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Abstract. This paper deals with problems which fall into the domain
of selfish scheduling: a protocol is in charge of building a schedule for
a set of tasks without directly knowing their length. The protocol gets
these informations from agents who control the tasks. The aim of each
agent is to minimize the completion time of her task while the protocol
tries to minimize the maximal completion time. When an agent reports
the length of her task, she is aware of what the others bid and also of
the protocol’s algorithm. Then, an agent can bid a false value in order to
optimize her individual objective function. With erroneous information,
even the most efficient algorithm may produce unreasonable solutions.
An algorithm is truthful if it prevents the selfish agents from lying about
the length of their task. The central question in this paper is: “How ef-
ficient a truthful algorithm can be? We study the problem of scheduling
selfish tasks on parallel identical machines. This question has been raised
by Christodoulou et al [8] in a distributed system, but it is also relevant
in centrally controlled systems. Without considering side payments, our
goal is to give a picture of the performance under the condition of truth-
fulness.

Keywords: scheduling, algorithmic game theory, truthful algorithms.

1 Introduction

The Internet is a complex distributed system involving many autonomous entities
(agents). Protocols organize this network, using the data held by these agents and
trying to maximize the social welfare. Agents are often supposed to be trustworthy
but this assumption is unrealistic in some settings as they might try to manipulate
the protocol by reporting false information in order to maximize their own profit.
With false information, even the most efficient protocol may lead to unreasonable
solutions if it is not designed to cope with the selfish behavior of the single entities.
Then, it is natural to ask the following question: How efficient a protocol can be if
it guarantees that no agent has incentive to lie?
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In this paper, we deal with the problem of scheduling n selfish tasks on m
identical parallel machines. We consider two distinct settings in which the aim is
to minimize the makespan, i.e. the maximum completion time. The first setting
is centralized, while the second one is distributed. Both problems share the
following characteristics. Each task is owned by an agent1. The length li of a
task i is known to its owner only. The agents, considered as players of a non-
cooperative game, want to minimize the completion time of their tasks. The
protocol builds the schedule with rules known to all players and fixed in advance.
In particular, mixing the execution of two jobs (like round-robin) is not allowed.
Before the execution begins, the agents report a value representing the length of
their tasks. We assume that every agent behave rationally and selfishly. Each one
is aware of the situation the others face and tries to optimize her own objective
function. Thus an agent can report a value which is not equal to her real length.
Practically, an agent can add “fake” data to artificially increase the length of
her task if it decreases her completion time. This selfish behavior can prevent
the protocol to produce a reasonable (i.e. close to the social welfare) schedule.
Without considering side payments, which are often used with the aim of inciting
the agents to report their real value, some algorithmic tools can simultaneously
offer a guarantee on the quality of the schedule (its makespan is not arbitrarily
far from the optimum) and guarantee that the solution is truthful (no agent can
lie and improve her own completion time). For both centralized and distributed
settings, our goal is to give lower and upper bounds on the performance under
the condition of truthfulness. It is important to mention that we do not strictly
restrict the study to polynomial time algorithms.

Since the length of a task is private, each agent bids a value which represents
the length of her task. We assume that an agent cannot shrink the length of her
task (otherwise she will not get her result), but if she can decrease her completion
time by bidding a value larger than the real one, then she will do so. We also
assume that an agent does not report a distribution on different lengths. A player
may play according to a distribution, but she just announces the outcome, so
the protocol does not know if she lies.

In the centralized setting, the strategy of agent i is a value bi representing
the length of her task. The protocol, called an algorithm, is in charge of indi-
cating when and on which machine a task will be scheduled. An algorithm is
truthful when no agent has incentive to report a false value. We focus on the
performance of truthful algorithms with respect to the makespan of the sched-
ule. In particular, we are interested in giving lower and upper bounds on the
approximation ratio that a (deterministic or randomized) truthful algorithm can
achieve. For example, a truthful algorithm can be obtained by greedily schedul-
ing the tasks following the increasing order of their lengths. This algorithm,
known as SPT, produces a (2−1/m)-approximate schedule [11]. Are there truth-
ful algorithms with better approximation guarantee for the considered scheduling
problem?

1 We equally refer to a task and its owner since we assume that two tasks cannot be
held by the same agent.
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In the distributed setting, the strategy of agent i is a couple (Mi, bi), where
Mi is the machine which will execute the task and bi is the length bidden.
As opposed to the centralized setting, the agents choose their machine and Mi

can be a probability distribution on different machines. The protocol, called
a coordination mechanism in this context [8], consists in selecting a scheduling
policy for each machine (e.g. scheduling the tasks in order of decreasing lengths).
An important and natural condition is due to the decentralized nature of the
problem: the scheduling on a machine should depend only on the tasks assigned
to it, and should be independent of the tasks assigned to the other machines.
A coordination mechanism is truthful when no agent has incentive to lie on the
length of her task. Using the price of anarchy [14], we study the performance
of truthful coordination mechanisms with respect to the makespan. The price
of anarchy of a coordination mechanism is, in the context, equal to the largest
ratio between the makespan of a schedule where agent’s strategies form a Nash
equilibrium2 and the optimal makespan.

Interestingly, it is possible to slightly transform the SPT algorithm in a truth-
ful coordination mechanism, as suggested in [8]: each machine Pj schedules its
tasks in order of increasing lengths, and adds at the very beginning of the sched-
ule a small delay equal to (j − 1)ε times the length of the first task. By this
way, and if ε is small enough, the schedule obtained in a Nash equilibrium is
similar to the one returned by the SPT algorithm (excepted the small delays at
the beginning of the schedule). When ε is negligible, the price of anarchy of this
coordination mechanism is 2− 1/m. Are there truthful coordination mechanisms
with better price of anarchy for the considered scheduling problem?

For both centralized algorithms and coordination mechanisms, we consider
the two following execution models:

– Strong model of execution: If the owner of task i bids bi ≥ li, then the
execution time will still be li (i.e. the task will be completed li time units
after its start).

– Weak model of execution: If the owner of task i bids bi ≥ li, then the
execution time will be bi (i.e. the task will be completed bi time units after
its start).

The strong execution model corresponds to the case where tasks have to
be linearly executed – from their beginning to their end–, whereas the weak
execution model corresponds to the case where a task can be executed in any
order3 (and the “fake” part of the task is not anymore necessarily executed at
the end), or when the machine returns the result of the task only at the end of
its execution. Depending on the applications of the scheduling problem, either
the strong or the weak model of execution will be used.
2 Situation in which no agent can unilaterally change her strategy and improve her

own completion time. A Nash equilibrium is pure if each agent has a pure strategy
: each agent chooses only one machine. A Nash equilibrium is mixed if the agents
give a probability distribution on the machines on which they will go.

3 Nevertheless, the execution of two jobs is never interlaced.
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Related Work
The field of Mechanism Design can be useful to deal with the selfishness of the
agents. Its main idea is to pay the agents to convince them to perform strate-
gies that help the system to optimize a global objective function. The most
famous technique for designing truthful mechanisms is perhaps the Vickrey-
Clarke-Groves (VCG) mechanism [20,7,12]. However, when applied to combina-
torial optimization problems, this mechanism guarantees the truthfulness under
the hypothesis that the objective function is utilitarian (i.e. the value of the ob-
jective function is equal to the sum of the agents individual objective functions)
and that the mechanism is able to compute the optimum. Archer and Tardos
introduce in [4] a method which allows to design truthful mechanisms for several
combinatorial optimization problems to which the VCG mechanism does not
apply. However, both approaches cannot be applied to our problem.

Scheduling selfish agents has been intensively studied these last years, started
with the seminal work of Nisan and Ronen [17], and followed by a series of
papers [1,2,4,6,9,15,16]. However, all these works differ from ours since in their
case, the selfish agents are the machines while here we consider that the agents
are the tasks. Furthermore, they use side payments whereas we focus on truthful
algorithms without side payments.

A more closely related work is the one of Christodoulou et al [8] who consid-
ered the same model but only in the distributed context of coordination mecha-
nisms. They proposed different coordination mechanisms with a price of anarchy
better than the one of the SPT coordination mechanism. Nevertheless, these
mechanisms are not truthful. In [13], the authors gave coordination mechanisms
for the same model for related machines (i.e. machines can have different speeds),
but their mechanisms are also not truthful.

In [3], the authors gave a truthful randomized algorithm for the strong model
of execution defined before, and they gave, for the weak model of execution, a
coordination mechanism which is truthful if there are two machines and if the
lengths of the tasks are powers of a certain constant. An optimal (but exponential
time) truthful randomized algorithm and a truthful randomized PTAS for the
weak model of execution appear in [18,19]. The technique consists in computing
an optimal (resp. a (1+ ε)-approximate) schedule and each machine executes its
tasks in a random order (the truthfulness is due to the introduction of fictitious
tasks which guarantee that all the machines have the same load).

Another related work is the one of Auletta et al. who considered in [5] the
problem of scheduling selfish tasks in a centralized case. Their work differs from
ours since they considered that each machine uses a round and robin policy and
thus that the completion of each task is the completion time of the machine on
which the task is (this model is known as the KP model). They considered that
the tasks can lie in both directions, and that there are some payments.

Contribution and Organization of the Article
Sections 3 and 4 are devoted to the centralized setting. In particular, we study
the strong (resp. weak) model of execution in Section 3 (resp. Section 4). Results
on the distributed setting are presented in Section 5 for both execution models.
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Table 1 gives a summary of the bounds that we are aware of (those with a
† are presented in this article). LB stands for “Lower bound”, UB for “Upper
bound” and NE for “Nash equilibria”. Due to space constraints, some proofs are
omitted.

Table 1. Bounds for m identical machines

Strong model of execution:
Deterministic Randomized
LB UB LB UB

centralized setting 2 − 1
m

† 2 − 1
m

[8] 3
2 − 1

2 m
† 2 − 1

m+1

( 5
3 + 1

3m

)
[3]

distributed 2 − 1
m

(pure NE) † 2 − 1
m

[8] 3
2 − 1

2 m
† 2 − 1

m

setting 3
2 − 1

2 m
(mixed NE) †

Weak model of execution:
Deterministic Randomized
LB UB LB UB

centralized setting m = 2 : 1 +
√

105−9
12 > 1.1 † 4

3 − 1
3 m

† 1 [18,19] 1 [18,19]
m ≥ 3 : 7

6 > 1.16 †
distributed 1+

√
17

4 > 1.28 (pure NE) † 2 − 1
m

1 +
√

13−3
4 > 1.15 † 2 − 1

m

setting (pure NE)

2 Notations

We are given m machines (or processors) {P1, . . . , Pm}, and n tasks {1, . . . , n}.
Let li denote the real execution time (or length) of task i. We use the identifi-
cation numbers to compare tasks of the same (bidden) lengths: we will say that
task i, which bids bi, is larger than task j, which bids bj , if and only if bi > bj

or (bi = bj and i > j). It is important to mention that an agent cannot lie on
her (unique) identification number.

A randomized algorithm can be seen as a probability distribution over deter-
ministic algorithms. We say that a (randomized) algorithm is truthful if for every
task the expected completion time when she declares her true length is smaller
than or equal to her expected completion time in the case where she declares a
larger value. More formally, we say that an algorithm is truthful if Ei[li] ≤ Ei[bi],
for every i and bi ≥ li, where Ei[bi] is the expected completion time of task Ti if
she declares bi. In order to evaluate the quality of a randomized algorithm, we
use the notion of expected approximation ratio.

We will refer in the sequel to the list scheduling algorithms LPT and SPT,
where LPT (resp. SPT) [11] is the algorithm which greedily schedules the tasks,
sorted in order of decreasing (resp. increasing) lengths: this algorithm schedules,
as soon as a machine is available, the largest (resp. smallest) task which has not
yet been scheduled. An LPT (resp. SPT) schedule is a schedule returned by the
LPT (resp. SPT) algorithm.
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3 About Truthful Algorithms for the Strong Model of
Execution

3.1 Deterministic Algorithms

We saw that the deterministic algorithm SPT, which is (2 − 1
m )-approximate, is

truthful. Let us now show that there is no truthful deterministic algorithm with
a better approximation ratio.

Theorem 1. Let us consider that we have m identical machines. There is no
truthful deterministic algorithm with an approximation ratio smaller than 2− 1

m .

Proof. Let us suppose that we have n = m (m − 1) + 1 tasks of length 1. Let
us suppose that we have a truthful deterministic algorithm A which has an
approximation ratio smaller than (2 − 1/m) Let t be the task which has the
maximum completion time, Ct, in the schedule returned by A. We know that
Ct ≥ m.

Let us now suppose that task t bids m instead of 1. We will show that the
completion time of t is then smaller than m. Let OPT be the makespan of an
optimal solution where there are n − 1 = m (m − 1) tasks of length 1 and a task
of length m. We have: OPT = m. Since te approximation ratio of algorithm A is
smaller than (2−1/m), the makespan of the schedule it builds with this instance
is smaller than (2 − 1/m)m = 2 m − 1. Thus, the task of length m starts before
time (m − 1). Thus, if task t bids m instead of 1, it will start before time m − 1
and be completed one time unit after, that is before time m. Thus task t will
decrease its completion time by bidding m instead of 1, and algorithm A is not
truthful.

Note that we can generalize this result to the case of related machines: we have
m machines P1, . . . , Pm, such that machine Pi has a speed vi, v1 = 1, and
v1 ≤ . . . ≤ vm. By this way, the bound becomes 2 − vm∑

m
i=1 vi

.
Concerning the strong model of execution, no deterministic algorithm can

outperform SPT in the centralized setting. Then, it is interesting to consider
randomized algorithms to achieve a better approximation ratio.

3.2 Randomized Algorithms

In [3], the authors present a randomized algorithm which consists in returning a
LPT schedule with a probability 1/(m+1) and a slightly modified SPT schedule
with a probability m/(m+1). They obtain a truthful algorithm whose expected
approximation ratio improves 2 − 1

m but no instance showing the tightness of
their analysis is provided. A good candidate should be simultaneously a tight
example for both LPT and SPT schedules. We are not aware of the existence of
such an instance and we believe in a future improvement of this upper bound.
The following Theorem provides a lower bound.

Theorem 2. Let us consider that we have m identical machines. There is no
truthful randomized algorithm with an approximation ratio smaller than 3

2 − 1
2m .
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Generalizing this result to the case of related machines, the bound becomes
3
2 − vm

2
∑

m
i=1 vi

.

4 About Truthful Algorithms for the Weak Model of
Execution

4.1 A Truthful Deterministic Algorithm

We saw in the Section 3 that SPT is a truthful and (2 − 1/m)-approximate
algorithm for the strong model of execution, and that no truthful deterministic
algorithm can have a better approximation ratio. If we consider the weak model
of execution, we can design a truthful deterministic algorithm, called LPTmirror,
with a better performance guarantee. We are given n tasks {1, . . . , n} which bid
lengths b1, . . . , bn. Make a schedule σLPT with the LPT list algorithm. Let COPT

max

be the optimal makespan. Let p(i) be the machine on which the task i is executed
in σLPT . Let Ci be date at which the task i ends in σLPT . LPTmirror returns
the schedule in which task i is executed on machine p(i) and starts at time(
4/3 − 1/(3m)

)
COPT

max − Ci.

Theorem 3. LPTmirror is a deterministic, truthful and (4
3 − 1

3m )-approximate
algorithm.

Proof. We are given n tasks with true lengths l1, . . . , ln. Let us suppose than
each task has bidden a value, and that task i bids bi > li. This can make the
task i start earlier in σLPT but never later. In addition, the optimal makespan
when i bids bi > li is necessarily larger than or or equal to the optimal makespan
when task i reports its true length.

Let Si be the date at which task i starts to be executed in σLPT . The
completion time of task i in LPTmirror is

(
4/3 − 1/(3 m)

)
OPT − Ci + bi =(

4/3 − 1/(3 m)
)
OPT − Si because Si = Ci − bi. By bidding bi > li, task i

can only increase its completion time in the schedule returned by LPTmirror

because OPT does not decrease and Si does not increase. Thus task i does not
have incentive to lie.

Since the approximation ratio of the schedule obtained with the LPT list algo-
rithm is at most

(
4/3−1/(3m)

)
[11], the schedule returned by LPTmirror is clearly

feasible and its makespan is, by construction,
(
4/3− 1/(3m)

)
-approximate. Thus

LPTmirror is a truthful and (4
3 − 1

3m)-approximate algorithm.

Note that LPTmirror is not a polynomial time algorithm, since we need to know
the value of the makespan in an optimal solution, which is an NP-hard problem
[10]. However, it is possible to have a polynomial time algorithm which is

(
4/3−

1/(3m)
)
-approximate, even if some tasks do not bid their true values. Consider

the following simple algorithm: we first compute a schedule σLPT with the LPT
algorithm. Let p(i) be the machine on which the task i is executed in σLPT , let
Ci be the completion time of task i in σLPT , and let Cmax be the makespan of
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σLPT . We then compute the final schedule σ′ in which task i is scheduled on
p(i) and starts at time Cmax − Ci.

We can show that this algorithm is
(
4/3 − 1/(3m)

)
-approximate (i.e. the

schedule returned by this algorithm is at most
(
4/3−1/(3m)

)
times larger than

the optimal schedule in which all the tasks bid their true values). We can show
this by the following way. We suppose that all the tasks except i have bidden
some values. Let σLPT (bi) be the schedule σLPT obtained when i bids bi, let
Si(bi) be the date at which task i starts to be executed in σLPT (bi), and let
Cmax(σLPT (bi)) be the makespan of σLPT (bi). The completion time of task i
(which bids bi) in σ′ is equal to Cmax(σLPT (bi)) − Si(bi). Since with the LPT
algorithm, tasks are scheduled in decreasing order of lengths, if bi > li then
Si(bi) ≤ Si(li). Thus, whatever the values bidden by the other tasks are, i has
incentive to lie and bid bi > li only if Cmax(σLPT (bi)) < Cmax(σLPT (li)). Since
this is true for each task, no task will unilaterally lie unless this decreases the
makespan of the schedule. The makespan of the schedule σ′ in which all the
tasks bid their true values is

(
4/3−1/(3m)

)
-approximate, and then the solution

returned by this algorithm will also be
(
4/3 − 1/(3m)

)
-approximate.

4.2 Deterministic Algorithms: Lower Bounds

We suppose that the solution returned by an algorithm depends on the length
and the identification number of each task, even those which can be identified
with their unique length.

Theorem 4. Let us consider that we have two identical machines. There is
no truthful deterministic algorithm with an approximation ratio smaller than
1 + (

√
105 − 9)/12 ≈ 1.1039.

Theorem 5. Let us consider that we have m ≥ 3 identical machines. There is no
truthful deterministic algorithm with an approximation ratio smaller than 7/6.

The assumption made to derive Theorems 4 and 5 is, in a sense, stronger than
the usual one since we suppose that the solution returned by an algorithm for
two similar instances (same number of tasks, same lengths but different identi-
fication numbers) can be completely different. If we relax this assumption, i.e.
if identification numbers are only required for the tasks which have the same
length, the bound presented in Theorem 4 can be improved to 7/6.

Theorem 6. Let us consider that we have two identical machines. No truthful
deterministic algorithm can be better than 7/6-approximate if it does not take
into account the identification number of tasks whose length is unique.

5 About Truthful Coordination Mechanisms

Let ρ ≥ 1. If there is no truthful deterministic algorithm which has an approx-
imation ratio of ρ, then there is no truthful deterministic coordination mecha-
nism which always induce pure Nash equilibria and which has a price of anarchy
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smaller than or equal to ρ. Indeed, if this was not the case, then the deter-
ministic algorithm which consists in building the schedule obtained in a pure
Nash equilibrium with this ρ-approximate coordination mechanism would be a
ρ-approximate truthful deterministic algorithm.

Likewise, if there is no truthful (randomized) algorithm which has an approx-
imation ratio of ρ, then there is no truthful coordination mechanism which has
a price of anarchy smaller than or equal to ρ. Indeed, if this was not the case,
the algorithm which consists in building the schedule obtained in a Nash equilib-
rium with this ρ-approximate coordination mechanism would be a ρ-approximate
truthful algorithm.

This observation leads us to the following results for the strong model of
execution. We deduce from Theorem 1 that there is no truthful deterministic
coordination mechanism which always induce pure Nash equilibria and which
has a price of anarchy smaller than 2 − 1/m. Thus there is no truthful coor-
dination mechanism which performs better than the truthful SPT coordination
mechanism, whose price of anarchy tends towards 2 − 1/m. We deduce from
Theorem 2 that there is no truthful coordination mechanism which has a price
of anarchy smaller than 3

2 − 1
2 m . We now consider the weak model of execution.

Theorem 7. If we consider the weak model of execution, there is no truthful
deterministic coordination mechanism which induces pure Nash equilibria, and
which has a price of anarchy smaller than 1+

√
17

4 ≈ 1.28.

Proof. Let us first prove this result in the case where there are two machines,
P1, and P2. Let ε > 0. Let us suppose that there exists a truthful coordination
mechanism M with a price of anarchy of 1+

√
17

4 −ε. Let us consider the following
instance I1: three tasks of length 1. Since M is a deterministic coordination
mechanism which induces pure Nash equilibria, there is at least a task in I1
which has a completion time larger than or equal to 2. Let t be such a task.

Let us first consider this instance I2: we have two tasks of length −1+
√

17
2 ≈

1.56. Since M is (1+
√

17
4 − ε)-approximate, there is one task on each machine,

and each task is completed before time −1+
√

17
2 × 1+

√
17

4 = 2. Thus, when it has
a task of length −1+

√
17

2 , each machine must end it before time 2.
Let us now consider the following instance I3: two tasks of length 1, and a

task of length −1+
√

17
2 . Since M is (1+

√
17

4 − ε)-approximate, the task of length
−1+

√
17

2 is necessarily alone on its machine (without loss of generality, on P2).
As we have seen it, P2 must schedule this task before time 2. Thus, task t of
instance I1, has incentive to bid −1+

√
17

2 instead of 1: by this way it will end
before time 2, instead of a time larger than or equal to 2.
We can easily extend this proof in the case where there are more than 2 machines,
by having m + 1 tasks of length 1 in I1; m tasks of length −1+

√
17

2 in I2; and m

tasks of length 1 and a task of length −1+
√

17
2 in I3.
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Theorem 8. If we consider the weak model of execution, there is no truthful
coordination mechanism which induces pure Nash equilibria, and which has a
price of anarchy smaller than 1 +

√
13−3
4 ≈ 1.15.

6 Conclusion

We showed that, in the strong model of execution, the list algorithm SPT, which
has an approximation ratio of 2 − 1/m is the best truthful deterministic algo-
rithm, and that there is no truthful randomized algorithm which has an ap-
proximation ratio smaller than 3/2 − 1/(2 m). On the contrary, if we relax the
constraints on the execution model, i.e. if the result of a task which bid b is
given to this task only b time units after its start, then we can obtain better re-
sults. In this model of execution, there is a truthful 4/3 − 1/(3 m)-approximate
deterministic algorithm and a truthful optimal randomized algorithm. For both
execution models, we also gave lower bounds on the approximation ratios that
a truthful coordination mechanism can have.

As a future work, it would be interesting to improve the results for which a gap
between the lower and the upper bound exists. For example, we believe that the
lower bound 1+

√
17

4 (lower bound on the performance of a truthful deterministic
coordination mechanism for the weak model of execution) can be improved to
3/2 for two machines.

Another direction would be to restrict the study to truthful algorithms (or
coordination mechanisms) which run in polynomial time. Giving improved lower
bounds which rely on a computational complexity argument would be very in-
teresting.

Acknowledgments. We thank Elias Koutsoupias for helpful suggestions and
discussions on the problem.
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15. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

16. Mu’alem, A., Schapira, M.: Setting lower bounds on truhfulness. In: Proc. of SODA
2007 (2007)

17. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. STOC 1999, pp.
129-140 (1999)

18. Pascual, F.: Optimisation dans les réseaux : de l’approximation polynomiale à la
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