) implies zx = zx+(xy−xy) = zy−xy < zy+yx and, hence,
y 	∈ [x, z] which in turn

(
cf. (iii)

)
implies Cy(z) = Cy(x)

)
.

2 Cut Points of Metric Spaces

Given a metric space M = (X, D), let Cut(M) denote the set of all cut points
of M , i.e., the set of all points x ∈ M for which two subsets A, B of X with
A ∪ B = X and A ∩ B = {x} of cardinality at least 2 exist such that x ∈ [a, b]
holds for all a ∈ A and b ∈ B. Concerning cut points, one has:
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Theorem 1. Given a metric space M = (X, D) of cardinality at least 3 and
any point x in X, the following assertions are equivalent:

(i) x ∈ Cut(M) holds,
(ii) there exist a pair A, B of gated1 subsets of X of cardinality at least 2 with

A ∪ B = X and {x} = A ∩ B,
(iii) there exists a decomposition D = D1 + D2 of D into a sum of two non-

vanishing (yet necessarily) non proper) metrics D1, D2 defined on X such
that X = x/D1 ∪ x/D2 holds.

More precisely, there exists a canonical one-to-one correspondence between

(a) decompositions D = D1 + D2 of D into a sum of two non-vanishing metrics
D1, D2 such that some — necessarily unique — point x = xD1,D2 in X with
X = x/D1 ∪ x/D2 exists, and

(b) pairs A, B of subsets of X with #A, #B ≥ 2 such that A ∪ B = X holds
and some — also necessarily unique — point x = xA,B ∈ A ∩ B exists with
x ∈ [a, b] for all a ∈ A and b ∈ B.

Further, x is a cut point of M in case X is finite if and only if #πx ≥ 2 holds,
i.e., if and only if it is a cut point of the proximity graph of M .

3 Retracts

Next, given a metric space M = (X, D),

(i) we define a retraction of M to be an idempotent map ρ : X → X such
that ab = aρ(a) + ρ(a)ρ(b) + ρ(b)b holds for all a, b ∈ X with ρ(a) 	= ρ(b),
and we note that the image ρ(X) of ρ is a gated subset R of M and that
ρ = gateρ(X) always holds,

(ii) we define a retract of M to be any gated subset R of M such that the asso-
ciated map gateR : X → X is a retraction — so, associating to any retract
of M its gate map and to any retraction of M its image, it is easily seen
that this gives a canonical one-to–one correspondence between retractions
and retracts of M ,

(iii) we denote by DR, for every retract R of M , the metric that is defined on
X by putting DR(x, y) := D

(
gateR(x), gateR(y)

)
for all x, y in X , and

(iv) we denote by Dmin(M) the collection of all such metrics D′ = DR that
are associated to those retracts R of M that are members of the collec-
tion Rmin(M) of all minimal retracts of M (with respect to inclusion) of
cardinality > 1.

The basic facts that motivate all further work are summarized in the two fol-
lowing theorems:
1 Recall that a gated subset of a metric space M = (X, D) is a subset A of its point

set X such that there exists a (necessarily unique) map gateA : X → X, the gate
map of A (relative to M), such that gateA(u) ∈ A ∩ [u, a] holds for all u ∈ X and
a ∈ A.
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Theorem 2. Given a metric space M = (X, D) with a finite set of cut points,
the following all holds:

(i) One has R ∈ Rmin(M) for some subset R of X if and only if R is a maximal
subset of X such that Cx(u) = Cx(v) holds for every cut point x ∈ X and
any two points u, v ∈ R − {x}.

(ii) Associating furthermore, to any R ∈ Rmin(M), the (well-defined!) map

ΘR : Cut(M) → P(X) : x �→ Cx(R)

from Cut(M) into the power set P(X) of X that associates, to every cut
point x ∈ Cut(M), the union Cx(R) of {x} and the unique connected com-
ponent C ∈ πx with R ⊂ C ∪ {x}, one has

R =
⋂

x∈Cut(M)

ΘR(x).

(iii) More specifically, this sets up a canonical one-to-one correspondence be-
tween retracts R ∈ Rmin(M) and maps Θ from Cut(M) into P(X) for
which Θ(x) ∈ πx holds for all x ∈ Cut(M), and Θ(x) = Cx(y) holds for all
x, y ∈ Cut(M) with x 	∈ Θ(y).

Theorem 3. Given a finite metric space M = (X, D), the metric D decomposes
canonically into the sum of all metrics in Dmin(M), i.e., one always has

D =
∑

D′∈Dmin(M)

D′.

4 Virtual Cut Points of Metric Spaces

While the results collected above look quite attractive, the problem with them
is that, generally, there are not many cut points in metric spaces — not even
in “tree-like” metric spaces, i.e., finite metric spaces M = (X, D) for which D
satisfies the so-called “four-point condition” (see for instance [1,2,3,12]).

However, while this is true in general, the resulting problem can — at least
to some degree — be rectified: Indeed, tight-span theory as devised originally
(though in other terms) by John Isbell [10] (and further developed in [4,5,7] and
many other papers) allows us to construct, for any metric space M = (X, D),
a canonical extension M = (TM , D∞) whose point set TM consists of all maps
f ∈ RX for which

f(x) = sup(xy − f(y) : y ∈ X)

holds for all x ∈ X , endowed with the metric D∞ defined on TM by the l∞-norm
||f, g||∞ := sup(|f(x) − g(x)| : x ∈ X) which — upon identifying every x ∈ X
with the corresponding Kuratowski map hx : X → R : y �→ xy in TM (and,
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hence, X with the subset TM (real) := {f ∈ TM : 0 ∈ f(X)} of TM ) — is indeed
an “isometric extension” of X .

Furthermore, it follows easily from tight-span theory that D∞(hx, f) = f(x)
holds for all x ∈ X and f ∈ TM , and that the set

Cutvirt(M) := Cut(M)

of virtual cut points of M , i.e., the set of cut points of M (which is not
necessarily finite even if X is finite) can be described and computed explicitly
for any finite metric space M , leading — by restriction from M to M — to
the canonical block decomposition of D, i.e., the unique decomposition D =
D1 + D2 + · · · + Dk of D into a sum of non-vanishing metrics D1, D2, . . . , Dk

defined on X such that no two of them are linear multiples of each other, and
there exist points x, y ∈ X for any pair i, j of two distinct indices in {1, 2, . . . , k}
for which X = x/Di ∪ y/Dj holds, while every summand Di is a block metric,
i.e., no such decomposition Di = Di1 + Di2 + · · · + Dik′ of Di exist for any
i ∈ {1, 2, . . . , k} (cf. [6]).

5 Virtual Cut Points and Additive Split of Metric Spaces

To compute Cutvirt(M) for a given finite metric space M = (X, D), note first
that a map f ∈ TM is either a cut point of M or a point in TM (real) if and only
if there exists a bipartition A, B of X into two disjoint proper subsets of X such
that f(a) + f(b) = ab holds for all a ∈ A and b ∈ B (cf. [4,7]).

Note further that any such bipartition A, B must be an additive split of M
— i.e., that aa′ + bb′ ≤ ab + a′b′ = ab′ + a′b must hold for all a, a′ ∈ A and
b, b′ ∈ B — and that, conversely, given any additive split A, B of M , there exists
at least one map in the set TM (A, B) consisting of all maps f ∈ TM for which
f(a)+f(b) = ab holds for all a ∈ A and b ∈ B. For instance, such a map f := gA

can be defined by first choosing two arbitrary elements a0 ∈ A and b0 ∈ B and
then putting

gA(b) := a0b − inf
b1,b2∈B

b1a0 + b2a0 − b1b2

2

for all b ∈ B and
gA(a) := ab0 − gA(b0)

for all a ∈ A. It is easily shown that this map happens to be independent of the
choice of a0 and b0 (and that it actually coincides with the unique such map for
which — in addition — some elements b, b′ ∈ B with gA(b)+ gA(b′) = bb′ exist).

More precisely, given an additive split A, B of M , the set TM (A, B) is easily
seen to coincide with the interval [gA, gB] spanned by gA and gB in RX . So, it is
a whole interval if and only if gA 	= gB holds, which in turn holds if and only if
the split A, B of M is a block split of M , i.e., aa′ + bb′ < ab + a′b′ = ab′ + a′b
holds for all a, a′ ∈ A and b, b′ ∈ B, and it consists of a single point, else.
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6 An Algorithm for Computing the Virtual Cut Points of
Finite Metric Spaces

Thus, we have essentially reduced the problem of computing the set Cutvirt(M)
of all virtual cut points of a finite metric space M = (X, D) to computing the
set Sadd(M) of all additive splits of M .

Unfortunately, however, this rephrasing of the problem does not appear to
yield an efficient way to compute Cutvirt(M) as there may be too many such
splits: E.g., if xy = 2 holds for any two distinct points x, y in X , every bipartition
of X is an additive split of M while the constant map that maps any point in
X onto 1 is the only cut point.

So, some more care is required: To this end, we denote by SM (block) the set
of all block splits of M , and by TM (block) the set consisting of all maps f in TM

for which the graph

M(f) := (X,
{
{x, y} ∈

(
X

2

)
: f(x) + f(y) > xy

}
)

is disconnected, but not a disjoint union of 2 cliques.
It is shown in [6] (and not too difficult to see) that a map f ∈ TM is contained

in Cutvirt(M) if and only if it is either contained in TM (block) or it is of the
form f = αgA + βgB where A, B is a block split of M and α and β are two
non-negative numbers with α + β = 1.

Thus, it suffices to compute SM (block) and TM (block) to find all cut points
of M . To do so algorithmically, one proceeds recursively and assumes that both
tasks have been solved for a subspace M ′ of the form

M ′ = (X ′, D′ : X ′ × X ′ → R : (x′, y′) �→ x′y′)

of M , where X ′ is a subset of X of the form X ′ = X − {x0} for some element
x0 ∈ X , yielding a list SM ′(block) of all splits A′, B′ of X ′ for which aa′ + bb′ <
ab+a′b′ = ab′+a′b holds for all a, a′ ∈ A′ and all b, b′ ∈ B′, and a list TM ′(block)
consisting of all maps f ′ in TM ′ for which the graph M ′(f ′) is disconnected, but
not a disjoint union of 2 cliques.

Next, one notes that any block split A, B of X in SM (block) is either of the
form X ′, {x0} or it is of the form A′ ∪ {x0}, B′ or A′, B′ ∪ {x0} for some split
A′, B′ of X ′ in SM ′(block). So, by checking which of these splits is actually in
SM (block), this set is easily computed.

And finally, one notes that any map f in TM (block) is either of the form gA

for some block split A, B of M (and can thus be easily computed) or it is an
extension f ′

∗ of a map f ′ in TM ′(block) to a map defined on X whose value on
the element x0 ∈ X is defined by

f ′
∗(x0) := sup(x0y − f ′(y) : y ∈ X ′).

In particular, it follows that all of these maps may be computed quite easily in
time that is a polynomial function of #X .
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Abstract. Let PG(s, t) denote a shortest path between two nodes s and
t in an undirected graph G with nonnegative edge weights. A replacement
path at a node u ∈ PG(s, t) = (s, · · · , u, v, · · · , t) is defined as a shortest
path PG−e(u, t) from u to t which does not make use of (u, v). In this
paper, we focus on the problem of finding an edge e = (u, v) ∈ PG(s, t)
whose removal produces a replacement path at node u such that the
ratio of the length of PG−e(u, t) to the length of PG(u, t) is maximum.
We define such an edge as an anti-block vital edge (AVE for short), and
show that this problem can be solved in O(mn) time, where n and m
denote the number of nodes and edges in the graph, respectively. Some
applications of the AVE for two special traffic networks are shown.

1 Introduction

Suppose that a transportation network is given in which each road is associated
with the time it takes to traverse it. In practice, the network is unreliable, some
roads may be unsuitable at certain times (e.g. blocked by unexpected events such
as traffic accidents or snowfall). From the transportation network management
point of view, it is valuable to identify the result by the failure of a component.
In the past, the problem of an edge removal results in the increase of the length
of the shortest path between two nodes in a graph has been studied.

Corley and Sha [1] studied the MVE problem of finding an edge whose removal
from the graph G(V, E) resulted in the largest increase of the length of the
shortest path between two given nodes. This edge is generally denoted as the
most vital edge with respect to the shortest path. This problem has been solved
efficiently by Malik, Mittal and Gupta [2], who gave an O(m + nlogn) time
algorithm by using Fibonacci heap. Nardelli, Proietti and Widmayer [3] improved
the previous time bound to O(m ·α(m, n)) , where α is the functional inverse of
the Ackermann function, and n and m denote the number of nodes and edges in
the graph, respectively.
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Nardelli, Proiett and Widmayer [4] focused on the LD (Longest Detour) prob-
lem of finding an edge e∗ = (u∗, v∗) in the shortest path between two given
nodes such that when this edge is removed, the length of the detour satisfies
dG−e∗(u∗, t) − dG(u∗, t) ≥ dG−e(u, t) − dG(u, t), where G − e = (V, E − e). The
edge whose removal will result in the longest detour is named the detour-critical
edge and [4] showed that this problem can be solved in O(m+nlogn) time in undi-
rected graphs. The same bound for undirected graphs is also achieved by Hersh-
berger and Suri [5], who solved the Vickrey payment problem with an algorithm
that also solved the detour problem. [3] improved the result to O(m · α(m, n))
time bound. [6] showed that the detour problem required Ω(m

√
n) time in the

worst case whenever m = n
√

n in directed graphs. We refer the reader to
Nardelli , Proiett and Widmayer [7], Li and Guo [8], and Bhosle [9] for extensive
references to a variety of the MVE problem.
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Fig. 1. MVE and the Detour-critical edge analysis. In bold, the shortest path from s
to t.

Most previous studies are based on the assumption that the traveller only pays
attention to the length of the replacement path minus the length of the shortest
path. See Fig.1, the shortest path from s to t is PG(s, t) = (s, w, v, g, q, u, t)
whose length is 6, the edge e = (s, w) and the edge e = (w, v) are the most vital
edges and the edge e = (w, v) is the detour critical edge of PG(s, t). If the edge
e = (w, v) is failure, the detour is PG−e(w, t) = (w, p, u, t) whose length is 10,
the length of the detour minus the length of PG(w, t) = (w, v, g, q, u, t) is 5 and
the length of the detour is 2 times of the length of PG(w, t). However, if the
edge e = (u, t) is failure, the length of the detour PG−e(u, t) = (u, p, t) minus
the length of PG(u, t) = (u, t) is 4, the length of the detour is 5 times of the
length of PG(u, t). From the point of view of a traveller, the edge e = (u, t) is
more important than the edge e = (w, v).

In this paper, we define a different parameter for measuring the vitality of
an edge of the shortest path PG(s, t) between the source s and destination t in
G = (V, E). We will face the problem of finding an edge e = (u, v) in PG(s, t)
whose removal produces a replacement path at node u such that the ratio of the
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length of the shortest path PG−e(u, t) in G − e = (V, E − e) to the length of
the shortest path PG(u, t) in G is maximum. We call such an edge an anti-block
vital edge (AVE for short).

Our approach of building all the replacement paths along PG(s, t) reveals
its importance in network applications. Under the assumption that a sudden
blockage of an edge is possible in a transportation network, a traveller may reach
a node u from which he can not continue on his path as intended, just because
the outgoing edge e = (u, v) to be taken is currently not operational, the traveller
should route from u to t on a shortest path in G−e = (V, E−e). It is important
to know the ratio of the length of the replacement path PG−e(u, t) to the length
of PG(u, t) and the anti-block vital edge in advance, and, the maximum ratio is
a key parameter for measuring the competitive ratio of a strategy for the online
blockage problems such as the Canadian Traverller Problem [10-12].

We show that the problem of finding the AVE can be solved in O(mn) time,
where n and m denote the number of nodes and edges in the graph, respectively.
Some applications of the AVE for two special traffic networks are shown.

2 Problem Statement and Formulation

Let G = (V, E) denote an undirected transportation network with |V | = n
vertices and |E| = m edges, s denote the source and t the destination, w(e)
denote a nonnegative real weight associated to each e ∈ E. A shortest path
PG(s, t) from s to t in G is defined as a path which minimizes the sum of the
weights of the edges along the path from s to t and the length of PG(s, t) is
denoted as dG(s, t). PG(u, t) denotes the shortest path at a node u ∈ PG(s, t) =
(s, · · · , u, v, · · · , t) from u to t in G and dG(u, t) denotes the length of PG(u, t).

Definition 1. A replacement path at a node u ∈ PG(s, t) = (s, · · · , u, v, · · · , t)
is a shortest path PG−e(u, t) from u to t which does not make use of (u, v), where
G − e = (V, E − e).

Definition 2. The anti-block coefficient of an edge e = (u, v) ∈ PG(s, t) =
(s, · · · , u, v, · · · , t) is the ratio cut of the length of PG−e(u, t) to the length of
PG(u, t).

Definition 3. The anti-block vital edge (AVE for short) with respect to PG(s, t)
is the edge e′ = (u′, v′) ∈ PG(s, t) = (s, · · · , u′, v′, · · · , t) whose removal from G
results in cu′t ≥ cut for every edge e = (u, v) of PG(s, t).

In order to discuss the problem, we make the following assumptions.
(1) There is only one shortest path between s and t in G.
(2) Only one edge will be blocked in the shortest path PG(s, t).
(3) G is connected even when the blocked edge is removed.

3 A Property of the Anti-block Coefficient

Let PG(s, t) = (v0, v1, · · · , vi, vi+1, · · · , vk−1, vk) denote the shortest path from
s to t, where v0 = s and vk = t. Let PG(vi, vj) denote the shortest path from
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vi to vj and PG−e(vi, vj) denote the shortest path from vi to vj which does not
make use of (vi, vi+1), where vi, vj ∈ PG(s, t) and j = i + 1, i + 2, · · · , k. Let
dG(vi, vj) denote the length of PG(vi, vj) and dG−e(vi, vj) denote the length of
PG−e(vi, vj). Fig.2 illustrates the situation.

1kv

1( , )
G e i kP v v

iv

( , )
G e i tP v

1iv
s t

( , )G s tP

Fig. 2. Anti-block coefficient analysis in a general graph

Theorem 1. If a path PG(s, t) = (v0, v1, · · · , vi, vi+1, · · · , vk−1, vk) is the short-
est path from s to t in G, where v0 = s and vk = t, then cvi,vi+1 ≥ cvi,vi+2 ≥
· · · ≥ cvi,vk

for removal of e = (vi, vi+1), i = 0, 1, · · · , k − 1.

Proof. From the definition of the anti-block coefficient of an edge, the following
equality holds:

cvi,vj = dG−e(vi,vj)
dG(vi,vj)

,where j = i + 1, i + 2, · · ·k.

Since dG−e(vi, vj) ≥ dG(vi, vj), then

cvi,vj = dG−e(vi,vj)
dG(vi,vj)

≥ dG−e(vi,vj)+dG(vj ,vj+1)
dG(vi,vj)+dG(vj ,vj+1) = dG−e(vi,vj)+dG(vj ,vj+1)

dG(vi,vj+1) .

In fact, dG−e(vi, vj) + dG(vj , vj+1) ≥ dG−e(vj , vj+1).

Hence, cvi,vj ≥ dG−e(vi,vj+1)
dG(vi,vj+1) = cvi,vj+1 .

From the above analysis, it is known that cvi,vi+1 ≥ cvi,vi+2 ≥ · · · ≥ cvi,vk

holds. This ends the proof.

4 Compute the Anti-block Vital Edge

We will discuss the algorithm of finding the anti-block vital edge in a general
network.

Let PG(s, t) be the shortest path from s to t in G. It is quite expensive to
solve the AVE problem in the way that is by sequentially removing all the edges
e = (u, v) along PG(s, t) and computing at each step PG−e(u, t). In fact, this
leads to a total amount of time of O(mn2) for the m edges in PG(s, t) by using
the algorithm of Dijkstra [13].
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We now discuss an approach to improve the algorithm and its time complexity.
We start to compute the shortest path tree rooted at t, denoted as SG(t). As
shown in Fig.3, e = (u, v) denotes an edge on PG(s, t), with u closer to s than
v; Mt(u) denotes the set of nodes reachable in SG(t) from t without passing
through edge (u, v), the length from t to the nodes in Mt(u) doesn’t change
after deleting the edge e; Nt(u) = V − Mt(u) denotes the remaining nodes (i,e.,
the subtree of SG(t) rooted at u), the length from t to the nodes in Nt(u) may
increase as a consequence of deleting e.

Fig. 3. Mt(u) and Nt(u)

Since the replacement path PG−e(u, t) joining u and t must contain an edge
in Et(u) = {(x, y) ∈ E − (u, v)|(x ∈ Nt(u)) ∧ (y ∈ Mt(u))}, it follows that it
corresponds to the set of edges whose weights satisfy the following condition

dG−e(u, t) = min
x,y∈Et(u)

{dG−e(u, x) + w(x, y) + dG−e(y, t)}.

Fig.4 illustrates the situation.

Since x ∈ Nt(u), then dG−e(u, x) = dG(u, x) = dG(t, x) − dG(t, u) and since
y ∈ Mt(u), then dG−e(y, t) = dG(y, t).

Hence, dG−e(u, t) = min
x∈Nt(u),y∈Mt(u)

{dG(t, x)− dG(t, u) + w(x, y) + dG(y, t)}.

4.1 Algorithm* for Computing the Anti-block Vital Edge

The algorithm* for obtaining the anti-block vital edge is based on the results
mentioned above.
Step 1. Compute the shortest path tree SG(t) rooted at t by using the algo-
rithm of Dijkstra and record PG(u, t), dG(u, t) and k (the number of edges along
PG(s, t)).
Step 2. Set i = 0.
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Fig. 4. Edge (u, v) is removed, dashed lines represent the linking edges. In bold, the
replacement path at u with its linking edge (x, y).

Step 3. Remove the edge ei = (u, v) from PG(s, t) and compute SG−ei(t), Mt(u)
and Nt(u).
Step 4. Compute dG−ei(u, t) = min

x∈Nt(u),y∈Mt(u)
{dG(t, x) − dG(t, u) + w(x, y) +

dG(y, t)} and cut = dG−ei(u,t)
dG(u,t) .

Step 5. Set i = i + 1. If i < k, then turn to step 3; otherwise turn to step 6.
Step 6. Compute cut, cu′t = max {cut} and the anti-block vital edge e′.

4.2 Analysis of the Time Complexity on the Algorithm*

For the shortest path tree SG(t) can be computed in O(n2) time by using the
algorithm of Dijkstra, the computation time of SG−ei(t), Mt(u) and Nt(u) for
each ei is O(1), and the computation time of step 4 is O(m). Since step 2-5 are
loop computation and its repeat times is k, then the total time for step 2-5 is
O(mn) for k ≤ n− 1. The computation time of step 6 is O(n). It is known that
the time complexity of the algorithm* is O(mn).

From the above analysis, the following theorem holds.
Theorem 2. In a graph with n nodes and m edges, the anti-block vital edge
problem on a shortest path between two nodes s and t can be solved in O(mn)
total time.

5 Applications of the Anti-block Vital Edge in Urban
Traffic Networks

The grid-type network and the circular-type network are two examples of ur-
ban traffic networks. For two special cases, the anti-block vital edge have some
properties. We will discuss them in details.
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As shown in Fig.5, let G = (V, E) denote an undirected planar grid-type
network with (m + 1)(n + 1) nodes, there are m + 1 rows of nodes in horizontal
direction and n + 1 columns of nodes in vertical direction. E = {(vij , vi,j+1)} ∪
{(vij , vi+1,j)}, i = 0, 1, 2, · · · , m, j = 0, 1, 2, · · · , n denotes the set of the edges in
G. The weight of each edge is 1.

1 jv

0 jv

10v

0nv00v

1nv

Fig. 5. Anti-block coefficient analysis in a grid-type network

Theorem 3. In an undirected planar grid-type network, if a source node and a
destination node locate on a line, then the anti-block vital edge of the shortest
path between the two nodes is the edge adjacent destination node.

Proof. Let v00 denote a source node and v0n a destination node. If there is no
any blockage happening in G, the shortest path from v00 to v0n is PG(v00, v0n) =
(v00, v01, · · · , v0j , · · · , v0n). Let PG(v0j , v0n) denote the shortest path from v0j

to v0n, PG−e(v0j , v0n) denote the shortest path from v0j to v0n which does not
make use of e = (v0j , v0,j+1), j = 0, 1, 2, · · · , n−1, dG(v0j , v0n) denote the length
of PG(v0j , v0n), dG−e(v0j , v0n) denote the length of PG−e(v0j , v0n).

Since cv0j ,v0n = dG−e(v0j ,v0n)
dG(v0j ,v0n) = n−j+2

n−j , cv0,j+1,v0n = dG−e(v0,j+1,v0n)
dG(v0,j+1,v0n) = n−j−1+2

n−j−1

and n−j+1
n−j−1 > n−j+2

n−j , then cv0j ,v0n < cv0,j+1,v0n .
Similarly, the following inequality holds: cv00,v0n < cv01,v0n < · · · < cv0,n−1,v0n .

It is known that the anti-block vital edge is the edge adjacent destination node
in the shortest path under the assumption of source node and destination node
locating on a line in a grid-type network. This ends the proof.

As shown in Fig.6, G = (V, E) denotes an undirected planar circular-type net-
work with (m+1)(n+1)+1 nodes, E = {(s, v0j)}∪{(vij , vi,j+1)}∪{(vij , vi+1,j)},
i = 0, 1, 2, · · · , m, j = 0, 1, 2, · · · , n denotes the set of the edges in G. Let the
polar angle θ of the edge e = (s, v00) and the edge e = (s, v01) satisfy θ < π

2 and
the weight of edge e = (vij , vi,j+1) be 1. Therefore, the weight of e = (vij , vi,j+1)
is (i + 1)θ, i = 0, 1, 2, · · · , m.

Theorem 4. In an undirected planar circular-type network, if vm0 is a source
node and s is a destination node, then the anti-block vital edge is every edge e
of the shortest path PG(vm0, s) from vm0 to s.
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Fig. 6. Anti-block coefficient analysis in a circular-type network

Proof. If there is no any blockage happening in G, the shortest path from
vm0 to s is PG(vm0, s) = (vm0, · · · , vi0, · · · , v10, v00, s). Let PG(vi0, s) denote the
shortest path from vi0 to s, PG−e(vi0, s) denote the shortest path from vi0 to s
which does not make use of e = (vi0, vi−1,0) or e = (v00, s), where i = 1, 2, · · · , m.
Let dG(vi0, s) denote the length of PG(vi0, s) and dG−e(vi0, s) denote the length
of PG−e(vi0, s).

Since cvi0,s = dG−e(vi0,s)
dG(vi0,s) = i·θ+i

i = θ +1, i = 0, 1, 2, · · · , m, then the following
equality holds: cvm0,s = cvm−1,0,s = · · · = cvi0,s = · · · = cv00,s = θ+1. It is known
that every edge along the shortest path PG(vm0, s) is the anti-block vital edge
of PG(vm0, s). This ends the proof.

6 Conclusions

From the transportation network management point of view, it is valuable to
identify the result by the failure of a component. In this paper, under the assump-
tion that a sudden blockage of an edge is possible in a transportation network,
we define a different parameter - anti-block vital edge (AVE for short) for mea-
suring the vitality of an edge along the shortest path PG(s, t) between the source
s and destination t in G. Our approach of building all the replacement paths
along PG(s, t) and the ratio of the length of the replacement path PG−e(u, t) to
the length of PG(u, t) for each edge e = (u, v) ∈ PG(s, t) reveals their impor-
tance in network applications. The maximum ratio is also a key parameter for
measuring the competitive ratio of a strategy for the online blockage problems.
We show that the problem of finding the AVE can be solved in O(mn) time
in a general network, where n and m denote the number of nodes and edges
in the graph, respectively. Some applications of the AVE for two special traffic
networks are shown. There are some further directions to work, such as how to
improve the algorithm and its time complexity for computing the AVE and find
the anti-block vital node when blockage happens at a node.
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Abstract. An important issue in deploying a WSN is to provide target coverage 
with high energy efficiency and fault-tolerance. Sensor nodes in a wireless 
sensor network are resource-constrained, especially in energy supply, and prone 
to failure. In this paper, we study the problem of constructing energy efficient 
and fault-tolerant target coverage. More specifically, we propose solutions to 
forming k-connected coverage of targets with the minimal number of active 
nodes. We first address the k-connected augmentation problem, and then show 
that the k-connected target coverage problem is NP-hard. We propose two 
heuristic algorithms to solve the problem. We have carried out extensive 
simulations to study the performance of the proposed algorithms. The 
evaluation results have demonstrated their desirable efficiency.  

Keywords: NP-hard problems, heuristic algorithms, k-connected target 
coverage, k-connected augmentation, wireless sensor networks.  

1   Introduction 

In wireless sensor networks (WSN), an important task is to monitor and collect the 
relevant data in a geographical region or a set of targets. Since sensor nodes in a WSN 
are often deployed in an arbitrary manner, one of the fundamental issues in the task of 
target monitoring is target coverage which aims at covering the specified targets by a 
subset of the deployed sensor nodes with minimum resource consumption. Recent 
research has reported that significant energy savings can be achieved by elaborately 
managing the duty cycle of the nodes in a WSN with high node density. In this 
approach, some nodes are scheduled to sleep (or enter a power saving mode) while 
the remaining active nodes keep working. However, the excessive number of sleeing 
nodes may cause the WSN to be disconnected, i.e. the set of active nodes will be 
isolated. In addition, the overloading of the active nodes may cause them to be easily 
exhausted and even to fail. These will consequently invalidate the data collection and 
transmission. 
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Previous research has been reported on determining a minimal number of active 
sensors required to maintain the initial coverage area as well as the connectivity. 
Using a minimal set of active nodes reduces power consumption and prolongs 
network lifetime. However, the existing works have concentrated on providing only 
single connectivity. In practice, connectivity affects the robustness and achievable 
throughput of communication in a WSN, and single connectivity often is not 
sufficient for many WSN applications because a single failed node could disconnect 
the network. Therefore, it is desirable for have sufficient connectivity in a wireless 
sensor network to ensure the successful data operations. 

In this paper, we study the problem of constructing energy efficient and fault-
tolerant target coverage. More specifically, we propose solutions to forming k-
connected coverage of targets with the minimal number of active nodes. Our goal is to 
design algorithms to construct a k-connected target coverage graph that uses the 
minimum number of sensors such that (1) the communication graph formed by these 
sensors is k-connected, and (2) any target can be covered by at least one of these 
sensors. We first consider the k-connected augmentation problem, i.e., for a given 
graph G=(V, E) and a subset of V, adding the minimum number of nodes such that the 
resulting subgraph is k-connected. We show that the k-connected augmentation 
problem is NP-hard and then give the heuristic algorithms accordingly. Then, we 
show that the problem of k-connected target coverage is also NP-hard and then 
propose two heuristic algorithms to solve the problem of k-connected target coverage. 
To the best of our knowledge, our algorithms are the first ones proposed for solving 
the k-connected augmentation problem.  

The rest of paper is organized as follows. Section 2 briefly reviews the related 
work; section 3 describes the network model and defines the problem to be studied in 
this paper; section 4 studies the k-connected augmentation problem and the k-
connected coverage problem. Solutions to the problems are proposed. Section 5 
presents the simulations results and section 6 concludes the paper. 

2   Related Work 

There are many studies in literature on the coverage problem ([1-5 etc.]) in WSNs. 
Different formulations of the coverage problem have been proposed, depending on 
the subject to be covered (area versus discrete points) [4,5], the sensor deployment 
mechanism (random versus deterministic [6]), as well as other wireless sensor 
network properties (e.g. network connectivity and minimum energy consumption). 
For energy efficient area coverage, the works in [7,8] consider a large population of 
sensors, deployed randomly for area monitoring. The goal is to achieve an energy-
efficient design that maintains area coverage. Slijepcevic et al [7] model the sensed 
area as a collection of fields. The proposed most-constrained least-constraining 
algorithm computes the disjoint covers successively, selecting sensors that cover the 
critical element (field covered by a minimal number of sensors). Cardei et al [2] 
model the disjoint sets as disjoint dominating sets in an undirected graph. The 
maximum disjoint dominating sets computation is NP-complete, and any polynomial-
time approximation algorithm has a lower bound of 1.5. A graph-coloring mechanism 
is proposed for computing the disjoint dominating sets.  Huang and Tseng [8] 
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proposed solutions to solve two versions of the k-coverage problem, namely k-UC 
and k-NC. Authors modeled the coverage problem as a decision problem, whose goal 
is to determine whether each location of the target sensing area is sufficiently covered 
or not. Their solutions were based on checking the perimeter of each sensor’s sensing 
range. 

Zhang and Hou [9] proved an important, but intuitive result that if the 
communication range Rc is at least twice the sensing range Rs, a complete coverage 
of a convex area implies connectivity of the working nodes. They further discussed 
the case Rc > Rs. Wang et al [10] generalized the result in [9] by showing that, when 
the communication range Rc is at least twice the sensing range Rs, a k-covered 
network will result in a k-connected network. Wu and Yang [11] proposed two 
density control models for designing energy conserving protocols in sensor networks, 
using the adjustable sensing range of several levels. 

Zhou et al [12] addressed the problem of selecting a minimum size connected k-
cover, which is defined as a set of sensors M such that each point in query region is 
covered by at least k, and the communication graph induced by M is connected. They 
present a centralized O(logn)-approximation algorithm, and also present a distributed 
algorithm. Zhou et al [13] also address 1k -connected 2k -cover problem, in which a 

distributed and localized Voronoi-based algorithm. 
The energy-efficient target coverage problem deals with the coverage of a set of 

targets with minimum energy cost [1,6,18]. Cardei and Du [1] addressed the target 
coverage problem where the disjoint sets are modeled as disjoint set covers, such that 
every cover completely monitors all the target points. Disjoint set coverage problem 
was proved to be NP-complete and a lower approximation bound of 2 for any 
polynomial-time approximation algorithm was indicated. The disjoint set cover 
problem is reduced to a maximum flow problem, which is modeled as a mixed integer 
programming. Simulation shows better results in terms of numbers of disjoint set 
covers computed, compared with most-constrained least-constraining algorithm [7], 
when every target is modeled as a field.  Cardei et al [18] proposed an approach 
which differs from [1] by not requiring the sensor sets to be disjoint and by allowing 
sensors to participate in multiple sets,. They proposed two heuristics that efficiently 
compute the sets, using linear programming and the greedy approach. 

Several schemes [14, 15, 16] have been proposed to maintain k-connectivity in 
topology control which involve the use of spanning graph. 

In this paper, we consider the k-connected target coverage problem. Our objective 
is to find a minimum number of active nodes such that they cover all targets and the 
graph induced by them is k-connected. Our problem is different from the existing 
problems in the following ways. 

(1) For k1-connected k2-cover problem, the existing papers [10, 13] address the area 
coverage, but we address target coverage. 

(2) For target coverage problem, our objective is different from the existing works 
[1,18], which didn’t consider connectivity. The work in [19] considers only 1-
connected coverage. 

(3) For connectivity, the existing works [14,15,16] aims to maintain a spanning 
subgraph to be k-connected, but in our work, we select minimum number of  nodes to 
form k-connected. 
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3   Network Model and Problem Definition 

In this section, we formulate the k-connected target coverage problem. 
Assume that n sensors v1, v2,…, vn are deployed in a region to monitor m targets I1, 

I2,…, Im. Each node vi has a sensing region S(vi) and a communication range R. Any 
target inside S(vi) is covered by vi. vi can directly communicate with vj if their 
Euclidian distance is less than communication range R, i.e., vj lies in the 
communication range of vi. 

Now, we formally define the k-connected target coverage problem. First, we 
describe some necessary definitions. 

Definition 1 (Communication graph). Given a set of sensors V in a sensor network 
and R being transmission range, the communication graph of V is a undirected graph 
with V as the set of nodes and edges between any two nodes if they can directly 
communication with each other, i.e. the distance between them is at most R. 

Definition 2 (k-connectivity). The communication graph G=(V, E) is k-connected if 
for any two nodes vi and vj in V, there are k node-disjoint paths between vi and vj. 

Definition 3 (target coverage). Given a set of m targets I and a set of sensors V, a 
subset C of V is said to be coverage for the targets, if any target can be covered by at 
least one sensor in C. 

Definition 4 (k-connected target coverage). Consider a sensor network consisting of 
a set V of sensors and a target set I, where each sensor vi has a sensing range S(vi) and 
communication range R. A subset C of V is said to be k-connected target coverage for 
targets set I if the following two conditions hold: 

1) Each target Ij in I is covered by at least one sensor in C. 
2) The communication graph induced by C is k-connected. 

In order to reduce the energy consumption, our objective is to use a minimum number 
of sensor nodes to completely cover all the targets and the graph induced by these 
sensor nodes is k-connected.   

The problem studied in this paper can be now formally defined as follows:   

The k-connected target coverage problem: Given a sensor network and a set of 
targets I over the network, the k-connected target coverage problem is to find a k-
connected target coverage C such that the number of sensor nodes for C is minimized. 
This problem is NP-hard as it is a generalization of set cover problem, which is well-
known NP-hard. 

4   Algorithms to k-Connected Target Coverage 

In this section, before studying the k-connected target coverage problem, we first 
study an introductory problem, namely the k-connected augmentation problem. We 
prove that the problem is NP-hard and propose the corresponding heuristic algorithms 
for the cases of k=2 and k>2, respectively. Based on the discussion of the k-connected 
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augmentation problem, we further investigate the problem of k-connected target 
coverage problem. We prove that the k-connected target coverage problem is also NP-
hard and propose two heuristic to solve this problem. 

4.1   k-Connected Augmentation Problem 

In this subsection, we address the k-connected augmentation problem. We first give a 
definition. 

Definition 5 (k-connected  augmentation  problem). Given a  graph G=(V, E) which 
is  k-connected, a subset C of V, and a integer k,  the problem is to find a subset X 
such that the subgraph induced by C∪X is a k-connected and |X| is minimized. 

To the best of our knowledge, there is no algorithm for the k-connected 
augmentation problem (k>2). In the following two subsections, we will give some 
results for k=2 and general k respectively. 

We know that when k=1, 1-connected augmentation problem is exactly the Steiner 
tree problem, which is NP-hard, therefore k-connected augmentation problem is also 
NP-hard. 
 

A. 2-connected augmentation problem 
We propose an algorithm for the 2-connected augmentation problem. Without loss of 
generality, we assume the subgraph G[C] induced by C is a connected graph. Based 
on the existing approximation algorithms for the Steiner tree problem, we can propose 
an algorithm for solving this problem. We first construct an auxiliary graph-weighted 
block cut tree-which based on subgraph G[C]. 

Definition 6: Subgraph G[C] induced by C in G=(V, E)  is a graph G[C]=(C, E1), 
where any two nodes u and v in C, (u, v)∈E if and only if (u, v)∈E1. 

Definition 7: The maximal 2-connected components of a graph are called blocks. 
Specially, a bridge is also called a block (an edge is called a bridge if the graph 
induced by removing this edge becomes disconnected.) A node u is called as cut node 
of G=(V, E), if when it is removed from the graph, the resulted subgraph G[V-{u}] 
will be disconnected. 

Main idea for constructing block cut tree is constructing a tree among cut nodes 
and blocks of G[C]. In this established tree, a cut node has an edge to the block if this 
cut node is in the block. The algorithm of constructing a weighted block cut tree is as 
following: 

Algorithm 1 Construct block tree 
Input: Connected graph G[C] 
Output: Weighted block tree BCT of G[C] 
Step 1: Let a1, a2,… and B1,B2…, be the cut nodes and blocks of G[C], 
respectively. The node set V(BCT) is the union of Va and Vb, where Va={ a1, a2,…} 
and Vb={ bi| Bi is a block of G[C]}. Associated with each node in V(BCT) is a set, 
for ai∈Va, Xi={ai}. For bj∈Vb, Yj={vt| vt∈Bj and is not a cut node in G[C]}. 
Step 2: The edge set E(BCT) of edges (ai, bj), ai is a cut node that belongs to Bj. 
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In constructing the weighted block cut tree BCT of G[C], the leaves of BCT should 
be nodes bj , bj∈Vb. Let L={ bj is a leaf of BCT}. We randomly select only one node 

ij
v  from each Yj, where Yj corresponds to bj∈L. Let VL={

ij
v |

ij
v ∈Yj , bj∈L }.  

It is easy to know that if G[VL∪X] is a Steiner tree spanning all the nodes of VL, 
G[VL∪X∪C] is a 2-connected subgraph. In addition, CVVL ⊆⊆ 1 , a Steiner tree 

spanning all nodes of V1 in G[(V-C)∪V1] must be a Steiner tree spanning all nodes 
of VL. 

In the 2-connected augmentation problem, we need to find a subset X of V-C, such 
that G[X∪C] is 2-connected and |X| is minimized. Therefore, the 2-connected 
augmentation problem can be transformed to the following problem:  

Steiner tree problem in Subgraph (STS): Given a graph G=(V, E) and a subset C of 
V, find a Steiner tree G[VL∪X] that spans all nodes of VL such that |X| is minimized, 
where VL is reduced from the weighted block cut tree BCT of G[C]. 

We know that G[VL∪X∪C] is an approximate solution for 2-connected subgraph 
problem if G[VL∪X]is an approximation solution for STS. We can use the algorithm 
proposed in [17] to get an approximation solution for STS. 

Our proposed algorithm for the 2-connected subgraph problem as follows: 

Algorithm 2:  Construct 2-connteced subgraph including C 
Input: Graph G=( V, E) and a subset C of V 
Output: 2-connteced subgraph including C 
Step 1: Construct a weighted block cut tree BCT of G[C], and get a subset VL of C 
Step 2: Construct a Steiner tree T spanning all nodes of VL in G[VL∪(V-C)] such 
that the number of Steiner nodes is minimized; therefore G[V(T)∪C] is 2-
connected subgraph 
 

B. k-connected Augmentation Problem 
Because the k-connected augmentation problem is NP-hard, we cannot have an 
efficient optimal algorithm. We therefore design heuristic for solving the k-connected 
augmentation problem. To demonstrate the correctness of our algorithm, we first give 
a Lemma  

Definition 8. u is k-connected to v in G if there are k node-disjoint paths between u 
and v in G. 

Lemma 1. If G is k-connected and )(, 21 vNuu ∈∀ , where N(v) is a neighbor set of v 

in G, u1 is k-connected to u2 in G[V-v],  then G-{v} is k-connected. 

Proof. We need to prove that vGG −='  is connected after removal of any k-1 nodes 
in 'G . Given any two nodes v1 and v2 in 'G , without loss of generality, we 
assume Φ=∩ )(},{ 21 vNvv . We now prove that v1 is still connected to v2 after 

removal of the set of any k-1 nodes },...,{ 121 −= kwwwW , where },,{)( 21 vvvGVwi −∈ . 

Since G is k-connected, there are at least k disjoint node paths. We denote the set of 
disjoint node paths from v1 and v2 in G by )(

21
GS vv , therefore, kGS vv ≥|)(|

21
. 

If )(
21

GSv vv∉ , it is obvious that v1 is still connected to v2 after removal of the set of 
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any k-1 nodes },...,{ 121 −= kwwwW . Therefore, we only consider )(
21

GSv vv∈ . Let ''G  

be the resulting graph after v and W are removed from G, and let s1 be the number of 
paths in )'(

21
GS vv that are broken due to the removal of nodes in W, i.e. 

|},|)'({|
211 pwWwGSps vv ∈∈∃∈= . Since the paths in )'(

21
GS vv are pair-wise-

internally-node-disjoint, the removal of any one node in W breaks at most one path in 
the set, given |W|=k-1, we have 11 −≤ ks . 

If kGS vv ≥|)'(|
21

, then 1|)'(||)''(| 12121
≥−≥ sGSGS vvvv ,i.e. v1 is still connected v2 in 

''G . Now we consider the case where kGS vv <|)'(|
21

. This occurs only when the 

removal of v breaks one path )(
21

0 GSp vv∈ , without loss of generality, let the order of 

nodes on p0
 be 2211 ,,,, vuvuv . Since the removal of v reduces the number of pair-

wise-internally-node-disjoint paths between v1 and v2 by at most one, 
1|}{)(| 0

21
−≥− kpGS vv . Hence 1|)'(|

21
−= kGS vv . 

Now we consider two cases: 
1) 11 −< ks : 1|)'(||)''(| 12121

≥−≥ sGSGS vvvv , i.e. v1 is still connected to v2 in ''G . 

2) 11 −= ks : hence every node in W belongs to some path in )'(
21

GS vv . Since p
0 is 

internally-disjoint with all paths in )'(
21

GS vv , we  have Φ=Wp ∩0 . Thus v1 is 

connected to u1 and u2 is connected to v2 in ''G . Let s2 be the number of paths in 
)'(

21
GS uu  that are broken due to the removal of nodes in W, i.e., 

|},|)'({|
212 pwWwGSps vv ∈∈∃∈= . Since kGS uu ≥|)'(|

21
 and 12 −≤ ks , 1|)''(|

21
≥GS uu , i.e. 

u1 is still connected to u2 in ''G . Therefore, v1 is still connected to v2 in ''G . 
We have proved that for any two nodes ', 21 Gvv ∈ , v1 is connected to v2 after the 

removal of any k-1 nodes from },{' 21 vvG − . Therefore 'G  is k-connected. 

Using Lemma 1, we can design a heuristic algorithm, Algorithm 3 shown below, 
for the k-connected augmentation problem. The algorithm has a run time of O(n5), 
because in the For-loop, each if-loop needs to run the maximum flow algorithm which 
needs time O(n3) for at most n times. 
 

Algorithm 3: Construct a k-connected subgraph 
Input: G(V, E), a k-connected graph, and VC ⊆  
Output: ][ kVG , a k-connected subgraph of G induced by Vk, VVC k ⊆⊆  

Step 1: VVk =: ; 

Step 2: Sort all nodes in V-C in an increasing order of degree in G as mvvv ,..., 21  

such that )(...)()( 21 mvdvdvd ≤≤≤ ; 
Step 3: For i=1 to m, 

     if )(, 21 ivNuu ∈∀ , u1 is k-connected to u2 in }]{[ ik vVG − , then  

        }{ ikk vVV −= ; 1: += ii  

Step 4: Output a k-connected subgraph of G 
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4.2   k-Connected Target Coverage Problem and Its Algorithm 

As mentioned before, the k-connected target coverage problem is NP-hard. We design 
two heuristics for solving the problem. First, we propose the TS algorithm based on 
the algorithms proposed in subsections 4.A and 4.B for the k-connected coverage 
problem. After that, directly applying Lemma 1, we propose another heuristic 
algorithm, namely RA algorithm. 

The main idea of the TS algorithm is that the algorithm includes two steps. The 
first step is to construct a coverage of the targets using the set cover algorithm, and 
the second step is to add some nodes to this coverage such that the subgraph 
composed by both the newly added nodes and the nodes already existing in the 
coverage is k-connected. The TS algorithm is formally presented as follows: 

 
TS Algorithm: Construct an approximate solution for k-connected coverage 
Input: Given G=(V, E),  a set I of targets. 
Output: k-connected subgraph which its node set forms coverage for I 
Step 1: Construct a set cover VC ⊆  for I such that |C| is minimized. 
Step 2: Connect set C into k-connected subgraph,  i.e. finding a subset  X of V-C to 
C such that ][ XCG ∪  is k-connected subgraph and |X| is minimized. 

 
The problem in Step1 is a NP-hard and there is a typical algorithm to find an 

approximate solution C. Then we use the algorithms in subsections 4.A and 4.B to get 
an solution G[Vk] which is  k-connected ( 2≥k ) augmentation and kVC ⊆ , then Vk is a 

solution for the k-connected ( 2≥k ) target coverage problem. 
Another algorithm is called reverse algorithm (RA). The main idea of the reverse 

algorithm is that, initially, each sensor node in the sensor network is active, and then 
active nodes change to inactive one at a time if it satisfies two conditions: (1) after 
deleting this node, the remain nodes also form a coverage, and (2) any two neighbors 
of the node has k node-disjoint paths in remaining graph after deleting this node. 

Reverse algorithm: Construct an solution for k-connected target coverage 
Input: Given G=(V, E), a set I of targets, and VvIv ∈∀ , , a subset of I 

Output: k-connected subgraph whose node set forms a coverage for I 
Step 1: VVk =: ; 

Step 2: Sort all the nodes in V in increasing order of degree in I as nvvv ,..., 21  such 

that )(...)()( 21 nIII vDvDvD ≤≤≤ , where |}by  covered is |{|)( vIIvD jjI =  

Step 3: For i=1 to n, 
  if )(, 21 ivNuu ∈∀ , u1 is k-connected to u2 in }]{[ ik vVG − , and }{ ik vV − is a 

coverage for I , then  
       }{ ikk vVV −= ; 1: += ii  

Step 4: Output the k-connected target coverage. 

Theorem 2. The reverse algorithm can produce an approximation solution for the k-
connected target coverage problem with O(n5) time complexity. 
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Proof: It is easy to know that the algorithm can produce an approximation solution 
for the k-connected coverage problem. 

In Step 3, in for-loop: each if-loop needs to use the maximum flow algorithm which 
need time O( 3n )  for |)(| ivN , it takes total times at most  O( 4n ). Therefore it takes 

time O(n5) for Step 3. Therefore the algorithm has time complexity of O(n5). 

5   Performance Evaluation  

In this section  we evaluate the performance of the proposed algorithms by carrying 
out extensive simulations. In our simulation, N sensor nodes and M targets are 
independently and randomly distributed in a 500×500 square region. We assume the 
sensing range, S, of all sensor nodes are identical i.e., if the distance between any 
sensor node and a target is no more than S, the target is covered by the sensor node. In 
addition, the communicating range, R, of all sensor nodes are also assumed to be 
identical, i.e., if the distance between any pair of nodes is no more than R, there exists 
a direct communication between the two nodes. In the simulation we consider the 
following tunable parameters: 

• N, the number of randomly deployed sensor nodes. We vary N between 25 and 
70.  

• M, the number of targets to be covered. We vary M  between 10 and 50 
• R, the communicating range. We R  between 120 to 200. 
• S, the sensing range. We vary S between 30 and 110 

We simulate the proposed TS algorithm (TS) and RA algorithm (RA) and compared 
their performances in terms of the number of active sensor nodes. We test the 
performance of the two proposed algorithms in k-connected networks (k=2, 3). We 
present the averages of 100 separate runs for each result shown in the figures. In the 
simulations, any randomly generated topology that is not connected or targets that are 
not covered by all the sensor nodes are discarded.  

In the first experiment, we consider 50 sensor nodes and 10 targets randomly 
distributed, and we vary communicating range between 120 and 200 with an increment 
of 5, while the sensing range is set to 70.  

In Fig. 1, we present the number of active nodes obtained by using the TS and RA 
heuristics, depending on the communicating range. The numbers of active nodes 
returned by the two heuristics are close and they decrease with the network density. 
When the communicating range is larger, each sensor node can communicate with 
more sensors, thus fewer active nodes are needed.   

In Fig. 2, we measure the number of active nodes when the number of sensor nodes 
varies between 25 and 70, and the communicating range is set to 150, sensing range is 
70. We consider 10 targets randomly deployed. The number of active sensors 
increases with the number of sensors, as more sensors need to participate so that each 
active pairs communicate with k-disjoint paths. 
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               (a) k=2, N=50, M=10,  S=70                  (b) k=3, N=50, M=10,  S=70 

Fig. 1. The number of active nodes with communicating range 
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            (a)  k=2, N=50, M=10, S=70                    (b) k=3, N=50, M=10,  S=70 

Fig. 2. The number of active nodes with the number of sensor nodes 

In Fig. 3, we measure the number of active nodes when the sensing range varies 
between 70 and 110, and the communicating range is set to 150. We consider 50 
sensors and 10 targets randomly deployed. The number of active sensor nodes is not 
increased with increasing sensing range, because when the sensing range is larger, 
each target is covered by more sensors. 
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             (a) k=2, N=50, M=10, R=150                    (b) k=3, N=50, M=10, R=150 

Fig. 3. The number of active nodes with sensing range 
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   (a) k=2, N=50, R=150, S=70              (b) k=3, N=50, R=150, S=70  

Fig. 4. The number of active nodes with the number of targets 

In Fig. 4, we measure the number of active nodes when the number of targets 
varies between 10 and 500, the communicating range is set to 150, and the sensing 
range is set to 70. We consider 50 sensors randomly deployed. The number of active 
sensor nodes increased with the number of targets, as more targets needs to be 
covered. 

6   Conclusion 

In this paper, we have studied the problem of how to construct k-connected target 
coverage with the minimized number of active nodes in wireless sensor networks. We 
first discuss the k-connected augmentation problem in WSNs. Then, based on the 
result of the k-connected augmentation problem, we show that the k-connected 
coverage problem is NP-hard, and propose two heuristics to construct k-connected 
traget coverage. We have carried out extensive simulations to evaluate the 
performance of the two heuretic algorithms. The simulation results demonstrated the 
high effectiveness and efficiency of our algorithms 
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Abstract. In this paper, we study the problem of computing the mini-
mum number of searchers who can capture an intruder hiding in a graph.
We propose a linear time algorithm for computing the vertex separation
and the optimal layout for a unicyclic graph. The best algorithm known
so far is given by Ellis et al. (2004) and needs O(n log n) time, where n
is the number of vertices in the graph. By a linear-time transformation,
we can compute the search number and the optimal search strategy for
a unicyclic graph in linear time. We show how to compute the search
number for a k-ary cycle-disjoint graph. We also present some results on
approximation algorithms.

1 Introduction

Given a graph in which an intruder is hiding on vertices or edges, the searching
problem is to find the minimum number of searchers to capture the intruder.
The graph searching problem has many applications [4,5,7].

Let G be a graph without loops and multiple edges. Initially, all vertices and
edges of G are contaminated, which means an intruder can hide on any vertices or
anywhere along edges. There are three actions for searchers: (1) place a searcher
on a vertex; (2) remove a searcher from a vertex; and (3) slide a searcher along
an edge from one end vertex to the other. A search strategy is a sequence of
actions designed so that the final action leaves all edges of G cleared. An edge
uv in G can be cleared in one of two ways by a sliding action: (1) two searchers
are located on vertex u, and one of them slides along uv from u to v; or (2) a
searcher is located on vertex u, where all edges incident with u, other than uv,
are already cleared, and the searcher slides from u to v. The intruder can move
along a path that contains no searcher at a great speed at any time. For a graph
G, the minimum number of searchers required to clear G is called the search
number, denoted by s(G). A search strategy for a graph G is optimal if this
strategy can clear G using s(G) searchers. Let E(i) be the set of cleared edges
just after action i. A search strategy is said to be monotonic if E(i) ⊆ E(i + 1)
for every i. LaPaugh [8] and Bienstock and Seymour [1] proved that for any
connected graph G, allowing recontamination cannot reduce the search number.
Thus, we only need to consider monotonic search strategies. Megiddo et al. [9]
showed that determining the search number of a graph G is NP-hard. They also
gave a linear time algorithm to compute the search number of a tree and an
O(n log n) time algorithm to find the optimal search strategy, where n is the

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 32–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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number of vertices in the tree. Peng et al. [10] proposed a linear time algorithm
to compute the optimal search strategy of trees.

Search numbers are closely related to several other important graph parame-
ters, such as vertex separation and pathwidth. A layout of a connected graph
G(V, E) is a one to one mapping L: V → {1, 2, . . . , |V |}. Let VL(i) ={x : x ∈
V (G), and there exists y ∈ V (G) such that the edge xy ∈ E(G), L(x) ≤ i and
L(y) > i}. The vertex separation of G with respect to L, denoted by vsL(G), is
defined as vsL(G) = max{|VL(i)| : 1 ≤ i ≤ |V (G)|}. The vertex separation of
G is defined as vs(G) = min{vsL(G) : L is a layout of G}. We say that L is an
optimal layout if vsL(G) = vs(G). Kinnersley [6] showed that vs(G) equals the
pathwidth of G. Ellis et al. [2] proved that vs(G) ≤ s(G) ≤ vs(G)+2 for any con-
nected undirected graph G. They gave a transformation called 2-expansion from
G to G′ such that vs(G′) = s(G). They also described an algorithm for trees to
compute the vertex separation in linear time. Based on this algorithm, Ellis and
Markov [3] gave an O(n log n) algorithm for computing the vertex separation
and the optimal layout of a unicyclic graph.

The rest of this paper is organized as follows. In Section 2, we give definitions
and notation. In Section 3, we present a linear time algorithm for computing
the search number and the optimal search strategy for a tree by applying the
labeling method. In Section 4, we improve Ellis and Markov’s algorithm from
O(n log n) to O(n) for computing the vertex separation and the optimal layout of
a unicyclic graph. In Section 5, we show how to compute the search number of a
k-ary cycle-disjoint graph. In Section 6, we investigate approximation algorithms
for computing the search number of a cycle-disjoint graph.

2 Preliminaries

All graphs in this paper are finite without loops and multiple edges. A rooted
tree is a tree with one vertex designated as the root of the tree. We use T [r] to
denote a rooted tree T with root r. For any two vertices v1 and v2 in T [r], if
there is a path from r to v2 that contains v1, then we say v2 is a descendant of
v1; specifically, if v2 is adjacent to v1, we say v2 is a child of v1. Each vertex of
T [r] except r is a descendant of r. For any edge with end vertices u and v, if v
is the child of u, then we orient this edge with the direction from u to v. This
edge is denoted by (u, v). After this orientation, we obtain a directed rooted tree
T [r] such that the in-degree of r is 0 and the in-degree of any other vertex is 1.
For any vertex v of T [r], the subtree induced by v and all its descendant vertices
is called the vertex-branch at v, denoted by T [v]. T [r] can be considered as a
vertex-branch at r. For any directed edge (u, v), the graph T [v] + (u, v) is called
the edge-branch of (u, v), denoted by T [uv]. T [uv] is also called an edge-branch
at u.

A vertex-branch T [x] is said to be k-critical if s(T [x]) = k and there are
exactly two edge-disjoint edge-branches in T [x] such that they share a common
vertex and each has search number k. This common vertex is called a k-critical
vertex. An edge-branch T [xy] is k-critical if s(T [xy]) = k and T [xy] contains a
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k-critical vertex-branch. We use k+ to denote a critical element, where k is a
positive integer. The value of k+, denoted as |k+|, is equal to k.

Let T [r] be a rooted tree and v be a vertex in T [r]. If s(T [v]) = s1 and T [v]
is s1-critical, let v1 be the s1-critical vertex in T [v] and let T [v, v1] denote the
subtree obtained by deleting all edges and vertices (except v1) of T [v1] from T [v].
If s(T [v, v1]) = s2 and T [v, v1] is s2-critical, let v2 be the s2-critical vertex in
T [v, v1] and let T [v, v1, v2] denote the subtree obtained by deleting all edges and
vertices (except v2) of T [v2] from T [v, v1]. Repeat this process until we first en-
counter a subtree T [v, v1, . . . , vk] that is a single vertex v or whose search number
is equal to sk+1 and which is not sk+1-critical. If T [v, v1, . . . , vk] is a single vertex,
then the label of v, denoted by L(v), is defined by (s+

1 , s+
2 , . . . , s+

k ); otherwise, the
label L(v) is defined by (s+

1 , s+
2 , . . . , s+

k , sk+1). Specifically, if s(T [v]) = s1 > 0
and T [v] is not s1-critical, then the label L(v) is defined by (s1). Let (u, v) be
an edge in T [r]. If s(T [uv]) = s1 and T [uv] is s1-critical, let v1 be the s1-critical
vertex in T [uv] and let T [uv, v1] denote the subtree obtained by deleting all edges
and vertices (except v1) of T [v1] from T [uv]. If s(T [uv, v1]) = s2 and T [uv, v1] is
s2-critical, let v2 be the s2-critical vertex in T [uv, v1] and let T [uv, v1, v2] denote
the subtree obtained by deleting all edges and vertices (except v2) of T [v2] from
T [uv, v1]. Repeat this process until we first encounter a subtree T [uv, v1, . . . , vk]
whose search number is equal to sk+1 and which is not sk+1-critical. The la-
bel of uv, denoted by L(uv), is defined by (s+

1 , s+
2 , . . . , s+

k , sk+1). Specifically, if
s(T [uv]) = s1 > 0 and T [uv] is not s1-critical, then the label of uv is defined by
(s1). Both vertex labels and edge labels have the following property.

Lemma 1. For a labeled tree, each vertex label or edge label consists of a se-
quence of strictly decreasing elements such that each element except the last one
must be a critical element.

3 Labeling Method for Trees

From [2], we know that the search number of a tree can be found in linear time
by computing the vertex separation of the 2-expansion of the tree. From [9], we
know that the search number of a tree can also be found in linear time by using
a hub-avenue method. However, in order to apply the labeling method proposed
in [2] to compute search numbers of other special graphs (refer to the full version
[11] of this paper), we modify this method so that it can compute the search
number of a tree directly.

For a tree T , if we know the search number of all edge-branches at a vertex
in T , then s(T ) can be computed from combining these branches’ information.

Algorithm. SearchNumber(T [r])
Input: A rooted tree T [r].
Output: s(T [r]).

1. Assign label (0) to each leaf (except r if r is also a leaf) and assign label (1)
to each pendant edge in T [r].
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2. if there is an unlabeled vertex v whose all out-going edges have been labeled,
then compute the label L(v);

if v has an in-coming edge (u, v), then
computer the label L(uv);

else stop and output the value of the first element in the label L(v).
repeat Step 2.

Because a rooted tree T [r] has a unique root r, every vertex except r has a
unique in-coming edge and r has no in-coming edge. Thus, if v has no in-coming
edge at line 3 of Step 2, then v must be the root r and the value of the first
element in its label is equal to the search number of T [r]. We can prove the
following results for rooted trees.

Lemma 2. For a rooted tree T [r] and a vertex v in T [r], let v1, v2, . . . , vk be all
the children of v. Let a = max{s(T [vvi]) | 1 ≤ i ≤ k} and b be the number of
edge-branches with search number a.
(i) If b ≥ 3, then s(T [v]) = a + 1.
(ii) If b = 2 and no edge-branch at v is a-critical, then s(T [v]) = a and T [v] is
a-critical.
(iii) If b = 2 and at least one branch at v is a-critical, then s(T [v]) = a + 1.
(iv) If b = 1 and no branch at v is a-critical, then s(T [v]) = a.
(v) If b = 1 and T [vvj] is a-critical, let u be the a-critical vertex in T [vvj],
and let T [v, u] be the subtree formed by deleting all edges of T [u] from T [v]. If
s(T [v, u]) = a, then s(T [v]) = a + 1; and if s(T [v, u]) < a, then s(T [v]) = a and
T [v] is a-critical.

In Step 2 of the algorithm SearchNumber(T [r]), let v1, v2, . . . , vk be all the
children of v. Each label L(vvi) contains the structure information of the edge-
branch T [vvi]. For example, if L(vvi) = (s+

1 , s+
2 , . . . , s+

m, sm+1), it means T [vvi]
has a s1-critical vertex u1, T [vvi, u1] has a s2-critical vertex u2, . . . , T [vvi, u1,
. . . , um−1] has a sm-critical vertex um, and T [vvi, u1, . . . , um] has search number
sm+1 and it is not sm+1-critical. From Lemma 2, we can compute L(v) that con-
tains the structure information of the vertex-branch T [v] by using the structure
information of all edge-branches at v. Since the label of an edge (x, y) contains
the information of the edge-branch T [y] + (x, y), we can compute L[xy] from
L[y]. By using appropriate data structures for storing labels, each loop in Step
2 can be performed in O(s(T [vv′]) + k) time, where T [vv′] is the edge-branch
that has the second largest search number among all edge-branches at v and
k is the number of children of v. By using a recursion to implement Step 2 of
SearchNumber(T [r]), we can prove the following result.

Theorem 1. If n is the number of vertices in a tree T , then the running time
of computing s(T ) is O(n).

After we find the search number, we can use the information obtained in Algo-
rithm Search-Number(T [r]) to compute an optimal monotonic search strategy
in linear time.
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4 Unicyclic Graphs

Ellis and Markov [3] proposed an O(n log n) algorithm to compute the vertex
separation of a unicyclic graph. In this section we will give an improved algorithm
that can do the same work in O(n) time. All definitions and notation in this
section are from [3]. Their algorithm consists of three functions: main, vs uni and
vs reduced uni (see Fig. 28, 29 and 30 in [3] for their descriptions).

Let U be a unicyclic graph and e be a cycle edge of U . In function main, it
first computes the vertex separation of the tree U − e, and then invokes function
vs uni to decide whether vs(U) = vs(U − e). vs uni is a recursive function that
has O(log n) depth, and in each iteration it computes the vertex separation
of a reduced tree U ′ − e and this takes O(n) time. Thus, the running time of
vs uni is O(n log n). vs uni invokes the function vs reduced uni to decide whether a
unicyclic graph U is k-conforming. vs reduced uni is also a recursive function that
has O(log n) depth, and in each iteration it computes the vertex separation of
T1[a] and T1[b] and this takes O(n) time. Thus, the running time of vs reduced uni
is also O(n log n).

We will modify all three functions. The main improvements of our algorithm
are to preprocess the input of both vs uni and vs reduced uni so that we can
achieve O(n) running time. The following is our improved algorithm, which
computes the vertex separation and the corresponding layout for a unicyclic
graph U .

program main modified
1 For each constituent tree, compute its vertex separation, optimal layout and type.
2 Arbitrarily select a cycle edge e and a cycle vertex r. Let T [r] denote U − e with

root r. Compute vs(T [r]) and the corresponding layout X.
3 Let L be the label of r in T [r]. Set α ← vs(T [r]), k ← vs(T [r]).
4 while the first element of L is a k-critical element and the corresponding

k-critical vertex v is not a cycle vertex in U , do
Update U by deleting T [v] and update L by deleting its first element;
Update the constituent tree T [u] that contains v by deleting T [v]

and update the label of u in T [u] by deleting its first element;
k ← k − 1;

5 if (vs uni modified(U, k))
then output(α, the layout created by vs uni modified);
else output(α + 1, X);

function vs uni modified(U, k): Boolean
Case 1:U has one k-critical constituent tree;

compute vs(T ′);
if vs(T ′) = k, then return (false) else return (true);

Case 2:U has three or more non-critical k-trees;
return (false);

Case 3:U has exactly two non-critical k-trees Ti and Tj ;
compute vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
/* Assume that vs(T1) ≥ vs(T2). */
/* Let La be the label of a in T1[a], and Lb be the label of b in T1[b]. */
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/* Let Lc be the label of c in T2[c], and Ld be the label of d in T2[d]. */
/* Let U ′ be U minus the bodies of Ti and Tj . */
return (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k));

Case 4:U has exactly one non-critical k-tree Ti;
/* let q be the number of (k − 1)-trees that is not type NC. */

Case 4.1: 0 ≤ q ≤ 1;
return (true);

Case 4.2: q = 2;
for each tree Tj from among the two (k − 1)-trees, do

compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 4.3: q = 3;

for each tree Tj from among the three (k − 1)-trees, do
compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 4.4: q ≥ 4;

return (false);
Case 5:U has no k-trees;

/* let q be the number of (k − 1)-trees that is not type NC. */
Case 5.1: 0 ≤ q ≤ 2;

return (true);
Case 5.2: q = 3;

for each choice of two trees Ti and Tj from the three (k − 1)-trees, do
compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 5.3: q = 4;

for each choice of two trees Ti and Tj from the four (k − 1)-trees, do
compute the corresponding vs(T1[a]), vs(T1[b]), vs(T2[c]) and vs(T2[d]);
if (vs reduced uni modified(U ′, La, Lb, Lc, Ld, k)) then return (true);
/* U ′ is equal to U minus the bodies of Ti and Tj . */

return (false);
Case 5.4: q ≥ 5;

return (false).

function vs reduced uni modified(U, La, Lb, Lc, Ld, k)): Boolean
/* Let a1, b1, c1, d1 be the first elements of La, Lb, Lc, Ld respectively. */
/* Let |a1|, |b1|, |c1|, |d1| be the value of a1, b1, c1, d1 respectively. */
/* We assume that |a1| ≥ |c1|. */

Case 1: |a1| = k;
return (false).

Case 2: |a1| < k − 1;
return (true).

Case 3: |a1| = k − 1;
if both a1 and b1 are (k − 1)-critical elements, then
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/* Let u be the (k − 1)-critical vertex in T1[a]
and let v be the (k − 1)-critical vertex in T1[b]. */

if u = v and u is not a cycle vertex, then
update La and Lb by deleting their first elements;
update U by deleting T [u];
update the label of the root of the constituent tree containing u

by deleting its first element;
if |c1| is greater than the value of the first element in current La,

then return (vs reduced uni modified(U, Lc, Ld, La, Lb, k − 1).
else return (vs reduced uni modified(U, La, Lb, Lc, Ld, k − 1).

else /* (u = v and u is a cycle vertex) or (u �= v) */
return (T2 contains no k − 1 types other than NC constituents);

else return ((neither a1 nor d1 is (k − 1)-critical element)
or (neither b1 nor c1 is (k − 1)-critical element)).

Lemma 3. Let U be a unicyclic graph, e be a cycle edge and r be a cycle vertex
in U . Let T [r] denote the tree U − e with root r. If vs(T [r]) = k, then U has a
k-constituent tree of type Cb if and only if the first element in the label of r in
T [r] is a k-critical element and the corresponding k-critical vertex is not a cycle
vertex.

The correctness of the modified algorithm follows from the analysis in Sections 4
and 5 in [3]. We now compare the two algorithms. In our main modified function,
if the condition of the while-loop is satisfied, then by Lemma 3, U has a k-
constituent tree of type Cb that contains v. Let T ′[u] be this constituent tree
and u be the only cycle vertex in T ′[u]. The first element in the label of u in
T ′[u] must be k-critical element. Let L(r) be the label of r in T [r] and L(u)
be the label of u in T ′[u]. We can obtain the label of r in T [r] − T [v] and the
label of u in T ′[u] − T ′[v] by deleting the first element of each label, according
to the definition of labels [3]. This work can be done in constant time. However,
without choosing a cycle vertex as the root of T , their algorithm needs O(n)
time to compute these two labels. Function vs uni in [3] can only invoke itself in
Case 1 when U has a k-constituent tree of type Cb. Our main modified function
invokes function vs uni modified only when the condition of the while-loop is not
satisfied. By Lemma 3, in this case, U does not have a k-constituent tree of type
Cb. Thus in Case 1 of vs uni modified, the tree must be of type C, and recursion is
avoided. In their function vs reduced uni, vs(T1) and vs(T2) are computed using
O(n) time. However, we compute them before invoking vs reduced uni modified.
Let La, Lb, Lc and Ld be the label of a in T1[a], b in T1[b], c in T2[c] and d in
T2[d] respectively. All the information needed by vs reduced uni modified is these
four labels. While recursion occurs, we can obtain new labels by simply deleting
the first elements from the old ones, which requires only constant time. Hence,
the time complexity of vs reduced uni modified can be reduced to O(1) if we do
not count the recursive iterations.

We now analyze the running time of our modified algorithm. Since function
vs reduced uni modified only ever invokes itself and the depth of the recursion is
O(log n), its running time is O(log n). In function vs uni modified, Case 1 needs
O(n); Cases 3, 4.2, 4.3, 5.2 and 5.3 need O(n)+O(log n); and other cases can be



Searching Cycle-Disjoint Graphs 39

done in O(1). Thus, the running time of vs uni modified is O(n) + O(log n). In
the main modified function, all the work before invoking vs uni modified can be
done in O(n)+O(log n). Hence, the total running time of the modified algorithm
is O(n). Therefore, we have the following theorem.

Theorem 2. For a unicyclic graph G, the vertex separation and the optimal
layout of G can be computed in linear time.

For a graph G, the 2-expansion of G is the graph obtained by replacing each
edge of G by a path of length three. By Theorem 2.2 in [2], the search number
of G is equal to the vertex separation of the 2-expansion of G. From Theorem 2,
we have the following result.

Corollary 1. For a unicyclic graph G, the search number and the optimal search
strategy of G can be computed in linear time.

5 k-Ary Cycle-Disjoint Graphs

A graph G is called a cycle-disjoint graph (CDG) if it is connected and no pair
of cycles in G share a vertex. A complete k-ary tree T is a rooted k-ary tree in
which all leaves have the same depth and every internal vertex has k children. If
we replace each vertex of T with a (k+1)-cycle such that each vertex of internal
cycle has degree at most 3, then we obtain a cycle-disjoint graph G, which we
call a k-ary cycle-disjoint graph (k-ary CDG). In T , we define the level of the
root be 1 and the level of a leaf be the number of vertices in the path from the
root to that leaf. We use T h

k to denote a complete k-ary tree with level h and
Gh

k to denote the k-ary CDG obtained from T h
k . In this section, we will show

how to compute the search numbers of k-ary CDGs. Similar to [3], we have the
following lemmas.

Lemma 4. Let G be a graph containing three connected subgraphs G1, G2 and
G3, whose vertex sets are pairwise disjoint, such that for every pair Gi and Gj

there exists a path in G between Gi and Gj that contains no vertex in the third
subgraph. If s(G1) = s(G2) = s(G3) = k, then s(G) ≥ k + 1.

Lemma 5. For a connected graph G, let C = v1v2 . . . vmv1 be a cycle in G such
that each vi (1 ≤ i ≤ m) connects to a connected subgraph Xi by a bridge. If
s(Xi) ≤ k, 1 ≤ i ≤ m, then s(G) ≤ k + 2.

Lemma 6. For a connected graph G, let v1, v2, v3, v4 and v5 be five vertices on
a cycle C in G such that each vi (1 ≤ i ≤ 5) connects to a connected subgraph
Xi by a bridge. If s(Xi) ≥ k, 1 ≤ i ≤ 5, then s(G) ≥ k + 2.

Lemma 7. For a connected graph G, let C = v1v2v3v4v1 be a 4-cycle in G such
that each vi (1 ≤ i ≤ 4) connects to a connected subgraph Xi by a separation
edge. If s(G) = k + 1 and s(Xi) = k, 1 ≤ i ≤ 4, then for any optimal monotonic
search strategy of G, the first cleared vertex and the last cleared vertex must be
in two distinct graphs Xi + vi, 1 ≤ i ≤ 4.
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Lemma 8. For a CDG G with search number k, let S be an optimal monotonic
search strategy of G in which the first cleared vertex is a and the last cleared
vertex is b. If there are two cut-vertices a′ and b′ in G such that an edge-branch
Ga′ of a′ contains a and an edge-branch Gb′ of b′ contains b and the graph
G′ obtained by removing Ga′ and Gb′ from G is connected, then we can use k
searchers to clear G′ starting from a′ and ending at b′.

For a vertex v in G, if s(G) = k and there is no monotonic search strategy to
clear G starting from or ending at v using k searchers, then we say that v is a
bad vertex of G.

Lemma 9. Let G be a connected graph and C be a cycle of length at least four in
G, and v1 and v2 be two vertices on C such that each vi (1 ≤ i ≤ 2) connects to
a connected subgraph Xi by a bridge viv

′
i. If s(X1) = s(X2) = k and v′1 is a bad

vertex of X1 or v′2 is a bad vertex of X2, then we need at least k +2 searchers to
clear G starting from v3 and ending at v4, where v3 and v4 are any two vertices
on C other than v1 and v2.

Lemma 10. For a connected graph G, let v1, v2, v3 and v4 be four vertices on
a cycle C in G such that each vi (1 ≤ i ≤ 4) connects to a connected subgraph
Xi by a bridge viv

′
i. If s(Xi) = k, and v′i is a bad vertex of Xi, 1 ≤ i ≤ 4, then

s(G) ≥ k + 2.

From the above lemmas, we can prove the major result of this section.

Theorem 3. Let T h
k be a complete k-ary tree with level h and Gh

k be the corre-
sponding k-ary CDG.

(i) If k = 2 and h ≥ 3, then s(T h
2 ) = �h

2 � + 1 and s(Gh
2 ) = �h

2 � + 2.
(ii) If k = 3 and h ≥ 2, then s(T h

3 ) = h and s(Gh
3 ) = h + 1.

(iii) If k = 4 and h ≥ 2, then s(T h
4 ) = h and s(Gh

4 ) = h + �h
2 �.

(iv) If k ≥ 5 and h ≥ 2, then s(T h
k ) = h and s(Gh

k) = 2h.

Proof. The search numbers of complete k-ary trees can be verified directly by
the algorithm SearchNumber(T [r]). Thus, we will only consider the search
numbers of k-ary CDGs.

(i) The search number of Gh
2 can be verified by a search strategy based on

SearchStrategy(T [r]).
(ii) We now prove s(Gh

3 ) = h + 1 by induction on h. Let R = r0r1r2r3r0 be
the cycle in Gh

3 that corresponds to the root of T h
3 . Suppose r0 is the vertex

without any outgoing edges. When h = 2, it is easy to see that s(G2
3) = 3 and

all four vertices of R are not bad vertices in G2
3. Suppose s(Gh

3 ) = h + 1 holds
when h < n and all four vertices of R are not bad vertices in Gh

3 . When h = n,
R has three edge-branches with search number n. It follows from Lemma 4 that
s(Gn

3 ) ≥ n + 1. We will show how to use n + 1 searchers to clear the graph
by the following strategy: use n searchers to clear G[r1] ending at r1; keep one
searcher on r1 and use n searchers to clear G[r2] ending at r2; use one searcher
to clear the edge r1r2; slide the searcher on r1 to r0 and slide the searcher on r2

to r3; use one searcher to clear the edge r0r3; then clear G[r3] with n searchers
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starting from r3. This strategy never needs more than n + 1 searchers. Thus,
s(Gn

3 ) = n+1. From this strategy, it is easy to see that all four vertices of R are
not bad vertices in Gn

3 .
(iii) We will prove s(Gh

4 ) = h + �h
2 � by induction on h. Let R = r0r1r2r3r4r0

be the cycle in Gh
4 that corresponds to the root of T h

4 . Suppose r0 is the vertex
without any outgoing edges. We want to show that if h is odd, then no bad
vertex is on R, and if h is even, then r0 is a bad vertex of Gh

4 .
When h = 2, it is easy to see that s(G2

4) = 3 and r0 is a bad vertex in G2
4.

When h = 3, by Lemma 10, s(G3
4) ≥ 5 and it is easy to verify that 5 searchers

can clear G3
4 starting from any one of the five vertices on R. Suppose these results

hold for Gh
4 when h < n. We now consider the two cases when h = n.

If n is odd, G[ri] has search number n − 1 + (n − 1)/2 and ri is a bad vertex
in G[ri], 1 ≤ i ≤ 4. By Lemma 10, we have s(Gn

4 ) ≥ n − 1 + (n − 1)/2 + 2 =
n + (n + 1)/2. We will show how to use n + (n + 1)/2 searchers to clear the
graph by the following strategy. Let v be any one of the cycle vertex of R. We
first place two searchers α and β on v and then slide β along R starting from v
and ending at v. Each time when β arrives a vertex of R, we clear the subgraph
attached to this vertex using n − 1 + (n − 1)/2 searchers. This strategy never
needs more than n + (n +1)/2 searchers. Thus, s(Gn

4 ) = n + (n + 1)/2. It is also
easy to see that all five vertices of R are not bad vertices in Gn

4 .
If n is even, G[ri] has search number n− 1+n/2 and ri is not a bad vertex in

G[ri], 1 ≤ i ≤ 4. By Lemma 4, we have s(Gn
4 ) ≥ n + n/2. We will show how to

use n+n/2 searchers to clear the graph by the following strategy: use n−1+n/2
searchers to clear G[r1] ending at r1; use n − 1 + n/2 searchers to clear G[r2]
ending at r2; use one searcher to clear the edge r1r2; slide the searcher on r1

along the path r1r0r4 to r4; slide the searcher on r2 to r3 along the edge r2r3; use
one searcher to clear the edge r3r4; clear G[r3] with n−1+n/2 searchers starting
from r3 and finally clear G[r4] with n− 1 + n/2 searchers starting from r4. This
strategy never needs more than n + n/2 searchers. Thus, s(Gn

4 ) = n + n/2 and,
by Lemma 7, r0 is a bad vertex in Gn

4 .
(iv) The search number of Gh

k , k ≥ 5, can be verified directly from Lemmas 5
and 6.

6 Approximation Algorithms

Megiddo et al. [9] introduced the concept of the hub and the avenue of a tree.
Given a tree T with s(T ) = k, only one of the following two cases must happen:
(1) T has a vertex v such that all edge-branches of v have search number less
than k, this vertex is called a hub of T ; and (2) T has a unique path v1v2 . . . vt,
t > 1, such that v1 and vt each has exactly one edge-branch with search number
k and each vi, 1 < i < t, has exactly two edge-branches with search number k,
this unique path is called an avenue of T .

Theorem 4. Given a CDG G, if T is a tree obtained by contracting each cycle
of G into a vertex, then s(T ) ≤ s(G) ≤ 2s(T ).
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Corollary 2. For any CDG, there is a linear time approximation algorithm with
approximation ratio 2.

Lemma 11. Let G be a CDG in which every cycle has at most three vertices
with degree more than two. Let T be the tree obtained from G by contracting
every cycle of G into a vertex. If the degree of each cycle vertex in G is at most
three, then s(G) ≤ s(T ) + 1.

Let S = (a1, . . . , ak) be an optimal monotonic search strategy for a graph. The
reversal of S, denoted as SR, is defined by SR = (ak, ak−1, . . . , a1), where each
ai, 1 ≤ i ≤ k, is the converse of ai, which is defined as follows: the action “place
a searcher on vertex v” and the action “remove a searcher from vertex v” are
converse with each other; and the action “move the searcher from v to u along
the edge vu” and the action “move the searcher from u to v along the edge uv”
are converse with each other.

Lemma 12. If S is an optimal monotonic search strategy of a graph G, then
SR is also an optimal monotonic search strategy of G.

Lemma 13. Given a graph G, for any two vertices a and b of G, there is a
search strategy that uses at most s(G) + 1 searchers to clear G starting from a
and ending at b.

Theorem 5. Let G be a connected graph and X1, X2, . . . , Xm be an edge parti-
tion of G such that each Xi is a connected subgraph and each pair of Xi share
at most one vertex. Let G∗ be a graph of m vertices such that each vertex of G∗

corresponds to a Xi and there is an edge between two vertices of G∗ if and only
if the corresponding two Xi share a common vertex. If G∗ is a tree, then there is
a search strategy that uses at most max1≤i≤m s(Xi)+�Δ(G∗)/2�s(G∗) searchers
to clear G, where Δ(G∗) is the maximum degree of G∗.

Proof. We prove the result by induction on s(G∗). If s(G∗) = 1, then G∗ is
a single vertex or a path, and �Δ(G∗)/2� = 1. Suppose that G∗ is the path
v1v2 . . . vm and vi corresponds to Xi, 1 ≤ i ≤ m. Let ai be the vertex shared by
Xi and Xi+1, 1 ≤ i ≤ m− 1 and let a0 be a vertex in X1 and am be a vertex in
Xm. By Lemma 13, we can use s(Xi)+1 searchers to clear each Xi starting from
ai−1 and ending at ai, for X1, X2, . . . , Xm. Therefore, there is a search strategy
uses at most maxi s(Xi) + 1 searchers to clear G. Suppose that this result holds
for s(G∗) ≤ n, n ≥ 2. When s(G∗) = n + 1, we consider the following two cases.

Case 1. G∗ has a hub v. Let X(v) be the subgraph of G that corresponds to
v and S be an optimal search strategy of X(v). Each subgraph that corresponds
to a neighbor of v in G∗ shares a vertex with X(v) in G. Divide these shared
vertices into �deg(v)/2� pairs such that for each pair of vertices ai and a′

i, ai

is cleared before a′
i is cleared in S, 1 ≤ i ≤ �deg(v)/2�. Let vi (resp. v′i) be

the neighbor of v such that its corresponding subgraph of G, denoted by X(vi)
(resp. X(v′i)), shares ai (resp. a′

i) with X(v). Let v be the root of G∗, let Ti

(resp. T ′
i ) be the vertex-branch of vi (resp. v′i) and let X(Ti) (resp. X(T ′

i )) be
the subgraph of G that is the union of the subgraphs that correspond to all
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vertices in Ti (resp. T ′
i ). Obviously ai (resp. a′

i) is the only vertex shared by
X(v) and X(Ti) (resp. X(T ′

i )). Since v is a hub of G∗, we know that s(Ti) ≤ n.
Thus, s(X(Ti)) ≤ maxi s(Xi) + �Δ(Ti)/2�n ≤ maxi s(Xi) + �Δ(G∗)/2�n. First,
we place a searcher on each ai, 1 ≤ i ≤ �deg(v)/2�. Then use maxi s(Xi) +
�Δ(G∗)/2�n searchers to clear each subgraph X(Ti) separately. After that, we
perform S to clear X(v). Each time after some ai is cleared by S, we remove
the searcher on ai and place it on a′

i, 1 ≤ i ≤ �deg(v)/2�. Finally, after X(v) is
cleared, we again use maxi s(Xi)+�Δ(G∗)/2�n searchers to clear each subgraph
X(T ′

i ) separately. Therefore,we can clear G with no more than maxi s(Xi) +
�Δ(G∗)/2�n + �deg(v)/2� ≤ maxi s(Xi) + �Δ(G∗)/2�(n + 1) searchers.

Case 2. G∗ has an avenue v1v2 . . . vt, t > 1. Let v0 be a neighbor of v1 other
than v2 and let vt+1 be a neighbor of vt other than vt−1. Let X(vi), 0 ≤ i ≤ t+1,
be the subgraph of G that corresponds to vi. For 0 ≤ i ≤ t, let bi be the vertex
shared by X(vi) and X(vi+1). For 1 ≤ i ≤ t, let Si be an optimal search strategy
of X(vi) such that bi−1 is cleared before bi is cleared. Thus, we can use a similar
search strategy described in Case 1 to clear each X(vi) and all the subgraphs
that correspond to the edge-branches of vi. Note that when we clear X(vi), bi−1

and bi form a pair as ai and a′
i in Case 1. In such a strategy we never need

more than maxi s(Xi) + �Δ(G∗)/2�(n + 1) searchers.

In Theorem 5, if each Xi is a unicyclic graph, then we have a linear time ap-
proximation algorithm for cycle-disjoint graphs. We can design a linear time
approximation algorithm when each s(Xi) can be found in linear time.
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Abstract. Motivated by the existence of an APTAS(Asymptotic PTAS)
for bin packing problem, we consider the batch scheduling problem with
nonidentical job sizes to minimize makespan. For the proportional special
version, i.e., there exists a fixed number α such that pj = αsj for every
1 ≤ j ≤ n, we first present a lower bound of 3/2 for the approximation
ratio and then design an APTAS for it. Our basic idea is quite simple: we
first enumerate all the partial schedules of relatively large jobs; Then for
every partial schedule we insert the small jobs, split them if necessary;
Further then, we choose the best of all the obtained schedules; Finally,
we collect the split small jobs and put them into new batches. As we
can round the large jobs into only a constant number of different kinds
at a reasonable expense of accuracy, the running time can be bounded.
When the optimal objective value of instances in our consideration can
not be arbitrarily small, inf

I
{Pmax : Pmax is the largest processing time

in I} �= 0 for instance, our result is perfect in the sense of worst-case
performance.

1 Introduction and Our Contributions

In this paper, we study the problem of batch scheduling with nonidentical job
sizes to minimize makespan. We are given a list of jobs {J1, J2, · · · , Jn}, each
job Jj is characterized by a double of real numbers (pj , sj), where pj is the
processing time and sj the job size. A number of jobs can be processed as a
batch simultaneously, as long as the total size does not exceed the machine
capacity, and the processing time of a batch is given by the longest job in this
batch. No preemption is allowed. Our goal is to batch the given jobs and schedule
the batches in some sequence such that makespan is minimized. Throughout this
paper(except in Theorem 1), we assume that the machine capacity is 1, and thus
sj ∈ (0, 1], as is always assumed. Without loss of generality we further assume
that α = 1, i.e., pj = sj(1 ≤ j ≤ n).

� Supported by NNSF of China(NO.10671108).
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Batch scheduling problems are encountered in many environments and our
research is motivated by the burn-in model in semiconductor industry. In the in-
dustry of semiconductor manufacturing, the last stage is the final testing (called
the burn-in operation). In this stage, chips are loaded onto boards which are
then placed in an oven and exposed to high temperature. Each chip has a pre-
specified minimum burn-in time, and a number of chips can be baked in an oven
simultaneously as long as the oven can hold them, and the baking process is not
allowed to be preempted, that is, once the processing of a batch is started, the
oven is occupied until the process is completed. To ensure that no defective chips
will pass to the customer, the processing time of a batch is that of the longest
one among these chips. As the baking process in burn-in operations can be long
compared to other testing operations(e.g.,120 hours as opposed to 4-5 hours for
other operations ), an efficient algorithm for batching and scheduling is highly
non-trivial.

Since the early 1990s, due to its deep root in the real world, the batch schedul-
ing problem has attracted a lot of attention and many variants have been dis-
cussed(see [2,4,5,10]). However, up to now, most of the discussions have been
restricted on the model with identical job sizes. As to the more general and
more practical case with nonidentical job sizes, since it was proposed by R.
Uzsoy([11]), relatively few cases have been studied.

In Uzsoy’s paper, he considered the problem of minimizing makespan and the
problem of minimizing total completion time, both problems are proven to be
NP-hard. For the problem of minimizing makespan, the author gave four heuris-
tics, all of which have beautiful computational results. However, no theoretical
analysis is provided. Later, G. Zhang et al.([13]) analyzed the four heuristics.
They proved that the worst-case ratio of Algorithm LPT-FF is no greater than 2
but each of the other three can behave badly enough, i.e., the worst-case ratios of
them tend to infinity. Then, they provided a highly non-trivial algorithm MLPT-
FF with worst-case ratio 7/4. Several researchers also studied this problem by
simulated annealing or branch-and-bound([1,3,7]). Recently, S. Li et al.([8]) con-
sidered the case with non-identical job arrivals. In G.Zhang et al.’s paper, they
also considered the special case with no processing time of a large job less than
the processing time of a small job, where a job is called a large job if its job size
is greater than 1/2 and a small job otherwise, they presented an algorithm with
worst-case ratio 3/2 and proved this is the best possible unless P=NP, in the
sense of worst-case performance.

In our paper, we consider a further special case, 1|B, pj ≡ αsj |Cmax in the
three-tuple denotation of R.Graham et al.([6]), where pj ≡ αsj means there
exists a constant α such that for arbitrary job Jj(1 ≤ j ≤ n), pj = αsj holds.
This restriction is not severe since in the semiconductor industry requiring that
a bigger chip should be baked longer than a smaller one is quite reasonable,
and many times we can assume that the ratio pj/sj(1 ≤ j ≤ n) is a constant
regardless of j. We design an Asymptotic PTAS for this problem, which can
work as good as an PTAS as long as the optimal objective values of instances
in our consideration can not be arbitrarily small. Adding up with the lower
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bound of 3/2 we give for the worst-case ratio, our result is perfect in the sense
of worst-case performance.

Our basic idea follows from W. Fernandez de la Vega and G.S. Lueker([12]),
who present an APTAS for the bin packing problem. The differences between
the two problems, however, force us to find new techniques. Moreover, we use
more delicate rules in treating the processing times.

The rest of the paper is organized as follows. Section 2 gives some necessary
preliminary knowledge and notations. In Section 3 we describe the main result,
and in Section 4 we draw a conclusion and direct the further researches.

2 Preliminaries and Notations

It is well known that there does not exist any algorithm for bin packing problem
with worst-case ratio better than 3/2, unless P=NP([9]), therefore, it is impossi-
ble for us to design a PTAS for it. However, it does admit an APTAS(Asymptotic
PTAS), which is almost as good as a PTAS when the instances in our consider-
ation is large enough([12]). So first of all, let’s introduce the concept of APTAS.

In the rest of this paper, we will denote by Opt(I, P ) the optimal objective value
of an instance I for a given problem P , and A(I, P ) the objective value obtained
by algorithm A. Without causing any trouble, we simply write them as Opt(I)
and A(I). We will denote by I both an instance of a problem and a family of jobs.

Definition. A family of algorithms {Aε}ε for a given problem is said to be an
APTAS iff, for arbitrary ε > 0, there exists a positive number N(ε) such that
sup

I
{ Aε(I)

Opt(I) : Opt(I) ≥ N(ε)} ≤ 1 + ε and the running time of Aε is bounded by

a polynomial in the input size of the problem while ε is regarded as a constant.

The following simple combinatorial result will be applied in the next section and
we present it as a lemma.

Lemma 1. The number of nonnegative integral solutions to the n-variable equa-
tion x1 + x2 + · · · + xn = m is Cn−1

m+n−1, where m and n are positive integers.
And that to x1 + x2 + · · · + xn ≤ m is Cn

m+n. ��

The NP-Completeness of EQUALPARTITION will be used later, we describe it as
follows.
EQUALPARTITION: Given a set of 2m nonnegative integers X ={a1, a2, · · · , a2m},
is it possible to partition X into two parts X1 and X2 such that

∑
ai∈X1

ai =∑
ai∈X2

ai = (a1 +a2 + · · ·+a2m)/2 and |X1| = |X2| = m? Where |X1| and |X2|
denote the cardinality of them, respectively.

Lemma 2. EQUALPARTITION belongs to NP-C. ��
For simplicity, we denote by BSM the batch scheduling problem with nonidenti-
cal job sizes to minimize makespan. We also denote by PBSM the proportional
BSM, the main problem in our consideration.
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3 The Main Result

3.1 Lower Bound for PBSM

It is trivially true that 3/2 is a lower bound for BSM as it includes BINPACKING

as a special case. While PBSM does not include BINPACKING as a special case,
we can still show that it takes 3/2 as a lower bound.

Theorem 1. There does not exist any algorithm for PBSM with worst-case ratio
less than 3/2, unless P=NP.

Proof. If not, suppose that A is an exception whose worst-case ratio is 3/2-β,
where 0 < β ≤ 1/2, next we will show that EQUALPARTITION can be solved
in polynomial time of its input size, which contradicts the fact that EQUAL

PARTITION is NP-C.
Given any instance of EQUALPARTITION I1 = {a1, a2, · · · , a2m}, construct an

instance of PBSM I2 as follows: There are 2m jobs with p1 = s1 = (M +
2a1), p2 = s2 = (M + 2a2), · · · , p2m = s2m = (M + 2a2m), and the machine
capacity is B = a1 + a2 + · · · + a2m + mM and M is large enough, say M =
((3 − 2β)/β)amax + 1.

It is easy to see that answering ‘yes’ for I1 is equivalent to Opt(I2) < 3M .
Next, we will show that Opt(I2) < 3M if and only if A(I2) < 3M which will
complete the theorem. ‘If’ is obvious, so it remains to show the converse.

Opt(I2) < 3M implies that there are exactly two batches in the optimal
schedule and we can assume that Opt(I2) = 2(M + ai + aj) for some 1 ≤ i <
j ≤ 2m. Thus:

A(I2) ≤ (3/2 − β)Opt(I2) = 3M + (3 − 2β)(ai + aj) − 2βM < 3M ��

3.2 A Polynomially Solvable Special Case of BSM

In this subsection we will show that a special case of BSM with fixed number of
processing times, fixed number of job sizes and no job size smaller than ε, which
will be denoted by BSM

′
, is polynomially solvable.

Theorem 2. The number of substantially different feasible schedules for BSM
′

is a polynomial in the input size and therefore BSM
′
is polynomially solvable.

Proof. We say two jobs are of the same class iff they have the same sizes and
processing times. By hypothesis of the theorem, there are a fixed number of,
say k different classes of jobs. we say two batches are of the same kind iff they
include the same number of jobs from every class.

We first claim that there are at mostr = C
1/�ε	
k+1/�ε	 different kinds of batches,

where �x� means the largest integer less than or equal to x. In fact, it is bounded
by the number of positive integral solutions to x1 + x2 + · · · + xk ≤ �1/ε�, by
lemma 1 we have the claim.

As our objective is to minimize makespan, we can view two schedules with
the same batches but different sequencing of these batches as identical. Since
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for any schedule there are at most n batches, the number of substantially dif-
ferent schedules is at most Cn−1

r+n−1(Lemma 1 is applied once more),which is a
polynomial in n (but not in 1/ε, O((n + (1/ε)k)(1/ε)k

) in fact ).
As for the second part of the theorem, we merely have to design an algorithm

to enumerate all the different schedules and choose the optimal one. The detailed
proof is left to the readers.

Similar to Theorem 2, we have the following result as a byproduct. ��

Corollary. For any scheduling problem (without batching), if it is polynomially
solvable, then its corresponding batch scheduling problem with fixed number of
distinct processing times, fixed number of job sizes and no job size smaller than
a constant, is polynomially solvable. ��

3.3 The Main Procedure

We are given a set of jobs I = {J1, J2, · · · , Jn} and remember that pj = sj ∈
(0, 1]. For any given error parameter ε > 0, let ε0 = ε/(1 + ε). We say a job is
long if its processing time(and its size as well) is greater than or equal to ε0,
and short otherwise. Denote by L and S the set of long jobs and short jobs,
respectively. Before discussion, we further assume that all the jobs have been
reindexed such that p1 ≤ p2 ≤ · · · ≤ pn.

Suppose that there are m long jobs, let Q = �m�ε3
0, where �x� means the

smallest integer greater than or equal to x. Without loss of generality( which
will be seen later), we assume that m > �2/ε3

0�, i.e. Q > 2.
First of all, we define two partitions of L:
PT 1 = {J 0,J 1, · · · ,J k1}, where J 0 contains the first Q − 1 jobs, and

J 1, · · · ,J k1 in turn all take Q jobs except possibly the last one.
PT 2 = {J̃1, J̃2, · · · , J̃k2} is similar to PT 1 except that the first k2−1 sets all

have Q jobs.
It is easy to calculate that k1 = �(m − Q + 1)/Q� and k2 = �m/Q�, both of

which are bounded by a constant �1/ε3
0�. More detailed yet still easy analysis

gives the following proposition of k1 and k2.

Lemma 3. If k1 = k2 does not hold, then k1 = k2 − 1. And k1 = k2 implies that
J k1 = {Jm}. ��
Based on the two partitions, we construct two auxiliary instances:

I = (
k1⋃

i=0

J
′

i)
⋃

S, Ĩ = (
k2⋃

i=1

J̃
′

i )
⋃

S

Where J
′

i (0 ≤ i ≤ k1) is constructed by letting all the jobs in J i be the longest

one, and J̃ ′

i by letting all the jobs in J̃i be the shortest one. Let I0 = I/J
′

0, by
Proposition 1, it’s not hard to have:

Lemma 4. Opt(I0) ≤ Opt(Ĩ) ��
Next, we will show that I is a perfect approximation of I.
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Lemma 5. Opt(I) ≤ Opt(I) ≤ (1 + ε0)Opt(I)

Proof. We only have to show the latter part as the former one is trivially true.
It’s trivial that Opt(Ĩ) ≤ Opt(I), thus by Lemma 3 we have:

Opt(I) ≤ Opt(I0) + Opt(J 0)

≤ Opt(Ĩ) + (Q − 1) · 1
≤ Opt(I) + mε3

0

For any optimal schedule of I, the total size of long jobs is at least mε0, which
will forms at least �mε0� batches with processing time greater than or equal to
ε0, so Opt(I) ≥ (mε0) · ε0 = mε2

0, therefore:

Opt(I) ≤ Opt(I) + ε0Opt(I) = (1 + ε0)Opt(I)

which completes the proof. ��
Now we are about to describe the final Algorithm EIR (Enumerate long jobs,

Insert short jobs, Rearrange split jobs ) for PBSM. We denote by I
′

exactly the
same instance as I but of a slightly different problem in which short jobs can
be split, i.e., a short job Jj = (pj , sj) can be split into two jobs Jj1 = (pj , sj1)
and Jj2 = (pj , sj2), where sj1 + sj2 = sj and Jj1 and Jj2 can be placed into
two different batches. This technic is explored by G. Zhang et al.. Obviously,
Opt(I

′

) ≤ Opt(I).

Algorithm EIR

Step 1. Compute the optimal schedule of I
′

as follows:
1.1 Compute all the feasible schedules of long jobs in I

′

;
1.2 For any partial schedule of long jobs, insert short jobs in the original order,
open a new batch or split them if necessary;
1.3 Select the optimal entire schedule π

′
from all the obtained schedules.

Step 2. Collect all the split short jobs in π
′

and put �1/ε0� of them in a new
batch to obtain a feasible schedule π of I.
Step 3. Obtain the corresponding original schedule π from π, output π as the
final solution to I.

Lemma 6. The schedule obtained in step 1 is an optimal one for I
′

.

Proof. For any given partial schedule of long jobs, we insert the remaining short
ones just as G. Zhang et al. do in Algorithm A1, so the optimality can be verified
quite similarly by an interchanging strategy. Hence, the enumerating of all the
possible partial schedules gives the lemma. ��

Theorem 3. Algorithm EIR is an APTAS for PBSM.

Proof. As for the accuracy, suppose that π
′
has l batches, whose processing times

are p1, p2, · · · , pl, respectively. Denote by s the number of batches in π formed
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by split jobs. It’s easy to calculate that s ≤ �(l − 1)/�1/ε0��, and we assume
that s is exactly �(l − 1)/�1/ε0�� for simplicity (otherwise, we can add some
dummy jobs). Denote the processing times of these batches by p[1], p[2], · · · , p[s],
respectively. Then p[1] ≤ ε0, p

[2] ≤ p2+�1/ε0	, · · · , p[s] ≤ p2+(s−1)�1/ε0	. Therefore:

Cmax(π) = (p1 + p2 + · · · + pl) + (p[1] + p[2] + · · · + p[s])

≤ Opt(I
′

) +
1

�1/ε0�
[(1 + p1 + p2) + (p3 + · · · + p2+�1/ε0	)

+ · · ·+ (p3+(s−2)�1/ε0	 + · · ·+2+(s−1)�1/ε0	) + · · · + pl]

≤ Opt(I
′

) + ε0[1 + Opt(I
′

)]

= (1 + ε0)Opt(I
′

) + ε0

≤ (1 + ε0)Opt(I) + ε0

Thus by Lemma 4: EIR(I) = Cmax(π) ≤ Cmax(π) ≤ (1 + ε0)Opt(I) + ε0 ≤
(1 + ε0)2Opt(I) + ε0 ≤ (1 + ε)Opt(I) + ε

As for the running time, by Theorem 2, there are O((n+(1/ε)(1/ε)3)(1/ε)(1/ε)3

)
iterations in step 1. Since each iteration takes O(n) time, the running time when

Algorithm EIR terminates step 1.2 is O(n · (n + (1/ε)(1/ε)3)(1/ε)(1/ε)3

). While

selecting the optimal schedule in step 1.3 takes O((n + (1/ε)(1/ε)3)(1/ε)(1/ε)3

)
time, taking out the split jobs and forming new batches in step 2 takes O(n)
time, and step 3 takes O(n) time, the total running time of Algorithm EIR can

be bounded by O(n · (n + (1/ε)(1/ε)3)(1/ε)(1/ε)3

), which is a polynomial in n. ��

4 Conclusion and Remarks

In this paper, we consider the proportional batch scheduling problem with non-
identical job sizes to minimize makespan. We first give a lower bound of 3/2
and then present an APTAS, with the restraint the α is a constant. Notic-
ing that when the largest processing time can not be arbitrarily small, i.e.,
inf
I
{Pmax : Pmax is the largest processing time in I} 	= 0, our algorithm is as

good as a PTAS , which is the best possible in the sense of worst-case perfor-
mance and doesn’t exist by the lower bound.

Pity that the running time in our algorithm is quite huge(although polynomial
in n), as for further discussions, can we still reduce it? This is of great interest.
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Abstract. Multiple sequence alignment (MSA) is one of the most basic and cen-
tral tasks for many studies in modern biology. In this paper, we present a new pro-
gressive alignment algorithm for this very difficult problem. Given two groups A
and B of aligned sequences, this algorithm uses Dynamic Programming and the
sum-of-pairs objective function to determine an optimal alignment C of A and
B. The proposed algorithm has a much lower time complexity compared with
a previously published algorithm for the same task [11]. Its performance is ex-
tensively assessed on the well-known BAliBase benchmarks and compared with
several state-of-the-art MSA tools.

Keywords: multiple alignment, dynamic programming.

1 Introduction

In biology, the Multiple Sequence Alignment of nucleic acids or proteins is one of the
most basic and central tasks which is a prior to phylogeny reconstruction, protein struc-
ture modeling or gene annotation. The goal of the alignment operation is to identify
similarities at the primary sequence level which usually implies structural and func-
tional similarity.

A multiple alignment of a set of sequences helps visualize conserved regions of
residues by organizing them into a matrix where similar residues ideally appear in the
same column. In order to obtain this matrix it is necessary to use edit operations which
consist of a match, a substitution or an insertion. A match puts two equal residues in
the same column while a substitution uses two different residues. An insertion consists
in inserting a special character, called a gap, whenever characters of a sequence have to
be shifted from one column to be aligned with similar residues of other sequences.

To align two sequences, a simple polynomial algorithm based on dynamic program-
ming (DP) has been designed with linear gap penalty [14]. This algorithm is based on
a scoring scheme of edit operations and is influenced by two parameters: a substitution
matrix and a model of gaps. A substitution matrix (PAM [1], BLOSUM [9]) assigns a
score to a match or a substitution and the gap model helps score the insertions.

Obtaining an accurate alignment is a difficult task which requires to design scoring
schemes which are biologically sound. In practice, the sum-of-pairs [10] is the most
widely used for its simplicity although some other models have been developed [18,15].

We can compute the optimal alignment of a set of k sequences of length n by ex-
tending [14] to a k-dimension DP algorithm [13], but its complexity in O(nk2k) is too
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time consuming to tackle the alignments problems that biologists encounter everyday.
In fact, the problem of aligning k > 2 sequences is known to be NP-hard [24]. For
this reason various heuristic methods have been designed to decrease the complexity of
the standard algorithm and obtain sub-optimal alignments. These heuristic methods fall
into two categories.

Progressive methods (PM) [5] are the most widely used optimization techniques.
They consist in iteratively aligning the most closely related sequences or groups of
sequences until all sequences are aligned. The most famous progressive methods are
CLUSTALW [21] and T-Coffee [17], MUSCLE [4] and MAFFT [12]. The PM approach
has the advantage to be simple, efficient and provides good results. Nevertheless this
approach suffers from its greedy nature: mistakes made in the alignment of previous
sequences can not be corrected as more sequences are added. The order in which the
sequences are aligned is determined by an efficient clustering method such as neighbor-
joining [19]. Progressive Methods therefore automatically construct a phylogenetic tree
as well as an alignment.

The iterative methods (IM) start from an initial alignment (or a set of initial align-
ments) and iteratively improve it following some objective function (SAGA [16], Prob-
Cons [3], DiAlign-T [20], PRRN/PRRP [8]). Many of these methods in fact combine
iterative and progressive optimization and can lead to an alignment of better quality but
generally require more computational effort [4,12].

The group-to-group (also called alignment of alignments) algorithm represents a nat-
ural simplification of the k-dimension DP algorithm and is the core of progressive and
iterative methods [26]. Aligning alignments (AA) is the problem of finding an optimal
alignment of two alignments under the sum-of-pairs objective function. An approximate
version of AA widely used is based on profiles. A profile is a table that lists the frequen-
cies of each amino acid for each column of an alignment. To improve the quality of the
overall alignment it is interesting to compute the exact SP score of two alignments.

Recently Kececioglu and Starrett [11] gave the outline of an algorithm to exactly
align two alignments with affine gap cost using shapes. We believe that this algorithm
requires more computational effort than needed and can be described in a more ele-
gant manner. We have designed a generic framework which is a generalization of the
algorithm of Gotoh [6] that can be instanciated in order to perform an exact pairwise
alignment or to align two alignments using linear or affine gap penalties. The method
has been implemented in the software MALINBA and we give here some of the results
obtained on the BAliBASE benchmarks.

The rest of the paper is organized as follows. In the next section we will give a formal
description of some important notions used for the alignment of sequences. Section 3
presents the generic framework that we have defined to align alignments. The next
section provides some results from the BAliBase database of alignments compared to
other MSA softwares.

2 Formal Definition of the Problem

Let us consider that an alphabet is a set of distinct letters for which we identify a spe-
cial symbol called a gap generally represented by the character ’-’. A sequence is
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expressed over an alphabet and is a string of characters where each character stands for
a residue, i.e. a nucleic acid (DNA) or an amino acid (protein). Aligning two sequences
or two sets of sequences can be performed by using edit operations and the result in a
matrix called an alignment:

Definition 1. - Alignment - Let S = {S1, . . . , Sk} be a set of sequences defined over
an alphabet Σ : ∀u ∈ {1, . . . , k}, Su = 〈xu

1 , . . . , xu
|Su|〉 where |Su| is the length of Su.

An alignment AS is a matrix:

AS =

⎡

⎢
⎣

a1
1 . . . a1

q
...

...
ak
1 qk

q

⎤

⎥
⎦

such that ∀u ∈ {1, . . . , k}, ∀v ∈ {1, . . . , q}, au
v ∈ Σ. The matrix AS verifies the

following properties:

• ∀u ∈ {1, . . . , k}, max(|Su|) ≤ q ≤
∑u=k

u=1 |Su|,
• 	 ∃j ∈ {1, . . . , q} such that ∀u ∈ {1, . . . , k}, au

j = −,
• ∀u ∈ {1, . . . , k}, there exists an isomorphism fu : {1, . . . , |Su|} → {1, . . . , q}

such that 〈au
fu(1), a

u
fu(2), . . . , a

u
fu(|Su|)〉 = Su

Example 1. For example, the set of sequences S could be aligned as follows:

S an alignment of S
ACCT AC-CT
AC AC---
ACT AC--T
CAAT -CAAT
CT -C--T
CAT -CA-T

2.1 Sum-of-Pairs

As previously mentioned, to establish the quality of an alignment we use an objective
function called the sum-of-pairs which depends on a substitution matrix w and a model
of gap g(n). In the reminder of this paper we will consider that the substitution matrix
corresponds to a measure of similarity which means that similar residues will be re-
warded by a positive score and dissimilar residues will get a negative score. There exist
two widely used models of gaps called linear and affine1.

Definition 2. - Gap model - A gap model is an application g : N → R which assigns
a score, also called a penalty, to a set of consecutive gaps. This penalty is generally
negative.

1 The linear gap model is sometimes refered as a constant model and the affine gap model is
sometimes refered as linear which is confusing.
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Definition 3. - Linear gap model - For this model, the penalty is proportional to the
length of the gap and is given by g(n) = n× go where go < 0 is the opening penalty of
a gap and n the number of consecutive gaps.

Definition 4. - Affine gap model - For this model the insertion of a new gap has a
more important penalty than the extension of an existing gap, this can be stated by the
following formula:

g(n) =
{

0 if n = 0
go + (n − 1) × ge if n ≥ 1

where go < 0 is the gap opening penalty and ge < 0 gap extension penalty and are
such that |ge| < |go|.
Definition 5. - Sum-of-pairs of an alignment - Let AS be an alignment of a set of
sequences S = {S1, . . . , Sk}. The sum-of-pairs is given by the following formula:

sop(AS) =
q∑

c=1

sopc(AS
c )

where sopc(AS
c ) is the score of the c column of the alignment given by:

sopc(AS
c ) =

k−1∑

r=1

k∑

s=r+1

δr,s × w(ar
c , a

s
c) × λ

(
ar

c−1 ar
c

as
c−1 as

c

)

with:

– 0 < δr,s ≤ 1 is a weighting coefficient that allows to remedy problems arising
from biased sequences, in order for example to avoid over-represented sequences
to dominate the alignment. For simplicity’s sake we will chose δr,s = 1 in the
remainder of this paper . When δr,s 	= 1 the sum-of-pairs is called the weighted
sum-of-pairs [7].

– we introduce here λ which is the key feature of our work and is an application
Σ4 → R, induced by the gap model. λ takes into account the previous edit opera-
tion used to obtain the current column of the alignment.

Definition 6. - λ for a linear gap model - For a linear gap model, a gap has always
the same cost wherever it is placed in the alignment. ∀c ∈ {1, . . . , q}:

λ

(
ar

c−1 ar
c

as
c−1 as

c

)
=

⎧
⎨

⎩

0 if c − 1 = 0
1 if ar

c 	= − and as
c 	= −

gop if ar
c = − or as

c = −

Definition 7. - λ for an affine gap model - For the affine gap model, the previous
edit operation and especially insertions will influence the cost of the penalty. ∀c ∈
{1, . . . , q} :

λ

(
ar

c−1 ar
c

as
c−1 as

c

)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if c − 1 = 0
1 if ar

c 	= − and as
c 	= −

gop if (ar
c = − and ar

c−1 	= −) or if (as
c = − et as

c−1 	= −)
gext if (ar

c = − and ar
c−1 = −) or if (as

c = − et as
c−1 = −)
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3 A Generic Framework for Aligning Alignments

The problem of aligning alignments can be stated as follows :

Definition 8. - Aligning alignment - Given two multiple alignments Av and Ah, find
an optimal alignment of Av and Ah for the sum-of-pairs objective function for a given
substitution matrix w and gap model g(n).

The framework that we now define is a generalization of the algorithm of [6] based on
a measure of similarity. We refer the reader to [25] for a better understanding of the
computation process which is based on two steps. The first step is the initialization of
the first row and first column of the matrix and the second step is the recursive relation
used to compute each remaining cell of the matrix. To decrease the complexity we
introduce three auxillary matrices called D, V and H . D is used to record the cost of a
match or a substitution, V and H are used to record the cost of an insertion respectively
in Av and Ah. Table 1 represents the possible moves in the dynamic programming
matrix. For example, DH means a match or substituion between Av and Ah followed
by an insertion in Ah. The M matrix records the optimal cost of the global alignment.
To obtain the optimal alignment we use the traceback technique (see [25]). We consider
that Av and Ah are defined as follows :

Ah =

⎡

⎢
⎣

x1
1 . . . x1

qh

...
...

xkh
1 . . . xkh

qh

⎤

⎥
⎦ Av =

⎡

⎢
⎣

y1
1 . . . y1

qv

...
...

ykv
1 . . . ykv

qv

⎤

⎥
⎦

Table 1. possible moves for the dynamic programming algorithm

↘ ↓ ↘ ↓ DD DH VD VH
→ ↘ → ↓ DH D VH V
↘ ↓ HD HV
→ → HH H

1. initialization, ∀i ∈ {1, . . . , kv}, ∀j ∈ {1, . . . , kh}:

M0,0 = D0,0 = H0,0 = V0,0 = 0
Di,0 = Hi,0 = −∞
D0,j = V0,j = −∞
H0,j = H0,j−1 + sopj(Ah) +

∑kv

e=1

∑kh

f=1 w(xf
j ,−) × (g(j) − g(j − 1))

Vi,0 = Vi−1,0 + sopi(Av) +
∑kv

e=1

∑kh

f=1 w(−, ye
i ) × (g(i) − g(i − 1)

2. recursive relation, ∀i ∈ {1, . . . , kv}, ∀j ∈ {1, . . . , kh}:

Mi,j = max{Di,j , Hi,j , Vi,j}

with
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Di,j = max

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

Di−1,j−1 +
kvX

e=1

khX
f=1

w(xf
j , y

e
i ) × λ

„
x

f
j−1 x

f
j

ye
i−1 ye

i

«

+
kv−1X
r=1

kvX
s=r+1

w(yr
i , y

s
i ) × λ

„
yr

i−1 yr
i

ys
i−1 ys

i

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
xr

j−1 xr
j

xs
j−1 xs

j

«

Hi−1,j−1 +
kvX

e=1

khX
f=1

w(xf
j , y

e
i ) × λ

„
x

f
j−1 x

f
j

− ye
i

«

+
kv−1X
r=1

kvX
s=r+1

w(yr
i , y

s
i ) × λ

„
− yr

i

− ys
i

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
xr

j−1 xr
j

xs
j−1 xs

j

«

Vi−1,j−1 +
kvX

e=1

khX
f=1

w(xf
j , y

e
i ) × λ

„
− x

f
j

ye
i−1 ye

i

«

+
kv−1X
r=1

kvX
s=r+1

w(yr
i , y

s
i ) × λ

„
yr

i−1 yr
i

ys
i−1 ys

i

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
− xr

j

− xs
j

«

Hi,j = max

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

Di,j−1 +
kvX

e=1

khX
f=1

w(xf
j ,−) × λ

„
x

f
j−1 x

f
j

ye
i −

«

+
kv−1X
r=1

kvX
s=r+1

w(−,−) × λ

„
yr

i−1 −
ys

i−1 −

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
xr

j−1 xr
j

xs
j−1 xs

j

«

Hi,j−1 +
kvX

e=1

khX
f=1

w(xf
j ,−) × λ

„
− x

f
j

− −

«

+
kv−1X
r=1

kvX
s=r+1

w(−,−) × λ

„
− −
− −

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
xr

j−1 xr
j

xs
j−1 xs

j

«

Vi,j−1 +
kvX

e=1

khX
f=1

w(xf
j ,−) × λ

„
− x

f
j

ye
i −

«

+
kv−1X
r=1

kvX
s=r+1

w(−,−) × λ

„
yr

i −
ys

i −

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
− xr

j

− xs
j

«

Vi,j = max

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

Di−1,j +
kvX

e=1

khX
f=1

w(−, y
e
i ) × λ

„
x

f
j −

ye
i−1 ye

i

«

+
kv−1X
r=1

kvX
s=r+1

w(yr
i , y

s
i ) × λ

„
yr

i−1 yr
i

ys
i−1 ys

i

«
+

kh−1X
r=1

khX
s=r+1

w(xr
j , x

s
j) × λ

„
xr

j−1 xr
j

xs
j−1 xs

j

«

Hi−1,j +
kvX

e=1

khX
f=1

w(−, y
e
i ) × λ

„
x

f
j −

− ye
i

«

+
kv−1X
r=1

kvX
s=r+1

w(yr
i , y

s
i ) × λ

„
− yr

i

− ys
i

«
+

kh−1X
r=1

khX
s=r+1

w(−,−) × λ

„
xr

j −
xs

j −

«

Vi−1,j +
kvX

e=1

khX
f=1

w(−, y
e
i ) × λ

„
− −
− ye

i

«

+
kv−1X
r=1

kvX
s=r+1

w(yr
i , y

s
i ) × λ

„
yr

i−1 yr
i

ys
i−1 ys

i

«
+

kh−1X
r=1

khX
s=r+1

w(−,−) × λ

„
− −
− −

«

The score of each edit operation depends on 4 different factors that we call α, β, γ
and δ. For example, to obtain DDi,j , we need to compute :
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– the α factor which corresponds to the former edit operation Di−1,j−1

– the β factor is the sum-of-pairs score of column j of Ah :

kh−1∑

r=1

kh∑

s=r+1

w(xr
j , x

s
j) × λ

(
xr

j−1 xr
j

xs
j−1 xs

j

)

– the γ factor is the sum-of-pairs score of the column i of Av :

kv−1∑

r=1

kv∑

s=r+1

w(yr
i , ys

i ) × λ

(
yr

i−1 yr
i

ys
i−1 ys

i

)

– the δ factor results from the interaction of column j of Ah with column i of Av :

kv∑

e=1

kh∑

f=1

w(xf
j , ye

i ) × λ

(
xf

j−1 xf
j

ye
i−1 ye

i

)

Proposition 1. - Complexity of aligning alignment - The complexity of the compu-
tation of the alignment of two alignments composed of k sequences of length n is
O(n2k2).

Proof : for each Mi,j , we need to compute 9 values for which we need :

kv × kh︸ ︷︷ ︸
δ

+
1
2
× (kv − 1) × kv

︸ ︷︷ ︸
γ

+
1
2
× (kh − 1) × kh

︸ ︷︷ ︸
β

computations. If we consider that kv = kh = k and that qv = qh = n, we then have to
perform : (n+1)×(n+1)×9×(2k−1)×k ≈ n2×9×2k2 computations. This value
is to be compared with the complexity of [11] which is O((3+

√
2)k(n−k)2k3/2). For

example, to align 2 alignments of 10 sequences of 100 residues, [11] would normally
have to perform 7.2 × 1011 computations while we would require only 1.7 × 107.

3.1 Instanciation of the Framework

In the case of a pairwise alignment with a linear gap penalty, the β and γ factors are not
involved because there is only one sequence in each alignment. The extension penalty
is equal to the opening penalty. The simplification of formulas show that ∀i, j Di,j =
Hi,j = Vi,j . It is then not necessary to use the D, V and H matrices and the simplified
formula is equal to the Needleman and Wunsch formula: Mi,j = max{Mi−1,j−1 +
w(xj , yi), Mi,j−1 + go, Mi−1,j + go}.

4 Experimentations

The generic framework presented so far has been implemented in the software MA-
LINBA (Multiple Affine or LINear Block Alignment) which is a modified version of
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PLASMA [2] written in C++. Compared to PLASMA, MALINBA uses an exact ver-
sion of the DP algorithm to align two columns of 2 alignments while PLASMA relies
on the insertion of columns of gaps in one of the two subalignments and local rearrange-
ments of residues in blocks.

To evaluate the quality of the alignments obtained by MALINBA and other MSA
programs we have performed some tests on the BAliBase 2.0 database of benchmarks.

4.1 BAliBase

BAliBase is designed for assessing MSA algorithms [22] and is divided into five ref-
erence sets which were designed to test different aspects of alignment softwares. Set 1
is composed of approximately equidistant sequences. Set 2 is made of families whith
orphan sequences while Set 3 contains divergent families. Set 4 has sequences with
large N/C terminal insertions and sequences of Set 5 contain large internal insertions.
All reference alignments were refined manually by BAliBase authors.

To assess alignment accuracy we use the bali_score program which helps com-
pute two scores : the BAliBase sum-of-pairs score (SPS) which in fact is a ratio between
the number of correctly aligned residue pairs found in the test alignment and the total
number of aligned residue pairs in core blocks of the reference alignment [23]. We
also report the column score (CS) defined as the number of correctly aligned columns
found in the test alignment divided by the total number of columns in core blocks of the
reference alignment. The closer to 1.0 these scores are, the better the alignment is.

4.2 Results

We have compared our results obtained with MALINBA to five widely known MSA
systems: (1) CLUSTALW 1.83, the most popular progressive alignment software; (2)
the nwnsi version of MAFFT 5.86 using iterative refinement techniques; (3) MUSCLE
3.6; (4) PROBCONS 1.11; (5) T-COFFEE 4.96. All sotwares were run using default
parameters on an Intel Core 2 Duo E6400 with 1 Gb of RAM. For this test MALINBA
used 7 specific sets of parameters and we kept the alignments that provided the best
SPS scores. Given the results of table 2 which reports the average SPS end CS scores,
we can rank the softwares as follows using average SPS or CS scores : CLUSTAL <
MALINBA, T-COFFEE < MUSCLE < MAFFT < PROBCONS.

Table 2. Results of the SPS and CS score for MSA Softwares and overall execution time

Softwares
Set 1 Set 2 Set 3 Set 4 Set 5 Time

SPS CS SPS CS SPS CS SPS CS SPS CS (in s)
CLUSTAL 0.809 0.707 0.932 0.592 0.723 0.481 0.834 0.623 0.858 0.634 120
MAFFT 0.829 0.736 0.931 0.525 0.812 0.595 0.947 0.822 0.978 0.911 98
MUSCLE 0.821 0.725 0.935 0.593 0.784 0.543 0.841 0.593 0.972 0.901 75
PROBCONS 0.849 0.765 0.943 0.623 0.817 0.631 0.939 0.828 0.974 0.892 711
TCOFFEE 0.814 0.712 0.928 0.524 0.739 0.480 0.852 0.644 0.943 0.863 1653
MALINBA 0.811 0.705 0.911 0.522 0.752 0.346 0.899 0.734 0.942 0.842 343
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Better alignments have been obtained with MALINBA by fine tuning some para-
meters. However these results are not reported here. Finally, let us say that despite its
complexity our method is quite fast (see the time column in table 2).

5 Conclusion

We have designed a generic framework to align alignments with the sum-of-pairs ob-
jective function. This framework is exact and can be used to align two sequences or
two alignments using linear of affine gap penalties. This framework was implemented
in MALINBA and tested on the BAliBase benchmark and proves to be efficient. Al-
though quite simple, we believe that many improvements can be considered in order
to increase the quality of alignments obtained on the BAliBase dataset. For example,
local rearrangements on misaligned regions after each progressive step using secondary
structure information could probably help improve the column score.
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Abstract. This paper proposes a new cost function based on distance
and load of the vehicle for the Capacitated Vehicle Routing Problem.
The vehicle-routing problem with this new load-based cost objective is
called the Energy Minimizing Vehicle Routing Problem (EMVRP). In-
teger linear programming formulations with O(n2) binary variables and
O(n2) constraints are developed for the collection and delivery cases,
separately. The proposed models are tested and illustrated by classical
Capacitated Vehicle Routing Problem (CVRP) instances from the liter-
ature using CPLEX 8.0.

Keywords: Capacitated vehicle routing problem, Energy minimizing
vehicle routing problem, Integer programming.

1 Introduction

One of the most important and widely studied combinatorial problem is the
Travelling Salesman Problem (TSP) and its variants, which is NP-hard. The
problems of finding optimal routes for vehicles from one or several depots to a
set of locations/customers are the variants of the multiple Travelling Salesman
Problem (m-TSP) and known as Vehicle Routing Problems (VRPs). Vehicle
routing problems have many practical applications, especially in transportation
and distribution logistics. An extensive literature exists on these problems and
their variations (e.g. Golden and Assad [8], Bodin [4], Laporte [12], Laporte and
Osman [13], Ball et al. [2], Toth and Vigo [16] [17]).

The Capacitated Vehicle Routing Problem (CVRP) is defined on a graph G =
(V, A) where V = {0, 1, 2, . . . , n} is the set of nodes (vertices), 0 is the depot (ori-
gin, home city), and the remaining nodes are customers. The set A = {(i, j) :
i, j ∈ V, i 	= j} is an arc (or edge) set. Each customer i ∈ V \{0} is associated
with a positive integer demand qi and each arc (i, j) is associated a travel cost cij

(which may be symmetric, asymmetric, deterministic, random, etc.). There are
m vehicles with identical capacity Q. The CVRP consists of determining a set of
m vehicle routes with minimum cost in such a way that; each route starts and
ends at the depot, each customer is visited by exactly one route, and the total
demand of each route does not exceed the vehicle capacity Q.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 62–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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CVRP was first defined by Dantzig and Ramser in 1959 [5]. In that study,
the authors used distance as a surrogate for the cost function. Since then, the
cost of traveling from node i to node j, i.e., cij , has usually been taken as the
distance between those nodes (for recent publications, see e.g. Baldacci et al. [1],
Letchford and Salazar-Gonzalez [14], Yaman [21]).

The real cost of a vehicle traveling between two nodes depends on many
variables: the load of the vehicle, fuel consumption per mile (kilometer), fuel
price, time spent or distance traveled up to a given node, depreciation of the tires
and the vehicle, maintenance, driver wages, time spent in visiting all customers,
total distance traveled, etc. (Baldacci et al.[1], Toth and Vigo [17], Desrochers
et al. [6]). Most of the attributes are actually distance or time based and can
be approximated by the distance. However, some variables either cannot be
represented by the distance between nodes or involve travel costs that may not be
taken as constant. Examples of such variables are vehicle load, fuel consumption
per mile (kilometer), fuel price or time spent up to a given node. Most of these
types of variables may be represented as a function of the flow, especially , as a
function of the load of vehicles on the corresponding arc. Thus, for some cases,
in addition to the distance traveled, we need to include the load of the vehicle
as additional indicator of the cost.

We observe that, some researches with different objectives have been con-
ducted on TSP ( see e.g. Bianco [3], Gouveia and VoB [10], Lucena [15], Tsitsiklis
[19]). To the best of our knowledge, the vehicle routing literature dealing with
single criteria optimization has not previously included the flow on the arcs to
the traveling cost, which is the main motivation of this research. In this study,
we propose a new cost function which is a product of the distance traveled and
the weight of the vehicle on that arc. The contributions of this paper may be
summarized as:
– Define a new cost function for vehicle routing problems as a multiple of

length of the arc traveled and the total load of the vehicle on this arc. Name
this problem as Energy Minimizing Vehicle Routing Problem (EMVRP).

– Present polynomial size integer programming formulations for EMVRP for
collection and delivery cases.

We briefly show the relation between the energy used and load of a vehicle
and define the new cost function in Section 2. Problem identification and integer
programming formulations of the EMVRP for both collection and delivery cases
are presented in Section 3. The proposed models are tested and illustrated by
standard CVRP instances obtained from the literature and the results are given
in Section 4. Concluding remarks are in Section 5.

2 New Cost Function

For vehicle routing problems where vehicles carry goods from an origin (center,
factory and/or warehouse) to the customer, or from the customer to the origin,
the traveling cost between two nodes can be written as,

Cost = f(load, distance traveled, others)



64 İ. Kara, B.Y. Kara, and M.K. Yetis

where f(.) is any function. We derive a cost function that mainly focuses on the
total energy consumption of the vehicles. Recall from mechanics that,

Work = force ∗ distance

In the CVRP, the movement of the vehicles can be considered as an impending
motion where the force causing the movement is equal to the friction force (see
for example Walker [20]). Remember also that,

Friction force = Coefficient of friction ∗ weight.

Thus, we have

Work = Friction force ∗ distance
Work = Coefficient of friction ∗ weight ∗ distance

The coefficient of friction can be considered as constant on roads of the same
type. Then, the work done by a vehicle over a link (i, j) will be:

Work = weight of the vehicle(over link(i, j)) ∗ distance(of link(i, j)).

Since work is energy, minimizing the total work done is equivalent to minimiz-
ing the total energy used (at least in terms of fuel consumption). Obviously, the
weight of the vehicle equals the weight of the empty vehicle (tare) plus the load
of the vehicle. Thus, if one wants to minimize the work done by each vehicle, or
to minimize the energy used, one needs to use the cost as,

Cost of(i, j) = [Load of the vehicle over(i, j) + Tare] ∗ distance of(i, j), (1)

There seems to be no such definition and objective cost function in the vehicle
routing literature. However, there are references on the Internet as shown in
Figure 1, (Goodyear website, [22]) indicating that fuel consumption changes
with vehicle load.

Figure 1 shows that, miles per gallon decrease with increased vehicle weight.
Thus for a CVRP in which goods are carried and fuel prices are relatively more
important than the drivers wages, considering the load of the vehicle as well as
the distances will produce a more realistic cost of traveling from one customer to
another. This analysis shows that for such CVRPs we may define a more realistic
cost of traveling from one customer to another by considering the load of the
vehicle as well as the distances. We refer the CVRP in which cost is defined as
in expression (1) the Energy Minimizing Vehicle Routing Problem (EMVRP).

In the CVRP, vehicles collect and/or deliver the items and/or goods from/to
each customer on the route. Thus, the load of a vehicle changes throughout
the tour. They show an increasing step function in the case of collection and a
decreasing step function in the case of delivery. Thus, load of a vehicle cumulate
or accumulate along the tour. For this reason, one must consider the collection
and delivery situations, carefully.
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Fig. 1. Miles per Gallon versus vehicle weight [22]

3 Integer Programming Formulations

3.1 Problem Identification

Consider a vehicle routing problem defined over a network G = (V, A) where
V = {0, 1, 2, . . . , n} is the node set, 0 is the depot and A = {(i, j) : i, j ∈ V, i 	= j}
is the set of arcs, and, components of which are given as:

dij is the distance from node i to node j,
qi is the nonnegative weight (e.g. demand or supply) of node i,
m is the number of identical vehicles,
Q0 is the tare of a vehicle (truck),
Q is the capacity of a vehicle.

We define Energy Minimizing Vehicle Routing Problem (EMVRP) as the prob-
lem of constructing vehicle routes such that:

– Each node is served exactly one vehicle,
– Each route starts and ends at the depot,
– The load on the arcs cumulate as much as preceding nodes supply in the

case of collection or accumulate as much as preceding nodes demand in the
case of delivery,

– The load of a vehicle does not exceed its capacity Q,
– The objective is to find a set of m vehicle routes of minimum total cost, i.e.,

minimum total energy.
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We use the following decision variables in formulating this problem:

xij = 1 if the arc (i, j) is on the tour, and zero otherwise;
yij is the weight of a vehicle if it goes from i to j, and zero otherwise.

Definition of the yij is the core of this approach. The weight on the first arc
of any tour must take a predetermined value, i.e., tare and then must always
increase (or decrease) by qi units just after node i. In the case of collection, the
flow variable shows an increasing step function; for delivery, it shows a decreasing
step function. Therefore a model constructed for one case may not be suitable
for the other case. The following observation states very important relationship
between these situations.

Observation 1. When the distance matrix is symmetric, the optimal route of
the delivery (collection) case equals the optimal route of the collection (delivery)
case traversed in the reverse order.

Proof. Consider a route which consist of k nodes: n0 − n1 − n2 − . . .− nk − n0,
where n0 is the depot. For the collection case, the cost of this tour (i.e., total
energy used) is:

Q0 d01 +
k−1∑

j=1

(

Q0 +
j∑

i=1

qi

)

dj,j+1 +

(

Q0 +
k∑

i=1

qi

)

dk0 (2)

For the delivery case, the cost of the reverse route n0−nk −nk−1− . . .−n1−n0

is:
(

Q0 +
k∑

i=1

qi

)

d0k +
k−1∑

j=1

(

Q0 +
j∑

i=1

qi

)

dj+1,j + Q0 d10 (3)

Observe that (2) and (3) are the same for symmetric D = [dij] matrices. ��

3.2 Formulations

For the symmetric-distance case, one does not need to differentiate between
collection and delivery since the solution of one will determine the solution of
the other. For the case of an asymmetric distance matrix, due to the structure
of the problem, we present decision models for collection and delivery cases,
separetely. The model for the collection case is:

F1 : Min
n∑

i=0

n∑

j=0

dij yij (4)
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s.t.
n∑

i=1

x0i = m (5)

n∑

i=1

xi0 = m (6)

n∑

i=0

xij = 1, j = 1, 2, . . . , n (7)

n∑

j=0

xij = 1, i = 1, 2, . . . , n (8)

n∑

j=0
j 
=i

yij −
n∑

j=0
j 
=i

yji = qi, i = 1, 2, . . . , n (9)

y0i = Q0x0i, i = 1, 2, . . . , n (10)
yij ≤ (Q + Q0 − qj)xij , (i, j) ∈ A (11)

yij ≥ (Q0 + qi)xij , ∀(i, j) ∈ A (12)
xij = 0 or 1, (i, j) ∈ A (13)

where q0 = 0.
The cost of traversing an arc (i, j) is the product of the distance between

the nodes i and j and weight on this arc and this is satisfied by the objective
function given in (4). Constraints (5) and (6) ensure that m vehicles are used.
Constraints (7) and (8) are the degree constraints for each node. Constraint (9)
is the classical conservation of flow equation balancing inflow and outflow of each
node, which also prohibits any illegal subtours. Constraint (10) initialize the flow
on the first arc of each route, cost structure of the problem necessitates such an
initialization. Constraints (11) take care of the capacity restrictions and forces
yij to zero when the arc (i, j) is not on any route, and constraint (12) produce
lower bounds for the flow on any arc. Integrality constraints are given in (13).
We do not need nonnegativity constraints since we have constraints given in
(12). Let us call constraints (10), (11) and (12) as the bounding constraints of
the formulation. Validity of them is shown in proposition 1 below.

Proposition 1. In the case of collection, the constraints given in (10), (11) and
(12) are valid for EMVRP.

Proof. As it is explained before, we need initialization value of yijs for each tour
that constraints (10) do it, otherwise yijs may not be the actual weight on the
arcs. Constraints (12) is valid since going from i to j the flow must be at least
the initial value plus the weight of the node i (unless node i is the depot, in
which case q0 = 0). Similarly, since the vehicle is destined for node j, it will also
collect the qj units at node j (unless j is the depot). In that case, the flow on
the arc upon arriving at node j should be enough to take the weight of node
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j(qj) , i.e., yij + qjxij ≤ (Q + Q0)xij , which produce constraints (11). Similar
constraints for classical CVRP may be seen in (Gouveia [9], Baldacci et al.[1],
Letchford and Salazar-Gonzalez [14], Yaman [21]). ��

Due to Observation 1, the delivery problem for the symmetric case need not be
discussed. For the asymmetric case, the delivery problem will be modeled by
replacing constraints (9) ,(10), (11) and (12) with the following given below.

n∑

j=0
j 
=i

yij −
n∑

j=0
j 
=i

yji = qi, i = 1, 2, . . . , n (14)

yi0 = Q0xi0, i = 1, 2, . . . , n (15)
yij ≤ (Q + Q0 − qi)xij , ∀(i, j) ∈ A (16)

yij ≥ (Q0 + qj)xij , ∀(i, j) ∈ A (17)

Thus the model for the delivery case is:

F2 : Min

n∑

i=0

n∑

j=0

dij yij

s.t. (5)-(8),(13) - (17).

where q0 = 0.
Both of the proposed models have n2 + n binary and n2 + n continuous vari-

ables, and 2n2 + 6n + 2 constraints, thus proposed formulations contain O(n2)
binary variables and O(n2) constraints.

3.3 Extension to Distance Constraints

In certain applications of the CVRP, there is an additional restriction on the total
distance traveled by each vehicle (or cost, or time). This problem is known as the
Distance-Constrained VRP (abbreviated as DVRP). In the case of the EMVRP,
if such a side condition is imposed, we may easily put the necessary constraints
into the proposed models. We need to define additional decision variables as:

zij the total distance traveled by a vehicle (or cost, or time) from the origin
to node j when it goes from i to j.

Note that if the arc (i, j) is not on the optimal route, then zij must be equal to
zero. The distance-constrained EMVRP can be modeled by including constraints
(18)-(21) in both collection and delivery cases.

n∑

j=0
j 
=i

zij −
n∑

j=0
j 
=i

zji =
n∑

j=0

dijxij i = 1, 2, . . . , n (18)

zij ≤ (T − dj0)xij j 	= 0, (i, j) ∈ A (19)
z0i = d0ix0i i = 1, 2, . . . , n (20)

zij ≥ (d0i + dij)xij i 	= 0(i, j) ∈ A (21)
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where T is the maximum distance that a vehicle can travel. These constraints are
taken from Kara [11]. Constraints (18) sum the value of the zijs and eliminate
all illegal subtours. Constraints (19), (20)and (21) are the distance bounding
constraints ensuring that the total distance of each route cannot exceed the
predetermined value T .

4 Illustrative Examples

In this section, we conduct some numerical examples of EMVRP formulation
focusing on the collection case. We use two CVRP instances from the literature
and we solve the instances via CPLEX 8.0 on an Intel Pentium III 1400 MHz
computer. We want to test the effect of the new objective function on the optimal
routes (i.e. distance-based routes versus energy-based routes). For that purpose
we define two scenarios. Scenario 1 is the EMVRP and Scenario 2 is the standard
CVRP (distance minimizing CVRP, which tries to minimize the total distances
without considering the vehicle loads). We choose 2 symmetric instances, eil3
and gr17 from the literature [23]. For eil3 m = 4 and Q = 6000, and for gr-17
m = 3 and Q = 6. For each problem, we assume Q0 = 15% of Q. Table 1
summarizes the results. The second and third columns of Table 1 provide the
solutions of Scenario 1 and 2 of eil3 and the 4th and 5th columns provide those
of gr-17.

Table 1. Computational Results for eil3 and gr-17 Problems [23]

eil3 gr-17
Scenario 1 Scenario 2 Scenario 1 Scenario 2
EMVRP CVRP EMVRP CVRP

Energy Min. 779.400 810.700 7331 8810
Distance Min. 277 247 3088 2685

0-4-7-10-6-0 0-1-0 0-1-4-10-2-5-16-0 0-12-16-13-5-7-6-0
Selected 0-8-5-2-0 0-8-5-3-0 0-9-14-13-7-6-0 0-14-9-1-4-10-2-0
Routes 0-9-12-0 0-9-12-10-6-0 0-15-11-8-3-12-0 0-15-11-8-3-0

0-11-3-1-0 0-11-4-7-2-2

As Table 1 demonstrates, there is a considerable difference between energy-
minimizing and distance-minimizing solutions. The cost of the route that mini-
mizes total distance may be 13% less than the solution which minimizes energy.
Counter intuitively for both examples, energy usage increases as total distance
decreases. Observe from Table 1 that the routes selected under two scenarios are
completely different.

Even though we propose a model with O(n2) binary variables and O(n2) con-
straints for the EMVRP, the CPU times of CPLEX over moderate sized prob-
lems were not promising. It is therefore necessary to develop efficient solution
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procedures for the EMVRP like heuristics proposed for CVRP (Gendreau, et al.
[7], Toth and Vigo [18]). However, these modifications are beyond the scope of
this paper.

5 Conclusion

This paper proposes a new objective function for the vehicle routing problem
in which goods are carried and fuel prices are relatively more important than
the drivers wages. For such CVRPs we define a more realistic cost of traveling
from one customer to another by considering the load of the vehicle as well as
the distances. We refer the CVRP as the Energy Minimizing Vehicle Routing
Problem (EMVRP), where cost is defined as a multiple of length of the arc
traveled and the total load of the vehicle on this arc.

Integer programming formulations with O(n2) binary variables and O(n2)
constraints are developed for both collection and delivery cases of EMVRP. The
adaptability of the formulations to the distance-constrained case is also demon-
strated. The proposed models are tested and demonstrated by using CPLEX 8.0
on two instances taken from the literature.

The adaptability and usability of the proposed models to the other network
design problems, such as multiple traveling repairman problem and school-bus
routing problems, are under consideration.
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Abstract. Based on some new results concerning k -taxi problem, a new
variant of the problem, namely the on-line k -taxi problem with limited
look ahead (OTLLA) is proposed by our team. Compared with the tra-
ditional k -taxi problem, in which only the start and end points of the
current service request are known at each step, the OTLLA has a ba-
sic realistic consideration: the start point of the first service request is
given before the whole service sequence plays, and at each step the end
of the current service request and the start point of the next service re-
quest are known. In this paper, after the formulation of the model of
the OTLLA, some results concerning the competitive analysis for some
special cases of OTLLA are given: the competitive algorithm so called
Partial Greedy Algorithm (PGA) is designed and the competitive ratios
are obtained. Furthermore, some comparisons between some on-line al-
gorithms are developed. Finally, some conclusions are given and some
future research directions are discussed.

1 Introduction

In real life, many ongoing decision-making activities, such as currency exchange,
stock transactions or mortgage financing, must be carried out in an on-line fash-
ion, with no secure knowledge of future events. However, that knowledge often
influences the decision result in a fatal way. Faced with this lack of knowledge,
players of these decision-making games often have two choices. One is to use
models based on assumptions about the future distribution of relevant quanti-
ties. The other is to analyze the worst case and then make some decision to let
the worst case be better. Unfortunately, these two approaches may give some
on-line solutions that are far from the relevant optimal solutions. An alternate
approach in such situations is to use competitive analysis (first applied to on-line
algorithms by Sleator and Tarjian in [1]). In this approach, the performance of
an on-line strategy is measured against that of an optimal off-line strategy hav-
ing full knowledge of future events. An advantage of this performance measure
over the traditional average-case measure is that for most nontrivial decision-
making activities it is extremely difficult to come up with an accurate proba-
bilistic model.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 72–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Over the past two decades, on-line problems and their competitive analy-
sis have received considerable interest. On-line problems had been investigated
already in the seventies and early eighties of last century but an extensive, sys-
tematic study started only when Sleator and Tarjian [1] suggested comparing an
on-line algorithm to an optimal off-line algorithm and Karlin, Manasse, Rudolph
and Sleator [2] coined the term competitive analysis. In the late eighties and early
nineties of last century, three basic on-line problems were studied extensively,
namely paging, the k-server problem and metrical task systems. The k-server
problem, introduced by Manasse et al. [3], generalizes paging as well as more
general caching problems. The problem consists of scheduling the motion of k
mobile servers that reside on the points of a metric space S. The metrical task
system, introduced by Borodin et al. [4], can model a wide class of on- line prob-
lems. An on-line algorithm deals with events that require an immediate response.
Future events are unknown when the current event is dealt with. The task system
[4], the k-server problem [5], and on-line/off-line games [6] all attempt to model
on-line problems and algorithms. During the past few years, apart from the three
basic problems, many on-line problems have been investigated in application ar-
eas such as data structures, distributed data management, scheduling and load
balancing, routing, robotics, financial games, graph theory, and a quantity of
problems arising in computer systems. The adversary method for deriving lower
bounds on the competitive ratio has been implicitly used by Woodall [7] in the
analysis of the so-called Bay Restaurant Problem. Kierstead and Trotter [8] use
the adversary method in their investigation of on-line interval graph coloring.
Yao [9] formulates a theorem that starts with the words “For any on-line algo-
rithm...” and which proves the impossibility of an on-line bin-packing algorithm
with a competitive ratio strictly better than 3/2. More traditional results con-
cerning on-line competitive analysis can be found in Albers and Leonardi [10]
and first chapter of Fiat and Woeginger [11].

Recent years, some researchers attempt to apply the theories of the on-line
competitive analysis to some realistic problem in the domain of Economics and
Management decision-making and some useful results are obtained. Based on the
traditional Ski-Rental Problem [12], Fleischer [13] recently initiated the algorith-
mic study of the Bahncard problem. Karlin et al. [14] researched this problem
for finite expiration periods by a new randomized online algorithm. In paper
[15], Fujinware and Iwama reconsidered the classical online Ski-Rental prob-
lems in the way of average-case analysis technique. Xu and Xu [16] employed
the competitive analysis to well study the on-line leasing problem. Ma et al.
[17,18,19,20] successfully delt with several kind of problems, including k-truck
scheduling, snacks problem and transportation problem, with the on-line algo-
rithm theory.

In this paper, we originally proposed the on-line k -taxi problem with limited
look ahead (OTLLA). The problem based on the traditional k -taxi problem [21].
After the model of OTLLA is formulated, some on-line algorithms are designed
and some comparisons between on-line algorithms the relevant lower bounds of
competitive ratio are also discussed. The rest of paper is organized as follows: in
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section 2, the model of OTLLA is established. Section 3 presents some results
concerning the on-line algorithms for the OTLLA. In section 4, some compar-
isons between on-line algorithms developed. Finally, in section 5, we conclude
the paper and discuss the future research directions.

2 The Model of the OTLLA

Let G = (V, E) denote an edge weighted graph with n points and the weights
of edges satisfy the triangle inequality, where V is a metric space consisting of
n points, and E is the set of all weighted edges. For u, v, w ∈ V , the weight of
edge meet triangle inequality: d(u, v) + d(v, w) ≥ d(u, w) where d(x, y) indicates
the distance of the shortest path between points of the x and y. Let dmax =
max d(vi, vj) and dmin = min d(vi, vj) where i 	= j and vi, vj ∈ V . Define the
following parameter,

λ =
dmax

dmin
(1)

obviously λ ≥ 1.
We assume that k taxis occupy a k -points which is a subset of V. A service

request r = (a, b), a, b ∈ V , implies there are some customs on point a that
must be moved to point b. A service request sequence R consists of some service
requests in turn, namely R = (r1, r2, · · · , rm), where r = (ai, bi), ai, bi ∈ V .
The start point a1 of the first request is given before the whole service sequence
plays. In the whole process, when the ith request ri arrives, the end point of
the ith request and start point of the (i + 1)th request ri+1 are known by the
player. The problem is to decide to move which taxi when a new service request
occurs on the basis that we have no information about future possible requests.
All discussion is based on the following essential assumptions:

i) Graph G is connected.
ii) When a new service request occurs, k taxis are all free.

For any request sequence R = (r1, r2, · · · , rm), let COPT(R) denote the opti-
mal (minimum) cost to complete the whole sequences with the off-line algorithm
OPT who knows the whole request sequence before its playing; Let CON(R) de-
note the cost to complete the whole sequences with the on-line algorithm ON
who has not any knowledge about the future requests, namely only part of se-
quence known. If there exist some constants α and β to satisfy the following
inequality,

CON(R) ≤ α · COPT(R) + β (2)

the on-line algorithm ON is called α-competitive algorithm and α is called com-
petitive ratio. Obviously we get α ≥ 1 and our objective to design some on-line
algorithms with competitive ratio as small as possible. The constant β is re-
lated with the original locations of the k taxis. We also note that a competitive
algorithm must perform well on all kinds of input sequence.
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Based on above model, the OTLLA aims to obtain some on-line algorithms
with competitive ratio as small as possible so as to minimize the whole distance
of the transportation of all k taxis in the on-line fashion, namely without any
knowledge about the future requests.

3 Results of Competitive Analysis

In this section, we will present some results of competitive analysis for OTLLA.
Assume that k taxis are at k different points before the first service request

come, and there is a car at a1. (As from the previous formulation, the OTLLA
knows that the first request will occur at point a1 before the whole service starts).
Otherwise, we can make it through by finite movement of k taxis at different
points also ensure that there is a car at a1. And the moving cost must less than
or equal to a constant (k − 1) · dmax. This constant makes no influence to the
discussion of competitive ratio.

An on-line algorithm so called Partial Greedy Algorithm is designed as follows:

Partial Greedy Algorithm (PGA): For ith service request ri = (ai, bi):

1) If there are taxis at both of ai and bi, the taxi at ai take the passenger from
ai to bi as well as the taxi at bi move to ai to at the same time. The cost
of complete the service request is CPGA(ri) = 2 · d(ai, bi) and there no point
which have more than one taxi. The move are ai → bi and bi → ai.

2) If there is a taxi at ai but no taxi at bi, the taxi at ai take the passenger from
ai to bi. The cost of complete the service request is CPGA(ri) = d(ai, bi) and
there no point which have more than one taxi. The move is ai → bi.

3) If there is a taxi at bi but no taxi at ai, the taxi at bi move to ai first and then
take the passenger from ai to bi. The cost of complete the service request is
CPGA(ri) = 2 · d(ai, bi) and there no point which have more than one taxi.
The move is bi → ai → bi.

4) If there is a taxi at neither ai point nor bi point, the following cases con-
cerning the relationship between ai and ai−1 need to be consider:
i) If ai = ai−1, the taxi at bi−1 (because the (i − 1)th service request is

ri−1 = d(ai−1, bi−1) there must be one taxi at bi−1) move to ai, then
take the passenger from ai to bithe cost of complete the service request is
CPGA(ri) = d(ai−1, bi−1) + d(ai, bi) and there no point which have more
than one taxi. The move are bi−1 → ai → bi.

ii) If ai 	= ai−1, schedule the nearest taxi on the point ci, where ci 	= ai to ai

and then take the passenger from ai to bithe cost of complete the service
request is CPGA(ri) = d(ci, ai) + d(ai, bi) and there no point which have
more than one taxi. The move are ci → ai → bi.

For the algorithm PGA, we have the following theorem.

Theorem 1. For OTLLA problem with k taxis, if k = n or k = n− 1 hold, the
PGA is an on-line algorithm with competitive ratio 2, where n = |V | indicates
the number of points of Graph G.
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Proof. If k = n or k = n − 1 hold, the 4)th case of the algorithm PGA will
never happen because the number of taxi is too many to let more than one point
without taxi. Then the algorithm need not to make full use of the information
looked ahead about the start and end point of the next request. The OTLLA
then degenerates to the traditional k -taxi problem. The competitive ratio of
PGA is 2 for the moment. Please refer to detailed proof of reference [21]. ��

In order to prove the competitive ratio for another special case of OTLLA,
namely the case with k = n − 2, we need to prove some lemmas first.

Lemma 1. For OTLLA problem with k taxis, if k = n − 2 holds, according to
Algorithm PGA, at least one of the following inequalities holds:

CPGA(ri) + CPGA(ri+1) ≤ 2 · d(ai, bi) + d(ai+1, bi+1) + dmax (3)

CPGA(ri) + CPGA(ri+1) ≤ d(ai, bi) + 2 · d(ai+1, bi+1) + dmax (4)

Proof. For any request ri = (ai, bi)according to the algorithm PGA, we have:

CPGA(ri) ≤ d(ai, bi) + dmax (5)

Because in case 1) and 3) of the PGA, the cost CPGA(ri) = 2 · d(ai, bi) ≤
d(ai, bi)+dmax. Similarly, the equation (5) holds for the other cases of PGA. At
the beginning of the game, according to the formulation of the OTLLA, there
must exist a taxi at the point ai. And then according to all cases of PGA, we
can easily get,

CPGA(r1) ≤ 2 · d(a1, b1) (6)

Combining the inequalities (5) and (6), apparently the following inequality holds,

CPGA(r1) + CPGA(r2) ≤ 2 · d(a1, b1) + d(a2, b2) + dmax (7)

So for the case i = 1 the Lemma 1 holds.
The following proof will consider the general case of ith and (i + 1)th service

request. For ri = d(ai, bi),

I) The cases of 1), 2) and 3) of PGA occur. The CPGA(ri) = 2 · d(ai, bi) holds.
Combining the equation (5), we get,

CPGA(ri) + CPGA(ri+1) ≤ 2 · d(ai, bi) + d(ai+1, bi+1) + dmax (8)

The Lemma 1 holds.
II) The case of 4) of PGA occurs. While there is taxi neither at point ai nor at

point bi, the cost to complete request satisfy CPGA(ri) ≤ d(ai, bi) + dmax.
For the cost of next request ri+1 = d(ai+1, bi+1), we need to consider the
following three cases.
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a) ai+1 	= ai and ai+1 	= bi.
Under this condition there must be a taxi at ai+1 because for completing
the last request ri, a taxi is moved from a point exclude ai+1. Thus to
complete the request ri+1, only the cases 1) or 2) of PGA could occur
and the cost satisfies CPGA(ri+1) ≤ 2 · d(ai+1, bi+1). Then easily to get,

CPGA(ri) + CPGA(ri+1) ≤ d(ai, bi) + 2 · d(ai+1, bi+1) + dmax (9)

and Lemma 1 holds.
b) ai+1 = ai.

(i) bi+1 = ci. According to algorithm of PGA, after satisfying the request
ri = d(ai, bi) there must be taxi neither at ai nor ci. So move the taxi
at bi to ai+1 and then take the passenger from ai+1 to bi+1. The cost of
complete ri+1 is CPGA(ri+1) ≤ d(ai+1, bi+1) + d(ai, bi). Then easily to
get, the Lemma 1 holds.
(ii) bi+1 	= ci. According to algorithm of PGA, after satisfying the request
ri = d(ai, bi) there must be taxi neither at ai nor ci and thus there must
be a taxi at bi+1. Then we easily to get the cost of complete ri+1 satisfy
CPGA(ri+1) ≤ 2 · d(ai+1, bi+1) + d(ai, bi). The Lemma 1 is obtained at
moment.

c) ai+1 = bi.
Under this condition there must be a taxi at ai+1. Similar with the case
a), we easily to know the Lemma 1 holds.

Combining above cases, we know Lemma 1 holds.
The proof is completed. ��

Lemma 2. For OTLLA problem with k taxis, if k = n − 2 holds, according to
algorithm PGA, the following inequality holds:

CPGA(ri) + CPGA(ri+1) ≤
3 + λ

2
· [d(ai, bi) + d(ai+1, bi+1)] (10)

Proof. For any request ri = (ai, bi)according to the algorithm PGA and Lemma
1, we can prove the Lemma 2 with the following two case:

i). The inequality CPGA(ri) + CPGA(ri+1) ≤ 2 · d(ai, bi) + d(ai+1, bi+1) + dmax

holds. Then we get,

CPGA(ri) + CPGA(ri+1)
d(ai, bi) + d(ai+1, bi+1)

≤ 2 · d(ai, bi) + d(ai+1, bi+1) + dmax

d(ai, bi) + d(ai+1, bi+1)
(11)

= 2 +
dmax − d(ai+1, bi+1)

d(ai, bi) + d(ai+1, bi+1)

≤ 2 +
dmax − dmin

2 · dmin

=
3 + λ

2

Above second inequality holds for dmin ≤ d(ai, bi), d(ai+1, bi+1) ≤ dmax.
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ii). The inequality CPGA(ri) + CPGA(ri+1) ≤ d(ai, bi) + 2 · d(ai+1, bi+1) + dmax

holds. Then we similarly get,

CPGA(ri) + CPGA(ri+1)
d(ai, bi) + d(ai+1, bi+1)

≤ d(ai, bi) + 2 · d(ai+1, bi+1) + dmax

d(ai, bi) + d(ai+1, bi+1)
(12)

= 2 +
dmax − d(ai, bi)

d(ai, bi) + d(ai+1, bi+1)

≤ 2 +
dmax − dmin

2 · dmin

=
3 + λ

2
The proof is completed. ��
Theorem 2. For OTLLA problem with k taxis, if k = n − 2 holds, the com-
petitive ratio of algorithm PGA is 3+λ

2 , where n = |V | indicates the number of
points of Graph G and λ = dmax

dmin
.

Proof. For any service request sequence R = (ri, r2, · · · , rm), the following in-
equality holds,

COPT(R) ≥
m∑

i=1

d(ai, bi) (13)

The above inequality hold because
∑m

i=1 d(ai, bi) is the least mileage with
passengers. This is the most minimum cost which need to pay to complete service
request sequence R.

For algorithm PGAthe cost to complete service request sequence R satisfy the
following inequality,

CPGA(R) =
m∑

i=1

[CPGA(ri)] + β (14)

= [CPGA(r1) + CPGA(r2)] + [CPGA(r3) + CPGA(r4)] + · · ·
+ [CPGA(rm−1) + CPGA(rm)] + β

≤ 3 + λ

2
· [d(a1, b1) + d(a2, b2)] +

3 + λ

2
· [d(a3, b3) + d(a4, b4)] + · · ·

+
3 + λ

2
· [d(am−1, bm−1) + d(am, bm)] + β

=
3 + λ

2
·

m∑

i=1

d(ai, bi) + β

≤ 3 + λ

2
· COPT(R) + β

The first inequality of above formula holds for Lemma 2. Considering the parity
of m, if m is a odd number there is a constant difference in above formula. But
this constant can not influence the competitive ratio, e.g., the case with m → ∞.

The proof is completed. ��
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4 Comparison Between Competitive Algorithms

The Quality standards of on-line algorithms are the corresponding competi-
tive ratios. In paper [21], the authors propose the algorithm so called Position
Maintaining Strategy (PMS) to handle the traditional k -taxi problem. Because
OTLLA is a degenerated variant of the traditional one the competitive ratio of
PMS holds for the special case,e.g., k = n − 2 of OTLLA. According to PMS
[21] and our result, for the special case k = n − 2 of OTLLA, we have,

αPMS = 1 + λ (15)

αPGA =
3 + λ

2
(16)

and then,

αPGA − αPMS =
3 + λ

2
− (1 + λ) =

1 − λ

2
≤ 0 (17)

The above inequality holds for λ ≥ 1. We have the following Corollary.

Corollary 1. For OTLLA problem with k taxis, if k = n− 2 holds, the compet-
itive ratio of algorithm PGA is better than algorithm PMS.

5 Conclusion and Discussion

In this paper, the on-line taxi problem with limited look ahead (OTLLA) is
proposed and studied. For some special cases, e.g., k = n, k = n−1 and k = n−2,
the competitive algorithm Partial Greedy Algorithm (PGA) is designed and
some good competitive ratios are obtained. The rigorous proofs are given. Some
comparisons between PGA and PMS are developed.

Although we get some results for OTLLA, the general case, e.g., only consider
the number taxis k, is still open. To design some good algorithm to deal with
the general case maybe is good direction for the future research. Following that,
in the modle of OTLLA, the depth of look ahead is just knowing the start point
of next request. If this condition vary what will happen? Thirdly, for problem
OTLLA, we failed to get any result concerning the lower bound of competitive
ratio. Any further research about it is useful.
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Abstract. This paper studies a spanning tree problem with interval
data that finds diverse applications in network design. Given an under-
lying network G = (V, E), each link e ∈ E can be established by paying
a cost ce ∈ [ce, ce], and accordingly takes a risk ce−ce

ce−ce
of link failure. The

minimum risk spanning tree (MRST) problem is to establish a spanning
tree in G of total cost no more than a given constant so that the risk sum
over the links on the spanning tree is minimized. In this paper, we pro-
pose an exact algorithm for the MRST problem that has time-complexity
of O(m2 log m log n(m + n log n)), where m = |E| and n = |V |.

1 Introduction

In contrast to classical discrete optimization problems, a large number of recent
network designs involve interval data – each network link is associated with an
interval modeling the uncertainty about the real value of the link-cost which can
take any value in the interval [13,4].

Continuing the diverse research efforts on network optimization with interval
data [12,3,7,6], we study in the paper the minimum risk spanning tree problem
which arises in a variety of applications. For example, nodes in a communication
network wish to communicate with one another, which is usually realized by
establishing network links to form a spanning tree in the network. The cost ce

of establishing link e can be any real value in the interval [ce, ce]. The higher
the cost/payment ce, the better the link e established, and the lower the risk
ce−ce

ce−ce
of link failure at e. Particularly, when paying the lowest possible ce = ce,

the established e, due to its poor quality, is prone to malfunction constantly,
and suffers from a full risk of link failure; when paying high enough ce = ce,
the established e keeps functioning properly for a long period of time, and runs
no risk of link failure. In practice, on the one hand, the total cost that can be
paid is typically budgeted, meaning that some links in the spanning tree have
to accept low payments for establishments, and take high risks of failures; on
the other hand, the more links fail, the longer it takes to repair them, and the
worse the communication becomes. To deal with this dilemma, the minimum risk

� Supported in part by the NSF of China under Grant No. 10531070, 10671199, and
70221001.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 81–90, 2007.
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spanning tree (MRST) problem consists in finding a spanning tree of minimum
(total) risk under given budget constraint. Other real-life applications of the
MRST problem arise, for example, in the design of transportation network under
uncertain construction time or uncertain expenses [9].

Related work. Despite the practical importance of the MRST problem, few pre-
vious works have provided the exact model for this problem, in which not only a
spanning tree but also a cost allocation to its links should be determined (aim-
ing for minimization on the total risk). Most literature has focus on finding only
spanning tree(s) with various objectives.

Among vast literature on spanning tree problems, the work on the robust
spanning tree problem with interval data (RSTID) and the constrained minimum
spanning tree problem (CMST) are most related to the present study on the
MRST problem.

The RSTID problem has been popularly studied under the robust deviation
(minimax regret) criterion, which, given an undirected graph with edge-cost in-
tervals, asks for a spanning tree that minimizes the maximum deviation of its cost
from the costs of the minimum spanning trees obtained for all possible realiza-
tions of the edge costs within the given intervals. In spite of considerable research
attention the RSTID problem [19,18] has attracted, the NP -completeness of the
problem [2] stems from the graph topology and the structures of cost intervals,
and explains the reason for the lack of efficient algorithms [15,16].

As one of the most extensively studied bicriteria network design problems [14],
the CMST problem is to find a spanning tree of minimum weight whose length
is no greater than a given bound, where weight and length are real functions
defined on the edge set of the underlying graph. Aggarwal et al. [1] showed
that the CMST problem is NP -hard. Ravi and Goemans [17] devised a poly-
nomial approximation scheme based on their (1, 2)-approximation algorithm for
the CMST problem. Recently, an exact pseudo-polynomial algorithm and a fully
polynomial bicriteria approximation scheme were proposed by Hong et al [11].

Our contributions. In this paper we establish the mathematical model for the
MRST problem, and develop a O(m2 log m logn(m + n log n))-time algorithm
that obtain the optimal solution of the problem on networks with n nodes and
m edges.

The polynomial-time solvability of the MRST problem established exhibits
the essential difference between the MRST problem and the NP -hard spanning
tree problems under interval uncertainty mentioned above. Moreover, in real
world, the network designer may have his own preferences of money to risk
depending on varying trade-offs between them. Our model and algorithm are
quite flexible in the sense that with different budget levels, they are usually able
to produce a couple of candidates (spanning trees and associated cost allocations)
for selections by the network designer, who is willing to take some risk to save
some amount of budget (say, for future use) at his most preferred trade-off
between money and risk.

Our approach is based on a key observation which enables us to reduce the
MRST problem to two special cases of the CMST problem. It is worth noting
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that this reduction does not imply benefits from the aforementioned pseudo-
polynomial time algorithm for the general CMST problem [11] since the algo-
rithm is derived from a two-variable extension of the matrix-tree theorem [5], and
therefore not polynomial for the two special cases to which the MRST problem
reduces. We overcome this difficulty and solve these two special cases in polyno-
mial time by borrowing Ravi and Goeman’s elegant method for approximating
the general CMST problem [17].

Organization of the paper. In section 2, we provide the mathematical model
for the MRST problem, and make our key observation on a nice property of
some optimal solutions to the MRST problem. In Section 3, we first solve in
polynomial time two special cases of the CMST problem, which then leads us
to an efficient algorithm for finding an optimal solution to the MRST problem
that enjoys the nice property. In Section 4, we conclude this paper with remarks
on future research.

2 Mathematical Model

We model the network as an undirected graph G = (V, E) with vertex set V =
V (G) of size n = |V | and edge set E = E(G) of size m = |E|, where vertex (resp.
edge) corresponds to network node (resp. link), and G has no loop1. Each edge
e ∈ E is associated with an interval [ce, ce] indicating the lowest cost ce ∈ R+

and highest cost ce ∈ R+ of establishing e. We consider c = (ce : e ∈ E) and
c = (ce : e ∈ E) as rational vectors in RE

+ with c ≤ c. For ease of description, we
make the notational convention that 0

0 = 0, and quantify the risk at e as ce−ce

ce−ce

for any ce ∈ [ce, ce]. Let T denote the set of all spanning trees T ’s in G, and let
C ∈ R+ (with C ≥ minT∈T

∑
e∈E(T ) ce) be the (cost) budget. The minimum risk

spanning tree (MRST) problem can be formulated as the following mathematical
programming:

min τ(T, c) =
∑

e∈E(T )
ce−ce

ce−ce

s.t. T ∈ T

c ∈ RE(T )
+ , and ce ∈ [ce, ce] for all e ∈ E(T )∑

e∈E(T ) ce ≤ C

An instance of the MRST problem on G with intervals [ce, ce], e ∈ E, and
budget C is denoted by (G, c, c, C), and its (feasible) solution refers to a pair
(T, c) satisfying the three constraints in the above programming. In this way, a
solution (T, c) gives not only a spanning tree T , but also a cost allocation c to
the edges of T under which the risk of T is τ(T, c).

The following lemma exhibits a nice property of some optimal solution to
the MRST problem which plays a key role in establishing the polynomial-time
solvability of the MRST problem. We present here a brief justification.

1 A loop is an edge with its both ends identical.



84 X. Chen, J. Hu, and X. Hu

Lemma 1. There exists an optimal solution (T ∗, c∗) to the MRST problem for
which we have an edge f ∈ E(T ∗) such that cf ∈ [cf , cf ], and ce ∈ {ce, ce} for
all e ∈ E(T ∗) − {f}.

Proof. Let (T ∗, c∗) be an optimal solution to the MRST problem on (G, c, c, C)
such that the set S(T ∗,c∗) := {g : g ∈ E(T ∗) and c∗g ∈ (cg, cg)} contains as
few edges as possible. If there exist two different edges e, f ∈ S(T ∗,c∗), and
ce − ce ≤ cf − cf , then take δ := min{ce − c∗e , c∗f − cf} and define c′ ∈ RE(T ∗)

+ by
c′e := c∗e +δ, c′f := c∗f −δ, and c′g := c∗g for all g ∈ E(T ∗)−{e, f}; it is easily shown
that (T ∗, c′) is an optimal solution to the MRST problem such that S(T ∗,c′) is a
proper subset of S(T ∗,c∗), which contradicts the minimality of S(T ∗,c∗). Therefore
|S(T ∗,c∗)| ≤ 1, implying that the optimal solution (T ∗, c∗) enjoys the property
stated in the lemma. ��
For our easy reference, we call every optimal solution of the property in Lemma
1 as to a simple optimal solution to the MRST problem.

3 Efficient Algorithms

In this section, we first present two polynomial-time algorithms each solving a
special case of the CMST problem; then we use these two algorithms as subrou-
tines to design an exact O(m2 log m log n(m + n log n))-time algorithm for the
MRST problem.

3.1 Polynomially Solvable Cases of the CMST Problem

In an undirected graph with real function π defined on its edge set, for a tree T
in the graph, π(T ) represents the summation

∑
e π(e) over edges e of T .

The constrained minimum spanning tree problem. Given an undirected graph
H = (Ṽ , Ẽ) with nonnegative real functions, weight (function) w and length
(function) l, both defined on its edge set Ẽ = Ẽ(H), the constrained minimum
spanning tree (CMST) problem consists of finding a spanning tree in H of mini-
mum (total) weight under the constraint that its (total) length does not exceed
a prespecified bound L, i.e., solving the the following combinatorial optimization
problem (CMST):

W = min w(T̃ )
s.t. T̃ is a spanning tree in H

l(T̃ ) ≤ L

We use abbreviation “the (CMST) on (H, w, l, L)” to mean “an instance of the
CMST problem on H with weight w, length l, and (length) bound L”. To make
the (CMST) on (H, w, l, L) nontrivial, it can be assumed that there exist span-
ning tree(s) T̃ , T̃ ′ in H satisfying

l(T̃ ) ≥ L ≥ l(T̃ ′). (3.1)
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The standard Lagrangian relaxation dualizes the length constraint in (CMST)
by considering for any z ≥ 0 the problem: υ(z) = min{ς(T̃ ) : T̃ is a spanning
tree in H} − zL, where function ς on Ẽ is given by ς(e) = w(e) + zl(e), e ∈ Ẽ.
Observe that the plot of υ(z) as z varying is the lower envelope of the lines with
interception w(T̃ ) and slope l(T̃ )−L for all spanning trees T̃ in H . It follows from
(3.1) that LR = maxz≥0 υ(z) is finite, and upper bounded by W. This enables us
to apply the following result of Ravi and Goemans [17] in our algorithm design.

Theorem 1. [17] If LR < ∞, then there is a O(|Ẽ| log |Ẽ|(|Ẽ| + |Ṽ | log |Ṽ |))-
time serial algorithm (resp. a O(log2 |Ẽ|(|Ẽ| + |Ṽ | log |Ṽ |))-time parallel algo-
rithm) which outputs a spanning tree T̃ in H such that for some spanning tree
T̃ ′ in H the following hold:

(i) l(T̃ ) ≥ L ≥ l(T̃ ′), w(T̃ ) ≤ W, and w(T̃ ′) ≤ W if l(T̃ ′) = L;
(ii) T̃ = T̃ ′ ∪ {e} \ {e′} for some e, e′ ∈ Ẽ, and e = e′ if and only if l(T̃ ′) = L.

Let us call the algorithm in Theorem 1 the RG algorithm. We remark that if
|Ẽ| ≤ |Ṽ |p for some constant p, then the RG algorithm can be implemented in
O(|Ẽ| log2 |Ṽ | + |Ṽ | log3 |Ṽ |) as mentioned in Section 4 of [17].

Solving the CMST problem with {0, 1}-length or {0, 1}-weight. Despite the NP -
hardness of the general CMST problem [1], the next two algorithms find optimal
solutions for the special cases when edge lengths or edge weights are 0 or 1.

ALGORITHM CMST{0,1}L

Input : instance of the CMST problem on (H, w, l, L) in which H = (Ṽ , Ẽ) and
length l is a {0, 1}-function on Ẽ.

Output : an optimal solution (a spanning tree T̃ ∗ in H) to the (CMST) on
(H, w, l, L), or a declaration of infeasibility.

1. T̃ ∗ ← a spanning tree in H of minimum cost w.r.t. l
2. if l(T̃ ∗) > L then report “the (CMST) has no feasible solution”, and stop
3. T̃ ∗ ← a spanning tree in H of minimum cost w.r.t. w
4. if l(T̃ ∗) ≤ L then go to Step 6
5. T̃ ∗ ← T̃ returned by the RG algorithm on (H, w, l, �L�)
6. Output T̃ ∗

Corollary 1. AlgorithmCmst{0,1}l returns an optimal solution to theCMST
problem with {0, 1}-length function in O(|Ẽ| log |Ẽ|(|Ẽ| + |Ṽ | log |Ṽ |)) time.

Proof. If Step 5 was not executed, then the algorithm did find an optimal solution,
else Steps 1 – 4 assume that (3.1) holds. Suppose that Algorithm Cmst{0,1}l
outputs a spanning tree T ∗, which is returned in Step 5 by the RG algorithm.

It is clear that for {0, 1}-length function l, the (CMST) on (H, w, l, L) is
equivalent to the (CMST) on (H, w, l, �L�). Moreover (3.1) implies LR < ∞.
Let T̃ and T̃ ′ be as stated in Theorem 1. Then T̃ ∗ = T̃ and w(T̃ ∗) ≤ W by
Theorem 1(i). To justify the optimality of T̃ ∗, it suffices to show l(T̃ ) ≤ �L�.
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Notice from Theorem 1 that either �L� = l(T̃ ′) = l(T̃ ) or l(T̃ ) ≥ �L� > l(T̃ ′). In
the former case, we are done. In the latter case, we deduce from Theorem 1(ii)
that there exist e, e′ ∈ Ẽ with l(e) = 1 and l(e′) = 0 such that l(T̃ ) = l(T̃ ′) +
l(e)− l(e′) = l(T̃ ′) + 1 < �L�+ 1, which implies l(T̃ ) ≤ �L� as l(T̃ ) is an integer.

Using Fibonacci heap priority queues, the spanning trees in Step 1 and 3 can
be found in O(|Ẽ| + |Ṽ | log |Ṽ |) time [8]. It is instant from Theorem 1 that the
running time of Algorithm Cmst{0,1}l is dominated by that of Step 5, and
the result follows. ��

In the case of weight w being a {0, 1}-function, we have 0 ≤ W ≤ |Ṽ |, which sug-
gests the utilization of Algorithm Cmst{0,1}l in the following binary search
to guess W and the corresponding optimal spanning tree. In the pseudo-code be-
low variables “left” and “right” hold the left and right endpoints of the current
search interval, respectively.

ALGORITHM CMST{0,1}W

Input : instance of the CMST problem on (H, w, l, L) in which H = (Ṽ , Ẽ) and
weight w is a {0, 1}-function on Ẽ.

Output : an optimal solution T̃ ∗ to the (CMST) on (H, w, l, L), or a declaration
of infeasibility.

1. T̃ ∗ ← a spanning tree in H of minimum cost w.r.t. l
2. if l(T̃ ∗) > L then report “the (CMST) has no feasible solution” and stop
3. left ← 0, right ← |Ṽ |
4. repeat
5. middle ← �(left + right)/2�
6. Apply Algorithm Cmst{0,1}l to (CMST) on (H, l, w, middle)
7. if Algorithm Cmst{0,1}l returns tree T̃ and l(T̃ ) ≤ L
8. then right ← middle, T̃ ∗ ← T̃
9. else left ← middle

10. until right − left ≤ 1
11. Apply Algorithm Cmst{0,1}l to (CMST) on (H, l, w, left)
12. if Algorithm Cmst{0,1}l returns tree T̃ and l(T̃ ) ≤ L then T̃ ∗ ← T̃
13. Output T̃ ∗

Corollary 2. Algorithm Cmst{0,1}w returns an optimal solution for the
CMST problem with {0, 1}-weight function in O(|Ẽ| log |Ẽ| log |Ṽ |(|Ẽ| + |Ṽ |
log |Ṽ |)) time.

Proof. The correctness of Algorithm Cmst{0,1}w follows from the correctness
of Algorithm Cmst{0,1}l (Corollary 1) and the fact that the condition in
Step 7 is satisfied if and only if W ≤ middle, which guarantees right ≥ W
throughout the algorithm. The time complexity is implied by Corollary 1 since
only O(log |Ṽ |) repetitions (Steps 4 – 10) are executed. ��

For brevity, we use “Alg Cmst{0,1}l” (resp. “Alg Cmst{0,1}w”) as short-
hand for “Algorithm Cmst{0,1}l” (resp. “Algorithm Cmst{0,1}w”).
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3.2 An Efficient Algorithm for the MRST Problem

As is customary, for vector/fundtion π ∈ RJ
+ and set J ′ ⊆ J , the restriction of

π on J ′ is written as π|J′ .

O(m)-time construction. In view of Lemma 1, we make use of a construction
in [7] as a step to establish the close connection between the MRST problem
and the CMST problem. Based on the triple (G, c, c) with G = (V, E), c, c ∈
RE

+ and c ≤ c, we construct in O(m) time an undirected graph G = (V , E),
{0, 1}-function w ∈ {0, 1}E, and real function l ∈ RE

+ on E such that V := V ;
E := {e , e : e ∈ E} with every e ∈ E corresponding to two distinct e , e ∈ E
both having ends the same as e; and w(e) := 1, w(e) := 0, l(e) := ce, l(e) := ce,
for every e ∈ E. So

|V | = n and |E| = 2m. (3.2)

Next we present a 1-1 correspondence between the spanning trees in G and
the pairs (T, c) in which T is a spanning tree in G, c ∈ RE(T )

+ , and

ce ∈ {ce, ce} for all e ∈ E(T ). (3.3)

Given a spanning tree T in G, we use Pair(T ) to denote the unique pair (T, c)
in which spanning tree T in G and c ∈ RE(T )

+ satisfy (i) for any e ∈ E, e ∈ E(T )
and ce = ce if and only if e ∈ E(T ), and (ii) for any e ∈ E, e ∈ E(T ) and ce = ce

if and only if e ∈ E(T ). (Clearly, T and (i), (ii) imply (3.3).) Conversely, given
a spanning tree T in G, and c ∈ RE(T )

+ which satisfy (3.3), we use Tree(T, c)
to denote the unique spanning tree T in G such that (i) and (ii) hold. Thus
T = Tree(T, c) if and only if (T, c) = Pair(T ). Moreover the construction from
T to Pair(T ), and from (T, c) to Tree(T, c) can be completed in O(m) time.
The following immediate corollary of the 1-1 correspondence serves as a technical
preparation for proving the correctness of our algorithm for the MRST problem.

Lemma 2. If T = Tree(T, c), or equivalently (T, c) = Pair(T ), then w(T ) =∑
e∈E(T )

ce−ce

ce−ce
and l(T ) =

∑
e∈E(T ) ce.

O(m2 log m log n(m + n log n))-time exact algorithm. Recalling Lemma 1, we
now develop an efficient algorithm for the MRST problem that finds a simple
optimal solution. The basic idea behind our algorithm is testing all m edges
to find an edge f such that f and some simple optimal solution (T ∗, c∗) sat-
isfy Lemma 1. The testing is realized via applications of Alg Cmst{0,1}l and
Alg Cmst{0,1}w to instances involving constructions described above.

In the following algorithm, the set S holds feasible solutions to the MRST
problem found by the algorithm. By contracting an edge in a graph, we mean
the operation of identifying the ends of the edge and deleting the resulting loop.

ALGORITHM MRST

Input : instance of the MRST problem on (G, c, c, C) with G = (V, E); c, c ∈ RE
+,

c ≤ c; minT∈T

∑
e∈E(T ) ce ≤ C ∈ R+.

Output : an optimal solution (T, c) to the MRST problem on (G, c, c, C).
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1. S ← ∅
2. Construct G = (V , E), w ∈ {0, 1}E, l ∈ RE

+ based on (G, c, c)
3. for every f ∈ E do
4. T ← ∅
5. Obtain graph H = (Ṽ , Ẽ) from G by contracting f, f 2

6. Apply Alg Cmst{0,1}w to (CMST) on (H, w|Ẽ , l|Ẽ , C − cf )
7. if Alg Cmst{0,1}w returns tree T̃1

8. then T ← {T̃1}
9. Apply Alg Cmst{0,1}l to (CMST) on (H, l|Ẽ , w|Ẽ , w(T̃1))

10. if Alg Cmst{0,1}l returns tree T̃2 and l(T̃2) ≤ C − cf

11. then T ← T ∪ {T̃2}
12. if T 	= ∅ then for every T̃ ∈ T do
13. (T ′, c′) ← Pair(T̃ ) 3, E′ ← the edge set of T ′

14. T ← a spanning tree in G with edge set E′ ∪ {f}
15. c|E(T )\{f} ← c′, cf ← min{cf , C − l(T̃ )}
16. S ← S ∪ {(T, c)}
17. end-for
18. end-for
19. Take (T, c) ∈ S with minimum τ(T, c)
20. Output (T, c)

Theorem 2. Algorithm Mrst solves the MRST problem and obtain the op-
timal solution in time O(m2 log m log n(m + n log n)).

Proof. Recalling (3.2), it is straightforward from Corollary 1 and Corollary 2
that Algorithm Mrst runs in time O(m2 log m log n(m+n log n)) as claimed.

It can be seen from Steps 6 – 8 and Step 10 that l(T̃ ) ≤ C− cf for any T̃ ∈ T .
Therefore in Step 15 we have cf ≤ cf ≤ cf . Furthermore Lemma 2 assures that
any (T, x) produced and putted into S by Steps 12 – 17 is a feasible solution to
the MRST problem on (G, c, c, C).

Let (T ∗, c∗) be a simple optimal solution to the MRST problem whose exis-
tence is guaranteed by Lemma 1. By Step 19, it suffices to show that the final
S contains an element (T, c) with τ(T, c) ≤ τ(T ∗, c∗). To this end, by Lemma 1,
hereafter symbol f denotes the edge f ∈ E(T ∗) such that

(1) c∗e ∈ {ce, ce} for all e ∈ E(T ∗) \ {f}.

Let T∗ (resp. G∗ = (V∗, E∗)) be the tree (resp. graph) obtained from T ∗ (resp.
G) by contracting f . Then T∗ is a spanning tree in G∗, E∗ = E \ {f}, and a
construction based on the triple (G∗, c|E\{f}, c|E\{f}) would yield graph G∗ =
H = (Ṽ , Ẽ), {0, 1}-function w|Ẽ ∈ {0, 1}Ẽ and real function l|Ẽ ∈ RẼ

+ on Ẽ =
E \ {f, f}. Let c∗ := c∗|E(T ∗)\{f}. Then (1) implies that with (T∗, c∗) in place of
(T, c), (3.3) is satisfied. Hence we deduce from Lemma 2 that T ∗ :=Tree(T∗, c∗)
is a spanning tree in H such that
2 Notice that Ẽ = E \ {f, f}.
3 T ′ is a spanning tree in the graph obtained from G by contracting f .
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(2) w(T ∗) =
∑

e∈E(T ∗)\{f}
ce−c∗

e

ce−ce
= τ(T ∗, c∗) − cf−c∗

f

cf−cf
≤ τ(T ∗, c∗) and

(3) l(T ∗) =
∑

e∈E(T ∗)\{f} c∗e ≤ C − c∗f ≤ C − cf .

It follows (3) that, in Step 6, a spanning tree T̃1 in H with l(T̃1) ≤ C − cf

and w(T̃1) ≤ w(T ∗) is returned by Alg Cmst{0,1}w, and in Steps 7 – 8,
this T̃1 is putted into T . If w(T̃1) < w(T ∗), then w(T̃1) ≤ w(T ∗) − 1 as w
is a {0, 1}-function, and later in Steps 12 – 17 when taking T̃ = T̃1, the pair
(T ′, c′) =Pair(T̃1) consists of a spanning tree T ′ in G∗ and c′ ∈ RE∗(T )

+ = RE′

+ ,
and a solution (T, c) of the MRST problem on (G, c, c, C) is putted into S such
that τ(T, c) =

∑
e∈E(T )

ce−ce

ce−ce
=
(∑

e∈E∗(T ′)
ce−c′

e

ce−ce

)
+ cf−cf

cf−cf
= w(T̃1) + cf−cf

cf−cf

(by Lemma 2); and therefore τ(T, c) ≤ w(T̃1) + 1 ≤ w(T ∗)
by(2)

≤ τ(T ∗, c∗) as
desired. Hence we may assume that

(4) w(T̃1) = w(T ∗).

So the spanning tree T ∗ in H is a feasible solution to the CMST problme on
(H, l|Ẽ , w|Ẽ , w(T̃1)), and in Step 9, Alg Cmst{0,1}l returns a spanning tree
T̃2 in H with

(5) w(T̃2) ≤ w(T̃1)
by(4)
= w(T ∗)

by(2)
= τ(T ∗, c∗) − cf−c∗

f

cf−cf
, and

(6) l(T̃2) ≤ l(T ∗)
by(3)

≤ C − cf .

From (6) we see that in Steps 10 – 11, tree T̃2 is put into T . Subsequently, in Steps
12 – 17 when taking T̃ = T̃2, a solution (T, c) of the MRST problem on (G, c, c, C)

is put into S such that cf = min{cf , C − l(T̃2)}
by(6)

≥ min{cf , C − l(T ∗)}
by(3)

≥

c∗f and τ(T, c) = w(T̃2) + cf−cf

cf−cf

by(5)

≤ τ(T ∗, c∗) − cf−c∗
f

cf−cf
+ cf−cf

cf−cf
≤ τ(T ∗, c∗),

completing the proof. ��

4 Concluding Remark

In this paper we have studied the minimum risk spanning tree (MRST) problem,
which finds practical applications in network design with interval data. It comes
as a surprise that our efficient algorithm proves the tractability of the MRST
problem, in comparison with the fact that most previously studied spanning tree
problems under interval uncertainty are NP -hard. As a byproduct, we show that
the constrained spanning tree problem with {0, 1} weight or length is polynomial-
time solvable.

Similar phenomenon appears in the shortest path planning with interval data.
In contrast to the intractability in robustness optimization and stochastic appli-
cations, the so called minimum risk-sum path problem [7] admits polynomial-time
algorithms which use as subroutines the dynamic programming procedures for
the the constrained shortest path problem [10].
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As future research, it would be interesting to know if similar results could be
obtained using our methodology for other combinatorial optimization problems
whose classic versions are polynomial-time solvable (e.g., network flow problems).
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12. Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax
regret combinatorial optimization problems. Information Processing Letters 97,
177–180 (2006)

13. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Boston (1997)

14. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. Journal of Algorithms 28, 142–171 (1998)

15. Montemanni, R.: A Benders decomposition approach for the robust spanning tree
problem with interval data. European Journal of Operational Research 174, 1479–
1490 (2006)

16. Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the ro-
bust spanning tree problem with interval data. European Journal of Operational
Research 161, 771–779 (2005)

17. Ravi, R., Goemans, M.X.: The constrained spanning tree problem. In: Karlsson,
R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg
(1996)

18. Salazar-Neumann, M.: The robust minimum spanning tree problem: compact and
convex uncertainty. Operations Research Letters 35, 17–22 (2007)

19. Yaman, H., Karasan, O.E., Pinar, M.C.: The robust spanning tree problem with
interval data. Operations Research Letters 29, 31–40 (2001)



The Size of a Minimum Critically
m-Neighbor-Scattered Graph

Fengwei Li and Qingfang Ye

Department of Mathematics, Shaoxing University, Zhejiang,
Shaoxing 312000, P.R. China

fengwei.li@eyou.com

Abstract. It seems reasonable that for a connected representing graph
of a spy network, the more edges it has, the more jeopardy the spy
network is in. So, a spy network which has the minimum number of edges
is the comparatively reliable network we want. As a special kind of graph,
a critically m-neighbor-scattered graph is important and interesting in
applications in communication networks. In this paper, we obtain some
upper bounds and a lower bound for the size of a minimum critically
m-neighbor-scattered graph with given order p and 4 − p ≤ m ≤ −1.
Moreover, we construct a (1 + ε)-approximate graph for the minimum
critically m-neighbor-scattered graph of order p for sufficiently small m
and sufficiently large p.

1 Introduction

Throughout this paper, a graph G = (V, E) always means a finite simple con-
nected graph with vertex set V and edge set E. We shall use �x� to denote the
largest integer not larger than x, and �x� the smallest integer not smaller than
x. dG(v) denotes the degree of a vertex v of G and δG denotes the minimum
degree of G. ∅ denotes the nullset. We use Bondy and Murty [1] for terminology
and notations not defined here.

The scattering number of a graph G was introduced by Jung [4] as an alter-
native measure of the vulnerability of G to disruption caused by the removal of
some vertices. The concept of scattering number is defined as follows:

Definition 1.1. (Jung [4]). The (vertex) scattering number of a graph G is
defined as s(G) = max{ω(G − X) − |X | : ω(G − X) > 1}, where ω(G − X) is
the number of connected components in the graph G − X .

Definition 1.2 A vertex cut-set X is called an s-set of G if it satisfies that
s(G) = ω(G − X) − |X |.

Definition 1.3 A graph G is said to be an m-scattered graph if s(G) = m.

In [3] Gunther and Hartnell introduced the idea of modelling a spy network
by a graph whose vertices represent the agents and whose edges represent lines
of communication. Clearly, if a spy is discovered, the espionage agency can no

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 91–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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longer trust any of the spies with whom he or she was in direct communication,
and so the betrayed agents become effectively useless to the network as a whole.
Such betrayals are clearly equivalent, in the modelling graph, to the removal of
the closed neighborhood of v, where v is the vertex representing the particular
agent who has been subverted.

Therefore instead of considering the scattering number of a communication
network, we discuss the neighbor-scattering number for the disruption of graphs
caused by the removal of some vertices and their adjacent vertices.

Let u be a vertex in G. The open neighborhood of u is defined as N(u) =
{v ∈ V (G)|(u, v) ∈ E(G)}; whereas the closed neighborhood of u is defined as
N [u] = {v} ∪ N(u). We define analogously the open neighborhood N(S) =
∪u∈SN(u) for any S ⊆ V (G) and the closed neighborhood N [S] = ∪u∈SN [u]. A
vertex u ∈ V (G) is said to be subverted when the closed neighborhood N [u] is
deleted from G. A vertex subversion strategy of G, X , is a set of vertices whose
closed neighborhood is deleted from G. The survival subgraph, G/X , is defined
to be the subgraph left after the subversion strategy X is applied to G, i.e.,
G/X = G−N [X ]. X is called a cut-strategy of G if the survival subgraph G/X
is disconnected, or is a clique, or is a ∅.

Definition 1.4 (Gunther and Hartnell [2]). The (vertex) neighbor-connectivity
of a graph G is defined as K(G) = min{|X | : X is a cut-strategy of G}, where
the minimum is taken over all the cut-strategies X of G.

Definition 1.5 (Wei and Li [6]). The (vertex) neighbor-scattering number of a
graph G is defined as S(G) = max{ω(G/X) − |X | : X is a cut-strategy of G},
where ω(G/X) is the number of connected components in the graph G/X .

Definition 1.6 A cut-strategy X of G is called an S-set of G if it satisfies that
S(G) = ω(G/X) − |X |.

Definition 1.7 If the neighbor-scattering number of a graph G, S(G) = m, then
G is called an m-neighbor-scattered graph. A graph G is said to be critically m-
neighbor-scattered if S(G) = m, and for any vertex v in G, S(G/{v}) > S(G).

For a connected representing graph of a spy network, the more edges it has, the
more jeopardy the spy network is in. So, a spy network which has the minimum
number of edges is comparatively reliable network we want, and hence we are
interested in constructing the minimum critically m-neighbor-scattered graphs.

Definition 1.8 A graph is called minimum critically m-neighbor-scattered if no
critically m-neighbor-scattered graph with the same number of vertices has fewer
edges than G.

From the definition we know that, in general, the less the neighbor-scattering
number of a graph is, the more stable the graph is. So, in this paper we always
assume that S(G) = m and 4 − |V (G)| ≤ m ≤ −1. In Section 2, we give
a class of critically m-neighbor-scattered graphs. In Section 3, some upper and
lower bounds for the size of a minimum critically m-neighbor-scattered graph are
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given, and moreover, for sufficiently small m and sufficiently large p, a (1 + ε)-
approximate graph for the minimum critically m-neighbor-scattered graph of
order p is constructed.

2 A Class of Critically m-Neighbor-Scattered Graphs

In 1990, Wu and Cozzens [7] introduced an operation, E, to construct a class
of k-neighbor-connected, k ≥ 1, graphs from a given k-connected graph. The
operation E is defined as follows:
E is an operation on a graph G to create a collection of graphs, say GE .

A new graph Ge ∈ GE is created as follows:
(1) Each vertex v of G is replaced by a clique Cv of order ≥ deg(v) + 1.
(2) Cv1 and Cv2 are joined by, at most, one edge and they are joined by an edge
if, and only if, vertices v1 and v2 are adjacent in G.
(3) Each vertex in Cv is incident with, at most, one edge not entirely contained
in Cv.

Using the same method, we can construct a class of s-neighbor-scattered,
(4 − |V (G)|) ≤ s ≤ (|V (G)| − 2), graphs from a given s-scattered graph G.

Theorem 2.1. Let G be a connected noncomplete s-scattered graph. Apply op-
eration E to G to obtain a graph Ge, then Ge is a connected noncomplete s-
neighbor-scattered graph.

Proof. For s(G) = s, let X be an s-set of the graph G, i.e., ω(G − X) >
1, s = s(G) = ω(G − X) − |X |. We use X ′ in Ge to denote the vertex set
corresponding to X in G. It is obvious that deleting X from G is equivalent
to deleting the neighborhoods of the corresponding vertices of X ′ in Ge and
ω(G − X) = ω(Ge/X ′) ≥ 2. Hence, by the definition of neighbor-scattering
number, we have S(Ge) ≥ ω(Ge/X ′) − |X ′| = ω(G − X) − |X | = s.

We can prove that S(Ge) ≤ s. Otherwise, if S(Ge) > s, by the construction of Ge,
there must exist an S-set X ′ of Ge such that ω(Ge/X ′) ≥ 2. Correspondingly,
there must exist a vertex cut-set X of G with |X | = |X ′| and ω(G − X) =
ω(Ge/X ′). So we have s(G) = max{ω(G − X) − |X | : ω(G − X) > s} ≥
ω(G−X)−|X | = ω(Ge/X ′)−|X ′| > s, a contradiction to the fact that s(G) = s.
Hence we know that S(Ge) = s when s(G) = s.

Example 1. In Figure 1, we give a graph G and a new graph Ge under the
operation E.

As we known, in 1962 Harary investigated a problem on reliable communication
networks. For any fixed integers n and p such that p ≥ n+1, Harary constructed
a class of graphs Hn,p which are n-connected with the minimum number of edges
on p vertices. Thus, Harary graphs are examples of graphs which in some sense
have the maximum possible connectivity and hence are of interests as possibly
having good stability properties.
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Fig. 1.

In order to give our main result, we introduce a new concept, generalized
Harary graphs, denoted by Gn,p and defined as follows:

Case 1. If n is even, let n = 2r, then Gn,p has vertices 0, 1, 2, · · · , p − 1, and
two vertices i and j are adjacent if and only if |i − j| ≤ r, where the addition is
taken modulo p.

Case 2. If n is odd (n > 1, n 	= 3) and p is even, let n = 2r + 1 (r > 0), then
Gn,p is constructed by first drawing G2r,p, and then adding edges joining vertex
i to vertex i + p

2 for 1 ≤ i ≤ p
2 .

Case 3. If n = 3 and p is even, then Gn,p is constructed by first drawing a
cycle Cp with vertices 0, 1, 2, · · · , p − 1, and two vertices 0 and p

2 are adjacent
for 1 ≤ i ≤ p

2 , then adding edges joining the vertex i to p − i for 1 ≤ i ≤ p
2 .

Case 4. If n is odd (n > 1) and p(p 	= 7) is odd, let n = 2r + 1(r > 0), then
G2r+1,p is constructed by first drawing G2r,p, and then adding edges joining the
vertex i to i + p+1

2 for 0 ≤ i ≤ p−1
2 .

Case 5. If n = 3 and p = 7, then Gn,p is constructed by first drawing a cycle Cp

with vertices 0, 1, 2, · · · , p−1, and then adding edges joining the vertex 0 to p+1
2

and p−1
2 , and then adding edges joining the vertex i to p − i for 1 ≤ i ≤ p−1

2 .

Example 2. We give some examples of generalized Harary graphs in Figure 2.

It is easy to see that the graph G3,p is not isomorphic to H3,p, but it has the
same order, size and connectivity as those of H3,p, where p = 7 or even.

Lemma 2.2.([5]) Let Hn,p be a noncomplete Harary graph, then s(Hn,p) = 2−n
except for that s(H3,7) = s(H3,n) = 0, if n is even.

Corollary 2.3 Let Gn,p be a noncomplete generalized Harary graph, then s(Gn,p)
= 2 − n.

Proof. It is easy to prove that s(G3,7) = s(G3,p) = 2 − 3 = −1.
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Lemma 2.4. Let Gn,p be a noncomplete generalized Harary graph, then s(Gn,p−
{v}) > s(Gn,p) for any vertex v in Gn,p.

Proof. It is easily checked that Lemma 2.4 to be true.

Theorem 2.5 For any positive integer n and negative integer m, such that
4 − n ≤ m ≤ −1, there exists a class of critically m-neighbor-scattered graphs
each of which has n cliques.

0

6 1

5 2

4 3

G3,7

0

p
2

p − 2
...

...
p
2 + 2 p

2 − 2

2

p − 1
1

p
2 + 1 p

2 − 1

G3,p (p is even)

Fig. 2.

Proof. For any positive integer n and negative integer m, such that 4 − n ≤
m ≤ −1, we can construct a generalized Harary graph G2−m,n. From Corollary
2.3 we know that it is an m-scattered graph. From Theorem 2.1 and Lemma 2.4,
we know that applying the operation of E to G2−m,n and G2−m,n −{v} for any
vertex v in G2−m,n, we obtain a class of critically m-neighbor-scattered graphs
GE

2−m,n each of which has n cliques.

Example 3. We give a critically (−3)-neighbor-scattered graph Ge
5,6 with 6

cliques in Figure 3.

3 The Size of a Minimum Critically m-Neighbor-
Scattered Graph

From the above theorem, we know that for any positive integers p, n and negative
integer m, such that 4−n ≤ m ≤ −1, we can construct a class of graphs GE

2−m,n,
each of which is a critically m-neighbor-scattered graph of order p. For brevity,
we use G(2 − m, n) to denote this class of graphs.

Let the vertices in G2−m,n be v0, v1, v2, · · · , vn−1, and the corresponding
cliques in each of G(2 − m, n) be C0, C1, C2, · · · , Cn−1. Set the number of ver-
tices of cliques C0, C1, C2, · · · , Cn−1 be x0, x1, x2, · · · , xn−1, respectively, where
xi ≥ deg(vi)+ 1 = 3−m, for all i = 1, 2, 3, · · · , n− 1, x0 ≥ deg(v0)+ 1 = 3−m,
if and only if at least one of m and n is even, and x0 ≥ deg(v0) = 4− m if both
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of m and n are odd. So, we get that
∑n−1

i=0 xi = p. Thus, the number of edges in
each of G(2 − m, n) is

|E(G(2 − m, n))| =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (
∑n−1

i=0 xi(xi − 1) + (3 − m)n),
if at least one of m and n is even
1
2 (
∑n−1

i=0 xi(xi − 1) + (3 − m)n + 1),
if both of m and n are odd

In order to discuss the size of a minimum critically m-neighbor-scattered
graph, we minimize |E(G(2 − m, n))|, the size of G(2 − m, n), under the con-
dition

∑n−1
i=0 xi = p, and we let G̃(2 − m, n) be a subclass of G(2 − m, n) hav-

ing the smallest number of edges, which is denoted as g̃(2 − m, n). Set x =
(x0, x1, x2, · · · , xn−1), and let f(x) denote the number of edges of G(2 − m, n).
It is easy to see that f(x) ≤ g̃(2 − m, n).

Since m and 2 − m have the same parity, we distinguish two cases:

Case 1. At least one of m and n is even (n ≥ 3 − m). We have the following
nonlinear integer programming:

minxif(x) =
n−1∑

i=0

x2
i + (3 − m)n − p

s.t

⎧
⎨

⎩

h(x) =
∑n−1

i=0 xi = p,
gi(x) = xi ≥ 3 − m, for all i = 0, 1, 2, · · · , n − 1 (2.1)
xi ∈ Z+, for all i = 0, 1, 2, · · · , n − 1

where Z+ denotes the set of positive integers.
Since xi ≥ 3−m, p =

∑n−1
i=0 xi ≥

∑n−1
i=0 (3−m) = (3−m)n, we have n ≤ p

3−m .
Since n is an integer, we have n ≤ � p

3−m�
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Case 2. Both m and n are odd, (n ≥ 3 − m). We have the following nonlinear
integer programming:

minxif(x) =
∑n−1

i=0 x2
i + (3 − m)n − p + 1

s.t

⎧
⎪⎪⎨

⎪⎪⎩

h(x) =
∑n−1

i=0 xi = p,
g0(x) = x0 ≥ 4 − m, (2.2)
gi(x) = xi ≥ 3 − m, for all i = 1, 2, · · · , n − 1
xi ∈ Z+, for all i = 0, 1, · · · , n − 1

where Z+ denotes the set of positive integers.
Since x0 ≥ 4 − m, xi ≥ 3 − m(i = 1, 2, · · · , n − 1), p =

∑n−1
i=0 xi ≥ 4 − m +

∑n−1
i=1 (3− m) = (3 −m)n + 1, we have n ≤ p−1

3−m . Since n is an integer, we have
n ≤ � p−1

3−m� ≤ � p
3−m�.

Now let us solve the above two nonlinear integer programming. We first pay
our attention to problem (2.1)

We use the well-known Lagrangian Method to solve this nonlinear integer
programming and we know that xi = � p

n� or � p
n� + 1 is the optimal solution to

problem (2.1).
For problem (2.2), we can use similar method to solve it and obtain the same

solution as that of problem (2.1).
For convenience, we denote � p

n� by Q, rearrange the sequence of xi, such that

xi =
{

Q + 1, if 0 ≤ i ≤ R − 1
Q, if R ≤ i ≤ n − 1

where R = p − nQ. Therefore,

g̃(2 − m, n) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 ((Q + 1)2R + Q2(n − R) − p + (3 − m)n),
if at least one of m and n is even
1
2 ((Q + 1)2R + Q2(n − R) − p + (3 − m)n + 1),
if both of m and n are odd

=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (2QR + R + Q2n − p + (3 − m)n),
if at least one of m and n is even
1
2 (2QR + R + Q2n − p + (3 − m)n + 1),
if both of m and n are odd

Next we find a lower bound of the size of a minimum critically m-neighbor-
scattered graph with order p.

Lemma 3.1. ([8]) For any graph G, S(G) ≥ 1 − K(G).
where K(G) denotes the neighbor-connectivity of G.

Lemma 3.2. ([2]) If G is a K-neighbor-connected graph, then for any vertex v
of G, deg(v) ≥ K(G).

From the above two Lemmas, we get that
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Theorem 3.3. For any connected S-neighbor-scattered graph G, δ(G) ≥ 1 −
S(G).

Theorem 3.4. Let m be a negative integer. If G is a minimum critically m-
neighbor-scattered graph of order p, then |E(G)| ≥ � 1

2 (1 − m)p�.
Proof. By Theorem 3.3 we know that δ(G) ≥ 1 − S(G). Since G is a critically
m-neighbor-scattered graph of order p, we have S(G) = m and δ(G) ≥ 1 − m.
Thus, |E(G)| ≥ � 1

2 (1 − m)p�.
Next we find an upper bound for the size of a minimum critically m-neighbor-
scattered graph of order p. In the following nonlinear integer programming, we
regard n as a variable, p and m as fixed integers,

minnf(n)

s.t

⎧
⎨

⎩

n ≥ 3 − m,
xi − (3 − m) ≥ 0, i = 0, 1, · · · , n − 1 (2.5)
xi ∈ Z+, i = 0, 1, · · · , n − 1

where

f(n) =

⎧
⎪⎪⎨

⎪⎪⎩

2QR + R + Q2n − p + (3 − m)n,
if at least one of m and n is even
2QR + R + Q2n − p + (3 − m)n + 1,
if both of m and n are odd

Before giving our main result, we give some lemmas first.

Lemma 3.5.([7]) For any fixed positive integers s, t, if s + 1 ≤ n ≤ � t
n�,

Q = � t
n�, R = t − nQ, then the function f(n) is decreasing.

Lemma 3.6.([7]) Let t, n, s be three integers, n ≥ s + 1. If n = � t
s�, then

s = � t
n�.

Theorem 3.7. Let m be a negative integer. If G is a minimum critically m-
neighbor-scattered graph of order p, then |E(G)| ≤ � 1

2 (3 − m)p + 1
2 (3 − m)R�,

where R = p − � p
3−m�(3 − m), the remainder of the order p divided by 3 − m.

Proof. Let n be an integer such that n ≥ 3 − m. We use p to denote the order
of each of the graphs G̃(2 − m, n). Hence, g̃(2 − m, n) = � 1

2 (2QR + R + Q2n −
p + (3 − m)n)�, where R = p − � p

3−m�(3 − m), and R = p − nQ. By Theorem
2.5, G̃(2 − m, n) is a class of critically m-neighbor-scattered graphs, and hence
|E(G)| ≤ g̃(2 − m, n).

In the following we will prove that n ≤ � p
3−m�. Otherwise, if n > � p

3−n�,
since n is an integer, then we have n > p

3−m . Therefore, n(3 − m) ≥ p. On the
other hand, by the construction of the graphs G̃(2 − m, n), xi = |Ci| ≥ 3 − m,
for all i = 0, 1, · · · , n − 1. Thus p =

∑n−1
i=0 xi ≥ (3 − m)n, i.e., n ≤ � p

3−m�, a
contradiction. Hence, n ≤ � p

3−m�. By Lemma 3.5, the function f(n) is decreasing,
for 3−m ≤ n ≤ � p

3−m�. Hence f(n) attains its minimum value when n = � p
3−m�.

By Lemma 3.6, when n = � p
3−m� and n ≥ 3−m, we have 3−m = � p

n�. Hence
Q = � p

n� = 3−m and R = p− nQ = p− (3−m)n = p− � p
3−m�(3−m). So, the



The Size of a Minimum Critically m-Neighbor-Scattered Graph 99

minimum value of f(n) is f(� p
3−m�), i.e.,

minf(n) = f(� p
3−m�)

=

⎧
⎪⎪⎨

⎪⎪⎩

2QR + R + (3 − m)2n − p + (3 − m)n,
if at least one of m and n is even
2QR + R + (3 − m)2n − p + (3 − m)n + 1,
if both of m and n are odd

=

⎧
⎪⎪⎨

⎪⎪⎩

(3 − m)p + (3 − m)R,
if at least one of m and n is even
(3 − m)p + (3 − m)R + 1,
if both of m and n are odd

Therefore, when n = � p
3−m�, g̃(2 − m, n) = 1

2f(n) = � 1
2 ((3 − m)p + (3 − m)R)�,

where R = p − � p
3−m�(3 − m). So, |E(G)| ≤ � 1

2 (3 − m)p + 1
2 (3 − m)R�.

Since 0 ≤ R ≤ 1 − m, we have 1
2 (3 − m)p + 1

2 (3 − m)R ≤ 1
2 (3 − m)p + 1

2 (3 −
m)(1 − m) = 1

2 (3 − m)(1 + p − m). So we have the following corollary.

Corollary 3.8. Let m be a negative integer. If G is a minimum critically m-
neighbor-scattered graph with order p, then � 1

2 (1 − m)p� ≤ |E(G)| ≤ � 1
2 (3 −

m)(1 + p − m)�.
Corollary 3.9. Let m be a negative integer. If the order of a minimum critically
m-neighbor-scattered graph G, p, is a multiple of 3−m, and δ(G) = 3−m, then
|E(G)| = � 1

2 (3 − m)p�.
Proof. When the order of a minimum critically m-neighbor-scattered graph G,
p, is a multiple of 3 − m, then, R = p − � p

3−m�(3 − m) = 0. So, by Theorem
3.7, |E(G)| ≤ � 1

2 (3−m)p�. From the fact that δ(G) = 3−m, we have |E(G)| ≥
� 1

2 (3 − m)p�. Thus the proof is complete.

From above we know that Theorem 3.7 gives an upper and lower bounds for
the size of a minimum critically m-neighbor-scattered graph G of order p. Let
f � f(m, p) denote the number of edges in a minimum critically m-neighbor-
scattered graph among the graphs G′ = GE

2−m,� p
3−m 	 of order p. It is obvious

that δG′ ≥ 2 − m. Then we have

�1
2
(2 − m)p� ≤ f ≤ �1

2
(3 − m)(p + R)�.

On the other hand, let fopt � fopt(m, p) denote the number of edges in a
minimum critically m-neighbor-scattered graph among all graphs G of order p.
So, by Theorem 3.7 we have

fopt ≥ �1
2
(1 − m)p� ≥ 1

2
(1 − m)p.

Since R ≤ 1 − m, we have

f − fopt ≤ p +
1
2
(3 − m)R ≤ p +

1
2
(3 − m)(1 − m).
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Then
f

fopt
≤ 1 +

2
1 − m

+
3 − m

p
.

From the construction of graph G′ = GE
2−m,� p

3−m 	, we know that � p
3−m� ≥ 3−m,

and so p ≥ (3 − m)(3 − m). Then

f

fopt
≤ 1 +

1
1 − m

+
3 − m

(3 − m)(3 − m)
≤ 1 +

1
1 − m

+
1

3 − m
< 1 +

2
3 − m

.

Let ε = 2
3−m and we regard m and p as variables. When m ≤ −1 becomes

smaller and smaller, the critically m-neighbor-scattered graph G′ becomes more
and more reliable. This means that f (G′) is a (1 + ε)-approximate size (graph)
of a minimum critically m-neighbor-scattered graph among all graphs of order
p. So we get a method to construct a (1 + ε)-approximate minimum critically
m-neighbor-scattered graph G of order p. The construction is given as follows:

Step 1. Construct a generalized Harary graph G2−m,� p
3−m 	.

Step 2. Construct graph GE
2−m,� p

3−m 	 such that this graph has R = p−� p
3−m�(3−

m) cliques of order 4 − m and � p
3−m� − R cliques of order 3 − m.

where E is the operation given before. It is easily seen that the size of the above
graph is

fapp = |E(G)| = R

(
4 − m

2

)
+ (� p

3 − m
� − R)

(
3 − m

2

)
+ �

(2 − m)� p
3−m�

2
�.

Example 4. When p = 31, m = −2 are given, we can construct an approxi-
mate minimum critically (−2)-neighbor-scattered graph G with order p = 31,
� p

3−m� = � 31
5 � = 6, R = p−� p

3−m�(3−m) = 1, and |E(G)| = R
(
4−m

2

)
+(� p

3−m�−
R)
(
3−m

2

)
+ � (2−m)� p

3−m 	
2 � = 77. See Figure 4.
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Abstract. This paper proposes a novel hybrid algorithm for feature selection. 
This algorithm combines a global optimization algorithm called the simulated 
annealing algorithm based nested partitions (NP/SA). The resulting hybrid algo-
rithm NP/SA retains the global perspective of the nested partitions algorithm 
and the local search capabilities of the simulated annealing method. We also 
present a detailed application of the new algorithm to a customer feature selec-
tion problem in customer recognition of a life insurance company and it is 
found to have great computation efficiency and convergence speed. 

1   Introduction 

For a complex decision problem, data collected in the world are so large that it be-
comes more and more difficult for the decision-maker to access them. This has lead to 
an increased industry and academic interest in knowledge discovery in databases. The 
process of discovering useful information in large databases consists of numerous 
steps, which may include integration of data from numerous databases, manipulation 
of the data to account for missing and incorrect data, and induction of a model with a 
learning algorithm [1].Traditionally, data mining draws heavily on both statistics and 
artificial intelligence, but numerous problems in data mining and knowledge discov-
ery can also be formulated as optimization problems [2] [3]. 

An important problem in knowledge discovery is analyzing the relevance of the 
features, usually called feature or attribute subset selection. It is the problem of select-
ing a subset of d features from a set of D features based on some optimization crite-
rion [4]. The primary purpose of feature selection is to design a more compact classi-
fier with as little performance degradation as possible. 

The literature on feature selection is extensive within the machine-learning and 
knowledge-discovery communities. Some of the methods applied to this problem in 
the past include genetic algorithms [5], correlation-based algorithms [6], evolutionary 
search [7], rough sets theory [8], randomized search [9], and the nested partitions 
method [10]. In this paper we propose a new alternative for feature selection based on 
a combinatorial optimization method called NP/SA which retains the global perspec-
tive of the NP algorithm and the local search capabilities of the SA method. 
                                                           
* This research work is supported by the Natural Science Fund of China (# 70501022) and 

China Postdoctoral Science Foundation (# 20060400169). 
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The feature-selection problem is generally difficult to solve. The number of possi-
ble feature subsets is n2 , where n is the number of features, and evaluating every 
possible subset is therefore prohibitively expensive unless n is very small. In this 
paper we focus on data mining where the data are nominal, i.e. each feature can take 
only finitely many values. 

The remainder of the paper is organized as follows. In Section 2 we review the 
general procedure of the NP algorithm and the SA method. Then we present a com-
bined NP/SA algorithm, i.e. an improved NP algorithm based on simulated annealing. 
In Section 3 we apply the hybrid NP/SA algorithm to the customer feature selection 
problem of a life insurance company. Section 4 contains some concluding remarks 
and future research directions. 

2   Algorithm Development 

2.1   The Nested Partitions Method 

The NP method, an optimization algorithm proposed by Shi and Ólafsson [10], may 
be described as an adaptive sampling method that uses partitioning to concentrate the 
sampling effort in those subsets of the feasible region that are considered the most 
promising. It combines global search through global sampling of the feasible region, 
and local search that is used to guide where the search should be concentrated. This 
method has been found to be promising for difficult combinatorial optimization prob-
lems such as the traveling salesman problem [11], buffer allocation problem [12], 
product design problem [13] [14], and so on. 

Suppose the finite feasible region of a complex decision problem is Θ. Our objec-
tive is to optimize the objective performance function f： Θ→R, that is, to solve: 

)(max θ
θ

f
Θ∈

,  

where ∞<Θ || . Also, to simplify the analysis, we assume that there exists a unique 

solution Θ∈optθ  to the above problem, which satisfies )()( θθ ff opt >  for all 

}{\ optθθ Θ∈ . 

Definition 1. A region partitioned using a fixed scheme is called a valid region. In a 
discrete system a partitioned region with a singleton is called a singleton region. The 
collection of all valid regions is denoted by Σ . Singleton regions are of special inter-
est in the process of optimization, and Σ⊂Σ0  denotes the collection of all such valid 

regions. 
The optimization process of the NP method is a sequence of set partitions using a 

fixed partitioning scheme, with each partition nested within the last. The partitioning 
is continued until eventually all the points in the feasible region correspond to a sin-
gleton region.  

Definition 2. The singleton regions in 0Σ  are called regions of maximum depth. 

More generally, we define the depth, 0: Ndep →Σ , of any valid region iteratively 
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with Θ having depth zero, subregions of Θ having depth one, and so forth. Since they 
cannot be partitioned further, we call the singleton regions in 0Σ  regions of maximum 

depth.  

Definition 3. If a valid region Σ∈σ  is formed by partitioning a valid region Σ∈η , 

then σ is called a subregion of region η , and region η is called a superregion of 

region σ . We define the superregion function Σ→Σ:s  as follows. Let Θ\Σ∈σ . 
Define Σ∈= ησ )(s , if and only if ησ ⊂  and if ηξσ ⊆⊆  then ηξ = or σξ = . 

For completeness we define ( ) ΘΘs = . 

A set performance function R→Σ:I  is defined and used to select the most 
promising region and is therefore called the promising index of the region.  

In the k-th iteration of the NP method there is always a region Θ⊆)(kσ  that is 

considered the most promising, and as nothing is assumed to be known about location 
of good solutions before the search is started, Θ=)0(σ . The most promising region 

is then partitioned into )(kMσ  subregions, and what remains of the feasible region 

)(kσ  is aggregated into one region called the surrounding region. Therefore, in the k-

th iteration 1)( +kMσ  disjoint subsets that cover the feasible region are considered. 

Each of these regions is sampled using some random sampling scheme, and the sam-
ples used to estimate the promising index for each region. This index is a set perform-
ance function that determines which region becomes the most promising region in the 
next iteration. If one of the subregions is found to be best, this region becomes the 
most promising region. If the surrounding region is found to be best, the method 
backtracks to a larger region. The new most promising region is partitioned and sam-
pled in a similar fashion. This generates a sequence of set partitions, with each parti-
tion nested within the last. The partitioning is continued until eventually all the points 
in the feasible region correspond to a singleton region. For detailed description on a 
generic implementation of the NP algorithm, we refer the interested reader to [10].  

2.2   Hybrid NP/SA Algorithm 

We now describe the hybrid NP/SA algorithm in detail. The simulated annealing 
algorithm (SA) is essentially a heuristic algorithm. The technique has been widely 
applied to a variety of problems including many complex decision problems. Often 
the solution space of a decision problem has many local minima. The SA method, 
though by itself it is a local search algorithm, avoids getting trapped in a local mini-
mum by accepting cost increasing neighbors with some probability [15]. Applying the 
ideas of SA to the random sampling of the NP algorithm will greatly improve the 
ability of global optimization of the NP algorithm and the ability of local optimization 
of the SA method. Merging the SA method into the NP algorithm, we get the Simu-
lated Annealing algorithm based Nested Partitions (NP/SA). Note that NP/SA is not 
simply merging the whole SA into the random sampling of the NP algorithm, but 

combining the basic idea of SA with the complete optimization process of the NP 
algorithm properly so as to improve the optimization efficiency of the NP algorithm. 
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Similar to the preparatory work of SA implementation, firstly we need to set the 
initial annealing temperature 0T , the final annealing temperature fT , and the number 
N of random samples at each annealing temperature. NP/SA is an improvement of the 
NP algorithm. It has the same operations in partitioning, calculation of promising 
indices and backtracking. The random sampling of NP/SA is improved. Actually, 
NP/SA does not implement a complete annealing process in every sampled region to 
obtain an optimal solution over the region. Instead, NP/SA carry out the optimization 
according to the same annealing temperature over the feasible regions at the same 
depth. According to the maximum depth )(σdep  ( 0Σ∈σ ) of singleton region in the 
feasible region, the annealing speed )()( 0 σdepTTT f−=Δ  is set. 

Respectively optimize the uncrossed 1)( +kMσ  feasible regions obtained through 

the k-th partitioning at the annealing temperature TkdepTTk Δ⋅−= ))((0 σ  accord-

ing to the SA method. That is to say, starting from a certain initial point )0(X , ran-
domly sample the feasible regions. If )()( )0()( XfXf k ≥ , where )( )(kXf  is the 

function value of the sampled point )(kX , )(kX  is accepted and taken as the initial 

point )0(X  to continue the optimization; otherwise, if )()( )0()( XfXf k < , )(kX  is 

accepted with a probability of )))()(exp(( )0()( TXfXf k −  and taken as the initial 

point )0(X  to continue the optimization. When N points are sampled, the function 
value )( )0(Xf  at the optimal point is used as the promising index function of each 

feasible region to fix the next most feasible region. The pseudo-code of the optimiza-
tion process is following. 

σ(k)=Θ; 
d(σ(k))=0; 
Repeat 
Partition the current promising regionσ(k) into )(kMσ  

subregions. 
T(k)=T(0)-dep(σ(k))*ΔT 
For i=1 to )(kMσ +1 do 

For j=1 to N do 
Generate_state_x(j); 
δ=f(x(j))-f(x(k)); 
ifδ>0 then k=j 

else if random(0,1)<exp(-δ/T(k)) then 
k=j; 
Promising(i)=f(x(k)); 

End 
If promising(i)>promising(m) then m=i;  
if m<= )(kMσ  thenσ(k+1)=subregion(m); 
        dep(σ(k))= dep(σ(k))+1; 

else backtrack(σ(k-1)); 
        dep(σ(k))= dep(σ(k))-1; 
until it reaches the maximum depth and stabilizes. 
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2.3   Feasibility Analysis of NP/SA 

The NP algorithm allows for the introduction of other algorithm and thoughts. It im-
plicitly contains a requirement: the modifications to the operators of the NP algorithm 
are allowed so long as two conditions are satisfied. They are: (a) the probability of 
each point in the feasible region being sampled is larger than 0, and (b) the promising 
index corresponds with the performance function of the singleton region. 

Although NP/SA is different from the pure NP algorithm in fixing the optima in 
the partitioned regions, its essential sampling method is still random sampling. This 
ensures that the probability of each point in the feasible region being sampled is larger 
than 0. Therefore, NP/SA completely satisfies condition (a) of the NP algorithm.  

When the partitioning process of the NP/SA algorithm moves on to singleton, there 
is only one feasible point in the feasible region and only one point is obtained through 
sampling. The promising index at this point is the function value of this point; hence 
it corresponds with the performance function over the singleton. Thus, NP/SA satis-
fies the condition (b) of the NP algorithm. 

In all, the introduction of SA into the NP algorithm satisfies the openness of the 
latter one, which ensures that NP/SA converges to the global optimal solution with a 
probability of 1. 

2.4   Convergence of NP/SA 

Due to the systematic partitioning of the feasible region the hybrid NP/SA algorithm 
converges to a global optimum. As the NP algorithm evolves, the sequence of most 
promising regions ∞

=1)}({ kkσ  forms a Markov chain with state space Σ . The single-

ton regions with the global optima are denoted as the absorbing states. In literature 
[10], L. Shi and S. Ólafsson proved that, the expected number of nested partitioning 
when the NP algorithm converges to the optimal solution is given by the following 
equation: 

∑∑
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where ηT  is the hitting time of state Σ∈η , i.e. the first time that the Markov chain 

visits the state, ][⋅ηP denotes the probability of an event given that the chain starts in 

state Σ∈η , optσ  is the region corresponding to the unique global optimum, and 

}}{\{1 ησση ⊆Σ∈=Σ optopt
, }{2 ηση ⊆/Σ∈=Σ opt

 and 21}{ ΣΣ=Σ ∪∪optσ  are 

disjoint state spaces. 
NP/SA introduces SA into the NP algorithm, which increases the probability of ob-

taining the global optima in the sampled regions and further increases the probability 
of the state of the Markov chain changes in the correct direction. Consequently, prob-
ability ][ ηση TTP

opt
<  at time 1Σ∈η , probability ][ ηη TTP <Θ  at time 2Σ∈η , and 

}],min{[ ησ TTTP
opt ΘΘ <  are increased while probability }],min{[

opt
TTTP ση ΘΘ <  at 
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time 2Σ∈η  is decreased. The combined effect of these factors reduces the expected 

number of nested partitioning when the NP algorithm converges to the global optimal 
solution, and thus speeds up the convergence of the algorithm. 

3   Application to the Customer Feature Selection Problem in 
Customer Recognition 

In this section we apply the hybrid NP/SA algorithm to the customer feature selection 
problem in customer recognition of a life insurance company where the objective is to 
select the most valid customer features that has the properties of combinatorial opti-
mization, i.e., to recognize the customers who have high customer lifecycle values 
(CLV) and can establish or keep customer relationship with the company. 

3.1   The Separability Criterion for Customer Feature Selection 

Different classes of sample customers are separable because they locate at different 
domains of the feature space. The greater the distances among these domains are, the 
larger the separability of these customer classes is. Therefore, we use the separability 

criterion based on inter-class distance. Let )(i
kx
K

 and )( j
lx
K

 denote respectively the cus-

tomer feature vectors with dimension d in sample classes iw  and jw . The distance 

between the two vectors is denoted by ),( )()( j
l

i
k xx
KKδ . Let c  denote the number of the 

classes of sample customers, in  and jn  denote the sample number of iw  and jw re-

spectively, and iP  and jP  denote their prior probabilities respectively. The average 

distance between different classes of customer feature vectors can be expressed as 
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where iP  is the prior probability of customer class iw  and can be estimated using 

training customer sample numbers, that is, 
n

n
P i

i =
K

. 

When the distance between two vectors takes the form of Euclidean distance, 
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Then the average distance between different classes of customer feature vectors 
can be denoted as 

)()( bwd SStrxJ +=K
,  

where the intra-class dispersion matrix 
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and the inter-class dispersion matrix 

∑
=
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im
K

 is the mean vector of the sample customer class iw , and m
K

 is the total mean 

vector of the customer sample sets. Moreover, we have 
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As it is better that the intra-class separability of the customer recognition result is 
low while the inter-class separability is high, we can use the following criterion: 

)( 1
bw SStrJ −= .  

3.2   Hybrid NP/SA Algorithm for the Customer Feature Selection Problem 

Mathematically, the customer attribute selection problem can be stated as follows. 
The customer feature selection is the problem of selecting a subset of d features from 
a set of D original features obtained from the sample customers so as to separate vari-
ous classes of sample customers. Suppose the original feature vector of customers 
is Dx
K

. Then, the optimization problem of customer feature selection is denoted as 

)(max xJz
K=  

          s.t.  
⎩
⎨
⎧

⊂
=

Dxx

dx
KK

K
.  

The possible combinatorial number of selecting d features from D original cus-

tomer features is 
!)!(

!

ddD

D
C d

D −
= . When the dimension of the original feature 

vectors is high, the exhaustive attack method can not be applied to solve this problem 
because of its enormous computation work. Therefore, a feasible algorithm that satis-
fies the validity criterion of customer recognition is necessary. We now describe how 
the hybrid NP/SA algorithm applies to the customer feature selection problem of a life 
insurance company. 

After an initial selection of customer data in the information system of the com-
pany, we obtain the original customer features and the corresponding customer infor-
mation including twelve features: ID numbers, marriage conditions, carieers, sex, the 
earliest ages when they bought the life insurances, the maximum payment periods, the 
sum of paid insurance, the number of insurance types they have bought, the sum of 
payment times, the sum of insurance shares, the percentage of the valid insurance 
policies, and the average payment for one time. Among them, as ID number is only a 
mark of a customer, it is not considered a feature for customer recognition. The other 
eleven features are used for customer recognition and are correspondingly denoted as 
oldfea[1], oldfea[2],…, oldfea[11]. The objective of our optimization is to select five 
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most effective customer features for customer recognition from the eleven features, 
i.e., D=11 and d=5.  

Meanwhile, through analysis and investigation, the experts in the company got the 
information of a customer in three dimensions: customer lifecycle value (CLV), cus-
tomer perception value (CPV), and available competitiveness (AC). For the informa-
tion, we use 1 to denote a high value of a customer dimension and –1 to denote a low 
value of a customer dimension. 

We initialize different types of customer features. The initialization method in-
cludes valuation of the discrete feature variables. For example, for the feature of mar-
riage, the value of ‘single’ is 0 while that of ‘married’ is 1. After normalizing the 
customer features, we obtain the customer feature values on ]1,0[ .  

The initial annealing temperature 1000 =T . The final annealing temperature 

001.0=fT . The maximum depth of partitioning is 6)( 0 =−= dDdep Σ . Thus, the 

annealing temperature in the feasible region of depth dep is 

depdepTdep 6665.161006)001.0100(100 −=−⋅−= .  

Table 1. The result of customer feature selection 

Arrays 
The corresponding 

features 

Features in 
the dimen-

sion of CLV 

Features in 
the dimen-

sion of CPV 

Features in 
the dimen-
sion of AC 

Oldfea[1] Marriag conditions 0 0 0 
Oldfea[2] Carieers 0 0 0 
Oldfea[3] Sex 0 0 0 

Oldfea[4] 
The earliest ages 
when they bought 

life insurances 
0 0 0 

Oldfea[5] 
The maximum pay-

ment periods 
0 0 0 

Oldfea[6] 
The sum of paid 

insurance 
1 1 1 

Oldfea[7] 
The number of 

insurance types they 
have bought 

1 1 0 

Oldfea[8] 
The sum of pay-

ment times 
1 1 1 

Oldfea[9] 
The sum of insur-

ance shares 
0 1 1 

Oldfea[10] 
The percentage of 
the valid insurance 

policies 
1 1 1 

Oldfea[11] 
The average pay-
ment for one time 

1 0 1 

Times of Backtracking 0 0 0 
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Let the arrays oldfea[i]（i=1,…,11）denote the current most promising regions. 
The features corresponding to the factors valuated 1 are the combination of features 
comprised in the feasible region. 30 points in each subregion is randomly sampled. 

dep⋅30  points are sampled in the entire region except the current most promising 

region. 
The NP/SA algorithm is then implemented for selecting the effective feature com-

binations that can identify the values of the three dimensions. The algorithm in C 
programming language is realized. The result of customer feature selection is shown 
in Table 1, where 1 stands for selection and 0 stands for non-selection. 

In the optimization process using the hybrid NP/SA method, backtracking impli-
cates that the last time partitioning, sampling, and promising indices are invalid. The 
algorithm should backtrack to the last iteration and continue with a new optimization 
process. Therefore, backtracking is a significant symbol of convergence speed. In 

Table 1 the times that backtracking occurs is zero, which strongly indicates that the 
hybrid NP/SA method is very effective for solving customer feature selection prob-
lems in customer recognition. 

4   Conclusions and Future Research 

This paper proposes a new hybrid algorithm for feature selection. It combines the 
nested partitions (NP) algorithm and simulated annealing algorithm (SA) in a novel 
way. The resulting algorithm retains the global perspective of the nested partitions 
algorithm and the local search capabilities of the simulated annealing method. This 
new optimization algorithm was shown empirically to be very efficient for a difficult 
customer feature selection problem in customer recognition. 

However, further theoretical and empirical development is needed for the algo-
rithm. Customer feature selection problems provide a rich class of NP-hard problems 
that will be used for extensive empirical testing of the algorithm. We will also con-
sider different objective functions. The theoretical development of the hybrid NP/SA 
algorithm will focus on using the Markov structure to obtain results about the time 
until convergence and to develop stopping rules.  
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Abstract. We consider the problem of connecting given vertex pairs
over a stochastic metric graph, each vertex of which has a probability
of presence independently of all other vertices. Vertex pairs requiring
connection are always present with probability 1. Our objective is to
satisfy the connectivity requirements for every possibly materializable
subgraph of the given metric graph, so as to optimize the expected to-
tal cost of edges used. This is a natural problem model for cost-efficient
Steiner Forests on stochastic metric graphs, where uncertain availability
of intermediate nodes requires fast adjustments of traffic forwarding. For
this problem we allow a priori design decisions to be taken, that can be
modified efficiently when an actual subgraph of the input graph mate-
rializes. We design a fast (almost linear time in the number of vertices)
modification algorithm whose outcome we analyze probabilistically, and
show that depending on the a priori decisions this algorithm yields 2 or 4
approximation factors of the optimum expected cost. We also show that
our analysis of the algorithm is tight.

1 Introduction

We consider the problem of laying out routes that connect simultaneously given
source-destination vertex pairs over a metric graph G0(V0, E0). Vertices of the
metric graph G0 other than the sources and destinations may be used, but
we are uncertain of their availability, in that each such vertex is present with
some probability independently of all other vertices. Sources and destinations
are present with probability 1. Our objective is to take some a priori decisions
regarding the layout of required routes, so as to be able to come up with feasible
routes for every possibly materializable subgraph G1(V1, E1), V1 ⊆ V0, of G0,
and minimize the expected total cost of edges used over the distribution of all
such subgraphs. This is the well known Steiner Forest problem, defined over a
stochastic metric graph G0.
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A brute-force way to cope with this problem is to precompute a feasible and
approximate (or maybe optimum) solution for every possible subgraph of G0

that may materialize, and apply an appropriate solution when the subgraph ac-
tually appears. In principle there need not be a constraint on the computational
effort applied for taking a priori decisions, as long as they support fast response
to the actually materialized data. In this light however, we require that such a
response should be of strictly lower complexity compared to the a priori com-
putational effort. A straightforward pattern for implementing this setting is for
example to compute an optimum a priori solution over G0, and if this solution
is not feasible for the materialized subgraph G1, use a polynomial-time approx-
imation algorithm to obtain a completely different feasible solution for G1. On
the other hand, a natural challenge is to design such an efficient response strat-
egy (algorithm), that can be supported by polynomial-time computable a priori
decisions. In this paper we design and analyze such a strategy for repairing an
a priori polynomial-time computable feasible solution for G0, so as to render
it feasible for G1. We show that this strategy also approximates the optimum
expected cost over all materializable subgraphs G1.

The problem model we consider finds natural application in networks, where
uncertain availability of intermediate nodes requires fast adjustments of traffic
forwarding. The Steiner Forest problem is a well-known NP -hard multicommod-
ity network design problem (even in metric graphs), generalizing the Steiner tree
problem, and the only known approximation algorithm yields approximation fac-
tor 2 and was analyzed in [1,8] (see also [18]). Recent years have seen a detailed
study and sensitivity analysis of this algorithm, mainly in the context of Sto-
chastic Network Design, which owes its roots to Stochastic Programming [5,4],
where some elements of the input data set to an optimization problem are as-
sociated to a distribution describing their probability of occurence. Stochastic
Programming was introduced by the seminal work of Dantzig [5] and thereafter
has evolved into an independent discipline of Operations Research that handles
uncertainty in optimization problems by usage of probabilities, statistics and
mathematical programming (see [4] for a description of the field). We refer the
reader to [11,7] for approximation results on Stochastic Steiner Forest models
and to [13,12,10,6,9] for additional recent approximation results on stochastic
network design problems in general.

Our work is mostly related to the framework of Probabilistic Combinatorial
Optimization, introduced in [2,14], where repairing strategies as the one de-
scribed previously are analyzed probabilistically, so that the expected cost of
their outcome can be computed efficiently (this ensures that the problem of tak-
ing a priori decisions for a particular strategy belongs to class NPO). Several
network design problems have been treated in the probabilistic combinatorial op-
timization framework, including minimum coloring [17], maximum independent
set [16], longest path [15], and minimum spanning tree [3]. Apart from proba-
bilistic analysis of repairing strategies, results in [17,16] also include derivation
of approximability properties.
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The article is structured as follows. At first we introduce notation. In section
2 we present a repairing strategy (algorithm) and derive the expected cost of the
repaired feasible solution for the actually materialized subgraph. Approximation
properties of the proposed strategy with respect to a priori decisions (solutions)
are analyzed in section 3. We show that our approximation results are tight in
section 4, and conclude in section 5.

Notation. In what follows we denote by G0(V0, E0) the input metric graph and
let 〈sr, tr〉, r = 1 . . . k, denote the k pairs that we have to connect for the
Steiner Forest instance. Each vertex vi ∈ V0 \ {sr, tr|r = 1 . . . k} is accociated
to a probability pi of survival in the actually materialized graph G1(V1, E1),
V1 ⊆ V0. Vertices sr, tr, r = 1 . . . k are assumed to be always present in G1.
G1 emerges as the complete metric subgraph of G0, by an independent random
Bernoulli trial for each vertex vi ∈ V0.

We will elaborate on a feasible a priori solution that is a forest. We denote
it as an edge subset F0 ⊆ E0, consisting of f0 trees and write F0 = ∪f0

l=1T0,l.
A feasible (possibly repaired) solution over the actually materialized subgraph
G1 will be a forest F1 = ∪f1

l=1T1,l, with T1,l ⊆ E1, l = 1 . . . f1. The subset of F0

that remains valid for G1 is denoted with F ′
0 and we refer with T ′

0,l to the subset
of the tree T0,l that remains valid in G1. Thus it is F ′

0 = ∪f0
l=1T

′
0,l. Given two

vertices vi and vj of some tree T , with [vi · · · vj ]T we denote the set of edges of
the unique path connecting vi and vj on T .

2 A Repairing Strategy

In this paragraph we design and analyze probabilistically a repairing algorithm
for an a priori feasible solution F0. When the subgraph G1 materializes, the
algorithm identifies the trees of F0 that become disconnected in G1 (due to
abscense of some edges incident to missing vertices), and reconnects each tree
separately by using additional edges from E1. Clearly this procedure generates a
Steiner Forest that is feasible for the originally given pairs 〈sr, tr〉, r = 1 . . . k, and
ensures f1 = f0 i.e., both the a priori and repaired forests have the same number
of trees. We explain the procedure followed by the algorithm for reconnecting a
particular tree of F0 that has been disconnected in G1. This same procedure is
followed for every such disconnected tree separately.

Consider the tree T0,l, such that T ′
0,l ⊂ T0,l. The algorithm orders the vertices

of T0,l using a Depth-First-Search, starting from an arbitrary leaf-vertex of T0,l.
Vertices of T0,l are inserted in an ordered list L in order of visitation by DFS
in the following way: if vi and vi+1 are two distinct vertices visited by DFS
consecutively for the first time, but no (vi, vi+1) edge exists in T0,l, then they
are appended to L along with the parent vertex u of vi+1, in the order vi, u, vi+1.
Thus L may contain some vertices more than once (in fact, as many times as
their children in T0,l). However, |L| = O(|T0,l|). We note that a different ordered
list is produced for each tree of the a priori solution that needs to be repaired.
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(a) A tree of the a priori
solution.
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(b) The repaired tree in
absence of vertices v2, v7.
Dashed edges were added
by the repairing algorithm.

Fig. 1. Functionality of the repairing algorithm over a particular tree of an a priori
forest

When the actual subgraph G1 materializes, the algorithm sets T1,l = T ′
0,l.

Then it removes from L every copy of vertex v ∈ V0 \ V1 thus producing the list
L′. It scans L′ in order and for every two consecutive vertices vi, vj it inserts
in T1,l an edge (vi, vj) if i < j and vi, vj are not already connected in T1,l. We
illustrate the functionality of the repairing algorithm over a particular tree by
an example.

Example. Fig. 1(a) depicts a tree of an a priori solution numbered according to
DFS visitation starting from a leaf-vertex. The corresponding ordered list pro-
duced in this way is L = {1, 2, 3, 4, 2, 5, 6, 2, 7, 8, 7, 9, 10}. Assuming that vertices
2 and 7 are absent from the vertex set of the actually materialized subgraph, all
occurences of these vertices are dropped from L and L′ = {1, 3, 4, 5, 6, 8, 9, 10}
emerges. The repairing agorithm scans L′ in order and adds edges (1, 3), (4, 5),
(6, 8), (8, 9), so as to reconnect the remainders of the a priori tree, as shown in
fig. 1(b).

We prove the following:

Proposition 1. The repairing algorithm produces a connected tree T1,l out of
tree T0,l of the a priori solution.

Proof. For every vertex vj in L′ there is an appearance of vj in L′ after a vertex
vi with i < j, so that vj is connected to vi by the end of the repairing algo-
rithm. This holds for all vertices, apart from the one appearing first in L′. This
implies that all vertices are connected into one component by the end of execu-
tion of the repairing algorithm for T0,l. Furthermore the emerging construction
cannot contain cycles for two reasons: T0,l did not have cycles and in order for a
cycle to occur in the repaired solution T1,l, insertion of at least one edge (vi, vj) is
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required while its endpoints have been already connected. This cannot happen
by functionality of the repairing algorithm. ��

Since the repairing algorithm reconnects on G1 every single tree of the a priori
solution that was disconnected, the union of all such repaired trees along with
trees that survived unaffected on G1 yields a feasible Steiner Forest on G1.
These trees remain pairwise vertex-disjoint as they were in the a priori solution,
because the repairing algorithm uses only edges to reconnect trees and no such
edge connects vertices belonging in different trees. Thus f0 = f1 is guaranteed.

The complexity of the repairing algorithm is almost linear in the number
of vertices of G0. Indeed, a DFS over a tree T0,l is of O(|T0,l|) time, while
by using UNION-FIND disjoint sets representation for maintaining connected
components during the scan of L′, an O(|T0,l|α(|T0,l|)) time is spent. Summing
over all trees of the a priori forest F0, and because |T0,l| = O(n), we obtain
O(nα(n)) total time for producing the final feasible forest F1.

Theorem 1. Given an arbitrary feasible a priori solution F0, the expected cost
of a repaired solution F1 is:

E[c(F1)] =
f1∑

l=1

( ∑

(vi,vj)∈T0,l

pipjc(vi, vj)+

+
∑

(vi,vj)∈E(V (T0,l))\T0,l

c(vi, vj)pipj ×
∏

vl∈[vi,vj ]Ll
:

i<j , vi,vj �∈[vi,vj ]Ll

(1 − pl)
)

where V (T0,l) is the set of vertices incident to edges of T0,l, and E(V (T0,l))
is the set of all edges induced by vertices in V (T0,l). Furthermore, Ll is the
ordered list for tree T0,l and [vi, vj ]Ll

the sublist of Ll starting at vi and ending
in vj not including these two vertices. For all sublists not satisfying the specified
restrictions we define the product to be 0.

Proof. Each individual expression summed for tree T0,l consists of two terms,
the first one expressing the expected cost of surviving edges in the materialized
subgraph (that is the expected cost of T ′

0,l), while the second expresses the
expected cost of edges added to T ′

0,l by the repairing algorithm, so that T ′
0,l is

augmented into a feasible tree T1,l. The first term is justified by the fact that
(vi, vj) ∈ T0,l survives in T ′

0,l if and only if both its endpoints survive. This
happens with probability pipj, since these two events are independent.

The second term emerges by inspection of the functionality of the repairing
algorithm. When G1 materializes, missing vertices (in V0 \V1) are dropped from
the ordered list encoding Ll and the modified list L′

l emerges. The repairing
algorithm scans L′

l and for every pair of consecutive vertices vi, vj it connects
them using an edge (vi, vj) if and only if i < j and vi is not connected to vj

already.
Vertices vi, vj ∈ L both survive in L′

l with probability pipj . Vertices vi and
vj are not connected to each other if all vertices between vi and vj in Ll are
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missing from L′
l, and this happens with probability

∏
vl∈[vi,vj ]L

(1−pl). Further-
more, neither vi nor vj should appear as intermediates in the sublist [vi, vj ]Ll

,
otherwise they should also be missing, and would not be encountered by the
repairing algorithm. Finally, the sublist [vi, vj ]Ll

should not be empty, otherwise
a surviving edge (vi, vj) is implied, rendering vj connected to vi. ��

Clearly the expression given in theorem 1 is computable in polynomial-time.
Thus:

Corollary 1. The problem of a priori optimizing the steiner forest problem on
stochastic metric graphs, for the proposed repairing algorithm, belongs to the
class NPO.

The problem is NP -hard: setting all survival probabilities of vertices of G0 equal
to 1, yields a deterministic steiner forest instance. Results of section 3 imply ex-
istence of a polynomial-time 4-approximation algorithm for a priori optimization
of the expression of theorem 1.

3 Approximation

In this section we carry out appropriate analysis so as to show that the Steiner
Forest problem over a stochastic metric graph can be approximated efficiently
within a constant factor, by the repairing algorithm. The heart of our results is
the following theorem:

Theorem 2. If F1 is a repaired feasible solution produced by the proposed re-
pairing algorithm for the Steiner Forest problem on a stochastic metric graph,
given an a priori feasible solution F0, then c(F1) ≤ 2c(F0).

The proof of this result is carried out by an analysis of the algorithm over each
tree T0,l separately. The result emerges by summing over the trees of F1. In the
following we denote by Tr,l the subset of edges added by the repairing algorithm
to T ′

0,l. We prove first some lemmas that will be combined towards the proof of
the theorem.

Lemma 1. For every edge (vi, vj) ∈ Tr,l we have c(vi, vj) ≤ c([vi . . . vj ]T0,l
).

Proof. Immediate by the triangle inequality holding for the cost function c :
E0 → !+. ��

According to lemma 1 we can express the cost of the repaired tree T1,l as follows:

c(T1,l) = c(T ′
0,l) + c(Tr,l) ≤

∑

e∈T ′
0,l

c(e) +
∑

(vi,vj)∈Tr,l

c([vi . . . vj ]T0,l
) (1)

Lemma 2. For every three distinct edges (vi, vj), (vk, vl), (vq , vr) in Tr,l the
paths [vi · · · vj ]T0,l

, [vk · · · vl]T0,l
, [vq · · · vr]T0,l

, do not share an edge in common.
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Fig. 2. Three cases that may happen for edge (vs, vt) with respect to vi, vj (proof of
lemma 2)

Proof. By functionality of the repairing algorithm we have that i < j, k < l,
q < r. Furthermore, if we assume without loss of generality that the vertex pairs
were encountered in the order 〈i, j〉, 〈k, l〉, 〈q, r〉 during scanning of L′, then we
deduce that j < l < r. If the paths intersect in some common edge (vs, vt), then
it must be s, t ≤ j (fig. 2 depicts all possible cases), thus s, t < l and s, t < r. In
this case edge (vs, vt) must have been scanned at least three times during DFS:
once before visitation of each of the vertices vj , vl, vr. But this contradicts the
fact that a DFS scans each edge of a graph exactly twice. ��

The following lemma will help us to complete the proof of the theorem:

Lemma 3. Consider two edges (vi, vj), (vk, vl) in Tr,l. For every edge (vs, vt)
with (vs, vt) ∈ [vi · · · vj ]T0,l

∩ [vk · · · vl]T0,l
it holds (vs, vt) 	∈ T ′

0,l.

Proof. The proof is by contradiction. Suppose that (vs, vt) ∈ [vi · · · vj ]T0,l
∩

[vk · · · vl]T0,l
and (vs, vt) ∈ T ′

0,l. Without loss of generality we assume that the
repairing algorithm encountered first the pair 〈vi, vj〉 and afterwards the pair
〈vk, vl〉 in L′. It must be i < j, k < l and j < l (vj may coincide with vk).
Since (vs, vt) ∈ [vi · · · vj ]T0,l

∩ [vk · · · vl]T0,l
, then we must have s, t ≤ j and,

consequently, s, t < l. Furthermore, it must hold either that (i) s, t > k or that
(ii) s, t > i, otherwise it should be s, t < i and, given that s, t ≤ j also, we
would deduce that (vs, vt) would have been scanned twice during DFS, once
before visitation of vi and once before visitation of vj . In this case it could not
have been scanned again right before visitation of vl. Now (i) cannot hold because
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vi

vj

vs

vt

vk

vl

Fig. 3. Case s, t > i examined in the proof of lemma 3: (vs, vt) ∈ [vi · · · vj ]T0,l ∩
[vk · · · vl]T0,l and suppose that (vs, vt) ∈ T ′

0,l. Then obviously vs, vt survive in L′ and
appear as intermediates in the two pairs 〈vi, vj〉 and 〈vk, vl〉.

k ≥ j and s, t < j. If (ii) holds, i.e. s, t > i, it is implied that the repairing
algorithm did not encounter in L′ vertices vk, vl and vi, vj consecutively (fig. 3),
which is a contradiction. ��

The proof of theorem 2 can now be completed as follows:

Proof. Relation (1) can be written:

c(T1,l) ≤
�

e∈T ′
0,l

c(e) +
�

(vi,vj)∈Tr,l

c([vi . . . vj ]T0,l )

=
�

e∈T ′
0,l

c(e) +
�

(vi,vj)∈Tr,l

�
e∈[vi...vj ]T0,l

c(e)

=
�

e∈T ′
0,l

c(e) +
�

(vi,vj)∈Tr,l

� �
e∈[vi...vj ]T0,l

:e∈T ′
0,l

c(e) +
�

e∈[vi...vj ]T0,l
:e�∈T ′

0,l

c(e)
�

By lemmas 2 and 3 the following are implied:
∑

(vi,vj)∈Tr,l

∑

e∈[vi...vj ]T0,l
:e∈T ′

0,l

c(e) ≤
∑

e∈T ′
0,l

c(e) (2)

∑

(vi,vj)∈Tr,l

∑

e∈[vi...vj ]T0,l
:e
∈T ′

0,l

c(e) ≤ 2
∑

e∈T0,l\T ′
0,l

c(e) (3)

By replacing the relations (2) and (3) in the expression we obtain:

c(T1,l) ≤ 2
∑

e∈T ′
0,l

c(e) + 2
∑

e∈T0,l\T ′
0,l

c(e) ≤ 2c(T0,l) (4)

Summing over all trees, since f0 = f1, we obtain that c(F1) ≤ 2c(F0). ��
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(a) The structure used in proving
tightness of analysis for some Sr, with
|Sr| = 5. Apart from edges with cost 1,
all other edges have cost 2.
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(b) An optimum star centered at xr,
with cost 5.

Fig. 4. Illustration of worst-case construction for showing tightness of analysis

Now we can state our main approximation result:

Theorem 3. There is an O(nα(n)) time repairing algorithm for the Steiner
Forest problem on stochastic metric graphs that, when applied to an α-approxima-
te a priori feasible solution, produces feasible solutions that are 2α-approximate
to the optimum expected cost.

Proof. By theorem 2 c(F1) ≤ 2c(F0). Let OPT (G0) and OPT (G1) be the costs
of an optimum Steiner forest on G0 and G1 respectively for the given source-
destination pairs, and c(F0) ≤ αOPT (G0). It is OPT (G0) ≤ OPT (G1) for
every possible subgraph G1 of G0, because every feasible solution for G1 is also
feasible for G0. Thus c(F1) ≤ 2αOPT (G1). Taking expectation over all possible
subgraphs G1 yields E[c(F1)] ≤ 2αE[OPT (G1)]. ��
Corollary 2. There is an O(nα(n)) time repairing algorithm for the Steiner
Forest problem on stochastic metric graphs, that can be supported by a poly-
nomial-time algorithm for taking a priori decisions [1,8], so as to yield factor
4 approximation of the optimum expected cost. The repairing algorithm is 2-
approximate given an optimum feasible a priori solution.

We note that in both cases mentioned in the corollary, the proposed repairing
algorithm is faster than the algorithm used for a priori decisions, and is far
more efficient than the trivial practices discussed in the introduction: in fact,
any approximation algorithm used for taking a priori decisions (including the
one of [1,8]) will incur Ω(n2) complexity.

4 Tightness of Analysis

We show in this paragraph that the analysis of the repairing algorithm is tight
for arbitrary a priori solution F0. We construct a worst-case example.

We consider a metric graph G0(V0, E0). For some fixed constant k take k sets
of vertices S1, . . . , Sk, along with a vertex xr 	∈ Sr, r = 1 . . . k, per subset. Let the
input metric graph consist of the vertex set V0 =

(
∪k

r=1Sr

)
∪ {xr|r = 1 . . . k}.
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(a) DFS numbering produced by the
repairing algorithm for star connec-
tion of Sr.

zr wr

1

11

3 4 5 6

(b) A feasible tree produced over a
disconnected star tree, when xr is
missing.

Fig. 5. DFS numbering and repaired tree assumed in showing tightness of analysis

We take |Sr| = n so that |V0| = Θ(n), because k is a fixed constant. We set
c(xr, y) = 1 for each y ∈ Sr, r = 1 . . . k. For each Sr pick two distinct arbitrary
vertices wr , zr ∈ Sr and set c(zr, y) = 1 for all y ∈ Sr\{wr, zr} and c(zr, wr) = 2.
For all other edges of the graph we set their cost equal to 2. Fig. 4(a) shows the
construction for a particular set Sr.

The Steiner Forest instance that we consider requires that each Sr is con-
nected (it is trivial to express this requirement with source-destination pairs).
We assume that the stochastic graph is defined by setting the survival proba-
bility of each xr equal to p. An optimum a priori solution to this instance is
defined as a forest consisting of an optimum connecting tree per vertex set Sr.
We consider such an a priori solution that the corresponding tree for Sr is the
star Tr = {(x, y)|y ∈ Sr}. Fig. 4(b) shows the construction for a particular vertex
set Sr and the optimum star tree solution for this set.

Among the various cases that may occur in the actually materialized subgraph
of G0 we consider the one where all vertices xr, r = 1 . . . k survive, and the case
where all vertices xr are missing. For the first case the a priori optimum solution
remains feasible and has an optimum cost of

∑k
r=1 |Sr|, while in the second

case, the repairing algorithm is executed for each tree Tr. Fig. 5 depicts the
DFS numbering of a tree Tr by the repairing algorithm, and the corresponding
repaired solution. It is easy to see that such a “chain” as the one appearing in
fig. 5(b), must have a cost at least 2(|Sr| − 1) − 2 = 2(|Sr| − 2), because in this
chain zr may be incident to two vertices that are connected with two edges of
cost 1 to it. However, the optimum cost for the materialized subgraph occurs if
we connect per set Sr its vertices to zr, and is equal to |Sr|. Clearly the optimum
expected cost is at most

∑k
r=1 |Sr| = k(n − 1), while the solution produced by

the repairing algorithm has an expected cost of value at least:

pk
k∑

r=1

|Sr| + 2(1 − pk)
k∑

r=1

(|Sr| − 2) = kpk(n − 1) + 2k(1 − pk)(n − 2)

Hence, the approximation factor is asymptotically lower-bounded by:

lim
n→∞

kpk(n − 1) + 2k(1 − pk)(n − 2)
k(n − 1)

= pk + 2(1 − pk)

which approaches arbitrarily close to 2 by choosing p arbitrarily close to 0.
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5 Conclusions

We considered the Steiner Forest problem in stochastic metric graphs, where
each vertex that is not a source or destination is present with a given probability
independently of all other vertices. The problem amounts to coming up with a
feasible Steiner Forest for every possible materializable subgraph of the given
graph, so as to minimize the expected cost of the resulting solution taken over
the distribution of these subgraphs. We designed an efficient algorithm that runs
in almost linear time in the number of vertices that adjusts efficiently a priori
taken decisions. Given that a priori decisions constitute a feasible forest on the
original metric graph we were able to derive a polynomial time computable
expression for the expected cost of a Steiner Forest produced by the proposed
algorithm. Furthermore, we have shown that this algorithm at most doubles the
cost of the a priori solution, and this leads to 2 approximation of the optimum
expected cost given an optimum a priori solution, and 4 approximation given a
2 approximate solution. Our analysis of the proposed repairing algorithm was
shown to be tight.

We note that for the more special case of the Steiner Tree problem in the
same model, the well-known minimum spanning tree heuristic [18] that includes
only vertices requiring connection, gives a feasible and 2-approximate a priori
solution that trivially remains feasible and 2-approximate for the actually mate-
rialized subgraph. As a non-trivial aspect of future work we consider extending
our results to the case of complete graphs with general cost functions. Simply
using shortest-path distances on these graphs does not straightforwardly lead to
efficient and approximate repairing algorithms.
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Abstract. Many combinatorial optimization problems can be formu-
lated as 0/1 integer programs (0/1 IPs). The investigation of the struc-
ture of these problems raises the following tasks: count or enumerate the
feasible solutions and find an optimal solution according to a given lin-
ear objective function. All these tasks can be accomplished using binary
decision diagrams (BDDs), a very popular and effective datastructure in
computational logics and hardware verification.

We present a novel approach for these tasks which consists of an
output-sensitive algorithm for building a BDD for a linear constraint
(a so-called threshold BDD) and a parallel AND operation on threshold
BDDs. In particular our algorithm is capable of solving knapsack prob-
lems, subset sum problems and multidimensional knapsack problems.

BDDs are represented as a directed acyclic graph. The size of a BDD
is the number of nodes of its graph. It heavily depends on the chosen
variable ordering. Finding the optimal variable ordering is an NP-hard
problem. We derive a 0/1 IP for finding an optimal variable ordering
of a threshold BDD. This 0/1 IP formulation provides the basis for the
computation of the variable ordering spectrum of a threshold function.

We introduce our new tool azove 2.0 as an enhancement to azove 1.1
which is a tool for counting and enumerating 0/1 points. Computational
results on benchmarks from the literature show the strength of our new
method.

1 Introduction

For many problems in combinatorial optimization the underlying polytope is a
0/1 polytope, i.e. all feasible solutions are 0/1 points. These problems can be
formulated as 0/1 integer programs. The investigation of the polyhedral structure
often raises the following problem:

Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, compute a list of
all 0/1 points satisfying the system.

Binary decision diagrams (BDDs) are perfectly suited to compactly represent
all 0/1 solutions. Once the BDD for a set of inequalities is built, counting the
solutions and optimizing according to a linear objective function can be done in

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 124–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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time linear in the size of the BDD, see e.g. [1,3]. Enumerating all solutions can
be done by a traversal of the graph representing the BDD.

In section 2 of this paper we develop a new output-sensitive algorithm for
building a QOBDD for a linear constraint (a so-called threshold BDD). More
precisely, our algorithm constructs exactly as many nodes as the final QOBDD
consists of and does not need any extra memory. In section 3 the synthesis of
these QOBDDs is done by an AND operation on all QOBDDs in parallel which
is also a novelty. Constructing the final BDD by sequential AND operations on
pairs of BDDs (see e.g. [3]) may lead to explosion in size during computation
even if the size of the final BDD is small. We overcome this problem by our
parallel AND operation.

The size of a BDD heavily depends on the variable ordering. Finding a variable
ordering for which the size of a BDD is minimal is a difficult task. Bollig and
Wegener [4] showed that improving a given variable ordering of a general BDD is
NP-complete. For the optimal variable ordering problem for a threshold BDD we
present for the first time a 0/1 IP formulation in section 4. Its solution gives the
optimal variable ordering and the number of minimal nodes needed. In contrast
to all other exact BDD minimization techniques (see [7] for an overview) which
are based on the classic method by Friedman and Supowit [8], our approach does
not need to build a BDD explicitly. With the help of this 0/1 IP formulation and
the techniques for counting 0/1 vertices described in [3] we are able to compute
the variable ordering spectrum of a threshold function.

We present our new tool azove 2.0 [2] which is based on the algorithms de-
veloped in sections 2 and 3. Our tool azove is able to count and enumerate all
0/1 solutions of a given set of linear constraints, i.e. it is capable of constructing
all solutions of the knapsack, the subset sum and the multidimensional knapsack
problem. In section 5 we present computational results for counting the satisfi-
able solutions of SAT instances, matchings in graphs and 0/1 points of general
0/1 polytopes.

BDDs

BDDs were first proposed by Lee in 1959 [11]. Bryant [5] presented efficient
algorithms for the synthesis of BDDs. After that, BDDs became very popular in
the area of hardware verification and computational logics, see e.g. [12,16].

We provide a short definition of BDDs as they are used in this paper. A
BDD for a set of variables x1, . . . , xd is a directed acyclic graph G = (V, A), see
figure ??. All nodes associated with the variable xi lie on the same level labeled
with xi, which means, we have an ordered BDD (OBDD). In this paper all BDDs
are ordered. For the edges there is a parity function par: A → {0, 1}. The graph
has one node with in-degree zero, called the root and two nodes with out-degree
zero, called leaf 0 resp. leaf 1. Apart from the leaves all nodes have two outgoing
edges with different parity. A path e1, . . . , ed from the root to one of the leaves
represents a variable assignment, where the level label xi of the starting node of
ej is assigned to the value par(ej). An edge crossing a level with nodes labeled
xi is called a long edge. In that case the assignment for xi is free. All paths from
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x1
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x4

8, 8
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(a) BDD

x1 x2 x3 x4

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

(b) Represented set T of true-assignments

Fig. 1. A threshold BDD representing the linear constraint 2x1 +5x2 + 4x3 +3x4 ≤ 8.
Edges with parity 0 are dashed.

the root to leaf 1 represent the set T ⊆ {0, 1}d of true-assignments. The size of
a BDD is defined as the number of nodes |V |. Let wl be the number of nodes in
level l. The width of a BDD is the maximum of all number of nodes in a level
w = max{wl | l ∈ 1, . . . , d}.

Vertices u, v ∈ V with the same label are equivalent if both of their edges
with the same parity point to the same node respectively. If each path from root
to leaf 1 contains exactly d edges the BDD is called complete. A complete and
ordered BDD with no equivalent vertices is called a quasi-reduced ordered BDD
(QOBDD). A vertex v ∈ V is redundant if both outgoing edges point to the same
node. If an ordered BDD does neither contain redundant nor equivalent vertices
it is called reduced ordered BDD (ROBDD). For a fixed variable ordering both
QOBDD and ROBDD are canonical representations.

A BDD representing the set T =
{
x ∈ {0, 1}d : aT x ≤ b

}
of 0/1 solutions

to the linear constraint aT x ≤ b is called a threshold BDD. For each variable
ordering the size of a threshold BDD is bounded by O (d(|a1|, . . . , |ad|)), i.e.
if the weights a1, . . . , ad are polynomial bounded in d, the size of the BDD is
polynomial bounded in d (see [16]). Hosaka et. al. [10] provided an example of an
explicitly defined threshold function for which the size of the BDD is exponential
for all variable orderings.

2 Output-Sensitive Building of a Threshold BDD

In this section we give a new output-sensitive algorithm for building a threshold
QOBDD of a linear constraint aT x ≤ b in dimension d. This problem is closely
related to the knapsack problem. Our algorithm can easily be transformed to
work for a given equality, i.e. it can also solve the subset sum problem.

A crucial point of BDD construction algorithms is the in advance detection
of equivalent nodes [12]. If equivalent nodes are not fully detected this leads
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to isomorphic subgraphs. As the representation of QOBDDs and ROBDDs is
canonical these isomorphic subgraphs will be detected and merged at a later
stage which is a considerable overhead.

We now describe an algorithm that overcomes this drawback. Our detection
of equivalent nodes is exact and complete so that only as many nodes will be
built as the final QOBDD consists of. No nodes have to be merged later on. Be
w the width of the BDD. The runtime of our algorithm is O (dw log(w))

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0 (in case ai < 0 substitute xi with
1 − x̄i). In order to exclude trivial cases let b ≥ 0 and

∑d
i=1 ai > b. For the

sake of simplicity be the given variable ordering the canonical variable ordering
x1, . . . , xd. We assign weights to the edges depending on their parity and level.
Edges with parity 1 in level l cost al and edges with parity 0 cost 0. The key
to exact detection of equivalent nodes are two bounds that we introduce for
each node, a lower bound lb and an upper bound ub. They describe the interval
[lb, ub]. Let cu be the costs of the path from the root to the node u. All nodes u
in level l for which the value b − cu lies in the interval [lbv, ubv] of a node v in
level l are guaranteed to be equivalent with the node v. We call the value b− cu

the slack. Figure 1(a) illustrates a threshold QOBDD with the intervals set in
each node.

Algorithm 1. Build QOBDD for the constraint aT x ≤ b

BuildQOBDD(slack, level)
1: if slack < 0 then
2: return leaf 0
3: if slack ≥

�d
i=level ai then

4: return leaf 1
5: if exists node v in level with lbv ≤ slack ≤ ubv then
6: return v
7: build new node u in level
8: l = level of node
9: 0-edge son = BuildQOBDD(slack, l + 1)

10: 1-edge son = BuildQOBDD(slack - al, l + 1)
11: set lb to max(lb of 0-edge son, lb of 1-edge son + al)
12: set ub to min(ub of 0-edge son, ub of 1-edge son + al)
13: return u

Algorithm 1 constructs the QOBDD top-down from a given node in a depth-
first-search manner. We set the bounds for the leaves as follows: lbleaf 0 = −∞,
ubleaf 0 = −1, lbleaf 1 = 0 and ubleaf 1 = ∞. We start at the root with its slack
set to b. While traversing downwards along an edge in step 9 and 10 we substract
its costs. The sons of a node are built recursively. The slack always reflects the
value of the right hand side b minus the costs c of the path from the root to the
node. In step 5 a node is detected to be equivalent with an already built node v
in that level if there exists a node v with slack ∈ [lbv, ubv].

If both sons of a node have been built recursively at step 11 the lower bound
is set to the costs of the longest path from the node to leaf 1. In case one of the
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sons is a long edge pointing from this level l to leaf 1 the value lbleaf 1 has to be
temporarly increased by

∑d
i=l+1 ai before. In step 12 the upper bound is set to

the costs of the shortest path from the node to leaf 0 minus 1. For this reason
the interval [lb, ub] reflects the widest possible interval for equivalent nodes.

Lemma 1. The detection of equivalent nodes in algorithm 1 is exact and com-
plete.

Proof. Assume to the contrary that in step 7 a new node u is built which is
equivalent to an existing node v in the level. Again let cu be the costs of the
path from the root to the node u. Because of step 5 we have b − cu 	∈ [lbv, ubv].

Case b − cu < lbv:
In step 11 lbv has been computed as the costs of the longest path from the node
v to leaf 1. Let lbu be the costs of the longest path from node u to leaf 1. Then
there is a path from root to leaf 1 using node u with costs cu + lbu ≤ b, so
we have lbu < lbv. As the nodes u and v are equivalent they are the root of
isomorphic subtrees, and thus lbu = lbv holds.
Case b − cu > ubv:
With step 12 ubv is the costs of the shortest path from v to leaf 0 minus 1. Be
ubu the costs of the shortest path from u to leaf 0 minus 1. Again the nodes
u and v are equivalent so for both the costs we have ubu = ubv. Thus there
is a path from root to leaf 0 using node u with costs cu + ubu < b which is a
contradiction.

Algorithm 1 can be modified to work for a given equality, i.e. it can also be
used to solve the subset sum problem. The following replacements have to be
made:

1: replace slack < 0 with slack < 0 ∨ slack >
∑d

i=level ai

3: replace slack ≥
∑d

i=level ai with slack = 0 ∧ slack =
∑d

i=level ai

3 Parallel AND Operation on Threshold BDDs

Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, we want to build
the ROBDD representing all 0/1 points satisfying the system. This problem is
closely related to the multidimensional knapsack problem. Our approach is the
following. For each of the m linear constraints aT

i x ≤ bi we build the QOBDD
with the method described in section 2. Then we build the final ROBDD by
perfoming an AND operation on all QOBDDs in parallel. The space consumption
for saving the nodes is exactly the number of nodes that the final ROBDD
consists of plus d temporary nodes. Algorithm 2 describes our parallel and -
synthesis of m QOBDDs.

We start at the root of all QOBDDs and construct the ROBDD from its root
top-down in a depth-first-search manner. In steps 1 and 3 we check in parallel
for trivial cases. Next we generate a signature for this temporary node of the
ROBDD in step 5. This signature is a 1+m dimensional vector consisting of the
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Algorithm 2. Parallel conjunction of the QOBDDs G1, . . . , Gm

parallelAndBDDs(G1, . . . , Gm)
1: if ∀i ∈ {1, . . . , m} : Gi = leaf 1 then
2: return leaf 1
3: if ∃i ∈ {1, . . . , m} : Gi = leaf 0 then
4: return leaf 0
5: if signature(G1, . . . , Gm) ∈ ComputedTable then
6: return ComputedTable[signature(G1 , . . . , Gm)]
7: xi = NextVariable(G1, . . . , Gm)
8: 0-edge son = parallelAndBDDs(G1|xi=0, . . . , Gm|xi=0)
9: 1-edge son = parallelAndBDDs(G1|xi=1, . . . , Gm|xi=1)

10: if 0-edge son = 1-edge son then
11: return 0-edge son
12: if ∃ node v in this level with same sons then
13: return v
14: build node u with 0-edge and 1-edge son
15: ComputedTable[signature(G1 , . . . , Gm)] = u
16: return u

current level and the upper bounds saved in all current nodes of the QOBDDs.
If there already exists a node in the ROBDD with the same signature we have
found an equivalent node and return it. Otherwise we start building boths sons
recursively from this temporary node in steps 8 and 9. From all starting nodes
in the QOBDDs we traverse the edges with the same parity in parallel.

When both sons of a temporary node in the ROBDD were built we check its
redundance in step 10. In step 12 we search for an already existing node in the
current level which is equivalent to the temporary node. If neither is the case we
build this node in the ROBDD and save its signature.

In practice the main problem of the parallel and -operation is the low hitrate
of the ComputedTable. This is because equivalent nodes of the ROBDD can have
different signatures and thus are not detected in step 5. In addition the space
consumption for the ComputedTable is enormous and one is usually interested in
restricting it. The space available for saving the signatures in the ComputedTable
can be changed dynamically. This controls the runtime in the following way. The
more space is granted for the ComputedTable the more likely equivalent node
will be detected in advance which decreases the runtime. Note that because of
the check for equivalence in step 12 the correctness of the algorithm does not
depend on the use of the ComputedTable. If the use of the ComputedTable is
little the algorithm naturally tends to exponential runtime.

4 Optimal Variable Ordering of a Threshold BDD Via
0/1 IP Formulation

Given a linear constraint aT x ≤ b in dimension d we want to find an optimal
variable ordering for building the threshold ROBDD. A variable ordering is called
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Fig. 2. Dynamic programming table for the linear constraint 2x1+5x2+4x3+3x4 ≤ 8.
Variables Uln, Dln are shown as •, © resp. The light grey blocks represent the nodes in
the ROBDD and the dark grey blocks represent the redundant nodes in the QOBDD.

optimal if it belongs to those variable orderings for which the size of the ROBDD
is minimal. In the following we will derive a 0/1 integer programm whose solution
gives the optimal variable ordering and the number of minimal nodes needed.

Building a threshold BDD is closely related to solving a knapsack problem. A
knapsack problem can be solved with dynamic programming [13] using a table.
We mimic this approach on a virtual table of size (d + 1)× (b + 1) which we fill
with variables. Figure 2 shows an example of such a table for a fixed variable
ordering. The corresponding BDD is shown in figure 1(a).

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0, and to exclude trivial cases, b ≥ 0
and
∑d

i=1 ai > b. Now we start setting up the 0/1 IP shown in figure 3. The
0/1 variables yli (24) encode a variable ordering in the way that yli = 1 iff the
variable xi lies on level l. To ensure a correct encoding of a variable ordering we
need that each index is on exactly one level (2) and that on each level there is
exactly one index (3).

We simulate a down operation in the dynamic programming table with the
0/1 variables Dln (25). The variable Dln is 1 iff there exists a path from the root
to the level l such that b minus the costs of the path equals n. The variables
in the first row (4) and the right column (5) are fixed. We have to set variable
D(l+1)n to 1 if we followed the 0-edge starting from Dln = 1

Dln = 1 → D(l+1)n = 1 (12)

or according to the variable ordering given by the yli variables, if we followed
the 1-edge starting from Dl(n+ai) = 1

yli = 1 ∧ Dl(n+ai) = 1 → D(l+1)n = 1 (15)

In all other cases we have to prevent D(l+1)n from being set to 1

yli = 1 ∧ Dln = 0 → D(l+1)n = 0 (16)
yli = 1 ∧ Dl(n+ai) = 0 ∧ Dln = 0 → D(l+1)n = 0 (17)

In the same way, the up operation is represented by the 0/1 variables Uln (26).
The variable Uln is 1 iff there exists a path upwards from the leaf 1 to the level l
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min
�

l∈{1,...,d+1}
n∈{0,...,b}

Cln + 1 (1)

s.t.

∀i ∈ {1, . . . , d}
�d

l=1 yli = 1 (2)

∀l ∈ {1, . . . , d}
�d

i=1 yli = 1 (3)

∀n ∈ {0, . . . , b − 1} D1n = 0 (4)

∀l ∈ {1, . . . , d + 1} Dlb = 1 (5)

∀n ∈ {1, . . . , b} U(d+1)n = 0 (6)

∀l ∈ {1, . . . , d + 1} Ul0 = 1 (7)

B(d+1)0 = 1 (8)

∀n ∈ {1, . . . , b} B(d+1)n = 0 (9)

C(d+1)0 = 1 (10)

∀n ∈ {1, . . . , b} C(d+1)n = 0 (11)

∀l ∈ {1, . . . , d} :

∀n ∈ {0, . . . , b − 1} Dln − D(l+1)n ≤ 0 (12)

∀n ∈ {1, . . . , b} U(l+1)n − Uln ≤ 0 (13)

∀n ∈ {0, . . . , b}, j ∈ {1, . . . , n + 1} Dln + Ul(j−1) −
�n

i=j Uli − Bl(j−1) ≤ 1 (14)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} :

∀n ∈ {0, . . . , b − ai} yli + Dl(n+ai) − D(l+1)n ≤ 1 (15)

∀n ∈ {b − ai + 1, . . . , b − 1} yli − Dln + D(l+1)n ≤ 1 (16)

∀n ∈ {0, . . . , b − ai} yli − Dl(n+ai) − Dln + D(l+1)n ≤ 1 (17)

∀n ∈ {ai, . . . , b} yli + U(l+1)(n−ai) − Uln ≤ 1 (18)

∀n ∈ {1, . . . , ai − 1} yli − U(l+1)n + Uln ≤ 1 (19)

∀n ∈ {ai, . . . , b} yli − U(l+1)(n−ai) − U(l+1)n + Uln ≤ 1(20)

∀n ∈ {0, . . . , ai − 1} yli + Bln − Cln ≤ 1 (21)

∀n ∈ {0, . . . , ai − 1} yli − Bln + Cln ≤ 1 (22)

∀n ∈ {ai, . . . , b}, k ∈ {n − ai + 1, . . . , n} yli + Bln + B(l+1)k − Cln ≤ 2 (23)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} : yli ∈ {0, 1} (24)

∀l ∈ {1, . . . , d + 1}, n ∈ {0, . . . , b} : Dln ∈ {0, 1} (25)

Uln ∈ {0, 1} (26)

Bln ∈ {0, 1} (27)

Cln ∈ {0, 1} (28)

Fig. 3. 0/1 integer program for finding the optimal variable ordering of a threshold
BDD for a linear constraint aT x ≤ b in dimension d
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with costs n. The variables in the last row (6) and the left column (7) are fixed.
We have to set Uln = 1 if there is a 0-edge ending in U(l+1)n = 1

U(l+1)n = 1 → Uln = 1 (13)

or according to the variable ordering given by the yli variables, if there is a
1-edge ending in U(l+1)(n−ai) = 1

yli = 1 ∧ U(l+1)(n−ai) = 1 → Uln = 1 (18)

In all other cases we have to prevent Uln from being set to 1

yli = 1 ∧ U(l+1)n = 0 → Uln = 0 (19)
yli = 1 ∧ U(l+1)(n−ai) = 0 ∧ U(l+1)n = 0 → Uln = 0 (20)

Next we introduce the 0/1 variables Bln (27) which mark the beginning of
the blocks in the dynamic programming table that correspond to the nodes in
the QOBDD. These blocks can be identified as follows: start from a variable Dln

set to 1 and look to the left until a variable Uln set to 1 is found

Dln = 1 ∧ Ul(j−1) = 1 ∧
n∧

i=j

Uli = 0 → Bl(j−1) = 1 (14)

We set the last row explicitly (8), (9).
At last we introduce the 0/1 variables Cln (28) which indicate the beginning

of the blocks that correspond to the nodes in the ROBDD. The variables Cln

only depend on the Bln variables and exclude redundant nodes. The first blocks
are never redundant

yli = 1 → Bln = Cln (21), (22)

If the 0-edge leads to a different block than the 1-edge, the block is not redundant

yli = 1 ∧ Bln = 1 ∧
(

n∨

k=n−ai+1

B(l+1)k = 1

)

→ Cln = 1 (23)

We set the last row explicitly (10), (11).
The objective function (1) is to minimize the number of variables Cln set

to 1 plus an offset of 1 for counting the leaf 0. An optimal solution to the IP
then gives the minimal number of nodes needed for the ROBDD while the yli

variables encode the best variable ordering.
In practice solving this 0/1 IP is not faster than exact BDD minimization

algorithms which are based on Friedman and Supowit’s method [8] in com-
bination with branch & bound (see [7] for an overview). Nevertheless it is
of theoretical interest as the presented 0/1 IP formulation can be used for
the computation of the variable ordering spectrum of a threshold function.
The variable ordering spectrum of a linear constraint aT x ≤ b is the function
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spaT x≤b : N → N, where spaT x≤b(k) is the number of variable orderings leading
to a ROBDD for the threshold function aT x ≤ b of size k. In order to com-
pute spaT x≤b(k) we equate the objective function (1) with k and add it as the
constraint

∑
l∈{1,...,d+1}

n∈{0,...,b}
Cln + 1 = k to the formulation given in figure 3. The

number of 0/1 vertices of the polytope corresponding to this formulation then
equals spaT x≤b(k). In [3] we provide a method for counting these 0/1 vertices.

5 Computational Results

We developed the tool azove 2.0 which implements the output-sensitive build-
ing of QOBDDs and the parallel AND synthesis as described in sections 2
and 3. It can be downloaded from [2]. In contrast to version 1.1 which uses
CUDD 2.4.1 [14] as BDD manager, the new version 2.0 does not need an exter-
nal library for managing BDDs.

In the following we compare azove 2.0 to azove 1.1 which sequentially uses a
pairwise AND operation [3]. We restrict our comparisson to these two tools since
we are not aware of another software tool specialized in counting 0/1 solutions
for general type of problems. The main space consumption of azove 2.0 is due
to the storage of the signatures of the ROBDD nodes. We restrict the number of
stored signatures to a fixed number. In case more signatures need to be stored
we start overwriting them from the beginning.

Our benchmark set contains different classes of combinatorial optimization
problems. All tests were run on a Linux system with kernel 2.6.15 and gcc 3.3.5
on a 64 bit AMD Opteron CPU with 2.4 GHz and 4 GB memory. Table 1 shows
the comparisson of the runtimes in seconds. We set a time limit of 4 hours. An
asterisk marks the exceedance of the time limit.

In fields like verification and real-time systems specification counting the so-
lutions of SAT instances has many applications. From several SAT competitions
[6,9] we took the instances aim, hole, ca004 and hfo6, converted them to lin-
ear constraint sets and counted their satisfying solutions. The aim instances are
3-SAT instances and the hole instances encode the pigeonhole principle. There
are 20 satisfiable hfo6 instances for which the results are similiar. For convenience
we only show the first 4 of them.

Counting the number of matchings in a graph is one of the most prominent
counting problems with applications in physics in the field of statistical mechan-
ics. We counted the number of matchings for the urquhart instance, which comes
from a particular family of bipartite graphs [15], and for f2, which is a bipartite
graph encoding a projective plane known as the Fano plane.

The two instance classes OA and TC were taken from a collection of 0/1 poly-
topes that has been compiled in connection with [17]. Starting from the convex
hull of these polytopes as input we counted their 0/1 vertices.

For instances with a large number of constraints azove 2.0 clearly outperforms
version 1.1. Due to the explosion in size during the sequential AND operation
azove 1.1 is not able to solve some instances within the given time limit. The
parallel AND operation in azove 2.0 successfully overcomes this problem.
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Table 1. Comparisson of the tools azove 1.1 and azove 2.0

Name Dim Inequalities 0/1 solutions azove 1.1 azove 2.0
aim-50-3 4-yes1-2 50 270 1 77.26 50.23
aim-50-6 0-yes1-1 50 400 1 43.97 9.59
aim-50-6 0-yes1-2 50 400 1 179.05 1.62
aim-50-6 0-yes1-3 50 400 1 97.24 4.58
aim-50-6 0-yes1-4 50 400 1 164.88 13.08
hole6 42 217 0 0.15 0.09
hole7 56 316 0 4.16 1.57
hole8 72 441 0 5572.74 29.69
ca004.shuffled 60 288 0 53.07 20.38
hfo6.005.1 40 1825 1 * 1399.57
hfo6.006.1 40 1825 4 * 1441.56
hfo6.008.1 40 1825 2 * 1197.91
hfo6.012.1 40 1825 1 * 1391.39
f2 49 546 151200 * 49.50
urquhart2 25.shuffled 60 280 0 * 12052.10
OA:9-33 9 1870 33 0.05 0.03
OA:10-44 10 9708 44 0.51 0.34
TC:9-48 9 6875 48 0.16 0.15
TC:10-83 10 41591 83 1.96 1.24
TC:11-106 11 250279 106 26.41 11.67
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Abstract. A communication process in the S5-knowledge model is
presented which leads to a Nash equilibrium of a strategic form game
through robust messages. In the communication process each player pre-
dicts the other players’ actions under his/her private information. The
players communicate privately their conjectures through message accord-
ing to the communication graph, where each recipient of the message
learns and revises his/her conjecture. The emphasis is on that each player
sends not exact information about his/her individual conjecture but ro-
bust information about the conjectures to an accuracy ε.
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1 Introduction

This article presents the communication system leading to a mixed strategy
Nash equilibrium for a strategic form game as a learning process through robust
messages in the S5-knowledge model associated with a partitional information
structure. We show that

Main theorem. Suppose that the players in a strategic form game have the
knowledge structure associated a partitional information with a common prior
distribution. In a communication process of the game according to a protocol
with revisions of their beliefs about the other players’ actions, the profile of their
future predictions converges to a mixed strategy Nash equilibrium of the game in
the long run.

Recently, researchers in economics, AI, and computer science become entertained
lively concerns about relationships between knowledge and actions. At what point
does an economic agent sufficiently know to stop gathering information and make
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decisions? There are also concerns about the complexity of computing knowledge.
The most interest to us is the emphasis on the considering the situation involving
the knowledge of a group of agents rather than of just a single agent.

In game theoretical situations, the concept of mixed strategy Nash equilibrium
(J.F. Nash [12]) has become central. Yet a little is known about the process by
which players learn if they do. This article will give a communication protocol
run by the mutual learning leading to a mixed strategy Nash equilibrium of a
strategic form game from the point of distributed knowledge system.

Let us consider the following protocol: The players start with the same prior
distribution on a state-space. In addition they have private information which is
given by a partitional of the state space. Each player predicts the other players’
actions as the posterior of the others’ actions given his/her information. He/she
communicates privately their beliefs about the other players’ actions through
robust messages, which message is approximate information about his/her in-
dividual conjecture about the others’ actions to an accuracy ε. The recipients
update their belief according to the messages. Precisely, at every stage each
player communicates privately not only his/her belief about the others’ actions
but also his/her rationality as messages according to a protocol,1 and then the
recipient updates their private information and revises her/his prediction. The
main theorem says that the players’ predictions regarding the future beliefs con-
verge in the long run, which lead to a mixed strategy Nash equilibrium of a game.
The emphasis is on the three points: First that each player sends not exact in-
formation about his/her individual conjecture but robust information about the
actions to an accuracy ε, secondly that each player’s prediction is not required
to be common-knowledge among all players, and finally that the communication
graph is not assumed to be acyclic.

Many authors have studied the learning processes modeled by Bayesian updat-
ing. The papers by E. Kalai and E. Lehrer [5] and J. S. Jordan [4] (and references
in therein) indicate increasing interest in the mutual learning processes in games
that leads to equilibrium: Each player starts with initial erroneous belief regard-
ing the actions of all the other players. They show the two strategies converges
to an ε-mixed strategy Nash equilibrium of the repeated game.

As for as J.F. Nash’s fundamental notion of strategic equilibrium is concerned,
R.J. Aumann and A. Brandenburger [1] gives epistemic conditions for mixed
strategy Nash equilibrium: They show that the common-knowledge of the pre-
dictions of the players having the partitional information (that is, equivalently,
the S5-knowledge model) yields a Nash equilibrium of a game. However it is not
clear just what learning process leads to the equilibrium.

To fill this gap from epistemic point of view, Matsuhisa ([6], [8], [9]) presents
his communication system for a strategic game, which leads a mixed Nash equi-
librium in several epistemic models. The articles [6], [8] [10] treats the commu-
nication system in the S4-knowledge model where each player communicates
to other players by sending exact information about his/her conjecture on the

1 When a player communicates with another, the other players are not informed about
the contents of the message.
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others’ action. In Matsuhisa and Strokan [10], the communication model in the
p-belief system is introduced:2Each player sends exact information that he/she
believes that the others play their actions with probability at least his/her con-
jecture as messages. Matsuhisa [9] extended the communication model to the
case that the sending messages are non-exact information that he/she believes
that the others play their actions with probability at least his/her conjecture.
This article is in the line of [9]; each player sends his/her robust information

about the actions to an accuracy ε in the S5-knowledge model.
This paper organizes as follows. Section 2 recalls the knowledge structure

associated with a partition information structure, and we extend a game on
knowledge structure. The communication process for the game is introduced
where the players send robust messages about their conjectures about the other
players’ action. In Section 3 we give the formal statement of the main theorem
(Theorem 1) and sketch the proof. In Section 4 we conclude with remarks. The
illustrated example will be shown in the lecture presentation in COCOA 2007.

2 The Model

Let Ω be a non-empty finite set called a state-space, N a set of finitely many players
{1, 2, . . . n} at least two (n ≥ 2), and let 2Ω be the family of all subsets of Ω. Each
member of 2Ω is called an event and each element of Ω called a state. Let μ be
a probability measure on Ω which is common for all players. For simplicity it is
assumed that (Ω, μ) is a finite probability space with μ full support.3

2.1 Information and Knowledge4

A partitional information structure 〈Ω, (Πi)i∈N 〉 consists of a state space Ω and
a class of the mappings Πi of Ω into 2Ω such that

(i) {Πi(ω)|ω ∈ Ω} is a partition of Ω;
(ii) ω ∈ Πi(ω) for every ω ∈ Ω.

Given our interpretation, an player i for whom Πi(ω) ⊆ E knows, in the state
ω, that some state in the event E has occurred. In this case we say that in the
state ω the player i knows E.

Definition 1. The knowledge structure 〈Ω, (Πi)i∈N , (Ki)i∈N 〉 consists of a par-
titional information structure 〈Ω, (Πi)i∈N 〉 and a class of i’s knowledge operator
Ki on 2Ω such that KiE is the set of states of Ω in which i knows that E has
occurred; that is,

KiE = {ω ∈ Ω | Πi(ω) ⊆ E}.
The set Πi(ω) will be interpreted as the set of all the states of nature that i
knows to be possible at ω, and KiE will be interpreted as the set of states of
2 C.f.: Monderer and Samet [11] for the p-belief system.
3 That is; μ(ω) �= 0 for every ω ∈ Ω.
4 C.f.; Bacharach [2], Binmore [3] for the information structure and the knowledge

operator.
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nature for which i knows E to be possible. We will therefore call Πi i’s possibility
operator on Ω and also will call Πi(ω) i’s information set at ω.

We record the properties of i’s knowledge operator5: For every E, F of 2Ω,

N KiΩ = Ω and Ki∅ = ∅ ; K Ki(E ∩ F ) = KiE ∩ KiF ;
T KiF ⊆ F ; 4 KiF ⊆ KiKiF ;
5 Ω \ Ki(E) ⊆ Ki(Ω \ Ki(E)).

Remark 1. i’s possibility operator Πi is uniquely determined by i’s knowledge
operator Ki satisfying the above five properties: For Πi(ω) =

⋂
ω∈KiE

E.

2.2 Game on Knowledge Structure6

By a game G we mean a finite strategic form game 〈N, (Ai)i∈N , (gi)i∈N 〉 with the
following structure and interpretations:N is a finite set of players {1, 2, . . . , i, . . . n}
with n ≥ 2, Ai is a finite set of i’s actions (or i’s pure strategies) and gi is an i’s
payoff function of A into IR, where A denotes the product A1 ×A2×· · ·×An, A−i

the product A1 × A2 × · · · ×Ai−1 ×Ai+1 × · · · × An. We denote by g the n-tuple
(g1, g2, . . . gn) and by a−i the (n − 1)-tuple (a1, . . . , ai−1, ai+1, . . . , an) for a of A.
Furthermore we denote a−I = (ai)i∈N\I for each I ⊂ N .

A probability distribution φi on A−i is said to be i’s overall conjecture (or
simply i’s conjecture). For each player j other than i, this induces the marginal
distribution on j’s actions; we call it i’s individual conjecture about j (or simply
i’s conjecture about j.) Functions on Ω are viewed like random variables in the
probability space (Ω, μ). If x is a such function and x is a value of it, we denote
by [x = x] (or simply by [x]) the set {ω ∈ Ω|x(ω) = x}.

The information structure (Πi) with a common prior μ yields the distribution
on A × Ω defined by qi(a, ω) = μ([a = a]|Πi(ω)); and the i’s overall conjecture
defined by the marginal distribution qi(a−i, ω) = μ([a−i = a−i]|Πi(ω)) which
is viewed as a random variable of φi. We denote by [qi = φi] the intersection⋂

a−i∈A−i
[qi(a−i) = φi(a−i)] and denote by [φ] the intersection

⋂
i∈N [qi = φi].

Let gi be a random variable of i’s payoff function gi and ai a random variable
of an i’s action ai.

According to the Bayesian decision theoretical point of view we assume that
each player i absolutely knows his/her own actions; i.e., letting [ai] := [ai = ai],
[ai] = Ki([ai]) (or equivalently, Πi(ω) ⊆ [ai] for all ω ∈ [ai] and for every ai of
Ai.) i’s action ai is said to be actual at a state ω if ω ∈ [ai = ai]; and the profile
aI is said to be actually played at ω if ω ∈ [aI = aI ] :=

⋂
i∈I [ai = ai] for I ⊂ N .

The pay off functions g = (g1, g2, . . . , gn) is said to be actually played at a state
ω if ω ∈ [g = g] :=

⋂
i∈N [gi = gi]. Let Exp denote the expectation defined by

Exp(gi(bi,a−i); ω) :=
∑

a−i∈A−i

gi(bi, a−i) qi(a−i, ω).

5 According to these we can say the structure 〈Ω, (Ki)i∈N〉 is a model for the multi-
modal logic S5.

6 C.f., Aumann and Brandenburger [1].
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A player i is said to be rational at ω if each i’s actual action ai maximizes
the expectation of his actually played pay off function gi at ω when the other
players actions are distributed according to his conjecture qi(· ; ω).

Formally, letting gi = gi(ω) and ai = ai(ω), Exp(gi(ai, a−i); ω) ≥
Exp(gi(bi,a−i); ω) for every bi in Ai. Let Ri denote the set of all of the states
at which i is rational.

2.3 Protocol 7

We assume that the players communicate by sending messages. Let T be the time
horizontal line {0, 1, 2, · · · t, · · ·}. A protocol is a mapping Pr : T → N × N, t �→
(s(t), r(t)) such that s(t) 	= r(t). Here t stands for time and s(t) and r(t) are,
respectively, the sender and the recipient of the communication which takes
place at time t. We consider the protocol as the directed graph whose vertices
are the set of all players N and such that there is an edge (or an arc) from i to
j if and only if there are infinitely many t such that s(t) = i and r(t) = j.

A protocol is said to be fair if the graph is strongly-connected; in words,
every player in this protocol communicates directly or indirectly with every
other player infinitely often. It is said to contain a cycle if there are players
i1, i2, . . . , ik with k ≥ 3 such that for all m < k, im communicates directly with
im+1, and such that ik communicates directly with i1. The communications is
assumed to proceed in rounds8.

2.4 Communication on Knowledge Structure

Let ε be a real number with 0 ≤ ε < 1. An ε-robust communication process πε(G)
with revisions of players’ conjectures (φt

i)(i,t)∈N×T according to a protocol for a
game G is a tuple

πε(G) = 〈G, (Ω, μ) Pr, (Πt
i )i∈N , (Kt

i )i∈N , (φt
i)(i,t)∈N×T 〉

with the following structures: the players have a common prior μ on Ω, the
protocol Pr among N , Pr(t) = (s(t), r(t)), is fair and it satisfies the conditions
that r(t) = s(t + 1) for every t and that the communications proceed in rounds.
The revised information structure Πt

i at time t is the mapping of Ω into 2Ω for
player i. If i = s(t) is a sender at t, the message sent by i to j = r(t) is M t

i . An
n-tuple (φt

i)i∈N is a revision process of individual conjectures. These structures
are inductively defined as follows:

– Set Π0
i (ω) = Πi(ω).

– Assume that Πt
i is defined. It yields the distribution qt

i(a, ω) = μ([a =
a]|Πt

i (ω)). Whence
• Rt

i denotes the set of all the state ω at which i is rational according to
his conjecture qt

i(· ; ω); that is, each i’s actual action ai maximizes the
7 C.f.: Parikh and Krasucki [13]
8 There exists a time m such that for all t, Pr(t) = Pr(t + m). The period of the

protocol is the minimal number of all m such that for every t, Pr(t + m) = Pr(t).
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expectation of his pay off function gi being actually played at ω when the
other players actions are distributed according to his conjecture qt

i(· ; ω)
at time t. Formally, letting gi = gi(ω), ai = ai(ω), the expectation at
time t, Expt, is defined by

Expt(gi(ai,a−i); ω) :=
∑

a−i∈A−i

gi(ai, a−i) qt
i(a−i, ω).

An player i is said to be rational according to his conjecture qt
i(· , ω) at

ω if for all bi in Ai, Expt(gi(ai, a−i); ω) ≥ Expt(gi(bi, a−i); ω).
• The message M t

i : Ω → 2Ω sent by the sender i at time t is defined as a
robust information:

M t
i (ω) =

⋂

a−i∈A−i

{
ξ ∈ Ω |

∣
∣qt

i(a−i, ξ) − qt
i(a−i, ω)

∣
∣ < ε
}

.

Then:
– The revised knowledge operator Kt

i : 2Ω → 2Ω is defined by Kt
i (E) = {ω ∈

Ω | Πt
i (ω) ⊆ E }.

– The revised partition Πt+1
i at time t + 1 is defined as follows:

• Πt+1
i (ω) = Πt

i (ω) ∩ M t
s(t)(ω) if i = r(t);

• Πt+1
i (ω) = Πt

i (ω) otherwise,

– The revision process (φt
i)(i,t)∈N×T of conjectures is inductively defined by

the following way:

• Let ω0 ∈ Ω, and set φ0
s(0)(a−s(0)) := q0

s(0)(a−s(0), ω0)
• Take ω1 ∈ M0

s(0)(ω0) ∩ Kr(0)([gs(0)] ∩ R0
s(0)),

9 and set φ1
s(1)(a−s(1)) :=

q1
s(1)(a−s(1), ω1)

• Take ωt+1 ∈ M t
s(t)(ωt)∩Kt

r(t)([gs(t)]∩Rt
s(t)), and set φt+1

s(t+1)(a−s(t+1)) :=
qt+1

i (a−s(t+1), ωt+1).

The specification is that a sender s(t) at time t informs the recipient r(t) his/her
prediction about the other players’ actions as approximate information of his/her
individual conjecture to an accuracy ε. The recipient revises her/his information
structure under the information. She/he predicts the other players action at the
state where the player knows that the sender s(t) is rational, and she/he informs
her/his the predictions to the other player r(t + 1).

We denote by ∞ a sufficient large τ ∈ T such that for all ω ∈ Ω, qτ
i (· ; ω) =

qτ+1
i (· ; ω) = qτ+2

i (· ; ω) = · · ·. Hence we can write qτ
i by q∞

i and φτ
i by φ∞

i .

Remark 2. This communication model is a variation of the model introduced by
Matsuhisa [6].

9 We denote [gi] := [gi = gi]
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3 The Result

We can now state the main theorem :

Theorem 1. Suppose that the players in a strategic form game G have the
knowledge structure with μ a common prior. In the ε-robust communication
process πε(G) according to a protocol Pr among all players in the game, the
n-tuple of their conjectures (φt

i)(i,t)∈N×T converges to a mixed strategy Nash
equilibrium of the game in finitely many steps.

The proof is based on the below proposition:

Proposition 1. Notation and assumptions are the same in Theorem 1. For any
players i, j ∈ N , their conjectures q∞

i and q∞
j on A ×Ω must coincide; that is,

q∞
i (a; ω) = q∞

j (a; ω) for every a ∈ A and ω ∈ Ω.

Proof. On noting that Pr is fair, it suffices to verify that q∞
i (a; ω) = q∞

j (a; ω)
for (i, j) = (s(∞), r(∞)). Since Πi(ω) ⊆ [ai] for all ω ∈ [ai], we can observe that
q∞

i (a−i; ω) = q∞
i (a; ω), and we let define the partitions of Ω, {W∞

i (ω) | ω ∈ Ω}
and {Q∞

j (ω) | ω ∈ Ω}, as follows:

W∞
i (ω) :=

⋂

a−i∈A−i

[q∞
i (a−i, ∗) = q∞

i (a−i, ω)] =
⋂

a∈A

[q∞
i (a, ∗) = q∞

i (a, ω)],

Q∞
j (ω) := Π∞

j (ω) ∩ W∞
i (ω).

It follows that

Q∞
j (ξ) ⊆ W∞

i (ω) for all ξ ∈ W∞
i (ω),

and hence W∞
i (ω) can be decomposed into a disjoint union of components Q∞

j (ξ)
for ξ ∈ W∞

i (ω);

W∞
i (ω) =

⋃

k=1,2,...,m

Q∞
j (ξk) for ξk ∈ W∞

i (ω).

It can be observed that

μ([a = a]| W∞
i (ω)) =

m∑

k=1

λkμ([a = a]| Q∞
j (ξk)) (1)

for some λk > 0 with
∑m

k=1 λk = 1.10

On noting that W∞
j (ω) is decomposed into a disjoint union of components

Π∞
j (ξ) for ξ ∈ W∞

j (ω), it can be observed that

q∞
j (a; ω) = μ([a = a]| W∞

j (ω)) = μ([a = a]| Π∞
j (ξk)) (2)

10 This property is called the convexity for the conditional probability μ(X|∗) in Parikh
and Krasucki [13].
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for any ξk ∈ W∞
i (ω). Furthermore we can verify that for every ω ∈ Ω,

μ([a = a]| W∞
j (ω)) = μ([a = a]| Q∞

j (ω)). (3)

In fact, we first note that W∞
j (ω) can also be decomposed into a disjoint union

of components Q∞
j (ξ) for ξ ∈ W∞

j (ω). We shall show that for every ξ ∈ W∞
j (ω),

μ([a = a]| W∞
j (ω)) = μ([a = a]| Q∞

j (ξ)). For: Suppose not, the disjoint union G
of all the components Qj(ξ) such that μ([a = a]| W∞

j (ω)) = μ([a = a]| Q∞
j (ξ)) is

a proper subset of W∞
j (ω). It can be shown that for some ω0 ∈ W∞

j (ω)\G such
that Qj(ω0) = W∞

j (ω) \ G. On noting that μ([a = a]|G) = μ([a = a]| W∞
j (ω))

it follows immediately that μ([a = a]| Q∞
j (ω0)) = μ([a = a]| W∞

j (ω)), in con-
tradiction. Now suppose that for every ω0 ∈ W∞

j (ω) \G, Qj(ω0) 	= W∞
j (ω) \G.

The we can take an infinite sequence of states {ωk ∈ W∞
j (ω) | k = 0, 1, 2, 3, . . .}

with ωk+1 ∈ W∞
j (ω) \ (G ∪ Q∞

j (ω0) ∪ Q∞
j (ω1) ∪ Q∞

j (ω2) ∪ · · · ∪ Q∞
j (ωk)) in

contradiction also, because Ω is finite.
In viewing (1), (2) and (3) it follows that

q∞
i (a; ω) =

m∑

k=1

λkq∞
j (a; ξk) (4)

for some ξk ∈ W∞
i (ω). Let ξω be the state in {ξk}m

k=1 attains the maximal
value of all q∞

j (a; ξk) for k = 1, 2, 3, · · · , m, and let ζω ∈ {ξk}m
k=1 be the state

that attains the minimal value. By (4) we obtain that q∞
j (a; ζω) ≤ q∞

i (a; ω) ≤
q∞

j (a; ξω) for (i, j) = (s(∞), t(∞)).
On continuing this process according to the fair protocol Pr, it can be plainly

verified: For each ω ∈ Ω and for any t ≥ 1,

q∞
i (a; ζ′ω) ≤ · · · ≤ q∞

j (a; ζω) ≤ q∞
i (a; ω) ≤ q∞

j (a; ξω) ≤ · · · ≤ q∞
i (a; ξ′ω)

for some ζ′ω, · · · , ζω, ξω , · · · ξ′ω ∈ Ω, and thus q∞
i (a; ω) = q∞

j (a; ω) because
q∞

j (a; ζω) ≤ q∞
j (a; ω) ≤ q∞

j (a; ξω) and q∞
i (a; ζ) = q∞

j (a; ξ) for every ζ, ξ ∈ Ω.
in completing the proof.

Proof of Theorem 1. We denote by Γ (i) the set of all the players who directly
receive the message from i on N ; i.e., Γ (i) = { j ∈ N | (i, j) = Pr(t) for some t ∈
T }. Let Fi denote [φ∞

i ] :=
⋂

a−i∈Ai
[q∞

i (a−i; ∗) = φ∞
i (a−i)]. It is noted that

Fi ∩ Fj 	= ∅ for each i ∈ N , j ∈ Γ (i).
We observe the first point that for each i ∈ N , j ∈ Γ (i) and for every a ∈ A,

μ([a−j = a−j ] |Fi∩Fj) = φ∞
j (a−j). Then summing over a−i, we can observe that

μ([ai = ai] |Fi ∩ Fj) = φ∞
j (ai) for any a ∈ A. In view of Proposition 1 it can

be observed that φ∞
j (ai) = φ∞

k (ai) for each j, k, 	= i; i.e., φ∞
j (ai) is independent

of the choices of every j ∈ N other than i. We set the probability distribution
σi on Ai by σi(ai) := φ∞

j (ai), and set the profile σ = (σi).
We observe the second point that for every a ∈

∏
i∈N Supp(σi),

φ∞
i (a−i) = σ1(a1) · · ·σi−1(ai−1)σi+1(ai+1) · · ·σn(an) :



144 T. Matsuhisa

In fact, viewing the definition of σi we shall show that

φ∞
i (a−i) =

∏

k∈N\{i}
φ∞

i (ak).

To verify this it suffices to show that for every k = 1, 2, · · · , n,

φ∞
i (a−i) = φ∞

i (a−Ik
)
∏

k∈Ik\{i}
φ∞

i (ak) :

We prove it by induction on k. For k = 1 the result is immediate. Suppose it is
true for k ≥ 1. On noting the protocol is fair, we can take the sequence of sets
of players {Ik}1≤k≤n with the following properties:

(a) I1 = {i} ⊂ I2 ⊂ · · · ⊂ Ik ⊂ Ik+1 ⊂ · · · ⊂ Im = N :
(b) For every k ∈ N there is a player ik+1 ∈

⋃
j∈Ik

Γ (j) with Ik+1 \ Ik = {ik+1}.

We let take j ∈ Ik such that ik+1 ∈ Γ (j). Set Hik+1 := [aik+1 = aik+1 ]∩Fj∩Fik+1 .
It can be verified that

μ([a−j−ik+1 = a−j−ik+1 ] |Hik+1) = φ∞
−j−ik+1

(a−j).

Dividing μ(Fj ∩ Fik+1) yields that

μ([a−j = a−j ] |Fj ∩ Fik+1) = φ∞
ik+1

(a−j)μ([aik+1 = aik+1 ] |Fj ∩ Fik+1).

Thus φ∞
j (a−j) = φ∞

ik+1
(a−j−ik+1 )φ

t
j(aik+1); then summing over aIk

we obtain
φ∞

j (a−Ik
) = φ∞

ik+1
(a−Ik−ik+1)φ

∞
j (aik+1). It immediately follows from Proposi-

tion 1 that φ∞
i (a−Ik

) = φ∞
i (a−Ik−ik+1)φ

∞
i (aik+1), as required.

Furthermore we can observe that all the other players i than j agree on the
same conjecture σj(aj) = φ∞

i (aj) about j. We conclude that each action ai

appearing with positive probability in σi maximizes gi against the product of
the distributions σl with l 	= i. This implies that the profile σ = (σi)i∈N is a
mixed strategy Nash equilibrium of G, in completing the proof. ��

4 Concluding Remarks

We have observed that in a communication process with revisions of players’
beliefs about the other actions, their predictions induces a mixed strategy Nash
equilibrium of the game in the long run. Matsuhisa [6] and [8] established the
same assertion in the S4-knowledge model. Furthermore Matsuhisa [7] showed a
similar result for ε-mixed strategy Nash equilibrium of a strategic form game in
the S4-knowledge model, which gives an epistemic aspect in Theorem of E. Kalai
and E. Lehrer [5]. This article highlights a communication among the players
in a game through sending rough information, and shows that the convergence
to an exact Nash equilibrium is guaranteed even in such communication on
approximate information after long run. It is well to end some remarks on the
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ε-robust communication. The main theorem in this article can be extended into
the S4-knowledge model and the p-belief system. The extended theorem in S4-
knowledge model coincides with the theorems in Matsuhisa [6] and [8] when
ε = 0. Can we unify all the communication models in the preceding papers ([6],
[8], [10], [9])? The answer is yes; I will present the unified communication system
leading to a Nash equilibrium in a near future paper.
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Abstract. We define a fundamental domain of a linear programming
relaxation of a combinatorial integer program which is symmetric under
a group action. We then provide a construction for the polytope of a
fundamental domain defined by the maximization of a linear function.
The computation of this fundamental domain is at worst polynomial in
the size of the group. However, for the special case of the symmetric
group, whose size is exponential in the size of the integer program, we
show how to compute a separating hyperplane in polynomial time in the
size of the integer program.

Fundamental domains may provide a straightforward way to reduce
the computation difficulties that often arise in integer programs with
symmetries. Our construction is closely related to the constructions of
orbitopes by Kaibel and Pfetch, but are simpler and more general, at a
cost of creating new non-integral extreme points.

1 Introduction

Combinatorial integer programs with symmetries arise in many standard prob-
lem formulations. Unfortunately, these symmetries often make the problems dif-
ficult to solve because integer programming algorithms can repeatedly examine
solutions that are equivalent under the symmetry. For example, in a simple bin
packing problem with multiple bins of the same size one often uses the variable
xij to represent whether item i is in bin j. However, if bins j and k are the
same size then any solution x is equivalent to the solution x′ when x′ is derived
from x by exchanging the two columns, j and k. One way of resolving these
problems is to restrict the search space to eliminate the additional equivalent
copies of a solution. This can be done either by adding additional constraints to
the integer program [2,1,3,8] or by modifying the branch and bound or branch
and cut algorithms [6,7].

In this paper, we consider the problem of removing the multiple symmetri-
cally equivalent solutions. We construct a polytope for a “minimal fundamental
domain”, which is a subset of the feasible region and contains only a single “rep-
resentative” from each equivalence class of symmetrically equivalent extreme
points.
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Our work is motivated by Kaibel and Pfetch’s [5] recent study of orbitopes. In
that paper they considered the fundamental domain generated by a lexicographic
ordering. They provided a complete description for orbitopes for the cyclic and
symmetric groups under packing and partitioning constraints.

In this paper, we consider a different approach to this problem: finding fun-
damental domains defined by maximizing a linear function. This leads to simple
constructions and straightforward proofs. It also allows these techniques to be
extended to more complex settings.

For example, consider a bin packing problem with multiple bins. Previous
methods have considered the case when all bins are identical, in which the prob-
lem is invariant under the full symmetric group; however, our methods apply to
arbitrary sets of identical bins, e.g., three bins of size 10, six bins of size 14 and
one bin of size 22. In addition, our methods extend directly to covering problems
without the combinatorial complexities that arise in the related orbitopes.

Our methods also apply to other groups, such as cyclic groups, which arise in
transportation scheduling problems [10] or even problems for which several differ-
ent group actions are combined. For example, consider a periodic bus scheduling
problem with multiple bus sizes. This problem is invariant under the exchange of
equal capacity buses (symmetric groups) and under time transformations (cyclic
group).

In this paper, we present the general theory of fundamental domains. In the
following section we provide the basic construction and then in Section 3 discuss
the separation problem for the cyclic and symmetric groups. Section 4 compares
fundamental domains to orbitopes, Section 5 discusses combinations of groups
and Section 6 considers the linear optimization criterion used for generating the
fundamental domains. We conclude in Section 7.

2 Group Actions and Fundamental Domains

Let G be a finite group and given a set X ⊂ !n consider a group action φg :
X → X . A group action must satisfy φg◦g′ = φg ◦ φg′ . Given x ∈ X , define the
orbit of x, orb(x), to be the set φg(x) for all g ∈ G. A (generalized) fundamental
domain of X is a subset F ⊂ X such that its orbit orb(F ) = X , where

Orb(F ) = {x ∈ X | ∃y ∈ F, ∃g ∈ G s.t. x = φgy}.

A fundamental domain is minimal if in addition, there is no closed subset of F
that is also a fundamental domain.

To specialize to polytopes, assume that X ⊆ [0, 1]n is a binary polytope.
Let Ext(X) be the extreme points of X , which are assumed to be integral.
In addition, we will require that for all g ∈ G, the group action is an affine
transformation of X . Thus, for each g ∈ G we can assume that φgx = Agx + bg

where Ag is an nxn matrix and bg is an n-vector.
We first note to basic facts about affine group actions of finite groups.

Lemma 1. Let G be a finite group and φ : G×X → X be an affine group action
of G. Then ∀g ∈ G the determinant of Ag has the absolute value of 1.
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Proof: Since φg−1 = (φg)−1 the action φg is invertible so Ag must have nonzero
determinant. In addition, since G is finite and for all g ∈ G, the composition of
φg with itself k times, (φg)k = φgk = φg′ , for some g′ ∈ G. Now the determinant
of φg′ must satisfy det(φg′ ) = det(φg)k, so unless |det(φg)| = 1, (φg)k will be
different for all k, contradicting the assumption that G is finite. QED

Given an “ordering vector” c ∈ !n, we define the fundamental domain of X , Fc,
with respect to G by

Fc = {x ∈ X | ctx ≥ ctφgx ∀g ∈ G}

Lemma 2. For any ordering vector c, the fundamental domain, Fc is a polytope.

Proof: The fundamental domain is defined by a finite set of affine inequalities.
QED

For example, consider the case with X = [0, 1]2 where G is the additive group
Z2 with elements {0, 1}, and 0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0. Define the
action of this group by setting φ0 to be the identity and φ1 being the exchange
operator, φ1(x1, x2) = (x2, x1). Let c = (2, 1). Then

Fc = {x ∈ X | 2x1 + x2 ≥ x1 + 2x2},

which implies that
Fc = {x ∈ X | x1 ≥ x2}.

Thus, Fc include the extreme points (1, 1) and (1, 0), while different choices of
c can lead to different fundamental domains. For example if c = (1, 2) then the
fundamental domain now includes (0, 1) instead of (1, 0).

First we note that a fundamental domain always contains a ”representative”
for each extreme point of X .

Theorem 1. Let x ∈ Ext(X). For any ordering vector c, the there exists a
g ∈ G such that φgx ∈ Ext(Fc).

Proof: This follows immediately from the definition of Fc since for each x ∈
Ext(X) must have at least one largest element in it’s orbit, ctφgx ∀g ∈ G, since
|G| is finite. QED

Note that, unlike orbitopes [5], there can exist extreme points of Fc which are
not integral. For example, consider the case with X = [0, 1]2 and G = Z2, where
φ1 inverts the first element of x, φ1 = (x1, x2) = (1 − x1, x2). Let c = (2, 1).
Then

Fc = {x ∈ X | 2x1 + x2 ≥ 2(1 − x1) + x2},
which implies that

Fc = {x ∈ X | x1 ≥ 1/2}
which has (1/2, 0) as an extreme point.

Note that a fundamental domain generated in this way need not be minimal.
For example, when c = 0 we get Fc = X . However, even if c is nontrivial, the
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fundamental domain need not be minimal. In fact, unless the ordering vector c
is chosen carefully, the fundamental domain will not be minimal.

First we show that there is a universal ordering vector ĉ which generates
minimal fundamental domains.

Theorem 2. Let ĉ = (2n−1, 2n−2, . . . , 2, 1) be the “universal ordering vector”.
Then Fĉ will be minimal.

Proof: First note that Fĉ contains a unique element of any orbit of an extreme
point. This follows because ĉ induces a lexicographic order on extreme points.

Next, we note that Fĉ must be full dimensional. i.e., the same dimension as
X . This is because Orb(Fĉ) = X and each Orb(x) contains a finite number of
points.

Suppose that for some point x ∈ Fĉ there exists some g ∈ G such that
ĉtφgx = ĉtx and φgx 	= x. However, this implies that the constraint from φg is
tight, so unless the constraint is trivial (0 ≥ 0) x will not be an interior point.

Since x ∈ X and X is convex, we can write x =
∑n+1

j=1 αjw
j where α ≥ 0,

∑n+1
j=1 αj = 1 and wj are all extreme points of x. Since φgx 	= x and φgx =
∑n+1

j=1 αjφgw
j , there exists at least one j such that wj 	= φgw

j , and call this
extreme point v.

Since ĉty 	= ĉty′ for any pair of extreme point y 	= y′ this implies that ĉtv 	=
ĉtφgv which implies that the constraint is not trivial, since φg is affine. QED

Note that the universal ordering vector ĉ requires O(n2) bits. Although, in many
cases, one can reduce the number of bits required, often c will require many bits,
a topic we discuss in Section 6.

3 Separation for the Cyclic and Symmetric Groups

Two of the most common groups arising is practice are the cyclic and symmetric
groups. The cyclic groups of order k are simply the additive group of integers
modulo k and are denoted by Zk. These are generated by a single element 1 ∈ Zk.
The most natural action can be most easily described by viewing x ∈ X as a
matrix with r rows and t ≥ k columns, where n = rt. Then the action of φ1 is
given by cyclicly rotating the first k columns of this matrix, i.e, the first column
becomes the second, the second becomes the third, column k−1 becomes column
k and column k becomes column 1. Let A = A1 be the matrix representation
of φ1 and note that b1 = 0 . Since |G| = n the fundamental domain can be
concisely represented by

Fc = {x ∈ X | ctx ≥ ctM jx j = 1..k − 1}

and clearly given a point x ∈ X but x 	∈ Fc one can find a separating hyperplane
by checking all k − 1 inequalities.

Theorem 3. For the cyclic group (as described above), given a point x ∈ X but
x 	∈ Fc one can find a separating hyperplane between x and Fc in O(nks) time
where s is the maximum number of bits in a component of c.
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The symmetric group is more complicated. As above, consider the vector x as a
matrix, but in this case the group Sk is the set of all permutations of k elements
and note that |G| = k! which is exponential in k. Now, the group action consists
of permutations of the first k columns of the matrix representation of x and the
fundamental domain requires k! additional inequalities. However, one can find a
separating hyperplane efficiently as follows.

For simplicity, assume that c > 0. Construct a bipartite graph where the one
set of vertices represent the current column ordering and the second set repre-
sents a permuted ordering. Let the value of an edge from i to j be the value
represent the inner product of c and the i’th column of x if it were the j’th
column. Then the maximum matching gives the optimal permutation. The sepa-
rating hyperplane is simply given by the constraint related to this permutation.
Since a maximum matching can be computed k3 operations, we have proven the
following theorem.

Theorem 4. For the symmetric group action (as described above), given a point
x ∈ X but x 	∈ Fc one can find a separating hyperplane between x and Fc in
O(nk3s) time where s is the maximum number of bits in a component of c.

Note that if we use the universal ĉ = (2n−1, . . . , 1) then the time to find a
separating hyperplane for the cyclic group is O(n2k) while the time for the
symmetric group is O(n2k3). We note that this appears to be slower than the
time required to compute a separating hyperplane for the related orbitopes [5].

4 Partitioning, Packing, Covering and Relations to
Orbitopes

Now we discuss some important applications in which symmetry arises. Consider
an optimization problem where there are r objects which must be put into k
groups. Let xij be the variable that indicates that item i is in group j. Thus,
the j’th column identifies the elements that are in group j. Problems can then
be classified into three classes: partitioning (in which each item is in exactly
one group), packing (in which each item is in at most one group), and covering
(where each item is in at least one group).

When groups are identical, as in many combinatorial graph theory problems
(such as coloring or partitioning), the IP is invariant under the full symmetry
group of column permutations. Thus, our results from the previous section pro-
vide polynomial representations that remove much of the redundancy in the
natural formulations.

However, in periodic scheduling problems, the same matrices arise but are
only invariant under the cyclic group.

These problems are the subject of study by Kaibel and Pfetch [5] and the
motivation behind orbitopes. Orbitopes are constructed by taking the convex
hull of the set of x ∈ Ext(X) which are maximal under the lexicographic order-
ing. While orbitopes are more refined than minimal fundamental domains, their
analysis is significantly more complicated. In particular, the orbitopes for the
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covering problems appear to be quite complex and their explicit construction is
not known. However, as can be seen from the analysis in the previous sections,
the minimal fundamental domains can be easily characterized in all of these
cases.

In fact, given the simplicity of their construction, our analysis easily extends
to a wide variety of group actions.

5 Products of Groups

In this section we show that our analysis can be easily extended to special cases
involving products of groups.

Given a group G and with a group action φG
g define the null space of the

action to be the set of indices for which

(φG
g x)i = xi ∀g ∈ F, x ∈ X.

Define the active space of the action to be the complement of the null space.
Now consider a second group action, H, φH such that the active space of H

does not intersect the active space of G. The if we define the product action
GH, φGH where GH is the direct product of the two groups, so an element of
GH is the pair (g, h) with g ∈ G and h ∈ H . The action is then given by
φGH

(g,h) = φG
g φH

h and note that this is equal to φH
h φG

g since the actions φG and φH

must commute.
Then, the fundamental domain of the product action is simply the intersection

of the fundamental domains and thus the required number of constraints in only
(|G| − 1) + (|H | − 1) instead of (|G| − 1)(|H | − 1).

Theorem 5. If active spaces of a set of group actions do not intersect then the
fundamental domain of the product action is the intersection of the fundamental
domains of the individual actions.

For example, in the case where pairs of groups {(1, 2), (3, 4) · · · , (n − 1, n)} are
interchangeable, the product action has 2n/2 constraints while the representation
of the fundamental domain only requires n/2 constraints using the above result.

It appears that non-intersection of the group actions, although quite stringent,
is necessary for these simplifications. One natural conjecture, that commutativity
of the group actions is sufficient can be seen to be false from the following
example.

Consider X = [0, 1]2 and the action of G is interchanging the two components,
φG

1 (x1, x2) = (x2, x1) while H flips both bits, φH
1 (x1, x2) = (1 − x1, 1 − x2). It

is easy to see that the two group actions commute; However, the constraints for
the two fundamental domains when taken separately with c = (2, 1) are:

G : 2x1 + x2 ≥ x1 + 2x2 → x1 ≥ x2

H : 2x1 + x2 ≥ 2(1 − x1) + (1 − x2) → 4x1 + 2x2 ≥ 3
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However, the constraint for the joint action, φGH
(1,1) is

2x1 + x2 ≥ 2(1 − x2) + (1 − x1) → x1 + x2 ≥ 1

which removes additional points from the intersection of the two separate group
actions.

6 Choosing Ordering Vectors

The universal ordering vector ĉ requires O(n) bits which can be problematic for
standard IP solvers. Consider the full symmetric group on X ⊆ [0, 1]n. Since a
permutation preserves the number of zero elements, c = (n − 1, n − 2, . . . , 1, 0)
is the smallest ordering vector such that Fc is minimal.

However, for the symmetric group operating by exchanging groups of ele-
ments, as discussed in Section 3, the ordering vector must be significantly larger
in order to get a minimal fundamental domain.

Theorem 6. Let X ⊆ [0, 1]rt and assume that some element of the group G
acts on X by exchanging the any two columns of the matrix xij ∈ X. If c ≥ 0 is
an integral vector and maxi|ci| < 2r+1/r then Fc is not minimal.

Proof: Assume that g ∈ G acts on X by exchanging the first two columns. Then
consider x ∈ X such that the two exchangeable columns of x differ. In order
for Fc to be minimal it must be true that ctx 	= ctx′ where x′ is generated by
exchanging the two exchangeable columns of x. Thus, all sums of subsets of the
r elements corresponding to the first exchangeable column must differ from all
sums from the second set of r elements. Since there are 2r possible subsets, there
must be at least 2 ∗ 2r possible values for the sums. Thus, there must be some
sum which is greater than 2 ∗ 2r which implies that there is an element of size
2 ∗ 2r/r. QED

A similar argument yields an exponential bound for the cyclic group; however,
in many cases it might make more sense to choose c with smaller entries, and
use non-minimal fundamental domains. For example, a simple random choice
of c, while not yielding a minimal fundamental domain, still significantly re-
duces the number of symmetric copies of any extreme point, which could lead
to computational savings.

7 Conclusions

We have provided a direct method for finding a minimal fundamental domain
for a group action on a binary polytope. We note that our method can be easily
extended to arbitrary polytopes and group actions. The only impediment to
complete generality is the need to find separating hyperplanes, which might not
be efficiently computable in some cases.
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While this problem is of theoretical interest, it remains to be seen whether it
is of practical value in solving real integer programs. However, recent results on
the use symmetries in solving packing and partitioning problems [4,9], suggest
fundamental domains might prove useful.
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Abstract. We discuss fast exponential time exact algorithms for gen-
eralized combinatorial optimization problems. The list of discussed NP-
complete generalized combinatorial optimization problems includes the
generalized minimum spanning tree problem, the generalized subset as-
signment problem and the generalized travelling salesman problem.

Keywords: generalized combinatorial optimization problems, exact al-
gorithms, dynamic programming.

1 Introduction

Classical combinatorial optimization problems can be generalized in a natural
way by considering a related problem relative to a given partition of the nodes
of the graph into node sets.

In the literature one finds generalized problems such as the generalized min-
imum spanning tree problem, the generalized travelling salesman problem, the
generalized Steiner tree problem, the generalized (subset) assignment problem,
etc. These generalized problems typically belong to the class of NP-complete
problems, are harder than the classical ones and nowadays are intensively stud-
ied due to the interesting properties and applications in the real world.

Every NP-complete problem can be solved by exhaustive search. Unfortu-
nately, when the size of the instances grows the running time for exhaustive
search soon becomes very large, even for instances of rather small size. For some
problems it is possible to design exact algorithms that are significantly faster
than the exhaustive search, though still not polynomial time.

In this paper we present such fast exact algorithms that solve some NP-
complete generalized combinatorial optimization problems.

Nowadays, there is a growing interest in the design and analysis of such fast
exact algorithms because fast algorithms with exponential running time may
lead to practical algorithms, at least for moderate size.

The techniques that we are using in order to provide exact algorithms for
the generalized combinatorial optimization problems are dynamic programming
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combined with a local-global approach for the generalized minimum spanning
tree problem, the local-global approach for the generalized subset assignment
problem and the construction of a layered network for the generalized travelling
salesman problem.

2 The Generalized Minimum Spanning Tree Problem

The minimum spanning tree (MST) problem can be generalized in a natural way
by considering instead of nodes set of nodes (clusters) and asking for a minimum
cost tree spanning exactly one node from each cluster. This problem is called the
generalized minimum spanning tree problem (GMSTP) and it was introduced by
Myung et al. [13]. The MST is a special case of the GMSTP where each cluster
consists of exactly one node.

Meanwhile, the GMSTP have been studied by several authors w.r.t. heuristics
and metaheuristics, LP-relaxations, polyhedral aspects and approximability, cf.,
e.g. Feremans, Labbe, and Laporte [4], Feremans [3], Pop, Kern and Still [17,18]
and Pop [14,15].

Two variants of the generalized minimum spanning tree problem were consid-
ered in the literature: one in which in addition to the cost attached to the edges,
we have costs attached also to the nodes, called the prize collecting generalized
minimum spanning tree problem see [16] and the second one consists in finding
a minimum cost tree spanning at least one node from each cluster, denoted by
L-GMSTP and introduced by Dror et al. [2]. The same authors have proven that
the L-GMSTP is NP-hard.

Let G = (V, E) be an n-node undirected graph and V1, . . . , Vm a partition of
V into m subsets called clusters (i.e., V = V1∪V2∪. . .∪Vm and Vl∩Vk = ∅ for all
l, k ∈ {1, . . . , m} with l 	= k). We assume that edges are defined between all nodes
which belong to different clusters. We denote the cost of an edge e = (i, j) ∈ E
by cij or by c(i, j) and the costs of the edges are chosen integers.

The generalized minimum spanning tree problem asks for finding a minimum-
cost tree T spanning a subset of nodes which includes exactly one node from
each cluster Vi, i ∈ {1, . . . , m}. We will call such a tree a generalized spanning
tree.

In [13], it is proved that the GMSTP is NP-hard. A stronger result was
presented in [15], namely the generalized minimum spanning tree problem even
defined on trees is NP-hard.

The proof of this result is based on a polynomial reduction of the set covering
problem, which is known to be NP-hard (see for example [8]), to the GMSTP
defined on trees.

Let G′ be the graph obtained from G after replacing all nodes of a cluster Vi

with a supernode representing Vi. We will call the graph G′ the global graph.
For convenience, we identify Vi with the supernode representing it. Edges of the
graph G′ are defined between each pair of the graph vertices {V1, ..., Vm}.

The local-global approach to the generalized minimum spanning tree problem
aims at distinguishing between global connections (connections between clusters)
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Fig. 1. Example showing a generalized spanning tree in the graph G = (V, E)

Fig. 2. Example showing a generalized spanning tree corresponding to a global span-
ning tree

and local connections (connections between nodes from different clusters). As we
will see, having a global tree connection of the clusters it is rather easy to find
the corresponding best (w.r.t. cost minimization) generalized spanning tree.

There are several generalized spanning trees corresponding to a global span-
ning tree. Between these generalized spanning trees there exists one called the
best generalized spanning tree (w.r.t. cost minimization) that can be determined
either by dynamic programming or by solving a linear integer program [18].

3 An Exact Algorithm for the Generalized Minimum
Spanning Tree Problem

In this section, we present an algorithm that finds an exact solution to the GMST
problem based on dynamic programming.

Given a spanning tree of the global graph G′, which we shall refer to as a global
spanning tree, we use dynamic programming in order to find the corresponding
best (w.r.t. cost minimization) generalized spanning tree.

Fix an arbitrary cluster Vroot as the root of the global spanning tree and orient
all the edges away from vertices of Vroot according to the global spanning tree. A
directed edge 〈Vk, Vl〉 of G′, resulting from the orientation of edges of the global
spanning tree defines naturally an orientation 〈i, j〉 of an edge (i, j) ∈ E where
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i ∈ Vk and j ∈ Vl. Let v be a vertex of cluster Vk for some 1 ≤ k ≤ m. All such
nodes v are potential candidates to be incident to an edge of the global spanning
tree. On the graph G, we denote by T (v) the subtree rooted at such a vertex v
from G; T (v) includes all vertices reachable from v under the above orientation
of the edges of G based on the orientation of the edges of the global spanning
tree. The children of v ∈ Vk, denoted by C(v), are those vertices u ∈ Vl which
are heads of the directed edges 〈v, u〉 in the orientation. The leaves of the tree
are those vertices that have no children.

Let W (T (v)) denote the minimum weight of a generalized subtree rooted at
v. We want to compute

min
r∈Vroot

W (T (r)).

We are now ready for giving the dynamic programming recursion to solve the
subproblem W (T (v)). The initialization is:

W (T (v)) = 0, if v ∈ Vk and Vk is a leaf of the global spanning tree.

To compute W (T (v)) for an interior to a cluster vertex v ∈ V , i.e., to find
the optimal solution of the subproblem W (T (v)), we have to look at all vertices
from the clusters Vl such that C(v) ∩ Vl 	= ∅. If u denotes a child of the interior
vertex v, then the recursion for v is as follows:

W (T (v)) =
∑

l,C(v)∩Vl 
=∅
min
u∈Vl

[c(v, u) + W (T (u))].

Hence, for fixed v we have to check at most n vertices. Consequently, for the
given global spanning tree, the overall complexity of this dynamic programming
algorithm is O(n2). Since by Cayley’s formula, the number of all distinct global
spanning trees is mm−2, we have established the following.

Theorem 1. There exists a dynamic programming algorithm which provides an
exact solution to the generalized minimum spanning tree problem in O(mm−2n2)
time, where n is the number of nodes and m is the number of clusters in the
input graph.

Clearly, the above is an exponential time algorithm unless the number of clusters
m is fixed.

Remark 1. A similar dynamic programming algorithm can provide an exact so-
lution to the prize collecting generalized minimum spanning tree problem with
the difference that the dynamic programming recursion to solve the subproblem
W (T (v)) for a node v ∈ G should be considered as follows:

W (T (v)) =
∑

l,C(v)∩Vl 
=∅
min
u∈Vl

[c(v, u) + d(u) + W (T (u))],

where by d(u) we denoted the cost associated to the node u.
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4 The Generalized Subset Assignment Problem

First, we present the classical Assignment Problem (AP). In this problem we are
asking to minimize the total cost of assigning n workers to n tasks, where each
worker has his own pay-scale associated with each task. No worker is allowed
to perform more than one task and no task can be executed by more than one
worker.

A polynomial time solution for the assignment problem of complexity O(n3)
(the so-called Hungarian method) is credited to Kuhn [9].

Traditionally, in the literature (see for instance Fisher et al. [7]), the name
Generalized Assignment Problem is associated with the problem of finding the
minimum-cost assignment of n jobs to m agents such that each job is assign to
one and only one agent subject to capacity constraints on the agents.

With respect to our definition of generalized combinatorial optimization prob-
lems, we assume instead of single workers a grouping of workers into subsets of
skill categories. In addition, we assume that the tasks are also grouped into sub-
sets of job categories and each worker from each group has his own pay-scale
associated with each task in each of the task categories. More formally, let Ik,
1 ≤ k ≤ n be the grouping of skills (worker) categories and Jl, 1 ≤ l ≤ n be the
grouping of task categories. Now the problem is no longer to match one worker to
one job, but has to minimize the total cost of selecting exactly one worker from
each group of workers to cover exactly one task from each of the task categories.

This problem version is called the generalized subset assignment problem.
Clearly, when each worker is an individual category and each task is an in-
dividual, the problem reduces to the classical assignment problem.

In [1], it is proved that the problem is NP-hard. The proof of this result
is based on a polynomial reduction of the SATISFIABILITY problem, which is
known to be NP-hard (see for example [8]), to the generalized subset assignment
problem.

In the case of the generalized subset assignment problem, based on the local-
global approach defined in Section 2, an exact algorithm can be easily derived.

The idea is to replace all the workers corresponding to a skill category Ik with
a supernode representing Ik, 1 ≤ k ≤ n and all the tasks corresponding to a job
category Jl with a supernode representing Jl, 1 ≤ l ≤ n. In this case the global
graph G′ will be a bipartite graph. The number of all distinct global assign-
ments is n!. The best generalized subset assignment (w.r.t. cost minimization)
corresponding to a global assignment is obtained by taking the worker from each
group with smallest pay-scale associated with a task from the task categories,
i.e. if there is a global assignment between supernodes Ik and Jl then we choose
the worker from the group Ik with minimum cost associated to a task which
belongs to the task category Jl.

5 The Generalized Travelling Salesman Problem

The generalized travelling salesman problem (GTSP), introduced by Laporte
and Nobert [11] and by Noon and Bean [12] is defined on a complete undirected
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graph G whose nodes are partitioned into a number of subsets (clusters) and
whose edges have a nonnegative cost. The GTSP asks for finding a minimum-
cost Hamiltonian tour H in the subgraph of G induced by S, where S ⊆ V such
that S contains at least one node from each cluster.

A different version of the problem called E-GTSP arises when imposing the
additional constraint that exactly one node from each cluster must be visited.

Both problems GTSP and E-GTSP are NP-hard, as they reduce to travelling
salesman problem when each cluster consists of exactly one node.

The GTSP has several applications to location problems, telecommunication
problems, railway optimization, etc. More information on these problems and
their applications can be found in Fischetti, Salazar and Toth [5,6], Laporte,
Asef-Vaziri and Sriskandarajah [10], Laporte and Nobert [11]. It is worth to
mention that Fischetti, Salazar and Toth [6] solved the GTSP to optimality for
graphs with up to 442 nodes using a branch-and-cut algorithm.

Let G = (V, E) be an n-node undirected graph whose edges are associated with
non-negative costs. We will assume w.l.o.g. that G is a complete graph (if there
is no edge between two nodes, we can add it with an infinite cost). Let V1, ..., Vp

be a partition of V into m subsets called clusters (i.e. V = V1 ∪ V2 ∪ ...∪ Vp and
Vl ∩ Vk = ∅ for all l, k ∈ {1, ..., p}). We denote the cost of an edge e = {i, j} ∈ E
by cij or by c(i, j). Let e = {i, j} be an edge with i ∈ Vl and j ∈ Vk. If l 	= k the
e is called an inter-cluster edge; otherwise e is called an intra-cluster edge.

The generalized travelling salesman problem (E-GTSP) asks for finding a
minimum-cost tour H spanning a subset of nodes such that H contains exactly
one node from each cluster Vi, i ∈ {1, ..., p}.

We will call such a cycle a Hamiltonian tour. An example of a Hamiltonian
tour for a graph with the nodes partitioned into 6 clusters is presented in the
next figure.

Fig. 3. Example of a Hamiltonian tour

The E-GTSP involves two related decisions:

– choosing a node subset S ⊆ V , such that |S ∩ Vk| = 1, for all k = 1, ..., p.
– finding a minimum cost Hamiltonian cycle in the subgraph of G induced

by S.
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6 An Exact Algorithm for the Generalized Travelling
Salesman Problem

In this section, we present an algorithm that finds an exact solution to the
generalized travelling salesman problem.

Given a sequence (Vk1 , ..., Vkp) in which the clusters are visited, we want to
find the best feasible Hamiltonian tour H∗ (w.r.t cost minimization), visiting
the clusters according to the given sequence. This can be done in polynomial
time, by solving |Vk1 | shortest path problems as we will describe below.

We construct a layered network, denoted by LN, having p + 1 layers corre-
sponding to the clusters Vk1 , ..., Vkp and in addition we duplicate the cluster
Vk1 . The layered network contains all the nodes of G plus some extra nodes
v′ for each v ∈ Vk1 . There is an arc (i, j) for each i ∈ Vkl

and j ∈ Vkl+1

(l = 1, ..., p−1), having the cost cij and an arc (i, h), i, h ∈ Vkl
, (l = 2, ..., p) hav-

ing cost cih. Moreover, there is an arc (i, j′) for each i ∈ Vkp and j′ ∈ Vk1 having
cost cij′ .

Fig. 4. Example showing a Hamiltonian tour in the constructed layered network LN

For any given v ∈ Vk1 , we consider paths from v to v′, w′ ∈ Vk1 , that visits
exactly one node from each cluster Vk2 , ..., Vkp , hence it gives a feasible Hamil-
tonian tour.

Conversely, every Hamiltonian tour visiting the clusters according to the se-
quence (Vk1 , ..., Vkp) corresponds to a path in the layered network from a certain
node v ∈ Vk1 to w′ ∈ Vk1 .

Therefore, it follows that the best (w.r.t cost minimization) Hamiltonian tour
H∗ visiting the clusters in a given sequence can be found by determining all
the shortest paths from each v ∈ Vk1 to the corresponding v′ ∈ Vk1 with the
property that visits exactly one node from each of the clusters (Vk2 , ..., Vkp).

The overall time complexity is then |Vk1 |O(m + log n), i.e. O(nm + nlogn) in
the worst case, where by m in this problem we denoted the number of edges. We
can reduce the time by choosing |Vk1 | as the cluster with minimum cardinality.
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Notice that the above procedure leads to an O((p − 1)!(nm + nlogn)) time
exact algorithm for the GTSP, obtained by trying all the (p−1)! possible cluster
sequences. So, we have established the following result:

Theorem 2. The above procedure provides an exact solution to the generalized
travelling salesman problem in O((p − 1)!(nm + nlogn)) time, where n is the
number of nodes, m is the number of edges and p is the number of clusters in
the input graph.

Clearly, the algorithm presented, is an exponential time algorithm unless the
number of clusters p is fixed.

7 Conclusions

In this paper we present fast exponential time exact algorithms for generalized
combinatorial optimization problems. The list of discussed NP-complete gener-
alized combinatorial optimization problems includes the generalized minimum
spanning tree problem, the generalized subset assignment problem and the gen-
eralized travelling salesman problem. The techniques that we are using in order
to provide exact algorithms are dynamic programming combined with a local-
global approach to the generalized combinatorial optimization problems.

References

1. Dror, M., Haouari, M.: Generalized Steiner Problems and Other Variants. Journal
of Combinatorial Optimization 4, 415–436 (2000)

2. Dror, M., Haouari, M., Chaouachi, J.: Generalized Spanning Trees. European Jour-
nal of Operational Research 120, 583–592 (2000)

3. Feremans, C.: Generalized Spanning Trees and Extensions, PhD thesis, Universite
Libre de Bruxelles, Belgium (2001)

4. Feremans, C., Labbe, M., Laporte, G.: A Comparative Analysis of Several For-
mulations of the Generalized Minimum Spanning Tree Problem. Networks 39(1),
29–34 (2002)

5. Fischetti, M., Salazar, J.J., Toth, P.: The symmetric generalized traveling salesman
polytope. Networks 26, 113–123 (1995)

6. Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Research 45, 378–394 (1997)

7. Fisher, M.L., Jaikumar, R., van Wassenhove, L.N.: A multiplier adjustment method
for generalized assignment problem. Management Science 32/9, 1095–1103 (1986)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory
of NP-Completeness. Freeman, San Francisco, California (1979)

9. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistic Quarterly 2, 83–97 (1955)

10. Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the general-
ized traveling salesman problem. J. Oper. Res. Soc. 47, 1461–1467 (1996)

11. Laporte, G., Nobert, Y.: Generalized Traveling Salesman through n sets of nodes:
an integer programming approach. INFOR 21, 61–75 (1983)



162 P.C. Pop et al.

12. Noon, C.E., Bean, J.C.: A Lagrangian based approach for the asymmetric gener-
alized traveling salesman problem. Operations Research 39, 623–632 (1991)

13. Myung, Y.S., Lee, C.H., Tcha, D.w.: On the Generalized Minimum Spanning Tree
Problem. Networks 26, 231–241 (1995)

14. Pop, P.C.: The Generalized Minimum Spanning Tree Problem, PhD thesis, Uni-
versity of Twente, The Netherlands (2002)

15. Pop, P.C.: New Models of the Generalized Minimum Spanning Tree Problem. Jour-
nal of Mathematical Modelling and Algorithms 3(2), 153–166 (2004)

16. Pop, P.C.: On the Prize-Collecting Generalized Minimum Spanning Tree Problem.
In Annals of Operations Research (to appear)

17. Pop, P.C., Kern, W., Still, G.: Approximation Theory in Combinatorial Optimiza-
tion. Application to the Generalized Minimum Spanning Tree Problem, Revue
d’Analyse Numerique et de Theorie de l’Approximation, Tome 34(1), 93–102 (2005)

18. Pop, P.C., Kern, W., Still, G.: A New Relaxation Method for the Generalized
Minimum Spanning Tree Problem. European Journal of Operational Research 170,
900–908 (2006)

19. Yannakakis, M.: Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences 43, 441–466 (1991)



Approximation Algorithms for k-Duplicates
Combinatorial Auctions with Subadditive

Bidders

Wenbin Chen and Jiangtao Meng

Department of Computer Science, Nanjing University of Aeronautics and
Astronautics, Nanjing 210016, P.R. China

cwbiscas@yahoo.com, globangrilion@yahoo.com

Abstract. In this paper, we study the problem of maximizing welfare in
combinatorial auctions with k duplicates of each item, where bidders are
subadditive. We present two approximation algorithms for k-duplicates
combinatorial auctions with subadditive bidders. First, we give a factor-
O(

√
m) approximation algorithm for k-duplicates combinatorial auctions

with subadditive valuations using value queries. This algorithm is also
incentive compatible. Secondly, we give a factor-O(log m) approxima-
tion algorithm for k-duplicates combinatorial auctions with subadditive
valuations using demand queries.

1 Introduction

We consider the allocation problem in combinatorial auctions with k-duplicates
of of each item. In a combinatorial auction, a set M of m items is sold to n
bidders. Every bidder i has a valuation function vi : 2M → R+. We suppose that
the valuation is monotone, which means for every two bundles S, T, S ⊆ T ⊆ M
such that v(S) ≤ v(T ), and normalized v(∅) = 0. The goal is to find a partition
(S1, . . . , Sn) of the m items that maximizes the total utility of social welfare,
i.e., Σivi(Si) is maximized. We call such an allocation an optimal allocation.

The k-duplicates combinatorial auction is the generalization of a combina-
torial auction (where k = 1), which is the allocation problem in combinatorial
auctions by allowing k-duplicates of of each item. In the k-duplicates combina-
torial auction, every bidder is still interested in at most one unit of each item
and every valuation is still defined on the subsets of M .

Notice that the size of the ”input” is exponential in m (since each vi is de-
scribed by 2m real numbers). Thus, we are interested in algorithms that are
polynomial time in m and n. Since the size of the input is exponential, we sup-
pose that we have oracles for accessing it. Two common types of query methods
have been considered. One common type of queries is the “value queries” , which
answers v(S) for a valuation v given a bundle of S. From a ”computer science”
perspective, the kind of query is very natural. Another kind of query is the
“demand queries”. Given a vector p = (p1, . . . , pm) of item prices, a demand
query replies a set that maximizes the profit, i.e. maximizes vi(S) − Σj∈Spj .

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 163–170, 2007.
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Demand queries are very natural from an economic point of view. It is known
that demand queries can simulate values queries in polynomial time [3].

For general utility functions, the combinatorial auction problem is NP-hard.
If value queries are used, it has been shown that there are no polynomial time
algorithms with an approximation factor better than O( log m

m ) in [3]. It has also
been shown that there are no polynomial time algorithms with an approximation
factor better than O( 1

m1/2−ε ) even for single minded bidders in [11] and [14]. In
[13], it is shown than achieving any approximation factors better than O( 1

m1/2−ε )
requires exponential communication if demand queries are used. In [6], more
results on the combinatorial auction problems with general utilities can be found.

In this paper we study the important cases where all bidders are known
to have subadditive valuations. A valuation is called subadditive ( also called
complement-free) if v(S ∪ T ) ≤ v(S) + v(T ) for all S, T ⊆ M ;

It is still NP-hard for the allocation problem with subadditive utility functions.
In [7], a O(log m) approximation algorithm is given for combinatorial auctions
with subadditive utility function if demand queries are used and an incentive
compatible O(

√
m) approximation algorithm is also given if value queries are

used. Recently, Feige improve the approximation ratio to 2 in [9]. As for negative
results, it is shown that achieving an approximation ratio better than 2 require
for an exponential amount of communication in [7]. In [9], it is shown that it
is NP-hard to approximate the maximum welfare within a factor 2 − ε unless
P = NP , when bidders are subadditive.

For multi-unit combinatorial auctions, an incentive compatible mechanisms
is given in [2]. In particular, this includes the case where each good has ex-
actly k units, i.e. k-duplicates combinatorial auctions. For k-duplicates combi-
natorial auctions, Dobzinski and Schapira give a polynomial time approxima-
tion algorithm obtaining min{n

k , O(m
1

k+1 )} approximation ratio using demand
queries in [8], and show that exponential communication is required for achiev-
ing an approximation ratio better than min{n

k , O(m
1

k+1−ε)}, where ε > 0. In
the same paper, they also give an algorithm that achieves an approximation
ratio of O( m√

log m
) using only a polynomial number of value queries and show

that it is impossible to approximate a k-duplicates combinatorial auction to a
factor of O( m

log m ) using a polynomial number of value queries. They studied the
case where all valuations are general utility functions. The case about subaddi-
tive and submodular valuations are studied in [4]. In [4], it is shown that it is
NP-hard to approximate the maximum welfare for k-duplicates combinatorial
auctions with subadditive bidders within a factor of 2 − ε where ε > 0 unless
P = NP . It is also shown that for any ε > 0, any (2 − ε)-approximation algo-
rithm for a k-duplicates combinatorial auction with subadditive bidders requires
an exponential amount of communication. A 2-approximation algorithm for k-
duplicates combinatorial auctions with submodular bidders is also given in [4].
For k-duplicates combinatorial auctions with subadditive, they didn’t study the
approximation algorithm. In this paper, we give two approximation algorithms
about k-duplicates combinatorial auctions with subadditive valuations.
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Our Result

In this paper, we exhibit some upper approximation bounds for k-duplicates
combinatorial auctions with subadditive valuations. First, we give a O(

√
m) ap-

proximation algorithm for k-duplicates combinatorial auctions with subadditive
valuations using value queries. The approximation ratio improve on the upper
bound O( m√

log m
) for general valuations [8]. This algorithm is also incentive com-

patible. Secondly, we give a O(log m) approximation algorithm for k-duplicates
combinatorial auctions with subadditive valuations using demand queries. Thus,
when min{n

k , O(m
1

k+1 )} ≥ log m, our approximation algorithm is better than
that for general valuations [8].

Structure of the Paper

In section 2, we propose a O(
√

m) approximation algorithm for k-duplicates com-
binatorial auctions with subadditive valuations using value queries. In section 3
we present a O(log m)-approximation algorithm for k-duplicates combinatorial
auctions with subadditive valuations using demand queries. Finally, in section 4
we present some conclusions and some open problems.

2 A O(
√

m) Approximation Algorithm for Subadditive
Valuations with Value Queries

In this section we propose a O(
√

m) approximation algorithm that is incen-
tive compatible for k-duplicates combinatorial auctions in which all valuations
are submadditive, which extends the algorithm of [7]. The approximation ratio
improve on the upper bound O( m√

log m
) for general valuations [8].

First we give the definition of b-matching problem. We adopt the defini-
tion in [15]. Let G = (V, E) be a graph, where V is the set of nodes and
E is the set of edges. Each e ∈ E is assigned a real number cost we. Let
b = ((l1, b1), (l2, b2), · · · , (l|V |, b|V |)), where bi’s are integers and li equals bi or
0 (1 ≤ i ≤ |V |). A b-matching is a set M ⊆ E such that the number of edges
incident with i is no more than bi and no less than li. The value of a b-matching
is the sum of costs of its edges, i.e. Σe∈Mwe. The b-matching problem is to find
a b-matching of maximum value.

In the following, we describe the approximation algorithm.

Input: The input is given as a set of n value oracles for the n valuations vi.

Output: An allocation S1, . . . , Sn which is an O(
√

m) approximation to the
optimal allocation.

The Algorithm:

1. Query each bidder i for vi(M), for vi({j}), for each item j.
2. Construct a bipartite graph by defining a vertex aj for each item j, and a

vertex bi for each bidder i. Let the set of edges be E = ∪i∈N,j∈M (aj , bi).
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Define the cost of each edge (aj , bi) to be vi({j}). Compute the maximum
b-matching |P | in the graph. The pair of b values of a node aj associated
with the item j will be (k, k). The b value of a vertex bi will be (0, m).

3. Let I ⊆ {1, . . . , n} be the set of indices of the k bidders who offer the highest
bids on M . If Σi∈Ivi(M) is higher than the value of |P |, allocating all items
to each bidder in I. Otherwise, for each edge (aj , bi) ∈ P allocate the jth
item to the ith bidder.

4. Let each bidder pay his VCG price.

In the following we give the analysis of the algorithm, which extends the analysis
of theorem 2.2 of [7].

Lemma 1. If x1 ≥ x2 · · · ≥ xr, then x1+···xk

k ≥ x1+···xr

r for 1 ≤ k ≤ r.

Proof: Since x1 ≥ x2 · · · ≥ xk ≥ xk+1, x1 + x2 + · · · + xk ≥ kxk+1. So (k +
1)(x1 + x2 + · · · + xk) ≥ k(x1 + x2 + · · · + xk + xk+1). Thus x1+x2+···+xk

k ≥
x1+x2+···+xk+xk+1

k+1 . Since k is any integer, we get x1+x2+···+xk

k ≥ x1+x2+···+xk+xk+1
k+1

≥ x1+x2+···+xk+xk+1+xk+2
k+2 ≥ · · · ≥ x1+···xr

r .

Theorem 5. The algorithm provides a O(
√

m) approximation to the optimal
allocation for k-duplicates combinatorial auctions in which all valuations are
subadditive valuations and is incentive compatible.

Proof: It is easy to know that the algorithm runs in polynomial time in n and
m: firstly, finding the maximal b-matching is solved in polynomial time in m and
n ([1] and [5]). Secondly, the calculation of the VCG prices requires solving only
an additional auction for each of the bidders. Since these additional auctions are
smaller in size (one bidder less), and thus can also be done in polynomial time.

Let us now prove that the algorithm obtains the desired approximation ratio.
Let {T1, . . . , Tr, Q1, . . . , Ql} denote the optimal allocation OPT , where for

each 1 ≤ t ≤ r, |Tt| ≥
√

m, and for each q, 1 ≤ q ≤ l, Qq ≤
√

m. Let |OPT | =
Σr

t=1vt(Tt) + Σl
q=1vq(Qq).

Firstly, we consider the case where Σr
t=1vt(Tt) ≥ |OPT |

2 . Let I ⊆ [r] be the
set of indices of the k bidders who offer the highest bids on M . Since r

√
m ≤

Σr
t=1|Tt| ≤ mk, r ≤ mk√

m
. Thus Σi∈Ivi(M)/k ≥ Σr

i=1vi(M)/r ≥ Σr
i=1vi(Ti)/r ≥

|OPT |/2
mk/

√
m

. So Σi∈Ivi(M) ≥ |OPT |
2
√

m
. Thus, by allocating all items to each bidder in

I we get the desired approximation ratio.
The second case is when Σl

q=1vq(Qq) > |OPT |
2 . For each i, 1 ≤ i ≤ l, let ci=arg

maxj∈Qivi({j}). By the subadditive property: |Qi|vi({ci}) ≥ Σj∈Qivi({j})
≥ vi(Qi). Thus vi({ci}) ≥ vi(Qi)

|Qi| . Since |Qi| <
√

m for all i, we have that

Σl
i=1vi(ci) > Σivi(Qi)√

m
≥ |OPT |

2
√

m
. By assigning ci to bidder i we get an allocation

with a social welfare of Σl
i=1vi(ci) ≥ |OPT |

2
√

m
. Since Σl

i=1vi(ci) is less than the
value of the maximum b-matching |P | in the step 2 of above algorithm, the
second allocation also obtain the desired approximation ratio.
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Thus, the approximation ratio the algorithm produces is at least O(
√

m).
Incentive compatibility is guaranteed because of the use of the VCG prices.

3 A O(log m) Approximation Algorithm for Subadditive
Valuations with Demand Queries

In this section we propose a O(log m) approximation algorithm for k-duplicates
combinatorial auctions in which all valuations are submadditive, which extends
the algorithm of [7]. Thus, when min{n

k , O(m
1

k+1 )} ≥ log m, our approximation
algorithm is better than that for general valuations [8].

In the following, we describe the approximation algorithm.

Input: The input is given as a set of n demand oracles for the n valuations vi.

Output: An allocation T1, . . . , Tn which is an O(log m) approximation to the
optimal allocation.

The Algorithm: We first describe the basic steps of the algorithm and then
provide the details necessary for its implementation.

1. Solve the linear relaxation of the problem:
Maximize:Σi,Sxi,Svi(S) subject to:
(a) For each item j : Σi,S |j∈Sxi,S ≤ k
(b) For each bidder i : ΣSxi,S ≤ 1
(c) For each i, S : xi,S ≥ 0

2. Use randomized rounding to find a pre-allocation S1, . . . , Sn with the follow-
ing properties, where d = (1 + (c− 1) logm)k, and c > 0 is a constant to be
chosen later:
(a) Each item j appears at most d times in {Si}i, with j ∈ Si.
(b) Σivi(Si) ≥ 1

3 · (Σi,Sxi,Svi(S)).
3. For each bidder i, partition Si into a disjoint union Si = S1

i ∪ . . . ∪ Sk
i such

that for each 1 ≤ i1 < i2 ≤ n and 1 ≤ r ≤ k, it holds that Sr
i1
∩ Sr

i2
= ∅.

This is done as follows: for each i = 1, . . . , n and each r = 1, . . . , k, we let
Sr

i = {j ∈ Si|j appears in exactly r − 1 of the sets S1, . . . , Si−1}.
4. Find the r that maximizes Σivi(Sr

i ), and for each i allocate Sr
i to bidder

i, i + 1, . . . , (i + (k − 1)) mod n

Even though the linear program has an exponential number of variable, it is
shown in [13] and [3] that the linear program may be solved in polynomial time,
which is done by solving the dual linear program using the ellipsoid method.
The ellipsoid method requires a ”separation” oracle, and this may be directly
implemented using the demand oracles of the bidders.

The randomized rounding step is implemented as follows: For each bidder i we
independently choose a set Si by performing the following random experiment:
every set S is chosen with probability xi,S , and the empty set is chosen with
probability (1 − ΣSxi,S). If any of the required constraint is violated, then this
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stage is repeated from scratch. Using the generator of [12] as explained in [14],
this randomized step may be converted to be deterministic by derandomizing .

We show that Sr
i1 ∩Sr

i2 = ∅ for each 1 ≤ i1 < i2 ≤ n and 1 ≤ r ≤ k as follows.
By the definition of Sr

i1
, j appears in exactly r − 1 of the sets S1, . . . , Si1−1 and

j ∈ Si1 ,. Thus j appears in at least r of the sets S1, . . . , Si2−1. So, if j ∈ Sr
i1

then
j 	∈ Sr

i2 . Hence, Sr
i1 ∩ Sr

i2 = ∅.

Theorem 1. The algorithm produces an allocation that is a O(log m) approxi-
mation to the optimal allocation.

Proof: First, without loss of generality, we assume that maxi{vi(M)} = 1 (oth-
erwise we can simply divide all valuation by maxi{vi(M)}).

The first step of the algorithm returns the optimal fractional solution OPT ∗ =
Σi,Sxi,Svi(S), which is an upper bound on the value of the optimal allocation,
OPT .

We prove that with constant probability the second step produces an pre-
allocation {S1, . . . , Sn} in which Σivi(Si) ≥ 1

3 · OPT ∗.
We will require the following version of the Chernoff bounds:

Lemma 2 (Chernoff Bound). Let X1, . . . , Xn be independent Bernoulli trials
such that for 1 ≤ i ≤ n, Pr[Xi = 1] = pi. Then for X = X1 + · · · + Xn, μ ≤
p1 + · · · + pn, and any δ ≥ 2e − 1 we have:Pr[X > (1 + δ)μ] < 2−μδ.

For each j ∈ M , let Ej denote the random variable that indicates whether j
was allocated more than d times. Let B be the random variables that indicates
whether vi(Si) < 1

3 · OPT ∗. We will prove that Pr[∨jEj ∨ B] < 1.
Firstly, we show that Pr[∨jEj ] < 1

20 . The proof is similar to that in [7].
Fix an item j, let Zi,j be the random variable that determines whether j ∈ Si.

Obviously, its value is in {0, 1}. Because of the randomized rounding method we
used, we have that the variables {Zi,j}i are independent. We define Zj = ΣiZi,j

(i.e., Zj is the number of times item j appears in {Si}). By the linearity of
expectation and the first condition of the LP formulation, we have that E[Zj ] =
ΣiE[Zi,j ] = Σi,S |j∈Sxi,S ≤ k. We can now use the Chernoff bound, and choose
a c such that:

Pr[ item j appears in more than d bundles in {Si}]=Pr[Zj > (1 + (c −
1) log m)k] < 2−(c−1)k log m = 1

m(c−1)k < 1
20m (e.g. if (c−1)k ≥ 6, then m(c−1)k ≥

m6 > 20m).
By applying the union bound we get that the probability that any one of the

items appears in more than d bundles in {Si} is smaller than m · 1
20m = 1

20 .
In [7], it is shown that Pr[B] < 3

4 . In our case, the conclusion holds also.
Therefore, using the union bound: Pr[∨m

j=1Ej ∨B] ≤ Σj∈MPr[Ej ]+Pr[B] ≤
1
20 + 3

4 = 4
5 .

Since for each fixed i, Si = ∪rS
r
i and vi is subadditive, Σrvi(Sr

i ) ≥ vi(Si). By
summing over all i we get that ΣrΣivi(Sr

i ) = ΣiΣrvi(Sr
i ) ≥ Σivi(Si) ≥ 1

3 ·OPT ∗.
Since r is chosen that maximizes Σivi(Sr

i ) we get that Σivi(Sr
i ) ≥ OPT ∗

3k .
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Since for every fixed r, the sets {Sr
i }i are pairwise disjoint, thus the sets {Ti}

are a valid allocation. Since for each i, Sr
i ⊆ Ti, Σi(Ti) ≥ Σivi(Sr

i ) ≥ OPT ∗

3k .
Thus the allocation T1, . . . , Tn is an O(log m) approximation to the optimal

allocation.

4 Conclusion and Open Problems

In this paper, we exhibit some upper approximation bounds for k-duplicates
combinatorial auctions with subadditive valuations. We give an incentive com-
patible O(

√
m) approximation algorithm for k-duplicates combinatorial auctions

with subadditive valuations using value queries. We also give a O(log m) ap-
proximation algorithm for k-duplicates combinatorial auctions with subadditive
valuations using demand queries.

We conjecture that the O(log m) approximation ratio can be improved to 2.
Obtaining a truthful mechanisms with better approximation ratio is also inter-
esting open problem. The upper bound for k-duplicates combinatorial auctions
with XOS valuations is also unknown. The problem should be further studied.
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Abstract. Several features of today’s grid are based on centralized or
hierarchical services. However, as the grid size increasing, some of their
functions especially resource discovery should be decentralized to avoid
performance bottlenecks and guarantee scalability. A novel grid resource
discovery method based on adaptive k -Nearest Neighbors clustering is
presented in this paper. A class is formed by a collection of nodes with
some similarities in their characteristics, each class is managed by a
leader and consists of members that serve as workers. Resource requests
are ideally forwarded to an appropriate class leader that would then di-
rect it to one of its workers. This method can handle resource requests
by searching a small subset out of a large number of nodes by resource
clustering which can improve the resource query efficiency; on the other
hand, it also achieves well scalability by managing grid resources with
adaptive mechanism. It is shown from a series of experiments that the
method presented in this paper achieves more scalability and efficient
lookup performance than other existing methods.

1 Introduction

The goal of the grid [1] is to pool resources. Fast discovery of available resources
and efficient maintenance of resource states are key requirements for grids to
achieve optimal utilization of the system and to balance load among the par-
ticipating computers. Resources in grid are characterized as diverse, dynamic,
heterogeneous, and geographically distributed. The autonomy of resource own-
ers needs to be honored with their local management and usage policies. Each
node in grid has one or more resources with such features mentioned above, and
the task of grid resource discovery is to find such a node which satisfies all users’
requests. Therefore, it is challenging to develop efficient methods to discover grid
resource.

The desirable features of grid resource discovery method should be both scala-
bility and efficiency. To achieve scalability, resource discovery should not rely on
only a few centralized nodes, which could be potential performance and security
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bottleneck. To achieve efficiency, qualified resource providers should be located
rapidly without too much network and processing overhead.

In this paper we demonstrate a novel grid resource discovery method which
based on clustering algorithm to achieve the above features. In our method, a
class is formed by a collection of nodes with some similarities in their character-
istics, and each class is managed by a leader and consists of members that serve
as workers. Resource requests are firstly forwarded to an appropriate class leader
that would then direct them to one of its workers. By doing so, the efficiency of
grid resource discovery can be guaranteed. Ideally, the resources which requested
by users should be found with two hops.

In this paper, distributed mechanism is used when transferring messages
through different classes, and centralized mechanism is used to process query
in each class. Compared with centralized mechanism or decentralized respec-
tively, the strategy taken in this paper achieves more scalability and efficiency.
It is shown from a series of experiments that the method presented in this paper
receives high lookup performance.

The rest of this paper is organized as follows: in section 2, we introduce
the related work, in section 3 we introduce how to design the grid resource
discovery method in detail which is mentioned above, in section 4, we present
algorithms which are used in our method, and in section 5, the experimental
result is analyzed, finally, we conclude this paper in section 6.

2 Related Work

A lot of research and experimental work has been done on grid resource discovery.
And here, we will analyze and discuss some typical work.

Early grid resource discovery is based on centralized mechanism, Globus
Toolkit [2], Condor [3] and Legion [4] are the excellent examples. The MDS-
4 (Monitoring and Discovery Services) of Globus Toolkit provides a Web Service
Resource Framework (WSRF) [5] compliant implementation of the Index Ser-
vice, as well as novel mechanisms for delivering notifications in the presence of
events that match a set of specified rules (Trigger Service). Matchmaker in Con-
dor use a centre server to match the attributes in the user’s specification and
those in the service providers’ declaration. Such approach has a single point of
failure and scales poorly. In Legion, Collections, the information database, are
populated with resource description. The scheduler queries the Collection and
finds proper resource for applications. A few global Collections will prohibit the
scalability of the system.

With resolving problems that exist in centralized mechanisms, some researchers
prompt decentralized resource discovery methods. Iamnitchi [6] proposes resource
discovery based on an unstructured network similar to Gnutella combined with
more sophisticated query forwarding strategies taken from the Freenet network.
Requests are forwarded to one neighbor only based on experiences obtained from
previous requests, thus trying to reduce network traffic and the number of requests
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per peer compared to simple query flooding as used by Gnutella. The approach suf-
fers from higher numbers of required hops to resolve a query compared to our ap-
proach and provides no lookup guarantees. A grid resource discovery model based
on routing-forwarding is proposed and analyzed in [7]. The model may suffer from
scalability problem because all the resource routers are equal peers and resource
routing information need to be propagated across the whole network.

3 Overview of the Method

3.1 Architecture

In order to form and maintain the class which consists of nodes and process
resource query, we design and implement a two-layer overlay network similar to
the architecture mentioned in paper [8]. The first layer consists of many leader
nodes, we call it upper layer, and the lower layer is a class, it consists of one leader
node and many worker nodes which belong to this leader node. In this two-layer
overlay network, each node has a link to all leader nodes, and each leader node
has a link to all of its own worker nodes, Fig.1 shows a visual representation
of the overlay network. There exist two extreme cases in the overlay network.
One is that there exists only one class in the grid, which is similar to typical
client/server structure; the other is each node forms a class, thus, all nodes in
grid form a complete connection graph. In this paper, the management of nodes
is based on the two extreme cases mentioned above. We design a similarity

Fig. 1. Two layers overlay network. The upper layer consists of leader nodes, and the
lower layer is a class.
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threshold to control the class number formed in grid, and this design is based
on two factors:

a) Communication cost load on leader node. If the class number is too small,
then the leader nodes of these classes should process superfluous load, which
may be performance bottleneck.

b) If there are too many classes in the grid, the cost for forming and maintaining
these classes would be large.

3.2 Components of Grid Resource Discovery

In this paper we take the clustering method shown as follows: firstly, we use
clustering algorithm to group the nodes already existed in grid into some classes.
Secondly, as nodes joining and leaving, the algorithm can adjust the formation
of class adaptively by class splitting and combination. The whole grid resource
discovery process is made up of three parts:

a) Publish resource information.
b) Form and maintain classes.
c) Handle resource query message.

The first part publishes the resource information of one node to its own leader
node periodically.

The second part creates and maintains the classes and updates resource in-
formation periodically to ensure that each node belongs to correct class. When a
new node entering the grid, it calculating its statistical characteristic, and find-
ing one correct class to join in. If the statistical characteristic is very similar to
some leader, then it joins this class. Otherwise, this node should be a new class
with itself being the leader.

The resource query message is processed by the third part. The querying
mechanism taken in this paper limits the querying ideally to two hops. In the
first step, resources query is transferred to the right class, and in the second step,
it finds the requested resource in the class. This process is similar to looking up
words in dictionary.

In order to get lower communication load when maintaining the formation of
classes and processing resource request, we treat leader nodes and other nodes
differently.

In summary, the grid resource discovery method presented in this paper has
following characteristics:

a) Each class includes a collection of nodes with a single representative node
called leader.

b) Nodes in the same class have some similarity on resource statistical charac-
teristics.

c) The scale of each class is controlled by a threshold, and this threshold is
chosen based on some factors such as grid resource number, resource density
and load balancing of resource discovery request.
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4 Algorithms

In this section, we will introduce algorithms in detail which are taken in our
resource discovery method.

4.1 Data and Request Model

In this paper, each resource is described as a triple of (type, attribute, value),
and each node is composed as a conjunction of a number of such resources.

Similarly, the resource request is also represented as a triple of (attribute,
operator, value). We support operators such as >, <,≤,≥, =, 	= currently.

4.2 Class Formation and Maintenance

We mainly discuss a few questions shown as follows from algorithm:

a) Formation of original overlay network.
b) Resource joining and leaving.
c) Update of resource information.
d) Node classes combination.

Formation of Original Overlay Network. We assume that there are N
nodes in the grid. In this section, we will form the overlay network by using the
algorithm introduced as follows.

Normalized Process of Data Set. We use Ŝ = {ŝ1, ŝ2, · · · , ŝh, · · · , ŝN} to rep-
resent the set with N nodes, where each node has M properties, and ŝh =
{ŝh1, ŝh2, · · · , ŝhM} represents the hth node (1 ≤ h ≤ N), ŝhi denotes the ith
property of the node h (1 ≤ i ≤ M). Then we use formula (1) to process Ŝ , and
the data set after normalization is S = {s1, s2, · · · , sN}.

shi =
ŝhi

max1≤i≤M [max1≤h≤N(ŝhi) − min1≤h≤N (ŝhi)]
(1)

shi is the ith component of the hth sample. From formula (1), we can see that
each node set is located in a unit space.

Formation of Original Class. Actually, the original overlay network formation
is the process of detecting the distribution characteristics of grid resources, and
k-Nearest Neighbors algorithm [9] is one kind of effective local detection tech-
nology. In traditional k-Nearest Neighbors algorithm, the value of k is fixed,
which is not suitable for detecting the grid with complex resources distribu-
tion. For example, when the resource density is not distributed evenly, if k is
chosen higher than the distributed density of “small” pattern class, the original
class will be wrong, else, if k is too small, the number of original classes would be
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large, which increase computational load of latter process, so how to choose the
value of k adaptively based on pattern class density is important for resolving
problem. The within-classes covariance matrix is an efficient method for charac-
terizing cohesion of samples. Research [9] shows that the trace of within-classes
covariance matrix more smaller, the cohesion of sample set more better. So, in
this paper, we present an adaptive k-Nearest Neighbors clustering algorithm for
grid resource discovery.

Before introduce the adaptive k-Nearest Neighbors clustering algorithm, we
define:

a) Ep : (lp, kp-NN of lp, cp, Tp) — the pth class.
b) lp — the leader node of the class.
c) kp-NN of lp — kp nearest neighbor nodes of lp.

d) cp — the centre of kp+1 nodes, and its computing formula is cp =
�

sk∈Ep
Sk

kp+1 .
e) Tp — the trace of within-classes covariance matrix of kp+1 nodes.

The original classes formation is finished through 5 steps shown as follows:

Step 1: Use formula (2) to get the distance matrix D = [dij ]N×N of data set S.

dij = ‖si − sj‖2 =

√√
√
√

M∑

k=1

(sik − sjk)2 (2)

Where dij denotes the distance between si and sj .
Step 2: If p=1, l1 is obtained with the following restrictions:

a) l1 ∈ E1.
b) l1 is the farthest sample from the global centre c0.

c) c0 =
�

sk∈S sk

N .

If p ≥ 2, lp is obtained with the following restrictions:

a) lp ∈ Ep and lp /∈ Eα, 1 ≤ α < p.
b) lp is the farthest sample from the local centre cp−1.

Step 3: Obviously lp ∈ S, so we might assume it as sl. Extract the lth row ele-
ments from the distance matrix D to form the distance vector {dl1, dl2, · · · , dlN},
then delete the elements that denotes the distance between sl and sj where
sj ∈ Eα. So we get the abridged distance vector Ψ = {dlj |1 ≤ j ≤ N, sj /∈ Eα},
sort Ψ increasingly as:

Ψ
′
= {dlj1 , dlj2 , · · · , dljβ

|dljm ≤ dljn , 1 ≤ m ≤ n ≤ β} (3)

where β denotes that there are β samples which have not been put into the
initial patterns.
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Step 4: Use the following algorithm to get the kp nearest neighbors of lp and
the trace of within-classes covariance matrix Tp.

Ω = lp;
set the threshold of the trace of within-classes covariance matrix;
for i=1 to β begin

Ω = {Ω, sji |slji ∈ Ψ
′};

ti = trace(conv(Ω));
if ti ≤ threshold

Ti = ti;
else begin

Ω = Ω\sji ;
break;

end.
end.

Step 5: If there are still samples that have not been put into the initial patterns,
then go to step 2, otherwise the constitution of initial patterns is finished.

Resource Joining and Leaving. A node s prepares for joining the grid through
node n, which it learns about offline. Because node n is connected to all leaders,
it will get information from all leaders and return this information to s, then, by
using the following formula, we know which class that s should join in:

s ∈ Ep, if ‖cp − s‖2 = min
i=1,···,K

‖ci − s‖2 (4)

in the above formula, K denotes the number of the classes, s ∈ Ep denotes that
s should be put into the pth class, at the same time, s publishes its information
to lp.

When a node leaving from some class, it deletes its resource information
directly.

Update of Resource Information. In this paper, class checking takes place
periodically in order to ensure that each node belongs to an appropriate class as
a selected resource characteristic dynamically changes. Class checking consists
of worker node process and leader node process.

Each worker node periodically checks to see if it is placed in an appropriate
class, based on its temporal usage/availability characteristics and the statistical
similarity measure. If not, it tries to search for a class to which it should belong.
If there is no existing class for the node to join, it creates a new class with itself
as leader and its current characteristic as the class’s characteristic.

If a node is a leader, it will first find a replacement leader before it leaves the
class, so as to maintain class information.

Class Combination. As nodes joining and leaving in grid frequently, there
may be too many small classes, then the cost of communication might be large
and thus become performance bottlenecks. So, it is necessary to combine classes.
In this paper, we use the following method to combine classes.
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Step 1: Normalize leader nodes, and compute the distance matrix of these leader
nodes denoted by W = [wij ]P×P , where wij = ‖ci − cj‖2 and P denotes the
number the original classes.
Step 2: Use the following algorithm to get relevant matrix.

G = [gij ]P×P ;
set the threshold dh of the trace of within-classes covariance matrix;
for i=1 to P begin

for j=1 to P begin
if
(
(i 	= j) and (wij < dh) and (wij = mink=1,···,P wik)

and (wkj |k=1,···,P,k 
=i 	= 1)
)

then begin
gij = 1;
break;

end.
end.

end.

Step 3: Combine classes by using information of matrix G: notes that the row
number and column number is the corresponding class number. After processed
by step2, in matrix G, there is at most one element be 1 in each line and each
column, then combine these two line and column which has elements be 1 into
one class, and the new leader can be any one leader of them, at the same time,
we also combine the information of these two leader nodes.

4.3 Resource Query Processing and Message Dispatching
Mechanism

When user querying a resource in the grid, the process of the query is completed
by three steps shown as follows:

Assume v is the node which sending resource query, and this node always
choose the nearest node denoted by sk in grid to process the query.

Step 1: From the topology of the overlay network, we can see that node sk

connects to all leader nodes, so it can reach all clustering centre through sk.
Using the following formula, we know which class the resource query should be
sent to.

v → Ep, if ‖cp − v‖2 = min
i=1,···,K

‖ci − v‖2 (5)

in the above formula, v→Ep denotes dispatching resource query to the pth class.
Step 2: In Ep class, the node which satisfies the following conditions is the proper
one that user required, and we call it sn:

{
‖sn − v‖2 = minsi∈Ep ‖si − v‖2

‖sn − v‖2 < dg
(6)

actually, the first condition means to find node which confirms to user’s request
best in Ep, the second condition means that sn must has some similarity to v,
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where dg means the threshold of the similarity. If these two conditions are both
satisfied, then return the node sn which has been found, and the search is end,
else, go to step3.
Step 3: If it didn’t find the node which satisfy user’s request in class Ep, lp will
send the request to other leaders, and other leaders will search in their classes.
If lp receive search results from many leaders, then, it will choose the best one
and return it to the requester; if no suitable node is found, then search failed.

5 Experimental Evaluation

5.1 Grid Environment Modeling

We use the experimental environment set in paper [8], which used the following
parameters to specify our grid environment:

a) Resource density: this parameter reflects the abundance/scarcity of resources.
It represents the percentage of nodes that have resources.

b) Resource type: we define continuous-valued resources, and this type resources
are able to satisfy multiple requests at the same time.

c) User query: in this paper, we use average number of hops taken by a query
before it is satisfied to evaluate resource query performance.

d) Statistical characteristic and similarity measure: statistical characteristic and
similarity measure can not only control the number of classes for resource,
but also the size of each class.

e) Resource distribution: this parameter describes how resources distribute in
node, in our experiment, we assume that it is a random distribution.

5.2 Experiment Result

Our experiments were conducted in 10 computers with Linux operation system
(namely 10 physical nodes). On these 10 computers, we simulated 1024 and 256
virtual nodes respectively and each virtual node has one resource at most. The
number of nodes containing the requested resource was varied by changing re-
source density from 1/4 to 1/256. No limit was placed on the number of times a
query gets forward. An average of 20000 queries was handled for each simulation
run.

Fig.2 shows the average number of hops taken when querying resource at
different resource density and system size. From Fig.2, we can see that at different
grid size and resource density, the average number of hops taken by queries stay
at around 2. This observation indicates that most queries are dispatched to an
appropriate leader, which is able to find a suitable node to satisfy them. This also
demonstrates that query handling performance in our mechanism is unaffected
by resource density, resource type, or system size.

The method presented in this paper achieves better scalability and efficiency
in query handling than [7] and [10]. Because in [7] there is an increasing trend
in average number of hops as resource density decreases, while in [10] there is
an increasing trend in average number of hops as system size increases.
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Fig. 2. The relationships between the average of number hops taken by each query and
resource density

6 Conclusion

In this paper, we present a grid resource discovery method based on adaptive
k -Nearest Neighbors clustering algorithm. This method can handle resource re-
quests by searching a small subset out of a large number of nodes by resource
clustering which can improve the resource query efficiency, on the other hand,
it also achieves well scalability by managing grid resources with adaptive mech-
anism. It is shown from a series of computational experiments that the method
presented in this paper achieves more scalability and efficient lookup perfor-
mance than other existing methods.
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Abstract. In wireless sensor networks, virtual backbone has been pro-
posed as the routing infrastructure to alleviate the broadcasting storm
problem and perform some other tasks such as area monitoring. Pre-
vious work in this area has mainly focused on how to set up a small
virtual backbone for high efficiency, which is modelled as the minimum
Connected Dominating Set (CDS) problem. In this paper we consider
how to establish a small virtual backbone to balance efficiency and fault
tolerance. This problem can be formalized as the minimum m-connected
k-dominating set problem, which is a general version of minimum CDS
problem with m = 1 and k = 1. In this paper we will propose some
approximation algorithms for this problem that beat the current best
performance ratios.

Keywords: Connected dominating set, approximation algorithm,
k-vertex connectivity, wireless sensor networks.

1 Introduction

A Wireless Sensor Network (WSN) consists of wireless nodes (transceivers) with-
out any underlying physical infrastructure. In order to enable data transmission
in such networks, all the wireless nodes need to frequently flooding control mes-
sages thus causing a lot of redundancy, contentions and collisions. To support var-
ious network functions such as multi-hop communication and area monitoring,
some wireless nodes are selected to form a virtual backbone. Virtual backbone has
been proposed as the routing infrastructure of WSNs. In many existing schemes
(e.g., [1]) virtual backbone nodes form a Connected Dominating Set (CDS) of
the WSN. With virtual backbones, routing messages are only exchanged between
the backbone nodes, instead of being broadcasted to all the nodes. Prior work
(e.g., [8]) has demonstrated that virtual backbones could dramatically reduce
routing overhead.

In WSNs, a node may fail due to accidental damage or energy depletion and
a wireless link may fade away during node movement. Thus it is desirable to
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have several sensors monitor the same target, and let each sensor report via
different routes to avoid losing an important event. Hence, how to construct a
fault tolerant virtual backbone that continues to function when some nodes or
links break down is an important research problem.

In this paper we assume as usual that all nodes have the same transmission
range (scaled to 1). Under such an assumption, a WSN can be modelled as
a Unit Disk Graph (UDG) that consists of all nodes in the WSN and there
exists an edge between two nodes if the distance between them is at most 1.
Fault tolerant virtual backbone problem can be formalized as a combinatorial
optimization problem: Given a UDG G = (V, E) and two nonnegative integers
m and k, find a subset of nodes S ⊆ V of minimum size that satisfies: i) each
node u in V \S is dominated by at least k nodes in S, ii) S is m-connected (there
are at least m disjoint paths between each pair of nodes in S). Every node in S
is called a backbone node and every set S satisfying (i-ii) is called m-connected
k-dominating set ((m, k)-CDS), and the problem is called minimum m-connected
k-dominating set problem.

In this paper, we will first study the minimum m-connected k-dominating set
problem for m = 1, 2, which is important for fault tolerant virtual backbone
problem in WSNs. (When m = 1 and k = 1 the problem is reduced to well
known minimum connected dominating set problem.) We propose three central-
ized approximation algorithms to construct k-dominating set and m-connected
k-dominating sets for m = 1, 2. Our performance analysis show that the algo-
rithms have small approximation ratio improving the current best result for small
k. Then for 3 ≤ m ≤ k, we discuss the relation between (m, k)-CDS and (m, m)-
CDS. The remainder of this paper is organized as follows: In Section 2 and 3 we
first give some definitions and then present some related works. In Section 4 we
present our algorithms with theoretical analysis on guaranteed performances. In
Section 5 we conclude the paper.

2 Preliminaries

Let G be a graph with vertex-set V (G) and edge-set E(G). For any vertex v ∈ V ,
the neighborhood of v is defined by N(v) ≡ {u ∈ V (G) : uv ∈ E(G)} and the
closed neighborhood of v is defined by N [v] ≡ {u ∈ V (G) : uv ∈ E(G)} ∪ {v}.
The minimum degree of vertices in V (G) is denoted by δ(G).

A subset U ⊆ V is called an independent set (IS) of G if all vertices in U are
pairwise non-adjacent, and it is further called a maximal independent set (MIS)
if each vertex V \ U is adjacent to at least one vertex in U .

A dominating set (DS) of a graph G = (V, E) is a subset S ⊆ V such that each
vertex in V \S is adjacent to at least one vertex in S. A DS is called a connected
dominating set (CDS) if it also induces a connected subgraph. A k-dominating
set (k-DS) S ⊆ V of G is a set of vertices such that each vertex u ∈ V is either
in S or has at least k neighbors in S.
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A cut-vertex of a connected graph G is a vertex v such that the graph G \ {v}
is disconnected. A block is a maximal connected subgraph having no cut-vertex
(so a graph is a block if and only if it is either 2-connected or equal to K1 or
K2). The block-cut-vertex graph of G is a graph H where V (H) consists of all
cut-vertices of G and all blocks of G, with a cut-vertex v adjacent to a block
G0 if v is a vertex of G0. The block-cut-vertex graph is always a forest. A 2-
connected graph is a graph without cut-vertices. Clearly a block with more than
three nodes is a 2-connected component. A leaf block of a connected graph is a
subgraph of which is a block with only one cut-vertex.

3 Related Work

Lots of efforts have been made to design approximation algorithms for minimum
connected dominating set problem. Wan et al. [10] proposed a two-phase dis-
tributed algorithm for the problem in UDGs that has a constant approximation
performance ratio of 8. The algorithm first constructs a spanning tree, and then
at the first phase, each node in a tree is examined to find a Maximal Independent
Set (MIS) and all the nodes in the MIS are colored black. At the second phase,
more nodes are added (color blue) to connect those black nodes. Recently, Li et
al. [6] proposed another two-phase distributed algorithm with a better approxi-
mation ratio of (4.8+ ln5). As in [10], at the first phase, an MIS is computed. At
the second phase, a Steiner tree algorithm is used to connect nodes in the MIS.
The Steiner tree algorithm is based on the property that any node in UDG is
adjacent to at most 5 independent nodes.

In [3], Dai et al address the problem of constructing k-connected k-dominating
virtual backbone which is k-connected and each node not in the backbone is
dominated by at least k nodes in the backbone. They propose three localized
algorithms. Two algorithms, k-gossip algorithm and color based (k, k)-CDS al-
gorithm, are probabilistic. In k-Gossip algorithm, each node decides its own
backbone status with a probability based on the network size, deploying area
size, transmission range, and k. Color based (k, k)-CDS algorithm proposes that
each node randomly selects one of the k colors such that the network is divided
into k-disjoint subsets based on node colors. For each subset of nodes, a CDS
is constructed and (k, k)-CDS is the union of k CDS’s. The deterministic algo-
rithm, k-Coverage condition, only works in very dense network and no upper
bound on the size of resultant backbone is analyzed.

Recently, Wang et al. [11] proposed a 64-approximation algorithm for the
minimum (2, 1)-CDS problem. The basic idea of this centralized algorithm is as
follows: i) Construct a small-sized CDS as a starting point of the backbone; ii)
iteratively augment the backbone by adding new nodes to connect a leaf block
in the backbone to other block (or blocks); iii) the augmentation process stops
when all backbone nodes are in the same block, i.e., the backbone nodes are
2-connected. The augmentation process stops in at most |CDS| − 1 steps and
each step at most 8 nodes are added.
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Most recently, in work [7] we proposed three centralized approximation algo-
rithms to construct k-tuple dominating set and m-connected k-tuple dominating
sets for m = 1, 2, respectively.

4 Approximation Algorithms

We first prove the following lemma, which will be used in our performance analy-
sis of proposed algorithms.

Lemma 1. Let G = (V, E) be a unit disk graph and k a constant such that
δ(G) ≥ k − 1. Let D∗

k be a minimum k-dominating set of G and S a maximal
independent set of G. Then |S| ≤ max{ 5

k , 1}|D∗
k|.

Proof Let S0 = S
⋂

D∗
k, X = S \ S0 and Y = D∗

k \ S0. It is clearly that X
and Y are two disjoint subsets. For all u ∈ X , let cu = |N(u)

⋂
Y |. As D∗

k is a
k-dominating set of G, cu ≥ k for each u ∈ X and we have:

∑
u∈X cu ≥ k|X |.

For all v ∈ Y , let dv = |N(v)
⋂

X |. As G is a unit disk graph, for all v ∈ Y there
are at most 5 independent vertices in its neighborhood and dv ≤ 5. We have:
5|Y | ≥

∑
v∈Y dv. For

∑
u∈X cu = |{uv ∈ E : u ∈ X, v ∈ Y }| =

∑
v∈Y dv, we

have |X | ≤ 5
k |Y |. Hence, |S| = |X | + |S0| ≤ 5

k |D∗
k \ S0| + |S0| ≤ max{ 5

k , 1}|D∗
k|,

which proves the lemma. �

Corollary 1. Let G = (V, E) be a unit disk graph and k a constant such that
δ(G) ≥ k−1. Let D∗

k be a minimum k-dominating set of G and S an independent
set of G satisfying that S

⋂
D∗

k = ∅. Then |S| ≤ 5
k |D∗

k|.

4.1 Algorithm for Computing (1, k)-CDS

The basic idea of our algorithm for the minimum (1, k)-CDS problem is as fol-
lows: First choosing a CDS and then sequentially choosing an MIS k − 1 times
such that all vertices in V \ Dc are k-dominated by set Dc. The algorithm is
more formally presented as follows.

Algorithm A. for computing (1, k)-CDS

1. Choose an MIS I1 of G and a set C such that I1 ∪C is a CDS (refer to [10])
2. for i := 2 to k
3. Construct an MIS Ii in G \ I1 ∪ · · · ∪ Ii−1

4. end for
5. Dc := I1 ∪ · · · ∪ Ik ∪ C
6. return Dc

Theorem 1. Algorithm A returns a solution that is a (5 + 5
k )-approximate so-

lution to the minimum connected k-dominating set problem for k ≤ 5 and 7-
approximate solution for k > 5.
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Proof: Suppose that Algorithm A, given graph G = (V, E) and a natural number
k ≥ 1, returns Dc = I1∪· · ·∪ Ik

⋃
C. Let D∗

k be a minimum k-dominating set of
G. We will show that D is a connected k-dominating set of G. For all u ∈ G\Dc,
at the i-th iteration, u is not in Ii and thus it is dominated by one vertex of Ii.
At the end, u is dominated by at least k different vertices of I1 ∪ · · · ∪ Ik. By the
first step of Algorithm A, C∪I1 is a CDS and thus I1∪· · ·∪Ik

⋃
C is connected.

So, D is a connected k-dominating set of G.
Let Si = Ii

⋂
D∗

k for i = 1, 2, · · · , k. By the rule of Algorithm A, we have
each Ii \ Si is an independent set and (Ii \ Si)

⋂
D∗

k = ∅. Thus it follows from
Corollary 1 that |Ii \ Si| ≤ 5

k |D∗
k \ Si|. Let us prove now the approximation

ratio.

|I1 ∪ · · · ∪ Ik| =
k∑

i=1

|Si| +
k∑

i=1

|Ii \ Si|

≤
k∑

i=1

|Si| +
k∑

i=1

5
k
|D∗

k \ Si|

= (1 − 5
k

)
k∑

i=1

|Si| + 5|D∗
k|.

And
∑k

i=1 |Si| ≤ |D∗
k|. Hence we have |I1 ∪ · · · ∪ Ik| ≤ 5|D∗

k| for k ≤ 5 and
|I1 ∪ · · · ∪ Ik| ≤ 6|D∗

k| for k > 5.
In the end, let C be the set constructed from the first step of Algorithm

A. By using the argument for the proof of Lemma 10 in [10], we can deduce
|C| ≤ |I1|. Hence it follows from Lemma 1 that |C| ≤ max{ 5

k , 1}|D∗
k|, and the

size of connected k-dominating set D is bounded by (5 + 5
k )|D∗

k| for k ≤ 5 and
7|D∗

k| for k > 5. The size of the optimal solution of connected k-dominating set
is at least |D∗

k|. The proof is then finished. �

4.2 Algorithm for Computing (2, k)-CDS

The basic idea of our algorithm for the minimum (2, k)-CDS problem with k ≥ 2
is similar to the method proposed in [11]. It essentially consists of following four
steps:

Step 1. Apply Algorithm A to construct a connected k-dominating set D.
Step 2. Compute all the blocks in D by computing the 2-connected

components through the depth first search.
Step 3. Produce the shortest path in the original graph such that it can

connect a leaf block in D with other part of D but does not contain
any vertices in D except the two endpoints. Then add all intermediate
vertices in this path to D.

Step 4. Repeat Step 2 and Step 3 until D is 2-connected.
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In Step 2, we can apply the standard algorithm proposed in [9] to compute
all blocks in D, denote the number of blocks in D by ComputeBlock(D). The
algorithm is more formally presented as follows:

Algorithm B. for computing a 2-connected k-dominating set (k ≥ 2)

1. Choose a connected k-dominating set Dc using Algorithm A
2. D := Dc and B:= ComputeBlocks(D)
3. while B > 1 do
4. Choose a leaf block L
5. for vertex v ∈ L not a cut-vertex do
6. for vertex u ∈ V \ L do
7. Construct G′ from G by deleting all nodes in D except u and v
8. Puv :=shortestPath(G′; v, u) and P := P ∪ Puv

9. end-for
10. end-for
11. Pij := the shortest path in P
12. D := D∪ the intermediate vertices in Pij

13. ComputeBlocks(D)
14. end-while
15. return D

Lemma 2. For k ≥ 2, at most two new vertices are added into D at each
augmenting step.

Proof Suppose that L is a leaf block of D and w is the cut-vertex. Consider two
vertices u and v in D with u ∈ L \ {w} and v ∈ V \ L, let Puv be the shortest
path that connects u and v. We claim that Puv has at most two intermediate
vertices. Suppose, by contradiction, that Puv contains u, x1, x2, ..., xl, v, where
l ≥ 3. Since each vertex xi has at least 2 neighbors in D and N(xi) ∩ D ⊆ L or
N(xi) ∩ D ⊆ (V \ L) ∪ {w}, N(x1) ∩ D ⊆ L. If N(x2) ∩ D ⊆ L, x2 must have
a neighbor s in L \ {w}, then the path between sv has a shorter distance than
Puv. Otherwise N(x2)

⋂
D ⊆ (V \L)∪{w}, x2 must have a neighbor s in V \L,

then the path between us has a shorter distance than Puv. Which contradicts
that Puv has the shortest distance. �

Lemma 3. The number of cut-vertices in the connected k-dominating set Dc

by Algorithm A is no bigger than the number of connected dominating sets in
I1 ∪ C chosen in Step 1 of Algorithm A.

Proof Let S = I1 ∪ C be the connected domination set. We will show that no
vertex in Dc \ S is a cut-vertex. For any two vertices u, v ∈ S, there is a path
Puv between them that contains only vertices in S. Since any vertex in Dc \ S
is dominated by at least one vertex in S, Hence, for any two vertices u, v ∈ Dc,
there is a path Puv between them that contains only vertices in S

⋃
{u, v}. Hence,

any vertex in Dc \ S is not a cut-vertex. �
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Theorem 2. Algorithm B returns a (5 + 25
k )-approximate solution to the min-

imum 2-connected k-dominating set problem for 2 ≤ k ≤ 5 and 11-approximate
solution for k > 5.

Proof Let D∗
k and Dopt be the optimal k-dominating set and 2-connected k-

dominating set, respectively. It is clearly that |D∗
k| ≤ |Dopt|. After S is con-

structed, by Lemmas 2-3, the algorithm terminates in at most |C| + |I1| steps,
and in each step at most two vertices are added. Since |C| + |I1| ≤ 2|I1| ≤
2 max{ 5

k , 1}|D∗
k|, we have |D| ≤ |Dc| + 4 max{ 5

k , 1}|D∗
k|. It follows from Theo-

rem 1 that |Dc| ≤ (5 + 5
k )|D∗

k| for k ≤ 5 and |Dc| ≤ 7|D∗
k| for k > 5. Hence we

obtain |D| ≤ (5 + 25
k )|Dopt| for 2 ≤ k ≤ 5 and |D| ≤ 11|Dopt| for k > 5. �

4.3 Algorithm for Computing (2, 1)-CDS

The main idea of our algorithm is as follows: First, construct a connected domi-
nating set C using the algorithm in [6], and then construct a maximal indepen-
dent set D in G \ C, in the end make C ∪ D to be 2-connected by adding some
new vertices to it.

Algorithm C. for computing 2-connected dominating set

1. Produce a connected dominating set C of G using the algorithm in [6].
2. Construct a maximal independent set D in G \ C

3. S := C ∪ D

4. Augment S using Steps 2-14 of Algorithm B

Theorem 3. Algorithm C returns a 2-connected dominating set whose size is
at most (18.2+3 ln5)|D∗

2 |+4.8, where |D∗
2 | is the size of the optimal 2-connected

dominating set.

Proof Let D∗
1 and D∗

2 be the optimal (1, 1)-CDS and (2, 1)-CDS, respectively. It
is clear that |D∗

1 | ≤ |D∗
2 |. After C and D is constructed, which are a connected

dominating set of G and a dominating set of G \ C, respectively, each vertex in
V \S is dominated by at least two vertices in S. Thus, Lemmas 2-3 also hold true
for Algorithm C. Thus it follows from Lemmas 2-3 that at most |C| steps are
needed before the algorithm terminates, and at each step at most two vertices are
added. Hence, we obtain |S| ≤ 3|C|+ |D|. Using the same argument for Theorem
1 in [6,12], we could show |C| ≤ (4.8 + ln 5)|D∗

1 | + 1.2 and |D| ≤ 3.8|D∗
1| + 1.2

respectively. Thus we obtain |S| ≤ (18.2 + 3 ln 5)|D∗
2 | + 4.8. �

Observe that (18.2 + 3 ln 5) < 23.03. So Algorithm C has a better guaranteed
performance than the 64-approximation algorithm in [11] for the same problem
(when the size of the optimal 2-connected dominating set is not very big).
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4.4 (m, k)-CDS for 3 ≤ m ≤ k

Let A(m,m) be an α-approximation algorithm for the (m, m)-CDS problem. The
basic idea of algorithm A(m,k) for the minimum (m, k)-CDS problem is as follows:
First choosing a (m, m)-CDS and then sequentially choosing an MIS k−m times.
The algorithm is more formally presented as follows.

Algorithm A(m,k). for computing (m, k)-CDS

1. Choose an (m, m)-CDS S of G using algorithm A(m,m)

2. for i := 1 to k − m
3. Construct an MIS Ii in G \ S ∪ I1 ∪ · · · ∪ Ii−1

4. D := I1 ∪ · · · ∪ Ik−m ∪ S
5. return D

Theorem 4. If there exists an α-approximation algorithm for the (m, m)-CDS
problem, then there exists a (α+6)-approximation algorithm for the (m, k)-CDS
problem, where k > m.

Proof: We first show that D is a (m, k)-CDS of G. For all u ∈ G \ D, u is
not in S and thus it is dominated by at least m vertices of S. And at the i-
th iteration, u is not in Ii and thus it is dominated by one vertex of Ii for
i = 1, ..., k − m. At the end, u is dominated by at least k different vertices of
D. Now we show that D is m-connected, suppose there exist m − 1 vertices in
D such that the induced subgraph D is disconnected by removing the m − 1
vertices. Let X be the vertex set. For S is a (m, m)-CDS, S \ X is a connected
dominating set. So, D \X is connected, a contraction. Hence, D is a (m, k)-CDS
of G.

Let D∗ be the optimal solution of (m, k)-CDS. It is clearly that |S| ≤ α|D∗|,
and |I1 ∪ · · · ∪ Ik−m| ≤ 6|D∗| by similar argument of Theorem 1. This gives a
(α+6)-approximation algorithm for the (m, k)-CDS problem, where k > m. The
proof is then finished. �

5 Conclusion

In this paper we have proposed centralized approximation algorithms for the
minimum m-connected k-dominating set problem for m = 1, 2. Although the
approximation performance ratios of Algorithms A and B are dependent on k,
they are very small when k is not very big, that, in fact, is the case of virtual
backbone construction in wireless sensor networks. For 3 ≤ m ≤ k, we discuss
the relation between (m, k)-CDS and (m, m)-CDS. Our future work is to extend
our study to the more general case of m ≥ 3, and design distributed and localized
algorithms for minimum m-connected k-dominating set problem.
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Abstract. For the m-machine Flow Shop Weighted Completion Time problem, a 
New Lower Bound (NLB) is derived to improve the original lower bound which 
was given by Kaminsky and Simchi-Levi.  1) For the case of arbitrary weight, the 
NLB is asymptotically equivalent to the optimality solution, as the total number 
of jobs goes to infinity.  Specially, when the processing times of jobs are all 
equal, the NLB is just the optimal solution.  2) For the case of equal-weight, a 
tight worst case performance ratio of the optimal solution to the NLB is obtained.  
At the end of the paper, computational results show the effectiveness of NLB on 
a set of random test problems. 

Keywords: Asymptotic analysis, Worst case analysis, Flow shop weighted 
completion time problem, WSPT rule. 

1   Introduction 

The scheduling problem of m-machine Flow Shop Weighted Completion Time is 
considered.  In the problem a set of n jobs has to be sequentially processed through m 
machines without preemption.  It is assumed that at any given time each machine can 
handle at most one job and a job can only be processed on one machine.  Every machine 
processes the arriving jobs in a first come first served manner.  The objective is to find 
a sequence of jobs to minimize the total weighted completion time on the final machine 
for the given processing time of each job on each machine and weight associated with 
each job.  Garey et al. [2] pointed out that this problem is strongly NP-hard even in the 
two-machine case with all weights equal. 

In the previous research, Branch-and-bound and local search strategies are 
combined to deal with the small size problems (Kohler and Steiglitz [5]).  For larger 
problems, it is pointed out that using dispatch rules to find the reasonable sequences is 
typical (Bhakaran and Pinedo [1]).  Shakhlevich et al. [7] pointed out that WSPT with 
Minimum Cost Insertion (WSPT-MCI) is optimal when the processing time of each 
operation of a job is equal.  With the tools of probabilistic analysis, Kaminsky and 
Simchi-Levi [3] proved that the general flow shop weighted completion time problem 
is asymptotically equal to a certain single machine scheduling problem with an 
assumption that the processing times on all m machines for all jobs must be 
independently and identically distributed (i.i.d.) and extended Weighted Shortest 
                                                                 
* Corresponding author.  
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Processing Time (WSPT) first rule which is asymptotically optimal to the flow shop 
problem.  And they also pointed out that the Shortest Processing Time (SPT) algorithm 
is asymptotic optimality for any continuous, independent, and identically distributed 
job processing times [4].  Xia et al [8] provides an alternative proof using martingales 
which extends the result of Kaminsky and Simchi-Levi and simplifies their argument. 

Specially, Kaminsky and Simchi-Levi presented a Lower Bound (LB) to estimate the 
optimality solution in their paper [3].  In this paper, a New Lower Bound (NLB) is 
derived to improve the original LB.  For the case of arbitrary weight, the NLB is 
asymptotically equivalent to the optimality solution, as the total number of jobs goes to 
infinity.  Specially, when the processing times of jobs are all equal, the NLB is just the 
optimal solution.  For the case of equal-weight, a tight worst case performance ratio of 
the optimal solution to the NLB is obtained.  At the end of the paper, computational 
results show the effectiveness of NLB on a set of random test problems. 

The remainder of the paper is organized as follows.  The problem is formulated in 
section 2, and the NLB and its asymptotic optimality are provided in section 3. In 
section 4, a tight worst case performance ratio is given in equal-weight case.  Some 
computational results are presented in section 5, and this paper is closed by the 
conclusions in section 6.  

2   Problem Specification and the Main Results 

For convenience, we quote the descriptions and notations of the problem given by 
Kaminsky and Simchi-Levi without any change.  There is a set of n jobs which have to 
be processed on m machines.  Job i, i=1, 2,..., n, has a processing time ti

l on machine l, 
l=1, 2,…, m, and an associated weight wi. The processing times are i.i.d. random 
variables, defined on the interval (0, 1]. Similarly, the weights are i.i.d. random 
variables, defined on the interval (0, 1]. Each job must be processed without 
preemption on each machine in the same order.  At time 0, jobs are available, and the 
machine processes the jobs in a first come first served fashion, that is, a permutation 
schedule.  Also, the intermediate storage between successive machines is unlimited.  
The objective is to find a schedule that minimizes the total weighed completion times of 
all the jobs on the final machine.  This problem is called Problem P, in which the 
optimal objective function value is denoted as Z*.  By letting 

1

m l
i il

t t
=

=∑ , l=1, 2,…, m, 

i=1, 2,…, n, we can associate the Problem P with Problem P1, the Single Machine 
Weighted Completion Time problem with n tasks, which has the optimal value Z1

*.  In 
the problem P1, each task has a processing time ti and weight wi, i=1, 2,…, n. 

These two problems, Problem P and Problem P1, are related through the following 
theorem, whose proof can be found in Kaminsky and Simichi-Levi [3].  
 

Theorem 2.1. Let the processing times ti
1, ti

2,…, ti
m, i=1, 2,…, n, be independent 

random variables having the same continuous distribution with bounded density ( )φ i  

defined on (0, 1].  Let the weights wi, i=1, 2,…, n, be i.i.d. according to a cumulative 
distribution function ( )Φ i  defined on (0, 1].  Then with probability one, we have  

* 2 * 2lim lim
n n

Z n Z mn θ
→∞ →∞

= =  (1) 

for some constant θ . 
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The theorem means that the optimal solution of Problem P is asymptotically equivalent 
to the value of the optimal solution of Problem P1 divided by the number of machines 
m. As the WSPT heuristic algorithm is optimal for Problem P1, Kaminsky and 
Simchi-Levi extend the WSPT heuristic to Problem P. 

The WSPT heuristics for Problem P can be described as follows: 

WSPT algorithm for Problem P 
Step 1, calculate 

1

m l
i il

t t
=

=∑ , i=1, 2,…, n, l=1, 2,…, m; 

Step2, calculate the ratio ri=ti/wi, i=1, 2,…, n, and sequence them in non-decreasing 
order; 

Step3, reindex the jobs so that 
1 2 nr r r≤ ≤ ≤" ; 

Step4, process the jobs from 1 to n, and calculate the total weighted completion 
time

1

nWSPT
i ii

Z w C
=

=∑ , where Ci is the completion time of job i. 

To compare the ZWSPT with Z*, Kaminsky and Simchi-Levi [3] presented a LB value, 

( )*
1

1 2

1 1
1

n m
LB k

i i
i k

Z Z w k t
m m = =

= + −∑ ∑  (2) 

to estimate the optimality solution Z*.  But in some case, the LB does not work well. 
Consider an instance. For example, m=4, n=2, and the processing time of the job on 
each machine is 1, we have Z*=9 and ZLB=6, whereas Z*/ZLB=150%>1. 

3   The New Lower Bound and Its Asymptotic Analysis 

To improve the original LB, a NLB is presented as the following theorem. 
Theorem 3.1. For any instance of Problem P and its associated Problem P1, we have  

* NLBZ Z≥   

where  

( ) ( )
1

*
1 1

1 1 1 2

1 1 1
1

n m n m
NLB k k

i i i
i k i k

Z Z w m k t w k t
m m m

−

= = = =

= + − + −∑ ∑ ∑ ∑  (3) 

Proof. For an optimal schedule of Problem P, jobs are indexed according to their 
completion time, that is, the departure time from the last machine.  Let Ci denote the 
completion time of ith job in the sequence and ti

k denote the processing times of job i on 
machine k, i=1, 2,…, n, k=1, 2,…, m.  From these definitions, we have 

1
1 1 2

1 1
1 2 1 3 1 1

i m i m m i
k k k m

i j i j i j
j k j k k j

mC t t t t t t t
−

= = = = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≥ + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑"   

( ) ( )
1

1
1 1 1 2

1
m m i m

k k k
j i

k k j k

m k t t k t
−

= = = =

= − + + −∑ ∑ ∑ ∑  (4) 

We note that 

1 1 1 1 1

m i i m i
k k
j j j

k j j k j

t t t
= = = = =

= =∑ ∑ ∑ ∑ ∑  (5) 



194 D. Bai and L. Tang 

where tj is the processing time of job j on all m machines.  Combining (4) and (5), 
rewriting inequality (4) and multiplying by the weight of job i, we get 

( ) ( )
1

1
1 1 2

1 1 1
1

i m m
k k

i i i j i i i
j k k

w C w t w m k t w k t
m m m

−

= = =

≥ + − + −∑ ∑ ∑   

Summing over all of the jobs, we have 

( ) ( )
1

1
1 1 1 1 1 1 2

1 1 1
1

n n i n m n m
k k

i i i j i i i
i i j i k i k

w C w t w m k t w k t
m m m

−

= = = = = = =
≥ + − + −∑ ∑ ∑ ∑ ∑ ∑ ∑   

With 

*

1

n

i i
i

Z w C
=

=∑  and *
1

1 1

n i

i j
i j

Z w t
= =

≤∑ ∑   

we obtain the result of the theorem.                                                                              □ 

Computing the example presented in section 2 with the NLB, we can easily get that 
Z*=ZNLB=9.  Specially, when processing times of the jobs are all equal, the optimal 
solution is just the NLB.  And how is the performance of the NLB in the infinite case?  
Does it still approach to the optimal solution?  It is discussed in the following theorem. 

Theorem 3.2. Let the processing time ti
k, i=1, 2,…, n, k=1, 2,…, m, be independent 

random variables having the same continuous and bounded distribution ( )φ i  defined 

on (0, 1].  Let the weights wi, i=1, 2,…, n, be i.i.d. according to a cumulative 
distribution function ( )Φ i  defined on (0, 1].  Then with probability one, we have  

*lim 1NLB

n
Z Z

→∞
=  (6) 

Proof. It is easy to see that 
* *

1
NLBZ Z Z m≥ ≥   

Combining (1), we have 
* 2 2 * 2

1lim lim limNLB

n n n
Z n Z n Z mn

→∞ →∞ →∞
= =  (7) 

Multiplying n2 on the two sides of (7), we can get the result.                                       □ 

4   Worst Case Analysis of NLB 

In section 3, we have proved that the NLB works as well as the optimal solution when 
the size of the problem goes to infinity.  But does the NLB always perform effectively 
in any case?  This question can be answered when all weights are equal. 

Theorem 4.1. Let all weights be equal.  For the optimal solution Z* of Problem P and 
its associated NLB value ZNLB, we have 

* NLBZ Z m≤  (8) 

and this bound is tight. 
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Proof. Without loss of generality, let wi=1, i=1, 2,…, n, and Ci
* denote the completion 

time of job i associated with Z*; Ci
’ denote the completion time of job i associated with 

ZNLB.  We express the processing times appeared in the NLB by matrix A when job i 
departs from the last machine.  

1 1 1 2 2 1
1 1
1 2 2 2 3 1
1 1 1

1 2 3 1
1 1 1 1 1 2

m m m
i i i i i i

m m
i i i i i

m m m m
i

t t t t t t t

t t t t t t t
A

t t t t t t t

− −
−

−
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

" " "
" "

 

 

Since the difference of the processing time, idle times maybe exist in mCi
*, where 

mCi
* means the m times of Ci

*.  Let Ii be the total idle times in mCi
*. Therefore, we have 

* '
i i imC mC I− =   

Summing over all of the jobs, we have 

*

1

1 n
NLB

i
i

Z Z I
m =

− = ∑   

Hence,  

*

1

1 ( )
n

NLB NLB
i

i

Z Z I mZ
=

≤ + ∑  (9) 

So, if we obtain that 

1

( ) 1
n

NLB
i

i

I mZ m
=

≤ −∑   

the proof of inequality (8) is completed. 
We reindex the elements of matrix A as  

1,1 1,2 1, 1

2,1 2,2 2, 1'

,1 ,2 , 1

i m

i m

m m m i m

x x x

x x x
A

x x x

+ −

+ −

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

" " "
"

 

 

where the element in A and the element in A’ are equal when they have the same 
location.  

For flow shop scheduling problem, there must exist one critical path at least, from t1
1 

to ti
m, on which the total sum of processing times is equal to the Ci

* (see Pinedo [6] or 
Xia et al. [8]).  Obviously, as A’ is the same as the A, the critical path crosses the first 
column to the last column of A’, that is, the critical path is composed of the certain 
elements which come from each column of A’.  Without loss of generality, denote the 
length of the critical path as  

1
*

,
1

l

i m

i c h
h

C x
+ −

=

= ∑   
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where 
,lc hx  belongs to the critical path, and it is a certain element of hth column of A’ , 

and { }1,2,...,lc Q m∈ = , l=1, 2,…, m. 

Now, subtracting each row of A’ from mCi
*, we get  

( ) ( ) ( )
1 1 1

, 1, , 2, , ,
1 1 1

l l l

i m i m i m

i c h h c h h c h m h
h h h

I x x x x x x
+ − + − + −

= = =

= − + − + + −∑ ∑ ∑"   

( )
{ }

1 1

, , , ,
1 1 1 \

1
l l

l

i m m i m

c h l h c h l h
h l h Q c

mx x m x x
+ − + −

= = =

⎛ ⎞⎛ ⎞= − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  

 

( )
{ }

( )
1

'
, ,

1 \

1 1
l

l

i m

c h l h i
h Q c

m x x m mC
+ −

=

⎛ ⎞
≤ − + = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

 

Therefore,  

' 1i iI mC m≤ −   

Summing over all the jobs, we have  

( ) ( )
1

( ) 1 1 1
n

NLB
i

i

I mZ n m n m
=

≤ − − ≤ −∑  (10) 

The second term of (10) holds because there is no idle time in the case of i=1.  
Combining the inequality (9), we obtain the (8). 

To see that the bound of m is tight, consider the following instance of the problem.  
There are 2 jobs, J1 and J2, and m machines.  For J1, the processing times 

1 1 1
1 2 mmt t t ε= = = =" , whereε  is an arbitrarily small number on (0, 1).  The processing 

times of J2 are 1
2 1t =  and 2 2 2

2 3 mmt t t ε= = = =" .  We deduce that  

( ) ( )* (1 2 ) ((1 2 1 1 ) )NLBZ Z m m m m mε ε= + + − + →   

as 0ε → .                                                                                                                       □ 

Obviously, the NLB is better than the LB since ZNLB>ZLB, and especially when the 
processing times of the jobs are all equal the NLB is just the optimal solution.  But in 
some extreme cases, the optimal solution may be much larger than the NLB, which is 
caused by the idle times.  However, as the size of the problem becomes large enough, 
the total idle times can be ignored (see Kaminsky and Simchi-Levi [4]). 

5   Computational Results 

To study the effectiveness of the NLB, a series of computational experiments are 
designed and conducted.  The theme of the experiments mainly rests on revealing the 
better performances of the NLB.  As WSPT rule is asymptotically optimal for the Flow 
Shop Weighted Completion Time problem (see Xia et al. [8]), in table 1, 2, 3 and 4, we 
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compare the objective values obtained from WSPT rule with their associated NLB 
values and LB values for various numbers of machines respectively. The percentages 
given in the four tables are the ratios of the objective values of WSPT to their associated 
NLB values and LB values, respectively.  For the data which were presented in the four 
tables, the processing times and weights were generated from a uniform (0, 1] 
distribution.  And we performed three different random trials for each of the 
combination, and the averages are shown in the four tables.  In table 1 and 2, from 500 
to 5000 jobs, 3, 6 and 12 machines were tested with general weights and equal weights.  
The numerical results in the tables clearly evince that the NLB works as well as the LB 
when the instances get larger enough.  For example, for 5000 jobs and 3 machines with 
general weights, the percentages of ZWSPT/ZNLB and ZWSPT/ZLB in table 1 and 2 are 
101.87, 102.50, 102.55 and 101.87, 102.51, 102.55; and the averages of them are 
102.31 and 102.31 respectively. 

The second part of the experiments was conducted to evaluate the NLB when the 
number of jobs is less than the number of machines, that is, n<m.  In table 3 and 4, for 6, 
12 and 18 machines, the jobs which satisfy n<m were tested with general weights and 
equal weights.  And the percentages presented in table 3 and 4 are also the ratios of the 
objective values of WSPT to their NLB values and LB values, respectively.  The 
numerical results provide the information that the NLB works better than the LB as 
n<m.  For example, for 11 jobs and 18 machines with general weights, the percentages 
of ZWSPT/ZNLB and ZWSPT/ZLB in table 3 and 4 are 130.12, 126.42, 126.56 and 210.79, 
202.01, 197.62; and the averages of them are 127.70 and 203.47 respectively. 

6   Summary and Conclusions 

In this paper, we improve the original LB which was presented by Kaminsky and 
Simchi-Levi [3] and give a better NLB.  When the size of the problem, Flow shop 
weighted Completion Time problem, goes to infinity, we prove that the NLB is  
 

Table 1. The percentages of ZWSPT/ZNLB for n>m (%) 

 Weights Uniform Equal 
Machines 3 6 12 3 6 12 

Trial 1 107.43 112.21 119.15 106.54 111.89 117.51 
Trial 2 106.54 111.52 118.04 108.41 113.88 121.49 
Trial 3 107.35 112.83 118.71 106.40 113.27 120.64 

500 
Jobs 

Average 107.11 112.19 118.63 107.12 113.01 119.88 
Trial 1 103.99 107.84 115.04 105.55 107.59 114.26 
Trial 2 106.09 109.93 114.83 105.48 110.21 113.87 
Trial 3 104.42 109.14 114.11 103.57 109.52 115.93 

1000 
Jobs 

Average 104.83 108.97 114.66 104.87 109.11 114.69 
Trial 1 103.43 105.89 108.36 103.24 106.43 109.15 
Trial 2 103.87 106.29 109.23 103.08 105.04 109.05 
Trial 3 103.78 105.24 109.16 102.62 105.44 109.64 

2500 
Jobs 

Average 103.69 105.81 108.92 102.98 105.64 109.28 
Trial 1 101.87 104.93 105.27 101.92 104.27 106.81 

Trial 2 102.50 104.70 106.68 101.55 103.17 107.09 
Trial 3 102.55 104.25 106.04 102.05 104.00 106.83 

5000 
jobs 

Average 102.31 104.63 106.00 101.84 103.81 106.91 
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Table 2. The percentages of ZWSPT/ZLB for n>m (%) 

Weights Uniform Equal 
Machines 3 6 12 3 6 12 

Trial 1 107.48 112.60 120.73 106.63 112.29 118.89 
Trial 2 106.66 111.88 119.97 108.50 114.42 122.77 
Trial 3 107.40 113.54 120.23 106.40 113.67 121.96 

500 
Jobs 

Average 107.18 112.67 120.31 107.18 113.46 121.21 
Trial 1 104.00 108.09 115.95 105.57 107.82 115.04 
Trial 2 106.11 110.09 115.72 105.51 110.43 114.38 
Trial 3 104.45 109.37 114.62 103.58 109.68 116.56 

1000 
Jobs 

Average 104.85 109.18 115.43 104.89 109.31 115.33 
Trial 1 103.44 105.94 108.56 103.25 106.49 109.29 
Trial 2 103.89 106.35 109.58 103.09 105.09 109.29 
Trial 3 103.79 105.29 109.42 102.62 105.54 109.83 

2500 
Jobs 

Average 103.71 105.86 109.19 102.99 105.71 109.47 
Trial 1 101.87 104.95 105.38 101.92 104.30 106.94 
Trial 2 102.51 104.72 106.80 101.55 103.20 107.20 
Trial 3 102.55 104.28 106.14 102.05 104.05 106.91 

5000 
jobs 

Average 102.31 104.65 106.11 101.84 103.85 107.02 

Table 3. The percentages of ZWSPT/ZNLB for n<m (%) 

Weights Uniform Equal 
Jobs 3 4 5 3 4 5 

Trial 1 115.10 114.74 123.71 111.82 146.79 116.23 
Trial 2 104.06 111.08 123.33 110.41 116.60 121.23 
Trial 3 109.34 132.06 118.90 117.00 131.46 109.62 

6 
Machines 

Average 109.50 119.29 121.98 113.08 131.62 115.69 
Jobs 7 9 11 7 9 11 

Trial 1 118.67 129.95 126.38 121.20 131.20 130.17 
Trial 2 123.96 137.14 128.12 121.48 120.25 128.14 
Trial 3 116.66 119.41 133.44 120.96 122.53 136.80 

12 
Machines 

Average 119.76 128.83 129.31 121.21 124.66 131.70 
Jobs 11 14 17 11 14 17 

Trial 1 130.12 128.20 135.54 124.63 126.38 133.92 
Trial 2 126.42 131.36 145.08 120.47 133.83 135.77 
Trial 3 126.56 132.67 136.87 124.66 128.40 131.67 

18 
Machines 

Average 127.70 130.74 139.16 123.25 129.54 133.79 

Table 4. The percentages of ZWSPT/ZLB for n<m (%) 

Weights Uniform Equal 
Jobs 3 4 5 3 4 5 

Trial 1 156.08 153.07 147.63 161.23 170.78 156.47 
Trial 2 146.78 166.75 172.04 153.12 164.72 162.36 
Trial 3 191.26 188.32 184.20 161.44 193.69 146.06 

6 
Machines 

Average 164.71 169.38 167.96 158.60 176.40 154.96 
Jobs 7 9 11 7 9 11 

Trial 1 191.97 189.52 191.82 198.83 178.60 173.10 
Trial 2 203.49 215.84 176.55 165.58 169.85 172.21 
Trial 3 196.37 182.17 186.38 179.55 171.10 179.99 

12 
Machines 

Average 197.28 195.84 184.92 181.32 173.18 175.10 
Jobs 11 14 17 11 14 17 

Trial 1 210.79 210.34 196.48 184.95 183.61 178.70 
Trial 2 202.01 198.76 194.46 183.14 186.41 183.86 
Trial 3 197.62 205.12 187.71 168.56 191.83 194.31 

18 
Machines 

Average 203.47 201.74 192.88 178.88 187.28 185.62 
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asymptotically optimal to the optimal solution.  For the case of equal-weight, a worst 
case performance ratio, m, of the optimal solution to the NLB is obtained and this 
bound is tight.  The experiments and numerical results show that the NLB works as well 
as the LB when the number of jobs is large enough, and as n<m the NLB is better than 
the LB.  
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Abstract. Combinatorial games pose an extreme challenge to combinatorial 
optimization.  Several combinatorial games have been shown to be PSPACE-
hard and many more are believed to be so. In this paper, we present a new 
approach to analyzing combinatorial games, which differs dramatically from 
current approaches. Using the combinatorial game Chomp as a model system, 
we employ ideas from physics and dynamical systems theory to unveil deep 
connections between such games and nonlinear phenomena commonly seen in 
nature.   

Combinatorial games, which include Chess, Go, Checkers, Chomp, and Nim, have 
both captivated and challenged mathematicians, computer scientists, and players alike 
[1-10].  Analysis of these two-player games has generally relied upon a few beautiful 
analytical results [1,11-14]  or on numerical algorithms that combine heuristics with 
look-ahead approaches (α−β pruning) [15,16]. Using Chomp as a prototype, we 
report on a new geometrical approach which unveils unexpected parallels between 
combinatorial games and key ideas from physics and dynamical systems, most 
notably notions of scaling, renormalization, universality, and chaotic attractors. Our 
central finding is that underlying the game of Chomp is a probabilistic geometric 
structure (Fig. 2) that encodes essential information about the game, and that this 
structure exhibits a type of scale invariance: Loosely speaking, the geometry of 
“small” winning positions and “large” winning positions are the same after rescaling 
(cf., Fig. 2a,b).  This geometric insight not only provides (probabilistic) answers to 
some open questions about Chomp, but it suggests a natural pathway toward a new 
class of algorithms for general combinatorial games, and hints at deeper links between 
such games and nonlinear science.  

The game of Chomp, introduced by Gale [17] and Schuh [18] over 30 years ago, 
makes an ideal candidate for study, since it is among the simplest in the class of 
“unsolved” combinatorial games.  It has thus far defied a complete analysis (and is 
conjectured to potentially be PSPACE-hard), yet at the same time it is not entirely 
intractable, as evidenced by some significant theoretical advances [19-22]. The rules 
of Chomp are easily explained.  Play begins with an N x M array of counters (Fig. 
1a).  On each turn a player selects a counter and removes it along with all counters to 
the north and east of it (Fig. 1b).  Play alternates between the two players until one 
player takes the last (“poison”) counter, thereby losing the game. An intriguing 
feature of Chomp, as shown by Gale, is that although it is very easy to prove that the  
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Fig. 1. The game of Chomp.   (a) play begins with an MxN rectangular array of counters 
(three-row Chomp is illustrated). At each turn, a player selects a counter and removes it along 
with all counters lying in the northeast quadrant extending from the selected counter.  Play 
alternates between the two players until one player is forced to take the ‘poison’ counter 
(shown in black) in the southwest corner, thereby losing the game. (b) a sample game 
configuration after player 1 selects counter A, followed by player 2 selecting counter B.  More 
generally, an arbitrary game configuration can be specified by coordinates [x,y,z], as shown. 

player who moves first can always win (under optimal play), what this opening move 
should be has been an open question!  Our methodology will in fact provide a 
probabilistic answer to this question.   

For simplicity, we will focus here on the case of three-row (M=3) Chomp, a 
subject of recent study by Zeilberger [19-20] and Sun [21]. (Generalizations to four-
row and higher Chomp are analogous.) To start, we note that the configuration of the 
counters at any stage of the game can be described (using Zeilberger’s coordinates) by 
the position p=[x,y,z], where x specifies the number of columns of height three, y 
specifies the number of columns of height two, and z the number with height one 
(Fig. 1b). Each position p may be classified as either a winner, if a player starting 
from that position can always force a win (under optimal play), or as a loser 
otherwise.  (This classification is well defined by Zermelo’s theorem.)  We may group 
the losing positions according to their x values by defining a “loser sheet” Lx to be an 
infinite two-dimensional matrix whose (y,z)th component is a 1 if position [x,y,z] is a 
loser, and a 0 otherwise.  (As noted by Zeilberger, it is formally possible to express Lx 
in terms of all preceding loser sheets Lx-1, Lx-2, …, L0.)  The set of all Lx’s contains 
the information for solving the game.   

Studies by Zeilberger [19,20] and others [21-23] have detected several patterns and 
analytical features about losing positions, and their interesting but non-obvious 
properties have even led to a conjecture that Chomp may be “chaotic in a yet-to-be-
made-precise sense” [20]. To provide broader insight into the general structure of the 
game, we depart from the usual analytic/algebraic/algorithmic approaches.  Our 
approach will be distinguished by its decidedly geometric flavor, but equally 
importantly, it also introduces probabilistic elements into the analysis, despite the fact 
that the combinatorial games we consider are all games of no chance, which lack any 
inherent probabilistic components to them whatsoever!    

To proceed, we must consider “instant-winner sheets”, defined as follows:  A 
position p=[x,y,z] is called an instant winner (in Zeilberger’s terminology) if from 
that position a player can legally move to a losing position with a smaller x-value.   
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a)

b) c)

a)

b) c)

 

Fig. 2.  The geometry of Chomp.  (a) the instant-winner sheet geometry for three-row Chomp, 
shown for x=700.  Instant winner locations in the y-z plane are shown in black.  The horizontal 
bands in the figure extend to infinity.  (b) the instant-winner sheet for x=350.  Comparing W350 
to W700 illustrates the crucial scaling property of the instant winner sets:  Their overall 
geometry is identical up to a scaling factor; i.e., all values of boundary-line slopes and densities 
of the various internal regions are preserved (although the actual point-by-point locations of the 
instant winners are different).  (c) the loser-sheet geometry Lx, shown for x=350.  Note that 
losers are confined to lie near one of three boundary lines (compare L350 to W350):  a lower line 

of slope mL= -1-1/ 2 , density λL=1-1/ 2 ; an upper (tilted) line of slope mU= -1+1/ 2 , 

density λU=1/ 2 ; and an upper flat line (of density one) which only exists for some x-values.  

The probability that a flat line in Lx exists for a randomly chosen x is γ= 2 -1.  The lower and 

upper tilted lines both emanate from a point near (y,z)=(0, α x), where α=1/ 2 .  The 
geometrical structure of the Lx’s, like that of the Wx’s, remains invariant (up to a scale factor) 
as one goes to progressively larger x values.  As described in the text, the analysis of this 
invariance allows for a complete geometrical/probabilistic characterization of the structures 
shown in these figures. 

 
 



 Scaling, Renormalization, and Universality in Combinatorial Games 203 

We then define an instant-winner sheet Wx to be the infinite, two-dimensional 
matrix consisting of all instant winners with the specified x-value, i.e., the (y,z)th  
component of matrix Wx is a 1 if position [x,y,z] is an instant winner, and a 0 
otherwise.  The crucial insight is seen in Fig. 2, which reveals the geometric structure 
of these instant-winner sheets. Each sheet exhibits a nontrivial internal structure 
characterized by several distinct regions, and most importantly, the sheets as a group 
possess a striking scaling property – upon rescaling, the overall geometry of the 
sheets become identical (in a probabilistic sense).   

We can show that the instant-winner sheets obey an analytical recursion relation 
Wx+1 = R Wx, where R denotes the recursion operator.  (The operator R can in fact be 
decomposed as R=L(I+DM), where L is a left-shift operator, I is the identity 
operator, D is a diagonal element-adding operator, and M is a “sheet-valued” version 
of the standard mex operator which is often used for combinatorial games.  However, 
for our purposes here it is enough to note simply that a well-defined recursion 
operator R relating the instant-winner sheets exists.)  The loser sheets can be readily 
found via Lx = M Wx.  The characteristic geometry of these loser sheets is revealed in 
Fig. 2c.  It consists of three (diffuse) lines: a lower line of slope mL and density of 
points λL, an upper line of slope mU and density λU, and a flat line extending to 
infinity.  The upper and lower lines originate from a point whose height (i.e., z-value) 
is αx. The flat line (with density one) is only present with probability γ in randomly 
selected loser sheets.    

Stepping back for a moment, what we now have is a renormalization problem akin 
to those so often encountered in physics and the nonlinear sciences, such as the 
famous period-doubling cascade described by May [24] in a biological mapping and 
analyzed by Feigenbaum using renormalization techniques [25].  In particular, we 
have objects (instant winner matrices) that exhibit similar structure at different size 
scales (cf., Figs. 2a,b), and a recursion operator relating them.  Our task therefore is to 
show that (for large x’s) if we act with the recursion operator followed by an 
appropriately-defined rescaling operator S, we get Wx back again:  Wx = S R Wx  (i.e., 
we seek a fixed point of the renormalization-group operator S R.)  This can be done, 
but before doing so we point out a critical feature of the analysis.  Even though the 
recursion operator R is exact and the game itself has absolutely no stochastic aspects 
to it, it is necessary to adopt a probabilistic framework in order to solve this recursion 
relation.  Namely, our renormalization procedure will show that the slopes of all 
boundary lines and densities of all regions in the Wx’s (and Lx’s) are preserved – not 
that there exists a point-by-point equivalence.  In essence, we bypass consideration of 
the random-looking ‘scatter’ of points surrounding the various lines and regions of 
Wx and Lx by effectively averaging over these ‘fluctuations’.   

The key to the renormalization analysis is to observe from Figs. 2b,c that the losers 
in Lx are constrained to lie along certain boundary lines of the Wx plot; the various 
interior regions of Wx are “forbidden” to the losers (by the recursion operator).  As 
will be described in more detail elsewhere, each such forbidden region imposes a 
constraint on the structural form that the Wx, Lx’s can take, and can be formulated as 
an algebraic equation relating the hitherto unknown parameters mL, λL, mU, λU, γ, α 
that define the loser sheets.  We find  
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Stated differently, these are the necessary conditions for the instant-winner sheets 
to be fixed points of the renormalization operator S R.  Solving, we find  
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The densities associated with the various regions of Wx can all be readily 
calculated from these six key parameters.  We thus have a fundamental (probabilistic) 
description of the overall geometry of the game. Our results also confirm several 
numerical conjectures on loser properties by Brouwer [23]. We mention that only a 
single assumption was needed to construct the six preceding parameter relations; 
namely, that fluctuations associated with the diagonal operator D were uncorrelated 
with the fluctuations surrounding the upper line in Lx. 

Several interesting results immediately follow.  First, having identified the 
geometric structure of the loser sheets, we can now easily show that the best opening 
move in Chomp from the initial position [x0, 0, 0] must lie in the vicinity of the 

positions )]12/(,0),12/(2[ 00 ++ xx  or ]0),22/(),22/()12([ 00 +++ xx . 

Second, for most winning positions (except those near a boundary), knowing their 
location within Wx allows us to compute the expected number of winning moves 
based on which lines in the loser sheets are accessible. Third, knowledge of the 
geometrical structure of the loser sheets suggests a natural pathway to more efficient 
algorithms by simply designing the search algorithm to aim directly for the known 
loser lines in Lx.  This is in fact a general feature of our methodology (not limited to 
just Chomp):  once the geometry of a combinatorial game has been identified by the 
renormalization procedure, efficient geometrically-based search algorithms can be 
constructed. Lastly, as seen in Fig. 2c, the co-existence of order (i.e., analytically 
well-defined loser lines) and disorder (i.e., the scatter of points around these lines) 
signifies that combinatorial games such as Chomp may be unsolvable yet still 
informationally compressible, in the language of Chaitin [26].  

The probabilistic renormalization approach we have employed naturally gives rise 
to a whole new set of interesting questions about combinatorial games.  For instance, 
we can construct variants of standard games simply by perturbing an instant-winner 
sheet by the addition of a finite number of new points.  (Such additions effectively 
modify the game by declaring new positions to be automatic winners.)  We can then 
examine whether the previously observed geometry of the Wx’s is preserved for these 
variants (i.e., are they attractors?).  Simulations show that for a sizeable class of 
variants of Chomp the geometric structure of Fig. 2 re-emerges.  Hence it appears 
stable (in a probabilistic sense).  In the language of renormalization we would say that 
such game variants fall into the same universality class as the original game. A related 
issue concerns sensitivity to initial conditions, a hallmark of chaos in dynamical  
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Fig. 3. Dependence on initial conditions. The figure illustrates how perturbing an instant 
winner matrix by a single point subsequently spreads and “infects” the loser sheets at higher x 
values (i.e., altering the precise locations of the losing positions).  The graph shows the fraction 
of losers along the upper tilted and lower lines (e.g., Fig. 2c) that are affected when one adds a 
single new point to W80  and then iterates.  Note that the effects can be pronounced –  e.g., after 
only about 15 iterations of the recursion operator, the locations of nearly half of all losing 
positions have shifted. 

systems theory. Using our recursion operator Wx+1 = R Wx, we can examine how 
small perturbations to Wx propagate.  Although the overall instant-winner geometry of 
the perturbed and unperturbed systems will be the same if they lie in the same 
universality class, they will differ on a point-by-point basis.  We find (see Fig. 3) that 
small initial perturbations can in fact significantly alter the actual loser locations quite 
dramatically, highly reminiscent of chaotic systems.   

We can also apply our methodology to other combinatorial games. Consider the 
game of Nim [1,27]. It is straightforward to construct the recursion and 
renormalization operators for this game, and to analyze its properties analogously.  
Fig. 4a shows the geometry of an instant-winner sheet Wx for three-heap Nim.  As in 
Chomp, this structure exhibits a geometric scaling property (athough the Wx’s do 
depend on their x-values). Unlike Chomp however, ordinary Nim is a completely 
solvable game, and we find that the geometry of its Wx’s is unstable.  Indeed, if we 
add just a few random perturbations to one of the sheets, then a very different-looking 
instant winner structure of the form shown in Fig. 4b emerges. This striking new 
structure, just as for Chomp, is remarkably stable, generic (i.e., it seems to naturally 
emerge for most perturbations), and scale invariant. In fact, we speculate that the 
ordinary game of Nim has an unstable, nongeneric geometry precisely because of its 
solvable nature, and that the robust geometry of Fig. 4b for variants of Nim is much 
more typical.  It is not unreasonable to conjecture that generic combinatorial games 
will have robust underlying geometric structures, while those of solvable games will 
be structurally unstable to perturbations.   

Lastly, we remark that the “growth” (with increasing x) of the geometric structures 
Wx (Figs. 4b and 2a)  for games such as Nim and Chomp is reminiscent of certain 
crystal growth and aggregation processes in physics [28] and activation- inhibition 
cellular automata models in biology [29].  Such a semblance likely arises because the  
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Fig. 4.  The geometries of ordinary and variant Nim. In ordinary (3-heap) Nim, play begins 
with counters stacked into three piles (heaps). Coordinates (x,y,z) denote here the number of 
counters in each heap. At each turn, a player removes one or more counters from one heap.  
Play alternates until one of the two players removes all remaining counters, thereby winning the 
game. Ordinary Nim is completely solvable. (a) the instant winner structure Wx at x=128 for 
ordinary Nim. As in Chomp, this geometrical structure is preserved (up to an overall scale 
factor) with increasing x values; i.e., Wx and W2x look identical (not shown).  However, unlike 
Chomp, the geometry is highly unstable to perturbations, and also exhibits an internal 
periodicity such that Wx and Wx+1 are similar but not wholly identical in structure. (b) the 
instant winner structure Wx at x=128 for a generic Nim variant.  Recall that Nim variants are 
similar to ordinary Nim, except that various heap configurations are arbitrarily declared to be 
automatic winners.  The striking geometrical structure shown in the figure is both stable and 
reproducible, i.e., it typically emerges whenever one or more random heap configurations are 
declared automatic winners.  As in Chomp, this attracting structure is preserved (up to scale 
factors) as one goes to increasingly large x-values. (We note, however, that the scaling behavior 
appears more pronounced for Wx→W2x than it is for Wx→Wx+1, a remnant, we believe, of the 
underlying solvable structure of ordinary Nim upon which these Nim variants are based.) 

recursion operators governing the game evolution typically act by attaching new 
points to the boundaries of the existing structures, thereby transforming the study of a 
combinatorial game into that of a growth process. 

We hope that this novel (renormalization-based) approach to combinatorial games 
and the tantalizing connections it raises to key ideas from the nonlinear sciences will 
stimulate further research along these lines. In addition, we expect that these 
approaches might prove useful for ordinary combinatorial optimization problems too. 
In particular, the recursive formulations currently provide the data structure for the 
most efficient (in both time and memory) known rigorous algorithm, while the 
renormalization solution leads to the most efficient non-rigorous one. 
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Mechanism Design by Creditability�
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Abstract. This paper attends to the problem of a mechanism designer seeking to
influence the outcome of a strategic game based on her creditability. The mech-
anism designer offers additional payments to the players depending on their mu-
tual choice of strategies in order to steer them to certain decisions. Of course, the
mechanism designer aims at spending as little as possible and yet implementing
her desired outcome. We present several algorithms for this optimization prob-
lem both for singleton target strategy profiles and target strategy profile regions.
Furthermore, the paper shows how a bankrupt mechanism designer can decide
efficiently whether strategy profiles can be implemented at no cost at all. Finally,
risk-averse players and dynamic games are examined.

1 Introduction

Game theory is a powerful tool for analyzing decision making in systems with au-
tonomous and rational (or selfish) participants. It is used in a wide variety of fields such
as economics, politics, biology, or computer science. A major achievement of game
theory is the insight that networks of self-interested agents often suffer from ineffi-
ciency due to effects of selfishness. Popular problems in computer science studied from
a game theoretic point of view include virus propagation [1], congestion [2], or network
creation [6], among many others.

If a game theoretic analysis reveals that a system suffers from the presence of selfish
participants, mechanisms to encourage cooperation have to be devised. The field of mech-
anism design [5,9] is also subject to active research; for example, Cole et al. [3,4] have
studied how incentive mechanisms can influence selfish behavior in a routing system.

In many distributed systems, a mechanism designer cannot change the rules of inter-
actions. However, she may be able to influence the agents’ behavior by offering pay-
ments for certain outcomes. On this account, Monderer and Tennenholtz [10] have ini-
tiated the study of a mechanism designer whose power is to some extent based on her
monetary assets, primarily, though, on her creditability, i.e., the players trust her to pay
the promised payments. Thus, a certain subset of outcomes is implemented in a given
game if, by expecting additional non-negative payments, rational players will necessar-
ily choose one of the desired outcomes. The designer faces the following optimization
problem: How can a desired outcome be implemented at minimal cost? Surprisingly, it

� Supported in part by the Swiss National Science Foundation (SNF). A full version includ-
ing all proofs, more simulation results and an appendix is available as TIK Report 270 at
http://www.tik.ee.ethz.ch/.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 208–219, 2007.
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is sometimes possible to improve the performance of a given system merely by cred-
itability, i.e., without any payments at all.

This paper extends [10] in various respects. First, an algorithm for finding an exact,
incentive compatible implementation of a desired set of outcomes is given. We also
show how a bankrupt mechanism designer can decide in polynomial time if a set of
outcomes can be implemented at no costs at all, and an interesting connection to best
response graphs is established. We propose and analyze efficient heuristic algorithms
and demonstrate their performance. Furthermore, we extend our analysis for risk-averse
behavior and study dynamic games where the mechanism designer offers payments in
each round.

2 Model

Game Theory. A strategic game can be described by a tuple G = (N, X, U), where
N = {1, 2, . . . , n} is the set of players and each Player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is denoted
by X := X1 × X2 × . . . × Xn. In the following, a particular outcome x ∈ X is called
strategy profile and we refer to the set of all other players’ strategies of a given Player i
by X−i = X1 × . . . × Xi−1 × Xi+1 × . . . × Xn. An element of Xi is denoted by xi,
and similarly, x−i ∈ X−i; hence x−i is a vector consisting of the strategy profiles of
xi. Finally, U = (U1, U2, . . . , Un) is an n-tuple of payoff functions, where Ui : X → R
determines Player i’s payoff arising from the game’s outcome. Let xi, x

′
i ∈ Xi be

two strategies available to Player i. We say that xi dominates x′
i iff Ui(xi, x−i) ≥

Ui(x′
i, x−i) for every x−i ∈ X−i and there exists at least one x−i for which a strict

inequality holds. xi is the dominant strategy for Player i if it dominates every other
strategy x′

i ∈ Xi\{xi}. xi is a non-dominated strategy if no other strategy dominates
it. By X∗ = X∗

1 × . . . × X∗
n we will denote the set of non-dominated strategy profiles,

where X∗
i is the set of non-dominated strategies available to the individual Player i. The

set of best responses Bi(x−i) for Player i given the other players’ actions is defined as
Bi(x−i) := {xi| argmaxxi∈Xi Ui(xi, x−i)}. A Nash equilibrium is a strategy profile
x ∈ X such that for all i ∈ N , xi ∈ Bi(x−i).

Mechanism Design by Creditability. This paper acts on the classic assumption that
players are rational and always choose a non-dominated strategy. Additionally, it is
assumed that players do not cooperate. We examine the impact of payments to players
offered by a mechanism designer (an interested third party) who seeks to influence the
outcome of a game. These payments are described by a tuple of non-negative payoff
functions V = (V1, V2, . . . , Vn), where Vi : X → R+, i.e. the payments depend on
the strategy Player i selects as well as on the choices of all other players. Thereby,
we assume that the players trust the mechanism designer to finally pay the promised
amount of money, i.e., consider her trustworthy (mechanism design by creditability).
The original game G = (N, X, U) is modified to G(V ) := (N, X, [U + V ]) by these
payments, where [U + V ]i(x) = Ui(x) + Vi(x), that is, each Player i obtains the
payoff of Vi in addition to the payoffs of Ui. The players’ choice of strategies changes
accordingly: Each player now selects a non-dominated strategy in G(V ). Henceforth,
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the set of non-dominated strategy profiles of G(V ) is denoted by X∗(V ). A strategy
profile set – also called strategy profile region – O ⊆ X of G is a subset of all strategy
profiles X , i.e., a region in the payoff matrix consisting of one or multiple strategy
profiles. Similarly to Xi and X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈
O} and O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}.

The mechanism designer’s main objective is to force the players to choose a certain
strategy profile or a set of strategy profiles. For a desired strategy profile region O, we
say that payments V implement O if ∅ ⊂ X∗(V ) ⊆ O. V is called a k-implementation
if, in addition

∑n
i=1 Vi(x) ≤ k, ∀x ∈ X∗(V ). That is, the players’ non-dominated

strategies are within the desired strategy profile, and the payments do not exceed k for
any possible outcome. Moreover, V is an exact k-implementation of O if X∗(V ) = O
and
∑n

i=1 Vi(x) ≤ k ∀x ∈ X∗(V ). The cost k(O) of implementing O is the lowest
of all non-negative numbers q for which there exists a q-implementation. If an imple-
mentation meets this lower bound, it is optimal, i.e., V is an optimal implementation
of O if V implements O and maxx∈X∗(V )

∑n
i=1 Vi(x) = k(O). The cost k∗(O) of

implementing O exactly is the smallest non-negative number q for which there exists
an exact q-implementation of O. V is an optimal exact implementation of O if it im-
plements O exactly and requires cost k∗(O). The set of all implementations of O will
be denoted by V(O), and the set of all exact implementations of O by V∗(O). Finally,
a strategy profile region O = {z} of cardinality one – consisting of only one strat-
egy profile – is called a singleton. Clearly, for singletons it holds that non-exact and
exact k-implementations are equivalent. For simplicity’s sake we often write z instead
of {z} and V (z) instead of

∑
i∈N Vi(z). Observe that only subsets of X which are in

2X1 × 2X2 × . . . × 2Xn ⊂ 2X1×X2×...×Xn can be implemented exactly. We call such
a subset of X a convex strategy profile region.1

3 Algorithms and Analysis

3.1 Exact Implementation

Algorithm and Complexity. Recall that in our model each player classifies the strate-
gies available to her as either dominated or non-dominated. Thereby, each dominated
strategy xi ∈ Xi\X∗

i is dominated by at least one non-dominated strategy x∗
i ∈ X∗

i .
In other words, a game determines for each Player i a relation MG

i from dominated
to non-dominated strategies MG

i : Xi\X∗
i → X∗

i , where MG
i (xi) = x∗

i states that
xi ∈ Xi\X∗

i is dominated by x∗
i ∈ X∗

i . See Fig. 1 for an example.
When implementing a strategy profile region O exactly, the mechanism designer

creates a modified game G(V ) with a new relation MV
i : Xi \ Oi → Oi such that

all strategies outside Oi map to at least one strategy in Oi. Therewith, the set of all
newly non-dominated strategies of Player i must constitute Oi. As every V ∈ V∗(O)
determines a set of relations MV := {MV

i : i ∈ N}, there must be a set MV for
every V implementing O optimally as well. If we are given such an optimal relation
set MV without the corresponding optimal exact implementation, we can compute a

1 These regions define a convex area in the n-dimensional hyper-cuboid, provided that the strate-
gies are depicted such that all oi are next to each other.
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V with minimal payments and the same relation MV , i.e., given an optimal relation
we can find an optimal exact implementation. As an illustrating example, assume an
optimal relation set for G with MG

i (x∗
i1) = oi and MG

i (x∗
i2) = oi. Thus, we can

0 1 4
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4 5 4

4 0 0a
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c f*
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X\X* X*
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Fig. 1. A single player’s game’s view and its
domination relation MG

compute V such that oi must domi-
nate x∗

i1 and x∗
i2 in G(V ), namely, the

condition Ui(oi, o−i) + Vi(oi, o−i) ≥
maxs∈(x∗

i1,x∗
i2)

(Ui(s, o−i) + Vi(s, o−i))
must hold ∀o−i ∈ O−i. In an op-
timal implementation, Player i is not
offered payments for strategy profiles
of the form (ōi, x−i) where ōi ∈
Xi\Oi, x−i ∈ X−i. Hence, the
condition above can be simplified to
Vi(oi, o−i) = max(0, maxs∈{x∗

i1,x∗
i2} (Ui(s, o−i))) − Ui(oi, o−i). Let Si(oi):={s ∈

Xi\Oi|MV
i (s) = oi} be the set of strategies where MV corresponds to

an optimal exact implementation of O. Then, an implementation V with
Vi(ōi, x−i) = 0, Vi(oi, ō−i) = ∞ for any Player i, and Vi(oi, o−i) =
max
{
0, maxs∈Si(oi) (Ui(s, o−i))

}
− Ui(oi, o−i) is an optimal exact implementation

of O as well. Therefore, the problem of finding an optimal exact implementation V of
O corresponds to the problem of finding an optimal set of relations MV

i : Xi\Oi → Oi.
Our algorithm ALGexact (cf. Algorithm 1) exploits this fact and constructs an im-

plementation V for all possible relation sets, checks the cost that V would entail and
returns the lowest cost found.

Algorithm 1 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , 1);

ExactK(V , i):
Input: payments V , current Player i
Output: minimal r s.t. ∃ exact r-implementation W ∈

{W |W (x) ≥ V (x) ∀x ∈ X}
1: if |X∗

i (V )\Oi| > 0 then
2: s := any strategy in X∗

i (V )\Oi; kbest := ∞;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: W (oi, o−i):=max(0, Ui(s, o−i)−

(Ui(oi, o−i) + V (oi, o−i)));
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: W (oi, o−i) := 0;
11: return kbest;
12: else if i < n then
13: return ExactK(V , i + 1);
14: else
15: return maxo∈O

∑
i Vi(o);

Algorithm 2 Exact 0-Implementation (ALGbankrupt)
Input: Game G, convex region O with O−i ⊂ X−i ∀i
Output: % if k∗(O) = 0, ⊥ otherwise

1: compute X∗;
2: for all i ∈ N do
3: for all s ∈ X∗

i \Oi do
4: dZero := ⊥;
5: for all oi ∈ Oi do
6: b := %;
7: for all o−i ∈ O−i do
8: b := b ∧ (Ui(s, o−i) ≤ Ui(oi, o−i));
9: dZero := dZero ∨ b;

10: if ¬ dZero then
11: return ⊥;
12: return true;

Theorem 1. ALGexact computes a strategy profile region’s optimal exact implementa-
tion cost in time O

(
n|X |2 + n|O|(maxi∈N |Oi|n maxi∈N |X∗

i |)
)
.

Note that ALGexact has a large time complexity. In fact, a faster algorithm for this prob-
lem, called Optimal Perturbation Algorithm has been presented in [10]. In a nutshell,
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this algorithm proceeds as follows: After initializing V similarly to our algorithm, the
values of the region O in the matrix V are increased slowly for every Player i, i.e., by
all possible differences between an agent’s payoffs in the original game. The algorithm
terminates as soon as all strategies in X∗

i \ Oi are dominated. Unfortunately, this al-
gorithm does not always return an optimal implementation. Sometimes, as we show in
Appendix A of the full version, the optimal perturbation algorithm increases the values
unnecessarily. In fact, we even conjecture that deciding whether an k-exact implemen-
tation exists is NP-hard.

Conjecture 1. Finding an optimal exact implementation of a strategy region is NP-
hard.

Bankrupt Mechanism Designers. Imagine a mechanism designer who is broke. At
first sight, it seems that without any money, she will hardly be able to influence the
outcome of a game. However, this intuition ignores the power of creditability: a game
can have 0-implementable regions.

Let V be an exact implementation of O with exact costs k∗(O). It holds that if
k∗(O) = 0, V cannot contain any payments larger than 0 in O. Consequently, for an
region O to be 0-implementable exactly, any strategy s outside Oi must be dominated
within the range of O−i by a oi, or there must be one oi for which no payoff Ui(s, o−i)
is larger than Ui(oi, o−i). In the latter case, the strategy oi can still dominate s by using
a payment V (oi, x−i) with x−i ∈ X−i\O−i outside O. Note that this is only possible
under the assumption that O−i ⊂ X−i ∀i ∈ N .

ALGbankrupt (cf. Algorithm 2) describes how a bankrupt designer can decide in
polynomial time whether a certain region is 0-implementable. It proceeds by checking
for each Player i if the strategies in X∗

i \Oi are dominated or “almost” dominated within
the range of O−i by at least one strategy inside Oi. If there is one strategy without such
a dominating strategy, O is not 0-implementable exactly. On the other hand, if for every
strategy s ∈ X∗

i \Oi such a dominating strategy is found, O can be implemented exactly
without expenses.

Theorem 2. Given a convex strategy profile region O where O−i ⊂ X−i ∀i, Algorithm

ALGbankrupt decides whether O has an exact 0-implementation in time O
(
n |X |2

)
.

Best Response Graphs. Best response strategies maximize the payoff for a player
given the other players’ decisions. For now, let us restrict our analysis to games where
the sets of best response strategies consist of only one strategy for each x−i ∀i ∈ N .
Given a game G, we construct a directed best response graph GG with vertices vx for
strategy profiles x ∈ X iff x is a best response for at least one player, i.e., if ∃i ∈ N
such that xi ∈ Bi(x−i). There is a directed edge e = (vx, vy) iff ∃i ∈ N such that
x−i = y−i and {yi} = Bi(y−i). In other words, an edge from vx to vy , indicates
that it is better to play yi instead of xi for a player if for the other players’ strategies
x−i = y−i. A strategy profile region O ⊂ X has a corresponding subgraph GG,O

containing the vertices {vx|x ∈ O} and the edges which both start and end in a vertex
of the subgraph. We say GG,O has an outgoing edge e = (vx, vy) if x ∈ O and y /∈ O.
Note that outgoing edges are not in the edge set of GG,O. Clearly, it holds that if a
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singleton x’s corresponding subgraph GG,{x} has no outgoing edges then x is a Nash
equilibrium. More generally, we make the following observation.

Theorem 3. Let G be a game and |Bi(x−i)| = 1 ∀i ∈ N, x−i ∈ X−i. If a convex
region O has an exact 0-implementation, then the corresponding subgraph GG,O in the
game’s best response graph has no outgoing edges.

In order to extend best response graphs to games with multiple best responses, we mod-
ify the edge construction as follows: In the general best response graph GG of a game
G there is a directed edge e = (vx, vy) iff ∃i ∈ N s.t. x−i = y−i, yi ∈ Bi(y−i) and
|Bi(y−i)| = 1.

Corollary 1. Theorem 3 holds for arbitrary games.

Note that Theorem 3 is a generalization of Monderer and Tennenholtz’ Corollary 1 in
[10]. They discovered that for a singleton x, it holds that x has a 0-implementation if
and only if x is a Nash equilibrium. While their observation covers the special case of
singleton-regions, our theorem holds for any strategy profile region. Unfortunately, for
general regions, one direction of the equivalence holding for singletons does not hold
anymore due to the fact that 0-implementable regions O must contain a player’s best
response to any o−i but they need not contain best responses exclusively.
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1
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0
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10

Fig. 2. Sample game G with best response graph GG. The Nash equilibrium in the bottom left
corner has no outgoing edges. The dotted arrows do not belong to the edge set of GG as the row
has multiple best responses.

3.2 Non-exact Implementation

In contrast to exact implementations, where the complete set of strategy profiles O must
be non-dominated, the additional payments in non-exact implementations only have to
ensure that a subset of O is the newly non-dominated region. Obviously, it matters
which subset this is. Knowing that a subset O′ ⊆ O bears optimal costs, we could find
k(O) by computing k∗(O′). Apart from the fact that finding an optimal implementa-
tion includes solving the – believed to be NP-hard – optimal exact implementation cost
problem for at least one subregion of O, finding this subregion might also be NP-hard
since there are exponentially many possible subregions. In fact, a reduction from the
SAT problem is presented in [10]. The authors show how to construct a 2-person game
in polynomial time given a CNF formula such that the game has a 2-implementation
if and only if the formula has a satisfying assignment. However, their proof is not cor-
rect: While there indeed exists a 2-implementation for every satisfiable formula, it can
be shown that 2-implementations also exist for non-satisfiable formulas. E.g., strategy
profiles (xi, xi) ∈ O are always 1-implementable. Unfortunately, we were not able
to correct their proof. However, we conjecture the problem to be NP-hard, i.e., we
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assume that no algorithm can do much better than performing a brute force computation
of the exact implementation costs (cf. Algorithm 3.1) of all possible subsets, unless
NP = P.

Conjecture 2. Finding an optimal implementation of a strategy region is NP-hard.

For the special case of zero cost regions, Theorem 3 implies the following result.

Corollary 2. If a strategy profile region O has zero implementation cost then the cor-
responding subgraph GG,O in the game’s best response graph contains a subgraph
GG,O′ , O′ ⊆ O, with no outgoing edges.

Corollary 2 is useful to a bankrupt mechanism designer since searching the game’s
best response graph for subgraphs without outgoing edges helps her spot candidates
for regions which can be implemented by mere creditability. In general though, the
fact that finding optimal implementations seems computationally hard raises the ques-
tion whether there are polynomial time algorithms achieving good approximations. As
mentioned in Section 3.1, each V implementing a region O defines a domination re-
lation MV

i : Xi \ Oi → Oi. This observation leads to the idea of designing heuristic
algorithms that find a correct implementation by establishing a corresponding relation
set {M1, M2, . . . , Mn}, Mi : X∗

i \Oi �→ Oi where each x∗
i ∈ X∗

i \Oi maps to at least
one oi ∈ Oi. These algorithms are guaranteed to find a correct implementation of O,
however, the corresponding implementations may not be cost-optimal.

Our greedy algorithmALGgreedy (cf. Algorithm 3) associates each strategy x∗
i yet to

be dominated with the oi with minimal distance ΔG to x∗
i , i.e., the maximum value that

has to be added to Ui(x′
i, x−i) such that x′

i dominates xi: ΔG(xi, x
′
i) := maxx−i∈X−i

max(0, Ui(xi, x−i) − Ui(x′
i, x−i)). Similarly to the greedy approximation algorithm

for the set cover problem [7,8] which chooses in each step the subset covering the
most elements not covered already, ALGgreedy selects a pair of (x∗

i ,oi) such that by
dominating x∗

i with oi, the number of strategies in X∗
i \Oi that will be dominated

therewith is maximal. Thus, in each step there will be an oi assigned to dominate x∗
i

which has minimal dominating cost. Additionally, ALGgreedy takes any opportunity
to dominate multiple strategies. ALGgreedy is described in detail in Algorithm 3.2.
It returns an implementation V of O; to determine V ’s cost, one needs to compute
maxx∗∈X∗(V )

∑
i∈N Vi(x∗).

Theorem 4. ALGgreedy returns an implementation of a convex strategy profile region

O ∈ X in time O
(
n |X |2 + |O|

∑
i∈N |X∗

i \ Oi|2 |O−i|
)

.

ALGred (cf. Algorithm 4) is a more sophisticated algorithm applying ALGgreedy . In-
stead of terminating when the payment matrix V implements O, this algorithm con-
tinues to search for a payment matrix inducing even less cost. It uses ALGgreedy to
approximate the cost repeatedly, varying the region to be implemented. As ALGgreedy

leaves the while loop if X∗
i (V ) ⊆ Oi, it might miss out on cheap implementations

where X∗
i (V ) ⊆ Qi, Qi ⊂ Oi. ALGred examines some of these subsets as well by

calling ALGgreedy for some Qi. If we manage to reduce the cost, we continue with
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Oi := Qi until neither the cost can be reduced anymore nor any strategies can be
deleted from any Oi.

Theorem 5. ALGred returns an implementation of O in time O(nTg|O|maxi∈N |Oi|),
where Tg denotes the runtime of ALGgreedy .

Algorithm 3 Greedy Algorithm ALGgreedy

Input: Game G, convex target region O
Output: Implementation V of O

1: Vi(x) := 0;Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: compute X∗;
3: for all i ∈ N do
4: Vi(oi, ō−i) := ∞ ∀oi ∈ Oi , ō−i ∈ X−i\O−i;
5: while X∗

i (V ) � Oi do
6: cbest := 0;mbest :=null; sbest :=null;
7: for all s ∈ X∗

i (V )\Oi do
8: m := arg minoi∈Oi

(ΔG(V )(s, oi));
9: for all o−i ∈ O−i do

10: W (m, o−i):=max(0, Ui(s, o−i)−
(Ui(m, o−i) + V (m, o−i)));

11: c := 0;
12: for all x ∈ X∗

i \ Oi do
13: if m dominates x in G(V + W ) then
14: c + +;
15: if c > cbest then
16: cbest := c ; mbest := m ; sbest := s;
17: for all o−i ∈ O−i do
18: V (mbest, o−i)+=max(0, Ui(sbest, o−i)−

(Ui(mbest, o−i) + V (mbest, o−i)));
19: return V ;

Algorithm 4 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O

1: [k, V ] := greedy(G, O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {};
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi � Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi

(maxo−i∈O−i
Ui(oi, o−i));

6: if (Oi � Ti) ∧ ¬(∀j: |Tj | = 0 ∨ cj) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\{xi} (maxo−i∈O−i

(Ui(oi, o−i)));
8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V ] := greedy(G, O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := %;
15: return V ;

An alternative heuristic algorithm for computing a region O’s implementation cost
retrieves the region’s cheapest singleton, i.e., mino∈O k(o), where a singleton’s imple-
mentation cost is k(o) = mino∈O

∑
i∈N maxxi∈Xi (Ui(xi, o−i) − Ui(oi, o−i)) [10].

The best singleton heuristic algorithm performs quite well for randomly generated
games as our simulations reveal (cf. Section 4), but it can result in an arbitrarily large
k in the worst case: Fig. 3 depicts a game where each singleton o in the region O con-
sisting of the four bottom left profiles has cost k(o) = 11 whereas V implements O at
cost 2.
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Fig. 3. 2-player game where O ’s optimal implementation V yields a region |X∗(V )| > 1

4 Simulation

All our algorithms return correct implementations of the desired strategy profile sets and
– apart from the recursive algorithm ALGexact for the optimal exact implementation
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– run in polynomial time. In order to study the quality of the resulting implementations,
we performed several simulations comparing the implementation costs computed by
the different algorithms. We have focused on two-person games using random game
tables where both players have payoffs chosen uniformly at random from the interval
[0, max], for some constant max.

We can modify an implementation V of O, which yields a subset of O, without
changing any entry Vi(o), o ∈ O, such that the resulting V implements O exactly.

Theorem 6. If O−i ⊂ X−i ∀i ∈ N , it holds that k∗(O) ≤ maxo∈O V (o) for an
implementation V of O.

Theorem 6 enables us to use ALGgreedy for an exact cost approximation by simply
computing maxo∈O V (o) instead of maxx∈X∗(V ) V (x).

Non-Exact Implementation. We observe that implementing the best singleton often
yields low costs. In other words, especially when large sets have to be implemented, our
greedy algorithms tend to implement too many strategy profiles and consequently incur
unnecessarily high costs. On average, the singleton algorithm performed much better
than the other two, with ALGgreedy being the worst of the candidates. We presume that
the ALGred might improve relatively to the best singleton heuristic algorithm for larger
player sets.

# Strategie kExact  kGreedy  kReduce
4 9.51 9.51 12.06
5 21.44 21.94 32.73
6 33.41 34.74 51.6
7 43.79 46.2 67.3
8 55.01 58.8 85.17
9 66.68 72.34 102.97

10 77.84 85.44 120.7
11 90.27 99.93 139.19
12 114.94 156.64
13 129.24 175.42
14 145.38 195.49
15 161.43 215.65
16 178.19 236.23
17 194.68 257.19
18 211.26 278.35
19 228.54 299.81
20 245.93 321.24
21 263.46 342.93
22 280.52 364.97
23 298.82 387.49
24 316.74 409.69
25 335.47 432.74
26 353.52 455.8
27 372.69 479
28 391.85 502.84
29 411.17 526.56
30 430.42 550.7
31 449.27 574.72
32 468.94 599.15
33 488.21 623.76
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Fig. 4. The average implementation cost k of sets O over 100 random games where |Oi| = �n/3�
(left: Non-exact, right: exact). The utility values are chosen uniformly at random from [0, 20]. For
different intervals we obtain approximately the same result when normalizing k with the maximal
possible value.

Exact Implementation. Due to the large runtime of ALGexact, we were only able to
compute k for a small number of strategies. However, for these cases, our simulations
reveals that ALGgreedy often finds implementations which are close to optimal and is
better than the perturbation algorithm. For different payoff value intervals [0, max], we
observe a faster increase in k than in the non-exact implementation case. This suggests
that implementing a smaller region entails lower costs for random games on average.

Finally, we tested different options to choose the next strategy in Line 8 of ALGred

and ALGgreedy . However, none of the alternatives we tested performed better than the
ones described in Section 3.
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In conclusion, our simulations have shown that for the case of non-exact implemen-
tations, there are interesting differences between the algorithms proposed in Section 3.
In particular, the additional reductions by ALGred are beneficial. For the case of exact
implementations, our modified greedy algorithm yields good results. As a final remark
we want to mention that, although ALGgreedy and ALGred may find cheap implemen-
tations in the average case, there are examples where the approximation ratio of these
algorithms is large.

5 Variations

Mechanism design by creditability offers many interesting extensions. In this section,
two alternative models of rationality are introduced. If we assume that players do not
just select any non-dominated strategy, but have other parameters influencing their de-
cision process, our model has to be adjusted. In many (real world) games, players typ-
ically do not know which strategies the other players will choose. In this case, a player
cannot do better than assume the other players to select a strategy at random. If a player
wants to maximize her gain, she will take the average payoff of strategies into account.
This kind of decision making is analyzed in the subsequent section. Afterwards, risk-
averse players are examined. Finally, we take a brief look at the dynamics of repeated
games with an interested third party offering payments in each round.

5.1 Average Payoff Model

As a player may choose any non-dominated strategy, it is reasonable to compute the
payoff which each of her strategy will yield on average. Thus, assuming no knowledge
on the payoffs of the other players, each strategy xi has an average payoff of pi(xi) :=

1
|X−i|
∑

x−i∈X−i
Ui(xi, x−i) for Player i. Player i will then select the strategy s ∈ Xi

with the largest pi(s), i.e., s = argmaxs∈Xi pi(s). If multiple strategies have the same
average payoff, she plays one of them uniformly at random. For such average strategy
games, we say that xi dominates x′

i iff pi(xi) > pi(x′
i). Note that with this modified

meaning of domination, the region of non-dominated strategies, X∗, differs as well.
The average payoff model has interesting properties, e.g., singleton profiles can be

implemented for free.

Theorem 7. If players maximize their average payoff, singleton strategy profiles are
always 0-implementable if there are at least two players with at least two strategies.

Theorem 7 implies that entire strategy profile regions O are 0-implementable as well:
we just have to implement any singleton inside O.

Corollary 3. In average strategy games where every player has at least two strategies,
every strategy profile region can be implemented for free.

Exact implementations can be implemented at no costs as well.

Theorem 8. In average strategy games where O−i ⊂ X−i ∀i ∈ N , each strategy
profile region has an exact 0-implementation.
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5.2 Risk-Averse Players

Instead of striving for a high payoff on average, the players might be cautious or
risk-averse. To account for such behavior, we adapt our model by assuming that the
players seek to minimize the risk on missing out on benefits. In order to achieve this
objective, they select strategies where the minimum gain is not less than any other
strategy’s minimum gain. If there is more than one strategy with this property, the
risk-averse player can choose a strategy among these, where the average of the ben-
efits is maximal. More formally, let mini := maxxi∈Xi(minx−i∈X−i(Ui(xi, x−i)))
and ∅X f(x) := 1

|X| ·
∑

x∈X f(x). Then Player i selects a strategy m satisfying
m = arg maxm∈M (∅X−i Ui(m, x−i)), where M = {xi|∀x−i Ui(xi, x−i) = mini}.

Theorem 9. For risk-averse players the implementation cost of a singleton z ∈ X is
k(z) =

∑N
i=1 max(0, mini − Ui(z))

For strategy profile regions, the situation with risk-averse players differs from the stan-
dard model considerably.

Theorem 10. For risk-averse players the implementation cost for a strategy profile re-
gion O ⊂ X is k(O) = mino∈O

∑n
i=1 max(0, mini − Ui(o)).

In Section 3, we conjectured the problem of Algorithm 5 Risk-averse Players: Exact Implementation
Input: Game G, target region O, Oi ∩ X∗

i = ∅ ∀i ∈ N
Output: V

1: compute X∗;
2: Vi(z) = 0 for all i ∈ N, z ∈ X;
3: for all i ∈ N do
4: Vi(xi, x−i):=∞ ∀xi ∈ Oi, x−i ∈ X−i \ O−i;
5: Vi(xi, x−i) := max(0,mini − Ui(xi, x−i)) ∀xi ∈ Oi,

x−i ∈ X−i;
6: if O−i = X−i then
7: if τ(Oi) > τ(X∗

i ) then
8: if |Xi| + ε|Oi| > |Xi| +

∑
oi

δ(oi) then
9: Vi(oi, x−i):=Vi(oi, x−i) + δ(oi) ∀oi, x−i;

10: else
11: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
12: else
13: if ε|Oi| >

∑
oi

[ε + δ(oi)] then
14: Vi(oi, x−i):=Vi(oi, x−i) + ε + δ(oi) ∀oi, x−i;
15: else
16: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
17: return V ;

computing k(O) to be NP-complete for both
general and exact implementations. This is
not the case for risk-averse players, as the
following theorem states.

Theorem 11. ALGrisk computes k(O)
in time O

(
n|X |2
)
, thus the problem

of computing k for risk-averse agents
is in P.

5.3 Round-Based Mechanisms

The previous sections dealt with static models only. Now, we extend our analysis to
dynamic, round-based games, where the designer offers payments to the players after
each round in order to make them change strategies. This opens many questions: For
example, imagine a concrete game such as a network creation game [6] where all play-
ers are stuck in a costly Nash equilibrium. The goal of a mechanism designer could then
be to guide the players into another, better Nash equilibrium. Many such extensions are
reasonable; due to space constraints, only one model is presented in more detail.

In a dynamic game, we regard a strategy profile as a state in which the participants
find themselves. In a network context, each x ∈ X could represent one particular net-
work topology. We presume to find the game in an initial starting state sT=0 ∈ X
and that, in state sT=t, each Player i only sees the states she can reach by changing
her strategy given the other players remain with their chosen strategies. Thus Player i
sees only strategy profiles in XT=t

visible,i = Xi × {sT=t
−i } in round t. In every round t,

the mechanism designer offers the players a payment matrix V T=t (in addition to the
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game’s static payoff matrix U ). Then all players switch to their best visible strategy
(which is any best response Bi(sT=t

−i )), and the game’s state changes to sT=t+1. Before
the next round starts, the mechanism designer disburses the payments V T=t(sT=t+1)
offered for the newly reached state. The same procedure is repeated until the mecha-
nism designer decides to stop the game. We prove that a mechanism designer can guide
the players to any strategy profile at zero costs in two rounds.

Theorem 12. Starting in an arbitrary strategy profile, a dynamic mechanism can be
designed to lead the players to any strategy profile without any expenses in at most two
rounds if |Xi| ≥ 3 ∀i ∈ N .

6 Conclusions

It is widely believed that live streaming is difficult in heterogeneous networks where
some peers have poor Internet connections with upload rates smaller than the streaming
rate, or where peers do not upload on purpose because they are selfish. We demonstrated
that several fairness mechanisms cause an intolerable number of underflows even if the
network consists entirely of honest peers. This paper has proposed a mechanism which
provides good streaming quality to those peers which are sufficiently strong by minimiz-
ing the influence of weak peers. Moreover, it is not worthwhile for freeloading peers to
remain in the network as they are never able to obtain the needed data blocks in time.
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Abstract. A double-loop network(DLN) G(N ; r, s) is a digraph with
the vertex set V = {0, 1, . . . , N − 1} and the edge set E = {v → v + r(
mod N) and v → v + s( mod N)|v ∈ V }. Let D(N ; r, s) be the diam-
eter of G, D(N) = min{D(N ; r, s)|1 ≤ r < s < N and gcd(N ; r, s) =
1} and D1(N) = min{D(N ; 1, s)|1 < s < N}. Xu and Aguiló et al.
gave some infinite families of 0-tight non-unit step(nus) integers with
D1(N) − D(N) ≥ 1. In this paper, an approach is proposed for find-
ing infinite families of k-tight(k ≥ 0) optimal double-loop networks
G(N ; r, s), and two infinite families of k-tight optimal double-loop net-
works G(N ; r, s) are presented. We also derive one infinite family of 1-
tight nus integers with D1(N) − D(N) ≥ 1 and one infinite family of
1-tight nus integers with D1(N) − D(N) ≥ 2. As a consequence of these
works, some results by Xu are improved.

Keywords: Double-loop network, tight optimal, L-shaped tile, non-unit
step integer.

1 Introduction

Double-loop digraphs G = G(N ; r, s), with 1 ≤ r < s < N and gcd(N ; r, s) = 1},
have the vertex set V = {0, 1, . . . , N − 1} and the adjacencies are defined by
v → v+r( mod N) and v → v+s( mod N) for v ∈ V . These kinds of digraphs
have been widely studied as architectures for local area networks, known as
double-loop networks (DLN). For surveys about these networks, refer to [3,7].

From the metric point of view, the minimization of the diameter of G corre-
sponds to a faster transmission of messages in the network. The diameter of G is
denoted by D(N ; r, s). As G is vertex symmetric, its diameter can be computed
from the expression max{d(0; i)|i ∈ V }, where d(u; v) is the distance from u to
v in G. For a fixed integer N > 0, the optimal value of the diameter is denoted
by

D(N) = min{D(N ; r, s)|1 ≤ r < s < N and gcd(N ; r, s) = 1}
� This research is supported by Chinese Natural Science Foundation (No. 60473142)

and Natural Science Foundation of Anhui Education Bureau of China (No.
2006KJ238B).

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 220–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Infinite Families of Optimal Double-Loop Networks 221

Several works studied the minimization of the diameter (for a fixed N) with
r = 1. Let us denote

D1(N) = min{D(N ; 1, s)|1 < s < N}

Since the work of Wong and Coppersmith [10], a sharp lower bound is known
for D1(N):

D1(N) ≥ �
√

3N � − 2 = lb(N)

Fiol et al. in [8] showed that lb(N) is also a sharp lower bound for D(N). A
given DLN G(N ; r, s) is called k-tight if D(N ; r, s) = lb(N)+k(k ≥ 0). A k-tight
DLN is called optimal if D(N) = lb(N) + k(k ≥ 0), hence integer N is called
k-tight optimal. The 0-tight DLN are known as tight ones and they are also
optimal. A given DLN G(N ; 1, s) is called k-tight if D(N ; 1, s) = lb(N)+ k(k ≥
0). A k-tight DLN is called optimal if D1(N) = lb(N) + k(k ≥ 0).

The metrical properties of G(N ; r, s) are fully contained in its related L-
shaped tile L(N ; l, h, x, y), where N = lh− xy, l > y and h ≥ x. In Figure 1, we
illustrate generic dimensions of an L-shaped tile.

l
′

∗

0

∗

l

h

y

x

h
′

N = lh − xy

Fig. 1. Generic dimensions of an L-shaped tile

Let D(L) = D(L(N ; l, h, x, y)) = max{l + h − x − 2, l + h − y − 2}. For
obvious reasons, the value D(L) is called the diameter of the tile L. It is known
that an L-shaped tile L(N ; l, h, x, y) can be assigned to a G(N ; r, s) without any
confusion. However, we can not find double-loop network G(N ; r, s) from some
L-shaped tiles. When an L-shaped tile L(N ; l, h, x, y) has diameter lb(N) + k,
we say it is k-tight.

It is known that finding infinite families of k-tight optimal double-loop
networks G(N ; r, s) is a difficult task as the value k increases. In this paper,
an approach is proposed for finding infinite families of k-tight(k ≥ 0) opti-
mal double-loop networks G(N ; r, s), and two infinite families of k-tight optimal
double-loop networks G(N ; r, s) are presented.

Although the identity D(N) = D1(N) holds for infinite values of N , there are
also another infinite set of integers with D(N) < D1(N). These other integral
values of N are called non-unit step integers or nus integers.
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Xu [11] presented three infinite families of 0-tight nus integers with D1(N)−
D(N) ≥ 1. Aguiló et al. [2] derived a method for finding infinite families of nus
integers and then presented some infinite families of 0-tight nus integers with
D1(N)−D(N) ≥ 1. It is known that finding infinite families of nus integers with
D1(N)−D(N) ≥ k is a extremely difficult task as the value k increases. In this
paper, we derive one infinite family of 1-tight nus integers with D1(N)−D(N) ≥
1 and one infinite family of 1-tight nus integers with D1(N) − D(N) ≥ 2. As a
consequence of these works, some results in [11] are improved.

2 Preliminary

The following Lemma 1, 2, 3 and 4 can be found in [6 or 8 or 9].

Lemma 1[6,9]. Let t be a nonnegative integer. We define I1(t) = [3t2+1, 3t2+2t],
I2(t) = [3t2 + 2t + 1, 3t2 + 4t + 1] and I3(t) = [3t2 + 4t + 2, 3(t + 1)2]. Then we

have [4, 3T 2 + 6T + 3] =
T⋃

t=1

3⋃

i=1

Ii(t), where T > 1, and lb(N) = 3t + i − 2 if

N ∈ Ii(t) for i = 1, 2, 3.

Lemma 2[8,11]. Let L(N ; l, h, x, y) be an L-shaped tile, N = lh− xy. Then
(a) There exists G(N ; 1, s) realizing the L-shaped tile iff l > y , h ≥ x and
gcd(h, y) = 1, where s ≡ αl − β(l − x)( mod N) for some integral values α and
β satisfying αy + β(h − y) = 1.
(b) There exists G(N ; s1, s2) realizing the L-shaped tile iff l > y , h ≥ x and
gcd(l, h, x, y) = 1, where s1 ≡ αh + βy( mod N) , s2 ≡ αx + βl( mod N) for
some integral values α and β satisfying gcd(N, s1, s2) = 1.

Lemma 3 [9]. Let L(N ; l, h, x, y) be an L-shaped tile, N = lh− xy. Then
(a) If L(N ; l, h, x, y) is realizable, then |y − x| <

√
N ;

(b) If x > 0 and |y − x| <
√

N , then

D(L(N ; l, h, x, y)) ≥
√

3N − 3
4 (y − x)2 + 1

2 |y − x| − 2 ;

(c) Let f(z) =
√

3N − 3
4z2 + 1

2z . Then f(z) is strictly increasing when

0 ≤ z ≤
√

N .

Lemma 4 [9]. Let N(t) = 3t2 + At + B ∈ Ii(t) and L be the L-shaped tile
L(N(t); l, h, x, y), where A and B are integral values; l = 2t + a, h = 2t + b,
z = |y−x|, a, b, x, y are all integral polynomials of variable t, and j = i+k(k ≥ 0).
Then L is k-tight iff the following identity holds,

(a + b − j)(a + b − j + z) − ab + (A + z − 2j)t + B = 0. (1)

The following Lemma 5 is the generalization of Theorem 2 in [12], and can be
found in [13].

Lemma 5 [13]. Let H(z, j) = (2j− z)2− 3[j(j− z)+ (A+ z− 2j)t+B], and the
identity (1) be an equation of a and b. A necessary condition for the equation
(1) to have integral solution is that 4H(z, j) = s2 + 3m2, where s and m are
integers.
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It is easy to show that the following Lemma 6 is equivalent to Theorem 1 in [12].
Lemma 6 can be found in [13].

Lemma 6 [13]. Let n, s and m be integers, n = s2 + 3m2. If n has a prime
factor p, where p ≡ 2( mod 3), then there exists an even integer q, such that n
is divisible by pq, but not divisible by pq+1.

3 Infinite Families of k-Tight Optimal Double-Loop
Networks

We first describe our approach to generate infinite families of optimal double-
loop networks.

Step 1. Find an integer N0 , such that G(N0; s1, s2) is k-tight optimal (k ≥ 0);

Step 2. Find a polynomial N(t) = 3t2 + At + B, such that N(t0) = N0 and
N(t) ∈ Ii(t),1 ≤ i ≤ 3;

Step 3. If G(N0; s1, s2) is 0-tight optimal and A = 2i, then A + z − 2j = 0 if
z = 0. Find all integral solutions of equation (1), let S = {(a, b)|(a + b − j)(a +
b− j +z)−ab+(A+z−2j)t+B = 0, where z = 0, j = i}. Find all pairs (s1, s2)
satisfying gcd(l, h, x, y) = 1 and gcd(N, s1, s2) = 1, then all G(N(t); s1, s2) are
infinite families of 0-tight optimal DLN.

Step 4. If G(N0; s1, s2) is 0-tight optimal and A = 2i − 1, find all integral
solutions of equation (1), let S = {(a, b)|(a + b − j)(a + b − j + z) − ab + (A +
z − 2j)t + B = 0, where t = t0, z = 0, j = i}. Note that A + z − 2j = −1, let
(a0, b0) ∈ S, a = a0, b = f+b0, then t = f2+cf+t0. Let l = 2t+a, h = 2t+b, x =
t+a+b−i, y = x, α = −1, β = 2, s1 ≡ αh+βy( mod N), s2 ≡ αx+βl( mod N),
find integer p, such that when f = pe, gcd(l, h, x, y) = 1 and gcd(N, s1, s2) = 1.
We have that G(N(t); s1, s2) is an infinite family of 0-tight optimal DLN.

Step 5. If G(N0; s1, s2) is k-tight optimal(k > 0). First we ensure that there
is no i-tight optimal DLN for 0 ≤ i < k. By Lemma 4,5 and 6, to ensure that
there is no i-tight L-shaped tile t must be in the form t = pe + t0. By Lemma
2, to ensure that the i-tight L-shaped tile be not realizable t must be in the
form t = qe + t0. Therefore, let lcm(p, q) be the lease common multiple of p and
q, then t must be in the form t = lcm(p, q)e + t0. If A + z − 2j = 0, continue
proceeding in the same way like step 3. If A + z − 2j 	= 0, continue proceeding
in the same way like step 4, here we need let a = a0 , b = −(A + z − 2j)f + b0.
Then we will get some infinite families of k-tight optimal DLN.

We now present some application examples to illustrate the above method.
Let N0 = 450, N(t) = 3t2 + 2t − 6. Then N(12) = 450. For D(N ; 3, 35) =

lb(450) = 35, then G(N ; 3, 35) is 0-tight optimal. For i = 1, k = 0, z = 0, A =
2, B = −6, the equation (1) becomes

(a + b − 1)(a + b − 1) − ab − 6 = 0,
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which has integral solutions:

S = {(−2, 1), (−2, 3), (1,−2), (1, 3), (3,−2), (3, 1)}

Let l = 2t + a, h = 2t + b, x = t + a + b − 1, y = x, α = −1, β = 2, s1 ≡ αh + βy(
mod N), s2 ≡ αx + βl( mod N). Then all (a, b) ∈ S satisfy(or partly satisfy)
gcd(l, h, x, y) = 1 and gcd(N, s1, s2) = 1.

All pairs of (s1, s2) corresponding to (a, b) ∈ S are

{ (−5, 3t− 2)|t 	= 4( mod 5) and t > 4, (−3, 3t− 4)|t > 3,

(−2, 3t + 4)|t 	= 0( mod 2) and t > 4, (3, 3t− 1)|t > 3,

(2, 3t + 6)|t 	= 0( mod 2) and t > 4,

(5, 3t + 3)|t 	= 4( mod 5) and t > 4}. (2)

This leads to the following theorem.

Theorem 1. Let N(t) = 3t2 + 2t − 6, (s1, s2) belong to the set (2). Then
G(N(t); s1, s2) is an infinite family of 0-tight optimal DLN.

Proof. Note that 3N(t)− 3/4 = (3t + 1/2)2 + 3t− 19. By Lemma 3, if y − x ≥ 1
and t > 6, we have

D(N(t)) ≥
√

3N(t) − 3
4

> (3t + 1/2) + 1/2 − 2 = 3t − 1 = lb(N(t))

Therefore, all the 0-tight L-shaped tile L(N(t); l, h, x, y) must satisfy y−x = 0.
By Lemma 4, with i = 1, k = 0, z = 0, A = 2, B = −6, the equation (1) becomes

(a + b − 1)(a + b − 1) − ab − 6 = 0

which has integral solutions:

S = {(−2, 1), (−2, 3), (1,−2), (1, 3), (3,−2), (3, 1)}

For any (a, b) ∈ S , let l = 2t + a, h = 2t + b, x = t + a + b − 1, y =
x, L(N(t); l, h, x, y) is an L-shaped tile with N(t) = lh − xy. By Lemma 2, for
any (s1, s2) belongs to the set (2), G(N(t); s1, s2) is an infinite family of 0-tight
optimal DLN.

We have this theorem. ��

From Theorem 1, {G(3t2 +2t−6; 3, 3t−1) : t > 3} is an infinite family of 0-tight
optimal DLN, which is better than that of Theorem 1 in [11].

Observe that G(N ; 3, 35) is 0-tight optimal ensures that the equation (1) has
integral solutions.

Note that for some other pairs of (α, β), we can also get many infinite families
of 0-tight optimal DLN. For instance, for (α, β) = (1, 1), (a, b) = (−2, 1), we have
that G(N(t); 3t − 4, 3t − 1) is an infinite family of 0-tight optimal DLN, where
t > 3.
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Let N0 = 417289, N(t) = 3t2 + 6t − 95. Then N(372) = 417289. For

D(N ;−33, 1165) = D(N) = lb(417289) + 5 = 1122.

Thus G(N ;−33, 1165) is 5-tight optimal.
For A = 6, B = −95, compute H(z, j) = (2j−z)2−3[j(j−z)+(A+z−2j)t+B]

respectively:
For j = 3, z = 0, H(0, 3) = 294 = 2 × 147, where 2 has power 1.
For j = 4, z = 0, t = 372, H(0, 4) = 2533 = 17 × 149, where 17 has power 1.
For j = 4, z = 1, t = 372, H(1, 4) = 1414 = 2 × 707, where 2 has power 1.
For j = 4, z = 2, H(2, 4) = 297 = 11 × 27, where 11 has power 1.
For j = 5, z = 0, t = 372, H(0, 5) = 4474 = 2 × 2237, where 2 has power 1.
For j = 5, z = 1, t = 372, H(1, 5) = 3654 = 2 × 1827, where 2 has power 1.
For j = 5, z = 2, t = 372, H(2, 5) = 2536 = 8 × 317, where 2 has power 3.
For j = 5, z = 3, t = 372, H(3, 5) = 1420 = 5 × 284, where 5 has power 1.
For j = 5, z = 4, H(4, 5) = 306 = 2 × 153, where 2 has power 1.
For j = 6, z = 0, H(0, 6) = 3(6t + 107). Suppose that 3(6t + 107) = s2 + 3m2,

then 3|s2, let s = 3q, we have 6t + 107 = 3q2 + m2, so m2 ≡ 107( mod 3) ≡ 2
( mod 3), which is impossible. Thus 4H(0, 6) has no the form of s2 + 3m2.

For j = 6, z = 1, t = 372, H(1, 6) = 5896 = 8 × 737, where 2 has power 3.
For j = 6, z = 2, t = 372, H(2, 6) = 4777 = 17 × 281, where 17 has power 1.
For j = 6, z = 3, t = 372, H(3, 6) = 3660 = 5 × 732, where 5 has power 1.
For j = 6, z = 4, t = 372, H(4, 6) = 2545 = 5 × 509, where 5 has power 1.
For j = 6, z = 5, t = 372, H(5, 6) = 1432 = 8 × 179, where 2 has power 3.
For j = 6, z = 6, H(6, 6) = 321 = 107 × 3, where 107 has power 1.
For j = 7, z = 0, t = 372, H(0, 7) = 9262 = 2 × 4631, where 2 has power 1.
For j = 7, z = 1, t = 372, H(1, 7) = 8140 = 5 × 1628, where 5 has power 1.
For j = 7, z = 2, t = 372, H(2, 7) = 7020 = 5 × 1404, where 5 has power 1.
For j = 7, z = 3, t = 372, H(3, 7) = 5902 = 2 × 2951, where 2 has power 1.
For j = 7, z = 4, t = 372, H(4, 7) = 4786 = 2 × 2393, where 2 has power 1.
For j = 7, z = 5, t = 372, H(5, 7) = 3672 = 8 × 459, where 2 has power 3.
For j = 7, z = 6, t = 372, H(6, 7) = 2560 = 5 × 512, where 5 5(mod6).
For j = 7, z = 7, t = 372, H(7, 7) = 1450 = 2 × 725, where 2 has power 1.
For j = 7, z = 8, H(8, 7) = 342 = 2 × 171, where 2 has power 1.
Let t = 16 × 52 × 172 × e + 372(e ≥ 0).
For 0 ≤ k ≤ 4(3 ≤ j ≤ 7), 0 ≤ z = y − x ≤ 2k, by Lemma 6, 4H(z, j) has no

the form of s2 + 3m2. By Lemma 5, the equation (1) has no integral solutions
of a and b. By Lemma 4, there is no k-tight L-shaped tile L(N(t); l, h, x, y).

For A = 6, B = −95, j = 8, z = 6, the equation (1) becomes

(a + b − 8)(a + b − 2) − ab − 4t − 95 = 0

which has integral solutions for t = 372:

S = {(−37, 4), (−37, 43), (4,−37), (4, 43), (43,−37), (43, 4)}

Let a = 4, b = 4f − 37, then t = 4f2 − 80f + 372.
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Let α = −1, β = 2, then s1 ≡ 4f − 33( mod N), s2 = 3t − 4f + 49 =
12f2 − 244f + 1165.

Let l = 2t + a, h = 2t + b, x = t + a + b− 8, y = x + 6, then gcd(l, h, x, y) = 1.
Note that 12f2 − 244f + 1165 = (3f − 36)(4f − 33) − f − 23, and 4f − 33 =
−4(−f − 23) − 125. Thus,

gcd(N, s1, s2) = gcd(N, 4f − 33, 24f2 + 196f + 383)
= gcd(N, 4f − 33,−f − 23)
= gcd(N,−125,−f − 23) = 1

if f = 5e(e is integral and e ≥ 0).
This leads to the following theorem.

Theorem 2. Let N(t) = 3t2 +6t−95, s1 ≡ 4f −33( mod N), s2 = 3t−4f +49,
where t = 4f2−80f+372, f = 5g, g = 2×5×172×e(e ≥ 0). Then G(N(t); s1, s2)
is an infinite family of 5-tight optimal DLN.

The proof is omitted.

4 Infinite Families of Nus Integers

Aguiló et al. [2] gave the definition and the characterization of nus(non unit
step) integers, and presented the 1-tight nus integer 2814, where lb(2814) =
90, D(2814) = 91, and D1(2814) = 92.

Let N(t) = 3t2 +4t−6. Then N(30) = 2814. For A = 4, B = −6, j = 3, z = 2,
the equation (1) becomes (a + b− 3)(a + b − 1)− ab − 6 = 0, which has integral
solutions: S = {(−2, 3), (3,−2), (3, 3)}.

Let l = 2t+a, h = 2t+b, x = t+a+b−3, y = x+2, α = −1, β = 2, s1 ≡ αh+βy(
mod N), s2 ≡ αx + βl( mod N). Then all (a, b) ∈ S satisfy(or partly satisfy)
gcd(, h, x, y) = 1 and gcd(N, s1, s2) = 1.

All pairs of (s1, s2) corresponding to (a, b) ∈ S are

{ (−3, 3t − 2)|t > 3, (2, 3t + 8)|t 	= 0( mod 2) and t > 4,

(7, 3t + 3)|t 	= 6( mod 7) and t > 3} (3)

For A = 4, B = −6, j = 2, z = 0, H(0, 2) = 22. By Lemma 6, 4H(0, 2) = 88
has no the form of s2 +3m2. By Lemma 5, the equation (1) has no integral solu-
tions of a and b. By Lemma 4, there is no 0-tight L-shaped tile L(N(t); l, h, x, y).

This leads to the following theorem.

Theorem 3. Let N(t) = 3t2 + 4t − 6, (s1, s2) belong to the set (3). Then
G(N(t); s1, s2) is an infinite family of 1-tight optimal DLN.

Proof. Note that 3N(t)− 3/4 = (3t + 3/2)2 + 3t− 21. By Lemma 3, if y − x ≥ 1
and t > 7, we have

D(N(t)) ≥
√

3N(t) − 3
4

> (3t + 3/2) + 1/2 − 2 = 3t = lb(N(t))
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Therefore, all the 0-tight L-shaped tile L(N(t); , h, x, y) must satisfy y − x = 0.
From H(0, 2) = 22, there is no 0-tight L-shaped tile L(N(t); l, h, x, y).

Note that 3N(t)− (3/4)32 = (3t + 3/2)2 + 3t− 27. By Lemma 3, if y − x ≥ 3
and t > 9, we have

D(N(t)) ≥
√

3N(t) − 3
4
32 > (3t + 3/2) + 3/2 − 2 = 3t + 1 = lb(N(t)) + 1

Therefore, all the 1-tight L-shaped tile L(N(t); l, h, x, y) must satisfy 0 ≤ y −
x ≤ 2. By Lemma 4, with A = 4, B = −6, j = 3, z = 2, the equation (1)
becomes (a + b − 3)(a + b − 1) − ab − 6 = 0, which has integral solutions:
S = {(−2, 3), (3,−2), (3, 3)}.

By Lemma 1, for any (s1, s2) belongs to the set (3), G(N(t); s1, s2) is an
infinite family of 1-tight optimal DLN.

We have this theorem. ��

Continue the above discussion.
For (-2,3), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t + 3, t) = 3 if t ≡ 0

( mod 3).
For (3,-2), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t − 2, t) = 2 if t ≡ 0

( mod 2).
For (3,3), gcd(h, y) = gcd(2t + b, t + a + b− 1) = gcd(2t + 3, t+5) = 7 if t ≡ 2

( mod 7).
By Lemma 2(a) and consider the symmetry of L-shaped tile, for t = 2 ×

3 × 7 × e + 30(e ≥ 0), there is no G(N ; 1, s) realizing the 1-tight L-shaped tile
L(N(t); l, h, x, y) where |y − x| = 2.

For A = 4, B = −6, j = 2 + 1, z = 0, t = 30, H(0, 3) = 207 = 23 × 9, where
23 ≡ 2(mod3).

For A = 4, B = −6, j = 2 + 1, z = 1, t = 30, H(1, 3) = 115 = 23 × 5.
By Lemma 4,5,6 and consider the symmetry of L-shaped tile, for t = 232×e+

30(e ≥ 0), there is no 1-tight L-shaped tile L(N(t); l, h, x, y) where |y − x| = 0
or |y − x| = 1.

Combining these arguments with theorem 3 will lead to the following theorem.

Theorem 4. The nodes N(t) = 3t2 + 4t− 6, t = 2× 3× 7× 232 × e + 30(e ≥ 0),
of an infinite family of 1-tight optimal DLN correspond to 1-tight nus integers
with D1(N) − D(N) ≥ 1.

Let N0 = 267360, N(t) = 3t2 + 4t − 244. Then N(298) = 267360. For
D(N ; 9, 874) = D(N) = lb(267360) + 1 = 895, then G(N ; 9, 874) is 1-tight
optimal. For A = 4, B = −244, j = 3, z = 2, the equation (1) becomes (a + b −
3)(a + b − 1) − ab − 244 = 0, which has integral solutions:

S = {(−11,−4), (−11, 19), (−4,−11), (−4, 19), (19,−11), (19,−4)}

Let l = 2t+a, h = 2t+b, x = t+a+b−3, y = x+2, α = −1, β = 2, s1 ≡ αh+βy
( mod N), s2 ≡ αx + βl( mod N), then all (a, b) ∈ S satisfy(or partly satisfy)
gcd(l, h, x, y) = 1 and gcd(N, s1, s2) = 1. All pairs of (s1, s2) corresponding to
(a, b) ∈ S are
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{ (−28, 3t− 4)|t 	= 0( mod 2) and t 	= 6( mod 7) and t > 24,

(−5, 3t− 27)|t 	= 4( mod 5) and t > 24,

(−21, 3t + 10)|t 	= 6( mod 7) and t > 24,

(9, 3t − 20)|t > 24, (25, 3t + 33)|t 	= 4( mod 5) and t > 24,

(32, 3t + 26)|t 	= 0( mod 2) and t > 24} (4)

For A = 4, B = −244, j = 2, z = 0, H(0, 2) = 736 = 23 × 32. Note that
23 ≡ 2( mod 3), there is no 0-tight L-shaped tile L(N(t); l, h, x, y). With a
similar argument as Theorem 3, we have the following theorem.

Theorem 5. Let N(t) = 3t2 + 4t − 244, (s1, s2) belong to the set (4). Then
G(N(t); s1, s2) is an infinite family of 1-tight optimal DLN.

For (-11,-4), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t − 4, t − 16) = 2 if
t ≡ 0( mod 2)

For (-11,19), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t + 19, t + 7) = 5 if
t ≡ 3( mod 5)

For (-4,-11), gcd(h, y) = gcd(2t + b, t + a + b− 1) = gcd(2t− 11, t− 16) = 3 if
t ≡ 1( mod 3)

For (-4,19), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t + 19, t + 14) = 3 if
t ≡ 1( mod 3)

For (19,-11), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t − 11, t + 7) = 5 if
t ≡ 3( mod 5)

For (19,-4), gcd(h, y) = gcd(2t + b, t + a + b − 1) = gcd(2t − 4, t + 14) = 2 if
t ≡ 0( mod 2)

By Lemma 2(a) and consider the symmetry of L-shaped tile, for t = 2 × 3 ×
5 × e + 298(e ≥ 0), there is no G(N ; 1, s) realizing the 1-tight L-shaped tile
L(N(t); l, h, x, y) where |y − x| = 2.

For A = 4, B = −244, j = 4, z = 2, the equation (1) becomes (a + b − 4)(a +
b − 2) − ab − 2t − 244 = 0.

It is easy to show that both a and b are even. Let l = 2t+a, h = 2t+b, x = t+
a+b−4, y = x+2. Then gcd(l, h, x, y) ≥ 2 if t ≡ 0( mod 2), so L(N(t); l, h, x, y)
is not realizable.

For j = 3, z = 0, t = 298, H(0, 3) = 2529 = 281 × 9, where 281 ≡ 2( mod 3).
For j = 3, z = 1, t = 298, H(1, 3) = 1633 = 23 × 71, where 23 ≡ 2( mod 3).
For j = 4, z = 0, t = 298, H(0, 4) = 4324 = 23 × 188, where 23 ≡ 2( mod 3).
For j = 4, z = 1, t = 298, H(1, 4) = 3427 = 23 × 149, where 23 ≡ 2( mod 3).
For j = 4, z = 3, t = 298, H(3, 4) = 1639 = 11 × 149, where 11 ≡ 2( mod 3).
For j = 4, z = 4, H(4, 4) = 748 = 11 × 68, where 11 ≡ 2( mod 3).
Let t = 112×232×2812×e+298(e ≥ 0). For (z, j) ∈ {(0, 2), (0, 3), (1, 3), (0, 4),

(1, 4), (3, 4), (4, 4)}, by Lemma 6, 4H(z, j) has no the form of s2 + 3m2. By
Lemma 5, the equation (1) has no integral solutions of a and b. By Lemma 4,
there is no k-tight L-shaped tile L(N(t); l, h, x, y) for (z, j).

Note that t = 2 × 3 × 5 × e + 298(e ≥ 0), for 0 ≤ k ≤ 2(2 ≤ j ≤ 4),
0 ≤ z = y−x ≤ 2k, there is no k-tight L-shaped tile or the k-tight L-shaped tile
is not realizable by G(N ; 1, s).
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Combining these arguments with Theorem 5 will lead to the following theorem.

Theorem 6. The nodes N(t) = 3t2 + 4t − 244, t = 2 × 3 × 5 × 112 × 232 ×
2812 × e + 298(e ≥ 0), of an infinite family of 1-tight optimal DLN correspond
to 1-tight nus integers with D1(N) − D(N) ≥ 2.

5 Remarks

In a way similar to those of Theorem 1, let (a, b) = (4,−1), α = −1, β = 2. Then
{G(3t2 + 4t − 5; 3, 3t + 7) : t > 2} is an infinite family of 0-tight optimal DLN,
which is better than that of Theorem 2 in [11].

As t ≡ 3( mod 4) (in Theorem 3 [11]) can be changed to t ≡ 1( mod 2),
similar to the proof of Theorem 3, we can have that the nodes N(t) = 3t2 +
4t − 11, t = 42 × e + 17(e ≥ 0), of an infinite family of 0-tight optimal DLN
correspond to 0-tight nus integers with D1(N) − D(N) ≥ 1, which contains the
second minimum nus integer 924 as its first element. This result is much better
than that of Theorem 3 in [11].
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6. Esqué, P., Aguiló, F., Fiol, M.A.: Double commutative-step digraphs with mini-
mum diameters. Discrete Mathematics 114, 147–157 (1993)

7. Hwang, F.K.: A complementary survey on double-loop networks. Theoret. Comput.
Sci. 263, 211–229 (2001)

8. Fiol, M.A., Yebra, J.L.A., Alegre, I., Valero, M.: A discrete optimization problem
in local networks and data alignment. IEEE Trans. Comput. C-36, 702–713 (1987)

9. Li, Q., Xu, J., Zhang, Z.: The infinite families of optimal double loop networks.
Discrete Applied Mathematics 46, 179–183 (1993)

10. Wong, C.K., Coppersmith, D.: A combinatorial problem related to multimode
memory organizations. J. Ass. Comput. Mach. 21, 392–402 (1974)

11. Xu, J.: Designing of optimal double loop networks. Science in China, Series E E-
42(5), 462–469 (1999)

12. Xu, J., Liu, Q.: An infinite family of 4-tight optimal double loop networks. Science
in China, Series A A-46(1), 139–143 (2003)

13. Zhou, J., Xu, X.: On infinite families of optimal double-loop networks with non-unit
steps, Ars Combinatoria (accepted)



Point Sets in the Unit Square and Large Areas
of Convex Hulls of Subsets of Points

Hanno Lefmann

Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract. In this paper generalizations of Heilbronn’s triangle prob-
lem are considered. By using results on the independence number of
linear hypergraphs, for fixed integers k ≥ 3 and any integers n ≥ k
a o(n6k−4) time deterministic algorithm is given, which finds distribu-
tions of n points in the unit square [0, 1]2 such that, simultaneously for
j = 3, . . . , k, the areas of the convex hulls determined by any j of these
n points are Ω((log n)1/(j−2)/n(j−1)/(j−2)).

1 Introduction

Distributions of n points in the unit square [0, 1]2 such that the minimum area of
a triangle determined by three of these n points is large have been investigated
by Heilbronn. Let Δ3(n) denote the supremum over all distributions of n points
in [0, 1]2 of the minimum area of a triangle among n points. Since no three
of the points 1/n · (i mod n, i2 mod n), i = 0, . . . , n − 1, are collinear, we infer
Δ3(n) = Ω(1/n2), provided n is prime, as has been observed by Erdös. For
a while this lower bound was believed to be also the upper bound. However,
Komlós, Pintz and Szemerédi [14] proved that Δ3(n) = Ω(log n/n2), see [7] for
a deterministic polynomial time algorithm achieving this lower bound. Upper
bounds on Δ3(n) were given by Roth [19]–[22] and Schmidt [23] and, improving
these earlier results, the currently best upper bound Δ3(n) = O(2c

√
log n/n8/7)

for a constant c > 0, is due to Komlós, Pintz and Szemerédi [13]. We remark
that the expected value of the minimum area of a triangle formed by three of
n uniformly at random and independently of each other distributed points in
[0, 1]2 has been shown in [12] to be equal to Θ(1/n3).

Variants of Heilbronn’s triangle problem in higher dimensions were investi-
gated by Barequet [3,4], who considered the minimum volumes of simplices among
n points in the d-dimensional unit cube [0, 1]d, see also [15] and Brass [8]. Recently,
Barequet and Shaikhet [5] considered the on-line situation, where the points have
to be positioned one after the other and suddenly this process stops. For this sit-
uation they obtained for the supremum of the minimum volume of (d + 1)-point
simplices among n points in [0, 1]d the lower bound Ω(1/n(d+1) ln(d−2)+2).

A generalization of Heilbronn’s triangle problem to k-gons, see Schmidt [23],
asks, given an integer k ≥ 3, to maximize the minimum area of the convex
hull of any k distinct points in a distribution of n points in [0, 1]2. In partic-
ular, let Δk(n) be the supremum over all distributions of n points in [0, 1]2

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 230–241, 2007.
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of the minimum area of the convex hull determined by some k of n points.
For k = 4, Schmidt [23] proved the lower bound Δ4(n) = Ω(1/n3/2), and in
[7] the lower bound Δk(n) = Ω(1/n(k−1)/(k−2)) has been shown for fixed in-
tegers k ≥ 3. Also in [7] a deterministic polynomial time algorithm was given
which achieves this lower bound. This has been improved in [16] to Δk(n) =
Ω((log n)1/(k−2)/n(k−1)/(k−2)) for any fixed integers k ≥ 3.

We remark that for k a function of n, Chazelle proved in [9] in connection
with some range searching problems Δk(n) = Θ(k/n) for log n ≤ k ≤ n.

In [17] a deterministic polynomial time algorithm has been given, which finds
for fixed integers k ≥ 2 and any integers n ≥ k a distribution of n points in
the unit square [0, 1]2 such that, simultaneously for j = 2, . . . , k, the areas of
the convex hulls of any j among the n points are Ω((log n)1/(j−2)/n(j−1)/(j−2)).
Recently, in [18] these (simultaneously achievable) lower bounds on the minimum
areas of the convex hull of any j among n points in [0, 1]2 have been improved
by using (non-discrete) probabilistic arguments by a polylogarithmic factor to
Ω((log n)1/(j−2)/n(j−1)/(j−2)) for j = 3, . . . , k. (Note that Δ2(n) = Θ(1/n1/2).)
While this was an existence argument, here we give a deterministic polynomial
time algorithm, which provides such a configuration of n points in [0, 1]2.

Theorem 1. Let k ≥ 3 be a fixed integer. For each integer n ≥ k one can
find deterministically in time o(n6k−4) some n points in the unit square [0, 1]2

such that, simultaneously for j = 3, . . . , k, the minimum area of the convex hull
determined by some j of these n points is Ω((log n)1/(j−2)/n(j−1)/(j−2)).

Concerning upper bounds, we remark that for fixed j ≥ 4 only the simple bounds
Δj(n) = O(1/n) are known, compare [23].

2 The Independence Number of Linear Hypergraphs

In our considerations we transform the geometric problem into a problem on
hypergraphs.

Definition 1. A hypergraph is a pair G = (V, E) with vertex-set V and edge-
set E, where E ⊆ V for each edge E ∈ E. For a hypergraph G the notation
G = (V, E2 ∪ · · · ∪ Ek) means that Ei is the set of all i-element edges in G,
i = 2, . . . , k. A hypergraph G = (V, E) is called k-uniform if |E| = k for each
edge E ∈ E. The independence number α(G) of G = (V, E) is the largest size of
a subset I ⊆ V which contains no edges from E.

For hypergraphs G a lower bound on the independence number α(G) is given by
Turán’s theorem for hypergraphs, see [24].

Theorem 2. Let G = (V, E2 ∪ · · · ∪ Ek) be a hypergraph on |V | = N vertices
with average degree ti−1

i := i · |Ei|/|V | for the i-element edges, i = 2, . . . , k. Let
ti0 := max {ti | 2 ≤ i ≤ k} ≥ 1/2.

Then, the independence nunber α(G) of G satisfies

α(G) ≥ N/(4 · ti0). (1)
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An independent set I ⊆ V in G with |I| ≥ N/(4 · ti0) can be found deterministi-
cally in time O(|V | + |E2| + · · · + |Ek|).

For fixed positive integers k ≥ 2 one can show by Theorem 2 and Lemmas
2 and 4 (see below), that one can find deterministically in polynomial time
n points in [0, 1]2 such that the areas of the convex hulls of any j of these
n points are Ω(1/n(j−1)/(j−2)) simultaneously for j = 2, . . . , k, compare [17].
However, we want to obtain better lower bounds. To achieve this, we consider
the independence number of hypergraphs, which do not contain cycles of small
lenghts.

Definition 2. A j-cycle in a hypergraph G = (V, E) is a sequence E1, . . . , Ej of
distinct edges E1, . . . , Ej ∈ E, such that Ei ∩ Ei+1 	= ∅ for i = 1, . . . , j − 1, and
Ej ∩ E1 	= ∅, and a sequence v1, . . . , vj of distinct vertices with vi+1 ∈ Ei ∩ Ei+1

for i = 1, . . . , j − 1, and v1 ∈ E1 ∩ Ej. An unordered pair {E, E′} of distinct
edges E, E′ ∈ E with |E ∩ E′| ≥ 2 is called a 2-cycle. For a hypergraph G =
(V, E3 ∪ · · · ∪ Ek) a 2-cycle {E, E′} in G is called (2; (g, i, j))-cycle if and only if
|E ∩E′| = g, and E ∈ Ei and E′ ∈ Ej for 2 ≤ g ≤ i ≤ j but g < j. A hypergraph
G = (V, E) is called linear if it does not contain any 2-cycles, and it is called
uncrowded if it does not contain any 2-, 3- or 4-cycles.

For k-uniform uncrowded hypergraphs the next lower bound on the independence
number, which has been proved by Ajtai, Komlós, Pintz, Spencer and Szemerédi
[1], is better than the one in (1), see also [2] and [10], and compare [6] and [11]
for a deterministic polynomial time algorithm.

Theorem 3. Let k ≥ 3 be a fixed integer. Let G = (V, Ek) be an uncrowded k-
uniform hypergraph with |V | = N vertices and average degree tk−1 := k · |Ek|/N .

Then, for some constant Ck > 0 the independence number α(G) of G satisfies

α(G) ≥ Ck · (N/t) · (log t)
1

k−1 . (2)

Hence, for fixed integers k ≥ 3 and uncrowded k-uniform hypergraphs with aver-
age degree tk−1 the lower bound (2) improves (1) by a factor of Θ((log t)1/(k−1)).

We use the following extension of Theorem 3 – instead of an uncrowded hy-
pergraph we require only a linear one –, see [17].

Theorem 4. Let k ≥ 3 be a fixed integer. Let G = (V, E3 ∪ · · · ∪ Ek) be a linear
hypergraph with |V | = N such that the average degrees ti−1

i := i · |Ei|/|V | for
the i-element edges satisfy ti−1

i ≤ ci · Si−1 · (log S)(k−i)/(k−1), where ci > 0 are
constants with ci < 1/32 ·

(
k−1
i−1

)
/(10(3(k−i))/(k−1) · k6), i = 3, . . . , k.

Then for some constant Ck > 0, the independence number α(G) of G satisfies

α(G) ≥ Ck · N

S
· (log S)

1
k−1 . (3)

An independent set of size Ω((N/S) · (log S)1/(k−1)) can be found deterministi-
cally in time O(N · S4k−2).
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Both Theorems 3 and 4 are best possible for a certain range of the parameters
k < T < N as can be seen by a random hypergraph argument.

Theorem 4 is helpful in our situation, since one has to take care only of the
2-cycles and not of 3- and 4-cycles anymore.

3 A Deterministic Algorithm

Here we prove Theorem 1. To give a polynomial time algorithm, which for fixed
integers k ≥ 3 finds for any integers n ≥ k deterministically n points in the
unit square [0, 1]2 such that simultaneously for j = 3, . . . , k, the areas of the
convex hulls of any j of these n points are Ω((log n)1/(j−2)/n(j−1)/(j−2)), we
discretize the unit square [0, 1]2 by considering the standard T ×T -grid, i.e., the
set {(i, j) ∈ Z2 | 0 ≤ i, j ≤ T − 1}, where T = n1+β for some constant β > 0,
which will be specified later.

For distinct grid-points P, Q in the T ×T -grid let PQ denote the line through
P and Q and let [P, Q] denote the segment between P and Q. Let dist (P, Q) :=
((px−qx)2+(py−qy)2)1/2 denote the Euclidean distance between the grid-points
P = (px, py) and Q = (qx, qy). For grid-points P1, . . . , Pl in the T × T -grid let
area (P1, . . . , Pl) be the area of the convex hull of the points P1, . . . , Pl. A strip
centered at the line PQ of width w is the set of all points in R2, which are at
Euclidean distance at most w/2 from the line PQ. Let ≤l be a total order on
the T ×T -grid, which is defined as follows: for grid-points P = (px, py) and Q =
(qx, qy) in the T × T -grid let P ≤l Q :⇐⇒ (px < qx) or (px = qx and py < qy).
First notice the following simple fact.

Lemma 1. Let P1, . . . , Pl be grid-points in the T × T -grid, l ≥ 3.

(i) Then, it is area (P1, . . . , Pl) ≥ area (P1, . . . , Pl−1).
(ii) If area (P1, . . . , Pl) ≤ A, then for any distinct grid-points Pi, Pj every grid-

point Pk, k = 1, . . . , l, is contained in a strip centered at the line PiPj of
width (4 · A)/dist (Pi, Pj).

For suitable constants c∗j > 0, j = 3, . . . , k, we set

Aj :=
c∗j · T 2 · (log n)1/(j−2)

n(j−1)/(j−2)
> 1 . (4)

Then, it is 0 < A3 ≤ · · · ≤ Ak for n ≥ n0. We form a hypergraph G =
G(A3, . . . , Ak) = (V, E0

3 ∪ E3 ∪ E4 ∪ · · · ∪ Ek), which contains two types of 3-
element edges, and (one type of) j-element edges, j = 4, . . . , k. The vertex-set V
of G consists of the T 2 grid-points in the T ×T -grid. The edge-sets are defined as
follows. For distinct grid-points P, Q, R ∈ V in the T ×T -grid let {P, Q, R} ∈ E0

3

if and only if P, Q, R are collinear. Moreover, for j = 3, . . . , k, and distinct grid-
points P1, . . . , Pj ∈ V in the T × T -grid let {P1, . . . , Pj} ∈ Ej if and only if
area (P1, . . . , Pj) ≤ Aj and no three of the grid-points P1, . . . , Pj are collinear.

We want to find a large independent set in this hypergraph G = (V, E0
3 ∪

E3 ∪ E4 ∪ · · · ∪ Ek), as an independent set I ⊆ V in G corresponds to |I| many
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grid-points in the T × T -grid, such that the areas of the convex hulls of any j
distinct grid-points from these |I| points are bigger than Aj , j = 3, . . . , k. To
find a suitable induced subhypergraph of G to which Theorem 4 may be applied,
in a first step we estimate the numbers |E0

3 | and |Ej |, j = 3, . . . , k, of 3- and j-
element edges, respectively, and the numbers of 2-cycles in G. Then in a certain
induced subhypergraph G∗ of G we omit one vertex from each 3-element edge in
E0
3 and from each 2-cycle. The resulting induced subhypergraph G∗∗ contains no

2-cycles anymore, hence is linear, and then we may apply Theorem 4 to G∗∗.

3.1 The Numbers of Edges in G

The next estimate is quite crude but it suffices for our purposes.

Lemma 2. The number |E0
3 | of 3-element edges in the hypergraph G = (V, E0

3 ∪
E3 ∪ E4 ∪ · · · ∪ Ek) satisfies

|E0
3 | ≤ T 5. (5)

Proof. For grid-points P, Q, R ∈ V we have {P, Q, R} ∈ E0
3 if and only if P, Q, R

are collinear. Each line is determined by two grid-points in the T × T -grid, for
which there are at most T 2 choices each, and each line contains at most T grid-
points, and the upper bound T 5 on the number of collinear triples follows. ��

To estimate |Ej |, j = 3, . . . , k, we use the following result from [7].

Lemma 3. For distinct grid-points P = (px, py) and R = (rx, ry) with P ≤l R
from the T × T -grid, where s := rx − px ≥ 0 and h := ry − py, it holds:

(a) There are at most 4 · A grid-points Q in the T × T -grid such that
(i) P ≤l Q ≤l R, and
(ii) P, Q, R are not collinear, and area (P, Q, R) ≤ A.

(b) The number of grid-points Q in the T × T -grid which fulfill only (ii) from
(a) is at most (12 ·A ·T )/s for s > 0, and at most (12 ·A ·T )/|h| for |h| > s.

Lemma 4. For j = 3, . . . , k, the numbers |Ej| of unordered j-tuples P1, . . . , Pj

of distinct grid-points in the T × T -grid with area (P1, . . . , Pj) ≤ Aj, where no
three of the grid-points P1, . . . , Pj are collinear, satisfy for some constants cj > 0:

|Ej | ≤ cj · Aj−2
j · T 4. (6)

Proof. Let P1, . . . , Pj be grid-points, no three on a line, in the T × T -grid with
area (P1, . . . , Pj) ≤ Aj . We may assume that P1 ≤l · · · ≤l Pj . For P1 =
(p1,x, p1,y) and Pk = (pj,x, pj,y) let s := pj,x − p1,x ≥ 0 and h := pj,y − p1,y.
Then s > 0, as otherwise P1, . . . , Pj are collinear.

There are T 2 choices for the grid-point P1. Given P1, any grid-point Pj with
P1 ≤l Pj is determined by a pair (s, h) 	= (0, 0) of integers with 1 ≤ s ≤ T and
−T ≤ h ≤ T . By Lemma 1 (i) we have area (P1, Pi, Pj) ≤ Aj for i = 2, . . . , j−1.
Given the grid-points P1 and Pj , since P1 ≤l Pi ≤l Pj for i = 2, . . . , j − 1, by
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Lemma 3 (a) there are at most 4 · Aj choices for each grid-point Pi, hence for a
constant cj > 0:

|Ej | ≤ T 2 ·
T∑

s=1

T∑

h=−T

(4 · Aj)j−2 ≤ cj · Aj−2
j · T 4. ��

By (6) the average degrees tj−1
j for the j-element edges E ∈ Ej , j = 3, . . . , k, of

G satisfy

tj−1
j = j · |Ej |/|V | ≤ j · cj · Aj−2

j · T 2 =: (tj(0))j−1. (7)

3.2 The Numbers of 2-Cycles in G

Let s2;(g,i,j)(G) denote the number of (2; (g, i, j))-cycles, 2 ≤ g ≤ i ≤ j ≤ k with
g < j in the hypergraph G, i.e., the number of unordered pairs {E, E′} of edges
with E ∈ Ei and E′ ∈ Ej and |E ∩ E′| = g.

Lemma 5. For 2 ≤ g ≤ i ≤ j ≤ k with g < j, there exist constants c2;(g,i,j) > 0
such that the numbers s2;(g,i,j)(G) of (2; (g, i, j))-cycles in the hypergraph G =
(V, E0

3 ∪ E3 ∪ E4 ∪ · · · ∪ Ek) fulfill

s2;(g,i,j)(G) ≤ c2;(g,i,j) · Ai−2
i · Aj−g

j · T 4 · (log T )3. (8)

Proof. Let the grid-points, which correspond to the vertices of an i-element edge
E ∈ Ei and a j-element edge E′ ∈ Ej and also yield a (2; (g, i, j))-cycle in G,
2 ≤ g ≤ i ≤ j ≤ k with g < j, be P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj , where
after renumbering P1 ≤l · · · ≤l Pg and no three of the grid-points P1, . . . , Pi

and of P1, . . . , Pg, Qg+1, . . . , Qj are collinear, thus area (P1, . . . , Pi) ≤ Ai and
area (P1, . . . , Pg, Qg+1, . . . , Qj) ≤ Aj .

There are T 2 choices for the grid-point P1. Given the grid-point P1 =
(p1,x, p1,y), any pair (s, h) 	= (0, 0) of integers determines at most one grid-point
Pg = (p1,x + s, p1,y + h) in the T × T -grid. By symmetry we may assume that
s > 0 and 0 ≤ h ≤ s ≤ T , which is taken into account by an additional constant
factor c′ > 1. Given the grid-points P1 and Pg, since area (P1, Pf , Pg) ≤ Ai for
f = 2, . . . , g − 1 by Lemma 1, and P1 ≤l Pf ≤l Pg, by Lemma 3 (a) there are at
most 4 · Ai choices for each grid-point Pf in the T × T -grid, hence the number
of choices for the grid-points P1, . . . , Pg−1 is at most

T 2 · (4 · Ai)g−2. (9)

For the convex hulls of the grid-points P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj

let their (w.r.t ≤l) extremal points be P ′, P ′′ ∈ {P1, . . . , Pi} and Q′, Q′′ ∈
{P1, . . . , Pg, Qg+1, . . . , Qj}, respectively, i.e. , for P ′ ≤l P ′′ and Q′ ≤l Q′′ we
have P ′ ≤l P1, . . . , Pi ≤l P ′′ and Q′ ≤l P1, . . . , Pg, Qg+1, . . . , Qj ≤l Q′′.

Given the grid-points P1 ≤l · · · ≤l Pg, there are three possibilities for the
convex hulls of the grid-points P1, . . . , Pi and P1, . . . , Pj , Qj+1, . . . , Qk each:
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(i) P1 and Pg are extremal, or
(ii) exactly one grid-point, P1 or Pg, is extremal, or
(iii) neither P1 nor Pg is extremal.

We restrict our calculations to the convex hull of P1, . . . , Pi as the considerations
for the convex hull of P1, . . . , Pg, Qg+1, . . . , Qj are essentially the same.

In case (i) the grid-points P1 and Pg are extremal for the convex hull of
P1, . . . , Pi, hence P1 ≤l Pg+1, . . . , Pi ≤l Pg. By Lemma 3 (a), since area (P1, Pl,
Pg) ≤ Ai, l = g+1, . . . , i, and no three of the grid-points P1, . . . , Pi are collinear,
there are at most 4·Ai choices for each grid-point Pl, hence the number of choices
for the grid-points Pg+1, . . . , Pi is at most

case (i): (4 · Ai)i−g. (10)

In case (ii) exactly one of the grid-points P1 or Pg is extremal for the convex
hull of P1, . . . , Pi. By Lemma 3 (b) there are at most (12 · Ai · T )/s choices for
the second extremal grid-point P ′ or P ′′. Having fixed this second extremal grid-
point, for each grid-point Pg+1, . . . , Pi 	= P ′, P ′′ there are by Lemma 3 (a) at
most 4 ·Ai choices, hence the number of choices for the grid-points Pg+1, . . . , Pi

is at most

case (ii): ((4 · Ai)i−g−1 · 12 · Ai · T )/s = ((4 · Ai)i−g · 3 · T )/s . (11)

In case (iii) none of the grid-points P1, Pg is extremal for the convex hull of
P1, . . . , Pi. By Lemma 1 (ii) all grid-points Pg+1, . . . , Pi are contained in a strip
Si, which is centered at the line P1Pg, of width (4 · Ai)/

√
h2 + s2. Consider the

parallelogram P0 = {(px, py) ∈ Si | p1,x ≤ px ≤ pg,x} within the strip Si, where
P1 = (p1,x, p1,y) and Pg = (pg,x, pg,y) and s = pg,x − p1,x.

We divide the strip Si within the T × T -grid into pairwise congruent paral-
lelograms P0,P+

i ,P−
i , i = 1, . . . , l ≤ �T/s� + 2, each of side-lengths (4 · Ai)/s

and
√

h2 + s2 and of area 4 · Ai, where for i ≥ 1 all parallelograms P−
i are on

the left of the parallelogram P0, and all parallelograms P+
i are on the right of

P0, in particular P+
i := {(px, py) ∈ Si | pg,x + (i − 1) · s ≤ px ≤ pg,x + i · s}

and P−
i := {(px, py) ∈ Si | p1,x − i · s ≤ px ≤ p1,x − (i − 1) · s}. By Lemma

3 (a) each parallelogram P+
i or P−

i contains at most 4 ·Ai grid-points P , where
P1, Pj , P are not collinear. Each extremal grid-point, P ′ or P ′′, is contained in
some parallelogram P+

i or P−
i for some i ≥ 1, since by our assumption neither

P1 ∈ P0 nor Pg ∈ P0 are extremal. Each grid-point P = (px, py) ∈ P+
i ∪ P−

i ,
i ≥ 1, satisfies |px − p1,x| ≥ i · s or |px − pj,x| ≥ i · s. Thus, if P ′ ∈ P+

i ∪ P−
i or

P ′′ ∈ P+
i ∪ P−

i , by Lemma 3 (b) there are at most (12 · Ai · T )/(i · s) choices
for the second extremal grid-point. Having chosen both extremal grid-points P ′

and P ′′ in at most (4 ·Ai) · ((12 ·Ai ·T )/(i · s)) = (48 ·A2
i ·T )/(i · s) ways, for the

grid-points Pg+1, . . . , Pi 	= P ′, P ′′ there are by Lemma 3 (a) at most (4 ·Ai)i−g−2

choices. Hence, in case (iii) the number of choices for the grid-points Pg+1, . . . , Pi

is at most
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case (iii): (4 · Ai)i−g−2 ·
�T/s	+2∑

i=1

48 · A2
i · T

i · s =

= (4 · Ai)i−g · 3 · T
s

·
�T/s	+2∑

i=1

1
i
≤ (4 · Ai)i−g · 5 · T · log T

s
.(12)

By (10)–(12) and using T ≥ s, in cases (i)–(iii) altogether the number of
choices for the grid-points Pg+1, . . . , Pi is at most

(4 · Ai)i−g ·
(

1 +
3 · T

s
+

5 · T · log T

s

)
≤ (4 · Ai)i−g · 9 · T · log T

s
. (13)

Similar to (13), for the number of choices of the grid-points Qg+1, . . . , Qj the
following upper bound holds:

((4 · Aj)j−g · 9 · T · log T )/s . (14)

Hence with (9), (13) and (14) for 2 ≤ g ≤ i ≤ j ≤ k and g < j we obtain for
constants c′, c2;(g,i,j) > 0:

s2;(g,i,j)(G) ≤ c′ · T 2 · (4 · Ai)g−2 ·
T∑

s=1

s∑

h=0

(
(4 · Ai)i−g · 9 · T · log T

s

)
·

·
(

(4 · Aj)j−g · 9 · T · log T

s

)
≤

< 81 · c′ · 4i+j−g−2 · Ai−2
i · Aj−g

j · T 4 · (log T )2 ·
T∑

s=1

s∑

h=0

1
s2

≤ c2;(g,i,j) · Ai−2
i · Aj−g

j · T 4 · (log T )3. ��

3.3 Choosing a Subhypergraph in G

With probability p := T ε/tk(0) ≤ 1, hence p = Θ(T ε/(A(k−2)/(k−1)
k · T 2/(k−1))

by (7), where ε > 0 is a small constant, we pick uniformly at random and
independently of each other vertices from V . Let V ∗ ⊆ V be the random set of
the picked vertices and let G∗ = (V ∗, E0∗

3 ∪E∗
3∪E∗

4∪· · ·∪E∗
k ) with E0∗

3 := E0
3∩[V ∗]3

and E∗
j := Ej ∩ [V ∗]j , j = 3, . . . , k, be the on V ∗ induced random subhypergraph

of G. Let E[|V ∗|], E[|E0∗
3 |], E[|E∗

j |], j = 3, . . . , k, and E[s2;(g,i,j)(G∗)], 2 ≤ g ≤ i ≤
j ≤ k but g < j, be the expected numbers of vertices, collinear triples of grid-
points, j-element edges and (2; (g, i, j))-cycles, respectively, in G∗ = (V ∗, E0∗

3 ∪
E∗
3 ∪E∗

4 ∪· · ·∪E∗
k ). By (5), (6), and (8) we infer for constants c′1, c

0′

3 c′j , c
′
2;(g,i,j) > 0:

E[|V ∗|] = p · T 2 ≥ (c′1 · T
2k−4
k−1 +ε)/A

k−2
k−1
k (15)

E[|E0∗
3 |] = p3 · |E0

3 | ≤ (c0′

3 · T
5k−11

k−1 +3ε)/A
3k−6
k−1

k (16)
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E[|E∗
j |] = pj · |Ej | ≤ (c′j · T

4k−2j−4
k−1 +jε · Aj−2

j )/A
j(k−2)

k−1
k (17)

E[s2;(g,i,j)(G∗)] = pi+j−g · s2;(g,i,j)(G) ≤

leq
c′2;(g,i,j) · T

4k−4−2(i+j−g)
k−1 +ε(i+j−g) · (log T )3 · Ai−2

i · Aj−g
j

A
(k−2)(i+j−g)

k−1
k

.(18)

By (15)–(18) and by Chernoff’s and Markov’s inequality we obtain a subhy-
pergraph G∗ = (V ∗, E0∗

3 ∪ E∗
3 ∪ E∗

4 ∪ · · · ∪ E∗
k ) of G such that

|V ∗| ≥ ((c′1/2) · T
2k−4
k−1 +ε)/A

k−2
k−1
k (19)

|E0∗
3 | ≤ (k3 · c0′

3 · T
5k−11

k−1 +3ε)/A
3k−6
k−1

k (20)

|E∗
j | ≤ (k3 · c′j · T

4k−2j−4
k−1 +jε · Aj−2

j )/A
j(k−2)

k−1
k (21)

s2;(g,i,j)(G∗) ≤
k3 · c′2;(g,i,j) · T

4k−4−2(i+j−g)
k−1 +ε(i+j−g) · (log T )3 · Ai−2

i · Aj−g
j

A
(k−2)(i+j−g)

k−1
k

.(22)

This probabilistic argument can be turned into a deterministic polynomial
time algorithm by using the method of conditional probabilities. For 2 ≤ g ≤
i ≤ j ≤ k but g < j, let C2;(g,i,j) be the set of all (i+j−g)-element subsets E∪E′

of V such that E ∈ Ei and E′ ∈ Ej and |E ∩ E′| = g. Let the grid-points in the
T × T -grid be P1, . . . , PT 2 . To each grid-point Pi associate a variable pi ∈ [0, 1],
i = 1, . . . , T 2, and let F (p1, . . . , pT 2) be a function defined by

F (p1, . . . , pT 2) := 2p·T 2/2 ·
T 2
∏

i=1

(
1 − pi

2

)
+

+

∑
{i,j,k}∈E0

3
pi · pj · pk

(k3 · c′3 · T
5k−11

k−1 +3ε)/A
3k−6
k−1

+
k∑

j=3

∑
{i1,...,ij}∈Ej

∏j
l=1 pil

(k3 · c′j · T
4k−2j−4

k−1 +jε · Aj−2
j )/A

j(k−2)
k−1

+

+
∑

2≤g≤i≤j≤k;g<j

A
(k−2)(i+j−g)

k−1
k ·

∑
{i1,...,ii+j−g}∈Cj

∏i+j−g
l=1 pil

k3 · c′2;(g,i,j) · T
4k−4−2(i+j−g)

k−1 +(i+j−g)ε · (log T )3 · Ai−2
i · Aj−g

j

.

With the initialisation p1 := · · · := pT 2 := p = T ε/t0, we infer by (15)–(18)
that F (p, . . . , p) < (2/e)pT 2/2 + 1/3, hence F (p, . . . , p) < 1 for p · T 2 ≥ 10. By
using the linearity of F (p1, . . . , pT 2) in each pi, we minimize F (p1, . . . , pT 2) by
choosing step by step pi := 0 or pi := 1, i = 1, . . . , T 2, and finally we achieve
F (p1, . . . , pT 2) < 1. The set V ∗ = {Pi ∈ V | pi = 1} yields an induced subhyper-
graph G∗ = (V ∗, E0∗

3 ∪ E∗
3 ∪ · · · ∪ E∗

k ) of G with E∗
i := Ei ∩ [V ∗]i for i = 3, . . . , k,

and E0∗
3 := E0

3 ∩ [V ∗]3 which satisfies (19)–(22), as otherwise F (p1, . . . , pT 2) > 1
gives a contradiction. By (4)–(6) and (8) and using T = n1+β for fixed β > 0,
the running time of this derandomization is given by
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O(|V | + |E0
3 | +

k∑

j=3

|Ej | +
∑

2≤g≤i≤j≤k;g<j

|C2;(g,i,j)|) = O(|C2;(2,k,k)|) =

= O(A2k−4
k · T 4 · (log T )3) = O

(
(T 4k−4 · (log n)5)/n2k−2

)
. (23)

Lemma 6. For each fixed 0 < ε < (β − 1)/(2 · (1 + β)) and β > 1 it is

|E0∗
3 | = o(|V ∗|) . (24)

Proof. By (19), (20) and using T = n1+β with constants ε > 0 and β > 1 we
have

|E0∗
3 | = o(|V ∗|)

⇐= T
5k−11

k−1 +3ε · log T/A
3k−6
k−1

k = o(T
2k−4
k−1 +ε/A

k−2
k−1
k )

⇐⇒ n2−(1+β)(1−2ε) · (log n)1−
2

k−1 = o(1)
⇐⇒ (1 + β) · (1 − 2 · ε) > 2,

which holds for ε < (β − 1)/(2 · (1 + β)). ��

Lemma 7. For 2 ≤ g ≤ i ≤ j ≤ k but g < j and each fixed ε with 0 < ε <
j−g

(i+j−g−1)(j−2)(1+β) it is

s2;(g,i,j)(G∗) = o(|V ∗|). (25)

Proof. For 2 ≤ g ≤ i ≤ j ≤ k but g < j by (4), (19), (22) and using T = n1+β

with fixed β, ε > 0 we infer

s2;(g,i,j)(G∗) = o(|V ∗|)

⇐=
T

4k−4−2(i+j−g)
k−1 +(i+j−g)ε · (log T )3 · Ai−2

i · Aj−g
j

A
(k−2)(i+j−g)

k−1
k

= o

⎛

⎝T
2k−4
k−1 +ε

A
k−2
k−1
k

⎞

⎠

⇐⇒ nε(1+β)(i+j−g−1)− j−g
j−2 · (log n)4+

j−g
j−2 − i+j−g−1

k−1 = o(1)

⇐⇒ ε <
j − g

(j − 2)(i + j − g − 1)(1 + β)
. ��

By setting ε := 1/(2 · k2 · (1 + β)) and β > 1 + 1/k2 all assumptions in Lemmas
6 and 7 and also p = T ε/tk(0) ≤ 1 are fulfilled. We delete one vertex from
each edge E ∈ E0∗

3 , and from each 2-cycle in G∗. Let V ∗∗ ⊆ V ∗ be the set
of remaining vertices. By Lemmas 6 and 7 the induced subhypergraph G∗∗ =
(V ∗∗, E∗∗

3 ∪ · · · ∪ E∗∗
k ) with E∗∗

j := E∗
j ∩ [V ∗∗]j , j = 3, . . . , k, where |V ∗∗| =

(1 − o(1)) · |V ∗| ≥ |V ∗|/2, contains no edges from E0
3 and no 2-cycles anymore,

i.e., G∗∗ is a linear hypergraph. Since |E∗∗
j | ≤ |E∗

j | with (19) and (21), the average
degrees tj−1

j (1) for the j-element edges of G∗∗, j = 3, . . . , k, fulfill by (4):
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tj−1
j (1) =

j · |E∗∗
j |

|V ∗∗| ≤
(j · k3 · c′j · T

4k−2j−4
k−1 +jε · Aj−2

j )/A
j(k−2)

k−1
k

((c′1/4) · T
2k−4
k−1 +ε)/A

k−2
k−1
k

≤

≤
4 · k4 · c′j · (c∗j )j−2

c′1 · (c∗k)
(j−1)(k−2)

k−1

· T (j−1)ε · (log n)
k−j
k−1 . (26)

As observed above, this subhypergraph G∗∗ is linear. By choosing S := c · T ε

for a large enough constant c > 0, with T = n1+β with T = n1+β by (26) the
assumptions in Theorem 4 are fulfilled, and we apply it, and, using (4) we find
in time

O((T
2k−4
k−1 +ε/A

k−2
k−1
k ) · S4k−2) = O(n · T (4k−1)ε) = o(T 2) (27)

an independent set I of size

|I| = Ω((|V ∗∗|/S) · (log S)
1

k−1 ) = Ω((T
2k−4
k−1 +ε/(A

k−2
k−1
k · T ε)) · (log T ε)

1
k−1 ) =

= Ω((n/(log n)
1

k−1 ) · (log T )
1

k−1 ) = Ω(n),

since T = n1+β and β, ε > 0 are constants. By choosing the constants c∗j > 0, j =
3, . . . , k, in (4) sufficiently small, we obtain an independent set of size n, which
yields, after rescaling the areas Aj by the factor T 2, a desired set of n points in
[0, 1]2 such that, simultaneously for j = 3, . . . , k, the areas of the convex hulls of
every j distinct of these n points are Ω((log n)1/(j−2)/n(j−1)/(j−2)). Adding the
times in (23) and (27) we get the time bound O(T 4k−4 · (log n)5/n2k−2 + T 2) =
(n(2k−2)(1+2β)+1)) = o(n6k−4) for β > 1 + 1/k2 small enough. ��
We remark that the bound o(n6k−4) on the running time might be improved a
little, for example by using a better estimate on the number of collinear triples of
grid-points in the T×T -grid or by a random preselection of grid-points. However,
we cannot do better than O(nck) for some constant c > 0.
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Abstract. Recent experimental studies on compressed indexes (BWT,
CSA, FM-index) have confirmed their practicality for indexing long DNA
sequences such as the human genome (about 3 billion characters) in the
main memory [5,13,16]. However, these indexes are designed for exact
pattern matching, which is too stringent for most biological applications.
The demand is often on finding local alignments (pairs of similar sub-
strings with gaps allowed). In this paper, we show how to build a software
called BWT-SW that exploits a BWT index of a text T to speed up the
dynamic programming for finding all local alignments with any pattern
P . Experiments reveal that BWT-SW is very efficient (e.g., aligning a
pattern of length 3,000 with the human genome takes less than a minute).
We have also analyzed BWT-SW mathematically, using a simpler model
(with gaps disallowed) and random strings. We find that the expected
running time is O(|T |0.628|P |). As far as we know, BWT-SW is the first
practical tool that can find all local alignments.

1 Introduction

The decoding of different genomes, in particular the human genome, has trig-
gered a lot of bioinformatics research. In many cases, it is required to search
the human genome (called the text below) for different patterns (say, a gene of
another species). Exact matching is usually unlikely and may not make sense.
Instead, one wants to find local alignments, which are pairs of similar substrings
in the text and pattern, possibly with gaps (see, e.g., [7]). Typical biological
applications require a minimum similarity of 75% (match 1 point; mismatch -3
points) and a minimum length of 18 to 30 characters (see Section 2 for details).

To find all local alignments, one can use the dynamic programming algorithm
by Smith and Waterman [18], which uses O(nm) time, where n and m are the
length of the text and pattern, respectively. This algorithm is, however, too slow
for a large text like the human genome. Our experiment shows that it takes more
than 15 hours to align a pattern of 1000 characters against the human genome.
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In real applications, patterns can be genes or even chromosomes, ranging from a
few thousand to a few hundred million characters, and the SW algorithm would
require days to weeks. As far as we know, there does not exist any practical
solution for finding all local alignments in this scale. At present, a heuristic-based
software called BLAST [1,17,2] is widely used by the biological community for
finding local alignments. BLAST is very efficient (e.g., it takes only 10 to 20
seconds to align a pattern of 1000 characters against the human genome). Yet
BLAST does not guarantee to find all local alignments. The past few years have
witnessed a lot of work attempting to improve the heuristic used by BLAST (e.g.
[12]). This paper, however, revisits the problem of finding all local alignments.
We attempt to speed up the dynamic programming approach by exploiting the
recent breakthrough on text indexing.

The indexing idea. Let T be a text of n characters and let P be a pattern of m
characters. A naive approach to finding all of their local alignments is to examine
all substrings of length cm of the text T , where c is a constant depending on
the similarity model, and to align them one by one with P . Obviously, we want
to avoid aligning P with the same substring at different positions of the text.
A natural way is to build a suffix tree [14] (or a suffix trie) of the text. Then
distinct substrings of T are represented by different paths from the root of the
suffix tree. We align P against each path from the root up to cm characters using
dynamic programming. The common prefix structure of the paths also gives a
way to share the common parts of the dynamic programming on different paths.
Specifically, we perform a pre-order traversal of the suffix tree; at each node,
we maintain a dynamic programming table (DP table) for aligning the pattern
and the path up to the node. We add more rows to the table as we go down
the suffix tree, and delete the corresponding rows when going up the tree. Note
that filling a row of the table costs O(m) time. For very short patterns, the
above approach performs dynamic programming only on a few layers of nodes
and could be very efficient; but there are a few issues to be resolved for this
approach to be successful in general.

• Index size: The best known implementation of a suffix tree requires 17.25n
bytes for a text of length n [11]. For human genome, this is translated to 50G
bytes of memory, which far exceeds the 4G capacity of a standard PC nowa-
days. An alternative is a hard-disk-based suffix tree, which would increase
the access time several order of magnitude. In fact, even the construction of
a suffix tree on a hard disk is already very time-consuming; for the human
genome, it would need a week [10].

• Running time and pruning effectiveness: The above approach requires
traversing each path of the suffix tree starting from the root up to O(m)
characters, and computing possible local alignments starting from the first
character of the path. For long patterns, this may mean visiting many nodes
of the tree, using O(nm) or more time. Nevertheless, we can show that at
an intermediate node u, if the DP table indicates that no substring of the
pattern has a positive similarity score when aligned with the path to u,
then it is useless to further extend the path and we can prune the subtree
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rooted at u. It is interesting to study how effective, in practice, such a simple
pruning strategy could be.

• Dynamic programming table: Recall that we have to maintain a dy-
namic programming table at each node, which is of size m × d where d is
the length of the substring represented by the node. The worst-case mem-
ory requirement is O(m2). For long patterns, say, even a gene with tens of
thousands characters, the table would demand several gigabytes or more and
cannot be fit into the main memory.

Meek et al. [15] have attempted to use a suffix tree in the hard disk to speed
up the dynamic programming for finding all local alignments. As expected, the
success is limited to a small scale; their experiments are based on a text of length
40M and relatively short patterns with at most 65 characters. To alleviate the
memory requirement of suffix trees, we exploit the recent breakthrough on com-
pressed indexing, which reduces the space complexity from O(n) bytes to O(n)
bits, while preserving similar searching time. FM-index [4,5], CSA (Compressed
Suffix Array)[6,16], BWT (Burrow-Wheeler Text) [3] are among the best known
examples. In fact, empirical studies have confirmed their practicality for index-
ing long biological sequences to support very efficient exact matching on a PC
(e.g. [9,13]). For DNA sequences, BWT was found to be the most efficient and
the memory requirement can be as small as 0.25n bytes. For the human genome,
this requires only 1G memory and the whole index can reside in the main mem-
ory of a PC. Moreover, the construction time of a BWT index is shorter, our
experiment shows that it takes only one hour for the human genome.

Our new tool. Based on a BWT index in the main memory, we have built a
software called BWT-SW to find all local alignments using dynamic program-
ming. This paper is devoted to the details of BWT-SW. Among others, we will
present how to use a BWT index to emulate a suffix trie of the text (i.e., the
tree structure of all the suffices of the text), how to modify the dynamic pro-
gramming to allow pruning but without jeopardizing the completeness, and how
to manage the DP tables.

BWT-SW performs very well in practice, even for long patterns. The pruning
strategy is effective and terminates most of the paths at a very early stage. We
have tested BWT-SW extensively with the human genome and random patterns
of length from 500 to a hundred million. On average, a pattern of 500 characters
[resp. 5,000 and 1M characters] requires at most 10 seconds [resp. 1 minute and
2.5 hours] (see Section 4.1 for more results). When compared with the Smith-
Waterman algorithm, BWT-SW is at least a thousand times faster. As far as we
know, BWT-SW is the first software that can find all local alignments efficiently
in such a scale. We have also tested BWT-SW using different texts and patterns.
In a rough sense, the timing figures of our experiments suggest that the time
complexity could be in the order of n0.628m. In Section 4, we will also present
the experimental findings on the memory utilization due to the DP tables.

To better understand the efficiency of the dynamic programming and pruning,
we have also analyzed mathematically the pure match/mismatch model (no gaps
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are allowed), and we found that for DNA alignment, the probability of a length-d
path with positive score decreases exponentially with d, and the total number of
entries filled in all the DP tables can be upper bounded by O(n0.628m). This also
implies that the DP table is very sparse; in particular, when we extend a path,
the number of positive entries also decreases exponentially and is eventually
bounded by a constant. Thus, we can save a lot of space by storing only the
entries with positive scores.

Note that BWT-ST is not meant to be a replacement of BLAST; BLAST is
still several times faster than BWT-SW for long patterns and BLAST is accurate
enough in most cases. Using BWT-SW, we found that BLAST may miss some
significant alignments (with high similarity) that could be critical for biological
research, but this occurs only rarely1.

2 Preliminaries

2.1 Local Alignments with Affine Gap Penalty

Let x and y be two strings. A space is a special character not found in these
strings.

– An alignment A of x and y maps x and y respectively to another two strings
x′ and y′ that may contain spaces such that (i) |x′| = |y′|; and (ii) removing
spaces from x′ and y′ should get back x and y, respectively; and (iii) for any
i, x′[i] and y′[i] cannot be both spaces.

– A gap is a maximal substring of contiguous spaces in either x′ or y′.
– An alignment A is composed of three kinds of regions. (i) Matched pair:

x′[i] = y′[i]; (ii) Mismatched pair: x′[i] 	= y′[i] and both are not spaces; (iii)
Gap: either x′[i..j] or y′[i..j] is a gap. Only a matched pair has a positive
score a, a mismatched pair has a negative score b and a gap of length r also
has a negative score g + rs where g, s < 0. For DNA, the most common
scoring scheme (e.g. used by BLAST) makes a = 1, b = −3, g = −5, and
s = −2.

– The score of the alignment A is the sum of the scores for all matched pairs,
mismatched pairs, and gaps. The alignment score of x and y is defined as
the maximum score among all possible alignments of x and y.

Let T be a text of n characters and let P be a pattern of m characters.
The local alignment problem can be defined as follows. For any 1 ≤ i ≤ n and
1 ≤ j ≤ m, compute the largest possible alignment score of T [h..i] and P [k..j]
where h ≤ i and k ≤ j (i.e., the best alignment score of any substring of T
ending at position i and any substring of P ending at position j). Furthermore,
for biological applications, we are only interested in those T [h..i] and P [k..j] if
their alignment score attains a score threshold H .
1 We have conducted an experiment using 10,000 queries randomly selected from the

human genome of length ranging from 100 to 1,000 and masked by DUST. If we
ignore all practically insignificant alignments (with E-value less than 1 × 10−10),
BLAST only missed 0.03% of the alignments found by BWT-SW.
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2.2 Suffix Trie and BWT

Suffix trie: Given a text T , a suffix trie for T is a tree comprising all suffices of T
such that each edge is uniquely labeled with a character, and the concatenation
of the edge labels on a path from the root to a leaf corresponds to a unique
suffix of T . Each leaf stores the starting location of the corresponding suffix.
Note that an pre-order traversal of a suffix trie can enumerate all suffices of
T . Furthermore, if we compress every maximal path of degree-one nodes of the
suffix trie, then we obtain the suffix tree of T .

BWT: The Burrows-Wheeler transform (BWT) [3] was invented as a compres-
sion technique. It was later extended to support pattern matching by Ferragina
and Manzini [4]. Let T be a string of length n over an alphabet Σ. We assume
that the last character of T is a special character $ which is unique in T and is
smaller than any character in Σ. The suffix array SA[0, n−1] of T is an array of
indexes such that SA[i] stores the starting position of the ith-lexicographically
smallest suffix, i.e., TSA[i] < TSA[i+1] for all i = 0, 1, . . . , n − 1. And BWT of T
is a permutation of T such that BWT [i] = T [SA[i]− 1].

Given a string X , let SA[i] and SA[j] be the smallest and largest suffices of
T that have X as the prefix. The range [i, j] is referred to as the SA range of
X . Given the SA range [i, j] of X , finding the SA range [p, q] of aX , for any
character a, can be done using the backward search technique [4].

Lemma 1. Let X be a string and a be a character. Suppose that the SA range
of X and aX is [i..j] and [p..q], respectively. Then p = C(a) + Occ(a, i− 1) + 1,
and q = C(a)+Occ(a, j), where C(a) is the total number of characters in T that
are lexicographically smaller than a and Occ(a, i) is the total number of a’s in
BWT [0..i].

We can precompute C(a) for all characters a and retrieve any entry in constant
time. Using the auxiliary data structure introduced by [4], computing Occ(x, i)
also takes constant time. Then [p, q] can be calculated from [i, j] in constant
time. As a remark, BWT can be constructed in a more efficient way than other
indexes like suffix trees. We have implemented the construction algorithm of
BWT described in [8]; it takes 50 minutes to construct the BWT of the human
genome using a Pentinum D 3.6GHz PC.

3 DP Formulation and Pruning

We can solve the local alignment problem as follows. For any 1 ≤ i ≤ n and
1 ≤ j ≤ m, we compute the answer in two phases.

• Phase I. For each x ≤ i, compute A[x, i, j] which equals the largest align-
ment score of T [x..i] and any substring of P ending at position j.

• Phase II. Return the largest score among all alignment scores A[x, i, j]
computed in Phase I for different x.
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If we consider the computation involved in Phase I for all i, j together, it is
equivalent to the following: for any substring X of T and for any 1 ≤ j ≤ m,
find the best alignment score of X and any substring of P ending at position j.
In the following, we will show how to use a suffix trie of T to speed up this step.
With a suffix trie, we can avoid aligning substrings of T that are identical. That
is, we exploit the common prefix structure of a trie to avoid identical substrings
to be aligned more than once. We use a pre-order traversal of the suffix trie to
generate all distinct substrings of X . Also, we only need to consider substrings
of T of length at most cm where c is usually a constant (for example, if the score
for a match is 1 and the penalty for an insertion is a constant ≥ 1, c ≤ 2).

For each node u of depth d (d ≤ cm) in the suffix trie of T , let X [1..d] be
the substring represented by this node. There may be multiple occurrences of X
in T and the starting positions of these occurrences, say p1, p2, . . . , pw, can be
found by traversing the leaves of the subtree rooted at u. For each 1 ≤ j ≤ m,
we compute the best possible alignment score of X and any substring of P
ending at position j. Effectively, we have computed A[p1 + d − 1, p1, j], A[p2 +
d − 1, p2, j], . . . , A[pw + d − 1, pw, j] for all 1 ≤ j ≤ m.

The rest of this section is divided into three parts: Section 3.1 shows how
to make use of a BWT index to simulate a pre-order traversal of a suffix trie.
Section 3.2 gives a simple dynamic programming to compute, for each node u
on a path of the suffix trie and for all 1 ≤ j ≤ m, the best alignment score of
the substring represented by u and any substring of P ending at j. Section 3.3
shows that the dynamic programming on a path can be terminated as soon as
we realize that no “meaningful” alignment can be produced.

3.1 Simulating Suffix Trie Traversal Using BWT

We can make use of the backward search technique on BWT to simulate the
pre-order traversal of a suffix trie to enumerate the substrings. Based on Lemma
1, we have the following corollary.

Corollary 1. Given the SA range [i, j] of X in T , if the SA range [p, q] of aX
for a character a computed by Lemma 1 is invalid, that is, p > q, then aX does
not exist in T .

Since we use backward search, instead of constructing the BWT for T , we con-
struct the BWT for the reversal of T . In other words, to check if the edge with
label a exists from a node u representing the substring X in the suffix trie for T
is equivalent to check if aX−1 exists in T−1.

We can simulate the traversal of a suffix trie and enumerate the substrings
represented by the nodes in the trie as follows. Assume that we are at node
u that represents the substring X in the suffix trie for T and we have already
found the SA range for X−1 in T−1 using the BWT. We can check the existence
of an edge with label a from u based on the above corollary in O(1) time by
computing the SA range for aX−1 using the BWT of T−1. Then,we enumerate
the corresponding substring if the edge does exist and repeat the same procedure
to traverse the tree.
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3.2 Dynamic Programming

Consider a path from the root of the suffix trie. Below we present a dynamic
programming to compute, for each node u on this path and for all 1 ≤ j ≤ m,
the best possible alignment score of the substring X [1..d] represented by u and
any substring of P ending at j.

For any i ≤ d and j ≤ m, let Mu(i, j) be the best alignment score of X [1..i]
and any substring of P ending at position j. Let Mu

1 (i, j) be the best possible
alignment score of X [1..i] and a substring of P ending at position j with X [i]
aligned with P [j]. Let Mu

2 (i, j) be the best possible alignment score of X [1..i] and
a substring of P ending at position j with X [i] aligned with a space. Let Mu

3 (i, j)
be the best possible alignment score of X [1..i] and a substring of P ending at
position j with P [j] aligning with a space. The values of Mu(d, j) shows the best
alignment score of X [1..d] and a substring of P ending at position j.

Initial conditions:

Mu(0, j) = 0 for 0 ≤ j ≤ m.
Mu(i, 0) = −(g + is) for 1 ≤ i ≤ d.
Mu

2 (0, j) = −∞ for 0 ≤ j ≤ m.
Mu

3 (i, 0) = −∞ for 1 ≤ i ≤ d.

Recurrences (for i > 1, j > 1):

Mu
1 (i, j) = Mu(i − 1, j − 1) + δ(X [i], P [j]).

Mu
2 (i, j) = max{Mu

2 (i − 1, j) − s, Mu(i − 1, j) − (g + s)}.
Mu

3 (i, j) = max{Mu
3 (i, j − 1) − s, Mu(i, j − 1) − (g + s)}.

Mu(i, j) = max{Mu
1 (i, j), Mu

2 (i, j), Mu
3 (i, j)}

where δ(X [i], P [j]) = a if X [i] = P [j], otherwise δ(X [i], P [j]) = b. (See Section
2 for definitions of a and b.)

Consider a child v of u. Denote the substring represented by v as X [1..d]c.
Note that when we extend the dynamic programming from node u v, we only
need to compute a new row at each dynamic programming table of u (e.g.,
Mu(d + 1, j)Mu

1 (d + 1, j), Mu
2 (d + 1, j), Mu

3 (d + 1, j) for all 1 ≤ j ≤ m. If a
traversal of the suffix trie would move from node u to its parent, we erase the
last row of every dynamic programming table computed at u.

3.3 Modified Dynamic Programming and Pruning

In this subsection, we show how to modify the dynamic programming to enable
an effective pruning. We first define what a meaningless alignment is.

Meaningless Alignment: Let A be an alignment of a substring X = T [h..i]
of T and a substring Y = P [k..j] of P . If A aligns a prefix X ′ = T [h..h′] of X
with a prefix Y ′ = P [k..k′] of Y such that the alignment score of X ′ and Y ′ is
less than or equal to zero, A is said to be a meaningless alignment. Otherwise,
A is said to be meaningful.
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Lemma 2. Suppose that A is a meaningless alignment of a substring X =
T [h..i] and a substring Y = P [k..j] with a positive score C. Then there exists a
meaningful alignment for some proper suffix X ′ = T [s..i] of X and some proper
suffix Y ′ = P [t..j] of Y with score at least C, where h < s ≤ i and k < t ≤ j.

The proof of Lemma 2 will be given in the full paper. Below we show how
to modify the dynamic programming to only compute the best possible score
of meaningful alignments (meaningful alignment score). It is important to note
that for any two strings, the best meaningful alignment score may not be the
best alignment score. Nevertheless, we will show that the meaningful alignment
scores are already sufficient for Phase II to report the correct answers.

DP for Meaningful Alignment Score: In the dynamic programming tables,
entries with values less than or equal to zero will never be used.

Let u be a node in the suffix trie for T and X [1..d] be the string represented
by u. Let Nu(i, j) be the best possible score of a meaningful alignment between
X [1..i] and a suffix of P [1..j]. Furthermore, Nu

1 (i, j), Nu
2 (i, j), and Nu

w(i, j) are
defined in a similar way as Mu

1 (i, j), Mu
2 (i, j), and Mu

w(i, j). The recurrence
equations are modified as follows. For any i, j > 1,

Nu
1 (i, j) =

{
Nu(i − 1, j − 1) + δ(X [i], P [j]) if Nu(i − 1, j − 1) > 0 or i = 1
−∞ otherwise

Nu
2 (i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max{Nu
2 (i − 1, j) − s,

Nu(i − 1, j) − (g + s)} if Nu
2 (i − 1, j) > 0, Nu(i − 1, j) > 0

Nu
2 (i − 1, j) − s if only Nu

2 (i − 1, j) > 0
Nu(i − 1, j) − (g + s) if only Nu(i − 1, j) > 0
−∞ otherwise

Nu
3 (i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max{Nu
3 (i, j − 1) − s,

Nu(i, j − 1) − (g + s)} if Nu
3 (i, j − 1) > 0, Nu(i, j − 1) > 0

Nu
3 (i, j − 1) − s if only Nu

3 (i, j − 1) > 0
Nu(i, j − 1) − (g + s) if only Nu(i, j − 1) > 0
−∞ otherwise

Nu(i, j) = max{Nu
1 (i, j), Nu

2 (i, j), Nu
3 (i, j)}

Next, we show that the scores computed by the modified dynamic program-
ming are sufficient for Phase II to compute the correct answers, thus solving the
local alignment problem.

Lemma 3. Let u be a node in the suffix trie for T and let X [1..d] be the string
represented by u. If Mu(d, j) = C ≥ H where H is the score threshold, then,
there exists h in [1, d] such that Nv(d− h + 1, j) = C where v is the node in the
suffix trie representing the string X [h..d].

Proof. If there exists a meaningful alignment for X [1..d] and P [k..j] with score
= C, h = 1 and v = u. Otherwise, based on Lemma 2, there exists h with
1 < h ≤ d such that there is a meaningful alignment for X [h..d] and P [k..j]
with score at least C. Since Mu(d, j) is the best possible score for X [1..d] and
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any substring of P ending at j, so Nv(d − h + 1, j) = C where v is the node
representing X [h..d].

Corollary 2. For any i, j, let C be the largest possible score between a substring
of T ending at i and a substring of P ending at j (i.e., C is the answer for Phase
II). Then there exists a node v representing a substring X = T [s..i] (s ≤ i) of T
such that Nv(i − s + 1, j) = C.

Pruning Strategy: Since we only consider meaningful alignments, for each
node in the suffix trie, when filling the dynamic programming tables, we ignore
all entries with values less than or equal to zero. For a node u, if there is a
row with all entries in all dynamic programming tables with values less than or
equal to zero, we can stop filling the tables since all the rows below will only
contain entries with values less than or equal to zero. Moreover, based on the
same argument, we can prune the whole subtree rooted at u.

4 Experiments and Mathematical Analysis

Note that DNA sequence is composed of double strands (i.e., two complimentary
sequences of the same length bind together). Instead of aligning a pattern with
both strands, we first search the pattern P and then its reverse with one strand.
The searching time reported in all experiments is the total time for searching
both P and its reverse. To avoid meaningless alignment, some regions of the
query (e.g. a long sequence of “a”) that are expected to contain very little infor-
mation (called low complexity regions) are masked by a standard software tool,
DUST, before it is used for testing. This is also the default setting of exist-
ing software, such as BLAST. All experiments are performed on a Pentinum D
3.0GHz PC with 4G memory.

4.1 Performance of BWT-SW

We have constructed the BWT index for human genome and used BWT-SW to
align patterns of length from 500 to 100M with the human genome. The query
patterns are randomly selected from the mouse genome except for the query of
length 100M which is the whole mouse chromosome 15. For queries of lengths of
10K or shorter, we have repeated the same experiment at least hundred times
to get the average time. For longer patterns, we have repeated the experiments
at least a few dozen times. The following table shows the results.

Query
100 200 500 1K 2K 5K 10K 100K 1M 10M 100MLength

Time
1.91 4.02 9.89 18.86 35.93 81.60 161.04 1.4K 8.9K 34.4K 218.2K(seconds)

For patterns with thousands of characters (which is common in biological
research), BWT-SW takes about one to two minutes, which is very reasonable.
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Even for extremely long patterns, say, a chromosome of 100M, it takes about
2.5 days. In the past, finding a complete set of local alignments for such long
patterns is not feasible.

To investigate how the searching time depends on the text size, we fix the
pattern length and conduct experiments using different texts (chromosomes) of
length ranging from 100M to 3G. We have repeated the study for 4 different
query lengths. The following table shows the results.

Text Size
Pattern Length 114M 307M 1.04G 2.04G 3.08G

500 1.33 2.41 5.21 7.89 9.89
1K 2.55 4.59 10.05 15.14 18.86
5K 10.74 19.53 42.20 65.67 81.60
10K 21.01 38.20 83.96 128.97 161.04

Using the above figures, we roughly estimate that the time complexity of
BWT-SW is in the order of n0.628m.2 However, our experiments are limited,
and such estimation is not conclusive. It only provides a rough explanation why
BWT-SW is a thousand times faster than the Smith-Waterman algorithm when
aligning the human genome.

4.2 Mathematical Analysis

To better understand the performance of BWT-SW, we have studied and ana-
lyzed a simplified model in which an alignment cannot insert spaces or gaps, and
the scoring function is simply a weighted sum of the number of matched and
mismatched pairs. We found that under this model, the expected total number
of DP cells with positive values is upper bounded by 69n0.628m. The time re-
quired by BWT-SW is proportional to the number of DP cells to be filled, or
equivalently, the number of cells with positive values. Thus, our analysis suggests
that BWT-SW takes O(n0.628m) time under this model.3

We assume that strings are over an alphabet of σ characters where σ is a
constant. Let x, y be strings with d ≥ 1 characters. Suppose that x and y match
in a ≤ d positions. Define Score(x, y) = a − 3(d − a) (i.e., match = 1, mis-
match = −3) and define f(x) to be the number of length-d strings y such that
Score(x, y) > 0. Note that f(x) = f(x′) for any length-d string x′. Thus, we
define f(d) = f(x).

Lemma 4. f(d) ≤ k1k
d
2 , where k1 = σ−1

σ−2
4e√
2π

, and k2 = (4e(σ − 1))1/4.

2 For each pattern length, we fit the above data to the function f(n) = cn0.628 where
c is a fixed constant. The root mean square errors of the data in all four cases are
within 1.21% to 1.63%.

3 It is perhaps a coincidence that the dependency on n is found to match the exper-
imental result in Section 4.1. Note that Sections 4.1 and 4.2 are based on different
alignment models, one with gaps and one without. It has yet to be verified whether
the analysis can be extended to the gapped model with a similar upper bound.
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Proof. Let x be a string of length d. f(d) is the number of strings of length-d that
has at most �d/4� differences with x. Using the fact that

(
a
b

)
≤ 1√

2bπ

(
ae
b

)b (derived

from Stirling’s approximation), we have
(

d
�d/4	
)
≤
(

d
�d/4�
)
≤ 1√

2dπ

(
de

�d/4�
)�d/4�

≤ 1√
2π

(
de
d/4

)d/4+1

= 4e√
2π

(4e)d/4. Then, f(d) ≤
∑�d/4	

i=0 (σ−1)i
(
d
i

)
≤
(

σ−1
σ−2

)
(σ−

1)d/4
(

d
�d/4	
)

= k1k
d
2 , where k1 = σ−1

σ−2
4e√
2π

and k2 = (4e(σ − 1))1/4.

There are σd strings of length d, and the following fact follows.

Fact 1. Let x be a string of length d, for any randomly chosen length-d string
y, the probability that Score(x, y) > 0 is f(d)/σd.

Let T be a text of n characters and let R be the suffix trie of T . Let P be a pattern
of m characters. For any node u in R, let X [1..d] be the string represented by
u. Let Nu be the dynamic programming table for u such that Nu(d, j) denote
Score(X, P ′) where P ′ is a length-d substring of P ending at position j. In the
following, we try to bound the expected total number of positive entries Nu(d, j)
for all u, d, j. Let c = �logσ n�.

Lemma 5. The expected total number of positive entries Nu(d, j) for all nodes
u at depth d is at most mf(d), if d ≤ c, and m[n f(d)

σd ], if d > c.

Lemma 6. For any d in [1, c− 1], the expected total number of positive entries
Nu(d, j) for all nodes u of depth d is at most

∑c−1
d=1 mf(d) ≤ c1mnc2 where c1, c2

are constants and c2 < 1.

Lemma 7. For all d, j and node u of depth d in [c, m], the expected total number
of positive entries Nu(d, j) for all nodes at depth d is at most

∑m
d=c nm f(d)

σd

≤ c′1mnc′
2 where c′1, c

′
2 are constants and c′2 < 1.

Based on Lemmas 6 and 7, we have the following corollary.

Corollary 3. The expected total number of positive entries Nu(d, j) for all
u, d, j is 69mn0.628.

4.3 Memory for DP Tables

We only need to store entries of DP tables with positive scores, we store them in
a compact manner as follows. We use a big single array B to store entries of all
rows of a DP table N . Let ni be the number of entries, say N(i, ji1), N(i, ji2),
. . ., N(i, vjn1

), in the i-th row. Let ki =
∑i

r=1 nr, the entry N(i, ji�
) is stored at

B[ki−1 + �]. For each entry, we store the coordinates (i, ji�
) and the score. We

also store the starting index of B for each row. Moving from node u at depth y
of the trie to its child v, we add a new row for v starting at B[ky + 1]. If we go
up from node v to u, we reuse the entries in B from B[ky + 1].
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Regarding the memory required by the DP tables, it is related to the maximum
number of table entries to be maintained throughout the whole searching process.
This number is very small in all test cases. For example, for human genome as
the text, the maximum number of entries in the DP tables are about 2600 and
22,000 for patterns of length 100K and 1M, respectively. The actual memory
required are about 20K and 10M, respectively. In fact, based on the simplified
model of Section 4.2, we can show that the expected number of DP table entries
along any path of the suffix trie is bounded by cm where c is a constant and m
is the pattern length. The memory required for DP tables is neglectable when
compared to the memory for the BWT data structure: For a DNA sequence of n
characters, 2n bits are needed for BWT entries; 2n bits for storing the original
sequence; 1n bits for the auxiliary data structures. So, altogether it translates
to about 2G memory for the human genome.
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Abstract. This paper first considers the use of the “15 puzzle,” which
is one of the most famous sliding-block puzzles, to provide secure mul-
tiparty computations. That is, we design a class of 15-puzzle-based pro-
tocols for securely computing Boolean functions. Specifically, we show
that any function of 4 variables (or less) and any symmetric function
of 14 variables (or less) can be securely computed by a 15-puzzle-based
protocol; furthermore, we present a 5-variable function and a 15-variable
symmetric function, both of which cannot be securely computed by any
protocol in the class.

1 Introduction

This paper first considers the use of the “15 puzzle” to provide secure multi-
party computations. The 15 puzzle (illustrated in Fig. 1) is one of the most
famous sliding-block puzzles, and we feel that most people might either own the
15 puzzles in their homes or have played them at least once. Therefore, this
paper will give an application of a “ubiquitous” physical device to designing a
cryptographic protocol.
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Fig. 1. Illustrations of the 15 puzzle

1.1 The 15 Puzzle

The 15 puzzle consists of a 4×4 board like in Fig. 1(a) and fifteen square tiles
1 , 2 , . . . , 15 numbered from 1 to 15. The goal of the 15 puzzle is as follows:

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 255–266, 2007.
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put these 15 tiles on the 4×4 board in an arbitrary order, say as in Fig. 1(b),
then repeat to slide some tile into the empty space (which we will call the
“blank”) until the arrangement becomes regularly ordered as shown in Fig. 1(c).
A comprehensive survey of the history of the 15 puzzle has been provided recently
by Slocum and Sonneveld [9].

Throughout the paper, we regard ‘sliding a tile’ as ‘moving the blank ,’
and we denote such a move by an arrow ↑, ↓, → or ←. For example, each of
three moves ↓, → and ← is “applicable” to the arrangement (b) in Fig. 1; if one
applies a move ← to the arrangement (b), then the resulting arrangement is (d)
in Fig. 1. For further example, applying a sequence ←↓→↑ of four moves to the
arrangement (b) in Fig. 1 results in “rotating” the three tiles 6 , 2 , 1 clockwise
so that the resulting arrangement becomes (e) in Fig. 1. Note that a sequence

←↓→↑←↓↓↓→→→
is a solution to the 15 puzzle whose initial arrangement is (b) in Fig. 1: one can
easily observe that, given the arrangement (b), this sequence rearranges the 15
tiles in the regular order (like in Fig. 1(c)).

1.2 An Example of a 15-Puzzle-Based Secure Computation

As mentioned in the beginning of this paper, our goal is to apply the physical
property of the 15 puzzle to designing cryptographic protocols for secure mul-
tiparty computations. We now present a simple example of our protocols for a
secure computation using the 15 puzzle. Assume that two honest-but-curious
players P1 and P2, who hold one-bit private inputs x1, x2 ∈ {T, F} respectively,
wish to securely compute the Boolean AND function AND2(x1, x2) = x1 ∧ x2,
i.e., they with to learn the value of x1 ∧ x2 without revealing more information
about their inputs than necessary.

Before describing the protocol, we make an important assumption on a 15
puzzle used in this paper: the back sides of all the 15 tiles 1 , 2 , . . . , 15 are
assumed to be identical; we denote such an identical back side by ? . As will
be seen later, one of the main ideas behind our protocols is to put a tile on the
board with its face down. (Of course, we understand that not every 15 puzzle on
the market satisfies such an assumption; however, we would believe that many
toy stores sell a 15 puzzle satisfying the assumption above at a low price.)

The following protocol achieves a secure computation of AND2, assuming that
players P1 and P2 have a 15 puzzle whose arrangement is (b) in Fig. 1.

1. Player P1 or P2 draws the tile 1 from the board, turns over the tile, and puts
it back to the board (with its face down). In addition, player P1 or P2 draws
the two tiles 2 and 6 from the board, turns over the two tiles, shuffles them,
and puts them back to the board (with keeping their faces down). Thus, the
upper left four cells in the current arrangement satisfy either

?

? ?

6

2 1 or

?

? ?

2

6 1

?

? ?

2

6 1 .

(Note that neither P1 nor P2 knows which is the current arrangement.)
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2. Player P1 moves (or does not move) the blank depending on her private
input x1 ∈ {T, F} without being seen by player P2:
(a) if x1 = T , then P1 applies a sequence ←↓→↑ of four moves (remember

that this sequence rotates the three tiles ? , ? , ? clockwise);
(b) if x1 = F , then P1 never moves the blank.

3. Similarly, P2 moves (or does not move) the blank depending on her private
input x2 ∈ {T, F} without being seen by P1:
(a) if x2 = T , then P2 applies a sequence ←↓→↑;
(b) if x2 = F , then P2 never moves the blank.

4. Notice that, only when x1 = x2 = T , the face-down tile ? of 1 comes up
to the uppermost leftmost cell:

?

? ?

1 ?

? ?

1

.

Player P1 or P2 turns over the uppermost leftmost tile. If the face-up tile is
1 , then it implies x1 ∧ x2 = T ; if the face-up tile is either 2 or 6 , then it
implies x1 ∧ x2 = F .

Note that, when the face-up tile is either 2 or 6 in step 4, this information
gives only the fact that (x1, x2) is (F, F ) or (T, F ) or (F, T ) because of shuffling
the two face-down tiles ? , ? of 2 , 6 in step 1. Thus, the protocol above securely
computes the function AND2(x1, x2) = x1 ∧ x2. We name this secure AND
protocol the protocol PAND2 .

It should be noted that, after the protocol PAND2 terminates, to keep the
secrecy, one has to shuffle the remaining two face-down tiles ? , ? (before turning
over them) when x1 ∧ x2 = F .

1.3 Our Results and Related Work

Assume that n honest-but-curious players P1, P2, . . . , Pn, who hold one-bit pri-
vate inputs x1, x2, . . . , xn ∈ {T, F} respectively, wish to securely compute a
(Boolean) function f(x1, x2, . . . , xn). (Hereafter, we use simply the term ‘func-
tion’ to refer to a Boolean function.) In this paper, to achieve the end, we first
design a class of protocols using the 15 puzzle. Then, we show that any function
f(x1, x2, . . . , xn) with n ≤ 4 can be securely computed by the 15 puzzle, i.e., any
function of 4 variables or less is “15puz-computable” (as in Theorem 2). We also
show that any symmetric function f(x1, x2, . . . , xn) with n ≤ 14 can be securely
computed by the 15 puzzle, i.e., any symmetric function of 14 variables or less
is 15puz-computable (as in Theorem 1). On the other hand, we prove that there
exist a 5-variable function and a 15-variable symmetric function, both of which
are not 15puz-computable (as in Theorems 3 and 4).

Our work falls into the area of recreational cryptography [1] or human-centric
cryptography [8]. There exist other handy physical devices which can implement
some cryptographic tasks (without any use of computers) in the literature: some
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examples are envelopes [4], cups [4], a deck of cards [2,3,5,6], a PEZ dispenser
[1] and scratch-off cards [7].

The remainder of the paper is organized as follows. In Section 2, we formal-
ize a class of 15-puzzle-based protocols. Then, we construct our protocols for
symmetric functions in Section 3, and construct those for general functions in
Section 4. (Since the protocols for symmetric functions are simpler than those
for general functions, the former will be presented before the latter.) In Sec-
tion 5, we present a few functions which are not 15puz-computable. This paper
concludes in Section 6 with some discussions.

2 Formalizing 15-Puzzle-Based Protocols

In this section, we formalize secure multiparty computations using the 15 puzzle,
that is, we straightforwardly extend the secure AND protocol PAND2 illustrated
in Section 1.2 to a class of 15-puzzle-based protocols for securely computing
n-variable (general) functions.

We first construct our class of 15-puzzle-based protocols in Section 2.1, and
then abstract away the concrete 15 puzzles in Section 2.2.

2.1 Our Class of Protocols

First, remember the steps 2 and 3 of the protocol PAND2 described in Section 1.2:
player P1 (resp. P2) applies a sequence ←↓→↑ of four moves to the 15 puzzle
when x1 = T (resp. x2 = T ); we call such a sequence of moves an “action” of a
player.

Definition 1. A finite string α ∈ {↑, ↓,→,←}∗ is called an action.

For example, for every i ∈ {1, 2} and b ∈ {T, F}, let αb
i be the action of player

Pi when xi = b in the protocol PAND2 , then we have αT
1 = αT

2 =←↓→↑ and
αF

1 = αF
2 = ε, where ε denotes the empty string. Notice that the location of

the blank does not change before and after the action ←↓→↑; we make the
following definition for changes of the location.

Definition 2. For an action α, we define ‖α‖ as

‖α‖ = (Nup − Ndown, Nright − Nleft)

where Nup, Ndown, Nright and Nleft are the numbers of arrows ↑’s, ↓’s, →’s and
←’s in the string α, respectively.

Note that ‖αT
1 ‖ = ‖αF

1 ‖ (= (0, 0)) and ‖αT
2 ‖ = ‖αF

2 ‖ (= (0, 0)) for the actions in
PAND2 above. Furthermore, it should be noted that, if we designed P1’s actions
with ‖αT

1 ‖ 	= ‖αF
1 ‖, then player P2 could get to know the value of P1’s input x1

just by looking at the location of the blank in her turn.
Next, remember the steps 1 and 4 of the protocol PAND2 : the tile 1 can

be regarded virtually as a true-tile like “ T ,” and each of the tiles 2 , 6 can
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be regarded virtually as a false-tile like “ F .” Furthermore, recall that the two
face-down tiles ? , ? of 2 , 6 are shuffled in the step 1.

We are now ready to straightforwardly construct a general protocol as follows,
assuming that n players P1, P2, . . . , Pn (holding private inputs x1, x2, . . . , xn ∈
{T, F}, respectively) have a 15 puzzle.

1. Divide all the 15 tiles into true-tiles and false-tiles arbitrarily. Turn over all
the true-tiles, shuffle all the (face-down) true-tiles, and put these tiles on the
board in arbitrary positions (with keeping their faces down). Similarly, turn
over all the false-tiles, shuffle them, and put them in arbitrary remaining
positions.

2. Set i := 1.
3. Player Pi moves the blank depending on her private input xi ∈ {T, F}

without being seen by any other player:
(a) if xi = T , then Pi applies an action αT

i ;
(b) if xi = F , then Pi applies an action αF

i ,
where αT

i and αF
i must satisfy ‖αT

i ‖ = ‖αF
i ‖.

4. Set i := i + 1. If i ≤ n, then return to step 3.
5. Turn over the uppermost leftmost tile. If the face-up tile is a true-tile, then

all the players recognize that the output is T ; if the face-up tile is a false-tile,
then they recognize that the output is F .

Thus, a protocol is specified by determining both an initial arrangement (of
true-tiles and false-tiles) in step 1 and players’ actions

(αT
1 , αF

1 ), (αT
2 , αF

2 ), . . . , (αT
n , αF

n )

in step 3.
For simplicity, to represent such an arrangement of true-tiles and false-tiles,

we use a 4×4 matrix as in the following Definition 3 (as if we considered a
“binary 15 puzzle,” whose tiles were T ’s or F ’s).

Definition 3. A 4×4 matrix C is called a configuration if C contains exactly
one element � (denoting the blank ) and the remaining 15 elements are T or F .

For example,

C0 =

⎛

⎜
⎜
⎝

F � F F
F T F F
F F F F
F F F F

⎞

⎟
⎟
⎠ (1)

can be an (appropriate) initial configuration for the protocol PAND2 .
As mentioned above, to specify a protocol, it suffices to determine an initial

configuration C0 and players’ actions (αT
1 , αF

1 ), (αT
2 , αF

2 ), . . . , (αT
n , αF

n ); a formal
treatment will be given in the next subsection.
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2.2 Abstraction

In this subsection, we give a mathematical definition of a protocol, which ab-
stracts away the concrete 15 puzzles.

We first define the “applicability” of moves and actions as in the following
Definitions 4 and 5.

Definition 4. Let C be a configuration such that the blank � lies on an (i, j)-
entry. If 2 ≤ i ≤ 4, then we say that a move ↑ is applicable to C and we
denote by C� ↑ the configuration resulting from exchanging the (i, j)-entry and
the (i + 1, j)-entry. We also define C� ↓, C� → and C� ← in a similar way.

Definition 5. Let C be a configuration, and let α be an action. We define ‘α
is applicable to C’ in a similar way as done in Definition 4, and we denote by
C � α the resulting configuration.

We are now ready to give a formal definition of a protocol. Hereafter, we denote
by ◦ a concatenation of two strings.

Definition 6. A protocol P = ((αT
1 , αF

1 ), (αT
2 , αF

2 ), . . . , (αT
n , αF

n ); C0) consists
of players’ actions (αT

1 , αF
1 ), (αT

2 , αF
2 ), . . . , (αT

n , αF
n ) and an initial configuration

C0 such that
– ‖αT

i ‖ = ‖αF
i ‖ for every i, 1 ≤ i ≤ n; and

– αx1
1 ◦ αx2

2 ◦ · · · ◦ αxn
n is applicable to C0 for every (x1, x2, . . . , xn) ∈ {T, F}n.

For example, one can formally verify that the protocol

PAND2 = ((←↓→↑, ε), (←↓→↑, ε); C0) (2)

satisfies the condition in Definition 6, where C0 is given in Eq. (1).
The following Definitions 7 and 8 concern “secure computability,” where

upperleft(C) denotes the value of the (1, 1)-entry in a configuration C.

Definition 7. We say that a protocol

P = ((αT
1 , αF

1 ), (αT
2 , αF

2 ), . . . , (αT
n , αF

n ); C0)

securely computes an n-variable function f if

f(x1, x2, . . . , xn) = upperleft(C0 � αx1
1 ◦ αx2

2 ◦ · · · ◦ αxn
n )

for every (x1, x2, . . . , xn) ∈ {T, F}n.

Definition 8. A function f is said to be 15puz-computable if there exists a
protocol which securely computes f .

For example, one can formally verify that the protocol PAND2 (given in Eq. (2))
securely computes the function AND2(x1, x2) = x1 ∧ x2, and hence AND2 is
15puz-computable.

In the next three sections, we focus on 15puz-computability (and non-15puz-
computability) of a function; specifically, we will show that
– any function of 4 variables is 15puz-computable (§4);
– any symmetric function of 14 variables is 15puz-computable (§3);
– there is a non-15puz-computable function of 5 variables (§5); and
– there is a non-15puz-computable symmetric function of 15 variables (§5).
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3 Protocols for 14-Variable Symmetric Functions

In this section, we propose protocols for arbitrary symmetric functions of 14
variables or less. Note that, when a demand for a secure multiparty computation
arises, it is a natural setting that all players are “symmetric,” i.e., all the players
have the same circumstances.

We first review symmetric functions in Section 3.1, and then specify our pro-
tocols in Section 3.2.

3.1 Symmetric Functions

In this subsection, we present a notation for symmetric functions.
An n-variable function f is said to be symmetric if it is unchanged by any

permutation of its variables, that is,

f(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn)

for any variables xi and xj .
It is well-known that any n-variable symmetric function f(x1, x2, . . . , xn) can

be characterized by a unique set A ⊆ {0, 1, . . . , n}: for any n-variable symmetric
function f , there exists a set

A ⊆ {0, 1, . . . , n}

such that

f(x1, x2, . . . , xn) =
{

T if |{i | xi = T, 1 ≤ i ≤ n}| ∈ A;
F otherwise.

For such a set A ⊆ {0, 1, . . . , n}, we denote the corresponding n-variable sym-
metric function by Symn

A.

3.2 Our Protocols

In this subsection, we describe our protocols for symmetric functions of 14 vari-
ables. Consider an arbitrary 14-variable symmetric function

Sym14
A (x1, x2, . . . , x14)

(where a set A ⊆ {0, 1, . . . , 14} is arbitrary). We are going to construct a protocol
PSym14

A
= ((αT

1 , αF
1 ), (αT

2 , αF
2 ), . . . , (αT

14, α
F
14); C0) which securely computes the

symmetric function Sym14
A .

To determine its initial configuration C0, we first consider 15 binary values
b0, b1, . . . , b14 such that

bi =
{

T i ∈ A;
F i /∈ A
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Fig. 2. A “Hamilton cycle” on the board

for every i, 0 ≤ i ≤ 14. (Note that, for an input vector (x1, x2, . . . , x14) having
a number � of the true values T ’s, Sym14

A (x1, x2, . . . , x14) = b�.) Then, imag-
ining a “Hamilton cycle” depicted in Figure 2, we place the 15 binary values
b0, b1, . . . , b14 along the cycle, as follows:

C0 =

⎛

⎜
⎜
⎝

b0 � b14 b13

b1 b2 b11 b12

b4 b3 b10 b9

b5 b6 b7 b8

⎞

⎟
⎟
⎠ ,

which we adopt as the initial configuration of PSym14
A

.
Next, remember that the (1, 1)-entry in the final configuration becomes the

output. Then, given an input vector (x1, x2, . . . , x14) having a number � of T ’s,
in order for the “correct output” b� to come up to the (1, 1)-entry, one may
intuitively notice that each player Pi with xi = T should “rotate” the 15 binary
values b0, b1, . . . , b14 clockwise along the “Hamilton cycle” (in Figure 2); hence,
we determine the players’ actions as follows:

αT
1 = αT

2 = · · · = αT
14 = ←↓→↓←↓→→→↑←↑→↑←←

and
αF

1 = αF
2 = · · · = αF

14 = ε.

Thus, for each turn of player Pi, only when xi = T , each of the 15 binary values
“proceeds clockwise” along the cycle. Therefore, we have

Sym14
A (x1, x2, . . . , x14) = upperleft(C0 � αx1

1 ◦ αx2
2 ◦ · · · ◦ αx14

14 )

for every (x1, x2, . . . , x14) ∈ {T, F}14, i.e., the protocol PSym14
A

securely computes
Sym14

A .
For the case of a symmetric function Symn

A with n < 14, say Sym13
A , it suffices

to construct a protocol for Sym14
A (x1, x2, . . . , x13, 0) by using the protocol PSym14

A
.

Consequently, we obtain the following Theorem 1.

Theorem 1. Let n ≤ 14. Then, any n-variable symmetric function is 15puz-
computable.
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4 Protocols for 4-Variable General Functions

In this section, by proposing protocols for arbitrary (general) functions of 4
variables, we will prove the following Theorem 2.

Theorem 2. Let n ≤ 4. Then, any n-variable function is 15puz-computable.

To prove Theorem 2, it suffices to construct protocols for any 4-variable function
(because it immediately implies that any function of 3 variables or less is also
15puz-computable).

Let f(x1, x2, x3, x4) be an arbitrary 4-variable function. If f = T or f = F or
f = x1 or f = x1, then f is obviously 15puz-computable. Therefore, one may
assume that

f(b1, b2, b3, b4) 	= f(b1, b
′
2, b

′
3, b

′
4)

for some b1, b2, b3, b4, b
′
2, b

′
3, b

′
4 ∈ {T, F}. Without loss of generality, we assume

that b1 = F , i.e.,
f(F, b2, b3, b4) 	= f(F, b′2, b

′
3, b

′
4). (3)

We are going to construct a protocol

Pf = ((αT
1 , αF

1 ), (αT
2 , αF

2 ), (αT
3 , αF

3 ), (αT
4 , αF

4 ); C0)

which securely computes f .
We first determine its initial configuration C0 as follows:

C0 =

⎛

⎜
⎜
⎝

f(F, F, F, F ) f(F, F, F, T ) f(T, T, T, F ) f(T, T, T, T )
f(F, F, T, T ) f(F, F, T, F ) f(T, T, F, T ) f(T, T, F, F )
f(F, T, F, F ) f(F, T, F, T ) f(T, F, T, F ) f(T, F, T, T )
f(F, T, T, T ) f(F, T, T, F ) � f(T, F, F, F )

⎞

⎟
⎟
⎠ .

Note that the 8 values f(F, ∗, ∗, ∗) lie on the left half,

f(T, F, F, T )

is “missing,” and the remaining 7 values f(T, ∗, ∗, ∗) lie on the right half.
We next determine player P1’s actions. Intuitively, our approach is to gather

the “desired” values in the left side: we want to construct actions αT
1 and αF

1 so
that

C0 � αx1
1 =

⎛

⎜
⎜
⎝

f(x1, F, F, F ) f(x1, F, F, T ) – –
f(x1, F, T, T ) f(x1, F, T, F ) – –
f(x1, T, F, F ) f(x1, T, F, T ) – –
f(x1, T, T, T ) f(x1, T, T, F ) � –

⎞

⎟
⎟
⎠ (4)

(where – means some binary value). To this end, when x1 = F , it suffices only to
set αF

1 = ε; hence, consider the case of x1 = T . Since f(T, F, F, T ) is “missing,”
we first search the same value as f(T, F, F, T ) from the 8 values f(F, ∗, ∗, ∗)
in the left half (note that such a “desired” value must exist by Eq. (3)), and
reposition it to the (4, 2)-entry: let b = f(T, F, F, T ), and define an action δ as
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if f(F, T, T, F ) = b then δ := ε;
else if f(F, T, T, T ) = b then δ :=↑←↓←↑→→↓;
else if f(F, T, F, F ) = b then δ :=↑←←↓→↑→↓;
else if f(F, F, T, F ) = b then δ :=↑←↑←↓↓→↑→↓;
else if f(F, F, T, T ) = b then δ :=↑←←↑→↓←↓→↑→↓;
else if f(F, T, F, T ) = b then δ :=←↑←↓→→↑←↓←↑→→↓;
else if f(F, F, F, T ) = b then δ :=↑←↑↑←↓↓→↑←↓↓→↑→↓;
else if f(F, F, F, F ) = b then δ :=↑←←↑↑→↓←↓→↑←↓↓→↑→↓.

Then, one can easily verify that

C0 � δ =

⎛

⎜
⎜
⎝

– – f(T, T, T, F ) f(T, T, T, T )
– – f(T, T, F, T ) f(T, T, F, F )
– – f(T, F, T, F ) f(T, F, T, T )
– f(T, F, F, T ) � f(T, F, F, F )

⎞

⎟
⎟
⎠ .

In order for the configuration C0 � δ to become like Eq. (4), one may intuitively
notice that it suffices to “rotate” the 15 binary values clockwise 7 times along
the “Hamilton cycle” shown in Figure 3. Therefore, let

γ =→↑←↑→↑←←←↓→↓←↓→→,

and we set αT
1 = δ ◦ γ7. Thus, we have obtained player P1’s actions αT

1 = δ ◦ γ7

and αF
1 = ε which satisfy Eq. (4).

Fig. 3. Another “Hamilton cycle” on the board

We next determine player P2’s actions. Similarly as P1’s actions, we want to
gather the “desired” values in the upper side: we want to construct actions αT

2

and αF
2 so that

C0 � αx1
1 ◦ αx2

2 =

⎛

⎜⎜
⎝

f(x1, x2, F, F ) f(x1, x2, F, T ) – –
f(x1, x2, T, T ) f(x1, x2, T, F ) – –

– – – –
– – � –

⎞

⎟⎟
⎠ .

To this end, it suffices to set αT
2 = γ4 and αF

2 = ε.
Similarly, we set αT

3 = γ2 and αF
3 = ε so that
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C0 � αx1
1 ◦ αx2

2 ◦ αx3
3 =

⎛

⎜
⎜
⎝

f(x1, x2, x3, F ) f(x1, x2, x3, T ) – –
– – – –
– – – –
– – � –

⎞

⎟
⎟
⎠ .

Finally, we set
αT

4 =←←↑↑↑→↓↓↓→

and αF
4 = ε so that

f(x1, x2, x3, x4) = upperleft(C0 � αx1
1 ◦ αx2

2 ◦ αx3
3 ◦ αx4

4 )

for every (x1, x2, x3, x4) ∈ {T, F}4.
Thus, we have given the description of our protocol Pf which securely com-

putes f , and hence we have proved Theorem 2.

5 Non-15puz-computable Functions

In this section, we show that, unfortunately, there exist functions which are not
15puz-computable. Specifically, we prove the following Theorems 3 and 4.

Theorem 3. There exists a 15-variable symmetric function which is not 15puz-
computable.

Theorem 4. There exists a 5-variable function which is not 15puz-computable.

Remember that any 4-variable function and any 14-variable symmetric function
are 15puz-computable.

Due to the page limitation, we omit the proofs of Theorems 3 and 4 in this
extended abstract.

6 Conclusions

In this paper, we first proposed a class of 15-puzzle-based cryptographic proto-
cols for secure multiparty computations. Then, we showed that any function of
4 variables (or less) and any symmetric function of 14 variables (or less) can be
securely computed by the 15 puzzle, i.e., they are 15puz-computable. Further-
more, we presented a 5-variable function and a 15-variable symmetric function,
both of which are not 15puz-computable.

Although it is not so difficult to extend our results to dealing with an arbitrary
m-puzzle (for some appropriate integer m), this paper addressed only the use
of the 15 puzzle. The reason is that we are quite interested in “real” secure
computing: the 15 puzzle has been fairly well-known around the world, and one
can get a 15 puzzle at a low cost, perhaps, anywhere in the world.
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A Lagrangian Relaxation Approach for the
Multiple Sequence Alignment Problem�
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Abstract. We present a branch-and-bound (bb) algorithm for the mul-
tiple sequence alignment problem (MSA), one of the most important
problems in computational biology. The upper bound at each bb node is
based on a Lagrangian relaxation of an integer linear programming for-
mulation for MSA. Dualizing certain inequalities, the Lagrangian sub-
problem becomes a pairwise alignment problem, which can be solved
efficiently by a dynamic programming approach. Due to a reformulation
w.r.t. additionally introduced variables prior to relaxation we improve
the convergence rate dramatically while at the same time being able to
solve the Lagrangian problem efficiently. Our experiments show that our
implementation, although preliminary, outperforms all exact algorithms
for the multiple sequence alignment problem.

1 Introduction

Aligning DNA or protein sequences is one of the most important and predomi-
nant problems in computational molecular biology. Before we motivate this we
introduce the following notation for the multiple sequence alignment problem.

Let S = {s1, s2, . . . , sk} be a set of k strings over an alphabet Σ and let
Σ̄ = Σ ∪ {−}, where “−” (dash) is a symbol to represent “gaps” in strings.
Given a string s, we let | s | denote the number of characters in the string and
sl the lth character of s, for l = 1, . . . , | s |. We will assume that | si |≥ 4 for all
strings si and let n :=

∑k
i=1 | si |.

An alignment A of S is a set S̄ = {s̄1, s̄2, · · · , s̄k} of strings over the alphabet
Σ̄ where each string can be interpreted as a row of a two dimensional alignment
matrix. The set S̄ of strings has to satisfy the following properties: (1) the strings
in S̄ all have the same length, (2) ignoring dashes, string s̄i is identical to string
si, and (3) none of the columns of the alignment matrix is allowed to contain
only dashes.

If s̄i
l and s̄j

l are both different from “−”, the corresponding characters in
si and sj are aligned and thus contribute a weight w(s̄i

l , s̄
j
l ) to the value of

A. The pairwise scoring matrix w over the alphabet Σ models either costs or
benefits, depending on whether we minimize distance or maximize similarity.

� Supported by the German Academic Exchange Service (DAAD).
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c© Springer-Verlag Berlin Heidelberg 2007
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In the following, we assume that we maximize the weight of the alignment.
Moreover, a gap in si with respect to sj is a maximal sequence si

l si
l+1 . . . si

m of
characters in si that are aligned with dashes “−” in row j. Associated with each
of these gaps is a cost. In the affine gap cost model the cost of a single gap of
length q is given by the affine function copen + qcext, i.e. such a gap contributes
a weight of −copen − qcext = wopen + qwext to the total weight of the alignment.
The problem calls for an alignment A whose overall weight is maximized.

Alignment programs still belong to the class of the most important Bioin-
formatics tools with a large number of applications. Pairwise alignments, for
example, are mostly used to find strings in a database that share certain com-
monalities with a query sequence but which might not be known to be biologi-
cally related. Multiple alignments serve a different purpose. Indeed, they can be
viewed as solving problems that are inverse to the ones addressed by pairwise
string comparisons [12]. The inverse problem is to infer certain shared patterns
from known biological relationships.

The question remains how a multiple alignment should be scored. The model
that is used most consistently by far is the so called sum of pairs (SP) score.
The SP score of a multiple alignment A is simply the sum of the scores of the
pairwise alignments induced by A [6].

If the number k of sequences is fixed the multiple alignment problem for
sequences of length n can be solved in time and space O

(
nk
)

with (quasi)-affine
gap costs [11,15,19,20]. More complex gap cost functions add a polylog factor to
this complexity [8,14]. However, if the number k of sequences is not fixed, Wang
and Jiang [22] proved that multiple alignment with SP score is NP-complete by
a reduction from shortest common supersequence [10]. Hence it is unlikely that
polynomial time algorithms exist and, depending on the problem size, various
heuristics are applied to solve the problem approximately (see, e.g., [4,7]).

In [3,2] Althaus et al. propose a branch-and-cut algorithm for the multiple
sequence alignment problem based on an integer linear programming (ILP) for-
mulation. As solving the LP-relaxation is by far the most expensive part of the
algorithm and even not possible for moderately large instances, we propose a La-
grangian approach to approximate the linear program and utilize the resulting
bounds on the optimal value in a branch-and-bound framework. We assume that
the reader is familiar with the Lagrangian relaxation approach to approximate
linear programs.

The paper is organized as follows. In Section 2 we review the ILP formula-
tion of the multiple sequence alignment problem, whose Lagrangian relaxation
is described in section 3. Our algorithm for solving the resulting problem is in-
troduced in section 4. Finally, computational experiments on a set of real-world
instances are reported in section 5.

2 Previous Work

In [3] Althaus et al. use a formulation for the multiple sequence alignment prob-
lem as an ILP given by Reinert in [18].
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For ease of notation, they define the gapped trace graph, a mixed graph whose
node set corresponds to the characters of the strings and whose edge set is par-
titioned in undirected alignment edges and directed positioning arcs as follows:
G = (V, EA ∪ AP ) with V = V i ∪ · · · ∪ V k and V i = {ui

j | 1 ≤ j ≤ |si|}, EA =
{uv | u ∈ V i, v ∈ V j , i 	= j} and AP = {(ui

l, u
i
l+1) | 1 ≤ i ≤ k and 1 ≤ l < |si|}

(see figure 1). Furthermore, we denote with G = {(u, v, j) | u, v ∈ V i, j 	= i} the
set of all possible gaps.

The ILP formulation uses a variable for every possible alignment edge e ∈ EA,
denoted by xe, and one variable for every possible gap g ∈ G, denoted by yg.
Reinert [18] showed that solutions to the alignment problem are the {0, 1}-
assignments to the variables such that

1. we have pairwise alignments between every pair of strings,
2. there are no mixed cycles, i.e. in the subgraph of the gapped trace graph

consisting of the positioning arcs AP and the edges {e ∈ EA | xe = 1} there
is no cycle that respects the direction of the arcs of Ap (and uses the edges
of EA in either direction) and contains at least one arc of AP (see figure 1),

3. transitivity is preserved, i.e. if u is aligned with v and v with w then u is
aligned with w, for u, v, w ∈ V .

A B C

A − C

−

−

AC−B

Fig. 1. The graph in the middle is the gapped trace graph for the alignment problem
given in the left part. The thick edges specify the alignment given in the left part. The
alignment edges in the right part can not be realized at the same time in an alignment.
Together with appropriate arcs of AP , they form a mixed cycle.

These three conditions are easily formulated as linear constraints. Given
weights we associated with variables xe, e ∈ EA, and gap costs wg associated
with variables yg, we denote the problem of finding the optimal alignment (whose
overall weight is maximized) satisfying conditions (1)-(3) as (P ) and its optimal
value as v(P ). As the number of those inequalities is exponential Althaus et al.
use a cutting plane framework to solve the LP relaxation (all inequalities have a
polynomial separation algorithm). In their experiments they observed that the
number of iterations in the cutting plane approach can be reduced, if we use
additional variables z(u,v) for u ∈ V i, v ∈ V j , i 	= j, with the property that
z(u,v) = 1 iff at least one character of the string of u lying behind u is aligned
to a character of the string of v lying before v, i.e. z(ui

l
,vj

m) = 1, iff there is l′ ≥ l

and m′ ≤ m with xvi
l′ v

j

m′
= 1. This condition is captured by the inequalities
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0 ≤ z ≤ 1, z(ui
l ,v

j
m) ≥ z(ui

l+1,vj
m) + xui

l ,v
j
m

and z(ui
l ,v

j
m) ≥ z(ui

l ,v
j
m−1)

+ xui
l ,v

j
m

.

(4)
In the following, we describe the inequalities used in [3] to enforce (2). We

resign to explicitly specify the inequalities enforcing (1) and (3), as they are not
crucial for the understanding of our approach.

Using these additional variables, we can define facets that guarantee (2) as
follows. Let AA = {(u, v) | u ∈ V i, v ∈ V j , i 	= j}, i.e. for each undirected edge
uv ∈ EA, we have the two directed arcs (u, v) and (v, u) in AA. Let M ⊆ AA∪AP

be a cycle in (V, AA ∪ AP ) that contains at least one arc of AP . We call such a
cycle a mixed cycle. The set of all mixed cycle inequalities is denoted by M. For
a mixed cycle M ∈ M the inequality

∑

e∈M∩AA

ze ≤ |M ∩ AA| − 1 (5)

is valid and defines a facet under appropriate technical conditions. In particular,
there is exactly one arc of AP in M . These inequalities are called lifted mixed
cycle inequalities. The constraints can be formulated similarly without using the
additional z-variables.

3 Outline

Our Lagrangian approach is based on the integer linear program outlined above.
Hence we have three classes of variables, X , Y and Z. Notice that a single variable
xuv, y(u,v,j), or z(u,v) involves exactly two sequences. Let X i,j , Y i,j , and Zi,j be
the set of variables involving sequences i and j. If we restrict our attention to
the variables in X i,j , Y i,j and Zi,j , for a specific pair of sequences i, j, a solution
of the ILP yields a description of a pairwise alignment between sequences i and
j, along with appropriate values for the Zi,j variables. The constraints (2) and
(3) are used to guarantee that all pairwise alignments together form a multiple
sequence alignment. We call an assignment of {0, 1}-values to (X i,j , Y i,j , Zi,j)
such that (X i,j, Y i,j) imposes a pairwise alignment and Zi,j satisfies inequalities
(4), an extended pairwise alignment. Given weights for the variables in X i,j ,
Y i,j and Zi,j , we call the problem of finding an extended pairwise alignment of
maximum weight the extended pairwise alignment problem.

In our Lagrangian approach we dualize the constraints for condition (2) and
relax conditions (3) (during experiments it turned out that relaxing condition
(3) is more efficient in practice as dualizing them). Hence our Lagrangian sub-
problem is an extended pairwise alignment problem. More precisely, if λM is the
current multiplier for the mixed cycle inequality of M ∈ M, we have to solve
the Lagrangian relaxation problem
∑

M∈M
λM (|M ∩ AA| − 1) +

max
∑

e∈EA

wexe +
∑

g∈G
wgyg −

∑

M∈M
λM

∑

e∈M∩AA

ze (LRλ)

s.t.(X i,j , Y i,j , Zi,j) forms an extended pairwise alignment for all i, j.
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We denote its optimal value with v(LRλ). Our approach to obtain tighter
bounds efficiently, e.g. to determine near-optimal Lagrangian multipliers to the
minimum of the Lagrangian function f(λ) = v(LRλ), is based on the iterative
subgradient method proposed by Held and Karp [13]. Similarly to [5], we ex-
perienced a faster convergence if we modify the adaption of scalar step size θ
in the subgradient formula in the following way. Instead of simply reducing θ
when there is no upper bound improvement for too long, we compare the best
and worst upper bounds computed in the last p iterations. If they differ by more
than 1%, we suspect that we are “overshooting” and thus we halve the current
value of θ. If, in contrast, the two values are within 0.1% from each other, we
overestimate v(LRλ∗), where λ∗ is an optimal solution to (LR), and therefore
increase θ by a factor of 1.5. As the number of inequalities that we dualize is
exponential, we modify the subgradient method in a relax-and-cut fashion, as
proposed by [9]. Due to lack of space, we resign to give details and refer to [1]
for a complete description.

4 Solving the Extended Pairwise Alignment Problem

Recall how a pairwise alignment with gap cost is computed for two strings s
and t of length ns and nt, respectively (without loss of generality we assume
nt ≤ ns). By a simple dynamic programming algorithm, we compute for every
1 ≤ l ≤ ns and every 1 ≤ m ≤ nt the optimal alignment of prefixes s1 . . . sl and
t1 . . . tm that aligns sl and tm and whose score is denoted by D(l, m). This can be
done by comparing all optimal alignments for strings s1 . . . sl′ and t1 . . . tm′ for
l′ < l and m′ < m, adding the appropriate gap cost to the score of the alignment
(sl, tm). Then the determination of the optimal alignment value D(ns, nt) takes
time O

(
n2

sn
2
t

)
1.

In the affine gap weight model we can restrict the dependence of each cell in the
dynamic programming matrix to adjacent entries in the matrix by associating
more than one variable to each entry as follows. Besides computing D(l, m),
we compute the score of the optimal alignment of these substrings that aligns
character sl to a character tk with k < m, denoted by V (l, m), and the one
that aligns tm to a character sk with k < l, denoted by H(l, m). Hence, in a
node V (l, m), we have already paid the opening cost for the gap in t and we can
traverse from V (l, m) to V (l, m+1) by just adding wext, but not wopen. Each of
the terms D(l, m), V (l, m) and H(l, m) can be evaluated by a constant number
of references to previously determined values and thus the running time reduces
to O (nsnt).

The pairwise alignment problem can be interpreted as a longest path problem
in an acyclic graph, having three nodes D(l, m), V (l, m) and H(l, m) for every
pair of characters sl ∈ s, tm ∈ t, i.e. in all cells (l, m). We call this graph the
dynamic programming graph. Each pairwise alignment corresponds to a unique
path through this graph, with every arc of the path representing a certain kind
1 The running time can be reduced to O

�
n2

snt

�
by distinguishing three different types

of alignments [21].
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of alignment, determined by the type of its target node (figure 2). An alignment
arc from an arbitrary node in cell (l − 1, m− 1) to node D(l, m) corresponds to
an alignment of characters sl and tm. Accordingly, a gap arc has a target node
V (l, m) or H(l, m) and represents a gap opening (source node is D(l, m − 1)
or D(l − 1, m), respectively) or a gap extension (source node is V (l, m − 1) or
H(l − 1, m), respectively).

D

H
B

V
D

H
B

V

D

H
B

V

Fig. 2. Three cells of the dynamic program-
ming matrix, with four values (nodes) asso-
ciated to each of them. Note that arcs (de-
pendencies) are between certain values D,
V , H and B, the target node determines
the type of the partial alignment.

Now assume some variable z(u,v) is
multiplied by a non-zero value in the
objective function, as the arc (u, v)
is used in at least one mixed cycle
inequality, to which a non-zero La-
grangian multiplier λM is associated.
Recall that the multiplier of the vari-
able z(u,v) in the objective function
is −
∑

M∈M|(u,v)∈M λM (see (LRλ)).
Then we have to pay the multiplier as
soon as our path traverses at least one
alignment arc that enforces z(u,v) = 1.
Assume s = si, t = sj , u = ui

l and
v = uj

m. Then z(u,v) = 1, iff there
is l′ ≥ l and m′ ≤ m such that
xui

l′ u
j

m′
= 1 (see definition of variables

z(u,v) in (4)). In the dynamic program
graph, this corresponds to alignment

arcs whose target lies in the lower right rectangle from cell (l, m). Analogously, if
u lies in string sj and v in string si, this corresponds to alignment arcs whose tar-
get lies in an upper left rectangle. We call these rectangles blue and red obstacles
and denote them by Ob(l, m) and Or(l, m), respectively.

Let the set of all blue and red obstacles be denoted by Ob and Or, respectively,
and let O = Ob ∪Or. Then the extended pairwise alignment problem is solvable
by a dynamic program in O

(
n2

sn
2
t |O|
)

time, following the same approach as
above: we compute the best alignment of all pairs of prefixes s1 . . . sl and t1 . . . tm
that aligns sl and tm, based on on all best alignments of strings s1 . . . sl′ and
t1 . . . tm′ , for l′ < l and m′ < m. We add the appropriate gap weight to the
score of the alignment (sl, tm) and subtract all Lagrangian multipliers that are
associated with obstacles enclosing (sl, tm), but not (sl′ , tm′).

Definition 1 (Enclosing Obstacles). The set of enclosing blue obstacles Qb(p)
of a cell p = (x, y) contains all blue obstacles Ob(l, m) with l ≤ x, m > y. Ac-
cordingly, Qr(p) = {Or(s, t) | s > x, t ≤ y}. Furthermore we define Q(p) =
Qb(p) ∪ Qr(p).

We reduce the complexity of the dynamic program by again decreasing the align-
ment’s history, necessary to determine the benefit of any possible continuation
in a partial alignment. The determination of the set of obstacles, whose asso-
ciated penalty we have to pay when using an alignment arc, poses the major
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problem. For that we have to know the last alignment arc that has been used on
our path. However, this arc can not be precomputed in a straightforward way,
since the longest path in this context does not have optimal substructure. The
key idea is to charge the cost of a Lagrangian multiplier λ as soon as we enter
the corresponding obstacle o, i.e. if the target node of the arc is enclosed by
o, no matter whether we enter it along an alignment arc or a gap arc. Hence,
we have to ensure that we are able to bypass obstacles we do not have to pay,
i.e. obstacles that are not enclosing any target node of an alignment arc tra-
versed by the optimal path. We accomplish this by adding new nodes and arcs
to the dynamic programming graph. Additionally we compute, for every pair
of characters sl ∈ s, tm ∈ t, a fourth value B(l, m) denoting the value of the
optimal alignment that aligns either character sl to “-” strictly left from tm or
character tm to “-” strictly left from sl. In other words, every cell (l, m) contains
a fourth node B(l, m) in the dynamic programming graph.

Before we introduce the new nodes and edges formally, we need some ba-
sic definitions. We call a pair of a blue obstacle Ob(l, m) and a red obstacle
Or(l′, m′) conflicting, if l′ ≥ l and m′ ≤ m. The base b(Ob(l, m), Or(l′, m′))
of a pair of conflicting obstacles is defined as cell (l − 1, m′ − 1), the target
t(Ob(l, m), Or(l′, m′)) as cell (l′, m). We say a cell (l, m) dominates a cell (l′, m′),
denoted by (l, m) < (l′, m′), if l < l′ and m < m′. Similarly, a blue (red) obstacle
Ob(r)(l, m) dominates an obstacle Ob(r)(l′, m′), iff (l, m) < (l′, m′). A blue (red)
obstacle is minimal in Ôb ⊆ Ob (Ôr ⊆ Or), if it is not dominated by any other
obstacle in Ôb (Ôr). We denote the set of obstacles that are dominated by a
given obstacle o, by D(o).

It is not difficult to see, that the insertion of arcs from the four nodes of every
base b to the B-node of every target t such that b < t , would enable us to
“jump over” obstacles that we do not have to pay. The weights for these arcs
are determined by the cost of the gaps leading from b to t plus the penalties
implied by obstacles enclosing t , but not b.

As the number of conflicting obstacles is at most |O|2, the number of addi-
tional arcs is at most O

(
|O|4
)

and hence the running time is O
(
nsnt + |O|4

)
.

To further reduce the number of additional arcs (dependencies) in our dynamic
programming graph, we introduce the bypass graph, which is correlated to the
transitive reduction of the induced subgraph on the set of newly added arcs.

Definition 2 (Bypass Graph). We define the Bypass Graph (bpg) G =
(V , E , l) with edge set E ⊂ V × V and length function l : E → R as follows.
The vertex set V contains all pairs v of conflicting obstacles. Let vb and vr de-
note the blue and red obstacle of v, respectively. E = Eb∪Er, where Eb = {(v, w) |
wb is minimal in D(vb)} and Er = {(v, w) | wr is minimal in D(vr)}.

The length l of edges in the bypass graph is chosen appropriately such that
there exists a path from any node of base b to the B-node of every target t
with b < t , that implies the correct score and such that the length of any
such path is upper bounded by that score. We connect the bypass graph to the
dynamic programming graph by arcs from all four nodes of every base to all



274 E. Althaus and S. Canzar

its engendering vertices in V and by arcs from all v ∈ V to the B-node of their
target t(v). The length of the former kind of arcs satisfies the same requirements
as l, the latter ones are defined to be of length 0.

Concerning the correctness of the dynamic program, we refer to a technical
report [1] for details.

4.1 Complexity

Obviously there are at most |O|2 conflicting pairs of obstacles and hence the
number of additional nodes |V| is at most |O|2. From definition 2 it follows
immediately that the number of additional arcs |A| is at most O

(
|O|3
)
, as an

edge of the bypass graph is defined by three obstacles. Therefore the running
time to compute an optimal solution to the extended pairwise alignment problem
is O
(
nm + |O|3

)
.

We improve the practical performance of our algorithm for solving the ex-
tended pairwise alignment problem by applying an A∗-approach: Notice that
the scores D(l, m), V (l, m), H(l, m) and B(l, m) during an iteration of the sub-
gradient optimization can be at most the scores of the first iteration, i.e. when
all multipliers λ are set to 0. Then it is easy to see, that the length of a longest
path from any node (l, m) to (ns, nt) determined in the first iteration provides a
heuristic estimate for all other iterations, which is monotonic and thus the first
path found from (0, 0) to (ns, nt) is optimal.

5 Experiments

We have implemented our Lagrangian approach in C++ using the LEDA-library
[17] and have embedded it into a branch-and-bound framework. The lower
bounds in each bb node are computed by selecting, in a greedy fashion, edges
from the set {e ∈ EA | x̄e = 1} that satisfy conditions (1)-(3). The weights for
the alignment edges were obtained by the BLOSUM62 amino acid substitution
matrix, whereas the gap arcs were assigned a weight that was computed as 4l+6,
where l is the number of characters in the corresponding gap.

We tested our implementation on a set of instances of the BAliBASE library.
The benchmark alignments from reference 1 (R1) contain 4 to 6 sequences and
are subdivided into three groups of different length (short, medium, long). They
are further categorized into three subgroups by the degree of similarity between
the sequences (group V1: identity < 25%, group V2: identity 20 − 40%, group
V3: identity > 35%).

We compared our implementation, which we will call LASA (LAgrangian Se-
quence Alignment), with MSA [16] and COSA[3]. The multiple sequence align-
ment program MSA is based on dynamic programming and uses the so called
quasi-affine gap cost model, a simplification of the (natural) affine gap cost
model. The branch-and-cut algorithm COSA is based on the same ILP formula-
tion and uses CPLEX as LP-solver. We ran the experiments on a system with a
2,39 GHz AMD Opteron Processor with 8 GB of RAM. Any run that exceeded
a CPU time limit of 12 hours was considered unsuccessful.
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Table 1 reports our results on short and medium sized instances from reference
1. As LASA was able to solve only three of the long instances (and no other
program could solve any), we resign to show these results.

The columns in table 1 have the following meaning: Instance: Name of the
instance, along with an indication (k, n) of the number of sequences and the
overall number of characters; Heur: Value of the initial feasible solution found
by COSA or MSA; PUB: Pairwise upper bound; Root: Value of the Lagrangian
upper bound at the root node of the branch-and-bound tree; Opt: Optimal so-
lution value; #Nodes: Number of branch-and-bound subproblems solved; #Iter:
Total number of iterations during the subgradient optimization; Time: Total
running time;

Although MSA reduces the complexity of the problem by incorporating quasi-
affine gap costs into the multiple alignment, it could hardly solve instances with
a moderate degree of similarity. In contrast, our preliminary implementation
outperforms the CPLEX based approach COSA, the only method known till
now to solve the MSA problem exactly. COSA was not able to solve any of the
medium sized or long benchmark alignments, while LASA found the optimal
solution within minutes. This is mainly because the LPs are quite complicated
to solve. Moreover, one instance crashed as an LP could not be solved by
CPLEX.

The running time of LASA and COSA strongly depends on tight initial lower
bounds. For example, LASA takes about 13 hours for the long instance 3pmg
with the bound obtained by the heuristic and only about one hour with the
optimal value used as a lower bound.

Finally, we give computational evidence for the effectiveness of our novel ap-
proach to select violated inequalities to be added to our constraint pool. Consid-
ering the average of the last h solutions of the Lagrangian relaxation instead of
looking only at the current solution (h = 1) dramatically reduces the number of
iterations (see table 2). Only short sequences of high identity (short, V3) could
be solved for h = 1. Furthermore, this table shows that the extended pairwise
alignment problems are solved at least twice as fast when using the A∗ approach.

The columns in table 2 have the following meaning: Instance: Name of the
instance, along with an indication (k, n) of the number of sequences and the over-
all number of characters; h = · : The number of solutions that were considered
to compute an average Lagrangian solution; LASA: Default version of LASA,
i.e. h = 10 and using the A* approach; DynProg: LASA without using the A*
approach; #Iter: Number of iterations needed by a specific version of LASA;
Time: Total running time in seconds needed by a specific version of LASA;

6 Conclusion

We have constructed a Lagrangian relaxation of the multiple sequence align-
ment ILP formulation that allowed us to obtain strong bounds by solving a
generalization of the pairwise alignment problem. By utilizing these bounds in a
branch-and-bound manner we achieved running times that outperform all other
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Table 1. Results on instances from reference 1. Results on group medium V1 and two
instances of medium V2 are omitted, since no program was able to solve these instances
in the allowed time frame. We removed all instances that are solved by LASA within
a second. *: With the COSA-code, the instance 3cyr crashed as the LP-solver was not
able to solve the underlying LP.

LASA COSA MSA
Instance Heur PUB Root Opt #Nodes #Iter Time Time Time

Reference 1 Short, V3
1dox (4/374) 749 782 751 750 3 253 3 30 <1
1fkj (5/517) 1,578 1,675 1,585 1,578 3 348 13 6:04 -
1plc (5/470) 1,736 1,824 1,736 1,736 1 218 6 4:24 20:14
2mhr (5/572) 2,364 2,406 2,364 2,364 1 65 3 2 17

Reference 1 Short, V2
1csy (5/510) 649 769 649 649 1 393 17 3:01 -
1fjlA (6/398) 674 731 676 674 5 561 12 34 -
1hfh (5/606) 903 1,067 911 903 3 411 33 - -
1hpi (4/293) 386 439 386 386 1 298 4 53 7
1pfc (5/560) 994 1,139 1,004 994 11 1,387 1:48 37:46 -
1tgxA (4/239) 247 317 247 247 1 566 9 53 -
1ycc (4/426) 117 309 202 200 7 1,865 2:19 - -
3cyr (4/414) 515 615 522 515 7 983 38 -∗ 45

Reference 1 Short, V1
1aboA (5/297) -685 -476 -604 -676 3,497 417,260 11:04:02 - -
1tvxA (4/242) -409 -260 -358 -405 777 122,785 1:59:44 - -
1idy (5/269) -420 -273 -356 -414 4,193 678,592 12:00:48 - -
1r69 (4/277) -326 -207 -289 -326 253 54,668 58:40 - -
1ubi (4/327) -372 -246 -330 -372 215 43,620 1:12:57 - -
1wit (5/484) -198 -25 -186 -197 15 4,221 7:42 - -
2trx (4/362) -182 -88 -178 -182 5 2,186 3:04 - -

Reference 1 Medium, V3
1amk (5/1241) 5,668 5,728 5,669 5,669 1 60 8 - -
1ar5A (4/794) 2,303 2,357 2,304 2,303 3 262 20 - -
1ezm (5/1515) 8,378 8,466 8,378 8,378 1 105 23 - -
1led (4/947) 2,150 2,282 2,158 2,150 33 1,435 3:54 - -
1ppn (5/1083) 4,718 4,811 4,729 4,724 23 925 3:10 - -
1pysA (4/1005) 2,730 2,796 2,732 2,730 3 223 28 - -
1thm (4/1097) 3,466 3,516 3,468 3,468 3 233 30 - -
1tis (5/1413) 5,854 5,999 5,874 5,856 83 2,993 18:31 - -
1zin (4/852) 2,357 2,411 2,361 2,357 13 625 1:03 - -
5ptp (5/1162) 4,190 4,329 4,233 4,205 193 8,337 35:48 - -

Reference 1 Medium, V2
1ad2 (4/828) 1,195 1,270 1,197 1,195 7 419 42 - -
1aym3 (4/932) 1,544 1,664 1,551 1,544 17 1,060 2:37 - -
1gdoA (4/988) 980 1,201 1,003 984 459 31,291 2:38:36 - -
1ldg (4/1240) 1,526 1,640 1,539 1,526 41 2,160 8:32 - -
1mrj (4/1025) 1,461 1,608 1,473 1,464 27 1,681 5:29 - -
1pgtA (4/828) 683 808 691 690 9 926 2:05 - -
1pii (4/1006) 1,099 1,256 1,103 1,100 23 1,320 4:54 - -
1ton (5/1173) 1,550 1,898 1,609 1,554 807 44,148 5:32:47 - -
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Table 2. We give the number of iterations needed by our approach for different numbers
h of solutions that were considered to compute the average Lagrangian solution. The
default is h = 10. The last column gives the time spent in the root node if we resign
to use the A∗ approach.

h = 1 h = 2 h = 20 h = 30 LASA (A*, h = 10) DynProg, h = 10
Instance #Iter #Iter #Iter #Iter #Iter Time Time
1aho (5/320) 748,470 2,496 1,194 1,283 1,089 10 22
1csp (5/339) 17 14 19 19 17 <1 <1
1dox (4/374) 80,001 271 211 207 253 1 5
1fkj (5/517) 316,072 849 707 676 348 9 25
1fmb (4/400) 1,372 14 14 14 13 <1 <1
1krn (5/390) 191,281 634 148 155 104 1 8
1plc (5/470) 232,591 489 642 513 218 6 14
2fxb (5/287) 16,425 15 11 11 11 <1 <1
2mhr (5/572) 60,005 93 116 177 65 3 8
9rnt (5/499) 54 49 40 40 39 1 3

exact or almost exact methods. We plan to integrate our implementation into
the software project SEQAN currently developed by the free university of Berlin.

Besides optimizing our implementation for speed an important issue in our
future work will be to extend the scheme to volume and to bundle algorithms.
A more sophisticated Lagrangian heuristic for computing lower bounds in the
bb nodes will be necessary to be able to solve instances of larger size.
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Abstract. We consider a nonpreemptive single machine common due
window scheduling problem where the job processing times are control-
lable with linear costs and the due window is movable. The objective
is to find a job sequence, a processing time for each job, and a posi-
tion of the common due window to minimize the total cost of weighted
earliness/tardiness and processing time compression. We discuss some
properties of the optimal solutions and provide a polynomial time algo-
rithm to solve the problem.

1 Introduction

In the pursuit of high production quality and short lead time, just-in-time (JIT)
sequencing and scheduling models, which regard both job earliness and tardiness
as penalties, received much attention from both researchers and practitioners,
see Baker and Scudder [3] for an extensive review. In the past, most of JIT
sequencing and scheduling research focuses on models with the following as-
sumptions: (1) all job processing times are fixed; and (2) all jobs have a common
due date. In this paper, we consider a single machine JIT scheduling model with
both assumptions relaxed. The problem can be stated as follows. A set of n jobs
are to be processed on a single machine with no preemption allowed. There is a
common due window for all the jobs and it is movable. The processing times of
all the jobs are under managerial control with costs proportional to their com-
pression. The objective of the problem is to find a job sequence, a processing
time for each job, and a position of the common due window to minimize the
total cost of weighted earliness/tardiness and processing time compression.

First, we assume that job processing times are under managerial control. In
most production scheduling research, job processing times are either treated as
data known in advance or as random variables following some probability dis-
tribution. In practice, however, jobs may be completed in a shorter or longer
duration by increasing or decreasing the resource units required. Studies of pro-
duction scheduling problems involving controllable job processing times were
initiated by Vickson [25], [26]. Nowicki and Zdrzalka [21] presented a survey
of scheduling models with controllable job processing times ca. 1990. Alidaee

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 279–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



280 G. Wan

and Kochenberger [2] presented a framework for scheduling models with various
objective functions and controllable processing times on a single machine and
on parallel machines, and solved them efficiently by transforming the problems
into transportation problems. Recently, various scheduling problems involving
controllable job processing times are investigated, see, for examples, Jansen et
al. [10], Ng et al. [20], Kaspi and Shabtay [12], among others.

Among the studies closely related to our model, Panwalkar and Rajagopalan
[22] considered a single machine sequencing problem with controllable job process-
ing times and a common due date as a decision variable. Biskup and Jahnke [4]
considered a problem of assigning a common due date to a set of jobs and schedul-
ing them on a single machine with controllable processing times by the same pro-
portional amount.

Second, we assume that there is a common due window, instead of a common
due date, for the jobs. The importance of due window results from uncertainty
and tolerance of due dates in many practical situations. In this vein of research,
Cheng [5] studied a problem with a common due window that is small enough
so that at most one job can be completed within the window. Dickman et al.
[7] extended this model and showed that for any given job sequence, an optimal
window can be determined as an interval depending on the number of jobs.
Lee [15] studied the problem of minimizing the maximum earliness subject to
no tardy jobs. He showed that for an arbitrary window size the problem is
NP-hard; however, if the window size is given in advance, then the problem is
polynomially solvable. Liman and Ramaswamy [16] considered the minimization
of weighted sum of earliness and the number of tardy jobs. Kramer and Lee
([13] studied the problem of minimizing earliness and tardiness penalties. They
also generalized the models to the cases with parallel machines (Kramer and
Lee, [14]). Thongmee and Liman [24] considered the problem of minimizing the
weighted sum of earliness, tardiness and window size penalties in which the
beginning of the window is given but the window size is to be determined.
Liman et al. [17] also studied a variant of the problem where the window size is
given but the location of the window is not. Liman et al. [19] further generalized
their models to the cases where both the location and size of the window are to
be determined. Wan and Yen [28] studied a general single machine scheduling
problem with distinct due windows and earliness/tardiness costs, and developed
a tabu search procedure to solve the problem.

Relaxing both assumptions of fixed job processing times and a common due
date, Liman et al. [18] studied a single machine scheduling problem with a com-
mon due window and controllable processing times, where the processing time
of jobs, the location and the size of the due window are decision variables. They
formulated the problem as an assignment problem and solved them efficiently. In
this paper, we study a single machine common due window scheduling problem
in which job processing times are controllable with linear costs and the location
of the due window is to be determined but the window size is a given parameter.
The objective is to find the processing time for each job, the position of the
common due window and the job sequence in order to minimize the total cost
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of weighted earliness/tardiness and compression of processing times. This is mo-
tivated by and is also a generalization of the problems studied by Kramer and
Lee [13], and Panwalkar and Rajagopalan [22]. Our model is different from the
one studied by Liman et al. [18] in that the window size is given as a parameter,
which makes the problem more difficult.

It is natural to study scheduling problems where earliness, tardiness and job
processing costs are taken into consideration simultaneously. For instance, con-
sider an assembly line with a CNC machine, where job processing time (i.e.,
cutting speed and feed rate) can be adjusted by allocating more or less resources
(parts and tools). By selecting job processing times appropriately, system perfor-
mance may be improved. On the other hand, the set of jobs are to be processed
for a batch delivery thus has a common due date. Furthermore, manufacturers
often consider a due date as an interval rather than a point in time so as to deal
with uncertainty and tolerance of due dates. Any job finished after its latest
due date is considered tardy, and no job can be delivered before its earliest due
date. If it is finished earlier, a job must be held until its earliest due date, thus
incurring a holding cost. The period between its earliest and latest due date is
the due window. Due to managerial control, the size of the due window is not a
decision variable but a given parameter. Hence, if the objective of the schedul-
ing problem is to minimize the weighted sum of earliness/tardiness cost and job
processing cost, then the described situation can be suitably modelled by our
model.

The remainder of the paper is organized as follows. The problem is formally
described in Section 2, followed by discussion of the properties of optimal so-
lutions with both fixed and controllable job processing times in Section 3. In
Section 4, a polynomial algorithm is developed together with an illustrative ex-
ample. Conclusion and suggestions for future research are presented in Section 5.

2 Problem Formulation

Consider a scheduling problem with n jobs to be processed on a single machine
with the following assumptions:
(1) all the jobs are available at time zero;
(2) the machine can process at most one job at a time;
(3) no preemption is allowed; and
(4) the processing time of a job can be compressed to a minimum with a linear
compression cost; and
(5) there is a common due window for all the jobs. The window is movable while
its size is fixed.

The objective of this scheduling problem is to find a job sequence, a processing
time for each job, and a position of the common due window to minimize the to-
tal cost, including earliness/tardiness cost and processing compression cost. For
convenience, we list the symbolic notations used throughout the paper as fol-
lows (without loss of generality, assume that all the parameters are non-negative
integers except the unit costs).
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N = {1, 2, ..., n}: the set of jobs to be processed on the machine;
Π : the set of all permutations of N ;
π ∈ Π : a permutation of N defining the job sequence;
pj : normal processing time of job j;
uj: maximum compression of job j (0 ≤ uj < pj);
xj : actual compression of job j (0 ≤ xj ≤ uj);
x = (x1, ..., xn): vector of actual compressions for all the n jobs;
X = {x : 0 ≤ xj ≤ uj , j ∈ N}: all the possible vectors of actual compressions;
[e, d]: a common due window of all the jobs, where e is the earliest due date and
d is the latest due date;
α: unit earliness cost for all jobs;
β: unit tardiness cost for all jobs;
γj : unit cost of compressing the processing time of job j;
Cj(π): completion time of job j in π;
Sj(π): Starting time of job j in π;
Ej(π) = max{0, e − Cj(π)}: earliness of job j in schedule π;
Tj(π) = max{0, Cj(π) − d}: tardiness of job j in schedule π;
E(π) = {j : Cj(π) ≤ e}: the set of early jobs in schedule π, a job in E(π) is
called an E-job;
W (π) = {j : Sj(π) < d and e < Cj(π)}: the set of jobs in the common due
window of schedule π, a job in W (π) is called a W-job;
T (π) = {j : Sj(π) ≥ d}: the set of tardy jobs in schedule π, a job in T (π) is
called a T-job;
We note that E(π)

⋃
W (π)

⋃
T (π) = N .

Based on the above notations, we have the following mathematical formulation
of the problem (denoted by (P)):

Min
n∑

j=1

[γjxj + αEj(π) + βTj(π)] (P)

Subject to: x ∈ X and π ∈ Π

3 Properties of an Optimal Solution for the Problem

The difficulty of this problem is to determine the W-job set. In Liman et al.
[18], the size of the common due window is a decision variable, there is no
need to determine the W-job set thus it makes the prolem relatively easy. To
solve problem (P), we first state several well-known properties for common due
date/window problems (Proposition 1-5 and Theorem 1), which also apply to
problem (P) (see Kanet [11], Hall and Posner [8], Hall et al. [9], Kramer and
Lee [13], and Weng and Ventura [29] for detailed proofs). Then we discuss some
special properties of problem (P).

Proposition 1. There exists an optimal schedule of problem (P) such that there
is no idle time between any two adjacent jobs. ��
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Remark 1. Proposition 1 implies that a job sequence, a starting time and a
position of the common due window are sufficient to determine a schedule for
problem (P).

Proposition 2. There exists an optimal schedule of problem (P) such that
either Cj = e or Cj = d, for some job j. ��

Remark 2. Henceforth, it suffices to consider only two cases in which there is
a job that can be completed at time e or d.

Proposition 3. V-shape property of an optimal schedule for problem (P):
(1) If Cj = e for some j, then there exists an optimal schedule such that jobs
in E(π) are ordered in LPT, and the remaining jobs are ordered in SPT (called
V-shape about e).
(2) If Cj = d for some j, then there exists an optimal schedule such that jobs
in T (π) are ordered in SPT, and the remaining jobs are ordered in LPT (called
V-shape about d). ��
In order to simplify the cost expressions below, we now introduce the following
definition (c.f. Kramer and Lee [13]).

Definition 1. Given a schedule π for problem (P), the cumulative weight
cw(j, π) of job j with respect to a schedule π is defined as follows:
(1) If j ∈ E(π) and j = [k] (kth job in E(π)), then cw(j, π) = (k − 1)α.
(2) If j ∈ T (π) and j = [k] (kth last job in T (π)), then cw(j, π) = (k − 1)β.
(3) If j ∈ W (π) and Ck = d for some k, then cw(j, π) = |E(π)|α. If j ∈ W (π)
and Ck = e for some k, then cw(j, π) = (|T (π)| + 1)β.
(4) Define cw(W, π) = cw(j, π) since the cumulative weight of the W-jobs is the
same for each W-job. where | • | denotes the cardinality of a set.

Proposition 4. Assume that the processing times of problem (P) are fixed
and sorted in non-decreasing order, i.e., p1 ≤ p2 ≤ ... ≤ pn, then W (π) can be
determined as follows:

Let nw∗ = min{l :
∑l

i=1 pi ≥ d − e}, then W (π) = {1, 2, ..., nw∗}. ��

Remark 3. From this proposition it easy to known that the processing time of
a W-job is less than or equal to that of any E-job or T-job.

Remark 4. Problem (P) with controllable job processing times may have a
minimal and maximal number of W-jobs as follows:
MIN = min{l :

∑l
i=1 pi ≥ d − e}, where pi (i = 1, 2, ..., n), are the normal

processing times in non-decreasing order.
MAX = min{l :

∑l
i=1(pi − ui) ≥ d− e}, where (pi −ui) (i = 1, 2, ..., n), are the

fully compressed processing times in non-decreasing order.

Proposition 5. An optimal schedule π of problem (P) must satisfy the following
condition:

max{(|E(π)| − 1)α, |T (π)|β} ≤ min{|E(π)|α, (|T (π)| + 1)β}. ��
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Below, we introduce the algorithm for problem (P) with fixed job processing
times and state the correctness of the algorithm in Theorem 1.

Algorithm A. (Kramer and Lee [13])
Step 1. Find W (π) and sequence the jobs in W (π) in any order.
Step 2. Assign the job with the longest processing time to E(π) and set u =
1, v = 0.
Step 3. From the remaining jobs, assign the job with the longest processing time
to E(π) if α ∗ u < β ∗ (v + 1); u = u + 1.
Step 4. From the remaining jobs, assign the job of longest processing time to
T (π) if α ∗ u ≥ β ∗ (v + 1); v = v + 1.
Then go to Step (3) if no job can be assigned, otherwise go to Step (5).
Step 5. Jobs in E(π) are ordered in LPT, and jobs in T (π) are ordered in SPT.
The final sequence is organized as (E(π), W (π), T (π)) such that either the last
job in E(π) completes at e, if α ∗ u ≥ β ∗ (v + 1), or the first job in T (π) starts
at d, if α ∗ u < β ∗ (v + 1).

Theorem 1. (Kramer and Lee [13]) Algorithm A finds an optimal schedule
for problem (P) with fixed processing times. ��

Remark 5. Theorem 1 implies that it is trivial to get the schedule for the
problem with fixed job processing times after determining the W-job set. It also
can be shown by proposition 5 that algorithm A generates an optimal schedule
with |E(π)| = �β(n−|W (π)|)/(α+β)� and |T (π)| = n−|E(π)|− |W (π)|, where
for a real number z, �z� denotes the largest integer less than or equal to z.

Now we consider the impact of controllable job processing times on problem (P).

Proposition 6. There exists an optimal schedule in which a job is either fully
compressed or uncompressed, except that one job in the window, at most, can
be partially compressed.
Proof. Consider a job j in some position of an optimal sequence. Suppose that
the processing time of this job is compressed by xj . Then the contribution of
this job to the total cost is:

cw(j, π) ∗ (pj − xj) + γjxj = cw(j, π) ∗ pj + (γj − cw(j, π)) ∗ xj .

It is obvious that compression of job j is only dependent on cw(j, π), i.e., its
position in the sequence. Now we consider the following three cases:

(1) If this job is either an E-job or a T-job, then it will be fully compressed if
cw(j, π) ≥ γj , or not compressed at all, otherwise.
(2) If this job is a W-job and there is at least one E-job or T-job after this job
is fully compressed (from proposition 2, there is at most one such job), then it
will be fully compressed if cw(j, π) ≥ γj .
(3) If this job is a W-job, then it may be partially compressed until there is
no processing of this job outside the common due window if cw(j, π) ≥ γj and
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cw′(j, π) ≤ γj , where cw′(j, π) is the new cumulative weight with one less outside
job (the partially compressed job). If there is more than one partially compressed
job, then the benefits from compression of all these jobs should be the same. Thus
at most one can be left to be partially (or possibly fully) compressed (and the
other partially compressed jobs should totally uncompressed, if any).

Hence, the proposition holds. ��

Proposition 7. The cumulative weights cw(j, π) will not be affected by the
introduction of controllable job processing times and the corresponding cost
provided that the number of W-jobs is given in advance.

Proof. Since the number of the W-jobs is known in advance, it can also be
ascertain the number of jobs outside the due window, i.e., the total number of E-
jobs and T-jobs. Therefore, the proposition follows from the results of Panwalkar
et al. [23] and Kramer and Lee [13], which state that the earliness and tardiness
cost can be converted to a positional penalty that is independent of the job
processing times. ��

4 A Solution Algorithm

Combining the analysis in last two sections, below we present an algorithm to
solve problem (P).

Algorithm B
Step 1. Determine the minimum and maximum numbers of W-jobs as follows:
MIN = min{l :

∑l
i=1 pi ≥ d − e}, where pi (i = 1, 2, ..., n) are the normal

processing times in non-decreasing order.
MAX = min{l :

∑l
i=1(pi − ui) ≥ d− e}, where (pi − ui) (i = 1, 2, ..., n) are the

fully compressed processing times in non-decreasing order.
Step 2. For k from MIN to MAX :
(1). Construct the matrix Q defined in the proof of theorem 2.
(2). Solve the corresponding assignment problem and record the best solution
found so far.
Step 3. The final best solution is the optimal solution for the problem and the
final sequence is organized as (E(π), W (π), T (π)) such that the last job in E(π)
is completed at e if α ∗ u ≥ β ∗ (v + 1), and the first job in T (π) starts at d if
α ∗ u < β ∗ (v + 1). The jobs in E(π) are ordered in LPT while the jobs in T (π)
are ordered in SPT. The jobs in W (π) are in any order.
Step 4. Fully compress the job j in (E(π) or T (π)) if cw(j, π) ≥ γj ; Fully compress
job j in W (π) if cw(j, π) ≥ γj and cw′(j, π) ≤ γj ; Partially compress job i in
W (π) if cw(j, π) ≥ γj , but cw′(j, π) ≤ γj ; where cw′(j, π) is the new cumulative
weight with one less outside job (the partially compressed job).

Theorem 2. Algorithm B finds an optimal solution for problem (P).
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Proof. The objective function of the problem can be written as follows:

n�

j=1

γjxj +
n�

j=1

(αEj(π) + βTj(π)) =
n�

j=1

γjxj +
|E|�

j=1

(j − 1) ∗ α(pej − xj)

+
|T |�

j=1

j ∗ β(ptj − xj) + cw(W,π) ∗ [
|W |�

j=1

(pwj − xj) − (d − e)]

= {
|E|�

j=1

[γej − (j − 1) ∗ α] ∗ xej +
|T |�

j=1

[γtj − j ∗ β] ∗ xtj +
|W |�

j=1

[γwj − cw(W,π)] ∗ xwj}

+{
|E|�

j=1

(j − 1) ∗ α ∗ pej +
|T |�

j=1

j ∗ β ∗ ptj + cw(W,π) ∗ [
|W |�

j=1

pwj − (d − e)]}

where ej , tj , wj denote the jth job in E-job set, T-job set, and W-job set, re-
spectively.

If the number of W-jobs, |W (π)|, is given, then by Proposition 7, the mini-
mization of the objective function of the problem can be achieved by solving an
assignment problem as follows, since the cost of a job can be transformed into
its positional penalty. Now consider two cases.

Case 1: If |W (π)| = n, then all the jobs (either compressed or uncompressed)
finish within the common due window. If the total processing time is larger than
the latest due day, since all jobs have the same position penalty in this case, thus
it suffices to compress from the jobs with the smallest unit compression cost to
the jobs with the largest unit compression cost until the total processing time is
less than or equal to the latest due date of the common due window. Note that
possibly the last job is partially compressed.

Case 2: If |W (π)| < n, define an n × n matrix as follows:

Q = [Q1Q2Q3]

where Q1 = [c1
ij ]n×|E(π)|, Q2 = [c2

ij ]n×|T (π)|, and Q3 = [c3
ij ]n×|W (π)|.

By Remark 5, it is easy to obtain |E(π)| and |T (π)|, and:
(1) For i = 1, ..., n, j = 1, ..., |E(π)| :
c1
ij = γi ∗ ui + α ∗ (j − 1) ∗ (pi − ui), if α ∗ (j − 1) > γi, and c1

ij = α ∗ (j − 1) ∗ pi,
otherwise.
(2) For i = 1, ..., n, j = 1, ..., |T (π)| :
c2
ij = γi ∗ ui + β ∗ j ∗ (pi − ui), if β ∗ j > γi, and c2

ij = β ∗ (j − 1) ∗ pi, otherwise.
(3) For i = 1, ..., n, j = 1, ..., |W (π)| :
c3
ij = γi∗ui+min{|E(π)|α+(|T (π)|+1)β}∗(pi−ui), if min{|E(π)|α+(|T (π)|+

1)β} > γi,
and c3

ij = min{|E(π)|α + (|T (π)| + 1)β} ∗ pi, otherwise, where |E(π)| = �β(n −
|W (π)|)/(α + β)� and |T (π)| = n − |E(π)| − |W (π)|.
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Now choose n elements from the matrix so that:
(1) there is exactly one element from each row;
(2) there is exactly one element from each column; and
(3) the sum of the elements is minimized.

By propositions 4, 6, and 7, it is obvious that solving this assignment problem
provides a feasible solution with minimal cost for the scheduling problem with
a fixed |W (π)|.

Algorithm B goes through all the possible |W (π)| and finds an optimal solution
for the problem. ��
Remark 6. The computational complexity of Algorithm B is O(n3 log n),
since the complexity of the algorithm for the assignment problem is O(n2 log n)
(Ahuja et al. 1993), and this algorithm may be carried out O(n) times.

The following example is used to illustrate the algorithm.

Example 1: Consider an instance of problem (P) with n = 5, a common due
window size=5, earliness penalty α = 5, tardiness penalty β = 7, and the other
job data as shown in Table 1.

Table 1. Job processing times and compression costs in Example 1

Job j 1 2 3 4 5
Normal processing time pj 3 5 6 8 10
Minimal processing time pj − uj 2 2 4 5 3
Unit compression cost γj 11 9 8 4 12

Then we know that:

MIN = min{l :
l∑

i=1

pi ≥ d − e} = min{l :
l∑

i=1

pi ≥ 5} = 2

MAX = min{l :
l∑

i=1

(pi − ui) ≥ d − e} = min{l :
l∑

i=1

ti ≥ 5} = 3

where pi is the normal processing time in non-decreasing order and (pi − ui) is
the fully compressed processing time in non-decreasing order.

(1). When |W (π)| = MIN = 2, then:

|E(π)| = �β(n − |W (π)|)/(α + β)� = �7(5 − 2)/(5 + 7)� = 2,

|T (π)| = n − |E(π)| − |W (π)| = 5 − 2 − 2 = 1,

Q1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 15
0 25
0 30
0 37
0 50

⎤

⎥
⎥
⎥
⎥
⎦

, Q2 =

⎡

⎢
⎢
⎢
⎢
⎣

21
35
42
47
70

⎤

⎥
⎥
⎥
⎥
⎦

and, Q3 =

⎡

⎢
⎢
⎢
⎢
⎣

30 30
47 47
56 56
62 62
100 100

⎤

⎥
⎥
⎥
⎥
⎦
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(2).When |W (π)| = MAX = 3, then:

|E(π)| = �β(n − |W (π)|)/(α + β)� = �7(5 − 3)/(5 + 7)� = 2,

|T (π)| = n − |E(π)| − |W (π)| = 5 − 3 − 2 = 0,

Q1 =

⎡

⎢
⎢⎢
⎢
⎣

0 15
0 25
0 30
0 37
0 50

⎤

⎥
⎥⎥
⎥
⎦

, Q2 is empty and, Q3 =

⎡

⎢
⎢⎢
⎢
⎣

21 21 21
35 35 35
42 42 42
47 47 47
70 70 70

⎤

⎥
⎥⎥
⎥
⎦

Solving these two assignment problems and choosing the solution with the
lower cost, we can get the optimal solution for the scheduling problem as follows:
(1) The sequence is: π=(5, 3, 1, 2, 4), where job 5 and 3 are E-jobs, job 1 and 2
are W-jobs, and job 4 is a T-job.
(2) Job 2 and 4 are fully compressed to processing times 2 and 5, respectively.
Other jobs are uncompressed.
(3) Job 5 starts at time zero and the completion time of job 2 coincides with the
end of the common due window, i.e., the end of the common due window is set
at time 21.
(4)The total cost of this schedule is (5*6+7*5)+9*(5-2)+4*(8-5)=104 (see the
Gantt chart in Fig. 1).

J5 J3 J1 J2 J4 �
0 10 16 19 21 26 t

Fig. 1. Gantt chart of the schedule in Example 1

5 Conclusions

We have studied a single machine common due window scheduling problem with
controllable job processing times and a movable due window to minimize the
total costs of weighted earliness/tardiness and compression cost of processing
times. After presenting the mathematical formulation and discussing some prop-
erties of optimal solutions, we developed a polynomial algorithm to solve this
problem. The algorithm is based on the algorithm for the classical assignment
problem. We also used an example to illustrate the application of the algorithm.

Further research can be undertaken to investigate the case with a given posi-
tion of the common due window or distinct due windows, and the case on parallel
machines.

Acknowledgement

The author would like to thank the anonymous reviewers for helpful comments.
This work was supported in part by NSFC (70372058) and Guangdong NSF
(031808).



Single Machine Common Due Window Scheduling 289

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

2. Alidaee, B., Kochenberger, G.A.: A framework for machine scheduling problems
with controllable processing times. Production and Operations Management 5,
391–405 (1996)

3. Baker, K., Scudder, G.: Sequencing with earliness and tardiness penalties: A review.
Operations Research 38, 22–36 (1990)

4. Biskup, D., Jahnke, H.: Common due date assignment for scheduling on a single
machine with jointly reducible processing times. International Journal of Produc-
tion Economics 69, 317–322 (2001)

5. Cheng, T.C.E.: Optimal common due-date with limited completion time deviation.
Computers and Operations Research 15, 91–96 (1988)

6. Daniels, R.L., Sarin, R.K.: Single machine scheduling with controllable processing
times and number of jobs tardy. Operations Research 37, 981–984 (1989)

7. Dickman, B., Wilamowsky, Y., Epstain, S.: Optimal common due-date with limited
completion time. Computers and Operations Research 39, 125–127 (1991)

8. Hall, N.G., Posner, M.E.: Earliness-tardiness scheduling problems (I). Operations
Research 39, 836–846 (1991)

9. Hall, N.G., Kubiak, W., Sethi, S.P.: Earliness-tardiness scheduling problems (II).
Operations Research 39, 847–856 (1991)

10. Jansen, K., Mastrolilli, M., Solis-Oba, R.: Approximation schemes for job shop
scheduling problems with controllable processing times. European Journal of Op-
erational Research 167, 297–319 (2005)

11. Kanet, J.J.: Minimize the average deviation of job completion times about a com-
mon due date. Naval Research Logistics 28, 643–651 (1981)

12. Kaspi, M., Shabtay, D.: A bicriterion approach to time/cost trade-offs in scheduling
with convex resource-dependent job processing times and release dates. Computers
and Operations Research 33, 3015–3033 (2006)

13. Kramer, F.J., Lee, C.Y.: Common due window scheduling. Production and Oper-
ations Management 2, 262–275 (1993)

14. Kramer, F.J., Lee, C.Y.: Due window scheduling for parallel machines. Mathemat-
ics and Computer Modelling 20, 69–89 (1994)

15. Lee, C.Y.: Earliness-tardiness scheduling problems with constant size of due win-
dow. Research Report, Dept. of Industrial and Systems Engineering, University of
Florida (1991)

16. Liman, S.D., Rawaswamy, S.: Earliness-tardiness scheduling problems with a com-
mon delivery window. Operations Research Letters 15, 195–203 (1994)

17. Liman, S.D., Panwalkar, S.S., Thongmee, S.: Determination of common due win-
dow location in a single machine scheduling problem. European Journal of Oper-
ational Research 93, 68–74 (1996)

18. Liman, S.D., Panwalkar, S.S., Thongmee, S.: A single machine scheduling problem
with common due window and controllable processing times. Annals of Operations
Research 70, 145–154 (1997)

19. Liman, S.D., Panwalkar, S.S., Thongmee, S.: Common due window size and loca-
tion determination in a single machine scheduling problem. Journal of the Opera-
tional Research Society 49, 1007–10 (1998)

20. Ng, C.T., Cheng, T.C.E., Janiak, A., Kovalyov, M.Y.: Group Scheduling with
Controllable Setup and Processing Times: Minimizing Total Weighted Completion
Time. Annals of Operations Research 133, 163–174 (2005)



290 G. Wan

21. Nowicki, E., Zdrzalka, S.: A survey of results for sequencing problems with con-
trollable processing times. Discrete Applied Mathematics 26, 271–287 (1990)

22. Panwalkar, S.S., Rajagopalan, R.: Single machine sequencing with controllable
processing times. European Journal of Operational Research 59, 298–302 (1992)

23. Panwalkar, S.S., Smith, M.L., Seidmann, A.: Common due date assignment to
minimize total penalty for the one machine scheduling problem. Operations Re-
search 30, 391–399 (1982)

24. Thongmee, S., Liman, S.D.: Common due window size determination in a single
machine scheduling problem. Research Report, Dept. of Industrial Engineering,
Texas Tech University (1995)

25. Vickson, R.G.: Two single machine sequencing problem involving controllable job
processing times. AIIE Transactions 12, 258–262 (1980a)

26. Vickson, R.G.: Choosing the sequence and processing times to minimize total
processing plus flow cost on a single machine. Operations Research 28, 1155–1167
(1980b)

27. Van Wassenhove, L.N., Baker, K.: A Bicriterion approach to time/cost trade-offs
in sequencing. European Journal of Operational Research 11, 48–54 (1982)

28. Wan, G., Yen, B.P.C.: Tabu search for single machine scheduling with distinct due
windows and weighted earliness/tardiness penalties. European Journal of Opera-
tional Research 142, 271–281 (2002)

29. Weng, M.X., Ventura, J.A.: A note on Common due window Scheduling. Produc-
tion and Operations Management 5, 194–200 (1996)



A Lower Bound on Approximation Algorithms
for the Closest Substring Problem�

Jianxin Wang1, Min Huang1, and Jianer Chen1,2

1 School of Information Science and Engineering, Central South University,
Changsha 410083, China
jxwang@mail.csu.edu.cn

2 Department of Computer Science, Texas A&M University,
College Station, TX 77843-3112, USA

chen@cs.tamu.edu

Abstract. The Closest Substring problem (CSP), where a short string
is sought that minimizes the number of mismatches between it and each
of a given set of strings, is a minimization problem with polynomial
time approximation schemes. In this paper, a lower bound on approx-
imation algorithms for the CSP problem is developed. We prove that
unless the Exponential Time Hypothesis (ETH Hypothesis, i.e., not all
search problems in SNP are solvable in subexponential time) fails, the
CSP problem has no polynomial time approximation schemes of running
time f(1/ε)|x|O(1/ε) for any function f , where |x| is the size of input
instance. This essentially excludes the possibility that the CSP problem
has a practical polynomial time approximation scheme even for moder-
ate values of the error bound ε . As a consequence, it is unlikely that the
study of approximation schemes for the CSP problem in the literature
would lead to practical approximation algorithms for the CSP problem
for small error bound ε.

1 Introduction

The Closest Substring problem was introduced by Lanctot et al. [1] and is a
key theoretical problem in molecular biology applications such as genetic drug
design, creating diagonal probes, and creating universal PCR primers. Li et al. [2]
defined the problem as follows:

Definition 1 (Closest Substring Problem (CSP)). Given a set S =
{s1, s2, ..., sn} of strings each of length m, and an integer L, find a string s
of length L minimizing d such that for each si ∈ S there is a length L substring
ti of si with D(s, ti) ≤ d.
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Herein, D(s, t) represents the Hamming distance between two strings s and t.
Closest Substring problem is an NP-hard minimization problem [1].

One interesting direction of the research on CSP is the design and analy-
sis of approximation algorithms for the problem. Lanctot et al. [1] proposed a
straightforward ratio-2 approximation algorithm for the problem. Later, Ma [3]
further studied the approximation algorithms for the problem. In 2002, Li et al.
[2] developed a polynomial time approximation scheme (PTAS) for CSP. How-
ever, the PTAS presented in [2] has a very high computational complexity and is
not practical even for moderate values of the error bound ε. Therefore, whether
there is an efficient PTAS for CSP becomes an interesting problem in current
research.

The theory of parameterized computation and complexity [4,5] is a recently
developed subarea in theoretical computer science. The theory is aimed at prac-
tically solving a large number of computational problems that are theoretically
intractable. The theory is based on the observation that many intractable compu-
tational problems in practice are associated with a parameter that varies within
a small or moderate range. Therefore, by taking the advantages of the small pa-
rameters, many theoretically intractable problems can be solved effectively and
practically. On the other hand, the theory of parameterized computation and
complexity has also offered powerful techniques that enable us to derive strong
computational lower bounds for many computational problems [6,7], thus ex-
plaining why certain theoretically tractable problems cannot be solved effectively
and practically.

Fellows et al. analyzed the parameterized complexity of the Closest Substring
problem [8], and proved that the problem is W[1]-hard. Therefore, it is deduced
that unless an unlikely collapse occurs in parameterized complexity theory, CSP
does not have a PTAS of running time f(1/ε)|x|O(1) for any function f , where
|x| is the size of input instance.

However, this does not completely exclude the possibility that the problem
may have feasible PTAS. For instance, if the problem could be solvable by a
PTAS running in time |x|log log(1/ε), then such an algorithm is still feasible for
moderately values of ε (i.e. ε = 0.01%).

In this paper, we prove that unless the Exponential Time Hypothesis (ETH
Hypothesis, i.e., not all search problems in SNP are solvable in subexponen-
tial time, [9,10]) fails, the CSP problem has no polynomial time approximation
schemes of running time f(1/ε)|x|o(1/ε) for any function f , where |x| is the size
of input instance. The class SNP introduced by Papadimitriou and Yannakakis
[9] contains many well-known NP-hard problems including, for any fixed integer
q ≥ 3, CNF q-SAT, q-Colorability, q-Set Cover, Vertex Cover, Clique,
and Independent Set, etc. It is commonly believed that it is unlikely that all
problems in SNP are solvable in subexponential time. So our result is a stronger
lower bound of PTAS for CSP. This essentially excludes the possibility that the
CSP problem has a practically efficient PTAS, even for those with running time
like O(|x|log log(1/ε)). In particular, it indicates that it is unlikely that the PTAS
of Li et al. [2] can be significantly improved to become practical.
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2 Preliminaries

In this section, we give brief review and description on the fundamentals of
parameterized computation and complexity, and of approximation algorithms
for NP optimization problems.

2.1 Parameterized Complexity and W -Hardness Under Linear
FPT-Reductions

A parameterized problem Q is a subset of Ω∗ × N , where Ω is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of Q
is a pair (x, k), where the non-negative integer k is called the parameter. The
parameterized problem Q is fixed-parameter tractable [4] if there is an algorithm
that decides if an input (x, k) is a yes-instance of Q in time f(k)|x|c, where c
is a fixed constant and f(k) is an arbitrary function. The complexity class FPT
consists of all fixed-parameter tractable problems.

Computational practice has shown that certain parameterized problems seem
not fixed-parameter tractable. To reflect this fact, a hierarchy of fixed-parameter
intractability, the W -hierarchy ∪t≥0W [t], where W [t] ⊆ W [t + 1] for all t ≥ 0,
has been introduced, in which the 0-th level W [0] is the class FPT. The hardness
and completeness have been defined for each level W [i] of the W -hierarchy for
i ≥ 1 [4]. It is commonly believed that W [1] 	= FPT . Thus, W [1]-hardness has
served as the hypothesis for fixed-parameter intractability.

Chen et al. [6,7] introduced the concepts of linear fpt-reduction and W -
hardness under linear fpt-reductions.

Definition 2. A parameterized problem Q is linear fpt-reducible, shortly fptl-
reducible, to a parameterized problem Q′ if there exist a function f and an algo-
rithm A of running time f(k)|x|O(1) that, on each instance (x, k) of Q, produces
an instance (x′, k′) of Q′, where k′ = O(k), |x′| = |x|O(1), and (x, k) is a yes-
instance of Q if and only if (x′, k′) is a yes-instance of Q′.

Thus, an fptl-reduction is a regular fpt-reduction with additional constraints on
the parameter value and the instance size. From the definition, the transitivity
of the fptl-reduction can be easily deduced [7]:

Lemma 1. Let Q1, Q2, and Q3 be three parameterized problems. If Q1 is fptl-
reducible to Q2, and Q2 is fptl-reducible to Q3, then Q1 is fptl-reducible to Q3.

The definition of W [1]-hardness under the fptl-reduction, shortly Wl[1]-hardness,
is given by the fptl-reduction from the Clique problem. We first give the definition
of the Clique problem.

Definition 3 (The Clique Problem)
Instance: A graph G = (V, E) and a parameter k.
Question: Is there a set V ′ of k vertices in G such that for any two vertices u
and v in V ′, we have [u, v] ∈ E?
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Definition 4. A parameterized problem Q is W [1]-hard under the fptl-reduction,
shortly Wl[1]-hard, if the Clique problem is fptl-reducible to Q.

It has been proved [6,7] that the following parameterized problems are Wl[1]-hard:
WCNF-SAT, Hitting Set, Dominating Set, Red-Blue Dominating Set,

Dominating Clique, Precedence Constrained Processor Scheduling,

Feature Set, and WeightedBinary IntegerProgramming, WCNF q-SAT
for any integer q ≥ 2, Clique, Independent Set, Set Cover, and Set Pack-

ing.

2.2 NP Optimization Problems and Approximation Algorithms

We now review the basic concepts for NP optimization problems and approxi-
mation algorithms. More discussions can be found in [11]. We will also discuss
the relationships between approximability and parameterized complexity of NP
optimization problems.

Definition 5. An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ),
where

1. IQ is the set of input instances. It is recognizable in polynomial time;
2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate π
(p and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to a
non-negative integer. The function fQ is computable in polynomial time;

4. optQ ∈ {max, min}. Q is called a maximization problem if optQ = max, and
a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x) such
that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. Denote the value optQ{fQ(x, z) |
z ∈ SQ(x)} by optQ(x).

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q if, for each input instance x in IQ, the algorithm A returns a feasible
solution yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n) if
it satisfies the following condition:

optQ(x)/fA(x, yA(x)) ≤ r(|x|) if Q is a maximization problem
fA(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem

The approximation algorithm A has an approximation ratio r(m) if for any
instance x in IQ, the solution yA(x) constructed by the algorithm A has an
approximation ratio bounded by r(|x|).

An NP optimization problem Q has a polynomial time approximation scheme
(PTAS) if there is an algorithm AQ that takes a pair (x, ε) as input, where x is
an instance of Q and ε > 0 is a real number, and returns a feasible solution y
for x such that the approximation ratio of the solution y is bounded by 1 + ε,
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and for each fixed ε > 0, the running time of the algorithm AQ is bounded by a
polynomial of |x|.

The definition of parameterization of NP optimization problems is given as
follows [7,5].

Definition 6. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

1. If Q is a maximization problem, then the parameterized version of Q is de-
fined as Q≥ = {(x, k) | x ∈ IQ and optQ(x) ≥ k};

2. If Q is a minimization problem, then the parameterized version of Q is de-
fined as Q≤ = {(x, k) | x ∈ IQ and optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between the
approximability and the parameterized complexity of NP optimization problems.
Chen et al. proved the following theorem (Theorem 6.1 in [6]):

Theorem 1. Let Q be an NP optimization problem. If the parameterized version
of Q is Wl[1]-hard, then Q has no PTAS of running time f(1/ε)|x|o(1/ε) for any
function f, unless the ETH Hypothesis fails.

3 A Lower Bound on PTAS for the CSP Problem

Since the definitions of the Closest Substring problem in [1,3,2] are not standard
NP optimization problem definitions, we define the NP optimization version of
the Closest Substring problem as follows:

Definition 7. The Closest SubstringProblem (CSP) is a tuple (IC , SC , fC , optC),
where

1. IC is the set of all instances x = (S, L), where L is an integer, S =
{s1, s2, ..., sn} is a set of n strings each of length m;

2. For an instance x = (S, L) in IC , SC(x) is the set of all strings of length L;
3. For an instance x = (S, L) in IC and a string s ∈ SC(x), define D(s, si) =

min{D(s, ti) | ti is a length L substring of si} and dist(s, S)=max{D(s, si) |
si ∈ S}. The objective function fC(x, s) = dist(s, S);

4. optC = min.

Denote the value optC{fC(x, s)|s ∈ SC(x)} by optC(x). With the standard defi-
nition, the approximation algorithm A for CSP developed by Li et al in [2] can
be described in the following sense: for a given instance x = (S, L) for CSP and
a small constant ε > 0, the approximation algorithm A produces a string s of
length L such that dist(s, S) ≤ (1 + ε)optC(x), and the running time of A is
O(n2m)O(1/ε4). Thus A is a PTAS for CSP.

CSP is a minimization problem, so we denote the parameterized version of it
by CSP≤ and define it as follows:

CSP≤ = {(x, k) | x ∈ IC and optC(x) ≤ k}

Our main result in this paper is the following lemma on the parameterized
complexity of the problem CSP≤.
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Lemma 2. The parameterized problem CSP≤ is Wl[1]-hard.

Proof. We prove the lemma by an fptl-reduction from the Wl[1]-hard problem
Clique to the CSP≤ problem. The proof is given by the following discussion. �
The linear fpt-reduction here is similar to the fpt-reduction presented in [8].
However, from the reduction in [8], we could not get Lemma 2 directly (or
it needs difficult mathematical analysis and proof that were not given in [8]).
Instead, we give a different reduction here, which seems easier to verify.

Consider two instances of the CSP problem:

xf = ({AAA, BBB}, 3) and xt = ({AAA, AAB}, 3)

Obviously, for xf , the Hamming distance between any length-3 string s and
one of the two strings AAA and BBB is at least 2. In fact, if the distance
between s and AAA is less than 2, then there must be at least 2 A’s in s, which
means the distance between s and BBB is at least 2. So we have optC(xf ) = 2.
Similarly, we get optC(xt) = 1.

Therefore, (xf , 1) is a no-instance for the CSP≤ problem, while (xt, 1) is a
yes-instance for the CSP≤ problem.

The fptl-reduction from Clique to CSP≤

Input: (G, k), G is a graph with n vertices v1, v2, ..., vn and m edges e1, e2, ..., em

Output: An instance of the CSP≤ problem

1. If k ≤ 4, decide whether (G, k) is a yes-instance of Clique by brute-force. If (G, k) is
a yes-instance, then let (xG, k′) = (xt, 1), otherwise let (xG, k′) = (xf , 1); Output
(xG, k′); Stop.

2. If k ≥ 5, construct an instance (xG, k′) of CSP≤, where xG = (S, L), as follows:
2-1. k′ = k − 2;
2-2. L = k + 2;
2-3. S contains n′ =

�
k
2

�
= k(k − 1)/2 strings:

S = {s1,2, s1,3, ..., s1,k, s2,2, s2,3, ..., s2,k, ..., sk−1,k}

The length of si,j(1 ≤ i < j ≤ k) is m′ = m(k + 2) + 2k(m − 1), and

si,j = 〈block(i, j, e1)〉(ψi,j)2k〈block(i, j, e2)〉(ψi,j)2k...(ψi,j)2k〈block(i, j, em)〉

where ψi,j is the unique symbol for the string si,j , called a separator; substring
〈block(i, j, el)〉, 1 ≤ l ≤ m, is called a block of si,j and defined as follows: let symbol
σi denote vertex vi in G. Suppose edge el connects vertices vr and vs, r < s, then
〈block(i, j, el)〉 is a length-L string:

〈block(i, j, el)〉 = #(ψi,j)i−1σr(ψi,j)j−i−1σs(ψi,j)k−j#

Fig. 1. The fptl-reduction from Clique to CSP≤
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Consider the fpt reduction from the Clique problem to the CSP≤ problem
given in Figure 1. The length of each string si,j is m′ = m(k + 2)+ 2k(m− 1) =
O(mn) = O(n3), the number of strings in S is n′ =

(
k
2

)
= k(k − 1)/2 = O(n2).

Therefore, the size of xG = (S, L) is bounded by a polynomial of the size of the
graph G. Meanwhile, k′ = k − 2 = O(k). Thus, (xG, k′) makes an instance for
the CSP≤ problem, satisfying the restrictions of the linear fpt reduction. The
running time of the reduction in Figure 1 is no more than O(n5) (the first step
in the reduction can be solved by enumerating all the subgraphs of G with at
most 4 vertices).

Now we only need to verify that (G, k) is a yes-instance for the Clique problem
if and only if (xG, k′) is a yes-instance for the CSP≤ problem.

In step 1 of the reduction in Figure 1, we can easily conclude that when
k ≤ 4, (G, k) is a yes-instance for Clique if and only if (xG, k′) is a yes-instance
for CSP≤. So we only need to give the proof when k ≥ 5.

Proposition 1. If (G, k) is a yes-instance for the Clique problem, then (xG, k′)
is a yes-instance for the CSP≤ problem.

Proof. Suppose that the graph G has a clique Q of k vertices. Let h1, h2, ..., hk

denote the indices of the vertices in the clique Q, 1 ≤ h1 < h2 < · · · < hk ≤ n.
Consider the string s = #σh1σh2 ...σhk

# of length L. Since Q is a clique, for any
two indices i and j, 1 ≤ i < j ≤ k, [vhi , vhj ] is an edge in G. Now consider the
string si,j . Because the string si,j encodes all edges in G, we can find a length-L
substring ti,j , i.e., ti,j = 〈block(i, j, [vhi, vhj ])〉 in si,j , where [vhi , vhj ] is an edge
in G, such that D(s, ti,j) = k − 2. Note that there are m length-L substrings in
si,j of the form 〈block(i, j, el)〉, in which only the substring ti,j and the string s
satisfy D(s, ti,j) ≤ k−2. Moreover, it is easy to verify that for any other length-
L substring t′i,j that is not a block of si,j , we always have D(s, t′i,j) > k − 2.
Thus D(s, si,j) = k − 2. Since this is true for all 1 ≤ i < j ≤ k, we conclude
fC(x, s) = dist(s, S) = k − 2 = k′. This verifies that optC(x) ≤ fC(x, s) = k′. In
consequence, (xG, k′) is a yes-instance of the CSP≤ problem. �

Proposition 2. If (xG, k′) is a yes-instance for the CSP≤ problem, then (G, k)
is a yes-instance for the Clique problem.

Proof. If (xG, k′) is a yes-instance for the CSP≤ problem, then there is a length-
L string s such that for each string si,j in S, D(s, si,j) ≤ k′. We observe that
the string s has the following properties:

Observation 1. Suppose ti,j is a length-L substring of si,j, and D(s, ti,j) ≤
k′ = k − 2. If the separator symbol ψi,j of si,j does not appear in s, then ti,j
must be a block of si,j, i.e., ti,j = 〈block(i, j, el)〉 for some edge el, and the 4
non-separator symbols in the block ti,j must coincide with the respective positions
in s.

Proof of Observation 1. There are k + 2 symbols in a block of si,j , where 4 of
them are not separator symbols: two # symbols and two σ symbols. Between
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two blocks there are 2k separator symbols ψi,j . Therefore, if there are 4 non-
separator symbols within a length-L substring ti,j of si,j , then ti,j must be a
block. To satisfy D(s, ti,j) ≤ k′ = k− 2, there must be 4 symbols in ti,j coincide
with the respective positions in s (note that the length of both ti,j and s is
k + 2). Because the separator symbol ψi,j of si,j does not appear in s, these 4
symbols are non-separator symbols. In summary, ti,j is a block of si,j , and the
4 non-separator symbols in the block coincide with the respective positions in s.
This completes the proof of Observation 1 ��
Now we prove Proposition 2. Suppose (xG, k′) is a yes-instance of the CSP≤
problem, then there is a string s of length L such that fC(xG, s) = dist(s, S) ≤
k′ = k−2. This means that for each si,j ∈ S, we should find a length-L substring
ti,j in si,j , such that D(s, ti,j) ≤ k − 2.

When k ≥ 5, the number of strings in S is n′ = k(k − 1)/2 > k + 2. The
length of s is L = k + 2, which implies that there are at most k + 2 different
symbols in s. So we can safely say that there is at least one string si,j in S,
whose separator symbol ψi,j does not appear in s. For this string si,j , because
there is a length-L substring ti,j in si,j satisfying D(s, ti,j) ≤ k − 2, according
to Observation 1, ti,j must be a block of si,j , i.e., ti,j = 〈block(i, j, el)〉, and
the 4 non-separator symbols in the block ti,j must coincide with the respective
positions in s. Therefore, the first and last symbols in s are #, and there are
two σ symbols in s. There are at most k − 2 separator symbols in the length-L
string s.

Now for any given position p, 1 ≤ p ≤ k, consider a subset of strings in S:
S′ = {si,p | 1 ≤ i < p} ∪ {sp,j | p < j ≤ k}. There are totally k − 1 strings in S′.
According to the analysis above, there are at most k − 2 separator symbols in
s. Thus there is at least one string in S′, say sp,j (it is similar to verify the case
of si,p), whose separator symbol ψp,j does not appear in s. For this string sp,j ,
because there is a length-L substring tp,j in sp,j satisfying D(s, tp,j) ≤ k − 2,
according to Observation 1, tp,j must be a block of sp,j, and the 4 non-separator
symbols in the block must coincide with the respective positions in s. Note that
the (p+1)-st symbol in tp,j is a σ symbol. In consequence, the (p+1)-st symbol
in s is a σ symbol, too. The position p could be any value in [1, k], so we have
proved that s has # symbols at its first and last positions, and σ symbols at any
other positions. Therefore, there is no separator symbol in s. In consequence,
Observation 1 is true for any string si,j in S.

We further prove that the σ symbols in s are all different from each other.
Suppose that the (i+1)-st and (j +1)-st symbols in s are σr and σs respectively,
1 ≤ i < j ≤ k. Because there is a length-L substring ti,j in si,j satisfying
D(s, ti,j) ≤ k − 2, according to Observation 1, ti,j must be a block of si,j ,
and the 4 non-separator symbols in the block must coincide with the respective
positions in s. Note that the (i + 1)-st and (j + 1)-st symbols in ti,j are non-
separator symbols, so they must be σr and σs. In addition, because the (i+1)-st
and (j + 1)-st symbols in each block of si,j represent two different vertices in G
that are connected by an edge, we know that σr and σs are two different symbols
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(r 	= s). Since the values of i and j are arbitrary, we have verified that all the σ
symbols in the string s are different from each other.

Therefore, the string s has k different σ symbols, corresponding to k different
vertices in G. Let s = #σh1σh2 · · ·σhk

#. For any two indices i and j, 1 ≤ i <
j ≤ k, since D(s, si,j) ≤ k′ = k − 2, there is a length-L substring ti,j in si,j such
that D(s, ti,j) ≤ k′ = k − 2. By Observation 1, the substring ti,j is a block in
si,j of the form

ti,j = 〈block(i, j, el)〉 = #(ψi,j)i−1σr(ψi,j)j−i−1σs(ψi,j)k−j#

for an edge el = [vr, vs] in the graph G, and vr = vhi and vs = vhj . In conse-
quence, [vhi , vhj ] is an edge in the graph G. Since this is true for all i and j, we
conclude that the vertices vh1 , vh2 , . . ., vhk

induce a clique of size k in the graph
G. Therefore, (G, k) is a yes-instance for the Clique problem. �
This completes the proof that the problem Clique is ftpl-reducible to the problem
CSP≤. In consequence, CSP≤ is Wl[1]-hard, and Lemma 2 is proved.

From Lemma 2 and Theorem 6.1 in [6] , we immediately get:

Theorem 2. Unless the ETH Hypothesis fails, the optimization problem CSP
has no PTAS of running time f(1/ε)|x|o(1/ε) for any function f .

Theorem 2 implies that any PTAS for CSP cannot run in time f(1/ε)|x|o(1/ε) for
any function f . Thus essentially, no PTAS for CSP can be practically efficient
even for moderate values of the error bound ε.

4 Conclusion

The parameterized complexity is a powerful tool to derive strong computational
lower bounds. In this paper, we proved that unless the ETH Hypothesis fails,
the CSP problem has no PTAS of running time f(1/ε)|x|o(1/ε) for any function
f . The result is obtained through a proof of the Wl[1]-hardness for the parame-
terized version of the CSP problem.

According to the new lower bound, the CSP problem has no practical poly-
nomial time approximation scheme even for moderate values of the error bound
ε > 0. As a consequence, it is unlikely that the study of approximation schemes
for the CSP problem in the literature would lead to practical approximation
algorithms for the CSP problem for small error bound ε > 0.

We remark that our result is based on unbounded alphabet. The lower bound
of the CSP problem over constant size alphabet is still open. In [12], Gramm et
al. wrote: “It was conjectured that (for constant alphabet size) Closest Substring
is also fixed-parameter intractable with respect to the distance parameter, but
it is an open question to prove (or disprove) this statement.” We conjecture that
for constant alphabet size, the CSP problem still has no PTAS of running time
f(1/ε)|x|o(1/ε) for any function f , unless the ETH Hypothesis fails.
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Abstract. The Two-Sided Crossing Minimization (TSCM) problem
calls for minimizing the number of edge crossings of a bipartite graph
where the two sets of vertices are drawn on two parallel layers and edges
are drawn as straight lines. This well-known problem has important ap-
plications in VLSI design and automatic graph drawing. In this paper, we
present a new branch-and-cut algorithm for the TSCM problem by mod-
eling it directly to a binary quadratic programming problem. We show
that a large number of effective cutting planes can be derived based on a
reformulation of the TSCM problem. We compare our algorithm with a
previous exact algorithm by testing both implementations with the same
set of instances. Experimental evaluation demonstrates the effectiveness
of our approach.

1 Introduction

Real world information is often modeled by abstract mathematical structures so
that relationships between objects are easily visualized and detected. Directed
graphs are widely used to display information with hierarchical structures which
frequently appear in computer science, economics and social sciences.

Sugiyama, Tagawa, and Toda [14] presented a comprehensive approach to
draw directed graphs. First, vertices are partitioned and constrained to a set of
equally spaced horizontal lines, called layers, and edges are straight lines con-
necting vertices from adjacent layers. They then select a permutation of the
vertices in each layer to reduce the number of crossings between the edges. The
second step is very important as it is generally accepted that drawings with less
crossings are easier to read and understand. This problem attracted a lot of stud-
ies in graph drawing and is usually solved by considering two neighboring layers
at a time. The resulting problem is generally called the two-layer crossing mini-
mization (TLCM) problem. Another motivation comes from a layout problem in
VLSI design [12]. A recent study shows that solutions of the two-layer crossing
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minimization problem can be used to solve the rank aggregation problem that
has applications in meta-search and spam reduction on the Web [2].

Given a bipartite graph G = (V1 ∪ V2, E), a two-layer drawing consists of
placing the vertices from V1 on distinct positions on a straight line L1 and placing
the vertices from V2 on distinct positions on a parallel line L2. Each edge is drawn
using a straight line segment connecting the positions of the end vertices of the
edge. Clearly, the number of edge crossings in a drawing only depends on the
permutations of the vertices on L1 and L2. The two-layer crossing minimization
problem asks to find a permutation π1 of vertices on L1 and a permutation π2 of
vertices on L2 so that the number of edge crossings is minimized. This problem
was first introduced by Harary and Schwenk [7] and has two different versions.
The first one is called two-sided crossing minimization (TSCM), where vertices of
the two vertex sets can be permuted freely. For multi-graphs, Garey and Johnson
proved the NP-hardness of this problem by transforming the Optimal Linear
Arrangement problem to it [5]. The one-sided crossing minimization (OSCM)
problem is more restricted; here the permutation of one vertex set is given.
However, this problem is also NP-hard [4], even for forests of 4-stars [10].

It is obvious from the literature that the one-sided crossing minimization
problem has been intensively studied. Several heuristic algorithms deliver good
solutions, theoretically or experimentally. The barycenter heuristic [14] is an
O(

√
n)-approximation algorithm, while the median heuristic [4] guarantees 3-

approximative solutions. Yamaguchi and Sugimoto [15] gave a 2-approximation
algorithm for instances where the maximum degree of vertices on the free side is
not larger than 4. A new approximation algorithm presented by Nagamochi [11]
has an approximation ratio of 1.4664.

Jünger and Mutzel [8] used integer and linear programming methods to solve
the TLCM problem exactly for the first time. For the one-sided version, they
reduced it to a linear arrangement problem and used the branch-and-cut algo-
rithm published in [6] to solve it. For the two-sided version, an optimal solution
was found by enumerating all permutations of one part of the vertices for a given
graph. A good starting solution and a good theoretical lower bound were used
to make the enumeration tree small. They did extensive experiments to com-
pare the exact algorithm with various existing heuristic algorithms. They found
that if one layer is fixed, then the branch-and-cut algorithm is very effective and
there is no need to use heuristics in practice. But for the TSCM problem, in the
worst case, the algorithm enumerates an exponential number of solutions. For
some instances whose optimal solutions could not be computed, we found that
the gaps between the optima and the results approached by iterated heuristic
algorithms are not negligible. See Fig. 1 for an example.

In this paper, we directly model the TSCM problem as a binary quadratic
programming (BQP) problem. Because all variables are binary, this model can
be easily transformed into an integer linear programming (ILP) model so that
general optimization methods can be applied. In particular, branch-and-cut is
one of the most successful methods in solving ILP problems. The performance of
a branch-and-cut algorithm often depends on the number and quality of cutting
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(a) A drawing with 19 crossings

(b) A drawing with 50 crossings

Fig. 1. A 20+20 graph with 40 edges. Drawing (a) has a minimum number of crossings,
drawing (b) is the best drawing found by the iterated barycenter heuristic.

planes generated within the algorithm. Unfortunately, we do not know many
classes of cutting planes for the TSCM problem from the literature. Our approach
is based on a reformulation of the TSCM problem such that all valid inequalities
for a maximum cut problem become valid. The maximum cut problem has been
well-studied and many classes of cutting planes are known. We conjecture that
these cutting planes could be helpful to solve our problem. We compared our
approach with a previous exact algorithm by testing it with the same instances.
Experimental evaluation positively proves our conjecture.

This paper is organized as follows. In Sect. 2, the problem under consideration
is formalized and necessary notation is introduced. In Sect. 3, we describe how
to reformulate the TSCM problem and present a corresponding branch-and-
cut algorithm. Experimental results are analyzed in Sect. 4, and in Sect. 5, we
summarize and conclude our work.

2 Preliminaries

For a bipartite graph G = (V1 ∪ V2, E), let V = V1 ∪ V2, n1 = |V1|, n2 = |V2|,
m = |E| and let N(i) = {j ∈ V | {i, j} ∈ E} denote the set of neighbors
of i ∈ V in G. For k ∈ {1, 2}, a vertex ordering (or vertex permutation) πk

of Vk is a bijection πk : Vk → {1, 2, . . . , nk}. For a pair of vertices (i, j) ∈ Vk,
we write i < j instead of πk(i) < πk(j). Any solution of TLCM is obviously
completely specified by a permutation π1 of V1 and a permutation π2 of V2. The
formulation system given in [8] can be applied directly to our problem: let δk

ij = 1
if πk(i) < πk(j) and 0 otherwise. Then πk is characterized by the binary vector

δk ∈ {0, 1}(
nk
2 ) .
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Given π1 and π2, the induced number of crossings is:

C(π1, π2) = C(δ1, δ2) =
n2−1∑

i=1

n2∑

j=i+1

∑

s∈N(i)

∑

t∈N(j)

(δ1
st · δ2

ji + δ1
ts · δ2

ij) (1)

=
n1−1∑

s=1

n1∑

t=s+1

∑

i∈N(s)

∑

j∈N(t)

(δ1
st · δ2

ji + δ1
ts · δ2

ij) (2)

In the one-sided crossing minimization problem, the permutation π1 of V1 is
fixed, thus δ1 is a constant vector. Hence the objective functions (1) and (2)
are linear in δ2 in this case. On contrary, in the two-sided crossing minimization
problem, both δ1 and δ2 are vectors of binary variables, so that (1) and (2)
become quadratic functions.

In the following, for simplicity, we write
∑

s<t instead of
∑

s∈N(i)

∑
t∈N(j),s<t

and
∑

s>t instead of
∑

s∈N(i)

∑
t∈N(j),s>t. Using δk

ji = 1 − δk
ij and δk

ii = 0, we
can reformulate our objective function as:

C(π1, π2) = C(δ1, δ2)

=
n2−1∑

i=1

n2∑

j=i+1

(
∑

s<t

(δ1
st + δ2

ij − 2δ1
stδ

2
ij) +
∑

s>t

(2δ1
tsδ

2
ij − δ1

ts − δ2
ij + 1)

)

(3)

Note that there are different ways to formulate the objective function. We use (3)
because it has an advantage when solving dense graphs, see Sect. 4 for details.

As the next step, all quadratic terms δ1
st · δ2

ij in the objective function (3) can
be linearized by introducing new variables

βstij = δ1
st · δ2

ij (4)

that are zero-one valued and satisfy the following sets of constraints

δ1
st + δ2

ij − βstij ≤ 1 (5)

−δ1
st + βstij ≤ 0 (6)

−δ2
ij + βstij ≤ 0 (7)

δ1
st, δ

2
ij , βstij ∈ {0, 1} (8)

This standard linearization technique is well-known from the literature.
Combining the above results with the linear inequalities for the linear ordering

problem in [8], we obtain the following integer linear programming model for the
TSCM problem:

Minimize
n2−1∑

i=1

n2∑

j=i+1

(
∑

s<t

(δ1
st + δ2

ij − 2βstij) +
∑

s>t

(2βtsij − δ1
ts − δ2

ij + 1)

)
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Subject to 0 ≤ δ2
ij + δ2

jk − δ2
ik ≤ 1 for 1 ≤ i < j < k ≤ n2

0 ≤ δ1
st + δ1

tl − δ1
sl ≤ 1 for 1 ≤ s < t < l ≤ n1

δ1
st, δ2

ij , βstij satisfy (6), (7), (8) for coef(βstij) < 0
1 ≤ i < j ≤ n2

s ∈ N(i), t ∈ N(j), s < t

δ1
st, δ2

ij , βstij satisfy (5), (8) for coef(βstij) > 0
1 ≤ i < j ≤ n2

s ∈ N(i), t ∈ N(j), s < t

Here coef(βstij) is the coefficient of variable βstij in the objective function. If the
variable βstij has a negative coefficient, Constraint (5) is not necessary because
it tightens the linear relaxation on a side that is not relevant for our optimization
objective. Similarly, Constraints (6) and (7) are unnecessary for variables with
positive coefficients. The 3-dicycle inequalities in the first two lines of the above
formulation are necessary to ensure that the vectors δ1 and δ2 indeed correspond
to permutations of V1 and V2, i.e., that integer solutions of our ILP correspond
to solutions of the TSCM problem.

3 Our Algorithm

3.1 Branch-and-Cut

The exact algorithm used by Jünger and Mutzel [8] to solve the TSCM problem
becomes unpractical as graphs are growing larger and the theoretical lower bound
is no longer effective to bound the enumeration tree. However, the basic idea
of branch-and-bound is the pruning of branches in this tree: at some node of
the tree, the ordering of a certain set of vertices is already fixed. According
to this information, one can derive a lower bound on the number of crossings
subject to these fixed vertices. If the lower bound is at most as good as a feasible
solution that has already been found, e.g., by some heuristics, it is clear that
the considered subtree cannot contain a better solution, so it does not have to
be explored.

Through the integer programming model we formulated in the previous sec-
tion, we can solve the TSCM problem directly with an LP-based branch-and-cut
algorithm. The basic structure of this approach is an enumeration tree rooted
at an LP relaxation of the original problem, i.e., the integrality constraints are
relaxed. LPs are solved very quickly in practice. If the LP-solution is integer, we
can stop. Otherwise, we try to add cutting planes that are valid for all integer
solutions of the ILP but not necessary for (fractional) solutions of the LP. If such
cutting planes are found, they are added to the LP and the process is reiterated.
We resort to the branching part only if no more cutting planes are found. High
quality cutting planes that cause big changes to the objective function can be
crucial to make the enumeration tree small. However, finding them is usually a
sophisticated problem.
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In the following, we describe our approach to resolve the above issue. We show
that the TSCM problem is, in fact, a cut problem with additional constraints.
We then describe how to generate a set of cutting planes which may help to
improve the performance of our algorithm.

3.2 Generating Cutting Planes

If the 3-dicycle inequalities are relaxed, the TSCM problem is an unconstrained
binary quadratic programming (UBQP) problem. We denote it as TSCM*. Every
polytope corresponding to an UBQP problem is isomorphic to a cut polytope
by [13], thus TSCM* can be reduced to a maximum cut problem.

The corresponding graph H = (A∪B∪r, E1∪E2) is defined as follows. Every
vertex ast ∈ A (bij ∈ B) corresponds to a variable δ1

st (δ2
ij) for 1 ≤ s < t ≤ n1

(1 ≤ i < j ≤ n2) and every edge e = (ast, bij) ∈ E1 to a variable βstij . Edges
in E2 join vertex r with all vertices in A and B. Now for some cut in H defined
by a (possibly empty) set S ⊆ A ∪ B ∪ r, let γv,w be 1 if precisely one of the
vertices v and w belongs to S, and 0 otherwise. Then the connection between
the original UBQP problem and the maximum cut problem on H is given by
the equations

δ1
st = γr,ast for all vertices ast ∈ A

δ2
ij = γr,bij for all vertices bij ∈ B

βstij = 1
2 (γr,ast + γr,bij − γast,bij ) for all edges (ast, bij) in E1

Thus, the TSCM problem can be considered as a maximum cut problem with
the following additional constraints:

0 ≤ γv,ast + γv,atl
− γv,asl

≤ 1 for 1 ≤ s < t < l ≤ n1

0 ≤ γv,bij + γv,bjk
− γv,bik

≤ 1 for 1 ≤ i < j < k ≤ n2

which are transformed from the 3-dicycle inequalities. Then it is not hard to
see that cutting planes for maximum cut problems are all valid for the trans-
formed TSCM problem. The cut polytope has been investigated intensively in
the literature and many classes of cutting planes are known, see [3] for a survey.

In our algorithm, we concentrate on odd-cycle inequalities because in general
a large number of such inequalities can be found and separated in polynomial
time [1]. The validity of odd-cycle inequalities is based on the observation that
the intersection of a cut and a cycle in a graph always contains an even number
of edges. This leads to the following formulation of the odd-cycle inequalities:

γ(F ) − γ(C \ F ) ≤ |F | − 1 for F ⊆ C, |F | odd, and C a cycle in H

However, due to the 3-dicycle inequalities, it is hard to determine which odd-
cycle inequalities are useful for improving the performance of our branch-and-
cut algorithm. Moreover, the exact separation routine in [1] requires an O(n3)
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running time, where n is the number of vertices of H . For practical purposes
this is rather slow.

In our algorithm, we augment H to H ′ = (A∪B ∪ r, E1 ∪E2 ∪E3) by adding
new edges e1 = (ast, atl), e2 = (atl, asl) and e3 = (ast, asl) for 1 ≤ s < t < l ≤ n1

and assigning them weights of zero. A similar process is also applied to vertices
in B. We scan through all triangle sets (r, ast, bij), (ast, atl, bij) and (bij , bjk, ast)
and check each of the four associated cycle inequalities for violation. This can
be done in O(n2) time.

The main procedure of our branch-and-cut algorithm is performed as follows:

1. Solve an initial LP without the 3-dicycle inequalities,
2. If the solution is infeasible, try to find violated cutting planes. The separa-

tion is performed in the order: 3-dicycle inequalities, odd-cycle inequalities
associated with triangle sets (v, ast, bij) and odd-cycle inequalities associated
with triangle sets (ast, atl, bij) and (bij , bjk, ast),

3. Revise the LP and resolve it,
4. Repeat step 2 and 3. If no cutting planes are generated, branch.

Besides the triangle inequalities described above, we also tried to generate other
odd-cycle inequalities by using the algorithm in [1]. However, this approach
is time-consuming and does not remarkably improve the performance of our
algorithm; so we do not include it in our experimental evaluation. Moreover, in
our experiments we found that our cutting plane algorithm performs very well
with the set of cutting planes described above. For some instances, we do not
have to go to the branching step at all, see Sect. 4.

4 Experimental Results

In order to evaluate the practical performance of our approach presented in the
previous section, we performed a computational evaluation. In this section, we
report the results and compare them to the results obtained with the branch-
and-bound algorithm in [8]. We tested the performance of

– B&C 1: Our branch-and-cut algorithm using odd-cycle inequalities,
– B&C 2: The CPLEX MIP-solver with default options,
– JM: The exact algorithm used by Jünger and Mutzel [8].

These algorithms have been implemented in C++ using the Mixed Integer Op-
timizer of CPLEX 9.0. For a better comparison, our experiments for all three
algorithms were carried out on the same machine, a standard desktop computer
with a 2.99 GHz processor and 1.00 GB of RAM running Windows XP. We
reimplemented the algorithm of [8] using the ILP solver of CPLEX to solve a
subproblem on the enumeration tree. In the remainder of this section, all run-
ning times are given in seconds. The test suite of our experiments is the same
as used in [8]. It is generated by the program random bigraph of the Stanford
GraphBase by Knuth [9].
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The main results from our experiments are reported in Table 1. We give the
results for “10+10-graphs”, i.e., bipartite graphs with 10 nodes on each layer,
with increasing edge densities up to 90%. We compare our results with those of
the exact algorithm presented in [8]. The notation used in Table 1 is as follows:

– ni: number of nodes on layer i for i = 1, 2
– m: number of edges
– time: the running time of each algorithm
– value: the minimum number of crossings computed by each algorithm
– nodes: the number of generated nodes in the branch-and-cut tree
– cuts: the number of user cuts generated by our branch-and-cut algorithm
– Gom.: the number of Gomory cuts generated by CPLEX with default options
– cliq.: the number of clique cuts generated by CPLEX with default options

Table 1. Results for “10+10-graphs” with increasing density

ni m B&C 1 B&C 2 JM [8]
nodes cuts time value nodes Gom. cliq. time value time value

10 10 2 120 0.50 1 0 0 0 0.03 1 0.20 1
10 20 2 670 2.12 11 2 4 3 0.30 11 0.53 11
10 30 0 1787 2.86 52 159 4 19 1.45 52 3.92 52
10 40 0 9516 8.20 142 3610 2 48 26.16 142 8.52 142
10 50 0 14526 12.52 276 8938 1 112 101.03 276 19.41 276
10 60 0 19765 21.23 459 14154 2 236 220.46 459 39.65 459
10 70 9 37857 245.88 717 [38044] [1] [427] [1000] [717] 103.11 717
10 80 0 25553 24.05 1037 19448 3 813 642.87 1037 216.26 1037
10 90 0 5468 9.67 1387 3354 3 1334 158.96 1387 234.62 1387

Notice that in our approach we did not use any initial heuristics, in order
to give clearer and independent runtime figures. Nevertheless, as obvious from
Table 1, our approach is much faster than the previous algorithm. This is par-
ticular true for dense graphs, e.g., graphs with more than 80 edges (bold figures
indicate that optimal solutions have been found earlier than by the previous al-
gorithm). Compared to B&C 2, there is a much smaller number of subproblems
to be solved in our branch-and-cut algorithm. It is exciting to see that many
instances have been solved to optimality in the cutting plane phase.

For sparse graphs, the branch-and-cut algorithm with default options of
CPLEX performs better. It has Gomory cuts and clique cuts that could be
helpful in reducing the effort required to complete the enumeration. However
for dense graphs, i.e., graphs with 70 edges, the instances are too large for the
default branch-and-cut algorithm, we set a general time limit of 1000 seconds.
Whenever this limit was reached, we report the best result and the numbers of
nodes and cuts generated so far; the figures are then put into brackets. Notice
that both branch-and-cut algorithms perform worse than the previous algorithm
when the testing graph has 70 edges.
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In Sect. 2 we have mentioned that there is an advantage of the objective
function used in our ILP model. Now it is clearly visible in Table 1: some very
dense graphs are solved even faster than graphs with less edges. The reason is
that, in our formulation, variables generated from a subgraph K2,2 are implicitly
substituted by 1, as the two corresponding terms in (3) sum up to 1 then. This
is possible since every K2,2 induces exactly one crossing in any solution. This
helps to reduce the LP size and allows to solve very dense instances quickly.

5 Conclusion and Future Work

We have studied the two-sided crossing minimization problem by modeling it di-
rectly to a binary quadratic programming problem. We have described a strategy
to generate effective cutting planes for the TSCM problem. This is based on re-
formulating it to a cut problem with additional constraints. We have shown that
these cutting planes can remarkably improve the performance of our branch-
and-cut algorithm. Our computational results show that our algorithm runs sig-
nificantly faster than earlier exact algorithms even without using any heuristic
algorithm for computing starting solutions, in particular for dense graphs. Never-
theless, our approach for solving the TSCM problem has transcended its original
application. In graph drawing, many combinatorial optimization problems can
be modeled as binary quadratic programming problems in a natural way. This
is particularly true for various types of crossing minimization problems.

Our encouraging computational results are obtained for small-scale graphs. In
the future, we plan to test the performance of our algorithm with larger graphs.
Beyond the sets of inequalities used in this paper, it would be interesting to
identify classes of facet-defining inequalities for the TSCM problem. We are now
making investigations in this direction.
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6. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear
ordering problem. Operations Research 32, 1195–1220 (1984)

7. Harary, F., Schwenk, A.J.: Trees with hamiltonian square. Mathematika 18, 138–
140 (1971)



310 L. Zheng and C. Buchheim
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Abstract. We study the Connected Facility Location problems. We are
given a connected graph G = (V, E) with non-negative edge cost ce for
each edge e ∈ E, a set of clients D ⊆ V such that each client j ∈ D has
positive demand dj and a set of facilities F ⊆ V each has non-negative
opening cost fi and capacity to serve all client demands. The objective
is to open a subset of facilities, say F̂ , to assign each client j ∈ D to ex-
actly one open facility i(j) and to connect all open facilities by a Steiner
tree T such that the cost

�
i∈F̂ fi +

�
j∈D djci(j)j + M

�
e∈T ce is min-

imized. We propose a LP-rounding based 8.29 approximation algorithm
which improves the previous bound 8.55. We also consider the problem
when opening cost of all facilities are equal. In this case we give a 7.0
approximation algorithm.

1 Introduction

Facility location is one of the prominent fields of research now a days. Ease of
formulation using integer linear program and enormous application demand have
made facility location problems a central area of research specially in Operational
Research community. In Connected Facility Location (ConFL) problem, we are
given a connected graph G = (V, E) with non-negative edge cost ce for each
edge e ∈ E. A set of facilities F ⊆ V and a set of clients D ⊆ V such that each
client j ∈ D has positive demand dj and each facility i ∈ F has non-negative
opening cost fi with capacity to serve all client demands. Let cij be the cost of
shortest path between vertices i and j in the graph. We assume that this cost is
non-negative, symmetric and obeys triangular inequality, i.e., cij ≥ 0, cij = cji

and cik + ckj ≥ cij where k is a vertex of G. For each client j, the cost of serving
dj demand from facility i is djcij , where i be an open facility such that client j
is assigned to it. In a solution of ConFL, all open facilities must be connected
among themselves. We say that we have bought an edge when we have selected
that edge to connect open facilities. For each bought edge, we pay M times of its
actual cost, where M ≥ 1 is an input parameter. Our objective is to open a set
of facilities, F̂ ⊆ F , assign each client j to exactly one open facility i(j) ∈ F̂ and
buy a set of edges that forms Steiner tree T to connect all facilities of F̂ such
that total cost, which is

∑
i∈F̂ fi +

∑
j∈D djci(j)j + M

∑
e∈T ce is minimized.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 311–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.1 Related Works

Connected facility location problem has been studied first by Karger and Minkoff
[1]. The same authors gave the first constant factor approximation algorithm.
Gupta et al. [2] improved the previous result and gave a 10.66 factor approxi-
mation algorithm for ConFL. Their algorithm is based on LP-rounding. Swamy
and Kumar [3] gave first primal-dual algorithm with 9 approximation factor and
later same authors [4] improved the factor to 8.55.

A special case of ConFL problem is Rent-or-Buy problem where each facility
has zero opening cost. Swamy and Kumar in [3] and in [4] gave primal-dual
based algorithms for Rent-or-Buy problem with approximation factors 5 and
4.55 respectively. Gupta, Kumar and Roughgarden in [5] addressed two special
cases of ConFL problem. They gave a 3.55 factor randomized approximation
algorithm for the case where each facility opening cost is zero (Rent-or-Buy
problem) and a 5.55 factor randomized approximation algorithm for the case
where each facility opening cost is either zero or infinite. Although these two
cases are categorized as “CONNECTED FACILITY LOCATION” problems in
[5], one can easily observe that these two problems are actually two special cases
of ConFL since none of them can handle arbitrary non-negative facility opening
cost.

1.2 Our Results

We propose a 8.29-approximation algorithm for general ConFL problem. When
all facility opening costs are equal we give a 7.0-approximation algorithm. We
use LP-rounding method to solve these two problems. First, we get an optimum
fractional solution to the linear programming relaxation. Then, we filter the
solution using Lin & Vitter [6] technique. Finally, we round the filtered solution.

If we consider all polynomial approximation algorithm for ConFL problem,
our algorithm outperforms the best known algorithm (8.55 factor) in terms of
approximation ratio. For the special case when all facilities have equal opening
cost, no polynomial algorithm with better than 8.55-approximation factor exists
as far we know. Thus our 7.0 factor algorithm is a much improvement in this
case.

2 Relaxed Linear Program Formulation

We can assume a particular facility r0 ∈ F has zero opening cost and belongs to
the Steiner tree connecting the open facilities in optimum solution. This assump-
tion is WLOG and does not affect the approximation ratio [3]. Let us consider
Fv = F − {r0}. So, the relaxed linear program (LP) for ConFL, which is equiv-
alent to that used in [2] is as follows:

min
∑

i∈Fv

fiyi +
∑

j∈D

dj

∑

i∈F

cijxij + M
∑

e∈E

ceze (P1)
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s.t
∑

i∈F

xij = 1 ∀j ∈ D (1)

xij ≤ yi ∀i ∈ Fv, j ∈ D (2)
xr0j ≤ 1 ∀j ∈ D (3)

∑

i∈S

xij ≤
∑

e∈δ(S)

ze ∀S ⊆ V − {r0}, j ∈ D (4)

xij , yi, ze ≥ 0

3 Filtering

Let (x, y, z) be an optimum fractional solution to LP-P1. This solution can be
found in polynomial time using ellipsoid algorithm [2]. First we want to get a
g − close solution. A feasible solution (x̄, ȳ, z̄) to LP-P1 is g-clsoe if it satisfies
the property: given gj value for each client j ∈ D, x̄ij > 0 ⇒ cij ≤ gj

Suppose α is a fixed value in the range (0, 1). For a fixed client j ∈ D, let π be
the permutation on facility set such that cπ(1)j ≤ cπ(2)j ≤ cπ(3)j ≤ ... ≤ cπ(n)j .

For each client j, we set cj(α) = cπ(imin)j , where imin = min{i′ :
∑i′

i=1 xπ(i)j ≥
α}. The following lemma shows that a g-close solution to LP-P1 can be found
in polynomial time. This lemma is similar to Lemma 1 in [7] and its proof has
been omitted.

Lemma 1. Given a feasible solution (x, y, z), for any fixed value α within the
range (0, 1) we can find a g-close solution (x̄, ȳ, z̄) in polynomial time, such that

1. gj ≤ cj(α), for each j ∈ D
2.
∑

i∈Fv
fiȳi ≤ (1/α)

∑
i∈Fv

fiyi

3. M
∑

e∈E cez̄e ≤ (1/α)M
∑

e∈E ceze

4 Algorithm Design

Definition 1. A collection of facilities and clients is called a Group. There is a
special group called “Root Group” which contains r0. Every group except “Root
Group” must have a representative of that group which must be a member client
of the same group (see Figure 1).

There are two types of group - (i) Primary Group where there is exactly one
member facility and (ii) Secondary Group where there are more than one member
facilities. The “Root Group” is always a primary group. For all groups except
“Root Group”, we use Gj , Fj and Dj to represent a group with representative j,
its facility set and its client set respectively. For “Root Group”, G0,F0 and D0

represent the group itself, its facility set and its client set respectively.
Given a g-close solution (x̄, ȳ, z̄) to LP-P1, the algorithm CreateGroups will

create some groups such that facility sets of these groups are disjoint, each client
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Fig. 1. (a) Example of groups, connectors, sources and external edges connecting all
groups

is assigned to exactly one group and one of these groups is “Root Group”, G0.
Throughout the algorithm, η ≥ 3 be a parameter whose value will be decided
later.

Algorithm CreateGroups
Begin

R ← D
Create G0 with F0 = {r0}
D0 ← {k ∈ R : cr0k ≤ ηck(α)}
R ← R −D0

While ∃(i,j)∈Fv×R : x̄ij > 0 and ȳi = 1 do
Create primary group Gj with Fj = {i} s.t. x̄ij > 0 and ȳi = 1
Dj ← {k ∈ R : cjk ≤ ηck(α)}
R ← R −Dj

Repeat
While R 	= φ do

Let l ∈ R be the client with smallest cl(α)
Create secondary group Gl with Fl = {i : cil ≤ cl(α)}
Dl ← {k ∈ R : clk ≤ (η − 2)ck(α)}
R ← R −Dl

Repeat
End

Definition 2. An edge (p, q) ∈ E is called an external edge iff for each group
Gj, |{p, q} ∩ Fj | < 2. An edge (p, q) ∈ E is called a cut-edge of group Gj iff
|{p, q} ∩ Fj | = 1.

Definition 3. Given a set of external edges A, for each group Gj, a set of ver-
tices Tj(A) or Tj when A is clearly specified, is called the connector set of A in
Gj iff each vertex v ∈ Tj(A) is also present in Fj and it is an endpoint of a
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cut-edge e of Gj such that e ∈ A. Each element of Tj(A) is called a connector of
A in Gj(see Figure 1).

Definition 4. For each group Gj , the minimum opening cost facility in Fj is
called the source rj of Gj.

Definition 5. Given graph GE′ = (V, E′) with E′ ⊆ E, a group-identified graph
GcE′ = (Vc, E

′
c) of GE′ can be created by this: For each group Gj, we identify all

vertices of Fj into one single vertex v̂j . Each cut-edge (p, q) of Gj with p ∈ Fj

is replaced by an edge (v̂j , q) with same cost. Notice that there may be loops
and multiple edges. In that case delete all loops and for each pair of neighboring
vertices with multiple edges keep the edge of minimum cost.

Definition 6. A set of edges A ⊆ E externally connects all groups iff all group-
vertices are connected in group-identified graph GcA.

Definition 7. A set of facilities S is called valid set iff it contains all facilities of
at least one group and it does not contain r0. It is easy to see that a set of edges,
A ⊆ E externally connects all groups iff for every valid set S, δ(S) ∩ A 	= φ,
where δ(S) is the set of edges such that exactly one endpoint of each edge is
inside S.

Suppose VG = {S ⊆ V − {r0} : S is a valid set}; that is, VG is the set of all
valid sets. Let us consider the following LP:

min
∑

e

ceẑe (P2)

s.t
∑

e∈δ(S)

ẑe ≥ 1 ∀S ∈ VG

The dual of this LP can be defined as:

max
∑

S∈VG

θS (D2)

∑

S∈VG:e∈δ(S)

θS ≤ ce ∀e ∈ E

Primal-dual based algorithm BuyEdges creates two sets of edges A and B such
that sources of all groups are connected in graph GA∪B = (V, A∪B). Here A is
a minimal feasible solution to LP-P2 and B is the set of edges required to make
path among connectors of A in Gj and rj for each and every group.
Algorithm BuyEdges
Begin

θ ← 0 Comment: Phase - 1
A ← φ
l ← 0
Let ζ ← {Fj : Gj group exists and Gj 	= G0}
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RootComp ← {r0}
While ζ 	= φ do

l ← l + 1
Increase θS for all S ∈ ζ until ∃el∈δ(T ),T∈ζ :

∑
S:el∈δ(S) θS = cel

A ← A ∪ {el}
ζ ← ζ − {T }
Let el = (p, q) such that p ∈ T
If ∃T ′∈ζ : q ∈ T ′

then ζ ← ζ ∪ {T ∪ T ′} − {T ′}
else if q ∈ RootComp

then RootComp ← RootComp ∪ T
else ζ ← ζ ∪ {T ∪ {q}}

Repeat
For t ← l downto 1 Comment: Reverse delete Step

if A − {et} is feasible then A ← A − {et}
B ← φ Comment: Phase - 2
For each secondary group Gj do

Bj = φ
For each i ∈ Tj(A) do

Let S be the set of edges of shortest path from i to rj

Bj ← Bj ∪ S
Repeat
B ← B ∪ Bj

Repeat
Output A, B and θ

End

Phase-1 of algorithm BuyEdges actually simulates the primal-dual algorithm
for rooted Steiner tree problem on group-identified graph GcE of G = (V, E) with
r0 as the root. Phase-1 generates the set of edges A which externally connects
all groups. The set of edges B, generated in phase-2 connects the sources of each
group to r0 (see Figure 2).

Once we get the grouping and sets A and B, we can easily get an integer
solution to LP-P1. For each group Gj we open rj and close other facilities of
Fj . Edges of A and B actually connects rj of each group Gj with r0. We buy
the edges of A ∪ B. For each group Gj , we assign all clients of Dj to rj . Thus
each client gets assigned to exactly one open facility and all open facilities are
connected with the root facility using bought edges. In the next section we will
prove feasibility and bound the cost of this integer solution.

5 Analysis

Lemma 2. Each client k ∈ D is assigned to exactly one open facility such that
cik ≤ ηck(α).
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Fig. 2. Example of algorithm BuyEdges implementation: thick edges form set A and
thin edges form set B

Proof. In algorithm CreateGroups, initially R = D. Each client leaves R only
when it is assigned to some group and once assigned, it is never considered for
any other group. In each group exactly one facility is opened and all clients are
assigned to that only open facility. It remains to prove that cik ≤ ηck(α). Let us
consider a client k. If it is assigned to some primary group then the condition is
trivial. So, let us assume that it has been assigned to some secondary group Gj . If
j = k then for each facility i ∈ Fj , cik = cij ≤ cj(α) = ck(α). So, let us consider
j 	= k. Let i′ ∈ Fj such that ci′k ≤ (η−2)ck(α). We can find such i′ since k ∈ Dj .
Now, cii′ ≤ cij + ci′j ≤ 2cj(α). So, cik ≤ cii′ + ci′k = 2cj(α) + (η − 2)ck(α).
Now, since j has been selected as representative of Gj while creating Gj and at
that time k is present in R, cj(α) ≤ ck(α). Thus, cik ≤ 2cj(α) + (η − 2)ck(α) ≤
2ck(α) + (η − 2)ck(α) = ηck(α). ��

Lemma 3. For each secondary group Gj, frj ≤
∑

i∈Fj
fiȳi, where frj is the

source of Gj.

Proof. Here, frj = mini∈Fj fi ≤
∑

i∈Fj
fix̄ij , where the last inequality holds

since
∑

i∈Fj
x̄ij = 1. Since (x̄, ȳ, z̄) is a feasible solution to LP-P1, from Equa-

tion 2 we get, frj ≤
∑

i∈Fj
fiȳi. ��

Lemma 4. Suppose A be the set of external edges returned by algorithm
BuyEdges. Then

∑
e∈A ce ≤ 2

∑
S∈VG

θS.

Proof. In Phase 1 of BuyEdges each edge is taken in A only when∑
S∈VG:e∈δ(S) θS = ce.

So,
∑

e∈A ce =
∑

e∈A

∑
S∈VG:e∈δ(S) θS =

∑
S∈VG

|A ∩ δ(S)|θS

Then, we only need to show that:
∑

S∈VG

|A ∩ δ(S)|θS ≤ 2
∑

S∈VG

θS (5)

The idea of this proof is very similar to that of Primal-Dual Prize Collecting
Steiner Tree Problem described in [8]. We can prove this by induction on the
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iteration in phase 1 of algorithm BuyEdges. Initially θS = 0. So the basic step is
trivial.

Let us consider an iteration where the set of minimal violating valid set is ζ.
We can construct a graph H like this: We take vertices of V and edges of final
solution A. For each violating valid set S ∈ ζ we contract the vertices of V those
are in S into single vertex us. We contract vertices of RootComp of this iteration
into u0. We remove all the vertices with degree zero. For simplicity we assume
that H denotes both the graph and its vertices set. Since algorithm BuyEdges
uses reverse delete step at the end of phase-2 and since we removed all isolated
vertices while creating graph H , H is a tree. If the uniform increase in this
iteration be ε, it is easy to see that in this iteration the left side of the Equation 5
increases by ε(

∑
S∈ζ dH(us)) where dH(us) is the degree of vertex us in H. The

right side increases ε2|ζ|. We only need to show that
∑

S∈ζ dH(us) ≤ 2|ζ|. Let
U be the set of vertices of H such that each has been created by contracting
corresponding vertices of S ∈ ζ. Let U ′ = H −U −{u0}. We claim that for each
u ∈ U ′, dH(u) ≥ 2. For contradiction suppose dH(u′) = 1 such that u′ ∈ U ′.
Since u′ is not a result of contraction of some vertices, its degree is also 1 in
graph G = (V, A) as well as in group-identified graph GcA. Let e′ be the only
edge incident to u′. Then in GcA−{e′} all group-vertices are still connected. So
A − {e} is a feasible solution to LP-P2. Then reverse delete step must have
removed e′ and thus degree of u′ is zero. This is a contradiction. Now,∑

us∈U dH(us) =
∑

u∈H dH(u) −
∑

u∈U ′ dH(u) − dH(u0) ≤ 2(|H | − 1)− 2|U ′| −
dH(u0) = 2|H |−2−2(|H |−|U |−1)−dH(u0) = 2|U |−dH(u0) ≤ 2|U | = 2|ζ|. ��

Lemma 5.
∑

e∈A ce ≤ 2
∑

e∈E cez̄e

Proof. We can assume that in optimum fractional solution (x, y, z), for each
facility i ∈ Fv, ∃j∈D : xij = yi. This is trivial when each facility in Fv has
positive opening cost since otherwise we can reduce yi to get better solution.
When some facility in Fv has zero opening cost, we can ensure this property by
taking optimum solution and reducing yi as much as possible for each facility
with zero opening cost and this can be done in polynomial time. So we can
assume that this property holds. Next, we are going to prove that z̄ is a feasible
solution to LP-P2. Since

∑
S∈VG

θS is the lower bound of optimum solution to
LP-P2, feasibility of z̄ in LP-P2 and the result of previous lemma proves this
lemma.

Let us consider any valid set S′. Then by definition, r0 /∈ S′ and ∃Gj : Fj ⊆ S′.
Suppose Gk is such a group. There are two cases depending on if Gk is a primary
or a secondary group:

Case 1. (Gk is a primary group)
Let i′ be the only facility of Fk. Definitely i′ 	= r0, because in that case S′ can
not be a valid set. Then, ∃j : xi′j = yi′ . Let us consider j′ be the client such that
xi′j′ = yi′ ≥ α, where the last inequality holds since Gk is a primary group and
thus ȳi = min(yi′/α, 1) = 1. Now Equation 4 of LP-P1 is true for S = S′ and j =
j′. That is,

∑
e∈δ(S′) ze ≥

∑
i∈S′ xij′ ≥ xi′j′ ≥ α. Thus,

∑
e∈δ(S′) z̄e ≥ 1.
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Case 2. (Gk is a secondary group)
In this case

∑
i∈Fk

x̄ik = 1. Equation 4 of LP-P1 is true for S = S′ and j = k.
That is,

∑
e∈δ(S′) z̄e ≥

∑
i∈S′ x̄ik ≥

∑
i∈Fk

x̄ik = 1.
Thus, for any choice of valid set S′, we are getting

∑
e∈δ(S′) z̄e ≥ 1. This

implies that z̄ is a feasible solution to LP-P2. ��

Lemma 6. Suppose Gm and Gn be two distinct groups created by the algorithm
CreateGroups. If i1 ∈ Fm and i2 ∈ Fn then ci1i2 ≥ ((η − 3)/2)Im and ci1i2 ≥
((η − 3)/2)In. Where Ij is the maximum distance between any two facilities in
group Gj

Proof. This is trivial when both are primary groups because Im = In = 0 in
that case. So let us consider two cases: (1) when both are secondary groups and
(2) one is a primary and the other one is a secondary group.

Case 1. (Both are secondary groups)
In this case, it is enough to prove that ci1i2 ≥ (η − 3)cm(α) and ci1i2 ≥
(η − 3)cn(α). WLOG, let us assume that group Gm has been created first. Then
cm(α) ≤ cn(α). For contradiction let us assume that the lemma is not true
for this case. Then definitely ci1i2 < (η − 3)cn(α). Now, ci1n ≤ ci2n + ci1i2 ≤
cn(α) + ci1i2 < cn(α) + (η − 3)cn(α) = (η − 2)cn(α). Then, when Gm has been
created, client n has been assigned to Gm. But in that case, Gn has not been
created. It is a contradiction.

Case 2. (One is a primary and other one is a secondary group)
WLOG, let us assume that Gm is a primary and Gn is a secondary group.
Then ci1i2 ≥ ((η − 3)/2)Im is trivial. For contradiction let us assume that
ci1i2 < (η − 3)cn(α). Then with similar argument as shown in previous case
we can show that ci1n ≤ (η − 2)cn(α) ≤ ηcn(α) Then, when Gm has been cre-
ated, client n has been assigned to Gm. This is a contradiction. ��

The algorithm BuyEdges generates two sets of edges: A and B. Lemma 7 bounds
the cost of edges of set B by the cost of edges of set A. We omit the proof of
this lemma.

Lemma 7. Suppose A, B ⊆ E are two sets of edges generated by algorithm
BuyEdges. Let Gj1 ,Gj2 , ...,Gjs are the groups created by the algorithm Create-
Groups. Let GcA = (Vc, Ac) be the group-identified graph of GA = (V, A) as de-
scribed in Definition 5. In each group-vertex v̂jk

∈ Vc we put weight: W (v̂jk
) =

dGc(v̂jk
)Ijk, where dGc(v̂jk

) is the degree of v̂jk
in GcA. The weights of non

group-vertices are zero. Then
(1)
∑

e∈B ce ≤
∑

v∈Vc
W (v)

(2)
∑

v∈Vc
W (v) ≤ 4

η−3

∑
e∈A ce.

Theorem 1. Given optimum fractional solution (x, y, z). Grouping over filtered
solution yields a feasible integer solution to LP-P1 with cost at most -
1
α

∑
i∈Fv

fiyi + η
∑

j∈D djcj(α) + 2η+2
(η−3)αM

∑
e∈E ceze
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Proof. We construct integer solution from filtered solution (x̄, ȳ, z̄) like this: (1)
for each secondary group Gj , we open rj completely and close all other facilities of
this group, (2) for primary group facilities, we do nothing since they are already
open, (3) we close all facilities which are unassigned to any group, (4) we assign
all clients of each group to the only open facility of that group and finally, (5)
we buy the edges of the set A ∪ B to connect open facilities.

Total cost of the integer solution is composed of (1) facility opening cost, (2)
client servicing cost and (3) facility connection cost.

By Lemma 3 and Lemma 1, facility opening cost is at most 1
α

∑
i∈Fv

fiyi.
From Lemma 2, the client servicing cost is at most η

∑
j∈D djcj(α). By Lemma 7

we get,
∑

e∈B ce ≤ 4
η−3

∑
e∈A ce. That is, total buying cost is M

∑
e∈A∪B ce ≤

η+1
η−3M

∑
e∈A ce ≤ 2η+2

η−3 M
∑

e∈E z̄e. The last inequality holds because of
Lemma 5. Lemma 1 shows that this cost is at most 2η+2

(η−3)αM
∑

e∈E ze.
Thus, cost of integer solution, Cost ≤ 1

α

∑
i∈Fv

fiyi + η
∑

j∈D djcj(α) +
2η+2

(η−3)αM
∑

e∈E ceze. ��

Lemma 8. For each client j ∈ D,
∫ 1

α=0
cj(α) =

∑n
i=1 cijxij where n is the total

number of facilities.

Proof. The proof of this Lemma is exactly same as that of Lemma 10 in [7] and
has been omitted.

Lemma 9. Suppose the value of α has been chosen uniformly from the interval
(β, 1), where β is a parameter in the interval (0, 1) and its value will be decided
later. Then the expected cost of integer solution found as described above is at

most
2η+2
η−3 ln(1/β)

1−β (
∑

i∈Fv
fiyi + M

∑
e∈E ceze) + η

1−β

∑
j∈D dj

∑
i∈F cijxij.

Proof. This proof is similar to Theorem 11 in [7]. From the result of Theorem 1,
we find, Exp(Cost)
≤ Exp[ 2η+2

(η−3)α (
∑

i∈Fv
fiyi + M

∑
e∈E ceze) + η

∑
j∈D djcj(α)]

= 2η+2
η−3 Exp[ 1

α ](
∑

i∈Fv
fiyi + M

∑
e∈E ceze) + η

∑
j∈D djExp[cj(α)]

= 2η+2
η−3 (
∫ 1

α=β
1

1−β
1
αdα)(

∑
i∈Fv

fiyi+M
∑

e∈E ceze)+η
∑

j∈D dj(
∫ 1

α=β
1

1−β cj(α)dα)

≤ 2η+2
η−3

ln(1/β)
1−β (

∑
i∈Fv

fiyi + M
∑

e∈E ceze) + η
1−β

∑
j∈D dj

∫ 1

α=0
cj(α)dα

=
2η+2
η−3 ln(1/β)

1−β (
∑

i∈Fv
fiyi + M

∑
e∈E ceze) + η

1−β

∑
j∈D dj

∑
i∈F cijxij

where the last line follows form Lemma 8. ��

Theorem 2. For Connected Facility Location problem, grouping over filtered
solution yields a 8.29-approximation algorithm.

Proof. We can choose α from the interval (e−
η2−3η
2η+2 , 1) uniformly and execute

our algorithm. Using the result of Lemma 9 where β = e−
η2−3η
2η+2 , it can be shown

that expected cost is at most ψ(η) × OPT where, ψ(η) = η/(1 − e−
η2−3η
2η+2 ) and

OPT =
∑

i∈Fv
fiyi+
∑

j∈D dj

∑
i∈F cijxij +M

∑
e∈E ceze is the cost of optimum
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fractional solution. Finally we can use Derandomization technique described in
[7] to get a deterministic solution of cost at most ψ(η) × OPT . For η = 6.1168,
we get a solution with cost at most 8.2883×OPT ≤ 8.29×OPT . Here, 6.1168 is
an approximate value of ηmin such that ηmin = arg minη≥3 ψ(η). This value can
be found by differentiating ψ(η) with respect to η and equating the the resulting
function to zero. In our case, we used MATLAB to get approximate value for
ηmin in the range of [3, inf). ��

Theorem 3. For Connected Facility Location problem, grouping over filtered
solution yields a 7.0 approximation algorithm, when opening costs of all facilities
are equal.

Proof. When all facilities have equal opening cost, we create the groups using
the same algorithm CreateGroups. We generate the set of edges A that externally
connects all groups. For each secondary group Gj , we choose any facility of Tj(A)
arbitrarily and open it completely. We close other facilities of this group. The
rest of the steps of getting integer solution is same as that of previous case. It
can be shown that the cost of integer solution in this case is at most η/(1 −
e−

η2−3η
2η−2 )×OPT (detail has been omitted). Finally, for η = 5.195, randomization

and derandomization yield integer solution with cost at most 7.0 OPT . ��

6 Discussion and Future Work

In this paper we propose a 8.29 approximation algorithm for Connected Facil-
ity Location problem. For special case when all facility opening costs are equal
we propose a 7.0 approximation algorithm. Our algorithm is very simple and
easy to implement. Although we have not bound the complexity, it is definitely
polynomial.

Our algorithm works when each facility has capacity to serve all demands. A
prominent future work could be to extend this algorithm to handle capacitated
facilities.
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Abstract. The AND-OR tree is an extremely simple model to com-
pute the read-once Boolean functions. For an AND-OR tree, the eigen-
distribution is a special distribution on random assignments to the leaves,
such that the distributional complexity of the AND-OR tree is achieved.
Yao’s Principle[8] showed that the randomized complexity of any func-
tion is equal to the distributional complexity of the same function. In
the present work, we propose an eigen-distribution-based technique to
compute the distributional complexity of read-once Boolean functions.
Then, combining this technique and Yao’s Principle, we provide a unify-
ing proof way for some well-known results of the randomized complexity
of Boolean functions.

1 Introduction

Computational complexity aims to understand “how much” computation is nec-
essary and sufficient to perform certain computational tasks. Usually, we take
a simpler and more limited model of computation to analyze the original, more
difficult problems. In various models of computation, perhaps the simplest one
is the game tree.

A game tree is a rooted tree in which each leaf (i.e., external node) has a
real value, all the internal nodes are labeled with MIN or MAX gates in the
alternating way from the root to the leaves. A game tree is uniform if the internal
nodes have the same number of children and the root-leaf paths are of the same
length. The value of MIN-gates (resp. MAX-gates) is recursively defined as the
minimum (resp. maximum) of the values of its children.

By “computing a game tree” we mean evaluating the value of the root. At
the beginning of computing, the leaves are assigned with real values, but are
“covered” so that one cannot see how they are labeled. In computing, a basic step
consists of querying the value of one of the leaves, and the operations repeat until
the value of the root can be determined. The cost (complexity) associated with
this computation is only the number of leaves queried; all the other computations
are cost free.

In the present work, we are interested in the AND-OR trees, a large class of
game trees in which the leaf value is either 0 or 1. Such a tree is an extremely sim-
ple model to compute the read-once Boolean functions. By T k and T k

m, we denote
� Corresponding author.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 323–334, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



324 C. Liu and K. Tanaka

an AND-OR tree and a uniform m-ary AND-OR tree with k rounds, respectively.
One round is one level AND(OR) gates followed by one level OR(AND) gates.
By f(T k), we denote the read-once Boolean function f : {0, 1}n → {0, 1} with
respect to the AND-OR tree T k.

Over the years a number of game tree algorithms have been invented. Among
them, the Alpha-Beta pruning algorithm has been proven quite successful, and
no other algorithm has achieved such a wide-spread use in practical applications
as it. A precise formulation of the Alpha-Beta pruning algorithm can be found
in [3]. For the purposes of our discussion, we restrict the deterministic algorithm
used in this paper to the Alpha-Beta pruning algorithm.

Let AD be a deterministic algorithm and ω = ω1ω2 · · ·ωn an assignment of
Boolean values to the input variables {v1, v2, ..., vn} of function f . By C(AD, ω),
we denote the number of input variables queried by AD computing f on ω. By W
and AD(f), we denote the set of assignments for f and the family of deterministic
algorithms computing f , respectively. The deterministic complexity D(f) of
function f , is defined as the minimal cost of a deterministic algorithm computing
f for the worst assignment, that is,

D(f) = min
AD∈AD(f)

max
ω∈W

C(AD, ω).

It is easy to see that to query all input variables is always enough to compute
f by the deterministic algorithms, thus for every function f on n variables,
D(f) ≤ n. For every read-once function f(T k), a simple adversary argument
shows that D(f(T k)) = n.

A randomized algorithm, denoted by AR, is a probability distribution over
the family of deterministic algorithms. For an assignment ω and a randomized
algorithm AR that has probability pAD to proceed exactly as a deterministic
algorithm AD, the cost of AR for ω is defined as

C(AR, ω) =
∑

AD∈AD(f)

pADC(AD , ω).

We denote by AR(f) the family of randomized algorithms computing f . For
function f , the randomized complexity R(f) is defined by

R(f) = min
AR∈AR(f)

max
ω∈W

C(AR, ω).

By the definitions of deterministic and randomized complexity, we have the
obvious trivial relationship R(f) ≤ D(f). The first nontrivial result R(f) ≥√

D(f) was observed independently in [1], [2] and [6]. After that, several strong
results were obtained for certain classes of functions. For the read-once Boolean
functions f(T k

2 ) with respect to uniform binary AND-OR trees T k
2 , where the

subscript 2 means “binary”, Saks and Wighderson[5] have shown that R(f(T k
2 )) =

Θ(D(f(T k
2 ))α), α = log2(

1+
√

33
4 ). Moreover, Saks and Wigderson[5] conjectured

that:
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Conjecture 1 (Saks and Wighderson[5]). For any Boolean function f ,

R(f) = Ω
(
D(f)log2(

1+
√

33
4 )
)

.

This conjecture is still wide open at the moment.
Given W , the set of assignments, let pd

ω be the probability of ω over W with
respect to the distribution d. The average complexity C(AD, d) of a deterministic
algorithm AD on the assignments with distribution d is defined by

C(AD, d) =
∑

ω∈W
pd

ωC(AD , ω).

Let D be the set of distributions and AD(f) the set of deterministic algorithms
computing f . The distributional complexity P (f) of function f is defined by

P (f) = max
d∈D

min
AD∈AD(f)

C(AD, d).

In the setD, the distribution δ such that the distributional complexity is achieved,
that is,

min
AD∈AD(f)

C(AD, δ) = P (f),

is called an eigen-distribution on assignments for f in this paper.
Yao[8] initially considered two roles of randomness in algorithms, randomness

inside the algorithm itself, and randomness on the inputs, and constructed a
bridge between these two randomness. Yao showed the well-known Minimax
Theorem[7] by von Neumann implies that:

Theorem 1 (Yao’s Principle[8]). For any function f ,

R(f) = P (f).

Yao’s Principle is a very useful and valid tool in randomized complexity analysis.
Since its introduction, it has been extensively investigated in the literature. In
applying Yao’s Principle, the most key step is to compute the distributional com-
plexity. However, no effective computing method for distributional complexity has
been reported at the moment. It is one of the main aims for doing the present work
to propose a technique that can effectively compute the distributional complexity
of read-once Boolean functions f(T k) with respect to the AND-OR trees T k.

In the present work, we propose an eigen-distribution-based technique to com-
pute the distributional complexity of read-once Boolean functions. Then, com-
bining this technique and Yao’s Principle, we provide a unifying proof way for
some well-known results of the randomized complexity of Boolean functions.
The paper is organized as follows: We introduce the main idea in Section 2. The
general computing formulae are described in Section 3. Section 4 is devoted to
the applications of our proposed technique. Section 5 concludes this paper.
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2 Main Idea

In order to eliminate the unnecessary assignments in computing the distribu-
tional complexity, we have the following technique to form two particular sets of
assignments to leaves of T k, namely 1-set and 0-set:

Methodology 1 (General reverse assigning technique: GRAT). Thetech-
nique to form 1-set (resp. 0-set) includes three stages:

1) Assign a 1 (resp. 0) to the root of tree T k.
2) From the root to the leaves, assign a 0 or a 1 to each child of any internal

node as the follows:
• for AND gate with value 1, assign 1s to all its children;
• for OR gate with value 0, assign 0s to all its children;
• for AND gate with value 0, assign at random a 0 to one of its children

and 1s to the other children;
• for OR gate with value 1, assign at random a 1 to one of its children

and 0s to the other children;
3) Form the 1-set (resp. 0-set) by collecting all possible assignments to the

leaves.

It is not hard to see that, following from this technique, we preclude the possi-
bility of more inputs to an AND gate being 0 and to a OR gate being 1 for an
AND-OR tree T k.

Let β(f(T k)) and α(f(T k)) denote the particular distributional complexity
of function f(T k) such that the assignments are restricted to the 1-set and 0-
set, respectively. By the E1-distribution (resp. E0-distribution) we denote a
unique distribution on the assignments of 1-set (resp. 0-set) such that β(f(T k))
(resp. α(f(T k))) is achieved. It is easy to see that, for the function f(T k), when
β(f(T k)) ≥ α(f(T k)), the E1-distribution is the eigen-distribution, and when
β(f(T k)) ≤ α(f(T k)), the E0-distribution is the eigen-distribution.

Let a read-once Boolean function f(Tz:m1,m2,...,mz ) = f(Tm1) ∧ f(Tm2) ∧ ... ∧
f(Tmz ), where f(Tm1) = x1∨x2∨ ...∨xm1 , f(Tm2) = xm1+1∨xm1+2∨ ...∨xm1+m2 ,
..., f(Tmz ) = xm1+m2+...+mz−1+1∨xxm1+m2+...+mz−1+2 ∨ ...∨xxm1+m2+...+mz−1+mz

,
and variable xi ∈ {0, 1} for all i. For such a function, the corresponding AND-OR
tree can be represented as Figure 1.
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Fig. 1. The AND-OR tree for function f(Tz:m1,m2,...,mz )
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Fix mmax = max{m1, m2, ..., mz}. By p0
f(Tmk

)
, we denote the probability that

f(Tmk
) returns a 0.

Theorem 2. For the read-once Boolean function f(Tz:m1,m2,...,mz), we have

1) The complexity β
(
f(Tz:m1,m2,...,mz )

)
= m1+m2+...+mz+z

2 , and in the E1-

dis-tribution, the probability of each assignment of 1-set is equal to 1
m1·m2·...·mz

.

2) The complexity α
(
f(Tz:m1,m2,...,mz )

)
is given by

max

{

mmax, 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
· mk

}

, and in

the E0-distribution:

• if mmax < 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
· mk, the

probability p0
f(Tmk

)
= mk+1

m1+m2+...+mz+z .

• if mmax ≥ 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
· mk, the

probability of each assignment of 0-set such that f(Tmmax ) returns a 0 is equal
to mmax

m1m2...mz
, and the probability of any assignment of 0-set such that f(Tmmax )

returns a 1 is equal to 0.
3) The eigen-distribution is
• the E0-distribution when mmax ≥ m1+m2+...+mz+z

2 , and in this case, the

distribution complexity P
(
f(Tz:m1,m2,...,mz )

)
= mmax.

• the E1-distribution when mmax < m1+m2+...+mz+z
2 , and in this case, the

distribution complexity P
(
f(Tz:m1,m2,...,mz )

)
= m1+m2+...+mz+z

2 .

Proof. Following from the above technique GRAT, the 1-set and 0-set for this
read-once Boolean function can be formed as follows (see Table 1).

A little more consideration shows that the complexity β
(
f(Tz:m1,m2,...,mz )

)
is

achieved if and only if all the assignments of 1-set have the same probability.
Hence, in the E1-distribution, the probability of each assignment of 1-set is
equal to 1

m1m2...mz
. In this case, it is easy to see that β

(
f(Tz:m1,m2,...,mz )

)
=

m1+m2+...+mz+z
2 .

Clearly, there also exits a unique distribution on the assignments of 0-set
such that all the deterministic algorithms have the same complexity equal. In
such a distribution, for any assignment such that f(Tmk

) returns a 0, where
k ∈ {1, 2, ..., z}, the probability is equal to p0

f(Tmk
)
· 1

m1...mk−1mk+1...mz
(see Table

1). When mmax < 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
·mk, such

a distribution is just the E0-distribution.
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Table 1. Each assignment and its probability for function f(Tz:m1,m2,...,mz )

probability assignments of 1-set probability assignments of 0-set
1

m1m2...mz
00...0100...01......00...01 p0

f(Tm1 )
· 1

m2m3...mz
00...0000...01......00...01

1
m1m2...mz

00...0100...01......00...10 p0
f(Tm1 )

· 1
m2m3...mz

00...0000...01......00...10
...

...
...

...
1

m1m2...mz
00...0100...01......01...00 p0

f(Tm1 )
· 1

m2m3...mz
00...0010...00......01...00

1
m1m2...mz

00...0100...01......10...10 p0
f(Tm1 )

· 1
m2m3...mz

00...0010...00......10...00
1

m1m2...mz
00...0100...10......00...01 p0

f(Tm2 )
· 1

m1m3...mz
00...0100...00......00...01

1
m1m2...mz

00...0100...10......00...10 p0
f(Tm2 )

· 1
m1m3...mz

00...0100...00......00...10
...

...
...

...
1

m1m2...mz
00...0100...10......01...00 p0

f(Tm2 )
· 1

m1m3...mz
10...0000...00......01...00

1
m1m2...mz

00...0100...10......10...00 p0
f(Tm2 )

· 1
m1m3...mz

10...0000...00......10...00
...

...
...

...
...

...
...

...
1

m1m2...mz
10...0010...00......00...01 p0

f(Tmz
)
· 1

m1m2...mz−1
00...0100...01......00...00

1
m1m2...mz

10...0010...00......00...10 p0
f(Tmz

)
· 1

m1m2...mz−1
00...0100...10......00...00

...
...

...
...

1
m1m2...mz

10...0010...00......01...00 p0
f(Tmz

)
· 1

m1m2...mz−1
10...0001...00......00...00

1
m1m2...mz

10...0010...00......10...00 p0
f(Tmz

)
· 1

m1m2...mz−1
10...0010...00......00...00

· · ... · ·| {z } · · ... · ·| {z } ...... · · ... · ·| {z } · · ... · ·| {z } · · ... · ·| {z } ...... · · ... · ·| {z }
m1 m2 mz m1 m2 mz

When mmax ≥ 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
· mk, we

have that α
(
f(Tz:m1,m2,...,mz)

)
is achieved if and only if f(Tmmax ) returns a 0.

Hence, in this case, the probability of each assignment of 0-set such that f(Tmmax )

returns a 0 is equal to mmax

m1m2...mz
, and the probability of any assignment of 0-set

such that f(Tmmax ) returns a 1 is equal to 0.

Therefore, we have that the complexity α
(
f(Tz:m1,m2,...,mz)

)
is given by

max

{

mmax, 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
· mk

}

.

By the definitions of distributional complexity and eigen-distribution, it is
easy to see that P (f) = max {α(f), β(f)}. Hence, the distributional complexity
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P
(
f(Tz:m1,m2,...,mz)

)
= mmax for mmax ≥ m1+m2+...+mz+z

2 , and the distribu-

tional complexity P
(
f(Tz:m1,m2,...,mz)

)
= m1+m2+...+mz+z

2 for mmax

< m1+m2+...+mz+z
2 . ��

3 General Computing Formulae

By f(T ∧
m) (resp. f(T ∨

m)), we denote a read-once Boolean function corresponding
to an AND-OR tree with the root labeled by AND gate (resp. OR gate) and
on m sub-trees or leaves. Without any loss of generality, let a function f(T ∧

m) =

f(T ∨
n1

) ∧ f(T ∨
n2

) ∧ ... ∧ f(T ∨
nm

), and fix α
(
f(T ∨

max)

)
= max

{
α
(
f(T ∨

n1
)

)
, α
(
f(T ∨

n2
)

)
,

..., α
(
f(T ∨

nm
)

)}
.

Theorem 3. For the AND-OR tree function f(T ∧
m) = f(T ∨

n1
)∧f(T ∨

n2
)∧...∧f(T ∨

nm
),

we have
1) The complexity β

(
f(T ∧

m)

)
=

m∑

k=1

β
(
f(T ∨

nk
)

)
.

2) The complexity α
(
f(T ∧

m)

)
is given by

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α
(
f(T ∨

max)

)
,

m−1∑

i=1

m∑

j=2

β
(
f(T ∨

ni
)

)
β
(
f(T ∨

nj
)

)
+

m∑

k=1

α
(
f(T ∨

nk
)

)
β
(
f(T ∨

nk
)

)

m∑

k=1

β
(
f(T ∨

nk
)

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

3) The distributional complexity P
(
f(T ∧

m)

)
= max

{
α(f(T ∨

max),
m∑

k=1

β
(
f(T ∨

nk
)

)}
.

Proof. We sketch the proof here.

1) From the above technique GRAT, β
(
f(T ∧

m)

)
=

m∑

k=1

β
(
f(T ∨

nk
)

)
is clear.

2) For the 0-set of f(T ∧
m), there exits a special distribution on assignments

β
(
f(T ∨

n1
)

)
β
(
f(T ∨

n2
)

)
β
(
f(T ∨

n3
)

)
...β
(
f(T ∨

nm−1
)

)
α
(
f(T ∨

nm
)

)

β
(
f(T ∨

n1
)

)
β
(
f(T ∨

n2
)

)
β
(
f(T ∨

n3
)

)
...α
(
f(T ∨

nm−1
)

)
β
(
f(T ∨

nm
)

)

...
...

...
...

...
...

β
(
f(T ∨

n1
)

)
β
(
f(T ∨

n2
)

)
α
(
f(T ∨

n3
)

)
...β
(
f(T ∨

nm−1
)

)
β
(
f(T ∨

nm
)

)

β
(
f(T ∨

n1
)

)
α
(
f(T ∨

n2
)

)
β
(
f(T ∨

n3
)

)
...β
(
f(T ∨

nm−1
)

)
β
(
f(T ∨

nm
)

)

α
(
f(T ∨

n1
)

)
β
(
f(T ∨

n2
)

)
β
(
f(T ∨

n3
)

)
...β
(
f(T ∨

nm−1
)

)
β
(
f(T ∨

nm
)

)

such that all deterministic algorithms computing f(T ∧
m) have the same complex-

ity. In such a distribution, let p0
f(T ∨

nk
)

denote the probability of the assignment
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β
(
f(T ∨

n1
)

)
...β
(
f(T ∨

nk−1
)

)
α
(
f(T ∨

nk
)

)
β
(
f(T ∨

nk+1
)

)
...β
(
f(T ∨

nm
)

)
. Then, we have

p0
f(T ∨

nk
)
=

β
(
f(T ∨

nk
)

)

m∑

i=1

β
(
f(T ∨

ni
)

) .

Given any deterministic algorithm, we can obtain the complexity

α
(
f(T ∧

m)

)
=

m−1∑

i=1

m∑

j=2

β
(
f(T ∨

ni
)

)
β
(
f(T ∨

nj
)

)
+

m∑

k=1

α
(
f(T ∨

nk
)

)
β
(
f(T ∨

nk
)

)

m∑

k=1

β
(
f(T ∨

nk
)

) .

When α
(
f(T ∨

max)

)
<

m−1�

i=1

m�

j=2
β

�
f(T ∨

ni
)

�
β

�
f(T ∨

nj
)

�
+

m�
k=1

α

�
f(T ∨

nk
)

�
β

�
f(T ∨

nk
)

�

m�
k=1

β

�
f(T ∨

nk
)

� , such a

distribution is the worst one for any deterministic algorithm. Therefore, when

α
(
f(T ∨

max)

)
<

m−1�
i=1

m�
j=2

β

�
f(T ∨

ni
)

�
β

�
f(T ∨

nj
)

�
+

m�
k=1

α

�
f(T ∨

nk
)

�
β

�
f(T ∨

nk
)

�

m�
k=1

β

�
f(T ∨

nk
)

� , such a distribu-

tion with p0
f(T ∨

nk
)
=

β

�
f(T ∨

nk
)

�

m�
i=1

β

�
f(T ∨

ni
)

� is the E0-distribution for function f(T ∧
m).

When α
(
f(T ∨

max)

)
≥

m−1�
i=1

m�
j=2

β

�
f(T ∨

ni
)

�
β

�
f(T ∨

nj
)

�
+

m�
k=1

α

�
f(T ∨

nk
)

�
β

�
f(T ∨

nk
)

�

m�
k=1

β

�
f(T ∨

nk
)

� , the

complexity α
(
f(T ∧

m)

)
is achieved if and only if the probability of the assign-

ment β
(
f(T ∨

n1
)

)
...β
(
f(T ∨

nk−1
)

)
α
(
f(T ∨

max)

)
β
(
f(T ∨

nk+1
)

)
...β
(
f(T ∨

nm
)

)
is 1. In such

a distribution, α
(
f(T ∧

m)

)
= α
(
f(T ∨

max)

)
. By the definition of α

(
f(T ∧

m)

)
, we have

α
(
f(T ∧

m)

)
=max

⎧
⎪⎨

⎪⎩
α
(
f(T ∨

max)

)
,

m−1�
i=1

m�
j=2

β

�
f(T ∨

ni
)

�
β

�
f(T ∨

nj
)

�
+

m�
k=1

α

�
f(T ∨

nk
)

�
β

�
f(T ∨

nk
)

�

m�
k=1

β

�
f(T ∨

nk
)

�

⎫
⎪⎬

⎪⎭
.

3) Considering
m∑

k=1

β
(
f(T ∨

nk
)

)
≥

m−1�
i=1

m�
j=2

β

�
f(T ∨

ni
)

�
β

�
f(T ∨

nj
)

�
+

m�
k=1

α

�
f(T ∨

nk
)

�
β

�
f(T ∨

nk
)

�

m�
k=1

β

�
f(T ∨

nk
)

� ,

we have P
(
f(T ∧

m)

)
= max

{
α(f(T ∨

max)),
m∑

k=1

β
(
f(T ∨

nk
)

)}
by the definition of dis-

tributional complexity. ��
Let a read-once function f(T ∨

m) = f(T ∧
n1

) ∨ f(T ∧
n2

) ∨ ... ∨ f(T ∧
nm

). Fix β(f(T ∧
max)) =

max
{

β
(
f(T ∧

n1
)

)
, β
(
f(T ∧

n2
)

)
, ..., β
(
f(T ∧

nm
)

)}
. By the same way, we have

Theorem 4. For the AND-OR tree function f(T ∨
m) = f(T ∧

n1
)∨f(T ∧

n2
)∨...∨f(T ∧

nm
),

1) The complexity α
(
f(T ∨

m)

)
=

m∑

k=1

α
(
f(T ∧

nk
)

)
.
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2) The complexity β
(
f(T ∨

m)

)
is given by

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β
(
f(T ∧

max)

)
,

m−1∑

i=1

m∑

j=2

α
(
f(T ∧

ni
)

)
α
(
f(T ∧

nj
)

)
+

m∑

k=1

β
(
f(T ∧

nk
)

)
α
(
f(T ∧

nk
)

)

m∑

k=1

α
(
f(T ∧

nk
)

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

3) The distributional complexity P
(
f(T ∨

m)

)
= max

{
β(f(T ∧

max)),
m∑

k=1

α
(
f(T ∧

nk
)

)}
.

It is not hard to see that the distributional complexity of any read-once
Boolean function f(T k) can be computed by applying Theorem 3 and Theo-
rem 4 recursively. Then, by using Yao’s Principle, we can obtain its randomized
complexity.

4 Applications

In this section, we provide a unifying proof way for the randomized complexity
of some read-once Boolean functions, including two well-known results derived
by Saks and wigderson. We start with the simplest case: the OR’s and AND’s
functions. Then we turn to the more general cases. At the same time, we present a
simplified method to compute the distributional complexity of read-once Boolean
functions that have the iterated properties.

Theorem 5. For the read-once Boolean function f(T ∧
n ) = x1 ∧ x2 ∧ ... ∧ xn,

1) there is only one assignment in the 1-set. Therefore, in the E1-distribution,
the probability of the unique assignment is equal to 1. The complexity β

(
f(T ∧

n )

)
=

n.
2) there are n assignments in the 0-set, and in the E0-distribution, the prob-

ability of each assignment is equal to 1
n . The complexity α

(
f(T ∧

n )

)
= 1+n

2 .
3) the E1-distribution is the eigen-distribution for f(T ∧

n ), and the distributional
complexity P

(
f(T ∧

n )

)
= n.

Proof. This is a special case of Theorem 3 where f(T ∨
ni

) is a function with a single
variable xi. ��

Theorem 6. For the read-once Boolean function f(T ∨
n ) = x1 ∨ x2 ∨ ... ∨ xn,

1) there are n assignments in the 1-set, and in the E1-distribution, the prob-
ability of each assignment is equal to 1

n . The complexity β
(
f(T ∨

n )

)
= 1+n

2 .
2) there is only one assignment in the 0-set. Therefore, in the E0-distribution,

the probability of the unique assignment is equal to 1. The complexity α
(
f(T ∨

n )

)
=

n.
3) the E0-distribution is the eigen-distribution for f(T ∨

n ), and the distributional
complexity P

(
f(T ∨

n )

)
= n.

Proof. This is a special case of Theorem 4 where f(T ∧
ni

) is a function with a single
variable xi. ��
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Together with Yao’s Principle, Theorem 5 (resp. Theorem 6) shows that, for the
read-once AND’s (resp. OR’s) function on n variables, the randomized complex-
ity is n.

Theorem 7. For the read-once Boolean function f(T 1
m) = (x1 ∨ x2 ∨ ... ∨ xm) ∧

(xm+1∨xm+2∨...∨x2m)∧...∧(xm2−m+1∨xm2−m+2∨...∨xm2), where xk ∈ {0, 1},
we have

1) The complexity β
(
f(T 1

m)

)
= m(m+1)

2 , and in the E1-distribution, the prob-
ability of each assignment of 1-set is equal to 1

mm .
2) The complexity α

(
f(T 1

m)

)
= m2+4m−1

4 , and in the E0-distribution, the prob-
ability of each assignment of 0-set is equal to 1

mm .
3) the distributional complexity P

(
f(T 1

m)

)
= m(m+1)

2 .

Proof. This is a special case of Theorem 2 on the function f(Tz:m1,m2,...,mz) where
m1 = m2 = ... = mz = z = m. For the function f(Tz:m1,m2,...,mz ), when m1 =

m2 = ... = mz = z = m, it is easy to see that mmax < 1
m1+m2+...+mz+z ·

z−1∑

i=1

z∑

j=2

(mi+1)(mj+1)
2 +

z∑

k=1

p0
f(Tmk

)
· mk for any m. ��

Let f(T k
m) be a fully iterated read-once Boolean function on m2k variables with

base function f(T 1
m) = (x1 ∨ x2 ∨ ... ∨ xm) ∧ (xm+1 ∨ xm+2 ∨ ... ∨ x2m) ∧ ... ∧

(xm2−m+1 ∨ xm2−m+2 ∨ ... ∨ xm2), where xi ∈ {0, 1}. Such a Boolean function
is corresponding to a uniform m-ary AND-OR tree with k rounds. Given a k,
we can compute the randomized complexity of f(T k

m) by directly applying the
results of Theorem 3 and Theorem 4. But, when k is very large, such a computing
work is complex since there are more variables. In fact, we can simplify the
computation by making use of the iterated properties of functions. We refer
to Liu and Tanaka[4] for a thorough discussion of such a simplified computing
method for the special function f(T k

2 ).

Theorem 8. For the fully iterated read-once Boolean function f(T k
m) on n = m2k

variables with base function f(T 1
m) = (x1 ∨ x2 ∨ ... ∨ xm) ∧ (xm+1 ∨ xm+2 ∨ ... ∨

x2m) ∧ ... ∧ (xm2−m+1 ∨ xm2−m+2 ∨ ... ∨ xm2), we have

R
(
f(T k

m)

)
= Θ

(

n
logm

�
m−1+

√
m2+14m+1
4

�)
.

Proof. Select at random a deterministic algorithm, e.g., the algorithm that reads
the nodes from left to right. To get a recurrence equation for β

(
f(T k

m)

)
and

α
(
f(T k

m)

)
, we associate a 1 (resp. 0) occurring in the assignments of 1-set and

0-set for base function f(T 1
m) with the β(f(T k−1

m )) (resp. α
(
f(T k−1

m )

)
) for f(T k

m).
Considering the results obtained in Theorem 7 that the probability of each as-
signment in the E1-distribution and E0-distribution for f(T 1

m) is equal to 1
mm ,

we have the recurrence
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⎧
⎨

⎩

α
(
f(T k

m)

)
= m−1

2 β
(
f(T k−1

m )

)
+ (m+1)2

4 α
(
f(T k−1

m )

)

β
(
f(T k

m)

)
= mβ

(
f(T k−1

m )

)
+ m(m−1)

2 α
(
f(T k−1

m )

)

with the initial conditions {
α
(
f(T 0

m)

)
= 1

β
(
f(T 0

m)

)
= 1

Solving this recurrence, we have

α
(
f(T k

m)

)
, β
(
f(T k

m)

)
=

(
m2 + 6m + 1 + (m − 1)

√
m2 + 14m + 1

8

)k

Since k = log(m2) n = 1
2 logm n for function f(T k

m), we have

P
(
f(T k

m)

)
= Θ

(

n
logm

�
m−1+

√
m2+14m+1
4

�)
.

By Yao’s principle, we obtain R
(
f(T k

m)

)
= Θ

(

n
logm

�
m−1+

√
m2+14m+1
4

�)
. ��

Note that when m = 2 this result specializes to

R
(
f(T k

2 )

)
= Θ
(
nlog2( 1+

√
33

4 )
)

= Θ
(
n0.7537...

)
.

These two well-known results of R
(
f(T k

m)

)
= Θ

(

n
logm

�
m−1+

√
m2+14m+1
4

�)

and R
(
f(T k

2 )

)
= Θ
(
nlog2(

1+
√

33
4 )
)

were first proved by Saks and Wigderson[5]
in another way, but our proof based on eigen-distribution seems to be much
simpler than their original.

5 Conclusions

In this paper, we proposed an eigen-distribution-based technique to compute
the distributional complexity of read-once Boolean function f(T k) with respect
to any AND-OR tree T k. We claim that such a technique is useful to prove
the well-known conjecture of Saks and Wigderson. Further investigation on this
subjective will be appeared in the future literature.

Moreover, the randomized complexity and the distributional complexity of a
function f can be defined not only in the Las Vegas case, but also in the Monte
Carlo case with one-sided error and the Monte Carlo case with two-sided error.
However, our work in the present paper is strictly restricted to the Las Vegas
case. We suggest to investigate the eigen-distribution in the Monte Carlo case
as a future research topic.
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The Minimum All-Ones Problem for Graphs
with Small Treewidth
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Abstract. The minimum all-ones problem is applied in linear cellular
automata. It is NP-complete for general graphs. In this paper, we con-
sider the problem for graphs with small treewidth≤4. We give an O(|V |)
algorithm.

1 Introduction and Terminology

Suppose each square is pressed, the light of that square will change from off
to on, and vice versa; the same happens to the lights of all the edge-adjacent
squares. Initially all the lights are off. The minimum all-ones problem is to find a
solution that press as few buttons as possible such that all the lights are off at the
end. It was introduced by Sutner[5] and is applied in linear cellular automata.
A button lights not only its neighbors but also its own light is σ+ rule of the
all-ones problem. If a button lights only its neighbors but not its own, this is
called σ rule. In this paper, we consider the σ+ rule. For the terminology and
notation not defined in this paper, reader can refer to [1].

The all-ones problem has been extensively studied recently; see Sutner[7,8],
Barua and Ramakrishnan[2], and Dodis and Winkler[3]. Sutner[6] proved that
it is always possible to light every lamp in any graphs by σ+ rule, using linear
algebra. Galvin[4] gave a graph-theoretic algorithm of linear time to find solu-
tions for trees. Chen and Li[10] gave a linear algorithm for the minimum all-ones
problem for trees and also got a linear algorithm to find solutions to the all-ones
problem in a unicyclic graph.

The notions of “tree-decomposition” and “treewidth” have received much at-
tention recently. The treewidth is thus a parameter that measures how close to a
tree a graph is. Several classes of graphs, which are important in practice, have
constant bounded treewidth. For example, trees and forests have treewidth ≤ 1,
series-parallel graphs and outerplanar graphs ≤ 2, Halin graphs ≤ 3, members
of k-terminal recursive graph families have treewidth ≤ k.

Let G = (V, E) be a graph. A tree decomposition TD of G is a pair (T, X),
where T = (I, F ) is a tree, and X = {Xi|i ∈ I} is a family of subsets of V , one
for each node (vertex) of T , such that:

1.
⋃

i∈I Xi = V

2. for every edge v, w ∈ E, there is an i ∈ I with v ∈ Xi and v ∈ Xi, and

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 335–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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3. for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi

⋂
Xk ⊆ Xj .

The treewidth of a tree decomposition ((I, F ), {Xi|i ∈ I}) is max |Xi|−1 (i ∈
I). The treewidth of a graph G, denoted by tw(G), is the minimum width over all
possible tree decomposition of G. The vertices of a tree in a tree decomposition
are usually called nodes to avoid confusion with the vertices of a graph. If a
vertex v or the end points of an edge e are contained in Xi for some node i of a
tree decomposition, we also say node i contains v or e. An example of a graph
G of treewidth two and a tree decomposition of width two of the graph is given
in Fig.1.

a b c d
e

f
g

h
ij

k

G TD def

dfcdbcab

dfi fi fhi fgh

dikijk

Fig. 1. A graph G of treewidth two and a tree decomposition of width two of G

2 Preliminary Results

Lemma 1. (Fluiter[11]) Let G be a graph and TD = (T, X) a tree decomposi-
tion of G.

1. Let u, v ∈ V (G) and let i, j ∈ I be such that u ∈ Xi and v ∈ Xj. Then each
node on the path from i to j in T contains a vertex of every path from u to v in
G.

2. For each connected subgraph G′ of G, the nodes in T which contain a vertex
of G′ induce a subtree of T .

Lemma 2. (Fluiter[11]) Let G be a graph. There is a rooted binary tree decom-
position of minimum width of G with O(n) nodes.

3 Analysis

When k ≤ 4, Sanders[9] gave a linear-time algorithm to determine whether a
given graph G = (V, E) has treewidth at most k and, if so, outputing a tree
decomposition of G. Let TD = (T, X) be a tree decomposition of width k for G,
with T = (I, F ) and X = {Xi|i ∈ I}. The proof of Lemma 1 indicates that we
can turn TD into a rooted binary tree decomposition of width k for G[11].

The contraction operation removes two adjacent vertices v and w and replaces
them with one new vertex that is made adjacent to all vertices that were adjacent
to v and w.
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A tree decomposition (X, T ) of treewidth k is smooth if for all i ∈ I, |Xi| =
k + 1 and for all (i, j) ∈ F , |Xi

⋂
Xj| = k. Any tree decomposition of a graph

G can be transformed to a smooth tree decomposition of G with the same
treewidth[11]. Apply the following operations until none is possible:

1. If for (i, j) ∈ F , Xi ⊆ Xj , then contract the edge (i, j) in T and take as
the new node Xj′ = Xj .

2. If for (i, j) ∈ F , Xi ⊆ Xj and |Xj| < k+1, then choose a vertex v ∈ Xi−Xj

and add v to Xj .
3. If for (i, j) ∈ F , |Xi| = |Xj | = k + 1 and |Xi − Xj| > 1, then subdivide

the edge (i, j) in T ; let i′ be the new node; choose a vertex v ∈ Xi − Xj and a
vertex w ∈ Xj − Xi, and let Xi′ = Xi − {v}

⋃
{w}.

After performing the above two operations, we can turn TD into a smooth
rooted binary tree decomposition of width k for G. See Fig.2.

Fig. 2. A smooth binary tree decomposition of the above graph G

Lemma 3. (Fluiter[11]) If (X, T ) is a smooth tree-decomposition of G = (V, E)
with treewidth k, then |I| = |V | − k.

Theorem 1. (X, T ) is a smooth tree-decomposition of G = (V, E) with treewidth
k, if for ∀ i, j ∈ I, j is a i′s child, v = Xj − Xi, then v must not be included in
Xm, where m ∈ I such that m 	= j and m is not a j′s descendant.

Proof. Obviously.

We have a rooted binary tree decomposition TD = (T, X) of width k for G with
T = (I, F ) and X = {Xi|i ∈ I}. Let r denote the root of T . For each i, let

Yi = {v ∈ Xj |j = i or j is a descendant of i in T },
Y ′

i = {v ∈ Xj |j = i or j is i’s left child in T or j is a descendant of i’s left
child in T }

and let Gi = G[Yi], G′
i = G[Y ′

i ]. Note that Gr = G. For each i ∈ I, a table
Si is computed which contains information about the graph Gi. Obviously Si

contains the following properties:
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1. For each node i ∈ I, the minimum all-ones problem can be solved for Gi

solely from the information in table Si when Si is calculated out.

2. For each leaf node i ∈ I, Si can be computed from G[Xi].

3. For each internal node i ∈ I, Si can be computed from G[Xi] and the tables
of i’s children in the tree.

Suppose i1, i2,...,ik+1 are the vertices in node i. Si is a set of all the tu-
ples (x(i1), x(i2), ..., x(ik+1), s(i1), s(i2), ..., s(ik+1), num). We use x(v) to denote
whether v is pressed or not, v ∈ {i1, i2, ..., ik+1}. The denotation x(v) = Y
means v is pressed and x(v) = N means v is not pressed. And s(v) = 1 de-
notes v is on and 0 denotes off in Gi under the choice (x(i1), x(i2), ..., x(ik+1)).
The value of num records the number of the vertices in Gi that are pressed. So
one tuple in Si records one choice of i1, i2,...,ik+1 and the corresponding state
s(i1), s(i2), ..., s(ik+1) in Gi. It is straightforward that for every i ∈ I Si has the
above three properties.

Now we describe how to calculate Si. Dynamic programming on the tree de-
composition T is applied. If the nodes in T have the largest depth, they are
called nodes with level zero. We divide the nodes in T into the following three
types.

Type I. Nodes with no children(leaves). Suppose i is such a node. Enumerate all
the combinations of every vertices in node i that are pressed or not and record
the states correspondingly.

Si = {t|t.x(v) ∈ {N, Y }, if the number of the vertices in Gi which are pressed
adjacent or equal to v is odd t.s(v) = 1 otherwise t.s(v) = 0, t.num is the number
of v that t.x(v) = y. v ∈ {i1, i2, ..., ik+1}}

There are at most 2k+1=25=32 tuples in Si (k ≤ 4).

Type II. Nodes with only one child. Suppose i is such a node, j is a i’s child.
Let Xj = {i1, i2, ..., ik+1}, Xi = {i2, i3, ..., ik+2}. M(t) = {v|t ∈ Sj such that
t.x(v) = Y and t.s(i1) = 1}. Since Xj − Xi = {i1}, then there must exit t such
that M(t) belong to the optimal solution to the all-ones problem to Gj since
s(i1) = 1. So we remain all the values of x(v) in Xj where the corresponding
s(i1) = 1, v ∈ Xi ∩ Xj = {i2, ..., ik+1}.

Si = {t|t.x(ij) = t′.x(ij) for all 2 ≤ j ≤ k + 1, (t.x(ik+2) = N and t.num =
t′.num) or (t.x(ik+2) = Y and t.num = t′.num + 1) where there exits a tuple
t′ ∈ Sj and t′.s(i1) = 1. For all 2 ≤ j ≤ k + 2, t.s(ij) = 1 if the number of
the vertices in Gi which are pressed adjacent or equal to ij is odd otherwise
t.s(ij) = 0. } .

Type III. Nodes with two children. Suppose i is such a node, il is its left child
and ir is the right child. Of course, Sil, Sir have been calculated already. The
procedure of computing S′

i which contains information about the graph G′
i is
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Fig. 3. G′
i and Gir

the same as Type II. Then we describe how to combine S′
i and Sir to get Si,

denoted by Si = S′
i + Sir.

(1). k = 1. |Xi| = 2(i ∈ I). Suppose Xi = {i1, i2}, Xir = {i1, i3}, so
Xi

⋂
Xir = {i1}.

Si = S′
i + Sir = {t|∃a ∈ S′

i and b ∈ Sir such that a.x(i1) = b.x(i1) and
b.s(i3) = 1, then t.x(i1) = a.x(i1), t.x(i2) = a.x(i2), t.s(i1) = (a.x(i1), a.s(i1))⊕
(b.x(i1), b.s(i1)), t.s(i2) = a.s(i2) and t.num = a.num }

We define (a.x(i1), a.s(i1)) ⊕ (b.x(i1), b.s(i1)) as the following:
(N, 0) ⊕ (N, 0) = 0, (N, 0) ⊕ (N, 1) = 1,
(N, 1) ⊕ (N, 0) = 1, (N, 1) ⊕ (N, 1) = 0,
(Y, 0) ⊕ (Y, 0) = 1, (Y, 0) ⊕ (Y, 1) = 0,
(Y, 1) ⊕ (Y, 0) = 0, (Y, 1) ⊕ (Y, 1) = 1.

Note that i1 ∈ G′
i and i1 ∈ Gir. The state of i1 after combination of Si and

S′
i is according to different cases in Gi and G′

i that whether i1 is pressed or not
and its states. For example (Y, 0) ⊕ (Y, 1) = 0 means that i1 in G′

i is pressed
and the state is off, i1 in Gir is pressed and the state is on and the state of
i1 after combination is off. Obviously only when i1 are both pressed or both
not pressed in G′

i and Gir, they can combine. In G′
i, i1 is pressed and off, so

in G′
i the number of vertices which are pressed adjacent to i1 is odd. In Gir, i1

is pressed and on, so in Gir the number of vertices which are pressed adjacent
to i1 is even. Then in Gi, the number of vertices which are pressed adjacent to
i1 is odd. Considering that i1 itself is pressed, i1 is off. That is (Y, 0)⊕(Y, 1) = 0.

(2). k = 2. |Xi| = 3(i ∈ I). Suppose Xi = {i1, i2, i3}, Xir = {i1, i2, i4}, so
Xi

⋂
Xir = {i1, i2}.

(2.1)i1, i2 are adjacent
Si = {t|∃a ∈ S′

i and b ∈ Sir such that a.x(i1) = b.x(i1),a.x(i2) = b.x(i2) and
b.s(i4) = 1, then t.x(i1) = a.x(i1), t.x(i2) = a.x(i2), t.x(i3) = a.x(i3), t.s(i1)
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= (a.x(i1), a.x(i2), a.s(i1)) ⊕ (b.x(i1), b.x(i2), b.s(i1)), t.s(i2) = (a.x(i1), a.x(i2),
a.s(i2)) ⊕ (b.x(i1), b.x(i2), b.s(i2)), t.s(i3) = a.s(i3) and t.num = a.num.}

We define (a.x(i1), a.x(i2), a.s(i1)) ⊕ (b.x(i1), b.x(i2), b.s(i1)) and (a.x(i1),
a.x(i2), a.s(i2)) ⊕ (b.x(i1), b.x(i2), b.s(i2)) as the following:

(N, N, 0) ⊕ (N, N, 0) = 0, (N, N, 0) ⊕ (N, N, 1) = 1,
(N, N, 1) ⊕ (N, N, 0) = 1, (N, N, 1) ⊕ (N, N, 1) = 0,
(Y, N, 0) ⊕ (Y, N, 0) = 1, (Y, N, 0) ⊕ (Y, N, 1) = 0,
(Y, N, 1) ⊕ (Y, N, 0) = 0, (Y, N, 1) ⊕ (Y, N, 1) = 1,
(N, Y, 0) ⊕ (N, Y, 0) = 1, (N, Y, 0) ⊕ (N, Y, 1) = 0,
(N, Y, 1) ⊕ (N, Y, 0) = 0, (N, Y, 1) ⊕ (N, Y, 1) = 1,
(Y, Y, 0) ⊕ (Y, Y, 0) = 0, (Y, Y, 0) ⊕ (Y, Y, 1) = 1,
(Y, Y, 1) ⊕ (Y, Y, 0) = 1, (Y, Y, 1) ⊕ (Y, Y, 1) = 0

(2.2)i1,i2 are not adjacent
Si = {t|∃a ∈ S′

i and b ∈ Sir such that a.x(i1) = b.x(i1),a.x(i2) = b.x(i2) and
b.s(i4) = 1, then t.x(i1) = a.x(i1), t.x(i2) = a.x(i2), t.x(i3) = a.x(i3), t.s(i1) =
(a.x(i1), a.x(i2), a.s(i1)) ⊗ (b.x(i1), b.x(i2), b.s(i1)), t.s(i2) = (a.x(i1), a.x(i2),
a.s(i2)) ⊗ (b.x(i1), b.x(i2), b.s(i2)), t.s(i3) = a.s(i3) and t.num = a.num. }

We define (a.x(i1), a.x(i2), a.s(i1)) ⊗ (b.x(i1), b.x(i2), b.s(i1)) and (a.x(i1),
a.x(i2), a.s(i2)) ⊗ (b.x(i1), b.x(i2), b.s(i2)) as the following:

(N, N, 0) ⊗ (N, N, 0) = 0, (N, N, 0) ⊗ (N, N, 1) = 1,
(N, N, 1) ⊗ (N, N, 0) = 1, (N, N, 1) ⊗ (N, N, 1) = 0,
(Y, N, 0) ⊗ (Y, N, 0) = 1, (Y, N, 0) ⊗ (Y, N, 1) = 0,
(Y, N, 1) ⊗ (Y, N, 0) = 0, (Y, N, 1) ⊗ (Y, N, 1) = 1,
(N, Y, 0) ⊗ (N, Y, 0) = 0, (N, Y, 0) ⊗ (N, Y, 1) = 1,
(N, Y, 1) ⊗ (N, Y, 0) = 1, (N, Y, 1) ⊗ (N, Y, 1) = 0,
(Y, Y, 0) ⊗ (Y, Y, 0) = 1, (Y, Y, 0) ⊗ (Y, Y, 1) = 0,
(Y, Y, 1) ⊗ (Y, Y, 0) = 0, (Y, Y, 1) ⊗ (Y, Y, 1) = 1

(3)k = 3. Similarly to the above two conditions.

(4)k = 4. Similarly to the above two conditions.

To sum up, if treewidth equals k, then |Xi| = k + 1(i ∈ I). Suppose Xi =
{i1, i2, ..., ik, ik+1}, Xir = {i1, i2, ..., ik, ik+2}, so Xi

⋂
Xir = {i1, i2, ..., ik}.

The tuple t in Si = S′
i + Sir satisfies that there exit one tuple a in S′

i and one
tuple b in Sir such that a.x(ij) = b.x(ij) where 1 ≤ j ≤ k and b.x(ik+2) = 1, then
t.x(ij) = a.x(ij) where 1 ≤ j ≤ k + 1, t.s(ij) = (a.x(i1), ..., a.x(ik), a.s(ij)) ⊕
(b.x(i1), ..., b.x(ik), b.s(ij)) = 1 if the number of the vertices in Gi which are
pressed adjacent or equal to ij is odd otherwise t.s(ij) = 0 where 1 ≤ j ≤ k,
t.s(ik+1) = a.s(ik+1) and t.num = a.num.

Our algorithm can be depicted as follows: First compute the tables Si for all
nodes i on level zero in T . Next use these tables to compute the tables of all
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nodes on level one and so on until, finally Sr is computed. According to Sr,
perform a up-bottom way of T to find the optimal solution.

4 Procedure of the Algorithm

Algorithm to Solve the Minimumall-ones problemwith small treewidth
Input: A smooth rooted binary tree decomposition of graph G with tree width

k ≤ 4.
Output: An optimal solution to the all-ones problem

1. The root of T , denoted by vroot.
2. Compute Si for all the nodes i on the level zero in T .
3. Perform a bottom-up way of T , for each i do
4. If i 	= vroot

If i is type II then
calculate Si as type II;

If i is type III then
calculate Si as type III;

5. If i = vroot

Choose the tuples t in Si that t.s(v) = 1 and with the minimum t.num,
for every v ∈ Xi.

If there are more than one situation obtain the minimum value, choose one
arbitrarily.

Perform a up-bottom way of T to find the optimal solution.
Find the optimal solution

5 The Correctness and the Time Complexity

Theorem 2. The above algorithm outputs an optimal solution to the all-ones
problem and the time complexity is linear.

Proof. If to every nodes we have enumerated all the conditions of the vertices
in them, then the above algorithm outputs an optimal solution to the all-ones
problem.

All the leaf nodes have enumerated all the situations.
All the type II nodes are those that have only one child. Suppose i is a type

II node, j is i’s child. Suppose Xj = {i1, i2, ..., ik+1}, Xi = {i2, i3, ..., ik+2}.
M(t) = {v|t ∈ Sj such that t.x(v) = Y and t.s(i1) = 1}. By Theorem 1, i1
must not appear in any other nodes in the tree T . So M may belong to the
solution to the all-ones problem to Gj since s(i1) = 1. We keep down the values
of x(v) in Xj where the corresponding s(i1) = 1, v ∈ Xi ∩ Xj = {i2, ..., ik+1}.
x(ik+2) can be either ‘N ’ or ‘Y ’. Then compute the corresponding s(v) where
v ∈ {i2, i3, ..., ik+2}. So to all the type II nodes, we have enumerated all the
situations.

Type III nodes are those that have two children. Suppose i is such a node, il
is its left child and ir is the right child. Note that Sil, Sir have been calculated
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already. According to Sil, compute S′
i as type II. Then combine S′

i and Sir to get
Si. If Si has included all the situations, then the algorithm is correct. According
to the definition of S′

i and Sir, S′
i records all the tuples of Xi that make the

vertices only appear in Gil on. Let vertices u1, u2...un be all the vertices in all
the children nodes of Xir. Denote the induced subgraph H [{u1, u2...un}] by G′

r.
Sir records all the tuples of Xir that make the vertices only appear in G′

r on. Si

records all the tuples of Xi that make all the vertices in Gil and Gir on. Then
choose the tuples t in Si that t.s(v) = 1 and with the minimum t.num, v ∈ Xi.
Perform a up-bottom way of T . Then algorithm can find the optimal solution.

Since |Xi| ≤ k + 1, each table Si has size O(2k+1). Each table of a node can
be computed in O(2k+1) as the adjacency of two vertices can be checked in a
constant time. After a bottom-up way of T , it needs O(2k+1n) time totally. Per-
forming a up-bottom way of T also needs O(2k+1n) time. So the time complexity
is O(n).
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Abstract. The constrained minimum vertex cover problem on bipartite
graphs (the Min-CVCB problem), with important applications in the
study of reconfigurable arrays in VLSI design, is an NP-hard problem
and has attracted considerable attention in the literature. Based on a
deeper and more careful analysis on the structures of bipartite graphs, we
develop an exact algorithm of running time O((ku+kl)|G|+1.1892ku+kl),
which improves the best previous algorithm of running time O((ku +
kl)|G| + 1.26ku+kl) for the problem.

1 Introduction

With the development of VLSI technology, the scale of electric circuit chip be-
comes larger and larger, and the possibility of introducing defects also increases
along with the manufacture craft. With the increasing in the chip integration,
it is not allowed that the wrong memory element appears in the manufacture
process. A better solution is to use reconfigurable arrays. A typical reconfig-
urable memory array consists of a rectangular array plus a set of ku spare rows
and kl spare columns. A defective element is repaired by replacing the row or the
column containing the element with a spare row or a spare column. Therefore,
to repair a reconfigurable array with defective elements, we need to decide how
the rows and columns in the array are selected and replaced by spare rows and
columns. The constraint here is that we only have ku spare rows and kl spare
columns. It has now become well-known that this problem can be formulated as
a constrained minimum vertex cover problem on bipartite graphs [1], as follows.

Definition 1 (Constrained minimum vertex cover in bipartite graphs
(Min-CVCB)). Given a bipartite graph G = (V, E) with the vertex bipartition
V = U ∪ L and two integers ku and kl, determine whether there is a minimum
vertex cover of G with at most ku vertices in U and at most kl vertices in L.
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The problem is NP-complete [9], therefore has no efficient algorithms in general.
On the other hand, in practice the number of spare rows and spare columns is
much smaller than the size of the reconfigurable array: typically, a reconfigurable
array is a 1000×1000 matrix plus 20 spare rows and 20 spare columns [1]. There-
fore, it is practically important, and theoretically interesting, to develop efficient
algorithms for the Min-CVCB problem, assuming ku and kl much smaller than
the size of the graph G.

Hasan and Liu [1] introduced the concept of critical set to develop a branch-
and-bound algorithm for solving the Min-CVCB problem, based on the A∗ al-
gorithm [2]. No explicit analysis was given in [1] for the running time of the
algorithm, but it is not hard to see that in the worst-case the running time of
the algorithm is at least of order of 2ku+kl + mn1/2. Following the work in [1],
the Min-CVCB problem has been extensively studied in last two decades. Most
of these studies were focused on heuristic algorithms for the problem [3-6].

More recently, people have become interested in developing parameterized
algorithms for the Min-CVCB problem [8-9]. Fernau and Niedermeier [8] used
a branching search technology and developed an algorithm with running time
O((ku + kl)n+1.3999ku+kl) for the problem. Chen and Kanj [9] proved that the
Min-CVCB problem is NP-complete, and developed an improved algorithm of
running time O((ku + kl)|G| + 1.26ku+kl) for the problem. The algorithm given
in [9] made use of a number of classical results in matching theory and recently
developed techniques in parameterized algorithms, which is currently the best
algorithm for the problem.

In this paper, we perform a deeper and more careful analysis on related
structures of bipartite graphs. Based on the analysis, we effectively integrate
the techniques of chain implication, branching search, and dynamic program-
ming, and develop an improved parameterized algorithm EACI of running time
O((ku + kl)|G| + 1.1892ku+kl) for the Min-CVCB problem.

2 Related Lemmas

For further discussion of our algorithm EACI, we first give some definitions and
describe certain known results that are related to the Min-CVCB problem and
to our algorithm.

Definition 2 (Bipartite graph). A graph G is bipartite if its vertex set can be
partitioned into two sets U (the “upper part”) and L (the “lower part”) such that
every edge in G has one endpoint in U and the other endpoint in L. A bipartite
graph is written as G = (U ∪L, E) to indicate the vertex bipartition. The vertex
sets U and L are called the U -part and the L-part of the graph. A vertex is a
U -vertex (resp. an L-vertex) if it is in the U -part (resp. the L-part) of the graph.

Let G = (U ∪ L, E) be a bipartite graph with a perfect matching. The graph
G is elementary if every edge in G is contained in a perfect matching in G. It
is known that an elementary bipartite graph has exactly two minimum vertex
covers, namely U and L, without any other possibility [10].
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Lemma 1. [9] The time complexity for solving an instance < G; ku, kl > of
Min-CVCB problem, where G is a bipartite graph of n vertices and m edges, is
bounded by O(mn1/2 + t(ku + kl)), where t(ku + kl) is the time complexity for
solving an instance < G′; k′

u, k′
l > of Min-CVCB, with k′

u < ku, k′
l < kl and G′

having perfect matchings and containing at most 2(k′
u + k′

l) vertices.

Lemma 2. (The Dulmage-Mendelsohn Decomposition theorem [10]). A bipar-
tite graph G = (U ∪L, E) with perfect matchings can be decomposed and indexed
into elementary subgraphs Bi = (Ui ∪ Li, Ei), i = 1, 2, . . . r, such that every
edge in G from a subgraph Bi to a subgraph Bj with i < j must have one end-
point in the U -part of Bi and the other endpoint in the L-part of Bj. Such a
decomposition can be constructed in time O(|E|2).

The elementary subgraphs Bi will be called (elementary) blocks. The block Bi

is a d-block if |Ui| = |Li| = d. Edges connecting vertices in two different blocks
will be called inter-block edges. Let Bi be a block. The number λin of blocks Bj

such that i 	= j and there is an inter-block edge from the U -part of Bi to the
L-part of Bj is called the in-degree of Bi. Similarly, the number λout of blocks
Bj such that i 	= j and there is an inter-block edge from the U -part of Bj to the
L-part of Bi is called the out-degree of Bi.

Lemma 3. [10] Let G be a bipartite graph with perfect matchings, and let B1,
. . ., Br be the blocks of G given by the Dulmage-Mendelsohn Decomposition.
Then any minimum vertex cover for G is the union of minimum vertex covers
of the blocks B1, B2, . . . , Br.

By Lemma 1, in order to solve a general instance 〈G; ku, kl〉 of the Min-CVCB
problem, we only need to concentrate on a “normalized”instance 〈G′; k′

u, k′
l〉 of

the problem, in which G′ has a perfect matching and contains at most 2(k′
u +k′

l)
vertices. By Lemma 2, the graph G′ with perfect matchings can be decomposed
and represented as a directed acyclic graph (DAG) D in which each node cor-
responds to a block in G′ and each edge corresponds to a group of inter-block
edges from the U -part of a block to the L-part of another block. By Lemma 3, a
minimum vertex cover of the graph G′ is the union of minimum vertex covers of
the blocks B1, . . ., Br. All these are very helpful and useful when we construct
a desired minimum vertex cover in the originally given bipartite graph G.

3 The Strategy for Reducing the Search Space in
Algorithm EACI

Algorithm EACI is based on the DAG D constructed above and its execution is
depicted by a search tree whose leaves correspond to the potential constrained
minimum vertex covers K (shortly K) of the graph G with at most ku U -
vertices and at most kl L-vertices. For a given instance of Min-CVCB problem, let
f(ku+kl) be the number of leaves in the search tree, if in a step we can break the
original problem into two sub-problems, and in each sub-problem the parameter
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scale can reduce a and b respectively, then we would establish a recurrence
relation f(ku+kl) ≤ f(ku+kl−a)+f(ku+kl−b). When constructing search tree,
we could include some blocks’ U -part or L-part into K, until in a certain step
breaks DAG D’s NP-Hard structure, then uses dynamic programming technology
to solve the surplus partial in the polynomial time.

In order to speed up the searching process, we will applythe technology of
chain implication[9] , which makes full use of the block’s adjacency relations to
speed up the searching process significantly. Let [B′

1, B
′
2, . . . , B

′
h] be a path in

the DAG D. If we include the L-part of the block B′
1 in K, then the U -part of

the B′
1 must be excluded from K. Since there is an edge in G from the U -part

of B′
1 to L-part of the block B′

2, we must also include the L-part of the block B′
2

in K, which, in consequence, will imply that the L-part of the block B′
3 must be

in K, and so on. In particular, the L-part of the block B′
1 in K implies that the

L-parts of all blocks B′
2, . . . , B

′
h on the path must be in K. Similarly, the U -part

of the block B′
h in K implies that U -parts of all blocks B′

1, .., B
′
h−1 must be in

K. This technology enables us to handle many cases very efficiently.
The particular operation of the algorithm is to list all the possible adjacency

of the blocks in which we branch in the search process. First we analysis the
corresponding branching of the blocks whose weight is no less than 4, then
analysis all the possible joint of block whose weight is 3 to establish the searching
tree. For the block whose weight is 3, first listing the possible joint of the block in
a case-by-case exhaustive manner, and then makes the best of bounded search-
trees technology to construct new recurrence relations. Let λin(Bi) be the in-
degree of the block Bi, λout(Bi) be the out-degree of Bi, w(Bi) be the weight
of Bi, and w(PBi ) be the weight of all the blocks that have a directed path to
the block Bi. We would divide it into two situations as follows according to the
block B0’s weight.

1. w(B0) ≥ 4. Since the constrained minimum vertex cover K of the DAG D
either contains the entire Ui-part and is disjoint from the Li-part, or contains
the entire Li-part and is disjoint from the Ui-part of the block Bi, we branch
in this case by either including the entire Ui-part in K (and remove the Li-part
from the graph) or including the entire Li-part in K (and removing the Ui-part
from the graph). In each case, we add at least 4 vertices in K and remove block
B0 from DAG D. Thus, this branch satisfies the recurrence relation

f(ku + kl) ≤ 2f(ku + kl − 4) (1)

2. w(B0) = 3. According to the value of in-degree and out-degree of block B0,
we would divide it into four situations as follows.

2.1 λin(B0) ≥ 1 and λout(B0) ≥ 1. If we include the U -part of B0 in K, it
forces at least 3 + λin(B0) vertices in K by the chain implication. If we include
the L-part of B0 in K, it also forces at least 3+ λout(B0) vertices in K. Thus in
this case, the branching satisfies recurrence relation (1).

2.2 λout(B0) ≥ 1 and λin(B0) = 0. According to the out-degree of B0 and
w(PB0 ), we would divide it into three situations as follows.

2.2.1 w(PB0 ) ≥ 3. If we included the U -part of B0 in K, it forces at least 3
vertices in K by the “chain implication”. If we include the L-part of B0 in K,
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it forces at least 6 vertices in K. Thus, this branching satisfies the recurrence
relation

f(ku + kl) ≤ f(ku + kl − 3) + f(ku + kl − 6) (2)

2.2.2 w(PB0 ) = 2. In this case, all the connections of block B0 have eight
cases shown in Fig.1, after excluding B0 ’s isolated connections. From Fig.1(a)
to Fig.1(g), let the two connected blocks of B0 be B1 and B2. When λin(B1) ≥ 2,
the connected blocks is B3, when λin(B2) ≥ 2, the connected blocks is B4. In
Fig.1(h), let the blocks connected with B1 is B3. We’ll give an analysis of how
to establish a bounded search tree in the following.

2.2.2.1 In Fig.1(a), B0 is connected with two connected blocks B1 and B2

whose weight are 1, and λin(B1) ≥ 2, λin(B2) ≥ 3. When w(B3) > 1, the
time complexity of the branching is lower than the one when w(B3) = 1, so
we only need to consider the situation when w(B3) = 1. It is also the same in
the following context. In general, we only have to analyze the equal situation.
When the situation of λin(B1) ≥ 1 is analyzed, the time complexity of branching
is also lower than the situation when λin(B1) = 1. Also, in the following, if it
is required to analyze the in-degree or out-degree of a block whether the value
is larger or equal to a constant, we only have to analyze the equal situation is
enough.

Let the block B1 be the core of branching: if the U -part of block B1 is in K,
it can be concluded by the chain implication that: the U -part of the block B0

and B3 are also in K, thus it equals that 5 vertices are included in the K. If
the L-part vertices of block B1 are in K, the block B0 and B2 become “isolated
block”. Thus, it equals that 5 vertices are included in the K. So, the branching
is at least (5, 5), and the corresponding recurrence is just as formula

f(ku + kl) ≤ 2f(ku + kl − 5) (3)

2.2.2.2 In Fig.1(b), B0 is connected with two connected blocks B1 and B2

whose weight are 1, and λin(B1) ≥ 2,λin(B2) = 2.
Let B2 be the core of branching, the problem under this situation is exactly

the same as the (2.2.2.1), so the analysis is identical, and it can be branched at
least (6, 5), and the corresponding recurrence is just as formula

f(ku + kl) ≤ f(ku + kl − 6) + f(ku + kl − 5) (4)

(b)
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B2B2B2 B2B1
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B0 B2B1
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B2B1B0
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B4B4B3B3
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B3B3
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(f) (g) (h)

Fig. 1. All possible connections in DAG D when w(PB0) = 2
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2.2.2.3 In Fig.1(c), B0 is connected with two connected blocks B1 and B2

whose weight are 1, and λin(B1) = 1,λin(B2) ≥ 3.
Let B2 be the core of branching, the problem under this situation is exactly

the same as the (2.2.2.1), so the analysis is identical, so it can be branched at
least (6, 5), and the corresponding recurrence is just as formula (4).

2.2.2.4 In Fig.1(d), B0 is connected with two blocks B1 and B2 with no con-
nections whose weight are 1, and λin(B1) ≥ 2, λin(B2) = 1.

Let B1 be the core of branching, if U -part of block B1 is in K, it can be
concluded from the chain implication that: the U -part of the block B0 and B4

are also in K. thus, the K contains at least 5 vertices and the block B2 becomes
the “isolated block”. Thus it equals that 6 vertices are included in the K. If the
L-part vertices of block B1 are in K, the block B0 and B2 become “isolated
block”. Thus, it means that 5 vertices are included in the K. So the branching
is at least (6, 5), and the corresponding recurrence is just as formula (4).

2.2.2.5 In Fig.1(e), B0 is connected with two blocks B1 and B2 whose weight
are 1 with no connections, and λin(B1) ≥ 2, λin(B2) ≥ 2.

From the “vertex folding” in Ref.[11], to contain the edges among the blocks
B0, B1, B2, B3, B4, one is to make the U -part vertices be included in K, which
is equal to putting at least 4 vertices into K(corresponding to the situation that
B3and B4 are in the same block, and Fig.1(de) gives an exact connection); the
other is to make the L-part vertices be included in K, and it will make the block
B0 become the “isolated block”, thus, it equals to includes at least 5 vertices
into K. so branch is (4, 5), and the corresponding recurrence relation is formula

f(ku + kl) ≤ f(ku + kl − 4) + f(ku + kl − 5) (5)

2.2.2.6 In Fig.1(f), B0 is connected with two blocks B1 and B2 which has no
connections, and λin(B1) ≥ 2, λin(B2) = 2.

Let B1 be the core of branching, if the U -part of block B1 are in K, it can be
concluded by the chain implication that: the U -part of the block B0 and B2are
also in K. Thus, the K contains at least 5 vertices and the block B2 becomes
the “isolated block”. Thus it equals that 6 vertices are included in the K. If the
L-part vertices of block B1 are in K, it can be contained at least 2 vertices in
K and B0 becomes “isolated block”. Thus it equals that 5 vertices are included
in K. So it can be branched at least (6, 5), and the corresponding recurrence is
just as formula (4).

2.2.2.7 In Fig.1(g), B0 is connected with two blocks B1 and B2 whose weight
is 1 and has no connections, and λin(B1) = 1, λin(B2) ≥ 2.

To make the block B2 as the core of branching, the problem under this situation
is exactly the same as the (2.2.2.6), so the analysis is identical, so the branching
is at least (6, 5), and the corresponding recurrence is just as formula (4).

2.2.2.8 In Fig.1(h), B0 is connected with a blocks B1 whose weight is 2, and
λin(B1) ≥ 2.

Let B1 be the core of branching, the problem under this situation is exactly
the same as the (2.2.2.6), so the analysis is identical, and the branching is at
least (6, 5), the corresponding recurrence is just as formula (4).
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2.2.3 w(PB0 ) = 1
From w(PB0 ) = 1, we know that B0 is connected with a blocks B1 whose

weight is 1, let another block that connects with B1 is B2 (when λin(B1), block
B0, B1 become “isolated block”). Let B1 be the core of branching, the problem
under this situation is exactly the same as (2.2.2.6), so the analysis is identical,
and the branching is at least (4, 5), the corresponding recurrence is just as
formula (5).

2.3 λin(B0) ≥ 1 and λout(B0) = 0
Under this situation, all kinds of connection in the DAG D is entirely symme-

try like (2.2), so the handling method is just the same and we can get the same
recurrence relation.

2.4 λin(B0) = 0 and λout(B0) = 0
The block B0 becomes the “isolated block” and we can make full use of the

dynamic programming technology to solve it in polynomial time in the fourth
part.

Considering all the recurrence relations above, it is obvious that formula (1)
is the strictest one. So a theorem can be presented as follows:

Theorem 1. When a block B0 in the DAG D satisfies the inequality w(B0) ≥ 3,
the branching recurrence relation brought out by the branching process at least
satisfies the formula f(ku + kl) ≤ 2f(ku + kl − 4).

4 Algorithm EACI-dyn

After processing the blocks of weight larger than 3, the remain DAG D contains
only isolated blocks of weight 3 and connected subgraphs that are composed by
blocks of weight 1 or 2. We can solve the Min-CVCB problem on this structure
by dynamic programming. The corresponding algorithm is EACI-dyn. Let the
connected subgraphs in the remaining DAG D be G′

i, 1 ≤ i ≤ r (r be the number
of the connected subgraphs). Let G0 = G′

1 + G′
2 + . . . + G′

r, and let the number
of vertices in the connected subgraph Gi be 2ni. Therefore, the total number
of vertices in the graph G0 is 2n0 = 2n1 + · · · + 2nr. We show that all the
possible minimum vertex covers in each connected subgraph can be enumerated
in polynomial time. Then the dynamic programming algorithm is used to find
the minimum vertex cover in G0 satisfying the constraints.

After enumerating all possible minimum vertex covers in each connected sub-
graph G′

i, the next step is to find a minimum vertex cover of size (ku, kl) in the
graph G0. Obviously, G0 has the minimum vertex cover of size (ku, kl) if and only
if each connected subgraph G′

i has a minimum vertex cover of size (k(i)
u , k

(i)
l ),

such that k
(1)
u + . . . + k

(r)
u ≤ ku, and k

(1)
l + . . . + k

(r)
l ≤ kl.

The procedure that finds a minimum vertex cover of size (ku, kl) in the graph
G0 is as follows: let c̄ = c1 + . . .+ci, 1 ≤ i ≤ r, and A[1 . . . r, 0 . . . ku] be a matrix
of size r∗(ku + 1). Each element A[i, j] in the matrix is to record a minimum
vertex cover of size (j, c̄ − j) in the graph G′

1 + · · · + G′
i. The matrix A can be

constructed by the dynamic programming algorithm in Fig. 2.
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Input: the connected graphs of G′
1, G

′
2 . . . G′

r after section 3’s branching
Output: a minimum vertex cover K of G with at most ku U -vertices and at

most kl L-vertices if such a minimum vertex cover exists
1. list all the possible minimum vertex cover of G′

1, G
′
2 . . . G′

r;
2. foreach 1 ≤ i ≤ r,0 ≤ j ≤ ku do

A[i, j] = φ;
3. foreach (k(1)

u , k
(1)
l )-minimum vertex cover of C′

1 of G’1 do
A[1, k

(1)
u ] = C′

1;
4. for i = 1...r − 1 do

for j = 0...ku do
if A[i, j] �= φ then

let [i, j] = Vu ∪ Vl, Vu ⊆ U, Vl ⊆ L);
foreach (k(i+1)

u , k
(i+1)
l )-minimum vertex cover,C′

i+1 = V
(i+1)

u ∪ V
(i+1)

l of
G′

i+1 in the list Li+1 do
A[i + 1, j + k

(i+1)
u ] = (Vu ∪ V

(i+1)
u ) ∪ (Vl ∪ V

(i+1)
l );

5. for j = 0...ku do
if (j ≤ ku)&(n0 − j ≤ kl)&[r, j] �= φ) then

then return A[r, j];
6. return φ;

Fig. 2. Algorithm. EACI-dyn.

Theorem 2. The time complexity of the algorithm EACI-dyn is O((ku +kl)k2
u).

Proof. After the branching process in section 3, the remaining DAG D is com-
posed of isolated blocks of weight 3 and blocks of weight 1 or 2. First, all possible
minimum vertex covers of each connected subgraph G′

i, 1 ≤ i ≤ r, can be listed
in linear time, then the matrix A can be constructed by the dynamic program-
ming algorithm to find the constrained minimum vertex cover. In the dynamic
programming algorithm, the number of the minimum vertex covers in every row
Li of the matrix A is at most ku, and the value of the next row depends on the
value of the above one, so the time complexity of constructing the matrix A is
O(rk2

u), Since r be the number of the connected subgraphs, and r ≤ (ku + kl),
So, the running time of the algorithm EACI-dyn is bounded by O((ku + kl)k2

u).

5 Putting All Together

With all the previous discussions combined, an algorithm EACI is given in Fig.3,
which solves the Min-CVCB problem. We explain the steps of the algorithm as
follows.

Step 1 is the initialization of the vertex cover K. Steps 2 and 3 make immediate
decisions on high-degree vertices. If a U -vertices u of degree larger than kl is not
in the minimum vertex cover K, then all neighbors of u should be in K, which
would exceed the bound kl. Thus, every U -vertex of degree larger than kl should
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Input: a bipartite graph G = (U, L, E) and two integers ku and kl

Output: a minimum vertex cover K of G with at most ku U -vertices and at
most kl L-vertices, or report no such a vertex cover exists

1. K = φ;
2. foreach U-vertex u of degree larger than kl do

include u in K and remove u from G; ku = ku − 1;
3. foreach L-vertex v of degree larger than ku do

include v in K and remove v from G; kl = kl − 1;
4. apply lemma 1 to reduce the instance so that G is a bipartite graph with

perfect matching and with at most 2(ku + kl) vertices (with the integers ku and
kl and the minimum vertex cover K also properly updated);

5. apply lemma 2 to decompose the graph G into elementary blocks
B1, B2, . . . , Br, sorted topologically;

6. for connections that contain the block Bi in DAG D has weight at least 3,
branching it according in section 3;

7. All other cases not in section3, we can use algorithm EACI-dyn to solve it in
polynomial time in section 4;

Fig. 3. Algorithm. EACI.

be automatically included in K. Similar justification applies to L-vertices of
degree larger than ku. Of course, if ku or kl becomes negative in step 2 or step 3,
then we should stop and claim the nonexistence of the desired minimum vertex
cover. After these steps, the degree of the vertices in the graph is bounded by
k′ = max{ku, kl}. Since now each vertex can cover at most k′ edges, the number
of edges in the resulting graph must be bounded by k′(ku + kl) ≤ (ku + kl)2,
otherwise the graph cannot have a minimum vertex cover of no more than ku+kl

vertices. In step 4, Lemma 1 allows us to further reduce the bipartite graph G
so that G has a perfect matching (the integers ku and kl are also properly
reduced). The number of vertices in the graph G now is bounded by 2(ku + kl).
Step 5 applies Lemma 2 to decompose the graph G into blocks. Step 6 is to
analyze all the possible minimum vertex covers on the condition that the weight
of the blocks in the connected sub-graphs is no less than 3, then use “chain
implication” and bounded search technology to reduce the searching space in
order to construct the bounded-search tree. Step 7 further analyzes the possible
minimum vertex cover of the connected sub-graphs after step 6, and then applies
algorithm EACI-dyn to search for the constraint minimum vertex cover.

Theorem 3. The algorithm EACI runs in time O((ku + kl)|G|+ 1.1892ku+kl),
i.e, the Min-CVCB problem is solvable in time O((ku + kl)|G| + 1.1892ku+kl).

Proof. As explained above, the algorithm EACI solves the Min-CVCB problem
correctly. Thus, we only need to verify the running time of the algorithm.

It is easy to verify that the total running time of steps 1-3 of the algorithm
is bounded by O((ku + kl)|G|). Step 4 applies Lemma 1 to further reduce the
bipartite graph G, and the running time of this step is bounded by (ku + kl)3
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(note that in this step, the number m of edges in the graph G is bounded by
(ku +kl)2 and the number n of vertices in the graph G is bounded by 2(ku +kl)).
Step 5 applies Lemma 2 to decompose the graph G into elementary bipartite sub-
graphs and it takes time O(|E|2). Since |E| is the number of edges in G, and
|E| ≤ (ku + kl)2, step 5 takes time O((ku + kl)4). In step 7, by Theorem 2, the
running time of the algorithm EACI-dyn is bounded by O((ku + kl)k2

u).
The only place the algorithm EACI branches is in step 6. Let f(ku + kl) =

xku+kl be the function in Theorem 1. By Theorem 1, we have

f(ku + kl) ≤ 2f(ku + kl − 4)

Solving this recurrence relation gives us f(ku + kl) ≤ 1.1892ku+kl . Combining
all steps together, we derive that the running time of the algorithm EACI is
bounded by O((ku+kl)|G|)+(ku+kl)3+(ku+kl)4|+1.1892ku+kl +(ku+kl)k2

u) =
O((ku + kl)|G| + 1.1892ku+kl), i.e., the Min-CVCB problem could be solved in
O((ku + kl)|G| + 1.1892ku+kl).

6 Conclusions

In this paper, we study the Min-CVCB problem that has important applications
in the area of VLSI manufacturing. We develop an improved parameterized al-
gorithm for the problem based on a deeper and more careful analysis on the
structures of bipartite graphs. We propose new techniques to handle blocks of
weight bounded by 3, and use new branch search technology to reduce searching
space. Our improved algorithm is achieved by integrating these new techniques
with the known techniques developed by other researchers. The running time of
our algorithm is O((ku + kl)|G| + 1.1892ku+kl), compared to the previous best
algorithm for the problem of running time O((ku + kl)|G| + 1.26ku+kl).
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Abstract. The arc-searching problem is a natural extension of the edge
searching problem, which is to determine the minimum number of
searchers (search number) needed to capture an invisible fast intruder
in a graph. We examine several models for the internal arc-searching
problem, in which the searchers may not “jump” from a vertex to a non-
adjacent vertex. We will explore some elementary results and characterize
directed graphs with small search number for the various models.

1 Introduction

Searching a graph was introduced by Parsons [12]. In Parson’s general searching
model, graphs are considered to be embedded in 3-space, and the searchers’
and intruders’ movements in the graph are described by continuous functions.
A successful strategy is a collection of continuous functions such that for each
intruder there is a time t for which one of the searchers and the intruder have
the same function value. Searching graphs serve as models for important applied
problems (see [3], [4] and [8]. A survey of graph searching results can be found
in [1].

The concept of searching may be extended to directed graphs. With regard
to definitions, we will follow [5], except as noted. We consider searching directed
graphs D and the minimum number of searchers required. In most models for
searching digraphs, the searchers are allowed to jump from a vertex to a non-
adjacent vertex. Such games are generally characterized in terms of one of the
“width” parameters, such as directed treewidth [7], Kelly-width [6], or DAG-
width [11]. In this paper, we will only consider internal searching models in
which jumping is forbidden. Other work relating to searching digraphs could be
found in [10,13,14,15]. In [13,14,15], the searchers are allowed to jump.

In the following models, the specifics of searching a digraph D are as follows.
Initially, all arcs of D are contaminated (may contain an intruder). A search
strategy is a sequence of actions designed so that the final action leaves all arcs of
D uncontaminated or cleared (do not contain an intruder). Initially, the searchers
are placed on some subset of the vertex set of D. The only action available to a
searcher is to move from a vertex u to a vertex v along an arc (u, v) (or possibly

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 354–365, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Arc Searching Digraphs Without Jumping 355

(v, u)). If the searchers and the intruder must move in the direction of the arcs,
we call this a directed search and the minimum number of searchers needed to
clear D is the directed search number sd(D). If the searchers and the intruder can
move with or against the direction of the arcs, we call this an undirected search
and obtain the undirected search number su(D). If the intruder must move in
the direction of the arcs, but the searchers need not, we call this a strong search
and obtain the strong search number ss(D). Finally, if the searchers must move
in the direction of the arcs, but the intruder need not, we call this a weak search
and obtain the weak search number sw(D).

We define a digraph D to be k-directed-searchable if and only if sd(D) �
k. Similarly, we define k-undirected-searchable, k-strongly-searchable, and k-
weakly-searchable. Of the various models, the least interesting is the undirected
digraph search, as this is identical to a search in the underlying undirected graph.
It is included only for completeness.

The methods by which arcs are cleared vary by model. In a strong search, an
arc (u, v) can be cleared in one of three ways: at least two searchers are placed
on vertex u of arc (u, v), and one of them traverses the arc from u to v while
the others remain at u; a searcher is placed on vertex u, where all incoming arcs
incident with u already are cleared, with the searcher then moving from u to v;
or, a searcher is placed on vertex v, and traverses the arc (u, v) in reverse, from
v to u.

In a directed search, an arc (u, v) can be cleared in one of two ways: at least
two searchers are placed on vertex u of arc (u, v), and one of them traverses the
arc from u to v while the others remain at u; or a searcher is placed on vertex
u, where all incoming arcs incident with u already are cleared, and the searcher
moves from u to v.

Finally, in a weak search, an arc (u, v) can be cleared in one of two ways: at
least two searchers are placed on vertex u of arc (u, v), and one of them traverses
the arc from u to v while the others remain at u; or a searcher is placed on vertex
u, where all arcs incident with u other than (u, v) already are cleared, and the
searcher moves from u to v.

It also should be mentioned that in a strong search or a directed search, a
cleared arc (u, v) is recontaminated if u is the head of a contaminated arc and
contains no searcher. In an undirected search or a weak search, a cleared arc
(u, v) is recontaminated if either of u and v is the head or tail of a contaminated
arc and contains no searcher.

In a strong search or a directed search, a vertex v is clear if all of the incoming
arcs with v as head are clear. In an undirected or weak search, a vertex v is clear
if all of the arcs incident with v are clear. The following result appeared in [10].

Theorem 1. If D is an acyclic directed graph, then sw(D) equals the minimum
number of directed paths in the arc digraphs A(D) of D that covers the vertices
of A(D).

If vertices of the strong components D1, D2, . . ., Dm of D partition V into
sets, then this partition is called the strong decomposition of D. The strong
component digraph or condensation S(D) is obtained by contracting each of the
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strong components of D to a single vertex and deleting any parallel arcs formed.
In particular, the strong component digraph is an acyclic digraph.

In Section 2 of this paper, we examine some elementary bounds on the search
models introduced here. Section 3 examines the relationships between the search
numbers of a digraph and the search numbers of its subdigraphs and digraph
minors. In Sections 4 and 5 we characterize the 1- and 2-searchable digraphs
for the various searching models, with the exception of those digraphs D with
ss(D) = 2, which remains open. Section 6 contains several results bounding the
search number of strong digraphs. Finally, we give some further directions in
Section 7.

2 Elementary Bounds

Theorem 2 follows directly from the definitions of the searching models.

Theorem 2. If D is a digraph, then ss(D) � sd(D) � sw(D) and ss(D) �
su(D) � sw(D).

All of these equalities can be achieved by considering a directed path. It is easy to
see that ss(

−→
Pn) = sw(−→Pn) = 1. The inequalities can also be strict. In fact, there

exist digraphs X and Y (see Figure 1) such that ss(X) < su(X) < sd(X) <
sw(X) and ss(Y ) < sd(Y ) < su(Y ) < sw(Y ). For X , ss(X) = 1, su(X) = 3,
sd(X) = 4, and sw(X) = 6. For Y , ss(Y ) = 2, sd(Y ) = 4, su(Y ) = 5, and
sw(X) = 10.
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Fig. 1. The digraphs X and Y

We introduce some elementary lower bounds involving minimum indegree,
parallelling similar results from searching graphs [16,17].

Theorem 3. If D is a digraph, then sw(D) � sd(D) � δ−(D) + 1 and ss(D) �
δ−(D).

It is natural to consider the outdegree sequence. However, this is not a useful
parameter to consider from the perspective of the directed search number. An
almost transitive tournament TT �

n is a tournament that differs from the transitive
tournament TTn only in that arc (vn, v1) is included instead of (v1, vn). For
example, the almost transitive tournament TT �

7 on 7 vertices has score sequence
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1, 1, 2, 3, 4, 5, 5, and sd(TT �
7 ) = 2. Let S be a tournament on the vertices vi,

1 � i � 7, with arcs (vi, vj) for all i < j, except the arcs (v7, v5), (v5, v3), and
(v3, v1) replace the arcs (v5, v7), (v3, v5), and (v1, v3), respectively. Then S also
has score sequence 1, 1, 2, 3, 4, 5, 5, but sd(S) = 3.

3 Subdigraphs and Digraph Minors

We begin by recalling a classical result from graph searching.

Theorem 4. If G′ is a minor of a multigraph G, then the search number of G′

is less than or equal to the search number of G.

This gives an automatic corollary for digraphs and motivates an examination of
similar results for other digraph searching models.

Corollary 1. If D′ is a connected subdigraph of a digraph D, then su(D′) �
su(D).

Theorem 5. If D′ is a connected subdigraph of a digraph D, then ss(D′) �
ss(D).

Unlike strong searching, directed and weak searching allow for subdigraphs to
have a larger search number than their superdigraphs. Consider the almost tran-
sitive tournament TT �

4 . The directed search number of this tournament is 2. If we
remove the arc (v4, v1), the resulting subdigraph has directed search number 3.

We construct a digraph G to see that the same is true for weak searching.
Let u and v be two vertices. Add arcs such that there are 4 directed paths from
u to v, each of which shares only the start and end vertices u and v. Then add
the arc (v, u) to obtain G. It is not hard to see that sw(G) = 3. However, if we
remove the arc (v, u), the resulting digraph has weak search number equal to 4.

However, restricting ourselves to strong subdigraphs, we obtain the following.

Theorem 6. If D′ is a strong subdigraph of a digraph D, then sd(D′) � sd(D)
and sw(D′) � sw(D).

From Theorem 4, we also obtain the following corollary.

Corollary 2. If D′ is a digraph minor of a digraph D, then su(D′) � su(D)
and sw(D′) � sw(D).

The analogue of Corollary 2 does not hold for strong or directed searching. The
digraph W , as pictured in Figure 2, has strong search number 1. However, if the
arc (a, b) is contracted, the resulting digraph minor has strong search number
2. Similarly, the digraph Z has directed search number 3, but if the arc (c, d) is
contracted, the resulting digraph minor has directed search number 4.
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Fig. 2. The digraphs W and Z

4 Characterizing 1-Searchable Digraphs

In the case of graphs, characterizations are known for graphs that are k-
searchable, for k � 3 [9]. It is natural to consider analogous characterizations for
digraphs with respect to the various search models. We begin by characterizing
those digraphs that are 1-searchable.

In contrast to the characterization of the weak search number for acyclic
digraphs in Theorem 1, the next result shows the strong search number is much
smaller in general.

Theorem 7. If D is an acyclic digraph, then ss(D) = 1.

Interestingly, acyclic digraphs are not the only digraphs for which a strong search
strategy exists using exactly one searcher. For example, consider the directed
cycle −→

Cn. Place a single searcher anywhere on −→
Cn, and begin moving against the

direction of arcs. This clears arcs, and since the intruder cannot move against
arc direction, the arcs must remain clear. Thus, ss(

−→
Cn) = 1.

Theorem 8. If D is a strong digraph of order n and
∑

v∈V (D) d+(v) � n + 2,
then ss(D) � 2.

Proof. Assume that ss(D) = 1. We claim that every arc of D that is cleared
by the single searcher γ must be cleared by traversing the arc in the direction
opposite the direction of the arc. Since D is strong, every vertex has non-zero
indegree and outdegree. Thus, the claim certainly is true for the first arc cleared
by γ.

Suppose there exists an arc (u, v) of D that is cleared by γ traversing the arc
from u to v. Consider the subdigraph D′ of all currently cleared arcs. There is a
directed path P from v to u because D is strongly connected. The directed path
must use arcs of D′ because all incoming arcs at u belong to D′ or else γ cannot
clear (u, v) by traversing the arc from u to v. On the other hand, the arc from
u to v currently is contaminated and γ is located at u. Thus, all the arcs along
P also are contaminated. This is a contradiction and our claim follows.

Also note that since
∑

v∈V (D) d+(v) � n+2, either two or more vertices have
indegree at least two, or exactly one vertex has indegree at least three.

Case 1. The digraph D has at least two vertices with indegree at least two.
Let u and v be two vertices such that d−(u) � 2 and d−(v) � 2. Consider
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a strong search of D that uses exactly one searcher. If the search begins at
vertex w 	∈ {u, v}, then the searcher begins clearing arcs in reverse until finally
it reaches (without loss of generality) u. At this point, when the searcher clears
any in-arcs incident with u, the entire digraph cleared to this point becomes
recontaminated. Thus, the search must begin at u.

If the search begins at u, then the searcher clears arcs until it reaches v. Then
if the searcher clears any in-arc incident with v, all of the digraph cleared to this
point becomes recontaminated. Thus, there cannot be two vertices with indegree
at least two.

Case 2. The digraph D has exactly one vertex u with indegree at least three.
Consider a strong search of D that uses exactly one searcher. If the search does
not begin at u, then it must eventually reach u, at which point no further arcs
can be cleared without recontaminating all arcs previously cleared. Thus, the
search must begin at u. A search beginning at u must eventually reach u again,
at which point there are at least two in-arcs that are contaminated. Neither of
these arcs can be cleared without recontaminating all the arcs previously cleared.
Thus, there cannot be a vertex with indegree at least three.

So, for a strong digraph D with ss(D) = 1 that contains arcs, either∑
v∈V (D) d+(v) = n or

∑
v∈V (D) d+(v) = n + 1. If the former holds, then D

must be a directed n-cycle since every vertex has non-zero indegree and outde-
gree. If the latter holds, then there must be exactly one vertex with indegree
two, and exactly one vertex with outdegree two. Again there are two cases. If
the vertex with indegree two is the same as the vertex with outdegree two, then
D is made up of two directed cycles with a single common vertex. If the vertex
of indegree two is distinct from the vertex of outdegree two, then D is a directed
cycle −→

Cm, m � n, with an internally disjoint directed path from one vertex of
−→
Cm to a distinct vertex of −→Cm.

Theorem 9. A digraph D is 1-strongly-searchable if and only if every strong
component of D is one of the three digraphs described above or a single vertex.

We now consider the other search models. From [9], we know that those graphs
with search number 1 are paths. This immediately gives the following corollary.

Corollary 3. For a digraph D, su(D) = 1 if and only if D is an orientation of
a path.

In a directed search, there are only two ways to clear an arc as described earlier.
One of the ways requires two searchers, so any digraph which is 1-searchable
must only use the other. That is, a digraph that is directed 1-searchable allows
an arc (u, v) to be cleared only when all incoming arcs at u are already cleared.
(The characterization for weak searching follows.)

Theorem 10. For a digraph D, sd(D) = 1 if and only if D = −→
Pn.

Corollary 4. For a digraph D, sw(D) = 1 if and only if D = −→
Pn.
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5 Characterizing 2-Searchable Digraphs

To characterize 2-searchable digraphs for the various searching models, we in-
troduce the concept of a homeomorphic reduction of a reflexive multidigraph X .
Let V ′ be those vertices of X that do not have indegree and outdegree 1. The
homeomorphic reduction of X is the reflexive multidigraph X ′ obtained from
X with vertex set V ′ and the following arcs. Any loop of X incident with a
vertex of V ′ is a loop of X ′ incident with the same vertex. Any arc of X joining
two vertices of V ′ is an arc of X ′ joining the same two vertices. Any internally
disjoint directed path of X joining two vertices of V ′ is replaced by a single arc
in X ′ joining the same two vertices, with the arc following the direction of the
path. Any internally disjoint directed cycle of X containing a vertex u of V ′ is
replaced by a loop in X ′ incident with u. In the special case that X has con-
nected components that are directed cycles, these cycles are replaced by loops on
a single vertex. An analogous definition occurs for the homeomorphic reduction
of a graph.

The next theorem comes from [9], where it originally appeared as a result on
graphs. We have rewritten it slightly as a digraph result.

Theorem 11. A digraph D is 2-undirected-searchable if and only if D is the
orientation of a graph whose homeomorphic reduction consists of an undirected
path u1, u2, . . . , un such that there are an arbitrary number of loops incident with
each vertex, and the multiplicity of any non-loop edge is at most 2.

Corollary 5. For a digraph D, sw(D) = 2 if and only if the homeomorphic
reduction of D consists of a directed path u1u2 . . . un such that there are an
arbitrary number of loops incident with each vertex, any arc of the form (ui, ui+1)
for 1 � i � n − 1 must have multiplicity at most 2, and u1 (resp. un) may have
two in-arcs (resp. out-arcs).

Moving to directed searching, we introduce the following lemmas before charac-
terizing strong digraphs that are 2-directed searchable.

Lemma 1. If D is a digraph that contains a directed cycle as a subdigraph, then
whenever D goes from having no cleared directed cycles to one cleared directed
cycle in a directed search strategy, that directed cycle contains at least 2 searchers.

Proof. Consider the moment before the first directed cycle (c1, c2, . . . , ck, c1) is
cleared. Let (ck, c1) be the final arc of this cycle to be cleared. Then one searcher
must be on ck, about to move to c1. Since (c1, c2) is a cleared arc, but (ck, c1) is
not, another searcher must be on c1.

Lemma 2. If D is a strong digraph that contains two vertex-disjoint directed
cycles, then sd(D) � 3.

Proof. Assume that this digraph has sd(D) = 2. (We know it does not have
directed search number 1 by Lemma 1.) Let the two vertex-disjoint directed
cycles be C1 and C2. Since D is strong, there is a directed path P1 from a vertex
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a of C1 to a vertex b of C2, and a directed path P2 from a vertex c of C2 to a
vertex d of C1. (It is possible that a = d or b = c.) Assume that C1 is the first
cycle cleared. By Lemma 1, we know that C1 must contain both searchers.

Since at least one arc of C2 is contaminated, all arcs of C2 and P2 are conta-
minated. Thus, if C1 is to remain cleared, one of the searchers must remain at
d. The path from c to d cannot be cleared by the other searcher without first
clearing C2, and a single searcher cannot clear C2. Thus, each arc in the path
from c to d cannot be cleared, a contradiction.

Theorem 12. If D is a strong digraph, then sd(D) = 2 if and only if there
exists v ∈ V (D) such that every directed cycle of D contains v.

Proof. Since D is strong, it is not a directed path, and hence sd(D) � 2. If there
exists a vertex v ∈ V (D) such that D − {(x, v)|(x, v) ∈ A(D)} is acyclic, then
place one searcher on v. The other searcher may clear all arcs having v as their
tail, at which time the contaminated arcs form an acyclic digraph. One searcher
remains on v while the other searcher clears the arcs of the acyclic digraph. The
searcher doing the arc clearing uses the strong connectivity of all of D. Thus,
sd(D) = 2.

On the other hand, assume that sd(D) = 2, but there is no v as described.
Then, for any v ∈ V (D), if the arcs having v as their head are removed, a directed
cycle remains. If every directed cycle in D has two or more vertices with incoming
arcs not on the directed cycle, then we claim two searchers cannot clear D.

To see this, consider the first directed cycle C that is cleared. Let u be one
of the vertices of C with indegree at least 2. If there is a directed cycle disjoint
from C, then by Lemma 2 we are done. Since every directed cycle does not go
through u, consider a cycle C′ that does not contain u. Certainly, C and C′ must
share at least one vertex, w. Without loss of generality, assume that the search
strategy begin with vertex u. Then, until C is cleared, the searcher at u must
remain there, because movement would recontaminate all of C. This leaves only
one searcher to clear the arc of C with w as tail, which is impossible until C′ is
cleared.

Hence, some directed cycle C exists with all arcs leading into C going to
a single vertex v. If we remove all the arcs with v as head, then D contains
a directed cycle. But this cycle cannot then contain any vertex of C. Thus,
D contains two vertex-disjoint directed cycles, and sd(D) � 3 by Lemma 2, a
contradiction.

Theorem 13. For an acyclic digraph D, sd(D) = 2 if and only if the homeo-
morphic reduction of D consists of a directed path u1u2 . . . un such that any arc
in the path has multiplicity at most 2, and u1 and un may have two in-arcs and
out-arcs, respectively.

Proof. Such digraphs are certainly 2-directed-searchable. On the other hand,
any acyclic digraph D that is 2-directed-searchable must satisfy δ−(D) � 2,
δ+(D) � 2, and have at most two sources and two sinks. Consider an acyclic
ordering of D, where the vertices are labelled v1, v2, . . ., vn such that an arc
goes from vi to vj only if i < j.
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If no vertex has outdegree 2 or more, then there can be at most one vertex
of indegree 2, else there are too many sources. Then certainly this digraph is of
the required form.

Suppose that vi is the first vertex under this ordering that has outdegree 2. If
there is no vertex after this with indegree 2, then there can be no further vertices
with outdegree 2, as this would imply at least 3 sinks. Thus these digraphs are
also of the required form.

If vi is the first vertex under this ordering that has outdegree 2 and vj is the
first vertex occurring after vi under this ordering that has indegree 2, then we
claim that vj = vi+1. Assume there exists vk with i < k < j. If vk is a source,
then only two of the three or more arcs having vi or vk as their tail can be cleared.
If vk is a sink, then only two of the three or more arcs having vk or vj as their
head can be cleared. Thus vk has non-zero indegree and outdegree. If d+(vk) > 1,
then at most three of the four arcs with vi or vk as tail can be cleared. Since vj is
the first vertex after vi that has indegree 2, then d+(vk) = d−(vk) = 1, but since
X is a homeomorphic reduction, D contains no such vertices. Thus vj = vi+1.

Finally, D contains two sources if and only if the initial arcs from either source
do not have multiplicity 2, and D contains two sinks if and only if the final arcs
to either of the sinks cannot have multiplicity 2.

Consider an acyclic digraph D as described in Theorem 13. Certainly, if the
arcs are subdivided into directed paths, the resulting digraph D′ remains 2-
directed-searchable. Then another digraph D′′ may be formed by amalgamating
certain vertices in D′ with vertices in strong digraphs that are 1- or 2-directed-
searchable. (These are either vertices or the strong digraphs described in The-
orem 12.) The vertices of D′ that may be used in the amalgamation are those
that correspond to vertices in D or those that are in a directed path that has
replaced an arc of multiplicity 1 in D, other than those arcs of multiplicity 1
that are incident with a source or sink. If x is the head of an arc (w, x) (or tail of
an arc (x, w)) and is replaced by a strong 2-searchable digraph E, add a new arc
from w to any vertex of E (or from any vertex of E to w). The resulting digraphs
D′′ are 2-directed-searchable. We claim that these are exactly the digraphs that
are 2-directed-searchable.

Assume that D is a 2-directed-searchable digraph. We consider the condensa-
tion of D, but this time do not remove multiple arcs between strong components.
We denote this digraph by S�. Certainly, S� is an acyclic digraph, and if it is not
2-directed-searchable, then D will not be 2-directed-searchable. So the homeo-
morphic reduction of S� must be as in Theorem 13. If S� has two sources, and
either of the sources or any of the other vertices that occur along the directed
path between the sources and the first vertex with indegree 2 corresponds to
a non-trivial strong component, then D is not 2-directed-searchable. A similar
argument holds for the two sinks.

Consider an arc in homeomorphic reduction of S� that has multiplicity 2. If
this arc represents an internally disjoint direct path in S�, then consider one of
the internal vertices of this path. If this vertex corresponds to a non-trivial strong
component, then again D is not 2-directed-searchable, as then no searcher would
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be available to move along the directed path in S� that corresponds to the other
multiples of that arc. Finally, if any of the remaining vertices are replaced by
non-trivial strong components other than those described in Theorem 12, then
these components have directed search number 3 or more, and by Theorem 6,
the search number of D must be 2. So D must be exactly as posited, and we
obtain the following theorem.

Theorem 14. For a digraph D, sd(D) = 2 if and only if each of the follow-
ing three conditions is satisfied: (1) every non-trivial strong component C of
D has the property that there exists v ∈ V (C) such that every directed cycle
in C contains v; (2) the homeomorphic reduction of S� consists of a directed
path u1u2 . . . un such that any arc in the path has multiplicity at most 2, and
u1 (resp. un) may have two in-edges (resp. out-edges); and (3) the non-trivial
strong components occur only at vertices ui (1 � i � n), or at vertices in S�

that lie on paths between ui and ui+1, where (ui, ui+1) has multiplicity 1 in the
homeomorphic reduction of S�.

6 Strong Digraphs

Suppose that for some D we have that the condensation S(D) is a directed path−→
Pm and that D1, D2, . . ., Dm (allowing −→

Pm to be a trivial path of length 0,
with m = 1), are the strong components of D. Let the weight of the path −→

Pm be
w(−→Pm) = maxi,j {sd(Di), d+(Dj)}.

Theorem 15. If S(D) is a directed path −→
Pm and D1, D2, . . . , Dm are the

strong components of D, then sd(D) = w(−→Pm).

Combining this result with Theorem 5, we obtain the following corollary.

Corollary 6. If S(D) is a directed path −→
Pm and D1, D2, . . . , Dm, for some

m > 1, are the strong components of D, then ss(D) = maxi {ss(Di)}.

The strong decomposition of a non-strong tournament is a partition of the vertex
set into strong subtournaments T1,T2,. . ., Tm in which all vertices in Ti have arcs
to all vertices in Tj whenever i < j. A special case of this occurs when each Ti is
of order |Ti| = 1, that is, we have the transitive tournament TTm on m vertices.

A variation of the above is the following:

Corollary 7. If the vertices of tournament T can be partitioned into sets A and
B in such a way that every vertex in A dominates every vertex in B, that is, T
is not strong, then sd(T ) � |A||B|.

In the special case of a transitive tournament, we have the following result.

Corollary 8. If T = TTn is a transitive tournament, then sd(T ) = �n2

4 �.
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Proof. If n = 2t, then sd(T ) � t2 by choosing A in Corollary 7 to be the t vertices
of highest score. By searching the vertices in decreasing order of their scores, we
see that vn requires 2t − 1 searchers to clear all of its outgoing arcs. Vertex
vn−1 requires 2t− 2 searchers to clear all of its outgoing arcs but a searcher has
been obtained from vn so that we need only 2t − 3 new searchers. Vertex vn−2

requires 2t − 3 searchers to clear all of its outgoing arcs but 2 searchers have
been obtained from vn and vn−1, and thus we need only 2t − 5 new searchers.
Continuing in this way, we see that the number of searchers required is t2. If n
is odd the result follows in a similar manner.

Corollary 8 is especially interesting when considered in the light of the number of
paths in a path decomposition of TTn. A path decomposition of a digraph D is a
partition of the arcs of D into a minimum number of directed paths. We denote
this minimum number of paths m(D). It was shown in [2] that for any tourna-
ment T , m(T ) � �n2

4 �, with equality holding if T is transitive. Thus, combined
with Corollary 8, we see that a searcher may search each path in the decompo-
sition, so that every arc is traversed exactly once. Since this would be a strategy
that clears the transitive tournament on n vertices with fewest arc traversals and
the minimum number of searchers, this can be considered an optimal strategy.
In general, for acyclic digraphs, every minimum path decomposition corresponds
to a set of paths that contain all vertices in the arc digraph of D, so the result
of Theorem 1 is less than m(D).

In marked contrast to Corollary 8, we note that for the TT �
n that differs from

TTn only in that vertex vn dominates vertex v1, we have sd(TT �
n) = 2 — we

may leave a searcher on vn while we clear all of its outgoing arcs with just one
other searcher and then move on to other vertices in order. Corollary 8 may also
be considered as a special case of the following.

Corollary 9. If T is a non-strong tournament with strong decomposition T1,T2,
. . ., Tm, then sd(T ) = maxj

{(∑j
i=1 |Ti|

)
·
(∑m

i=j+1 |Ti|
)}

.

7 Further Directions

There are several directions that further research could take. The dramatic
change in the directed search number between TTn and TT �

n provide a strong
motivation to look further at the search numbers of tournaments. Computing
the search number of the complete graph is quite dull, but it seems that the
search numbers of its orientations may vary a great deal.

Similarly, we see that strong subdigraphs play an important roll in characteri-
zations, motivating further research into the relationship between being strongly
connected and the various search models.

Finally, finding a characterization of those digraphs that are 2-strongly-
searchable remains open. As in the method of Theorem 9, it seems plausible
that we should first consider the condensations. Since such digraphs are acyclic,
and hence 1-strongly-searchable, we need only consider which strong digraphs
are 2-strongly-searchable. This appears to be a difficult problem.
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1 Introduction

Coloring problems that involve local and global restrictions on the coloring have many
important applications in such areas as operations research, scheduling and computa-
tional biology, and also have a long mathematical history. For recent surveys of the area
one can turn to [Tu97, KTV98, Al00, Wo01] and also the book [JT95]. In this paper we
study the computational complexity of such problems, for graphs of bounded treewidth,
in the framework of parameterized complexity [DF99, Nie06], where we take the pa-
rameter to be the treewidth bound t.

Our main results are summarized:

– We show that the list chromatic number (also known as the choice number [KTV98])
of a graph can be computed in linear time for any fixed treewidth bound t. (We
prove this using a new “trick” for extending the applicability of Monadic Second
Order logic that is of general interest.)

– We show that LIST COLORING and PRECOLORING EXTENSION are W [1]-hard
for parameter t.

– We show that EQUITABLE COLORING is W [1]-hard parameterized by t.

The problems are defined as follows.

LIST CHROMATIC NUMBER

Input: A graph G = (V, E) of treewidth at most t, and a positive integer r.
Parameter: t
Question: Is χl(G) ≤ r?

LIST COLORING

Input: A graph G = (V, E) of treewidth at most t, and for each vertex v ∈ V ,
a list L(v) of permitted colors.
Parameter: t
Question: Is there a proper vertex coloring c with c(v) ∈ L(v) for each v?

PRECOLORING EXTENSION

Input: A graph G = (V, E) of treewidth at most t, a subset W ⊆ V of precol-
ored vertices, a precoloring cW of the vertices of W , and a positive integer r.
Parameter: t
Question: Is there a proper vertex coloring c of V which extends cW (that is,
c(v) = cW (v) for all v ∈ W ), using at most r colors?

EQUITABLE COLORING (ECP)
Input: A graph G = (V, E) of treewidth at most t and a positive integer r.
Parameter: t
Question: Is there a proper vertex coloring c using at most r colors, with the
property that the sizes of any two color classes differ by at most one?

Previous Results. LIST COLORING is NP-complete, even for very restricted classes
of graphs, such as complete bipartite graphs [JS97]. Jansen and Scheffler described a
dynamic programming algorithm for the problem that runs in time O(nt+2) for graphs
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of treewidth at most t [JS97]. PRECOLORING EXTENSION is NP-complete, and can
also be solved in time O(nt+2) for graphs of treewidth at most t [JS97]. The LIST

CHROMATIC NUMBER problem is Πp
2 -complete for any fixed r ≥ 3, a result attributed

to Gutner and Tarsi [Tu97]. There does not appear to have been any previous result
on the complexity of the LIST CHROMATIC NUMBER problem for graphs of bounded
treewidth.

Some Background on Parameterized Complexity
Parameterized complexity is basically a two-dimensional generalization of “P vs. NP”
where in addition to the overall input size n, one studies the effects on computational
complexity of a secondary measurement that captures additional relevant information.
This additional information can be, for example, a structural restriction on the input
distribution considered, such as a bound on the treewidth of an input graph. Parameter-
ization can be deployed in many different ways; for general background on the theory
see [DF99, FG06, Nie06].

The two-dimensional analogue (or generalization) of P, is solvability within a time
bound of O(f(k)nc), where n is the total input size, k is the parameter, f is some
(usually computable) function, and c is a constant that does not depend on k or n. Pa-
rameterized decision problems are defined by specifying the input, the parameter, and
the question to be answered. A parameterized problem that can be solved in such time
is termed fixed-parameter tractable (FPT). There is a hierarchy of intractable parame-
terized problem classes above FPT, the main ones are:

FPT ⊆ M [1] ⊆ W [1] ⊆ M [2] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP

The principal analogue of the classical intractability class NP is W [1], which is a strong
analogue, because a fundamental problem complete for W [1] is the k-STEP HALTING

PROBLEM FOR NONDETERMINISTIC TURING MACHINES (with unlimited nondeter-
minism and alphabet size) — this completeness result provides an analogue of Cook’s
Theorem in classical complexity. A convenient source of W [1]-hardness reductions is
provided by the result that k-CLIQUE is complete for W [1]. Other highlights of the the-
ory include that k-DOMINATING SET, by contrast, is complete for W [2]. FPT = M [1]
if and only if the Exponential Time Hypothesis fails. XP is the class of all problems that
are solvable in time O(ng(k)).

The principal “working algorithmics” way of showing that a parameterized problem
is unlikely to be fixed-parameter tractable is to prove W [1]-hardness. The key property
of a parameterized reduction between parameterized problems Π and Π ′ is that the
input (x, k) to Π should be transformed to input (x′, k′) for Π ′, so that the receiving
parameter k′ is a function only of the parameter k for the source problem.

1.1 LIST CHROMATIC NUMBER Parameterized by Treewidth Is FPT

The notion of the list chromatic number (also known as the choice number) of a graph
was introduced by Vizing in 1976 [Viz76], and independently by Erdös, Rubin and
Taylor in 1980 [ERT80]. A celebrated result that gave impetus to the area was proved
by Thomassen: every planar graph has list chromatic number at most five [Th94].
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We describe an algorithm for the LIST CHROMATIC NUMBER problem that runs in
linear time for any fixed treewidth bound t. Our algorithm employs the machinery of
Monadic Second Order (MSO) logic, due to Courcelle [Cou90] (also [ALS91, BPT92]).
At a glance, this may seem surprising, since there is no obvious way to describe the
problem in MSO logic — one would seemingly have to quantify over all possible list
assignments to the vertices of G, and the vocabulary of MSO seems not to provide
any way to do this. We employ a “trick” that was first described (to our knowledge) in
[BFLRRW06], with further applications described in [CFRRRS07, FGKPRWY07].

The essence of the trick is to construct an auxiliary graph that consists of the original
input, augmented with additional semantic vertices, so that the whole ensemble has
— or can safely be assumed to have — bounded treewidth, and relative to which the
problem of interest can be expressed in MSO logic.

A list assignment L with |L(v)| ≥ r for all v ∈ V is termed an r-list assignment. A
list assignment L from which G cannot be properly colored is called bad. Thus, a graph
G does not have list chromatic number χl(G) ≤ r, if and only if there is a bad r-list
assignment for G.

The following lemma is crucial to the approach.

Lemma 1. If a graph of treewidth at most t admits any bad r-list assignment, then it
admits a bad list assignment where the colors are drawn from a set of (2t + 1)r colors.

Proof. First of all, we may note that if G has treewidth bounded by t, then χl(G) ≤ t+1
(and similarly, the chromatic number of G is at most t + 1). This follows easily from
the inductive definition of t-trees. We can therefore assume that r ≤ t.

Fix attention on a width t tree decomposition D for G, where the bags of the decom-
position are indexed by the tree T . For a node t of T , let D(t) denote the bag associated
to the node t. Suppose that L is a bad r-list assignment for G, and let C denote the union
of the lists of L. For a color α ∈ C, let Tα denote the subforest of T induced by the set
of vertices t of T for which D(t) contains a vertex v of G, where the color α occurs in
the list L(v). Let T (α) denote the set of trees of the forest Tα. Let T denote the union
of the sets T (α), taken over all of the colors α that occur in the list assignment L:

T =
⋃

α∈C
T (α)

We consider that two trees T ′ and T ′′ in T are adjacent if the distance between T ′

and T ′′ in T is at most one. Note that T ′ and T ′′ might not be disjoint, so the distance
between them can be zero. Let G denote the graph thus defined: the vertices of G are
the subtrees in T and the edges are given by the above adjacency relationship.

Suppose that G can be properly colored by the coloring function c′ : T → C′. We
can use such a coloring to describe a modified list assignment L′[c′] to the vertices of G
in the following way: if T ′ ∈ T (α) and c′(T ′) = α′ ∈ C′, then replace each occurrence
of the color α on the lists L(v), for all vertices v that belong to bags D(t), where t ∈ T ′,
with the color α′.

This specification of L′[c′] is consistent, because for any vertex v such that α ∈ L(v),
there is exactly one tree T ′ ∈ T (α) such that v belongs to a bag indexed by vertices
of T ′.
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Claim 1. If c′ is a proper coloring of G, and L is a bad list assignment for G, then L′[c′]
is also a bad list assignment for G.

This follows because the trees in G preserve the constraints expressed in having a
given color on the lists of adjacent vertices of G, while the new colors α′ can only be
used on two different trees T ′ and T ′′ when the vertices of G in the bags associated
with these trees are at a distance of at least two in G.
Claim 2. The graph G has treewidth at most 2(t + 1)r − 1.

A tree decompositionD′ for G of width at most 2(t+1)r can be described as follows.
Subdivide each edge tt′ of T with a node of degree two denoted s(t, t′). Assign to each
node t the bag D′(t) consisting of those trees T ′ of G that include t. There are at most
(t+1)r such trees. Assign to each node s(t, t′) the bag D′(s(t, t′)) = D′(t)∪D′(t′). It
is straightforward to verify that this satisfies the requirements of a tree decomposition
for G.

The lemma now follows from the fact that G can be properly colored with 2(t + 1)r
colors. �

Theorem 1. The LIST CHROMATIC NUMBER problem, parameterized by the treewidth
bound t, is fixed-parameter tractable, solvable in linear time for every fixed t.

Proof. The algorithm consists of the following steps.
Step 1. Compute in linear time, using Bodlaender’s algorithm, a tree-decomposition for
G of width at most t. Consider the vertices of G to be of type 1.
Step 2. Introduce 2(t + 1)r new vertices of type 2, and connect each of these to all
vertices of G. The treewidth of this augmented graph is at most t + 2(t + 1)r = O(t2).
Step 3. The problem can now be expressed in MSO logic. That this is so, is not entirely
trivial, and is argued as follows (sketch). We employ a routine extension of MSO logic
that provides predicates for the two types of vertices.

If G admits a bad r-list assignment, then this is witnessed by a set of edges F be-
tween vertices of G (that is, type 1 vertices) and vertices of type 2 (that represent the
colors), such that every vertex v of G has degree r relative to F . Thus, the r incident
F -edges represent the colors of Lv. It is routine to assert the existence of such a set of
edges in MSO logic.

The property that such a set of edges F represents a bad list assignment can be
expressed as: “For every subset F ′ ⊂ F such that every vertex of G has degree 1
relative to F ′ (and thus, F ′ represents a choice of a color for each vertex, chosen from
its list), there is an adjacent pair of vertices u and v of G, such that the represented color
choice is the same, i.e., u and v are adjacent by edges of F ′ to the same type 2 (color-
representing) vertex.” The translation of this statement into formal MSO is routine. �

2 Some Coloring Problems That Are Hard for Treewidth

We tend to think that “all” (or almost all) combinatorial problems are easy for bounded
treewidth, but in the case of structured coloring problems, the game is more varied in
outcome.
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2.1 LIST COLORING and PRECOLORING EXTENSION are W [1]-Hard,
Parameterized by Treewidth

There is a relatively simple reduction to the LIST COLORING and PRECOLORING EX-
TENSION problems from the MULTICOLORED CLIQUE problem. The MULTICOLORED

CLIQUE problem is known to be W [1]-complete [FHR07] (by a simple reduction from
the ordinary CLIQUE). The MULTICOLORED CLIQUE problem takes as input a graph
G together with a proper k-coloring of the vertices of G, and is parameterized by k.
The question is whether there is a k-clique in G consisting of exactly one vertex of each
color.

As example of the reduction is shown in Figure 1. The figure shows, for the parameter
value k = 4, the construction of an instance G′ of LIST COLORING that admits a proper
choice of color from each list if and only if the source instance G has a multicolor k-
clique.

The general construction can be easily infered from the example in Figure 1. The
colors on the lists are in 1:1 correspondence with the vertices of G. There are k vertices
v[i], i = 1, ..., k, one for each color class of G, and the list assigned to v[i] consists of
the colors corresponding to the vertices in G of color i. For i 	= j, there are various
vertices of degree two in G′, each having a list of size 2. There is one such degree two
vertex in G′ for each pair x, y of nonadjacent vertices, where x has color i and y has
color j.
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Fig. 1. Example of the reduction from MULTICOLOR CLIQUE to LIST COLORING

Verification that the reduction works correctly is easy, and is left to the reader. The
treewidth of G′ is bounded by k + 1.

Theorem 2. LIST COLORING parameterized by treewidth is W [1]-hard.

To see that PRECOLORING EXTENSION is also W [1]-hard when parameterized by
treewidth, we can reduce from the LIST COLORING problem, simply using many
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precolored vertices of degree 1 to enforce the lists. This construction does not increase
the treewidth. We have:

Theorem 3. PRECOLORING EXTENSION parameterized by treewidth is W [1]-hard.

2.2 EQUITABLE COLORING Is W [1]-Hard Parameterized by Treewidth

The notion of equitable coloring seems to have been first introduced by Meyer in 1973,
where an application to scheduling garbage trucks is described [Mey73]. Recently, Bod-
laender and Fomin have shown that determining whether a graph of treewidth at most t
admits an equitable coloring, can be solved in time O(nO(t)) [BF05].

We consider the parameterized complexity of EQUITABLE COLORING (ECP) in
graphs with bounded treewidth. We actually prove a stronger result than the one we
have so far stated. We show that when ECP is parameterized by (t, r), where t is the
treewidth bound, and r is the number of color classes, then the problem is W[1]-hard.

To show the desired reduction, we introduce two more general problems. List ana-
logues of equitable coloring have been previously studied by Kostochka, et al. [KPW03].

The LIST EQUITABLE COLORING PROBLEM (LECP): Given an input graph G =
(V, E), lists Lv of colors for every vertex v ∈ V and a positive integer r; does there
exist a proper coloring f of G with r colors that for every vertex v ∈ V uses a
color from its list Lv such that for any two color class, Vi and Vj of the coloring f ,
||Vi| − |Vj || ≤ 1?
The NUMBER LIST COLORING PROBLEM (NLCP): Given an input graph G =
(V, E), lists Lv of colors for every vertex v ∈ V , a function h : ∪v∈V Lv → N,
associating a number to each color, and a positive integer r; does there exist a proper
coloring f of G with r colors that for every vertex v ∈ V uses a color from its list
Lv, such that any color class Vc of the coloring f is of size h(c)?

Our main effort is in the reduction of the MULTICOLOR CLIQUE problem to NLCP.
Consider that the instance G = (V, E) of MULTICOLOR CLIQUE has its vertices col-
ored by the integers 1, ..., k. Let V [i] denote the set of vertices of color i, and let E[i, j],
for 1 ≤ i < j ≤ k, denote the set of edges e = uv, where u ∈ V [i] and v ∈ V [j].
We can assume that |V [i]| = N for all i, and that |E[i, j]| = M for all i < j, that
is, we can assume that the vertex color classes of G, and also the edge sets between
them, have uniform sizes. (For a simple justification of this assumption, we can reduce
MULTICOLOR CLIQUE to itself, taking a union of k! disjoint copies of G, one for each
permutation of the color set.)

We will use following sets of colors in our construction of an instance of NLCP:
(1) S = {σ[i, j] : 1 ≤ i 	= j ≤ k}
(2) S′ = {σ′[i, j] : 1 ≤ i 	= j ≤ k}
(3) T = {τi[r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 	= i, s 	= i}
(4) T ′ = {τ ′

i [r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 	= i, s 	= i}
(5) E = {ε[i, j] : 1 ≤ i < j ≤ k}
(6) E ′ = {ε′[i, j] : 1 ≤ i < j ≤ k}

Note that |S| = |S′| = 2
(
k
2

)
, that is, there are distinct colors σ[2, 3] and σ[3, 2], etc.

In contrast, the colors τi[r, s] are only defined for r < s.
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We associate with each vertex and edge of G a pair of (unique) identification num-
bers. The up-identification number v[up] for a vertex v should be in the range [n2 +
1, n2 + n], if G has n vertices. Similarly, the up-identification number e[up] of an edge
e of G can be assigned (arbitrarily, but uniquely) in the range [2n2 + 1, 2n2 + m],
assuming G has m edges.

Choose a suitably large positive integer Z0, for example Z0 = n3, and define the
down-identification number v[down] for a vertex v to be Z0 − v[up], and similarly for
the edges e of G, define the down-identification number e[down] to be Z0 − e[up].

Choose a second large positive integer, Z1>>Z0, for example, we may take Z1 = n6.
Next we describe various gadgets and the way they are combined in the reduction.

First we describe the gadget which encodes the selection of the edge going between
two particular color classes in G. In other words, we will think of the representation
of a k-clique in G as involving the selection of edges (with each edge selected twice,
once in each direction) between the color classes of vertices in G, with gadgets for
selection, and to check two things: (1) that the selections in opposite color directions
match, and (2) that the edges chosen from color class V [i] going to V [j] (for the various
j 	= i) all emanate from the same vertex in V [i]. (This is sometimes termed an edge
representation strategy for the parameterized reduction from MULTICOLOR CLIQUE.)

There are 2
(
k
2

)
groups of gadgets, one for each pair of color indices i 	= j. If 1 ≤

i < j ≤ k, then we will refer to the gadgets in the group G[i, j] as forward gadgets, and
we will refer to the gadgets in the group G[j, i] as backward gadgets.

If e ∈ E[i, j], then there is one forward gadget corresponding to e in the groupG[i, j],
and one backward gadget corresponding to e in the group G[j, i]. The construction of
these gadgets is described as follows.

The forward gadget corresponding to e = uv ∈ E[i, j]
The gadget has a root vertex r[i, j, e], and consists of a tree of height 2. The list assigned
to this root vertex contains two colors: σ[i, j] and σ′[i, j]. The root vertex has Z1 + 1
children, and each of these is also assigned the two-element list containing the colors
σ[i, j] and σ′[i, j]. One of the children vertices is distinguished, and has 2(k−1) groups
of further children:

– e[up] children assigned the list {σ′[i, j], ε[i, j]}.
– e[down] children assigned the list {σ′[i, j], ε′[i, j]}.
– For each r in the range j< r ≤ k, u[up] children assigned the list {σ′[i, j], τi[j, r]}.
– For each r in the range j < r ≤ k, u[down] children assigned {σ′[i, j], τ ′

i [j, r]}.
– For each r in the range 1 ≤ r < j, u[down] children assigned {σ′[i, j], τi[r, j]}.
– For each r in the range 1≤ r < j, u[up] children assigned the list {σ′[i, j], τ ′

i [r, j]}.

The backward gadget corresponding to e = uv ∈ E[i, j]
The gadget has a root vertex r[j, i, e], and consists of a tree of height 2. The list assigned
to this root vertex contains two colors: σ[j, i] and σ′[j, i]. The root vertex has Z1 + 1
children, and each of these is also assigned the two-element list containing the colors
σ[j, i] and σ′[j, i]. One of the children vertices is distinguished, and has 2k groups of
further children:

– e[up] children assigned the list {σ′[j, i], ε′[i, j]}.
– e[down] children assigned the list {σ′[j, i], ε[i, j]}.
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– For each r in the range i < r ≤ k, v[up] children assigned the list {σ′[j, i], τj [i, r]}.
– For each r in the range i < r ≤ k, v[down] children assigned {σ′[j, i], τ ′

j [i, r]}.
– For each r in the range 1 ≤ r < i, v[down] children assigned {σ′[j, i], τj [r, i]}.
– For each r in the range 1 ≤ r < i, v[up] children assigned the list {σ′[j, i], τ ′

j [r, i]}.

The numerical targets
(1) Each color in T ∪ T ′ has the target: Z0.
(2) Each color in E ∪ E ′ has the target: Z0.
(3) Each color in S has the target: (M − 1)(Z1 + 1) + 1.
(4) Each color in S′ has the target: (M − 1) + (Z1 + 1) + (k − 1)(M − 1)Z0.

That completes the formal description of the reduction from MULTICOLOR CLIQUE

to NLCP. We turn now to some motivating remarks about the design of the reduction.

Remarks on the colors, their numerical targets, and their role in the reduction

(1) There are 2
(
k
2

)
groups of gadgets. Each edge of G gives rise to two gadgets. Between

any two color classes of G there are precisely M edges, and therefore M ·
(
k
2

)
edges

in G in total. Each group of gadgets therefore contains M gadgets. The gadgets in each
group have two “helper” colors. For example, the group of gadgetsG[4, 2] has the helper
colors σ[4, 2] and σ′[4, 2]. The role of the gadgets in this group is to indicate a choice
of an edge going from a vertex in the color class V [4] of G to a vertex in the color class
V [2] of G. The role of the 2

(
k
2

)
groups of gadgets is to represent the selection of

(
k
2

)

edges of G that form a k-clique, with each edge chosen twice, once in each direction. If
i < j then the choice is represented by the coloring of the gadgets in the group G[i, j],
and these are the forward gadgets of the edge choice. If j < i, then the gadgets in G[i, j]
are backward gadgets (representing the edge selection in the opposite direction, relative
to the ordering of the color classes of G). The numerical targets for the colors in S ∪S′

are chosen to force exactly one edge to be selected (forward or backward) by each group
of gadgets, and to force the gadgets that are colored in a way that indicates the edge was
not selected into being colored in a particular way (else the numerical targets cannot be
attained). The numerical targets for these colors are complicated, because of this role
(which is asymmetric between the pair of colors σ[i, j] and σ′[i, j]).
(2) The colors in T ∪ T ′ and E ∪ E ′ are organized in symmetric pairs, and each pair
is used to transmit (and check) information. Due to the enforcements alluded to above,
each “selection” coloring of a gadget (there will be only one possible in each group of
gadgets), will force some numbers of vertices to be colored with these pairs of colors,
which can be thought of as an information transmission. For example, when a gadget in
G[4, 2] is colored with a “selection” coloring, this indicates that the edge from which the
gadget arises is selected as the edge from the color class V [4] of G, to the color class
V [2]. There is a pair of colors that handles the information transmission concerning
which edge is selected between the groups G[2, 4] and G[4, 2]. (Of course, something
has to check that the edge selected in one direction, is the same as the edge selected in
the other direction.) There is something neat about the dual-color transmission channel
for this information. Each vertex and edge has two unique identification numbers, “up”
and “down”, that sum to Z0. To continue the concrete example, G[4, 2] uses the (number
of vertices colored by the) pair of colors ε[2, 4] and ε′[2, 4] to communicate to G[2, 4]
about the edge selected. The signal from one side consists of e[up] vertices colored
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ε[2, 4] and e[down] vertices colored ε′[2, 4]. The signal from the other side consists of
e[down] vertices colored ε[2, 4] and e[up] vertices colored ε′[2, 4]. Thus the numerical
targets for these colors allow us to check whether the same edge has been selected in
each direction (if each color target of Z0 is met). There is the additional advantage that
the amount of signal in each direction is the same: in each direction a total of Z0 colored
vertices, with the two paired colors, constitutes the signal. This means that, modulo the
discussion in (1) above, when an edge is not selected, the corresponding non-selection
coloring involves uniformly the same number (i.e., Z0) of vertices colored “otherwise”
for each of the (M − 1) gadgets colored in the non-selection way: this explains (part
of) the (k − 1)(M − 1)Z0 term in (4) of the numerical targets.

(3) In a similar manner to the communication task discussed above, each of the k − 1
groups of gadgets G[i, ] need to check that each has selected an edge from V [i] that
originates at the same vertex in V [i]. Hence there are pairs of colors that provide a
communication channel similar to that in (2) for this information. This role is played
by the colors in T ∪ T ′. (Because of the bookkeeping issues, this becomes somewhat
intricate in the formal definition of the reduction.)

The above remarks are intended to aid an intuitive understanding of the reduction.
We now return to a more formal argument.

Claim 1. If G has a k-multicolor clique, then G′ is a yes-instance to NLCP.
The proof of this claim is relatively straightforward. The gadgets corresponding to

the edges of a k-clique in G are colored in a manner that indicates “selected” (for both
the forward and the backward gadgets) and all other gadgets are colored in manner
that indicates “non-selected”. The coloring that corresponds to “selected” colors the
root vertex with the color σ[i, j], and this forces the rest of the coloring of the gadget.
The coloring that corresponds to “non-selected” colors the root vertex with the color
σ′[i, j]. In this case the coloring of the rest of the gadget is not entirely forced, but if the
grandchildren vertices of the gadget are also colored with σ′[i, j], then all the numerical
targets will be met.

Claim 2. Suppose that Γ is a list coloring of G′ that meets all the numerical targets.
Then in each group of gadgets, exactly one gadget is colored in a way that indicates
“selection”.

We argue this as follows. There cannot be two gadgets in any group colored in the
“selection” manner, since this would make it impossible to meet the numerical target
for a color in S. If no gadget is colored in the “selection” manner, then again the targets
cannot be met for the colors in S ∪ S′ used in the lists for this group of gadgets.

Claim 3. Suppose that Γ is a list coloring of G′ that meets all the numerical targets.
Then in each group of gadgets, every gadget that is not colored in a way that indicates
“selection” must have all of its grandchildren vertices colored with the appropriate color
in S′.

Claim 3 follows from Claim 2, noting that the numerical targets for the S′ colors
cannot be met unless this is so.

It follows from Claims 2 and 3, that if Γ is a list coloring of G′ that meets all
the numerical targets, then in each group of gadgets, exactly one gadget is colored
in the “selection” manner, and all other gadgets are colored in a completely determined
“nonselection” manner. Each “selection” coloring of a gadget produces a numerical
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signal (based on vertex and edge identification numbers) carried by the colors in T ∪T ′

and E ∪ E ′, with two signals per color. The target of Z0 for these colors can only be
achieved if the selection colorings indicate a clique in G.

Theorem 4. NLCP is W[1]-hard for trees, parameterized by the number of colors that
appear on the lists.

The reduction from NLCP to LECP is almost trivial, achieved by padding with isolated
vertices having single-color lists.

The reduction from LECP to ECP is described as follows. Create a clique of size r,
the number of colors occuring on the lists, and connect the vertices of this clique to the
vertices of G′ in a manner that enforces the lists. Since G′ is a tree, the treewidth of the
resulting graph is at most r. We have:

Theorem 5. EQUITABLE COLORING is W [1]-hard, parameterized by treewidth.

3 Discussion and Open Problems

Structured optimization problems, such as the coloring problems considered here, have
strong claims with respect to applications. A source of discussion of these applications
is the recent dissertation of Marx [Ma04]. It seems interesting and fruitful to consider
such problems from the parameterized point of view, and to investigate how such extra
problem structure (which tends to increase both computational complexity, and real-
world applicability) interacts with parameterizations (such as bounded treewidth), that
frequently lead to tractability.

The outcome of the investigation here of some well-known locally and globally con-
strained coloring problems has turned up a few surprises: first of all, that the LIST

CHROMATIC NUMBER problem is actually FPT, when we parameterize by treewidth.
It is also somewhat surprising that this good news does not extend to LIST COLORING,
PRECOLORING EXTENSION or EQUITABLE COLORING, all of which turn out to be
hard for W [1].

There are many interesting open problems concerning the parameterized complexity
of “more structured” combinatorial optimization problems on graphs, parametered by
treewidth. We mention the following two:
(1) Is the LIST EDGE CHROMATIC NUMBER problem fixed-parameter tractable, pa-
rameterized by treewidth?
(2) One can formulate a “list analogue” of the HAMILTONIAN PATH problem as fol-
lows: each vertex is assigned a list that is a subset of {1, 2, ..., n} indicating the positions
in the ordering of the n vertices implicit in a Hamiltonian path that are permitted to the
vertex. Is the LIST HAMILTONIAN PATH problem FPT, parameterized by treewidth?
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Abstract. The 2-Interval Pattern problem over its various models and
restrictions was proposed by Vialette for RNA secondary structure pre-
diction, and has attracted a lot of attention from the theoretical com-
puter science community in recent years. In the framework of 2-intervals,
the preceding-and-crossing model is an especially interesting model for
RNA secondary structures with pseudoknots. In this paper, we present
a polynomial time approximation scheme for the Weighted 2-Interval
Pattern problem over the preceding-and-crossing model. Our algorithm
improves the previous best 2-approximation algorithm, and closes this
problem in terms of the approximation ratio.

1 Introduction

Vialette [14] proposed a geometric representation of the RNA secondary struc-
ture as a set of 2-intervals. Given a single-stranded RNA molecule, a subsequence
of consecutive bases of the molecule can be represented as an interval on a sin-
gle line, and a possible (stacked) pairing of two disjoint subsequences can be
represented as a 2-interval, which is the union of two disjoint intervals. Given a
candidate set of 2-intervals, a pairwise-disjoint subset restricted to certain pre-
specified geometrical constraints gives a macroscopic approximation of the RNA
secondary structure.

We review some definitions [14]. A 2-interval D = (I, J) consists of two disjoint
(closed) intervals I and J such that I < J , that is, I is completely to the left
of J . Consider two 2-intervals D1 = (I1, J1) and D2 = (I2, J2). D1 and D2 are
disjoint if the four intervals I1, J1, I2, and J2 are pairwise disjoint. Define three
binary relations for disjoint pairs of 2-intervals:

Preceding: D1 < D2 ⇐⇒ I1 < J1 < I2 < J2.
Nesting: D1 � D2 ⇐⇒ I2 < I1 < J1 < J2.
Crossing: D1 � D2 ⇐⇒ I1 < I2 < J1 < J2.

The two 2-intervals D1 and D2 are R-comparable for some R ∈ {<, �, �} if either
(D1, D2) ∈ R or (D2, D1) ∈ R. (For example, D1 and D2 are �-comparable if
either D1 � D2 or D2 � D1.) Note that the set of binary relations {<, �, �}
is complete in the sense that any two disjoint 2-intervals are R-comparable for

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 378–387, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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some R ∈ {<, �, �}. Given a model R, which is a non-empty subset of {<, �, �}
(there are 7 such subsets), a set D of 2-intervals is R-structured if any two
distinct 2-intervals in D are R-comparable for some R ∈ R. Given a set D
of 2-intervals and a model R, the 2-Interval Pattern problem is to find a
maximum-size subset of R-structured 2-intervals in D. If each interval D ∈ D is
associated with a non-negative weight w(D), then we also have the Weighted

2-Interval Pattern problem [7], which is to find a subset of R-structured
2-intervals in D with the maximum total weight.

3
1

2

Fig. 1. Three 2-intervals

We refer to Figure 1 an example. Each interval is depicted by a thick horizontal
segment; each 2-interval is depicted by an arc connecting two disjoint intervals.
For the three 2-intervals D1, D2, and D3 in Figure 1, we have D2 � D1, D1 � D3,
and D2 < D3; the set {D1, D2, D3} is {<, �, �}-structured, the subset {D1, D2}
is {�}-structured.

Beside the various models R, various restrictions can also be imposed on the
input 2-interval set D for the 2-Interval Pattern problem. Define the support
of a set D of 2-intervals, Support(D), as the set of intervals {I, J | (I, J) ∈ D}.
There are four common types of restrictions:

Unlimited: No restrictions.
Balanced: Every 2-interval in D consists of two intervals of equal length.
Unitary: Every interval in the support of D has a unit length.
Point: The intervals in the support of D are pairwise disjoint (therefore they

can be considered as intervals of unit length, or, points).

The three types of restrictions, unlimited, unitary, and point, were originally
introduced by Vialette [14]. The balanced restriction was later proposed by
Crochemore et al. [6] because it is natural in the biological setting: a helix of
stacking base pairs in the RNA secondary structure can be represented com-
pactly by a balanced 2-interval.

Since Vialette’s pioneering work [14], the 2-Interval Pattern problem has
been extensively studied. We summarize the complexities of the problem over
its various models and restrictions in Table 1. Because the � relation directly
models the pseudoknots in RNA secondary structures, it is not surprising that
the 2-Interval Pattern problem is NP-hard or even APX-hard over the three
models {<, �, �}, {�, �}, and {<, �}; these results [2,4] are compatible with the
hardness results for the other models [1,12,8,11] and are consistent with our
knowledge that RNA secondary structures with pseudoknots are difficult to pre-
dict in practice. Naturally, researchers have directed their attention to the design
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Table 1. The complexities of the 2-Interval Pattern problem. †L = O(n2) and
d = O(n) [15,5].

Unlimited Balanced Unitary Point
{<, �, �} APX-hard [2] O(n

√
n) [13]

{�, �} APX-hard [2] O(n log n + L†) [15,5]
{<, �} NP-complete [4] complexity unknown
{<, �} O(n log n + d†n) [15,5]

{�} O(n log n + L†) [15,5]
{�} O(n log n) [4]
{<} O(n log n) [14]

Table 2. The best approximation ratios for the Weighted 2-Interval Pattern

problem. �The contributions from this paper are marked by “old → new”. †For unit
weight case, the best approximation ratio is 2.0 + ε [10]; for arbitrary weight case, a
(2.5 + ε)-approximation is implicit using the same 5-claw-free technique [10].

Unlimited Balanced Unitary Point
{<, �, �} 4 [2] 4 [6,7] 2.5 + ε [10] † N/A
{�, �} 4 [6,7] 4 [6,7] 2.5 + ε [10] † N/A
{<, �} 2 [9] → 1 + ε � 2 [9] → 1 + ε � 2 [9] → 1 + ε � 2 [6,7] → 1 + ε �

of efficient approximation algorithms. We refer to Table 2 for the best approxi-
mation ratios of polynomial time approximation algorithms for the Weighted

2-Interval Pattern problem. In this paper, we present a polynomial time
approximation scheme for the Weighted 2-Interval Pattern problem over
the {<, �} model, which improves the previous best 2-approximation [9].

2 4

31

Fig. 2. A chain of pseudoknots

We note that the Weighted 2-Interval Pattern problem over the {<, �}
model is one of the most interesting variants of the 2-Interval Pattern prob-
lem. In theory, this variant is interesting because there are two open questions
about it. As we can see from Table 1, the 2-Interval Pattern problem over the
{<, �} model on point-type input is the last case whose complexity remains un-
known. It was also unknown whether the 2-Interval Pattern problem over the
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{<, �} model is APX-hard [7], as the other two models {<, �, �} and {�, �}. (In
this paper, we settle the second open question [7] and show that the Weighted

2-Interval Pattern problem over the {<, �} model is not APX-hard.) In prac-
tice, the {<, �} model is also interesting because it captures some of the most
interesting RNA secondary structures with pseudoknots. We refer to Figure 2 for
a special {<, �}-structured pattern. Bereg et al. [3] recently studied optimization
problems on RNA structures with such “loop chains.” Lyngsø and Pedersen [12]
also noted that this “chain of pseudoknots” structure is particularly useful for
comparing different types of pseudoknots that can be handled by the existing
algorithms.

The rest of the paper is organized as follows. In Section 2, we introduce the
idea of our algorithm. In Section 3, we present the details of our algorithm. We
conclude in Section 4.

2 The Idea

For two 2-intervals D1 = (I1, J1) and D2 = (I2, J2), define a composite binary
relation �< such that

D1 �< D2 ⇐⇒ D1 < D2 or D1 � D2.

From the definitions of the two relations < and �,

D1 < D2 ⇐⇒ I1 < J1 < I2 < J2

and
D1 � D2 ⇐⇒ I1 < I2 < J1 < J2,

we have
D1 �< D2 =⇒ I1 < I2 and J1 < J2.

Just as the < relation specifies a total order for disjoint intervals, the �< relation
specifies a total order for {<, �}-structured 2-intervals.

Let S be a set of {<, �}-structured 2-intervals. Consider S as a sequence of
2-intervals ordered by the �< relation. Denote by S[i] the element (2-interval)
with rank i in S. Denote by S[i, j] the subsequence S[i]S[i + 1] · · · S[j]. Define
the backbone elements of S as follows:

1. S[1] is a backbone element;
2. If S[i] is a backbone element, and if S[i] < S[j] and S[i] � S[k] for all

i < k < j, then S[j] is also a backbone element.

For two consecutive backbone elements S[i] and S[j], define a stripe T (i, j) as
the subsequence S[i+1, j−1]. By definition, each stripe is a set of {�}-structured
non-backbone elements.

We refer to Figure 3 for an example of eight {<, �}-structured 2-intervals
ordered in a sequence. The 2-intervals at indices 1, 4, 7, and 8 are the four
backbone elements. The stripe between the two consecutive backbone elements
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2 3

4

5 6

7

Fig. 3. Backbone elements and stripes

1 and 4 consists of two non-backbone elements 2 and 3; the stripe between 4 and
7 consists of 5 and 6; the stripe between 7 and 8 is empty.

A sequence is c-striped if at most c consecutive stripes of the sequence are
non-empty. (The sequence in Figure 3 is 2-striped.) With the backbone elements
at indices i1, i2, . . . , ik, the sequence S can be represented by backbone elements
and stripes in an alternating pattern:

S[i1]T (i1, i2)S[i2]T (i2, i3)S[i3]T (i3, i4)S[i4] . . .

Although S itself may not be c-striped, it contains c-striped subsequences. For
example, the following two subsequences of S are both 1-striped:

S[i1]S[i2]T (i2, i3)S[i3]S[i4]T (i4, i5)S[i5] . . .

S[i1]T (i1, i2)S[i2]S[i3]T (i3, i4)S[i4]S[i5] . . .

The two subsequences together cover the sequence S: each backbone element
is covered twice; each non-backbone element is covered once. This observation
immediately suggests that a 2-approximation of the Weighted 2-Interval

Pattern problem over the {<, �} model can be obtained by finding a 1-striped
sequence of the maximum weight. Indeed, this is exactly the idea behind the
previous 2-approximation [9] for the 2-Interval Pattern problem over the
{<, �} model. In this paper, we extend this idea further to obtain a polynomial
time approximation scheme.

For each k, 0 ≤ k ≤ c, we can obtain a c-striped subsequence of S by deleting
the stripes T (ij , ij+1) such that j mod (c + 1) = k. The c + 1 subsequences
together cover the sequence c times: each backbone element is covered c + 1
times; each non-backbone element is covered c times. Therefore, the total weight
of the c + 1 subsequences is at least c times the weight of the sequence S. By
the pigeon-hole principle, at least one of the c + 1 subsequences has a weight at
least c

c+1 times the weight of S. This implies that a c-striped sequence of the
maximum weight is a (1 + 1/c)-approximation for the Weighted 2-Interval

Pattern problem over the {<, �} model.

3 The Algorithm

In this section, we design a dynamic programming algorithm to find a c-striped
sequence with the maximum weight, thereby achieving a (1+1/c)-approximation
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for the Weighted 2-Interval Pattern problem over the {<, �} model. For
simplicity, we only demonstrate how to compute the maximum weight of a c-
striped sequence. The actual sequence with the maximum weight can be re-
constructed in the same running time using standard techniques in dynamic
programming.

3.1 Canonical Sequences and Chains

Given an input set D of 2-intervals, we first construct two zero-weight dummy
elements A and Z such that A < D < Z for every element D ∈ D, then extend D
with A and Z. Since the two dummy elements have zero weight, the maximum
weight of a c-striped sequence remains the same after the extension, and we
can conveniently assume that A and Z, respectively, are the first and the last
elements of the optimal c-striped sequence.

By definition, the first element of a sequence of {<, �}-structured 2-intervals is
always a backbone element. If the last element of the sequence is also a backbone
element, then the sequence is canonical. (For example, the sequence in Figure 3
is canonical, and the sequence in Figure 2 is not.) For each element D ∈ D,
denote by W [D] the maximum weight of a canonical c-striped sequence anchored
between A and D (that is, with A and D, respectively, as the first and the last
elements in the sequence), and denote by W0[D] the maximum weight of such a
canonical sequence with the additional constraint that its last stripe (the stripe
between the second-to-last and the last backbone elements) is empty. The entry
W [Z] denotes the maximum weight of a canonical c-striped sequence anchored
between A and Z, and is the optimal solution.

We next show how to compute the two tables W [D] and W0[D]. Define a chain
as a canonical sequence with at most c+1 backbone elements (and hence at most
c stripes). For every pair of elements C, D ∈ D, C < D, denote by w[C, D] the
maximum weight of a chain with C and D, respectively, as the first and the
last backbone elements. Since a canonical c-striped sequence is a concatenation
of (independent) chains separated by empty stripes, we can compute the tables
W [D] and W0[D] with the recurrence

⎧
⎪⎪⎨

⎪⎪⎩

W0[D] = maxC<D

{
W [C] + w(D)

}

W [D] = max

{
W0[D]
maxC<D

{
W0[C] − w(C) + w[C, D]

} (1)

and the base condition W [A] = W0[A] = 0. Intuitively, the element C in the
recurrence is the last backbone element before D.

3.2 Computing the Chain Table

We next show how to compute the chain table w[C, D]. Define an i-chain as a
chain with exactly i stripes (and exactly i+1 backbone elements). For each pair
of elements C, D ∈ D, C < D, and for each i, 1 ≤ i ≤ c, denote by wi[C, D] the
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maximum weight of an i-chain with C and D as the first and the last backbone
elements, respectively. We have

w[C, D] = max
1≤i≤c

wi[C, D]. (2)

The problem reduces to computing the i-chain table wi[C, D] for each i.
Denote by wi[B1, B2, . . . , Bi+1] the maximum weight of an i-chain with

B1 < B2 < . . . < Bi+1

as its i + 1 backbone elements. We have

wi[C, D] = max
C=B1<B2<...<Bi+1=D

wi[B1, B2, . . . , Bi+1]. (3)

The problem further reduces to computing wi[B1, B2, . . . , Bi+1], which we will
explain next.

By the definition of the backbone elements, each element D in the stripe
between two consecutive backbone elements Bk and Bk+1 of an i-chain must
satisfy the constraint Bk � D �< Bk+1. For each k, 1 ≤ k ≤ i, define

Dk = {D | D ∈ D and Bk � D �< Bk+1}.

The problem then reduces to selecting a subset D′
k ⊆ Dk for each k, 1 ≤ k ≤ i,

such that the set of elements

C = {B1} ∪ D′
1 ∪ {B2} ∪ . . . ∪D′

i ∪ {Bi+1}

is an i-chain with the maximum weight, which is achieved when the weight of
the non-backbone elements in D′

1 ∪ . . . ∪ D′
k is maximized.

3.3 Maximizing the Weight of Non-backbone Elements with
Specified Backbone Elements

We introduce some more notations. For a 2-interval D, denote by L(D) and R(D),
respectively, the left and the right intervals of D. For an interval I, denote by l(I)
and r(I), respectively, the coordinates of the left and the right endpoints of I.

To ensure that C is indeed an i-chain, the following two conditions are both
necessary and sufficient:

1. The elements in D′
k are {�}-structured, 1 ≤ k ≤ i.

2. The elements in D′
k are disjoint from the elements in D′

k+1, 1 ≤ k ≤ i − 1.

To compute the maximum weight of the non-backbone elements, we again use
a dynamic programming approach. Use i + 1 coordinates x1, x2, . . . , xi+1, where
each coordinate xk has a valid range [x′

k, x′′
k]:

– For k = 1, x′
1 = r(L(B1)) and x′′

1 = l(R(B1));
– For 2 ≤ k ≤ i + 1, x′

k = r(R(Bk−1)) and x′′
k = l(R(Bk)).



A PTAS for the Weighted 2-Interval Pattern Problem 385

Denote by w[x1, x2, . . . , xi+1] the maximum weight of the subsets D′
1, . . . ,D′

k

that satisfy both the two conditions stated earlier and an additional condition 3
in the following, which limits the choice of candidate elements from Dk:

3. Each element D in D′
k ⊆ Dk satisfies r(L(D)) ≤ xk and r(R(D)) ≤ xk+1,

1 ≤ k ≤ i.

Finally, the table w[x1, x2, . . . , xi+1] can be computed with the recurrence

w[x1, x2, . . . , xi+1] =

max
{

max1≤k≤i+1 w[x1, x2, . . . , xk − 1, . . . , xi+1]
max([a,xk],[b,xk+1])∈Dk

w[x1, x2, . . . , a − 1, b − 1, . . . , xi+1],
(4)

and the base condition w[x′
1, . . . , x

′
i+1] = 0. The entry w[x′′

1 , . . . , x′′
i+1] gives the

maximum weight of the non-backbone elements.

1

2 3

4

5 6

7

a b

Fig. 4. Dynamic programming

We refer to Figure 4 for an example. The three solid vertical lines specify the
three coordinates x1, x2, and x3; the three shaded areas specify the ranges of the
coordinates. The two dashed vertical lines (together with the two solid vertical
lines) for x1 and x2 illustrate the recurrence step involving the element 3. This
completes the description of our algorithm.

We now give an analysis of the running time of our algorithm. For an input of
n 2-intervals, we can assume that the coordinates of the interval endpoints are
between 1 and 4n. Recurrence (4) takes O(ni+2) time for each set of backbone
elements B1, . . . , Bi+1. Recurrence (3) enumerates O(ni+1) sets of backbone el-
ements for each i, 1 ≤ i ≤ c. The total time for computing the chain table
w[C, D] using Equation (2) is therefore O(n2c+3). With w[C, D] computed, Re-
currence (1) clearly needs at most O(n2) time. We have the following theorem:

Theorem 1. Our algorithm approximates the Weighted 2-Interval Pat-

tern problem over the {<, �} model with a ratio of 1+1/c and runs in O(n2c+3)
time for any fixed integer c ≥ 2.
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4 Concluding Remarks

The Weighted 2-Interval Pattern problem over the {<, �} model can be
approximated arbitrarily well by our polynomial time approximation scheme;
as a result, this variant is not APX-hard. This settles an open question by
Crochemore et al. [7].

Our algorithm is mainly of theoretical interest at this time; its running time
is prohibitive as c becomes large. In practice, however, the optimal {<, �}-
structured pattern may be a c-striped sequence for a small c. It is quite possible
that, with additional heuristics and careful implementation, our algorithm can
be made practical.

Our (1+1/c)-approximation is achieved by solving a special c-striped sequence
optimally. From this result, we gain the insight that the most difficult case
of the problem happens when the optimal structure contains very long chains
of pseudoknots. This is intuitively consistent with the result by Lyngsø and
Pedersen [12], who showed that the “chain of pseudoknots” structure becomes
increasingly difficult to handle as chain length grows.

In future work, we will try to improve the time complexity of our approxima-
tion algorithm, and we will investigate its usefulness in the prediction of RNA
secondary structures with pseudoknots.
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