

Lecture Notes in Computer Science 4598
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Guohui Lin (Ed.)

Computing and
Combinatorics

13th Annual International Conference, COCOON 2007
Banff, Canada, July 16-19, 2007
Proceedings

13

Volume Editor

Guohui Lin
Algorithmic Research Group and Bioinformatics Research Group
Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2E8, Canada
E-mail: ghlin@cs.ualberta.ca

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, G.2, I.3.5, C.2.3-4, E.1, E.5, E.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73544-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73544-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12088638 06/3180 5 4 3 2 1 0

Preface

The Annual International Computing and Combinatorics Conference is an
annual forum for exploring research, development, and novel applications of
computing and combinatorics. It brings together researchers, professionals and
industrial practitioners to interact and exchange knowledge, ideas and progress.
The topics cover most aspects of theoretical computer science and combinatorics
related to computing. The 13th Annual International Computing and Combi-
natorics Conference (COCOON 2007) was held in Banff, Alberta during July
16–19, 2007. This was the first time that COCOON was held in Canada.

We received 165 submissions, among which 11 were withdrawn for various
reasons. The remaining 154 submissions under full consideration came from 33
countries and regions: Australia, Brazil, Canada, China, the Czech Republic,
Denmark, Finland, France, Germany, Greece, Hong Kong, India, Iran, Ireland,
Israel, Italy, Japan, the Netherlands, Norway, Pakistan, Poland, Romania, Rus-
sia, Slovakia, South Korea, Spain, Sweden, Switzerland, Taiwan, Turkey, the
UK, the USA, and the US minor outlying islands.

After a six week period of careful reviewing and discussions, the program com-
mittee accepted 51 submissions for oral presentation at the conference. Based
on the affiliations, 1.08 of the accepted papers were from Australia, 7.67 from
Canada, 3.08 from China, 1 from the Czech Republic, 2 from Denmark, 1 from
France, 5.42 from Germany, 0.08 from Greece, 2.18 from Hong Kong, 0.33 from
India, 0.17 from Ireland, 1.83 from Israel, 1.5 from Italy, 2.9 from Japan, 0.17
from the Netherlands, 2.67 from Norway, 0.5 from Poland, 1 from Switzerland,
1 from Taiwan, 0.08 from Turkey, 1.33 from the UK, 12.33 from the USA,
and 0.33 from the US minor outlying islands. The program of COCOON 2007
also included three keynote talks by Srinivas Aluru, Francis Y. L. Chin, and
Ming Li.

Finally, we would like to express our gratitude to the authors of all submis-
sions, the members of the program committee and the external reviewers, the
members of the organizing committee, the keynote speakers, our generous spon-
sors, and the supporting organizations for making COCOON 2007 possible and
enjoyable.

July 2007 Guohui Lin

Organization

COCOON 2007 was sponsored by the Department of Computing Science, the
University of Alberta, and the Informatics Circle of Research Excellence (iCORE).

Program Committee Chair

Guohui Lin (University of Alberta, Canada)

Program Committee Members

Therese Biedl (University of Waterloo, Canada)
Andreas Brandstädt (Universität Rostock, Germany)
Zhi-Zhong Chen (Tokyo Denki University, Japan)
Ovidiu Daescu (University of Texas at Dallas, USA)
Donglei Du (University of New Brunswick, Canada)
Patricia Evans (University of New Brunswick, Canada)
Yong Gao (University of British Columbia - Okanagan, Canada)
Raffaele Giancarlo (University of Palermo, Italy)
Wen-Lian Hsu (Academia Sinica, Taiwan)
Xiao-Dong Hu (Chinese Academy of Sciences, China)
Ming-Yang Kao (Northwestern University, USA)
Naoki Katoh (Kyoto University, Japan)
Valerie King (University of Victoria, Canada)
Michael A. Langston (University of Tennessee, USA)
Kim Skak Larsen (University of Southern Denmark, Denmark)
Bin Ma (University of Western Ontario, Canada)
Rajeev Motwani (Stanford University, USA)
Mohammad R. Salavatipour (University of Alberta, Canada)
David Sankoff (University of Ottawa, Canada)
Yaoyun Shi (University of Michigan, USA)
Zhiyi Tan (Zhejiang University, China)
Caoan Wang (Memorial University of Newfoundland, Canada)
Lusheng Wang (City University of Hong Kong, China)
Osamu Watanabe (Tokyo Institute of Technology, Japan)
Dong Xu (University of Missouri - Columbia, USA)
Jinhui Xu (State University of New York at Buffalo, USA)
Alexander Zelikovsky (Georgia State University, USA)
Huaming Zhang (University of Alabama in Huntsville, USA)
Kaizhong Zhang (University of Western Ontario, Canada)
Xizhong Zheng (BTU Cottbus, Germany)
Yunhong Zhou (HP, USA)
Binhai Zhu (Montana State University, USA)

VIII Organization

Organizing Committee

Guohui Lin (Chair; University of Alberta, Canada)
Zhipeng Cai (University of Alberta, Canada)
Yi Shi (University of Alberta, Canada)
Meng Song (University of Alberta, Canada)
Jianjun Zhou (University of Alberta, Canada)

External Reviewers

Irina Astrovskaya
Dumitru Brinza
Zhipeng Cai
Shihyen Chen
Qiong Cheng
Arthur Chou
Ye Du
Martin R. Ehmsen
Konrad Engel
Tomas Feder
Fedor Fomin
Lance Fortnow
Loukas Georgiadis
Stephan Gremalschi
MohammadTaghi Hajiaghayi
Qiaoming Han
Jan Johannsen
Valentine Kabanets
George Karakostas
Ker-I Ko
Ekkehard Koehler
Guy Kortsarz
Lap Chi Lau
Hanno Lefmann
Weiming Li
Xueping Li
Xiaowen Liu
Jingping Liu
Shuang Luan
Elvira Mayordomo
Daniele Micciancio

Lopamudra Mukherjee
Shubha Nabar
Javier Pena
Xiaotong Qi
Tim Roughgarden
Adrian Rusu
Amin Saberi
Yi Shi
Amir Shpilka
Vikas Singh
Ram Swaminathan
Dilys Thomas
Iannis Tourlakis
Sergei Vassilvitskii
Jacques Verstraete
Peter Wagner
Duncan Wang
Kelly Westbrooks
Avi Wigderson
Gang Wu
Xiaodong Wu
Lei Xin
Dachuan Xu
Ying Xu
Jin Yan
Yang Yang
Guochuan Zhang
Li Zhang
Jianjun Zhou
Luis Zuluaga

Table of Contents

The Combinatorics of Sequencing the Corn Genome 1
Srinivas Aluru

Online Frequency Assignment in Wireless Communication Networks 2
Francis Y.L. Chin

Information Distance from a Question to an Answer 3
Ming Li

A New Field Splitting Algorithm for Intensity-Modulated Radiation
Therapy . 4

Danny Z. Chen, Mark A. Healy, Chao Wang, and Xiaodong Wu

A New Recombination Lower Bound and the Minimum Perfect
Phylogenetic Forest Problem . 16

Yufeng Wu and Dan Gusfield

Seed-Based Exclusion Method for Non-coding RNA Gene Search 27
Jean-Eudes Duchesne, Mathieu Giraud, and Nadia El-Mabrouk

A New Quartet Approach for Reconstructing Phylogenetic Trees:
Quartet Joining Method . 40

Lei Xin, Bin Ma, and Kaizhong Zhang

Integer Programming Formulations and Computations Solving
Phylogenetic and Population Genetic Problems with Missing or
Genotypic Data . 51

Dan Gusfield, Yelena Frid, and Dan Brown

Improved Exact Algorithms for Counting 3- and 4-Colorings 65
Fedor V. Fomin, Serge Gaspers, and Saket Saurabh

Connected Coloring Completion for General Graphs: Algorithms and
Complexity . 75

Benny Chor, Michael Fellows, Mark A. Ragan, Igor Razgon,
Frances Rosamond, and Sagi Snir

Quadratic Kernelization for Convex Recoloring of Trees 86
Hans L. Bodlaender, Michael R. Fellows, Michael A. Langston,
Mark A. Ragan, Frances A. Rosamond, and Mark Weyer

On the Number of Cycles in Planar Graphs . 97
Kevin Buchin, Christian Knauer, Klaus Kriegel, André Schulz, and
Raimund Seidel

An Improved Exact Algorithm for Cubic Graph TSP 108
Kazuo Iwama and Takuya Nakashima

X Table of Contents

Geometric Intersection Graphs: Do Short Cycles Help? 118
Jan Kratochv́ıl and Martin Pergel

Dimension, Halfspaces, and the Density of Hard Sets 129
Ryan C. Harkins and John M. Hitchcock

Isolation Concepts for Enumerating Dense Subgraphs 140
Christian Komusiewicz, Falk Hüffner, Hannes Moser, and
Rolf Niedermeier

Alignments with Non-overlapping Moves, Inversions and Tandem
Duplications in O(n4) Time . 151

Christian Ledergerber and Christophe Dessimoz

Counting Minimum Weighted Dominating Sets . 165
Fedor V. Fomin and Alexey A. Stepanov

Online Interval Scheduling: Randomized and Multiprocessor Cases 176
Stanley P.Y. Fung, Chung Keung Poon, and Feifeng Zheng

Scheduling Selfish Tasks: About the Performance of Truthful
Algorithms . 187

George Christodoulou, Laurent Gourvès, and Fanny Pascual

Volume Computation Using a Direct Monte Carlo Method 198
Sheng Liu, Jian Zhang, and Binhai Zhu

Improved Throughput Bounds for Interference-Aware Routing in
Wireless Networks . 210

Chiranjeeb Buragohain, Subhash Suri, Csaba D. Tóth, and
Yunhong Zhou

Generating Minimal k-Vertex Connected Spanning Subgraphs 222
Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich,
Kazuhisa Makino, and Gabor Rudolf

Finding Many Optimal Paths Without Growing Any Optimal Path
Trees . 232

Danny Z. Chen and Ewa Misio�lek

Enumerating Constrained Non-crossing Geometric Spanning Trees 243
Naoki Katoh and Shin-ichi Tanigawa

Colored Simultaneous Geometric Embeddings . 254
U. Brandes, C. Erten, J. Fowler, F. Frati, M. Geyer, C. Gutwenger,
S. Hong, M. Kaufmann, S.G. Kobourov, G. Liotta, P. Mutzel, and
A. Symvonis

Properties of Symmetric Incentive Compatible Auctions 264
Xiaotie Deng, Kazuo Iwama, Qi Qi, Aries Wei Sun, and
Toyotaka Tasaka

Finding Equilibria in Games of No Chance . 274
Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and
Troels Bjerre Sørensen

Table of Contents XI

Efficient Testing of Forecasts . 285
Ching-Lueh Chang and Yuh-Dauh Lyuu

When Does Greedy Learning of Relevant Attributes Succeed?–A
Fourier-Based Characterization . 296

Jan Arpe and Rüdiger Reischuk

The Informational Content of Canonical Disjoint NP-Pairs 307
Christian Glaßer, Alan L. Selman, and Liyu Zhang

On the Representations of NC and Log-Space Real Numbers 318
Fuxiang Yu

Bounded Computable Enumerability and Hierarchy of Computably
Enumerable Reals . 327

Xizhong Zheng

Streaming Algorithms Measured in Terms of the Computed Quantity . . . 338
Shengyu Zhang

A Randomized Approximation Algorithm for Parameterized 3-D
Matching Counting Problem . 349

Yunlong Liu, Jianer Chen, and Jianxin Wang

Optimal Offline Extraction of Irredundant Motif Bases 360
Alberto Apostolico and Claudia Tagliacollo

Linear Algorithm for Broadcasting in Unicyclic Graphs 372
Hovhannes Harutyunyan and Edward Maraachlian

An Improved Algorithm for Online Unit Clustering 383
Hamid Zarrabi-Zadeh and Timothy M. Chan

Linear Time Algorithms for Finding a Dominating Set of Fixed Size in
Degenerated Graphs . 394

Noga Alon and Shai Gutner

Single-Edge Monotonic Sequences of Graphs and Linear-Time
Algorithms for Minimal Completions and Deletions 406

Pinar Heggernes and Charis Papadopoulos

On the Hardness of Optimization in Power Law Graphs 417
Alessandro Ferrante, Gopal Pandurangan, and Kihong Park

Can a Graph Have Distinct Regular Partitions? . 428
Noga Alon, Asaf Shapira, and Uri Stav

Algorithms for Core Stability, Core Largeness, Exactness, and
Extendability of Flow Games . 439

Qizhi Fang, Rudolf Fleischer, Jian Li, and Xiaoxun Sun

Computing Symmetric Boolean Functions by Circuits with Few Exact
Threshold Gates . 448

Kristoffer Arnsfelt Hansen

XII Table of Contents

On the Complexity of Finding an Unknown Cut Via Vertex Queries 459
Peyman Afshani, Ehsan Chiniforooshan, Reza Dorrigiv,
Arash Farzan, Mehdi Mirzazadeh, Narges Simjour, and
Hamid Zarrabi-Zadeh

“Resistant” Polynomials and Stronger Lower Bounds for Depth-Three
Arithmetical Formulas . 470

Maurice J. Jansen and Kenneth W. Regan

An Improved Algorithm for Tree Edit Distance Incorporating Structural
Linearity . 482

Shihyen Chen and Kaizhong Zhang

Approximation Algorithms for Reconstructing the Duplication History
of Tandem Repeats . 493

Lusheng Wang, Zhanyong Wang, and Zhizhong Chen

Priority Algorithms for the Subset-Sum Problem . 504
Yuli Ye and Allan Borodin

Distributed Approximation Algorithms for Weighted Problems in
Minor-Closed Families . 515

A. Czygrinow and M. Hańćkowiak

A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal
Graphs . 526

Francis Y.L. Chin, Yong Zhang, and Hong Zhu

Improved Algorithms for Weighted and Unweighted Set Splitting
Problems . 537

Jianer Chen and Songjian Lu

An 8
5 -Approximation Algorithm for a Hard Variant of Stable

Marriage . 548
Robert W. Irving and David F. Manlove

Approximation Algorithms for the Black and White Traveling Salesman
Problem . 559

Binay Bhattacharya, Yuzhuang Hu, and Alexander Kononov

Author Index . 569

The Combinatorics of Sequencing the Corn

Genome

Srinivas Aluru

Department of Electrical and Computer Engineering, Iowa State University
aluru@iastate.edu

Abstract. The scientific community is engaged in an ongoing, concerted
effort to sequence the corn (also known as maize) genome. This genome is
approximately 2.5 billion nucleotides long with an estimated 65-80team
of university and private laboratory researchers under the auspices of
NSF/USDA/DOE is working towards deciphering the majority of the
sequence information including all genes, determining their order and
orientation, and anchoring them to genetic/physical maps. In this talk, I
will present some of the combinatorial problems that arise in this context
and outline the role of graph, string and parallel algorithms in solving
them.

G. Lin (Ed.): COCOON 2007, LNCS 4598, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Online Frequency Assignment in Wireless

Communication Networks

Francis Y.L. Chin

Department of Computer Science,
The University of Hong Kong, Hong Kong

chin@cs.hku.hk

Abstract. Wireless communication has many applications since its in-
vention more than a century ago. The frequency spectrum used for
communication is a scarce resource and the Frequency Assignment Prob-
lem (FAP), aiming for better utilization of the frequencies, has been
extensively studied in the past 20-30 years. Because of the rapid de-
velopment of new wireless applications such as digital cellular network,
cellular phone, the FAP problem has become more important.

In Frequency Division Multiplexing (FDM) networks, a geographic
area is divided into small cellular regions or cells, usually regular hexa-
gons in shape. Each cell contains one base station that communicates
with other base stations via a high-speed wired network. Calls between
any two clients (even within the same cell) must be established through
base stations. When a call arrives, the nearest base station must assign
a frequency from the available spectrum to the call without causing any
interference with other calls. Interference may occur, which distorts the
radio signals, when the same frequency is assigned to two different calls
emanating from cells that are geographically close to each other. Thus
the FAP problem can be viewed as a problem of multi-coloring a hexagon
graph with the minimum number of colors when each vertex of the graph
is associated with an integer that represents the number of calls in a cell.

FAP has attracted more attention recently because of the following:

a) Online analysis techniques: FAP problem is known to be NP-complete
and many approximation algorithms have been proposed in the past.
As frequency assignments have to be done without knowledge of fu-
ture call requests and releases, online algorithms have been proposed
and competitive analysis has been used to measure their performance.

b) New technology and application: Wideband Code-Division Multiple-
Access (W-CDMA) technology is a new technology used for the
implementation of 3G cellular system. Orthogonal Variable Spread-
ing Factor (OVSF) codes are used to satisfy requests with different
data rate requirements. FAP with OVSF code trees representing the
frequency spectrum becomes an important problem.

G. Lin (Ed.): COCOON 2007, LNCS 4598, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Information Distance from a Question to an

Answer

Ming Li

School of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1 Canada

mli@uwaterloo.ca

Abstract. We know how to measure distance from Beijing to Toronto.
However, do you know how to measure the distance between two infor-
mation carrying entities? For example: two genomes, two music scores,
two programs, two articles, two emails, or from a question to an answer?
Furthermore, such a distance measure must be application-independent,
must be universal in the sense it is provably better than all other dis-
tances, and must be applicable.

From a simple and accepted assumption in thermodynamics, we have
developed such a theory. I will present this theory and will present one
of the new applications of this theory: a question answering system.

G. Lin (Ed.): COCOON 2007, LNCS 4598, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Field Splitting Algorithm for

Intensity-Modulated Radiation Therapy�

Danny Z. Chen1, Mark A. Healy1, Chao Wang1,��, and Xiaodong Wu2,� � �

1 Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
{chen,mhealy4,cwang1}@cse.nd.edu

2 Department of Electrical and Computer Engineering
Department of Radiation Oncology

University of Iowa
Iowa City, Iowa 52242, USA
xiaodong-wu@uiowa.edu

Abstract. In this paper, we present an almost linear time algorithm for
the problem of splitting an intensity map of radiation (represented as an
integer matrix) into multiple subfields (submatrices), subject to a given
maximum allowable subfield width, to minimize the total delivery error
caused by the splitting. This problem arises in intensity-modulated radia-
tion therapy (IMRT) for cancer treatments. This is the first field splitting
result on minimizing the total delivery error of the splitting. Our solu-
tion models the problem as a shortest path problem on a directed layered
graph, which satisfies the staircase Monge property. Consequently, the
resulting algorithm runs in almost linear time and generates an optimal
quality field splitting.

1 Introduction

In this paper, we study a geometric partition problem, called field splitting,
which arises in intensity-modulated radiation therapy (IMRT). IMRT is a mod-
ern cancer treatment technique that aims to deliver highly conformal prescribed
radiation dose distributions, called intensity maps (IMs), to target tumors while
sparing the surrounding normal tissues and critical structures. The effectiveness
of IMRT hinges on its ability to accurately and efficiently deliver the prescribed

� This research was supported in part by the National Science Foundation under
Grant CCF-0515203 and NIH NIBIB Grant R01-EB004640-01A2.

�� Corresponding author. The research of this author was supported in part by two
Fellowships in 2004-2006 from the Center for Applied Mathematics of the Univer-
sity of Notre Dame.

� � � The research of this author was supported in part by a faculty start-up fund from
the University of Iowa and in part by a seed grant award from the American Cancer
Society through an Institutional Research Grant to the Holden Comprehensive
Cancer Center, the University of Iowa, Iowa City, Iowa, USA.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 4–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Field Splitting Algorithm for IMRT 5

IMs. An IM is a dose prescription specified by a set of nonnegative integers on
a uniform 2-D grid (see Figure 1(b)) with respect to an orientation in the 3-D
space. The value in each grid cell indicates the intensity level of prescribed ra-
diation at the body region corresponding to that IM cell. The delivery of an IM
is carried out by a set of cylindrical radiation beams orthogonal to the IM grid.

One of the current most advanced control tools for IM delivery is the multileaf
collimator (MLC) [15]. An MLC consists of a fixed number of pairs of tungsten
alloy leaves of the same rectangular shape and size (see Figure 1(a)). The op-
posite leaves of each pair are aligned to each other, and can move (say) up or
down to form an x-monotone rectilinear polygonal beam-shaping region. The
cross-section of a cylindrical radiation beam is shaped by such a region. In de-
livering a radiation beam for an IM, all IM cells exposed under the beam receive
a uniform radiation dose proportional to the exposure time of the beam. The
mechanical design of the MLCs restricts what kinds of beam-shaping regions
are allowed [15]. A common constraint is called the maximum field size: Due
to the limitation on the fixed number of MLC leave pairs and the overtravel
distance of the leaves, an MLC cannot enclose an IM of a too large size (called
the field size).

Two key criteria are used to measure the quality of an IMRT treatment.
(1) The treatment time (efficiency): Minimizing the treatment time is crucial
since it not only lowers the treatment cost for each patient but also increases the
patient throughput of the hospitals; in addition, it reduces the risk associated
with the uncertainties in the treatment. (2) The delivery error (accuracy):
Due to the special geometric shapes of the MLC leaves [14,15] (i.e., the “tongue-
and-groove” interlock feature), an MLC-aperture cannot be delivered perfectly.
Instead, there is a delivery error between the planned dose and actual deliv-
ered dose [14] (called the “tongue-and-groove” error in medical literature [15]).
Minimizing the delivery error is important because according to a recent study
[4], the maximum delivery error can be up to 10%, creating underdose/overdose
spots in the target region.

The limited size of the MLC necessitates that a large-size IM field be split
into two or more adjacent subfields, each of which can be delivered separately
by the MLC subject to the maximum field size constraint [5,9,16]. But, such IM
splitting may result in prolonged treatment time and increased delivery error,
and thus affect the treatment quality. The field splitting problem, roughly
speaking, is to split an IM of a large size into multiple subfields whose sizes are
all no bigger than a threshold size, such that the treatment quality is optimized.

A few field splitting algorithms are known in the literature [3,10,12,17], which
address various versions of the field splitting problem. However, all these field
splitting solutions focused on minimizing the beam-on time while ignoring the
issue of reducing the delivery error. The beam-on time of a treatment is the time
while a patient is exposed to actual irradiation [15], which is closely related to
the total treatment time. In fact, when splitting an IM into multiple subfields
to minimize the total beam-on time, the splitting is along the direction that is
perpendicular to the direction of field splitting that aims to minimize the total

6 D.Z. Chen et al.

3

5 2
3 2

4

0
2

23
3

2
0

0
1
0
1
2

0

(c)

1

4
56

4
2
3

4
2
3
2
0

2

1 3

0

(b)(a)

2
4
6 5

4
3

3

5 2
3 2

4

0
23

0

0

0
1
1

2

0
2
3
2
4 2

0
1
0

2

3
3 2 1

3M1M

M 2

Fig. 1. (a) An MLC. (b) An IM. (c) An example of splitting an IM into three subfields,
M1, M2, and M3, using y-monotone paths.

delivery error. For example, in Figure 1(c), the splitting of the IM is along the
x-axis (using y-monotone paths) and aims to minimize the total delivery error;
a corresponding splitting for minimizing the total beam-on time would be along
the y-axis (say, using x-monotone paths). Thus, these two optimization criteria
for field splitting, i.e., minimizing the total beam-on time and minimizing the
total delivery error, are geometrically complementary to each other, and together
provide a somewhat complete solution to the field splitting problem (for example,
we may first split an IM along the y-axis, minimizing the total beam-on time,
and then split each resulting subfield of the IM along the x-axis, minimizing its
delivery error). Although it is useful to consider field splitting to minimize the
delivery error, to our best knowledge, no field splitting algorithms are known
aiming to minimize the total delivery error.

Several papers (e.g., [2,11,14]) have discussed how to minimize the delivery
error of IMRT treatments (assuming no field splitting is needed). Chen et al. [2]
showed that for an IM M of size m× n (no larger than the maximum allowable
field size l × w), the minimum amount of error for delivering M is captured by
the following formula (note that M contains only nonnegative integers):

Err(M) =
m∑

i=1

(Mi,1 +
n−1∑

j=1

|Mi,j −Mi,j+1|+ Mi,n). (1)

They also gave an algorithm for achieving this minimum error [2]. Geometrically,
if we view a row of an IM as representing an x-monotone rectilinear curve f ,
called the dose profile curve (see Figure 2(a)), then the (minimum) delivery error
associated with this IM row is actually the total sum of the lengths of all vertical
edges on f .

In this paper, we consider the following field splitting using y-monotone
paths (FSMP) problem: Given an IM M of size m × n and a maximum
allowable field size l × w, with m ≤ l and n > w, split M using y-monotone
paths into d = � n

w � (≥ 2) subfields M1, M2, . . . , Md, each with a size no larger
than l × w, such that the total delivery error of these d subfields is minimized
(e.g., see Figures 2(b)-2(c)). Here, d is the minimum number of subfields required
to deliver M subject to the maximum allowable field size l × w.

We present the first efficient algorithm for the above FSMP problem. Our
algorithm runs in almost linear time. In our approach, we model the FSMP

A New Field Splitting Algorithm for IMRT 7

(c)

n

a
aa 32

1

f

(a)

an

f2

a
aa 32

1

ff1

(b)

a
aa 32

1

an

f
f

f

1

2

3

a

Fig. 2. (a) The dose profile curve f of one row of an IM. The (minimum) delivery
error, Err(f), of the row is equal to the sum of the lengths of all vertical edges on the
curve f . (b) Splitting the one-row IM in (a) into two subfields. Note that Err(f1) +
Err(f2) ≥ Err(f) always holds. (c) Splitting the one-row IM in (a) into three subfields.
Err(f1) + Err(f2) + Err(f3) ≥ Err(f) always holds.

problem as a shortest path problem in a directed acyclic graph (DAG) of O(n)
vertices and O(nw) edges. Interestingly, the edge weights of this DAG satisfy the
staircase Monge property [1,13] and the edges of the graph can be represented
implicitly. Thus, we can solve this shortest path problem by examining only a
very small portion of the edges of the graph. One frequent operation in this
shortest path algorithm is to compute the weights of the examined edges, which
takes O(mw) time if directly using a formula (see Section 3.3.1).We improve
the time complexity of this operation to O(m) by using a range-minima data
structure [8]. Our final FSMP algorithm runs in O(mnα(w)) time, where α(·) is
the inverse Ackermann’s function.

Our techniques have other applications and extensions. Our FSMP algorithm
can be easily adapted to the field splitting scenarios in which we seek to minimize
the total horizontal or vertical complexity of the subfields [6] (all we need to do
is to redefine the weights of the edges of the DAG). These criteria are believed
to be closely related to the beam-on time of the treatment [6].

The rest of the paper is organized as follows. Section 2 gives some observa-
tions and notation. Section 3 presents our FSMP algorithm. Section 4 extends
our solution to a related intensity map partition problem to minimize the total
horizontal or vertical complexity of the resulting subfields. Section 5 shows some
implementation and experimental results.

2 Preliminaries

For an IM M of size m × n, we can encode any y-monotone path p on M as
(p(1), p(2), . . . , p(m)) ∈ [0, n]m, where p(i) is the position at which p crosses the
i-th row of M (i.e., p crosses the i-th row between the (p(i))-th and (p(i) + 1)-
th elements). There are two special y-monotone paths of M : 0 = (0, 0, . . . , 0)
and n = (n, n, . . . , n), which are the leftmost and rightmost paths, respectively.
We assume that all paths in this paper are y-monotone on M . Define min(p) =
minm

i=1{p(i)} and max(p) = maxm
i=1{p(i)}, i.e., min(p) and max(p) can be viewed

as the smallest and largest column indices on a path p, respectively.
For two paths p′ and p′′, we say that p′ ≤ p′′ if p′(k) ≤ p′′(k) holds for every

k, i.e., p′ lies entirely on or to the left of p′′. If p′ ≤ p′′, we denote by S(p′, p′′)

8 D.Z. Chen et al.

the subfield of M induced by p′ and p′′, i.e., S(p′, p′′) consists of all cells of M
lying between p′ and p′′. The width of a subfield S = S(p′, p′′) is naturally given
by width(S) = max(p′′)−min(p′).

We denote by band(a, b) the band region {(x, y) | a ≤ x ≤ b} in the plane. We
say that a subfield S is embedded in a band region B if S lies entirely in B (B
is called an embedding band of the subfield S). Clearly, a subfield S(p′, p′′) is
embedded in band(a, b) if and only if a ≤ min(p′) ≤ max(p′′) ≤ b.

Given an IM M of size m × n and the maximum allowable field size l × w
(with m ≤ l and n > w), a y-monotone path set T = {p1, p2, . . . , pd−1} is said
to form a feasible splitting of M if (1) 0 ≤ p1 ≤ p2 ≤ · · · ≤ pd−1 ≤ n, and (2)
width(S(pk−1, pk)) ≤ w for every k = 1, 2, . . . , d (with p0 = 0 and pd = n).

It is clear that for any feasible field splitting {p1, p2, . . . , pd−1}, the following
properties hold:
(i) For every k = 1, 2, . . . , d−1, min(pk) ∈ [kw−Δ, kw], where Δ = w�n/w�−n
(0 ≤ Δ ≤ w − 1).
(ii) S(0, p1) (resp., S(pd−1,n)) is embedded in band(0, w) (resp., band(n−w, n));
for every k = 2, 3, . . . , d − 2, S(pk, pk+1) is embedded in at least one of the fol-
lowing bands: band(g, g + w), with g = kw −Δ, kw −Δ + 1, . . . , kw.
(iii) If S(pk−1, pk) and S(pk, pk+1) are embedded in bands B′ and B′′, respec-
tively, then the path pk must lie in the common intersection of the two bands,
i.e., pk ⊆ B′ ∩B′′.

3 Our Algorithm for the FSMP Problem

3.1 An Overview of the Algorithm

Our FSMP algorithm starts with the observation that whenever we use a y-
monotone path p to split the given IM M , the total delivery error of the resulting
subfields will increase by a value of 2 ·

∑m
i=1 min{Mi,p(i), Mi,p(i)+1}, with Mi,0 =

Mi,n+1 = 0 (see Figures 2(b)-2(c)). The reason is that based on the formula
Err(M) for summing up the delivery error of M (i.e., Formula (1) in Section 1),
when without a splitting between the two adjacent cells Mi,p(i) and Mi,p(i)+1 of
M , the delivery error incurred due to these two cells is |Mi,p(i) −Mi,p(i)+1|, but
when with a splitting between these two adjacent cells, the delivery error incurred
at these two cells is Mi,p(i) + Mi,p(i)+1 (since after the splitting, Mi,p(i) becomes
the last cell of a row in one subfield and Mi,p(i)+1 becomes the first cell of a row
in another subfield). The net increase in the delivery error from without to with
a splitting between Mi,p(i) and Mi,p(i)+1 is 2 ·min{Mi,p(i), Mi,p(i)+1} (see Figures
2(b)-2(c)). Without affecting the correctness of our FSMP algorithm, we will use∑m

i=1 min{Mi,p(i), Mi,p(i)+1} as the (increased) cost of a y-monotone path p for
splitting M (by dropping the coefficient 2). Note that this cost depends only on
p and M , which we call the cost of p and denote by cost(p). Then, the FSMP
problem is equivalent to finding a feasible splitting T of cardinality d − 1 that
minimizes

∑
p∈T cost(p).

The above observation helps us to model the FSMP problem as a shortest
path problem in a directed graph G = (V, E), which is defined as follows. (1)

A New Field Splitting Algorithm for IMRT 9

G consists of d layers of vertices, with each vertex corresponding to a possible
band in M . Precisely, the first layer (i.e., layer 1) contains one vertex v1,0, which

corresponds to band(0, w) (Δ= B1,0); the last layer (i.e., layer d) contains one

vertex vd,0, which corresponds to band(n − w, n) (Δ= Bd,0); the k-th layer (2 ≤
k ≤ d−1) contains Δ+1 vertices, vk,0, vk,1, . . . , vk,Δ, with vk,j corresponding to

band(kw−j, kw−j+w) (Δ= Bk,j), where Δ = w�n/w�−n (= O(w)). (2) For each
vertex vk,jk

in G, there is a directed edge from vk,jk
to every vertex vk+1,jk+1

(0 ≤ jk+1 ≤ Δ) in the next layer as long as Bk,jk
∩ Bk+1,jk+1 	= ∅. Clearly, for

each vertex vk,jk
, the vertices on the (k + 1)-th layer to which an edge from

vk,jk
goes form a contiguous subsequence (called an interval of vertices), and

the first and last vertices of this interval for vk,jk
can be easily determined. (3)

For any edge e = (vk,jk
, vk+1,jk+1) in G, we define its induced y-monotone path,

denoted by p∗k,jk,jk+1
, as the minimum cost path lying in Bk,jk

∩ Bk+1,jk+1 ; the
weight of the edge e = (vk,jk

, vk+1,jk+1) is the cost of its induced y-monotone
path p∗k,jk,jk+1

.
Our algorithm then computes a shortest path from v1,0 to vd,0 in G, which

has exactly d− 1 edges.
Two key questions for our FSMP algorithm remain to be answered.
(1) How does a shortest v1,0-to-vd,0 path in G relate to an optimal field split-

ting of the given IM M? As we will show in Section 3.2, it turns out that the set
of d − 1 y-monotone paths induced by the d − 1 edges on such a shortest path
yields an optimal splitting of M .

(2) How can we efficiently compute a shortest v1,0-to-vd,0 path in G? It is easy
to see that G is a DAG with O(d(Δ + 1)) = O(n) vertices and O(d(Δ + 1)2) =
O(n2/d) weighted edges. Thus, in a topological sort fashion, a shortest path in
G can be computed in O(n2τ/d) time, where τ is the time for computing the
induced y-monotone path for each edge of G. In Section 3.3, we will show that
by exploiting the staircase Monge property of the graph G [1,13] and using a
range-minima data structure [8], we can dramatically speed up the shortest path
computation. Our final FSMP algorithm runs in almost linear time on M .

3.2 Correctness of the Algorithm

In this section, we show the correctness of our FSMP algorithm, i.e., a shortest
v1,0-to-vd,0 path in the graph G defined in Section 3.1 indeed corresponds to an
optimal splitting of the given IM M .

The following lemma states the fact that any v1,0-to-vd,0 path in G induces a
feasible splitting of M (we leave the proof to the full paper).

Lemma 1. Let π = v1,j1(=0) → v2,j2 → · · · → vd−1,jd−1 → vd,jd(=0) be a v1,0-
to-vd,0 path in G. Then the set of d−1 y-monotone paths induced by all edges of
π, i.e., {p∗1,j1,j2

, p∗2,j2,j3
, . . . , p∗d−1,jd−1,jd

}, gives a feasible splitting of the IM M .

We now show that a shortest v1,0-to-vd,0 path in G induces an optimal splitting
of M .

10 D.Z. Chen et al.

Lemma 2. Let π′ = v1,j′
1(=0) → v2,j′

2
→ · · · → vd−1,j′

d−1
→ vd,j′

d
(=0) be a

shortest v1,0-to-vd,0 path in G. Then the set of d−1 y-monotone paths induced by
all edges of π′, i.e., {p∗1,j′

1,j′
2
, p∗2,j′

2,j′
3
, . . . , p∗d−1,j′

d−1,j′
d
}, gives an optimal splitting

of the IM M .

Proof. Recall that the FSMP problem seeks a feasible splitting T of cardi-
nality d − 1 that minimizes

∑
p∈T cost(p). To prove the lemma, it suffices to

show that for any feasible splitting {p1, p2, . . . , pd−1} of M ,
∑d−1

k=1 cost(pk) ≥∑d−1
k=1 cost(p∗k,j′

k ,j′
k+1

) holds.
Since {p1, p2, . . . , pd−1} is a feasible splitting of M , by Property (ii) in

Section 2, there exist j1, j2, . . . , jd−1 ∈ [0, Δ], such that S(pk, pk+1) is embedded in
the band Bk,jk

. For every k = 1, 2, . . . , d−1, by Property (iii) in Section 2, we have
pk ⊆ Bk,jk

∩Bk+1,jk+1 (for convenience, we define j0 = jd = 0). Hence there is an
edge connecting vk,jk

and vk+1,jk+1 in G. It follows that π = v1,j1(=0) → v2,j2 →
· · · → vd−1,jd−1 → vd,jd(=0) is a v1,0-to-vd,0 path in G.

Recall that p∗k,jk,jk+1
is a minimum cost y-monotone path that lies in Bk,jk

∩
Bk+1,jk+1 . Thus we have cost(pk) ≥ cost(p∗k,jk ,jk+1

). It follows
∑d−1

k=1 cost(pk) ≥
∑d−1

k=1 cost(p∗k,jk ,jk+1
). Observe that the right-hand side of the above inequality

equals the total weight of the v1,0-to-vd,0 path π in G, which cannot be smaller
than

∑d−1
k=1 cost(p∗k,j′

k ,j′
k+1

), the total weight of the shortest path π′. It thus fol-

lows that
∑d−1

k=1 cost(pk) ≥
∑d−1

k=1 cost(p∗k,j′
k,j′

k+1
). �

3.3 Improving the Time Complexity of the Algorithm

In this section, we will focus on the more detailed aspects of our algorithm. More
specifically, we will address how to efficiently compute the weights of the edges
of G and a shortest v1,0-to-vd,0 path in G.

3.3.1 Computing the Weights of Edges of G
One frequent operation in our FSMP algorithm is to compute the weight of a
given edge of G. Recall that for an edge e = (vk,jk

, vk+1,jk+1) in G, its weight
w(e) is defined as the cost of p∗k,jk,jk+1

, which is a minimum cost y-monotone
path that lies in Bk,jk

∩Bk+1,jk+1 .
Observe that Bk,jk

∩ Bk+1,jk+1 = band(kw − jk, kw − jk + w) ∩ band((k +
1)w − jk+1, (k + 1)w − jk+1 + w) = band((k + 1)w − jk+1, (k + 1)w − jk). The
existence of the edge e = (vk,jk

, vk+1,jk+1) in G implies Bk,jk
∩ Bk+1,jk+1 	= ∅,

which in turn implies jk ≤ jk+1.
It is not difficult to show that

w(e) = min{cost(p) | p ⊆ Bk,jk
∩Bk+1,jk+1}

= min{
∑m

i=1 min{Mi,p(i), Mi,p(i)+1} | p(i) ∈ [(k + 1)w − jk+1,
(k + 1)w − jk], 1 ≤ i ≤ m}

=
∑m

i=1 min{Mi,j | j ∈ [(k + 1)w − jk+1, (k + 1)w − jk + 1]}

(2)

A New Field Splitting Algorithm for IMRT 11

Since jk, jk+1 ∈ [0, Δ], it takes O(Δ) time to compute min{Mi,j | j ∈ [(k +
1)w − jk+1, (k + 1)w − jk + 1]}, and consequently O(mΔ) = O(mw) time to
compute w(e) if we directly use Formula (2) above.

However, since all entries of M are static (i.e., do not change their values
during the computation), we can speed up the computation of an edge weight by
using a range-minima data structure [8] for each row Ri(M) = {Mi,j}nj=1 of M ,
i = 1, 2, . . . , m. Note that for an array of values, a range-minima data structure
can be built in linear time, which allows each query of finding the minimum value
in any interval of the array to be answered in O(1) time [8]. In our algorithm, we
build a range-minima data structure for each row Ri(M) of M , in O(n) time per
row. This enables us to compute min{Mi,j | j ∈ [(k+1)w−jk+1, (k+1)w−jk+1]}
as a range-minima query, in O(1) time. In this way, we can compute the weight of
any edge of G in only O(m) time, after an O(mn) time preprocess (for building
the range-minima data structures for the m rows of M).

3.3.2 Computing a Shortest v1,0-to-vd,0 Path in G
In this section, we will show that the graph G defined in Section 3.1 satisfies the
staircase Monge property [1,13]. This property enables us to compute a shortest
v1,0-to-vd,0 path in G in almost linear time.

Lemma 3. Let vk,j , vk,j′ , vk+1,r, and vk+1,r′ be four vertices of G, with j < j′,
r < r′, and 2 ≤ k < d − 1. If e1 = (vk,j′ , vk+1,r) is an edge of G, then e2 =
(vk,j , vk+1,r′), e3 = (vk,j , vk+1,r), and e4 = (vk,j′ , vk+1,r′) are also edges of G.
Moreover, w(e3) + w(e4) ≤ w(e1) + w(e2).

Proof. Since j′, r ∈ [0, Δ], it is clear that e1 = (vk,j′ , vk+1,r) ∈ E(G) ⇔ Bk,j′ ∩
Bk+1,r 	= ∅ ⇔ band(kw − j′, kw − j′ + w) ∩ band((k + 1)w − r, (k + 1)w − r +
w) 	= ∅ ⇔ r ≥ j′. Similarly, e2 ∈ E(G) ⇔ r′ ≥ j, e3 ∈ E(G) ⇔ r ≥ j, and
e4 ∈ E(G) ⇔ r′ ≥ j′. Since r < r′ and j < j′, we have e1 ∈ E(G) ⇒ j < j′ ≤
r < r′ ⇒ e2, e3, e4 ∈ E(G).

To show that w(e3) + w(e4) ≤ w(e1) + w(e2), it suffices to show that for any
i ∈ [1, m], minj∈I3{Mi,j} + minj∈I4{Mi,j} ≤ minj∈I1{Mi,j} + minj∈I2{Mi,j},
where I1 = [(k + 1)w − r, (k + 1)w − j′ + 1], I2 = [(k + 1)w − r′, (k + 1)w −
j + 1], I3 = [(k + 1)w − r, (k + 1)w − j + 1], and I4 = [(k + 1)w − r′, (k +
1)w − j′ + 1]. Since j < j′ ≤ r < r′, clearly I1 = I3 ∩ I4 and I2 = I3 ∪
I4. It follows that minj∈I1{Mi,j} ≥ max{minj∈I3{Mi,j}, minj∈I4{Mi,j}}. and
minj∈I2{Mi,j} = min{minj∈I3{Mi,j}, minj∈I4{Mi,j}}, Hence, we have
minj∈I3 {Mi,j} + minj∈I4 {Mi,j} = max{minj∈I3{Mi,j}, minj∈I4{Mi,j}}+
min{minj∈I3{Mi,j}, minj∈I4{Mi,j}} ≤ minj∈I1{Mi,j}+ minj∈I2{Mi,j}. �

Lemma 3 actually shows that the (Δ + 1)× (Δ + 1) matrix W (k) = (w(k)
j,r) (2 ≤

k < d − 1), with w
(k)
j,r = w((vk,j , vk+1,r)) for 0 ≤ j, r ≤ Δ, is a staircase Monge

matrix [1,13]. (For convenience, an entry w
(k)
j,r = +∞ if (vk,j , vk+1,r) 	∈ E(G).)

Recall that an edge (vk,j , vk+1,r) ∈ E(G)⇔ r ≥ j. Hence, the matrix W (k) can
be represented implicitly, such that each of its entry can be obtained, whenever
needed, in O(m) time as shown in Section 3.3.1. It is thus easy to see that, by

12 D.Z. Chen et al.

using the staircase Monge matrix searching algorithms [1,13], given the shortest
paths from v1,0 to all vertices on the k-th layer, only O((Δ + 1)α(Δ + 1)) =
O(wα(w)) edges need to be examined in order to find the shortest paths from
v1,0 to all vertices on the (k + 1)-th layer, where α(·) is the inverse Ackermann’s
function. Hence, only O(dwα(w)) = O(nα(w)) edges in total are examined for
computing a shortest v1,0-to-vd,0 path in G. Thus, we have the following result.

Theorem 1. Given an IM M of size m × n, and an maximum allowable field
width w, the FSMP problem on M can be solved in O(mnα(w)) time.

4 An Extension

In this section, we show that our FSMP technique can be adapted to the field
splitting scenarios in which we seek to minimize the total horizontal or vertical
complexity of the resulting subfields [6]. It is sufficient for us to focus on solving
the horizontal complexity case.

The horizontal complexity HC(M ′) of a subfield M ′ of size l×w is defined as
follows HC(M ′) =

∑l
i=1(M

′
i,1 +

∑w−1
j=1 max{0, M ′

i,j+1 −M ′
i,j}). The horizontal

complexity is closely related to the minimum beam-on time for delivering the
subfield M ′, which can be computed as maxl

i=1{M ′
i,1+

∑w−1
j=1 max{0, M ′

i,j+1 −
M ′

i,j}} [7]. An intensity map with a smaller horizontal complexity is likely to be
delivered more efficiently (i.e., with a smaller treatment time). Thus, it is desir-
able to split an IM into multiple subfields while minimizing the total horizontal
complexity of the resulting subfields. We consider in this section the follow-
ing field splitting with minimized total horizontal complexity (FSHC)
problem: Given an IM M of size m × n and a maximum allowable field size
l × w, with m ≤ l and n > w, split M using y-monotone paths into d = � n

w �
(≥ 2) subfields M1, M2, . . . , Md, each with a size no larger than l×w, such that
the total horizontal complexity of these d subfields is minimized.

A key observation for solving the FSHC problem is that whenever we use a y-
monotone path p to split the given IM M , the total horizontal complexity of the
resulting subfields will increase by a value of

∑m
i=1 min{Mi,p(i), Mi,p(i)+1}, where

Mi,0 = Mi,n+1 = 0 and p(i) denotes the position at which p crosses the i-th row
of M . The reason is that, similar to that for the delivery error, the net increase in
the horizontal complexity from without any split between Mi,p(i) and Mi,p(i)+1

to with such a split is min{Mi,p(i), Mi,p(i)+1} [17]. We use cost(p) to denote the
increased horizontal complexity induced by the y-monotone path p for splitting
M , that is, cost(p) =

∑m
i=1 min{Mi,p(i), Mi,p(i)+1}. Then, the FSHC problem is

equivalent to finding a feasible splitting T of cardinality d − 1 that minimizes∑
p∈T cost(p). As in Section 3, we model the FSHC problem as a shortest path

problem in a directed acyclic graph G with d layers, which satisfies the staircase
Monge property. By using a range-minima data structure [8], the weight of any
edge of G can be computed in O(m) time, after an O(mn) time preprocessing.
The staircase Monge property enables us to compute the shortest path in G by
examining only O(nα(w)) edges in total. Hence, we have the following result.

A New Field Splitting Algorithm for IMRT 13

Theorem 2. Given an IM M of size m × n, and a maximum allowable field
width w, the FSHC problem on M can be solved in O(mnα(w)) time.

5 Implementation and Experiments

To study the performance of our new FSMP algorithm with respect to clinical
applications, we implemented the algorithm using the C programming language
on Linux and Unix systems, and experimented with the resulting software on
over 60 sets of clinical intensity maps obtained from the Dept. of Radiation
Oncology, Univ. of Maryland Medical School. We conducted a comparison with
a common simple splitting scheme that splits intensity maps along vertical lines.
The algorithm for this simple splitting scheme is based on computing a d-link
shortest path in a weighted directed acyclic graph, which we designate as FSVL
(field-splitting using vertical lines). Both implementations are designed to take
as input the intensity maps generated by CORVUS, one of the current most
popular commercial planning systems.

The widths of the tested intensity maps range from 21 to 27. The maximum
intensity level of each field is normalized to 100. The minimum net error increase
of each intensity map is calculated for the given maximum subfield width. Table
1(a) compares the sums of the total net delivery error increases for splitting each
of 63 intensity map fields with the maximum subfield widths w ranging from 7
to 15. For each of the tested fields, the total net delivery error increase using our
FSMP algorithm is always less than or equal to the net delivery error increase
using FSVL. For all 63 tested fields, the sums of the total net delivery error
increases of FSVL and FSMP are 488338 and 351014, respectively. In terms of
the net delivery error increase, our FSMP algorithm showed an improvement of
about 28.1% over FSVL on the medical data we used. (It should be pointed out
that theoretically, it can be shown that the output of FSVL can be arbitrarily
worse than FSMP’s in the worst case.)

Table 1. (a) Comparisons of the total sums of net delivery error increase for 63
intensity-modulated fields with the maximum allowable subfield widths w ranging from
7 to 15. (b) Net error increase using the FSMP algorithm with respect to the maximum
allowable subfield width w, for three intensity fields from a single clinical case.

w 7 8 9 10 11 12 13 14 15 Total

FSVL 144590 84088 52390 35248 51434 33268 33204 29386 24730 488338

FSMP 142840 65854 34958 14846 41564 18808 18550 9778 3816 351014 (a)

w 7 8 9 10 11 12 13 14 15

Field 1 4000 3120 560 200 680 440 320 200 200

Field 2 4600 2120 920 120 760 600 560 360 0

Field 3 520 160 40 40 1400 200 160 0 0 (b)

14 D.Z. Chen et al.

On individual intensity-modulated fields, the total net delivery error generally
decreases as the maximum allowable subfield width w increases. However, there
are some cases in which the net increase in delivery error actually increases with
an increased subfield width w. In these relatively rare cases, it may actually be
more advantageous to split a field into more subfields rather than less if a smaller
total delivery error caused by the field splitting is desired (of course, the increased
number of resulting subfields may very well cause a considerable increase in the
total delivery time). Table 1(b) shows the net delivery error changes for splitting
3 intensity-modulated fields from a single clinical case using our FSMP algorithm
with varying maximum allowable subfield widths w.

The FSMP program runs very fast, as predicted by its theoretical linear time
bound. It completed the field splitting in less than one second.

References

1. Aggarwal, A., Park, J.: Notes on Searching in Multidimensional Monotone Arrays.
In: Proc. 29th Annual IEEE Symp. on Foundations of Computer Science, pp. 497–
512. IEEE Computer Society Press, Los Alamitos (1988)

2. Chen, D.Z., Hu, X.S., Luan, S., Wang, C., Wu, X.: Mountain Reduction, Block
Matching, and Applications in Intensity-Modulated Radiation Therapy. In: Proc.
of 21th ACM Symposium on Computational Geometry, pp. 35–44. ACM Press,
New York (2005)

3. Chen, D.Z., Wang, C.: Field Splitting Problems in Intensity-Modulated Radiation
Therapy. In: Proc. of 17th International Symp. on Algorithms and Computation,
pp. 690–700 (2006)

4. Deng, J., Pawlicki, T., Chen, Y., Li, J., Jiang, S.B., Ma, C.-M.: The MLC Tongue-
and-Groove Effect on IMRT Dose Distribution. Physics in Medicine and Biology 46,
1039–1060 (2001)

5. Dogan, N., Leybovich, L.B., Sethi, A., Emami, B.: Automatic Feathering of Split
Fields for Step-and-Shoot Intensity Modulated Radiation Therapy. Phys. Med.
Biol. 48, 1133–1140 (2003)

6. Dou, X., Wu, X., Bayouth, J.E., Buatti, J.M.: The Matrix Orthogonal Decompo-
sition Problem in Intensity-Modulated Radiation Therapy. In: Proc. 12th Annual
International Computing and Combinatorics Conf., pp. 156–165 (2006)

7. Engel, K.: A New Algorithm for Optimal Multileaf Collimator Field Segmentation.
Discrete Applied Mathematics 152(1-3), 35–51 (2005)

8. Gabow, H.N., Bentley, J., Tarjan, R.E.: Scaling and Related Techniques for Geo-
metric Problems. In: Proc. 16th Annual ACM Symp. Theory of Computing, pp.
135–143. ACM Press, New York (1984)

9. Hong, L., Kaled, A., Chui, C., Losasso, T., Hunt, M., Spirou, S., Yang, J., Amols,
H., Ling, C., Fuks, Z., Leibel, S.: IMRT of Large Fields: Whole-Abdomen Irradia-
tion. Int. J. Radiat. Oncol. Biol. Phys. 54, 278–289 (2002)

10. Kamath, S., Sahni, S., Li, J., Palta, J., Ranka, S.: A Generalized Field Split-
ting Algorithm for Optimal IMRT Delivery Efficiency. The 47th Annual Meeting
and Technical Exhibition of the American Association of Physicists in Medicine
(AAPM), 2005. Also Med. Phys. 32(6), 1890 (2005)

11. Kamath, S., Sahni, S., Ranka, S., Li, J., Palta, J.: A Comparison of Step-and-
Shoot Leaf Sequencing Algorithms That Eliminate Tongue-and-Groove. Phys.
Med. Biol. 49, 3137–3143 (2004)

A New Field Splitting Algorithm for IMRT 15

12. Kamath, S., Sahni, S., Ranka, S., Li, J., Palta, J.: Optimal Field Splitting for Large
Intensity-Modulated Fields. Med. Phys. 31(12), 3314–3323 (2004)

13. Klawe, M.M., Kleitman, D.J: An Almost Linear Time Algorithm for Generalized
Matrix Searching. Technical Report RJ 6275, IBM Research Division, Almaden
Research Center (August 1988)

14. Luan, S., Wang, C., Chen, D.Z., Hu, X.S., Naqvi, S.A., Wu, X., Yu, C.X.: An
Improved MLC Segmentation Algorithm and Software for Step-and-Shoot IMRT
Delivery without Tongue-and-Groove Error. Med. Phys. 33(5), 1199–1212 (2006)

15. Webb, S.: Intensity-Modulated Radiation Therapy. Institute of Cancer Research
and Royal Marsden NHS Trust (2001)

16. Wu, Q., Arnfield, M., Tong, S., Wu, Y., Mohan, R.: Dynamic Splitting of Large
Intensity-Modulated Fields. Phys. Med. Biol. 45, 1731–1740 (2000)

17. Wu, X.: Efficient Algorithms for Intensity Map Splitting Problems in Radiation
Therapy. In: Proc. 11th Annual International Computing and Combinatorics Conf.,
pp. 504–513 (2005)

A New Recombination Lower Bound and the

Minimum Perfect Phylogenetic Forest Problem

Yufeng Wu and Dan Gusfield

Department of Computer Science
University of California, Davis

Davis, CA 95616, U.S.A.
{wuyu,gusfield}@cs.ucdavis.edu

Abstract. Understanding recombination is a central problem in popula-
tion genetics. In this paper, we address an established problem in Com-
putational Biology: compute lower bounds on the minimum number of
historical recombinations for generating a set of sequences [11,13,9,1,2,15].
In particular, we propose a new recombination lower bound: the forest
bound. We show that the forest bound can be formulated as the mini-
mum perfect phylogenetic forest problem, a natural extension to the classic
binary perfect phylogeny problem, which may be of interests on its own.
We then show that the forest bound is provably higher than the optimal
haplotype bound [13], a very good lower bound in practice [15]. We prove
that, like several other lower bounds [2], computing the forest bound is NP-
hard. Finally, we describe an integer linear programming (ILP) formula-
tion that computes the forest bound precisely for certain range of data.
Simulation results show that the forest bound may be useful in computing
lower bounds for low quality data.

1 Introduction

Meiotic recombination is an important biological process which has a major effect
on shaping the genetic diversity of populations. Recombination takes two equal
length sequences and produces a third sequence of the same length consisting
of some prefix of one sequence, followed by a suffix of the other sequence. Esti-
mating the frequency or the location of recombination is central to modern-day
genetics. Recombination also plays a crucial role in the ongoing efforts of asso-
ciation mapping. Association mapping is widely hoped to help locate genes that
influence complex genetic diseases. The increasingly available population genetic
variation data provides opportunities for better understanding of recombination.

In this paper, we assume the input data consists of single nucleotide polymor-
phisms (SNPs). A SNP is a nucleotide site where exactly two (of four) different
nucleotides occur in a large percentage of the population. That is, a SNP has bi-
nary states (0 or 1). A haplotype is a binary vector, where each bit (called site) of
this vector indicates the state of the SNP site for this sequence. Throughout this
paper, the input to our computational problems is a set of (aligned) haplotypes
(i.e. a binary matrix with n rows and m columns).

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 16–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Recombination Lower Bound 17

An established computational problem on recombination is to determine the
minimum number of recombinations needed to generate a set of haplotypes from
an ancestral sequence, using some specified model of the permitted site muta-
tions. A mutation at a SNP site is a change of state from one nucleotide to the
other nucleotides at that site. Throughout this paper, we assume that any SNP
site can mutate at most once in the entire history of the sequences, which is
supported by the standard infinite sites model in population genetics.

Given a set of binary sequences M , we let Rmin(M) denote the minimum
number of recombinations needed to generate the sequences M from any ances-
tral sequence, allowing only one mutation per site over the entire history of the
sequences. The problem of computing or estimating Rmin(M) has been studied
in a number of papers, for example [11,13,9,1,2,15]. A variation to the problem
occurs when a specific ancestral sequence is known in advance. No polynomial-
time algorithm for either problem is known, and the second problem is known
to be NP-hard [16,3]. Therefore, the problem of computing a good lower bound
on the minimum number of recombinations has attracted much attention.

In this paper, we present a new lower bound on Rmin(M), which has a static
and intuitive meaning. This lower bound (which we call the forest bound) is
closely related to the minimum perfect phylogenetic forest problem, an extension
of the classic binary perfect phylogeny problem. We then demonstrate that the
forest bound is provably higher than a well-known bound: the optimal haplotype
bound [13,15] 1. We resolve the complexity of computing the forest bound in
a negative way with a NP-hardness proof. Finally, we give an integer linear
programming formulation whose solution computes the forest bound exactly.
We show empirically that this formulation can be solved in practice for data
with small number of sites.

2 Background

2.1 Recombination and ARGs

For haplotype data composed of (binary) SNPs, the simplest evolutionary history
that derives these haplotypes is the classic binary perfect phylogeny (if we assume
the infinite sites model of mutations). The perfect phylogeny problem is to build
a (rooted) tree whose leaves are labeled by rows in M and edges labeled by
columns in M , and a column can label at most one edge. For the binary perfect
phylogeny problem, Gusfield [7] developed a linear time algorithm. However,
often the real biological data does not have a perfect phylogeny, which is partly
due to recombination. In this case, we need a richer model of evolution: The
evolutionary history of a set of haplotypes H , which evolve by site mutations
(assuming one mutation per site) and recombination, is displayed on a directed
acyclic graph called an “Ancestral Recombination Graph (ARG)” [6] (also called

1 Throughout this paper, when we say bound A is higher than bound B, we mean that
bound A is guaranteed to never be lower than bound B, and that there are examples
where it is strictly higher.

18 Y. Wu and D. Gusfield

phylogenetic networks in some literature). An ARG N , generating n sequences of
m sites each, is a directed acyclic graph containing exactly one node (the root)
with no incoming edges, and exactly n leaves with one incoming edge each.
Every other node has one or two incoming edges. A node with two incoming
edges is called a “recombination” node (and the two incoming edges are called
recombination edges). Each site (integer) from 1 to m is assigned to exactly one
edge in N , and none is assigned to any edge entering a recombination node.
The sequences labeling the leaves of N are the extant sequences, i.e., the input
sequences. See Gusfield, et al. [8] for a more detailed explanation.

An ARG N is called a minARG if N uses exactly Rmin(M) recombinations.
The ARG N may derive sequences that do not appear in M . These sequences
are called Steiner sequences. Sequences in M are called input sequences.

2.2 Lower Bounds on Rmin(M)

There are a number of papers on lower bounds on Rmin(M) [11,13,9,2,15]. In
[12,13], Myers and Griffiths introduced the haplotype lower bound, which, when
combined with additional ideas in [12,13] significantly outperforms the previous
lower bounds. The haplotype bound, h(M), is simple and efficiently computable.
Consider the set of sequences M arrayed in a matrix. Then h(M) is the number
of distinct rows of M , minus the number of distinct columns of M , minus one.
It is easy to establish that this is a lower bound on Rmin(M). Simulations show
that h(M) by itself is a very poor bound, often a negative number. However,
when used with a few more tricks, it leads to impressive lower bounds. One
such trick is to compute the haplotype bound on a subset of sites from M that
need not be contiguous. For a subset of sites S (not necessarily contiguous),
let M(S) be M restricted to the sites in S, and h(S) be the haplotype bound
computed on M(S). It is easy to see that h(S) is also a lower bound on the
M . The optimal haplotype bound is the highest h(S) over all choices of S. Since
there are an exponential number of subsets, complete enumeration of subsets
quickly becomes impractical, and the problem of computing optimal haplotype
bound has also been shown to be NP-hard [2]. However, Song et al. [15] showed
that integer linear programming (ILP) can be used to efficiently compute the
optimal haplotype bound for the range of data of current biological interest.
They also showed the optimal haplotype bound is often equal to Rmin(M) in
certain biological datasets.

Myers and Griffiths [13] also introduced the so-called “history bound”. The
history bound is provably higher than the haplotype bound [1]. However, the
history bound is defined only by a computational procedure (described below),
and there is no static and intuitive meaning provided for this bound in [13],
independent of the procedure to compute it. This makes both it difficult to
find alternative methods to compute the history bound, or to understand and
improve it. To compute the history bound for a set of binary sequences M , we
initialize R = 0. A site c in M is called non-informative when entries in column
c have only a single 0 or a single 1. A cleanup step is defined as the removal
an any non-informative site in M , or the merging of two duplicate rows in M

A New Recombination Lower Bound 19

into one row. A row removal step arbitrarily picks one row in M for removal,
provided that no cleanup step is possible. A history is defined by an execution
of the following algorithm:

Repeat a) and b) until M contains only one sequence:
a) Perform cleanup steps until no more are possible.
b) Perform one row removal step; increment R by one.
The history lower bound is equal to the minimum value of R over all possible

histories (i.e. the ways of choosing a row in the row removal step). The correctness
of the history bound can be proved by induction [13]. Computing the history
bound is NP-hard and a dynamic programming algorithm with O(2nm) running
time is given in Bafna et al. [2] (which improves upon the original implementation
by Myers and Griffiths [13]).

3 The Forest Bound and the Minimum Perfect
Phylogenetic Forest (MPPF) Problem

3.1 Definition of the Forest Bound

The optimal haplotype bound is currently one of the strongest lower bounds. In
the following, we define and describe a lower bound that can be proved to be
higher than the optimal haplotype bound.

Given an arbitrary ARG N , suppose we remove all recombination edges. N is
then decomposed into connected components, each of which is a directed perfect
phylogeny (sometimes simply referred to as a directed tree). Some of the tree
edges are labeled by site mutations in the original ARG, and thus, we have
a forest F(N) of perfect phylogenies, created by removing all recombination
edges. In what follows, we will consider each of these trees after ignoring the
edge directions. An important property of these trees in F(N) is that there is
no duplicate mutations at a site in two trees in F(N). In other words, if a site
s labels an edge in tree T1 ∈ F(N), another tree T2 ∈ F(N) can not have a
mutation at s. This implies that sequences in T2 have a uniform value (either
all-0 or all-1) at site s. Also note that F(N) partitions the rows in M , where
each partition is a perfect phylogeny and each row in M appears as a label in one
of the perfect phylogenies. We call such partitioning of M perfect partitioning.
It is easy to see that perfect partitioning always exists: a trivial partitioning
simply has n partitions, where each partition has a single row. Obviously, there
exists a way of partitioning the rows of M such that the number of partitions is
minimized. This motivates the following optimization problem.
The Minimum Perfect Phylogenetic Forest (MPPF) Problem. Given a
binary matrix M , find a set of a minimum number of perfect phylogenies that
derives M s.t. each row is derived by some perfect phylogeny and for any site s,
mutations at s occur at most once in at most one tree. We denote the minimum
number of perfect phylogenies Fmin(M).

Note that Fmin(M) = 1 iff M has a perfect phylogeny. That is, there exists
a single tree that derives all sequences in M iff M has a perfect phylogeny.

20 Y. Wu and D. Gusfield

On the other hand, when there is no perfect phylogeny for M , we need more
than one tree to derive all the sequences in M . The MPPF problem asks to
find the minimum number of trees in the forest. This problem is related to
the well-studied maximum parsimony problem (i.e. the Steiner tree problem in
phylogeny). In maximum parsimony, we construct a single tree (with back or
recurrent mutations) which minimizes the number of site mutations. The MPPF
problem asks for constructing the minimum number of trees, each of which is a
perfect phylogeny, and each site can mutate once in at most one tree.

Now we define the forest bound.

Forest bound. For a binary matrix M , the forest bound is equal to Fmin(M)−1.

Lemma 1. The forest bound is a valid lower bound on Rmin(M).

Proof. Suppose we trim a minARG N by removing all recombination edges in
N and we have a forest with k ≥ Fmin(M) trees. Note that N is connected and
we need at least one recombination to connect a tree to the rest of trees. So
Rmin(M) ≥ k− 1 ≥ Fmin(M)− 1 . The reason that we subtract 1 is because we
can start from a tree and this tree does not need a recombination to link it. ��

Now we explain the reason for our interest in the forest bound. Unlike the forest
bound, the history bound lacks a static definition. Below we show that the forest
bound is higher than the haplotype bound, and hence, the forest bound is the
highest lower bound that we know of which has a simple static definition.

Lemma 2. For a perfect phylogenetic forest F with ns Steiner nodes, the num-
ber of trees k is equal to n + ns −m.

Proof. Suppose each tree Ti ∈ F contains ni distinct sequences (nodes) for
i = 1 . . . k. Here,

∑k
i=1 ni = n + ns, where ns is the number of Steiner nodes

in the ARG N . We know for each tree, there are ni − 1 edges with mutations.
Let mi denote the number of mutations in tree Ti. This means mi = ni − 1.
We require each column to mutate exactly once, and it is easy to show that
this constraint does not change the forest bound. So we have m =

∑k
i=1 mi =∑k

i=1(ni − 1) = n + ns − k mutations in the forest. So, k = n + ns −m. ��

Lemma 3. This forest bound is always higher than the haplotype bound, but
lower than the history bound.

Proof. We first show that the forest bound is provably higher than the haplotype
lower bound. Suppose a minimum forest has k = Fmin(M) trees. From Lemma
2, k = n+ns−m ≥ n−m. So k−1 ≥ n−m−1, which is the haplotype bound.

Now we show that the history bound is higher than the forest bound. From the
algorithm to compute the history bound, it can be seen that the method produces
a phylogenetic forest. However, in contrast to the definition of a phylogenetic
forest given above, the forest produced by the history bound has additional time-
order constraints: the trees in the forest can be time-ordered such that if site
s mutates in a tree Ti, the states at s for sequences in earlier trees must be

A New Recombination Lower Bound 21

ancestral states (i.e. not the derived states). But since the forest produced by
the history bound is a valid phylogenetic forest, its number of trees in that forest
cannot be smaller than the forest bound. ��

We now relate the forest bound to the optimal haplotype bound.

Theorem 1. The forest bound is higher than the optimal haplotype bound.

Proof. By Lemma 3 we know that the forest bound applied to any subset of
site is higher than the haplotype bound applied to the same subset of sites. In
particular, if S∗ is the subset of sites of M (called optimal subset) that gives the
optimal haplotype bound, then the forest bound applied to S∗ is higher. Hence
to prove the theorem we only need to show that the forest bound applied to all
of M cannot increase by restricting to a subset of sites in M .

For a given data M , suppose we have a minimum phylogenetic forest F for M
with Fmin(M) trees. Now we consider F(S) when we restrict our attention to
S, a subset of sites. To derive F(S) from F , we remove all mutation sites in F
that are not in S and cleanup the forest by removing edges with no mutations,
and collapsing identical sequences. It is important to note that F(S) has at most
Fmin(M) trees. This is because when we remove sites not in S, we may need to
link up two previously disjoint trees (and thus make the number of trees smaller),
but we can never increase the number of trees. Thus, we know Fmin(M(S)) can
not be higher than Fmin(M). ��

Theorem 1 and Lemma 3 say that the forest bound is higher than the optimal
haplotype bound but lower than the history bound. Hence we conclude,

Corollary 1. The optimal haplotype bound cannot be higher than the history
bound 2.

Experiments show that the forest bound can be strictly higher than the opti-
mal haplotype bound and improve the overall recombination lower bound. For
example, consider a simple matrix containing 5 rows and 5 columns: 10001,
00010, 00100, 11011 and 01101. The optimal haplotype bound for this data is 1,
while it is not hard to see that a perfect phylogenetic forest contains at least 3
components. Thus, the forest bound for this data is 2.

As mentioned earlier, it is known that the optimal haplotype bound and the
history bound are both NP-hard to compute [2]. However, if the forest bound
could be computed efficiently, we would not need to compute the optimal hap-
lotype bound, but could instead use the forest bound. Unfortunately, the forest
bound is also NP-hard to compute.

3.2 The Complexity of the Forest Bound

Theorem 2. The MPPF problem is NP-hard.
2 Myers [12] asserted (with no proof) that the history bound is higher than the optimal

haplotype bound. Here we furnish the proof to this claim.

22 Y. Wu and D. Gusfield

Proof. The high-level construction of our proof is inspired by Foulds and Gra-
ham’s NP-completeness proof of Steiner tree in perfect phylogeny problem [4].

As in [4], we reduce from the known NP-complete problem of Exact Cover by
3-sets (X3C) [5]. Recall that the general form of X3C is as the following:

S = {S1, S2, . . . , Sn}, where each |Si| = 3 and Si ⊆ {1, 2, . . . , 3m} = I3m, for
1 ≤ i ≤ n.

Does S contain (non-overlapping) m sets Si1 , . . . , Sim whose union is I3m?
High-Level Idea. We construct a binary matrix M for S (the collection of
sets), such that for each set Si, the set of corresponding sequences in M can
be generated on a perfect phylogeny. Thus, if there is a solution for X3C, we
have m perfect phylogenies that use up all site mutations, and a collection of
isolated sequences (also trivially perfect phylogenies) and the total number of
trees is Fmin(M). If there is no solution for X3C, the number of trees in any
perfect phylogenetic forests is more than Fmin(M). To enforce this property, two
sequences corresponding to the same set Si will have a small Hamming distance.
For two sequences corresponding to different sets, their Hamming distance will
be large. So, if two far apart sequences are placed into the same tree, there will
be too many Steiner sequences needed to connect them, and thus by Lemma
2 and proper manipulation of the construction, we will have more trees than
Fmin(M) in such forest.

WLOG we assume there is no duplicate sets in S. Given an instance of X3C,
we construct a binary matrix M as follows. We let K = m + 1. Note that
2K − 3 > m, when m > 1. For each Si, we construct a set of 3K sequences of
length 3mK. We have K sequences corresponding to each of the three elements
in Si. Each of these sequences is composed of 3m blocks of K sites. Each block is
arranged sequentially in the increasing order for each integer in Si. The sequences
are constructed as follows. Suppose we are constructing the jth sequence (j ∈
{1 . . .K}) for an element p ∈ Si. For block (of number q) Bi,p,j,q in this sequence,
if the corresponding integer q /∈ Si, then block Bi,p,j,q contains all 1. If q ∈ Si

and q 	= p, then we set Bi,p,j,q to be all 0. If q ∈ Si and q = p, we set the jth bit
in Bi,p,j,q to 1 and 0 for all other bits. Note that for a given row associated to
a set Si, all bits corresponding to elements not in this set are 1. Also note that
for the K sequences corresponding to an integer q ∈ Si, the K blocks Bi,p,j,q

form a diagonal matrix with all 1 on the main diagonal. One example is shown
in Table 1 for the simple case when m = 2.

The following facts (proof omitted) about M are important.
P1. There are no two identical sequences in M .
P2. The 3K sequences corresponding to a single set Si have a star-shaped perfect

phylogeny, with the center sequence as the only Steiner sequence.
P3. For two sequences s1, s2 coming from the same set Si, the Hamming distance

between s1, s2 is 2. For two sequences s1, s2 coming from different sets Si, Sj ,
the Hamming distance is at least 2K − 2.

Now we claim that X3C problem has a solution (i.e. union of Si1 , . . . , Sim is
equal to I3m) if and only if there is a phylogenetic forest for M with exactly
3nK − 3mK + m perfect phylogenies.

A New Recombination Lower Bound 23

Table 1. Example of the constructed matrix when m = 2 (i.e. there are 6 elements in
I3m), and thus K = 3. The table lists the constructed rows for a set {1, 2, 4}.

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

r1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
r2 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
r3 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

r4 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1
r5 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1
r6 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1

r7 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1
r8 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1
r9 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1

We first show that given a solution (i.e. Si1 , . . . , Sim) of X3C, we can build a
forest with 3nK − 3mK + m trees. From property P2, we construct m perfect
phylogenies, each from 3K sequences corresponding to each of Sij . Then, we treat
the remaining 3nK − 3mK as isolated sequences (trivially perfect phylogenies).
So the total number of perfect phylogeny is 3nK − 3mK + m.

Now we show the other direction: if there is a phylogenetic forest for M that
has 3nK − 3mK + m perfect phylogenies, then there is a solution for problem
X3C. We first argue that no two sequences from different sets Si, Sj can appear
together in a same perfect phylogeny. For contradiction, suppose s1, s2 coming
from different sets are together in one perfect phylogeny. Consider the path from
s1 to s2 in the perfect phylogeny. From Property P3, the Hamming distance
between s1 and s2 is at least 2K − 2. This means there are at least 2K − 3
intermediate nodes on that path whose states changes from s1 to s2 on these
2K − 2 sites. It is also easy to see that none of these 2K − 3 nodes can be part
of M , since each sequence in M has either exactly a single 1 or all 1s within a
block and intermediate nodes between s1, s2 must contain from 2 to K−1 1s for
the block corresponding to the element not shared by Si, Sj . That is, we know
that the phylogenetic forest contains at least 2K − 3 Steiner nodes. But from
Lemma 2, we will have at least 3nk−3mK+(2K−3) perfect phylogenies, which
is larger than 3nK − 3mK + m since 2K − 3 > m. That is a contradiction, and
thus each phylogeny can only have sequences derived from the same set Si.

Now it is easy to see that within the forest there can be at most m non-
degenerated trees. This is because each non-degenerated tree contains at least 1
Steiner node (see Property P3). Also note that we can not have fewer than m
non-degenerated trees. To prove this, suppose for contradiction, that we have at
most m−1 non-degenerate perfect phylogenies. Since each such tree comes from
a single set Si, if there are at most m − 1 trees, there are at most 3(m − 1)K
nodes in the trees. Then there are at least 3nK−3(m−1)K = 3nK−3mK +3K
degenerated trees. Since K = m + 1, we know we will have more than 3nK −
3mK + m (isolated) trees. That is a again a contradiction.

Therefore, we know we will have exactly m non-degenerated trees. Now we
need to show that these m non-degenerated trees correspond to a solution for
X3C. Note that each of such trees does correspond to a set in S. What we

24 Y. Wu and D. Gusfield

need to show is that every element in I3m is covered, and no element is covered
more than once. Suppose a tree has a block whose corresponding integer is not
covered by other picked sets, then we can easily enlarge the tree by adding
the sequences of that block. Now we want to argue that no two sets picked
by this phylogenetic forest can overlap. For contradiction, suppose there is an
overlap between Si, Sj when we select all 3K sequences corresponding to Si, Sj .
Then for the corresponding two trees, there must be mutations in both trees
for the overlapped sites. This contradicts the assumption that the set of trees
are perfect phylogenies with no duplicate mutations (sites). Therefore, the given
phylogenetic forest leads to a valid X3C solution. ��

Corollary 2. Computing the forest bound is NP-hard.

A Variant of the MPPF Problem. The MPPF problem requires that if a
mutation occurs at a site in one tree, then this site does not mutate in any other
tree. Now, suppose we allow a site to mutate in more than one of the perfect
phylogenies (but still mutate at most once in any single perfect phylogeny). This
problem is NP-complete even when we just want to partition the matrix into
two perfect phylogenies. We omit the proof due to the space limit.

4 Practical Computation of the Forest Bound

In this section, we focus on using integer programming to compute the exact
forest bound for data within certain range.

4.1 Computing the Forest Bound Precisely Using Integer Linear
Programming

Consider an input matrix M with n rows and m sites. Our goal is to compute
the minimum forest that derives the input sequences. There are 2m possible
sequences (which form a hypercube) that could be part of the minimum forest.
Of course, the n input sequences must appear in this forest. From Lemma 2, in
order to compute the forest bound we need to minimize the number of Steiner
nodes. Thus, we create a variable vi for each sequence si in the set of 2m possible
sequences at Steiner nodes, where vi = 1 means sequence si appears in the forest.
Next, we create a variable ei,j for two sequences si, sj that differ at exactly one
column. We create constraints to ensure ei,j = 1 implies vi = 1 and vj = 1. We
define a set Ec as the set of ei,j where si, sj differ exactly at the single site c.
The infinite sites mutation model requires that exactly one e ∈ Ec has value 1.

Optimization goal Minimize (
∑2m

i=1 vi)−m− 1
Subject to
vi = 1, for each row si ∈M .
ei,j ≤ vi, and ei,j ≤ vj , for each edge (si, sj).∑

(si,sj)∈Ec
ei,j = 1, for each site c

A New Recombination Lower Bound 25

Binary Variables
vi for each sequence si with m binary characters
ei,j for each pair of sequences si, sj such that d(si, sj) = 1.

The formulation can also be extended easily to handle the situation where
there are missing values in the input data, which is important for handling real
biological data. To handle missing data in the ILP formulation, for a sequence
si with missing values, we change the constraint vi = 1 to

∑
j vj ≥ 1, for

each sequence sj that matches the values of si at all non-missing positions. Our
experience shows that the formulation can be solved reasonably fast for data
with up to 8 sites (by a powerful ILP package CPLEX).

4.2 Simulations of Data with Missing Data

Now we describe computations of the forest bound and how they compare to the
haplotype bound on simulated data. In this simulation study, to make compar-
ison easier, we do not use the composite method [13], which often gives higher
lower bound. We show here that the forest bound can be effectively computed
for certain range of data with missing values.

We generated 100 datasets with Hudson’s program MS [10] for each parameter
setting. We fix the number of sites in these data to 7 or 8. We want to compare
the forest bound with the optimal haplotype bound when the data contains
various level of missing data. Currently, the only known method computing
optimal haplotype bound with missing data can only work with very small data.
So instead, we compare with a weaker haplotype bound method (implemented
in program HapBound [15]) that can handle missing data but not always give
the optimal bound [14] when there is missing data. Missing values are added to
the datasets by setting an entry to be missing with a fixed probability Pmv.

Table 2. Comparing the forest bound with haplotype bound. We report the percentage
of datasets where the forest bound is strictly higher than the haplotype bound.

% Missing value 0% 10% 20% 30%

20 rows, 7 sites 0% 0% 0% 3%
20 rows, 8 sites 0% 1% 0% 0%

30 rows, 7 sites 0% 1% 0% 8%
30 rows, 8 sites 0% 0% 0% 7%

Table 2 shows that the forest bound can outperform HapBound in some cases.
On the other hand, the haplotype bound method used by the program HapBound
appears to be quite good for the range of data we tested. Our tests show that
when the missing value level is low or moderate, the program HapBound per-
forms quite well for the range of data we generated. However, on random data,
the forest bound was seen to often give higher bounds than the optimal haplo-
type bound (results not shown). In fact, for 50 simulated random datasets with

26 Y. Wu and D. Gusfield

15 rows and 7 sites (and with no missing entries), 10% of the data had a strictly
higher forest bound compared to the optimal haplotype bound (and 20% of the
data had a strictly higher history bound than the optimal haplotype bound).

Acknowledgments. The research reported here is supported by grants CCF-
0515278 and IIS-0513910 from National Science Foundation.

References

1. Bafna, V., Bansal, V.: The number of recombination events in a sample history:
conflict graph and lower bounds. IEEE/ACM Trans. on Computational Biology
and Bioinformatics 1, 78–90 (2004)

2. Bafna, V., Bansal, V.: Inference about Recombination from Haplotype Data: Lower
Bounds and Recombination Hotspots. J. of Comp. Bio. 13, 501–521 (2006)

3. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree
prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

4. Foulds, L.R., Graham, R.L.: The Steiner Tree in Phylogeny is NP-complete, Ad-
vances in Applied Math, v. 3 (1982)

5. Garey, M., Johnson, D.: Computers and intractability, Freeman (1979)
6. Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences

with recombination. J. of Comp. Bio. 3, 479–502 (1996)
7. Gusfield, D.: Efficient algorithms for inferring evolutionary history. Networks 21,

19–28 (1991)
8. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phyloge-

netic networks with constrained recombination. J. Bioinformatics and Computa-
tional Biology 2, 173–213 (2004)

9. Gusfield, D., Hickerson, D., Eddhu, S.: An Efficiently-Computed Lower Bound on
the Number of Recombinations in Phylogenetic Networks: Theory and Empirical
Study. Discrete Applied Math 155, 806–830 (2007)

10. Hudson, R.: Generating Samples under the Wright-Fisher neutral model of genetic
variation. Bioinformatics 18(2), 337–338 (2002)

11. Hudson, R., Kaplan, N.: Statistical properties of the number of recombination
events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)

12. Myers, S.: The detection of recombination events using DNA sequence data, PhD
dissertation. Dept. of Statistics, University of Oxford, Oxford, England (2003)

13. Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination
events in a sample history. Genetics 163, 375–394 (2003)

14. Song, Y.S., Ding, Z., Gusfield, D., Langley, C., Wu, Y.: Algorithms to distinguish
the role of gene-conversion from single-crossover recombination in the derivations of
SNP sequences in populations. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner,
P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, Springer, Hei-
delberg (2006)

15. Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper
bounds on the minimum number of needed recombinations in the evolution of
biological sequences. Bioinformatics 421, i413–i422 (2005) Proceedings of ISMB
2005

16. Wang, L., Zhang, K., Zhang, L.: Perfect Phylogenetic Networks with Recombina-
tion. J. of Comp. Bio. 8, 69–78 (2001)

Seed-Based Exclusion Method

for Non-coding RNA Gene Search

Jean-Eudes Duchesne1, Mathieu Giraud2, and Nadia El-Mabrouk1

1 DIRO – Université de Montréal – H3C 3J7 – Canada
{duchesnj,mabrouk}@iro.umontreal.ca

2 Bioinfo/Sequoia – LIFL/CNRS, Université de Lille 1 – France
giraud@lifl.fr

Abstract. Given an RNA family characterized by conserved sequences
and folding constraints, the problem is to search for all the instances of
the RNA family in a genomic database. As seed-based heuristics have
been proved very efficient to accelerate the classical homology based
search methods such as BLAST, we use a similar idea for RNA structures.
We present an exclusion method for RNA search allowing for possible
nucleotide insertion, deletion and substitution. It is based on a partition
of the RNA stem-loops into consecutive seeds and a preprocessing of the
target database. This algorithm can be used to improve time efficiency of
current methods, and is guaranteed to find all occurrences that contain
at least one exact seed.

1 Introduction

The last 20 years have seen an explosion in the quantity of data available for
genomic analysis. Much work has been devoted to speeding up data mining of
proteins or gene coding DNA, but these sequences account for only a fraction of
the genome. In addition, many non-coding RNA genes (ncRNAs) are known to
play key roles in cellular expression, yet few efforts have been made to facilitate
their search in large scale databases. Classical homology based search methods
like Blast [1] often fail when searching for non-coding genes since the input
is stripped from structural information down to its bare sequence. Searching
algorithms that permits inputs with structural information should yield better
results.

Historically, the first computer scientists to interest themselves with ncRNAs
have created tailor made algorithms for specific RNA families such as tRNAs
[6,4,9]. Other more general search tools where created to give control of the
biological context to the user [3,12,7]. Still these tools lacked the capacity to
efficiently parse large genomic databases. Klein and Eddy provided a database
specialized search tool [8] for ncRNA including structural information, but is
self admittedly slow for large scale databases. More recently, Zhang and Bafna
presented a method to efficiently filter databases with a set of strings matching
a profile to specific parameters [2]. Their experimentation gave rise to special-
ized filters for specific RNA families. As such this strategy would require prior

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 27–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 J.-E. Duchesne, M. Giraud, and N. El-Mabrouk

knowledge on the RNA families of interest when generating database, this can
become restrictive in some experimental contexts which would benefit from an
all-purpose filtering method for ncRNA. Although this can be offset by combin-
ing filters with different parameters in an attempt to maximize efficiency and
accuracy.

In addition to the capacity of parsing large genomic databases, as sequence
and structure constraints are established from a restricted set of an RNA family
representatives, any search method should account for a certain flexibility and
deviation from the original consensus, allowing for possible mismatches and in-
sertion/deletion (indel) of nucleotides. In particular RNAMotif [12] (one of the
most popular and time efficient tool for RNA search), does not explicitly allow
for base pair indels. In [5], we have considered a more general representation of
folding constraints and developed an approximate matching algorithm allowing
for for both mismatches and indels of base pairs. The major drawback of the
method was its time inefficiency.

In this paper, we develop a seed-based exclusion method allowing for mis-
matches and indels, able to speed up existing RNA search methods. Similar
heuristics have been proved very efficient to accelerate the classical homology
based methods. In particular, PatternHunter [11,10] based on multiple spaced
seeds has become one of the most popular method for sequence search at a ge-
nomic scale. Recently, Zhang et al.[16] proposed a formalization of the filtering
problem and a demonstration that the combination of several filters can im-
prove the search of ncRNAs. Here, we develop a new seed-based heuristic for
RNA search, using seeds with distance and folding constraints. It is based on a
partition of the RNA stem-loops into consecutive seeds and a preprocessing of
the target database storing the occurrences of all possible seeds in a hash table.
The search phase then reports, in constant time, the position lists of all seeds
of the query stem-loops, and uses extension rules to account for possible errors.
The heuristic is guaranteed to find all occurrences containing at least one exact
seed.

The rest of the paper is organized as follows. Section 2 presents the basic
concepts and definitions, and introduces the general idea of the Sagot-Viari al-
gorithm [15] that will be used in our algorithm’s search phase. Section 3 describes
our new exclusion method. In Section 4, we study the choice of seeds and anchor
elements. Finally, we present our experimental results in Section 5, and show how
our method can be used in conjunction with RNAMotif to improve its running
time.

2 Preliminary Definitions

2.1 RNA Structures

An RNA primary structure is a strand of consecutive nucleotides linked by phos-
phodiester bonds: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).
When transcribed from DNA to RNA, thymine is substituted into uracil (U). As

Seed-Based Exclusion Method for Non-coding RNA Gene Search 29

such, U and T are considered synonymous for most purposes. We denote ΣDNA

the alphabet of nucleotides {A, C, G, T }.
Considering that an individual nucleotide’s main biological property is to

form a structural bond with other nucleotides, primary structure alone ill-defines
ncRNAs. An RNA secondary structure is represented by a series of base pair-
ings, the most frequent ones being the canonical Watson-Crick A-T and C-G.
The secondary structure is organized in a set of nested stems and loops, where
a stem is a sequence of paired and unpaired nucleotides, and a loop is a se-
quence of unpaired nucleotides. A stem followed by a loop is called a stem-loop
(Figure 1.(a)).

Fig. 1. (a) A stem-loop with canonical base pairings represented as dots; (b) A stem-
loop descriptor. (a) is an occurrence of (b).

It is well documented that the functional properties of an RNA molecule is
dependent on its final structure obtained by additional foldings over its secondary
structure. Our work relies on the hypothesis that there is enough signal in the
primary and secondary structure to find the overall molecule with this simplified
view.

2.2 Descriptors

Descriptors are user-defined sets of conserved elements of a specific molecule’s
primary and secondary structure. They are often obtained from multiple align-
ments of different instances of the same molecule’s sequence from various species,
but how a good descriptor is obtained is beyond the scope of this current work.

In [5], we have introduced a rigorous and very flexible representation of folding
constraints in term of “secondary expressions”. In this paper, we focus on a
more restrictive descriptor form, though allowing to represent most of the RNA
families found in the literature. The considered constraints are:

1. Positions characterized by a possible subset of nucleotides and represented
by a degenerate alphabet, the IUPAC code, over all possible substitutions
(Table 1). For example, N allows for any nucleotide at the observed position.

2. Correlated constraints due to canonical base pairings. For example, in Fig-
ure 1.(b), the left-most pairing (R, Y) means that the upper nucleotide can
be either A or G, but if it is A (respec. G) then the opposite nucleotide
should be T (respec. C).

3. Bounded range of possible lengths for unpaired parts of the structure.

30 J.-E. Duchesne, M. Giraud, and N. El-Mabrouk

Table 1. The standard IUPAC code defines symbols for sets of nucleotides

A : A K : G | T B : C | G | T
C : C M : A | C D : A | G | T
G : G R : A | G (purine) V : A | C | G
T : T S : C | G H : A | C | T

W : A | T
Y : C | T (pyrimidine) N : A | C | G | T

2.3 The Sagot-Viari Notations

The Sagot-Viari algorithm [15] is designed to search for all stem-loops in a ge-
nomic sequence, allowing for possible mispairings. More precisely, given four
parameters s, e, dmin and dmax, the algorithm finds all possible stem-loops in
the genome G characterized by a maximum stem length s, a loop of size d with
dmin ≤ d ≤ dmax, and a maximum number of e mispairings and nucleotide
insertion and deletion (indels).

The interesting design feature of their method was to keep separate the two
complementary parts of the stems until the final reconstruction step. Another
way to look at their method is to consider that they filter a complete genome for
sequences that can potentially form a stem-loop structure but differ the actual
verification until the sequences have been extended to the full length of the
pattern.

We first introduce some basic notations. Given a sequence u = u1u2 . . . un,
we denote by ui,j the subsequence ui,j = uiui+1 . . . uj. The sequence u is the
complementary inverse of u. For example, if u = AATGC, then u = GCATT.
Given a sequence u of size k on ΣDNA, we denote by Oc(u) the list of positions
of all occurrences of u in the genomic sequence G, eventually within a threshold
of error e. The occurrences list of a stem-loop described by u is:

S(u,u) = {(p, q) | p ∈ Oc(u), q ∈ Oc(u), good(p, q)}

The predicate good(p, q) checks the distance (dmin ≤ q − p ≤ dmax) and the
error constraints.

The algorithm proceeds by successive extensions and filtering steps, starting
from sets Oc(α) for each α ∈ ΣDNA. Each set Oc(ui,j) could be constructed by
extending Oc(ui+1,j) and Oc(ui,j−1). However, a majority of the positions in
Oc(u) can be eliminated before the final filtering. In fact, the algorithm never
computes any Oc list beyond the initial step. It considers only possible occur-
rences (of the stem-loop) position lists:

POc(ui,j) = {p ∈ Oc(ui,j) | ∃q ∈ Oc(ui,j), good(p, q)}

The lists POc(ui+1,j) and POc(ui,j−1) are extended and merged into one list
POc′(ui,j). Filtering that list for the distance and error constraints give rise to

Seed-Based Exclusion Method for Non-coding RNA Gene Search 31

the list POc(ui,j). At the end, the solution set S(u,u) is obtained by a (quadratic)
filtering between POc(u) and POc(u).

The POc and POc′ lists are represented through stacks, and all the extension
and filtering operations are done in linear time relative to the size of the stacks.

3 An Exclusion Method for RNA Search

Given an RNA descriptor D and a genomic sequence (or database) G, the goal is
to find the position list SD of the occurrences of D in G, possibly with an error
threshold e. We propose to search the descriptor D starting with a set of n anchor
sequences extracted from the descriptor’s stem-loops. A heuristic based on an
exclusion method is developed for an efficient search of anchor sequences: each
anchor is partitioned into consecutive (and overlapping) seeds of a given size,
and a preliminary step consists in building a seed database over the genomic
sequence G. In section 4, we discuss the choice of appropriate “constraining”
anchors allowing a good speed-up with a convenient sensibility.

A high level sketch of the exclusion method is given below and is schematized
in Figure 2. Details are in the following subsections.

1. Preprocessing phase: Build a seed database over the genomic sequence G.
2. Partition phase: Choose a set of anchor sequences from D (with their

relative distance constraints) and a set of seed-shapes, and partition the
anchor sequences into consecutive seeds.

3. Anchor search phase: Query the database for the seeds, giving lists of
occurrences Oc. Then extend occurrences and filter them while checking
length, error and folding constraints.

4. Check phase: Check whether each RNA candidate verifies the descriptor
constraints that were not used as anchors in the search phase.

3.1 The Preprocessing Phase

The genomic database G is first processed to output all elementary motifs of
a given size. The preprocessing phase is designed to allow for a constant time
access to the position list of all occurrences of elementary motifs, represented by
seeds. Rigorous definitions follow.

A seed of size k or k-seed is a sequence of size k on the alphabet ΣDNA. To
allow the possibility of spaced seeds, we define two types of characters: # and
-, where - denotes the don’t care character. A k-seed-shape is a sequence of k
elements from the alphabet {#, -}.

Given a set of seed-shapes, the preprocessing phase builds a hash table con-
taining an entry for each set of sequences with the same # positions. For example,
for seed-shape ##-#, AGAC et AGTC are stored at the same position. We dis-
cuss the choice of appropriate seed-shapes and lengths in Section 4.

32 J.-E. Duchesne, M. Giraud, and N. El-Mabrouk

Fig. 2. (a) A specific descriptor sequence with the set of anchors A =
{ARTGCY T, ARGCAY T} of common length m = 7. The distance constraints are
d1,2

min = d1,2
max = 6. Anchors are partitioned into consecutive 3-patterns. The elements

in bold represent a single pair of seeds (seed shape ###); (b) The initial step of the
search phase is to query the database for all positions of the selected seeds. In the
figure, boxes are labeled by their implicit sequences. Their actual data is the lists of
positions of these sequences, as illustrated by the rightmost box; (c) Next, the algo-
rithm iterates over a series of extensions and merges to filter the seeds that cannot
possibly extend into the desired motif. Each level represents a single iteration. A single
box receives incoming extensions from two sources, hence the need for merging sets of
positions into a single set. One of these extension is shown in greater detail; (d) After
the final iteration, the algorithm returns a list of candidate positions for the full anchor
sequences. Each position needs to be validated to confirm the presence or absence of
the desired motif at the given position in the genome.

3.2 The Partition Phase

The RNA descriptor is first parsed to extract a given number of anchors that are
ordered in a priority search list (see section 4). More precisely an anchor A is a
set of sequences {A1, · · · ,Al} on the IUPAC alphabet, with a set of distance con-
straints {(di,j

min, di,j
max)}. Anchor sequences can be related with complementary

relations, but that is not mandatory.
A sequence of size k over the IUPAC alphabet is called a k-pattern. For a given

length k, each anchor sequence Ai is partitioned into its consecutive k-patterns
Ai

1,k, Ai
2,k+1, · · ·Ai

m−k+1,m. For a given k-seed-shape sh, we then report the set
of seeds corresponding to each k-pattern. A formal definition follows.

Definition 1. Let u = u1 · · ·uk be a k-pattern and sh = sh1 · · · shk be a k-seed-
shape. We say that a seed s = s1 · · · sk is a representative of u with respect to
sh iff, for any i such that shi = #, si ∈ ui.

Seed-Based Exclusion Method for Non-coding RNA Gene Search 33

Given a k-seed-shape sh and a k-pattern u, we denote by L(u) the list of seed rep-
resentative of u with respect to sh. For example, if u = ARY C and sh=##-# we
have L(u) = {AAAC, AACC, AAGC, AATC, AGAC, AGCC, AGGC, AGTC}.
We also denote by L(Ai) the list of representative of all k-patterns ofAi. The par-
tition phase reports the lists L(u) of each k-pattern of each anchor sequenceAi.

A final definition is required for the following section. Given a genomic data-
base G and a k-pattern u, the list of all occurrence positions of L(u) in G is
denoted by Oc(u). For example, if G = TAGACTAAAC and u is the k-pattern
introduced above, then Oc(u) = {2, 7}.

3.3 The Anchor Search Phase

For clarity of presentation, we describe the search phase for an anchor with two
anchor sequences of the same length, and a unique seed-shape of size k. Gen-
eralization to anchors of different lengths only requires a final step to extend
the longest anchor sequence. Generalization to anchors with more than two se-
quences requires to consider one POc and POc′ list per sequence. Anchors with
a single sequence are usually inefficient to consider during the search phase of
an RNA descriptor. Generalization to multiple seed-shapes is straightforward.

Let A = {X, Y } be the considered anchor, with the distance constraint
(dmin, dmax), and m be the common length of X and Y . Let k be the size of the
considered seed-shape, and the consecutive k-patterns of each anchor sequence
be X1,k · · ·Xm−k+1,m (respec. Y1,k · · ·Ym−k+1,m).

The initialization step consists in computing m− k + 1 pairs of lists
(Oc(Xi,i+k−1), Oc(Yi,i+k−1)) with respect to the genomic sequence G. Following
the partition phase, each seed is an entry in the hash table and accessed in
constant time. Following the Sagot-Viari methodology (Section 2.3), the two
lists are then traversed and filtered with respect to the distance constraints
(dmin, dmax). The list’s elements are of the form (pos, num errors), where pos
represents a position in the genome and num errors is the minimum number of
errors between the G subsequence at position p and the considered k-pattern
with respect to the seed-shape (errors are computed on the # positions of the
seed-shape).

The following m − k steps extend the consecutive k-seed surviving lists to
k + 1-seeds, then k + 2-seeds, until the m-seeds surviving lists representing the
complete anchor. As allowed seed lengths vary from k to m, we will number the
following steps from k to m.

Step p, for k ≤ p < m:
For each i, 1 ≤ i < m− p + 1 do:

1. Extend left POc(Xi+1,i+p) to POc(Xi,i+p) and respectively POc(Yi+1,i+p)
to POc(Yi,i+p) iff 1 ≤ i. To do so we use the Sagot-Viari rules of model
construction (extension by the character Xi or Yi) with the exception that
elements of both POc(Xi,i+p) and POc(Yi,i+p)) need to satisfy one condition
out of the match, mismatch, insertion and deletion. This is because we allow

34 J.-E. Duchesne, M. Giraud, and N. El-Mabrouk

for errors in both X and Y with respect to the descriptor while the original
Sagot-Viari algorithm did not have that restriction.

2. Extend rightPOc(Xi,i+p−1) to POc(Xi,i+p) and respectively POc(Yi,i+p−1)
to POc(Yi,i+p) iff i+ p ≤ m. This extension mirrors the previous step but uses
equivalent symmetric extensions to add charactersXi+p and Yi+p respectively.

3. Merge the two resulting lists into a new pair of lists POc′(Xi,i+p) and
POc′(Yi,i+p). If the resulting lists contain consecutive elements representing
the same position but with different numbers of errors, we keep a single copy
with the minimum number of errors.

4. Filter POc′(Xi,i+p) and POc′(Yi,i+p) with respect to the distance, fold-
ing and error bound constraints. The resulting lists are POc(Xi,i+p) and
POc(Yi,i+p).

In contrast with the original Sagot-Viari algorithm, errors should be allowed
for both anchor sequences. The filtering step should then account, not only for
the distance constraint, but also for the combined error constraints. Moreover
if X and Y are two strands of a given stem, then folding constraints must be
checked.

At the end of the search phase, the two remaining lists POc(X) = POc(X1,m)
and POc(Y) = POc(Y1,m) contain all possible occurrences of both anchor se-
quences. The last step is then to return all occurrence pairs SX,Y respecting the
distance, error and folding constraints.

3.4 The Check Phase

The rest of the descriptor D should finally be validated against the positions of
the anchor A. For this purpose any existing RNA search method can be used,
such as BioSmatch [5] or RNAMotif if indels are not allowed.

4 Choosing the Anchor Sequences and Seed Shapes

The first idea is to choose the most constraining anchor sequences (those that are
likely to give rise to the minimum number of occurrences in the database), that
is those with the lowest p-value. Statistical work on structured motifs of form
X x(�, �+δ)Y , where X and Y are correlated by secondary structure constraints,
have been done in [14]. The difficulty arise from the overlapping structure of the
patterns. The p-value can be computed by brute enumeration or by sampling.

However, the most constraining anchors are not necessarily the easiest to
parse. Indeed, degenerated symbols (representing sets with more than one nu-
cleotide) can give rise to a large list of seed representative in the partition phase
(see section 3.2). More precisely, anchor sequences of the same size and with the
same occurrence probability may give rise to different lists of seeds representa-
tives depending on the distribution of their degenerated positions. For example,
in Table 2, though both anchor sequences ARTGCYT and ACTNCAT have
the same occurrence probability of 1/46 under the Bernoulli model, the second

Seed-Based Exclusion Method for Non-coding RNA Gene Search 35

Table 2. Size of the lists involved in each stage of the extension phases, for an exact
search with the seed-shape ### on a 10M test database (from E. coli. and B. subtilis)

Anchor A Number of seeds in seed occurrences seeds remaining
L(A) in the database after extensions

step 3 step 4 step 5 step 6

ACTGCAT 5 856408 17846 871 42 4

ARTGCYT 8 1427873 35303 2380 206 10

ACTNCAT 14 2130755 60553 3599 167 6

sequence gives rise to a larger list of seed representative leading to a much larger
list of occurrences in the database. As the first extension phase of our algorithm
is the most time-consuming phase, a good estimation of the total time comes
from the number of seed representative.

This is further illustrated in Figure 3 where all possible anchors represented
by pairs of 5-patterns from the 5S RNA helix III (see Figure 3) are searched in
a database of bacterial genomes. Not surprisingly, the anchors with the fewest
seeds are significantly faster. Therefore, among the most constraining anchor
sequences (those with the lowest p-value), we choose those that give rise to the
shortest list of seed representative L(A).

Finally, Table 3 shows the sensibility and the speed obtained with different seed-
shapes. It appears that longer shapes lead to a smaller execution time, but at the
cost of a lower sensibility: some sequences are missed. Here the best compromise is
to use the spaced seed-shape ##-# : the parsing time is more than 40% smaller than
the time needed by RNAMotif and the sensibility remains at 99%.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

T
im

e
(s

/M
B

)

Number of seeds

Fig. 3. Relation between the speed of the exclusion method and the number of seed
representative of the anchor. We tested each possible anchor represented by pairs of
5-patterns from the 5S RNA helix III, with the seed-shape ####. The horizontal axis
gives the number of seeds corresponding to each anchor pair, and the vertical axis the
time taken for the search on a 130 MB bacterial database.

36 J.-E. Duchesne, M. Giraud, and N. El-Mabrouk

Table 3. Speed and sensitivity of the Exclusion method. The descriptor is an helix
with 6-base stems and a loop x(10, 50), searched with 1 error. It occurs 2110 times in
on a 10M test database (sequences from E. coli. and B. subtilis). Sensibilities of our
method are lowered by 1% due to an additional heuristic in stack transversal during
the search phase. The time ratios are against the time for RNAMotif.

RNAMotif Exclusion
v. 3.0.4 ### ##-# #### ##-##

sensibility 100% 97% 99% 68% 67%

preprocessing time (ms) – 684 927 1068 1262
parsing time (ms) 2709 4144 (153%) 1512 (56 %) 352 (13%) 135 (5%)

total time (ms) 2709 4828 (178%) 2439 (90 %) 1420 (51%) 1407 (45%)

5 Testing on RNA Stem-Loops

Here, we tested our new method for both quality and speed, by comparing with
RNAMotif. Indeed though RNAMotif has the limitation of ignoring possible
nucleotide insertions and deletions, it is an exact method thus giving a good
benchmark to test our heuristic’s sensitivity. Moreover it is the fastest RNA
search method developed so far.

We considered three RNA families: 5S rRNAs and RNase P RNAs as in [5]
as well as group II introns. In each case, the most conserved region was consid-
ered, namely helix III for 5S rRNAs, P4 region for RNase P RNAs and domain
V for group II introns. The tests are performed exclusively on stem-loop signa-
tures because of technical limitations in our current implementation. This will
be extended to full structures of ncRNAs in the near future. We used a database
containing 25 randomly selected microbial genomes from GenBank representing
a total of more than 75 million base pairs. All tests were performed on an intel
Pentium 4 PC with a 2800MHz processor, 2 GB of memory and running Fe-
dora Core 2. The stem-loop signatures were chosen to represent various testing
conditions and parameters (stem and loop size).

We considered the seed-shape ####, and two anchor sequences of size 5. Since
computational time rises exponentially with the number of seed representative
generated by anchor pairs, a cutoff value was selected to avoid anchors likely

Fig. 4. The stem-loop signature used for (a) 5S rRNAs helix III, (b) group II intron
domain V and (c) RNase P RNA P4 region. The dotted lines represent the specific
anchor sequences selected for searching.

Seed-Based Exclusion Method for Non-coding RNA Gene Search 37

to generate large initial sets of occurrences from the database. It was set to
16 seed representative, based on experimental results (Figure 3). This cutoff
could be raised or lowered on execution to influence speed (lower cutoff) or
sensitivity (higher cutoff), but 16 has been a good compromise thus far. Both
the 5s rRNA and the Intron group II consensus had several anchor pairs of size
5 falling under that cutoff. The chosen anchors are illustrated in Figure 4. The
anchor sequences used for the Intron group II consensus are related by folding
constraints, where as those used for the 5s rRNA are only related by distance
constraints. Unfortunately, no suitable pair of anchor sequences was found for
the RNAse P. This is more likely a limitation of the current implementation
rather than the method since the whole consensus structure could have yielded
for adequate anchors which were not present in the P4 region. However, this
illustrates that certain ncRNA might not have sufficient conserved regions to
select adequate anchor sequences.

We tested the ability of our exclusion method to speed up RNAMotif, in
other words, the check phase was completed by using RNAMotif. Running times
(Table 4, third column) are clearly improved for both 5S rRNAs and group
II intron domain V. This clearly shows that the exclusion method can shave
off significant amount of computational time for ncRNA searching methods.
Finally, we used our method not as a filtering strategy but rather as a stand
alone algorithm. In other words the exclusion method was used over the full
ncRNA stem-loop signatures (Table 4, last column). As expected from the many
degenerated positions in the structure consensus, the execution times are fairly
slow for this setup. Here we can clearly see the relationship between conservation
and execution times with the most conserved consensus structure (5S rRNAs)
being significantly faster to search than the other candidates.

Table 4. Computation times obtained by running our exclusion algorithm and
RNAMotif v3.0.0 on the stem-loop signature considered for each structured motif fam-
ily on a database of bacterial genomes. For each method we show the times obtained
when the full helix is searched and when only the most conserved subsets are searched.
No suitable anchor subset was available for the RNase P RNA P4 region.

RNAMotif RNAMotif with Exclusion on
Exclusion method full helix

5S RNA, helix III 2.6 s/Mb 1.1 s/Mb 12.7 s/Mb

Intron group II, domain V 3.3 s/Mb 2.7 s/Mb 31.0 s/Mb

RNase P RNA P4 region 3.1 s/Mb – 59.1 s/Mb

The database contained 71 annotated sequences of the 5S rRNA and 17 se-
quences of the group II intron. Of these 89 annotated ncRNA genes, only 2
weren’t found by RNAMotif, both of the 5S rRNA variety. The exact same re-
sults were found by the exclusion method in combination with RNAMotif. In the
case of the RNase P RNA, although we couldn’t find a suitable pair of anchor
sequences, using the exclusion method as a stand alone algorithm did provide

38 J.-E. Duchesne, M. Giraud, and N. El-Mabrouk

the same predictions as RNAMotif, where 36 of 39 annotated sequences were
found. In other words, no loss in sensitivity was observed over the tested data
when compared to an exhaustive method like RNAMotif.

6 Conclusion

We have developed an exclusion method allowing for nucleotide mismatches
and indels, that can be used in combination with other existing RNA search
methods to speed up the search. We have shown that given sub-motifs with
small degeneracy values, a hashing method built on the preprocessing of the
target database can significantly improve search times. The idea is to select in
the descriptor anchors which yield the least computation. That being the case,
it’s not given that any descriptor contains enough consecutive conservations
to permit sublinear filtering. By using distance constraints we can significantly
reduce the number of needed consecutive conserved positions by introducing
gaps between pairs of anchors.

Furthermore, we have shown that restricting these features to the helical struc-
tures alone is not an efficient method to filter a database. This result concords
with previous literature on the subject of finding signals in secondary structure
alone [13]. Generalizing the problem to seeds with distance constraints with-
out considering the secondary structures yields the best results as it takes into
account signal in both secondary and primary sequence.

This filtering method is still in its early stage as we can explore many other
features. It is evident from our current results that there is a bias for selecting
small elements and using the largest possible seed to gain the greatest speed
increase. In [16], Zhang et al. present a more robust way to select target anchors
from a pattern by creative use of the pigeonhole principle. In this paper we
address the same sensitivity issue through the use of “don’t care” characters
which gives added flexibility in choosing the anchor sequences for seeding the
search. We have not yet determined if both approaches are compatible and can
be defined into a single model. In any case, we plan to incorporate Zhang’s filter
definition into our future work to facilitate the comparison and/or addition of
our parameters. Furthermore, we plan to generalize the method to an arbitrary
number of anchors separated by constraint distances. This could be a viable
avenue to limit the number of initial candidates to process and further lower
computational times.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215, 403–410 (1990)

2. Bafna, V., Zhang, S.: FastR: Fast database search tool for non-coding RNA. In:
Proceedings of IEEE Computational Systems Bioinformatics (CSB) Conference,
pp. 52-61 (2004)

Seed-Based Exclusion Method for Non-coding RNA Gene Search 39

3. Eddy, S.R.: RNABOB: a program to search for RNA secondary structure mo-
tifs in sequence databases (1992) http://bioweb.pasteur.fr/docs/man/man/
rnabob.1.html#toc1

4. El-Mabrouk, N., Lisacek, F.: Very fast identification of RNA motifs in genomic
DNA. Application to tRNA search in the yeast genome. Journal of Molecular
Biology 264, 46–55 (1996)

5. El-Mabrouk, N., Raffinot, M., Duchesne, J.E., Lajoie, M., Luc, N.: Approximate
matching of structured motifs in DNA sequences. J. Bioinformatics and Computa-
tional Biology 3(2), 317–342 (2005)

6. Fichant, G.A., Burks, C.: Identifying potential tRNA genes in genomic DNA se-
quences. Journal of Molecular Biology 220, 659–671 (1991)

7. Gautheret, D., Major, F., Cedergren, R.: Pattern searching/alignment with RNA
primary and secondary structures. Comput. Appl. Biosci. 6(4), 325–331 (1990)

8. Klein, R., Eddy, S.: RSEARCH: Finding homologs of single structured RNA se-
quences (2003)

9. Laslett, D., Canback, B.: ARAGORN, a program to detect tRNA genes and tm-
RNA genes in nucleotide sequences. Nucleic Acids Research 32, 11–16 (2004)

10. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: Highly Sensitive and Fast
Homology Search. Journal of Bioinformatics and Computational Biology 2(3), 417–
439 (2004) Early version in GIW 2003

11. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology
search. Bioinformatics 18(3), 440–445 (2002)

12. Macke, T., Ecker, D., Gutell, R., Gautheret, D., Case, D.A., Sampath, R.: RNAmo-
tif – a new RNA secondary structure definition and discovery algorithm. Nucleic
Acids Research 29, 4724–4735 (2001)

13. Rivas, E., Eddy, S.R.: Secondary Structure Alone is Generally Not Statistically
Significant for the Detection of Noncoding RNAs. Bioinformatics 16(7), 583–605
(2000)

14. Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F., Schbath, S.: Occurrence prob-
ability of structured motifs in random sequences. J. Comp. Biol. 9, 761–773 (2002)

15. Sagot, M.F., Viari, A.: Flexible identification of structural objects in nucleic acid
sequences: palindromes, mirror repeats, pseudoknots and triple helices. In: Hein,
J., Apostolico, A. (eds.) Combinatorial Pattern Matching. LNCS, vol. 1264, pp.
224–246. Springer, Heidelberg (1997)

16. Zhang, S., Borovok, I., Aharonovitz, Y., Sharan, R., Bafna, V.: A sequence-based
filtering method for ncRNA identification and its application to searching for ri-
boswitch elements. Bioinformatics 22(14), e557–e565 (2006)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://bioweb.pasteur.fr/docs/man/man/rnabob.1.html#toc1
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://bioweb.pasteur.fr/docs/man/man/rnabob.1.html#toc1

A New Quartet Approach for Reconstructing

Phylogenetic Trees: Quartet Joining Method

Lei Xin, Bin Ma, and Kaizhong Zhang

Computer Science Department, University of Western Ontario,
London N6A 5B7, Canada

lxin3@uwo.ca, bma@csd.uwo.ca, kzhang@csd.uwo.ca

Abstract. In this paper we introduce a new quartet-based method for
phylogenetic inference. This method concentrates on reconstructing re-
liable phylogenetic trees while tolerating as many quartet errors as pos-
sible. This is achieved by carefully selecting two possible neighbor leaves
to merge and assigning weights intelligently to the quartets that contain
newly merged leaves. Theoretically we prove that this method will al-
ways reconstruct the correct tree when a completely consistent quartet
set is given. Intensive computer simulations show that our approach out-
performs widely used quartet-based program TREE-PUZZLE in most of
cases. Under the circumstance of low quartet accuracy, our method still
can outperform distance-based method such as Neighbor-joining. Exper-
iments on the real data set also shows the potential of this method. We
also propose a simple technique to improve the quality of quartet set.
Using this technique we can improve the results of our method.

1 Introduction

With the accumulation of phylogenetic data in recent years, the computational
biology community has shown great interest in the reconstruction of large evo-
lutionary trees from smaller sub-trees[5,9,10,11,12]. The quartet-based method
may be the simplest and most natural approach for this kind of problem. This
approach usually takes two major steps to complete the reconstruction. First, a
set of four-leaf subtrees i.e. quartets are built for every possible four sequences in
a DNA or protein sequence set using other phylogeny methods such as maximum
likelihood (ML) [2] or neighbor-joining (NJ) [8]. Then a combinatorial technique
is applied to reconstruct the entire evolutionary tree according to the topology
relations between the quartets built in the first step. It is well known that with
the currently existing methods it is hard to build accurate quartet set[1]. So the
efficiency of a quartet-based method really depends on how successful it is in
tolerating quartet errors. The advantage of this approach is that it can be quite
flexible. It can use the distance matrix if in the first step NJ is used. It can also
be totally independent of the distance matrix if ML or some other methods are
used.

In the last ten years, many efforts have been made to develop efficient quartet-
based algorithms. A prominent approach is known as quartet puzzling (QP) [9].

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 40–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Quartet Approach for Reconstructing Phylogenetic Trees 41

The corresponding program package is called TREE-PUZZLE which is widely
used in practice. Recently even a parallelized version was developed for this
package[11]. The main dispute around quartet puzzling is that it is outperformed
by faster neighbor-joining method in computer simulations. One attempt to im-
prove quartet puzzling is weighted optimization (WO). Although WO is better
than QP, it is still outperformed by neighbor-joining in most of cases. The au-
thors stated in their paper[5]: “Despite the fact that there were about 90% of the
correct quartets in Qmax, we observed that the correct tree was not well inferred
in comparison with other inference methods (including ML and NJ)”. A recent
paper takes another approach to solve the problem of quartet errors[12]. This ap-
proach builds a series of evolutionary trees rather than a single final tree. Their
results show that with multiple trees this approach can ensure high accuracy in
computer simulations. However, we noticed if only one final tree was allowed,
their method was still outperformed by neighbor-joining except on one type of
tree model.

In this article, we concentrate on the second step of reconstructing entire
phylogenetic tree from the quartet set. We introduce a new approach based on
quartet: quartet joining (QJ). This method achieves error toleration by carefully
selecting two possible neighbor leaves to merge and assigning weights intelligently
to the quartets that contain newly merged leaves. Theoretically we can prove that
this method will always reconstruct correct tree when a completely consistent
quartet set is given. Intensive computer simulations also show that our approach
outperforms TREE-PUZZLE package in most of cases. Under the circumstance
of low quartet accuracy, our method can outperform distance-based method such
as Neighbor-joining. The potential of this algorithm is also demonstrated by the
experiments on the real data set. This algorithm executes in O(n4) time which
is much faster than QP’s O(Mn4) where M is usually greater than 1000. n is
the number of sequences in the data set.

This article is organized as follows: in Section 2, we introduce some necessary
notations and definitions. In Section 3, we describe quartet joining method and
prove its important property. In Section 4, computer simulation results and
experiment results on real data set are given. In Section 5, a simple technique
is introduced to improve the results from section 4. Conclusion and future work
are discussed in Section 6.

2 Notations and Definitions

In the field of molecular phylogeny, DNA or protein sequences are represented
by leaf nodes on the evolutionary tree. A quartet is a set of four leaf nodes
which is associated with seven possible pathway structures: three of them are
fully resolved unrooted trees, three are partially resolved trees which we can not
distinguish between two of three fully resolved tree, the last one is a fully unre-
solved tree. A figure of three fully resolved trees and one fully unresolved tree of
leaf nodes {a, b, c, d} are shown in figure 1. We will use {ab|cd}, {ad|cb}, {ac|bd},
{abcd} to represent these four different structures. Clearly a tree with n leaf

42 L. Xin, B. Ma, and K. Zhang

Fig. 1. Four different quartet structures

nodes will have C4
n quartets. This quartet set is denoted by QT . We say a quar-

tet is consistent with an evolutionary tree T if it belongs to QT . A quartet set
Q is completely consistent with evolutionary tree T if Q = QT .

Two leaf nodes are called neighbors if they are connected to the same internal
node of the evolutionary tree. This is an important notation and will be men-
tioned frequently in this paper. When two leaf nodes are merged together to form
a new node of the tree, this new node is called supernode. Any of four nodes of a
quartet could be supernode. If all four nodes of a quartet are single leaf nodes,
this quartet is called single-node quartet otherwise it is called supernode quartet.
In this paper we will use capital letters to represent supernodes and small letters
to represent single leaf nodes.

3 Quartet-Joining Algorithm

The quartet-joining algorithm follows the bottom-up scheme to build an un-
rooted evolutionary tree. It starts from n leaf nodes. At every step it merges two
possible neighbors according to the quartet set and form one new leaf node until
three nodes are left. At last, it joins these three nodes together to get a fully
resolved evolutionary tree. The input and output of quartet-joining algorithm
are listed below:

Input: A set of quartets.
Output: A fully resolved tree with sequences on leaf nodes.

The key to this kind of algorithms is how to decide which two nodes are most
likely to be neighbors on the true evolutionary tree. We notice that for a given
tree of n leaf nodes, if any two leaf nodes i, j are neighbors on the tree then the
number of the quartets of the form {ij|kl} is C2

n−2. If any two leaf nodes are
not neighbors then the number of the quartets of the form {ij|kl} must be less
than C2

n−2 In other words, the quartets number of a pair of leaf nodes which
are neighbors is maximal among any pair of leaf nodes. This fact has been used
by several other methods to deduce neighbors. In this article, rather than apply
the fact directly, we design a special mechanism to fully mine the information
contained in the quartet set. Here we define support to be the weight that sup-
ports two leaf nodes to be neighbors. We use confidence to represent the weight
of quartets including single-node quartets and supernode quartets. Now we need
to choose support and confidence wisely such that the algorithm would not have
bias on any type of trees. An intuition is that the confidence of supernode quartet
can be defined as the percentage of consistent single node quartets it contains.
The support will then be the sum of confidence of all the quartets that support

A New Quartet Approach for Reconstructing Phylogenetic Trees 43

two nodes to be pairs. However experiments show this definition has bias on
certain type of trees. So here we use a different approach. In the quartet-joining
algorithm, the confidence of the supernode quartet {XY |UV } is defined as:

C(X, Y ; U, V) =
∑

x∈X,y∈Y,u∈U,v∈V

w(x, y; u, v) (1)

where X, Y, U, V are supernodes and we use |X | to denote the number of single
nodes which are contained in the supernode X . w(x, y; u, v) is the weight of input
quartets.

For a supernode quartet {XY |UV }, a single-node quartet induced from
{XY |UV } is the quartet whose four single nodes are taken from supernodes
X, Y, U, V separately. So the number of single-node quartets that can be induced
from {XY |UV } is |X ||Y ||U ||V |. When every supernode only contains one sin-
gle node, C(X, Y ; U, V) degenerates to w(x, y; u, v). The support of a supernode
pair (X, Y) is defined as:

supp(X, Y) =
supp(X, Y)
T (X, Y)

(2)

where
supp(X, Y) =

∑

U �=V, U,V �=X,Y

C(X, Y ; U, V) (3)

T (X, Y) = |X ||Y |
∑

U �=V, U,V �=X,Y

|U ||V | (4)

From the formula above, we can see the support of a pair (X, Y) is basically
the averaged weights of the quartets that support (X, Y) to be neighbors. The
advantage of this definition is that it balances the weights contributed by su-
pernode quartets and single node quartets. Thus there will be no information
loss during the process of merging leaf nodes. All the information from quartet
set is utilized. Therefor QJ method can reconstruct the evolutionary tree more
accurately than other quartet-based methods. Later on we will also prove that
this definition of support will ensure reconstructing the true evolutionary tree
when a completely consistent quartet set is given.

If at every step we calculate C(X, Y ; U, V) and supp(X, Y) directly, it results
in an algorithm of O(n5) time complexity. So we will use the equations below to
update the values of C(X, Y ; U, V) and supp(X, Y) instead of recalculating all
the values of the two matrices at every step. This will give us an algorithm of
O(n4) time complexity.

Let Cn(X, Y ; U, V) and suppn(X, Y) denote the matrices at step n. A1, A2

are the supernodes to be merged at step n− 1 and A1, A2 will be replaced by a
new node A. Then we have the updating formulae:

Cn(A, B; C, D) = Cn−1(A1, B; C, D) + Cn−1(A2, B; C, D) (5)

For the number of single nodes contained in supernode A, we have:

|A| = |A1|+ |A2| (6)

44 L. Xin, B. Ma, and K. Zhang

Let Sn denote the remaining nodes set at step n. For the support of the pairs
that contain the new node, we have:

suppn(A, B) =
∑

C �=D,C,D∈Sn

Cn(A, B; C, D) (7)

For other nodes, we have:

suppn(C, D) = suppn−1(C, D) −
∑

V ∈Sn−1

Cn−1(C, D; A1, V) (8)

−
∑

V ∈Sn−1

Cn−1(C, D; A2, V) + Cn−1(C, D; A1, A2) (9)

+
∑

V ∈Sn

Cn(C, D; A, V) (10)

= suppn−1(C, D) − Cn−1(C, D; A1, A2) (11)

The formula above comes from fact that all the confidences don’t change ex-
cept confidences concerning A1,A2 and A. We will delete nodes A1 or A2 and
insert node A. So for the new support matrix, we just subtract the influence of
A1 and A2 then add back the influence of A. We also add one Cn−1(C, D; A1, A2)
just because we subtract it twice before. The we use equation 5, the final updat-
ing formula can be simplified as (11). Also we need to update T (X, Y). For the
new nodes we just recalculate using equation (4). For other nodes:

Tn(C, D) = Tn−1(C, D)− |A1||A2||C||D| (12)

The quartet-joining algorithm are formally described below:

1. Use w(x, y, u, v) to initialize confidence matrix C(X, Y ; U, V).
2. Compute support matrix supp(X, Y) from confidence matrix using equation

(2) (3) (4).
3. Find the pair (i, j) which has the maximal value in the support matrix
4. Connect nodes i, j to an internal node then replace them with a supernode

k: delete i, j from the set of organisms and insert k.
5. Update confidence matrix , support matrix and T (X, Y) with the updating

equations above.
6. Repeat 3 to 5 until only three nodes remain.
7. Connect the three remaining nodes to an internal node. Output the final

tree.

We have the following important property for quartet-joining algorithm:

Theorem 1. If the input quartet set is completely consistent with evolutionary tree
T, the quartet-joining algorithm will reconstruct the exact evolutionary tree T.

A New Quartet Approach for Reconstructing Phylogenetic Trees 45

To prove this theorem we need to prove a lemma first. Let T0 = T . Tn is a
subtree of T with some nodes merged and removed at step n. A figure of Tn is
shown in figure 2. If two nodes A, B of Tn−1 are merged at step n − 1, Tn will
be a subtree of Tn−1 with A, B removed. Here we point out that although A, B
are supernodes in T , they are treated as single nodes in Tn−1.

Fig. 2. Definition of Tn tree

Lemma 1. If the input quartet set is completely consistent with evolutionary
tree T, in the quartet-joining algorithm, Cn(A, B; C, D) equals |A||B||C||D| if
and only if quartet topology {AB|CD} is consistent with tree Tn. Otherwise
Cn(A, B; C, D) = 0.

We use induction to prove this lemma.

Proof. At step 0, every supernode only contains 1 single node. Because the input
quartet set is completely consistent with T , it is clear that C0(A, B; C, D) = 1 =
|A||B||C||D| when {AB|CD} is consistent with tree T0. C0(A, B; C, D) = 0
when {AB|CD} is not consistent with tree T0.

Assume lemma holds at step n− 1. Assume A1, A2 are the neighbors of Tn−1

to be merged at step n− 1. Because A1, A2 are neighbors, both {A1B|CD} and
{A2B|CD} will be consistent with Tn−1 or both will be inconsistent with Tn−1

at the same time. We assume lemma holds at step n−1, so Cn−1(A1, B; C, D) =
Cn−1(A2, B; C, D) = |A||B||C||D| or Cn−1(A1, B; C, D) = Cn−1(A2, B; C, D) =
0. When {A1B|CD} and {A2B|CD} are consistent with Tn−1, from the def-
inition of Tn, we can see at this time {AB|CD} is consistent with Tn. From
equation (5), we have Cn(A, B; C, D) = |A1||B||C||D| + |A2||B||C||D|. Take
a look of equation (6), we will know Cn(A, B; C, D) = |A||B||C||D|. When
{A1B|CD} and {A2B|CD} are inconsistent with Tn−1, {AB|CD} is inconsis-
tent with Tn and Cn−1(A1, B; C, D) = Cn−1(A2, B; C, D) = 0. Surely at this
time Cn(A, B; C, D) = 0. For other nodes, confidence concerning them don’t
change, lemma also holds. ��
Now we prove Theorem 1.

Proof. From Lemma 1 and definition of Tn(C, D) in equation (12), we know
suppn(A, B) ≤ 1 and suppn(A, B) = 1 if and only if (A, B) are neighbors in
tree Tn. This means that the maximal value in the support matrix will give us a
pair of neighbors. Notice the fact that for a bottom up tree-building scheme, if
at every step, a pair of neighbors on the evolutionary tree are merged, this will
finally give us the exact evolutionary tree T . Thus Theorem 1 holds. ��

46 L. Xin, B. Ma, and K. Zhang

Quartet-joining algorithm will take n− 3 steps to build a fully resolved tree, n
is the number of sequences to be studied. Initialization needs O(n4) time. At
every step updates of confidence and support matrix need O(n3). So the time
complexity for the algorithm is O(n4). Because we need to keep the confidence
matrix, it is a four-dimension matrix, the space complexity is also O(n4).

4 Experimental Results

4.1 Computer Simulation Results

In the computer simulation experiment, we use the benchmarks developed by
Ranwez and Gascuel to test and compare different phylogeny methods [5]. Six
model trees, each consisting of eight leaf nodes, are used to generate test sets
under various situations. Among them, AA, BB, AB are molecular clock-like
trees while the other three CC, DD, CD, have different substitution rate among
lineages. Three evolutionary rates are considered: their maximal pair-wise di-
vergences (MD) are 0.1, 0.5, 0.8 substitution per site ranging from very low to
fast. For each group of parameters, sequences of length 300, 600 and 900 sites
are generated. A total data set of 86,400 DNA sequences are generated using
Seq-Gen[4]. The evolutionary model used here is F81.

In this paper, we concentrate on reconstructing evolutionary tree from a set
of quartets. So we just use a very simple method to assign weights to quartets.
Let Dij to be the distance between generated sequences i and j. The weights of
input quartets are computed as:

w(x, y; u, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 Dxy + Duv < Dxu + Dyv, Dxy + Duv < Dxv + Dyu;
1
2 Dxy + Duv = Dxu + Dyv < Dxv + Dyu

orDxy + Duv = Dxv + Dyu < Dxu + Dyv;
1
3 Dxy + Duv = Dxv + Dyu = Dxu + Dyv;
0 else.

(13)

Three phylogeny methods are tested on this data set: QJ, NJ and QP. Here
we emphasize again that QJ is not a distance based method. It can reconstruct
the phylogenetic tree without the distance matrix as long as the quartet set is
provided. QP has the same property. On the other hand, NJ is a pure distance
based method. Its reconstruction must be based on the distance matrix. In this
experiment, for QP method, the tree appears most frequently in the building
process is selected as the output.

The final results are shown in Fig 3. The Y-axis in Fig 3 is the average correctly
reconstructed tree percentage for six model trees. The X-axis is the expected
number of substitution in DNA sequences i.e. MD times sequence length. The
corresponding data table is shown in table 1. The figures in the table are the
correct tree percentage for each type of trees. The figures in the parenthesis
are the correct quartet percentage i.e. the percentage of input quartet set that
actually belongs to the quartet set of model trees.

A New Quartet Approach for Reconstructing Phylogenetic Trees 47

Fig. 3. Average correctly reconstructed tree percentage

From Fig 3, we can clearly see that in the average sense, the performance
of QJ and NJ are quite close: their performance lines are almost overlapping
except a small portion where QJ outperforms NJ slightly. But when compared
to QP, the performance advantage of QJ is quite obvious: QJ outperforms QP
in all the combination of evolutionary rate and sequence length. If we check the
data table, we can find some other patterns. First is that within the evolutionary
rates considered, faster evolutionary rates correspond to more accurate quartet
set. When the correct quartet rate is relatively low, QJ performs slightly better
than NJ. For example, when sequence length=300, MD=0.1, for the model tree
AA, the correct quartet rate is 88%, QJ outperforms NJ about 4%. However,
if the correct quartet rate is high, both QJ and NJ can do very well. Another
thing should be noticed is that compared to other five tree models, QP method
performs better on CD type of tree. When the evolutionary rates are high, it
even can outperform QJ and NJ slightly.

4.2 Real Data Set Experiment

The real data set comes from GenBank. They are mitochondrial DNA sequences
of 36 different mammals. The evolutionary tree of these 36 mammals are recon-
structed by biologists using maximum likelihood method. [6].

Each of these 36 DNA sequences has about 16k sites. To estimate the pairwise
evolutionary distances between these sequences, we will use the metric of strings
introduced by Bin Ma and Ming Li[3]. We apply QJ, NJ and QP methods to
this data set and compare the results with the tree reconstructed by maximum
likelihood method. The RF distances[7] between the trees reconstructed by above
three methods and the tree rebuilt by maximum likelihood method is shown in
Table 2.We can see from the table that on the real data set, the results of quartet-
joining method is closer to the result of maximum likelihood method than the
other two methods.

48 L. Xin, B. Ma, and K. Zhang

Table 1. Data for each type of trees

WITH CLOCK NO CLOCK
Algorithms AA BB AB CC DD CD

MD≈ 0.1 QJ 32.0 73.5 76.5 56.5 71.5 61.5
NJ 28.0(88) 77.0(96) 76.5(96) 51.0 (92) 72.5 (96) 63.5 (95)
QP 8.0 65.5 67.0 34.0 75.0 53.5

MD≈ 0.5 QJ 59.5 97.5 96.0 73.0 93.0 83.5
sequence length NJ 55.5 (91) 98.0 (98) 96.5 (98) 65.5 (94) 92.5 (98) 84.5(95)

300 QP 24.5 90.5 86.5 67.5 89.5 85.5
MD≈ 0.8 QJ 55.5 94.5 95.5 60.5 97.0 74.0

NJ 51.0(91) 95.0 (97) 96.0 (98) 54.5 (92) 96.0 (98) 81.5 (97)
QP 23.5 92.0 87.0 69.0 93.5 82.0

MD≈ 0.1 QJ 63.5 97.0 96.5 78.0 92.5 85.0
NJ 62.0 (94) 97.5 (99) 96.0(99) 77.5 (96) 92.0 (99) 86.0(98)
QP 42.0 92.5 92.0 62.5 92.5 84.5

MD≈ 0.5 QJ 80.5 100.0 100.0 89.0 100.0 93.0
sequence length NJ 82.5 (96) 99.5 (99) 100.0 (99) 85.5 (96) 100.0 (99) 97.0(98)

600 QP 66.5 99.0 99.5 91.5 98.0 97.5
MD≈ 0.8 QJ 78.5 99.0 100.0 78.0 100.0 89.5

NJ 75.5 (95) 99.5 (99) 100.0 (99) 76.0 (93) 100.0 (99) 93.0(97)
QP 53.0 98.5 98.0 95.5 99.5 98.0

MD≈ 0.1 QJ 78.0 99.5 99.0 79.5 97.5 96.0
NJ 77.0 (95) 98.5 (99) 99.0 (99) 75.5 (95) 97.5 (99) 98.0(99)
QP 64.0 97.5 98.5 65.5 95.5 93.0

MD≈ 0.5 QJ 92.5 100.0 99.5 94.5 100.0 99.5
sequence length NJ 92.5 (98) 100.0 (100) 99.5 (99) 94.0 (98) 100.0 (99) 100.0(99)

900 QP 81.5 99.5 99.5 86.0 99.5 100.0
MD≈ 0.8 QJ 93.5 100.0 100.0 93.5 100.0 92.5

NJ 93.0 (97) 100.0 (100) 100.0 (100) 89.5 (97) 100.0 (99) 97.0(99)
QP 75.0 100.0 100.0 76.0 100.0 99.5

Table 2. Real Data Set Results

Algorithms RF distances
QJ 12
NJ 16
QP 20

5 Improvement of Experimental Results

No matter how successfully a quartet-based method can tolerate quartet errors,
the accuracy of input quartet set will still influence final results. Here, we pro-
pose a simple technique than can improve our experimental results when the
evolutionary rate is low. Notice that for a quartet 1,2,3,4, if we have

D13 + D24 < D14 + D23, D13 + D24 < D12 + D34 (14)

but
D12 + D34 	= D14 + D23 (15)

Then we will have unresolved case as shown in Fig 4.
It could either take the form of {13|24} or {12|34}. The internal branch length

a, b can be directly computed from pairwise distance. The intuition is if a is
longer, then the quartet will have more chance to take the form of {13|24}. If

A New Quartet Approach for Reconstructing Phylogenetic Trees 49

Fig. 4. Unresolved quartet

Table 3. Improved Results

WITH CLOCK NO CLOCK
Algorithms AA BB AB CC DD CD

MD≈ 0.1 QJ Imp 36.5 75.5 76.5 66 78.5 67.5
sequence length QJ 32.0 73.5 76.5 56.5 71.5 61.5

300 NJ 28.0 77.0 76.5 51.0 72.5 63.5
QP 8.0 65.5 67.0 34.0 75.0 53.5

b is longer, the quartet will have more chance to take the other form. So here
instead of assigning a binary value to quartet weights, we will assign probability
values estimated from a and b. But we find this technique works only when
the evolutionary rate is low. The improved results are shown in Table 3. From
the first row, we can clearly see the improvement of QJ method. By using this
technique, QJ totally outperform NJ when MD equals 0.1.

6 Conclusion

In this paper, we propose a new quartet approach for reconstructing phylogenetic
trees: quartet-joining method. QJ method will execute in O(n4) time. Theoreti-
cally it will build a fully resolved tree that perfectly represents the input quartet
set when the quartet set is completely consistent with the evolutionary tree. In
computer simulations, it totally outperforms popular QP method in the aver-
age sense. When compared to NJ, their performances are quite close except QJ
performs a little bit better. However when a special technique is used, QJ can
gain quite performance advantage over NJ when the evolutionary rate is low.
We also test QJ method on the real data set and the results show its output is
closer to maximum likelihood method than QP and NJ. Currently QJ gets its
input quartet set from a very simple method. We expect when more complex
methods like maximum likelihood are used to generate quartet weights, QJ can
gain some performance advantage over NJ under most conditions.

Acknowledgement

This research is supported by Natural Sciences and Engineering Research Coun-
cil of Canada.

50 L. Xin, B. Ma, and K. Zhang

References

1. Adachi, J., Hasegawa, M.: Instability of quartet analyses of molecular sequence
data by the maximum likelihood method: the cetacean/artiodactyla relashionships
Cladistics, Vol. 5, pp.164-166 (1999)

2. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17, 368–376 (1981)

3. Li, M., Chen, X., Li, X., Ma, B., Paul, M.B.: The Similarity Metric. IEEE Tran-
sections On Information Theory, vol. 50(12) (2004)

4. Rambaut, A., Grassly, N.C.: Seq-Gen: An application for the Monte Carlo simu-
lation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci.
(1996)

5. Ranwez, V., Gascuel, O.: Quartet-Based Phylogenetic Inference:Improvement and
Limits. Mol. Biol. Evol. 18(6), 1103–1116 (2001)

6. Reyes, A., Gissi, C., Pesole, G., Catzeflis, F.M., Saccone, C.: Where Do Ro-
dents Fit? Evidence from the Complete Mitochondrial Genome of Sciurus vulgaris.
Molecular Biology and Evolution 17, 979–983 (2000)

7. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53,
131–147 (1981)

8. Saitou, N., Nei, M.: The Neighbor-joining Method: A New Method for Reconstruct-
ing Phylogenetic Trees. Mol. Bio. Evol. 4(4), 406–425 (1987)

9. Strimmer, K., Goldman, N., Von Haeseler, A.: Quartet puzzling:a quartet
maximum-likeihood method for reconstructing tree topologies. Mol. biol. E 13,
964–969 (1996)

10. Strimmer, K., Goldman, N., Von Haeseler, A.: Bayesian probabilities and quartet
puzzling. Mol. biol. E 14, 210–211 (1997)

11. Schmidt, H.A., Strimmer, K., Vingron, M.: TREE-PUZZLE: maximum likelihood
phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3),
502–504 (2002)

12. Zhou, B.B., Tarawneh, M., Wang, C.: A Novel Quartet-based Method for Phylo-
genetic Inference. In: Proceeding of 5th IEEE Symposium on Bioinformatics and
Bioengineering 2005, IEEE Computer Society Press, Los Alamitos (2005)

Integer Programming Formulations and

Computations Solving Phylogenetic and
Population Genetic Problems with Missing or

Genotypic Data

Dan Gusfield1, Yelena Frid1, and Dan Brown2

1 Department of Computer Science, University of California, Davis
gusfield@cs.ucdavis.edu

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada
browndg@cs.uwaterloo.ca

Abstract. Several central and well-known combinatorial problems in
phylogenetics and population genetics have efficient, elegant solutions
when the input is complete or consists of haplotype data, but lack effi-
cient solutions when input is either incomplete, consists of genotype data,
or is for problems generalized from decision questions to optimization
questions. Unfortunately, in biological applications, these harder prob-
lems arise very often. Previous research has shown that integer-linear
programming can sometimes be used to solve hard problems in practice
on a range of data that is realistic for current biological applications.
Here, we describe a set of related integer linear programming (ILP) for-
mulations for several additional problems, most of which are known to
be NP-hard. These ILP formulations address either the issue of missing
data, or solve Haplotype Inference Problems with objective functions that
model more complex biological phenomena than previous formulations.
These ILP formulations solve efficiently on data whose composition re-
flects a range of data of current biological interest. We also assess the
biological quality of the ILP solutions: some of the problems, although
not all, solve with excellent quality. These results give a practical way to
solve instances of some central, hard biological problems, and give prac-
tical ways to assess how well certain natural objective functions reflect
complex biological phenomena. Perl code to generate the ILPs (for input
to CPLEX) is on the web at wwwcsif.cs.ucdavis.edu/~gusfield.

1 Introduction

Several well-studied problems in computational phylogenetics and population ge-
netics have efficient, elegant solutions when the data is “simple” or “ideal”, but
lack efficient solutions when the data is more complex, due to recombination,
homoplasy, missing entries, site incompatibility, or the need to use genotypic
rather than haplotypic data. Similarly, optimization variants of many decision
problems are often more difficult to solve. In this paper we discuss integer linear

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 51–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

52 D. Gusfield, Y. Frid, and D. Brown

programming (ILP) formulations for several such problems and report on em-
pirical investigations done with these formulations. For most of the problems,
the concept of incompatibility is fundamental.

Definition: Given a matrix M whose entries are 0’s and 1’s, two sites (or
columns) p and q in M are said to be incompatible if and only if there are
four rows in M where columns p and q contain all four of the ordered pairs
0,1; 1,0; 1,1; and 0,0. The test for the existence of all four pairs is called the
“four-gamete test” in population genetics.

The concept of incompatibility is central to many questions concerning phylo-
genetic trees and population histories [14,25,7] for the following reason. Consid-
ering each row of M as a binary sequence, the classic Perfect Phylogeny Theorem
says that there is a rooted phylogenetic tree that derives the sequences in M ,
starting from some unspecified root sequence and using only one mutation per
site, if and only if no pair of sites of M are incompatible. Moreover, if the root
sequence is specified, then the phylogenetic tree is unique. For expositions of this
classic result, see [9,25]. The assumption of one mutation per site is called the
“infinite sites” assumption in population genetics.

2 Missing Data Problems

When there are no missing values in M , the decision question of whether there
are incompatible pairs of sites can be answered in linear time [8], and of course
the number of incompatible pairs can trivially be computed in polynomial time.
However, the situation is more interesting and realistic when some entries of M
are missing, and this leads to three natural, biologically motivated problems,
which we call M1, S1, and R1.

2.1 Imputing Values to Minimize Incompatibility

Problem M1: Given a binary matrix M with some entries missing, fill in (im-
pute) the missing values so as to minimize the number of incompatible pairs of
sites in the resulting matrix M ′.

Problem M1 generalizes the following decision question: Can the missing val-
ues be imputed so that the the sequences in M ′ can be generated on a perfect
phylogeny? That decision question has an efficient, elegant solution [21] when
a required root sequence of the unknown phylogeny is specified as input, but
is NP-complete when the root sequence is not specified [27]. When the missing
values can be imputed so that M ′ has no incompatible site pairs, the sequences
in M are consistent with the hypothesis that they originated from a perfect
phylogeny; when the values cannot be imputed with zero incompatibilities, the
solution to Problem M1 gives a measure of the deviation of M from the Perfect
Phylogeny model.

The ILP Formulation for Problem M1. Our ILP formulation for Problem
M1 is direct and simple. Its importance is that it generally solves very quickly,

Integer Programming Formulations 53

Table 1. Six rows and two columns in the input M to Problem M1

M p q

1 0 0
2 ? 1
3 1 0
4 ? ?
5 ? 0
6 0 ?

imputing missing values with high accuracy, and that it can be built upon to
address more complex problems. More generally, these formulations and compu-
tations illustrate that for applied problems whose range of data is known, the
fact that a problem is NP-hard does not necessarily imply that exact solutions
cannot be efficiently obtained for that data.

The ILP for problem M1 has one binary variable Y (i, j) for each cell (i, j)
in M that is missing a value; the value given to Y (i, j) is then the imputed
value for M(i, j). The program that creates the ILP for problem M1 identifies
all pairs of columns (p, q) of M that are not necessarily incompatible, but can
be made incompatible depending on the imputed values are set. We let P be
the set of such pairs of columns; for each pair (p, q) in P , the program creates
a variable C(p, q) in the formulation, which will be forced to 1 whenever the
imputations cause an incompatibility between columns p and q. For each pair in
P , the program also determines which of the four binary combinations are not
presently found in column pair (p, q); let d(p, q) represent those missing (defi-
cient) binary combinations. The program creates a binary variable B(p, q, a, b)
for every ordered binary combination a, b in d(p, q); B(p, q, a, b) will be forced
to 1 if the combination a, b has been created (through the setting of the Y
variables) in some row in columns (p, q). The program next creates inequalities
that set a binary variable C(p, q) to 1 if B(p, q, a, b) has been set to 1 for every
combination a, b in d(p, q). Therefore, C(p, q) is set to 1 if (but not only if) the
imputations of the missing values in columns (p, q) cause those sites to be in-
compatible. To explain the formulation in detail, consider the pair of columns
shown in Table 1, where a missing entry is denoted by a “?”. Then d(p, q) is
{(0, 1), (1, 1)}.

For each pair a, b in d(p, q), the program will make one inequality involving
B(p, q, a, b) for each row r where the pair a, b can be created in columns p, q.
The specific inequality for a pair a, b and a row r depends on the specific pair
a, b and whether there is a fixed value in row r in sites p or q. The full details
are simple and omitted but explained for variable B(p, q, 1, 1) using the above
example. Those inequalities are:

Y (2, p) ≤ B(p, q, 1, 1) (1)
Y (4, p) + Y (4, q)−B(p, q, 1, 1) ≤ 1, (2)

54 D. Gusfield, Y. Frid, and D. Brown

which force the variable B(p, q, 1, 1) to 1 when the missing value in the second
row is set to 1 or the two missing values in the fourth row are set to 1; this is
the general pattern for this combination.

In the above example, the inequalities to set variable B(p, q, 0, 1) are:

Y (2, p) + B(p, q, 0, 1) ≥ 1 (3)
Y (4, q)− Y (4, p)−B(p, q, 0, 1) ≤ 0 (4)

Y (6, q)−B(p, q, 0, l) ≤ 0 (5)

The ILP for the example has the following inequality to set the value of variable
C(p, q) to one, if all the combinations in d(p, q) have been created in the column
pair (p, q):

C(p, q) ≥ B(p, q, 1, 1) + B(p, q, 0, 1)− 1

In general, the constant on the right-hand side of the inequality is one less
than the number of pairs in d(p, q). These inequalities assure that C(p, q) will be
forced to 1 if (but not only if) the missing values in columns (p, q) are imputed (by
the setting of the Y variables) in a way that makes site pair (p, q) incompatible.

The overall objective function for the ILP is therefore to Minimize [|F | +∑
(p,q)∈P C(p, q)], where F is the set of pairs of incompatibilities forced by the

initial 0 and 1 entries in matrix M . We include |F | in the objective for continuity
in a later section.

Because the objective function calls for minimizing, we do not need inequali-
ties to assure that C(p, q) will be set to 1 only if the missing values in columns
(p, q) are imputed in a way that makes site pair (p, q) incompatible. However,
such inequalities are possible, and would be added to (or used in place of) the
above inequalities if we want to solve the the problem of imputing missing val-
ues in order to maximize the resulting number of incompatible pairs. Details are
omitted for lack of space. The solution to the maximization problem, along with
the solution to Problem M1, bracket the number of incompatible pairs in the
true data from which M was derived.

If M is an n by m matrix, the above ILP formulation for problem M1 creates at
most nm Y variables, 2m2 B variables, m2

2 C variables, and O(nm2) inequalities,
although all of these estimates are worst case and the numbers are typically much
smaller. For example, if I is the expected percentage of missing entries (which
is as low as 3% in many applications), then the expected number of Y variables
is nmI. The formulation as described can create redundant inequalities, but we
have left them in our description for conceptual clarity, and in practice we have
found that the preprocessor in CPLEX removes such redundancies as effectively
as any of our more refined programs do. There are additional practical reductions
that are possible that we cannot discuss here due to limited space.

Empirical Results for Problem M1. We extensively tested the ILPs for
Problem M1 to answer two questions: 1) How quickly are the ILPs for problem
M1 solved when problem instances are generated using data from a population
genetic process; 2) When parts of the data are removed, and the missing data

Integer Programming Formulations 55

imputed by the ILP solution, how accurately do those imputations reconstruct
the original values? In phylogenetic applications, missing data rates of up to
30% are common, but in population genetic applications, rates from one to five
percent are more the norm.

We used the program ms created by Richard Hudson [15] to generate the
binary sequences. That program is the widely-used standard for generating se-
quences that reflect the population genetic coalescent model of binary sequence
evolution. The program allows one to control the level of recombination (defined
in Section 2.3) through a parameter r, and a modified version of the program
provided by Yun Song, allows one to control the level of homoplasy (recurrent or
back mutations violating the infinite sites assumption). After a complete dataset
was generated, each value in the data was chosen for removal with probability
p, varied in the study; we use I = p × 100 to denote the expected percent of
missing values. All computations were done on a 1.5 ghz Intel itanium, and the
ILPs were solved using CPLEX 9.1. The time needed to generate the ILPs was
minimal and only the time used to solve the ILP is reported. We tested our ILP
solution to Problem M1 on all combinations of n (# rows) = {30, 60, 90, 120,
150}; m (# columns) = {30, 60, 90}; r = {0, 4, 16, 30}; and I (expected percent
missing values) = {5%, 10%, 15%, 20%, 25%, 30%}1. We generated and tested
fifty datasets for each parameter combination.

The running times were slightly more influenced by m than by n, and mildly
influenced by r, but were mostly a function of n×m and I (increasing with n×m
and I, and decreasing with r). The largest average execution time (averaged over
all 50 datasets) occurred when n, m and I, were at their maximum values and r
was zero, but that average time was only 3.98 seconds. Figure 1 (a) shows average
running times as a function of I. Hence, despite being NP-hard, problem M1
can be solved very efficiently on a wide range of data whose parameters reflect
datasets of current interest in phylogenetics and population genetics.

The imputation accuracy was also excellent, when the product n×m is large.
Error is the percentage of missing values that were incorrectly imputed. The case
of 5% missing data illustrates this. When n = m = 30, and r = 4, the missing
values were imputed with an average error of 6.4%, but when n = 120, m = 90
the average error dropped to 1.8%. In general, error increased with increasing r,
and fell with increasing n×m. The likely reason for such good results when n×m
is large is the high level of redundancy in the data, and that these redundancies
are exploited when the objective is to minimize incompatibilities. Figure 1 (b)
shows error rates as a function of n×m.

2.2 Imputing Values to Minimize Site-Removals

In this section we discuss another natural objective function related to Problem
M1. We first define the Site-Removal problem on complete data: Given a binary

1 We had earlier studied the case of I = 1% using a slower ILP formulation, but almost
all of the computations took zero recorded time (to three decimal places) on that
data, and so we started with a higher percentage of missing data for this study.

56 D. Gusfield, Y. Frid, and D. Brown

(a) (b)

Fig. 1. (a) Average time (in seconds) needed to solve the ILP for Problem M1 as a
function of I , the expected percentage of missing data. Each diamond is the average of
50 datasets for a particular combination of the parameters n, m, r and I . (b) Average
imputation error rates (percentages) in the solution of the ILP for Problem M1, as
a function of n × m. Each diamond is the average of 50 datasets for a particular
combination of the parameters n, m, r and I .

matrix M with no missing entries but some pairs of incompatible sites, find
the smallest set of sites to remove from M so that no remaining pair of sites is
incompatible.

Finding a small(est) set of sites to remove so that no remaining pairs are in-
compatible is often suggested and employed (particularly in phylogenetic stud-
ies) as a means to clean up data that does not perfectly conform to the Perfect
Phylogeny model. The expectation is that while there may be some sites where
homoplasy is observed (due to recurrent or back mutations at that site), a Per-
fect Phylogeny constructed from the remaining sites will give valid evolutionary
information about the taxa. There are similar scenarios in population genetics.
Of course, in order to get the most informative phylogeny, we want to remove as
few sites as possible, motivating the Site-Removal problem. The Site-Removal
Problem is NP-hard and is typically formulated as a Node-Cover problem in a
graph where each node represents a site and each edge connects an incompatible
pair of sites [25,7].

When M has missing entries, the Site-Removal problem is generalized to:
Problem S1: Over all matrices created by imputing missing values in M , find
the matrix M ′ to minimize the the solution to the Site-Removal problem on M ′.

An ILP formulation for Problem S1 is easily obtained from the ILP formu-
lation for Problem M1 as follows: Let D(i) be a binary variable used to indi-
cate whether or not site i will be removed. Then for each pair (p, q) ∈ P , add
the inequality D(p) + D(q) − C(p, q) ≥ 0, which says that if the missing val-
ues are imputed so that site pair (p, q) becomes incompatible, then either site p

Integer Programming Formulations 57

or site q must be removed. Also, for each pair (p, q) ∈ F , add the inequality
D(p) + D(q) ≥ 1. Finally, change the objective function in the formulation for
M1 to Minimize

∑m
i=1 D(i).

Problem S1 can be solved efficiently on the range of data considered in
Section 2.1 (with most computations taking less than one second) but slightly
slower than for Problem M1, and with a higher error rate. For example, the av-
erage time and error of the 50 datasets with n = 120, m = 90, r = 16, I = 15, was
0.53 seconds and 3.1% for Problem M1 and 0.75 seconds and 5.4% for Problem S1.

2.3 Estimating Recombination in Data with Missing Values

Recombination (crossing-over) is a fundamental molecular phenomena, where
during meiosis two equal length sequences produce a third sequence of the same
length consisting of a prefix of one of the sequences followed by a suffix of the
other sequence. A central problem is to determine the minimum number of re-
combinations, denoted Rmin(M), needed to generate a set of binary sequences
M from some known or unknown ancestral sequence, when the infinite sites as-
sumption applies [16]. There is a large literature on this problem, but there is
no known efficient algorithm to exactly compute Rmin(M). However, there are
efficient algorithms that give relatively good lower bounds on Rmin, and there
are biological questions concerning recombination (for example, finding recom-
bination hotspots) that have been successfully addressed using lower bounds on
Rmin rather than using Rmin itself [1],[5]. The first published, and most basic
lower bound, called the HK bound [16], is obtained as follows: Consider the m
sites of M to be integer points 1...m on the real line and pick a minimum number
of non-integer points R so that for every pair of incompatible sites (p, q) in M ,
there is at least one point in R (strictly) between p and q. It is easy to show
that |R| ≤ Rmin(M). When the data in M is complete, the HK bound |R| can
be computed in polynomial-time by a greedy-like algorithm. However, under the
realistic situation that some entries in M are missing, we have Problem R1:
Over all matrices created by imputing missing values in M , find the matrix M ′

to minimize the resulting HK lower bound on the Rmin(M ′).
The reason for minimizing is that the result is then a valid lower bound on the

number of recombinations needed to generate the true underlying data, when
the infinite sites assumption applies.

Problem R1 is NP-hard [30], but an ILP formulation for it can be easily
obtained from the formulation for Problem M1: For each c from 1 to m− 1, let
R(c) be a binary variable used to indicate whether a point in R should be chosen
in the open interval (c, c + 1). Then, for every pair of sites (p, q) in F ∪ P , add
the inequality

∑
p≤c<q R(c) ≥ C(p, q) to the ILP for Problem M1, and change

the objective function to Minimize
∑m−1

c=1 R(c).
In our computations (details omitted due to space limitations), we have es-

tablished that Problem R1 can be solved in practice over the same range of data
discussed in Section 2.1; the computation times were longer than for Problem
M1, but generally not more than twice as long. Of greater interest is the quality
of the imputed values obtained in the solution to Problem R1 on data generated

58 D. Gusfield, Y. Frid, and D. Brown

with recombination. Because Problem R1 more explicitly reflects recombination
than does Problem M1, we conjectured that the solutions to Problem R1 would
impute the original values better than solutions to Problem M1. Surprisingly,
the average error for solutions to Problem R1 was somewhat larger than for
Problem M1. For example, the average error over all datasets with n = 150 was
4% for Problem M1 and 4.75% for problem R1.

3 Haplotyping Problems

One of the key technical problems in the acquisition of variation data in pop-
ulations is called the “Haplotype Inference (HI) Problem”, or the problem of
determining the “phase” of unphased genotype data. A very large literature
now exists on this problem (see [12] for one survey). Abstractly, input to the HI
problem consists of n genotype vectors, each of length m, where each value in the
vector is either 0,1, or 2. A site with value 2 is called a “heterozygous” site, while
the other sites are called “homozygous” sites. In the context of this problem, a
vector with only entries of 0 and 1 is called a “haplotype”. Given an input set of
n genotype vectors, a solution to the HI Problem is a set of n pairs of haplotypes,
one pair for each genotype vector. For any genotype vector g, the associated hap-
lotypes v1, v2 must both have value 0 (or 1) at any position where g has value 0
(or 1); but for any position where g has value 2, exactly one of v1, v2 must have
value 0, while the other has value 1. Hence, for an individual with h heterozy-
gous sites there are 2h−1 pairs of haplotypes that could appear in a solution to
the HI problem. For example, if the observed genotype g is 0212, then the pair
of haplotypes 0110, 0011 is one feasible solution out of two feasible solutions.
Of course, we want to find the HI solution that is most biologically plausible,
and for that we need additional criteria to to guide the algorithm solving the HI
problem. The goal is to devise criteria that reflect biological reality and yet allow
efficient solution to the HI problem. Criteria have been previously proposed that
were encoded as optimization problems with precise objective functions. In this
paper, we discuss four additional biologically-motivated optimization problems
that have practical ILP solutions.

3.1 Haplotyping Versions of M1, S1, R1

Each of the three problems M1, S1 and R1 has a natural analog as a haplotyp-
ing problem, and has biological and historical connections to other haplotyping
problems.

Problem HM1: Solve the HI problem so that the number of incompatible
pairs of sites in the HI solution is minimized over all HI solutions.

Problem HM1 is a natural extension of the following “Perfect Phylogeny Hap-
lotyping (PPH)” problem [10]: Find, if possible, a solution to the HI problem
so that the haplotypes in the solution can be derived on a perfect phylogeny; in
other words, so that there are no incompatible pairs of sites in the HI solution.
Such an HI solution is called a “PPH solution”, and if there is one, it can be

Integer Programming Formulations 59

found in linear time [6,22]. See [10] for a discussion of the biological justifica-
tion of the PPH problem. The PPH model is justified in some applications, but
not all, and there are additional applications where the true haplotypes deviate
by only a small amount from the PPH model (low recombination “haplotype
blocks” are the prime example). In [13], a heuristic approach was developed
to handle small deviations from the PPH model. An attempt to more formally
model small deviations from the PPH model was explored in [26,23]. Problem
HM1 is an alternative way to formalize, and quantify, deviations from the PPH
model: a set of genotypes that allow HI solutions with a small number of in-
compatible pairs deviate less from the PPH model than do genotypes that only
allow HI solutions with a large number of incompatible pairs. We were there-
fore interested in whether the HM1 problem can be solved efficiently in a range
of biologically relevant data, and how well the HI solutions obtained this way
reconstruct the correct haplotypes.

An ILP formulation for Problem HM1 can be easily obtained by modifying
the formulation for Problem M1: First, duplicate each row of M creating matrix
M , and create the ILP for Problem M1 using matrix M , treating each 2 as a
“?”. Then for each cell (i, q) where M(i, q) is 2, add the inequality Y (2i−1, q)+
Y (2i, q) = 1. This formulation can be further improved, and such improvements
have been implemented. For example, if M(i, p) = 2 and M(i, q) = 1 the binary
combinations 0,1 and 1,1 will definitely be generated in columns (p, q) and that
information may reduce the elements in d(p, q), and reduce the size of the ILP
formulation.

In the same way, we can modify the ILP for Problem S1 to obtain an ILP for
Problem HS1: Remove the minimum number of columns in the input geno-
types, so that there is a PPH solution to the HI problem on the remaining data.
That is another way to formalize, and quantify, deviation from the PPH model.
The same kind of modification also extends the ILP for Problem R1 to an ILP
for Problem HR1: Solve the HI problem in order to minimize the HK bound
on the haplotypes in the solution. That problem has been proposed as a way to
search for recombination hotspots in genotypic data rather than haplotypic data
[29]. It is interesting to note that Problem HR1 has a polynomial time solution
[29], as does the problem of solving the HI problem in order to maximize the
HK bound [31], even though Problem R1 is NP-hard.

Empirical Results for Problem HM1. We extensively tested instances of
Problems HM1, HS1 and HR1 using datasets with n

2 genotypes created by pair-
ing n haplotypes output by the program ms described in Section 2.1. We tested
50 datasets for each combination of n, m and r that we examined. We observed
that we could solve these problems in practical time on a wide range of data, but
not as extensive as for Problem M1. Further, the computation times were longer
(considerably so for larger instances) for the same parameter combinations of
n, m and r. In general, the HI solutions given by Problem HM1 were better than
for HS1 and HR1, and so we will only discuss those here, although the running
times for HM1 were larger than for HR1. In our experiments, we stopped any
computations that exceeded three hours, and considered only combinations of

60 D. Gusfield, Y. Frid, and D. Brown

n = {10, 20, 30, 60, 80} haplotypes and m = {30, 60, 90} sites. As an example,
when n = 80, m = 60, r = 16, 94% of the datasets terminated within the three
hour limit. However, for most of the parameter choices we examined, all of the
datasets terminated within the time limit, and most terminated well below that
limit.

In addition to the solution time, we were interested in the quality of the haplo-
types produced and how that quality varied depending on whether the deviation
from the PPH model was due to recombination or to homoplasy. Datasets with
homoplasy were generated with 5, 10 or 20 sites where additional mutations were
forced to occur. Over these ranges of of n, m and r, we did not see a significant
difference between the quality of the haplotypes produced from datasets gener-
ated with recombination and those with homoplasy, and so we will discuss only
the recombination case.

To assess the quality of the solutions, we used the standard switch error [17,19]
and the line error, comparing the haplotype pairs obtained from solving Prob-
lem HM1 with the original pairs used to generate the genotype data. The switch
error is the minimum number of runs (blocks) of contiguous sites that need to
be exchanged between the computed haplotype pairs in order to make the re-
sulting haplotype pairs agree with the correct pairs, divided by the number of
hetrozygous sites in the data. The line error is simply the number of haplotype
pairs in the solution that do not agree completely with the corresponding correct
pair, divided by the number of genotypes. The ILP executions that were termi-
nated after three hours all found HI solutions, and so we could test their quality
also. Hence, no datasets were excluded from our accuracy analysis. We also com-
pared the accuracy of the HM1-computed haplotypes with the haplotypes found
by program FastPhase [24], the successor program of the widely-used program
PHASE [28].

We observed switch errors for the HI solutions produced by solving Problem
HM1 that were very good in some parameter ranges, often superior (by a small
amount) to the switch error of the solutions produced by FastPhase; in other
parameter ranges the observed switch errors were somewhat inferior to those
from FastPhase, and to accuracies reported for simulations using HapMap data
[20] (although in line with some real data [17]). The line errors of solutions from
both FastPhase and Problem HM1 were relatively large, but quite similar to
each other. Unlike imputation error, switch accuracy is highly influenced by r,
the recombination parameter; consistent with imputation error, all accuracies
improved with larger data sets, particularly as the number of rows increase. We
should note that in our tests we did not require that the minor allele appear
above a minimum frequency as is commonly done; it is well known [19] that
accuracies are improved by imposing that requirement.

Figure 2 (a) summarizes the switch and line errors of the HI solutions from
obtained Problem HM1 compared to solutions given by FastPhase; Figure 2 (b)
shows the time needed to solve Problem HM1.

As an illustration of the influence of n, when n = 20, m = 30, r = 4, the
average switch errors from HM1 and FastPhase were 0.1189 and 0.136 which are

Integer Programming Formulations 61

(a) (b)

Fig. 2. (a) Comparison of switch and line errors the HI solutions from Problem HM1
and FastPhase, as a function of n. In each simulated dataset the switch and line errors
of the HM1 solution were subtracted from switch and line errors of the FastPhase
solution. A positive result shows the HM1 solution superior to the FastPhase solution.
Each diamond (square) is the average difference of switch (line) errors from the 50
datasets for a particular combination of the parameters n, m and r. (b) Solution times
(over the terminating datasets) as a function of m, for three values of parameter r.
Each object is the average of 50 datasets with the same values of n.

relatively large, but when n increased to 60, the errors declined to 0.0532 and
0.068, and when n increased to 80, the errors were 0.0452 and 0.062. To see the
influence of the recombination parameter r, consider the case of n = 60, m = 30,
where the switch errors for HM1 were 0.046, 0.0532, 0.0984 with r = 0, 4 and 16
respectively, and the errors for FastPhase were 0.063, 0.068, and 0.083.

The comparison of individual HI solutions obtained from Problem HM1 and
from FastPhase often gave contradictory results, so we averaged the results over
all the data examined: the HI solutions from Problem HM1 had an average
switch error of 0.13, an average line error of 0.34 and required an average com-
putation time of 186.3 seconds for the terminating computations, while 4% of
the computations did not terminate in three hours. The FastPhase solutions had
an average switch error of 0.128, an average line error of 0.36 and required an
average of 38 seconds to compute. These results suggest that the qualities of the
two approaches are very similar. While the time needed to solve Problem HM1
is greater than the time for FastPhase, the main goal in solving HM1 was to see
how well this natural extension of perfect phylogeny haplotyping solves the HI
problem (although we would have been pleased to report that it solved faster
than FastPhase). Having a solvable, simple-to-state objective function allows one
to assess the biological fidelity of the model reflected by the objective function,
giving much cleaner and clearer semantics compared to more black-box methods
whose semantics may be very unclear. We consider the results based on HM1 to
be positive and informative.

62 D. Gusfield, Y. Frid, and D. Brown

3.2 The MinPPH Problem

When there is a PPH solution to the HI problem, there may be several solutions,
and it is desirable to apply a secondary criterion to choose one. An appealing
approach, motivated both by theory and empirical observations, is to solve the
following problem called the MinPPH Problem: Find a PPH solution that
minimizes the number of distinct haplotypes used in any of the PPH solutions.

The MinPPH Problem is a mixture of the PPH problem and the problem of
Haplotype Inference by Pure Parsimony (denoted HIPP) [11,4,18]. The MinPPH
problem was defined and justified in [2] where it was shown to be NP-hard. An
ILP formulation for MinPPH (different than presented here) was described in [3],
but not implemented due to the expectation that it would not solve efficiently.

The idea of our ILP formulation is to modify the formulation for Problem HM1
and combine it with the simplest ILP formulation for the HIPP problem given in
[4] (see also [12] for a description of that HIPP formulation, and [18] for a similar
formulation). We start with the HIPP formulation from [4], but add to it the in-
equalities from the HM1 formulation along with the equality

∑
(p,q)∈P C(p, q) = 0.

The end result is an ILP formulation that solves the HI problem using the mini-
mum number of distinct haplotypes possible, subject to the constraint that the HI
solution is a PPH solution (assuming a PPH solution exists).

We extensively tested this ILP formulation for solution speed and haplotype
accuracy, using genotypic data (created from ms with r = 0) where PPH solu-
tions were assured. We obtained two striking empirical results. The first result
is that the ILPs solve extremely fast (generally less than one second) over a
range of data up to 80 rows and 80 columns. This speed is even more notable
considering that the HIPP formulation from [4] requires hours or days to solve
the HI problem on the smaller instances, and cannot solve the larger instances

(a) (b)

Fig. 3. (a) Average time needed to solve the ILP for Problem MinPPH, as a function
of n × m. Each diamond is the average of 50 datasets for a particular combination of
the parameters n, m. (b) Average switch and line errors as a function of n × m.

Integer Programming Formulations 63

in practical time. Hence, it is the PPH constraints added to the HIPP formu-
lation that makes the resulting formulation solve so quickly. We also examined
the question of how the running times were influenced by the number of PPH
solutions, and we saw no clear pattern.

The second striking empirical result is that the accuracy of the HI solutions
given by the MinPPH solution is notably better than solutions obtained by
FastPhase (except for instances with a very small number of rows), while running
considerably faster. For example, when n = m = 80, the average MinPPH
solution time was 0.59 seconds with a switch-error of 0.045, while the run time for
FastPhase was 163 seconds with a switch-error of 0.074. In general, the MinPPH
switch and line errors decrease with increasing problem size, as measured either
by n or m×n. Figures 3 (a) and 3 (b) show the MinPPH runtime and switch-error
and line-error as a function of n×m.

Acknowledgements

We thank Yun Song for the use of the code to generate SNP sequences with
homoplasy events and for helpful conversations and suggestions. We thank Chuck
Langley for helpful conversations and suggestions. The research was supported
by NSF grants CCF 0515278, IIS 0513910 and REU 0434759.

References

1. Bafna, V., Bansal, V.: Improved recombination lower bounds for haplotype data.
In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678,
Springer, Heidelberg (2005)

2. Bafna, V., Gusfield, D., Hannenhalli, S., Yooseph, S.: A note on efficient computa-
tion of haplotypes via perfect phylogeny. Journal of Computational Biology 11(5),
858–866 (2004)

3. Brown, D., Harrower, I.: A new formulation for haplotype inference by pure parsi-
mony. report cs-2005-03. Technical report, University of Waterloo, School of Com-
puter Science (2005)

4. Brown, D.G., Harrower, I.M.: Integer Programming Approaches to Haplotype In-
ference by Pure Parsimony. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 3(2), 141–154 (2006)

5. International HapMap Consortium. A haplotype map of the human genome. Na-
ture, 437 1299–1320 (2005)

6. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny
haplotyping problem. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner,
P., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 585–600.
Springer, Heidelberg (2005)

7. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland, MA (2004)

8. Gusfield, D.: Efficient algorithms for inferring evolutionary history. Networks 21,
19–28 (1991)

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

64 D. Gusfield, Y. Frid, and D. Brown

10. Gusfield, D.: Haplotyping as Perfect Phylogeny: Conceptual Framework and Effi-
cient Solutions (Extended Abstract). In: Proceedings of RECOMB 2002: The Sixth
Annual International Conference on Computational Biology, pp. 166–175 (2002)

11. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R.A.,
Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155.
Springer, Heidelberg (2003)

12. Gusfield, D., Orzack, S.: Haplotype inference. In: Aluru, S. (ed.) Handbook of
Computational Molecular Biology, vol. 18, pp. 1–25. Chapman and Hall/CRC,
Boca Raton (2005)

13. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using Im-
perfect Phylogeny. Bioinformatics 20, 1842–1849 (2004)

14. Hein, J., Schierup, M., Wiuf, C.: Gene Genealogies, Variation and Evolution: A
primer in coalescent theory. Oxford University Press, Oxford (2005)

15. Hudson, R.: Generating samples under the Wright-Fisher neutral model of genetic
variation. Bioinformatics 18(2), 337–338 (2002)

16. Hudson, R., Kaplan, N.: Statistical properties of the number of recombination
events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)

17. Kimmel, G., Shamir, R.: GERBIL: Genotype resolution and block identification
using likelihood. PNAS 102, 158–162 (2005)

18. Lancia, G., Pinotti, C., Rizzi, R.: Haplotyping populations by pure parsimony:
Complexity, exact and approximation algorithms. INFORMS J. on Computing,
special issue on Computational Biology 16, 348–359 (2004)

19. Lin, S., Cutler, D., Zwick, M., Chakravarti, A.: Haplotype inference in random
population samples. Am. J. of Hum. Genet. 71, 1129–1137 (2002)

20. Marchini, J., Donnelly, P., et al.: A comparison of phasing algorithms for trios and
unrelated individuals. Am. J. of Human Genetics 78, 437–450 (2006)

21. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny.
SIAM J. on Computing 33, 590–607 (2004)

22. Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplo-
typing. In: Proceedings of 4th CSB Bioinformatics Conference, IEEE Computer
Society Press, Los Alamitos (2005)

23. Satya, R.V., Mukherjee, A., Alexe, G., Parida, L., Bhanot, G.: Constructing near-
perfect phylogenies with multiple homoplasy events. Bioinformatics 22, 514–522
(2006) Bioinformatics Suppl., Proceedings of ISMB 2006

24. Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale pop-
ulation genotype data: applications to inferring missing genotypes and haplotypic
phase. Am. J. Human Genetics 78, 629–644 (2006)

25. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
26. Song, Y.S., Wu, Y., Gusfield, D.: Haplotyping with one homoplasy or recombina-

tion event. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692,
Springer, Heidelberg (2005)

27. Steel, M.: The complexity of reconstructing trees from qualitative characters and
subtrees. J. of Classification 9, 91–116 (1992)

28. Stephens, M., Smith, N., Donnelly, P.: A new statistical method for haplotype
reconstruction from population data. Am. J. Human Genetics 68, 978–989 (2001)

29. Wiuf, C.: Inference of recombination and block structure using unphased data.
Genetics 166, 537–545 (2004)

30. Wu, Y.: Personal Communication
31. Wu, Y., Gusfield, D.: Efficient computation of minimum recombination over geno-

types (not haplotypes). In: Proceedings of Life Science Society Computational Sys-
tems Bioinformatics (CSB) 2006, pp. 145–156 (2006)

Improved Exact Algorithms for Counting 3- and

4-Colorings

Fedor V. Fomin1, Serge Gaspers1, and Saket Saurabh1,2

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

{fomin,serge,saket}@ii.uib.no
2 The Institute of Mathematical Sciences,

Chennai 600 113, India
saket@imsc.res.in

Abstract. We introduce a generic algorithmic technique and apply it on
decision and counting versions of graph coloring. Our approach is based
on the following idea: either a graph has nice (from the algorithmic point
of view) properties which allow a simple recursive procedure to find the
solution fast, or the pathwidth of the graph is small, which in turn can
be used to find the solution by dynamic programming. By making use
of this technique we obtain the fastest known exact algorithms
– running in time O(1.7272n) for deciding if a graph is 4-colorable and
– running in time O(1.6262n) and O(1.9464n) for counting the number

of k-colorings for k = 3 and 4 respectively.

1 Introduction

The graph coloring problem is one of the oldest and most intensively studied
problems in Combinatorics and Algorithms. The problem is to color the vertices
of a graph such that no two adjacent vertices are assigned the same color. The
smallest number of colors needed to color a graph G is called the chromatic
number, χ(G), of G. The corresponding decision version of the coloring problem is
k-Coloring, where for a given graph G and an integer k we are asked if χ(G) ≤
k. The k-Coloring problem is one of the classical NP-complete problems [12].
In fact it is known to be NP complete for every k ≥ 3. A lot of effort was also
put in designing efficient approximation algorithms for the optimization version
of the problem, namely, given a k-colorable graph to try to color it with as few
colors as possible. Unfortunately, it has been shown that if certain reasonable
complexity conjectures hold then k-Coloring is hard to approximate within
n1−ε for any ε > 0 [10,13].

The history of exponential time algorithms for graph coloring is rich. Christo-
fides obtained the first non-trivial algorithm computing the chromatic number
of a graph on n vertices running in time n!nO(1) in 1971 [6]. In 1976, Lawler [15]
devised an algorithm with running time O∗(2.4423n) based on dynamic program-
ming over subsets and enumeration of maximal independent sets. Eppstein [7]

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 65–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

66 F.V. Fomin, S. Gaspers, and S. Saurabh

reduced the bound to O(2.4151n) and Byskov [5] to O(2.4023n). In two break-
through papers last year, Björklund & Husfeldt [3] and Koivisto [14] indepen-
dently devised 2nnO(1) algorithms based on a combination of inclusion-exclusion
and dynamic programming.

Apart from the general chromatic number problem, the problem of k-Coloring

for small values of k like 3, 4 has also attracted a lot of attention. The fastest al-
gorithm deciding if a the chromatic number of a graph is at most 3 runs in time
O(1.3289n) and is due to Beigel & Eppstein [2]. For 4-Coloring Byskov [5] de-
signed the fastest algorithm, running in time O(1.7504n).

The counting version of the k-Coloring problem, #k-Coloring, is to count
the number of all possible k-colorings of a given graph. #k-Coloring (and its
generalization known as Chromatic Polynomial) are among the oldest counting
problem. Recently Björklund & Husfeldt [3] and Koivisto [14] have shown that
the chromatic polynomial of a graph can be computed in time 2nnO(1).

For small k, #k-Coloring was also studied in the literature. Angelsmark
et al. [1] provide an algorithm for #3-Coloring with running time O(1.788n).
Fürer and Kashiviswanathan [11] show how to solve #3-Coloring with running
time O(1.770n). No algorithm faster than 2nnO(1) for #4-Coloring was known
in the literature [1,3,11,14].

Our Results. In this paper we introduce a generic technique to obtain exact
algorithms for coloring problems and its different variants. This technique can
be seen as a generalization of the technique introduced in [8] for a different
problem. The technique is based on the following combinatorial property which
is proved algorithmically and which is interesting in its own: Either a graph G
has a nice “algorithmic” property which (very sloppily) means that when we
apply branching or a recursive procedure to solve a problem then the branching
procedure on subproblems of a smaller size works efficiently, or (if branching is
not efficient) the pathwidth of the graph is small. This type of technique can
be used for a variety of problems (not only coloring and its variants) where
sizes of the subproblems on which the algorithm is called recursively decrease
significantly by branching on vertices of high degrees.

In this paper we use this technique to obtain exact algorithms for different col-
oring problems. We show that #3-Coloring and #4-Coloring can be solved
in time O(1.6262n) and O(1.9464n) respectively. We also solve 4-Coloring in
time O(1.7272n). These improve the best known results for each of the problems.

2 Preliminaries

In this paper we consider simple undirected graphs. Let G = (V, E) be a graph
and let n denote the number of vertices and m the number of edges of G. We
denote by Δ(G) the maximum vertex degree in G. For a subset V ′ ⊆ V , G[V ′] is
the graph induced by V ′, and G−V ′ = G[V \V ′]. For a vertex v ∈ V we denote
the set of its neighbors by N(v) and its closed neighborhood by N [v] = N(v)∪{v}.

Improved Exact Algorithms for Counting 3- and 4-Colorings 67

Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v]. An independent set
in G is a subset of pair-wise non-adjacent vertices. A subset of vertices S ⊆ V
is a vertex cover in G if for every edge e of G at least one endpoint of e is in S.

Major tools of our paper are tree and path decompositions of graphs. A tree
decomposition of G is a pair ({Xi : i ∈ I}, T) where each Xi, i ∈ I, is a subset
of V , called a bag and T is a tree with elements of I as nodes such that we have
the following properties :

1. ∪i∈IXi = V ;
2. for all {u, v} ∈ E, there exists i ∈ I such that {u, v} ⊆ Xi;
3. for all i, j, k ∈ I, if j is on the path from i to k in T then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is equal to maxi∈I |Xi| − 1. The treewidth
of a graph G is the minimum width over all its tree decompositions and it is
denoted by tw(G). We speak of a path decomposition when the tree T in the
definition of a tree decomposition is restricted to be a path. The pathwidth of G
is defined similarly to its treewidth and is denoted by pw(G).

We need the following bound on the pathwidth of graphs with small vertex
degrees.

Proposition 1 ([8]). For any ε > 0, there exists an integer nε such that for
every graph G with n > nε vertices,

pw(G) ≤ 1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6,≥ 7}.
Moreover, a path decomposition of the corresponding width can be constructed in
polynomial time.

In our algorithms we also use the following results.

Proposition 2 ([7]). The number of maximal independent sets of size k in a
graph on n vertices is at most 34k−n4n−3k and can be enumerated with polynomial
time delay.

Our O∗ notation suppresses polynomial terms. Thus we write O∗(T (x)) for a
time complexity of the form O(T (x) · |x|O(1)) where T (x) grows exponentially
with |x|, the input size.

3 Framework for Combining Enumeration and Pathwidth
Arguments

Let us assume that we have a graph problem for which

(a) we know how to solve it by enumerating independent sets, or maximal inde-
pendent sets, of the input graph (for an example to check whether a graph
G is 3-colorable, one can enumerate all independent sets I of G and for each
independent set I can check whether G− I is bipartite), and

68 F.V. Fomin, S. Gaspers, and S. Saurabh

(b) we also know how to solve the problem using dynamic programming over
the path decomposition of the input graph.

For some instances, the first approach might be faster and for other instances,
the path decomposition algorithm might be preferable. One method to get the
best of both algorithms would be to compute a path decomposition of the graph
using Proposition 1, and choose one of the two algorithms based on the width
of this path decomposition. Unfortunately, this method is not very helpful in
obtaining better worst case bounds on the running time of the algorithm.

Here in our technique we start by enumerating (maximal) independent sets
and based on the knowledge we gain on the graph by this enumeration step,
we prove that either the enumeration algorithm is fast, or the pathwidth of the
graph is small. This means that either the input graph has a good algorithmic
property, or it has a good graph-theoretic property.

To enumerate (maximal) independent sets of the input graph G, we use a very
standard approach. Two sets I and C are constructed by a recursive procedure,
where I is the set of vertices in the independent set and C the set of vertices
not in the independent set. Let v be a vertex of maximum degree in G− I −C,
the algorithm makes one recursive call where it adds v to I and all its neighbors
to C and another recursive call where it adds v to C. This branching into two
subproblems decreases the number of vertices in G − I − C according to the
following recurrence

T (n) ≤ T (n− d(v) − 1) + T (n− 1).

From this recurrence, we see that the running time of the algorithm depends on
how often it branches on a vertex of high degree. This algorithmic property is
reflected by the size of C: frequent branchings on vertices of high degree imply
that |C| grows fast (in one branch).

On the other hand we can exploit a graph-theoretic property if C is small
and there are no vertices of high degree in G − I − C. Based on the work of
Monien and Preis on the bisection width of 3-regular graphs [16], small upper
bounds on the pathwidth of the input graph G depending on their maximum
degree have been obtained [8,9] (also see Proposition 1). If a path decomposition
of G− I −C of size βd|V (G)− I −C| can be computed, then a path decompo-
sition of G of size βd|V (G)− I − C|+ |C| can be computed easily. Here βd is a
constant strictly less than 1 depending on the maximum degree of the graph. If
it turns out that a path decomposition of small width can be computed, the al-
gorithm enumerating (maximal) independent sets is completely stopped without
any further backtracking and an algorithm based on this path decomposition is
executed on the original input graph.

In the rest of this section, we give a general framework combining

– algorithms based on the enumeration of maximal independent sets, and
– algorithms based on path decompositions of small width,

Improved Exact Algorithms for Counting 3- and 4-Colorings 69

Input: A graph G, an independent set I of G and a set of vertices C such that
N(I) ⊆ C ⊆ V (G) − I .

Output: An optimal solution which has the problem-dependent properties.

if (Δ(G − I − C) ≥ a) or
(Δ(G − I − C) = a − 1 and |C| > αa−1|V (G)|) or
(Δ(G − I − C) = a − 2 and |C| > αa−2|V (G)|) or
· · · or
(Δ(G − I − C) = 3 and |C| > α3|V (G)|)

then
choose a vertex v ∈ V (G) − I − C of maximum degree in G − I − C
S1 ← enumISPw(G, I ∪ {v}, C ∪ N(v)) R1
S2 ← enumISPw(G, I,C ∪ {v}) R2
return combine(S1, S2)

else if Δ(G − I − C) = 2 and |C| > α2|V (G)| then
return enumIS(G, I,C)

else
Stop this algorithm and run Pw(G, I,C) instead.

Fig. 1. Algorithm enumISPw(G, I, C)

and discuss the running time of the algorithms based on this framework. This
framework is not problem-dependent and it relies on two black boxes that have
to be replaced by appropriate procedures to solve a specific problem.

Algorithm enumISPw(G, I, C) in Figure 1 is invoked with the parameters
(G, ∅, ∅), where G is the input graph, and the algorithms enumIS and Pw are
problem-dependent subroutines. The function combine takes polynomial time
and it is also a problem-dependent subroutine. The values for a, αa, · · · , and α2

(0 = αa ≤ αa−1 ≤ · · ·α2 < 1) are carefully chosen constants to balance the time
complexities of enumeration and path decomposition based algorithms and to
optimize the overall running time of the combined algorithm.

Algorithm enumIS(G, I, C) is problem-dependent and returns an optimal so-
lution respecting the choice for I and C, where I is an independent set and C is
a set of vertices not belonging to the independent set (set of discarded vertices).
The sets I and C are supposed to be completed into a (maximal) independent
set and a (minimal) vertex cover for G by enumerating (maximal) independent
sets of G− I − C, before the problem-specific treatment is done.

Algorithm Pw(G, I, C) first computes a path decomposition based on G, I and
C and the maximum degree of G − I − C. It then calls a problem-dependent
algorithm based on this path decomposition of G.

Let n denote the number of vertices of G, T (n) be the running time of Algo-
rithm enumISPw on G, Te(n, i, c) be the running time of Algorithm enumIS and
Tp(n, i, c) be the running time of Algorithm Pw with parameters G, I, C where
i = |I| and c = |C|. We also assume that for any graph with n vertices and max-
imum degree d, a path decomposition of width at most βdn can be computed.

70 F.V. Fomin, S. Gaspers, and S. Saurabh

The following lemma is used by Algorithm Pw to compute a path decomposition
of G of small width.

Lemma 1. Suppose that given a graph H with Δ(H) ≤ d, a path decomposition
of width at most βd|H | can be computed where βd < 1 is a constant depending on
d alone. Then a path decomposition of width at most βd|V (G)− I−C|+ |C| can
be computed for a graph G if I is an independent set in G, N(I) ⊆ C ⊆ V (G)
and Δ(G− I − C) ≤ d.

Proof. As I is an independent set in G and C separates I from G− I−C, every
vertex in I has degree 0 in G−C. Thus, a path decomposition of G−C of size
at most βd|V (G)− I −C| can be computed. Adding C to each bag of this path
decomposition gives a path decomposition of width at most βd|V (G)−I−C|+|C|
of G. ��

Given the conditions under which Pw is executed, the following lemma upper
bounds its running time.

Lemma 2. If the considered problem can be solved on G in time O∗(t�pw), given
a path decomposition of width � of G, then

Tp(n, i, c) = O∗
(

max
d∈{2,3,··· ,a−1}

(
t(βd+(1−βd)αd)n
pw

))
.

Proof. The proof follows from Lemma 1 and the conditions on |C| and Δ(G −
I − C) under which Algorithm Pw is executed. ��

To estimate the size of the search tree we assume that Algorithm Pw is not
executed. We denote (αd−1−αd)n by Δαdn. Let tn, ti and tc be constants such
that Te(n, i, c) = O∗(tnntiit

c
c). The next lemma bounds the size of the search tree

when the algorithm based on path decomposition is not used.

Lemma 3. If Algorithm Pw is not executed, then

T (n) = O∗

(
tnntα2n

c

a∏

d=3

tΔαdn
d

)

where td = (1 + rd) and rd is the minimum positive root of

(1 + r)−(d−1) · r−1 · ti − 1.

Proof. We divide T (n) into Td(n, i, c) for d ∈ {2, 3, · · · , a} where d corresponds to
the maximum degree of G−I−C if d < a and Ta(n, 0, 0) = T (n) if Algorithm Pw
is not executed. Clearly, T2(n, i, c) = Te(n, i, c). Let us now express Td(n, i, c)
in terms of Td−1(·, ·, ·) for d ∈ {3, · · · , a}. Consider the part of the search tree
with branchings on vertices of degree d (or at least d if d = a). Observe that

Improved Exact Algorithms for Counting 3- and 4-Colorings 71

|C| increases in the worst case by at most (αd−1 − αd)n = Δαdn in this part of
the search tree. In each branch of the type R1, |C| increases by d and in each
branch of the type R2, |C| increases by 1. Let r ∈ [0, Δαdn/d] be the number
of times the algorithm branches according to R1, then it branches Δαdn − dr
times according to R2. We get that

Td(n, i, c) = O∗

⎛

⎝
Δαdn/d∑

r=0

(
Δαdn− (d− 1)r

r

)
Td−1(n, i + r, c + Δαdn)

⎞

⎠ .

In general situation the degree d may not change to d− 1 but rather jump to
something smaller. But the worst case bounds on the size of the search tree are
achieved when d decreases progressively as considered above.

To prove the lemma, it is sufficient to expand Ta(n, 0, 0) and to prove that

Δαdn/d∑

r=0

(
Δαdn− (d− 1)r

r

)
tri ≤ tΔαdn

d .

The sum over binomial coefficients
∑Δαdn/d

r=0

(
Δαdn−(d−1)r

r

)
tri is bounded by

(Δαdn/d)B where B is the maximum term in this sum. Let us assume that
B =

(
Δαdn−(d−1)j

j

)
tji for some j ∈ {0, 1, . . . , Δαdn/d}.

B =
(

Δαdn− (d− 1)j
j

)
tji ≤

(1 + ri)Δαdn−(d−1)j

rj
i

tji .

Here we use the well known fact that for any x > 0 and 0 ≤ k ≤ n,
(

n

k

)
≤ (1 + x)n

xk
.

By choosing ri to be the minimum positive root of (1+r)−(d−1)

r ti − 1, we arrive
at B < (1 + ri)Δαdn = tΔαdn

d . ��

The following theorem combines Lemmas 2 and 3 to upper bound the overall
running time of the algorithms resulting from this framework.

Theorem 1. The running time of Algorithm enumISPw on a graph on n vertices is

T (n) = O∗

(
tnntα2n

c

a∏

d=3

tΔαdn
d + max

d∈{2,3,··· ,a−1}

(
t(βd+(1−βd)αd)n
pw

))

where td = (1 + rd) and rd is the minimum positive root of

(1 + r)−(d−1) · r−1 · ti − 1.

The current best values for βd, d = {2, · · · , 6} are obtained from Proposition 1.

72 F.V. Fomin, S. Gaspers, and S. Saurabh

4 Applications

In this section we use the framework of the previous section to derive improved
algorithms for #3-Coloring, #4-Coloring and 4-Coloring.

4.1 Counting 3-Colorings

We first describe the problem-dependent subroutines we need to use in our Al-
gorithm enumISPw to solve #3-Coloring in time O(1.6262n).

Algorithm enumISPw returns here an integer, I corresponds to the color class
C1 and C to the remaining two color classes C2 and C3. Algorithm enumIS with
parameters G, I, C enumerates all independent sets of G − I − C and for each,
adds this independent set to I, then checks if G − I is bipartite. If G − I is
bipartite, then a counter counting the independent sets is incremented. This
takes time Te(n, i, c) = 2n−i−c. Thus, tn = 2, ti = 1/2 and tc = 1/2.

The function combine corresponds in this case to the plus-operation. The
running time of Algorithm Pw is based on the following lemma.

Lemma 4. Given a graph G = (V, E) with a path decomposition of G of width
�, #k-Coloring can be solved in time O(k�nO(1)).

Now we use Theorem 1 and Proposition 1 to evaluate the overall complexity of
our #3-Coloring algorithm.

Theorem 2. The #3-Coloring problem can be solved in time O(1.6262n) for
a graph on n vertices.

Proof. We use Theorem 1 and Lemma 1 with a = 5, α2 = 0.44258, α3 = 0.33093
and α4 = 0.16387. The pathwidth part of the algorithm takes time

O∗
(
max

(
3α2n, 3(1+5α3)n/6, 3(1+2α4)n/3

))

= O(1.62617n).

The branching part of the algorithm takes time

O∗
(
2n · (1/2)α2n · 1.29716(α2−α3)n · 1.25373(α3−α4)n · 1.22329α4n

)

= O(1.62617n). ��

4.2 Counting 4-Colorings

To solve #4-Coloring, Algorithm enumIS with parameters G, I, C enumerates
all independent sets of G− I − C and for each, adds this independent set to I,
then counts the number of 3-colorings of G−I using the previous algorithm. This
takes time Te(n, i, c) =

∑n−i−c
�=0 1.62617�+c. Thus, tn = 2.62617, ti = 1/2.62617

and tc = 1.62617/2.62617. We evaluate the running time as previously.

Improved Exact Algorithms for Counting 3- and 4-Colorings 73

Theorem 3. The #4-Coloring problem can be solved in time O(1.9464n) for
a graph on n vertices.

Proof. We use Theorem 1 and Lemma 1 with a = 6, α2 = 0.480402, α3 =
0.376482, α4 = 0.220602 and α5 = 0.083061. The pathwidth part of the al-
gorithm takes time

O∗
(
max

(
4α2n, 4(1+5α3)n/6, 4(1+2α4)n/34(13+17α5)n/30

))

= O(1.9464n).

The branching part of the algorithm takes time

O∗(2.62617n · (1.62617/2.62617)α2n · 1.24548(α2−α3)n · 1.21324(α3−α4)n ·
1.18993(α4−α5)n · 1.17212α5n

)
= O(1.9464n). ��

4.3 4-Coloring

A well known technique [15] to check if a graph is k-colorable is to check for
all maximal independent sets I of size at least �n/k� whether G− I is (k − 1)-
colorable. In the analysis, we use Proposition 2 to bound the number of maximal
independent sets of a given size.

We also need the current best algorithm deciding 3-Coloring.

Theorem 4 ([2]). The 3-Coloring problem can be solved in time O(1.3289n)
for a graph on n vertices.

In Algorithm enumISPw, which returns here a boolean, I corresponds to the
color class C1 and C to the remaining three color classes C2, C3 and C4. Algo-
rithm enumIS with parameters G, I, C enumerates all maximal independent sets
of G − I − C of size at least �n/k� − |I| and for each, adds this independent
set to I, then checks if G − I is 3-colorable using Theorem 4. If yes, then G is
4-colorable. This takes time

Te(n, i, c) =
n−i−c∑

�=
n/4�−i

34�−n+c+i4n−c−i−3�1.3289n−i−�.

As
∑�3n/4−c

�=0 34�4−3�1.3289−� isupperboundedbyaconstant, tn = 41/41.32893/4,
ti = 42/33 and tc = 3/4.

Theorem 5. The 4-Coloring problem can be solved in time O(1.7272n) for a
graph on n vertices.

Proof. We use Theorem 1 and Lemma 1 with a = 5, α2 = 0.39418, α3 = 0.27302
and α4 = 0.09127, and the pathwidth algorithm of Lemma 4. ��

74 F.V. Fomin, S. Gaspers, and S. Saurabh

References

1. Angelsmark, O., Jonsson, P.: Improved Algorithms for Counting Solutions in Con-
straint Satisfaction Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
81–95. Springer, Heidelberg (2003)

2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n).. Journal of Algo-
rithms 54(2), 168–204 (2005)

3. Björklund, A., Husfeldt, T.: Inclusion–Exclusion Algorithms for Counting Set Par-
titions. In: The Proceedings of FOCS 2006, pp. 575–582 (2006)

4. Byskov, J.M.: Exact Algorithms for Graph Colouring and Exact Satisfiability. PhD
Dissertation (2004)

5. Byskov, J.M.: Enumerating Maximal Independent Sets with Applications to Graph
Colouring. Operations Research Letters 32(6), 547–556 (2004)

6. Christofides, N.: An algorithm for the chromatic number of a graph. Computer
J. 14, 38–39 (1971)

7. Eppstein, D.: Small Maximal Independent Sets and Faster Exact Graph Coloring.
J. Graph Algorithms Appl. 7(2), 131–140 (2003)

8. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On Two Techniques of
Combining Branching and Treewidth. Report No 337, Department of Informatics,
University of Bergen, Norway (December 2006)

9. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Informa-
tion Processing Letters 97(5), 191–196 (2006)

10. Feige, U., Kilian, J.: Zero Knowledge and the Chromatic Number. Journal of Com-
puter and System Sciences 57(2), 187–199 (1998)

11. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and
colorings with applications. In: ECCC 33 (2005)

12. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco, CA (1979)

13. Khot, S., Ponnuswami, A.K.: Better Inapproximability Results for MaxClique,
Chromatic Number and Min-3Lin-Deletion. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Hei-
delberg (2006)

14. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning prob-
lems via inclusion-exclusion. In: Proceedings of FOCS 2006, pp. 583–590 (2006)

15. Lawler, E.L.: A Note on the Complexity of the Chromatic Number. Information
Processing Letters 5(3), 66–67 (1976)

16. Monien, B., Preis, R.: Upper bounds on the bisection width of 3- and 4-regular
graphs. Discrete Algorithms 4(3), 475–498 (2006)

Connected Coloring Completion for General Graphs:
Algorithms and Complexity�

Benny Chor1, Michael Fellows2,3, Mark A. Ragan4, Igor Razgon5,
Frances Rosamond2, and Sagi Snir6

1 Computer Science Department, Tel Aviv University, Tel Aviv, Israel
benny@cs.tau.ac.il

2 University of Newcastle, Callaghan NSW 2308, Australia
{michael.fellows,frances.rosamond}@newcastle.edu.au

3 Durham University, Institute of Advanced Study,
Durham DH1 3RL, United Kingdom

4 Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia
m.ragan@imb.uq.edu.au

5 Computer Science Department, University College Cork, Ireland
i.razgon@cs.ucc.ie

6 Department of Mathematics, University of California, Berkeley, USA
ssagi@math.berkeley.edu

Abstract. An r-component connected coloring of a graph is a coloring of the
vertices so that each color class induces a subgraph having at most r connected
components. The concept has been well-studied for r = 1, in the case of trees,
under the rubric of convex coloring, used in modeling perfect phylogenies. Sev-
eral applications in bioinformatics of connected coloring problems on general
graphs are discussed, including analysis of protein-protein interaction networks
and protein structure graphs, and of phylogenetic relationships modeled by splits
trees. We investigate the r-COMPONENT CONNECTED COLORING COMPLE-
TION (r-CCC) problem, that takes as input a partially colored graph, having k
uncolored vertices, and asks whether the partial coloring can be completed to an
r-component connected coloring. For r = 1 this problem is shown to be NP-
hard, but fixed-parameter tractable when parameterized by the number of uncol-
ored vertices, solvable in time O∗(8k). We also show that the 1-CCC problem,
parameterized (only) by the treewidth t of the graph, is fixed-parameter tractable;
we show this by a method that is of independent interest. The r-CCC problem is
shown to be W [1]-hard, when parameterized by the treewidth bound t, for any
r ≥ 2. Our proof also shows that the problem is NP-complete for r = 2, for
general graphs.

Topics: Algorithms and Complexity, Bioinformatics.

1 Introduction

The following two problems concerning colored graphs can be used to model several
different issues in bioinformatics.
� This research has been supported by the Australian Research Council through the Australian

Centre in Bioinformatics. The second and fifth authors also acknowledge the support provided
by a William Best Fellowship at Grey College, Durham, while the paper was in preparation.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 75–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 B. Chor et al.

r-COMPONENT CONNECTED RECOLORING (r-CCR)
Instance: A graph G = (V, E), a set of colors C, a coloring function Γ : V →
C, and a positive integer k.

Parameter: k
Question: Is it possible to modify Γ by changing the color of at most k ver-

tices, so that the modified coloring Γ ′ has the property that each color class
induces a subgraph with at most r components?

In the case where G is a tree and r = 1, the problem is of interest in the context of
maximum parsimony approaches to phylogenetics [17,13]. A connected coloring corre-
sponds to a perfect phylogeny, and the recoloring number can be viewed as a measure of
distance from perfection. The problem was introduced by Moran and Snir, who showed
that CONVEX RECOLORING FOR TREES (which we term 1-CCR) is NP-hard, even for
the restriction to colored paths. They also showed that the problem is fixed-parameter
tractable, and described an FPT algorithm that runs in time O(k(k/ log k)kn4) for col-
ored trees [17]. Subsequently, Bodlaender et al. have improved this to an FPT algorithm
that runs in linear time for every fixed k, and have described a polynomial-time kernel-
ization to a colored tree on at most O(k2) vertices [3].

Here we study a closely related problem.

r-COMPONENT CONNECTED COLORING COMPLETION (r-CCC)
Instance: A graph G = (V, E), a set of colors C, a coloring partial function

Γ : V → C where there are k uncolored vertices.
Parameter: k
Question: Is it possible to complete Γ to a total coloring function Γ ′ such that

each color class induces a subgraph with at most r components?

The problem is of interest in the following contexts.
(1) Protein-protein interaction networks. In a protein-protein interaction network

the vertices represent proteins and edges model interactions between that pair of pro-
teins [22,7,20,21]. Biologists are interested in analyzing such relationship graphs in
terms of cellular location or function (either of which may be represented by vertex col-
oring) [16]. Interaction networks colored by cellular location would be expected to have
monochrome subgraphs representing localized functional subnetworks. Conversely, in-
teraction networks colored by function may also be expected to have monochrome
connected subgraphs representing cellular localization. The issue of error makes the
number of recolorings (corrections) needed to attain color-connectivity of interest [17],
and the issue of incomplete information may be modeled by considering uncolored
vertices that are colored to attain color-connectivity, the main combinatorial problem
we are concerned with here. Protein-protein interaction graphs generally have bounded
treewidth.

(2) Phylogenetic networks. Phylogenetic relationships can be represented not only
as trees, but also as networks, as in the splits trees models of phylogenetic relationships
that take into account such issues as evidence of lateral genetic transfer, inconsistencies

Connected Coloring Completion for General Graphs 77

in the phylogenetic signal, or information relevant to a specific biological hypothesis,
e.g., host-parasite relationships [15,14]. Convex colorings of splits trees have essentially
the same modeling uses and justifications as in the case of trees [17,4,13]. Splits trees
for natural datasets have small treewidth.

Our main results are summarized as follows:

1. 1-CCC is NP-hard for general colored graphs, even if there are only two colors.
2. 1-CCC for general colored graphs, parameterized by the number k of uncolored

vertices, is fixed-parameter tractable, and can be solved in time O∗(8k).
3. 1-CCC is in XP for colored graphs of treewidth at most t, parameterized by t.

(That is, it is solvable in polynomial time for any fixed t. Note that under this
parameterization the number of uncolored vertices is unbounded.)

4. 1-CCC is fixed-parameter tractable when parameterized by treewidth.
5. For all r ≥ 2, r-CCC, parameterized by a treewidth bound t, is hard for W [1].

For basic background on parameterized complexity see [10,11,19].

2 Connected Coloring Completion Is NP-Hard

Theorem 1. The 1-CCC problem is NP-hard, even if there are only two colors.

Proof. (Sketch.) The reduction from 3SAT can be inferred from Figure 1 (the details
are omitted due to space limitations). The two colors are T and F.

T

F

T

F

T

F T

F

T

T

T. . .

+
1α

−
1α

−
2α +

2α −
3α

+
3α

−
4α

+
4α

F

)(321 xxx ∨¬∨

Fig. 1. The reduction from 3SAT

78 B. Chor et al.

3 1-CCC for k Uncolored Vertices Is Fixed-Parameter Tractable

The input to the problem is a partially colored graph G = (V, E), and the parameter is
the number of uncolored vertices.

Soundness for the following reduction rules is easy to verify.

Rule 1. A maximal connected monochromatic subgraph (of colored vertices) can be
collapsed to a single vertex. The parameter is unchanged.
Rule 2. If a color occurs on only a single vertex, then that vertex can be deleted. The
parameter is unchanged.
Rule 3. An edge between two colored vertices of different color can be deleted. The
parameter is unchanged.

Suppose that a partially colored graph G is reduced with respect to the above three
reduction rules. The situation can be represented by a bipartite model graph that on
one side (let us say, the left side), has vertices representing the vertices created by Rule
1, but not deleted by Rule 2. On the right side are the k uncolored vertices (and their
adjacencies), and between the two sides are edges that represent an incidence relation-
ship. Clearly, if in this representation, there are more than k vertices on the left, then
the answer is NO. Thus, there are at most k colors represented on the left, and an FPT
algorithm that runs in time O∗(kk) follows by exploring all possibilities of coloring
the k uncolored vertices (on the right) with the k colors represented on the left of the
model. We can do better than this.

Theorem 2. 1-CCC parameterized by the number of uncolored vertices is fixed-
parameter tractable, solvable in time O∗(8k).

Proof. We use the model graph described above. Instead of the brute-force exploration
of all possibilities of coloring the right-side vertices with the left-side colors, we em-
ploy a dynamic programming algorithm. Let H denote the set of at most k uncolored
vertices, and let C denote the set of colors represented on the left of the model graph.
Create a table of size 2C × 2H . We employ a table T to be filled in with 0/1 entries.
The entry T (C′, H ′) of the table T indexed by (C′, H ′), where C′ ⊆ C and H ′ ⊆ H ,
represents whether (1) or not (0), it is possible to solve the connectivity problem for the
colors in C′ by assigning colors to the vertices of H ′. (The only way this can happen,
is that, for each color c ∈ C′, the (single) connected component of c-colored vertices
on the right, dominates all the c-colored vertices on the left.) We have the following
recurrence relationship for filling in this table:

T (C′, H ′) = 1 ⇐⇒ ∃(c, H ′′), c ∈ C′, H ′′ ⊂ H ′, such that T (C′ − c, H ′′) = 1
and H ′ −H ′′ induces a connected subgraph that dominates the vertices of color c. The
table T has at most 2k × 2k = 4k entries, and computing each entry according to the
recurrence requires time at most O(k · 2k), so the total running time of the dynamic
programming algorithm is O∗(8k).

4 Bounded Treewidth

Most natural datasets for phylogenetics problems have small bounded treewidth. 1-
CCR is NP-hard for paths (and therefore, for graphs of treewidth one) [17]. Bodlaender

Connected Coloring Completion for General Graphs 79

and Weyer have shown that 1-CCR parameterized by (k, t), where k is the number
of vertices to be recolored, and t is a treewidth bound, is fixed-parameter tractable,
solvable in linear time for all fixed k [6].

4.1 1-CCC Parameterized by Treewidth is Linear-Time FPT

We describe an algorithm for the 1-CCC problem that runs in linear time for any fixed
treewidth bound t, and we do this by using the powerful machinery of Monadic Second
Order (MSO) logic, due to Courcelle [9] (also [1,5]). At first glance, this seems either
surprising or impossible, since MSO does not provide us with any means of describing
families of colored graphs, where the number of colors is unbounded. We employ a
“trick” that was first described (to our knowledge) in a paper in these proceedings [3].
Further applications of what appears to be more a useful new method, rather than just a
trick, are described in [12].

The essence of the trick is to construct an auxiliary graph that consists of the original
input, augmented with additional semantic vertices, so that the whole ensemble has
— or can safely be assumed to have — bounded treewidth, and relative to which the
problem of interest can be expressed in MSO logic.

Let G = (V, E) be a graph of bounded treewidth, and Γ : V ′ → C a vertex-coloring
function defined on a subset V ′ ⊆ V . (Assume each color in C is used at least once.)
We construct an auxiliary graph G′ from G in the following way: for each color c ∈ C,
create a new semantic vertex vc (these are all of a second type of vertex, the vertices of
V are of the first type). Connect vc to every vertex in G colored c by Γ .

Consider a tree decomposition Δ for G, witnessing the fact that it has treewidth at
most t. This can be computed in linear time by Bodlaender’s algorithm.

Say that a color c ∈ C is relevant for a bag B of Δ if either of the following holds:
(1) There is a vertex u ∈ B such that Γ (u) = c. (When this holds, say that c is present
in B.)
(2) There are bags B′ and B′′ of Δ such that B is on the unique path from B′ to B′′

relative to the tree that indexes Δ, and there are vertices u′ ∈ B′ and u′′ ∈ B′′ such
that Γ (u′) = Γ (u′′) = c, and furthermore, c is not present in B. (When this holds, say
that c is split by the bag B.)

Lemma 1. If the colored graph G is a yes-instance for 1-CCC, then for any bag B,
there are at most t + 1 relevant colors.

Proof. Suppose that a bag B has more than t+1 relevant colors, and that p of these are
present in B. If s denotes the number of colors split by B, then s > t + 1 − p. Since
B contains at most t + 1 vertices, the number of colors split by B exceeds the number
of uncolored vertices in B, and because each bag is a cutset of G, it follows that G is a
no-instance for 1-CCC.

Lemma 2. If the colored graph G is a yes-instance for 1-CCC, then the auxiliary graph
G′ has treewidth at most 2t + 1.

Proof. Consider a tree decomposition Δ for G witnessing that the treewidth of G is at
most t. By the above lemma, if we add to each bag B of Δ all those vertices vc for

80 B. Chor et al.

colors c that are relevant to B, then (it is easy to check) we obtain a tree-decomposition
Δ′ for G′ of treewidth at most 2t + 1.

Theorem 3. The 1-CCC problem, parameterized by the treewidth bound t, is fixed-
parameter tractable, solvable in linear time for every fixed t.

Proof. The algorithm consists of the following steps.

Step 1. Construct the auxiliary graph G′.
Step 2. Compute in linear time, using Bodlaender’s algorithm, a tree-decomposition for
G′ of width at most 2t + 1, if one exists. (If not, then correctly output NO.)
Step 3. Otherwise, we can express the problem in MSO logic. That this is so, is not
entirely trivial, and is argued as follows (sketch).

The vertices of G′ can be considered to be of three types: (i) the original colored
vertices of G (that is, the vertices of V ′), (ii) the uncolored vertices of G (that is, the
vertices of V −V ′), and (iii) the color-semantic vertices added in the construction of G′.
(The extension of MSO Logic to accomodate a fixed number of vertex types is routine.)

If G is a yes-instance for the problem, then this is witnessed by a set of edges F
between vertices of G (both colored and uncolored) that provides the connectivity for
the color classes. In fact, we can choose such an F so that it can be partitioned into
classes Fc, one for each color c ∈ C, such that the classes are disjoint: no vertex v ∈ V
has incident edges e ∈ Fc and e′ ∈ Fc′ where c 	= c′.

The following are the key points of the argument:

(1) Connectivity of a set of vertices, relative to a set of edges, can be expressed by
an MSO formula.

(2) We assert the existence of a set of edges F of G ⊆ G′, and of a set of edges F ′

between uncolored vertices of G and color-semantic vertices of G′ such that:

– Each uncolored vertex of G has degree 1 relative to F ′. (The edges of F ′ thus
represent a coloring of the uncolored vertices of G.)

– If u and v are colored vertices of G that are connected relative to F , then there is a
unique color-semantic vertex vc such that both u and v are adjacent to vc.

– If u is a colored vertex of G and v is an uncolored vertex of G that are connected via
edges in F , then there is a unique color-semantic vertex vc such that v is adjacent
to vc by an edge of F ′, and u is adjacent to vc by an edge of G′.

– If u is an uncolored vertex of G and v is an uncolored vertex of G that are con-
nected via edges in F , then there is a unique color-semantic vertex vc such that v is
adjacent to vc by an edge of F ′, and u is adjacent to vc by an edge of F ′.

– If u and v are colored vertices of G that are both adjacent to some color-semantic
vertex vc, then u and v are connected relative to F .

4.2 r-CCC Parameterized by Treewidth is W [1]-Hard for r ≥ 2

In view of the fact that 1-CCC is fixed-parameter tractable for bounded treewidth, it
may be considered surprising that this does not generalize to r-CCC for any r ≥ 2.

Theorem 4. The 2-CCC problem, parameterized by the treewidth bound t, is hard for
W [1].

Connected Coloring Completion for General Graphs 81

Proof. (Sketch.) The proof is an FPT Turing reduction, based on color-coding [2]. We
reduce from the W [1]-hard problem of k-CLIQUE. Let (G = (V, E), k) be an instance
of the parameterized CLIQUE problem. Let H be a suitable family of hash functions
h : V → A = {1, ..., k}.

If G is a yes-instance for the k-CLIQUE problem, then for at least one h ∈ H, the
coloring function h is injective on the vertices of a witnessing k-clique in G (that is,
each vertex of the k-clique is assigned a different color).

We describe a Turing reduction to instances G′(h) of the 2-CCC problem, one for
each h ∈ H, such that G is a yes-instance for the k-CLIQUE problem if and only at
least one G′(h) is a yes-instance for the 2-CCC problem. Each G′(h) has treewidth
t = O(k2).

The construction of G′(h) is based on an edge-representation of the clique strategy.
We will describe the construction of G′(h) in stages, building up in a modular fashion.
A module of the construction will be a subgraph that occurs in G′(h) as an induced
subgraph, except for a specified set of boundary vertices of the module. These boundary
sets will be identified as the various modules are “plugged together” to assemble G′(h).
In the figures that illustrate the construction, each kind of module is represented by
a symbolic schematic, and the modules are built up in a hierarchical fashion. Square
vertices represent uncolored vertices.

Figure 2 illustrates the Choice Module that is a key part of our construction, and
its associated schematic representation. A Choice Module has four “output” boundary
vertices, labeled c1, ..., c4 in the figure. It is easy to see that the module admits a par-
tial solution coloring that “outputs” any one of the (numbered) colors occuring in the
module depicted, in the sense that the vertices c1, ..., c4 are assigned the output color
(which is unsolved, that is, this color class is not connected in the module), and that the
other colors are all solved internally to the module, in the sense that there is (locally)
only one connected component of the color class.

A Co-Incident Edge Set Module is created from the disjoint union of k − 1 Choice
Modules, as indicated in in Figure 3. The boundary of the module is the union of the
boundaries of the constituent Choice Modules.

1

1

1

1

2 32 2 2 3 3 3

c1

c3

c2

c4

. . .

1

1

1

1

2 32 2 2 3 3 3

11

11

11

11

22 3322 22 22 33 33 33

c1

c3

c2

c4

. . .

Fig. 2. A Choice Module of size 3

82 B. Chor et al.

…

E

Schematic

…

C

C

C

Fig. 3. A Co-Incident Edge Choice Module of size s is the disjoint union of s Choice Modules

An XOR Stream Module is shown in Figure 4. This has two “input” boundary sets,
each consisting of four uncolored vertices, and one “output” boundary set of four un-
colored vertices.

α

α

x

Schematic
α

Fig. 4. An XOR Stream Module

Figure 5 shows how a Tree of Choice Module is assembled from Co-Incident Edge
Set modules and XOR Stream modules. By the size of a Tree of Choice module we refer
to the number of Co-Incident Edge Set modules occuring as leaves in the construction.

The overall construction of G′(h) for k = 5 is illustrated in Figure 6. Suppose the in-
stance graph G = (V, E) that is the source of our reduction from CLIQUE has |V | = n
and |E| = m. Then each Tree of Choice module T (h, i) has size n(h, i), where n(h, i)

Connected Coloring Completion for General Graphs 83

x

x

x

E

E

E

E

T

Schematic

Fig. 5. A Tree of Choice Module of size 4

is the number of vertices colored i ∈ {1, ..., k} by h. Let V (h, i) denote the subset of
vertices of V colored i by h.

In the coloring of G by h, if it should happen that a vertex v colored i has no neigh-
bors of color j, j 	= i, then v cannot be part of a multicolored k-clique in G, and can be
deleted. We consider only colorings of G that are reduced in this sense.

The “leaves” of T (h, i) consist of Co-Incident Edge Set modules E(h, i, u), one for
each u ∈ V (h, i). The Co-Incident Edge Set module E(h, i, u) consists of k−1 Choice
modules C(h, i, u, j), j ∈ {1, ..., k} and j 	= i, and each of these has size equal to the
number of edges uv incident to u in G, where v is colored j by h.

The colors used in the construction of E(h, i, u) are in 1:1 correspondence with the
edges incident to v in G. Overall, the colors of the colored vertices in G′ occuring in the
Choice modules represent, in this manner, edges of G. Each XOR module M has three
vertices colored α = α(M) where this color occurs nowhere else in G′ (see Figure 4).
One of these vertices colored α is an isolated vertex.

Verification that if G has a k-clique, then G′ admits a solution to the CCC problem
is relatively straightforward. It is important to note that if uv is an edge of G, where
h(u) = i and h(v) = j, then the color corresponding to uv occurs in exactly two Choice
modules: in C(h, i, u, j) and in C(h, j, v, i). If uv is “not selected” (with respect to a
coloring completion) then the two local connectivities yield two components of that
color.

The argument in the other direction is a little more subtle. First of all, one should
verify that the gadgets enforce some restrictions on any solution for G′:

(1) Each Choice module necessarily “outputs” one unsolved color (that is, a color not
connected into a single component locally), and thus a Co-Incident Edge Set module
E(v) “outputs” k − 1 colors representing edges incident on v.
(2) Each XOR module forces the “output” stream of unsolved colors to be one, or the
other, but not a mixture, of the two input streams of unsolved colors.

84 B. Chor et al.

T T

T

T

T

T T

Fig. 6. The modular design of G′ for k = 5

(3) The unsolved colors that are presented to the central gadget (see Figure 7) can be
solved only if these unsolved colors occur in pairs.

The treewidth of G′ is easily seen to be O(k2).

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algo-
rithms 12, 308–340 (1991)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856 (1995)
3. Bodlaender, H.L., Fellows, M., Langston, M., Ragan, M.A., Rosamond, F., Weyer, M.:

Quadratic kernelization for convex recoloring of trees. Proceedings COCOON 2007, these
proceedings (2007)

4. Bar-Yehuda, R., Feldman, I., Rawitz, D.: Improved approximation algorithm for convex re-
coloring of trees. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp.
55–68. Springer, Heidelberg (2006)

5. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from
predicate calculus descriptions of problems on recursively generated graph families. Algo-
rithmica 7, 555–581 (1992)

6. Bodlaender, H.L., Weyer, M.: Convex anc connected recolourings of trees and graphs.
Manuscript (2005)

7. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N.,
Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in
budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003)

8. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I., Xia, G.: Tight lower bounds
for certain parameterized NP-hard problems. In: Proceedings of the 19th Annual IEEE Con-
ference on Computational Complexity, pp. 150–160. IEEE Computer Society Press, Los
Alamitos (2004)

9. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Information and Computation 85, 12–75 (1990)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

Connected Coloring Completion for General Graphs 85

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
12. Fellows, M., Giannopoulos, P., Knauer, C., Paul, C., Rosamond, F., Whitesides, S., Yu, N.:

The lawnmower and other problems: applications of MSO logic in geometry, Manuscript
(2007)

13. Gramm, J., Nickelsen, A., Tantau, T.: Fixed-parameter algorithms in phylogenetics.
Manuscript (2006)

14. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol.
Biol. E 23, 254–267 (2006)

15. Huson, D.H.: SplitsTree: a program for analyzing and visualizing evolutionary data. Bioin-
fomatics 14, 68–73 (1998)

16. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Con-
served pathways within bacteria and yeast as revealed by global protein network alignment.
Proc. Natl. Acad. Sci. USA 100, 11394–11399 (2003)

17. Moran, S., Snir, S.: Convex recolorings of strings and trees: definitions, hardness results and
algorithms. To appear in Journal of Computer and System Sciences. In: Dehne, F., López-
Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidel-
berg (2005) A preliminary version appeared

18. Moran, S., Snir, S., Sung, W.: Partial convex recolorings of trees and galled networks.
Manuscript (2006)

19. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford
(2006)

20. Ramadan, E., Tarafdar, A., Pothen, A.: A hypergraph model for the yeast protein complex
network. Fourth IEEE International Workshop on High Performance Computational Biology,
Santa Fe, NM, April 26, 2004. IEEE Computer Society Press, Los Alamitos (2004)

21. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F.,
Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M.,
Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S.,
Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski,
R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm,
L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Nature, 437, 1173–1178 (2005)

22. Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast.
Nature Biotechnology 18(12), 1257–1261 (2000)

23. Viveshwara, S., Brinda, K.V., Kannan, N.: Protein structure: insights from graph theory. J.
Theoretical and Computational Chemistry 1, 187–211 (2002)

Quadratic Kernelization for Convex Recoloring

of Trees�

Hans L. Bodlaender1, Michael R. Fellows2,3, Michael A. Langston4,
Mark A. Ragan3,5, Frances A. Rosamond2,3, and Mark Weyer6

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

hansb@cs.uu.nl
2 Parameterized Complexity Research Unit, Office of the DVC(Research),

University of Newcastle, Callaghan NSW 2308, Australia
{michael.fellows,frances.rosamond}@newcastle.edu.au

3 Australian Research Council Centre in Bioinformatics
4 Department of Computer Science, University of Tennessee,

Knoxville TN 37996-3450 and Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 USA

langston@cs.utk.edu
5 Institute for Molecular Bioscience, University of Queensland,

Brisbane, QLD 4072 Australia
m.ragan@imb.uq.edu.au

6 Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
mark.weyer@informatik.hu-berlin.de

Abstract. The Convex Recoloring (CR) problem measures how far
a tree of characters differs from exhibiting a so-called “perfect phy-
logeny”. For input consisting of a vertex-colored tree T , the problem
is to determine whether recoloring at most k vertices can achieve a con-
vex coloring, meaning by this a coloring where each color class induces
a connected subtree. The problem was introduced by Moran and Snir,
who showed that CR is NP-hard, and described a search-tree based FPT
algorithm with a running time of O(k(k/ log k)kn4). The Moran and Snir
result did not provide any nontrivial kernelization. Subsequently, a ker-
nelization with a large polynomial bound was established. Here we give
the strongest FPT results to date on this problem: (1) We show that in
polynomial time, a problem kernel of size O(k2) can be obtained, and (2)

� This research has been supported by the Australian Research Council Centre in
Bioinformatics, by the U.S. National Science Foundation under grant CCR–0311500,
by the U.S. National Institutes of Health under grants 1-P01-DA-015027-01, 5-U01-
AA-013512-02 and 1-R01-MH-074460-01, by the U.S. Department of Energy under
the EPSCoR Laboratory Partnership Program and by the European Commission
under the Sixth Framework Programme. The second and fifth authors have been
supported by a Fellowship to the Institute of Advanced Studies at Durham Univer-
sity, and hosted by a William Best Fellowship to Grey College during the preparation
of the paper.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 86–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quadratic Kernelization for Convex Recoloring of Trees 87

We prove that the problem can be solved in linear time for fixed k. The
technique used to establish the second result appears to be of general
interest and applicability for bounded treewidth problems.

Topics: Algorithms and Complexity.

1 Introduction

The historically first and most common definition of fixed-parameter tractability
for parameterized problems is solvability in time O(f(k)nc), where n is the input
size, k is the parameter, and c is a constant independent of n and k. Background
and motivation for the general subject of parameterized complexity and algo-
rithmics can be found in the books [9,10,14]. This basic view of the subject is
by now well-known.

Less well-known is the point of view that puts an emphasis on FPT kernel-
ization. Kernelization is central to FPT as shown by the lemma:

Lemma 1. A parameterized problem Π is in FPT if and only if there is a
transformation from Π to itself, and a function g, that reduces an instance (x, k)
to (x′, k′) such that:

1. the transformation runs in time polynomial in |(x, k)|,
2. (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π,
3. k′ ≤ k, and
4. |(x′, k′)| ≤ g(k).

The lemma is trivial, but codifies a shift of perspective. To see how this works,
consider the Moran and Snir FPT result for Convex Recoloring, with the
running time of O∗(k/ log k)k). When n > (k/ log k)k, then the Moran and Snir
algorithm runs in polynomial time, in fact, in time O(n5). (So we can run the
algorithm and determine the answer, and “transform” the input to either a
canonical small NO instance or a canonical small YES instance accordingly.) If
n ≤ (k/ log k)k then we simply do nothing; we declare that the input is “already”
kernelized to the bound g(k) = (k/ log k)k. If a parameterized problem is FPT,
that is, solvable in time f(k)nc, then the lemma above gives us the trivial P-time
kernelization bound of g(k) = f(k). Normally for FPT problems, f(k) is some
exponential function of k, so the subclasses of FPT

Lin(k) ⊆ Poly(k) ⊆ FPT

of parameterized problems that admit P-time kernelization to kernels of size
bounded by linear or polynomial functions of k would seem to be severe restric-
tions of FPT.

It is surprising that so many parameterized problems in FPT belong to these
much more restrictive subclasses. The connection to heuristics goes like this:
FPT kernelization is basically a systematic approach to polynomial-time pre-
processing. Preprocessing plays a powerful role in practical approaches to solving

88 H.L. Bodlaender et al.

hard problems. For any parameterized problem in FPT there are now essentially
two different algorithm design competitions with independent payoffs:

(1) to find an FPT algorithm with the best possible exponential cost f(k), and
(2) to find the best possible polynomial-time kernelization for the problem.

A classic result on FPT kernelization is the Vertex Cover 2k kernelization
due to Nemhauser and Trotter (see [14]). The linear kernelization for Planar

Dominating Set is definitely nontrivial [1]. The question of whether the Feed-

back Vertex Set (FVS) problem for undirected graphs has a Poly(k) kernel-
ization was a noted open problem in parameterized algorithmics, only recently
solved. The first Poly(k) kernelization for FVS gave a bound of g(k) = O(k11)
[6]. Improved in stages, the best kernelization bound is now O(k3) [4].

We prove here a polynomial time kernelization for the Convex Recoloring

problem, to a reduced instance that has O(k2) vertices. The basic problem is
defined as follows.

Convex Recoloring

Instance: A tree F = (V, E), a set of colors C, a coloring function Γ :
V → C, and a positive integer k.

Parameter: k
Question: Is it possible to modify Γ by changing the color of at most

k vertices, so that the modified coloring Γ ′ is convex (meaning that
each color class induces a single monochromatic subtree)?

The Convex Recoloring problem is of interest in the context of maximum
parsimony approaches to evaluating phylogenetic trees [12,11]. Some further ap-
plications in bioinformatics are also described in [12]; see also [13].

2 Preliminaries

Our kernelization algorithm is shown for the following generalized problem.

Annotated Convex Recoloring

Instance: A forest F = (V, E) where the vertex set V is partitioned into
two types of vertices, V = V0∪V1, a set of colors C, a coloring function
Γ : V → C, and a positive integer k.

Parameter: k
Question: Is it possible to modify Γ by changing the color of at most k

vertices in V1, so that the modified coloring Γ ′ is convex?

A block in a colored forest is a maximal set of vertices that induces a mono-
chromatic subtree. For a color c ∈ C, β(Γ, c) denotes the number of blocks of
color c with respect to the coloring function Γ . A color c is termed a bad color
if β(Γ, c) > 1, and c is termed a good color if β(Γ, c) = 1.

A recoloring Γ ′ of coloring Γ is expanding, if for each block of Γ ′, there is at
least one vertex in the block that keeps its color, i.e., that has Γ ′(v) = Γ (v).

Quadratic Kernelization for Convex Recoloring of Trees 89

Moran and Snir [12] have shown that there always exists an optimal expanding
convex recoloring. It is easy to see that this also holds for the variant where we
allow annotations and a forest, as above.

As in [3], we define for each v ∈ V a set of colors S(v): c ∈ S(v), if and only if
there are two distinct vertices w, x, w 	= v, x 	= v, such that w and x have color
c (in Γ), and v is on the path from w to x.

We introduce another special form of convex recoloring, called normalized.
For each vertex v ∈ V , we add a new color cv. We denote C′ = C ∪ {cv | v ∈ V }.
A recoloring Γ ′ : V → C′ of coloring Γ : V → C is normalized, if for each v ∈ V :
Γ ′(v) ∈ {Γ (v), cv} ∪ S(v).

Lemma 2. There is an optimal convex recoloring that is normalized.

Proof. Take an arbitrary optimal convex recoloring Γ ′. Define Γ ′′ as follows. For
each v ∈ V , if Γ ′(v) ∈ {Γ (v)} ∪ S(v), then set Γ ′′(v) = Γ ′(v). Otherwise, set
Γ ′′(v) = cv. One can show that Γ ′′(v) is convex. Clearly, it is normalized, and
recolors at most as many vertices as Γ ′(v). �

3 Kernelizing to a Linear Number of Vertices Per Color

In this section, we summarize a set of rules from [6] that ensure that for each
color, there are at most O(k) vertices with that color. There are two trivial rules:
if F is an empty forest and k ≥ 0, then we return YES; if k < 0, then we return
NO if and only if the given coloring is not already convex.

Rule 1. Suppose there are α ≥ 2k + 3 vertices with color c. Let v be a vertex,
such that each connected component of F −v contains at most α

2 vertices of color
c. Assume that v 	∈ V0, or Γ (v) 	= c. Now

– If v has a color, different from c, and v ∈ V0, then return NO.
– If v has a color, different from c, and v 	∈ V0, then set Γ (v) = c and decrease

k by one.
– Fix the color of v: put v ∈ V0.

Rule 2. Suppose v ∈ V0 has color c. Suppose one of the connected components
of F contains at least k + 1 vertices with color c, but does not contain v. Then
return NO.

Rule 3. Let v be a vertex of color c. Suppose F −v has a component with vertex
set W that contains at least k + 1 vertices with color c, that contains a neighbor
w of v. Assume that w 	∈ V0 or Γ (w) 	= c. Then

– If w has a color, different from c, and w ∈ V0, then return NO.
– If w has a color, different from c, and w 	∈ V0, then give w color c, and

decrease k by one.
– Fix the color of w: put w ∈ V0.

90 H.L. Bodlaender et al.

Rule 4. If there is a tree T in the colored forest that contains two distinct ver-
tices u and v, both of which have fixed color c, then modify T by contracting the
path between u and v (resulting in a single vertex of fixed color c). If r denotes
the number of vertices of this path that do not have color c, then k′ = k − r.

Rule 5. If there are two distinct trees in the colored forest that both contain a
vertex of fixed color c, then return NO.

Let v ∈ V0 have color c. A connected component of F − v with vertex set W
is said to be irrelevant, if both of the following two properties hold: (1) The
vertices with color c in W form a connected set that contains a neighbor of v,
and (2) For each color c′ 	= c, if there are vertices with color c′ in W , then c′ is
not bad. If a component is not irrelevant, it is said to be relevant.

Rule 6. Let v ∈ V0. Let W be the vertex set of an irrelevant connected compo-
nent of F − v. Then remove W , and all edges incident to vertices in W , from
the tree.

Rule 7. Suppose F−v contains at least 2k+1 components, and each component
of F − v is relevant. Then return NO.

Rule 8. Let v ∈ V0 be a vertex with fixed color c. Let W be the vertex set of a
relevant component of F − v that contains vertices with color c. Suppose there
are vertices with color c, not in {v} ∪W . Then

– Take a new color c′, not yet used, and add it to C.
– Take a new vertex v′, and add it to F .
– Set v′ ∈ V0. Color v′ with c′.
– For all w ∈W with color c, give w color c′. (Note that k is not changed.)
– For each edge {v, w} with w ∈W : remove this edge from F and add the edge
{v′, w}.

Theorem 1. An instance that is reduced with respect to the above Rules has at
most 2k + 2 vertices per color.

4 Kernelizing to a Quadratic Number of Vertices

In this section, we work in a series of steps towards a kernel with O(k2) vertices.
A number of new structural notions are introduced.

4.1 Bad Colors

Rule 9. If there are more than 2k bad colors, then return NO.

The colors that are not bad are distinguished into three types: gluing, stitching,
and irrelevant.

Quadratic Kernelization for Convex Recoloring of Trees 91

4.2 Gluing Colors

A vertex v is gluing for color c, if it is adjacent to two distinct vertices x and
y, both of color c, but the color of v is unequal to c. Note that if v is gluing
for color c, then v separates (at least) two blocks of color c: x and y belong to
different blocks. When we recolor v with color c, then these blocks become one
block (are ’glued’ together). A vertex v is gluing, if v is gluing for some color,
and if the color of v is not bad. A color c is gluing, if there is a gluing vertex with
color c, and c is not bad. (Note that the vertex will be gluing for some other
color c′ 	= c.)

For a color c, let Wc be the set of vertices that have color c or are gluing for
color c. A bunch of vertices of color c is a maximal connected set of vertices in
Wc, i.e., a maximal connected set of vertices that have either color c or are gluing
for color c. The following lemma is not difficult, and establishes the soundness
of the next Rule.

Lemma 3. Suppose W is a bunch of color c that contains � vertices that are
gluing for color c. Then in any convex recoloring, at least � vertices in W are
recolored, and for each, either the old, or the new color is c.

Rule 10. If there are more than 2k vertices that are gluing, then return NO.

As a result, there are O(k) colors that are gluing, and thus O(k2) vertices that
have a gluing color. We next bound the number of bunches.

Lemma 4. Suppose there are � bunches with color c. Then the number of recol-
ored vertices whose old or new color equals c, is at least �− 1.

Proof. Omitted due to space limitations. �

Rule 11. Suppose that for each bad color c, there are �c bunches. If the sum
over all bad colors c of �c − 1 is at least 2k + 1, then return NO.

4.3 Stitching Colors

We now define the notion of stitching vertices. To arrive at an O(k2) kernel, we
have to define this notion with some care.

We first define the cost of a path between two vertices with the same color
that belong to different bunches. Let v and w be two vertices with color c, in
the same subtree of F , but in different bunches of color c. The cost of the path
from v to w is the sum of the number of vertices with color unequal to c on this
path, and the sum over all colors c′ 	= c such that

– c′ is not bad and c′ is not gluing, and
– there is at least one vertex with color c′ on the path from v to w in T

of the following term: consider the blocks with color c′ in the forest, obtained
by removing the path from v to w from T . If one of these blocks contains a

92 H.L. Bodlaender et al.

vertex in V0 (i.e., it has fixed color c′), then sum the sizes of all other blocks.
Otherwise, sum the sizes of the all blocks except one block with the largest
number of vertices.

A stitch of color c is a path between two vertices v, w, both of color c, such
that: (1) v and w are in different bunches, (2) all vertices except v and w have
a color, different from c, and do not belong to V0, and (3) the cost of the path
is at most k. A vertex v is stitching for color c, if: (1) the color of v is different
from c, (2) v is not gluing for color c, and (3) v is on a stitch of color c. A vertex
is stitching, if it is stitching for at least one color. (Note that this vertex will be
stitching for a bad color.) A color c is stitching if there is at least one vertex
with color c that is stitching, and it is not bad or gluing. A color is irrelevant,
if it is neither bad, gluing, or stitching. Summarizing, we have the following
types of vertices: (a) vertices with a bad color, (b) vertices with a gluing color,
(c) vertices with a stitching color that belong to a stitch, (d) vertices with a
stitching color, that do not belong to a stitch — these will be partitioned into
pieces in Section 4.4, and (e) vertices with an irrelevant color.

Proofs of the next two lemmas can be found in the full paper, and establish
the soundness of the next two rules.

Lemma 5. Suppose there is a convex recoloring with at most k recolored ver-
tices. Then there is an optimal convex recoloring such that for each bad color c,
all vertices that receive color c have color c in the original coloring or are gluing
for c or are stitching for c.

Lemma 6. Suppose there is a convex recoloring with at most k recolored ver-
tices. Then there is an optimal convex recoloring such that no vertex with an
irrelevant color is recolored.

Rule 12. Let v ∈ V1 be a vertex with an irrelevant color. Put v into V0 (i.e., fix
the color of v.)

Rule 13. Let v ∈ V1 be a vertex with a stitching color. Suppose v is not vulner-
able. Then put v into V0.

The following rule, in combination with earlier rules, helps us to get a reduced
instance without any vertex with an irrelevant color.

Rule 14. Let v ∈ V0 be the only vertex with some color c. Then remove v and
its incident edges.

Soundness is easy to see: the same recolorings in the graph with and without
v are convex. The combination of Rules 4, 12, and 14 causes the deletion of all
vertices with an irrelevant color: all such vertices first get a fixed color, then all
vertices with the same irrelevant color are contracted to one vertex, and then
this vertex is deleted. So, we can also use instead the following rule.

Rule 15. Suppose c is an irrelevant color. Then remove all vertices with color c.

Quadratic Kernelization for Convex Recoloring of Trees 93

4.4 Pieces of a Stitching Color

For a kernel of size O(k2), we still can have too many vertices with a stitching
color. In order to reduce the number of such vertices we introduce the concept of
a piece of color c. Consider a stitching color c, and consider the subforest of the
forest, induced by the vertices with color c. If we remove from this subtree all
vertices that are on a stitch, then the resulting components are the pieces, i.e., a
piece of color c is a maximal subtree of vertices with color c that do not belong
to a stitch. Assume that we have exhaustively applied all of the rules described
so far, and therefore we do not have vertices with an irrelevant color. The next
lemma, given here without proof, shows that the next Rule is sound.

Lemma 7. Suppose W is the vertex set of a piece of stitching color c. Suppose
there is a vertex v ∈ W ∩ V0. Then if there is a convex recoloring with at most
k recolored vertices, then there is a convex recoloring that does not recolor any
vertex in W .

Rule 16. Let W be a vertex set of a piece of stitching color c, that contains at
least one vertex in V0. Then put all of the vertices of W into V0.

As a result of this rule and Rule 4, a piece containing a vertex with a fixed color
will contain only one vertex. We omit the soundness proof for the following rule
from this version. If there is a large piece, found by Rule 17, then it will be
contracted to a single vertex by Rule 4.

Rule 17. Suppose c is a stitching color, and there are α vertices with color c.
Suppose there is no vertex in V0 with color c. If W is the vertex set of a piece of
color c, and |W | > α/2, then put all of the vertices of W into V0.

4.5 Kernel Size

We now tag some vertices that have a stitching color. A tag is labeled with a bad
color. Basically, when we have a stitch for a bad color c, we tag the vertices that
count for the cost of the stitch with color c. Tagging is done as follows. For each
stitch for bad color c, and for each stitching color c′ with a vertex on the stitch
with color c′, consider the blocks of color c′ obtained by removing the vertices
on the stitch. If there is no vertex with color c′ in V0, then take a block with
vertex set W such that the number of vertices in this piece is at least as large as
the number of vertices in any other piece. Tag all vertices in Q−W with color
c. If there is a vertex v with color c′ in V0, then tag all vertices with color c′,
except those that are in the same block as v.

Comparing the tagging procedure with the definition of the cost of a stitch,
we directly note that the number of vertices that is tagged equals the cost of the
stitch, i.e., for each stitch of bad color c, we tag at most k vertices with c.

We now want to count the number of vertices with a stitching color. To do
so, we first count the number of vertices with a stitching color that are tagged.
To do this, we consider a bad color c, and count the number of vertices, with a
stitching color, that are tagged with c.

The following three lemmas are proved in the full paper.

94 H.L. Bodlaender et al.

Lemma 8. Let c be a bad color with �c bunches. A reduced instance has at most
2k(�c − 1) vertices that are tagged with c.

Lemma 9. Let c be a stitching color. There is at most one piece of color c that
contains a vertex that is not tagged with a bad color.

Lemma 10. In a reduced instance, there are at most 8k2 vertices with a stitch-
ing color.

Theorem 2. In time polynomial in n and k, a kernel can be found with O(k2)
vertices.

Proof. With standard techniques, one can observe that all rules can be carried
out in time polynomial in n and k.

In the reduced instance, there are at most 2k bad colors, and at most 2k
gluing colors. For each of these colors, there are at most 2k + 2 vertices with
that color. So, in total at most 4k2 + 4k vertices have a bad or gluing color.
There are at most 8k2 vertices with a stitching color, and no vertices with an
irrelevant color, so in total we have at most 12k2 + 4k vertices. �

5 Linear Time FPT with Treewidth and MSOL

We describe an algorithm that solves the Convex Recoloring problem in
O(f(k) · n) time. There are four main ingredients of the algorithm: (1) the con-
struction of an auxiliary graph, the vertex-color graph, (2) the observation that
for yes-instances of the Convex Recoloring problem this graph have bounded
treewidth, (3) a formulation of the Convex Recoloring problem for fixed k
in Monadic Second Order Logic, and (4) the use of a famous result of Courcelle
[8], see also [2,5]. For ease of presentation, we assume that there are no vertices
with a fixed color, and that the input is a tree. The “trick” of using such an
auxiliary graph seems to be widely applicable. For another example of this new
technique, see [7].

Suppose we have a tree T = (V, E), and a coloring Γ : V → C. The vertex-color
graph has as vertex set V ∪ C, i.e., we have a vertex for each vertex in T , and a
vertex for each color. The edge set of the vertex-color graph is E∪{{v, c} | Γ (v) =
c}, i.e., there are two types of edges: the edges of the tree T , and an edge between
a vertex of T and the vertex representing its color. Recall that S(v) denotes the
set of colors c for which there are vertices w and x, distinct from v, with v on
the path from w to x in T , and Γ (w) = Γ (x) = c.

Lemma 11. Suppose there is a convex recoloring with at most k recolored ver-
tices. Then for each v ∈ V , |S(v)| ≤ k + 1.

Proof. Suppose Γ ′ is a convex recoloring with at most k recolored vertices of Γ .
Consider a vertex v ∈ V , and a color c ∈ S(v). Suppose c 	= Γ ′(v). There are
vertices w, x with Γ (w) = Γ (x) = c, and the path from w to x uses v. As v is
not recolored to c, either w or x must be recolored. So, there can be at most k
colors 	= Γ ′(v) that belong to S(v). �

Quadratic Kernelization for Convex Recoloring of Trees 95

Lemma 12. Suppose there is a convex recoloring with at most k recolored ver-
tices. Then the treewidth of the vertex-color graph is at most k + 3.

Proof. Without loss of generality, we suppose that Γ is surjective, i.e., for all
c ∈ C, there is a v ∈ V with Γ (v) = c. (If Γ is not surjective, then colors c with
Γ−1(c) = ∅ are isolated vertices in the vertex-color graph, and removing these
does not change the treewidth.)

Take an arbitrary vertex r ∈ V as root of T . For each v ∈ V , set Xv =
{v, p(v), Γ (v)} ∪ S(v), where p(v) is the parent of v. For v = r, we take Xv =
{v, Γ (v)} ∪ S(v).

It is easy to verify directly that ({Xv | v ∈ V }, T) is a tree decomposition of
the vertex-color graph of width at most k + 3. �

Theorem 3. For each fixed k, there is a linear time algorithm that, given a
vertex-colored tree T , decides if there is a convex recoloring of T with at most k
recolored vertices.

Proof. We show that for a fixed number of recolored vertices k, the Convex

Recoloring problem can be formulated as a property of the vertex-color graph
that can be stated in Monadic Second Order Logic. The result then directly
follows by the result of Courcelle [8], that each such property can be decided in
linear time on graphs with bounded treewidth. (See also [2,5]. We use Lemma 12.)

We assume we are given the vertex-color graph (V ∪ C, E′), and have sets
V and C distinguished. A recoloring Γ ′ that differs from Γ at most k vertices
can be represented by these vertices v1, . . . , vk and by the corresponding values
c1 := Γ ′(v1), . . . , ck := Γ ′(vk). Then, for a given color c, consider the set Vc

defined as follows:

– If v = vi for some 1 ≤ i ≤ k, then v ∈ Vc if and only if ci = c.
– If v 	∈ {v1, . . . , vk}, then v ∈ Vc if and only if (v, c) is an edge of the vertex-

color graph.

Note, that Vc is the color class of c in the coloring Γ ′. Hence Γ ′ is convex if and
only if Vc is connected for each c ∈ C. It is a standard fact, that MSOL can express
connectedness, say by a formula ϕ(X), where the set variable X represents Vc.
Furthermore, the definition of Vc given above can be expressed even in first-
order logic, say by a formula ψ(x1, . . . , xk, y1, . . . , yk, z, X), where additionally
x1, . . . , xk represent v1, . . . vk, y1, . . . , yk represent c1, . . . ck, and z represents c.
Then, for this k, the Convex recoloring problem can be expressed by the
formula

∃x1, . . . , xk∃y1, . . . , yk(
∧

1≤i≤k

V xi ∧
∧

1≤i<j≤k

xi 	= xj ∧
∧

1≤i≤k

Cyi∧∀z∀X(ψ → ϕ)).

The algorithms works as follows. Given a colored tree (T, Γ), it constructs the
vertex-color graph and computes a tree-decomposition of width at most k+3. If
this fails, the algorithm returns NO, in accordance with Lemma 12. Otherwise,
using the tree-decomposition, it evaluates the above formula on the vertex-color
graph. Each step uses at most linear time. �

96 H.L. Bodlaender et al.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating sets. J. ACM 51, 363–384 (2004)

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12, 308–340 (1991)

3. Bar-Yehuda, R., Feldman, I., Rawitz, D.: Improved approximation algorithm for
convex recoloring of trees. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS,
vol. 3879, pp. 55–68. Springer, Heidelberg (2006)

4. Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

5. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7, 555–581 (1992)

6. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosa-
mond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
192–202. Springer, Heidelberg (2006)

7. Chor, B., Fellows, M., Ragan, M., Rosamond, F., Razgon, I., Snir, S.: Connected
coloring completion for general graphs: algorithms and complexity. In: Proceedings
COCOON (2007)

8. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

11. Gramm, J., Nickelsen, A., Tantau, T.: Fixed-parameter algorithms in phylogenet-
ics. To appear in The Computer Journal.

12. Moran, S., Snir, S.: Convex recolorings of strings and trees: Definitions, hardness
results, and algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidelberg (2005)

13. Moran, S., Snir, S.: Efficient approximation of convex recolorings. In: Chekuri, C.,
Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005.
LNCS, vol. 3624, pp. 192–208. Springer, Heidelberg (2005)

14. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

On the Number of Cycles in Planar Graphs

Kevin Buchin1, Christian Knauer1, Klaus Kriegel1, André Schulz1, and
Raimund Seidel2

1 Freie Universität Berlin, Institute of Computer Science,
Takustr. 9, 14195 Berlin, Germany

{buchin,knauer,kriegel,schulza}@inf.fu-berlin.de
2 Universität des Saarlandes, Institute of Computer Science, PO Box 151150,

66041 Saarbrücken, Germany
rseidel@cs.uni-sb.de

Abstract. We investigate the maximum number of simple cycles and
the maximum number of Hamiltonian cycles in a planar graph G with
n vertices. Using the transfer matrix method we construct a family of
graphs which have at least 2.4262n simple cycles and at least 2.0845n

Hamilton cycles.
Based on counting arguments for perfect matchings we prove that

2.3404n is an upper bound for the number of Hamiltonian cycles. More-
over, we obtain upper bounds for the number of simple cycles of a given
length with a face coloring technique. Combining both, we show that
there is no planar graph with more than 2.8927n simple cycles. This
reduces the previous gap between the upper and lower bound for the
exponential growth from 1.03 to 0.46.

1 Introduction

In this paper we consider the following question:

How many simple cycles and how many Hamiltonian cycles can there be
in a planar graph with n vertices?

Since the determination of the exact numbers seems to be out of reach, our goal
is to learn more about the asymptotic behavior of these numbers. Denoting by
Cs(G) and Ch(G) the numbers of simple cycles and of Hamiltonian cycles in a
graph G we define

Cs(n) = max {Cs(G) | G is a planar graph on n vertices} , and
Ch(n) = max {Ch(G) | G is a planar graph on n vertices} .

It is easy to observe that both Cs(n) and Ch(n) grow exponentially and thus we
are interested in describing this exponential growth rate by constants c, d ∈ IR
such that cn ≤ Cs(n) ≤ dn, and analogously for Ch(n).

The lower bound Cs(n) = Ω(2.259n) was obtained in [1] and is based on
counting the number of simple paths connecting two adjacent vertices in a spe-
cial planar graph on 29 vertices and joining n/28 copies of it in a cyclic way.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 97–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 K. Buchin et al.

An O(3.363n) upper bound was proved in the same paper by a probabilistic
argument. Here we extend the original problem setting to Hamiltonian cycles.

The problem has gained new attention by some recent results of Sharir and
Welzl [2], [3]. They investigate the numbers of several geometric objects on a
point set in the plane, among them triangulations and crossing-free spanning cy-
cles. In particular they note that an upper bound on the number of crossing-free
spanning cycles can be obtained by combining an upper bound on the number
of triangulations with an upper bound on the number of Hamiltonian cycles in
planar graphs. Here, we will present the proof to the

√
6

n
upper bound for the

number of Hamiltonian cycles, which is quoted in [2] as a personal communica-
tion, along with an improvement to 4

√
30n.

In [2] Sharir and Welzl prove a bound of O(86.81n) for the number of crossing-
free spanning cycles on n points with an alternative approach. This bound is
better than the combined bound and it remains better even if the improved
bound for Hamiltonian cycles presented in our paper is used. In fact, the lower
bound on the number of Hamiltonian cycles presented in our paper shows that
a better combined bound cannot be obtained without improving the bound on
the number of triangulations.

The paper is organized as follows: In Section 2 we present new lower bounds for
Cs(n) and for Ch(n). We prove Cs(n) = Ω(2.4262n) and Ch(n) = Ω(2.0845n).
Both bounds are based on the so-called transfer matrix method applied on a
twisted cylinder.

In Section 3 we prove first the O(4
√

30n) upper bound on Ch(n). Next we
present a new technique for upper bounds on the number of simple cycles with
a given length k in planar graphs on n vertices. Combining both we will obtain
a new O(2.8928n) upper bound for Cs(n).

2 Lower Bounds

We will present a new lower bound for Cs(n) by counting cycles on the twisted
cylinder. We use the technique of the transfer matrix method (see [4,5,6]).

The twisted cylinder describes a graph which is parametrized by a width w
and a length l. We will describe the graph by the following construction: Consider
an �l/w� × w integer lattice with the upper leftmost point (0, 0) and the lower
rightmost point (r, w). Furthermore we attach (l mod w) squares at the right
end, starting from the top. As a next step we triangulate each square of the
lattice by adding diagonals ((x, y), (x+1, y+1)) for all appropriate values x and y.
Finally we identify all edges ((x, w), (x+1, w)) with the edges ((x+1, 0), (x+2, 0))
for all x smaller than �l/w�. Observe that this graph is planar since it can be
embedded as the graph of a 3-polytope. Figure 1 shows a twisted cylinder of
length 41 and width 5, and Figure 2 shows a planar embedding of a twisted
cylinder of length 12 and width 6. To count the cycles, we construct the cylinder
by increasing its length consecutively. We name the cylinder of width w after
k rounds Zw

k and call the last inserted w + 1 points its border. During the
construction we have to deal with unfinished cycles. These cycles are represented

On the Number of Cycles in Planar Graphs 99

Fig. 1. The graph of a twisted cylinder

as non-intersecting paths which start and end at the border of Zw
k . To complete

a cycle we need the information which of the points at the border belong to the
same path. We will store this information in a string of length w + 1 which we
call the signature. The last point introduced corresponds to the first character of
the signature, its predecessor to the second character and so on. Every path has
a start and an end point on the border. The point that was introduced later is
considered as the start point, the other as the end point of a path. We associate a
start point at the border with an A. The position of the end point of a path will be
marked in the signature as B. Interior points of paths at the border are denoted
by X . A point at the border that is not used from any path will be represented
as O in the signature. Thus we get as signature a string from {A, B, X, O}w+1.
Figure 2 shows an example which has the signature AXOAOBB. Notice that

A

X O

A

OB

B

Fig. 2. Partially constructed cycle with signature AXOAOBB

the signatures can be represented as 2-Motzkin paths [7, Exercise 6.38.], which
are one of the numerous incarnations of Catalan structures.

We come back to the counting procedure. During the construction we trace
the number of completed and uncompleted cycles. We count the different ways
of generating an uncompleted cycle by a variable indexed by its signature. The
completed cycles are stored in a distinct variable. All variables are stored in a
vector which we call the state vector Sk.

100 K. Buchin et al.

Going from cylinder Zw
k to Zw

k+1 will change the state vector. We introduce
three new edges and therefore have at most 7 ways to continue uncompleted
cycles (choosing all 3 edges will not give a valid successor state). Not all of these
choices will produce a valid signature for the successor state. For example the
signature AXOAOBB (Figure 2) has four successors, depicted in Figure 3.

ABXOAOB XAXOBOX AXXOBOX OAXOBOX

Fig. 3. The successor states from Figure 2

It is not hard to see that every entry of the “new” state vector Sk+1 is a
non-negative linear combination of the entries of the “old” state vector Sk. Thus
Sk+1 = T · Sk, where T is a square matrix with non-negative entries, which is
called the transfer matrix. By construction this matrix T does not depend on k,
and thus for every k ≥ 0 we have Sk = T k ·S0. The entry in Sk for the completed
cycles in Zw

k is then a lower bound for Cs(k + w).
This entry can be represented as et ·Sk for the appropriate unit basis vector e.

Thus we are interested in the asymptotic behavior of a sequence with elements
pk = at ·T k ·b, where a and b are vectors and T is a square matrix. By considering
the Jordan canonical form T = X−1 ·J ·X it is easy to see that pk = O(q(k)ck),
where c is the largest absolute value of any eigenvalue of T and q is a polynomial
of degree smaller than the multiplicity of any eigenvalue of maximal absolute
value.

If in our case we remove all unreachable configurations from consideration
then the resulting transfer matrix T will be primitive in the sense that for some
� > 0 all entries of T � are strictly positive. In this case the Perron-Frobenius
Theorem [8] guarantees that the eigenvalue of largest absolute value is real and
unique. Thus Sk = O(ck), where c is the largest real eigenvalue of the transfer
matrix T .

The generation of T and the computation of its eigenvalues was done with the
help of computer programs. We omit the details of the computation of T . The
correctness of the calculations was checked by two independent implementations.
We observed that larger widths will result in larger growth. The largest width our
implementations could handle is 13. The largest absolute eigenvalue for T was
computed as 2.4262. The computation was done on a AMD Athlon 64 with 1.8
GHz and 1 GB of RAM. It required 5 days of CPU-time and 550 MB of memory.
The implementation can be found under [9]. The results of the computation are
listed in Table 1.

On the Number of Cycles in Planar Graphs 101

Theorem 1. The maximal number of simple cycles in a planar graph G with n
vertices is bounded from below by Ω(2.4262n).

We can also construct a lower bound for Hamiltonian cycles with the method
from above. To this end we restrict the state transitions in such a way that if a
vertex vanishes from the border, it is guaranteed to be on some path. We forbid
all sequences which contain a O as character and calculate the modified transfer
matrix.

The largest eigenvalue for the modified transfer matrix is 2.0845. It is ob-
tained for a twisted cylinder of width 13. See Table 1 for the results of the
computation.

Table 1. Eigenvalues λT of the transfer matrix T , generated for Hamiltonian cycles
(H. cyc.) and simple cycles (simple cyc.) depending on the width of the twisted cylinder

w λT H. cyc. λT simple cyc.

2 1.8124 1.9659
3 1.9557 2.2567
4 2.0022 2.3326
5 2.0335 2.3654
6 2.0507 2.3858
7 2.0614 2.3991

w λT H. cyc. λT simple cyc.

8 2.0688 2.4078
9 2.0740 2.4139
10 2.0777 2.4183
11 2.0805 2.4217
12 2.0827 2.4242
13 2.0845 2.4262

Theorem 2. The maximal number of Hamiltonian cycles in a planar graph G
with n vertices is bounded from below by Ω(2.0845n).

3 Upper Bounds

3.1 Hamiltonian Cycles

In this section G denotes a planar graph with n vertices, e edges, and f faces.
Since additional edges cannot decrease the number of cycles, we focus on trian-
gulated planar graphs. In this case we have 3f = 2e, which leads to e = 3n− 6
and f = 2n− 4.

Let us assume first that n is even and let M(G) denote the number of perfect
matchings in G. By a theorem of Kasteleyn, c.f. [10], there is an orientation of
the edges of G such that the corresponding skew symmetric adjacency matrix A
characterizes M(G) in the following way:

(M(G))2 = | det(A)|.

Note that all but 6n − 12 entries of A are zero and the nonzero entries are 1
or −1. In this situation we can apply the Hadamard bound for determinants and
we obtain | det(A)| ≤

√
6

n
.

In this way we obtain an 4
√

6n upper bound on the number of perfect matchings
in G, which improves the O(

√
3

n
) bound from [11]. Moreover, our bound can be

improved for graphs with few edges.

102 K. Buchin et al.

Theorem 3. The number of perfect matchings in a planar graph G with n ver-
tices is bounded from above by 4

√
6n.

The number of perfect matchings in a planar graph G with n vertices and at
most kn edges is bounded from above by 4

√
2kn.

Our first bound on the number of Hamiltonian cycles follows from Theorem 3
by an easy observation.

Theorem 4. Ch(n) = O
(

4
√

30n
)

= O (2.3404n).

Proof. Any Hamiltonian cycle in a graph G with an even number of vertices
splits into two perfect matchings, which implies Ch(G) ≤ (M(G))2 ≤

√
6

n
. The

following modification of the arguments above results in a slight improvement
of that bound:

Splitting a Hamiltonian cycle into two perfect matchings, we fix the matching
with the lexicographically smallest edge as the first matching m1 and the other
one as the second matching m2. It follows that if m1 is fixed, m2 is a matching
in a graph with 2.5 n − 6 edges. Repeating the above observations for both
matchings, we get

M1(G) ≤ 4
√

6n, M2(G) ≤ 4
√

5n and together Ch(G) ≤ 4
√

30n.

Finally we study the case that n is odd. We choose in G a vertex v of degree
at most 5, and for each e incident to v we consider the Graph Ge obtained from
G by contracting e. Any Hamiltonian cycle in G contains two edges e and e′

incident to v and hence induces a Hamiltonian cycle in Ge and Ge′ . On the
other hand, any Hamiltonian cycle in some Ge may be extended in up to two
ways to a Hamiltonian cycle in G. Thus we obtain an upper bound on Ch(G) by
adding the number of Hamiltonian cycles in the at most five planar graphs Ge,
leading to a bound of Ch(G) ≤ 5 4

√
30n−1. ��

3.2 Simple Cycles

We start with a new upper bound for the number of cycles in planar graphs and
successively improve the bound.

Instead of counting cycles we count paths on G, which can be completed to a
simple cycle. We call these paths cycle-paths. Their number is an upper bound
for the number of cycles. The number of cycle-paths is maximized when G is
triangulated. Therefore we assume that G is triangulated.

There exist n paths of length 0. The number of all cycle-paths in G of nonzero
length is at most the number of edges e times the maximum number of cycle-
paths starting from an arbitrary edge. Thus the exponential growth of the num-
ber of cycle-paths is determined by the number of cycle-paths starting from an
edge.

Lemma 1. The maximum number of cycle-paths on G starting from an edge is
bounded by O(n) · 3n.

On the Number of Cycles in Planar Graphs 103

Proof. We give the starting edge an orientation. We consider only paths in the
direction induced by this orientation. The total number of cycle-paths start-
ing from this edge is at most twice the number of cycle-paths with the chosen
orientation.

We associate cycle-paths with the nodes of a tree. The root of the tree contains
the path of length one corresponding to the starting edge. The children of a tree
node contain paths starting with the path stored in the predecessor plus an
additional edge. Every cycle-path is only stored in one tree node.

Every cycle-path in G corresponds to a partial red-blue coloring of the faces
of G. The coloring is defined as follows: The faces right of the oriented path
will be colored blue the faces left of the oriented path red (see Figure 4). We
color all faces incident to an inner vertex or the starting edge of the path. The
coloring is consistent, because we consider only paths which can be extended to
cycles. Therefore the colors correspond to a part of the interior or exterior region
induced by the cycle.

Fig. 4. Example of an induced red-blue coloring by a path (light gray corresponds to
red, dark gray to blue)

We construct the tree top down. When we enter a new tree node, the color of
at least two faces incident to the last vertex vi of the path is given. It might be
that other faces incident to vi have been colored before. In that case we color the
faces incident to vi which lie in between two red faces red. The faces which are
located in between two blue faces will be colored blue. Observe that at most one
non-colored connected region incident to vi remains. Otherwise it is not possible
to extend the path to a cycle and therefore the path stored in this tree node is
not a cycle-path. Figure 5 illustrates this procedure. Let kv be the number of
faces of the non-colored region incident to v. We have kv + 1 different ways to
continue the path and therefore kv +1 children of its tree node. No matter which
child we choose, we will color all faces incident to v.

It remains to analyze the number of nodes in the tree. A bound on the number
of nodes can be expressed by the following recurrence:

P (n, f) ≤ (kv + 1)P (n− 1, f − kv) + 1.

104 K. Buchin et al.

Fig. 5. Completing the red-blue coloring when entering a new vertex (light gray cor-
responds to red, dark gray to blue)

Because we want to maximize the number of nodes in the tree, we can assume
that the kvs for all v within a level l of the tree are equal. This holds for the root
and by an inductive argument for the whole tree. Let κl denote the number kv

for the vertices v on level l.
P := P (n− 2, 2n + 2) will give us the number of nodes in the tree. We know

that P (0, ·) = P (·, 0) = 1. All κls have to be non-negative numbers. The κl along
a path of length L have to fulfill the condition

∑
l≤L κl ≤ 2n + 2. A path is of

length at most n− 2, and therefore we can bound P by

1 +
n−2∑

L=1

∏

l≤L

(κl + 1). (1)

We are interested in a set κl which maximizes (1). Due to the convexity of (1)
the maximum will be obtained when all κl are equal. Thus (1) is bounded by
1+

∑
i≤n(2n+2

n−2 +1)i. Therefore the exponential growth of the maximum number
of cycle-paths is O(n) · 3n. ��

This already yields an improvement of the best known upper bound for cycles
in planar graphs.

Observation 1. The number of simple cycles on a planar graph with n vertices
is bounded from above by O(n) · 3n.

We improve the obtained upper bound further. For this we go back to the proof
of Lemma 1. Instead of considering cycle-paths of length n, we focus on shorter
cycle-paths of length αn, where α ∈ [0, 1].

Lemma 2. Let Cα
s (n) be the number of simple cycles of length αn in a planar

graph with n vertices and f faces. Then we have

Cα
s (n) ≤

(
f

αn
+ 1

)αn

. (2)

On the Number of Cycles in Planar Graphs 105

Proof. We reconsider the argumentation which led to Observation 1 and notice
that P (k, f) will be maximized by equally distributed values of κl. Therefore we
set κl = f/(αn), which proves the Lemma. ��

As final step we combine the result from Lemma 2 with the results of Section 3.1.

Theorem 5. The number of simple cycles in a planar graph G with n vertices
is bounded from above by O(2.89278n).

Proof. An upper bound νn for the number of Hamiltonian cycles will always
imply an upper bound for Cs(G) since every simple cycle is an Hamiltonian
cycle on a subgraph of G. This leads to

Cs(n) ≤
∑

t≤n

(
n

t

)
νt = (1 + ν)n.

Plugging in our bound of 4
√

30 for ν yields Cs(n) ≤ 3.3404n, which is larger
than 3n. Responsible for this are cycles with small length. When choosing a
small subset of vertices, it is unlikely that they are connected in G. Therefore
the Hamiltonian cycles counted for this subset will not correspond to cycles in
G. Thus we overestimate the number of small cycles.

We modify the upper bound induced by the Hamiltonian cycles such that
they can express Cα

s (n). Every αn-cycle is a Hamiltonian cycle on a subgraph
of size αn. Thus

Cα
s (n) ≤

(
n

αn

)
ναn ≤ 5

(
n

αn

)
(4
√

30)αn

Since
∑

i

(
n
i

)
αi(1−α)n−i = 1, for 0 ≤ α ≤ 1 every summand of this sum is at

most 1. Considering the summand for i = αn yields
(

n
αn

)
≤ (1/(αα(1−α)1−α))n

and therefore

Cα
s (n) = O

((
4
√

30α

αα(1− α)(1−α)

)n)
. (3)

So far we know two upper bounds for Cα
s (n). The two bounds are shown in

Figure 6. The graph of (3) is represented as dashed gray curve, whereas the
graph of (2) is depicted solid black. Clearly the maximum of the lower envelope
of the two functions induces an upper bound for the exponential growth of cycles
in G.

One can observe that the two functions intersect in the interval [0, 1] in only
one point, which is approximately α̃ = 0.91925. The maximal exponential growth
is realized for this α. Evaluating Cα̃

s (n) yields a bound of 2.89278n on the number
of cycles. ��

At its core the bound of
(

f
αn + 1

)αn

in Lemma 2 comes from consuming f faces
in αn steps. A similar bound can be obtained by consuming edges instead. In
this case we do not need a coloring scheme. In each step we get as many ways

106 K. Buchin et al.

to continue the cycle-path as the number of edges consumed in the step. This
yields a bound of

(
e

αn

)αn. For e = 3n − 6, f = 2n − 4, and α < 1 the bound
obtained by considering faces is stronger.

For this counting argument the graph does not need to be planar. With α = 1
it yields a bound of

(
e
n

)n on the number of cycles in the graph. This bound has
been independently observed by Sharir and Welzl [2].

1

1.5

2

2.5

3

0 α0.2 10.4 0.6 0.8

n
√

(Cα
s (G))

Fig. 6. Plot of the two bounds for Cα
s (G)

4 Discussion

We improved the lower and upper bounds for the number of simple cycles in
planar graphs. This reduces the gap between the upper and lower bound for the
exponential growth from 1.03 to 0.46. We believe that the truth is closer to the
lower bound. This is indicated by the technique sketched in the following which
might further improve the upper bound.

For Observation 1 the worst case scenario is the situation where there are three
possible ways to continue the cycle-path. However it is clear that this situation
will not constantly occur during the construction of the cycle-paths. To use this
fact we compute recurrences for the number of cycle-paths by simultaneously
analyzing two or more consecutive levels of the tree which stores the cycle-
paths. A careful analysis reveals other effects in this setting which also reduce
the number of cycle-paths. In particular, vertices and faces will be surrounded
and absorbed by the colored regions. The main part of the analysis is an intricate
case distinction for which we have not checked all cases yet.

Furthermore we used the transfer matrix approach on the twisted cylinder
to obtain lower bounds for other structures (for instance perfect matchings)
on planar graphs. Moreover we adapted the counting procedure for sub-classes
of planar graphs (for instance grid graphs). The results of these computations
have not yet been double-checked and we therefore do not include them in this
extended abstract.

On the Number of Cycles in Planar Graphs 107

Acknowledgments

We would like to thank Günter Rote for fruitful discussions on the subject
and Andreas Stoffel for providing his implementation [9] of the transfer matrix
method.

References

1. Alt, H., Fuchs, U., Kriegel, K.: On the number of simple cycles in planar graphs.
Combinatorics, Probability & Computing 8(5), 397–405 (1999)

2. Sharir, M., Welzl, E.: On the number of crossing-free matchings (cycles, and par-
titions). In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 860–869.
ACM Press, New York (2006)

3. Sharir, M., Welzl, E.: Random triangulations of planar point sets. In: 22nd Annu.
ACM Sympos. Comput. Geom., pp. 273–281. ACM Press, New York (2006)

4. Barequet, G., Moffie, M.: The complexity of Jensen’s algorithm for counting poly-
ominoes. In: Proc. 1st Workshop on Analytic Algorithmics and Combinatorics, pp.
161–169 (2004)

5. Conway, A., Guttmann, A.: On two-dimensional percolation. J. Phys. A: Math.
Gen. 28(4), 891–904 (1995)

6. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102(3–4), 865–
881 (2001)

7. Stanley, R.P.: Enumerative combinatorics, vol. 2. Cambridge University Press,
Cambridge (1999)

8. Graham, A.: Nonnegative Matrices and Applicable Topics in Linear Algebra. John
Wiley & Sons, New York (1987)

9. Stoffel, A.: Software for Counting Cycles on the Twisted Cylinder,
http://page.mi.fu-berlin.de/∼schulza/cyclecount/

10. Lovasz, L., Plummer, M.: Matching theory. Elsevier, Amsterdam (1986)
11. Aichholzer, O., Hackl, T., Vogtenhuber, B., Huemer, C., Hurtado, F., Krasser,

H.: On the number of plane graphs. In: Proc. 17th ACM-SIAM Sympos. Discrete
Algorithms, pp. 504–513. ACM Press, New York (2006)

http://page.mi.fu-berlin.de/~schulza/cyclecount/

An Improved Exact Algorithm for

Cubic Graph TSP

Kazuo Iwama� and Takuya Nakashima

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{iwama,tnakashima}@kuis.kyoto-u.ac.jp

Abstract. It is shown that the traveling salesman problem for graphs
of degree at most three with n vertices can be solved in time O(1.251n),
improving the previous bound O(1.260n) by Eppstein.

1 Introduction

The CNF satisfiability (SAT) and the traveling salesman (TSP) problems are
probably the two most fundamental NP-hard problems. However, there are major
differences between those two problems, which seems to be especially important
when we develop their exact algorithms. For example, SAT is a so-called subset
problem whose basic search space is 2n for n variables, while TSP is a permu-
tation problem whose search space is n! for n vertices. For SAT, it is enough to
find any feasible solution (satisfiable assignment), while it is not enough to find
a Hamiltonian cycle in the case of TSP; we have to find an optimal one. Thus
TSP is intuitively much harder than SAT. Not surprisingly, compared to the rich
history of exact SAT algorithms (see , e.g. [6]), TSP has a very small amount
of literature. For more than four decades, we had nothing other than the simple
dynamic programming by Held and Karp [1], which runs in time O(2n).

In 2003, Eppstein considered this problem for cubic graphs, graphs with max-
imum degree three [8]. His basic idea is to use the fact that if the degree is three
then a selection of an edge as a part of a Hamiltonian cycle will implicationally
force several edges to be in the cycle or not. He also maintained several nontrivial
algorithmic ideas, e.g., the one for how to treat 4-cycles efficiently. As a result,
his algorithm runs in O(2n/3) ≈ 1.260n time. He also showed that there is a
cubic graph having O(2n/3) different Hamiltonian cycles. Hence his algorithm
cannot be improved if one tries to enumerate all Hamiltonian cycles.

Our Contribution. In this paper we give an improved time bound, O(231n/96)
≈ 1.251n. First of all, the above lower bound for the number of Hamiltonian
cycles is not harmful since such a graph includes a lot of 4-cycles for which the
special treatment is already considered in [8].

Our new algorithm is similar to Eppstein’s and is based on a branching search
which tries to enumerate all Hamiltonian cycles (and even more, i.e., some cycle
� Supported in part by Scientific Research Grant, Ministry of Japan, 1609211 and

16300003.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 108–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Improved Exact Algorithm for Cubic Graph TSP 109

(a) (b) (c)

Fig. 1. Treatment of 3-cycles

Fig. 2. Treatment of 4-cycles

decompositions). Here is our idea of the improvement: Suppose that at each
branch there are two possibilities and the corresponding recurrence relations
which look like

T (n) ≤ 2T (n− 1) and T (n) ≤ 3T (n− 2).

The second equation is obviously more desirable for us, but we often have to as-
sume the worst case (i.e., the first equation and T (n) = 2n as a result) due to the
lack of specific information. If we do have useful information, for example, the
information that the first case can happen at most 3n/4 time, then it obviously
helps. Note that such information can be incorporated into analysis by introduc-
ing new parameters and relations among them. In the above case, we have

T (n, m) ≤ 2T (n− 1, m− 1),
T (n, m) ≤ 3T (n− 2, m),

m ≤ 3n/4

and it is easy to conclude T (n) ≈ 1.931n by setting T (n, m) = 2αn+βm and
solving equations on α and β. In our analysis, we need to introduce three new
parameters other than the main parameter n.

Related Work. If a given graph has a small separator, then as with many other
NP-hard problems, TSP has efficient algorithms. For example the planar graphs
have a O(

√
n) size separator [3] and the planar graph TSP can be solved in time

O(210.8224
√

nn3/2 +n3) [9]. Euclidean TSP can also be solved in time O(n
√

n) [5]
similarly.

2 Eppstein’s Algorithm

For a given cubic graph G of n vertices, we first remove all 3-cycles by merging
corresponding three vertices into a single vertex and add the cost of each trian-
gle edge to the opposite non-triangle edge. Since a Hamiltonian cycle must go

110 K. Iwama and T. Nakashima

x
y

z
x

y

z

x
y

z
x

y

z

x
y

z
x

y

z
y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

y

z
x

(a) (b) (c) (d)

Fig. 3. Single branching of the algorithm

like Fig. 1 (a), (b), or (c) on a 3-cycle, this preprocessing works. As mentioned
previously, 4-cycles also receive a special treatment: As shown in Fig. 2, if two
diagonal edges attached to the cycle are selected, then the other two are auto-
matically selected and then further decisions (whether two horizontal edges or
vertical edges are selected) are postponed until the last step of the algorithm
(see [8] for details).

The main part of the algorithm is illustrated in Fig. 3. Suppose that we have
a vertex y such that one of three neighboring edges is already selected as a part
of the solution (see Fig. 3 (a) where the selected edge is denoted by a thick line)
and we try to extend the solution by selecting an edge yx or yz. Then there are
three cases (b), (c) and (d) due to the state of the vertices x and z. Suppose
that both x and z are free, i.e., neither is adjacent to already selected edges as
in Fig. 3 (b). Then either selecting yx or yz to extend the solution, we can force
at least three more edges to be in the solution. Suppose that one of them, say x,
is not free as in (c). Then by a similar extension, we can force at least two and
five edges. If neither is free as in (d), we can force at least four and four edges.
In this last case, however, we have to be careful since we can only force three
edges if this portion is a part of a 6-cycle as shown in Fig. 4.

Thus our recurrence equation can be written as follows using the number n
of edges which should be selected from now until the end of the algorithm.

T (n) ≤ 2T (n− 3) (1)
T (n) ≤ T (n− 2) + T (n− 5) (2)

T (n) ≤ 2T (n− 4) (3)

It is easy to see that (1) is the worst case and by solving it we have T (n) = 2n/3.
Because the length of a hamiltonian cycle of a n vertices graph is n, the number
of edges which should be selected is also n. Thus, TSP for a cubic graph with n
vertices can be sloved in time O(2n/3), which is the main result of [8].

3 New Algorithm

Recall that one of the worst cases happens for the case of Fig. 3 (b). Notice,
however, that if this case happens once then the number of free vertices decreases

An Improved Exact Algorithm for Cubic Graph TSP 111

Fig. 4. 6-cycles

by four. Therefore, in each path of the backtrack tree from the root to a leaf, this
worst case can happen at most n/4 times. Without considering this property,
we could only say that the case can happen up to n/3 times, since three edges
are selected at each step and the backtrack path ends when n edges have been
selected. Thus the number of worst-case branches reduces by the new property,
which should contribute to a better time complexity.

Unfortunately this idea does not work by itself, since we also have to consider
the case of a 6-cycle in Fig. 4: if the six edges attaching (radiating from) the
6-cycle are all selected, then the further extension selects only three edges (every
other ones in the six cycle edges) in a single branch. To make things worse, this
6-cycle case and the worst case of Fig. 3 (b) can happen alternatively without
any other in between.

Now here is a natural idea. Since a 6-cycle plays a bad role only when all six
attaching edges are selected before the cycle edges, we should select (some of)
the cycle edges before the attaching edges have been all selected. This can be
done by placing a priority to edges constituting 6-cycles when we extend the
solution.

A 6-cycle is called live if none of its six cycle edges are selected. A 6-cycle
which is not live is called dead. Fig. 9 shows the original algorithm in [8] where
F shows the set of edges already selected. Our algorithm differs only in 3 (b),
which is replaced by the following (b1) and (b2):

(b1) If there is no such 4-cycle and if G\F contains a live 6-cycle with a vertex
y which has a neighboring edge in F (that is not a cycle edge but an
attaching one), let z be one of y’s neighboring vertices (on the cycle). If
two or more such live 6-cycles exist, then select a 6-cycle such that most
attaching edges are already selected.

(b2) If there is no such 4-cycle or 6-cycle, but F is nonempty, then let uy be
any edge in F such that y is adjacent to at least one vertex which is not
free. Let yz be an edge in G\F between y and such a vertex (= z). If there
is no such uy, then let uy be any edge in F and yz be any adjacent edge
in G\F .

112 K. Iwama and T. Nakashima

4 Analysis of the Algorithm

Let C(i), 0 ≤ i ≤ 6, be a live 6-cycle such that i edges of its six attached
edges have already been selected. Also, we call the branch shown in Fig. 3 (b)
and Fig. 4 A-branch and B-branch, respectively, and all the other branches D-
branch. Recall that A- and B-branches are our worst cases. (Note that Fig. 3 (b)
may select more than three new edges if there are already selected edges near
there. If that is the case, then this branch is not an A-branch any more but a
D-branch.) Here is our key lemma:

Lemma 1. Let P be a single path of the backtrack tree and suppose that we have
a C(6), say Q, somewhere on P. Then at least three attached edges of Q have
been selected by D-branches.

Proof. Q is of course C(0) at the beginning of the algorithm, so it becomes C(6)
by changing its state like, for instance, C(0) → C(3) → C(5) → C(6). If it
once becomes C(3), then the lemma is true since the change from C(3) to C(6)
is caused by a branch associated with other 6-cycle(s) which is at least C(3)
(see 3 (b1) of our algorithm given in the previous section). One can easily see
that only D-branches can be applied to C(3), C(4) and C(5). Furthermore, if Q
changes from C(2) to C(6), then it must be done by a D-branch and the lemma
is true. Hence we can assume that Q becomes C(6) through C(4) or C(5). In
the following we only discuss the case that Q once becomes C(4); the other case
is much easier and omitted.

Now Q is C(4). Its previous state is C(0), C(1) or C(2) (not C(3) as mentioned
above). If Q changes from C(0) to C(4) directly, then that branch must be a
D-branch (A-branch can select only three edges) and we are done. The case that
Q changes from C(1) to C(4) directly is also easy and omitted. As a result, we
shall prove the following statement: Suppose that Q changes from C(2) to C(4)
directly and finally becomes C(6). Then the change from C(2) to C(4) must be
by a D-branch and hence the lemma is true.

Suppose for contradiction that Q changes from C(2) to C(4) by other than
D-branch. Since B-branch is obviously impossible (it newer increase selected
attached edges), the branch must an A-branch. Furthermore, we can assume
without loss of generality that when Q was C(2), there were no 6-cycles which
were already C(4) or more. (Namely, we are now considering such a moment
that a “bad” C(4) has appeared for the first time in the path of the algorithm.
C(4)’s that previously appeared should have been processed already and should
be dead at this moment.) Under such a situation, our first claim is that when Q
becomes C(4), there must be at lent one other 6-cycle, Q′, which becomes also
C(4) at the same time. The reason is easy: If Q would be only one C(4), then
it must be processed at the next step and would become dead, meaning it can
never be C(6).

Now Suppose that a single A-branch has created two C(4)’s Q and Q′. First
of all, this is impossible if Q and Q′ are disjoint or do not share cycle edges for
the following reason. If they are disjoint, we need to select four attached edges
by a single A-branch. Since A-branch selects only three new edges, this would

An Improved Exact Algorithm for Cubic Graph TSP 113

Fig. 5. Case 1

Fig. 6. Case 2

be possible only if some single edge is an attached edge of both Q and Q′. This
means that this common edge was selected but no adjacent edges (i.e., cycle
edges of Q and Q′) are selected, which is obviously impossible. Thus Q and Q′

must share some cycle edges.
Case 1. Q and Q′ share one cycle edge. See Fig. 5. To change both Q and Q′

from C(2) to C(4), we need to select four edges at a single step (recall that we
have no common attaching edges), which is impossible by an A-branch.

Case 2. Q and Q′ share two cycle edges. See Fig. 6 (a), (b), (b’) and (c). In
the case of (a), after making two C(4)′s, neither can be C(6). (One can see that
if we select x then y must be selected also.) In the case (b), we even cannot
make both Q and Q′ C(4). (b’) includes a 3-cycle, which cannot happen in our
algorithm. In (c), we have a 4-cycle whose diagonal attaching edges are selected.
Then, in the next step, 3 (a) of the algorithm applies and both Q and Q′ become
dead.

Case 3. Q and Q′ share three cycle edges. See Fig. 7 (a), (b), (b’) and (c),
where shared edges are given by x, Q edges by straight lines and Q′ edges by
doted lines. The case (a) is obviously impossible since this subgraph is completely
disconnected from the rest of the graph. In the case (b), it is impossible to make
Q and Q′ both C(4). (b’) includes a 3-cycle. (c) shows the situation before the
branch is made, i.e., Q and Q′ are both C(2). Notice that we have the third
6-cycle, say Q′′ other than Q and Q′. Now Q and Q′ are C(2). But to be so,
one can see that at least one of Q, Q′ and Q′′ has two attached edges such that

114 K. Iwama and T. Nakashima

Fig. 7. Case 3

(a) (b)

X

X

X X

X

X

X

X X

X

X

X

Fig. 8. Case 4

their end points apart only at most distance two on the cycle. Then, by 3 (b2)
of our algorithm (see section 3), that cycle must be processed in the next step,
which is not an A-branch.

Case 4. Q and Q′ share four cycle edges. See Fig. 8 (a) and (b). (a) is only
one possibility to make two C(4)’s. Then notice that we have a 4-cycle whose
two diagonal attached edges are selected, which is the same as (c) of Case 2. In
(b), it is obviously impossible to make two C(4)’s.

Case 5. Q and Q′ share five cycle edges. This is impossible since our graph
does not have parallel edges.

Thus we have contradictions in all the cases. ��

Now we are ready to prove our main theorem. As for the correctness of the al-
gorithm, note that our modification from [8] is very small and it is not hard to
verify that the modification does not affect its correctness. Therefore we can use
the analysis of [8] as it is, and so, we are only interested in its time complexity.

Theorem 1. Our algorithm runs in time O(n31n/96).

Proof. Since the recurrence relation is most important, we once again summarize
several different cases. (All other parts of the algorithm including the treatment
of 4-cycles, runs in a polynomial time, see [8] for details.).

An Improved Exact Algorithm for Cubic Graph TSP 115

1. Repeat the following steps until one of the steps returns or none of them applies:
(a) If G contains a vertex with degree zero or one, return None.
(b) If G contains a vertex with degree two, add its incident edges to F .
(c) If F consists of a Hamiltonian cycle, return the cost of this cycle.
(d) If F contains a non-Hamiltonian cycle, return None.
(e) If F contains three edges meeting at a vertex, return None.
(f) If F contains exactly two edges meeting at some vertex, remove from G that

vertex and any other edge incident to it; replace the two edges by a single
forced edge connecting their other two endpoints, having as its cost the sum
of the costs of the two replaced edges costs.

(g) If G contains two parallel edges, at least one of which is not in F , and G has
more than two vertices, then remove from G whichever of the two edges is
unforced and has larger cost.

(h) If G contains a self-loop which is not in F , and G has more than one vertex,
remove the self-loop from G.

(i) If G contains a triangle xyz, then for each non-triangle edge e incident to a
triangle vertex, increase the cost of e by the cost of the opposite triangle edge.
Also, if the triangle edge opposite e belongs to F , add e to F . Remove from G
the three triangle edges, and contract the three triangle vertices into a single
supervertex.

(j) If G contains a cycle of four unforced edges, two opposite vertices of which are
each incident to a forced edge outside the cycle, then add to F all non-cycle
edges that are incident to a vertex of the cycle.

2. If G\F forms a collection of disjoint 4-cycles, perform the following steps.
(a) For each 4-cycle Ci in G\F , let Hi consist of two opposite edges of Ci, chosen

so that the cost of Hi is less than or equal to the cost of Ci\Hi.
(b) Let H = ∪iHi. Then F ∪ H is a degree-two spanning subgraph of G, but may

not be connected.
(c) Form a graph G′ = (V ′, E′), where the vertices of V ′ consist of the connected

components of F ∪ H . For each set Hi that contains edges from two different
components Kj and Kk, draw an edge in E′ between the corresponding two
vertices, with cost equal to the difference between the costs of Ci and of Hi.

(d) Compute the minimum spanning tree of (G′, E′).
(e) Return the sum of the costs of F ∪ H and of the minimum spanning tree.

3. Choose an edge yz according to the following cases:
(a) If G\F contains a 4-cycle, two vertices of which are adjacent to edges in F , let

y be one of the other two vertices of the cycle and let yz be an edge of G\F
that does not belong to the cycle.

(b) If there is no such 4-cycle, but F is nonempty, let xy be any edge in F and yz
be an adjacent edge in G F .

(c) If F is empty, let yz be any edge in G.
4. Call the algorithm recursively on G, F ∪ {yz}.
5. Call the algorithm recursively on G\{yz}, F .
6. Return the minimum of the set of at most two numbers returned by the two

recursive calls.

Fig. 9. Eppstein’s algorithm

116 K. Iwama and T. Nakashima

(1) Fig. 3 (b) happens. In either branch, three new edges are selected and four
free vertices disapper. (As mentioned before, it may happen that more than
three edges are selected due to the existence of nearby selected edges. But
this is obviously more desirable for us and can be omitted.)

(2) Fig. 4 happens. In either branch, three new edges are selected and the
number of free vertices does not change at all.

(3) Fig. 3 (c) happens. In one branch, two new edges are selected and in the
other branch five. At least two free vertices disappear in either branch.

(4) Fig. 3 (d) happens. In either branch, four new edges are selected and at
least two free vertices disappear. However, we have to be careful here again.
Now we have to consider an 8-cycle such that its attaching edges have been
all selected and none of its cycle edges have been selected. In this case, by
selecting one edge in the cycle, four edges are forced to be selected in either
branch. However, the number of free vertices does not change and so this
case is worse than Fig. 3 (d).

Now let T (n, a, b, f) be the number of nodes that appear in the backtrack tree
for a graph G such that in each path starting from this node to a leaf, (i) we
further need to select n edges, (ii) the extension of Fig. 3 (b) type happens a
times from now on, (iii) the extension of Fig. 4 happens b times from now on,
and (iv) G has f free vertices. Then by the case (1) to case (4) above, we have
the following recurrence relation:

T (n, a, b, f) ≤ max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2T (n− 3, a− 1, b, f − 4)
2T (n− 3, a, b− 1, f)
T (n− 5, a, b, f − 2) + T (n− 2, a, b, f − 2)
2T (n− 4, a, b, f)

Note that in the case of (1), we have now used this type of extension once, we
can decrease the value of a by one, and similarly for (2). Also, at each leaf, we
have T(0,0,0,0) = 1.

Now let T (n, a, b, f) = 2
n+1

2 (a+2b)+f/8
4 . Then as shown below, this function

satisfies all the recurrence formulas above:

2T (n− 3, a− 1, b, f − 4) = 2
(n−3)+ 1

2 ((a−1)+2b)+(f−4)/8
4 +1 = 2

n+1
2 (a+2b)+f/8

4

2T (n− 3, a, b− 1, f) = 2
(n−3)+ 1

2 (a+2(b−1))+f/8
4 +1 = 2

n+1
2 (a+2b)+f/8

4

2T (n− 4, a, b, f) = 2
(n−4)+ 1

2 (a+2b)+f/8
4 +1 = 2

n+1
2 (a+2b)+f/8

4

T (n− 5, a, b, f − 2) + T (n− 2, a, b, f − 2) = 2
(n−5)+ 1

2 (a+2b)+(f−2)/8
4 + 2

(n−2)+ 1
2 (a+2b)+(f−2)/8

4

= (2
−5−2/8

4 + 2
−2−2/8

4)2
n+ 1

2 (a+2b)+f/8
4

> (1.07)2
n+ 1

2 (a+2b)+f/8
4 > 2

n+ 1
2 (a+2b)+f/8

4

T (0, 0, 0, 0) = 20 = 1

An Improved Exact Algorithm for Cubic Graph TSP 117

Here we use Lemma 1, which says that if type (2) happens b times in the path,
then at least 3b edges are selected by neither type (1) or type (2). Since we select
3a + 3b edges by types (1) and (2) and the total number of selected edges is n,
we have

3a + 3b + 3b ≤ n,

which means a + 2b ≤ n/3. Also f ≤ n obviously. Using these two inequalities,
we have

2
n+1

2 (a+2b)+n/8
4 ≤ 2

n+1
2 n/3+n/8

4 = 231n/96. ��

References

1. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
SIAM Journal on Applied Mathematics 10, 196–210 (1962)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman (1979)

3. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36, 177–189 (1979)

4. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM Jour-
nal on Computing 9, 615–627 (1980)

5. Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The Searching over Separators Strategy To
Solve Some NP-Hard Problems in Subexponential Time. Algorithmica 9, 398–423
(1993)

6. Iwama, K., Tamaki, S.: Improved Upper Bounds for 3-SAT, 15th annual ACM-SIAM
Symposium on Discrete Algorithms. In: Proc. SODA, January 2004, pp. 328–329
(2004)

7. Woeginger, G.J.: Exact Algorithms for NP-Hard Problems: A Survey. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

8. Eppstein, D.: The Traveling Salesman Problem for Cubic Graphs. In: Dehne, F.,
Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 307–318. Springer,
Heidelberg (2003)

9. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient Exact Algorithms
on Planar Graphs:Exploiting Sphere Cut Branch Decompositions. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg
(2005)

Geometric Intersection Graphs:

Do Short Cycles Help?

(Extended Abstract)

Jan Kratochv́ıl� and Martin Pergel��

Department of Applied Mathematics, Charles University, Malostranské nám. 25,
118 00 Praha 1, Czech Republic
{honza,perm}@kam.mff.cuni.cz

Abstract. Geometric intersection graphs are intensively studied both
for their practical motivation and interesting theoretical properties.
Many such classes are hard to recognize. We ask the question if impos-
ing restrictions on the girth (the length of a shortest cycle) of the input
graphs may help in finding polynomial time recognition algorithms. We
give examples in both directions. First we present a polynomial time
recognition algorithm for intersection graphs of polygons inscribed in a
circle for inputs of girth greater than four (the general recognition prob-
lem is NP-complete). On the other hand, we prove that recognition of
intersection graphs of segments in the plane remains NP-hard for graphs
with arbitrarily large girth.

1 Introduction

Intersection graphs are defined as graphs with representations by set-systems
of certain types. Each set corresponds to a vertex and two vertices are adja-
cent iff the corresponding sets have nonempty intersection. Any graph can be
represented by some set-system, but interesting and nontrivial graph classes
are obtained when further restrictions are imposed on the sets representing the
vertices. Especially geometrical representations are popular and widely stud-
ied. They stem from practical applications, have many interesting structural
and algorithmic properties, and often serve as a method of graph visualization.
Numerous examples include interval graphs, circle graphs, circular arc graphs,
boxicity two graphs, and many others, cf. e.g., [16,22]. (In all examples that are
mentioned in this paper, representations are assumed in the Euclidean plane.)

Many of these classes are NP-hard to recognize (e.g., boxicity two graphs
[12], intersection graphs of segments, convex sets or curves in the plane [11],
intersection graphs of unit and general disks in the plane [1,13], contact graphs
of curves and unit disks [8,1], and others, see [2]). It has been observed in [13]
that triangle-free disk graphs are planar and hence recognizable in polynomial

� Support of Institute for Theoretical Computer Science (ITI), a project of Czech
Ministry of Education 1M0021620808 is gladly acknowledged.

�� Supported by Project 201/05/H014 of the Czech Science Foundation (GAČR).

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 118–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Geometric Intersection Graphs: Do Short Cycles Help? 119

time (in fact, the observation was done for a larger class of pseudodisk graphs),
but that forbidding triangles does not help recognizing intersection graphs of
curves (so called string graphs). In the present paper we propose a more thorough
study of this phenomenon and we prove two results showing that forbidding short
cycles does help sometimes, but not always. We first introduce the relevant graph
classes in more detail.

Polygon-circle graphs (shortly PC-graphs) are intersection graphs of convex
polygons inscribed into a circle. They extend e.g., interval graphs, circular-arc
graphs, circle graphs, and chordal graphs. M. Fellows observed that this class
is closed under taking induced minors [personal communication, 1988]. These
graphs are also interesting because the Clique and Independent Set problems
can be solved in polynomial time [6]. On the other hand, determining their
chromatic number is NP-hard, since PC-graphs contain circle graphs [7], but the
graphs are near-perfect in the sense that their chromatic number is bounded by
a function of their clique number [10]. The recognition problem for PC-graphs
is in the class NP, since every PC-graph with n vertices has a representation
whose all polygons have at most n corners each, and an asymptotically tight
bound n − log n + o(log n) on the maximum number of corners needed in a
representation is presented in [15]. A polynomial time recognition algorithm was
announced in [9], but a full paper containing the algorithm was never published.
On the contrary, the recognition has recently been shown NP-complete [18]. We
show that restricting the girth (the length of a shortest cycle) of the input graphs
does make the recognition easier.

Theorem 1. PC-graphs of girth greater than four can be recognized in polyno-
mial time.

Segment (or SEG-) graphs are intersection graphs of segments in the plane.
These graphs were first considered in [5] where it is shown that determining
the chromatic number of these graphs is NP-hard. The near-perfectness of these
graphs is a well known open problem going back to Erdős. The recognition of
SEG-graphs is shown NP-hard in [11] in a uniform reduction which also shows
NP-hardness of recognition of string graphs (intersection graphs of curves), 1-
string graphs (intersection graphs of nontangent curves such that each two curves
intersect in at most one point) and CONV-graphs (intersection graphs of convex
sets). SEG- and CONV-graphs have been further studied in [14] where their
recognition is shown to be in the class PSPACE. Membership in the class NP
is still open. On the contrary, a surprising development occurred for the most
general class of string graphs. This class, also mentioned in [5], was introduced
already in 1966 in [21]. For decades no recursive algorithm for its recognition was
known, until 2001 when two bounds on the number of crossing points needed
in their representations were proved independently in [17,19] (yielding recur-
sive recognition algorithms), followed by the proof of NP-membership in 2002
in [20]. The complexity of recognition is connected to the question of maximum
size of a representation. The construction of [14] showing that there are SEG-
graphs requiring representations of double exponential size (the size of a repre-
sentation by segments with integral coordinates of endpoints is the maximum

120 J. Kratochv́ıl and M. Pergel

absolute value of the endpoint coordinates) shows that the would-be-
straightforward ‘guess-and-verify’ algorithm is not in NP. Another long-standing
open problem is whether every planar graph is a SEG-graph (it is easy to show
that every planar graph is a string graph, and this was recently improved in [3]
showing that every planar graph is a 1-string graph). Regarding the question of
recognizing graphs of large girth, it was noted in [13] that triangle-free string
graphs are NP-hard to recognize, but all known reductions hinge on the presence
of cycles of length 4. We show that for SEG-graphs, this is not the case, and in
fact no girth restriction would help.

Theorem 2. For every k, recognition of SEG-graphs of girth greater than k is
NP-hard.

2 Polygon-Circle Graphs

2.1 Preliminaries

We first explain the terminology. All graphs considered are finite and undirected.
For a graph G and two disjoint subsets U and H of its vertex set, we denote by
G[U] the subgraph induced by U , and we denote by EG(U, H) the edges of G
between U and H , i. e., EG(U, H) = E(G[U ∪H]) \ (E(G[U]) ∪E(G[H])).

Given a PC-graph G and a PC-representation, we refer to vertices of the graph
and to corners of the polygons (these are their vertices lying on the geometrical
bounding circle). For a vertex v of the graph, we use Pv to denote the corre-
sponding polygon representing v (but sometimes and namely in figures, we avoid
multiple subscripts by denoting also the polygon simply by v). Given a repre-
sentation R of G with G ⊆ H , we say that R is extended into a representation
S of H if S is obtained from R by adding new corners to existing polygons and
by adding new polygons representing the vertices of V (H) \ V (G).

In a PC representation, we describe the relative position of a set of polygons in
terms of ”visibility” from one polygon to another. The corners of any polygon R
divide the bounding circle into circular arcs referred to as R-segments. If P, Q, R
are disjoint polygons and Q lies in a different P -segment than R, we say that Q
is blocked from R by P . A set A of polygons is said to lie around the circle if for
no triple of disjoint polygons P, Q, R ∈ A, the polygon Q is blocked by R from P .

It is easy to check that we may assume that the corners of all polygons are
distinct. By cutting the bounding circle in an arbitrary point and listing the
names of the vertices in the order as the corners of their polygons appear along
the circle we obtain the so called alternating sequence of the representation. To
be more precise, we say that two symbols a and b alternate in a sequence S, if S
contains a subsequence of the form ...a...b...a...b... or ...b...a...b...a.... It is a well-
known fact that G = ({v1, . . . , vn}, E) is a PC-graph if and only if there exists
an alternating sequence S over the alphabet v1, . . . , vn such that vivj ∈ E(G) if
and only if vi and vj alternate in S.

Though polygon-circle representations lie behind the original geometric def-
inition of PC-graphs and are visually more accessible, precise proofs of several

Geometric Intersection Graphs: Do Short Cycles Help? 121

observations and auxiliary technical lemmas are easier to formulate in the lan-
guage of alternating sequences. Thus in the paper we often switch between these
two equivalent descriptions of PC-representations.

2.2 PC-Graphs of Low Connectivity and Their Decompositions

We first observe that we may restrict our attention to bi-connected (vertex-2-
connected) graphs.

Lemma 1. A graph G is a PC-graph if and only if all its connected components
are PC-graphs.

Proof. We just take alternating representations of individual components and
place one after another.

Lemma 2. A graph G is a PC-graph if and only if all its biconnected compo-
nents are PC-graphs.

Proof. Similar to the proof of Lemma 1.

From now on we assume that our input graphs are bi-connected. It turns out that
vertex cuts containing two nonadjacent vertices do not create any problems, but
those containing two adjacent vertices do. We formalize this in two definitions
of decompositions in the next subsection.

Definition 1. Let G = (V, E) be a graph. An edge ab whose endpoints form a
cut in G is called a cutting edge. Let C1, C2, ..., Ck be the connected components
of G[V \{a, b}] for a cutting edge ab. The pair-cutting decomposition of G based
on ab is the collection of graphs Gab

i = (Ci∪{a, b, c}, E(G[Ci∪{a, b}])∪{ac, bc}),
where c is a new extra vertex, i = 1, 2, . . . , k.

A graph is called pc-prime (pair-cutting-prime) if it has no nontrivial pair-
cutting decomposition (i.e., if every cutting edge divides the graph into one con-
nected component and a single vertex).

Proposition 1. A biconnected graph G with a cutting edge ab is a PC-graph
if and only if all the graphs in the pair-cutting decomposition based on ab are
PC-graphs.

Proof. We start with alternating representations S1, ..., Sk of the graphs
Gab

1 , ..., Gab
k in the pair-cutting decomposition. Without loss of generality we

may assume that each of them begins with the newly added vertex c. Let S̃i be
obtained from Si by removing all occurences of c and adding an occurence of
a to the beginning and an occurence of b to the end of the sequence. Then the
concatenation S̃1 . . . S̃k is an alternating representation of G.

Obviously a and b alternate. By our transformation we could not remove any
alternation among vertices of G. Thus it suffices to check that we did not add new
ones. For i 	= j, any symbol from S̃i distinct from a and b cannot alternate with
any symbol from S̃j (distinct from a and b). Suppose that by replacing the first
occurence of c by a we have created a new alternation of a and x 	= b in S̃i. Thus in
Si all occurences of a lie between two occurences of x. But a and c alternated in Si,

122 J. Kratochv́ıl and M. Pergel

a

b

a

b

c

a

b

c

a

b

c

Fig. 1. An example of the pair-cutting decomposition. At the top of the figure is the
original graph with vertices a and b forming a cutting edge. Below are depicted the
three elements of its pair-cutting decomposition based on ab. Note that the left one
and the right one are pc-primes, but the middle one is not.

thus between these two occurences of x there is an occurence of c and thus x and c
alternated. Hence x = b (c alternated only with a and b). A contradiction.

The converse is clear from the fact that the class of PC-graphs is closed under
taking induced minors and the fact that each Gab

i is an induced minor of G.
Indeed, for some j 	= i, contract all vertices of Cj into a single vertex c and con-
tract all vertices of all remaining Cl’s for l 	= i, j into the vertex a. Since G was
biconnected and vertices a and b formed a cut, c is adjacent exactly to a and b.

The previous proposition is general in the sense that it does not require large
girth of G. However, as we aim at graphs of large girth, the reduction is incon-
venient because it creates triangles in the blocks of the decomposition. For this
sake we introduce the following adjustment. In each element of the pair-cutting
decomposition G[V (Ci)∪{a, b}] we mark the edge ab ”red” instead of adding the
triangle abc. We will talk about the red-edged decomposition and each element
of this decomposition will be called a red-edged graph. It is not true anymore
that a biconnected graph is in PC if and only if each red-edged component of
the decomposition is a PC-graph. However, we can still control how to glue
representations together if G has no short cycles.

In the sense of Definition 1 we denote by Ge the graph obtained from G by
adding a new vertex adjacent to the endvertices of e. Similarly, Ge1,...ek is the
graph obtained by adding k new vertices, each connected to the endpoints of
one of the edges ei.

Geometric Intersection Graphs: Do Short Cycles Help? 123

Lemma 3. Let R be an alternating representation of a graph G . If this repre-
sentation can be extended to a representation of Gab, it can be done so by adding
the subsequence cabc between some two consecutive symbols in R.

Proof. Will be presented in the journal version.

Proposition 2. Let G be a connected red-edged graph of girth at least 4 with
Q = {e1, ...ek} being the set of its red edges. Let R be a PC-representation of G.
If for any e ∈ Q, the representation R can be extended into a representation of
Ge, then R can be extended into a representation of Ge1,...ek .

Proof. Will be presented in the journal version.

2.3 Pseudoears

A well-known characterization of biconnected graphs is given by the ear-
decomposition lemma:

Lemma 4. A biconnected graph can be constructed from any of its cycles by
consecutive addition of paths (with endpoints in the already constructed subgraph,
so called ears) and/or single edges.

However, we need a version where the constructed graph is an induced subgraph,
and therefore we need to avoid adding edges. Thus we define the technical notion
of a pseudoear and introduce a special version of this lemma for K3-free graphs.

Definition 2. Let H be an induced subgraph of a graph G, and let U = a1 . . . a3

be an induced path in H of length at least 2. A pseudoear attached along U is
an induced path P = p1...pk in G \H of length at least 1 such that either

I. H has length at least 3 and E(P, H) = {p1a1, pka3}, or
II. U = a1a2a3 has length 2 and E(p1, H) = {p1a1}, E(pk, H) = {pka3}, and

E({p2, . . . , pk−1}, H) ⊆ {pia2|i = 2, . . . , k − 1}.

Lemma 5. Any biconnected K3-free graph without cutting edges can be con-
structed from any of its induced cycles by consecutive addition of pseudoears
and/or single vertices adjacent to at least two vertices of the so far constructed

a1 a3

p1 pk

H a1 a2 a3

p1 pk

H H

v

Fig. 2. The first two pictures show pseudoears of type I and II, the third one is an
example of a vertex we operate with in our version of ear-decomposition lemma. Solid
lines denote edges, dashed lines represent paths.

124 J. Kratochv́ıl and M. Pergel

subgraph. On the other hand, any K3-free graph constructed in this way is bi-
connected and has no cutting edges.

Proof. Will be presented in the journal version. We only note here that the proof
is constructive and yields a polynomial time algorithm.

2.4 Minimal Representations of Biconnected Pc-Prime Graphs

We call an alternating representation of a PC-graph G minimal if deleting any
occurrence of any symbol from the sequence results in a sequence that does not
represent G anymore. For instance, in every minimal alternating representation
of a cycle of length n, every symbol occurs exactly twice and the representation
is unique (up to rotation and symmetrical flip). The core theorem our algorithm
is based on says that this is also true for bi-connected pc-prime graphs of large
girth.

Theorem 3. Every bi-connected pc-prime graph with girth at least 5 has at most
1 minimal PC-representation. This representation (if it exists) can be found in
polynomial time.

Proof. Will be presented in journal version. It uses the Pseudoear lemma and
by induction on the number of pseudoears shows how to find this unique repre-
sentation (when it exists).

2.5 Algorithms

In this subsection we formalize our algorithm and estimate its running time.

Algorithm 1:
Input: A biconnected graph G
Output: Decision whether G has a PC-representation.
Auxiliary variables: H – set of graphs, S – set of representations, initially
empty

Add G to set H.
while exists F ∈ H with a cutting-edge ab do

remove F from H and replace it by the elements of the red-edged
decomposition of F with respect to ab.

done
forall F ∈ H do

if Algorithm2(F)=’false’ then return ’false’
else

add the representation of F provided by
Algorithm2(F) into S

done
forall R ∈ S do

for e ∈ red edges of(graph of(R)) do
if Algorithm3(R,e)=’false’ then return ’false’;

return ’true’;

Geometric Intersection Graphs: Do Short Cycles Help? 125

The correctness of Algorithm 1 follows from Lemmas 1, 2 and
Propositions 1, 2.

Next we present the algorithm finding a representation of a pc-prime graph
as the rest is either brute-force or obvious (and was described above). In Algo-
rithm 2 we call an arc of a bounding circle between two corners of a polygon a
sector.

Algorithm 2:
Input: pc-prime graph G.
Output: PC-representation or false.
Auxiliary variables: Graph H , initially empty.

while (|V (H)| < |V (G)|) do
find a pseudoear or a single vertex P attachable to H ;
by brute force represent it;
if the representation is impossible then return false;
add P to H ;

done

When looking for pseudoears (or single vertices), we implement the (construc-
tive) proof of Lemma 5, while finding a suitable representation follows the proof
of Proposition 3 (none of these proofs is included in this extended abstract). Note
that looking for a pseudoear or a single vertex is (naively) possible in O(n2),
representing a pseudoear is possible in O(n4) (looking for feasible sector, trying
different placements of p1 and pk), representing of single vertex is possible in
O(n5). Pseudoears (or single vertices) are added only linearly many times. Thus
the complexity of Algorithm 2 is O(n6).

Algorithm 3:
Input: Alternating representation R of a graph G and a red edge ab = e in G
(c is not a vertex of G)
Output: Decision whether Ge has PC-representation.

By brute force try to add cabc between all consecutive pairs of symbols into
the alternating representation and check whether a correct representation is
obtained.
If we at least once succeed, return representation; else return ‘false’;

The algorithm is just brute force, but polynomial (O(n4) as the length of
representation is at most n2). Its correctness is obvious from Observation 1. The
total complexity of all algorithms together is therefore O(n7).

3 Segment Intersection Graphs

To prove the desired NP-hardness result, we show a polynomial reduction of the
problem P3CON3SAT(4) to the recognition problem. P3CON3SAT(4) is the
SATISFIABILITY problem restricted to formulas Φ with variables v1, . . . , vn

and clauses C1, . . . , Cm in CNF such that each clause contains exactly 3 literals,

126 J. Kratochv́ıl and M. Pergel

each variable occurs in Φ at most 4 times (positively or in negation) and the
bipartite graph

G(Φ) = (
n⋃

i=1

{vi} ∪
m⋃

j=1

{Cj}, {{vi, Cj}|vi ∈ Cj})

is planar and (vertex) 3-connected. This variant of SATISFIABILITY is shown
NP-complete in [12] and we will use it in the proof of Theorem 2.

We use a construction similar to [11]. Given a formula Φ, we use G(Φ) to con-
struct a graph H with girth at least k such that H is a SEG-graph if and only if
Φ is satisfiable. We modify the graph G(Φ) in the following way. Each vertex cor-
responding to a variable is replaced by a circle of length max{16, k}. We replace
each edge of G(Φ) by a pair of long-enough paths, and pairs of paths leaving
the same variable gadget are linked by so called cross-over gadgets. Each vertex
corresponding to a clause is replaced by a clause gadget. The assignment to vari-
ables is obtained from the orientation of the circle representing the particular
variable. The ”orientation” of pair of paths from the vertex gadget to a clause
gadget describes whether the respective occurrence in the clause is positive or
negative. By ”orientation” of a pair of paths we mean that one path is ”to the
left” to the other. This has now become a standard trick used in NP-hardness
reductions of geometric flavor.

The variable gadgets do not differ much from those used in [11], only the
bounding cycle of the variable gadget may need to be artificially extended to
make it meet the girth requirement. The clause gadget is slightly modified and
it is depicted in Fig. 4. The main novelty of the present proof is the cross-over
gadget depicted in Fig. 3.

The arguments are based on the fact that two intersecting segments share
only one common point. The details of the proofs will be presented in the journal
version.

v1

d1
v2

v3

v4

p1

p2

p3

p4

x

y

v1

v2

v3

v4

p1

p2
sector S

sector U

sector V

Fig. 3. The cross-over gadget and a representation starting from the variable gadget.
Broken lines denote sequences of arbitrarily many segments (depending on the required
girth). Arrows in the representation propose two possibilities for the respective paths
– either to cross or to touch only. Note that the clause gadget is surrounded by a cycle,
therefore a sector S is well-defined as a place surrounded by p1, p2, v1, d1, v2 and the
corresponding boundary-part of the clause gadget. As G(Φ) is 3-connected, even the
sectors U and V are well-defined as the place above p1 (distinct from S) and below p2,
respectively. Moreover S, U and V describe disjoint regions.

Geometric Intersection Graphs: Do Short Cycles Help? 127

Fig. 4. The clause gadget (at the top, depicting the “all-true” position of the literals
involved in it). Dashed and broken lines denote paths of lengths depending on k. The
bottom two figures are examples of representations, the left one corresponds to the
“false-true-false” valuation of the literals, the right one corresponds to “true-false-true”
(the order of literals being left-top-right). Other cases can be represented similarly. The
“all-false” position has no representation, even by curves with 1 crossing per pair.

4 Conclusion

We have shown that restricting the girth of the input graph helps with recogniz-
ing polygon-circle graphs, but that recognition of segment intersection graphs
remains NP-hard. We believe that this phenomenon is worth of studying for
other graph classes and that interesting results may be obtained. Also our results
leave some room for strengthening. Several particular presently open cases are

– String graphs of girth at least k (known NP-hard only for k = 4).
– Polygon-circle graphs of girth 4.
– Intersection graphs of convex sets of girth at least k.

References

1. Breu, H., Kirkpatrick, D.G.: Unit Disk Graph Recognition is NP-Hard. Comput.
Geom. Theory and Applications 9(1–2), 3–24 (1998)

2. Brandstaedt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM (1999)

128 J. Kratochv́ıl and M. Pergel

3. Chalopin, J., Goncalves, D., Ochem, P.: Planar graphs are in 1-STRING, to appear
in: Proceedings of SODA 2007

4. Dangelmayr, C., Felsner, S.: Chordal Graphs as Intersection Graphs of Pseudoseg-
ments. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 208–
219. Springer, Heidelberg (2007)

5. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. J.
Combin. Theory Ser. B. 21, 8–20 (1976)

6. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Information Processing Letters 73(5–6), 181–188 (2000)

7. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. SIAM Journal of Algebraic and Discrete Methods,
vol. 1(2) (1980)

8. Hliněný, P.: Classes and recognition of curve contact graphs. J. Combin. Theory
ser. B. 74, 87–103 (1998)

9. Koebe, M.: On a New Class of Intersection Graphs. In: Proceedings of the Fourth
Czechoslovak Symposium on Combinatorics Prachatice, pp. 141–143 (1990)

10. Kostochka, A., Kratochv́ıl, J.: Covering and coloring polygon-circle graphs. Dis-
crete Math. 163, 299–305 (1997)

11. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. Journal of
Combinatorial Theory, Series B 52, 67–78 (1991)

12. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discr. Appl. Math. 52, 233–252 (1994)

13. Kratochv́ıl, J.: Intersection Graphs of Noncrossing Arc-Connected Sets in the
Plane. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer,
Heidelberg (1997)

14. Kratochv́ıl, J., Matoušek, J.: Intersection Graphs of Segments. Journal of Combi-
natorial Theory, Series B 62, 289–315 (1994)

15. Kratochv́ıl, J., Pergel, M.: Two Results on Intersection Graphs of Polygons. In:
Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 59–70. Springer, Heidelberg (2004)

16. McKee, T.A., McMorris, F.R.: Topics on Intersection Graphs, SIAM (1999)
17. Pach, J., Tóth, G.: Recognizing string graphs is decidable. In: Mutzel, P., Jünger,

M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 247–260. Springer, Heidelberg
(2002)

18. Pergel, M.: Recognition of Polygon-circle Graphs and Graphs of Interval Filaments
is NP-complete, in preparation

19. Schaefer, M., Štefankovič, D.: Decidability of string graphs, In: STOC, pp. 241–
246 (2001)

20. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing String Graphs in NP. In:
STOC 2002, pp. 1–6 (2002)

21. Sinden, F.W.: Topology of thin film RC-circuits. Bell System Technological Jour-
nal, pp. 1639–1662 (1966)

22. Spinrad, J.: Efficient Graph Representations, Fields Institute Monographs 19,
American Mathematical Society (2003)

Dimension, Halfspaces, and

the Density of Hard Sets�

Ryan C. Harkins and John M. Hitchcock

Department of Computer Science, University of Wyoming

Abstract. We use the connection between resource-bounded dimension
and the online mistake-bound model of learning to show that the follow-
ing classes have polynomial-time dimension zero.

1. The class of problems which reduce to nondense sets via a majority
reduction.

2. The class of problems which reduce to nondense sets via an iterated
reduction that composes a bounded-query truth-table reduction with
a conjunctive reduction.

As corollary, all sets which are hard for exponential time under these
reductions are exponentially dense. The first item subsumes two previ-
ous results and the second item answers a question of Lutz and May-
ordomo. Our proofs use Littlestone’s Winnow2 algorithm for learning
r-of-k threshold functions and Maass and Turán’s algorithm for learning
halfspaces.

1 Introduction

Recent work has found applications of computational learning theory to the
resource-bounded measure [10] and dimension [12] of complexity classes. Lindner,
Schuler, and Watanabe [8] studied connections between computational learn-
ing theory and resource-bounded measure [10], primarily focusing on the PAC
(probably approximately correct) model. They also observed that any admissible
subclass of P/poly that is learnable in Littlestone’s online mistake-bound model
[9] has p-measure 0. This observation was later developed into a general tool
for resource-bounded dimension [6]. To show that a class has p-dimension 0, it
suffices to show that it is reducible to a learnable concept class family. This idea
was used to show that the following classes have p-dimension 0.

(1) Pctt(DENSEc).
(2) Pdtt(DENSEc).
(3) Pnα−T(DENSEc), for all α < 1.

Here Pr(DENSEc) is the class of all problems which reduce to nondense sets
under ≤p

r reductions, where a problem is nondense if its census function is subex-
ponential. The result for (3) improved previous work [4,13,15] and solved one
of Lutz and Mayordomo’s twelve problems in resource-bounded measure [14].
� This research was supported in part by NSF grant 0515313.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 129–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

130 R.C. Harkins and J.M. Hitchcock

The classes in (2) and (3) were reduced to disjunctions, which can be learned by
Littlestone’s Winnow algorithm [9]. We obtain further results in this direction
using more sophisticated learning algorithms and concept classes that generalize
disjunctions.

In our first result we show that the class

(4) Pmaj(DENSEc)

of problems which reduce to nondense sets via majority reductions has p-
dimension 0. Our proof gives a reduction to r-of-k threshold functions and ap-
plies Littlestone’s Winnow2 algorithm. This subsumes the results about (1) and
(2) above and answers a question of Fu [5].

Our second result concerns iterated reductions and answers the following ques-
tion of Lutz and Mayordomo [13]:

(Q) Does the class Pbtt(Pctt(DENSEc)) have measure 0 in E?

Agrawal and Arvind [1] showed that Pbtt(Pctt(SPARSE)) ⊆ Pm(LT1), where
LT1 is the class of problems that have a nonuniform family of depth-1 weighted
linear threshold circuits. Equivalently, LT1 is the class of problems where each
input length is a halfspace. We use their technique to reduce

(5) Pα log n−tt(Pctt(DENSEc)), for all α < 1

to a subexponential-size family of halfspaces. We then apply the online learning
algorithm of Maass and Turán [16] to learn these halfspaces and conclude that the
classes in (5) have p-dimension 0. This strongly answers (Q) in the affirmative.

This paper is organized as follows. Section 2 contains preliminaries about
halfspaces, learning, and dimension. The majority reductions result is in section 3
and the iterated reductions result is in section 4. Section 5 concludes with some
observations for NP and directions for further work.

2 Preliminaries

A language L is a subset of {0, 1}∗. For the length of a string x, we write |x|.
By L=n we denote the set all strings in L of length n, and by L≤n we denote
the set of all strings in L with length at most n. Let L be a language.

– L is sparse if for all n ∈ N, |L≤n| ≤ p(n), where p(n) is a polynomial.
– L is dense if for some ε > 0, for all but finitely many n, |L≤n| > 2nε

.
– L is io-dense if for some ε > 0, for infinitely many n, |L≤n| > 2nε

.

We write SPARSE, DENSE, and DENSEi.o. for the classes of sparse, dense,
and io-dense languages, respectively. Note that L ∈ DENSEc if for all ε > 0,
for infinitely many n, |L≤n| < 2nε

, and L ∈ DENSEc
i.o. if for all ε > 0, for all

sufficiently large n, |L≤n| < 2nε

.
We assume the reader is familiar with the various notions of polynomial-time

reductions. If a reduction g(x) produces a single query, then |g(x)| refers to the
size of that query. If it produces multiple queries, then |g(x)| is the number of
queries produced.

Dimension, Halfspaces, and the Density of Hard Sets 131

2.1 Threshold Circuits

A weighted linear threshold gate with n inputs is determined by a weight vector
ŵ ∈ Qn and a threshold T ∈ Q such that on inputs x ∈ {0, 1}n, where x is
considered an n-valued vector (x1, x2, . . . , xn), the gate will output 1 if and only
if
∑

1≤i≤n wixi > T . An exact weighted linear threshold gate is defined similarly,
except that the gate will output 1 if and only if

∑
1≤i≤n wixi = 0. As this is an

inner product on vectors, we use the notation ŵ · x̂ for
∑

1≤i≤n wixi.
A linear threshold circuit has a linear threshold gate at its root. A language

L is in the class LT1 if there exists a family of nonuniform, depth-1 weighted
linear threshold circuits defined by a family of weight vectors {ŵn}n≥0 such that
for all x ∈ {0, 1}∗, x ∈ L if and only if ŵ|x| · x̂ > 0. Similarly, L is in the
class ELT1 if there exists a family of nonuniform, depth-1 exact weighted linear
threshold circuits defined by a family of weight vectors {ŵn}n≥0 such that for
all x ∈ {0, 1}∗, x ∈ L if and only if ŵ|x| · x̂ = 0.

Topologically, a linear threshold gate on n inputs describes a halfspace S in
{0, 1}n, and an exact linear threshold gate describes a hyperplane H in {0, 1}n,
where strings in {0, 1}n are viewed as binary vectors.

For more information on LT1 and ELT1, we refer the reader to Agrawal and
Arvind [1], from which we will make several useful extensions in Section 4.

2.2 Dimension and Learning

Resource-bounded dimension was introduced by Lutz [12] as a refinement of
resource-bounded measure [10]. Each class X of languages has a p-dimension
dimp(X) ∈ [0, 1], and if dimp(X) < 1, then X has p-measure 0. In this paper
we do not use original definition of p-dimension but instead the result that if
X reduces to a learnable concept class family, then dimp(X) = 0 [6]. For more
information on measure and dimension we refer to [3,7,11,14].

A concept is a set C ⊆ U for some universe U . A concept class is a set C of
concepts. An online learner, given a concept class C and a universe U , attempts
to learn a target concept C ∈ C. Given a sequence of examples x1, x2, . . . in
U , the learner must predict whether xi ∈ C. The answer is then revealed, the
learner adjusts its strategy, and the next concept is presented for classification.
The learner makes a mistake if it incorrectly classifies an example. The mistake
bound of a learning algorithm for a concept class C is the maximum over all C ∈ C
of the number of mistakes made when learning C, over all possible sequences of
examples. The running time of the learner is the time required to predict the
classification of an example.

Let L ⊆ {0, 1}∗ and let C = (Cn|n ∈ N) be a sequence of concept classes. For
a time bound r(n), we say L reduces to C in r(n) time if there is a reduction f
computable in O(r(n)) time such that for infinitely many n, there is a concept
Cn ∈ Cn such that for all x ∈ {0, 1}≤n, x ∈ L if and only if f(0n, x) ∈ Cn. Note
that the reduction is not required to hold for all n, but only infinitely many n.

Let L(t, m) be the set of all sequences of concept classes C such that for each
Cn ∈ C, there is an algorithm that learns Cn in O(t(n)) time with mistake bound

132 R.C. Harkins and J.M. Hitchcock

m(n). Then the class RL(r, t, m) is the class of languages that reduce to some
sequence of concept classes in L(t, m) in r(n) time.

Theorem 2.1 (Hitchcock [6]). For every c ∈ N, the class RL(2cn, 2cn, o(2n))
has p-dimension 0.

Because X ⊆ Y implies dimp(X) ≤ dimp(Y), the task of proving that a class
has p-dimesion 0 can be reduced to showing the class is a subset of RL(2cn, 2cn,
o(2n)) for some constant c.

2.3 Learning Algorithms

We make use of two learning algorithms. The first is the second of Littlestone’s
Winnow algorithms [9], which can be used to learn Boolean r-of-k functions on
n variables. In an r-of-k function there is a subset V of the n variables with
|V | = k such that the function evaluates to 1 if at least r of the variables in
V are set to 1. Winnow2 has two parameters α, a weight update multiplier,
and θ, a threshold value. Initially, each of the variables xi has a weight wi = 1.
Winnow2 operates by predicting that an example x is in the concept if and only
if
∑

i wixi > θ. The weights are updated following each mistake by the following
rubric:

– If Winnow2 incorrectly predicts that x is in the target concept, then for each
xi such that xi = 1, set wi = wi/α.

– If Winnow2 incorrectly predicts that x is not in the target concept, then for
each xi such that xi = 1, set wi = α · wi.

Littlestone showed that for α = 1
2r and θ = n, Winnow2 has a mistake bound on

learning r-of-k functions of 8r2+5k+14kr ln n. Winnow2 also classifies examples
in polynomial time.

The second learning algorithm we use is Maass and Turán’s [16] algorithm for
learning halfspaces. They first describe the Convex Feasability Problem: given a
separation oracle and a guarantee r for an unknown convex body P , find a point
in P . By a guarantee, they mean a number such that the volume of the convex
body P (in d dimensions) within the ball of radius r around 0̂ is at least r−d.

Theorem 2.2 (Maass and Turán [16]). Assume that there is an algorithm A∗

solving the Convex Feasability Problem with query complexity q(d, log r) (where q
is a function of both the dimension d and the guarantee r) and time complexity
t(d, log r). Then there is a learning algorithm A for learning a halfspace in d
dimensions and n values such that the mistake bound of A is q(d, 4d(log d +
log n + 3)) + 1 and the running time is at most t(d, 4d(log d + log n + 3)) +
q(d, 4d(log d + log n + 3)) · p(d, log n) for some polynomial p.

Using Vaidya’s algorithm for learning convex bodies [17], which is an algorithm
for the Convex Feasability Problem, they show that learning a halfspace on d
dimensions and n values (in our case, with the binary alphabet, n = 2) has a
mistake bound of O(d2(log d + log n)) and a polynomial running time.

Dimension, Halfspaces, and the Density of Hard Sets 133

3 Majority Reductions

We say that A ≤p
maj B if there is a polynomial-time computable function f :

{0, 1}∗ → P({0, 1}∗) such that for all x ∈ {0, 1}∗, x ∈ A if and only if

|f(x) ∩B| ≥ |f(x)|
2

.

The following lemma says that if B is nondense, then we can assume that the
majority reduction makes the same number of queries for all inputs of each
length.

Lemma 3.1. Let A ∈ Pmaj(DENSEc). Then there exists a B ∈ DENSEc, a
majority reduction f computable in polynomial time, and a polynomial q such
that for all x ∈ {0, 1}∗, |f(x)| = q(|x|).

We now prove our first main result.

Theorem 3.2. Pmaj(DENSEc) has p-dimension 0.

Proof. It suffices to show that there is a concept class family CF ∈ L(2cn, o(2n))
and a reduction g computable in 2cn time such that for all A ∈ Pmaj(DENSEc),
A reduces to CF by g.

Let A ∈ Pmaj(DENSEc). Then there is a p(n)-time-bounded majority reduc-
tion f that makes exactly r(n) queries for each n, and a set B ∈ DENSEc such
that for all x ∈ {0, 1}∗, x ∈ A if and only if |f(x) ∩B| ≥ |f(x)|

2 .
Let Qn =

⋃
|x|≤n f(x) be the set of all queries made by f up through length n.

Then |Qn| ≤ 2n+1p(n). Enumerate Qn as q1, . . . , qN . Then each subset R ⊆ Qn

can be identified with its characteristic string χ
R
∈ {0, 1}N according to this

enumeration.
Let δ ∈ (0, 1). Then |B≤p(n)| < 2nδ

for infinitely many n because B is non-
dense. Thus M = |Qn ∩ B| ≤ 2nδ

. Since for all x ∈ {0, 1}∗, f(x) makes exactly
r(|x|) number of queries and x ∈ A if and only if |f(x) ∩B| ≥ r(|x|)

2 , our target
concept is a r(n)

2 -of-M threshhold function h, such that x ∈ A if and only if
h(χ

f(x)) = 1, which can be learned by Winnow2.
Given x, χ

f(x) can be computed in O(22n) time, and thus Winnow2 can classify
examples in O(22n) time, making only 2r2(n) + 5 · 2nδ

+ 7 · 2nδ

r(n) ln 2n+1p(n)
mistakes, which is o(2n). Thus Pmaj(DENSEc) ⊆ RL(22n, 22n, o(2n)) and the
theorem follows by Theorem 2.1. �

We remark that as r-of-k threshold functions are a special case of halfspaces, we
could also use the halfspace learning algorithm instead of Winnow2 to prove The-
orem 3.2. As Pdtt(DENSEc) ⊆ Pmaj(DENSEc) and Pctt(DENSEc) ⊆
Pmaj(DENSEc), Theorem 3.2 subsumes two results from [6]. We also have the
following corollary about hard sets for exponential time.

Corollary 3.3. E 	⊆ Pmaj(DENSEc). That is, every ≤p
maj-hard set for E is

dense.

134 R.C. Harkins and J.M. Hitchcock

4 Iterated Reductions

Our proof that Pα log n−tt(Pctt(DENSEc)) has p-dimension zero follows the proof
technique of Agrawal and Arvind [1] that

Pbtt(Pctt(SPARSE)) ⊆ Pm(LT1)

to reduce the class to a family of halfspaces. We then use Maass and Turán’s
[16] learning algorithm to learn these halfspaces. As long as the reduction runs
in 2nα

time for some α < 1, the halfspaces have subexponential size and the
mistake bound is 2o(n). Therefore by Theorem 2.1,

dimp(R2nα

m (LT1)) = 0, (1)

where Rt(n)
m denotes many-one reductions that run in time t(n).

Instead of Pα log n−tt(Pctt(DENSEc)) we will focus on the smaller class

Pα log n−tt(Pctt(DENSEc
i.o.)).

The benefit is that the nondense set will be small almost everywhere rather than
infinitely often, which simplifies the arguments. Our proofs can be adapted to
the infinitely-often case. First we need to extend some of Agrawal and Arvind’s
results. They proved the following technical lemma.

Lemma 4.1. Let A ∈ Pm(ELT1) (resp. A ∈ Pm(LT1)). Then there exist L ∈
ELT1 (L ∈ LT1), an FP function f , and a polynomial r, such that for every x,
for every n ≥ r(|x|), x ∈ A iff f(x, 1n) ∈ H(ŵn) (f(x, 1n) ∈ S+(ŵn)), where ŵn

are the weight vectors associated with L.

We use the following extension.

Lemma 4.2. Let Δ be a family of computable functions that is closed under
multiplication and composition with polynomials, and let FΔ be the functional
class with bounds in Δ. Then Lemma 4.1 holds with f ∈ FΔ and r ∈ Δ.

We say that a time bound t(n) is subexponential if for all ε > 0, t(n) < 2nε

for all
sufficiently large n. We write se for the class of all subexponential time bounds.

Corollary 4.3. Let A ∈ Rse
m(ELT1). Then there is a subexponential-time func-

tion f and a language B ∈ ELT1 such that for every x ∈ {0, 1}∗, for all
qi, qj ∈ f(x), |qi| = |qj |.

Agrawal and Arvind showed that SPARSE ⊆ Pm(ELT1). We extend this in the
following lemma.

Lemma 4.4. DENSEc
i.o. ⊆ Rse

m(ELT1).

Dimension, Halfspaces, and the Density of Hard Sets 135

Proof. Let S ∈ DENSEc
i.o.. Then for all but finitely many n, |S=n| ≤ 2nε

for
all ε > 0. Let S=n = {sn,1, sn,2, . . . , sn,m(n)}, where m(n) ≤ f(n) and f is a
subexponential function. Let the string sn,i also stand for the natural number
representing the lexicographic rank of the string sn,i in {0, 1}n for every n and
1 ≤ i ≤ m(n). Define Tn(z) to be the polynomial

∏m(n)
i=1 (z−sn,i). Clearly, Tn(z)

is a polynomial in z of degree bounded by f(n). Letting z represent both a
string in {0, 1}n as well as the lexicographic rank of z in {0, 1}n, then z ∈ S iff
Tn(z) = 0.

Rewriting Tn(z), we have Tn(z) =
∑

1≤j≤f(n) ajz
j. For 1 ≤ j ≤ f(n), we

can write zj as
∑

1≤r≤n·f(n) 2ryj,r, where the yj,r essentially denotes the bits
in the binary representation of zj. Thus it follows that Tn(z) can be rewritten
as a linear combination

∑
1≤j≤f(n)

∑
1≤r≤n·f(n) wj,ryj,r of the bits yj,r defined

above.
Now we can define a language L ∈ ELT1 using these linear functions to define

the corresponding weighted exact threshold gates in the circuit family accepting
L. As there will be n · f(n)2 variables, which is subexponential, we have that
S ≤se

m L. �

Agrawal and Arvind showed that Pctt(ELT1) = Pm(ELT1) and Pbtt(ELT1) ⊆
Pm(LT1). This allows them to show Pbtt(Pctt(SPARSE)) ⊆ Pm(LT1) through
the following steps:

Pbtt(Pctt(SPARSE)) ⊆ Pbtt(Pctt(Pm(ELT1)))
⊆ Pbtt(Pctt(ELT1))
⊆ Pbtt(Pm(ELT1))
⊆ Pbtt(ELT1)
⊆ Pm(LT1).

We will adapt this proof to our setting. Agrawal and Arvind made use of the
following technical lemma.

Lemma 4.5. Let {Fn(x̂)}n≥1, Fn(x̂) defined over Qn, be a family of degree k
multinomials (for a constant k > 0). Let the family of weight vectors {ĉn}n>0

and the FP function f be such that for every x̂ ∈ Qn, Fn(x̂) = ĉm · f(x̂) where
f(x̂) ∈ Qm. Then the function f reduces the set

A =
⋃

n≥1

{x ∈ {0, 1}∗ | Fn(x) = 0}

to the set in ELT1 defined by weight vectors {ĉn}n>0. Also, f reduces the set

B =
⋃

n≥1

{x ∈ {0, 1}∗ | Fn(x) > 0}

to the set in LT1 defined by weight vectors {ĉn}n>0 (where a string x of length
n is interpreted as an n-dimensional 0-1 vector when it is an argument to Fn).

136 R.C. Harkins and J.M. Hitchcock

Lemma 4.6. Rse
ctt(ELT1) = Rse

m(ELT1).

Proof. Let A be a set that is conjuctively reducible to some set B ∈ ELT1. Then
there is an se-computable function f such that for every x ∈ {0, 1}∗, f(x) is a
list of queries such that x ∈ A iff for every q in f(x), q ∈ B. Using Corollary
4.3, there exist B′ ∈ ELT1 defined by a family of weight vectors {ĉn}n≥1, an
se-computable function g, and a subexponential function r such that for every
x, for every j ≥ r(|x|), x ∈ A iff g(x, 1j) ⊆ H(ĉj).

Since f is a conjunctive reduction, there is a subexponential p such that for
every x, g(x, 1r(|x|)) has exactly p(|x|) queries (this can be achieved simply by
repeating the last query a suitable number of times). Define

Fp(n)r(n)(q̂1, q̂2, . . . , q̂p(n)) =
p(n)∑

i=1

(ĉr(n) · q̂i)2

where q̂i ∈ {0, 1}r(n) for 1 ≤ i ≤ p(n). The set L is defined as

L =
⋃

n≥1

{
x ∈ {0, 1}∗p(n)r(n)

∣∣ Fp(n)r(n)(x) = 0
}

.

Note that as an argument to Fp(n)r(n), x is interpreted as a 0-1 vector.
It is easy to see that x ∈ A iff (q̂1, q̂2, . . . , q̂p(|x|)) ∈ L where g(x, 1r(|x|)) =

{q̂1, . . . , q̂p(|x|)}. Lemma 4.5 implies that L is in Rse
m(ELT1). �

To show Pbtt(ELT1) ⊆ Pm(LT1), Agrawal and Arvind divide a k-tt reduction
into each separate condition τ , and then note that

Pτ (A) ⊆ Pb⊕(Pbc(P1−tt(A))),

where Pb⊕ is the closure under the bounded parity reduction and Pbc is the
closure under the bounded conjunctive reduction. They then show that

Pb⊕(Pbc(P1−tt(ELT1))) ⊆ Pm(LT1),

and finish their proof by showing Pm(LT1) is closed under the join operation,
i.e. it is possible to create a linear threshold circuit from all 22k

k-tt conditions
in polynomial time. We proceed in the same fashion.

Lemma 4.7. Rse
b⊕(LT1) = Rse

m(LT1).

Lemma 4.8. Rse
bd(ELT1) = Rse

m(ELT1).

Lemma 4.9. Rse
τ (LT1) ⊆ Rse

m(LT1).

Lemma 4.10. Pbc(Rse
1−tt(ELT1)) ⊆ Rse

τ (ELT1).

Proof. For A ∈ Pbc(Rse
1−tt(ELT1)), there is a reduction f to B ∈ ELT1 with

k queries such that x ∈ A iff m of the k queries are in B and k − m are not

Dimension, Halfspaces, and the Density of Hard Sets 137

in B. We label these queries q̂1, q̂2, . . . , q̂m and r̂1, r̂2, . . . , r̂k−m. Thus x ∈ A iff
q̂i ∈ B for all 1 ≤ i ≤ m and no r̂j ∈ B for all 1 ≤ j ≤ k − m. We can look
at this as the combination of a bounded conjunctive reduction and a bounded
disjunctive reduction, both requiring subexponential time. By Lemma 4.6 and
Lemma 4.8, we can alter these reductions to a single query each to a language
B′ ∈ ELT1. Call these single queries q̂ and r̂. Then x ∈ A iff q̂ ∈ B′ and r̂ /∈ B′.
This transformation can be carried out in subexponential time, so the lemma
follows. �

We are ready to prove the simplified version of our main result.

Theorem 4.11. Pα log n−tt(Pctt(DENSEc
i.o.)) has p-dimension 0.

Proof. Through Lemma 4.4, Lemma 4.6, Lemma 4.10, and Lemma 4.7 respec-
tively, the following holds for each truth-table condition τ :

Pτ (Pctt(DENSEc
i.o.)) ⊆ Pb⊕(Pbc(P1−tt(Pctt(DENSEc

i.o.))))
⊆ Pb⊕(Pbc(P1−tt(Pctt(Rse

m(ELT1)))))
⊆ Pb⊕(Pbc(P1−tt(Rse

ctt(ELT1))))
⊆ Pb⊕(Pbc(P1−tt(Rse

m(ELT1))))
⊆ Pb⊕(Pbc(Rse

1−tt(ELT1)))
⊆ Pb⊕(Rse

τ (ELT1))
⊆ Rse

m(LT1).

With α log n queries for |x| = n, there are 2nα

truth-table conditions. Through
the reduction above, each condition corresponds to a different set of weights ĉn,j ,
1 ≤ j ≤ 2nα

, defining a threshold circuit that is subexponential in size. Let us
say this size is s(n). Thus we can create a single linear threshhold circuit with
weights d̂n = (ĉn,1, ĉn,2, . . . , ĉn,2nα) as the join of all these individual circuits.
The size of this new circuit is 2nα · s(n) ≤ 2nδ

for some δ such that 0 < δ < 1.
Let L ∈ LT1 be the set defined by the weight vectors {d̂n} .

Let A ∈ Pα log n−tt(Pctt(DENSEc
i.o.)). Let g be the α log n-tt reduction, and

suppose that g(x) uses the condition which corresponds to ĉ|x|,j. Let q̂x be
the many-one query corresponding to that condition produced by the reduction
above. Then the reduction f mapping A to L is defined by

f(x) = (0̂(j−1)s(|x|), q̂x, 0̂(2|x|α−(j+1))s(|x|)).

Then x ∈ A iff f(x) ∈ L. It follows that

Pα log n−tt(Pctt(DENSEc
i.o.)) ⊆ R2nα

m (LT1),

which yields the theorem by (1). �

A similar argument yields our main result.

Theorem 4.12. Pα log n−tt(Pctt(DENSEc)) has p-dimension 0.

138 R.C. Harkins and J.M. Hitchcock

Corollary 4.13. E 	⊆ Pα log n−tt(Pctt(DENSEc)).

Theorem 4.12 gives the answer to Lutz and Mayordomo’s question [13].

Corollary 4.14. Pbtt(Pctt(DENSEc)) has p-measure 0.

5 Conclusion

We conclude with a brief remark about the density of hard sets for NP. If NP
has positive p-dimension, then it follows from our results that

NP 	⊆ Pmaj(DENSEc)

and
NP 	⊆ Pα log n−tt(Pctt(DENSEc))

for all α < 1. These conclusions are stronger than what is known from the
hypothesis P 	= NP. If P 	= NP, then NP 	⊆ Pbtt(Pctt(SPARSE)) [2], but nothing
is known about majority reductions.

One direction for further research is to improve the α log n-tt bound in Theo-
rem 4.12. Can the bound be improved to nα-tt? Or ideally, to subsume the main
result in [6], can it be improved to nα-T? A more basic direction is to find more
applications of learning algorithms in resource-bounded measure and dimension.

References

1. Agrawal, M., Arvind, V.: Geometric sets of low information content. Theoretical
Computer Science 158(1–2), 193–219 (1996)

2. Arvind, V., Han, Y., Hemachandra, L., Köbler, J., Lozano, A., Mundhenk, M.,
Ogiwara, A., Schöning, U., Silvestri, R., Thierauf, T.: Reductions to sets of low
information content. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complex-
ity Theory: Current Research, pp. 1–45. Cambridge University Press, Cambridge
(1993)

3. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong di-
mension in algorithmic information and computational complexity. SIAM Journal
on Computing (to appear)

4. Fu, B.: With quasilinear queries EXP is not polynomial time Turing reducible to
sparse sets. SIAM Journal on Computing 24(5), 1082–1090 (1995)

5. Fu, B.: Personal communication (2006)
6. Hitchcock, J.M.: Online learning and resource-bounded dimension: Winnow yields

new lower bounds for hard sets. SIAM Journal on Computing 36(6), 1696–1708
(2007)

7. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: The fractal geometry of complexity
classes. SIGACT News 36(3), 24–38 (2005)

8. Lindner, W., Schuler, R., Watanabe, O.: Resource-bounded measure and learnabil-
ity. Theory of Computing Systems 33(2), 151–170 (2000)

9. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2(4), 285–318 (1987)

Dimension, Halfspaces, and the Density of Hard Sets 139

10. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences 44(2), 220–258 (1992)

11. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra,
L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–254.
Springer, Heidelberg (1997)

12. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32(5),
1236–1259 (2003)

13. Lutz, J.H., Mayordomo, E.: Measure, stochasticity, and the density of hard lan-
guages. SIAM Journal on Computing 23(4), 762–779 (1994)

14. Lutz, J.H., Mayordomo, E.: Twelve problems in resource-bounded measure. Bul-
letin of the European Association for Theoretical Computer Science 68, 64–80
(1999). Current Trends in Theoretical Computer Science: Entering the 21st Cen-
tury, pp. 83–101. World Scientific Publishing, Singapore (2001)

15. Lutz, J.H., Zhao, Y.: The density of weakly complete problems under adaptive
reductions. SIAM Journal on Computing 30(4), 1197–1210 (2000)

16. Maass, W., Turán, G.: How fast can a threshold gate learn? In: Hanson, S.J.,
Drastal, G.A., Rivest, R.L. (eds.) Computational Learning Theory and Natural
Learning Systems. Constraints and Prospects, vol. I, pp. 381–414. MIT Press,
Cambridge (1994)

17. Vaidya, P.M.: A new algorithm for minimizing convex functions over convex sets.
In: Proceedings of the 30th IEEE Symposium on Foundations of Computer Science,
pp. 338–349. IEEE Computer Society Press, Los Alamitos (1989)

Isolation Concepts

for Enumerating Dense Subgraphs

Christian Komusiewicz�, Falk Hüffner��, Hannes Moser� � �,
and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{ckomus,hueffner,moser,niedermr}@minet.uni-jena.de

Abstract. In a graph G = (V, E), a vertex subset S ⊆ V of size k
is called c-isolated if it has less than c · k outgoing edges. We repair a
nontrivially flawed algorithm for enumerating all c-isolated cliques due
to Ito et al. [European Symposium on Algorithms 2005] and obtain an
algorithm running in O(4c · c4 · |E|) time. We describe a speedup trick
that also helps parallelizing the enumeration. Moreover, we introduce
a more restricted and a more general isolation concept and show that
both lead to faster enumeration algorithms. Finally, we extend our con-
siderations to s-plexes (a relaxation of the clique notion), pointing out
a W[1]-hardness result and providing a fixed-parameter algorithm for
enumerating isolated s-plexes.

1 Introduction

Finding and enumerating cliques and clique-like structures in graphs has many
applications ranging from technical networks [9] to social and biological net-
works [1–3]. Unfortunately, clique-related problems are known to be notoriously
hard for exact algorithms, approximation algorithms, and fixed-parameter algo-
rithms [7, 5]. Ito et al. [9] introduced an interesting way out of this quandary by
restricting the search to isolated cliques. Herein, given a graph G = (V, E), a
vertex subset S ⊆ V of size k is called c-isolated if it has less than c · k outgoing
edges. As their main result, Ito et al. [9] claimed an O(4c · c5 · |E|) time algo-
rithm for enumerating all c-isolated cliques in a graph. In particular, this means
linear time for constant c and fixed-parameter tractability with respect to the
parameter c. Unfortunately, the algorithm proposed by Ito et al. [9] suffers from
serious deficiencies1.

� Partially supported by the Deutsche Forschungsgemeinschaft, project OPAL (op-
timal solutions for hard problems in computational biology), NI 369/2.

�� Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

� � � Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-
pression for solving hard network problems), NI 369/5.

1 A later manuscript [8] does not fundamentally resolve the problem.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 140–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Isolation Concepts for Enumerating Dense Subgraphs 141

We start with describing the algorithm of Ito et al. [9] and show that it
does not fulfill the claimed running time bound. Then, we present some new
results that eventually help us to repair Ito et al.’s approach, ending up with an
algorithm that enumerates all c-isolated cliques in O(4c · c4 · |E|) time. We also
observe a speedup trick which seems to have high practical potential and which
allows to parallelize the so far purely sequential enumeration algorithm.

Next, inspired by Ito et al.’s isolation concept, we propose two further isolation
definitions, a weaker (less demanding) and a stronger concept, both practically
motivated. Somewhat surprisingly, we can show that both concepts lead to faster
enumeration algorithms for isolated cliques, improving the exponential factor
from 4c to 2c and 2.44c, respectively.

Finally, we show how to adapt the isolation scenario to the concept of s-
plexes, a relaxation of cliques occurring in social networks analysis [15, 1]. In a
graph G = (V, E), a vertex subset S ⊆ V of size k is called an s-plex if the
minimum degree in G[S] is at least k − s. First, strengthening an NP-hardness
result of Balasundaram et al. [1], we point out that the problem of finding s-
plexes is W[1]-hard with respect to the parameter k; that is, the problem seems
as (parameterized) intractable as Clique is. This motivates our final result, a
fixed-parameter algorithm (the parameter is the isolation factor) for constant s
that enumerates all of one type of maximal isolated s-plexes. As a side result,
here we improve a time bound for a generalized vertex cover problem first studied
by Nishimura et al. [12].

Preliminaries. We consider only undirected graphs G = (V, E) with n := |V |,
m := |E|, V (G) := V , and E(G) := E. Let N(v) := {u ∈ V | {u, v} ∈ E}
and N [v] := N(v)∪{v}. For v ∈ V , let degG(v) := |N(v)|. For A, B ⊆ V, A∩B =
∅, let E(A, B) := {{u, v} | u ∈ A, v ∈ B}. For V ′ ⊆ V , let G[V ′] be the
subgraph of G induced by V ′ and G \ V ′ := G[V \ V ′]. For v ∈ V , let G− v :=
G[V \ {v}]. A set S with property P is called maximal if no proper superset
of S has property P , and maximum if no other set with property P has higher
cardinality.

Parameterized complexity [5, 11] is an approach to finding optimal solutions
for NP-hard problems. The idea is to accept the seemingly inevitable combina-
torial explosion, but to confine it to one aspect of the problem, the parameter.
If for relevant inputs this parameter remains small, then even large problems
can be solved efficiently. More precisely, a problem of size n is fixed-parameter
tractable (FPT) with respect to a parameter k if there is an algorithm solving it
in f(k) · nO(1) time.

Due to the lack of space, most proofs will appear in the full version of this
paper. Some material also appears in [10].

2 Enumerating Isolated Cliques

We begin with describing Ito et al.’s algorithm for enumerating maximal
c-isolated cliques [9]. Given a graph G = (V, E) and an isolation factor c, first
the vertices are sorted by their degree such that u < v ⇒ deg(u) ≤ deg(v). The

142 C. Komusiewicz et al.

index of a vertex is its position in this sorted order. For a vertex set C ⊆ V ,
an outgoing edge is an edge {u, v} with u ∈ C and v /∈ C, and for a ver-
tex v ∈ C, its outgoing edges are the outgoing edges of C that are incident on v.
Let N+[v] := {u ∈ N [v] | u ≥ v} and N−(v) := {u ∈ N(v) | u < v}.

In a c-isolated clique, the vertex with the lowest index is called the pivot of
the clique. Clearly, a pivot has less than c outgoing edges. Since every c-isolated
clique has a pivot, we can enumerate all maximal c-isolated cliques of a graph by
enumerating all maximal c-isolated cliques with pivot v for each v ∈ V and then
removing those c-isolated cliques with pivot v that are a subset of a c-isolated
clique with another pivot.

The enumeration of maximal c-isolated cliques with pivot v for each v ∈ V is
the central part of the algorithm. We call this the pivot procedure. It comprises
three successive stages.

Trimming stage. In this stage, we build a candidate set C that is a superset of
all c-isolated cliques with pivot v. The candidate set C is initialized with N+[v],
and then vertices that obviously cannot be part of a c-isolated clique with pivot v
are removed from C. We refer to Ito et al. [9] for details.

Enumeration stage. In this stage, all maximal c-isolated cliques with pivot v are
enumerated. Let C be the candidate set after the trimming stage, which deleted
d vertices from N+[v]. In total, we can delete only less than c vertices from N+[v],
since otherwise v obtains too many outgoing edges. Therefore, c̃ := c − d − 1
is the number of vertices that we may still remove from C. We can enumerate
cliques C′ ⊆ C of size at least |C| − c̃ by enumerating vertex covers of size at
most c̃ in the complement graph G[C]. Ito et al. propose to enumerate all vertex
covers of size at most c̃ [9]. We point to problems with this approach in Sect. 2.1.

Screening stage. In the screening stage, all cliques that are either not c-isolated or
that are c-isolated but not maximal are removed. First the c-isolation is checked.
Then those cliques that pass the test for isolation are compared pairwise, and we
only keep maximal cliques. Finally, we check each clique that is left for pivot v
against each clique obtained during calls to pivot(u) with u ∈ N−(v), since these
are the only cliques that can be superset of a clique obtained for pivot v. The
claimed overall running time, in the exponential part dominated by this last
step, is then O(4c · c5 · |E|) [9].

2.1 Problems with the Algorithm

The crucial part of the algorithm is the enumeration stage, in which the algo-
rithm enumerates all vertex covers of size less than c̃. The authors argued that
for a graph of size |C|, this can be done in O(1.39c̃ · c̃2 + |C|2) time. In contrast,
Fernau [6] showed that the vertex covers of size exactly k in a graph can be
enumerated in time O(2kk2 +kn) if and only if k is the size of a minimum vertex
cover of the graph and that otherwise no algorithm of running time f(k) · nO(1)

that enumerates all of these vertex covers exists, simply because there are too
many. But in the course of the pivot procedure it may happen that we have to do

Isolation Concepts for Enumerating Dense Subgraphs 143

(a) (b) (c)

v

Fig. 1. Example for the enumeration stage with pivot v. Solid lines are edges between
members of the clique; dashed lines are outgoing edges.

just that: enumerate all vertex covers of size c̃ or less, where c̃ is not the size of
a minimum vertex cover of G[C]. Since this cannot be done in time f(c) · nO(1),
the algorithm does not yield fixed-parameter tractability with respect to the
parameter c.

Figure 1 (a) illustrates such a situation. Consider the case c = 4 with v
as pivot. No trimming takes place. This means that at the beginning of the
enumeration stage, we may still remove up to c̃ = c − 1 = 3 vertices from C
to obtain a c-isolated clique. Since C = N+[v] forms a clique, the graph G[C]
has only one minimum vertex cover, namely the empty set. This means that all
subsets of C \ {v} (v as pivot must not be eliminated from C) of size 3 or less
are vertex covers that we would have to enumerate. Clearly, the number of such
vertex covers is not only dependent on the size of the covers, but also on the size
of N+[v]. In our example, there are 8 such covers, and it is easy to see that we
can increase the number of vertex covers simply by increasing the size of N+[v].

In contrast, enumeration of minimal vertex covers was shown to be inclusion-
minimally fixed parameter enumerable [4]; in particular, all minimal solutions of
size at most c can be enumerated in O(2cc2 + m) time. So running time is not
a problem here; however, we miss some c-isolated cliques when only considering
minimal vertex covers. This is because we cannot simply discard a maximal
clique that violates the isolation condition; it might have some subsets that are
c-isolated. As an example, in Fig. 1 (a), the clique has 4 vertices and 16 outgoing
edges and is thus not 4-isolated. However, two subsets ((b) and (c)) are cliques
with 3 vertices and 11 outgoing edges, and thus are 4-isolated.

2.2 Repairing the Enumeration Stage

To cope with the problems described in Sect. 2.1, we propose a two-step ap-
proach for enumerating all maximal c-isolated cliques. First, we enumerate all
minimal vertex covers and thus obtain maximal cliques in the candidate set C.
Then, to also capture c-isolated cliques that are subsets of non-c-isolated cliques
enumerated this way, for each of these cliques, we enumerate all maximal sub-
sets that fulfill the isolation condition. The problem Isolated Clique Subset

of finding these c-isolated subsets is then: given a graph G = (V, E) and a
clique C ⊆ V , find a set C′ ⊆ C that forms a c-isolated vertex set, that is, a set

144 C. Komusiewicz et al.

procedure isolated-subset(C, c, xmin)

Input: A clique C = {v1, v2, . . . , vk} with vertices sorted by degree, an iso-
lation factor c and a minimum number xmin of outgoing edges from
each vertex.

Output: The set of maximal c-isolated cliques C in C.

1: foreach v ∈ C: x(v) := deg(v) − |C| − 1 − xmin

2: ĉ := c − xmin

3: e(C) := (
∑

v∈C x(v)) − ĉ · |C| + 1
4: D := {∅}, C := ∅
5: repeat ĉ times
6: foreach D ∈ D
7: if C \ D is a c-isolated clique then C := C ∪ {C \ D}
8: else
9: if D = ∅ then i := k + 1 else i := minvl∈D{l}
10: D := D ∪ {D ∪ {vj} | k − ĉ < j < i}
11: D := D \ {D}
12: return C

Fig. 2. Algorithm for enumerating maximal c-isolated subsets of a clique C

with less than c · |C′| outgoing edges. The difficulty is in doing this fast enough,
in particular with the running time depending only polynomially on |C|. For this
(Theorem 1), the key is the following lemma, which reduces the choices of which
vertices to omit from C.

Lemma 1. Given a clique C with |C| = k, every maximal c-isolated subset of C
is a superset of Ck−c+1, where Ck−c+1 is the set of the k − c + 1 vertices with
lowest index in C.

According to Lemma 1, we may only remove vertices from the c − 1 vertices
in C \Ck−c+1 to obtain maximal c-isolated subsets of C. Hence, there are 2c−1

subsets of C \ Ck−c+1, and we enumerate maximal c-isolated subsets of C by
generating the subsets of C\Ck−c+1 in order of increasing cardinality and testing
for each generated set whether its removal from C yields a maximal c-isolated
subset. In this way, we can avoid examining supersets of removal sets for which a
c-isolated clique was already output, since they would yield non-maximal cliques.
The algorithm is shown in Fig. 2. Note that in lines 1–2 we compute an equivalent
instance of Isolated Clique Subset with isolation factor ĉ by decreasing the
number of outgoing edges of each vertex by xmin, where xmin is the minimum
number of outgoing edges from each vertex in C. The computation of line 3
derives the number of outgoing edges above the threshold allowed by the isolation
condition. With this, the condition in line 7 can be tested in constant time. This
is needed to obtain the running time as claimed by the following theorem.

Theorem 1. Given an instance of Isolated Clique Subset with at least xmin

outgoing edges from each vertex, all of the at most O(2c−xmin) maximal solutions
can be enumerated in O(2c−xmin + |C|) time.

Isolation Concepts for Enumerating Dense Subgraphs 145

We now describe how to use Theorem 1 to obtain a correct pivot procedure.
Our modified pivot procedure differs from the original procedure only in the
enumeration stage and in the screening stage. The enumeration stage is divided
into two steps: the enumeration of maximal cliques and the enumeration of
maximal subsets that fulfill the isolation condition for each of those cliques.
Using Theorem 1, we can upper-bound the running time of the enumeration
stage.

Lemma 2. Given a graph G = (V, E), a vertex v ∈ V , a set C ⊆ N+[v], and
an isolation factor c, there are at most 2c−1 · c maximal c-isolated cliques with
pivot v, and they can be enumerated in O(2c · c2 · m(C)) time, where m(C) is
the number of edges in G[C].

In the screening stage, we filter non-maximal cliques by O(4c · c3) pairwise
comparisons. Since the cliques obtained in the enumeration stage have size at
most degG(v), these comparisons can be performed in O(4c · c3 · degG(v)) time.
With the running times of the stages of the pivot procedure for pivot v we can
upper-bound the running time of the whole algorithm:

Theorem 2. All maximal c-isolated cliques of a graph can be enumerated in
O(4c · c3 ·m) time.

2.3 Improved Screening of Cliques

In addition to fixing Ito et al.’s algorithm [9], we present an improved screening
stage. While we can improve the asymptotic running time derived in Theorem 2
only slightly, the improvement facilitates parallelization of the enumeration al-
gorithm and allows an exponential speedup for a variant of isolated clique enu-
meration to be presented in Sect. 3.2. More precisely, instead of a brute-force all-
pairwise comparison, we achieve a simple and efficient test for checking whether
an enumerated clique is subset of a clique with a different pivot.

Lemma 3. A c-isolated clique C with pivot v is subset of a c-isolated clique C′

with pivot u 	= v iff u ∈ N−(v) and N(u) ⊇ C.

Proof. We prove both directions separately. If C′ � C is a clique with pivot u,
then u must be adjacent to all vertices in C, in particular u ∈ N+[v]. Since u is
the pivot of C′, it has lower index than v and thus u ∈ N−(v).

If there is a vertex u ∈ N−(v) that is adjacent to all vertices in C, then C∪{u}
is a clique and a superset of C. It is furthermore c-isolated, since with u we have
added a vertex with less than c outgoing edges (because u < v). Also, u is its
pivot, again because u < v. ��

According to Lemma 3, we can replace the pairwise comparisons between cliques
enumerated in previous calls of the pivot procedure and those of the current call
for pivot v with a simple test that looks for vertices in N−(v) that are adjacent
to all vertices of an enumerated clique. This test takes O(c · |C|) time. Since the
enumerations of cliques for different pivots now run completely independent from

146 C. Komusiewicz et al.

each other, we can parallelize our algorithm by executing the pivot procedures
for different pivot vertices on up to n different processors. Unfortunately, the
asymptotic running time derived in Theorem 2 remains largely unchanged, since
there are still O(4cc2) pairwise comparisons between cliques for a single pivot;
however, we save a factor of c and there is also a conceivable speedup in practice
since we significantly reduce the number of brute-force set comparisons.

3 Alternative Isolation Concepts

Since isolation is not merely a means of developing efficient algorithms for the
enumeration of cliques but also a trait in its own right, it makes sense to consider
varying degrees of isolation. For instance, this is useful for the enumeration of
isolated dense subgraphs for the identification of communities, which play a
strong role in the analysis of biological and social networks [13].

In this context, the definition of c-isolation is not particularly tailored to
these applications and we propose two alternative isolation concepts. One of
them, min-c-isolation, is a weaker notion than c-isolation and the other, max-c-
isolation, is a stronger notion than c-isolation. For both isolation concepts, we
achieve a considerable speedup in the exponential part of the running time.

3.1 Minimum Isolation

Min-c-isolation is a weaker concept of isolation than the previously defined c-
isolation, since we only demand that a set contains at least one vertex with less
than c outgoing edges.

Definition 1. Given a graph G = (V, E) and a vertex set S ⊆ V of size k, S is
min-c-isolated when there is at least one vertex in S with less than c neighbors
in V \ S.

Obviously, every c-isolated set is also min-c-isolated. The enumeration of maxi-
mal min-c-isolated cliques consequently yields sets that are at least as large and
often larger than c-isolated cliques.

The algorithm for the enumeration of maximal min-c-isolated cliques is mainly
a simplification of the algorithm from Sect. 2. However, we lose linear-time solv-
ability in the case of constant isolation factors c—the running time then be-
comes O(n ·m). We use the same pivot definition and enumerate cliques for each
possible pivot; from our definition of min-c-isolation it follows directly that the
pivot of a min-c-isolated clique must have less than c neighbors outside of the
clique. Subsequently, we point out the differences in the three main stages of
the pivot procedure.

In the trimming stage, we start with C := N [v] as candidate set. After trim-
ming, we can assume that every vertex u that was not removed has at least |C|−c
neighbors in C. In the enumeration stage, we simply enumerate minimal vertex
covers in G[C] of size at most c̃, where c̃ is the number of vertices that can
still be removed from the candidate set C. For each enumerated minimal vertex

Isolation Concepts for Enumerating Dense Subgraphs 147

cover D, the set C\D is a maximal min-c-isolated clique. Hence, we need not test
for maximality, but the enumerated cliques might contain a vertex with lower
index than v, since we have not necessarily removed all vertices from N−(v).
If a clique C′ features a vertex with lower index than v, then C′ is removed
from the output. Compared to Theorem 2, the fact that we do not perform any
maximality test results in an improved exponential part of the running time.

Theorem 3. All maximal min-c-isolated cliques of a graph can be enumerated
in O(2c · c ·m + n ·m) time.

3.2 Maximum Isolation

Compared to c-isolation, max-c-isolation is a stronger notion. This results in
most cases in the enumeration of smaller cliques for equal values of c.

Definition 2. Given a graph G = (V, E) and a vertex set S ⊆ V of size k, S is
max-c-isolated if every vertex v ∈ S has less than c neighbors in V \ S.

This isolation concept is especially useful for graphs where the vertices have
similar degrees. Consider for example a graph in which all vertices have the same
degree. Here, the notions c-isolation and max-c-isolation become equivalent for
cliques, but max-c-isolation allows a better worst-case running time.

We apply the algorithm scheme presented in Sect. 2, that is, for every ver-
tex v ∈ V we enumerate all maximal max-c-isolated cliques with pivot v.

Trimming Stage. We compute a candidate set C ⊆ N+[v] by removing every
vertex from N+[v] that cannot be in a maximum max-c-isolated clique with
pivot v.

Enumeration Stage. In this stage, we enumerate max-c-isolated cliques C′ ⊆
C with pivot v. As in Sect. 2, we first enumerate maximal cliques in C via
enumeration of minimal vertex covers of size at most c̃ in G[C], where c̃ is
the number of vertices that can still be removed from the candidate set C. The
cliques thus obtained may violate the isolation condition, since they may contain
vertices with too many outgoing edges. We can restore the isolation condition for
each enumerated clique by simply removing these vertices. This is done until the
resulting clique is either max-c-isolated or we have removed more than c̃ vertices.
In the latter case we discard the clique. The remaining enumerated cliques are
not necessarily maximal, and therefore non-maximal cliques must be removed
from the output in the screening stage.

Screening Stage. There are two possibilities for an enumerated clique C to be
non-maximal. First, it can be proper subset of another max-c-isolated clique
with pivot v. Second, it can be proper subset of a max-c-isolated clique with
pivot u < v. For the first possibility, we test whether there is a set of vertices
D ⊆ N+[v]\C such that C∪D is a max-c-isolated clique. Clearly, D has to form
a clique and all its vertices have to be adjacent to all vertices in C. Furthermore,
whenever D contains a vertex u with degree |C|+ c+x, then |D| must have size

148 C. Komusiewicz et al.

at least x + 1. Otherwise, C ∪D is not max-c-isolated, because u has at least c
outgoing edges from C ∪D. Hence, we test for all 0 ≤ x < c− 1 whether the set

Dx := {w ∈ N+[v] \ C | C ⊆ N(w) ∧ deg(w) ≤ |C|+ c + x}

contains a clique of size at least x+ 1. If this is not the case for any x, then C is
a maximal max-c-isolated clique for pivot v. Otherwise, C is removed from the
output.

It remains to check whether C is a proper subset of a clique with another
pivot u < v. This can be tested in the manner described in Sect. 2.3. The
running time of the pivot procedure is dominated by the first maximality test of
the screening stage. For each of the O(2c) enumerated cliques, we have to solve
Maximum Clique up to c times. Since |Dx| < c for all 0 ≤ x < c− 1, this can
be done in O(1.22c) time [14]. The overall running time of this test is then

O(2c · 1.22c · c) = O(2.44c · c).

The running time of the whole enumeration can be bounded in a similar way as
in Sect. 2.2.

Theorem 4. All maximal max-c-isolated cliques of a graph can be enumerated
in O(2.44c · c ·m) time.

4 Enumerating Isolated s-Plexes

In many applications such as social network analysis, cliques have been criti-
cized for their overly restrictive nature or modelling disadvantages. Hence, more
relaxed concepts of dense subgraphs such as s-plexes [15, 1] are of interest.

An s-plex is a degree-based relaxation of the clique concept. In a graph G =
(V, E), a subset of vertices S ⊆ V of size k is called an s-plex if the minimum
degree in G[S] is at least k − s. It has been shown that the problem of deciding
whether a graph has an s-plex of size k is NP-complete [1]. We strengthen this
by the corresponding parameterized hardness result. The parameter-preserving
reduction from Clique is given in the full version of this paper. It shows that
Maximum s-plex is W[1]-hard with respect to the combined parameter (s, k)
and thus also if parameterized only by either one of s and k. Therefore, as for
Clique, we rather consider isolation as parameter in terms of studying fixed-
parameter tractability.

We present an algorithm for the enumeration of maximal min-c-isolated
s-plexes that runs in FPT time with respect to parameter c for any constant s.
In this paper, we have chosen to consider only min-c-isolation, since the enumer-
ation algorithm is easier to describe with this isolation concept. A min-c-isolated
s-plex S contains at least one vertex that has less than c neighbors in V \ S.
Compared to the enumeration of maximal min-c-isolated cliques, we face two ob-
stacles when enumerating maximal min-c-isolated s-plexes. First, we cannot use
the algorithm for the enumeration of minimal vertex covers, since an s-plex does

Isolation Concepts for Enumerating Dense Subgraphs 149

not necessarily induce an independent set in the complement graph. Instead,
since in an s-plex S of size k every vertex v ∈ S is adjacent to at least k− s ver-
tices, the subgraph induced by S in the complement graph G[S] is a graph with
maximum degree at most s− 1. Consider therefore the following generalization
of a vertex cover:

Definition 3. Given a graph G and a nonnegative integer d, we call a subset
of vertices S ⊆ V a max-deg-d deletion set if G[V \ S] has maximum degree at
most d.

The idea is to enumerate maximal s-plexes in G by enumerating minimal max-
deg-d deletion sets in Ḡ. We present a fixed-parameter algorithm for the enu-
meration of minimal max-deg-d deletion sets that uses the size of the solution
sets as parameter.

Finding a minimum max-deg-d deletion set was also considered by Nishimura
et al. [12], who presented an O((d + k)k+3 · k + n(d + k)) time algorithm for the
decision version. We improve the exponential part of this running time while
also covering the enumeration version. The idea is to pick a vertex v with more
than d neighbors and then branch into d + 2 cases corresponding to the deletion
of v or the deletion of one of the d + 1 first neighbors of v:

Lemma 4. Given a graph G and an integer k, all minimal max-deg-d deletion
sets of size at most k can be enumerated in O((d + 2)k · (k + d)2 + m) time.

The second obstacle lies in the fact that given a pivot vertex v, maximal min-c-
isolated s-plexes with pivot v are not necessarily a subset of N+[v], since they
can contain up to s − 1 vertices that are not adjacent to v. We deal with this
by enumerating all maximal min-c-isolated s-plexes for a given pivot set instead
of a single pivot. The pivot set of a min-c-isolated s-plex is defined as the set
that contains the pivot vertex v of the s-plex and those vertices that belong to
the s-plex but are not adjacent to v. The pivot vertex is defined as the vertex
with lowest index among the vertices with less than c neighbors outside of the
s-plex. There has to be at least one such vertex, since otherwise the condition
of min-c-isolation would be violated, but it does not necessarily have to be the
vertex with the lowest index of all vertices in the s-plex.

The enumeration algorithm also consists of the three stages. In the trimming
stage, we build a candidate set C by removing vertices from N(v) that obviously
cannot belong to a min-c-isolated s-plex with pivot v. For each possible pivot
set P with pivot v, we independently enumerate the maximal min-c-isolated
s-plexes. This is done in the enumeration stage by first building the complement
graph G[C ∪ P] and then enumerating minimal max-deg-(s− 1) deletion sets of
size at most c−1 in G[C ∪ P]. In the screening stage, we first test whether any of
the enumerated min-c-isolated s-plexes contains a vertex u < v, where u has less
than c neighbors outside of the s-plex. Then this s-plex has pivot u and not v
and is therefore removed from the output. Finally we perform a maximality test
and remove non-maximal min-c-isolated s-plexes from the output.

Theorem 5. All maximal min-c-isolated s-plexes of a graph can be enumerated
in O((s + 1)c · (s + c) · ns+1 + n ·m) time.

150 C. Komusiewicz et al.

Thus, for every fixed s, we obtain a fixed-parameter algorithm for enumerating
all maximal min-c-isolated s-plexes with respect to the parameter c.

Acknowledgement. We thank H. Ito and K. Iwama (Kyoto) for making their
manuscript [8] available to us and J. Guo (Jena) for the idea for Lemma 4.

References

1. Balasundaram, B., Butenko, S., Hicks, I.V., Sachdeva, S.: Clique relaxations in
social network analysis: The maximum k-plex problem. Manuscript (2006)

2. Balasundaram, B., Butenko, S., Trukhanovzu, S.: Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization 10(1), 23–39 (2005)

3. Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochem-
istry and genomics. European Journal of Operational Research 173(1), 1–17 (2006)

4. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theoretical Computer Science 351(3), 337–350 (2006)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) CO-
COON 2002. LNCS, vol. 2387, pp. 564–573. Springer, Heidelberg (2002)

7. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1),
105–142 (1999)

8. Ito, H., Iwama, K.: Enumeration of isolated cliques and pseudo-cliques. Manuscript
(August 2006)

9. Ito, H., Iwama, K., Osumi, T.: Linear-time enumeration of isolated cliques. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 119–130. Springer,
Heidelberg (2005)

10. Komusiewicz, C.: Various isolation concepts for the enumeration of dense sub-
graphs. Diplomarbeit, Institut für Informatik, Friedrich-Schiller Universität Jena
(2007)

11. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

12. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algo-
rithms for nontrivial generalizations of vertex cover. Discrete Applied Mathemat-
ics 152(1–3), 229–245 (2005)

13. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

14. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algo-
rithms 7(3), 425–440 (1986)

15. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
Journal of Mathematical Sociology 6(1), 139–154 (1978)

Alignments with Non-overlapping Moves,

Inversions and Tandem Duplications in O(n4)
Time

Christian Ledergerber and Christophe Dessimoz

ETH Zurich, Institute of Computational Science, Switzerland
ledergec@student.ethz.ch, cdessimoz@inf.ethz.ch

Abstract. Sequence alignment is a central problem in bioinformatics.
The classical dynamic programming algorithm aligns two sequences by
optimizing over possible insertions, deletions and substitution. However,
other evolutionary events can be observed, such as inversions, tandem
duplications or moves (transpositions). It has been established that the
extension of the problem to move operations is NP-complete. Previous
work has shown that an extension restricted to non-overlapping inver-
sions can be solved in O(n3) with a restricted scoring scheme. In this
paper, we show that the alignment problem extended to non-overlapping
moves can be solved in O(n5) for general scoring schemes, O(n4 log n)
for concave scoring schemes and O(n4) for restricted scoring schemes.
Furthermore, we show that the alignment problem extended to non-
overlapping moves, inversions and tandem duplications can be solved
with the same time complexities. Finally, an example of an alignment
with non-overlapping moves is provided.

1 Introduction

In computational biology, alignments are usually performed to identify the char-
acters that have common ancestry. More abstractly, alignments can also be rep-
resented as edit sequences that transform one sequence into the other under
operations that model the evolutionary process. Hence, the problem of aligning
two sequences is to find the most likely edit sequence, or equivalently, under an
appropriate scoring scheme, the highest scoring edit sequence.

Historically, the only edit operations allowed were insertions, deletions and
substitutions of characters, which we refer to as standard edit operations. The
computation of the optimal alignment with respect to standard edit operations
is well understood [1], and commonly used. But in some cases, standard edit
operations are not sufficient to accurately model gene evolution. To take into
account observed phenomena such as inversions, duplications or moves (intra-
genic transpositions) of blocks of sequences [2], the set of edit operations must
be extended correspondingly. Such extensions have been studied in the past and
a number of them turned out to be hard [3]. In particular an extension to gen-
eral move operations was shown to be NP-complete [4]. For the simple greedy

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 151–164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 C. Ledergerber and C. Dessimoz

algorithm presented in [4] it was shown by [5] that O(n0.69) is an upper bound
for the approximation factor. An efficient O(log∗ n logn) factor approximation
algorithm for the general problem is presented in [6].

A number of results for the extension of the standard alignment including
block inversions have been achieved. It is shown in [7] that sorting by reversals
is NP-hard, but the complexity of alignment with inversions is still unknown. A
restricted problem of non-overlapping inversions was proposed by [8] who found
an O(n6) algorithm. This result was then further improved by [9,10,11,12] where
[12] obtained an O(n3) algorithm for a restricted scoring scheme.

In this paper, we show that the alignment problem extended with non-
overlapping moves and non-overlapping tandem duplications can be solved ex-
actly in polynomial time, and provide algorithms with time complexity of O(n5)
for general scoring schemes, O(n4 log n) for concave scoring schemes and O(n4)
for restricted scoring schemes.

Since the probability that k independent and uniformly distributed moves
be non-overlapping decreases very rapidly1, this restriction is only of practical
interest for small k, that is, if such events are very rare. Convincing evidence that
this is indeed the case can be found in [13]. They show that protein domain order
is highly conserved during evolution. It is established in [13] that most domains
cooccur with only zero, one or two domain families. Since a move operation of
the more elaborate type such as ABCD → ACBD immediately implies that
B cooccurs with three other domains, we conclude that move operations have
to be rare. Furthermore, exon shuffling is highly correlated to domain shuffling
[14,15,16] and hence cannot lead to a large amount of move operations. Finally, a
number of move operations can be found in the literature [17,18]. As for tandem
duplication events, articles on domain shuffling reveal that the most abundant
block edit operations are tandem duplications where the duplicate stays next to
the original [19,20].

In the next section, we present a rigorous definition of the two alignment
problems solved here: an extension to non-overlapping moves and an extension
to non-overlapping moves, inversions and tandem duplications. Then, we provide
solutions to both problems. The last section presents the experimental results
using the extension to non-overlapping moves.

2 Definition of the Problems and Preliminaries

2.1 Notation and Definitions

In the following, we will denote the two strings to be aligned with S = s1 . . . sn

and T = t1 . . . tm where |S| = n and |T | = m. The i-th character of S is S[i]
and S[i..j] = si+1 . . . sj (note the indices). Thus, if j ≤ i, S[i..j] = λ. By this
definition, S[i..j] and S[j..k] are disjoint. S = sn . . . s1 denotes the reverse of S
and S[i..j] = S[n − j..n − i] is the reverse of a substring, the substring of the
reverse respectively (note the extension of the bar). Let us denote the score of

1 For long sequences, this probability converges to 1
(2k−1)!! = 1

1·3·5···2k−1 .

Alignments with Non-overlapping Moves 153

S1 S2,1 S2,2 S3 S4,1 S4,2 S6,1 S6,2S

T

λ

T1 T2,1 T2,2 T3 T4,1 T4,2 T5 T6,1 T6,2

Fig. 1. Example of a non-overlapping move alignment of S with T

the standard alignment of S with T with δ(S, T). The score for substituting a
character a with character b is denoted by an entry in the scoring matrix σ(a, b).
To simplify the definition of the alignment problems we introduce the concept
of d-decompositions:

Definition 1. Let a d-decomposition of a string S be a decomposition of S in
d substrings such that the concatenation of all the substrings is equal to S. E.g.
S = S1 · · ·Sd. Let Md(S) be the set of all d-decompositions of S.

Note that Si denotes a substring of a d-decomposition while si denotes a char-
acter. Let us further define the cyclic string to string comparison problem as
introduced by [21]:

Definition 2. The cyclic string comparison problem is to find the 2-decomposition
S1S2 ∈ M2(S) and T1T2 ∈ M2(T) such that the score δ(S1, T2) + δ(S2, T1) is
maximal. The optimal score is denoted by δc(S, T).

Due to the symmetry of the problem there exists always a two decomposition of
S = S1S2 such that δc(S, T) = δ(S2S1, T) as proven by [21].

Finally, we assume that the reader is familiar with the concept of edit graphs
as defined for instance in [22] or [23].

2.2 Definition of Alignment with Non-overlapping Moves

Using d-decompositions and the cyclic string to string comparison problem we
can now define the alignment with non-overlapping moves as follows.

Definition 3. The problem of aligning S and T with non-overlapping moves is
to find d ∈ N and d-decompositions of S and T such that the score∑d

i=1 max{δ(Si, Ti), δc(Si, Ti)+σc(lSi1)+σc(lSi2)+σc(lTi1)+σc(lTi2)} is maximal
for all d ∈ N, S1 . . . Sd ∈Md(S) and T1 . . . Td ∈ Md(T). Where lSi1 , lSi2 , lTi1 and
lTi2 are the lengths of the blocks involved in the move operation and σc(l) is a
penalty function for move operations. The optimal score is denoted by δm(S, T).

Note that substrings Si, Ti may be empty. However, a substring needs to have
a length of at least 2 to contain a move. In other words, we align d pairs of
substrings of S and T and allow for each aligned pair of substrings at most one
swap of a prefix with a suffix as defined by the cyclic string comparison problem.
σc(lS1)+σc(lS2)+σc(lT1)+σc(lT2) is a penalty function for such a move operation
and depends on the lengths of the four substrings involved in the move operation.

154 C. Ledergerber and C. Dessimoz

This decomposition in a sum will be required in the algorithm. An example of a
non-overlapping move alignment is shown in Fig. 1. We now introduce different
scoring schemes that will influence the time complexity of the results.

Definition 4. General scoring scheme: the standard alignment of substrings is
done with affine gap penalties, σc(l) is an arbitrary function and the scoring
matrix σ(a, b) is arbitrary. Concave scoring scheme: the standard alignment of
substrings is done with constant indel penalties, σc(l) is a concave function and
the scoring matrix σ(a, b) is arbitrary. Restricted scoring scheme: the standard
alignment of substrings is done with constant indel penalties and σc(l) is a con-
stant. The scoring matrix σ(a, b) is selected such that the number of distinct
values of DIST [i, j] − DIST [i, j − 1] is bounded by a constant ψ. For more
details on the restricted scoring scheme, we refer to [24].

2.3 Definition of Alignment with Non-overlapping Moves,
Inversions and Tandem-Duplications

In favor of simplicity, we assume constant indel penalties and constant penalties
for block operations in the treatment of this problem. However, the scoring
schemes of section 2.2 could be used here as well.

Definition 5. The problem of aligning S and T with non-overlapping moves, re-
versals and tandem duplications is to find d ∈ N and d-decompositions of S and T
such that the score

∑d
i=1 max{δ(Si, Ti), δc(Si, Ti)+σc, δd(Si, Ti)+σd, δr(Si, Ti)+

σr} is maximal for all d ∈ N, S1 . . . Sd ∈ Md(S) and T1 . . . Td ∈ Md(T), where
δd(A, B) = max{δ(AA, B), δ(A, BB)} and δr(A, B) = δ(A, B). Where σc, σd, σr

are penalties for move operations, duplications or reversals respectively. The op-
timal score is denoted by δdrm(S, T).

2.4 Other Preliminaries

The notion of DIST [i, j] arrays as used in [24,25] can be defined as follows.

Definition 6. Let DISTS,T [i, j], 0 ≤ i ≤ j ≤ m denote the score of the optimal
alignment of T [i..j] with S.

Let us further introduce input vectors I, output vectors O and a matrix OUT .

Definition 7. Let OUTS,T [i, j] = I[i]+DISTS,T [i, j]+σc(j−i), 0 ≤ i ≤ j ≤ m.
Then I is an arbitrary vector called input vector and O[j] = maxi OUT [i, j] is
called output vector containing all the column maxima of OUT .

Lemma 1. DISTS,T [i, j] arrays are inverse monge arrays.

The following lemma will become useful in the selection of the parameters.

Lemma 2. If f(l) is concave then fl(j′, j) := f(j − j′), 0 ≤ j′ ≤ m, 0 ≤ j ≤ m
is inverse Monge.

Alignments with Non-overlapping Moves 155

A proof of these lemmas can be found with the definition of inverse Monge in
the Appendix.

Corollary 1. OUTS,T [i, j] = DISTS,T [i, j] + f(j − i) + I[i] is inverse Monge
for f concave and constant indel penalties.

Proof. Due to lemma 1 DISTS,T arrays with constant indel penalties are inverse
Monge. The rest follows from definition 8 and lemma 2 (in Appendix).

Using our observations and the results from [24,25], we can conclude with the fol-
lowing results: (i) For arbitrary penalty functions σc and affine gap penalties as in
the general scoring scheme, we can compute DISTS[0..l],T from DISTS[0..l−1],T

in O(m2) as indicated in the Appendix. Then we can trivially compute the out-
put vector O as in definition 7 in O(m2) time by inspecting all entries. (ii)
For concave functions σc and constant indel penalties as in the concave scoring
scheme, we can compute a representation of DISTS[0..l],T from DISTS[0..l−1],T

in O(m log m) time using the data structure of [25]. Then since OUT is inverse
Monge, we can compute the output vector O by applying the algorithm of [26]
for searching all column maxima in a Monge array to OUT . This algorithm
will access O(m) entries of the array and hence the computation of O will take
O(m log m) time since we can access an entry of DIST in the data structure of
[25] in O(log m) time. (iii) For constant functions σc, constant indel penalties
and a restricted scoring matrix as in the restricted scoring scheme, we can com-
pute a representation of DISTS[0..l],T from DISTS[0..l−1],T in O(m) time due to
section 6 of [25] and then compute the output vector O using the algorithm of
[24] in O(m) time.

Note that the O(m log m) and O(m) results rely heavily on the fact that
DIST arrays are Monge. Since this is not true for affine gap penalties these
results cannot be easily extended to affine gap penalties.

3 Algorithms

3.1 Alignment with Non-overlapping Moves

Let SCOS,T [i, j] be the score of the optimal alignment of S[0..i] and T [0..j] with
non-overlapping moves. Then the following recurrence relation and initialization
of the table will lead to a dynamic programming solution for the problem.

Base Case: SCOS,T [i, 0] = i · σI and SCOS,T [0, j] = j · σI

Recurrence: SCOS,T [i, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

SCOS,T [i, j − 1] + σI

SCOS,T [i− 1, j − 1] + σ(S[i], T [j])
SCOS,T [i− 1, j] + σI

MOV E

156 C. Ledergerber and C. Dessimoz

where

MOV E = max
0≤i′<i,0≤j′<j

{ SCOS,T [i′, j′] + δc(S[i′..i], T [j′..j]) +

σc(lSd1) + σc(lSd2) + σc(lTd1) + σc(lTd2)}

Proof. Let us consider an optimal non-overlapping move alignment of S[0..i]
with T [0..j]. Let Sd and Td be the last substrings of the optimal d-composition
of S[0..i] and T [0..j]. Then there are two cases: (1) Sd and Td are aligned using the
cyclic string comparison or (2) Sd and Td are aligned by the standard alignment.
In case (1), we know that SCOS,T [i, j] = SCOS,T [i′, j′] + δc(Sd, Td) which is
considered in MOV E. In case (2), we are in the usual standard alignment cases.
Hence, we consider all the cases and therefore find the optimal solution.

With the goal of economizing the computation of the table let us rewrite MOV E
as

max
0 ≤ i′ < i′′ < i
0 ≤ j′ < j′′ < j

{SCOS,T [i′, j′] + DISTS[i′′..i],T [j′, j′′] + σc(j′′ − j′) + σc(i− i′′)

+ DISTS[i′..i′′],T [j′′, j] + σc(j − j′′) + σc(i′′ − i′)}.

To compute MOV E for a given i′ and i′′ we can first maximize over j′

and then over j′′. That is, we can first compute the output row of the first
DISTS[i′′..i],T array and then, given that output, compute the output of the
second DISTS[i′..i′′],T array. This leads to the following definitions (illustrated
in Fig. 2).

O1[j′′] = max
0≤j′<j′′

SCOS,T [i′, j′]+DISTS[i′′..i],T [j′, j′′]+σc(j′′−j′)+σc(i−i′′) (1)

O2[j] = max
0≤j′′<j

O1[j′′] + DISTS[i′..i′′],T [j′′, j] + σc(j − j′′) + σc(i′′ − i′) (2)

Given DISTS[i′′..i],T [j′, j′′] and DISTS[i′..i′′],T [j′′, j], O1[j′′] and O2[j] can be
computed efficiently using the results from section 2.4 since both of them are
output vectors as in definition 7.

DP MOVE
1: for all i, j such that 0 ≤ i ≤ n, 0 ≤ j ≤ m do
2: {base case}
3: SCO[i, 0] := i · σI

4: SCO[0, j] := j · σI

5: SCO[i, j] := −∞ if i 	= 0, j 	= 0
6: end for
7: for i from 0 to n do
8: if i ≥ 1 then
9: for j from 1 to m do

10: {standard alignment recurrence}
11: SCO[i, j] := max{SCO[i, j], SCO[i − 1, j] + σI , SCO[i, j − 1] + σI ,

SCO[i− 1, j − 1] + σ(S[i], T [j])}

Alignments with Non-overlapping Moves 157

S

T

0

n

0 m
j′ j′′ j

i

k

l

DISTS[k..l],T [j′, j′′] DISTS[i..k],T [j′′, j]

Fig. 2. An illustration of the computation of a move operation in DP MOVE. Since the
scores are additive: SCO[l, j] = SCO[i, j′] + DISTS[k..l],T [j′, j′′] + DISTS[i..k],T [j′′, j].
In DP MOVE this is maximized for all i < k < l, j′ < j′′ < j.

12: end for
13: end if
14: for k from i to n do
15: {move operations}
16: DISTS[i..k],T := calcDist(DISTS[i..k−1],T)
17: for l from k to n do
18: DISTS[k..l],T := calcDist(DISTS[k..l−1],T)
19: O1 := calcOutput(OUT [j′, j′′] = SCO[i, j′] + DISTS[k..l],T [j′, j′′] +

σc(j′′ − j′) + σc(l − k))
20: O2 := calcOutput(OUT [j′′, j] = O1[j′′] + DISTS[i..k][j′′, j] + σc(j −

j′′) + σc(k − i))
21: for j from 0 to m do
22: SCO[l, j] := max{SCO[l, j], O2[j]}
23: end for
24: end for
25: end for
26: end for

Where calcDist(DISTS[0..l−1],T) computes DISTS[0..l],T from DISTS[0..l−1],T

and calcOutput(OUT [i, j]) computes O as in definition 7.
Correctness. To show the correctness of the algorithm it suffices to show that

we process all edges in the edit graph and whenever we process an edge (u, v) ∈ E
we have completed the computation of the score of u and any of its predecessors
in topological order [22]. The computation of the score of a node u is completed iff
all the incoming edges of u have been processed. This can be proven by induction.
In our edit graph, the only edges are either due to the standard alignment, or
due to move operations, as can be seen in the recurrence. Assuming that when
computing the i-th row of SCO, all edges due to move operations starting in a
row i′ < i have already been processed and the computation of any node (i′, j)
with i′ < i has been completed, we can see that the processing of the edges
due to the standard alignment recurrence ending in the i-th row as done on line
9 to 12 is legitimate. After having processed those edges, we have completed

158 C. Ledergerber and C. Dessimoz

the computation of all edges ending on any node in the i-th row and hence can
compute any edge due to move operations starting on that row which is done
on line 14 to 24. We compute all such edges. Consequently, when we advance to
the computation of row i + 1 the assumption is again true.

Using the results from section 2.4 we can analyze the runtime of the algorithm
and conclude with the following theorem.

Theorem 1. The problem of aligning S and T , |S| = n, |T | = m, with non-
overlapping moves can be solved in O(n3m2) time and O(nm + m2) space for
general scoring schemes, in O(n3m log m) time and O(nm + m2) space for con-
cave scoring schemes and in O(n3m) time and O(nm) space for restricted scoring
schemes.

3.2 Alignment with Non-overlapping Moves, Inversions, and
Tandem Duplications

The dynamic programming recurrence of non-overlapping move operations ex-
tends nicely to this problem.

Base Case: SCOS,T [i, 0] = i · σI and SCOS,T [0, j] = j · σI

Recurrence: SCOS,T [i, j] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SCOS,T [i, j − 1] + σI

SCOS,T [i− 1, j − 1] + σ(S[i], T [j])
SCOS,T [i− 1, j] + σI

MOV E + σc

S DUPLICATE + σd

T DUPLICATE + σd

REV ERSE + σr

where

MOV E = max
0≤i′<i,0≤j′<j

{SCOS,T [i′, j′] + δc(S[i′..i], T [j′..j])}

S DUPLICATE = max
0≤i′<i,0≤j′<j′′<j

{SCOS,T [i′, j′] + δ(S[i′..i], T [j′..j′′])

+δ(S[i′..i], T [j′′..j]}
T DUPLICATE = max

0≤i′<i′′<i,0≤j′<j
{SCOS,T [i′, j′] + δ(S[i′..i′′], T [j′..j])

+δ(S[i′′..i], T [j′..j]}
REV ERSE = max

0≤i′<i,0≤j′<j
{SCOS,T [i′, j′] + δ(S[i′..i], T [j′..j])}

A proof of this recurrence is analogous to the proof for non-overlapping moves
and is omitted.

We have split tandem duplication into tandem duplication of a substring of
S and tandem duplication of a substring of T . We have already shown how
MOV E can be treated and in [11] it is shown how to handle REV ERSE.
S DUPLICATE can be done as follows. We calculate DISTS[i..k]. Then, we

Alignments with Non-overlapping Moves 159

j’ j

i

k

0
T m

0

S

n

j”
j’ j

i

k

l

0
T m

0

S

n

Fig. 3. An illustration on how duplications are treated

first use SCOS,T [i, j′] as input vector for DISTS[i..k] to get O1[j′] and then use
O1[j′] as input for DISTS[i..k] to get O2[j]. T DUPLICATE can be computed
by computing the output vector of DISTS[i..k],T [j′, j] + DISTS[k..l],T [j′, j] for
the input vector SCOS,T [i, j′]. Note, that this array is well defined and is again
inverse Monge because it is a sum of two inverse Monge arrays. Using these
observations which are illustrated in Fig. 3 we can now present our algorithm
for this problem.

DP MOVE INV DUPL

1: {initialize the table as in DP MOVE}
2: for i from 0 to n do
3: {compute REVERSE as done in [12]}
4: {compute the standard alignment recurrence as in DP MOVE}
5: {treat MOVE as done in DP MOVE}
6: for k from i to n do
7: {duplication}
8: DISTS[i..k],T := calcDist(DISTS[i..k−1],T)
9: O1 := calcOutput(OUT [j′, j′′] = SCO[i, j′] + DISTS[i..k],T [j′, j′′])

10: O2 := calcOutput(OUT [j′′, j] = O1[j′′] + DISTS[i..k],T [j′′, j])
11: for l from k to n do
12: DISTS[k..l],T := calcDist(DISTS[k..l−1],T)
13: O := calcOutput(OUT [j′, j] = SCO[i, j′] + DISTS[i..k],T [j′, j] +

DISTS[k..l],T [j′, j])
14: for j from 0 to m do
15: SCO[l, j] := max{SCO[l, j], O[j] + σd, O2[j] + σd}
16: end for
17: end for
18: end for
19: end for

A proof of the correctness of the algorithm is analogous to the proof for
DP MOVE. This proof however reveals that it is important to process edges due
to REVERSE before the standard alignment recurrence.

160 C. Ledergerber and C. Dessimoz

Theorem 2. The problem of aligning S and T with non-overlapping moves,
reversals and tandem duplications can be solved in O(n3m2) time and O(nm +
m2) space for general scoring schemes, in O(n3m log m) time and O(mn + m2)
space for concave scoring schemes and in O(n3m) time and O(nm) space for
restricted scoring schemes, where n = |S| and m = |T |.

4 Implementation and Experiments

We have implemented an O(n5) version of the algorithm with constant gap
penalties in C2. This implementation has proven useful for aligning sequences
of up to about 400 AA, taking a few hours to compute the alignment. We have
tested the algorithm on real data and were able to confirm a number of examples
found in [2]. In addition we run the algorithm on an example found in [18].
This alignment is shown in figure 4 and is compared with a standard alignment
obtained from Darwin [27].

DP_MOVE
Seq1: RPSTVPLP_NTQ__A_LAMA_[GTAYKGYVKVP_KPTGVK_KGWQRAYAVVCDCKLFLYDLPEGK_STQPGVIASQVLDLRDDEFAVSSVLA
Seq2: LSSADNDPEDSQHSSLLSLTQ[DSVFEGWLSVPNKQNRRRGHGWKRQYVIVSSRKIIFYNSDIDKHNTTDAVL___ILDL_SKVYHVRSVTQ

Seq1: SDVIHATRRDIPCIFRVT_ASLLG_S__PSKTSSL_L_ILTENENEKRK|GP_KPKAHQF_SIKSFPSPTQCSHCTSLMVGLIR__QGYACE
Seq2: GDVIRADAKEIPRIFQLLYAGE_GASHRPDEQSQLDVSVLHGNCNEERP|GTIVHKGHEFVHI_TYHMPTACEVCPKPLWHMFKPPAAYECK

Seq1: VCAFSCHVSCKDS_APQV_CPIPPE_QSKRP___LGVDVQ_RGI]WVGILEGLQAILHKNRLRSQVV_HVAQEAYD_S_SLPLI
Seq2: RCRNKIHKEHVDKHDPLAPCKLNHDPRSARDMLLLAATPEDQSL]WVARL__LKRI_QKSGYKAASYNNNSTDGSKISPSQSTR

DARWIN
Seq1: RPSTVPLPNTQALAMAGPKPKAHQFSIKSFPSPTQCSHCTSLMVGLIRQGYACEVCAFSCHVSCKDSAPQVCPIPPEQSKRPLGVDVQRGIG
Seq2: ____________LSSADNDPEDSQHS__SLLSLTQ__D

Seq1: TAYKGYVKVPKPTGVKK__GWQRAYAVVCDCKLFLY__DLPEGKSTQPGVIASQVLDLRDDEFAVSSVLASDVIHATRRDIPCIFRV_____
Seq2: SVFEGWLSVPNKQNRRRGHGWKRQYVIVSSRKIIFYNSDIDKHNTTD____AVLILDL_SKVYHVRSVTQGDVIRADAKEIPRIFQLLYAGE

Seq1: ___TASLLGS
Seq2: GASHRPDEQSQLDVSVLHGNCNEERPGTIVHKGHEFVHITYHMPTACEVCPKPLWHMFKPPAAYECKRCRNKIHKEHVDKHDPLAPCKLNHD

Seq1: PSKTSSLLILTENENEKRKWVGIL______EGLQAILHKNRLRSQVVHVAQEAYDSSLPLI
Seq2: PRSARDMLLLAATPEDQSLWVARLLKRIQKSGYKAASYNNN______STDGSKISPSQSTR

Fig. 4. An example found in [18]. In this figure we compare an alignment computed
with our new algorithm and an alignment done with Darwin [27]. The brackets ’[’ and
’]’ indicate the boundary of the substrings containing a move operation and ’|’ marks
the position of the split. Seq1: Q7TT49 AA 1005-1241; Seq2: Q9VXE3 AA 1112-1367.
Using the annotation of SMART we have marked the domains involved in the move
operation. Pleckstrin homology phospholipid binding domain is shown in blue, protein
kinase C-type diacylglycerol binding domain is shown in yellow.

5 Conclusions

In this paper, we have presented a number of new alignment problems extending
the notion of non-overlapping inversions to non-overlapping moves and tandem
duplications. For all of them we found algorithms that solve the problems exactly
and can be implemented to run in O(n2) space and O(n5), O(n4 log n) or O(n4)
2 Available from the authors upon request.

Alignments with Non-overlapping Moves 161

time depending on the scoring scheme used. We believe that this approach may
yield new insights by finding the best alignment of two sequences, and think that
it is justifiable due to the rarity of such events in nature. Using the implemen-
tation of the O(n5) variant of the algorithm, we were able to align previously
identified cases of pairs of sequences with move operations. Furthermore, these
experiments also showed the necessity of an O(n4 log n) implementation to be
applicable to large sequences, which are more likely to contain a move.

Acknowledgments

We thank Manuel Gil, Gaston H. Gonnet, Gina M. Cannarozzi and three anony-
mous referees for helpful critiques and discussions.

References

1. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–
453 (1970)

2. Fliess, A., Motro, B., Unger, R.: Swaps in protein sequences. Proteins. 48(2), 377–
387 (2002)

3. Lopresti, D., Tomkins, A.: Block edit models for approximate string matching.
Theor. Comput. Sci. 181(1), 159–179 (1997)

4. Shapira, D., Storer, J.A.: Edit distance with move operations. In: Apostolico, A.,
Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 85–98. Springer, Heidelberg
(2002)

5. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common
string partition problem. ACM Trans. Algorithms 1(2), 350–366 (2005)

6. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. In: SODA ’02. Proceedings of the thirteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, Philadelphia, PA. Society for Industrial and Applied
Mathematics, pp. 667–676. ACM Press, New York (2002)

7. Caprara, A.: Sorting by reversals is difficult. In: RECOMB ’97. Proceedings of
the first annual international conference on Computational molecular biology, pp.
75–83. ACM Press, New York (1997)

8. Schoeninger, M., Waterman, M.S.: A local algorithm for dna sequence alignment
with inversions. Bull. Math. Biol. 54(4), 521–536 (1992)

9. Chen, Z.Z., Gao, Y., Lin, G., Niewiadomski, R., Wang, Y., Wu, J.: A space-efficient
algorithm for sequence alignment with inversions and reversals. Theor. Comput.
Sci. 325(3), 361–372 (2004)

10. do Lago, A.P., Muchnik, I.: A sparse dynamic programming algorithm for align-
ment with non-overlapping inversions. Theoret. Informatics Appl. 39(1), 175–189
(2005)

11. Alves, C.E.R., do Lago, A.P., Vellozo, A.F.: Alignment with non-overlapping in-
versions in o(n3 log n) time. In: Proceedings of GRACO 2005. Electronic Notes in
Discrete Mathematics, vol. 19, pp. 365–371. Elsevier, Amsterdam (2005)

12. Vellozo, A.F., Alves, C.E.R., do Lago, A.P.: Alignment with non-overlapping in-
versions in o(n3)-time. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS
(LNBI), vol. 4175, pp. 186–196. Springer, Heidelberg (2006)

162 C. Ledergerber and C. Dessimoz

13. Apic, G., Gough, J., Teichmann, S.A.: Domain combinations in archaeal, eubacte-
rial and eukaryotic proteomes. J. Mol. Biol. 310(2), 311–325 (2001)

14. Kaessmann, H., Zöllner, S., Nekrutenko, A., Li, W.H.: Signatures of domain shuf-
fling in the human genome. Genome Res. 12(11), 1642–1650 (2002)

15. Liu, M., Walch, H., Wu, S., Grigoriev, A.: Significant expansion of exon-bordering
protein domains during animal proteome evolution. Nucleic Acids Res. 33(1), 95–
105 (2005)

16. Vibranovski, M.D., Sakabe, N.J., de Oliveira, R.S., de Souza, S.J.: Signs of ancient
and modern exon-shuffling are correlated to the distribution of ancient and modern
domains along proteins. J. Mol. Evol. 61(3), 341–350 (2005)

17. Bashton, M., Chothia, C.: The geometry of domain combination in proteins. J.
Mol. Biol. 315(4), 927–939 (2002)

18. Shandala, T., Gregory, S.L., Dalton, H.E., Smallhorn, M., Saint, R.: Citron kinase
is an essential effector of the pbl-activated rho signalling pathway in drosophila
melanogaster. Development. 131(20), 5053–5063 (2004)

19. Andrade, M.A., Perez-Iratxeta, C., Ponting, C.P.: Protein repeats: structures, func-
tions, and evolution. J. Struct. Biol. 134(2-3), 117–131 (2001)

20. Marcotte, E.M., Pellegrini, M., Yeates, T.O., Eisenberg, D.: A census of protein
repeats. J. Mol. Biol. 293(1), 151–160 (1999)

21. Maes, M.: On a cyclic string-to-string correction problem. Inf. Process. Lett. 35(2),
73–78 (1990)

22. Myers, E.W.: An overview of sequence comparison algorithms in molecular biology.
Technical Report 91-29, Univ. of Arizona, Dept. of Computer Science (1991)

23. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: computer science and
computational biology. Press Syndicate of the University of Cambridge, Cambridge
(1997/1999)

24. Landau, G.M., Ziv-Ukelson, M.: On the common substring alignment problem. J.
Algorithms 41(2), 338–354 (2001)

25. Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their applica-
tion to finding all approximate repeats in strings. SIAM J. Comput. 27(4), 972–992
(1998)

26. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2(1), 195–208 (1987)

27. Gonnet, G.H., Hallett, M.T., Korostensky, C., Bernardin, L.: Darwin v. 2.0: An
interpreted computer language for the biosciences. Bioinformatics 16(2), 101–103
(2000)

28. Monge, G.: Déblai et remblai. Mémoires de l’Académie Royale des Sciences (1781)

Appendix

Monge Properties

For a proof of lemma 1 and lemma 2 we have to define the notion of Monge
arrays [28] first:

Definition 8. A matrix M [0 . . . n; 0 . . .m] is Monge if for all i = 1 . . . n, j =
1 . . .m

M [i, j] + M [i− 1, j − 1] ≤M [i− 1, j] + M [i, j − 1]

and it is called inverse Monge if for all i = 1 . . . n, j = 1 . . .m

M [i, j] + M [i− 1, j − 1] ≥M [i− 1, j] + M [i, j − 1]

Alignments with Non-overlapping Moves 163

Then the proof for lemma 2 goes as follows.

Proof

fl(j′ − 1, j − 1) + fl(j′, j) = 2f(j − j′)

≥ 2
f(j − j′ − 1) + f(j − j′ + 1)

2
= fl(j′ − 1, j) + fl(j′, j − 1)

Where the inequality follows from the definition of concave. A function f is
concave iff f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y) holds for all x, y ∈ R, t ∈ [0, 1].
In other words every point on a secant is below the function. In the proof we
used t = 1/2 as shown in Fig. 5.

f(j − j′ − 1)
f(j − j′)

f(l)

lj − j′ − 1 j − j′ j − j′ + 1

f(j − j′ + 1)

Fig. 5. For concave functions any point on a secant is below the function

Note that if any three points f(j − 1), f(j), f(j + 1), 0 < j < m are not in
concave position the resulting array will not be inverse Monge. That is, lemma
2 holds with equivalence if we restrict the definition of concave to values in
{0 . . .m + 1} ⊆ N.

The proof for Lemma 1 is analogous to the proof in [25].

Proof The paths represented by DISTS,T [i− 1, j] and DISTS,T [i, j− 1] have to
cross properly in a vertex v as shown in figure 6. Therefore, we have

DISTS,T [i− 1, j] + DISTS,T [i, j − 1] = (a + b) + (c + d)
= (a + d) + (b + c)
≤ g + f

= DISTS,T [i, j] + DISTS,T [i− 1, j − 1]

where the inequality follows from a+d ≤ f and b+c ≤ g. Where a+d ≤ f holds
since a + d is the length of a path from (0, i− 1) to (n, j − 1) and the optimal
path of length f can only be longer and analogously b + c ≤ g.

In figure 6 2) a counter example for affine gap penalties is given. This is a counter
example because the total number of gaps on the paths from (0, i) to (n, j − 1)
and (0, i − 1) to (n, j) is smaller than the total number of gaps on the paths
from (0, i) to (n, j) and (0, i− 1) to (n, j − 1). Hence DISTS,T arrays cannot be
monge for large initial penalties.

164 C. Ledergerber and C. Dessimoz

(0, i− 1) (0, i)

(n, j)(n, j − 1)

v

a

b
d

c

f

g

(0, i− 1) (0, i)

(n, j)(n, j − 1)

1) 2)

Fig. 6. 1) illustrates that the path from vertex (0, i) to (n, j − 1) and the path from
vertex (0, i− 1) to (n, j) in the grid graph have to cross in a common vertex v. 2) gives
a counter example for affine gap penalties.

Extension of DIST Arrays

This simple algorithm is inspired by [25]. It is repeated here to provide an idea
on how to extend our algorithms to affine gap penalties.

For the base cases we observe that DISTS,T [i, j] = BS,T [i..j][n, j − i] in
particular for constant indel penalties DISTS[0..0],T [i, j] = (j − i) · σI and
DISTS[0..l],T [i, i] = l · σI .

By mapping the standard alignment recurrence to DIST arrays we obtain:

DISTS[0..l],T [i, j] = max

⎧
⎨

⎩

DISTS[0..l−1],T [i, j] + σI

DISTS[0..l−1],T [i, j − 1] + σ(S[l], T [j])
DISTS[0..l],T [i, j − 1] + σI

Therefore, we can compute DISTS[0..l],T given DISTS[0..l−1],T in O(m2) time.
This recurrence can be extended to include affine gap penalties by mapping the
more complicated recurrence for the standard alignment with affine gap penalties
to DIST arrays.

Counting Minimum Weighted Dominating Sets

Fedor V. Fomin and Alexey A. Stepanov

Department of Informatics, University of Bergen, PO Box 7803, 5020 Bergen, Norway
fomin@ii.uib.no, ljosha@ljosha.org

Abstract. We show how to count all minimum weighted dominating
sets of a graph on n vertices in time O(1.5535n). Our algorithm is a com-
bination of branch and bound approach along with dynamic program-
ming on graphs with bounded treewidth. To achieve O(1.5535n) bound
we introduce a technique of measuring running time of our algorithm by
combining measure and conquer approach with linear programming.

1 Introduction

The story of exact (exponential-time) algorithms for hard problems dates back
to the sixties and seventies but especially the last decade has seen a growing
interest in new techniques for such type of algorithms. We refer to the following
recent surveys [8,21,23] for an overview of the field.

Counting problem is a natural extension of a decision problem, where instead
of deciding on the existence of a solution, the task is to find the number of
solutions. Valiant [22] defined the class #P and showed that computing the
permanent is #P-complete. Many NP-complete as well as some problems in P
can have their counting versions to be #P-hard. In particular, counting minimum
dominating set is #P-hard [14] even when restricted to planar instances. There
is a lot of research going on counting problems and the complexity class #P.
(See the book by Jerrum [15] for an introduction.)

While exact algorithms for many NP-complete decision problems were stud-
ied quite intensively, there are not so many results on exact algorithms for
#P-complete problems in the literature. For a long time the only known ex-
act algorithm for an #P-complete problem was time 2n · nO(1) counting perfect
matching in bipartite graph algorithm due to Ryser [20]. There are known exact
algorithms for different counting versions of satisfiability problem like counting
maximum weighted models for 2SAT and 3SAT [5,11,24], CSP [1], and counting
maximum weighted independent sets [4,6].

The principle of inclusion and exclusion was used by Karp [16] to solve many
counting problems such as Hamiltonian path, sequencing and bin packing. Lately,
Bax and Franklin [2] generalized this technique to the finite-difference approach
and obtained algorithms for counting paths and cycles of a given length in a
directed graph. Very recently time 2n · nO(1) algorithm computing chromatic
polynomial (counting all k-colorings for each k) was obtained in [3,17].

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 165–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

166 F.V. Fomin and A.A. Stepanov

Previous results. The dominating set problem is one of the classical NP-
complete graph optimization problem which fits into the broader class of dom-
ination and covering problems. Hundreds of papers have been written on them
(see e.g. the survey [13] by Haynes et al.). Recently, several groups of authors
independently obtained exact algorithms that solve minimum dominating set
problem in a graph on n vertices faster than the trivial 2n · nO(1)-time brute
force algorithm [10,12,19]. The fastest known algorithm computes a minimum
dominating set of a graph in time O(1.5137n) [7]. The algorithm from [7] cannot
be used to compute a dominating set of minimum weight (in a weighted graph),
however, as it was observed in [9], the problem can be solved in time O(1.5780n)
by similar techniques. In the same paper it was shown that all minimal dominat-
ing sets can be listed in time O(1.7697n) (later improved to O(1.7170n)), which
implies that minimum dominating sets can be counted in this time.

Our results. In this paper we give an algorithm that counts minimum weight
dominating sets in a weighted graph on n vertices in time O(1.5535n). The basic
idea is as follows: First we turn the instance of the dominating set problem to
the instance of a set cover problem (this is the idea used by Grandoni [12] for
decision problem) and perform branching on large sets and sets of size three
containing elements of high degree. When branching is complete, we turn the
instance of set cover into an instance of red/blue domination on bipartite graphs
and use dynamic programming to count all solutions.

The novel and the most difficult part of the paper is the analysis of the
algorithm. To analyze the running time we need to investigate the behavior of
the pathwidth of a graph as a function of the measure of the corresponding
set cover instance. The difficulty here is to find the measure of the problem
that “balances” branching and dynamic programming parts of the algorithm.
To choose the right measure we express the bounds on pathwidth as a linear
program.

Combining branching with dynamic programming is a general approach that
works for many decision and counting problems [6,18] and our technique can be
used to improve the analysis of many algorithms of this type.

Finally, let us remark that the running time O(1.5535n) of our algorithm
counting weight dominating sets is even (slightly) better than the running time
of the minimum weighted dominating set algorithm from [9].

2 Preliminaries

Let G = (V, E) be an n-vertex undirected, simple graph without loops. We
denote by Δ(G) the maximum vertex degree in G. For a vertex v ∈ V we denote
the set of its neighbors by N(v) and its closed neighborhood by N [v] = N(v)∪{v}.

A set D ⊆ V is called a dominating set for G if every vertex from V is either
in D, or adjacent to some vertex in D. Given a weight function w : V −→ R+ the
Minimum Weighted Dominating Set problem (MWDS) asks to find a dominating
set D ⊆ V of minimum weight w(D) =

∑
v∈D w(v). We denote by #MWDS the

Counting Minimum Weighted Dominating Sets 167

counting version of MWDS where the objective is to count all dominating sets of
minimum weight.

Let U be a set of elements and S be a collection of non-empty subsets of
U . Given a weight function w : S −→ R+ the Minimum Weighted Set Cover
problem (MWSC) asks to find a subset S∗ ⊆ S of minimum weight w(S∗) =∑

S∈S∗ w(S) which covers U ; that is,
⋃

S∈S∗

S = U .

We denote by #MWSC the problem of counting set covers of minimum weight.
The frequency of an element u ∈ U is the number of sets S ∈ S in which u is

contained. We denote it by freq(u).
#MWDS can be reduced to #MWSC by imposing U = V and S = {N [v] | v ∈ V }.

Given a weight function w(v) for MWDS we define weight for S ∈ S as follows.

w(S) = w(S = {N [v] | v ∈ V }) = w(v).

Thus D is a dominating set of G if and only if {N [v] | v ∈ D} is a set cover of
{N [v] | v ∈ V }.

We also need a reduction from MWSC to a version of weighted dominating set
problem called minimum red/blue weighted dominating set (RBWDS) problem. For
a bipartite graph G = (V, E) with a bipartition V = VRed ∪ VBlue and a weight
function w : V −→ R+, a subset D ⊆ VRed is red-blue dominating set if every
vertex in VBlue is adjacent to a vertex of D. RBWDS problem is to determine the
minimum weight of a red/blue dominating set in G.

With an instance (U ,S, w) of MWSC one can associate an incidence graph GS ,
which is a bipartite graph on a vertex set S ∪ U with a bipartition (S,U), and
vertices S ∈ S and u ∈ U are adjacent if and only if u is an element of S. Let us
observe, that S has a cover of weight k if and only if its incidence graph has a
red-blue (with VRed = S and VBlue = U) dominating set of weight k.

Let G = (V, E) be a graph. A tree decomposition of G is a pair 〈{Xi | i ∈
I}, T 〉, where each Xi is a subset of V , called a bag, and T is a tree with the
elements of I as vertices. The following three properties must hold:

1.
⋃

i∈I Xi = V .
2. For every edge (u, v) ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.
3. For all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi∩Xk ⊆ Xj .

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth
of G is the minimum k such that G has a tree decomposition of width k. A
tree decomposition is called a path decomposition if T is a path. Accordingly,
the pathwidth of G is the minimum k such that G has a path decomposition of
width k. We denote by pw(G) the pathwidth of G.

We need the following result which can be obtained by a standard dynamic
programming techniques.

Lemma 1. All minimum red/blue weighted dominating sets of a bipartite graph
G on n vertices with bipartition (VRed, VBlue) given together with its path decom-
position of width at most p can be counted in time O(2pn).

168 F.V. Fomin and A.A. Stepanov

3 Algorithm for Counting Minimum Weighted Set Covers

We consider a recursive algorithm countMWSC for solving #MWSC. The algorithm
depends on the following observation.

Lemma 2. For a given instance of (S, w), if there is an element u ∈ U(S) that
belongs to a unique S ∈ S, then S belongs to every set cover.

Input: A collection on sets S and a weight function w : S → R+.
Output: A couple (weight,num) where weight is the minimum weight of a set

cover of S and num is the number of different set covers of this weight.
if |S| = 0 then1

return (0,1);2

if ∃u ∈ U(S) : freq(u) = 1, Let u ∈ S′ then3

return countMWSC(remove(S′, S), w);4

Pick S ∈ S of maximum cardinality;5

if |S| ≤ 3 and for every S ∈ S the degree of all its elements is at most 6 then6

return countPW(S , w);7

else8

(win, nin) = countMWSC(remove(S, S), w);9

(wout, nout) = countMWSC(S \ {S}, w);10

win = win + w(S);11

if win < wout then12

return (win, nin);13

else if win = wout then14

return (win, nin + nout);15

else16

return (wout, nout);17

Fig. 1. countMWSC(S , w)

Let us go through the algorithm countMWSC; see Figure 1. First, if |S| = 0
then the size of MWSC is 0 and the number of such set covers is 1. Otherwise (lines
3–4), the algorithm tries to reduce the size of the problem by checking whether
condition of Lemma 2 is applicable. Specifically, if there is an element u ∈ S′ of
frequency one, then we should put S′ into minimum set cover. Thus we remove
S′ and all its elements from the other sets S ∈ S. Namely remove(S′,S) =
{Z | Z = S \ S′, S ∈ S}.

If the condition of Lemma 2 does not apply, then we take a set S ∈ S of
maximum cardinality. If |S| ≤ 3 and for every S ∈ S the degree of all its
elements is at most 6 then we solve the problem with the algorithm countPW.
We discuss this algorithm and its complexity later.

Otherwise we branch on the following two subproblems. First subproblem
(remove(S,S),w) corresponds to the case where S belongs to the minimum set
cover. Whereas in (S \ {S}, w) subproblem S does not belong to the minimum
set cover.

Counting Minimum Weighted Dominating Sets 169

And finally we compare the weights of two subproblems and return total
weight and number (lines 12–17).

The function countPW computes a minimum set cover for a specific instance
(S, w). Namely, S consists of sets with cardinalities at most 3 and for every
S ∈ S the degree of all its elements is at most 6. For such a set S, the function
countPW does the following.

– Constructs the incidence graph GS of S;
– Counts the number of minimum red/blue dominating sets in GS (to perform

this step, we construct a path decomposition of GS and perform dynamic
programming algorithm described in Lemma 1);

– Counts the number of minimum set covers of S from the number of red/blue
dominating sets of GS .

4 Analysis of countMWSC Algorithm

In this section we show that the running time of the algorithm countMWSC is
O∗(1.2464|S|+|U|). The analysis is based on Measure & Conquer technique [8,7].
The analysis of the branching part of the algorithm is quite similar to analysis
from [7].

Let ni be the number of subsets S ∈ S of cardinality i and let mj be the
number of elements u ∈ U of frequency j. We use the following measure k = k(S)
of the size of S:

k(S) =
∑

i≥1

wini +
∑

j≥1

vjmj,

where the weights wi, vj ∈ (0, 1] will be fixed later. Note that k ≤ |S|+ |U|. Let

Δwi = wi − wi−1, if i ≥ 2 and Δvi =

{
vi − vi−1, if i ≥ 3,

v2, if i = 2.

Intuitively, Δwi(Δvi) is a reduction of the size of the problem corresponding to
the reduction of the cardinality of a set (the frequency of an element) from i to
i − 1. Note that this also holds for Δv2, because the new element of frequency
one introduced is removed before next branching. And thus we get the total
reduction 1− (1− v2) = v2.

Theorem 1. Algorithm countMWSC solves #MWSC in time O∗(1.2464|S|+|U|).

Proof. In order to simplify the running time analysis, we make the following
assumptions:

– v1 = 1;
– wi = 1 for i ≥ 6 and vi = 1 for i ≥ 6;
– 0 ≤ Δwi ≤ Δwi−1 for i ≥ 2.

170 F.V. Fomin and A.A. Stepanov

Note that this implies wi ≥ wi−1 for every i ≥ 2.
Let Ph(k) be the number of subproblems of size h ∈ {0, . . . , k}, solved by

countMWSC to solve a problem of size k. Clearly, Pk(k) = 1. Consider the case
h < k (which implies |S| 	= 0). If one of the condition in line 3 of the algorithm
holds, we remove one set from S. Thus the reduction of size of the problem is
at least w1 (worst case, |S| = 1) and Ph(k) ≤ Ph(k − w1). Otherwise, let S be
the subset selected in line 5. If |S| ≤ 3 and for every S ∈ S the degree of all its
elements is at most 6 (line 6), no subproblem is generated. Otherwise, we branch
on two subproblems Sout = (wout, nout) and Sin = (win, nin).

Consider subproblem Sout. It corresponds to the case where S does not belong
to the set cover. The size of Sout decreases by w|S| because of the removal of S.
Let mi be the number of elements of S with frequency i. Note that there cannot
be elements of frequency 1. Consider an element u ∈ S with frequency i ≥ 2.
When we remove S, the frequency of u decreases by one. Thus, the size of the
subproblem decreases by Δvi. The overall reduction due to the reduction of the
frequencies is at least

∑

i≥2

miΔvi =
6∑

i=2

miΔvi.

Finally, the total reduction of the size of Sout is

w|S| +
6∑

i=2

miΔvi.

Now consider the subproblem Sin. The size of Sin decreases by w|S| because
of the removal of S. Since we also remove all elements from S, we also get the
reduction of size

∑

i≥2

mivi =
6∑

i=2

mivi + m≥7.

Here m≥7 is the number of elements with frequency at least 7. Let S′ be the set
sharing element u with S (S′ ∩ S 	= ∅). Note that |S′| ≤ |S|. When we remove
u, the cardinality of S′ is reduced by one. This implies the reduction of size Sin

by Δw|S′| ≥ Δw|S|. Thus the overall reduction of the size of Sin due to the
reduction of the cardinalities of the sets S′ is at least

Δw|S|
∑

i≥2

(i− 1)mi ≥ Δw|S|(
6∑

i=2

(i− 1)mi + 6 ·m≥7).

Finally, the total reduction of the size of Sin is

w|S| +
6∑

i=2

mivi + m≥7 + Δw|S|(
6∑

i=2

(i− 1)mi + 6 ·m≥7).

Counting Minimum Weighted Dominating Sets 171

Putting all together, for all possible values of |S| ≥ 3 and for all values mi

such that
6∑

i=2

mi + m≥7 = |S|,

(except if |S| = 3, then we choose only those sets of mi where m≥7 	= 0) we have
the following set of recursions

Ph(k) ≤ Ph(k −Δkout) + Ph(k −Δkin),

where

Δkout = w|S| +
6∑

i=2

miΔvi,

Δkin = w|S| +
6∑

i=2

mivi + m≥7 + Δw|S|(
6∑

i=2

(i− 1)mi + 6 ·m≥7).

Since Δw|S| = 0 for |S| ≥ 7, we have that each recursion with |S| ≥ 8 is “dom-
inated” by some recurrence with |S| = 7. Thus we restrict our attention only to
the cases 3 ≤ |S| ≤ 7. We need to consider a large number of recursions (1653).
For every fixed 9-tuple (w1, w2, w3, w4, w5, v2, v3, v4, v5) the number Ph(k) is up-
per bounded by αk−h, where α is the largest number from the set of real roots
of the set of equations

αk = αk−Δkout + αk−Δkin

corresponding to the different combinations of values |S| and mi. Thus to esti-
mate Ph(k) we need to choose the weights wi and vj minimizing α.

Let K denote the set of the possible sizes of the subproblems solved. Note that
|K| is polynomially bounded. Thus the total number P (k) of subproblems is

P (k) ≤
∑

h∈K

Ph(k) ≤
∑

h∈K

αk−h.

After performing branching the algorithm calls countPW algorithm. Thus the
total running time of the algorithm on an instance of measure k is

O(
∑

h∈K

αk−h · βh) = O(max{α, β}k).

Here O(βh) is the running time of countPW algorithm on a problem of size h. So
we need to choose the weights wi and vj minimizing both α and β. To estimate
the running time of countPW algorithm we use the idea of measure and conquer
applied to linear programming.

Let us remind that countPW is called on an instance of MWSC problem with
all sets of size at most 3 and elements of frequency at most 6. There are no
elements of frequency 1. Let S be an instance of set cover of measure k and let
GS be its incidence graph. Then GS is a bipartite graph with the bipartition

172 F.V. Fomin and A.A. Stepanov

(X = S,Y = U(S)). By Lemma 1, the running time of dynamic programming
algorithm on GS is O(βk) = O(2pw(GS)). Let us remind that both constants
α and β depend on the choice of the weights in the measure function. In the
remaining part of the proof we show how to choose the weights that balance
branching and dynamic programming parts of the algorithm.

We denote by Xi all vertices from X of degree i. Let xi = |Xi|. We define
Yj ⊆ Y and yj in the same way for every j ∈ {2, . . . , 6}. We need the following
lemma. The proof can be obtained by technique used in [6].

Lemma 3. For any ε > 0, there exists an integer nε such that for every graph
G with n > nε vertices and maximum degree at most 6,

pw(G) ≤ 1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6}.
Moreover, a path decomposition of such width can be constructed in polynomial
time.

We need to evaluate the running time of countPW on an instance of S of measure
k. This gives us the following:

k = k(S) =
3∑

i=1

wixi +
5∑

j=2

vjyj + y6. (1)

Here values wi and vj are taken from analysis of countMWSC algorithm. By
counting edges of GS , we arrive at the second condition

x1 + 2x2 + 3x3 =
6∑

j=2

j · yj. (2)

By Lemma 3,

pw(GS) ≤ 1
6
(x3 + y3) +

1
3
y4 +

13
30

y5 +
23
45

y6. (3)

Combining (1),(2), and (3) we conclude that the pathwidth of GS is at most the
maximum of the following linear function

1
6
(x3 + y3) +

1
3
y4 +

13
30

y5 +
23
45

y6 → max

subject to the following constraints:

measure:
3∑

i=1

wixi +
5∑

j=2

vjyj + y6 = k

edges: x1 + 2x2 + 3x3 =
6∑

j=2

j · yj

variables: xi ≥ 0, i ∈ {1, 2, 3}
yj ≥ 0, j ∈ {2, . . . , 6}

Counting Minimum Weighted Dominating Sets 173

The running time of countPW is O∗(2pw(G)). Thus everything boils up to finding
the measure that minimizes the maximum of α and maximum of LP obtained
from pathwidth bounds. Finding of such weights is an interesting (and nontrivial)
computational problem on its own. To find the weights we use a modification of
random search with plugged LP solver.

We numerically obtained the following values of the weights.

wi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1039797, if i = 1,

0.4664084, if i = 2,

0.8288271, if i = 3,

0.9429144, if i = 4,

0.9899772, if i = 5,

and vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5750176, if i = 2,

0.7951411, if i = 3,

0.9165365, if i = 4,

0.9771879, if i = 5.

With such weights the optimum of LP is obtained on x3 = 0.7525... and y6 =
0.3762... and all other variables equal to 0.

This gives us the total running time O(1.2464k(S)) = O(1.2464|U|+|S|). The
exponential space is used by the algorithm during the dynamic programming
part and thus is bounded by O(1.2464|U|+|S|). This finalizes the proof. ��

As we mentioned already, #MWDS can be reduced to #MWSC by imposing U = V
and S = {N [v] | v ∈ V }. The size of the #MWSC instance obtained is at most 2n,
where n is the number of vertices in G. Thus, we have

Corollary 1. The #MWDS problem can be solved in O(1.24642n) = O(1.5535n)
time.

5 Conclusions and Open Problems

In this paper we have used dynamic programming on bounded treewidth tech-
niques to speed up branching algorithm counting weighted dominating sets. The
running time of our algorithm can be slightly improved by considering more
detailed bounds on pathwidth of bipartite graphs with different coefficients for
vertices adjacent to degree two and three vertices. However in this case the argu-
ments become much more technical and we do not include them in this extended
abstract.

Another general technique to speed up branching algorithms (by using expo-
nential space) is memorization, see [8]. Both techniques have many similarities
and it would be interesting to understand in which cases each of the techniques
is more efficient.

The best known algorithm for the decision version of minimum dominating
set is not significantly faster than our counting algorithms. Similar strange effect
was observed by Magnus Wahlström (private communication) for different SAT
problems. Thus despite the fact that #P complete problems seems to be much
more difficult than NP complete problems, the running time of best known
algorithms for many decision and counting problems do not differ too much.
Is there any reasonable explanation to this phenomena? Is this because faster

174 F.V. Fomin and A.A. Stepanov

exponential algorithms for decision problems are still to be found or this is
because in the world of exponential time algorithms the gaps between different
complexity classes are small?

Acknowledgement. We thank Serge Gaspers for helpful comments.

References

1. Angelsmark, O., Jonsson, P.: Improved algorithms for counting solutions in con-
straint satisfaction problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
81–95. Springer, Heidelberg (2003)

2. Bax, E.T., Franklin, J.A: finite-difference sieve to count paths and cycles by length.
Inf. Process. Lett. 60(4), 171–176 (1996)

3. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set par-
titions. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), pp. 575–582. IEEE Computer Society Press, Los
Alamitos (2006)

4. Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted indepen-
dent sets and its applications. In: Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002). Society for Industrial and Ap-
plied Mathematics, pp. 292–298. ACM Press, New York (2002)

5. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2 SAT and 3 SAT
formulae. Theoretical Computer Science 332 332(1-3), 265–291 (2005)

6. Fomin, F.V., Gaspers, S., Saurabh, S.: Branching and treewidth based exact algo-
rithms. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 16–25.
Springer, Heidelberg (2005)

7. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – a
case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

8. Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and anal-
ysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)

9. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Bounding the number of
minimal dominating sets: a measure and conquer approach. In: Deng, X., Du, D.-Z.
(eds.) ISAAC 2005. LNCS, vol. 3827, pp. 573–582. Springer, Heidelberg (2005)

10. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the
dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

11. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and
colorings with applications. Electronic Colloquium on Computational Complexity
(ECCC) 33 (2005)

12. Grandoni, F.: A note on the complexity of minimum dominating set. Journal of
Discrete Algorithms 4(2), 209–214 (2006)

13. Haynes, T.W., Hedetniemi, S.T.: Domination in graphs (Advanced topics). Mono-
graphs and Textbooks in Pure and Applied Mathematics, vol. 209. Marcel Dekker
Inc., New York (1998)

14. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Stearns, R.E.: The complexity
of planar counting problems. SIAM Journal on Computing 27(4), 1142–1167 (1998)

15. Jerrum, M.: Counting, sampling and integrating: algorithms and complexity. Lec-
tures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2003)

Counting Minimum Weighted Dominating Sets 175

16. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Operations Research Letters 1 2(1981/82), 49–51 (1981)

17. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning prob-
lems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2006), pp. 583–590. IEEE Computer
Society Press, Los Alamitos (2006)

18. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algo-
rithms for connected vertex cover and tree cover. In: Grigoriev, D., Harrison, J.,
Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 270–280. Springer, Heidelberg
(2006)

19. Randerath, B., Schiermeyer, I.: Exact algorithms for MINIMUM DOMINATING
SET. Technical Report zaik-469, Zentrum für Angewandte Informatik Köln, Ger-
many (2004)

20. Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs,
No. 14. Published by The Mathematical Association of America (1963)

21. Schöning, U.: Algorithmics in exponential time. In: Diekert, V., Durand, B. (eds.)
STACS 2005. LNCS, vol. 3404, pp. 36–43. Springer, Heidelberg (2005)

22. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

23. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

24. Zhang, W.: Number of models and satisfiability of sets of clauses. Theoretical
Computer Science 155(1), 277–288 (1996)

Online Interval Scheduling: Randomized and

Multiprocessor Cases�

Stanley P.Y. Fung1, Chung Keung Poon2, and Feifeng Zheng3

1 Department of Computer Science, University of Leicester, United Kingdom
pyfung@mcs.le.ac.uk

2 Department of Computer Science, City University of Hong Kong, China
ckpoon@cs.cityu.edu.hk

3 School of Management, Xi’an JiaoTong University, China
zhengff@mail.xjtu.edu.cn

Abstract. We consider the problem of scheduling a set of equal-length
intervals arriving online, where each interval is associated with a weight
and the objective is to maximize the total weight of completed intervals.
An optimal 4-competitive algorithm has long been known in the deter-
ministic case, but the randomized case remains open. We give the first
randomized algorithm for this problem, achieving a competitive ratio
of 3.618. We also prove a randomized lower bound of 4/3, which is an
improvement over the previous 5/4 result, and a lower bound of 2 for
a class of barely random algorithms which include our new algorithm.
We also show that the techniques can be carried to the deterministic
multiprocessor case, giving a 3.618-competitive 2-processor algorithm, a
5/4 lower bound for any number of processors, and a 2 lower bound for
2 processors.

1 Introduction

We study the problem of scheduling a set of intervals which arrive online. Each
interval has a weight and all intervals are of the same length. The objective is to
schedule a set of non-overlapping intervals such that the total weight of all these
intervals is maximized. Intervals being processed can be interrupted, but the
value will be lost. This can also be viewed as a job scheduling problem where
each job must be served immediately or else it is lost. This is a fundamental
problem in scheduling and has been widely studied, and is also related to a
number of online problems such as call control and bandwidth allocation (see
e.g. [15,4,1]).

Related Work. For the basic problem where intervals are of the same length
and with arbitrary weights, Woeginger [15] gave an optimal deterministic 4-
competitive algorithm and a matching lower bound. In the paper, the open
� The work described in this paper was fully supported by a grant from City University

of Hong Kong (SRG 7001969), and NSFC Grant No. 70471035.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 176–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Online Interval Scheduling: Randomized and Multiprocessor Cases 177

question of whether randomization can help give better algorithms was raised.
Miyazawa and Erlebach [12] gave a 3-competitive randomized algorithm for the
special case where the weights of the intervals form a non-decreasing sequence.
They also gave the first randomized lower bound of 1.25.

Many other variations exist for the problem. One is to allow variable interval
lengths: Canetti and Irani [4] gave a randomized lower bound of
Ω(

√
log Δ/ log log Δ) and a randomized upper bound of O(log Δ) where Δ is

the ratio of the longest to shortest interval length. The deterministic case (with
variable lengths) seems not studied before on its own. However, more general
models have been studied. The problem of online scheduling of broadcasts with
restarts is considered in [8,5,7,16,14]. In this broadcast scheduling problem, a set
of pages is stored in a server, and requests for pages arrive online. Each request
has a deadline by which the request has to be completed or else no profit is ob-
tained. Different requests for the same page can be served together in one single
broadcast. Requests being served can be interrupted but will need to restart from
the beginning if it is to be broadcasted again. It can be seen that the interval
scheduling problem is a special case of the broadcast scheduling problem (where
all requests have tight deadlines and each request asks for a different page).
In particular, there are matching upper and lower bounds Θ(Δ/ log Δ) [14,16]
for the deterministic case. These bounds also apply to the interval scheduling
problem.

Another related problem, the real-time job scheduling problem, gives a bound
on the interval scheduling problem w.r.t. a different parameter. In this problem,
jobs have release times, deadlines and execution times. Preemption is allowed
and preempted jobs can be resumed at the point where they were preempted.
When all jobs have no laxity (i.e., execution time equals the difference between
deadline and release time), this problem reduces to the interval scheduling prob-
lem. Matching upper and lower bounds of (1 +

√
k)2 are established in [2,9],

where k is the importance ratio, defined as the ratio of maximum to minimum
weight of the jobs. (Here jobs have different lengths and the weight of a job is the
value per unit length of the job.) Both bounds apply to the interval scheduling
case.

Yet another case is where intervals can have different lengths and their weights
are some function of their lengths. Seiden [13] gave a randomized 3.732-
competitive algorithm for the case of benevolent instances, where (roughly speak-
ing) the weight of an interval is either a convex or a monotonic decreasing
function of its length. If the weight of an interval is equal to its length, the non-
preemptive case was considered in [11]. They gave a randomized O((log Δ)1+ε)-
competitive algorithm and a Ω(log Δ) lower bound.

Multiprocessor scheduling of intervals were studied in [6], giving an optimal
(1-competitive) algorithm when all intervals have unit weight (and not necessar-
ily equal length). Multiprocessor scheduling of jobs with different lengths and
weights were studied in [10], with competitive ratio roughly Θ(log k) where k is
the importance ratio. If the profit is equal to the length, a tight bound of 2 is
known for 2 processors [2].

178 S.P.Y. Fung, C.K. Poon, and F. Zheng

Our Results. In this paper we consider the case where all intervals are of the same
length. In fact our algorithm applies to the more general case where intervals
may not have equal lengths but have agreeable deadlines, i.e. no interval being
strictly contained in another interval. This is because of the result that the
class of interval graphs for agreeable-deadlines intervals is equal to the class of
interval graphs for equal-length intervals (see e.g. [3]). In Section 3 we give a
randomized online algorithm which is 3.618-competitive, which is lower than
the optimal deterministic bound. The algorithm only uses a constant number of
random bits as it only makes a single random choice when it starts. In Section
4 we consider lower bounds, giving an improved randomized lower bound of 4/3
on the competitive ratio. For the class of barely random algorithms that choose
between two deterministic algorithms with equal probabilities (which includes
our proposed algorithm), we show a lower bound of 2.

There is a close relation between the randomized single-processor case and
the deterministic multiprocessor case. We show in Section 5 that (with some
modifications) our 3.618-competitive algorithm can be applied in the 2-processor
case. The lower bounds also apply: we give a 4/3 lower bound for the competitive
ratio of any deterministic or randomized algorithms for any number of processors,
and a deterministic 2 lower bound for 2 processors.

Due to space limitations some proofs are omitted and can be found in the full
version of the paper.

2 Preliminaries

An interval I is specified by s(I), its arrival time; �(I), its length; and |I|, its
weight. Since we only consider the case where all intervals are of the same length,
we can, without loss of generality, assume �(I) = 1 for all I.

Intervals arrive online and the scheduling algorithm has to make decisions
without knowledge of future intervals. When a scheduling algorithm completes
an interval, it receives a profit equal to the weight of the interval. An interval
being scheduled can be aborted (e.g. when an interval of larger weight arrives)
but the value of the aborted interval will be lost. The objective of the algorithm
is to maximize the total profit obtained by completing the intervals.

Let A(S) denote the profit obtained by algorithm A on input instance S. An
online algorithm A is c-competitive if for all input instances S, OPT (S)/A(S) ≤ c
where OPT is the offline optimal algorithm which has knowlege of all future
intervals and hence can schedule optimally. When A is a randomized algorithm,
the definition of competitive ratio becomes OPT (S)/E[A(S)] ≤ c where the
expectation is taken over the random choices of A. A randomized algorithm
that only uses a constant number of random bits is called barely random.

3 A Randomized Algorithm

The Algorithm. Consider the simple deterministic algorithm Greedyr: when an
interval I arrives and the algorithm is currently executing another interval I ′,

Online Interval Scheduling: Randomized and Multiprocessor Cases 179

it aborts I ′ and starts I if |I| ≥ r|I ′|. If the machine is idle at that time then
|I ′| = 0, meaning that I will always get started. We call r the abortion ratio. This
algorithm is 4-competitive when r = 2 and is the best possible for deterministic
algorithms [15].

Fix constants α, β, p where 1 < α < β and 0 < p < 1. The randomized
algorithm RGreedyα,β,p chooses to run one of the two deterministic algorithms
Greedyα and Greedyβ with probability p and 1 − p respectively. It is barely
random since the choice is only made in the beginning. Below we will analyze
the competitive ratio of this algorithm.

Basic subschedules. Let A and B denote the schedules produced by Greedyα

and Greedyβ respectively on a particular input instance. We define a basic sub-
schedule to be a sequence of execution of intervals (I1, . . . , Ik), for k ≥ 1, where
Ii is aborted by Ii+1 for 1 ≤ i ≤ k − 1 and Ik is completed. That is, each basic
subschedule consists of zero or more aborted intervals followed by a completed
interval. Each of the two online schedules A and B can then be partitioned into a
sequence of basic subschedules. In a basic subschedule (I1, . . . , Ik) with abortion
ratio r, we have |Ii| ≤ |Ii+1|/r because this is the condition for Ii+1 to abort Ii.

Profit amortization. Consider a basic subschedule (I1, . . . , Ik) with abortion ra-
tio r. Only Ik is completed. Therefore the profit received for the whole basic
subschedule is |Ik|. For the purpose of analysis, we will ‘amortize’ the profit of
a basic subschedule to the individual intervals (not just the completed one) as
follows. Ik transfers a profit of |Ik−1| to Ik−1 and keep the rest of |Ik| − |Ik−1|
profit to itself. Inductively, for i = k − 1, . . . , 2, Ii receives an amortized profit
of |Ii| from Ii+1; it then transfers a profit of |Ii−1| to Ii−1 and keep the rest of
|Ii| − |Ii−1| to itself. For I1 it keeps all its received profit |I1|. Obviously, the
total profit remains the same. From now on, unless explicitly stated otherwise,
we will refer to the amortized profits.

Schedule segments. Consider a basic subschedule, (X1, . . . , Xk), of A. Let x1, x2,
. . . , xk be the weights of these intervals. Let ti be the time when Xi is started,
and define tk+1 = tk + 1. During [ti, ti+1), OPT can start at most one interval,
Zi, with weight zi. If there is no interval started by OPT during that time
period, we simply skip this interval Xi from our consideration; thus Xi and
ti only refer to those intervals in A which have corresponding Zi’s. This will
only underestimate the profit of the online algorithm. By the property of basic
subschedules we have xi ≥ αxi−1 for all 1 < i ≤ k. (Note that Xi and Xi−1 may
not be consecutive intervals in the basic subschedule because of the skipping just
mentioned. Nevertheless the inequality remains true.)

Let ui be the time when Zi starts. At time ui, Greedyα must be serving some
intervals with weight larger than zi/α or else Greedyα would abort what it is
serving and start Zi instead (which also has weight > zi/α). Thus xi > zi/α for
all i. Similarly, at time ui, the other algorithm Greedyβ (if it is chosen instead)
must be serving some interval, Yi, of weight larger than zi/β, or else it will abort
what it is serving and start Zi instead. Denote by yi the weight of this interval
that Greedyβ is serving at time ui. We have yi > zi/β.

180 S.P.Y. Fung, C.K. Poon, and F. Zheng

We make two observations about these yi’s. First, any two Zi’s must corre-
spond to different Yi’s. This is because each interval in OPT is completed and
thus takes 1 unit of time, so ui+1 ≥ ui + 1 and hence Yi and Yi+1 cannot be
the same interval. Second, two consecutive Yi−1 and Yi may or may not belong
to the same basic subschedule in B. If they do, then we have yi ≥ βyi−1. Note
that even if they are in the same basic subschedule, they may not be consecu-
tive intervals (there may be a number of abortions in-between), but even so the
previous inequality remains true. If they are not in the same basic subschedule,
we cannot say anything about yi and yi+1.

Therefore, we further split the basic subschedules in A and B into segments
as follows. Let X1 and Y1 be the first interval in A and B respectively after the
previous segment (initially they are simply the first intervals). A segment is then
the set of intervals (X1, . . . , Xn) from A and (Y1, . . . , Yn) from B such that at
least one of Xn or Yn is completed, and all other Xi and Yi is aborted (directly or
indirectly) by Xi+1 and Yi+1 respectively. For a pair of corresponding segments,
at least one of the two ending intervals is completed. In effect, intervals in a
segment satisfy xi ≤ xi+1/α (for those in A) and yi ≤ yi+1/β (for those in B).

Note that Xi’s and Yi’s may not be consecutive intervals in a basic subsched-
ule, as explained before. In the analysis we will ignore all those skipped abortions,
e.g. in the profit amortization we treat Yi and Yi+1 as if they are consecutive
without giving any profit to any aborted intervals in-between, if any.

Bounding the expected profit. We now consider each such segment, where (X1, . . . ,
Xn) is a segment from A, (Y1, . . . , Yn) is a segment from B, and (Z1, . . . , Zn) is the
corresponding sequence of intervals in OPT .

The total profit of OPT in this segment is
∑n

i=1 zi. As for the online algorithm,
A has an amortized profit of at least xn−x1/α for this segment: the last interval
has profit xn and subsequently transferred to other intervals in this segment,
except x1 may transfer profit to a previously aborted interval, which has weight
at most x1/α. Similarly B receives an amortized profit of yn − y1/β for this
segment. The expected profit is thus at least p(xn − x1/α) + (1− p)(yn− y1/β).
Note that the terms x1/α and y1/β would not be there if they are the first interval
in a basic subschedule. But at least one of x1 and y1 must be such a first interval,
since otherwise the segment would be extended to the front. Therefore, we can
remove the smaller of these two terms from the expression. Thus the expected
profit of the online algorithm is at least pxn+(1−p)yn−max(px1/α, (1−p)y1/β).
We call the max(px1/α, (1 − p)y1/β) term the amortized term. The ratio R of
optimal profit to the expected online profit in this segment is at most

∑n
i=1 zi

pxn + (1− p)yn −max(px1/α, (1− p)y1/β)
(1)

We want to upper bound the above ratio, under the following constraints:
zi < min(αxi, βyi), xi ≤ xi+1/α, yi ≤ yi+1/β

Each interval served by OPT must belong to exactly one segment. Therefore,
if we can upper bound the ratio of the total OPT profit to the expected online

Online Interval Scheduling: Randomized and Multiprocessor Cases 181

profit, for all such segments, this gives a bound on the competitive ratio of the
randomized algorithm.

For the rest of the paper, we fix α = φ ≈ 1.618, β = φ2 ≈ 2.618 and p = 1/2,
where φ = (1+

√
5)/2 is the golden ratio. We first state a technical lemma which

will be required later.

Lemma 1. Suppose xi = 1/αn−i and yi = y/βn−i for all i. Then the function

F (y) =
∑n

i=1 min(αxi, βyi)
1 + y − 1/αn

is increasing in y for 0 ≤ y < α/β, and decreasing in y for y > α/β.

Theorem 1. The competitive ratio of RGreedyα,β,p is φ + 2 ≈ 3.618 when α =
φ, β = φ2 and p = 1/2.

Proof. Consider a segment with (X1, . . . , Xn), (Y1, . . . , Yn), and (Z1, . . . , Zn).
Without loss of generality, assume xn = 1 and denote yn simply as y. To maxi-
mize (1), observe that (for a fixed y) we should make xi and yi as large as possible,
so that zi’s are large and also x1 and y1 are large. This means xi = 1/αn−i and
yi = y/βn−i. Together with p = 1/2, (1) becomes at most

2
∑n

i=1 min(αxi, βyi)
1 + y −max(1/αn, y/βn)

(2)

We consider these cases:
Case 1: y ≤ (β/α)n. In this case the amortized term is 1/αn. The ratio (2) is
equal to 2F (y) in Lemma 1, which we know is maximum when y = α/β. At
this value of y, all min terms in the numerator are βyi terms and the ratio has
maximum value

2βy(1 + 1/β + · · ·+ 1/βn−1)
1 + y − 1/αn

=
2βy(1− 1/βn)/(1− 1/β)

1 + y − 1/αn

=
2αβ
β−1 (1− 1/βn)

1− 1/αn + α/β
=

2φ2(1− 1/φ2n)
1 + 1/φ− 1/φn

.

This is at most φ +2 ≈ 3.618 for any value of n (maximum occurs when n = 2).
Case 2: y > (β/α)n. In this case all min terms are the αxi terms and the
amortizing term is y/βn. So the ratio is

2(α + 1 + · · ·+ 1/αn−2)
1 + y − y/βn

=
2α(1− 1/αn)/(1− 1/α)

1 + y(1− 1/βn)

≤ 2α(1− 1/αn)/(1− 1/α)
1 + (β/α)n − 1/αn

=
2φ3(1− 1/φn)
1 + φn − 1/φn

.

This is at most φ2 for any value of n.
Therefore in either case the ratio is at most φ + 2. ��

We can show that there is an instance which actually attains the competitive
ratio of 3.618 using our algorithm (with these chosen parameters), so that the
analysis is tight.

182 S.P.Y. Fung, C.K. Poon, and F. Zheng

4 Lower Bounds

4.1 Randomized Algorithms

Theorem 2. No randomized algorithm for interval scheduling has competitive
ratio better than 4/3.

Proof. We will use Yao’s principle which states that the randomized lower bound
can be obtained by bounding E[OPT]/E[A] for any deterministic algorithm A
over a probability distribution of input instances. (See for example, [12].) Thus
we define an input distribution as follows. Let (r, w) denote the release time
and weight respectively of an interval. Fix a large even integer n. Define n + 1
intervals, I0, I1, . . . , In, such that for 0 ≤ i ≤ n− 1, Ii = (i/2, vi) where vi = 2i,
and In = (n/2, vn) where vn = 2n−1. Define n sets of intervals, S1, S2, . . . , Sn,
such that Si = {I0, I1, . . . , Ii} for 1 ≤ i ≤ n. Finally, we define our distribution of
inputs to be one such that Si occurs with probability pi = 1/2i for 1 ≤ i ≤ n−1
and Sn occurs with probability pn = 1/2n−1.

Since any Ii does not overlap with Ii+2, we have OPT (Si) = 1 + 4 + · · ·+ 2i

= 4i/2+1−1
3 if i is even, and OPT (Si) = 2 + 8 + · · ·+ 2i = 2(4(i+1)/2−1)

3 if i is odd,
and OPT (Sn) = 1 + 4 + · · ·+ 2n−2 + 2n−1 = 4n/2−1

3 + 2n−1. Hence

E[OPT] =
n−2∑

i=2,i even

4i/2+1 − 1
3 · 2i

+
n−1∑

i=1,i odd

2(4(i+1)/2 − 1)
3 · 2i

+
4n/2 − 1
3 · 2n−1

+ 1

= 4n/3− o(n).

We now derive an upper bound on the expected profit of an arbitrary determin-
istic algorithm A on our input distribution. More specifically, for i = 1, . . . , n,
we let Qi be the contribution to the expected profit of A on Ii−1, . . . , In when
the input is one of Si, . . . , Sn.

Consider the case when the input is Sn. This happens with probability pn.
When In arrives at time n/2, A may or may not be serving another interval. If
it does, it must be serving In−1. Since we choose vn−1 = vn, A will obtain at
most a profit of vn whether it aborts In−1 or not. Thus, Qn ≤ pnvn.

Now, suppose the input is either Sn−1 or Sn. When In−1 arrives at time
(n− 1)/2, A may or may not be serving In−2. There are two cases.

Case 1: A is serving In−2 and it continues until its completion. Then A gains
a profit of vn−2 on In−2 whether the input is Sn−1 or Sn. Further, it can gain
an expected profit of at most Qn on In−1 and In when the input is Sn. Hence,
Qn−1 ≤ (pn−1 + pn)vn−2 + Qn.

Case 2: A is not serving In−2 or if it aborts In−2. Then A may have an
expected profit of pn−1vn−1 on In−1 when the input is Sn−1 and an expected
profit of Qn on In−1 and In when the input is Sn. Note that the input being
Sn−1 and being Sn are two disjoint events. Thus, Qn−1 ≤ pn−1vn−1 + Qn.

Setting (pn−1+pn)vn−2+Qn = pn−1vn−1+Qn (which is satisfied by requiring
vn−2 = pn−1

pn−1+pn
vn−1), we have Qn−1 ≤ pn−1vn−1 + Qn no matter what A does.

Online Interval Scheduling: Randomized and Multiprocessor Cases 183

In general, consider the case when the input is one of Si, . . . , Sn. When Ii

arrives at time i/2, A may or may not be serving Ii−1 and we consider the
following cases.

Case 1: A is serving Ii−1 and it continues with it until completion. Then A
gains an expected profit of (pi + · · · + pn)vi−1 on Ii−1 (no matter what the
true input is) and an expected profit of Qi+1 on Ii, . . . , In when the input is
Si+1, . . . , Sn. Thus, Qi ≤ (pi + · · ·+ pn)vi−1 + Qi+1.

Case 2: A is not serving Ii−1 or if it aborts Ii−1. Then A gains an expected
profit of pivi on Ii when the input is Si, and an expected profit of Qi+1 on
Ii, . . . , In when the input is one of Si+1, . . . , Sn. Hence Qi ≤ pivi + Qi+1.

Setting vi−1 = pi

pi+···+pn
vi, we have (pi + · · ·+ pn)vi−1 + Qi+1 = pivi + Qi+1.

So Qi ≤ pivi + Qi+1.
One can easily check that setting pi and vi as mentioned earlier, the conditions

vi−1 = pi

pi+···+pn
vi for 1 ≤ i ≤ n, are satisfied and the total expected profit of A

is Q1 ≤ p1v1 + · · ·+ pnvn = n.
Therefore, E[OPT]/E[A] → 4/3 for n → ∞. ��

Remark on benevolent instances. The lower bound construction does not rely on
the exact lengths of the intervals. The only requirement on the lengths is that
Ii and Ii+1 intersect while Ii and Ii+2 do not. Therefore, the lower bound also
holds for benevolent instances; we just create the instances with the specified
weights and adjust the lengths accordingly.

4.2 Barely Random Algorithms

Our randomized algorithm in Section 3 chooses between two deterministic algo-
rithms with equal probabilities. We next show a lower bound on such algorithms.

Theorem 3. No barely random algorithms that choose between two determinis-
tic algorithms with equal probabilities can be better than 2-competitive.

Proof. Suppose on the contrary there exists such a randomized algorithm which
is (2 − ε)-competitive for some constant ε > 0. Let D1 and D2 be the two
deterministic algorithms. We construct an adversarial request sequence to show
that this results in a contradiction.

Consider a set of a large number of intervals where each interval differs from
the previous one by arriving slightly later and having a slightly larger weight
(difference in weight being δ). The minimum weight of intervals in this set is 1
and the maximum weight is α. Here δ is a sufficiently small and α a sufficiently
large constant to be chosen later. The last interval arrives before the deadline
of the first interval, and hence any algorithm can serve at most one interval in
this set. (This is the set of intervals used in [15].) Given this set of intervals, let
x and y be the weights of intervals chosen by D1 and D2, where without loss of
generality, assume x ≤ y. We emphasize that the adversary knows the values of
x and y. We consider the following cases.

Case 1: x = y = 1. Both D1 and D2 obtains a profit of 1 while OPT schedules
the heaviest interval giving a profit of α. So the competitive ratio is α.

184 S.P.Y. Fung, C.K. Poon, and F. Zheng

Case 2: x = y 	= 1. One more interval of weight y is released just before the
deadline of the y in the set. Both D1 and D2 either continue with the x or y,
or abort and switch to the new y. In either case their profit is at most y. The
adversary schedules the interval in the set just before y, together with the new
y, giving a profit of (y − δ) + y. Hence the competitive ratio is 2− δ/y > 2− δ.

Case 3: 1 = x < y. D1 and D2 gets a profit of 1 and y respectively while OPT
gets α. Thus the competitive ratio is α/((1+y)/2) ≥ 2α/(1+α) = 2−2/(1+α).

Case 4: 1 < x < y. The adversary releases another interval with weight y just
before the deadline of x in the set. We distinguish two subcases.

If D1 does not abort x in favour of the new y, no more intervals are released.
(We remark that the adversary knows the response of D1 and can make requests
accordingly.) In this case D1 and D2 get a profit of x and y respectively, while
OPT gets x − δ + y. Then the competitive ratio = (x + y − δ)/((x + y)/2) =
2− 2δ/(x + y) > 2− 2δ/(1 + 1) = 2− δ.

If D1 aborts x and serves y, then one more interval of weight y arrives just
before the deadline of y in the original set. Then both D1 and D2 gets a profit of
y no matter what they do, and OPT gets a profit of y− δ + y. The competitive
ratio is (2y − δ)/y = 2− δ/y > 2− δ.

Considering all cases, the competitive ratio is at least min{α, 2− δ, 2− 2/(1+
α)}. By choosing δ < ε and α > max(2 − ε, 2/ε − 1) = 2/ε − 1, we have the
competitive ratio being at least 2− ε. ��

5 The Multiprocessor Case

In this section we consider the case of using more than one processor to schedule
the intervals. We will see that the cases of randomization and multiple processors
are closely related. We first show that the idea of the barely random algorithm in
Section 3 can be used to give a deterministic 2-processor algorithm with the same
competitive ratio. Then we show that the lower bounds in Section 4 can also be
carried to the multiprocessor case; namely, that no deterministic or randomized
algorithm can be better than 4/3-competitive for any number of processors m,
and no 2-processor deterministic algorithm can be better than 2-competitive.

5.1 A 2-Processor Algorithm

We consider the following deterministic 2-processor algorithm. Call the two pro-
cessors P1 and P2. In simple terms, P1 runs Greedyα whereas P2 runs Greedyβ.
Specifically, suppose the two processors are running intervals I1 and I2 respec-
tively. When a new interval I arrives, if |I| < α|I1| and |I| < β|I2| then I is
rejected. If one of |I| ≥ α|I1| and |I| ≥ β|I2| is true, the corresponding I1 or I2 is
aborted and I is started on that processor. If I is at least as large as both α|I1|
and β|I2|, it aborts I2 and start I on P2. (This is the only difference from the
randomization case: since the two processors cannot be doing the same interval,
we need some way of tie-breaking.) A processor which has completed its interval
will become idle. Note that an idle processor is regarded as executing a weight-0

Online Interval Scheduling: Randomized and Multiprocessor Cases 185

interval. Therefore if P1 is idle and |I| ≥ β|I2|, it will still abort I2 (and P1
remains idle). Again we set α = φ and β = φ2.

We will separately bound the value of the two optimal offline schedules pro-
duced by the two processors, OPT1 and OPT2. As before, we divide the sched-
ule into basic subschedules and segments. With the same notation as in Sec-
tion 3, consider a segment where OPT1 schedules (Z1, . . . , Zn), P1 schedules
(X1, . . . , Xn), and P2 schedules (Y1, . . . , Yn). We will show the same bound on
the competitive ratio, i.e. 2

∑
zi/(xn + yn −max(x1/α, y1/β)) ≤ φ + 2. There-

fore over the whole OPT1, OPT 1/((P1 + P2)/2) ≤ φ + 2. Here OPT 1, P1 and
P2 represent both the schedules and their profits. Since OPT2 can be analyzed
similarly, we have OPT 2/((P1 + P2)/2) ≤ φ + 2. Adding these two together,
OPT 1 + OPT 2 ≤ (φ + 2)(P1 + P2) and therefore the algorithm is (φ + 2)-
competitive. In the analysis below we only consider OPT1.

We call (zk, xk, yk) in a segment a triplet. We first make an observation:

Lemma 2. For any triplet (zk, xk, yk), one of the following two cases holds: (i)
xi > zi/α and yi > zi/β, (ii) zi = yi and xi ≤ zi/α.

We call triplets of case (i) normal triplets and those of case (ii) violating triplets.
The main idea of the competitiveness proof is as follows: if there are no violating
triplets in a segment, then we are done by the same proof as in the random-
ized algorithm. If there are violating triplets, we further divide the segment into
subsegments so that each subsegment has at most one violating triplet at the
beginning of the subsegment. We then perform a similar analysis to the random-
ized algorithm on each subsegment. There is a small difference in the amortized
terms: both the x1/α and y1/β terms may be subtracted, since the last pair of
intervals in the previous subsegment may not be completed, and hence do not
have any real profit. So the amortized term may sometimes become x1/α+y1/β
instead of max(x1/α, y1/β). We omit the proof to this theorem:

Theorem 4. The algorithm is φ + 2 ≈ 3.618-competitive for 2 processors.

5.2 Lower Bounds

The proofs of the following theorems use almost identical constructions to that
in Theorems 2 and 3, so we omit the proofs.

Theorem 5. No deterministic or randomized algorithm for online interval sche-
duling on m processors is better than 4/3-competitive, for any m.

Theorem 6. No deterministic algorithm for online interval scheduling on 2 pro-
cessors is better than 2-competitive.

6 Conclusion

In this paper we give the first randomized algorithm and improved lower bounds
for the online interval scheduling problem. The gap between the upper and lower

186 S.P.Y. Fung, C.K. Poon, and F. Zheng

bounds remains wide, however. It may be possible to generalize the barely ran-
dom algorithm to use 3 or more deterministic algorithms but we encounter some
technical difficulties in extending the technique here. Algorithms for three or
more processors will also yield randomized algorithms for the one-processor case.

References

1. Awerbuch, B., Bartal, Y., Fiat, A., Rosen, A.: Competitive non-preemptive call
control. In: Proc. 5th SODA, pp. 312–320 (1994)

2. Baruah, S., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L., Shasha,
D., Wang, F.: On the competitiveness of on-line real-time task scheduling. Real-
Time Systems 4, 125–144 (1992)

3. Bogart, K.P., West, D.B.: A short proof that proper = unit. Discrete Mathemat-
ics 201, 21–23 (1999)

4. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM Journal on Computing 27(4), 993–1015 (1998)

5. Chan, W.-T., Lam, T.-W., Ting, H.-F., Wong, P.W.H.: New results on on-demand
broadcasting with deadline via job scheduling with cancellation. In: Chwa, K.-
Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 210–218. Springer,
Heidelberg (2004)

6. Faigle, U., Nawijn, W.M.: Greedy k-coverings of interval orders. Technical Report
979, University of Twente (1991)

7. Fung, S.P.Y., Chin, F.Y.L., Poon, C.K.: Laxity helps in broadcast scheduling. In:
Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 251–
264. Springer, Heidelberg (2005)

8. Kim, J.-H., Chwa, K.-Y.: Scheduling broadcasts with deadlines. Theoretical Com-
puter Science 325(3), 479–488 (2004)

9. Koren, G., Shasha, D.: Dover: An optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM Journal on Computing 24, 318–339
(1995)

10. Koren, G., Shasha, D.: MOCA: A multiprocessor on-line competitive algorithm for
real-time system scheduling. Theoretical Computer Science 128(1-2), 75–97 (1994)

11. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. 5th SODA, pp.
302–311 (1994)

12. Miyazawa, H., Erlebach, T.: An improved randomized on-line algorithm for a
weighted interval selection problem. Journal of Scheduling 7(4), 293–311 (2004)

13. Seiden, S.S.: Randomized online interval scheduling. Operations Research Let-
ters 22(4–5), 171–177 (1998)

14. Ting, H.-F.: A near optimal scheduler for on-demand data broadcasts. In: Cala-
moneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp.
163–174. Springer, Heidelberg (2006)

15. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theo-
retical Computer Science 130(1), 5–16 (1994)

16. Zheng, F., Fung, S.P.Y., Chan, W.-T., Chin, F.Y.L., Poon, C.K., Wong, P.W.H.:
Improved on-line broadcast scheduling with deadlines. In: Chen, D.Z., Lee, D.T.
(eds.) COCOON 2006. LNCS, vol. 4112, pp. 320–329. Springer, Heidelberg (2006)

Scheduling Selfish Tasks: About the

Performance of Truthful Algorithms

George Christodoulou1, Laurent Gourvès2, and Fanny Pascual3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gchristo@mpi-inf.mpg.de

2 LAMSADE, CNRS UMR 7024, Université de Paris-Dauphine, Paris, France
laurent.gourves@lamsade.dauphine.fr

3 Equipe MOAIS (CNRS-INRIA-INPG-UJF), Grenoble, France
fanny.pascual@imag.fr

Abstract. This paper deals with problems which fall into the domain
of selfish scheduling: a protocol is in charge of building a schedule for
a set of tasks without directly knowing their length. The protocol gets
these informations from agents who control the tasks. The aim of each
agent is to minimize the completion time of her task while the protocol
tries to minimize the maximal completion time. When an agent reports
the length of her task, she is aware of what the others bid and also of
the protocol’s algorithm. Then, an agent can bid a false value in order to
optimize her individual objective function. With erroneous information,
even the most efficient algorithm may produce unreasonable solutions.
An algorithm is truthful if it prevents the selfish agents from lying about
the length of their task. The central question in this paper is: “How ef-
ficient a truthful algorithm can be? We study the problem of scheduling
selfish tasks on parallel identical machines. This question has been raised
by Christodoulou et al [8] in a distributed system, but it is also relevant
in centrally controlled systems. Without considering side payments, our
goal is to give a picture of the performance under the condition of truth-
fulness.

Keywords: scheduling, algorithmic game theory, truthful algorithms.

1 Introduction

The Internet is a complex distributed system involving many autonomous entities
(agents). Protocols organize this network, using the data held by these agents and
trying to maximize the social welfare. Agents are often supposed to be trustworthy
but this assumption is unrealistic in some settings as they might try to manipulate
the protocol by reporting false information in order to maximize their own profit.
With false information, even the most efficient protocol may lead to unreasonable
solutions if it is not designed to cope with the selfish behavior of the single entities.
Then, it is natural to ask the following question: How efficient a protocol can be if
it guarantees that no agent has incentive to lie?

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 187–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 G. Christodoulou, L. Gourvès, and F. Pascual

In this paper, we deal with the problem of scheduling n selfish tasks on m
identical parallel machines. We consider two distinct settings in which the aim is
to minimize the makespan, i.e. the maximum completion time. The first setting
is centralized, while the second one is distributed. Both problems share the
following characteristics. Each task is owned by an agent1. The length li of a
task i is known to its owner only. The agents, considered as players of a non-
cooperative game, want to minimize the completion time of their tasks. The
protocol builds the schedule with rules known to all players and fixed in advance.
In particular, mixing the execution of two jobs (like round-robin) is not allowed.
Before the execution begins, the agents report a value representing the length of
their tasks. We assume that every agent behave rationally and selfishly. Each one
is aware of the situation the others face and tries to optimize her own objective
function. Thus an agent can report a value which is not equal to her real length.
Practically, an agent can add “fake” data to artificially increase the length of
her task if it decreases her completion time. This selfish behavior can prevent
the protocol to produce a reasonable (i.e. close to the social welfare) schedule.
Without considering side payments, which are often used with the aim of inciting
the agents to report their real value, some algorithmic tools can simultaneously
offer a guarantee on the quality of the schedule (its makespan is not arbitrarily
far from the optimum) and guarantee that the solution is truthful (no agent can
lie and improve her own completion time). For both centralized and distributed
settings, our goal is to give lower and upper bounds on the performance under
the condition of truthfulness. It is important to mention that we do not strictly
restrict the study to polynomial time algorithms.

Since the length of a task is private, each agent bids a value which represents
the length of her task. We assume that an agent cannot shrink the length of her
task (otherwise she will not get her result), but if she can decrease her completion
time by bidding a value larger than the real one, then she will do so. We also
assume that an agent does not report a distribution on different lengths. A player
may play according to a distribution, but she just announces the outcome, so
the protocol does not know if she lies.

In the centralized setting, the strategy of agent i is a value bi representing
the length of her task. The protocol, called an algorithm, is in charge of indi-
cating when and on which machine a task will be scheduled. An algorithm is
truthful when no agent has incentive to report a false value. We focus on the
performance of truthful algorithms with respect to the makespan of the sched-
ule. In particular, we are interested in giving lower and upper bounds on the
approximation ratio that a (deterministic or randomized) truthful algorithm can
achieve. For example, a truthful algorithm can be obtained by greedily schedul-
ing the tasks following the increasing order of their lengths. This algorithm,
known as SPT, produces a (2−1/m)-approximate schedule [11]. Are there truth-
ful algorithms with better approximation guarantee for the considered scheduling
problem?

1 We equally refer to a task and its owner since we assume that two tasks cannot be
held by the same agent.

Scheduling Selfish Tasks: About the Performance of Truthful Algorithms 189

In the distributed setting, the strategy of agent i is a couple (Mi, bi), where
Mi is the machine which will execute the task and bi is the length bidden.
As opposed to the centralized setting, the agents choose their machine and Mi

can be a probability distribution on different machines. The protocol, called
a coordination mechanism in this context [8], consists in selecting a scheduling
policy for each machine (e.g. scheduling the tasks in order of decreasing lengths).
An important and natural condition is due to the decentralized nature of the
problem: the scheduling on a machine should depend only on the tasks assigned
to it, and should be independent of the tasks assigned to the other machines.
A coordination mechanism is truthful when no agent has incentive to lie on the
length of her task. Using the price of anarchy [14], we study the performance
of truthful coordination mechanisms with respect to the makespan. The price
of anarchy of a coordination mechanism is, in the context, equal to the largest
ratio between the makespan of a schedule where agent’s strategies form a Nash
equilibrium2 and the optimal makespan.

Interestingly, it is possible to slightly transform the SPT algorithm in a truth-
ful coordination mechanism, as suggested in [8]: each machine Pj schedules its
tasks in order of increasing lengths, and adds at the very beginning of the sched-
ule a small delay equal to (j − 1)ε times the length of the first task. By this
way, and if ε is small enough, the schedule obtained in a Nash equilibrium is
similar to the one returned by the SPT algorithm (excepted the small delays at
the beginning of the schedule). When ε is negligible, the price of anarchy of this
coordination mechanism is 2− 1/m. Are there truthful coordination mechanisms
with better price of anarchy for the considered scheduling problem?

For both centralized algorithms and coordination mechanisms, we consider
the two following execution models:

– Strong model of execution: If the owner of task i bids bi ≥ li, then the
execution time will still be li (i.e. the task will be completed li time units
after its start).

– Weak model of execution: If the owner of task i bids bi ≥ li, then the
execution time will be bi (i.e. the task will be completed bi time units after
its start).

The strong execution model corresponds to the case where tasks have to
be linearly executed – from their beginning to their end–, whereas the weak
execution model corresponds to the case where a task can be executed in any
order3 (and the “fake” part of the task is not anymore necessarily executed at
the end), or when the machine returns the result of the task only at the end of
its execution. Depending on the applications of the scheduling problem, either
the strong or the weak model of execution will be used.
2 Situation in which no agent can unilaterally change her strategy and improve her

own completion time. A Nash equilibrium is pure if each agent has a pure strategy
: each agent chooses only one machine. A Nash equilibrium is mixed if the agents
give a probability distribution on the machines on which they will go.

3 Nevertheless, the execution of two jobs is never interlaced.

190 G. Christodoulou, L. Gourvès, and F. Pascual

Related Work
The field of Mechanism Design can be useful to deal with the selfishness of the
agents. Its main idea is to pay the agents to convince them to perform strate-
gies that help the system to optimize a global objective function. The most
famous technique for designing truthful mechanisms is perhaps the Vickrey-
Clarke-Groves (VCG) mechanism [20,7,12]. However, when applied to combina-
torial optimization problems, this mechanism guarantees the truthfulness under
the hypothesis that the objective function is utilitarian (i.e. the value of the ob-
jective function is equal to the sum of the agents individual objective functions)
and that the mechanism is able to compute the optimum. Archer and Tardos
introduce in [4] a method which allows to design truthful mechanisms for several
combinatorial optimization problems to which the VCG mechanism does not
apply. However, both approaches cannot be applied to our problem.

Scheduling selfish agents has been intensively studied these last years, started
with the seminal work of Nisan and Ronen [17], and followed by a series of
papers [1,2,4,6,9,15,16]. However, all these works differ from ours since in their
case, the selfish agents are the machines while here we consider that the agents
are the tasks. Furthermore, they use side payments whereas we focus on truthful
algorithms without side payments.

A more closely related work is the one of Christodoulou et al [8] who consid-
ered the same model but only in the distributed context of coordination mecha-
nisms. They proposed different coordination mechanisms with a price of anarchy
better than the one of the SPT coordination mechanism. Nevertheless, these
mechanisms are not truthful. In [13], the authors gave coordination mechanisms
for the same model for related machines (i.e. machines can have different speeds),
but their mechanisms are also not truthful.

In [3], the authors gave a truthful randomized algorithm for the strong model
of execution defined before, and they gave, for the weak model of execution, a
coordination mechanism which is truthful if there are two machines and if the
lengths of the tasks are powers of a certain constant. An optimal (but exponential
time) truthful randomized algorithm and a truthful randomized PTAS for the
weak model of execution appear in [18,19]. The technique consists in computing
an optimal (resp. a (1+ ε)-approximate) schedule and each machine executes its
tasks in a random order (the truthfulness is due to the introduction of fictitious
tasks which guarantee that all the machines have the same load).

Another related work is the one of Auletta et al. who considered in [5] the
problem of scheduling selfish tasks in a centralized case. Their work differs from
ours since they considered that each machine uses a round and robin policy and
thus that the completion of each task is the completion time of the machine on
which the task is (this model is known as the KP model). They considered that
the tasks can lie in both directions, and that there are some payments.

Contribution and Organization of the Article
Sections 3 and 4 are devoted to the centralized setting. In particular, we study
the strong (resp. weak) model of execution in Section 3 (resp. Section 4). Results
on the distributed setting are presented in Section 5 for both execution models.

Scheduling Selfish Tasks: About the Performance of Truthful Algorithms 191

Table 1 gives a summary of the bounds that we are aware of (those with a
† are presented in this article). LB stands for “Lower bound”, UB for “Upper
bound” and NE for “Nash equilibria”. Due to space constraints, some proofs are
omitted.

Table 1. Bounds for m identical machines

Strong model of execution:
Deterministic Randomized
LB UB LB UB

centralized setting 2 − 1
m

† 2 − 1
m

[8] 3
2 − 1

2 m
† 2 − 1

m+1

(5
3 + 1

3m

)
[3]

distributed 2 − 1
m

(pure NE) † 2 − 1
m

[8] 3
2 − 1

2 m
† 2 − 1

m

setting 3
2 − 1

2 m
(mixed NE) †

Weak model of execution:
Deterministic Randomized
LB UB LB UB

centralized setting m = 2 : 1 +
√

105−9
12 > 1.1 † 4

3 − 1
3 m

† 1 [18,19] 1 [18,19]
m ≥ 3 : 7

6 > 1.16 †
distributed 1+

√
17

4 > 1.28 (pure NE) † 2 − 1
m

1 +
√

13−3
4 > 1.15 † 2 − 1

m

setting (pure NE)

2 Notations

We are given m machines (or processors) {P1, . . . , Pm}, and n tasks {1, . . . , n}.
Let li denote the real execution time (or length) of task i. We use the identifi-
cation numbers to compare tasks of the same (bidden) lengths: we will say that
task i, which bids bi, is larger than task j, which bids bj , if and only if bi > bj

or (bi = bj and i > j). It is important to mention that an agent cannot lie on
her (unique) identification number.

A randomized algorithm can be seen as a probability distribution over deter-
ministic algorithms. We say that a (randomized) algorithm is truthful if for every
task the expected completion time when she declares her true length is smaller
than or equal to her expected completion time in the case where she declares a
larger value. More formally, we say that an algorithm is truthful if Ei[li] ≤ Ei[bi],
for every i and bi ≥ li, where Ei[bi] is the expected completion time of task Ti if
she declares bi. In order to evaluate the quality of a randomized algorithm, we
use the notion of expected approximation ratio.

We will refer in the sequel to the list scheduling algorithms LPT and SPT,
where LPT (resp. SPT) [11] is the algorithm which greedily schedules the tasks,
sorted in order of decreasing (resp. increasing) lengths: this algorithm schedules,
as soon as a machine is available, the largest (resp. smallest) task which has not
yet been scheduled. An LPT (resp. SPT) schedule is a schedule returned by the
LPT (resp. SPT) algorithm.

192 G. Christodoulou, L. Gourvès, and F. Pascual

3 About Truthful Algorithms for the Strong Model of
Execution

3.1 Deterministic Algorithms

We saw that the deterministic algorithm SPT, which is (2− 1
m)-approximate, is

truthful. Let us now show that there is no truthful deterministic algorithm with
a better approximation ratio.

Theorem 1. Let us consider that we have m identical machines. There is no
truthful deterministic algorithm with an approximation ratio smaller than 2− 1

m .

Proof. Let us suppose that we have n = m (m − 1) + 1 tasks of length 1. Let
us suppose that we have a truthful deterministic algorithm A which has an
approximation ratio smaller than (2 − 1/m) Let t be the task which has the
maximum completion time, Ct, in the schedule returned by A. We know that
Ct ≥ m.

Let us now suppose that task t bids m instead of 1. We will show that the
completion time of t is then smaller than m. Let OPT be the makespan of an
optimal solution where there are n− 1 = m (m− 1) tasks of length 1 and a task
of length m. We have: OPT = m. Since te approximation ratio of algorithm A is
smaller than (2−1/m), the makespan of the schedule it builds with this instance
is smaller than (2− 1/m)m = 2 m− 1. Thus, the task of length m starts before
time (m− 1). Thus, if task t bids m instead of 1, it will start before time m− 1
and be completed one time unit after, that is before time m. Thus task t will
decrease its completion time by bidding m instead of 1, and algorithm A is not
truthful.

Note that we can generalize this result to the case of related machines: we have
m machines P1, . . . , Pm, such that machine Pi has a speed vi, v1 = 1, and
v1 ≤ . . . ≤ vm. By this way, the bound becomes 2− vm∑

m
i=1 vi

.
Concerning the strong model of execution, no deterministic algorithm can

outperform SPT in the centralized setting. Then, it is interesting to consider
randomized algorithms to achieve a better approximation ratio.

3.2 Randomized Algorithms

In [3], the authors present a randomized algorithm which consists in returning a
LPT schedule with a probability 1/(m+1) and a slightly modified SPT schedule
with a probability m/(m+1). They obtain a truthful algorithm whose expected
approximation ratio improves 2 − 1

m but no instance showing the tightness of
their analysis is provided. A good candidate should be simultaneously a tight
example for both LPT and SPT schedules. We are not aware of the existence of
such an instance and we believe in a future improvement of this upper bound.
The following Theorem provides a lower bound.

Theorem 2. Let us consider that we have m identical machines. There is no
truthful randomized algorithm with an approximation ratio smaller than 3

2 −
1

2m .

Scheduling Selfish Tasks: About the Performance of Truthful Algorithms 193

Generalizing this result to the case of related machines, the bound becomes
3
2 −

vm

2
∑

m
i=1 vi

.

4 About Truthful Algorithms for the Weak Model of
Execution

4.1 A Truthful Deterministic Algorithm

We saw in the Section 3 that SPT is a truthful and (2 − 1/m)-approximate
algorithm for the strong model of execution, and that no truthful deterministic
algorithm can have a better approximation ratio. If we consider the weak model
of execution, we can design a truthful deterministic algorithm, called LPTmirror,
with a better performance guarantee. We are given n tasks {1, . . . , n} which bid
lengths b1, . . . , bn. Make a schedule σLPT with the LPT list algorithm. Let COPT

max

be the optimal makespan. Let p(i) be the machine on which the task i is executed
in σLPT . Let Ci be date at which the task i ends in σLPT . LPTmirror returns
the schedule in which task i is executed on machine p(i) and starts at time(
4/3− 1/(3m)

)
COPT

max − Ci.

Theorem 3. LPTmirror is a deterministic, truthful and (4
3 −

1
3m)-approximate

algorithm.

Proof. We are given n tasks with true lengths l1, . . . , ln. Let us suppose than
each task has bidden a value, and that task i bids bi > li. This can make the
task i start earlier in σLPT but never later. In addition, the optimal makespan
when i bids bi > li is necessarily larger than or or equal to the optimal makespan
when task i reports its true length.

Let Si be the date at which task i starts to be executed in σLPT . The
completion time of task i in LPTmirror is

(
4/3 − 1/(3 m)

)
OPT − Ci + bi =(

4/3 − 1/(3 m)
)
OPT − Si because Si = Ci − bi. By bidding bi > li, task i

can only increase its completion time in the schedule returned by LPTmirror

because OPT does not decrease and Si does not increase. Thus task i does not
have incentive to lie.

Since the approximation ratio of the schedule obtained with the LPT list algo-
rithm is at most

(
4/3−1/(3m)

)
[11], the schedule returned by LPTmirror is clearly

feasible and its makespan is, by construction,
(
4/3− 1/(3m)

)
-approximate. Thus

LPTmirror is a truthful and (4
3 −

1
3m)-approximate algorithm.

Note that LPTmirror is not a polynomial time algorithm, since we need to know
the value of the makespan in an optimal solution, which is an NP-hard problem
[10]. However, it is possible to have a polynomial time algorithm which is

(
4/3−

1/(3m)
)
-approximate, even if some tasks do not bid their true values. Consider

the following simple algorithm: we first compute a schedule σLPT with the LPT
algorithm. Let p(i) be the machine on which the task i is executed in σLPT , let
Ci be the completion time of task i in σLPT , and let Cmax be the makespan of

194 G. Christodoulou, L. Gourvès, and F. Pascual

σLPT . We then compute the final schedule σ′ in which task i is scheduled on
p(i) and starts at time Cmax − Ci.

We can show that this algorithm is
(
4/3 − 1/(3m)

)
-approximate (i.e. the

schedule returned by this algorithm is at most
(
4/3−1/(3m)

)
times larger than

the optimal schedule in which all the tasks bid their true values). We can show
this by the following way. We suppose that all the tasks except i have bidden
some values. Let σLPT (bi) be the schedule σLPT obtained when i bids bi, let
Si(bi) be the date at which task i starts to be executed in σLPT (bi), and let
Cmax(σLPT (bi)) be the makespan of σLPT (bi). The completion time of task i
(which bids bi) in σ′ is equal to Cmax(σLPT (bi)) − Si(bi). Since with the LPT
algorithm, tasks are scheduled in decreasing order of lengths, if bi > li then
Si(bi) ≤ Si(li). Thus, whatever the values bidden by the other tasks are, i has
incentive to lie and bid bi > li only if Cmax(σLPT (bi)) < Cmax(σLPT (li)). Since
this is true for each task, no task will unilaterally lie unless this decreases the
makespan of the schedule. The makespan of the schedule σ′ in which all the
tasks bid their true values is

(
4/3−1/(3m)

)
-approximate, and then the solution

returned by this algorithm will also be
(
4/3− 1/(3m)

)
-approximate.

4.2 Deterministic Algorithms: Lower Bounds

We suppose that the solution returned by an algorithm depends on the length
and the identification number of each task, even those which can be identified
with their unique length.

Theorem 4. Let us consider that we have two identical machines. There is
no truthful deterministic algorithm with an approximation ratio smaller than
1 + (

√
105− 9)/12 ≈ 1.1039.

Theorem 5. Let us consider that we have m ≥ 3 identical machines. There is no
truthful deterministic algorithm with an approximation ratio smaller than 7/6.

The assumption made to derive Theorems 4 and 5 is, in a sense, stronger than
the usual one since we suppose that the solution returned by an algorithm for
two similar instances (same number of tasks, same lengths but different identi-
fication numbers) can be completely different. If we relax this assumption, i.e.
if identification numbers are only required for the tasks which have the same
length, the bound presented in Theorem 4 can be improved to 7/6.

Theorem 6. Let us consider that we have two identical machines. No truthful
deterministic algorithm can be better than 7/6-approximate if it does not take
into account the identification number of tasks whose length is unique.

5 About Truthful Coordination Mechanisms

Let ρ ≥ 1. If there is no truthful deterministic algorithm which has an approx-
imation ratio of ρ, then there is no truthful deterministic coordination mecha-
nism which always induce pure Nash equilibria and which has a price of anarchy

Scheduling Selfish Tasks: About the Performance of Truthful Algorithms 195

smaller than or equal to ρ. Indeed, if this was not the case, then the deter-
ministic algorithm which consists in building the schedule obtained in a pure
Nash equilibrium with this ρ-approximate coordination mechanism would be a
ρ-approximate truthful deterministic algorithm.

Likewise, if there is no truthful (randomized) algorithm which has an approx-
imation ratio of ρ, then there is no truthful coordination mechanism which has
a price of anarchy smaller than or equal to ρ. Indeed, if this was not the case,
the algorithm which consists in building the schedule obtained in a Nash equilib-
rium with this ρ-approximate coordination mechanism would be a ρ-approximate
truthful algorithm.

This observation leads us to the following results for the strong model of
execution. We deduce from Theorem 1 that there is no truthful deterministic
coordination mechanism which always induce pure Nash equilibria and which
has a price of anarchy smaller than 2 − 1/m. Thus there is no truthful coor-
dination mechanism which performs better than the truthful SPT coordination
mechanism, whose price of anarchy tends towards 2 − 1/m. We deduce from
Theorem 2 that there is no truthful coordination mechanism which has a price
of anarchy smaller than 3

2 −
1

2 m . We now consider the weak model of execution.

Theorem 7. If we consider the weak model of execution, there is no truthful
deterministic coordination mechanism which induces pure Nash equilibria, and
which has a price of anarchy smaller than 1+

√
17

4 ≈ 1.28.

Proof. Let us first prove this result in the case where there are two machines,
P1, and P2. Let ε > 0. Let us suppose that there exists a truthful coordination
mechanismM with a price of anarchy of 1+

√
17

4 −ε. Let us consider the following
instance I1: three tasks of length 1. Since M is a deterministic coordination
mechanism which induces pure Nash equilibria, there is at least a task in I1

which has a completion time larger than or equal to 2. Let t be such a task.
Let us first consider this instance I2: we have two tasks of length −1+

√
17

2 ≈
1.56. Since M is (1+

√
17

4 − ε)-approximate, there is one task on each machine,
and each task is completed before time −1+

√
17

2 × 1+
√

17
4 = 2. Thus, when it has

a task of length −1+
√

17
2 , each machine must end it before time 2.

Let us now consider the following instance I3: two tasks of length 1, and a
task of length −1+

√
17

2 . Since M is (1+
√

17
4 − ε)-approximate, the task of length

−1+
√

17
2 is necessarily alone on its machine (without loss of generality, on P2).

As we have seen it, P2 must schedule this task before time 2. Thus, task t of
instance I1, has incentive to bid −1+

√
17

2 instead of 1: by this way it will end
before time 2, instead of a time larger than or equal to 2.
We can easily extend this proof in the case where there are more than 2 machines,
by having m + 1 tasks of length 1 in I1; m tasks of length −1+

√
17

2 in I2; and m

tasks of length 1 and a task of length −1+
√

17
2 in I3.

196 G. Christodoulou, L. Gourvès, and F. Pascual

Theorem 8. If we consider the weak model of execution, there is no truthful
coordination mechanism which induces pure Nash equilibria, and which has a
price of anarchy smaller than 1 +

√
13−3
4 ≈ 1.15.

6 Conclusion

We showed that, in the strong model of execution, the list algorithm SPT, which
has an approximation ratio of 2 − 1/m is the best truthful deterministic algo-
rithm, and that there is no truthful randomized algorithm which has an ap-
proximation ratio smaller than 3/2 − 1/(2 m). On the contrary, if we relax the
constraints on the execution model, i.e. if the result of a task which bid b is
given to this task only b time units after its start, then we can obtain better re-
sults. In this model of execution, there is a truthful 4/3− 1/(3 m)-approximate
deterministic algorithm and a truthful optimal randomized algorithm. For both
execution models, we also gave lower bounds on the approximation ratios that
a truthful coordination mechanism can have.

As a future work, it would be interesting to improve the results for which a gap
between the lower and the upper bound exists. For example, we believe that the
lower bound 1+

√
17

4 (lower bound on the performance of a truthful deterministic
coordination mechanism for the weak model of execution) can be improved to
3/2 for two machines.

Another direction would be to restrict the study to truthful algorithms (or
coordination mechanisms) which run in polynomial time. Giving improved lower
bounds which rely on a computational complexity argument would be very in-
teresting.

Acknowledgments. We thank Elias Koutsoupias for helpful suggestions and
discussions on the problem.

References

1. Ambrosio, P., Auletta, V.: Deterministic Monotone Algorithms for Scheduling
on related Machines. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS,
vol. 3351, pp. 267–280. Springer, Heidelberg (2005)

2. Andelman, N., Azar, Y., Sorani, M.: Truthful Approximation Mechanisms for
Scheduling Selfish Related Machines. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

3. Angel, E., Bampis, E., Pascual, F.: Truthful Algorithms for Scheduling Selfish Tasks
on Parallel Machines. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828,
pp. 698–707. Springer, Heidelberg (2005)

4. Archer, A., Tardos, E.: Truthful Mechanisms for One-Parameter Agents. In: Proc.
of FOCS 2001, pp. 482-491 (2001)

5. Auletta, V., Penna, P., De Prisco, R., Persiano, P.: How to Route and Tax Selfish
Unsplittable Traffic. In: Proc. of SPAA 2004, pp. 196-204 (2004)

Scheduling Selfish Tasks: About the Performance of Truthful Algorithms 197

6. Auletta, V., De Prisco, R., Penna, P., Persiano, P.: Deterministic Truthful Approx-
imation Mechanisms for Scheduling Related Machines. In: Diekert, V., Habib, M.
(eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

7. Clarke, E.: Multipart pricing of public goods. Public Choices, pp. 17-33 (1971)
8. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In:

Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

9. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. In: Proc. of SODA 2007 (2007)

10. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co (1979)

11. Graham, R.: Bounds on multiprocessor timing anomalies. In: SIAM Jr. on Appl.
Math. vol. 17(2), pp. 416-429 (1969)

12. Groves, T.: Incentive in teams. Econometrica 41(4), 617–631 (1973)
13. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination Mechanisms for

Selfish Scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp.
55–69. Springer, Heidelberg (2005)

14. Koutsoupias, E., Papadimitriou, C.: Worst Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

15. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

16. Mu’alem, A., Schapira, M.: Setting lower bounds on truhfulness. In: Proc. of SODA
2007 (2007)

17. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. STOC 1999, pp.
129-140 (1999)

18. Pascual, F.: Optimisation dans les réseaux : de l’approximation polynomiale à la
théorie des jeux. Ph.D Thesis, University of Evry, France, 2006 (in french).

19. Tchetgnia, A-A.: Truthful algorithms for some scheduling problems. Master Thesis
MPRI, École Polytechnique, France (2006)

20. Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. J. Fi-
nance 16, 8–37 (1961)

Volume Computation Using a Direct Monte

Carlo Method�

Sheng Liu1,2, Jian Zhang1, and Binhai Zhu3

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, China

{lius,zj}@ios.ac.cn
2 Graduate School, Chinese Academy of Sciences, Beijing 100049, China

3 Department of Computer Science, Montana State University, Bozeman, MT
59717-3880, USA

bhz@cs.montana.edu

Abstract. Volume computation is a traditional, extremely hard but
highly demanding task. It has been widely studied and many interesting
theoretical results are obtained in recent years. But very little attention
is paid to put theory into use in practice. On the other hand, applications
emerging in computer science and other fields require practically effective
methods to compute/estimate volume. This paper presents a practical
Monte Carlo sampling algorithm on volume computation/estimation and
a corresponding prototype tool is implemented. Preliminary experimen-
tal results on lower dimensional instances show a good approximation of
volume computation for both convex and non-convex cases. While there
is no theoretical performance guarantee, the method itself even works
for the case when there is only a membership oracle, which tells whether
a point is inside the geometric body or not, and no description of the
actual geometric body is given.

1 Introduction

Volume computation is a highly demanding task in software engineering, com-
puter graphics, economics, computational complexity analysis, linear systems
modeling, VLSI design, statistics, etc. It has been studied intensively and lots of
progress has been made especially in recent decades [7,2,14,13]. However, so far
most of the research work is only concerned with the computational complexity
aspect. For instance, some researchers tried to obtain a theoretical lower bound
at all costs and neglected the practical feasibility of their algorithms. There-
fore, although there are some strong theoretical results on this problem, little
progress has been made in putting them into practical use. For this reason, this
paper focuses on practically usable tools on computing/estimating the volume
of a body.
� This work is partially supported by the National Natural Science Foundation (NSFC)

under grant number 60673044 and 60633010, and by Montana EPSCOR Visiting
Scholar’s Program.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 198–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Volume Computation Using a Direct Monte Carlo Method 199

Generally speaking, we want to compute an arbitrary body’s volume, i.e., in
general a body does not even have to be a polyhedron. But for convenience,
we will discuss convex polyhedron in most of the paper and in the end we will
show some empirical results on some non-convex bodies’ volume computation.
Specially, we use the halfspace representation of a polyhedron. That is to say,
a polyhedron is specified by P = {X |AX ≤ B} for some m × n matrix A and
m-vector B (the pair (A, B) is called a halfspace representation of P).

As for two and three dimensional polyhedra, the volume of some basic shape
(rectangle for instance) can be computed using some known mathematical for-
mulas. But it is not straightforward to efficiently handle more general and com-
plicated instances using exact analytic method. What is more, as the dimension
n increases, the computational effort required arises drastically. Dyer and Frieze
show that if P is a polyhedron then it is #P -hard to evaluate the volume of
P [4]. But later on, by introducing randomness into volume computation, Dyer,
Frieze and Kannan gave a polynomial time randomized algorithm to estimate
the volume to arbitrary accuracy in their pathbreaking paper [6]. That paper
triggers the following works in this field, which reduce the complexity of the al-
gorithm from n23 down to n4 [10,9,1,5,11,8,12,13]. The method used is to reduce
volume computation to sampling from a convex body, using the Multi-phase
Monte Carlo method. It first constructs a sequence of incremental convex body
K0 ⊂ K1 ⊂ · · · ⊂ Km = V (the volume of K0 is easy to compute). Then the
volume of K1 can be estimated by generating sufficiently many independent uni-
formly distributed random points in K1 and counting how many of them fall in
K0, using an equation like equation (1). The other Ki’s can be computed simi-
larly. At last V (Km) is obtained. When generating random points, the Markov
Chain method is adopted.

However, in contrast with the brisk development on the complexity aspect of
the randomized algorithms, little attention is paid to bring the theoretical results
into practical use. As mentioned in [3], although these randomized algorithms are
very interesting, there does not seem to be any implementation of them. That
is why the authors of [3] ignored the randomized algorithm in their practical
study on volume computation. In this paper, in contrast, we mainly focus on
such practical randomized approximate algorithms. Our algorithm is also based
on a Monte Carlo sampling method. But, compared with those Markov chain
Monte-Carlo-based algorithms, our method is much simpler and much easier to
implement. What is more, preliminary experimental results are very promising.

2 The Framework of the Sampling Algorithm

Assume that the volume of the convex polyhedron to be computed is V , our
algorithm tries to estimate the value of V by the random sampling method.

We first generate N uniformly distributed random points in the convex poly-
hedron P , then at step i we build a probing sphere S with radius ri in the

200 S. Liu, J. Zhang, and B. Zhu

polyhedron1. After that we count the number of points that fall into S, denoted
by Np. Since the volume of the sphere (denoted by W) can be obtained immedi-
ately2, we can easily obtain the volume of the polyhedron Vi from the following
formula:

W

Vi
=

Np

N
(1)

In particular, for the sake of higher accuracy, we carry out the probing procedure
multiple times to obtain the average value (in the algorithm we use an adjustable
parameter Num Of Iteration to denote this number).

Formally, the algorithm can be described as follows:

Algorithm 1. VOL(N)
1: generate N points randomly in P ;
2: sum = 0;
3: for i = 1 to Num Of Iteration do
4: build a probing sphere S in P with radius ri;
5: count the number of points in S;
6: compute the volume Vi of P using formula (1);
7: sum = sum + Vi;
8: end for
9: V = sum/Num Of Iteration;

10: return V ;

3 Implementation

In general, the algorithm framework in section 2 is very simple and is easy to
understand. But when putting it into practice, we must handle some difficult
technical points and some of them need theoretical analysis.

3.1 Generating Random Points

As shown in Algorithm 1, first of all, we have to generate a lot of uniformly dis-
tributed points in the convex polyhedron. Generating points in a given (fat) con-
vex body is easy. But it is hard to generate points that are distributed uniformly.
Most previous work adopts a Markov Chain method to obtain theoretically uni-
formly distributed points. The idea is to divide the space into n-dimensional
cubes and perform a random walk on all the cubes that lie within the given
convex polyhedron. For each walk, one of the cubes that are orthogonally ad-
jacent to the current cube in the convex body is randomly selected. Thus the
random walk is ergodic and the stationary distribution is uniform on cubes in the

1 Formally, an n-dimensional probing sphere S centering at (o1, o2, · · · , on) is defined
as S = {(x1, x2, · · · , xn)|

∑n
j=1(xj − oj)

2 ≤ r2
i }.

2 We know that W = πn/2rn
i /Γ (1 + n/2), where Γ denotes the gamma function [15].

Volume Computation Using a Direct Monte Carlo Method 201

convex polyhedron. However, this method is too complicated to use in practice.
Instead, we use the pseudo-random number generator to generate many points
in the polyhedron and assume them to be uniformly distributed. But there are
still some uncertainties in our method. For instance, how many random points
are needed. Apparently, for the sake of accuracy, the more the better. But on
the other hand, more points mean more time and lower speed. So we must take
both into consideration and find a proper compromise. In our preliminary imple-
mentation, the number of points is defined as an adjustable parameter so that
it can be tuned according to different cases.

3.2 On Selecting the Center of the Sphere

Once the sampling problem has been solved, we begin to probe in the polyhedron
with a probing sphere. But before probing, an implied prerequisite condition
must be fulfilled. That is to say, the probing sphere must perfectly lie in the
convex polyhedron. Otherwise, it is easy to see that the result obtained from
equation (1) will not be accurate. But how to make sure that the whole probing
sphere stays within the convex polyhedron? Strictly speaking, the distance from
the center of the sphere to each of the facets of the convex polyhedron should be
at least as large as the radius of the sphere. To achieve this goal, we define a new
polyhedron contained in the original polyhedron named the shrunk polyhedron.
The shrunk polyhedron has the same number of facets and vertices as the original
polyhedron. In fact they should have the same shape except that it is a smaller
version of the original polyhedron. Each facet of the shrunk convex polyhedron
is parallel to its counterpart in the original convex polyhedron and the distance
between them should be at least ri. If we have such a shrunk polyhedron, then
the problem can be solved easily by restricting the center of the sphere to lie
within the shrunk polyhedron. If we use the halfspace representation of P , the
shrunk polyhedron can be obtained easily and accurately by simply replacing
each linear constraint

∑n
k=1 ajkxk ≤ bj with

∑n
k=1 ajkxk ≤ bj−ri ∗

√∑n
k=1 a2

jk.
However, Algorithm 1 does not state that the body must be represented by

linear constraints. In fact, the body can be presented to the algorithm using a
very general mechanism called a membership oracle, which only tells whether
a point is inside the body3. That is to say, the algorithm is also applicable to
nonlinear constraints and other complicated constraints. But for these represen-
tations, it is hard for us to obtain the shrunk body accurately. So we have to
use some approximate methods or heuristics. For example, we may adopt a ran-
dom select-and-test heuristic. First, we randomly select a point in the original
body as the center of the probing sphere. Then, given a radius ri, we randomly
choose some points on the surface of the probing sphere and test whether all of
these points are also contained in the original body. If some point fails the test,
we will try another point as the center of the probing sphere and perform this
select-and-test procedure again. Formally, it can be formulated in Algorithm 2.

3 Remember that in general a body may not be a polyhedron.

202 S. Liu, J. Zhang, and B. Zhu

Algorithm 2. ForCenter(ri)
1: FOUND=0;
2: for j = 1 to Num Try Center do
3: Selecting a point in the body randomly as the center of the sphere;
4: for k = 1 to Num Try Surface do
5: Generating a point x on the surface of the sphere with radius ri;
6: if X is not in the body then
7: break;
8: end if
9: end for

10: if k > Num Try Surface then
11: FOUND=1;
12: break;
13: end if
14: end for
15: return FOUND;

The select-and-test heuristic is easy to carry out but there are still some
details that we need to clarify. For example, how many points on the surface
of the sphere should be tested in the testing process. In general, the more the
better. But again in practice more points mean more resources and more running
time. The number of points should also vary with the dimension of the probing
sphere. We again use an adjustable parameter Num Try Surface to represent
the number in our experiments and it turns out that the heuristic works very
well.

3.3 On Radius Selection

As described above, when building the probing sphere, we should determine the
radius of the sphere beforehand. It is easy to understand that the radius should
not be too small so that there is no point falling into the probing sphere at all.
That is to say, there should be at least some point in the sphere. Otherwise, that
probing sphere is useless. Based on the random sampling method, we have the
following probabilistic analysis.

Theorem 1. Given an n-dimensional polyhedron with volume V and the total
number of sampling points N , if the radius r of the probing sphere satisfies

r = Θ(n

√
V ∗ln N

N) then the probability that there is at least one point in the
sphere converges to 1 as N grows to infinity.

Proof. Let W be the volume of the probing sphere. Let C1 denote πn/2/Γ (1 +

n/2). Then W = C1 ∗ rn. Assume that r = C2 ∗ n

√
V ∗ln N

N . Let E represent the
event that the sphere is empty, then Ē represents the event that there is at least
one point in the sphere. Then we have:

Volume Computation Using a Direct Monte Carlo Method 203

P [Ē] = 1− P [E]

≥ 1− (
V −W

V
)N

= 1− (1− C1 ∗ rn

V
)N

= 1− (1− C1 ∗ C2
n ∗ ln N

N
)N

= 1− e−C1∗C2
n∗ln N

= 1− 1
NC1∗C2

n

(2)

Although C1 varies with dimension n [15], it is clear that given an n-dimensional
instance, when N is big enough, P [Ē] will converge to 1. Thus we complete the
proof. ��

On the other hand, in theory, the bigger r is, the better the approximation is.

Claim. Convergence is better when r is bigger.

Proof. Let p = W/V denote the probability that a random point from the poly-
hedron also falls into the probing sphere. Then the distribution of the random
variable Np will conform to a binomial distribution B(N, p). Thus we have

Var(Np) = N ∗ p ∗ (1− p) Mean(Np) = N ∗ p

It follows that

Var(Np/N) = p ∗ (1− p)/N Var(Np)/Mean(Np) = 1− p

The formula on Var(Np/N) reveals that the convergence is better when p is
near one4 than near 1/2. If Var/Mean is used as a measure of convergence, we
will also find that the smaller 1−p is, the better the convergence is. While small
1− p means big W , so it is easy to see that the claim holds. ��

The above analyses suggest that we had better find a radius that is as big as
possible. Theoretically it is indeed the case but in practice a probing sphere with
the largest possible radius may have its weakness in the uniformity of probing.
Take a triangle for example, the largest probing sphere inside it may be the
inscribed circle of it. If we use the largest probing sphere, we will restrict our
probing to the sampling points in the inscribed circle only. However, because
all the sampling points are simulated by pseudo-random numbers, we cannot
guarantee whether they are absolutely uniformly distributed in any part of the
polyhedron. Therefore, we make sure that the probing sphere can visit as many
parts of the sampling points as possible, so as to make the probing more general.
For this reason, a moderately large but not an extremely large radius may be
more suitable.
4 The case of p near 0 is trivial, so we do not consider it.

204 S. Liu, J. Zhang, and B. Zhu

Theorem 1 also reveals that r depends on V , which is exactly something we
need to compute. In theory we can estimate an upper bound of V by building
another convex polyhedron, which contains the original convex polyhedron and
has a volume that is easier to compute. For example, the smallest axis-parallel
bounding box may be enough for that purpose. This method heavily depends on
the ratio between the volume of the polyhedron and the volume of the bounding
box. But the ratio can be very small. What is more, for instances with nonlinear
constraints, it is not always convenient to obtain the smallest bounding box.

To handle this problem, we adopt a self-adaptive heuristic in our implemen-
tation. First, we randomly choose two of the sampling points in the polyhedron
and let r be the distance between them. With the current radius r, if we fail
to find a proper center of the sphere after Num Try Center tries using the
heuristic method given in the previous subsection, we assign r ← r/2. Once we
find a proper sphere center, we stop so as to make r as big as possible. Exper-
iments show that this self-adaptive method not only works on polyhedra with
normal shapes, but is also competent for polyhedra of long skinny shapes.

4 Experiments and Analysis

Based on the above observations, a prototype tool is implemented. We exper-
iment on many simple instances to examine its performance. For the sake of
comparison, we also test it on instances with known volume (named REAL vol-
ume) and examine the ratios of the results computed by our program to the
REAL volume. Due to the space limit, we only introduce some simple ones.

4.1 Simple Examples

Example 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−x + 2y ≤ 200
−y ≤ 0
x− y ≤ 0
−x− y ≤ 50
x + y ≤ 200

. It is in fact a pentagon with vertices (0, 0),

(−50, 0), (−100, 50), (200/3, 400/3), and (100, 100) and its REAL volume (the
area of the pentagon) is 38750/3.

Example 2

⎧
⎪⎪⎨

⎪⎪⎩

x + y + z ≤ 255
−x ≤ 0
−y ≤ 0
−z ≤ 0

. It is in fact a tetrahedron defined by the four

vertices (0, 0, 0), (255, 0, 0), (0, 255, 0) and (0, 0, 255). So we can easily obtain the
REAL volume (255 ∗ 255 ∗ 255)/6 by hand.

We test our tool on these instances and check the ratio of the program re-
sults to the REAL volumes. The experimental results are given in Fig. 1 and 2
respectively in detail.

Volume Computation Using a Direct Monte Carlo Method 205

•
•

•

•

•
•

•

•

•

•

••
•
•

•
•

•
•

•

••

•

•

•

•

•
•
••

•

•••
•••

•

•

•
•

•
•

•

•

•

•

•
•••••
••
•

•

•

•
•
•

•
•

•

•

•

•

•••

•

•

•

•

•
•
•

•

•
•
•
•••

•

•
••

••

•

••

•
••

••
•
•
•

0 20 40 60 80 100

0.99

0.995

1

1.01

1.01

Round

R
at

io

(a) Ratio for each test

•

•

••

••

••

•

•••••
••
•
•
•••

•
•••••••••••

••••
••••••••
•••
••••••••••••••••••••••••••••••••••••••

••••••••••••••

0 20 40 60 80 100

1

1

1

Total Round

M
ea

n
R

at
io

(b) Mean ratio

Fig. 1. Experimental results of Example 1

•••
•

•

•

•

•
••
•
•
•

•

•
•
••
•
•
•

•
•
•
•

•

•

•

•

•
•

•

••

•

•

•

••

•
•

•

••

•

•
•
•
••••
•
•
•••
•••

•

••

•

••

•
•

•

••

•
•
••
•

•

•

•

•

•

•

•

•
•
••
•

•

•

•

•

•
•
•

•

••

•

•

0 20 40 60 80 100

0.98

0.99

1

1.01

1.02

Round

R
at

io

(a) Ratio for each test

•
•
•

•

•

••

•
•
••••
•
•••••••••••

•••••••••••••••••••
••••••
••••••••••••••••••••

•••••••••••••••••••••••
•••••••

0 20 40 60 80 100

0.994

0.996

0.998

1

Total Round

M
ea

n
R

at
io

(b) Mean ratio

Fig. 2. Experimental results of Example 2

4.2 Variance Analysis

Experimental results from both Fig. 1 and Fig. 2 show that our method in-
deed has a good approximation. The mean values are very close to 1 and they
converge well. However, there are still some small differences between Fig. 1(a)
and Fig. 2(a). For example, all the ratio values in Fig. 1(a) fall within a small
interval while those in Fig. 2(a) fall within a relatively large interval. As far as
the variance is concerned, why does the data in Fig. 2(a) have a larger variance
compared with those in Fig. 1(a)? To find out the possible reason, we experiment
on Example 2 again with fewer sampling points. Results are presented in Fig. 3.
Comparing Fig. 3(a) with Fig. 2(a), we find that given a fixed volume, fewer
sampling points result in relatively larger variance.

Theoretically speaking, our sampling algorithm needs sufficiently many inde-
pendent uniformly distributed points, but in practice we can only generate a
finite number of points. How large should this number be? It is a problem to be
settled. If we use a fixed number for each dimension, then instances with smaller
volume will have larger density compared with those with bigger volume. Given
two polyhedra in the same dimension, the volume ratio, however, can be arbi-
trary large, which may result in sharp difference on density. On the other hand,

206 S. Liu, J. Zhang, and B. Zhu

•

•

•
•
•

•

•

•
•
•

•

•
•

••

••

•

•
•

•••

•

•

•
••

•
•

•

•
•
•
•••
•
•

•

•

•

•

•

•

•
•

•

•
•
•••
•

•
•

•

•

•

•
••
•

•

•
•
•

•

•

•

•
•

••

•
•
•
•

•
•
•

•

•••

••

•

••
••
•

••

•

•

••
•

0 20 40 60 80 100

0.9

0.95

1

1.05

Round

R
at

io

(a) Ratio for each test

•

•

••

•
•

•

••
•

•

•
•••
•
•
•
••
••
•
••••
•
••
•••••••••
•

•••••••••••
••••
•
•••••••••••

••••••
•••••••••••••

•••••
•••••••••

0 20 40 60 80 100

0.99

0.995

1

1.01

Total Round

M
ea

n
R

at
io

(b) Mean ratio

Fig. 3. Experimental results of Example 2 (using fewer sampling points)

it is clear that this number should vary with the dimension. Maybe this number
should be an exponential function on the dimension but we are not able to find
a precise definition yet. In our current implementation, we use an adjustable
parameter to denote the number of points before running the program. It is
certainly better to find a self-adaptive heuristic, which can dynamically adjust
the number during the running of the program. We leave this for our future
work.

4.3 On the Mean Ratio

Although the variance varies with different sampling densities, all the mean ratios
in Fig. 1(b), Fig. 2(b) and Fig. 3(b) show a very good approximation to 1. The
curves reveal a nice trend of convergence to 1 as the total Round number grows
from 1 to 100. This is easy to understand. Even if the ratio deviation of one
particular case is 100%, it will only contribute 1% up to the total deviation of
the mean value because it is divided equally among all the 100 sampling Rounds.
So in general it makes sense to run more Rounds.

At last, we want to emphasize that the sampling algorithm is a general
method. Although there are some negative results of it when the dimension

••
••
••

•
•
•
••

••

•
•

•

•••
•
•
•
•

•
••

•
•
•
•
•
•
•

•

•
••

•
•
••
•
••
•

•

•

•

•
•

••

•

•

•••

••

•

•

•
•

•

•

•

•

•

•

••
•

•

•

•

•

••
•

•
•
••

•

••
•

•

•

•

•

•
•

•
•
•

•

•

•
•

0 20 40 60 80 100

50

60

70

80

Round

V
ol

um
e

(a) Volume for each test

•
•

•
•
••

•
••••
••
••
••••••••••
••
•••••••••••••••••••

•••••••••••
•••••••
••••
••••••••••••••••••••••••••••••••

0 20 40 60 80 100

58

60

62

64

Sum/Round

V
ol

um
e

(b) Mean volume

Fig. 4. Experimental results

Volume Computation Using a Direct Monte Carlo Method 207

n grows to infinity [14], our experiments show that the method is still feasible
for real-life instances in high dimension. However, as for high dimensional and
general non-convex instances, although the method can compute/approximate
volume, we cannot always carry out comparisons as we do above, because we
have no other means to obtain the REAL volume for general instances. De-
spite that, for some two-dimensional non-convex cases (whose REAL volume
can be computed analytically) our method can obtain a mean ratio which al-
ways converges to one. For more complex non-convex cases, we believe that our
algorithm also has good approximations in practice. For instance, given an in-

stance

⎧
⎪⎪⎨

⎪⎪⎩

y ≥ x2 − 2
y ≤ 1

2x2

−10 ≤ z ≤ 5
xyz ≤ 1

, we do not know the REAL volume, but our tool can tell

us that it is about 60, as depicted in Fig. 4.5

5 Concluding Remarks

Volume computation is a very hard but widely studied problem in mathematics
and computer science. Generally speaking, there are two different methods on
this problem: the exact method and the randomized approximation method. The
exact method itself can be classified into two classes: triangulation methods and
signed decomposition methods. Benno Büeler, Andreas Enge and Komei Fukuda
present some practical study on these methods [3]. But these methods are only
applicable to convex bodies with linear constraints. The randomized approxi-
mation method is a more general one. It can cope with almost any constraints
presented to it. Although the randomized approximation method is relatively
new, a lot of progress has been made since its birth. Our work is also based on
the randomized method.

However, most of these efforts on randomized algorithms are on the complex-
ity aspect and little practical studies are given. In this paper some implementa-
tion issues of volume computation are studied. Some techniques in randomized
volume computation algorithms are quantitatively evaluated. For example, our
algorithm is also based on Monte Carlo sampling, but we do not use the Multi-
phase method as described above. Instead, we use only one phase Monte Carlo
method but we run the probing process many times to obtain a more accu-
rate average result. On generating uniformly distributed points, we do not use
the Markov Chain method although it does well in simulating the uniformly
distribution in theory. Instead, we generate random points directly within the
polyhedron and view them as uniformly distributed ones in our algorithm. Tech-
niques and problems on efficient and effective implementation to achieve good
performance are also discussed. Preliminary empirical results show that the tool
developed by utilizing these results works very well. Of course, there are still
some unsolved problems related to some of the manually adjustable parameters.
We leave them for future research.
5 See Appendix A for more examples.

208 S. Liu, J. Zhang, and B. Zhu

References

1. David Applegate and Ravi Kannan. Sampling and integration of near log-concave
functions. In: Proc. 23rd annual ACM symp. on Theory of Computing (STOC),
pp. 156–163 (1991)

2. Bollobás, B.: Volume estimates and rapid mixing. Flavors of geometry. Math. Sci.
Res. Inst. Publ. 31, 151–182 (1997)

3. Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a
practical study. Polytopes–combinatorics and computation (1998)

4. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron.
SIAM J. Comput. 17(5), 967–974 (1988)

5. Martin Dyer and Alan Frieze. Computing the volume of convex bodies: A case
where randomness provably helps. In: Proc. 44th Symp. in Applied Mathematics
(PSAM) (1991)

6. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for ap-
proximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

7. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computa-
tional convexity: II. volume and mixed volumes. Polytopes: abstract, convex and
computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., pp. 373–466 (1994)

8. Kannan, R., Lovász, L., Simonovits, M.: Random walks and an O∗(n5) volume
algorithm for convex bodies. Random Struct. Algorithms 11(1), 1–50 (1997)

9. ó Lovász, L.: How to compute the volume? Jber. d. Dt. Math.-Verein, Ju-
biläumstagung, B. G. Teubner, Stuttgart, pp. 138–151 (1990)

10. Lovász, L., Simonovits, M.: The mixing rate of markov chains, an isoperimetric
inequality, and computing the volume. In: Proc. 31th IEEE Annual Symp. on
Found. of Comp. Sci (FOCS), pp. 482–491 (1990)

11. Lovász, L., Simonovits, M.: Random walks in a convex body and an improved
volume algorithm. Random Struct. Algorithms 4(4), 359–412 (1993)

12. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O∗(n4)
volume algorithm. In: ó Lovász, L. (ed.) Proc. 44th IEEE Annual Symp. on Found.
of Comp. Sci (FOCS), pp. 650–659 (2003)

13. Rademacher, L., Vempala, S.: Dispersion of mass and the complexity of randomized
geometric algorithms. In: Proc. 47th IEEE Annual Symp. on Found. of Comp. Sci
(FOCS), pp. 729–738 (2006)

14. Simonovits, M.: How to compute the volume in high dimension? Mathematical
Programming 97, 337–374 (2003)

15. Weisstein, E.: Ball. From MathWorld – A Wolfram Web Resource (2003), available
at http://mathworld.wolfram.com/Ball.html

http://mathworld.wolfram.com/Ball.html

Volume Computation Using a Direct Monte Carlo Method 209

A More Examples

Example (a) Given a 4-dimensional polyhedron below, its REAL volume is
about 2/3. Our tool can also give the results depicted on the right of the below in-

stance.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + y + z − u ≤ 1
−x + y + z + u ≤ 1
−x + y − z − u ≤ 1
−x + y − z + u ≤ 1
−x− y − z − u ≤ 1
−x− y − z + u ≤ 1
−x− y + z + u ≤ 1
−x− y + z − u ≤ 1
x− y − z + u ≤ 1
x− y − z − u ≤ 1
x− y + z + u ≤ 1
x− y + z − u ≤ 1
x + y − z + u ≤ 1
x + y − z − u ≤ 1
x + y + z + u ≤ 1
x + y + z − u ≤ 1

•

•

•••

•

•

•

•

•

•

•

•
•

•
•

•

•
•
•
•

•
•

•

•
••

•

•

•
•
•

•
•

•

•

•
•••••

•

•

•
•

•

••
•

•

•

•

•
•
•

•

•

•
•
••

•
•

•

•

••
•

•

•
•
•••

•

•
••
•
•
•••

•
•
•••
•
••

•
•
••••
•
•

0 20 40 60 80 100

0.97

0.98

0.99

1

1.01

1.02

Round

R
at

io

•

•
•••
•
••
••

0 20 40 60 80 100

0.97

0.98

0.99

1

Sum/Round

R
at

io

Example (b) Given a 3-dimensional body

⎧
⎪⎪⎨

⎪⎪⎩

4x2 + 2y2 + z2 ≤ 8
x2 + 4y2 + 2z2 ≤ 8
2x2 + y2 + 4z2 ≤ 8
xy ≤ 1

, it is in fact

the intersection of three ellipsoids and another instance denoted by {xy ≤ 1}.
We do not know its REAL volume, but our tool can tell us the approximate
volume (about 16.2) as depicted below.

•

••

•

•

•

••
•
•

•
•••

•

••

•
•••
•
•

•
•
••
••
•

•

•
••

•

•••
••

•

•

•
••

•

•
•
•

•
••
•

•

•
••

•

•
••
•
•

••
•
••
•
•
•

•

••
•
•

•

•
•

•

••
•
•
•
•
•••
•

•••
••

•

•
•
•
•

0 20 40 60 80 100

14

15

16

17

18

19

Round

V
ol

um
e

(a) Volume for each test

•

•

•

•
•

•••••••••
•••••••••
••••••••••••••••••

••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••

0 20 40 60 80 100

16.2

16.4

16.6

16.8

17

Sum/Round

V
ol

um
e

(b) Mean volume

Fig. 5. Experimental results

Improved Throughput Bounds for
Interference-Aware Routing in Wireless Networks�

Chiranjeeb Buragohain1, Subhash Suri2, Csaba D. Tóth3, and Yunhong Zhou4

1 Amazon.com Inc., Seattle, WA 98104
chiran@amazon.com

2 Department of Comp. Sci., UCSB, Santa Barbara, CA 93106
suri@cs.ucsb.edu

3 Department of Mathematics, MIT, Cambridge, MA 02139
toth@math.mit.edu

4 HP Labs, 1501 Page Mill Road, Palo Alto, CA 94304
yunhong.zhou@hp.com

1 Introduction

Interference is a fundamental limiting factor in wireless networks. Due to interaction
among transmissions of neighboring nodes and need for multi-hop routing in large net-
works, it is a non-trivial problem to estimate how much throughput a network can de-
liver. In an important piece of work, Gupta and Kumar [3] showed that in a random
model, where n identical nodes are distributed uniformly in a unit square and each
node is communicating with a random destination, the capacity of the network as mea-
sured in bit-meters/sec is O(

√
n). This result articulates the packing constraint of the n

paths: on average each path is Θ(
√

n) hops long, and thus in the space of size O(n),
only O(

√
n) paths can be accommodated.

The Gupta-Kumar result is quite elegant, but its relevance to practical networks can
be questioned because of the random source-destination (s–t) pairs assumption. As Li
et al. [10] point out, such an assumption may hold in small networks, but as the network
scales, it is unlikely that communications patterns will exhibit uniform randomness. In-
stead, the more relevant question is: given a particular network instance and a set of
s–t pairs, what is the maximum throughput that this network can deliver? Motivated by
this question, Jain et al. [4], Alicherry et al. [1], and Kumar et al. [8] have investigated
the capacity of wireless networks for arbitrary source-destination pairs, and arbitrary
networks. All these papers model the problem as a linear program (LP), and provide a
computational scheme for estimating the throughput. This is indeed an important direc-
tion and, as one of our main results, we show that a novel node-based LP formulation
combined with a node ordering technique yields a 1/3 approximation of the optimal
throughput, which improves the previous best lower bound of 1/8. But we first begin
with a natural fundamental question.

Is there a generalization of the Gupta-Kumar result for arbitrary networks and arbi-
trary sets of s–t pairs? In other words, can one estimate the network capacity in broad

� The research of Chiranjeeb Buragohain and Subhash Suri was supported in part by the National
Science Foundation under grants CNS-0626954 and CCF-0514738.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 210–221, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Throughput Bounds for Interference-Aware Routing in Wireless Networks 211

terms, without resorting to computational techniques? And how widely does the capac-
ity vary for different choices of s–t pairs in the network? Recall that in the random
model of Gupta and Kumar, the gap between the best-case and worst-case bounds is
only a constant factor.

Of course, it is easy to observe that without some additional parameters this ques-
tion is not particularly meaningful. Because we measure throughput in the number of
bits transmitted (and not bit-meters as Gupta and Kumar), the capacity can vary widely
depending on how far apart the sources and destinations are. If each source is adjacent
to its destination, then we can achieve a throughput of Θ(n); if source-destination pairs
are Θ(n) distance apart (as in a path graph), then the throughput drops to O(1). Thus,
a natural and important parameter is the distance between the source and destination
nodes. However, even if two input instances have roughly equal average distance be-
tween s–t pairs, their throughputs can vary widely (for instance, if a small cut separates
all source-destination pairs). We show, however, that there is an intermediate ground
of structured network and arbitrary s–t pairs, where such a characterization is pos-
sible. The special structure we consider is a grid network, which is a rather natural
topology.

Our Contributions

1. Suppose we have n arbitrarily paired s–t pairs in an Θ(
√

n) × Θ(
√

n) size grid
network. We show that if the average (hop) distance among the s–t pairs is d, then
it is always possible to achieve a total throughput of Ω(n/d). There are instances
where this bound is tight. The upper bound on the throughput follows easily from
a packing argument; our contribution is to show that Ω(n/d) throughput is always
achievable.

2. The Ω(n/d) throughput in a grid network can be achieved by a simple routing
scheme that routes each flow along a single path. Both the routing and the schedul-
ing algorithms are simple, deterministic, and distributed. Thus, for the grid topol-
ogy networks, one can achieve (asymptotic) worst-case optimal throughput without
resorting to computationally expensive LP type methods.

3. Our third result concerns an approximation bound for the throughput in a general
network: arbitrary network topology and arbitrary s–t pairs. In contrast to previous
work [4,1,8], we introduce two novel ideas: improved interference constraints at
the node level, and improving the approximation ratio by imposing an ordering on
the nodes. As a result of these two ideas, we achieve an approximation ratio of 3
for the optimal throughput, improving all previous bounds.

4. An interesting corollary of our LP formulation is that it yields provably optimal
throughput if the network topology has a special structure, such as a tree. Tree-like
topologies may be quite natural in some wireless mesh networks, especially at the
peripheries.

5. We show through experimentation that our node-based LP routing delivers excel-
lent performance. In most cases, it achieves twice the throughput of the edge-based
LP, and is typically within 10% of the optimal.

6. All LP based techniques split flows across multiple paths, and an obvious ques-
tion is to bound the integrality gap between the optimal multi-path and single-path

212 C. Buragohain et al.

routes. Simulations studies [8] suggest that, for random inputs, natural heuristics
based on the classical shortest path schemes can give acceptable results. In the full
version of this paper, we show that three straightforward routing schemes can have
arbitrarily small throughput. On the other hand, in the special case of grid net-
works, we show that one can efficiently compute a single path route whose end to
end throughput is within a constant factor of the optimal single path throughput.

2 Preliminaries and Related Work

We assume a standard graph model of wireless networks. The network connectivity is
described by an undirected graph G = (V, E), where V denotes the set of ad-hoc wire-
less nodes, and E denotes the set of node-pairs that are neighbors. The communication
radius of every radio node i ∈ {1, 2, . . . , n} is R; throughout the paper, we assume that
the communication occurs on a single radio channel, although the extension to multi-
ple channels is straightforward. Each communicating node causes interferences at all
other nodes within distance � from it, where � ≥ R, is called the interference radius
of the node. Note that we assume that all radios have an identical communication ra-
dius R, and an identical interference radius �. In order to simplify the discussion, we
assume that � = R, but all our arguments can be easily extended to the general case
of � > R.

A problem instance is a network G = (V, E), and a set of k source-target pairs
(sj , tj), j = 1, 2, . . . , k, where sj and tj are nodes of V . We assume that each source sj

wants to transmit to its target tj at a normalized rate of 1. For simplicity, we also assume
that the channel capacity is also 1; again, these are easily generalized to different rates.
Our problem is to maximize the network throughput, which is the total amount of traffic
that can be scheduled among all the s–t pairs subject to the capacity and interference
constraints.

Models of Interference. The wireless network uses a broadcast medium, which means
that when one node transmits, it causes interference at the neighboring nodes, prevent-
ing them from receiving (correct) signals from other nodes. The details of which nodes
cause interference at which other nodes depend on the specifics of the MAC proto-
col being used. In this paper, we adopt the interference model corresponding to the
IEEE 802.11-like MAC protocols, which require senders to send RTS control messages
and receivers to send CTS and ACK messages. Currently, this is the most widely used
MAC protocol in wireless networks. Under this protocol, two edges are said to inter-
fere if either endpoint (node) of one is within the interference radius � of a node of the
other edge. In other words, the edges ij and kl interfere if max{dist(i, k), dist(i, l),
dist(j, k), dist(j, l)} ≤ �. It is clear that if a set of edges pairwise interfere with each
other, then only one of those edges can be active at any point of time.

There are several other models of interference in the literature. The protocol model
introduced by Gupta and Kumar [3] assumes that the transmission from node i is re-
ceived correctly at j if no other node k is transmitting within interference range � of
j. This model corresponds to MAC protocols that do not require an ACK from the re-
ceiver. The throughput of a network can be higher under the protocol model because

Improved Throughput Bounds for Interference-Aware Routing in Wireless Networks 213

it assumes a weaker interference condition than the 802.11-like protocols. The trans-
mitter model introduced in Kumar et al. [8] assumes that two transmitting nodes are
in conflict unless they are separated by twice the interference range (2�). The interfer-
ence condition assumed here is unnecessarily stronger than 802.11 MACs and leads to
a lower estimate of throughput of the network. While we have chosen to work with the
802.11 model of interference, our methodology is quite general, and can be applied to
these other models as well.

Related Work. Gupta and Kumar [3] provide (near) tight bounds on the throughput
capacity of a random network, where the nodes are placed randomly in a square and
sources and destinations are randomly paired. They show that the expected throughput
available to each node in the network is Θ(1/

√
n). Their result essentially articulates

that interference leads to geometric packing constraint in the medium. In a follow up
work, Li et al. [10] did simulations and experiments to measure the impact of interfer-
ence in some realistic networks. They made the case that it might not be realistic to
assume random s–t pairs. They argue that if s–t pairs are not too far from each other
then the throughput improves; in fact, they observe that the throughput is bounded by
O(n/d) if the average s–t separation is d. They cannot tell, however, if this throughput
bound can always be achieved. Kyasanur et al. [9] have recently extended the work of
Gupta and Kumar [3] to study the dependence of total throughput on the number radio
channels and interfaces on each network node.

While the results of Gupta-Kumar and Li et al. focused on random or grid-like net-
works, they did not address a very practical question: given a particular instance of a
network and a set of s–t pairs, how much throughput is achievable? Jain et al. [4] for-
malized this problem, proved that it is NP-hard, and gave upper and lower bounds to
estimate the optimal throughput. Their methods, however, do not translate to polyno-
mial time approximation algorithms with any provable guarantees. Kodialam et al. [5]
studied a variant of the throughput maximization problem for arbitrary networks, but
they do not consider the effect of interference in detail. Recently Padhye et al. [11]
have taken significant steps to measure interference between real radio links. Raniwala
et al. [12] have designed and implemented a multichannel wireless network. Draves et
al. [2] have proposed routing metrics to efficiently route in such networks. On the theo-
retical side, the problem of maximizing throughput in a network using multiple channels
and interfaces have been studied by Alicherry et al. [1] and Kodialam et al. [6].

Kumar et al. [8,7] were the first to give a constant factor approximation algorithm for
the throughput maximization problem in a network with a single radio channel. In partic-
ular, they give a 5-approximation algorithm for throughput, their algorithm assumes the
transmitter model. As we mentioned earlier, the transmitter model is unduly restrictive
compared to the802.11-likemodels, and their algorithm doesnotgiveany explicit approx-
imation bound for the 802.11 model. As mentioned above, Alicherry et al. [1] considered
the problem of routing in the presence of interference with multiple radio channels and
interfaces. As part of that work, they give an approximation algorithm for the throughput
maximization problem with a constant factor guarantee under the 802.11-like model us-
ing interference constraints between edges. Their approximation factor is 1/8 for the case
of � = R, and it becomes progressively worse as � becomes larger compared to R. By
contrast, our approximation factor is 1/3, and does not depend on the ratio �/R.

214 C. Buragohain et al.

3 Maximum Throughput for Grid Topologies

Before we discuss our linear programming approach for computing interference-aware
routes in arbitrary networks, it is worth asking to what extent one can estimate the
throughput using structural facts, in the style of Gupta and Kumar [3]. In other words,
are there simple characterizations of the network and the s–t distributions that allow us
to derive good estimates of the achievable throughput without resorting to computation-
ally expensive methods such as linear programming. We do not know of any result of
this type for completely general setting (nor is one likely to exist), but we show below
that for special network topologies, such as grids, one can obtain a bound on achievable
throughput based on average separation among source-destination pairs. Furthermore,
our investigation also leads to a simple and distributed routing scheme that achieves the
optimal throughput using single paths.

Consider a grid network of size Θ(
√

n) × Θ(
√

n), which can be thought of as a
square lattice in the plane. We assume there are n source-destinations pairs, arbitrarily
chosen by the user (or adversary). We assume that all sources and all destinations are
distinct. We assume that R = � = 1, each edge in the network has capacity 1, and
each source wants to communicate with its destination at the rate of 1. We assume that
these demands are persistent, i.e. the flow demands are constant over time and we are
interested in the steady state flow. We wish to maximize the total throughput among all
the s–t pairs. (For the moment, we do not worry about fairness among different pairs,
but will briefly discuss that issue in Section 5.)

Manhattan Routing. We first consider the case when each s–t pair has (lattice) dis-
tance d. In the following subsection, we will generalize the result to average distances.
A simple packing argument shows that the maximum possible throughput is at most
O(n/d); a similar observation was also made in Li et al. [10]. But it is far from obvious
that Ω(n/d) throughput can always be realized (for adversarially chosen s–t pairs). By
clustering sources on one side, and destinations on the other, it may be possible to create
significant bottlenecks in routing.

In fact, one can see that a simple-minded routing scheme can lead to very low
throughput. Consider, for instance, the particular choice of s–t pairs shown in Fig. 1.
There are 4 source-destination pairs {(A, B), (C, D), (E, F), (G, H)}. Suppose we
route each flow using the shortest paths, staying as close as possible to the straight
line joining the s–t pair. These routes are shown using the dotted lines in the figure.
Observe that all these paths go through a common node N , which becomes the bot-
tleneck, and limits the total throughput to 1. Nevertheless, the following result shows
that for any configuration of n source-destination pairs, one can achieve Θ(n/d)
throughput.

Theorem 1. Consider n source-destination pairs in an Θ(
√

n) × Θ(
√

n) size grid,
with all sources and all destinations distinct. Suppose that each s–t pair has (lattice)
distance d. Then, one can always achieve a throughput of Ω(n/d), and this is also the
best possible bound.

Due to space limitations, the proof is given in the full version of this paper.

Improved Throughput Bounds for Interference-Aware Routing in Wireless Networks 215

A

B

C

D

E

F

G

H

N

1

2

3

4

5

6

i

j

k

p

q

Fig. 1. Illustration of the Manhattan routing. The
source destination pairs are (A,B), (C,D), (E,F)
and (G,H).

Fig. 2. Interference zone for a single node i

Extension to Average or Median Distances. The strict distance requirement for all s–t
pairs is clearly too restrictive. We now show that the result actually holds more broadly,
for the case when d is either the average or the median distance among all pairs.

Theorem 2. Consider n source-destination pairs in an Θ(
√

n) × Θ(
√

n) size grid,
with all sources and destinations distinct. Suppose that the average (lattice) distance
between the s–t pairs is d. Then, one can always achieve a throughput of Ω(n/d).

Proof. We simply observe that if the n pairs have average distance d, then at least
half the pairs must be at distance less than 2d. We set the rate for all the pairs whose
separation is larger than 2d to zero, and route the remaining pairs using Manhattan
routing. By Theorem 1, the throughput of these routes is Ω(n/d).

A very similar argument shows that a throughput of Ω(n/d) is also achievable when
the median s–t distance is d.

These bounds characterize the throughput of an instance based on just one key pa-
rameter: the separation among the source and destination pairs. Given an instance of
the problem, a network manager can now deduce the asymptotic worst-case optimal
throughput of the network simply from the distances among the source-destination
pairs. From a network manager’s perspective, this result is an encouraging one: while
the traffic matrix of a network is beyond control, the network topology is something
she can control. Thus, our result suggests that in sufficiently regular network topolo-
gies, one can consistently achieve high throughput and do so through single path
routing.

216 C. Buragohain et al.

4 Throughput in Arbitrary Topologies

In this section, we consider the general problem of estimating the throughput for a
given (arbitrary) network with arbitrary s–t pairs (namely, the problem defined in
Section 2).

A Linear Programming Approach. The throughput maximization problem is a joint
routing and scheduling problem: we need to route each flow and schedule the links so
that flows can be feasibly accommodated subject to the interference constraints. In an
actual wireless network, the scheduling is taken care of by the MAC layer —thus for
this discussion we shall assume that there is a perfect underlying MAC layer which
can schedule a solution as long as the solution respects all the flow and interference
constraints. In a real network, MAC layers are never perfect and hence our solution
provides an upper bound on feasible flows.

We formulate the flow problem as a linear program and then add constraints to model
the interference restrictions. The throughput maximization problem with only flow con-
straints is just the classical max-flow problem:

Maximize
∑

i∈N(s)

fsi subject to

∑

j∈N(i)

fij =
∑

j∈N(i)

fji, ∀ i 	= s, t

0 ≤ fij ≤ 1, ∀ ij ∈ E (1)

where N(i) denotes the set of nodes adjacent to i, and fij denotes the amount of flow in
edge ij from node i to node j, for each edge ij ∈ E. The objective function maximizes
the total flow out of s subject to the capacity constraint on each edge; the other constraint
imposes the flow conservation condition at each intermediate node. In order to simplify
the discussion, we have assumed that there is only one source-destination pair (s, t).
The extension to multiple pairs is straightforward: in each term, we sum over all flows
instead of just one.

We now describe how to supplement this standard multicommodity flow problem
with interference constraints. The key difficulty in designing an approximation algo-
rithm for the throughput maximization problem lies in resolving conflicts between
neighbors who interfere with each other. Jain et al. [4] model this constraint using
an independent set framework, which attempts to resolve the conflicts globally. Un-
fortunately, finding an independent set is NP-complete, and so it does not lead to a
polynomial time approximation.

Our approach is to resolve the conflicts locally, and model the problem as a geomet-
ric packing problem. For example, consider an edge ij and all the edges that interfere
with it. When the edge ij is active, none of the edges with which it interferes can
be active. Because each edge carves out a portion of the space (its interference zone)
while it is active, one can use packing arguments to derive upper and lower bounds
on the throughput. Indeed, similar ideas are used in [1], where the packing constraints
are formulated in the space around each edge. Unfortunately, the constant factor in their

Improved Throughput Bounds for Interference-Aware Routing in Wireless Networks 217

approximation is rather large, and it also depends on the ratio between the interference
and the radio ranges �/R. 1

Instead of modeling the interference around edges, as has been done by others, we
introduce two new ideas that lead to improved algorithms and approximation bounds.
We model the interference around nodes, and introduce an ordering over nodes. These
two ideas allow us to guarantee an approximation ratio of 3, which is independent
of �.

Modeling Interference Constraints at Nodes. Let us assume that the flow of data
through the network is like fluid which is infinitely divisible. Then in a steady state,
suppose an edge ij supports the flow fij ≤ 1 (recall that each edge has unit capacity).
This means that given a unit time interval, the edge ij is required to be active for a
fraction of time fij and remains inactive for the rest of the time. Towards this end, we
introduce two sets of variables τi and τij as follows.

τij = fij + fji ≤ 1,

τi =
∑

j∈N(i)

τij ≤ 1, ∀ i ∈ V. (2)

Here τij represents the total fraction of the unit time interval that an edge ij is active
and similarly τi is the fraction of time for the node i. Using these variables, we now
introduce the node interference constraint which enforces the interference restrictions.
Consider the node i shown in Fig. 2, and the set of its neighbors (within interference
range) denoted by N(i). It is clear that while any node j in the set N(i) ∪ {i} is trans-
mitting, all other nodes in this set must be inactive unless there is a single node that is
communicating with j. This leads us to the following constraint:

∑

j∈N(i)∪{i}
τj −

∑

j,k∈N(i)∪{i}, jk∈E

τjk ≤ 1, ∀i ∈ V, (3)

where E denotes the edges of the interference graph. To understand this inequality, let
us consider the unit time interval and in that time interval, which nodes can be active
for how long. The first term in LHS, counts the total amount of time (out of the unit
time interval) that nodes are active in the neighborhood of i. The second term accounts
for the fact that if two nodes j and k in the neighborhood of i are communicating with
each other, the time they spend communicating to each other is counted only once.

By construction, if the nodes satisfy condition (3), then the flow is definitely free of
interference. But condition (3) is actually more restrictive than necessary. For instance,
consider the nodes j and k in Fig. 2, which are separated by a distance larger than the
radio range. Constraint (3) implies that the edges jp and kq cannot be active at the same
time, while in reality they can. Eliminating such unnecessary constraints is key to our
improved analysis, and so we next introduce the idea of node ordering.

1 Lemma 1 of [1] proves an approximation bound of 8 for � = 2. They also claim an approxi-
mation bound of 4 for � = 1, which appears to be wrong, and should be 8. Also, the approxi-
mation factor grows as the ratio �/R grows. For instance, the factor is 12 for �/R = 2.5.

218 C. Buragohain et al.

Node Ordering. Consider a total order on the nodes. (We will prescribe a specific order
shortly.) Observe that the interference relation is symmetric. If nodes i and j interfere
with each other, then constraint (3) imposes the interference condition twice: once when
we consider the neighborhood of i and once for j. Therefore, if i precedes j in the order-
ing, then it is enough to only consider the constraint introduced by i on j. Specifically,
let NL(i) denote the set of interfering nodes preceding node i in the ordering, then the
following relaxed constraint still ensures an interference-free schedule.

∑

j∈NL(i)∪{i}
τj −

∑

j,k∈NL(i)∪{i}, jk∈E

τjk ≤ 1, ∀i ∈ V. (4)

In order to define NL(i), any arbitrary ordering over the nodes will work. To get
a good approximation factor, we specify the following lexicographical order on the
nodes: i precedes j if and only if, denoting the coordinates of the points by i = (xi, yi)
and j = (xj , yj), we have either xi < xj or xi = xj and yi < yj .

LP-NODE. We are now ready to describe the complete linear program, LP-NODE.

Maximize
∑

i∈N(s)

fsi subject to

∑

j∈N(i)

fij =
∑

j∈N(i)

fji, ∀ i 	= s, t

0 ≤ fij ≤ 1, ∀ ij ∈ E

τij = fij + fji ≤ 1,

τi =
∑

j∈N(i)

τij ≤ 1, ∀ i ∈ V,

∑

j∈NL(i)∪{i}
τj −

∑

j,k∈NL(i)∪{i}, jk∈E

τjk ≤ 1, ∀ i ∈ V. (5)

By construction, the solution to LP-NODE leads to a feasible flow. This flow can be
scheduled. One can show (the proof is available in the full paper) that fNODE gives a
factor 3 approximation to fOPT.

Theorem 3. The flow produced by the solution of LP-NODE satisfies
fNODE ≤ fOPT ≤ 3fNODE.

Our technique can easily be extended to the case that the interference range � is larger
than radio range R = 1. Consider any � > 1. The last constraint in LP-NODE will now
include all nodes which are within interference range of i. We can see from Fig. 2, that
within a semicircle of radius �, we can still pack at most 3 nodes which do not interfere
with each other and hence the approximation bound given above, holds for any � > R.
By contrast, the approximation ratio given by Alicherry et al. [1] grows monotonically
with increasing �; it is 8 when � = 2R, 12 when � = 2.5R, and so on.

Optimal Throughput for Tree-Structured Networks. If the underlying network is a
tree, then we can show (the proof is available in the full paper) that a variation of our
LP-NODE can solve the throughput maximization problem optimally.

Improved Throughput Bounds for Interference-Aware Routing in Wireless Networks 219

Theorem 4. If the network connectivity graph is a tree, then we can solve the through-
put maximization problem optimally using a variant of LP-NODE.

5 Experimental Results

We ran experiments on both the regular as well as random networks. The random net-
works consist of n nodes spread over a square

√
n ×
√

n area with radio range 3.0.
Any two nodes which are within radio range can communicate. This radio range was
chosen so that the network is almost always connected. We assume that we are using
a bidirectional MAC protocol like 802.11 and the radio range as well as interference
range are the same. We assume that each link can support 1 unit of throughput. In our
evaluation, we used three algorithms:

– LP-NODE: This is our main linear program described in Section 4. This algorithm
has provable worst-case approximation ratio of 3.

– LP-EDGE: This is the best previously known linear programming based scheme,
as described in Alicherry et al. [1]. This algorithm has an approximation ratio of 8,
under the condition that � = R.

– OPTIMAL: Since the throughput maximization problem is NP-Complete, there is
no polynomial time scheme to compute the maximum throughput. We therefore
use the independent set enumeration method as described by Jain et al. [4]. We
enumerate larger and larger number of independent sets and estimate the throughput
until adding more independent sets do not improve the throughput any more. At this
point we declare convergence and use the final throughput as optimal.

Throughput Scaling With Network Size. In this experiment, we wanted to see how
well LP-NODE’s performance scales with the network size. We used a random network
topology where the nodes were distributed uniformly at random throughout a square
area. The source and destination are located at diagonally opposite corners. We then
increased the number of nodes in the network from 32 to 64 to 96. In each case, we also
computed the optimal throughput fOPT by running the OPTIMAL algorithm.

In Fig. 3, left, we plot the throughput of the OPTIMAL, LP-NODE and LP-EDGE

algorithms. Our LP-NODE algorithm shows excellent performance and yields close
to 90% of the optimal throughput. By contrast, LP-EDGE performs much worse and
achieves only 50%-60% of the OPTIMAL. In fact, even with a single source-destination
pair, LP-EDGE at times failed to achieve 1/3 of the optimal throughput, which one could
have achieved by routing along a single path [10]! With a single s–t pair, the maximum
possible throughput using multipath routing is 5/6; by contrast, the maximum through-
put using a single path is 1/3. In these cases, the constant factors in the approximation
algorithms become crucially important, and the LP-NODE algorithm does well.

Throughput Scaling with Source-Destination Pairs. In this experiment, we fixed the
network and increased the number of s–t pairs in the network to evaluate the throughput
that the various routing schemes achieve. We used a random network topology with
64 nodes and up to 16 source destination pairs organized in a crosshatch pattern. In
Fig. 3, middle, we plot the total throughput using LP-EDGE, LP-NODE and OPTIMAL

220 C. Buragohain et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 32 64 96

T
hr

ou
gh

pu
t

Number of Nodes

LP-EDGE
LP-NODE
OPTIMAL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16842

T
hr

ou
gh

pu
t

Number of Flows

LP-EDGE
LP-NODE
OPTIMAL

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4

T
hr

ou
gh

pu
t

Number of Flows

Fair:64
Unfair:64
Fair:128

Unfair:128

Fig. 3. Upper left: Performance of the LP-NODE, LP-EDGE and OPTIMAL algorithms compared
for 32, 64 and 96 node networks. Upper right: The total throughput for different numbers of flows
for a 64 node network. Down: Effect of fairness on total flow for 64 and 128 node networks. Note
that the fairness constraint lowers total throughput by only a small amount.

algorithms for different number of source destination pairs. As expected we see that
the throughput increases as the number of flows increases, but the dependence is not
linear because interference from one set of paths reduces throughput for other pairs.
Again, LP-NODE shows excellent performance, reaching near-optimal throughput in
most cases, while LP-EDGE achieves less than half the throughput of LP-NODE.

Impact of Fairness on Flows. When multiple flows compete for bandwidth, the opti-
mal flow is not necessarily fair. In practice though, fairness is an important criterion in
any network protocol. To investigate the effect of fairness we again used the uniform
random topology in a square area with four source destination pairs which intersect at
the center of the square. For multiple flows we enforced the simplest fairness condition
that each flow gets an equal amount of the total flow. We computed the total throughput
using the LP-NODE algorithm and the results are shown in Fig. 3, right. As expected
we see that enforcing fairness reduces total throughput, but surprisingly, the effect is
very mild. In fact for the larger 128 node networks, the throughput for fair and unfair
flows is almost identical. This is due to the fact that in larger networks the nodes have a
lot of freedom in routing the flows and hence overall interference in any single node is
low. Thus every pair can route equal amounts of flow without congestion.

Improved Throughput Bounds for Interference-Aware Routing in Wireless Networks 221

References

1. Alicherry, M., Bhatia, R., Li, L.: Joint channel assignment and routing for throughput opti-
mization in multiradio wireless mesh networks. In: Proc. Mobicom, ACM Press, New York
(2005)

2. Draves, R.P., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh network.
In: Proc. MobiCom, ACM Press, New York (2004)

3. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46, 388–
404 (2000)

4. Jain, K., Padhye, J., Padmanabhan, V., Qiu, L.: Impact of interference on multi-hop wireless
network performance. In: Proc. Mobicom, ACM Press, New York (2003)

5. Kodialam, M., Nandagopal, T.: Characterizing the achievable rates in multihop wireless net-
works. In: Proc. MobiCom, ACM Press, New York (2003)

6. Kodialam, M., Nandagopal, T.: Characterizing the capacity region in multi-radio multi-
channel wireless mesh networks. In: Proc. MobiCom, ACM Press, New York (2005)

7. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end packet-
scheduling in wireless ad-hoc networks. In: Proc. SODA, pp. 1021–1030. ACM Press, New
York (2004)

8. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Algorithmic aspects of ca-
pacity in wireless networks. In: Proc. SIGMETRICS, ACM Press, New York (2005)

9. Kyasanur, P., Vaidya, N.H.: Capacity of multi-channel wireless networks: Impact of number
of channels and interfaces. In: Proc. MobiCom, ACM Press, New York (2005)

10. Li, J., Blake, C., Couto, D.S.J.D., Lee, H.I., Morris, R.: Capacity of ad hoc wireless networks.
In: Proc. MobiCom, ACM Press, New York (2001)

11. Padhye, J., Agarwal, S., Padmanabhan, V., Qiu, L., Rao, A., Zill, B.: Estimation of link in-
terference in static multi-hop wireless networks. In: Proc. Internet Measurement Conf. ACM
Press, New York (2005)

12. Raniwala, A., Chiueh, T.-C.: Architecture and algorithms for an ieee 802.11-based multi-
channel wireless mesh network. In: Proc. INFOCOM, IEEE (2005)

Generating Minimal k-Vertex Connected

Spanning Subgraphs

Endre Boros1, Konrad Borys1, Khaled Elbassioni2, Vladimir Gurvich1,
Kazuhisa Makino3, and Gabor Rudolf1

1 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003
{boros,kborys,gurvich,grudolf}@rutcor.rutgers.edu

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
elbassio@mpi-sb.mpg.de

3 Division of Mathematical Science for Social Systems, Graduate School of
Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

makino@sys.es.osaka-u.ac.jp

Abstract. We show that minimal k-vertex connected spanning sub-
graphs of a given graph can be generated in incremental polynomial
time for any fixed k.

1 Introduction

Vertex and edge connectivity are two of the most fundamental concepts in net-
work reliability theory. While in the simplest case only the connectedness of
an undirected graph, that is, the presence of a spanning tree, is required, in
practical applications higher levels of connectivity are often desirable. Given the
possibility that the edges of the network can randomly fail the reliability of the
network is defined as the probability that the operating edges provide a certain
level of connectivity. Most methods computing network reliability depend on
the efficient generation of all (or many) minimal subsets of network edges which
guarantee the required connectivity [5,14].

In this paper we consider the problems of generating minimal k-vertex con-
nected spanning subgraphs. An undirected graph G on at least k + 1 vertices is
k-vertex connected if every subgraph of G obtained by removing at most k − 1
vertices is connected. A subgraph of a graph G is spanning if it has the same
vertex set as G.

For a fixed integer k we define the problem of generating minimal k-vertex
connected spanning subgraphs as follows:

Input: A k-vertex connected graph G
Output: The list of all minimal k-vertex connected spanning subgraphs of G

Note that the output of the above problem may consist of exponentially many
subgraphs in terms of the input size. Thus, the efficiency of generation algorithms
is measured customarily in both the input and output size (see e.g., [14,10,7]).
An algorithm generating all elements of a family F is said to run in incremental
polynomial time if generating K elements of F (or all if F has less than K

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 222–231, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generating Minimal k-Vertex Connected Spanning Subgraphs 223

elements) can be done in time polynomial in K and the size of the input, for an
arbitrary integer K.

Our problems include as a special case the problem of generating spanning
trees (k = 1), which can be solved efficiently [12,6,11,1]. The problem of gener-
ating 2-vertex connected subgraphs and its generalization for matroids has been
considered in [8].

1.1 Main Results

We show that this generation problem can be solved in incremental polynomial
time.

Theorem 1. For every K we can generate K minimal k-vertex connected span-
ning subgraphs of a given graph in O(K3m3n + K2m5n4 +Knkm2) time, where
n = |V |, m = |E|.
We remark that the running time of our algorithm depends exponentially on k.
The complexity of the above problem when k is also part of the input remains
an open question.

1.2 The X − e + Y Method

In this section we recall a technique from [9], which is a variant of the supergraph
approach introduced by [13]. Let C be a class of finite sets and for every E ∈ C
let π : 2E → {0, 1} be a monotone Boolean function, i.e., one for which X ⊆ Y
implies π(X) ≤ π(Y). We assume that π(∅) = 0 and π(E) = 1. Let

F = {X | X ⊆ E is a minimal set satisfying π(X) = 1}.

Our goal is to generate all sets belonging to F .
We remark that for every X ⊆ E for which π(X) = 1 we can derive a sub-

set Y ⊆ X such that Y ∈ F , by evaluating π exactly |X | times. This can be
accomplished by deleting one-by-one elements of X whose removal does not
change the value of π. To formalize this, we can fix an arbitrary linear or-
der ≺ on elements of E, without any loss of generality, and define a mapping
Project : {X ⊆ E | π(X) = 1} → F by Project(X) = X � Z, where Z is the
lexicographically first subset of X , with respect to ≺, such that π(X � Z) = 1
and π(X �(Z∪e)) = 0 for every e ∈ X �Z. Clearly, by trying to delete elements
of X in their ≺-order, we can compute Project(X), as we remarked above, by
evaluating π exactly |X | times.

We next introduce a directed graph G = (F , E) on vertex set F . We define
the neighborhood N(X) of a vertex X ∈ F as follows N(X) = {Project((X �

e)∪Y) | e ∈ X, Y ∈ YX,e}, where YX,e is defined by YX,e = {Y | Y is a minimal
subset of E � X satisfying π((X � e) ∪ Y) = 1}.

In other words, for every set X ∈ F and for every element e ∈ X we extend
X �e in all possible minimal ways to a set X ′ = (X �e)∪Y for which π(X ′) = 1
(since X ∈ F , we have π(X � e) = 0), and introduce each time a directed arc
from X to Project(X ′). We call the obtained directed graph G the supergraph
of our generation problem.

224 E. Boros et al.

Proposition 1 ([9]). The supergraph G = (F , E) is strongly connected. ��

Since G is strongly connected by performing a breadth-first search in G we can
generate all elements of F . Thus, given two procedures:

– First(X, e), which for every X ∈ F and e ∈ X returns an element of YX,e

if YX,e 	= ∅ and ∅ otherwise,
– Next(Y, X, e), which return an element of YX,e � Y if YX,e 	= Y and ∅

otherwise,

the procedure Transversal(G), defined below, generates all elements of F .

Traversal(G)
Find an initial vertex X0 ← Project(E), initialize a queue Q = ∅ and a

dictionary of output vertices D = ∅.
Perform a breadth-first search of G starting from Xo:

1 output X0 and insert it to Q and to D
2 while Q 	= ∅ do
3 take the first vertex X out of the queue Q
4 for every e ∈ X do
5 Y ← ∅, Y ← First(X, e)
6 while Y 	= ∅ do
7 compute the neighbor X ′ ← Project((X � e) ∪ Y)
8 if X ′ /∈ D then output X ′ and insert it to Q and to D
9 add Y to Y, Y ← Next(Y, X, e)

Proposition 2. Assume that the procedure First(X, e) works in time
O(φ1(E)), the for every K procedure Next(Y, X, e) outputs K elements of YX,e

in time φ2(K, E) and there is an algorithm evaluating π in time O(γ(E)). Then
Traversal(G) outputs K elements of F in time O(K2|E|2γ(E)+K2log(K)|E|2+
K|E|φ2(K, E) + K|E|φ1(E)).

2 Proof of Theorem 1

In this section we apply the X − e + Y method to the generation of all minimal
k-vertex connected spanning subgraphs.

For a given k-vertex connected graph (V, E) we define a Boolean function π
as follows: for a subset X ⊆ E let

π(X) =
{

1, if (V,X) is k-vertex connected;
0, otherwise.

Clearly π is monotone, π(∅) = 0, π(E) = 1. Then F = {X | X ⊆ E is a
minimal set satisfying π(X) = 1} is the family of edge sets of all minimal
k-vertex connected spanning subgraphs of (V, E).

Generating Minimal k-Vertex Connected Spanning Subgraphs 225

2.1 (k − 1)-Separators of (V, X � e)

Before describing procedures First(X, e) and Next(Y, X, e) we need the addi-
tional notions and elementary results.

A k-separator of a graph is a set of k vertices whose removal (simultane-
ously removing all edges adjacent to those vertices) makes the graph no longer
connected. Note that a k-vertex connected graph has no k′-separators for k′ < k.

Let G = (V, X) be a minimal k-vertex connected spanning subgraph of a
k-vertex connected graph (V, E) (see Figure 1).

e

1

2 3 4

5

6 7

8 9

10

11

12

s

t

Fig. 1. 4-vertex connected graph (V, E) and its minimal 4-vertex connected subgraph
G = (V, X). Solid lines are edges in X.

Let e = st be an arbitrary edge of G and let W be a (k − 1)-separator of
Ge = (V, X �e). Note that W contains neither s nor t, since otherwise W would
also be a (k − 1)-separator of G. We denote by SW and TW the vertex sets of
the components (i.e., maximal connected subgraphs) of Ge[V � W] containing s
and t, respectively.

Claim. Ge[V � W] consists of two components, Ge[SW] and Ge[TW] (see
Figure 2).

We denote by N(·) a neighborhood in the graph Ge. Let W be the set of all
(k − 1)-separators of Ge = (V, X � e) and let S = {S ⊆ V | |N(S)| = k − 1, s ∈
S, t /∈ S∪N(S)}. We call an element of S a (k−1)-source. Note that the mapping
W !−→ SW is a bijection between W and S whose inverse is S !−→ N(S).

226 E. Boros et al.

SW

W

TW

1

2 3 4

5

6 7

8 9

10
11

12

s

t

Fig. 2. 3-separator W = {5, 8, 9} and the corresponding 3-source SW = {s, 1, 2, 3,
4, 6, 7}

For two vertices u, v ∈ V let Du,v = {SW ∈ S | u ∈ SW , v ∈ TW }. For an
edge f = uv let Df = Du,v ∪Dv,u

We call a set of hyperedges whose union contains every vertex a hyperedge
cover. We show that elements of YX,e are in one to one correspondence with the
minimal hyperedge covers of HX,e.

Claim. Let Y ⊆ E � X . The graph (V, X � e ∪ Y) is k-vertex connected if and
only if

⋃
f∈Y Df = S.

2.2 Procedures First(X, e) and Next(Y, X, e)

We describe First(X, e) and Next(Y, X, e), procedures generating all elements
of YX,e.

First(X, e)

1 construct a hypergraph HX,e on vertex set S with edge set E =
{Df | f ∈ E � X}

2 find a minimal hyperedge cover C of HX,e

3 return a set {f | Df ∈ C}

Next(Y, X, e)

1 find a a minimal hyperedge cover C ofHX,e not in {Df | f ∈ Y, Y ∈ Y}
2 return a set {f | Df ∈ C}

In the remainder of this section we show that we can generate minimal hy-
peredge covers of HX,e efficiently.

Generating Minimal k-Vertex Connected Spanning Subgraphs 227

2.3 Structure of (k − 1)-Separators

Consider the poset L = (S,⊆) of the (k − 1)-sources ordered by inclusion.

Proposition 3. The poset L with operations ∩ and ∪ is a lattice.

We show that the ordering of (k − 1)-sources in L has a natural interpretation
for the corresponding (k − 1)-separators.

Since the graph Ge is (k − 1)-vertex connected, by Menger’s Theorem it
contains k − 1 internally vertex disjoint s-t paths. Let P1 = sv1

1 . . . v1
l1

t, P2 =
sv2

1 . . . v2
l2

t, . . . , Pk−1 = svk−1
1 . . . vk−1

lk−1
t denote such a collection of paths (see

Figure 3). We denote by VP the set of all vertices belonging to the paths
P1, . . . , Pk−1. Note that not all vertices in V necessarily belong to VP .

1

v1
1 v2

1 v3
1

v1
2

v2
2 7

v2
3 v3

2

v1
3

v2
4

v3
3

s

t

P1 P2 P3

Fig. 3. Internally vertex disjoint paths P1, P2, P3 of Ge represented by thick edges

Consider a (k − 1)-separator W . Since the removal of W disconnects Ge, W
contains at least one internal vertex from each path Pi, i = 1, . . . , k − 1. As W
has k − 1 vertices, W = {v1

α(W,1), . . . , v
k−1
α(W,k−1)}, where α(W, i) is the index of

the vertex of Pi belonging to W .

Claim. Let W, U ∈ W . SW ⊆ SU if and only if α(W, i) ≤ α(U, i) for all i =
1, . . . , k − 1.

Lemma 1. Let SW , SU be (k − 1)-sources of Ge. Either SW ∩ TU = ∅ or TW ∩
SU = ∅.

Proof. We partition {1, . . . , k−1} into sets I, J and K as follows: I = {i |α(W, i) >
α(U, i)}, J = {i | α(W, i) = α(U, i)}, K = {i | α(W, i) < α(U, i)}.

228 E. Boros et al.

Let C = {vi
α(U,i) | i ∈ I} ∪ {vi

α(W,i) | i ∈ I} ∪ {vi
α(W,i) | i ∈ J}. Observe that

|C| = 2|I|+ |J |.
We show that N(SW ∩ TU) ⊆ C. Note that V � ((SW ∩ TU) ∪C) = TW ∪ SU

(see Figure 4). Since W and U are (k − 1)-separators of Ge, there is no edge
between SW ∩ TU and TW ∪ SU , thus N(SW ∩ TU) ⊆ C.

W

U

s

t
TU

SW

Fig. 4. (k − 1)-separators W and U . Black nodes are vertices of C.

Let D = {vi
α(U,i) | i ∈ K} ∪ {vi

α(W,i) | i ∈ K} ∪ {vi
α(W,i) | i ∈ J} . Similarly,

we obtain that N(TW ∩ SU) ⊆ D.
Suppose for contradiction that SW ∩TU 	= ∅ and TW ∩SU 	= ∅. Since SW ∩TU

contains neither s nor t, the removal of N(SW ∩ TU) disconnects G. As G is
k-vertex connected, we obtain k ≤ |N(SW ∩ TU)| ≤ |C|, thus 2|I| + |J | ≥ k.
Similarly, we have 2|K|+ |J | ≥ k. Recall that I, J and K partition {1, . . . , k−1},
thus k − 1 = |I|+ |J |+ |K|.

Combining this with the above inequalities we obtain 2((k − 1) + |I| + |J |+
|K|) ≥ 2(k + |I|+ |J |+ |K|), a contradiction. ��

2.4 Bounding the Number of (k − 1)-Sources

It is easy to see that the numebr of (k − 1)-sources is at most
(|V |
k−1

)
, since each

one corresponds to different (k−1)-separators. In this section we provide a better
bound on this number.

Generating Minimal k-Vertex Connected Spanning Subgraphs 229

Corollary 1. If SW and SU are incomparable in L then there exists some i ∈
{1, . . . , k − 1} such that |α(W, i) − α(U, i)| = 1, i.e., the vertices vi

α(W,i) and
vi

α(U,i) are adjacent on the path Pi.

Proof. Suppose on the contrary that |α(W, i)−α(U, i)| > 1 for all i = 1, . . . , k−
1. Then since SW and SU are incomparable, by Claim 2.3 there exist j, l ∈
{1, . . . , k − 1} such that α(U, j) + 1 < α(W, j) and α(W, l) + 1 < α(U, l). Then
vj

α(U,j)+1 ∈ SW ∩ TU , vl
α(W,l)+1 ∈ TW ∩ SU contradicting Lemma 1. ��

The width of a poset is the size of its largest antichain. We show that the width
of L is bounded.

Proposition 4. The width of L is at most 2k−1.

Proof. We associate to every (k− 1)-separator W a 0-1 vector π(W) = (α(W, 1)
mod 2, . . . , α(W, k − 1) mod 2). By Corollary 1, if two (k − 1)-separators W ,
U are incomparable, there exists some i ∈ {1, . . . , k − 1} such that |α(W, i) −
α(U, i)| = 1, implying π(W) 	= π(U).

Since the number of different 0-1 vectors of length k−1 is 2k−1, every antichain
in P has size at most 2k−1. ��

Corollary 2. For every fixed k the number of (k − 1)-sources is O(|V |).

2.5 Generating Minimal Hyperedge Covers of HX,e

In this section we reduce the problem of generating minimal hyperedge cov-
ers of HX,e to the problem of generating minimal transversals of 2-conformal
hypergraphs. For the latter problem the algorithm is provided in [3].

A transversal is a set of vertices intersecting every hyperedge. A hypergraph
is δ-conformal if its transpose is δ-Helly (see [2] for other equivalent definitions).

First we show that the hypergraphs HX,e are 2-Helly.

Claim. Either Du,v = ∅ or Dv,u = ∅ for all u, v ∈ V .

Proof. Suppose on the contrary that we have SW ∈ Du,v and SU ∈ Dv,u. Then
u ∈ SW ∩ TU and v ∈ TW ∩ SU , contradicting Lemma 1. ��

Claim. Df is a sublattice of L (see Figure 5).

Proof. Let f = uv. Without loss of generality we can assume that Df = Du,v.
Let S, S′ ∈ Du,v. Then u ∈ S ∩ S′ and v /∈ (S ∩ S′) ∪ N(S ∩ S′). Similarly,
u ∈ S ∪ S′ and v /∈ S ∪ S′ ∪N(S ∪ S′). Thus S ∩ S′, S ∪ S′ ∈ Df . ��

Since the edges of HX,e are sublattices of L, the hypergraphs HX,e are 2-Helly
([2, Example 2 on page 21]). Thus the hypergraphs HT

X,e are 2-conformal.
Note that minimal hyperedge covers of HX,e are minimal transversals of

HT
X,e. An algorithm from [3] generates K minimal transversals of δ-conformal

230 E. Boros et al.

{s}

{s, 1, 2}

{s, 1, 2, 5} {s, 1, 2, 3, 4, 6, 7}

{s, 1, 2, 3, 4, 5, 6, 7} {s, 1, 2, 3, 4, 6, 7, 8} {s, 1, 2, 3, 4, 6, 7, 9}

{s, 1, 2, 3, 4, 5, 6, 7, 8} {s, 1, 2, 3, 4, 5, 6, 7, 9} {s, 1, 2, 3, 4, 6, 7, 8, 9}

{s, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Fig. 5. Elements of D2,11 are in black rectangles. Note that D11,2 = ∅.

hypergraph in O(K2i2j +Kiδ+2jδ+2), where i and j are the numeber of vertices
and number of hyperedges, respectively.

2.6 Complexity

In this section we analyze the complexity of Traversal(G). Let n = |V |, m = |E|.
Since G is k-vertex connected we have m ≥ n.

Note that π(X) can be evaluated in O(k3|V |2) time [4], thus γ(E) = n2.

Claim. For every X ∈ F and e ∈ X the hypergraph HX,e = (S, E) has O(n)
vertices and O(m) edges and it can be constructed in O(nkm) time.

Proof of Claim 6: By Corollary 2 the number of vertices of HX,e = (S, E) is
at most O(n). The number of edges of HX,e = (S, E) is exactly |E � X | ≤ m
since we add an edge to HX,e = (S, E) for every edge of E � X .

To constructHX,e = (S, E) we first need to find all (k−1)-sources and (k−1)-
separators. We can check if after removing a given set of k−1 vertices the graph
G is still connected in O(n+m) time using, e.g., depth first search. Thus we can
find all (k − 1)-separators by repeating the above procedure for every (k − 1)-
element subset of V . The number of such subsets is

(
n

k−1

)
≤ nk−1. Thus we can

compute all (k − 1)-sources and (k − 1)-separators in O(nk−1m) time.
To add edges we need to check for every f ∈ E�X and every (k−1)-separator

W if SW belongs to Df , which can be done in O(n) time for each pair f and W .
Thus the complexity of constructing edges of H is O(n2m). ��

Since we can find a minimal transversal of HT
X,e in O(|E|) time and by Claim 2.6

we have φ1(E) = nkm. Recall that φ2(K, E) = K2m2n + Km4n4 (see Sec-
tion 2.5). Thus by Proposition 2 the complexity of Traversal(G) is O(K3m3n+
K2m5n4 + Knkm2).

Generating Minimal k-Vertex Connected Spanning Subgraphs 231

References

1. Tamura, A., Shioura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM Journal on Computing 26(3), 678–692 (1997)

2. Berge, C.: Hypergraphs. Elsevier-North Holand, Amsterdam (1989)
3. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Generating maximal inde-

pendent sets for hypergraphs with bounded edge-intersections. In: Farach-Colton,
M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 488–498. Springer, Heidelberg (2004)

4. Cheriyan, J., Kao, M.-Y., Thurimella, R.: Algorithms for parallel k-vertex connec-
tivity and sparse certificates. 22, 157–174 (1993)

5. Coulbourn, C.J.: The Combinatorics of Network Reliability. Oxford University
Press, Oxford (1987)

6. Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected
trees. SIAM Journal on Computing 117, 280–287 (1978)

7. Johnson, D.S., Papadimitriou, Ch.H.: On generating all maximal independent sets.
Information Processing Letters 27, 119–123 (1988)

8. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Enu-
merating spanning and connected subsets in graphs and matroids. Manuscript.

9. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Gen-
erating cut conjunctions and bridge avoiding extensions in graphs. In: Deng, X.,
Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 156–165. Springer, Heidelberg
(2005)

10. Lawler, E., Lenstra, J.K., Kan, A.H.G.R.: Generating all maximal independent
sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing 9,
558–565 (1980)

11. Matsui, T.: Algorithms for finding all the spanning trees in undirected graphs. Tech-
nical report, Department of Mathematical Engineering and Information Physics,
Faculty of Engineering, University of Tokyo, 1993. Report METR93-08

12. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5, 237–252 (1975)

13. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-
back problems. Discrete Applied Mathematics 117, 253–265 (2002)

14. Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal
on Computing 8, 410–421 (1979)

Finding Many Optimal Paths Without Growing

Any Optimal Path Trees

Danny Z. Chen1,� and Ewa Misio�lek2

1 Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA

chen@cse.nd.edu.
2 Mathematics Department, Saint Mary’s College, Notre Dame, IN 46556, USA

misiolek@saintmarys.edu.

Abstract. Many algorithms seek to compute actual optimal paths in
weighted directed graphs. The standard approach for reporting an ac-
tual optimal path is based on building a single-source optimal path tree.
A technique was given in [1] for a class of problems such that a single ac-
tual optimal path can be reported without maintaining any single-source
optimal path tree, thus significantly reducing the space bound of those
problems with no or little increase in their running time. In this paper, we
extend the technique in [1] to the generalized problem of reporting many
actual optimal paths with different starting and ending vertices in certain
directed graphs. We show how this new technique yields improved results
on several application problems, such as reconstructing a 3-D surface
band bounded by two simple closed curves, finding various constrained
segmentation of 2-D medical images, and circular string-to-string correc-
tion. Although the generalized many-path problem seems more difficult,
our algorithms have nearly the same space and time bounds as those of
the single-path cases. Our technique is likely to help improve other opti-
mal paths or dynamic programming algorithms. We also correct an error
in the time/space complexity for the circular string-to-string correction
algorithm in [7] and give improved results for it.

1 Introduction

Many algorithms seek to compute actual optimal paths in a weighted directed
graph G = (V, E). The standard approach for finding an actual optimal path
[3] builds a single-source optimal path tree using O(|V |) space. Chen et al. [1]
developed a technique for a class of problems that reports a single actual optimal
path without maintaining any single-source optimal path tree, thus significantly
reducing the space bound of those problems with no or little increase in their
running time. Their technique is a combination of dynamic programming and
divide-and-conquer methods [1]. However, some applications need to find many
optimal paths with different starting and ending vertices, for which the tech-
nique in [1] does not seem immediately applicable. In this paper, we extend the
� This research was supported in part by the National Science Foundation under Grant

CCF-0515203.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 232–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Many Optimal Paths Without Growing Any Optimal Path Trees 233

technique in [1] to the generalized problem of finding k > 1 actual optimal paths
in certain directed graphs. This new technique yields improved space bounds
of several problems, such as reconstructing a 3-D surface band defined by two
simple closed curves [4,10], finding various constrained segmentation of 2-D med-
ical images [2,8,11], and circular string-to-string correction [5,6,7,9]. Although
this generalized many-path problem appears more difficult, our algorithms have
nearly the same space and time bounds as those of the single-path cases. This
new technique is likely to help improve other optimal paths or dynamic pro-
gramming algorithms.

In this paper, we consider several problems where a “best” actual optimal
path is sought from among k = O(|V |) optimal paths in some special weighted
directed graphs, namely, directed regular grid graphs. Our new space-efficient
technique for these problems is based on the following observations. (1) The
computation of the k optimal paths actually organizes these paths in a manner
of a complete binary tree T of O(k) nodes (i.e., each tree node is for one of the
paths). (2) The computational process of these paths can be viewed as following
a path p(v) in T from the root to a node v, in the depth-first search fashion.
(3) Although there are possibly many nodes on the root-to-v path p(v) in T and
each such node is associated with an already computed optimal path, we only
need to store the two actual paths that bound the subgraph associated with the
node v; the actual paths for other nodes on the path p(v) can be represented in
an encoded form that uses much less space. (4) The graph G can be represented
implicitly. Consequently, the space bounds of our algorithms are basically the
same as those for computing a single actual path, yet our time bounds are only
a small increase on those of the corresponding k-path algorithms [2,4,6,7,11]. In
fact, our technique can report all k actual paths with no further increase in the
time and space bounds.

We illustrate our technique by applying it to the problem of reconstructing
a 3-D surface band defined by two simple closed curves. The reconstructed sur-
face consists of a sequence of triangles in 3-D with the minimum total area. This
surface reconstruction problem arises in computer-aided design and manufactur-
ing (CAD/CAM), computer graphics, biological research, and medical diagnosis
and imaging. Fuchs et al. [4] modeled this problem as finding an actual shortest
path among k shortest paths in a weighted acyclic grid graph G = (V, E), where
|V | = O(|E|) = O(kl) and k and l are positive integer input parameters (with
k ≤ l). They gave an O(kl log k) time algorithm. If a standard shortest path
algorithm [3] is used, then the space bound in [4] is O(kl). Our technique yields
an O(kl(log k)2) time and O(k + l) space algorithm. In fact, our technique gives
a general trade-off relation between the space and time bounds (see Theorem 3).

Our technique can also solve several variations of the 3-D surface reconstruc-
tion problem in [10] and can significantly reduce the space bounds for four of
the several optimization criteria considered in [10].

In the full version of the paper, we also show how to apply our technique
to reduce the space needed for computing various constrained segmentation of
medical images. Image segmentation is important to medical image analysis for

234 D.Z. Chen and E. Misio�lek

medical diagnosis and treatment, computer vision, pattern recognition, mechan-
ical and material study, and data mining. Its goal is to define the boundary for
an object of interest in the image, separating it from its surrounding. The best
known algorithms for this problem [2,11] take O(kl log k) time and O(kl) space.
Using our technique, the time bound is increased from that of [2,11] by only a
factor of less than or equal to log l, but the working space of these algorithms is
decreased significantly to almost linear.

Another key application is the circular string-to-string correction problem
[5,6,7,9], which seeks a minimum-cost sequence of editing operations for changing
a circular string A = (a1, a2, . . ., ak) to another circular string B = (b1, b2, . . . , bl)
(assume k ≤ l). This problem arises in many areas such as shape recognition,
pattern recognition, speech recognition, and circular DNA and protein sequence
alignment, and is well studied. To our knowledge, the best known algorithm for
this problem is due to Maes [7]. It is based on a divide-and-conquer scheme for
computing k shortest paths in a rectangular grid graph G, and the author claimed
it takes O(kl log k) time and O((k + l) log k) space. However, these time and
space bounds do not appear correct. As stated in [7], it just applies Hirschberg’s
algorithm [5] to find each of the k paths. However, when computing a single
shortest path in a subgraph Gi of the original graph G using the method in [5],
unlike in the situation of finding only one actual path in the original grid graph
G, there is no guarantee that as the recursion in [5] proceeds, the total size of
the subgraphs always decreases significantly (say, by a constant fraction) from
one recursion level to the next. This implies that when computing k paths in G,
finding one actual path in a subgraph Gi of G using the method in [5] actually
takes O(|Gi| log(k+l)) time, instead of O(|Gi|). Thus, to obtain an O((k+l) log k)
space bound, the algorithm as stated in [7] actually takes O(kl log k log(l + k))
time (see our full paper for more detailed discussion and analysis). Applying
our technique, we improve the best known circular string-to-string correction
algorithm in [7], e.g., to O(l + k(log k)ε) space and O(kl (log k)2

log log k) time, for any
constant ε with 0 < ε < 1 (the exact results are as those stated in Theorem 3).

2 Preliminaries

In this section, we sketch the approaches in [1] and [6,2,4,7,11], which will be
refered to and build upon in the later sections.

Let G = (V, E) be a directed graph with nonnegative edge weights. For two
vertices s, t ∈ V , the standard method [3] for finding an actual optimal s-to-t
path in G is to build and store a single-source optimal path tree T rooted at
s. Then for any vertex v, an actual optimal s-to-v path in G is obtained by
traversing in T the v-to-s path. It is well known that no asymptotically faster
algorithm is known for reporting a single actual optimal path than for building
a single-source optimal path tree. However, for a set of optimal path problems
on regular grid graphs, Chen et al. [1] gave a technique with space bound for
computing a single actual optimal s-to-t path asymptotically better than that
for building a single-source tree. Their method is hinged on the clipped tree

Finding Many Optimal Paths Without Growing Any Optimal Path Trees 235

data structure and a variation of the divide-and-conquer called marriage-before-
conquer.

A regular grid graph G = (V, E) has vertices lying on a rectangular k × l
grid and the vertices are connected by edges only to the adjacent vertices from
the same row or to the vertices from the row below, thus |V | = kl and |E| =
O(|V |). Figures 1(a),(b) show examples of such graphs. A clipped tree Tclp is a
compressed version of a single-source tree T with the following characteristics:
(1) Tclp contains a subset of the nodes in T , including s, t, and vertices from
only τ rows of G; (2) two nodes v and w in Tclp form an ancestor-descendant
relation in Tclp if and only if they form the same relation in T .

The following result in [1] is useful to us.

Lemma 1. [1] Given a regular grid graph G of size k× l, two vertices s and t
in G, and a parameter τ with 1 ≤ τ ≤ k, it is possible to use O(|Tclp|) = O(lτ)
space to report an optimal s-to-t path in G in time O((T (·)(log k))/ log(τ − 1)),
where T (·) is the running time of a standard optimal path algorithm on G.

In some special cases the extra (log n)/(log(τ − 1)) time factor can be avoided.
For example, for the special graph in Fig. 1(a), to find a shortest path from
s to t, one can first locate a vertex v2 in the middle row of the graph, and
then recursively find the shortest s-to-v2 and v2-to-t paths in two rectangular
subgraphs of G. Observe, that the sum of the sizes of the two subgraphs in the
recursive calls is half the size of the original graph, resulting in the same time
bound as that of a standard shortest path algorithm.

It should be pointed out that the method in [1] may be applied to graphs
even if their structures are not grid-like. In fact, the paradigm can be applied
to some problems that are solved using dynamic programming, by “divide-and-
conquering” the dynamic programming table instead of the graph itself.

We extend the technique in [1] to the type of problems where an optimal
path is to be selected from a set of k optimal paths with k pairs of different
source-destination vertices in a directed grid graph G, with k = O(n).

A straightforward approach for solving such a k-path problem is to apply an
optimal path algorithm to compute each of the k paths and then determine the
best one. However, more efficient algorithms are possible for regular, rectangular
grid graphs. A key idea, as shown in [6,2,4,7,11], is to first find one of the k
paths and then recursively search for the remaining paths in increasingly smaller
subgraphs of G . The description below summarizes this approach and introduces
some of the notation used in the later sections.

Suppose we are given a directed acyclic graph G and a sequence of k pairs
of vertices (vi, wi), i = 1, 2, . . . , k, between which the shortest paths in G are
sought. Let SPi denote a shortest path between the pair (vi, wi) in G. We assume
that the graph G has the following important property.

Property 2. For any i and j, 1 ≤ i ≤ j ≤ k, two shortest paths SPi and SPj can
be computed in G, such that SPi and SPj bound a subgraph Gi,j of G and Gi,j

contains the shortest paths SPg in G, for all g = i, i + 1, . . . , j.

236 D.Z. Chen and E. Misio�lek

.

.

. .
. .
. . .

.
.
.

.

.

.

.

.

.

.

.

.
. . .
. . .

. . .
...

. .s

t
(a)

..

..

..

..

..

w1 w w w w ww

v v v v v v1v 2 3 4 5 6 7

2 3 4 5 6 7

(b)

. . .

. . .
. .

.

. . .
. .

.. . .

.. . .

.. . .

. . .

. . .
.

.
.

.

.

w w w w w1 2 3 4 ww 4 5w 6 7

v3 v2vv.1 4 v4 v5 6v v7

.
.

(c)

Fig. 1. (a),(b) An example of a regular rectangular grid graph G. (c) G is split along
the “middle” shortest path SP4 into two subgraphs for the recursive subproblems.

For example, the graphs in [2,4,6,7,11] all have this property since they are all
regular, rectangular grid graphs embedded in the plane, the sequence of vertex
pairs (vi, wi) are all on the outer face of the embedding, and subgraphs Gi,j can
be obtained by finding the shortest paths SPi and SPj . Let SP (Gi,j , i, j) denote
a procedure for computing the “middle” shortest path SPt in the subgraph Gi,j ,
t =

⌊
i+j
2

⌋
. Then the k-path algorithm in [6,2,4,7,11] proceeds as follows.

1. Find SP1 and SPk. Let i = 1 and j = k.
2. Run SP (Gi,j , i, j) to obtain SPt (for the pair (vt, wt), with t =

⌊
i+j
2

⌋
).

3. Recursively solve the subproblems on subgraphs Gi,t and Gt,j , respectively.

At the end of the algorithm, the “best” of these k shortest paths (i.e., the one
with the overall shortest path length) is selected and and the actual path is
reported. For example, to find the shortest of the k = 7 paths between the
pairs of vertices (vi, wi), i = 1, . . . , 7, in the graph in Fig. 1(b), we first find
a shortest path between the “middle” pair (v4, w4), then split the graph along
that path to recursively compute the remaining paths in the resulting subgraphs
(Fig. 1(c)).

A straightforward implementation of this paradigm needs to construct and
store both the grid graph G (say, of size k · l) and single-source shortest path
trees for each source vertex, thus using O(|V |) = O(|E|) = O(kl) space. The
running time of this approach is O(T (·) log k), where T (·) is the standard time
bound for computing one shortest path in G.

It should be pointed out that in the above paradigm, since the already com-
puted shortest paths are used to define the boundaries of the subgraphs in which
the remaining paths are to be searched, the computed actual paths need to be
stored. A straightforward method could store O(k) actual paths at the same
time, thus using a lot of space. To achieve a space-efficient algorithm for the k-
path problem, we must avoid storing too many actual paths simultaneously. This
is made possible by exploiting the special structures of the graphs we use. We
will demonstrate our algorithm by applying it to the problem of reconstructing
a 3-D surface band bounded by two simple closed curves.

Finding Many Optimal Paths Without Growing Any Optimal Path Trees 237

3 Optimally Triangulating a 3-D Surface Band

3.1 The Surface Band Triangulation and a Previous Algorithm

The desired output of the surface reconstruction problem, also called a surface
triangulation problem, is a sequence of triangular tiles that best approximates
the surface band based on a given optimization criteria. Below we define the
problem and sketch its time-efficient algorithm as given in [4].

Suppose a 3-D surface S, which is to be reconstructed, is divided into a se-
quence of surface “bands” by a set of mutually non-crossing simple closed curves
(also called contours) lying on S, such that each surface band is bounded by two
of the curves. To reconstruct S, it is sufficient to reconstruct each of the surface
bands. Thus, we focus on the problem of reconstructing a single surface band
bounded by two simple closed curves CP and CQ in 3-D [4,10].

¿From the computational view point, each of the two curves, is represented
by a sequence of points along the curve. That is, a curve CP is approximated
by a closed polygonal curve P = {p1, p2, . . . , pk} in such a way, that the portion
of CP between any two consecutive points pi and pi+1 is approximated by the
line segment pipi+1. The triangulation of the surface band bounded by P =
{p1, p2, . . . , pk} and Q = {q1, q2, . . . , ql} gives a sequence of non-overlapping
triangles, whose edges are the edges of P or Q, and line segments connecting a
vertex of P with a vertex of Q. More precisely, each triangle has one edge that
is an edge of one curve (say pipi+1 of P), called the “base” edge, and two other
edges that share a vertex of the other curve (say qj of Q), called the “bridges”.
Thus a triangle"piqjpi+1 with base on P , has the edges pipi+1, piqj , and qjpi+1,
similarly, a triangle "qjqiqj+1 with base on Q, has the edges qjqj+1, qjpi, and
piqj+1. The set of triangles of a feasible triangulation forms a partition of the
surface band into a set of triangular faces such that the set of vertices of the
faces is exactly the set of the vertices of P and Q. Also, all edges of P and Q
belong to the set of the triangulation edges. See Fig. 2(a) for an example of a
feasible triangulation.

An optimal triangulation is a feasible triangulation that optimizes the given
criteria. Possible optimization criteria for triangulating a surface band include
minimizing the total area, bending energy, and mean curvature variation, or
maximizing the total twist, or optimizing a certain combination of these or other
optimization criteria (see [10] for detailed descriptions of such criteria). For our
discussion in this paper, we assume that the optimization criterion is to minimize
the total triangulated area. However, three other optimization criteria in [10]
(minimum total twist, maximum convexity, and minimum normal variation) can
also be used by our technique.

Note that the number of feasible triangulations of the surface band between
the two curves P and Q is prohibitively large. An efficient approach [4] models
this triangulation problem as one of searching for a best path among the shortest
paths between k pairs of vertices in a directed graph H = (VH , EH), as follows.
Without loss of generality, we assume k ≤ l throughout this section.

238 D.Z. Chen and E. Misio�lek

. .
.
.

. ..

p p

q q q

i i+1

j j+1 j+2
Q

P

(a)

pi−1

qj−1

. . .

. . ..

.

. . . .
v v v1,3 v

v v v v

vv

1,l

2,l

k,l

1,1 1,2

2,32,22,1

k,1 k,2 k,3

v v

(b)

. .. .

. . ..
. . . .

i−1,j+1 vi−1,ji−1,jvvi−1,j−1

v v v v

vvvv

i,j+2i,j+1i,ji,j−1

i+1,j+1 i+1,ji+1,j−1 i+1,j

v

(c)

Fig. 2. (a) A feasible triangulation for a portion of the surface band between the
polygonal curves P and Q. (b) A toroidal graph H defined by P and Q. (c) A path in
H corresponds to a triangulation in (a).

– Every possible “bridge” segment piqj corresponds to a vertex vi,j in VH .
– For every j = 1, 2, . . . , l, there is a directed edge (vi,j , vi,j+1) in EH cor-

responding to a possible triangle "qjpiqj+1 with the “base” edge qjqj+1,
where the index l + 1 means 1. For every i = 1, 2, . . . , k, there is a directed
edge (vi,j , vi+1,j) in EH corresponding to a possible triangle "piqjpi+1 with
the “base” edge pipi+1, where the index k + 1 means 1 (see Fig. 2(c)).

– The weight of every edge is the surface area of the triangle represented by
that edge.

Note that the graph H is a toroidal graph of size O(kl). See Fig. 2(b)-2(c)
for an example of H ; the thick path in Fig. 2(c) represents the given portion of
a triangulation of the band in Fig. 2(a). Any triangulation of the surface band
corresponds to a simple closed path, called a triangulating path, in H that visits
every row and every column of the “flattened” version of H [4].

To simplify the shortest path search, a new (“flattened”) graph G is created
from H by appending a copy of H after the last row of H (without the wrap-
around edges), and duplicating the first column (i.e., the vertices vi,1) of the
newly created graph and appending it after the last column (the appended ver-
tices are denoted by wi’s). Fig. 3(b) shows the graph G created from the graph
H in Fig. 3(a); the thick path in G corresponds to a triangulating path in H .

Now, the problem becomes that of finding the k shortest paths between the
k pairs of vertices (vi,1, wk+i) in G for i = 1, 2, . . . , k (vi,1’s are denoted as vi’s
in Fig. 3), and selecting the shortest of those as the solution. Note that G thus
created is a directed planar acyclic grid graph, and hence it satisfies Property 2.
Therefore, this k-path problem on G can be solved in O(kl log k) time and O(kl)
space using the divide-and-conquer method in [4,6] and described in Sect. 2.

3.2 Our Basic Algorithm

We now present a method that significantly reduces the space bound of the so-
lution in [4,6]. For clarity of discussion, we first present a less efficient algorithm,
followed by further improvements.

Recall from Sect. 2 that in order to solve the k-path problem in a time-
efficient manner, we need to recursively compute shortest paths on increasingly

Finding Many Optimal Paths Without Growing Any Optimal Path Trees 239

vdvd

. .

. .

.

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
to

(a)

. .

. .

.

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
. .
. .

.

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
,

w

w
w

w

w

w1

k

k+1

k+d

2k

d

1v

v d

kv

k+1v

v

2kv

k+d

(b)

. .

. .

.

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .
. .
. .

.

. .

. .
. .
. .

. .

. .
. .
. .

. .
. .
. .

. .

. .
,

w

w

w

k+1

2k

1v

kv

v

3k+1
 2

k+1
 2

. .

F
1

F2

x1

(c)

Fig. 3. (a) A “flat” version of the toroidal graph H . (b) The planar grid graph G
created from H . (c) The two subgraphs F1 and F2 of G1,k for the two subsequent
subproblems in the recursion. The graph F1 ∪ F2 has only a single vertex and two
edges (those outside the dashed boundaries) fewer than G1,k.

smaller subgraphs bounded by two already computed paths. Therefore, since
paths are needed to define subgraphs for future recursive calls, in the worst case,
a straightforward algorithm may require storage of all k paths. In this section
we present a method that requires storage of only a constant number of shortest
paths by organizing the k shortest paths using the recursion tree and exploiting
the structure of such organization. We combine our method with the technique
in [1] to significantly decrease the space complexity of algorithms in [4,6] with
only a small increase in time. In fact, depending on the application, one can
select a trade-off between the time and space saving produced by our method.
We now proceed to explain the method.

First notice, that we need not explicitly construct and store G since for any
vertex of G, its two incoming and two outgoing edges as well as their weights can
be determined in O(1) time. Since the input consists of k + l points representing
the curves P and Q, the implicit representation of G uses only O(k + l) space,
a significant saving since G has n = 2kl vertices and m = 4kl edges.

Further, whenever an actual shortest path SPi in a subgraph Gi of G from vi,1

to wk+i is computed in the k-path scheme of [4,6], we apply the space-efficient
algorithm of Chen et al. [1]. This way we avoid storing a single-source tree (of size
O(kl)) as in the standard single-source shortest path algorithm. This, however,
causes a log k factor increase in the time complexity of the algorithm. To find
an actual path SPi in Gi, the method in [1] divides Gi into subgraphs and
recursively reports vertices of SPi in these subgraphs. However, Gi, although is
a subgraph of the original rectangular grid graph G, has an irregular shape, see
Fig. 3(c). Thus, when recursively computing SPi on Gi, there is no guarantee
that the total size of the subgraphs containing the pieces of SPi at one recursion
level decreases significantly (say, by a constant fraction) from the total size of
the subgraphs in Gi at the “parent” level; i.e., from one recursion level to the
next, it is not guaranteed that a constant fraction of the subgraphs is always
“pruned” away. For example, in Fig. 3(c), the two subgraphs F1 and F2 of G1,k

for the two subsequent subproblems are such that the graph F1 ∪ F2 has only a

240 D.Z. Chen and E. Misio�lek

single vertex and two edges fewer than G1,k. While the O(log k) time increase
can be avoided for computing one or even O(1) actual paths in the original grid
graph G by using the method in [1] (as in Fig. 1(a)), the same is not true for
computing each of many actual paths when using the k-path scheme in [4,6].
Thus, in the setting of computing many shortest paths, and in comparison with
the common tree-growing approach, the recursive process for reporting an actual
path in Gi incurs a log k factor increase in the time bound, but also results in a
significant reduction of needed space.

Now, to resolve the problem of storing k shortest paths, first observe that
the k shortest paths SPi in G for the vertex pairs (vi,1, wk+i), i = 1, . . . , k,
can be organized based on the recursion tree used by the scheme in [4,6]. This
recursion tree is a complete binary tree of O(k) nodes, called the k-path tree
Tk. The root of Tk represents the “middle” path SPt in the subgraph G1,k ⊆ G
(t =

⌊
1+k
2

⌋
); the children of each internal node in Tk are for the subproblems on

their associated subgraphs. For example, the children of the root are associated
with the subgraphs G1,t and Gt,k, and represent their “middle” paths computed
by the procedures SP (Gi,t, i, t) and SP (Gt,j , t, j), respectively.

If the k actual shortest paths represented by the k-path tree Tk were to be all
stored at the same time, then the space bound would be O(k(k + l)) (since each
path SPi in G has O(k + l) vertices). Fortunately, only a small subset of the
paths associated with the nodes in Tk is needed at any time of the computation.
We call such nodes in Tk the active nodes. It is sufficient to consider only the
space used by the active nodes.

To compute the middle shortest path SPt in a subgraph Gi,j , we need to store
two actual shortest paths SPi and SPj that bound the subgraph Gi,j . Let ut be
the node in the k-path tree Tk corresponding to SPt and Gi,j . Then an important
observation is that the two paths SPi and SPj are always at two nodes on the root-
to-ut path in Tk. This implies that when the computation is performed at a node
u of Tk, only the ancestor nodes of u (including u itself) are active. Clearly, at any
time of the computation, there are only O(log k) active nodes in Tk.

In fact, the computation of the k paths in G proceeds in the order as if a
depth-first search is done on the tree Tk. During the computation, we store all
actual paths represented by the active nodes of Tk. In the worst case, 2 + log k
actual paths need to be stored (the paths for log k active nodes plus SP1 and
SPk). In addition, we keep track of the vertex pair (vi,1, wk+i) such that the
length value of SPi is the smallest among all paths computed thus far. After all
k shortest paths (and their lengths) are computed, we use the algorithm in [1] to
report the actual shortest path in G whose length value is the smallest among all
k paths. Given the “best” actual shortest path in G, the corresponding optimal
triangulation of the 3-D surface band can be easily obtained.

Since we store O(log k) actual shortest paths, each of which has O(k + l)
vertices, our basic algorithm uses O((k + l) log k) space, improving the straight-
forward O(kl) space bound. Because the k-path scheme in [4,6] takes O(kl log k)
time and our space-efficient algorithm incurs a factor of O(log k) time increase,
the total time of our basic algorithm is O(kl(log k)2).

Finding Many Optimal Paths Without Growing Any Optimal Path Trees 241

3.3 A Space Improvement Scheme

It is possible to reduce the space bound of the above basic algorithm from O((k+
l) log k) to O(k + l), without affecting its running time. Note that this O(k + l)
space bound matches the one for finding one actual shortest path [1]. The idea
is to use a bit encoding scheme to represent most of the actual paths for the
active nodes of Tk during the computation.

When computing a shortest path SPt in a subgraph Gi,j (t =
⌊

i+j
2

⌋
), we

need to store the two actual paths SPi and SPj that bound Gi,j . Actually, SPi

and SPj are the only actual paths needed for computing SPt in Gi,j . That is,
the other paths represented by the active nodes in Tk are not really needed for
computing SPt. Therefore, it is sufficient to explicitly store only SPi and SPj

when computing SPt. All other shortest paths of the active nodes in Tk can be
temporarily stored in a “compressed” form. This “compressed” form should use
less space, yet can be easily converted back and forth between the explicit form
(so that these paths can be used for future computation).

Our choice of this “compressed” representation is a bit encoding scheme for the
actual paths in G. Our observation is that each shortest path in the grid graph
G consists of a sequence of “rightward” edges and “downward” edges, which
can be represented by 0’s and 1’s, respectively. For example, the thick path in
Fig. 3(b) can be represented by the sequence (0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0).

Given the starting vertex of a path, it is easy to convert a bit-encoded path
representation to or from an explicit actual path in O(k + l) time. Such con-
versions need to be performed O(k) times by our algorithm, which add only
O(k(k + l)) = O(kl) time to the algorithm (since k ≤ l). Hence, the total run-
ning time of our algorithm is O(kl(log k)2) as the basic algorithm.

Thus, at any time of the computation, our algorithm stores only O(1) actual
paths explicitly, and the other O(log k) paths using bit encoding. To analyze
the space bound of our algorithm, note that storing one path using bit encoding
needs O(k + l) bits. Thus, storing O(log k) paths in this scheme uses O((k +
l) log k) bits, which are equal to O(k + l) space. Also, to explicitly store O(1)
actual paths with k+ l vertices each, O(k+ l) space is needed. Hence, the overall
space bound of our algorithm is O(k+l), and its time bound is still O(kl(log k)2).

3.4 Our Final Algorithm

We now show how to improve both the space and time bounds of our basic algo-
rithm. In fact, we give a trade-off relation between the space and time bounds.
This is achieved by combining the space improving idea in Subsection 3.3 with
a more careful application of the algorithm in [1].

Based on the idea and analysis in Subsection 3.3, it is clear that our algorithm
can store all actual shortest paths needed by the computation using only O(k+l)
space.

Another important fact is that Chen et al.’s algorithm [1] can use the clipped
tree Tclp to store τ ≥ 3 vertices on any s-to-t path. Our basic algorithm stores
only τ = 3 vertices for any sought path in the tree Tclp (by recording mainly

242 D.Z. Chen and E. Misio�lek

the vertices in the middle column of the grid subgraph); this divides the sought
path into only two subpaths for the recursive reporting. Our idea here is that a
larger value of τ can be used. That is, we can store τ columns of vertices of the
subgraph in Tclp. This means that τ vertices on the sought path are stored in
Tclp, which cut the sought path into τ − 1 subpaths for the recursive reporting.
This implies that the factor of time increase incurred by our algorithm over that
of the method in [4,6] becomes log k

log τ (instead of log k as for the basic algorithm).
Clearly, storing τ columns of vertices of a subgraph in Tclp uses O(kτ) space.

We can choose τ in the following manner. Suppose we consider a function
f(k). If f(k) = O(1), then let τ = O(1) ≥ 3; if f(k) > O(1), then let τ = (f(k))ε

for any constant ε with 0 < ε < 1 (e.g., τ can be kε, (log k)ε, (log log k)ε, etc).
For example, by letting τ = (log k)ε, our algorithm takes O(l + k(log k)ε) space
and O(kl (log k)2

log log k) time.

Theorem 3. The problem of optimally triangulating a 3-D surface band bounded
by two closed polygonal curves P and Q can be solved in O(l + kτ) space and
O(kl (log k)2

log τ) time, where k = |P |, l = |Q|, k ≤ l, and unless τ = O(1), τ is of
the form (f(k))ε for any chosen function f(k) > O(1) and any constant ε with
0 < ε < 1.

References

1. Chen, D.Z., Daescu, O., Hu, X.S., Xu, J.: Finding an optimal path without growing
the tree. Journal of Algorithms 49(1), 13–41 (2003)

2. Chen, D.Z., Wang, J., Wu, X.: Image segmentation with asteroidality/tubularity
and smoothness constraints. International Journal of Computational Geometry and
Applications 12(5), 413–428 (2002)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill, New York (2001)

4. Fuchs, H., Kedem, Z.M., Uselton, S.P.: Optimal surface reconstruction from planar
contours. Communications of the ACM 20(10), 693–702 (1977)

5. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM 18(6), 341–343 (1975)

6. Kedem, Z.M., Fuchs, H.: A fast method for finding several shortest paths in certain
graphs. Proc. 18th Allerton Conf., 677–686 (1980)

7. Maes, M.: On a cyclic string-to-string correction problem. Information Processing
Letters 35(2), 73–78 (1990)

8. Thedens, D.R., Skorton, D.J., Fleagle, S.R.: Methods of graph searching for bor-
der detection in image sequences with applications to cardiac magnetic resonance
imaging. IEEE Trans. on Medical Imaging 14(1), 42–55 (1995)

9. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM 21(1), 168–173 (1974)

10. Wang, C., Tang, K.: Optimal boundary triangulations of an interpolating ruled
surface. ASME Journal of Computing and Information Science in Engineering 5(4),
291–301 (2005)

11. Wu, X.: Segmenting doughnut-shaped objects in medical images. In: Ibaraki, T.,
Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 375–384. Springer,
Heidelberg (2003)

Enumerating Constrained Non-crossing

Geometric Spanning Trees

Naoki Katoh and Shin-ichi Tanigawa

Department of Architecture and Architectural Engineering, Kyoto University,
Kyoto 615-8450 Japan

{naoki,is.tanigawa}@archi.kyoto-u.ac.jp

Abstract. In this paper we present an algorithm for enumerating with-
out repetitions all non-crossing geometric spanning trees on a given set
of n points in the plane under edge inclusion constraints (i.e., some edges
are required to be included in spanning trees). We will first prove that a
set of all edge-constrained non-crossing spanning trees is connected via
remove-add flips, based on the constrained smallest indexed triangula-
tion which is obtained by extending the lexicographically ordered trian-
gulation introduced by Bespamyatnikh. More specifically, we prove that
all edge-constrained triangulations can be transformed to the smallest
indexed triangulation among them by O(n2) times of greedy flips. Our
enumeration algorithm generates each output graph in O(n2) time and
O(n) space based on reverse search technique.

1 Introduction

Given a graph G = (V, E) with n vertices and m edges where V = {1, . . . , n},
G is a spanning tree if and only if G is connected and does not contain any
cycle. An embedding of the graph on a set of points P = {p1, · · · , pn} ⊂ R2 is a
mapping of the vertices to points in the Euclidian plane i �→ pi ∈ P . The edges
ij of G are mapped to straight line segments pipj . An embedding is non-crossing
if each pair of segments pipj and pkpl have no point in common without their
endpoints.

If the spanning tree embedded on the plane is non-crossing, it is called geomet-
ric non-crossing spanning tree, which is simply called non-crossing spanning tree
(NST) in this paper. We assume in this paper that spanning trees are embedded
on a fixed point set P in R2. Let F be a set of non-crossing line segments on P .
A spanning tree containing F is called F-constrained spanning tree. Then in this
paper we give an algorithm for enumerating all the F -constrained non-crossing
spanning trees (F -CNST). We simply denote a vertex pi by i and an edge pipj

by ij throughout the paper.
The algorithm we propose requires O(n2) time per output and O(n) space.

For the unconstrained case (i.e. F = ∅), the algorithm by Avis and Fukuda [6]
requires an O(n3) time per output and O(n) space. Recently Aichholzer et al. [2]
have developed an algorithm for enumerating O(n) time per output based on

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 243–253, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

244 N. Katoh and S.-i. Tanigawa

the Gray code enumeration, whose space complexity is not given. Although their
algorithm is superior to ours in the unconstrained case, it seems that it cannot
be extended to the edge-constrained case.

It is well known that the number of non-crossing spanning trees grows too
rapidly to allow a complete enumeration for a significantly larger point set. In
view of both theoretical and practical applications the number of objects to
be enumerated or the computational cost must be reduced by imposing several
reasonable constraints. For this purpose, the edge constraint would be naturally
considered, and thus our algorithm has much advantage in practice.

For the edge-constrained case, in our recent paper [7], we proposed an algo-
rithm for enumerating the F -constrained non-crossing minimally rigid frame-
works embedded on a given point set in the plane. We remarked therein that
based on a similar approach, we could develop an O(n3) algorithm for enumer-
ating F -CNSTs. Although we have not given either any algorithm details or
analysis of the running time, it seems difficult to improve this running time.

Let O be a set of objects to be enumerated. Two objects are connected iff they
can be transformed to each other by a local operation, which generates one ob-
ject from the other by means of a small change. Especially, it is sometimes called
(1-)flip if they have all but one edge in common. Define a graph GO on O with
a set of edges connecting between objects that can be transformed to each other
by one local operation. Then the natural question is how we can design local
operation so that GO is connected, or how we can design GO with small diameter.
There are several known results for these questions for triangulations (e.g. [11]),
pseudo-triangulations [1], geometric matchings [10], some classes of simple poly-
gons [9] and also for NSTs [2,1,3,4,6]. Especially relevant to the historical context
of our work are the results for NSTs [6,1,3,4,2]. Let ST be a set of all NSTs on
a given set of n points. Avis and Fukuda [6] have developed 1-flip such that GST
is connected with diameter 2n− 4. For the case of a local operation other than
1-flip, the operations with diameters of O(log n) [3] and the improved result [1]
are known. Aichholzer et al. in [3,4] also tried to design 1-flip with the additional
requirement, called edge slide, such that removed edge moves to the other one
along an adjacent edge keeping one endpoint of the removed edge fixed. Aich-
holzer et al. in [2] showed that the graph GST contains a Hamiltonian path by
developing Gray code enumeration schemes. In this paper, we will propose 1-flip
with the additional requirement such that removed and added edges are sharing
one endpoint, and show that all F -CNSTs are connected by O(n2) such flips
plus O(n) base exchange operations. We notice that all 1-flips designed in the
previous works seem to be difficult to extend to the edge-constrained case.

Main tools we use are reverse search and the smallest indexed triangulation
(SIT). Reverse search developed by Avis and Fukuda [5,6] generates all the ele-
ments of O by tracing the nodes in GO. To trace GO efficiently, it defines a root
on GO and a parent for each node except the root. Define the parent-child rela-
tion satisfying the following conditions: (1) each non-root object has a unique
parent, and (2) an ancestor of an object is not itself. Then, iterating going up to

Enumerating Constrained Non-crossing Geometric Spanning Trees 245

the parent leads to the root from any other node in GO if GO is connected. The set
of such paths defines a spanning tree, known as a search tree, and the algorithm
traces it by depth-first search manner. So, the necessary ingredients to use the
method are an implicitly described connected graph GO and an implicitly defined
search tree in GO. In this paper we supply these ingredients for the problem of
generating all F -CNSTs.

The idea of the SIT is derived from a lexicographically ordered triangula-
tion developed by Bespamyatnikh [8] for enumerating triangulations efficiently.
We generalize it to edge-constrained case by associating an appropriate index
with each triangulation. The SIT plays a crucial role in the development of our
algorithm. We conjecture that the general idea to use triangulations proposed
in this paper can be extended to an efficient algorithm for enumerating non-
crossing graphs other than NSTs and minimally rigid frameworks because any
non-crossing graph can be augmented to a triangulation.

2 Smallest Indexed Triangulation

In this section, we define an F -constrained smallest indexed triangulation (F -
CSIT). Then we show that any edge-constrained triangulation can be trans-
formed into CSIT by O(n2) flips. We remark again that CSIT is derived from
the lexicographically ordered triangulation developed by Bespamyatnikh [8] al-
though he had not extended his results to the edge-constrained case.

2.1 Notations

Let us first define several notations. Let P be a set of n points on the plane,
and for simplicity we assume that the vertices P = {1, . . . , n} are labeled in the
increasing order of x-coordinates. We assume that x-coordinates of all points are
distinct and that no three points in P are colinear. For two vertices i, j ∈ P , we
use the notation, i < j, if x(i) < x(j) holds, where x(·) represents a x-coordinate
of a point. Considering i ∈ P , we often pay our attention only to its right point
set, {i + 1, . . . , n} ⊆ P . So, let us denote {i + 1, . . . , n} by Pi.

We usually denote an edge between i and j with i < j by ij. For three points
i, j, k, the signed area Δ(i, j, k) of a triangle Δijk tells us that k is on the left
or right side of a line passing through i and j when moving along the line from
i to j by Δ(i, j, k) > 0 or Δ(i, j, k) < 0, respectively. Then the lexicographical
ordering on a set of edges is defined as follows: for e = ij and e′ = kl, e is
lexicographically smaller than e′ (denoted by e ≺ e′ or e′ # e) iff i < k, or i = k
and Δ(i, j, l) < 01, and denote by e = e′ when they coincide. Notice that, when
i = k, the lexicographical ordering corresponds to the clockwise ordering around
i in our definition.
1 In general the lexicographical ordering for edge set is defined in such a way that

e = ij is smaller than e′ = kl iff either i < k or i = k and j < l holds. But in this
paper we adopt our lexicographical ordering for efficient enumeration described in
Section 4.

246 N. Katoh and S.-i. Tanigawa

Fig. 1. Black vertices represent a set
of vertices visible from i with respect
to conv(P ′)

Fig. 2. Example of the upper and
lower tangents. Bold edges represent
F . Empty regions of iiup and iilow are
shaded.

For two vertices i, j ∈ P , j is visible from i with respect to a constrained edge
set F when an edge ij and any edge in F do not have a point in common except
their endpoints. We assume that j is visible from i if ij ∈ F . And we denote a
set of vertices of Pi visible from i with respect to F by Pi(F).

Let conv(P ′) be a convex hull of a point set P ′. For a vertex i with i /∈
conv(P ′), j ∈ P ′ is visible from i with respect to (the boundary of) conv(P ′)
when j = ij ∩ conv(P ′) holds (see Fig. 1).

For an edge e = ij, let l(e) and r(e) denote the left and right endpoints of
e, i.e. l(e) = i and r(e) = j, respectively. A straight line passing through i and
j splits R2 into two regions that are open regions of left and right sides of ij,
i.e. R+(ij) = {p ∈ R2 | Δ(i, j, p) > 0} and R−(ij) = {p ∈ R2 | Δ(i, j, p) < 0}.
Similarly, the closed regions R̄+(ij) and R̄−(ij) are defined.

For i ∈ P , let F (i) ⊆ F denote a set of constrained edges whose left endpoints
coincide with i. Upper and lower tangents, iiup and iilow, of i with respect to (the
constrained edge set) F are defined as those from i to the convex hull of Pi(F),
(see Fig. 2). Notice that Pi(F) ⊂ R̄−(iiup) and Pi(F) ⊂ R̄+(iilow) hold. Then
they define empty region in which no point of P exists as we describe below. Let
l be a line perpendicular to x-axis passing through i, and let e1 and e2 be the
closest edges from i among F intersecting with l in the upper and lower side of i
(if such edge exists). Then there exists no point of P inside the region bounded
by l, e1 (resp. e2), and the line through i and iup (resp. ilow). When e1 (resp.
e2) does not exist, the empty region is defined by the one bounded by l and the
line through i and iup (resp. ilow). We call this fact empty region property of the
upper and lower tangents.

2.2 Constrained Smallest Indexed Triangulation

Although we have not explain our index for an triangulation yet, let us first
define the triangulation called F -constrained smallest indexed triangulation in
this paper.

Definition 1. Let iiup and iilow be the upper and lower tangents of i ∈ P with
respect to F , and denote a set of edges of F (i) ∪ {iiup, iilow} by ii0, ii1, . . . , iik
arranged in clockwise order around i, (where i0 = iup and ik = ilow hold). Let

Enumerating Constrained Non-crossing Geometric Spanning Trees 247

Fig. 3. The part of the CSIT around i, where bold edges represent F . The CSIT has
edges between i and black vertices.

(a) (b) (c)

Fig. 4. (a)SIT. (b)CSIT. (c)non-CSIT.

Hl = conv(Pi(F)∩ R̄−(iil)∩ R̄+(iil+1)) for l with 0 ≤ l ≤ k− 1. Then for every
l with 0 ≤ l ≤ k − 1 the F -constrained smallest indexed triangulation (F -CSIT)
has an edge ij with j ∈ Hl if and only if j is visible from i with respect to the
convex hull Hl (see Fig. 3).

We call Hl of Definition 1 the convex hull of Pi(F) bounded by iil and iil+1. We
give an example of CSIT in Fig.4, and also give an example when F = ∅. Notice
that CSIT always has the edges of F (i) ∪ {iiup, iilow} for all i ∈ P .

Lemma 1. The CSIT is a triangulation of the point set P .

2.3 Greedy Flipping in Constrained Triangulations

Let T ∗ denote CSIT on a given point set. For any F -constrained triangulation,
an index of T is defined as a pair of integers n − c and d, and denoted by
index(T) = (n− c, d), where c ∈ {1, . . . , n− 1} and d ∈ {1, . . . , n− 3} are a label
of a critical vertex of T and a critical degree of the critical vertex, respectively.
The critical vertex is the smallest label of a vertex whose incident edges differ
from the corresponding set of incident edges in T ∗. The critical degree is the
number of edges incident to the critical vertex not contained in T ∗. The index of
T ∗ is defined to be (0, 0). Then, for two triangulations T and T ′ with index(T) =

248 N. Katoh and S.-i. Tanigawa

(n− c, d) and index(T ′) = (n− c′, d′), T has smaller index than that of T ′ when
c > c′, or c = c′ and d < d′ holds. Note that the index decreases as the label
of the critical vertex increases. For example, a triangulation in Fig. 4 (c) has an
index (8, 2).

For an edge e in a triangulation T , e is flippable when two triangles incident
to e in T form a convex quadrilateral Q. Flipping e in T generates a new tri-
angulation by replacing e of T with the other diagonal of Q. Such operation is
called improving flip if the triangulation obtained by flipping e has a smaller
index than the previous one, and e is called improving flippable. Now let us show
the greedy flipping property of the constrained triangulations.

Lemma 2. Let T be the F -constrained triangulation with T 	= T ∗ and c be
the critical vertex of T . Then there exists at least one improving flippable edge
incident to c in T \ T ∗.

Proof. Let F (c) and T ∗(c) be sets of edges of F and T ∗ whose left endpoints
coincide with c, respectively. And let ccup and cclow be the upper and lower
tangents of c with respect to F . Now we show that T contains all edges of T ∗(c).
First let us show that T contains ccup(∈ T ∗(c)). Suppose that ccup is missing in
T . Since T is a triangulation, T has some edge e ∈ T \T ∗ intersecting ccup. Then,
from the empty region property of ccup discussed in Section 2.1, l(e) < c holds,
which implies that the vertex l(e) is incident to e(= T ∗) and contradicts that
c is the critical vertex. (The fact that cclow is contained in T can be similarly
proved.)

Next let us show that each edge cv of T ∗(c) other than F (c) ∪ {ccup, cclow}
is contained in T . Suppose that cv is missing in T . Then there exists some edge
e ∈ T \ T ∗ intersecting cv. Let cc0, . . . , cck be the edges of F (c) ∪ {ccup, cclow}
arranged in clockwise ordering around c. Since cv ∈ T ∗(c), there exists a unique
l with 0 ≤ l ≤ k − 1 of the convex hull of Pc(F) bounded by ccl and ccl+1 such
that v is on the boundary of the convex hull. Then the edges ccl, ccl+1 and the
part of the boundary edges of such convex hull (convex chain) from cl to cl+1

forms a pseudo-triangle with three corners c, cl and cl+1. Since there exists no
point of P inside of such pseudo-triangle, the fact that e intersects cv implies
that e also intersects at least one of ccl and ccl+1, which contradicts that T
contains all edges of F (c) ∪ {ccup, cclow}. Hence T contains T ∗(c).

Now let us show that there exists at least one improving flippable edge e∗ /∈ T ∗

incident to c. Since c is a critical vertex, T has at least one edge e′ /∈ T ∗. Let
cp1 and cp2 be a pair of edges of T ∗(c)(⊂ T) such that e′ exists between cp1

and cp2 and an angle � p1cp2 is minimum for all pairs of T ∗(c) (see Fig. 5).
Consider a set of edges in T incident to c between cp1 and cp2, and denote them
by cq1, cq2, . . . , cqj̄ in clockwise order around c. Note that cqj ∈ T \ T ∗ holds for
all j = 1, . . . , j̄, and then no vertex of qj is inside of the triangle Δcp1p2, since T ∗

contains empty triangle face Δcp1p2. Therefore, all edges cq1, . . . , cqj̄ intersect
p1p2. Let qj∗ be a vertex furthest from the line through p1 and p2 among qj .
Then a quadrilateral cqj∗−1qj∗qj∗+1 is convex because qj∗−1, qj∗ and qj∗+1 are
not colinear, and flipping cqj∗ produces a triangulation with a smaller index than
the previous one because c < qj∗−1 and c < qj∗+1 hold now. ��

Enumerating Constrained Non-crossing Geometric Spanning Trees 249

Fig. 5. Existence of an improving flippable edge cqj∗ . Bold edges represent the edges
of F , and black vertices represent the vertices incident to c in T ∗.

Theorem 1. Every F -constrained triangulation T can be transformed into F -
CSIT by O(n2) flips.

Proof. From Lemma 2, T (= T ∗) always has an improving flippable edge, and flip-
ping such edge reduces index(T). Since the number of distinct indices is O(n2),
T can be transformed into F -CIST by O(n2) improving flips. ��

3 Constrained Non-crossing Spanning Trees

Let F be a non-crossing edge set on P , and we assume that F is a forest. In this
section we show that a set of F -constrained non-crossing spanning trees on P ,
denoted by ST , is connected by O(n2) flips.

Let E = {e1 ≺ . . . ≺ em} and E′ = {e′1 ≺ . . . ≺ e′m} be lexicographically
ordered edge lists. Then E is lexicographically smaller than E′ if ei ≺ e′i for the
smallest i such that ei 	= e′i. Consider the F -CSIT, which is denoted by T ∗(F)
in what follows. F -constrained smallest indexed spanning tree (F-CSIST) is a F -
constrained non-crossing spanning tree that is a subset of T ∗(F), and we denote
a set of all F -CSISTs by CSIST . Define ST ∗ as a spanning tree consisting of the
lexicographically smallest edge list among CSIST . The following lemma holds
from the known fact about matroid (see e.g. [12]). Namely each ST ∈ CSIST
is a base of graphic matroid restricted to the edge set of T ∗(F) (see the proof of
Theorem 3 of [7] for more details).

Lemma 3. Every non-crossing spanning tree of CSIST can be transformed into
ST ∗ by at most n− 1 flips.

Now we will define an index for each spanning tree ST /∈ CSIST to represent
how far it is from one of CSIST . For each F -constrained triangulation T we have
defined its index with respect to F by indexF (T) = (n− c, d), which represents
how far T is from T ∗(F) by means of the critical vertex c and the critical degree
d, (see the definitions in Section 2.3). We associate ST -constrained smallest
indexed triangulation T ∗(ST) with each spanning tree ST , and define an index
of ST denoted by index(ST) = (n− cST , dST) as indexF (T ∗(ST)), We also call
cST the critical vertex of ST . Fig. 6 shows an example of ST whose critical
vertex is 1 and index(ST) is (7, 2).

250 N. Katoh and S.-i. Tanigawa

(a) (b) (c) (d)

Fig. 6. (a) F , (b) T ∗(F), (c) ST , and (d) T ∗(ST), where bold edges represent F and
dotted edges represent added edges for triangulations

For i ∈ P , let ST (i) and T ∗(ST ; i) be the edge sets of ST and T ∗(ST) whose
left endpoints coincide with i, respectively. It is clear from the definition of CSIT
(Definition 1) that the newly added edges for obtaining T ∗(ST) from ST are
not flippable in T ∗(ST) except for the upper and lower tangents. Thus the next
observation follows:

Observation 1. For i ∈ P any edge of T ∗(ST ; i) \ (ST (i)∪ {iiup, iilow}) is not
flippable in T ∗(ST), where iiup and iilow are upper and lower tangents of i with
respect to ST .

Then we derive the followings from Lemma 2 and Observation 1:

Lemma 4. Let ST /∈ CSIST and c be the critical vertex of ST . Then (i) there
exists at least one improving flippable edge in T ∗(ST) \ T ∗(F), and (ii) an edge
e ∈ T ∗(ST) is improving flippable if and only if e is flippable and e ∈ ST (c) \
(F (c) ∪ {ccup, cclow}), where ccup and cclow are upper and lower tangents of c
with respect to ST .

Proof. Since T ∗(ST) 	= T ∗(F) holds, (i) immediately follows from Lemma 2.
Let us show (ii). From the definition of the index of T ∗(ST), we notice that
flipping an improving flippable edge decreases the number of edges incident to
c. Hence all improving flippable edges must be incident to c with their left
endpoints. From Observation 1 any edge of T ∗(ST ; c) \ (ST (c) ∪ {ccup, cclow})
is not flippable. Then the proof is completed by showing that neither ccup nor
cclow are improving flippable edges. Suppose that ccup is improving flippable.
(The other case is similarly proved.) Then there exists a triangle face Δccupv
incident to ccup in T ∗(ST) with v ∈ R+(ccup). Since ccup is improving flippable
edge, c < v holds, and then v ∈ Pc(ST). This contradicts the empty region
property of ccup with respect to ST . ��

Lemma 5. Every F -constrained non-crossing spanning tree ST /∈ CSIST can
be transformed into a spanning tree in CSIST by at most O(n2) flips.

Proof. Let c be a critical vertex of ST . From Lemma 4 there exists an edge
cc∗ ∈ ST \ F that is improving flippable in T ∗(ST). There exist two vertices c∗1
and c∗2 incident to both c∗ and c in T ∗(ST) such that cc∗c∗1 and cc∗c∗2 are triangle
faces of T ∗(ST). When removing cc∗ from ST , the set of vertices of ST − cc∗ is

Enumerating Constrained Non-crossing Geometric Spanning Trees 251

partitioned into two components, where c∗ and c belong to different components,
and c∗1 can belong to only one of them. Therefore adding one of cc∗1 or c∗1c

∗ to
ST − cc∗, we obtain a new non-crossing spanning tree ST ′. Note that index of
T ∗(ST ′) is smaller than that of T ∗(ST) because T ∗(ST ′) does not have cc∗ but
has c∗1c

∗
2 instead and the critical degree decreases, i.e. the edge-constraint of cc∗

is released and improving flip occurs in the underlying triangulation. Repeating
this procedure, the underlying triangulation eventually reaches the F -CSIT. ��

From Lemmas 3 and 5 we have the following theorem:

Theorem 2. Every F -constrained non-crossing spanning tree is connected by
O(n2) flips.

4 Enumerating Constrained Non-crossing Spanning Trees

Let ST ∗ be an F -CSIST with the lexicographically smallest edge list as defined
in Section 3. Let IST be a set of improving flippable edges in ST . We define
the following parent function f : ST \ {ST ∗}→ ST based on the results of the
previous section:

Definition 2. (Parent function) Let ST ∈ ST with ST 	= ST ∗, and c be a
critical vertex of ST . ST ′ = ST − e1 + e2 is the parent of ST , where
Case 1: ST ∈ CSIST ,
• e1 = max{e | e ∈ ST \ST ∗}, and e2 = min{e ∈ ST ∗ \ST | ST −e1 +e ∈ ST },
Case 2: ST /∈ CSIST ,
• e1 = cc∗ = min{e ∈ IST }, and e2 is either cc∗1 or c∗1c

∗ such that ST −e1 +e2 ∈
ST , where c∗1 is a vertex of triangle face Δcc∗c∗1 in T ∗(ST) with Δ(c, c∗, c∗1) > 0.

Note that IST 	= ∅ and IST is the subset of ST (c) \F from Lemma 4. Therefore
e1 of Case 2 always exists. There exist two triangle faces, Δcc∗c∗1 and Δcc∗c∗2,
incident to both cc∗ in T ∗(ST). Here, we adopt c∗1 in order to define the unique
parent. In Fig. 7 we show how the parent function works in Case 2. From Lem-
mas 3 and 5 these parent-child relationships form the search tree of ST explained
in Section 1. To simplify the notations, we denote the parent function depending
on Cases 1 and 2 by f1 : CSIST \{ST ∗}→ CSIST and f2 : ST \CSIST → ST ,
respectively.

Let elistST ′ and elistKn be the edge lists of ST ′ and Kn ordered lexicographi-
cally, and let elistST ′(i) and elistKn(i) be their i-th element. Then, based on the
algorithm in [5,6], we describe our algorithm in Fig. 8. The parent function needs
O(n+TCSIT) time for each execution, where TCSIT denotes the time to calculate
T ∗(ST). Then, the while-loop from lines 4 to 15 has |ST ′| · |Kn| iterations which
require O(n3(n + TCSIT)) time if simply checking lines 8 and 9. We can improve
it to O(n2) time. Because of the lack of space, let us explain the outline and its
rigorous description is omitted in this proceeding version.

Remember that the removing edge e1 and the adding edge e2 must share one
endpoint in Case 2 of the parent function, so the inner while-loop from lines 6
to 14 can be reduced to O(n) iterations. Then, to achieve O(n2) time algorithm,

252 N. Katoh and S.-i. Tanigawa

Fig. 7. An example of the parent function for ST �∈ CSIST , where index(ST) = (6, 2)
and F = ∅. Removing 27 and adding 37 we obtain a new spanning tree with index (6, 1).

Algorithm Enumerating F -constrained non-crossing spanning trees.

1: ST ∗ := F -CSIST with lexicographically smallest edge list;
2: ST ′ := ST ∗; i, j := 0; Output(ST ′);
3: repeat
4: while i ≤ |ST ′| do
5: do {i := i + 1; erem := elistST ′(i); } while(erem ∈ F);
6: while j ≤ |Kn| do
7: do {j := j + 1; eadd := elistKn(j); } while(ea ∈ ST ′));
8: if ST ′ − erem + eadd ∈ ST then
9: if f1(ST ′ − erem + eadd) = ST ′ or f2(ST ′ − erem + eadd) = ST ′ then

10: ST ′ := ST ′ − erem + eadd; i, j := 0; Output(ST ′);
11: go to line 4;
12: end if
13: end if
14: end while
15: end while
16: if ST ′ �= ST ∗ then
17: ST := ST ′;
18: if ST ∈ CSIST then ST ′ := f1(ST); else ST ′ := f2(ST);
19: determine integers pair (i, j) such that ST ′ − elistST ′(i) + elistKn(j) = ST ;
20: i := i − 1;
21: end if
22: until ST ′ = ST ∗ and i = |ST ′| and j = |Kn|;

Fig. 8. Algorithm for enumerating F -constrained non-crossing spanning trees

we need to show that the inner-while loop can be implemented in O(n) time.
Let ST and ST ′ be two distinct F -CNSTs for which ST = ST ′ − erem + eadd

for erem ∈ ST ′ \ F and eadd ∈ Kn \ ST ′. Our goal is to enumerate all the edge
pairs of (erem, eadd) such that ST is a child of ST ′ in linear time for each erem.
More precisely we will describe necessary and sufficient conditions for which
erem and eadd satisfy either f1(ST) = ST ′ or f2(ST) = ST ′. And then for each

Enumerating Constrained Non-crossing Geometric Spanning Trees 253

erem ∈ ST ′ \ F we can enumerate, in O(n) time with O(n) space, a set of edge
pairs satisfying these conditions. Since the number of candidates for erem is O(n),
we have the following theorem:

Theorem 3. The set of all F -constrained non-crossing spanning trees on a
given point set can be reported in O(n2) time per output using O(n) space.

Acknowledgment

We would like to thank Professor David Avis and Professor Ileana Streinu for
their contributions of crucial ideas and many research discussions. This work is
supported by the project New Horizons in Computing, Grant-in-Aid for Scientific
Research on Priority Areas, NEXT Japan.

References

1. Aichholzer, O., Aurenhammer, F., Huemer, C., Krasser, H.: Transforming spanning
trees and pseudo-triangulations. Inf. Process. Lett. 97(1), 19–22 (2006)

2. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enu-
meration of plane straight-line graphs. In: Proc. 22th European Workshop on Com-
putational Geometry (EuroCG ’06), pp. 71–74. Greece (2006)

3. Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a
fixed tree theorem. Comput. Geom. 21(1-2), 3–20 (2002)

4. Aichholzer, O., Reinhardt, K.: A quadratic distance bound on sliding between
crossing-free spanning trees. In: Proc. 20th European Workshop on Computational
Geometry (EWCG04), pp. 13–16 (2004)

5. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra. Discrete and Computational Geometry 8, 295–313
(1992)

6. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-
matics 65(1-3), 21–46 (1996)

7. Avis, D., Katoh, N., Ohsaki, M., Streinu, I., Tanigawa, S.: Enumerating constrained
non-crossing minimally rigid frameworks,
http://arxiv.org/PS cache/math/pdf/0608/0608102.pdf

8. Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Com-
put. Geom. Theory Appl. 23(3), 271–279 (2002)

9. Hernando, M.C., Houle, M.E., Hurtado, F.: On local transformation of polygons
with visibility properties. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-
Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 54–63. Springer, Heidelberg
(2000)

10. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings.
Graphs and Combinatorics 18(3), 517–532 (2002)

11. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete &
Computational Geometry 22(3), 333–346 (1999)

12. Welsh, D.J.A.: Matroids: fundamental concepts. In: Graham, R.L., Grötschel, M.,
Lovász, L. (eds.) Handbook of Combinatorics, vol. I, pp. 481–526. North-Holland,
Amsterdam (1995)

http://arxiv.org/PS_cache/math/pdf/0608/0608102.pdf

Colored Simultaneous Geometric Embeddings�

U. Brandes1, C. Erten2, J. Fowler3, F. Frati4, M. Geyer5, C. Gutwenger6,
S. Hong7, M. Kaufmann5, S.G. Kobourov3, G. Liotta8,

P. Mutzel6, and A. Symvonis9

1 Department of Computer & Information Science, University of Konstanz
ulrik.brandes@uni-konstanz.de

2 Department of Computer Science, Isik University
cesim@isikun.edu.tr

3 Department of Computer Science, University of Arizona
{jfowler,kobourov}@cs.arizona.edu

4 Department of Computer Science, University of Roma Tre
frati@dia.uniroma3.it

5 Wilhelm-Schickard-Institute of Computer Science, University of Tübingen
{geyer,mk}@informatik.uni-tuebingen.de

6 Department of Computer Science, University of Dortmund
{petra.mutzel,carsten.gutwenger}@cs.uni-dortmund.de

7 NICTA Ltd. and School of Information Technologies, University of Sydney
seokhee.hong@nicta.com.au

8 School of Computing, University of Perugia
liotta@diei.unipg.it

9 School of Applied Math. & Phys. Sciences, National Technical University of Athens
symvonis@math.ntua.gr

Abstract. We introduce the concept of colored simultaneous geometric
embeddings as a generalization of simultaneous graph embeddings with
and without mapping. We show that there exists a universal pointset
of size n for paths colored with two or three colors. We use these re-
sults to show that colored simultaneous geometric embeddings exist for:
(1) a 2-colored tree together with any number of 2-colored paths and
(2) a 2-colored outerplanar graph together with any number of 2-colored
paths. We also show that there does not exist a universal pointset of
size n for paths colored with five colors. We finally show that the follow-
ing simultaneous embeddings are not possible: (1) three 6-colored cycles,
(2) four 6-colored paths, and (3) three 9-colored paths.

1 Introduction

Visualizing multiple related graphs is useful in many applications, such as soft-
ware engineering, telecommunications, and computational biology. Consider the
case where a pair of related graphs is given and the goal is to visualize them so
as to compare the two, e.g., evolutionary trees obtained by different algorithms.
� Work on this paper began at the BICI Workshop on Graph Drawing, held in Berti-

noro, Italy in March 2006.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 254–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Colored Simultaneous Geometric Embeddings 255

When visually examining relational information, such as a graph structure, view-
ers construct an internal model called the mental map, for example, using the
positions of the vertices relative to each other. When viewing multiple graphs
the viewer has to reconstruct this mental map after examining each graph and
a common goal is to aid the viewer in this reconstruction while providing a
readable drawing for each graph individually. Simultaneous embeddings [4] aid
in visualizing multiple relationships between the same set of objects by keeping
common vertices and edges of these graphs in the same positions.

A simultaneous geometric embedding is a generalization of the traditional
planar graph embedding problem, where we look for a common embedding of
multiple graphs defined on the same vertex set. We omit the “geometric” clarifi-
cation in the rest of the paper as we only consider straight-line drawings. There
are two main variations of the problem. In simultaneous embedding with mapping
the embedding consists of plane drawings for each of the given graphs on the
same set of points, with corresponding vertices in the different graphs placed
at the same point. In simultaneous embedding without mapping the embedding
consists of plane drawings for each of the given graphs on the same set of points,
where any vertex can be placed at any of the points in the point set.

Restricted subclasses of planar graphs, such as pairs of paths, pairs of cycles,
and pairs of caterpillars, admit a simultaneous embedding with mapping, while
there exist pairs of outerplanar graphs and triples of paths that do not [4].
Recently, it was shown that pairs of trees do not always have such embeddings [9].
Fewer results are known for the less restricted version of the problem where
the mapping is not predefined. While it is possible to simultaneously embed
without mapping any planar graph with any number of outerplanar graphs, it is
not known whether any pair of planar graphs can be simultaneously embedded
without mapping [4].

Simultaneous embedding is related to universal pointsets, graph thickness,
and geometric thickness. While de Fraysseix et al. [6] showed that there does
not exist a universal pointset of size n in the plane for n-vertex planar graphs,
Bose [3] showed that a set of n points in general position is a universal pointset
for trees and outerplanar graphs. Using simultaneous embedding techniques,
Duncan et al. [8] showed that degree-four graphs have geometric thickness two.

As we show, colored simultaneous embeddings allow us to generalize the prob-
lems above so that the versions with and without mappings become special cases.
Formally, the problem of colored simultaneous embedding is defined as follows.
The input is a set of planar graphs G1 = (V, E1), G2 = (V, E2), . . . , Gr = (V, Er)
on the same vertex set V and a partition of V into k classes, which we refer to as
colors. The goal is to find plane straight-line drawings Di of Gi using the same
|V | points in the plane for all i = 1, . . . , r, where vertices mapped to the same
point are required to be of the same color.

We call such graphs k-colored graphs. Given the above definition, simultane-
ous embeddings with and without mapping correspond to colored simultaneous
embeddings with k = |V | and k = 1, respectively. Thus, when a set of in-
put graphs allows for a simultaneous embedding without mapping but does not

256 U. Brandes et al.

allow for a simultaneous embedding with mapping, there must be a threshold
for the number of colors beyond which the graphs can no longer be embedded
simultaneously.

In this paper we present the first results about colored simultaneous embed-
dings. We study different values of k and show that any line-separated set of
points of size n is a universal pointset for n-vertex 2-colored paths. Moreover,
there exists a universal pointset of size n for n-vertex 3-colored paths while there
is no such universal pointset n-vertex 5-colored paths. We also show how to si-
multaneously embed a 2-colored outerplanar graph and any number of 2-colored
paths. Finally we show the existence of three 6-colored cycles (or four 6-colored
paths, or three 9-colored paths) that cannot be simultaneously embedded.

2 Two-Colored Simultaneous Embeddings

We begin by showing the existence of a universal pointset for 2-colored paths.
The following lemma extends a result of Abellanas et al. [1] on proper 2-colorings
of paths.

Lemma 1. Given a 2-colored path P of r red and b blue vertices and a set S of
r red and b blue points separated by a line and in general position, there exists a
planar straight-line embedding of P into S.

Proof. Without loss of generality we can assume that S is separated by a vertical
line, and that the red points are on the left of that line. Let P = v0, v1, . . . vn

and let Pi be the drawing of the path after the first i vertices of P have been
embedded. Let Hi be the lower convex envelope of the points of S not used by
Pi. We maintain the following invariants for all i = 0, . . . , n − 1 for which the
colors of vi and vi+1 are different:

1. The drawing of Pi does not intersect Hi.
2. The point pi into which the most recent vertex vi has been embedded can see

a point of Hi of the other color and Pi does not intersect the area bounded
by this line of sight and the vertical line from pi upward.

Assume that vi is of different color than vi+1 and let h, 1 ≤ h ≤ n − i, be
maximal such that vi+1, vi+2, . . . vi+h all have the same color. To maintain the
above invariants, we find a line that cuts off the required number h of points
of color different from vi from Hi (identified with the area on and above it).
Assume vi is red (which implies that it has been placed at a point pi in the left
half-plane) and vi+1 is blue; see Fig. 1.

Consider now the red end-point ri of the unique edge of Hi that crosses the
vertical separation line. We rotate a ray emanating from ri counterclockwise until
either h unused blue points are encountered, or a red point r′i lies on the ray. In
the latter case, we continue by rotating counterclockwise the ray around r′i. We
repeat this process until h blue points are found, and let Bi be the set of identified
blue points. Let CBi be the convex hull of Bi. These points can be added to the
path, as follows: Let a be the first blue point of Hi that is hit by a ray emanating

Colored Simultaneous Geometric Embeddings 257

Pi

ri

r′i
pi+h

CBi

pi

a = pi+1

Hi

Fig. 1. Embedding a 2-colored path

from pi and rotated counterclockwise. Point a also belongs to CBi . We can then
connect pi to point a. From point a we move counterclockwise along CBi until
the right-most point of CBi is reached, while adding each encountered point to
the drawing of the path. The remaining points of Bi are taken in decreasing
value of their x-coordinates until the final point, pi+h.

The resulting path ending at pi+h satisfies the invariants: Pi+h does not in-
tersect Hi+h and since pi+h is the leftmost point of Bi the second invariant is
also satisfied. ��

Using Lemma 1 we can embed k 2-colored paths for any k > 0 on a set of
2-colored points in general position in the plane that are separated by a straight-
line, provided we have sufficient number of points of each color. The resulting set
of points is a universal one for these k 2-colored paths, which yields the following
theorem:

Theorem 1. Any number of 2-colored paths can be simultaneously embedded.

2.1 A Tree and Paths on Two Colors

We first show that it is always possible to draw a 2-colored tree in such a way
that the two colors are separated by a line.

Lemma 2. Any 2-colored tree can be embedded so that the colors are separated
by a straight line.

Proof. We use a divide-and-conquer approach and recursively process the tree
from an arbitrary root node. We begin by drawing a vertical line l and assigning
the left side to color 1 and the right side to color 2. Next we sort the children of
the root by their colors. Let j of the children have color 1 and k children have
color 2.

258 U. Brandes et al.

We can assume without loss of generality that the root is of color 1 and can
place it on the left side of line l. The j children of color 1 are placed consecutively,
such that the first is strictly beneath and to the left of the root, the second is
strictly beneath and to the left of the first, and so on. We place the k children
of color 2 to the right of line l in a similar fashion. We place the first child
strictly beneath and to the right of the root, the second strictly beneath and to
the right of the first, and so on. Note that every child has unobstructed line of
sight to an horizontal sliver of the plane on both sides of line l. Thus, we can
recursively place the children of the j + k vertices until the entire tree has been
processed. ��

Now using the result from Lemma 2 we can embed a 2-colored tree on a set
of 2-colored points in the plane that are separated by a straight-line. Then we
can perturb the positions of the vertices until they are in general position. This
can be done without introducing crossings as shown in [4]. From Lemma 1, the
resulting set of points is a universal one for 2-colored paths. Together these two
results yield the next theorem:

Theorem 2. A 2-colored tree and any number of 2-colored paths can be simul-
taneously embedded.

2.2 Planar Graph and Paths on Two Colors

We have seen that in order to simultaneously embed a 2-colored planar graph
G with any number of 2-colored paths it suffices to find a plane drawing of G
in which the vertex sets of the same color, V1 and V2, can be separated by a
line. Let G1 and G2 be the two subgraphs induced by the vertex sets V1 and V2

respectively. We call such a partition a bipartition, and the edges with vertices
from both graphs are called bipartition edges.

Next we present a characterization of the class of 2-colored planar graphs that
can be separated by a line. We make extensive use of the characterization and
the embedding algorithm for HH layouts by Biedl et al. [2]. An HH layout is
a drawing of a planar bipartition without crossings (but not necessarily using
straight-line edges), in which the two vertex sets are separated by a horizontal
line. We begin with the characterization of planar bipartitions that can be drawn
as HH layouts.
Lemma 3. [2] Planar bipartitions can be realized as HH layouts only if the
subgraph D of the dual graph induced by the dual edges of the bipartition edges
is connected.
Moreover, it is shown in [2] that D is Eulerian and that it is possible to con-
struct y-monotone HH layouts with few bends in linear time. The construction is
roughly as follows. Find an Eulerian circuit of D that separates the sets V1 and
V2. Then dummy vertices, that will become bends later, are introduced along
the bipartition edges. Next the chain of dummy vertices is processed in the or-
der of the Eulerian circuit and the straight-line drawing algorithm of Chrobak
and Kant [5] is applied to the two subgraphs separately by placing one of them

Colored Simultaneous Geometric Embeddings 259

below (without loss of generality, say, G1) and the other above the chain. The
final result is straight-line planar drawing with the exception of the bipartition
edges which have exactly one bend each; see Fig. 2(a).

This approach does not produce exactly the result that we need. We now show
how to obtain a drawing with no bends, while not introducing any crossings, after
applying the above technique to the planar bipartition and obtaining the HH
layout (which may have some bends).

Lemma 4. From each HH layout with some bends on the separation line, we
can derive a straight-line drawing, while keeping the two partitions separated by
a line.

Proof. We begin by directing all the edges upward with respect to the basic HH
layout L in order to obtain an upward planar embedding E of G. A theorem of
Di Battista and Tamassia [7] states that the upward planar embedding E can
be realized as a straight-line upward drawing. The resulting drawing, however,
may not separate the two sets by a straight horizontal line. Below we show
how to obtain the needed straight-line drawing in which the two sets are indeed
separable by a line.

Let Γ1 be the upward embedding of the graph G1 with an upper boundary
B1 made of vertices adjacent to the bipartition edges. We extend Γ1 by adding a
top vertex t which we connect to all the boundary vertices by edges (v, t), where
v ∈ B1. Now we can apply the straight line drawing algorithm of Di Battista and
Tamassia to the extended embedding and obtain an upward straight-line draw-
ing, with the vertices on the boundary B1 drawn with increasing x-coordinates;
see Fig 2(b). After removing vertex t, B1 is once again the upper boundary.
Similarly, we can extend the embedding Γ2 of G2 in order to obtain a drawing
with x-monotone lower boundary B2.

Next we stretch the two layouts in the x-direction so that the slopes of the
boundary edges become smaller. In particular, we stretch the layouts until all
slopes are less than 40◦. Note that stretching preserves both planarity and up-
wardness of the layouts.

Finally we place the two layouts of Γ1 and Γ2 above each other and at vertical
distance twice the larger of their widths. Now we can safely insert the bipartition
edges which connect the two boundaries B1 and B2. By the choice of separa-
tion distance, the slopes of the bipartition edges are larger than 60◦. Thus the
bipartition edges cannot introduce any crossings and now the two parts can be
separated by an horizontal line as desired; see Fig. 2(c). ��
Lemma 1 and the algorithm above yield the following lemma:

Lemma 5. Let G be a planar bipartition graph in which the dual graph of the
subgraph induced by the bipartition edges is connected. (a) Then a straight-line
drawing for G can be constructed where the two parts are separated by a hori-
zontal line. (b) Since the bipartition includes a 2-coloring, G plus any number of
2-colored paths can be simultaneously embedded.

As 2-colored outerplanar graphs fulfill the conditions of Lemma 5, we have the
following theorem:

260 U. Brandes et al.

(a) Sample HH layout

t

(b) Extended HH
layout of G1

(c) Resulting
embedding

Fig. 2. HH Layouts

Theorem 3. A 2-colored outerplanar graph and any number of 2-colored paths
can be simultaneously embedded.

3 k-Colored Simultaneous Embeddings

In this section we extend the investigation to more than two colors. We recall
that there exist three paths which do not admit a simultaneous embedding with
mapping [4], whereas it is easy to see that any number of paths have a simul-
taneous embedding without mapping. Now we consider k-colored paths and/or
k-colored k-cycles for 3 ≤ k ≤ 9.

3.1 Three Colors

As in the case of 2-colored embeddings we are looking for a universal pointset
for paths. A slight modifications of the original universal pointset for 2-colored
paths allows us to extend its utility to the 3-colored case.

Theorem 4. Any number of 3-colored paths can be simultaneously embedded.

Proof. Let P be any 3-colored path with c1 vertices of color 1, c2 vertices of
color 2 and c3 vertices of color 3, where c1 + c2 + c3 = n. Let l1, l2 and l3 be
three line-segments with a common endpoint O and meeting at 120◦ angle. Place
c1 points along l1, c2 points along l2, and c3 points along l3, ensuring that the
origin O is not used.

Next map every vertex of the path, in order, to the point of the corresponding
color that is closest to the origin and is not already taken. Since every point has
line of sight to any other point and for a given pi of P the previous path only
blocks line of sight to the points already taken, the result is a plane drawing. ��

Colored Simultaneous Geometric Embeddings 261

e

a

b

cd

(a) Five 5-colored paths

a b c

fed

(b) Three 6-colored 6-cycles

Fig. 3. Sets of k-colored graphs for k ∈ {5, 6} on distinctly colored points whose unions
form a K5 and a K3,3

3.2 Four and Five Colors

While universal pointsets exist for 1-colored paths, 2-colored paths and 3-colored
paths, we have not been able to find one for 4-colored paths. However, we can
show that for k > 4 universal pointsets for k-colored paths do not exist.

Theorem 5. There does not exist a universal pointset for 5-colored paths.

Proof. Consider the following five 5-colored paths on 5 points given in Fig. 3(a)
whose union is K5 where each edge in the K5 belongs to exactly two paths:

1. a−c−d−b−e (thin red dashed edges),
2. a−d−e−b−c (thick light purple alternating dash and dot edges),
3. b−a−c−e−d (thick green dotted edges),
4. b−d−a−e−c (thick yellow solid edges), and
5. e−a−b−c−d (thin blue solid edges).

In any drawing of K5 there must be at least one crossing. If this crossing is
formed by a pair of edges from different paths then a simultaneous embedding
might be possible. However, the paths above were chosen in such a way that ev-
ery pair of edges either belongs to the same path or is incident. As straight-line
incident edges cannot form the crossing pair it suffices to examine all pairs of
non-adjacent edges in order to verify that they occur in at least one of the paths.

3.3 Six and Nine Colors

Here we consider sets of graphs on pointsets of six or more colors, in which the
sets of graphs to simultaneously embed have cardinality less than five.

Lemma 6. There exist three 6-colored cycles that cannot be simultaneously em-
bedded.

Proof. Consider the following three cycles, also shown in Fig. 3(b):
1. e−a−d−c−f−b−e (thin blue solid edges),
2. e−a−f−b−d−c−e (thin red dashed edges), and
3. a−f−c−e−b−d−a (thick green dotted edges).

262 U. Brandes et al.

a c

fd

b

e

(a) One 5-colored and three
6-colored paths

a b c

feh

i

g

d

(b) Three 9-colored paths

Fig. 4. Sets of k-colored graphs for k ∈ {6, 9} on distinctly colored points whose unions
form a K3,3 or a subdivision thereof

A visual examination of Fig. 3(b) shows that the union of these cycles forms a
K3,3. Moreover, every edge in the K3,3 belongs to two of the three cycles. In any
drawing of K3,3 there must be at least one crossing. Since there are only three
paths altogether, every pair of edges in the K3,3 must share a common 6-cycle,
which forces a self-intersecting cycle. ��

Lemma 7. There exist four 6-colored paths that cannot be simultaneously em-
bedded.

Proof. Fig. 4(a) depicts the following set of one 5-colored path and three
6-colored paths whose union forms K3,3:

1. e−a−d−c−f (thin blue solid edges),
2. e−a−f−b−d−c (thin red dashed edges),
3. a−f−c−e−b−d (thick green dotted edges), and
4. a−d−c−e−b−f (thick brown dash-and-dots edges).

Every edge in K3,3 belongs to at least two of the four paths. As a result, since
there are more than three paths, it is easy to manually inspect all 18 pairs of
non-adjacent edges to verify that each pair shares a common path. Thus at least
one of the paths must be self-intersecting. ��

Lemma 8. There exist three 9-colored paths that cannot be simultaneously em-
bedded.

Proof. Fig. 4(b) shows that every edge in the subdivided K3,3 union belongs to
exactly two of the following three paths:

1. h−c−f−b−e−a−g−d−i (thin blue solid edges),
2. g−d−h−c−e−a−f−b−i (thin red dashed edges), and
3. g−a−f−c−e−b−i−d−h (thick green dotted edges).

Since there are only three 9-colored paths altogether, every pair of edges in
the subdivided K3,3 must share a common path forcing a self-intersecting path.
Note that this result is a simplified version of Theorem 2 of Brass et al. [4]. ��

Colored Simultaneous Geometric Embeddings 263

4 Conclusions and Open Problems

Table 1 summarizes the current status of the newly formulated problem of col-
ored simultaneous embedding. A “�” indicates that it is always possible to
simultaneously embed the type of graphs, a “✗” indicates that it is not always
possible, and a “?” indicates an open problem.

Table 1. k-colored simultaneous embeddings: results and open problems

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 9 k = n

Paths P1 . . . P3 � � � ? ? ? ✗ ✗

Paths P1 . . . P4 � � � ? ? ✗ ✗ ✗

Any number of paths � � � ? ✗ ✗ ✗ ✗

Planar Graph G and Path P � � ? ? ? ? ✗ ✗

Outerplanar Graph G and Path P � � ? ? ? ? ? ?

Tree T and Path P � � ? ? ? ? ? ?

Two trees T1, T2 � ? ? ? ? ? ? ✗

Two planar graphs G1, G2 ? ? ? ? ? ? ✗ ✗

References

1. Welsh, D.J.A.: Matroids: fundamental concepts. In: Graham, R.L., Grötschel, M.,
Lovász, L. (eds.) Handbook of Combinatorics, vol. I, pp. 481–526. North-Holland,
Amsterdam (1999)

2. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions: HH-drawings.
In: 24th Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp.
124–136 (1998)

3. Bose, P.: On embedding an outer-planar graph in a point set. Computational Ge-
ometry: Theory and Applications 23(3), 303–312 (2002)

4. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. In: 8th Work-
shop on Algorithms and Data Structures (WADS), pp. 243–255 (2003)

5. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs.
Intl. Journal of Computational Geometry and Applications 7(3), 211–223 (1997)

6. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

7. Di Battista, G., Tamassia, R.: Algorithms for plane representation of acyclic di-
graphs. Theoretical Computer Science 61(2-3), 175–198 (1988)

8. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low de-
gree graphs. In: 20th Annual ACM-SIAM Symposium on Computational Geometry
(SCG), pp. 340–346 (2004)

9. Kaufmann, M., Vrťo, I., Geyer, M.: Two trees which are self-intersecting when
drawn simultaneously. In: 13th Symposium on Graph Drawing (GD), pp. 201–210
(2005)

Properties of Symmetric Incentive Compatible

Auctions�

Xiaotie Deng1, Kazuo Iwama2, Qi Qi1, Aries Wei Sun1, and Toyotaka Tasaka2

1 Department of Computer Science, City University of Hong Kong
csdeng@cityu.edu.hk, qi.qi@student.cityu.edu.hk, sunwei@cs.cityu.edu.hk

2 School of Informatics, Kyoto University, Japan
iwama@kuis.kyoto-u.ac.jp, TasakaToyotaka@t13.mbox.media.kyoto-u.ac.jp

Abstract. We formalize the definition of symmetric auctions to study
fundamental properties of incentive compatible auction protocols. We
characterize such auction protocols for those with a fixed number of items
to sell and study some important properties of those with an indefinite
number of sales.

1 Introduction

In recent years, auction based protocols have become a popular solution to E-
commerce trading systems. Their adoption in real commercial processes have
been at a scale never seen previously. Originally, auctions are used to sell normal
items that are in limited supply[8,4,7]. Largely because of digital goods of zero
marginal cost, auction models with unlimited supply [6,3,2,1,5] have become
an important research topic in recent year. The study of digital goods has also
invented new variations of auctions and provoked new thinkings in the principles
governing auction protocol designs.

In particular, a new concept of “competitive auction” introduced in [6] made
it the first priority that the total sales of the auctioneer be maximized, approx-
imately within a constant factor of a benchmark optimum. To achieve that,
several important properties are examined in details at a technical depth that
has not been necessary for many previously well known auction protocols. At the
same time, a nature question has arisen to demand an extensive careful study is
that what are the basic principles we have to stick to in economic transactions
at this micro level. Our study is motivated to study this fundamental question
to understand the limitation and the possibility in auction protocols.

In designing auction protocols, a number of common properties are usually
desired, though sometimes not explicitly stated. We should focus on incentive
compatible protocols, for which bidding the trues value would be an optimal
strategy of every participating agent. In addition, we will restrict our discussion
to those with the symmetric property. We should use a specific definition of
symmetric auction protocols. We comment that there may be other formalization
� This research is supported by SRG grant (7001989) of City University of Hong Kong.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 264–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Properties of Symmetric Incentive Compatible Auctions 265

of the concept symmetry for auction designs. Our choice is one of the simplest
forms.

We study several other intersting properties to analyse their effects on incen-
tive compatible auction protocol designs as well as their relationships with each
other. We introduce those properties and present some preliminary results in §2.

As we shall expect, the symmetric property will not prevent lower bidders to
win over higher bidders. Even though it might be possible for some special types
of discriminative auctions, it is not “reasonable” and unfair in most situations. In
§3 we define the property a bidder wins if any lower one does as “Winner Mono-
tone”. We also define two other equally plaussible monotone properties, “Price
Function Monotone” and “Revenue Monotone”. Our investigations into the re-
lationships of the three properties give very interesting results and show that we
should not take for granted that an arbitrarily designed auction is “reasonable”.

Then an interesting question arises, when will an auction be “reasonable”? A
most common benchmark auction is the celebrated Vickrey auction [8]. We study
Vickrey auction in depth in §4. Our analysis show two sufficient and necessary
conditions for a symmetric incentive compatible auction to be equivalent to
Vickrey auction. One is that the number of winners is always fixed (See §4.1).
Another is that the auction is homogeneous, revenue monotone, price function
monotone, and single winning price (See §4.2).

We conclude our work in §5 with a discussion on future works.

2 Preliminaries

We present the models of auction protocols, the mathematical notations for
agents’ parameters, as well as acronyms for important properties to be discussed.

2.1 Basic Model and Notations

We restrict our attentions to auctions satisfying the following properties:

1. Every bidder wants at most one item.
2. The items sold by the auction are the same.
3. The auction is deterministic.
4. The auction is carried out in a one-round sealed-bid manner.
5. The bidders know the auction protocol.

The auctions we study in this paper can be viewed as algorithms that take
the bidders’ bids (b(1), b(2), . . . , b(n)) as input, and, upon termination, give the
result as output. The output consists of two parts. The first part is allocation
w(i), i = 1, 2, . . . , n. w(i) indicates the number of items agent a(i) has won. In
our model w(i) is either 0 or 1. We call an agent a winner if it has won at least
one item, or a loser otherwise. The second part is price p(i), i = 1, 2, . . . , n. p(i)

indicates the price that agent a(i) needs to pay for each unit. Notice that if agent
a(i) is a loser that has won no item, it pays a price 0, while p(i) may not be equal
to 0. The auctioneer’s revenue is defined as

∑n
i=1 w(i) × p(i).

266 X. Deng et al.

For convenience, we use the following notations and terminologies throughout
the paper:

n the total number of bidders
k the total number of winners
a(i) the i-th agent (or bidder) in the auction
b(i) the bid submitted by a(i). b(i) ≥ 0.
v(i) the private valuation on the product of a(i). We restrict our discussion on

normal goods characterized by v(i) ≥ 0.
b(∼i) = (b(1), b(2), . . . , b(i−1), b(i+1), . . . , b(n))
w(i) The number of items agent a(i) has won from the auction.
p(i) The price agent a(i) should pay for each unit. p(i) ≥ 0.
u(i) The utility of agent a(i). u(i) = (v(i) − p(i))× w(i).

The one shot auction protocol takes the sealed-bids of the participants, deter-
mines an allocation policy of the selling item, as well as the prices charged to all
the winners. For the incentive compatible property, the most fundamental prop-
erty in the tradition of auction protocol design since Vickery [8], the description
of allocation policies can be much simplified by a set of pricing functions, fi(·),
one each for the participating agents. a(i) wins the item if its bid b(i) is larger
than fi(·), loses otherwise. In the event bid b(i) is equal to fi(·), the agent is
called a zero winner or a zero loser depending on whether it is allocated with
the selling item by the auction protocol.

2.2 Basic Properties and Their Notations

We introduce important properties and their acronyms so that they can be
referred to conveniently.

Definition 1 (Symmetric Auction). An auction is symmetric if and only if
for any input:

1. b(i) = b(j) ⇒ p(i) = p(j).
2. p(i) remains the same if two other agents exchange their bids.

Definition 2 (Homogeneous Auction). An auction is homogeneous if after
multiply every bidder’s bid by a factor m > 0, the result of the auction satisfies:

1. A bidder wins if and only if it previously wins.
2. The return value of the price function of every bidder is equal to m times its

previous value.

IR Individual rational. An auction is said to be individual rationality if b(i) <
p(i) → w(i) = 0, ∀i = 1, 2, . . . , n.

IC Incentive compatible. Also called truthful. An auction is incentive compatible
if and only if reporting truth is each agent (or bidder)’s dominant strategy.

SYM Symmetric. An auction is said to be symmetric if it satisfies Definition 1.
SEL(n,k) The auction is participated by n bidders and selects exactly k win-

ners. 0 < k < n unless otherwise stated.

Properties of Symmetric Incentive Compatible Auctions 267

SWP Single Winning Price. An auction is said to be single winning price if
and only if all winners’ prices are the same, i.e. w(i) > 0 and w(j) > 0 ⇒
p(i) = p(j), ∀1 ≤ i < j ≤ n.

HOMO Homogeneous. An auction is homogeneous if it satisfies Definition 2.

2.3 Useful Results

Lemma 1. In an auction satisfying SEL(n,k), there are at most k bidders with
positive utilities.

Lemma 2. In an auction satisfying IR and IC,

w(i) × (b(i) − p(i)) ≥ 0, ∀i = 1, 2, . . . , n

where w(i) is the number of items agent a(i) has won, b(i) is the bid of agent a(i),
p(i) is the price agent a(i) need to pay for each unit of items it has won.

We restate Theorem 2.5 on page 5 in [6] here:

Lemma 3 (Bid Independent Pricing. Folklore, see e.g. [6]). In an auc-
tion satisfying IR and IC, the pricing function of a(i) does not depend on b(i).

In other words, a(i)’s price function does not take its bid b(i) as a variable.
i.e.

p(i) = fi(b(∼i))

And for any bidder a(i), if b(i) > p(i), a(i) is a winner.

From the above lemma and the definition of SYM, if b(i) = b(j) and a(i) wins
while a(j) loses, then we must have p(i) = b(i).

Lemma 4. In an auction satisfying IR, IC and SYM, every bidder a(i)’s pric-
ing function is independent of its index i.

Given Lemma 4, we can remove the subscript from every bidder a(i)’s price
function fi(·), and denote it by f(·). Thus, the output of the auction is indepent
of the order of the bidders. In the following parts, we always assume the bid
vector is sorted in decreasing order.

3 Monotone Properties

In general, the symmetric property would not prevent lower bidders to win over
higher bidders. Even though this may sometimes be acceptable for special types
of discriminative auctions, it is not reasonable for symmetric auction where all
bidders are regarded equal. To handle this abnormality, auction protocols are
often required to be monotone.

However, careful examination into monotone properties shows that there may
be different properties of monotoneness. We should distinguish three types of
monotone properties:

268 X. Deng et al.

1. Winner Monotone (WM). High bidder wins if any lower one does.
2. Price Function Monotone (PFM). The price function f is a

non-decreasing function in each of its variables.
3. Revenue Monotone (RM). The total value of the sales is a non-decreasing

function in each of its variables.

All the three monotone properties cover some aspects of the generic concept
of monotonicity. However, they are not the same and yet they are not all inde-
pendent. In this section we examine the relationships among them.

3.1 Some Exotic Auctions

We introduce some exotic auctions to help disprove some of the implication rela-
tions. Each auction is carefully selected to perform as much disproof as possible.
It is straight forward to prove that all the auctions presented in this subsection
satisfies IR, IC and SYM. The analysis of monotonicities of these auctions can
be found in §??.

Auction 1 (k-Winner Vickrey Auction). p(i) is set to the k-th highest bid
of all other bidders. A bidder who bids higher than its price will definitely win.
A bidder who bids lower than its price will definitely lose. A bidder who bids
equal to its price may win or lose. The auction always selects k winners.

The auction is WM, PFM and RM.

Auction 2. p(i) is set as the minimum bid times the number of minimum bids
in the bid vector containing all other bidders’ bids. Anyone who bids higher than
its price is a winner.

The auction is WM but it is not PFM.

Auction 3. p(i) is set as the minimum bid of all other bidders. Any bidder bid
higher than its price is winner.

The auction is PFM and WM. But it is not RM.

Auction 4. p(i) is set as follows: 1) 98, If at least one other bidder bids no less
than 100; 2) 101, otherwise. Any a(i) bidding higher than its price is a winner.

The auction is RM. But it is neither PFM nor WM.

Auction 5. p(i) is set as follows: 1) 0, if no other bidder bids no less than 100;
2) 101, if one and only one other bidder bids no less than 100; 3) 100, if more
than one bidders bid no less than 100.

Everyone who bids no less than its price is a winner.
The auction is WM and RM, but not PFM.

3.2 Implication Relationships

In this subsection, we derive the implication relationships among the three
monotone properties, with the help of the examples introduced in the previous
subsection.

Properties of Symmetric Incentive Compatible Auctions 269

Lemma 5. In an auction satisfying IR, IC and SYM, PFM ⇒ WM.

However, this is the only implication we know of the monotone properties. As
we should show next, none of the other possible implications holds.

Theorem 1. In an auction satisfying IR, IC and SYM, the implication rela-
tionships between any two of the three monotone properties are as follows:

PFM ⇒WM, WM � PFM; RM � WM, WM � RM; PFM � RM,
RM � PFM.

Moreover, two of the monotone properties cannot strengthen the implication
relationships either, as we should see in the following theorem.

Theorem 2. In an auction satisfying IR, IC and SYM, the implication rela-
tionships from any two to the other one of the three monotone properties are as
follows:

PFM and RM ⇒WM; WM and RM � PFM; WM and PFM � RM.

Theorem 3. It is possible that the three monotone properties, WM, PFM and
RM, simutaneously exist in an auction satisfying IR, IC and SYM.

In other words, the existence of any one or two of the three monotone prop-
erties does not imply the non-existence of the other monotone properties (or
property).

4 Vickrey Auction in Depth

In this section, we study Vickrey auction in depth. Our analysis show two suffi-
cient and necessary conditions for a symmetric incentive compatible auction to
be equivalent to Vickrey auction. One is that the number of winners is always
fixed. Amazingly, symmetry is all we need for this class to be a Vickery auction.
When the number of winners is determined by the auction protocol, we consider
a variation of Vickery auction protocols. We show its necessary and sufficient
condition is that the auction is homogeneous, revenue monotone, price function
monotone, and single winning price.

4.1 Fixed Number of Winners

In this subsection, we prove that for auctions with a fixed number of winners, a
symmetric incentive compatible auction is all we need for it to be the Vickrey
auction. Though it seems to be a classical type result which may have already
known, we have not been able to locate a statement of such a theorem in the
literatures. To be on the safe side, we would not claim the result as completely
new but to include it only for the sake of completeness.

Since it is trivial that Vickrey auction must select a fixed number of winners,
we only need to prove the sufficient part.

We first prove the 1-winner case, with an extension to the k-winner case later.

270 X. Deng et al.

1 Winner

Theorem 4. An auction satisfying IR, IC, SYM and SEL(n,1) must be
equivalent to 1-item n-bidder Vickrey auction. i.e.:

1. The total number of winners equals to 1.
2. (One of) the highest bidder wins
3. The winner pays the price of the highest bid of all other bidders

k Winners. The result can be extended to protocols with exactly k winners
with n ≥ k + 1 bidders. However the proof is neither simple nor obvious.

We put the bids in a set S without duplicate values. Then we construct an n-
dimensional counter vector c = (c1, c2, . . . , cn), where ci is the number of bidders
whose bids equals to the i− th highest bid in set S. If there is no such bidder,
ci = 0. Obviously, for any auction with n bidders and k < n winners, the set of
c’s possible values is limited.

We define the order on c’s possible value set as follows:

1. If there are more non-zero elements in c than c′, then c > c′; else
2. If there are more non-zero elements in c′ than c, then c < c′; else
3. If ci = c′i, ∀i, then c = c′; else
4. Let i = min{k|ck 	= c′k}. If ci > c′i then c > c′, else c < c′.

Lemma 6. An auction satisfying IR, IC, SYM and SEL(n,k) must satisfy:

1. b(i) > b(k+1) ⇒ b(i) > p(i)

2. b(i) < b(k+1) ⇒ b(i) < p(i)

where b(k+1) is the (k + 1)-th highest bid.

Proof. We prove the lemma by mathematical induction.

1. (Initial Step). The smallest possible value of counter vector c is
(n, 0, . . . , 0). At this time,all the bidders have the same bids, and the lemma
is trivially true.

2. (Induction Step). In induction step, we want to show that the lemma is
true for counter vector c if the induction assumption (the lemma is true for
all smaller counter vectors) is true.
(a) We first prove b(i) > b(k+1) ⇒ b(i) > p(i). The argument is by con-

tradiction. Suppose ∃i, b(i) > b(k+1), but b(i) ≤ p(i). Now we decrease
a(i)’s bid to b̃(i) = b(k+1). Let c′ denote the new counter vector after
this change. Obviously c′ < c and the (k + 1)-th highest bid now is still
b(k+1).

By Lemma 3, a(i)’s new price p̃(i) = p(i) ≥ b(i) > b̃(i). By SYM,
∀j, b(j) = b̃(i) ⇒ p(j) = p̃(i) > b(j).

Thus all bidders bidding b(k+1) will definitely lose and there are at
most k−1 bidders bidding higher than b(k+1) in the current situation or
we say in c′. By SEL(n,k), ∃L, b(L) < b(k+1) and b(L) ≥ p(L) and a(L)

wins. This contradicts the induction assumption that the lemma stands
for c.

Properties of Symmetric Incentive Compatible Auctions 271

(b) We then prove b(i) < b(k+1) ⇒ b(i) < p(i). Similarily, suppose ∃i, b(i) <
b(k+1) but b(i) ≥ p(i).

Now we increase a(i)’s bid to b̃(i) = b(k+1). Let c′ denote the new
counter vector after this first change.

By Lemma 3, a(i)’s new price p̃(i) = p(i) ≤ b(i) < b̃(i). By SYM,
∀j, b(j) = b̃(i) ⇒ p(j) = p̃(i) < b(j).

Thus, all bidders bidding b(k+1) now will definitely win and there are
at least k + 2 bidders bidding no lower than b(k+1) in the current situ-
ation or we say in c′. By SEL(n,k), ∃H, b(H) > b(k+1) and b(H) ≤ p̃(H)

and a(H) loses.
Now we decrease a(H)’s bid to b̃(H) = b(k+1). Let c′′ denote the new

counter vector after this second change. Obviously c′′ < c and the (k+1)-
th highest bid is still b(k+1).

By Lemma 3, a(H)’s new price remains p̃(H) ≥ b(H) > b̃(H). By SYM,
∀j, b(j) = b̃(H) ⇒ p(j) = p̃(H) > b(j).

Thus all bidders bidding b(k+1) will definitely lose under current situ-
ation.

Now there are at most k − 1 bidders bidding higher than b(k+1). By
SEL(n,k), ∃L, b(L) < b(k+1) and b(L) ≥ p(L) and a(L) wins. This con-
tradicts the induction assumption that the lemma stands for c”.

3. (Conclusion Step). From the above reasonings, we conclude that the
lemma is true for all possible values of the counter vector.

The above reasonings complete the proof of the lemma.

Lemma 7. An auction satisfying IR, IC, SYM and SEL(n,k) must satisfy:

1. b(i) = b(k+1)and a(i) wins⇒ p(i) = b(k+1)

2. b(i) > b(k+1) ⇒ p(i) = b(k+1)

where b(k+1) is the (k + 1)-th highest bid.

Theorem 5. An auction satisfying IR, IC, SYM and SEL(n,k) must be
equivalent to k-item n-bidder Vickrey auction. i.e.:

1. Each bid higher than the (k + 1)-th highest bid will definitely win.
2. Each bid lower than the (k + 1)-th highest bid will definitely lose.
3. Each winner’s price must be equal to the (k + 1)-th highest bid.
4. The total numbder of winners is equal to k.

4.2 Homogeneous Monotone Auction and Vickrey Auction

In this subsection, we prove that SWP, PFM, RM and HOMO is a sufficient
and necessary condition that a symmetric incentive compatible auction is equiv-
alent to the Vickrey auction. Again it is trivial that Vickrey auction satisfies
those properties, we only need to prove the sufficient part.

272 X. Deng et al.

Lemma 8. In an auction satisfying IR, IC, SYM, SWP, PFM, RM and
HOMO, if a bid vector b of size n results in exactly k winners, then after
increasing any bidder a(c)’s bid by δ and 0 < δ < b(c)

n the auction will still result
in exactly k winners.

Proof. Let the original winning price be p, the auctioneer’s revenue be R̃ and
the number of winners be k̃ after a(c)’s bid increasing by δ.

By HOMO, if we increase every bidder’s bid to b(c)+δ
b(c)

times larger, the auc-

tion will still have exactly k winners and the winning price is b(c)+δ
b(c)

× p.
By RM, after only increasing b(c) by δ, auctioneer’s revenue should be no less

than before but no more than increasing every bid to b(c)+δ
b(c)

times larger. Or:

p× k ≤ R̃ ≤ b(c) + δ

b(c)
× p× k

By PFM, after changing b(c), every bidder’s price should be no less than
before but no more than changing every bid b(c)+δ

b(c)
times larger. Or:

p× k̃ ≤ R̃ ≤ b(c) + δ

b(c)
× p× k̃

From the above two inequations we get:

p× k ≤ b(c) + δ

b(c)
× p× k̃

p× k̃ ≤ b(c) + δ

b(c)
× p× k

Which further gives the following inequation:

b(i)

b(i) + δ
× k ≤ k̃ ≤ b(i) + δ

b(i)
× k

Since 0 < δ < b(i)

n , we must have:

b(i)

b(i) + δ
× k > k − 1

b(i) + δ

b(i)
× k < k + 1

Hence:
k − 1 < k̃ < k + 1

And we must have k̃ = k. This completes the proof. ��

Lemma 9. In an auction satisfying IR, IC, SYM, SWP, PFM, RM and
HOMO, if a bid vector b of size n results in exactly k winners, then after
increasing any bidder a(c)’s bid by δ and δ > 0 the auction will still result in
exactly k winners.

Properties of Symmetric Incentive Compatible Auctions 273

Lemma 10. In an auction satisfying IR, IC, SYM, SWP, PFM, RM and
HOMO, if a bid vector b of size n results in exactly k winners, then any bid
vector b′ of size n satisfying b′(i) ≥ b(i), ∀i, will also results in k winners.

Theorem 6. An auction satisfying IR, IC, SYM, SWP, PFM, RM and
HOMO must have a fixed number k of winners as long as the total number of
bidders n is being held fixed and every bid is a positive real number.

Theorem 7. In an auction satisfying IR, IC, SYM, SWP, PFM, RM and
HOMO, when every bid is a positive real number, there must exist a function f
such that for any bidder number n, the auction must be equivalent to (k = f(n))-
winner Vickrey auction. i.e.:

1. Bidding higher than the (k + 1)-th highest bid will definitely win.
2. Bidding lower than the (k + 1)-th highest bid will definitely lose.
3. Each winner’s price must be equal to the (k + 1)-th highest bid.
4. The total number of winners is equal to k = f(n).

5 Conclusions

In this paper, we have formally defined some basic properties of symmetric in-
centive compatible single-item single-unit auctions. We have shown that some
of the relationships among them are quite complex. In §3 we have studied the
implication relationships among three monotone properties. In §4 we have stud-
ied two sufficient and necessary conditions that an auction is equivalent to the
Vickrey auction. Our results are of substaintial value to auction research.

In the end we provide a non-restricting list of some interesting open problems
as our future works. Can we extends our results to multi-unit auctions where a
bidder demands multiple units of a single item? Can we extend the implications
relationships among the monotone properties to randomized auctions? What are
the foundational properties of the more generalized auctions that need not to be
symmetric, where the order of the bids does matter?

References

1. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.
In: ACM Conference on Electronic Commerce (EC), ACM Press, New York (2006)

2. Aggarwal, G., Hartline, J.: Knapsack auctions. In: SODA (2006)
3. Bu, T., Qi, Q., Sun, A.W.: Unconditional competitive auctions with copy and budget

constraints. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE
2006. LNCS, vol. 4286, Springer, Heidelberg (2006)

4. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11, 17–33 (1971)
5. Deng, X., Huang, L., Li, M.: On walrasian price of cpu time. In: Wang, L. (ed.)

COCOON 2005. LNCS, vol. 3595, Springer, Heidelberg (2005)
6. Goldberg, A., Hartline, J., Karlin, A., Saks, M., Wright, A.: Competitive auctions.

Games and Economic Behavior 55(2), 242–269 (2006)
7. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)
8. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance 16, 8–37 (1961)

Finding Equilibria in Games of No Chance

Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen

Department of Computer Science, University of Aarhus, Denmark
{arnsfelt,bromille,trold}@daimi.au.dk

Abstract. We consider finding maximin strategies and equilibria of ex-
plicitly given extensive form games with imperfect information but with
no moves of chance. We show that a maximin pure strategy for a two-
player game with perfect recall and no moves of chance can be found
in time linear in the size of the game tree and that all pure Nash equi-
librium outcomes of a two-player general-sum game with perfect recall
and no moves of chance can be enumerated in time linear in the size of
the game tree. We also show that finding an optimal behavior strategy
for a one-player game of no chance without perfect recall and determin-
ing whether an equilibrium in behavior strategies exists in a two-player
zero-sum game of no chance without perfect recall are both NP-hard.

1 Introduction

In a seminal paper, Koller and Megiddo [3] considered the complexity of finding
maximin strategies in two-player zero-sum imperfect-information extensive form
games. An extensive form game is an explicitly given game tree with information
sets modeling hidden information (for details, see [3] or any text book on game
theory). A main result of Koller and Megiddo was the existence of a polynomial
time algorithm for finding an equilibrium in behavior strategies (or equivalently,
a pair of maximin behavior strategies) of such a game when the game has perfect
recall. Informally speaking, a game has perfect recall when a player never forgets
what he once knew (for a formal definition, see below). In contrast, for the case
of imperfect recall, the problem of finding a maximin strategy was shown to be
NP-hard.

Pure equilibria (i.e, equilibria avoiding the use of randomization) play an
important role in game theory and it is of special interest to know if a game
possesses such an equilibrium. For the case of a zero-sum games, one may deter-
mine if a game has a pure equilibrium by computing a maximin pure strategy
for each of the two players and checking that these strategies are best responses
to one another. Unfortunately, Blair et al. [1] established that the problems of
finding a maximin pure strategy of a two-player extensive form game or deter-
mining whether a pure equilibrium exists are both NP-hard, even for the case
of zero-sum games of perfect recall. Their proof is an elegant reduction from the
EXACT PARTITION (or BINPACKING) problem and relies heavily on the fact
that the extensive form game is allowed to contain chance nodes, i.e., random
events not controlled by either of the two players.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 274–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Equilibria in Games of No Chance 275

Extensive form games without chance nodes is a very natural special case
to consider (natural non-trivial examples include such popular parlor games
as variants of Spoof). In this paper we consider the equilibrium computation
problems considered by Koller and Megiddo and by Blair et al. for this special
case. Our main results are the following:

First, we show that a maximin pure strategy for a two-player extensive form
game of no chance with imperfect information but perfect recall can be found in
time linear in the size of the game tree. As stated above, Blair et al. show that
with chance moves, the problem is NP-hard. Apart from the obvious practical
interest, the example is also interesting in light of the recent work of von Stengel
and Forges [6]. They introduced the notion of extensive form correlated equilibria
(EFCEs) of two-player extensive form games. They showed that finding such
equilibria in games without chance moves can be done in polynomial time while
finding them in games with chance moves may be NP-hard. They remark that
EFCE seems to be the first example of a game-theoretic solution concept where
the introduction of chance moves marks the transition from polynomial-time
solvability to NP-hardness. Our result combined with the result of Blair et al.
provides a second and much more elementary such example.

Second, we extend the above result from maximin pure strategies to pure
Nash equilibria. We show that all pure Nash equilibrium outcomes of a two-
player general-sum extensive form game of no chance with imperfect information
but perfect recall can be enumerated in time linear in the size of the game tree.
Here, an outcome is a leaf of the tree defining the extensive form. Also, given
one such pure Nash equilibrium outcome, we can in linear time construct a pure
equilibrium (in the form of a strategy profile) with that particular outcome.
In contrast, the recent breakthrough result of Chen and Deng [2] implies that
finding a behavior Nash equilibrium for a game of this kind is PPAD-hard.

The results of Blair et al. and those of Koller and Megiddo give a setting where
finding a pure equilibrium is NP-hard while finding an equilibrium in behavior
strategies can be done in polynomial time. Considering games without perfect
recall, we give an example of the opposite. We show that determining whether a
one-player game in extensive form with imperfect information, imperfect recall
and no moves of chance has a behavior strategy that yields a given expected
payoff is NP-hard. In contrast, it is easy to see that finding an optimal pure
strategy for such a game can be done in linear time. Our result strengthens a
result of Koller and Megiddo [3, Proposition 2.5] who showed NP-hardness of
finding a maximin behavior strategy in a two-player game with imperfect recall
and no moves of chance. Koller and Megiddo [3, Example 2.12] also showed that
a maximin behavior strategy in such a two-player game may require irrational
behavior probabilities. We give a one-player example with the same property.

Finally, we show that determining whether a Nash equilibrium in behavior
strategies exists in a two-player extensive form zero-sum game with no moves of
chance but without perfect recall is NP-hard.

The rest of the paper is organized as follows. In section 2, we formally define
the objects of interest and introduce the associated terminology (for a less concise

276 K.A. Hansen, P.B. Miltersen, and T.B. Sørensen

introduction, see the paper by Koller and Megiddo, or any textbook on game
theory). In sections 3,4,5 and 6, we prove each of the four results mentioned
above.

2 Preliminaries

A two-player extensive form game is given by a finite rooted tree with pairs of
payoffs (one payoff for each of the two players) at the leaves, and information
sets partitioning nodes of the tree. In a zero-sum game, the sum of each payoff
pair is zero. A general-sum game is a game without this requirement. In this
paper, we do not consider games with nodes of chance, so every node in the
tree is owned by either Player 1 or to Player 2. All nodes in an information
set belong to the same player. Intuitively, the nodes in an information set are
indistinguishable for the player they belong to. In a one-player game, all nodes
belong to Player 1. Actions of a player are denoted by labels on edges of the
tree. Given a node u and an action c that can be taken in u, we let apply(u, c)
be the unique successor node v of u with the edge (u, v) being labeled c. Each
node in an information set has the same set of outgoing actions. The set of
possible actions in information set h we denote Ch. The actions belong to the
player owning the nodes of the information set. Perfect recall means that all
nodes in an information set belonging to a player share the sequence of actions
and information sets belonging to that player that are visited on the path from
the root to each of the nodes.

A pure strategy for a player assigns to each information set belonging to that
player a chosen action. A behavior strategy assigns to each action at each in-
formation set belonging to that player a probability. A pure strategy can also
be seen as a behavior strategy that only uses the probabilities 0 and 1. Thus,
concepts defined below for behavior strategies also apply to pure strategies. A
(pure or behavior) strategy profile is a pair of (pure or behavior) strategies, one
for each player. Given a pure strategy profile for a game without chance nodes,
there is a unique path in the tree from the root to a leaf formed by the chosen
actions of the two players. The leaf is called the outcome of the profile. A behav-
ior strategy profile defines in the natural way a probability distribution on the
leaves of the tree and hence a probability distribution on payoffs for each of the
two players. So given a behavior strategy profile we can talk about the expected
payoff for each of the two players.

A maximin pure strategy for a player is a pure strategy that yields the max-
imum possible payoff for that player assuming a worst case opponent, i.e., the
maximum possible guaranteed payoff. A maximin behavior strategy for a player
is a behavior strategy that yields the maximum possible expected payoff for that
player assuming a worst case opponent, i.e., the maximum possible guaranteed
expected payoff. A Nash equilibrium is a strategy profile (s1, s2) so that no strat-
egy s′1 yields strictly better payoff for Player 1 than s1 when Player 2 plays s2

and no strategy s′2 yields strictly better payoff for Player 2 than s2 when Player
1 plays s1.

Finding Equilibria in Games of No Chance 277

Kuhn [5] showed that for an extensive form two-player zero-sum game with
perfect recall, a pair of maximin behavior strategies is a Nash equilibrium. The
expected payoff for Player 1 is the same in any such equilibrium and is called
the value of the game. Any extensive form general-sum game with perfect recall
in fact possesses a Nash equilibrium in behavior strategies.

3 Maximin Pure Strategies in Games with Perfect Recall

Consider a two-player extensive form game G with perfect recall and without
chance nodes. We shall consider computing a maximin pure strategy for one of
the players, say, Player 1. For the purpose of computing such a strategy, we can
consider G to be a zero-sum game where Player 1 (henceforth the max-player)
attempts to maximize his payoff and Player 2 (henceforth the min-player) at-
tempts to minimize the payoff of Player 1. Let G′ be the zero-sum game obtained
from G by dissolving all information sets of the min-player into singletons.

Note that the set of strategies for the max-player is the same in G and G′.
For the min-player, however, the set of strategies is larger in G′ thereby making
G′ a better game that G for the min-player, so its value as a zero-sum game is
at most the value of G. However we have the following key lemma. Note that
the lemma fails badly for games containing chance nodes.

Lemma 1. A pure strategy π for the max-player has the same payoff against
an optimal counter strategy in G as it has against an optimal counter strategy
in G′ (note that the statement makes sense as the max-player has the same set
of strategies in the two games).

Proof. Let σ be a pure best counter strategy against π in G′. As there are no
chance nodes, σ and π defines a single path in the tree of G′ from the root to a
leaf. Due to perfect recall, none of the choices made by the min-player along the
path are choices of the same information set. Thus, the same sequence of choices
can also be made by a strategy in G. Thus, there is a counter strategy in G that
achieves the same payoff against π as σ does in G′, and since the set of possible
counter strategies is bigger in G′, the best in each game each achieves exactly
the same payoff.

To compute the best payoff that can be obtained by a pure strategy in G′, we
define for information set h of G′ a value pval(h) (“pure value”) inductively in
the game-tree as follows.

– If h belongs to the min-player, and therefore consists of a single node u,
define

pval(h) = min
c∈Ch

pval(apply(u, c))

– If h belongs to max-player, define

pval(h) = max
c∈Ch

min
u∈h

pval(apply(u, c))

278 K.A. Hansen, P.B. Miltersen, and T.B. Sørensen

The induction is well-founded due to perfect recall and the fact that there are
no chance nodes, see [6, Lemma 3.2].

Lemma 2. For every pure strategy π for the max-player, there exists a pure
strategy σ for the min-player with the following property. For every information
set h of the max-player there is some node u ∈ h such that play from u using
the pair of strategies (π,σ) yields payoff at most pval(h). Similarly, for every
information set h of the min-player, play from the single node u of h using the
pair of strategies (π,σ) yields payoff at most pval(h).

Proof. Given a pure strategy π for the max-player, we construct the strategy σ
inductively in the game tree. Let h be a given information set of the max-player.
Then, by definition of pval(h) there must be a path from some node u ∈ h using
the action chosen by π out of u (say, L), then going through min-nodes to an
information set g of the max-player with pval(g) ≤ pval(h), or to a leaf l with
payoff less than or equal to pval(h).

In the latter case we simply let σ take the choices defining the path to the
leaf l. In the former case, by induction, we know we have constructed a pure
strategy σ for min from g onwards so that for some node v ∈ g, play from g
using π and σ leads to payoff at most pval(g). Note that we have a path from u
to some (possibly) other node v′ ∈ g using min-nodes. We claim that there is a
path from some node ū ∈ h to v using min-nodes and also choosing the action
L in ū (see Fig. 1).

Xu X ūh

N

L

N

Xv′

N

L

X vg

Fig. 1. Finding ū

Indeed, assume that this is not the case. Then the sequence of information
sets and own actions encountered by max on the way to v differs from the corre-
sponding sequence in some of other node (namely v′) in the information set of v,
contradicting perfect recall. But then, the node ū establishes the induction claim,
with the desired strategy σ taking the choices defining the path from ū to v.

It remains to provide the first actions for the min-player in case the root node
belongs to the min-player. In this case there is a path from the root r, going

Finding Equilibria in Games of No Chance 279

through min-nodes to an information set h of max with pval(h) ≤ pval(r), or to
a leaf l with payoff equal to pval(r). As before we let σ take the choices defining
this path.

With this we can now obtain the following result.

Theorem 1. Given a two-player extensive form game with perfect recall G with-
out chance nodes, we can compute a maximin pure strategy for a player in linear
time in the size of the game tree.

Proof. We describe how to compute a maximin strategy for one of the players,
say Player 1. By Lemma 1 we can compute this by computing a pure maximin
strategy in the game G′. We compute the pval function of the information sets
in G′ and let the strategy of the max-player be the choices that obtains the
maximum in the definition of pval for every information set, i.e., the choice
in information set h is argmaxc∈Ch

minu∈h pval(apply(u, c)). We claim that the
value pval(r) assigned to the root is the best guaranteed payoff the max-player
can get in G′ using some pure strategy. Indeed the max-player is guaranteed
payoff pval(r), where r is the root of G′, playing this strategy, and Lemma 2
establishes this is the best he can be guaranteed.

Note also that having computed the maximin pure strategy, we can determine
whether it is also maximin as a behavior strategy by computing the value v of
the game in polynomial time using, e.g., the algorithm of Koller and Megiddo [3]
or the more practical one by Koller, Megiddo and von Stengel [4] and checking
if the computed pure value pval(r) of the root equals v.

4 Enumerating All Pure Equilibria of Games with
Perfect Recall

Let G be a 2-player general sum extensive form game with perfect recall and
without chance nodes. Let (π, σ) be a pair of pure strategies. For (π, σ) to be
a pure equilibrium we must have that π is a best response to σ and vice versa.
Play using the pair (π, σ) will lead to a unique leaf of G, since there are no
chance nodes. Consider now a leaf l of G, as a potential outcome of a pure
equilibrium. Clearly the actions along the path from the root r of G to the leaf
must be such that they follow the path. Hence what remains are to find the
actions of the remaining information sets. Player 1 must find pure actions in his
remaining information sets such that Player 2 can not obtain greater payoff than
she receives at l. Similarly Player 2 must find pure actions in her information
sets such that Player 1 can not obtain greater payoff than he receives at l. Given
l, we can define zero-sum games G1 and G2 by modifying G such that such
actions, if they exist, can be found in linear time using Theorem 1.

We can simply construct G1 from G as follows (the construction of G2 being
the same with Player 1 and Player 2 exchanged). Player 1 will be the max-player
of G1 and Player 2 will be the min-player. For every information set of Player

280 K.A. Hansen, P.B. Miltersen, and T.B. Sørensen

1 along the path from the root to l we remove all choices (and the subgames
below) except the ones agreeing with the path. The payoff at a leaf in G1 is the
negative of the payoff that Player 2 receives in the corresponding leaf in G. The
following lemma is immediate.

Lemma 3. There is a pure strategy for Player 1 in G leading towards l ensuring
that Player 2 can obtain at most payoff p if and only if there is a pure strategy
for the max-player of G1 ensuring payoff at least −p.

Using this lemma, is is easy to check in linear time if a given leaf l with payoffs
(p1, p2) is a pure equilibrium outcome: We check that the maximin pure strategy
for Player 1 in G1 ensures payoff at least −p2 and we check that the maximin
pure strategy for Player 2 in G2 ensures payoff at least −p1. Also, given such an
outcome, we can in linear time construct a pure strategy equilibrium with this
outcome: The equilibrium is the profile consisting of transferring in the obvious
way to G the maximin pure strategies for Player 1 in G1 and for Player 2 in G2.

Since we can check in linear time if a given leaf is an outcome, we can enu-
merate the set of outcomes in quadratic time. To get a linear time algorithm,
we will go one step further and work with a derived game that is independent
of the leaf l.

Let G′
1 be the zero-sum game obtained from G by dissolving the information

sets of Player 2 and letting payoff at a leaf in G′
1 be the negative of the payoff

that Player 2 receives in the corresponding leaf in G. We define the pval function
on G′

1 as in section 3.
Let T1 be a tree on the information sets of Player 1 and the leaves together with

a root, such that the parent of an information set or leaf is the first information
set on the path to the root in G′

1 or the root itself.
Define a point of deviation with respect to a given leaf l, to be a node in T

not on the path from the root to l, but sharing the sequence of actions leading
to the node with a node on the path from the root to l. Thus only nodes that
have their parents on the path can be a points of deviation. See Fig. 2 for an
example. Intuitively, a point of deviation is an information set where Player 1
first observes that Player 2 has deviated from the strategy leading to l.

The following lemma is easy to establish.

n

a

p

b b

l

Fig. 2. Node p is a point of deviation, node n is not

Finding Equilibria in Games of No Chance 281

Lemma 4. There is a pure strategy for Player 1 in G leading towards l ensuring
that Player 2 can obtain at most the payoff p if and only if for every point of
deviation h with respect to l we have pval(h) ≥ −p.

Theorem 2. Given a 2-player general-sum extensive form game with perfect
recall G without chance nodes, we can in linear time in the size of the game tree
enumerate the set of leaves that are outcomes of pure equilibria.

Proof. Using Lemma 4, we compute the leaves l such that Player 1 has a pure
strategy leading towards l ensuring that Player 2 can obtain at most the payoff
received at l and conversely Player 2 has a pure strategy leading towards l
ensuring that Player 1 can obtain at most the payoff received at l. These sets
can be computed separately; we describe how to compute the former.

We construct the game G′
1 and compute the pval function on G′

1 in linear
time. In linear time we then construct the tree T1 and record the computed
pval values in the nodes. Finally we traverse the tree T . During this traversal we
maintain the minimum pval value that is on any sibling to the nodes on the path
to the root, corresponding to the points of deviations relevant for the leaves in
the subtree of the current node. Once we visit a leaf we can then directly decide
the criteria of Lemma 4 by comparing with the payoff of the leaf.

5 Optimal Behavior Strategies in One-Player Games
Without Perfect Recall

In this section we consider one-player games without perfect recall and no moves
of chance and show NP-hardness of the problem of determining whether a be-
havior strategy yielding an expected payoff of at least a given rational number
exists. In contrast, it is straightforward to see that the corresponding problem
for pure strategies is in P: For each leaf of the game, one checks if this leaf can be
reached by a sequence of actions so that the same action is taken in all nodes in a
given information set. This results strengthens the result of Koller and Megiddo
[3, Proposition 2.6] who showed NP-hardness of the problem of determining
whether some behavior strategy in a two-player game without perfect recall
guarantees a certain expected payoff (against any strategy of the opponent).
Also, our reduction is heavily based on their reduction but uses imperfect recall
to eliminate one of the players. Before giving the proof, we give a simple example
showing that an optimal strategy may require irrational behavior probabilities
(therefore, strictly speaking, “finding” an optimal strategy is not a well-defined
computational problem which leads to considering the stated decision problem
instead). A corresponding two-player example was given by Koller and Megiddo
[3, Example 2.12]. Our one-player game of Fig. 3 is in fact somewhat simpler
than their example. All nodes in the game are included in the same information
set. The player can choose either L or R. Thus, a behavior strategy is given by
a single probability pL with pR = 1 − pL. By construction, the expected payoff
is −2p3

L − (1 − pL)3. This is maximized for pL =
√

2− 1.

282 K.A. Hansen, P.B. Miltersen, and T.B. Sørensen

X

X

X

X

X

X

X

L

L

L

R

R

R

-2 0

0

0 0

0

0 -1

L R

R

R L

L

L R

Fig. 3. A one-player game where the rational behavior is irrational

Theorem 3. The following problem is NP-hard: Given a rational number v and
a one-player extensive form game without chance nodes and a rational number
v, does some behavior strategy ensure expected payoff at least v?

Proof. The proof is by reduction from 3SAT. Given a 3-CNF formula F with m
clauses we construct a game G as follows.

Assume without loss of generality that m is a power of 2, m = 2k. First G will
consist of a complete binary tree of depth 2k, whose nodes are contained in a
single information set. If on the path from the root to a node, the same choice is
made in step 2(i− 1) + 1 and 2i for some i ∈ {1, . . . , k}, the game is terminated
and the player receives payoff 0. Otherwise, we will associate a clause to the
node in the following way: For i = 1, . . . , k we interpret the choices made at step
2(i− 1) + 1 and 2i as defining a binary choice. With the choices (left,right) we
associate the bit 0, and with choices (right,left) we associate the bit 1. Having
defined in this way k bits, we may associate a uniquely determined clause with
the node.

From this node we let the player, for each of the three variables in the clause,
select a truth value. If one of these choices satisfies the clause, the player receives
payoff 1, and 0 otherwise. We place the nodes corresponding to the same variable
in a single information set. In particular, the player does not know the clause.

The proof is now concluded by the following claim: The player can obtain
expected payoff 1

m if and only if F is satisfiable.
Assume first that F is satisfiable. The player will make the first 2k choices by

choosing left with probability 1
2 . The rest of the choices are made according to

a satisfying assignment to F . With probability (1
2)k = 1

m , the player gets to a
node corresponding to a clause, and will obtain payoff 1. The expected payoff is
therefore 1

m .
Assume on the other hand that the player can obtain expected payoff 1

m .
Suppose that the player chooses left with probability p in the first 2k choices.
The probability that the player reaches a node associated with a given clause

Finding Equilibria in Games of No Chance 283

is (p(1 − p))k ≤ 1
m2 , independently of the given node. Since the player can in

fact obtain expected payoff 1
m , we have that at every node associated with a

clause the player must obtain payoff 1, and thus his strategy gives a satisfying
assignment to F .

6 Determining Whether a Two-Player Game Without
Perfect Recall has an Equilibrium

Our final hardness result again uses a reduction very similar to Koller and
Megiddo [3, Proposition 2.6]. In this case, we use the imperfect recall to force
Player 1 to use an almost pure strategy.

Theorem 4. The following problem is NP-hard: Given a two-player zero-sum
extensive form game without chance nodes, does the game possess a Nash equi-
librium in behavior strategies?

Proof. The proof is by reduction from 3SAT. Given a 3-CNF formula F with m
clauses we construct a zero-sum two-player game G as follows.

Player 1 (the max-player) starts the game by making two actions, each time
choosing a clause of F . We put all corresponding m + 1 nodes (the root plus m
nodes in the next layer) of the game in one information set. If he fails to choose
the same clause twice, he receives a payoff of−m3 and the game stops. Otherwise,
Player 2 (the min-player) then selects a truth value for each of the three variables
in the clause. We place all nodes of Player 2 corresponding to the same variable in
a single information set. If one of the choices of Player 2 satisfies the clause, Player
1 receives payoff 0. If none of them do, Player 1 receives payoff 1.

The proof is now concluded by the following claim: G has an equilibrium in
behavior strategies if and only if F is satisfiable.

Assume first that F is satisfiable. G then has the following equilibrium (which
happens to be pure): Player 2 plays according to a satisfying assignment while
Player 1 uses an arbitrary pure strategy. The payoff is 0 for both players and no
player can modify their behavior to improve this so we have an equilibrium.

Next assume that G has an equilibrium. We shall argue that F has a satisfying
assignment.Wefirstobserve thatPlayer 1 in equilibriummusthave expectedpayoff
at least 0. Ifnot, he could switch to an arbitrarypure strategy and would be guaran-
teed a payoff of at least 0. Now look at the two actions (i.e., clauses) that Player 1 is
most likely to choose. Let clause i be the most likely and let clause j be the second-
most likely. If Player 1 chooses i and then j he gets a payoff of−m3. His maximum
possible payoff is 1 and his expected payoff is at least 0. Hence, we must have that
−m3pipj +1 ≥ 0. Since pi ≥ 1/m, we have that pj ≤ 1/m2. Since clause j was the
second most likely choice, we in fact have that pi ≥ 1− (m− 1)(1/m2) > 1− 1/m.
Thus, there is one clause that Player 1 plays with probability above 1−1/m.Player
2 could then guarantee an expected payoff of less than 1/m for Player 1 by playing
any assignment satisfying this clause. Since we are actually playing an equilibrium,
this would not decrease the payoff of Player 1 so Player 1 currently has an expected
payoff less than 1/m. Now look at the assignment defined by the most likely choices

284 K.A. Hansen, P.B. Miltersen, and T.B. Sørensen

of Player 2 (i.e, the choices he makes with probability at least 1
2 , breaking ties in

an arbitrary way). We claim that this assignment satisfies F . Suppose not. Then
there is some clause not satisfied by F . If Player 1 changes his current strategy to
the pure strategy choosing this clause, he obtains an expected payoff of at least
(1/2)3 ≥ 1/m (supposing, wlog, that m ≥ 8). This contradicts the equilibrium
property and we conclude that the assignment in fact does satisfy F .

Acknowledgments

We would like to thank Daniel Andersson, Lance Fortnow, and Bernhard von
Stengel for helpful comments and discussions.

References

1. Blair, J.R.S., Mutchler, D., van Lent, M.: Perfect recall and pruning in games with
imperfect information. Computational Intelligence 12, 131–154 (1996)

2. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
47th Annual Symposium on Foundations of Computer Science, pp. 261–272 (2006)

3. Koller, D., Megiddo, N.: The complexity of two-person zero-sum games in extensive
form. Games and Economic Behavior 4, 528–552 (1992)

4. Koller, D., Megiddo, N., von Stengel, B.: Fast algorithms for finding randomized
strategies in game trees. In: Proceedings of the 26th Annual ACM Symposium on
the Theory of Computing, pp. 750–759 (1994)

5. Kuhn, H.W.: Extensive games and the problem of information. Annals of Mathe-
matical Studies 28, 193–216 (1953)

6. von Stengel, B., Forges, F.: Extensive form correlated equilibrium: Definition and
computational complexity. Technical Report LSE-CDAM-2006-04, London School
of Economics, Centre for Discrete and Applicable Mathematics (2006)

Efficient Testing of Forecasts

Ching-Lueh Chang1 and Yuh-Dauh Lyuu2

1 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan
d95007@csie.ntu.edu.tw

2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan
lyuu@csie.ntu.edu.tw

Abstract. Each day a weather forecaster predicts a probability of each
type of weather for the next day. After n days, all the predicted probabil-
ities and the real weather data are sent to a test which decides whether
to accept the forecaster as possessing predicting power. Consider tests
such that forecasters who know the distribution of nature are passed
with high probability. Sandroni shows that any such test can be passed
by a forecaster who has no prior knowledge of nature [San03], provided
that the duration n is known to the forecaster in advance. On the other
hand, Fortnow and Vohra [FV06] show that Sandroni’s result may re-
quire forecasters with high computational complexity and is thus of little
practical relevance in some cases. We consider forecasters who select a
deterministic Turing-machine forecaster according to an arbitrary dis-
tribution and then use that machine for all future forecasts. We show
that forecasters even more powerful than the above ones are required for
Sandroni’s result. Also, we show that Sandroni’s result does not apply
when the duration n is not known to the forecaster in advance.

1 Introduction

The weather metaphor motivates the investigations in this paper. A weather
forecaster predicts the probability of rain on each day. How do we measure
the forecaster’s predicting power? Dawid [Daw82] proposes testing whether the
announced forecasts are well calibrated in the following sense:

Suppose that, in a long (conceptually infinite) sequence of weather
forecasts, we look at all those days for which the forecast probability of
precipitation was, say, close to some given value ω and (assuming these
form an infinite sequence) determine the long run proportion p of such
days on which the forecast event (rain) in fact occurred. The plot of p
against ω is termed the forecaster’s empirical calibration curve. If the
curve is the diagonal p = ω, the forecaster may be termed (empirically)
well calibrated.

A forecaster who knows the distribution of nature can produce well calibrated
forecasts [Daw82].

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 285–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

286 C.-L. Chang and Y.-D. Lyuu

Foster and Vohra [FV98] show that a forecaster can produce forecasts that
will be well calibrated on any distribution adopted by nature. Fudenberg and
Levine [DF99], Lehrer [Leh01], Sandroni, Smorodinsky and Vohra [SSV03] con-
sider stronger forms of calibration tests. They show that a forecaster can pass
these stronger tests on any distribution of nature. Thus, to pass these calibra-
tion tests, a forecaster needs no prior knowledge about the distribution of nature
in that he does not need to assume anything about the distribution of nature
[San03]. In this sense, if a forecaster passes a test on any distribution of nature,
it means that the forecaster needs no prior knowledge about the distribution of
nature to pass that test.

Ideally, we want a test to reject forecasters who have no prior knowledge about
the distribution of nature. As a corollary, it is desirable that a test rejects each
forecaster on some distribution of nature, for otherwise some forecaster passes
the test on all distributions of nature, meaning it needs no prior knowledge
about nature to pass the test. A second desirable property is that a test passes
forecasters who know the distribution of nature. These two desirable properties
are not simultaneously satisfied by calibration tests (see [FV98, DF99, Leh01,
SSV03]). Sandroni [San03] shows that no test satisfies both desirable properties
as long as the duration is made known beforehand to the forecaster. In this
known-duration case, if a test is such that forecasters who know the distribution
of nature are accepted with high probability, then there exists a forecaster that
can pass that test on any distribution of nature.

Fortnow and Vohra [FV06] consider computational bounds on the forecaster
and the test. They construct efficient tests that pass forecasters who know the
distribution of nature, whereas only computationally powerful forecasters have
a chance to pass these tests on all possible distributions of nature. This result
implies that Sandroni’s result requires the absence of computational constraints
on the forecaster.

There is also closely related literature on theory testing [DF06, OS06b, OS06a].
In these models, an expert proposes a distribution of a stochastic process, which
is tested for truthfulness. Some papers [ANW06, FS07] discuss identifying which
of several experts knows the true distribution of the stochastic process.

In this paper, we present two results. The first proceeds along the compu-
tational perspective of Fortnow and Vohra [FV06], who show that Sandroni’s
[San03] result may require forecasters with high computational complexity. We
consider the family of forecasters who select a deterministic Turing-machine
forecaster of any time complexity according to an arbitrary distribution and
then use that machine for all future forecasts. We show that Sandroni’s result
requires forecasters even more powerful than the above. We achieve it by ex-
hibiting a test such that forecasters who know the distribution of nature are
passed with high probability, whereas each of the above-mentioned forecasters
is rejected with high probability on some n-day weather sequence for all suffi-
ciently large n. Unlike the results in [FV06] where Turing-machine forecasters
with a certain computational complexity are rejected on some distributions of

Efficient Testing of Forecasts 287

nature, the above-mentioned forecasters may adopt uncomputable distributions
over Turing-machines of arbitrary time complexity.

Our second result shows that Sandroni’s [San03] result does not apply when
the duration n of forecasting is unknown beforehand to the forecaster. We do
so by exhibiting a test which passes forecasters who know the distribution of
nature, whereas any forecaster is rejected on some n-day weather sequence for
infinitely many durations n.

Our paper is organized as follows. Section 2 gives formal definitions.
Section 3–4 present our results. Section 5 concludes the paper.

2 Definitions

The following setup extends that proposed by Sandroni [San03]. A finite state
space S ≡ {1, . . . , K} categorizes the outcome on each period into one of 1, . . . , K
where K ≥ 2. For � ∈ N, denote by S� the �-dimensional Cartesian product of S
and S∗ ≡

⋃
�≥0 S�. Let n ∈ N be the duration of forecasting (in periods), which

may or may not be known to the forecaster and the test. Given a finite outcome
sequence s ∈ S∗, the data generating process assigns a probability distribution
over the outcomes for the next period. A null outcome sequence is denoted λ.

A distribution over the outcomes of S is called a forecast. The set of distri-
butions over S is denoted ΔS [San03]. A (possibly randomized) forecaster F
announces a forecast for the (t + 1)th period given the outcomes of the first t
periods and the previous forecasts by F for these t periods. Formally, the input
to a forecaster F is an outcome sequence s and a forecast sequence f where
(s, f) ∈

⋃
t≥0 St × (ΔS)t. F ’s output is a forecast for the following period’s out-

come. Let s = (s1, . . . , sn−1) ∈ Sn−1. If the data generating process adopts s as
the outcome sequence for the first n− 1 periods, the n forecasts announced by
a forecaster F are denoted

F (λ; 1), F (s1; 2), . . . , F (s1, . . . , sn−1; n).

Here F (s1, . . . , si−1; i) is F ’s forecast for the ith period. It depends only on the
first i− 1 outcomes in s and the forecasts

F (λ; 1), . . . , F (s1, . . . , si−2; i− 1)

for them, for i ≥ 1. For convenience, we write

F (s) ≡ (F (λ; 1), F (s1; 2), . . . , F (s1, . . . , sn−1; n)) (1)

for the full forecast sequence (we may also write F (s1, . . . , sn−1) as s =
(s1, . . . , sn−1)). When the forecaster is a Turing machine, we assume a reason-
able encoding for its output format. For example, we may let it output a forecast
as a vector consisting of its predicted probabilities of the outcomes in S.

Let P be the distribution adopted by the data generating process. Given any
outcome sequence, P determines the probability distribution over S for the next

288 C.-L. Chang and Y.-D. Lyuu

period. Given P and an outcome sequence s = (s1, . . . , sn), the correct forecast
sequence f̂(s) = (f̂1, . . . , f̂n) is one such that f̂j equals the probability distri-
bution that the data generating process assigns for the jth period conditioned
on (s1, . . . , sj−1) being the outcome sequence for the first j − 1 periods, where
1 ≤ j ≤ n. Sensibly, f̂j depends only on P and (s1, . . . , sj−1), not on future out-
comes (sj , . . . , sn). We may write f̂j as f̂j(s1, . . . , sj−1) to make the dependency
explicit. According to this notation,

f̂(s) ≡
(
f̂1(λ), f̂2(s1), . . . , f̂n(s1, . . . , sn−1)

)
. (2)

A test is deterministic. It receives an outcome sequence s and a corresponding
forecast sequence f where (s, f) ∈

⋃
t≥0 St × (ΔS)t and decides whether to

accept the forecaster as possessing predicting power. A natural criterion is that,
whatever the distribution P adopted by the data generating process, an outcome
sequence s = (s1, . . . , sn) together with the correct forecast sequence f̂(s) must
be accepted with high probability. Here the probability is taken over the random
variables s1, . . . , sn being the outcome sequence whose distribution is determined
by the data generating process. A test satisfying this criterion is said to pass the
truth with high probability [FV06].

A few comparisons with Sandroni’s [San03] definitions can be made. In San-
droni’s definition, the duration n is known to the forecaster and the test; the data
after the nth period are simply ignored. The forecaster receives its input from⋃n−1

t=0 St × (ΔS)t, and the test receives its input from Sn × (ΔS)n. This paper,
however, considers the consequences on the same forecaster (and test) over arbi-
trarily large duration n. Thus, in our definition the forecaster receives its input
from

⋃
t≥0 St × (ΔS)t, and the test receives its input from

⋃
n≥0 Sn × (ΔS)n.

3 Forecasters with Arbitrary Time Complexity

We first review previous theorems. The following theorem is due to Sandroni
[San03] (for the interpretations of this theorem please refer to their paper).

Theorem 1. ([San03]) Let S ≡ {1, . . . , K} be the finite state space, 0 < ε < 1,
and n ∈ N be the duration of forecasting. Consider forecasters receiving input
from

⋃n−1
t=0 St × (ΔS)t and tests receiving input from Sn × (ΔS)n. If a test Tn

passes the truth with probability at least 1 − ε, there is a forecaster Fn (which
may be randomized) that is accepted by Tn with probability at least 1− ε on any
data generating process.

The existence of the forecaster implied in Theorem 1 is shown via Fan’s minimax
theorem [Fan53]. The proof is nonconstructive, and there seem no reasons for
the implied forecaster to be efficient. Indeed, Fortnow and Vohra [FV06] proceed
along this computational perspective and show the following.

Theorem 2. ([FV06]) Let S ≡ {1, . . . , K} be the finite state space. For any time-
constructible t(n), there is a test T of time complexity at most poly(n) t(n) and an
infinite sequence s∗ = (s∗1, s

∗
2, . . .) over S with the following properties:

Efficient Testing of Forecasts 289

1. For each duration n, the test T passes the truth with high probability.
2. For any deterministic Turing-machine forecaster F with time complexity

t(n), T rejects
(
(s∗1, . . . , s∗n), F (s∗1, . . . , s∗n−1)

)
for sufficiently large n.

Theorem 2 complements Theorem 1 by giving a test which passes the truth
with high probability, whereas any deterministic forecaster of time complexity
t(n) is rejected on some outcome sequence if the duration is sufficiently long.
Fortnow and Vohra [FV06] also show that Theorem 2 carries over to randomized
forecasters of time complexity t(n).

Theorem 3. ([FV06]) Let S ≡ {1, . . . , K} be the finite state space. For any time-
constructible t(n), there is a test T of time complexity at most poly(n) t(n) and an
infinite sequence s∗ = (s∗1, s

∗
2, . . .) over S with the following properties:

1. For each duration n, the test T passes the truth with high probability.
2. For any randomized Turing-machine forecaster F with time complexity t(n),

T rejects
(
(s∗1, . . . , s

∗
n), F (s∗1, . . . , s

∗
n−1)

)
with high probability for sufficiently

large n.

Clearly, for the test in Theorem 3, the forecaster implied in Theorem 1 must be
highly complicated—it cannot simply be the same randomized t(n)-time Turing
machine for all durations n. Fortnow and Vohra [FV06] also show tests such that
the forecasters implied in Theorem 1 can be used to do factorization or even solve
PSPACE-complete problems, a strong indication of the high complexity of the
forecasters in Theorem 1. Based on these results, Fortnow and Vohra [FV06]
conclude that Theorem 1 may be of little practical relevance in some cases.

We are now ready to describe our results. In Theorem 2, the test T has a
running time of poly(n) t(n) and is guaranteed to reject any t(n)-time forecasters
when the data generating process adopts s∗ as the outcome sequence. The test,
therefore, is more complex in terms of running time than the forecasters it is
to reject. The poly(n) t(n) running time of T is inherent in the proof of [FV06]
in that T simulates deterministic Turing machines of time complexity t(n). We
improve upon Theorem 2 by allowing T to run in poly(n) time and reject every
Turing-computable deterministic forecaster of any time complexity—not just
t(n). For our test T, the forecasters implied in Theorem 1 can not be the same
deterministic Turing machine (of any time complexity) for all durations n.

Lemma 4. Let S ≡ {1, . . . , K} be the finite state space. There is a polynomial-
time test T and an infinite sequence s∗ = (s∗1, s

∗
2, . . .) over S with the following

properties:
1. For each duration n, the test T passes the truth with high probability.
2. For any Turing-computable deterministic forecaster F, T rejects

(
(s∗1, . . . , s

∗
n), F (s∗1, . . . , s

∗
n−1)

)

for sufficiently large n.

290 C.-L. Chang and Y.-D. Lyuu

Proof. Consider the doubly fractal sequence [AW]

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .

Let h(j) be the jth element of the sequence. Note that h(j) ≤ j. We begin by
describing the test T. The input to T is some outcome sequence (s1, . . . , sn) and
a forecast sequence (f1, . . . , fn) where fi is the forecast probability distribution
over S for the ith period. For each 1 ≤ j ≤ n the test T marks j if sj equals
the smallest outcome among those with the smallest forecast probability in fj .
Now T rejects if for some 1 ≤ k ≤ log n, every j ≤ n with h(j) = k gets marked;
otherwise, T accepts. It is clear that T runs in polynomial time.

We proceed to construct s∗. Let F1, F2, . . . be an enumeration of deterministic
Turing machines that compute recursive functions. Such machines must halt on
all inputs. Pick s∗1 arbitrarily from S. Inductively, once (s∗1, . . . , s

∗
j−1) is deter-

mined, set s∗j ∈ S to be the outcome with the smallest forecast probability in
Fh(j)(s∗1, . . . , s

∗
j−1; j). If there are ties, s∗j should be the one with the smallest

value. In this way s∗ is constructed. The intuition is that s∗j is set to foil the
forecast of Fh(j) as much as possible.

We now argue item 1. Let the data generating process adopt an arbitrary
distribution P . Let s = (s1, . . . , sn) be the outcome sequence. Here s and thus
f̂(s) (defined in Eq. (2)) consist of random variables whose distributions are
determined by the data generating process. On input s and f̂(s), what is the
probability that T marks every 1 ≤ j ≤ n with h(j) = k, for a particular k ≤
log n? Conditioned on any particular realization (w1, . . . , wj−1) of the outcome
sequence for the first j − 1 periods where h(j) = k, let u ∈ S be the smallest
outcome among those with the smallest probability assigned by f̂j(w1, . . . , wj−1).
Then j gets marked if and only if sj turns out to be u, which happens with
probability at most 1/K since u is least probable among all K possible outcomes.
Since the conditional realization (w1, . . . , wj−1) is arbitrary, the probability that
T marks every 1 ≤ j ≤ n with h(j) = k is at most

(1/K)|{1≤j≤n|h(j)=k}|.

For k ≤ log n, it is not hard to see that

|{1 ≤ j ≤ n | h(j) = k}| >
√

n.

Therefore, the probability that T marks every 1 ≤ j ≤ n with h(j) = k for some
k ≤ log n is at most

log n∑

k=1

(1/K)
√

n = o(1).

That is, the correct forecast sequence is rejected only with o(1) probability. This
completes item 1.

We now move on to item 2. Fix a k and consider Fk. From the construction
of s∗, the forecast sequence Fk(s∗1, . . . , s

∗
n−1) made by Fk is such that for every j

Efficient Testing of Forecasts 291

with h(j) = k, s∗j is the smallest among the outcomes to which Fk(s∗1, . . . , s
∗
j−1; j)

assigns the smallest probability. Therefore, on input (s∗1, . . . , s
∗
n) and the forecast

sequence Fk(s∗1, . . . , s∗n−1) announced by Fk, each j with h(j) = k gets marked
by T and thus T rejects if n satisfies k ≤ log n. ��

The next theorem generalizes Lemma 4 by including a class of randomized fore-
casters.

Theorem 5. Let S ≡ {1, . . . , K} be the finite state space. There is a polynomial-
time test T and an infinite sequence s∗ = (s∗1, s∗2, . . .) over S with the following
properties:
1. For each duration n, the test T passes the truth with high probability.
2. Consider any forecaster F that adopts an arbitrary distribution over deter-

ministic Turing-machine forecasters to select one machine for use, and then
uses that same machine for all future forecasts. The test T rejects

(
(s∗1, . . . , s

∗
n), F (s∗1, . . . , s

∗
n−1)

)

with high probability for sufficiently large n.

Proof. T and s∗ are as in Lemma 4, which already shows that T passes the truth
with high probability for each duration n. Let F adopt a distribution Q over
deterministic Turing-machine forecasters to select one machine for use, and then
uses that same machine for all future forecasts. Let F1, F2, . . . be an enumeration
of deterministic Turing-machine forecasters. Clearly,

∞∑

i=1

Pr [F selects Fi] = 1.

For any ε > 0, there is an m ∈ N such that

m∑

i=1

Pr [F selects Fi] > 1− ε. (3)

Assume the data generating process adopts s∗ as the outcome sequence.
Lemma 4 guarantees that T rejects all F1, . . . , Fm for sufficiently long dura-
tion n. Once F selects a machine for forecasting, it stays with that machine
thereafter. Hence inequality (3) shows that, with probability more than 1− ε, T
rejects F. ��

4 Impossibility of Working for All Durations

A natural generalization of Theorem 1 to the case where the duration n is un-
known to the forecaster is to have the forecaster implied in Theorem 1 pass
the test with high probability for all durations n and data generating processes.
This is because a forecaster who does not know the duration n beforehand is

292 C.-L. Chang and Y.-D. Lyuu

guaranteed to pass a test with high probability if and only if it is so for every
duration n (note that n ∈ N may be arbitrary). Formally, given an arbitrary test
T that passes the truth with high probability, is it possible to find a forecaster
F such that for each duration n and each data generating process, F is accepted
by T with high probability? However, this is impossible as the following theorem
shows.

Theorem 6. Let S ≡ {1, . . . , K} be the finite state space and 0 < ε < 1. There
is a polynomial-time test T with the following properties:
1. For each duration n, the test T passes the truth with probability greater than

1− ε.
2. For every randomized forecaster F and δ > 0, there are infinitely many

n ∈ N and outcome sequences s∗ = (s∗1, . . . , s
∗
n) such that T accepts(

s∗, F (s∗1, . . . , s
∗
n−1)

)
with probability at most 1/2 + δ.

Proof. We first describe the test T. Consider an arbitrary outcome sequence
s = (s1, . . . , sn) and a forecast sequence f = (f1, . . . , fn). Denote by f

[1]
i the

probability fi assigns to the outcome 1 ∈ S. On input (s, f), the test T rejects
only in the following two cases:

case 1. s1 = · · · = sn = 1 and
∏n

i=1 f
[1]
i < ε/2.

case 2. s1 = · · · = sn−1 = 1, sn 	= 1, and f
[1]
n > 1− ε/2.

The test T clearly runs in polynomial time.
To argue item 1, fix n ∈ N and a distribution P adopted by the data generating

process. Let s = (s1, . . . , sn) be the outcome sequence for the first n periods and
f̂(s) be the corresponding correct forecast sequence. Here s and thus f̂(s) are
random variables whose distributions are determined by the data generating
process. By the definition of the correct forecast sequence f̂(s), the probability
that s1 = · · · = sn = 1 is

n∏

i=1

Pr [si = 1 | s1 = · · · = si−1 = 1] =
n∏

i=1

f̂
[1]
i (1i−1),

where f̂
[1]
i (1i−1) is the probability assigned to the outcome 1 ∈ S in f̂i(1i−1).

Note that f̂
[1]
i (1i−1) is not a random variable but a fixed number determined by

P for 1 ≤ i ≤ n. Now, feed (s, f̂(s)) to T. The test T rejects due to case 1 only
if s1, . . . , sn all turn out to be 1 and

∏n
i=1 f̂

[1]
i (1i−1) < ε/2. But

n∏

i=1

f̂
[1]
i (1i−1)

is precisely the probability that s1 = · · · = sn = 1. Hence, if
∏n

i=1 f̂
[1]
i (1i−1) <

ε/2 holds, T rejects due to case 1 with probability less than ε/2. Similarly, T re-
jects due to case 2 only if s1, . . . , sn−1 turn out to be 1 but sn turns out otherwise,
and f̂

[1]
n (1n−1) > 1 − ε/2. Assume f̂

[1]
n (1n−1) > 1 − ε/2. When conditioned on

Efficient Testing of Forecasts 293

s1 = · · · = sn−1 = 1, the probability that sn turns out 1 is f̂
[1]
n (1n−1) > 1− ε/2,

so that sn turns out otherwise with probability less than ε/2. Therefore, the
probability that T rejects due to case 2 is less than ε/2. To sum up, the prob-
ability that T rejects (s, f̂(s)) on either case is less than ε/2 + ε/2 = ε. This
completes item 1.

We now move on to item 2. Let F be an arbitrary (possibly randomized)
forecaster and δ > 0. Let m > dε,δ for some dε,δ to be determined later. Assume
the data generating process picks the outcome sequence 1m ∈ Sm for the first
m periods. T rejects (1m, F (1m−1)) because of case 1 if

∏m
i=1 F [1](1i−1; i) < ε/2.

Thus, either

Pr
[
T accepts (1m, F (1m−1))

]
≤ 1

2
+ δ, (4)

or

Pr

[
m∏

i=1

F [1](1i−1; i) ≥ ε/2

]
>

1
2

+ δ, (5)

where the probability is taken over the random variables in F (1m−1). Assume
inequality (5) holds. The event

∏m
i=1 F [1](1i−1; i) ≥ ε/2 implies

∣∣∣{i | F [1](1i−1; i) ≤ 1− ε/2, 1 ≤ i ≤ m}
∣∣∣ ≤ cε

where

cε ≡
log(ε/2)

log(1− ε/2)
.

The above and inequality (5) imply

Pr
[∣∣∣{i | F [1](1i−1; i) ≤ 1− ε/2, 1 ≤ i ≤ m}

∣∣∣ ≤ cε

]
>

1
2

+ δ

where the probability is taken over the random variables in F (1m−1). Now set
dε,δ ≡ cε(1 + 2δ)/δ. The above inequality trivially implies

Pr
[∣∣∣{i | F [1](1i−1; i) ≤ 1− ε/2, m− dε,δ < i ≤ m}

∣∣∣ ≤ cε

]
>

1
2

+ δ,

which is equivalent to

Pr
[∣∣∣{i | F [1](1i−1; i) > 1− ε/2, m− dε,δ < i ≤ m}

∣∣∣ ≥ dε,δ − cε

]
>

1
2

+ δ (6)

where the probability is taken over the random variables in F (1m−1).
Now add the random variable r uniformly distributed over {m− dε,δ +1, m−

dε,δ + 2, . . . , m} and independent of the random variables in F (1m−1). Inequal-
ity (6) and the independence of r from the random variables in F (1m−1) imply

Pr
[
F [1](1r−1; r) > 1− ε/2

]
> (

1
2

+ δ)
dε,δ − cε

dε,δ
(7)

294 C.-L. Chang and Y.-D. Lyuu

where the probability is taken over r and the random variables in F (1m−1). Due
to the independence of r from the random variables in F (1m−1), we have

Pr
[
F [1](1r−1; r) > 1− ε/2

]
=

m∑

i=m−dε,δ+1

Pr
[
F [1](1i−1; i) > 1− ε/2

]

dε,δ
(8)

where the probability on the left-hand side is taken over r and the random
variables in F (1m−1), and those within the summation are over the random
variables in F (1m−1). Inequalities (7) and (8) imply the existence of a number
i(m) ∈ {m− dε,δ + 1, m− dε,δ + 2, . . . , m} with

Pr
[
F [1](1i(m)−1; i(m)) > 1− ε/2

]
> (

1
2

+ δ) · dε,δ − cε

dε,δ
=

1
2

+
δ

2
(9)

where the probability is taken over the random variables in F (1m−1).

Consider the sequence 1i(m)−12 ∈ S∗ standing for

i(m)−1︷ ︸︸ ︷
1 · · · 1 2. Observe that in-

equality (9) holds also when the probability is taken over the random vari-
ables in F (1i(m)−1) because 1m and 1i(m)−1 share a common prefix, 1i(m)−1.
Inequality (9) therefore says that, if the data generating process adopts the
outcome sequence 1i(m)−12 for the first i(m) periods, then with probability
more than 1/2 + δ/2 the forecast that F makes for the i(m)th period at-
taches more than 1 − ε/2 to the probability on the outcome 1. But then T
rejects (1i(m)−12, F (1i(m)−1)) with probability more than 1/2 + δ/2 (see case
2). In summary, for each m > dε,δ, either inequality (4) holds, or T rejects
(1i(m)−12, F (1i(m)−1)) with probability more than 1/2 + δ/2. ��

Our proof of Theorem 6 actually shows the following stronger result.

Theorem 7. Let S ≡ {1, . . . , K} be the finite state space and 0 < ε < 1. There
is a polynomial-time test T with the following properties:
1. For each duration n, the test T passes the truth with probability greater than

1− ε.
2. Consider an arbitrary, possibly randomized forecaster F and δ > 0. Let dε,δ ≡

(1 + 2δ) log(ε/2)/(δ log(1 − ε/2)). For sufficiently large m ∈ N, there is an
n ∈ {m − dε,δ + 1, m − dε,δ + 2, . . . , m} and an outcome sequence s∗ =
(s∗1, . . . , s∗n) ∈ Sn such that T accepts

(
s∗, F (s∗1, . . . , s∗n−1)

)
with probability

at most 1/2 + δ.

Thus, for the test T in Theorem 7, the outcome sequences on which a forecaster
(computable or not) cannot perform well are not rare. One difference of Theorem 7
from [OS06a] is that T may accept sequence pairs with prefixes rejected by T.

5 Conclusion

We have built computationally efficient tests with various desirable properties.
The tests that we construct pass the truth with high probability, and it is hard

Efficient Testing of Forecasts 295

in various ways to pass these tests for all data generating processes. Thus, it is
hard for a forecaster to pass our tests without prior knowledge on the underlying
data generating process.

Unlike most previous works except that by Fortnow and Vohra [FV06], our
results take a computational perspective on forecast testing. Our tests run in
polynomial time, and our first result requires the forecaster to have enormous
computational power to pass the test on all data generating processes. As sug-
gested by Fortnow and Vohra [FV06], we believe that taking a computational
perspective may shed some light on many other problems previously studied
without computational considerations.

References

[ANW06] Al-Najjar, N.I., Weinstein, J.: Comparative testing of experts, Levine’s
Working Paper Archive 321307000000000590, Department of Economics,
UCLA (2006)

[AW] Adams-Watters, F.T.: http://www.research.att.com/~njas/sequences/
a002260.txt.

[Daw82] Dawid, A.P.: The well calibrated Bayesian. Journal of the American Statis-
tical Association 77(379), 605–613 (1982)

[DF99] Levine, D., Fudenberg, D.: Conditional universal consistency. Games and
Economic Behavior 29, 104–130 (1999)

[DF06] Dekel, E., Feinberg, Y.: Non-Bayesian testing of a stochastic prediction.
Review of Economic Studies 73(4), 893–906 (2006)

[Fan53] Fan, K.: Minimax theorems. Proceedings of the National Academy of Science
USA. 39, 42–47 (1953)

[FS07] Feinberg, Y., Stewart, C.: Testing multiple forecasters. Research Paper Series
1957, Graduate School of Business, Stanford University (2007)

[FV98] Foster, D.P., Vohra, R.V.: Asymptotic calibration. Biometrika 85(2),
379–390 (1998)

[FV06] Fortnow, L., Vohra, R.V.: The complexity of forecast testing, Tech. Report
TR06-149, Electronic Colloquium on Computational Complexity (2006)

[Leh01] Lehrer, E.: Any inspection rule is manipulable. Econometrica 69(5),
1333–1347 (2001)

[OS06a] Olszewski, W., Sandroni, A.: Counterfactual predictions, Tech. report,
Northwestern University, Department of Economics (2006)

[OS06b] Olszewski, W., Sandroni, A.: Strategic manipulation of empirical tests, Tech.
report, Northwestern University, Department of Economics (2006)

[San03] Sandroni, A.: The reproducible properties of correct forecasts. International
Journal of Game Theory 32(1), 151–159 (2003)

[SSV03] Sandroni, A., Smorodinsky, R., Vohra, R.V.: Calibration with many checking
rules. Mathematics of Operations Research 28(1), 141–153 (2003)

http://www.research.att.com/~{}njas/sequences/a002260.txt
http://www.research.att.com/~{}njas/sequences/a002260.txt

When Does Greedy Learning of
Relevant Attributes Succeed?

— A Fourier-Based Characterization —

Jan Arpe� and Rüdiger Reischuk

Institut für Theoretische Informatik, Universität zu Lübeck
Ratzeburger Allee 160, 23538 Lübeck, Germany

{arpe,reischuk}@tcs.uni-luebeck.de

Abstract. We introduce a new notion called Fourier-accessibility that allows
us to precisely characterize the class of Boolean functions for which a standard
greedy learning algorithm successfully learns all relevant attributes. If the target
function is Fourier-accessible, then the success probability of the greedy algo-
rithm can be made arbitrarily close to one. On the other hand, if the target func-
tion is not Fourier-accessible, then the error probability tends to one. Finally, we
extend these results to the situation where the input data are corrupted by random
attribute and classification noise and prove that greedy learning is quite robust
against such errors.

1 Introduction

For many application areas, greedy strategies are natural and efficient heuristics. In
some cases, such as simple scheduling problems, greedy strategies find a global opti-
mum (see, e.g., [21, Chap. 4]). For the vast majority of optimization problems, however,
greedy heuristics do not achieve optimal solutions for all inputs. In such a case, one can
sometimes show that the greedy algorithm at least achieves a nontrivial approxima-
tion to an optimal solution. A prominent example is the greedy algorithm for the SET

COVER problem [20, 16, 27, 17].
A different approach is to ask “What is the subset of the input space for which

a greedy algorithm outputs an optimal solution?”. This question has rarely been an-
swered. One notable exception is the characterization of transportation problems using
the Monge property by Shamir and Dietrich [26].

We investigate the performance of greedy algorithms for the problem of relevant fea-
ture selection. Confronted with an unknown target function f : {0, 1}n → {0, 1} that is
only specified by randomly drawn examples (xk, f(xk)), xk ∈ {0, 1}n, k = 1, . . . , m,
the task is to detect which variables xi (also referred to as attributes or features) are
relevant to f . This problem is central to many data mining applications; specifically, if
f is a so-called d-junta, which means that it only depends on a small number d of all n
attributes. A survey of this topic has been provided by Blum and Langley [13].

To infer relevant attributes from randomly drawn examples, the key task is to find a
minimal set of attributes R admitting a consistent hypothesis h (i.e., h(xk) = f(xk)
� Supported by DFG research grant Re 672/4.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 296–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Greedy Learning of Relevant Attributes 297

for all k) that depends only on the variables in R. By standard arguments [14], once the
sample size m exceeds poly(2d, log n), with high probability there remains only one
such hypothesis—the target function itself. Finding such a set R is equivalent to solving
the following SET COVER instance. The ground set is the set of all pairs {k, �} such
that f(xk) 	= f(x�). A pair {k, �} may be covered by an attribute xi if xk

i 	= x�
i . The

goal is to cover the ground set by as few attributes as possible. Using this reduction, we
can apply the greedy heuristic for SET COVER: the algorithm, which we call GREEDY,
successively selects the attribute that covers most of the remaining edges and deletes
them [20, 16].

For relevant feature selection, this approach has been proposed by Almuallim and
Dietterich [4] and Akutsu and Bao [1]. Experimental results have been obtained in
various areas [4, 2, 3, 15]. Akutsu et al. [3] have shown how to implement GREEDY

such that its running time is only O(d ·m · n).
In this paper, we are mainly concerned with uniformly distributed attributes. For this

case, Akutsu et al. [3] have proven that with high probability, GREEDY successfully
infers the relevant variables for the class of Boolean monomials and that a small sample
of size poly(2d, log n) already suffices. Fukagawa and Akutsu [18] have extended this
result to functions f that are unbalanced with respect to all of their relevant variables
(i.e., for x uniformly chosen at random, Pr[f(x) = 1|xi = 0] 	= Pr[f(x) = 1|xi = 1]
for each relevant xi).

Our first major result is a concise characterization of the class of target functions
for which GREEDY is able to infer the relevant variables. This class properly contains
the functions mentioned above. The new characterization is based on a property of the
Fourier spectrum of the target function, which we call Fourier-accessibility. Recall that
for I ⊆ [n], the Fourier coefficient f̂(I) is equal to the correlation between f(x) and the
parity

⊕
i∈I xi (see Sect. 2 for a precise definition). A function f : {0, 1}n → {0, 1} is

Table 1. Examples of Boolean functions and their Fourier spectra

f(x1, x2, x3) f̂(∅) f̂(1) f̂(2) f̂(3) f̂({1, 2}) f̂({1, 3}) f̂({2, 3}) f̂({1, 2, 3})
f1 = x1 ⊕ (x2 ∧ x3) 1/2 −1/4 0 0 −1/4 −1/4 0 1/4
f2 = (x1 ⊕ x2) ∧ x3 1/4 0 0 −1/4 −1/4 0 0 1/4

Fourier-accessible if for each relevant variable, one can find a sequence ∅ � I1 � . . . �

Is ⊆ [n] such that i ∈ Is and for all j ∈ {1, . . . , s}, |Ij \ Ij−1| = 1 and f̂(Ij) 	= 0.
We prove that GREEDY correctly infers all relevant variables of Fourier-accessible d-

juntas from m = poly(2d, log n, log(1/δ)) uniformly distributed examples with prob-
ability at least 1 − δ. On the other hand, it is shown that if a function f is not Fourier-
accessible, then the error probability of GREEDY is at least 1−d2/(n−d). In particular,
this probability tends to 1 if d is fixed and n → ∞, or if d → ∞ and n ∈ ω(d2). Thus,
the average-case analysis of the greedy algorithm results in a dichotomy: for a given
function, either the relevant variables are inferred correctly with high probability, or
with high probability at least some relevant variables are not detected at all.

Coping with errors in the input data has been well studied in numerical analysis, but
hardly in discrete algorithms. We have shown in [7, 8] that the relevant attributes of a

298 J. Arpe and R. Reischuk

d-junta can still be learned efficiently if the input data are corrupted by random noise.
In Sect. 6, we describe how to extend our analysis to noisy situations and show that
greedy learning is highly fault-tolerant.

There is a long tradition of relating algorithmic learning problems to spectral prop-
erties of Boolean functions, see, e.g., [22, 23, 12]. Specifically, Mossel et al. [24] have
combined spectral and algebraic methods to reduce the worst-case running time for
learning the class of all n-ary d-juntas to roughly n0.7·d (a trivial approach is to test
all Θ(nd) sets of potentially relevant variables). The novelty of our analysis lies in the
following. While the greedy algorithm investigated in this paper does not exploit any
properties of the Fourier spectrum explicitly, we show that Fourier-accessibility is nec-
essary and sufficient for this algorithm to work successfully.

There is a simple Fourier-based algorithm that learns the relevant attributes of Fou-
rier-accessible functions: It estimates all first-level coefficients f̂(i) until it finds a
nonzero coefficient, which implies that xi is relevant. Subsequently, it recurses for the
subfunctions fxi=0 and fxi=1 (see also [24]). The point is that this simple greedy al-
gorithm coincidentally also succeeds for exactly those functions. While one may argue
in favour of the Fourier-based algorithm that it can easily be generalized to cope with
functions with vanishing Fourier coefficients at low levels, it is explained in [6] how the
greedy algorithm can also be extended naturally to cope with such functions as well.

This paper is organized as follows. The terminology and the learning model are in-
troduced in Sect. 2. The reduction to SET COVER and the GREEDY algorithm are pre-
sented in Sect. 3. Sect. 4 provides three major lemmata used in the proof of our main
results for GREEDY, which are presented in Sect. 5. In Sect. 6, we study the robustness
of GREEDY against corruption of the input data. In Sect. 7, issues of further research are
discussed. Due to space constraints, most proofs have been omitted. A technical report
for the noise-free case is available [9]. A detailed exposition of the topics presented in
this paper including all proofs can be found in the first author’s PhD thesis [6].

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. We consider the problem of inferring the relevant vari-
ables of an unknown function f : {0, 1}n → {0, 1} from randomly drawn examples.
Variable xi is relevant to f if fxi=0 	= fxi=1, where fxi=a denotes the restriction of f
with variable xi set to a. The set of variables that are relevant to f is denoted by rel(f),
whereas irrel(f) denotes the set of variables that are irrelevant (i.e., not relevant) to f .
A function with | rel(f)| ≤ d is called a d-junta. The restriction of f to its relevant
variables is called its base function.

We assume that an algorithm for inferring the relevant variables receives a sequence
S of randomly generated examples (xk, yk), k ∈ [m], where xk ∈ {0, 1}n is drawn
according to the uniform distribution and yk = f(xk) ∈ {0, 1}. Such a sequence is
called a sample for f of size m. If for another function h, yk = h(xk) for all k ∈ [m],
h is said to be consistent with S.

If x is randomly generated, then f : {0, 1}n → {0, 1} is a Bernoulli random variable,
thus we will use the notation Pr[f = b] = Prx[f(x) = b] for b ∈ {0, 1} and Var(f) =

Greedy Learning of Relevant Attributes 299

Pr[f = 0] Pr[f = 1]. The following well-known Chernoff bound can, e.g., be found
in [5].

Lemma 1 (Chernoff Bound). Let X be a random variable that is binomially dis-
tributed with parameters n and p, and let μ = pn be the expectation of X . Then for all
ε with 0 ≤ ε ≤ 1, Pr[|X − μ| > εn] < 2e−2ε2n.

The space R{0,1}n

of real-valued functions on the hypercube with inner product
〈f, g〉 = 2−n

∑
x∈{0,1}n f(x)g(x) is a Hilbert space of dimension 2n. It has an or-

thonormal basis (χI | I ⊆ [n]), where χI(x) = (−1)
∑

i∈I xi for x ∈ {0, 1}n, see,
e.g., [11]. Let f : {0, 1}n → R and I ⊆ [n]. The Fourier coefficient of f at I is
f̂(I) = 2−n

∑
x∈{0,1}n f(x) · χI(x). Thus, f̂(I) measures the correlation between

f(x) and χI(x). If I = {i}, we write f̂(i) instead of f̂({i}). We have the Fourier
expansion formula f(x) =

∑
I⊆[n] f̂(I) · χI(x) for all x ∈ {0, 1}n.

Definition 1 (Fourier support). Let f :{0, 1}n → {0, 1}. The Fourier support of f is
supp(f̂) = {I ⊆ [n] | f̂(I) 	= 0}. The Fourier support graph FSG(f) of f is the
subgraph of the n-dimensional Hamming cube induced by supp(f̂).

∅ {1}

{1, 2}

{1, 3}

{1, 2, 3}

(a) FSG(f1).

∅ {3} {1, 2} {1, 2, 3}

(b) FSG(f2).

Fig. 1. Fourier support graphs of functions f1 and f2 presented in Table 1.

Fourier coefficients are connected to relevant variables as follows (cf. [24, 8]):

Lemma 2. Let f : {0, 1}n → {0, 1}. Then for all i ∈ [n], xi is relevant to f if and
only if there exists I ⊆ [n] such that i ∈ I and f̂(I) 	= 0.

Hence, whenever we find a nonzero Fourier coefficient f̂(I), we know that all variables
xi, i ∈ I , are relevant to f . Moreover, all relevant variables can be detected in this way,
and we only have to check out subsets of size at most d = | rel(f)|. However, there are
Θ(nd) such subsets, an amount that one would generally like to reduce. The best known
learning algorithm to date that for all d-juntas is guaranteed to find the relevant attributes
runs in time roughly n0.7·d [24]. In contrast, greedy heuristics require only time polyno-
mial in n with an exponent independent of d. For our characterization of the functions
to which GREEDY is applicable, we introduce the concept of Fourier-accessibility.

Definition 2 (Fourier-accessible). Let f :{0, 1}n → {0, 1} and i ∈ [n]. Variable xi

is accessible (w.r.t. f) if there exists a sequence ∅ = I0 � I1 � . . . � Is ⊆ [n] such
that (1) i ∈ Is, (2) for all j ∈ [s], |Ij \ Ij−1| = 1, and (3) for all j ∈ [s], f̂(Ij) 	= 0.
The set of variables that are accessible with respect to f is denoted by acc(f), whereas
the set of inaccessible variables with respect to f is denoted by inacc(f). The function
f is called Fourier-accessible if and only if every variable that is relevant to f is also
accessible, i.e., acc(f) = rel(f).

300 J. Arpe and R. Reischuk

Equivalently, xi is accessible if and only if there exists I ∈ supp(f̂) with i ∈ I such
that there is a path in FSG(f) from ∅ to I . Since f̂(∅) = Pr[f(x) = 1], ∅ ∈ supp(f̂)
whenever f 	≡ 0. Hence f is Fourier-accessible if and only if the union of all subsets
I ∈ supp(f̂) that belong to the connected component of ∅ in FSG(f) equals rel(f).

Throughout the paper, if f is clear from the context, we call a variable that is rel-
evant to f simply relevant. Similarly, a variable that is accessible with respect to f
is simply called accessible. Simple examples of a Fourier-accessible function f1 and
a non-Fourier-accessible function f2 are given in Table 1. The corresponding Fourier
support graphs are presented in Fig. 1.

In our algorithm analyses, we will consider the expanded attribute space of attributes
xI =

⊕
i∈I xi for I ⊆ [n]. The connection between these expanded attributes and the

functions χI used to define the Fourier transform is given by χI(x) = (−1)xI .

3 The Reduction to Set Cover and the Greedy Algorithm

With a sample S = (xk, yk)k∈[m] ∈ ({0, 1}n × {0, 1})m, we associate the functional
relations graph GS = (V, E) which is defined as follows (see also [3, 7]). Its vertices
correspond to the examples of S, i.e., V = [m]. They are partitioned into the subset of
examples V (0) with yk = 0, and the examples V (1) with yk = 1. GS is the complete
bipartite graph with the vertex set partition [m] = V (0) ∪ V (1). Given S, our primary
goal is to determine a set of variables R ⊆ {x1, . . . , xn} such that there exists some
function g : {0, 1}n → {0, 1} with rel(g) ⊆ R that is consistent with the sample. In
this case, R is said to explain the sample. Note that g may not be identical to the original
function f , nor may the set R contain all relevant variables of f .

In order to find an explaining set of variables, we have to specify, for each edge
{k, �} ∈ E, a relevant variable that differs in xk and x�. Such a variable is said to
explain the edge. Formally, an edge {k, �} ∈ E may be covered by attribute xi if and
only if xk

i 	= x�
i . The set of edges that may be covered by xi is denoted by Ei. A set R

of variables thus explains the sample S if and only if these variables explain all edges.
The previous discussion is formally summarized by the following lemma:

Lemma 3. Let S ∈ ({0, 1}n × {0, 1})m be a sample and R ⊆ {x1, . . . , xn}. Then
R explains S if and only if E = ∪xi∈REi, where E is the edge set of the functional
relations graph GS .

The lemma provides a reduction from the problem of inferring small sets of explaining
variables to the problem of finding a small cover of E by sets from E1, . . . , En. This
allows us to use algorithms for the set cover problem to find explaining variables. The
best known and most generic algorithm for this problem is a greedy algorithm that
successively picks a set that covers the largest amount of elements not covered so far.
This algorithm, which we call GREEDY, is defined as follows.

If there are several sets of maximum cardinality in step 7, GREEDY picks one of
them at random. The notion of success for GREEDY is captured as follows.

Definition 3 (λ-success). Let f :{0, 1}n → {0, 1}, S be a sample for f , and λ ≥ 1.
GREEDY is λ-successful on input S if and only if |GREEDY(S)| ≤ λ · | rel(f)| and

Greedy Learning of Relevant Attributes 301

Algorithm 1.. GREEDY

1: input S = ((xk
1 , . . . , xk

n), yk)k∈[m]

2: E ← {{k, �} | k, � ∈ [m], yk �= y�}
3: R ← ∅
4: while E �= ∅ do
5: for i = 1 to n do
6: Ei ← {{k, �} ∈ E | xk

i �= x�
i}

7: select xi �∈ R with maximum |Ei|
8: E ← E \ Ei

9: R ← R ∪ {xi}
10: output GREEDY(S) = R

GREEDY(S) ⊇ rel(f). GREEDY is successful (or succeeds) if and only if it is 1-
successful, i.e., GREEDY(S) = rel(f), otherwise we say that it fails. GREEDY λ-fails
if and only if it is not λ-successful.

4 Key Lemmata for the Algorithm Analysis

In this section, we provide three key lemmata that will be used in the proofs of our
main results in Sect. 5. For technical reasons, it is useful to consider the edge sets
EI = {{k, �} ∈ E | xk

I 	= x�
I} corresponding to the attributes from the expanded

attribute space. Since xk
I and x�

I differ if and only if the number of i ∈ I with xk
i 	= x�

i

is odd, we obtain that EI = "i∈IEi, where" denotes the symmetric difference.
Suppose that GREEDY has put the variables xi1 , . . . , xis into R after s rounds.

Hence, all edges in E′ = Ei1 ∪ · · · ∪Eis have been covered. The number of remaining
edges that can be covered by variable xi in the next round is |Ei \ E′|. Provided that
xi1 , . . . , xis are all relevant, we would like to estimate the set size |Ei \ E′| in depen-
dence of properties of f . As we do not see any direct way of doing so, we take a detour
via the cardinalities of the sets EI . These turn out to be quite efficiently approximable,
as we will show in Lemma 5. But let us first show how to express the cardinality of
Ei \ E′ in terms of the cardinalities of the sets EI , I ⊆ {i1, . . . , is}:

Lemma 4. Let S ∈ ({0, 1}n × {0, 1})m be a sample and GS = (V, E) be the cor-
responding functional relations graph. Let R � [n] and i∗ ∈ [n] \ R and define
E′ =

⋃
i∈R Ei. Then |Ei∗ \ E′| = 2−|R| ∑

I⊆R(|EI∪{i∗}| − |EI |).

Now we are concerned with the estimation of the cardinalities |EI |, I ⊆ [n]. For a, b ∈
{0, 1}, let αab

I = Pr[xI = a ∧ f(x) = b], where x ∈ {0, 1}n is drawn according to
the uniform distribution. It follows that αa0

I + αa1
I = Pr[xI = a] = 1/2 for I 	= ∅ and

α0b
I + α1b

I = Pr[f(x) = b] for all I ⊆ [n].
A (noise-free) sample of size m consists of the outcomes of m independent draws of

xk ∈ {0, 1}n and the corresponding classifications yk = f(xk) ∈ {0, 1}. In the follow-
ing, all probabilities and expectations are taken with respect to the random experiment
of “drawing a sample of size m” for an arbitrary but fixed m. For all I ⊆ [n] and all
pairs of example indices k, � ∈ [m] with k 	= �, the probability that {k, �} ∈ EI is

302 J. Arpe and R. Reischuk

Pr[xk
I 	= x�

I ∧yk 	= y�] = 2(α00
I α11

I +α10
I α01

I). Since there are 1
2 (m−1)m such pairs,

the expectation of |EI | is αI(m− 1)m with αI = α00
I α11

I + α10
I α01

I .
We prove a Chernoff style mass concentration for the cardinalities |EI |. It shows that

for a sufficiently large sample size, |EI | is likely to be close to αI ·m2.

Lemma 5. There exist c1, c2 > 0 such that for every f : {0, 1}n → {0, 1}, given
a uniformly distributed sample S of size m for f , for all I ⊆ [n] and all ε ∈ [0, 1],
Pr

[∣∣|EI | − αIm
2
∣∣ > εm2

]
< c1e

−c2ε2m.

Before stating the third lemma, let us briefly take a closer look at the cardinalities |Ei|
for irrelevant variables xi. Since for these, the value of xi is independent of the classi-
fication f(x), αab

i = 1
2 Pr[f(x) = b]. Consequently, αi = 1

2 Pr[f(x) = 0] Pr[f(x) =
1] = 1

2 Var[f]. Hence, the expectation of |Ei| is 1
2 Var[f]m(m−1) ≈ 1

2 Var[f]m2. The
following lemma generalizes this result to arbitrary I ⊆ [n], revealing an unexpected
relationship between the cardinalities |EI | and the Fourier coefficients f̂(I). Recall that
for I ⊆ [n] with I 	⊆ rel(f), f̂(I) = 0 by Lemma 2.

Lemma 6. Let I ⊆ [n] with I 	= ∅. Then αI = (Var[f] + f̂(I)2)/2.

5 Analysis of Greedy

In this section, we state and prove our main results. Let us start with the positive result,
the class of functions for which GREEDY is successful.

Theorem 1. There is a polynomial p such that the following holds. Let f : {0, 1}n →
{0, 1} be a Fourier-accessible concept, d = | rel(f)|, and δ > 0. Let S be a uniformly
distributed sample for f of size m ≥ p(2d, log n, log(1/δ)). Then GREEDY(S) =
rel(f) with probability at least 1− δ.

Proof. We only provide a brief sketch here, the full proof can be found in [6, 9].
First we can show that with probability at least 1 − δ/2, GREEDY outputs at least

d variables, provided that m is sufficiently large. Once this has been shown, let the
sequence of variables output by GREEDY start with xi1 , . . . , xid

. By Lemma 5, it hap-
pens with probability at least ρ = 1 − nd · c1 · e−c2ε2m that for all I ⊆ [n] such that
1 ≤ |I| ≤ d, we have

∣∣|EI | − αIm
2
∣∣ ≤ εm2. For this case, we show by induction that

the variables xi1 , . . . , xis are all relevant for s ∈ [d]. This implies that GREEDY halts
exactly after d steps since E can always be covered by the sets Ei with xi ∈ rel(f).
For s = 0, R0 = ∅ ⊆ rel(f). For the induction step, we pick an i∗ ∈ rel(f) \ Rs and
an I∗ ⊆ Rs such that f̂(I∗ ∪ {i∗}) 	= 0 and hence |f̂(I∗ ∪ {i∗})| ≥ 2−d (since the
Fourier coefficients of d-juntas are always multiples of 2−d). Such an i∗ exists since f
is Fourier-accessible. Now we use Lemmata 4, 5, and 6 and obtain that for a suitable
choice of ε in Lemma 5, every xj ∈ irrel(f) satisfies |E(s)

i∗ | > |E(s)
j | . Consequently, in

step s + 1, GREEDY prefers the relevant variable xi∗ to all irrelevant variables. Finally,
we have to choose m such that ρ ≥ 1− δ/2. ��

Example 1. The function f1 : {0, 1}3 → {0, 1} in Table 1 is Fourier-accessible. By
Theorem 1, for any function f : {0, 1}n → {0, 1} that has f1 as its base function,

Greedy Learning of Relevant Attributes 303

GREEDY succeeds with probability at least 1 − δ for sample size polynomial in 2d,
log n, and log(1/δ).

If a function is not Fourier-accessible, then one of its relevant variables is not accessi-
ble. The proof of Theorem 1 shows that GREEDY first outputs all accessible variables
with high probability. Once all of these have been output, the intuition is that the non-
accessibility of the other relevant variables makes them statistically indistinguishable
from the irrelevant variables. In particular, each inaccessible but relevant variable will
be selected by GREEDY with the same probability as each irrelevant variable. Assum-
ing that the number of irrelevant variables is much larger than the number of relevant
ones, it becomes very likely that GREEDY picks an irrelevant variable and thus fails.
The following result describes the class of functions for which GREEDY fails.

Theorem 2. Let f : {0, 1}n → {0, 1} be a function that is not Fourier-accessible and
λ ≥ 1. Given a sample S for f of arbitrary size, GREEDY λ-fails on input S with
probability at least 1− λd2

n−λd , where d = | rel(f)|.

Corollary 1. Let pλ(n, d) denote the probability that for any given function f with
| rel(f)| = d that is not Fourier-accessible and for any uniformly distributed sample S
for f , GREEDY λ-fails. Then for fixed λ ≥ 1,

(a) for fixed d, limn→∞ pλ(n, d) = 1 and
(b) for d → ∞ and n = n(d) ∈ ω(d2), limd→∞ pλ(n, d) = 1.

Example 2. The function f2 : {0, 1}3 → {0, 1} in Table 1 is not Fourier-accessible.
By Theorem 2, for any function f : {0, 1}n → {0, 1} that has f2 as its base function,
GREEDY fails with probability at least 1− 9

n−3 .

Note that Theorem 2 not only says that GREEDY (with high probability) fails for func-
tions that are not Fourier-accessible, but that GREEDY even fails to find all relevant
variables of the target function in λ · | rel(f)| rounds for any λ ≥ 1. In addition, note
that the claim in Theorem 2 is independent of the sample size.

In the literature, it has often been emphasized that GREEDY has a “logarithmic ap-
proximation guarantee” (see [1, 3, 13, 18]), i.e., given a sample S for f of size m,
GREEDY finds a set of at most (2 ln m +1)·| rel(f)| variables that explain S. Theorem 2

shows that if f is not Fourier-accessible, then with probability at least (2 ln m+1)d2

n−(2 ln m+1)d ,
these variables do not contain all relevant variables (where d = | rel(f)|). Thus, GREE-
DY misses some relevant variable with high probability, provided that m ∈ 2o(n). Hence
the positive approximability properties of the greedy strategy for the SET COVER prob-
lem do not translate to the learning situation. The fact that GREEDY outputs at most
(2 ln m + 1) · | rel(f)| variables only guarantees that any sample of size m can be
explained by this amount of more or less arbitrary variables.

6 Robustness Against Noise

The technical analysis of GREEDY and the Fourier spectrum for d-juntas in the pre-
vious section can be extended to the situtation where the input data contain errors.

304 J. Arpe and R. Reischuk

We can show that GREEDY is extremely robust against noise, which will be modelled
as follows. Instead of receiving suitable examples (x, f(x)), the learning algorithm
now obtains noisy examples of the form (x ⊕ ξ, f(x) ⊕ ζ), where in the noise vec-
tor ξ = (ξ1, . . . , ξn) ∈ {0, 1}n each ξi is set to 1 independently with probability pi,
and the classification noise bit ζ ∈ {0, 1} is set to 1 with probability η. To avoid that
some attribute or the classification is turned into a purely random bit, the noise has to be
bounded away from 1/2: we require that there exist γa, γb > 0 such that pi ≤ (1−γa)/2
for all i ∈ [n] and η ≤ (1 − γb)/2. Let P denote the product distribution on {0, 1}n
induced by the probabilities p1, . . . , pn. A sample S for a function f that is corrupted
by such a noise process is called a (P, η)-noisy sample.

We can show that given a (P, η)-noisy sample S for a Fourier-accessible function f of
size polynomial in 2d, log(n/δ), γ−d

a , and γb, GREEDY still outputs all relevant variables
of f . It may be the case that the sets Ei that correspond to the relevant variables do not
suffice to explain all edges in E due to noise. Even worse, it may happen that some
edges cannot be explained at all: the sample may contain contradictive examples. For
this reason, we have to employ a variant of GREEDY that gets the number d of relevant
attributes as a parameter and outputs a set of d variables that is supposed to contain the
relevant ones. In other words, the while-loop in line 4 of Algorithm 1 is replaced with
the statement “while |R| ≤ d do”. We denote this algorithm by GREEDYd.

We adjust the definition of the probabilities αab
I and define, for a, b ∈ {0, 1}, βab

I =
Pr[xI ⊕ ξI = a ∧ f(x) ⊕ ζ = b], where Pr[ξi = 1] = pi, Pr[ζ = 1] = η, and
ξI =

⊕
i∈I ξi. While in the noise-free scenario, the expectation of |EI | is αI(m−1)m,

the expectation of |EI | is now equal to βI(m− 1)m with βI = β00
I β11

I + β10
I β01

I . The
next lemma is completely analogous to Lemma 5:

Lemma 7. There exist c1, c2 > 0 such that for every f : {0, 1}n → {0, 1}, given
a uniformly distributed (P, η)-noisy sample S of size m for f , for all I ⊆ [n] and
ε ∈ [0, 1], Pr

[∣∣|EI | − βIm
2
∣∣ > εm2

]
< c1e

−c2ε2m.

Proving an analog of Lemma 6 requires some more computation:

Lemma 8. Let f : {0, 1}n → {0, 1}, I ⊆ [n] with I 	= ∅, and λI =
∏

i∈I(1 − 2pi).

Then βI = 1
2

(
(1− 2η)2 ·Var[f] + η · (1− η) + (1 − 2η)2 · λ2

I · f̂(I)2
)

Theorem 1 generalizes to the scenario of noisy data as follows:

Theorem 3. There is a polynomial p such that the following holds. Let f : {0, 1}n →
{0, 1} be a Fourier-accessible function, d = | rel(f)|, and δ > 0. Let S be a uniformly
distributed (P, η)-noisy sample S for f of size m ≥ p

(
2d, log n, log(1/δ), γd

a , γb

)
.

Then GREEDYd(S) = rel(f) with probability at least 1− δ.

So far, we cannot exclude that there may be (fixed) noise distributions for which strictly
more functions may be learned than can be learned without noise (compare to the sit-
uation of noisy circuits as discussed in [25]). However, we can show that Theorem 2
and Corollary 1 also hold for uniformly distributed (P, η)-noisy samples. The proofs
are similar to those for the noise-free case.

The high fault tolerance of GREEDY can be further generalized to a situation where
we do not have to assume statistical independence for the corruption of individual at-
tributes. Instead of flipping each attribute value independently with probability pi, let

Greedy Learning of Relevant Attributes 305

the noise vectors ξ be drawn according to an arbitrary distribution P : {0, 1}n → [0, 1]
that satisfies Pr[ξI = 1] ≤ 1

2 (1 − γ
|I|
a) for all I ⊆ [n] with 1 ≤ |I| ≤ d. All results

of this section are still valid in this setting (in Lemma 8, the definition of λI has to be
replaced with 1 − 2 Pr[ξI = 1]). In fact, product distributions with pi ≤ 1

2 (1 − γa)
are a special case of this scenario. Further details of this most general result have to be
omitted due to space contraints, but can be found in [6].

7 Concluding Remarks

The first issue left for future research is the investigation of the performance of the
greedy algorithm in variations of the learning scenario considered in this paper: at-
tributes and classifications may take more than two values, attributes may be non-
uniformly distributed, etc.

For non-uniform attribute distributions—although a generic notion of Fourier coef-
ficients can be given [10, 19]—Lemma 5 with a similar definition of αI does not hold
any more. It is easy to find examples such that (a) there are xi, xj ∈ irrel(f) such that
the expected sizes of Ei and Ej differ or (b) there are xi ∈ rel(f) and xj ∈ irrel(f)
such that the expected sizes of Ei and Ej are equal, although f̂(i) = f̂(j) = 0. Thus,
a completely different analysis is needed for such a setting. Again, we refer to [6, 9] for
more details.

The second issue is to stick to the learning scenario and investigate variants of the
greedy heuristic. If an edge is labeled by exactly one variable, then this variable has to
be selected in order to explain the sample. For this reason, Almuallim and Dietterich [4]
proposed to assign the weight

∑
e∈Ei

1
c(e)−1 to xi (where c(e) is equal to the number of

variables that can cover e) and then find a set cover by selecting variables of maximum
weight. Since for n & | rel(f)|, each edge is labeled by roughly n/2 irrelevant vari-
ables, such a weighting is unlikely to help much during the first rounds of the algorithm.
Thus, it seems unlikely that there are functions for which this heuristic outperforms the
algorithm analyzed in this paper.

References

[1] Akutsu, T., Bao, F.: Approximating Minimum Keys and Optimal Substructure Screens. In:
Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 290–299. Springer,
Heidelberg (1996)

[2] Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for Identifying Boolean Networks and Re-
lated Biological Networks Based on Matrix Multiplication and Fingerprint Function. J.
Comput. Biology 7(3-4), 331–343 (2000)

[3] Akutsu, T., Miyano, S., Kuhara, S., Simple, A.: A Simple Greedy Algorithm for Finding
Functional Relations: Efficient Implementation and Average Case Analysis. Theoret. Com-
put. Sci. 292(2), 481–495 (2003)

[4] Almuallim, H., Dietterich, T.G.: Learning Boolean Concepts in the Presence of Many Ir-
relevant Features. Artificial Intelligence 69(1-2), 279–305 (1994)

[5] Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Intersci. Ser. Discrete Math. Optim.
John Wiley and Sons, Chichester (1992)

306 J. Arpe and R. Reischuk

[6] Arpe, J.: Learning Concepts with Few Unknown Relevant Attributes from Noisy Data. PhD
thesis, Institut für Theoretische Informatik, Universität zu Lübeck (2006)

[7] Arpe, J., Reischuk, R.: Robust Inference of Relevant Attributes. In: Gavaldá, R., Jantke,
K.P., Takimoto, E. (eds.) ALT 2003. LNCS (LNAI), vol. 2842, pp. 99–113. Springer, Hei-
delberg (2003)

[8] Arpe, J., Reischuk, R.: Learning Juntas in the Presence of Noise. In: Cai, J.-Y., Cooper,
S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 387–398. Springer, Heidelberg, In-
vited to appear in special issue of TAMC 2006 in Theoret. Comput. Sci., Series A (2006)

[9] Arpe, J., Reischuk, R.: When Does Greedy Learning of Relevant Attributes Succeed?—
A Fourier-based Characterization. Technical Report ECCC TR06-065, Electronic Collo-
quium on Computational Complexity (2006)

[10] Bahadur, R.R.: A Representation of the Joint Distribution of Responses to n Dichotomous
Items. In: Solomon, H. (ed.) Studies in Item Analysis and Prediction, pp. 158–168. Stanford
University Press, Stanford (1961)

[11] Bernasconi, A.: Mathematical Techniques for the Analysis of Boolean Functions. PhD the-
sis, Università degli Studi di Pisa, Dipartimento di Ricerca in Informatica (1998)

[12] Blum, A., Furst, M., Jackson, J.C., Kearns, M., Mansour, Y., Rudich, S.: Weakly Learning
DNF and Characterizing Statistical Query Learning Using Fourier Analysis. In: Proc. 26th
STOC 1994, pp. 253–262 (1994)

[13] Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine Learning.
Artificial Intelligence 97(1-2), 245–271 (1997)

[14] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s Razor. Inform. Pro-
cess. Lett. 24(6), 377–380 (1987)

[15] Boros, E., Horiyama, T., Ibaraki, T., Makino, K., Yagiura, M.: Finding Essential Attributes
from Binary Data. Ann. Math. Artif. Intell. 39(3), 223–257 (2003)

[16] Chvátal, V.: A Greedy Heuristic for the Set Covering Problem. Math. Oper. Res. 4(3), 233–
235 (1979)

[17] Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM 45(4), 634–652 (1998)
[18] Fukagawa, D., Akutsu, T.: Performance Analysis of a Greedy Algorithm for Inferring

Boolean Functions. Inform. Process. Lett. 93(1), 7–12 (2005)
[19] Furst, M.L., Jackson, J.C., Smith, S.W.: Improved Learning of AC0 Functions. In: Proc.

4th COLT 1991, pp. 317–325
[20] Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. J. Comput. System

Sci. 9(3), 256–278 (1974)
[21] Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Reading (2005)
[22] Linial, N., Mansour, Y., Nisan, N.: Constant Depth Circuits, Fourier Transform, and Learn-

ability. J. ACM 40(3), 607–620 (1993)
[23] Mansour, Y.: Learning Boolean Functions via the Fourier Transform. In: Roychodhury, V.,

Siu, K.-Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning,
pp. 391–424. Kluwer Academic Publishers, Dordrecht (1994)

[24] Mossel, E., O’Donnell, R.W., Servedio, R.A.: Learning functions of k relevant variables. J.
Comput. System Sci. 69(3), 421–434 (2004)

[25] Reischuk, R.: Can Large Fanin Circuits Perform Reliable Computations in the Presence of
Noise? Theoretical Comput. Sci. 240(4), 319–335 (2000)

[26] Shamir, R., Dietrich, B.: Characterization and Algorithms for Greedily Solvable Trans-
portation Problems. In: Proc. 1st SODA 1990, pp. 358–366

[27] Slavı́k, P.: A Tight Analysis of the Greedy Algorithm for Set Cover. In: Proc. 28th STOC
1996, pp. 435–441.

The Informational Content of Canonical Disjoint

NP-Pairs

Christian Glaßer1, Alan L. Selman2,�, and Liyu Zhang2

1 Lehrstuhl für Informatik IV, Universität Würzburg, Am Hubland,
97074 Würzburg, Germany

glasser@informatik.uni-wuerzburg.de
2 Department of Computer Science and Engineering, University at Buffalo,

Buffalo, NY 14260
{selman,lzhang7}@cse.buffalo.edu

Abstract. We investigate the connection between propositional proof
systems and their canonical pairs. It is known that simulations between
proof systems translate to reductions between their canonical pairs. We
focus on the opposite direction and study the following questions.

Q1: Where does the implication [can(f) ≤pp
m can(g) ⇒ f ≤s g] hold,

and where does it fail?
Q2: Where can we find proof systems of different strengths, but equiv-

alent canonical pairs?
Q3: What do (non-)equivalent canonical pairs tell about the correspond-

ing proof systems?
Q4: Is every NP-pair (A,B), where A is NP-complete, strongly many-

one equivalent to the canonical pair of some proof system?

In short, we show that both parts of Q1 and Q2 can be answered with ‘ev-
erywhere’, which generalize previous results by Pudlák and Beyersdorff.
Regarding Q3, inequivalent canonical pairs tell that the proof systems
are not “very similar”, while equivalent, P-inseparable canonical pairs
tell that they are not “very different”. We can relate Q4 to the open
problem in structural complexity that asks whether unions of disjoint
NP-complete sets are NP-complete. This demonstrates a new connec-
tion between proof systems, disjoint NP-pairs, and unions of disjoint
NP-complete sets.

1 Introduction

One reason it is important to study canonical pairs of propositional proof sys-
tems (proof systems) is their role in connecting proof systems with disjoint NP-
pairs (NP-pairs) [7]. Razborov [13] first defined the canonical pair, can(f) =
(SAT∗, REF(f)), for every proof system f . He showed that if there exists an
optimal proof system f , then its canonical pair is a complete pair for DisjNP.
In a recent paper [8], we show that every NP-pair is polynomial-time many-one
equivalent to the canonical pair of some proof system. So the degree structure
of the class of NP-pairs and of all canonical pairs is identical.
� Research partially supported by NSF grant CCR-0307077.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 307–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 C. Glaßer, A.L. Selman and L. Zhang

Beyersdorff [1] studies proof systems and their canonical pairs from a proof
theoretic point of view. He defines the subclasses DNPP(P) of NP-pairs that are
representable in some proof system P and shows that the canonical pairs of P
are complete for DNPP(P). This interesting result tells us that for certain mean-
ingful subclasses of NP-pairs, complete pairs do exist. Beyersdorff also compares
the simulation order of proof systems with the hardness of their canonical pairs,
which we will address in this paper too.

Encouraged by these exciting results on proof systems and their canoni-
cal pairs, we continue this line of research and concentrate on the following
correspondence between proof systems and NP-pairs. For proof systems f
and g,

f ≤s g ⇒ can(f) ≤pp
m can(g). (1)

Pudlák [12] and Beyersdorff [1] give counter examples for the converse. This
raises the following questions which we investigate in this paper.

Q1: Where does the following implication hold, and where does it fail?

can(f) ≤pp
m can(g) ⇒ f ≤s g (2)

Q2: Where can we find proof systems of different strengths whose canonical
pairs are equivalent?

Q3: What do (non-)equivalent canonical pairs tell about the corresponding proof
systems?

Moreover, it is known that every NP-pair is many-one equivalent to the canonical
pair of some proof system [8]. Here we investigate the same question for strongly
many-one reductions. It is easy to see that this question must be restricted to
pairs whose first component is NP-complete.

Q4: Is every NP-pair (A, B), where A is NP-complete, strongly many-one equiv-
alent to the canonical pair of some proof system?

Theorem 3 addresses the first part of Q1: The theorem asserts that, for any
two disjoint NP-pairs (A, B) and (C, D), there are proof systems f and g such
that can(f)≡pp

m (A, B), can(g)≡pp
m (C, D), and implication (2) holds nontrivially.

Corollary 2 addresses the second part of Q1: The following assertion is equiv-
alent to the reasonable assumption that optimal proof systems do not exist. For
every proof system f there is a proof system g such that f and g is a counter
example to implication (2). More strongly, there is an infinite chain of proof
systems g0, g1, · · · , such that f <s g0 <s g1 <s · · · , but the canonical pairs of
all of these proof systems are many-one equivalent. In this way, we address Q2.

In section 4 we answer Q3 in different ways. Equivalent canonical pairs do
not tell much about the mere simulation order of two proof systems (Theo-
rem 5). However, inequivalent canonical pairs tell us that the corresponding
proof systems do not simulate each other except on a P-subset of TAUT (Proposi-
tion 3). Hence these proof systems are not “very similar”. In contrast, equivalent,

The Informational Content of Canonical Disjoint NP-Pairs 309

P-inseparable canonical pairs tell us that none of the corresponding proof sys-
tems is almost everywhere super-polynomially stronger than the other one (The-
orem 6). So these proof systems are not “very different”.

In section 5 we can relate Q4 to the open problem in structural complexity
[3,6] that asks whether unions of disjoint NP-complete sets are NP-complete.
We show under the hypothesis NP 	= coNP that if Q4 has an affirmative answer,
then unions of disjoint NP-complete sets are NP-complete. This demonstrates
a new connection between proof systems, NP-pairs, and problems in structural
complexity. Finally, in section 6 we obtain connections between proof systems
and the Turing-degrees of their canonical pairs.

2 Preliminaries

A disjoint NP-pair is a pair (A, B) of nonempty sets A and B such that A, B ∈
NP and A ∩B = ∅. Let DisjNP denote the class of all disjoint NP-pairs.

Given a disjoint NP-pair (A, B), a separator is a set S such that A ⊆ S
and B ⊆ S; we say that S separates (A, B). Let Sep(A, B) denote the set of
all separators of (A, B). For disjoint NP-pairs (A, B), the fundamental question
is whether Sep(A, B) contains a set belonging to P. In that case the pair is
P-separable; otherwise, the pair is P-inseparable. There is evidence [4,5] that
P-inseparable disjoint NP-pairs exist, and this will be our main hypothesis in
the paper. The following proposition summarizes known results.

Proposition 1

1. P 	= NP ∩ coNP implies that DisjNP contains a P-inseparable pair.
2. P 	= UP implies that DisjNP contains a P-inseparable pair. [4].
3. If DisjNP contains P-inseparable pairs, then it contains a P-inseparable pair

whose components are NP-complete. [4].

While it is probably the case that DisjNP contains P-inseparable pairs, there
is an oracle relative to which P 	= NP and P-inseparable pairs in DisjNP do
not exist [9]. So P 	= NP probably is not a sufficiently strong hypothesis to
show the existence of P-inseparable pairs in DisjNP. On the other hand, if there
exist secure public-key cryptosystems (for example, if RSA cannot be cracked in
polynomial-time), then there exist P-inseparable disjoint NP-pairs [4].

All reducibilities in the paper are polynomial time computable. We review the
notions of reducibilities between disjoint pairs. The original notions are nonuni-
form [4], here we state the equivalent uniform versions [4,5].

Definition 1. Let (A, B) and (C, D) be disjoint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D),(A, B)≤pp
m (C, D),

if there exists a polynomial-time computable function f such that f(A) ⊆ C
and f(B) ⊆ D.

2. (A, B) is Turing reducible in polynomial-time to (C, D), (A, B)≤pp
T (C, D), if

there exists a polynomial-time oracle Turing machine M such that for every
separator S of (C, D), L(M, S) is a separator of (A, B).

310 C. Glaßer, A.L. Selman and L. Zhang

Köbler, Meßner, and Torán [10] define the following stronger version of many-
one reductions between disjoint NP-pairs:

Definition 2. Let (A, B) and (C, D) be disjoint pairs. (A, B) is strongly many-
one reducible in polynomial-time to (C, D), (A, B)≤pp

sm(C, D), if there exists a
polynomial-time computable function f such that f(A) ⊆ C, f(B) ⊆ D, and
f(A ∪B) ⊆ C ∪D.

Definition 3. A disjoint pair (A, B) is ≤pp
m -hard for NP if for every separator

L of (A, B), SAT ≤p
m L.

Definition 4. For any disjoint pair (A, B), the polynomial-time Turing-degree
(Turing-degree for short) of (A, B) is defined as

d(A, B) = {(C, D) | (C, D) is a disjoint pair and (A, B)≡pp
T (C, D)}.

In an earlier paper [8] we investigated the restriction of Turing-degrees of disjoint
pairs on DisjNP and showed that every countable distributive lattice can be em-
bedded into the interval between any two comparable but inequivalent restricted
Turing-degrees of disjoint NP-pairs. It follows trivially that every countable dis-
tributive lattice can be embedded into the interval between any two comparable
but inequivalent Turing-degrees of disjoint pairs if both degrees contain some
disjoint NP-pair.

Let SAT denote the set of satisfiable formulas and let UNSAT df=SAT. More-
over, let TAUT denote the set of tautologies. Cook and Reckhow [2] defined a
propositional proof system (proof system for short) to be a function f : Σ∗ →
TAUT such that f is onto and f is polynomial-time computable. For every tau-
tology α, if f(w) = α, then we say w is an f -proof of α.

The canonical NP-pair (canonical pair for short) of f [13,12] is the disjoint
NP-pair (SAT∗, REF(f)), denoted by can(f), where

SAT∗ = {(x, 0n)
∣∣ x ∈ SAT} and

REF(f) = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Conversely, for every disjoint NP-pair (A, B), we can define a proof sys-
tem fA,B as follows. Let 〈·, ·〉 be a polynomial-time computable, polynomial-
time invertible pairing function such that |〈v, w〉| = 2|vw|. Choose a g that is
polynomial-time computable and polynomial-time invertible such that A≤p

mSAT
via g. Let N be an NP-machine that accepts B in time p.

fA,B(z) df=

⎧
⎨

⎩

¬g(x) : if z = 〈x, w〉, |w| = p(|x|), N(x) accepts along path w

x : if z = 〈x, w〉, |w| 	= p(|x|), |z| ≥ 2|x|, x ∈ TAUT
true : otherwise

Clearly, fA,B is a propositional proof system for every disjoint NP-pair (A, B).

Theorem 1 ([8]). For every (A, B) ∈ DisjNP, (A, B) ≡pp
m can(fA,B).

Let f and f ′ be two propositional proof systems. We say that f simulates f ′

(f ′ ≤s f) if there is a polynomial p and a function h : Σ∗ → Σ∗ such that
for every w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). Furthermore, if the

The Informational Content of Canonical Disjoint NP-Pairs 311

function h can be computed in polynomial-time, f p-simulates f ′ (f ′ ≤p f). A
proof system is (p-)optimal if it (p-)simulates every other proof system.

In Section 4, we will need the following generalization of the concept “simula-
tion”. We say that f simulates f ′ on a subset S of TAUT, if there is a polynomial
p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f ′(w) ∈ S implies
that f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). Moreover, f simulates f ′ except on a
subset S of TAUT, if f simulates f ′ on TAUT− S. Obviously, a proof system f
simulates a proof system f ′ if and only if f simulates f ′ on TAUT.

We use f <s g to denote that f ≤s g and g 	≤s f . We use (A, B)<pp
m (C, D) to

denote that (A, B)≤pp
m (C, D) and (C, D) 	≤pp

m (A, B).

3 Proof Systems and Many-One Degrees of Canonical
Pairs

We recall the fundamental relation between proof systems and canonical pairs.

Proposition 2 ([12,8]). Let f and g be proof systems.

f ≤s g ⇒ can(f) ≤pp
m can(g)

In this section, we investigate the converse of the above proposition. We show
results that address both parts of Q1 and Q2.

We start our investigations with the observation that refuting an implication
that is slightly weaker than (2) is equivalent to proving the existence of P-
inseparable disjoint NP-pairs. This is done by a purely complexity theoretic
proof that does not rely on specific properties of concrete proof systems.

Theorem 2. The following statements are equivalent.

1. P-inseparable disjoint NP-pairs exist.
2. There exist proof systems f and g such that can(f)<pp

m can(g) 	⇒ f ≤s g.

Proof. If P-inseparable disjoint NP-pairs do not exist, then all canonical pairs
of proof systems are P-separable and hence are equivalent. This shows 2 ⇒ 1.

For the other direction, assume that P-inseparable disjoint NP-pairs exist and
define the following set of propositional formulas.

EASY df={x
∣∣ x is a propositional formula such that x = (b ∨ b ∨ y) for a
suitable variable b and a suitable formula y}

EASY is a subset of TAUT. Also, EASY ∈ P. Let true df=(b ∨ b ∨ b) and define a
proof system as follows.

f(z) df=

⎧
⎨

⎩

x : if z = 〈x, ε〉 and x ∈ EASY
x : if z = 〈x, y〉 and |y| > 2|x| and x ∈ TAUT

true : otherwise.

Note that f is a proof system. Observe that the elements in EASY are the only
tautologies that have polynomial-size f -proofs. All other tautologies do not have

312 C. Glaßer, A.L. Selman and L. Zhang

polynomial-size f -proofs. This makes can(f) P-separable which is witnessed by
the following separator:

S = {(x, 0n)
∣∣ [n ≤ 2|x| and ¬x /∈ EASY] or [n > 2|x| and x ∈ SAT]}

By assumption there exists a P-inseparable disjoint NP-pair (A, B). Hence, by
Theorem 1 there exists a proof system g′ such that can(g′) and (A, B) are many-
one equivalent. Now define another proof system.

g(z) df=

⎧
⎪⎪⎨

⎪⎪⎩

g′(w) : if z = 0w and g′(w) /∈ EASY
true : if z = 0w and g′(w) ∈ EASY

x : if z = 1w, w = 〈x, y〉, |y| = 2|x|, and x ∈ EASY
true : otherwise.

Note that g is a proof system. Observe that formulas in EASY − {true} do not
have polynomial-size g-proofs. It follows that g does not simulate f , since f
provides polynomial-size proofs for elements in EASY.

Now we verify that can(g′)≤pp
m can(g) via the reduction that maps (x, 0n)

to (x, 0n+1). If (x, 0n) ∈ SAT∗, then (x, 0n+1) ∈ SAT∗ and we are done. Let
(x, 0n) ∈ REF(g′). So there exists some w such that |w| ≤ n and g′(w) = (¬x).
Note that (¬x) /∈ EASY, since formulas in EASY do not start with a negation.
From the definition of g it follows that g(0w) = g′(w) = (¬x). So (x, 0n+1) ∈
REF(g).

So can(g′)≤pp
m can(g) and therefore, (A, B)≤pp

m can(g). Hence can(g) is P-
inseparable. This shows can(f)<pp

m can(g). �
The examples given by Pudlák [12] and Beyersdorff [1] show that the simulation
order of proof systems is not necessarily reflected by the reducibility of their
canonical pairs. However, as the next theorem shows, the canonical pairs of proof
systems that satisfy implication (2) in a non-trivial way, vary over all degrees of
disjoint NP-pairs. More precisely, for each pair of many-one degrees of disjoint
NP-pairs, there do exist proof systems whose canonical pairs lie in the respective
degrees such that their simulation order is consistent with the reducibility of the
canonical pairs. This answers the first part of Q1 in the sense that implication
(2) can be satisfied non-trivially for arbitrary canonical pairs.

Theorem 3. Let (A, B), (C, D) ∈ DisjNP such that (A, B) ≤pp
m (C, D). Then

there exist proof systems f1 and f2 such that f1 ≤p f2, can(f1) ≡pp
m (A, B), and

can(f2) ≡pp
m (C, D).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible
pairing function such that |〈v, w〉| = 2|vw|. Choose g1 that is polynomial-time
computable and polynomial-time invertible such that A ≤p

m SAT via g1. Let N1

be an NP-machine that accepts B in time p1. Define the following function f1.

f1(z) df=

⎧
⎨

⎩

¬g1(x) : if z = 〈x, w〉, |w| = p1(|x|), N1(x) accepts along path w

x : if z = 〈x, w〉, |w| 	= p1(|x|), |z| ≥ 2|x|, x ∈ TAUT
true : otherwise

The Informational Content of Canonical Disjoint NP-Pairs 313

The proof of Theorem 1 shows that f1 is a proof system and can(f1) ≡pp
m (A, B).

Now choose g2 that is polynomial-time computable and polynomial-time invert-
ible such that C ≤p

m SAT via g2. Let N2 be an NP-machine that accepts D in
time p2. Without loss of generality, we assume for every n ≥ 0, p1(n) 	= p2(n)
and range(g1) ∩ range(g2) = ∅. Define the following function f2.

f2(z) df=

⎧
⎪⎪⎨

⎪⎪⎩

¬g1(x) : if z = 〈x, w〉, |w| = p1(|x|), N1(x) accepts along path w
¬g2(x) : if z = 〈x, w〉, |w| = p2(|x|), N2(x) accepts along path w

x : if z = 〈x, w〉, |w| 	= pi(|x|) for i=1, 2, |z|≥2|x|, x∈TAUT
true : otherwise

Clearly f2 is also a proof system, since for every tautology y, f2(〈y, 02|y|〉) = y.
Also, we notice that each f1-proof z is also an f2-proof for the same tautology
except for z ∈ {〈x, w〉 | |w| = p2(|x|) ∧ |〈x, w〉| ≥ 2|x| ∧ x ∈ TAUT}, which is a
finite set. So, f1 ≤p f2.

It remains to show can(f2) ≡pp
m (C, D). We only show can(f2) ≤pp

m (C, D).
The proof for (C, D) ≤pp

m can(f2) is the same as that for (A, B) ≤pp
m can(f1),

for which we refer the reader to [8].
Let g many-one reduce (A, B) to (C, D). Choose elements c ∈ C and d ∈ D.

Define a reduction function h as follows.

1 input (y, 0n)
2 if n ≥ 2|y|+1 then
3 if y ∈ SAT then output c else output d
4 endif
5 if g−1

1 (y) exists then output g(g−1
1 (y))

6 if g−1
2 (y) exists then output g−1

2 (y)
7 output c

Line 3 needs quadratic time in n. So h is polynomial-time computable.
Assume (y, 0n) ∈ SAT∗. Then y ∈ SAT. If we reach line 3, then we output

c ∈ C. Otherwise we reach line 5. If g−1
1 (y) exists (hence, g−1

2 (y) does not
exist, since the ranges of g1 and g2 are disjoint), then g−1

1 (y) ∈ A and so,
g(g−1

1 (y)) ∈ C. Otherwise we reach line 6. If g−1
2 (y) exists, then g−1

2 (y) ∈ C as
y ∈ SAT. So in all cases (output in line 5, 6 or 7), we output an element in C.

Assume (y, 0n) ∈ REF(f2) (in particular y ∈ UNSAT). So there exists z such
that |z| ≤ n and f(z) = ¬y. If we reach line 3, then we output d ∈ D. Otherwise
we reach line 5. So far we have ¬y 	= true and |z| ≤ n < 2|y|+1. Therefore,
f(z) = ¬y must be due to line 1 or line 2 in the definition of f2. It follows
that either g−1

1 (y) exists or g−1
2 (y) exists (but not both). If g−1

1 (y) exists, then
g−1
1 (y) ∈ B (by line 1 of f2’s definition) and we output g(g−1

1 (y)), which belongs
to D. Otherwise, g−1

2 (y) exists and we output g−1
2 (y), which belongs to D as

well (by line 2 of f2’s definition). This shows can(f2) ≤pp
m (C, D) via h. �

The proof system g constructed in Theorem 2 might seem “pathological”, since
tautologies from an easy subset of TAUT have proofs of super-polynomial length.
One might wonder whether Theorem 2 can be proved without such pathology.
The corresponding proof systems are formalized as follows.

314 C. Glaßer, A.L. Selman and L. Zhang

Definition 5. A proof system f is well-behaved if for every polynomial-time
decidable S ⊆ TAUT there exists a polynomial p such that for all x ∈ S,

min{|w| | f(w) = x} ≤ p(|x|).

However, well-behaved proof systems probably do not exist. Meßner [11] shows
that the existence of well-behaved proof systems implies the existence of optimal
proof systems which we believe not to exist. So it is probably the case that no
proof system is well-behaved and therefore, every proof system has long proofs
on some polynomial-time decidable subset of TAUT. This shows that the proof
system constructed in Theorem 2 is not uncommon. Even more, we can apply
the arguments used in Theorem 2 to every non-well-behaved proof system.

Theorem 4. Let f be a proof system that is not well-behaved. For every (A, B) ∈
DisjNP, there exists a proof system g such that can(g)≡pp

m (A, B) and g 	≤s f .

With help of Theorem 4 we can now give an answer to Q2: All non-well-behaved
proof systems provide examples for proof systems that have equivalent canonical
pairs, but that differ with respect to their strengths. Moreover, we can answer the
second part of Q1 in the sense that all non-well-behaved proof systems provide
counter examples for implication (2).

Corollary 1. For every proof system f that is not well-behaved, there exists a
proof system g such that can(f) ≡pp

m can(g) and f <s g. In particular,

can(g) ≤pp
m can(f) 	⇒ g ≤s f.

If we assume that optimal proof systems do not exist, then Corollary 1 provides
even stronger answers: With regard to Q1, all proof systems provide counter
examples for the implication (2). With regard to Q2, all proof systems provide
examples that have equivalent canonical pairs, but that differ with respect to
their strengths. Even more, each proof system is the origin of an infinite, strictly
ascending chain of proof systems whose canonical pairs are equivalent.

Corollary 2. The following statements are equivalent.

1. Optimal proof systems do not exist.
2. For every proof system f there exists a proof system g

such that can(f) ≡pp
m can(g) and f <s g.

3. For every proof system f there exists an infinite chain of proof systems
g0, g1, . . . such that f <s g0 <s g1 <s · · · and can(f)≡pp

m can(g0)≡pp
m can(g1)· · · .

4. For every proof system f there exists a proof system g such that

can(g) ≤pp
m can(f) 	⇒ g ≤s f.

4 Proof Systems with Equivalent Canonical Pairs

We have seen in the last section that the degree structure of canonical pairs does
not necessarily reflect the simulation order of the corresponding proof systems.
In this section we study the related question Q3.

We first show that equivalent canonical pairs do not tell much about the
simulation order of two proof systems.

The Informational Content of Canonical Disjoint NP-Pairs 315

Theorem 5. For every disjoint NP-pair (A, B), there exist proof systems f , g,
and h such that

– can(f) ≡pp
m can(g) ≡pp

m can(h) ≡pp
m (A, B),

– f <s g and f <s h,
– g 	≤s h and h 	≤s g.

However, from another point of view, the proof systems defined in the proof of
Theorem 5 are actually quite “similar” to each other. They differ only super-
polynomially on an easy subset of TAUT. More precisely, the construction of
proof systems with equivalent canonical pairs but arbitrary simulation order
hinges on the following fact.

Proposition 3. If proof systems f and g simulate each other except on a
P-subset of TAUT, then can(f)≡pp

m can(g).

So here the question is whether we can construct proof systems f and g with
equivalent canonical pairs such that the proof systems are “very different”. For
example, do there exist proof systems f and g such that can(f)≡pp

m can(g) and f
is almost everywhere super-polynomially stronger than g? The following theorem
shows that such an extreme difference is only possible for proof systems whose
canonical pairs are P-separable.

Theorem 6. Let f and g be proof systems such that can(g)≤pp
m can(f). If for

almost all tautologies x and for every polynomial p, the length of the shortest
f -proof of x is not bounded by p in the length of the shortest g-proof of x, then
can(f) and can(g) are P-separable.

Let us summarize what we have seen: Proposition 3 says that if two proof systems
are “very similar”, then they have equivalent canonical pairs. Theorem 6 tells us
that if two proof systems are “very different” from each other, then either they
have P-separable canonical pairs or their canonical pairs are inequivalent.

We continue to follow the question to what extent proof systems can dif-
fer, while still having equivalent canonical pairs. Under the hypothesis that P-
inseparable disjoint NP-pairs exist, we show that Proposition 3 does not hold
when the P-subset is replaced with an NP-subset (Corollary 3). So altering f -
proofs on a P-subset of TAUT does not change the many-one degree of can(f),
but altering f -proofs on an NP-subset of TAUT can do so.

Theorem 7. Let f be a proof system such that can(f) is not ≤pp
m -complete for

DisjNP. Then there exists a proof system f ′ such that can(f)<pp
m can(f ′) and f

and f ′ simulate each other except on an NP-subset of TAUT.

Corollary 3. The following statements are equivalent.

1. P-inseparable NP-pairs exist.
2. There exist proof systems f and g whose canonical pairs are not many-one

equivalent, but that simulate each other except on an NP-subset of TAUT.

316 C. Glaßer, A.L. Selman and L. Zhang

Corollary 4. If P 	= NP ∩ coNP, then there exist proof systems f and g whose
canonical pairs are not many-one equivalent, but that simulate each other except
on an NP-subset of TAUT.

Under the hypothesis that P-inseparable disjoint NP-pairs exist, we can show
that proof systems whose difference cannot be “covered” by any P-subset of
TAUT may still have equivalent canonical pairs. Hence, the converse of Propo-
sition 3 does not hold, unless P-inseparable disjoint NP-pairs do not
exist.

Theorem 8. Let (A,B) be a P-inseparable NP-pair. Then there exist proof sys-
tems f and f ′ such that can(f)≡pp

m can(f ′)≡pp
m (A, B) and for every P-subset S

of TAUT it holds that f and f ′ do not simulate each other on TAUT− S.

5 Strongly Many-One Degrees of Canonical Pairs

Every disjoint NP-pair is many-one equivalent to the canonical pair of some
proof system [8]. We ask the same question for strongly many-one reductions.
Note that if a disjoint NP-pair (A, B) is strongly many-one equivalent to the
canonical pair of some proof system, then A must be NP-complete. So we arrive
at question Q4 which is closely related to the following open problem [3].

Q5: Is the union of two disjoint NP-complete sets NP-complete?

For this, we first translate Q4 into the question whether certain NP-pairs are
many-one hard for NP (Corollary 5). From this we show under the hypothesis
NP 	= coNP that if Q4 has an affirmative answer, then Q5 has an affirmative
answer. It suffices to demand that Q4 has answer ‘yes’ only for A = SAT.

Theorem 9. Let (A, B) be a disjoint NP-pair. If (A, A ∪B) is ≤pp
m -hard for

NP, then there exists a proof system f such that (SAT∗, REF(f))≡pp
sm(A, B).

Proposition 4. Let (A, B) be a disjoint NP-pair such that A∪B 	= Σ∗. If there
exists a proof system f such that (SAT∗, REF(f))≡pp

sm(A, B), then (A, A ∪B) is
≤pp

m -hard for NP.

Corollary 5. The following are equivalent for a disjoint NP-pair (A, B) where
A ∪B 	= Σ∗.

1. (A, A ∪B) is ≤pp
m -hard for NP.

2. There exists a proof system f such that (SAT∗, REF(f))≡pp
sm(A, B).

Corollary 6. Assume NP 	= coNP. If for all disjoint NP-pairs (SAT, B) there
exists a proof system f such that (SAT∗, REF(f))≡pp

sm(SAT, B), then unions of
disjoint NP-complete sets are NP-complete.

The Informational Content of Canonical Disjoint NP-Pairs 317

6 Proof Systems and Turing-Degrees of Canonical Pairs

We consider the connection between proof systems and the more general Turing-
degrees of their canonical pairs.

Proposition 5. Let f and g be proof systems such that can(f) ≤pp
T can(g).

Then there exists a proof system g′ such that can(g′) ≡pp
T can(g) and f ≤p g′.

Corollary 7. Let d1 < d2 be two Turing-degrees of disjoint NP-pairs. Then for
every proof system f such that can(f) ∈ d1, there exists a proof system g such
that can(g) ∈ d2 and f <s g.

Proposition 6. For all (A, B), (C, D) ∈ DisjNP such that (A, B)<pp
T (C, D),

there exist proof systems f and g such that can(f)≡pp
m (A, B), can(g)≡pp

m (C, D),
f 	≤s g, and g 	≤s f .

References

1. Beyersdorff, O.: Disjoint NP-pairs from propositional proof systems. In: Cai, J.-Y.,
Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 236–247. Springer,
Heidelberg (2006)

2. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

3. Glaßer, C., Pavan, A., Selman, A.L., Sengupta, S.: Properties of NP-complete sets.
SIAM Journal on Computing 36(2), 516–542 (2006)

4. Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems.
SIAM Journal on Computing 17(2), 309–335 (1988)

5. Glaßer, C., Selman, A.L., Sengupta, S., Zhang, L.: Disjoint NP-pairs. SIAM Journal
on Computing 33(6), 1369–1416 (2004)

6. Glaßer, C., Selman, A.L., Travers, S., Wagner, K.W.: The complexity of unions
of disjoint sets. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
Springer, Heidelberg (2007)

7. Glaßer, C., Selman, A.L., Zhang, L.: Survey of disjoint NP-pairs and relations
to propositional proof systems. In: Goldreich, O., Rosenberg, A.L., Selman, A.L.
(eds.) Theoretical Computer Science. LNCS, vol. 3895, Springer, Heidelberg (2006)

8. Glaßer, C., Selman, A.L., Zhang, L.: Canonical disjoint NP-pairs of propositional
proof systems. Theoretical Computer Science 370, 60–73 (2007)

9. Homer, S., Selman, A.L.: Oracles for structural properties: The isomorphism prob-
lem and public-key cryptography. Journal of Computer and System Sciences 44(2),
287–301 (1992)

10. Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for
promise classes. Information and Computation 184(1), 71–92 (2003)

11. Meßner, J.: On the Simulation order of proof systems. PhD thesis, Universität Ulm,
Abteilung Theoretische Informatik (December 2000)

12. Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. Theoretical Com-
puter Science 295, 323–339 (2003)

13. Razborov, A.A.: On provably disjoint NP-pairs. Technical Report TR94-006, Elec-
tronic Computational Complexity Colloquium (1994)

On the Representations of NC and Log-Space

Real Numbers�

Fuxiang Yu

Computer Science Department
Stony Brook University

Stony Brook, New York, U.S.A.
fuxiang@cs.sunysb.edu

Abstract. We study the representations of NC and Log-space real num-
bers in this paper. We show that the classes of the NC and Log-space
real numbers under the general left cut representation are among the
most expressive representations. 1 On the other hand, although the gen-
eral left cut representation and the Cauchy function representation have
the same expressive power in P, the expressive power of the Cauchy
function representation is weaker than that of the general left cut rep-
resentation in NC if P1 �= NC1. In addition, although the expressive
power of the standard left cut representation is weaker than that of the
Cauchy function representation in P, the expressive powers of these two
representations are incomparable in NC if P1 �= NC1. Similar results
hold in Log-space.

Keywords: Complexity, representations of real numbers, Cauchy func-
tion, left cut, P, NC, Log-space, expressive power.

1 Introduction

The computability and complexity of real numbers have been widely studied,
since real numbers are the main objects of continuous computation. The first
issue is how to represent a real number, and the second issue is how to compute
the representations of a real number effectively or efficiently.

For a given real number x ∈ [0, 1], there are many representations. To name
a few, x can be represented by (1) a Cauchy sequence {xn} of rational numbers
such that for all n, |xn − x| < 2−n; (2)the standard left cut, which is the set
of rational numbers that are no more than x; and (3) the binary expansion
x = (0.b1b2 · · ·)2. These representations and many others are, mathematically,
equivalent to each other.
� This material is based upon work supported by National Science Foundation under

grant No. 0430124.
1 We say a class A of languages is more expressive than another class B of languages,

if B � A. Now we also say A has more expressive power. For example, EXP has
more expressive power than P.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 318–326, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Representations of NC and Log-Space Real Numbers 319

However, when computability and complexity are considered, it becomes more
complicated and interesting. For example, a recent work of Chen et al. [3] showed
that the primitive recursive versions of these representations can lead to different
notions of primitive recursive real numbers.

When studying the complexity of real numbers, dyadic numbers 0.b1b2 · · · bn

(i.e., finite binary fractions) are the basic computational objects. Now a Cauchy
function representation of a real number x ∈ [0, 1] is a function φ from natural
numbers to dyadic numbers such that for all n, φ(n) has n bits and |φ(n)−x| <
2−n. A number x is Cauchy polynomial-time computable if a Cauchy function
representation φ of x is polynomial-time computable. Similarly, we can define the
standard left cut representation of x and the binary expansion representation of
x using dyadic numbers as the basic objects. Ko [7] has shown that the Cauchy
function representation is more expressive, unconditionally, than the standard
left cut representation and the binary expansion as long as polynomial-time
computability is concerned. On the other hand, if for every Cauchy function
representation φ of a real number x, we define a set LCφ = {d ≤ φ(n) : n ∈
N, d is a dyadic number of n bits.}, called the general left cut of x associated
with φ, then the general left cut representation is as expressive as the Cauchy
function representation in P. There are also some other representations, for
example, Ko [6] presented some interesting results on the continuous fraction
representation.

In this paper, we study the parallel-time complexity issues of real numbers.
More precisely, we investigate which representation is the most expressive in
parallel-time complexity classes such as NC and L (short for Log-Space). We
consider four representations: standard left cut, general left cut, binary expan-
sion, and the Cauchy function representation. As expected, the general left cut
representation is among the most expressive representations; however, we still
obtain some interesting results, which are summarized below.

(1) The general left cut representation is the most expressive representation in
NC and L.

(2) There exists a real number x that has a NC (or L) computable Cauchy func-
tion representation but the standard left cut of x is not NC (or respectively,
L) computable.

(3) If P1 	= NC1 (or P1 	= L1), then there exists a real number x whose standard
left cut is NC (or respectively, L) computable, but no Cauchy function
representation of x is NC (or respectively, L) computable.

In other words, If P1 	= NC1 (or P1 	= L1), then the expressive powers
of the Cauchy function representation and the standard left cut representation
are incomparable under NC (or respectively, L). As it seems that the Cauchy
function representation has been used as one main representation in parallel
computation of real numbers (see, e.g., Ko [7], Hoover [5], and Yu [8]), this
result should not be ignored.

320 F. Yu

2 Notations

2.1 Representations

This paper involves notions used in both discrete computation and continuous
computation. The basic computational objects in discrete computation are inte-
gers and strings in {0, 1}∗. The length of a string w is denoted �(w).

The basic computational objects in continuous computation are dyadic ratio-
nals D = {m/2n : m ∈ Z, n ∈ N}. Each dyadic rational d has infinitely many
binary representations with arbitrarily many trailing zeros. For each such repre-
sentation s, we write �(s) to denote its length. If the specific representation of a
dyadic rational d is understood (often the shortest binary representation), then
we write �(d) to denote the length of this representation. We let Dn denote the
class of dyadic rationals with at most n bits in the fractional part of its binary
representation.

We use R to denoted the set of real numbers. We say a function φ : N → D

is a Cauchy function representation of a real number x, if (i) for all n ≥ 0,
φ(n) ∈ Dn, and (ii) for all n ≥ 0, |φ(n) − x| ≤ 2−n. For any x ∈ R, there
is a unique function bx : N → D that binary converges to x and satisfies the
condition x − 2−n < bx(n) ≤ x for all n ≥ 0. We call this function bx the
standard Cauchy function for x. The binary expansion of x is represented by bx.
For any Cauchy function representation φ of x, there exists a general left cut
representation LCφ = {d ∈ Dn : n ∈ N, d ≤ φ(n)} associated with φ, and LCbx ,
also denoted LCx, is called the standard left cut.

2.2 Complexity Classes

In this paper we consider mainly the circuit complexity class NC as well as
complexity classes defined based on Turing machines listed as follows (see, e.g.,
Du and Ko [4]).

P : the class of sets accepted by deterministic polynomial-time (Turing) ma-
chines.

L : the class of sets accepted by deterministic Turing machines restricted to use
an amount of memory logarithmic in the size of the input.

Recall that NC = ∪i≥0NCi, where NCi is the class of languages A ⊂ {0, 1}∗
such that there exists a circuit family {Cn} with the following properties (see,
e.g., Du and Ko [4]).

1. there exists a Turing machine M that constructs (the encoding of) each Cn

in log-space.
2. for all n, Cn has n input nodes with each node fan-in 2 and fan-out 1 and

accepts An = A ∩ {0, 1}n.
3. there exist a polynomial function p and a constant k > 0, such that for all

n, the size size(Cn) of Cn is no more than p(n) and the depth depth(Cn) of
Cn is no more than k logi n.

On the Representations of NC and Log-Space Real Numbers 321

We call {Cn} an NCi circuit family.
These complexity classes have properties such as NC1 ⊆ L ⊆ NC ⊆ P. The

interested readers are referred to Du and Ko [4].
NC functions can be viewed as an extension of NC languages. Namely, now

for i ≥ 0 and an NCi circuit family {Cn}, each node in Cn is allowed to have
multiple fan-outs, and a function f : {0, 1}∗ → {0, 1}∗ is computable by {Cn} if
for each n and each x ∈ {0, 1}n, Cn computes f(x). In other words, f is NCi

computable if the language Af = {〈x, i〉 : the i-th bit of f(x) is 1} is in NCi.
For more details, see, for example, Allender et al. [2].

If C is a complexity class of sets, we use C1 to denote the complexity class
{A ∈ C : A ⊆ {0}∗}, called the unary version of C. Similarly, if FC is a class of
functions, FC1 is the corresponding class of functions whose domain is {0}∗. As
shown in Ko [7], the unary classes are closely related to complexity classes of
real numbers, because Cauchy functions are unary functions.

We define NC computable real numbers under different representations:

NCSLC: the class of real numbers whose standard left cuts are NC computable.
NCBE: the class of real numbers whose standard Cauchy functions are NC

computable.
NCGLC: the class of real numbers x such that there exists a general left cut of

x that is NC computable.
NCCF : the class of real numbers x such that there exists a Cauchy function of

x that is NC computable.

Similarly for L, we define LSLC , LBE , LGLC , LCF , and for P, we define
PSLC , PBE , PGLC , PCF .

3 Main Results

In this section, we present the main results. The first part contains results that
do not rely on assumptions that P1 	= L1 and P1 	= NC1, and the second
part contains results that rely on these assumptions. The main result is that, if
P1 	= L1 (or P1 	= NC1), then the four classes of Log-space (or respectively, NC)
computable real numbers under four different representations are all distinct
classes (see Figure 1), while LGLC is the most powerful one.

These results are more complicated than the complexity of these representa-
tions in P, as shown in Ko [7]:

PSLC = PBE � PGLC = PCF .

3.1 Absolute Results

We first present some absolute results, which do not rely on assumptions on the
complexity classes such as P1 	= L1. Note that we can obtain trivial results
LBE ⊆ NCBE ⊆ PBE and so on, since L ⊆ NC ⊆ P. We omit such results.

322 F. Yu

GLC

L

L

L

L

SLC

BE

CF

Fig. 1. Assuming P1 �= L1

Theorem 3.1. NCBE ⊆ NCCF , LBE ⊆ LCF .

Proof. This is obvious since the standard Cauchy function bx of a real number
x is a Cauchy function of x. ��

Theorem 3.2. NCBE ⊆ NCSLC , LBE ⊆ LSLC .

Proof. For any number x ∈ NCBE , we have that bx is in NC. If x ∈ D, then
x ∈ NCSLC . Assume that x /∈ D. For any n ∈ N and d ∈ Dn, it is in NC
to compare bx(n) and d. Because x /∈ D, d ≤ bx(n) implies that d < x, and
d > bx(n) implies that d > x. This completes the proof for NCBE ⊆ NCSLC .
Similarly, we can prove that LBE ⊆ LSLC . ��

The following theorem extends Theorem 2.8 of Ko [7].

Theorem 3.3. There exists a real number x ∈ LCF − PSLC . Thus, LCF −
LSLC 	= ∅ and NCCF −NCSLC 	= ∅.

Proof. We first define a function T (n) inductively: T (1) = 1, and T (n + 1) =

2222
T (n)

. By a simple diagonalization, we can find a set A ⊆ {0}∗ such that A
is computable in space T (n) but not in space log T (n) (see, for example, Aho et
al. [1]). Without loss of generality, let 0 ∈ A. Define

x =
∞∑

i=1

(2 · χA(0i)− 1)2−2T(i)
.

First we show that x ∈ LCF . We can compute, for each n, a dyadic rational
φ(n) as follows:

(1) find the integer k such that T (k) ≤ log n < T (k + 1).
(2) compute φ(n) =

∑k
i=1(2 · χA(0i)− 1)2−2T(i)

.

On the Representations of NC and Log-Space Real Numbers 323

It is clear that the value φ(n) computed above differs from x by at most
2−(2T(k+1)−1) ≤ 2−n. So the above procedure computes a function φ ∈ CFx.
Furthermore, since T (k) ≤ log n, the computation of φ(n) can be done in space
O(log n). Thus, x ∈ LCF .

Next we show that x /∈ PSLC . Assume, by way of contradiction, that SLCx

is computable in polynomial time. We will find a Turing machine M computing
χA(0n) in space log T (n).

Let Ma be a Turing machine that computes χA in space T (n). The new
machine for χA(0n) works as follows. First, it simulates MA on inputs 0, 02, · · ·,
0n−1 and computes d =

∑n−1
i=1 (2χA(0i)− 1)2−2T(i)

. Then it determines whether
d ∈ SLCx and concludes that χA(0n) = 1 iff d ∈ SLCx.

It is clear that the above machine M indeed computes χA. Assume that LCx

is computable in time p(n) and hence in space 2p(n). Then the space usage of the

machine M is bounded by O(
∑n−1

i=1 T (i))+2p(2T(n−1)) < 222T (n−1)

= log T (n) for
almost all n, which contradicts to the fact that A is not computable in space
log T (n).

In the above we have constructed a number x ∈ LCF − PSLC . As LCF ⊆
NCCF and LSLC ⊆ NCSLC ⊆ PSLC , we have LCF − LSLC 	= ∅ and NCCF −
NCSLC 	= ∅. ��

Next we consider general left cuts.

Theorem 3.4. NCCF ⊆ NCGLC, LCF ⊆ LGLC .

Proof. For a number x ∈ NCCF , let φ ∈ CFx be in NC. Note that the general
left cut Lφ of x associated with φ is {d ∈ Dn : n ∈ N, d ≤ φ(n)}. Similar to the
proof of Theorem 3.2, it is in NC to compare a dyadic number d and φ(n). ��

3.2 Results Under Assumptions P1 �= L1 and P1 �= NC1

We use a specific coding system for the instantaneous descriptions (IDs) of the
computation of a time-bounded Turing machine so that we can discuss the sim-
ulation of the machine (see Ko [7]). We assume that our machine M works on
two tape symbols: 0 and 1 (and a special blank symbol), has k states q1, · · ·,
qk, uses a single tape, and has a time bound ψ. For each string s ∈ {0, 1}∗ of
length �(s) = n, each ID of the computation of M(s) is encoded by a string
in {0, 1}∗ of length 2ψ(n) + 2k + 4: we encode type symbols 0 and 1 by 01
and 10, respectively, and the blank symbol by 00, and the state symbol qi by
11(01)i(10)k−i11, where the state symbol appears just to the left of the tape
symbol that is currently scanned by the tape head. (To see this in another way,
at any moment, there are at most ψ(n) symbols (of 0, 1 and the blank) in the
computation, whose length is at most 2ψ(n) in our encoding, and the state is of
length 2k + 4.) Thus, for any input s of length n, the computation of M(s) is
encoded by a (ψ(n) + 1) · (2ψ(n) + 2k + 4)-bit string α0α1 · · ·αψ(n), where αi is
the code of the i-th ID in the computation of M(s). Note that we fix the length
of the codes for IDs to be exactly 2ψ(n) + 2k + 4, and fix the number of IDs in
the computation to be exactly ψ(n) + 1.

324 F. Yu

We say a function φ : N → N is log-space computable if it is log-space com-
putable when both inputs and outputs are written in the binary form. Note that
if φ is log-space computable, then it is also log-space computable when both
inputs and outputs are written in the unary form.

We use the following lemma (Lemma 4.15 of Ko [7]).

Lemma 3.5. Let M be a Turing machine having k states and having a time
bound ψ, which is log-space computable. Then for any input st of length �(s) =
�(t) = ψ(n)+2k +4 such that s is an ID of M(u) for some string u of length n,
we can determine, in log space, whether t is the successor of s in the computation
of M(u), or t is less than the successor ID, or t is larger than the successor ID.
Furthermore, we can compute, in log space, the maximum m such that the first
m bits of t agree with those of the successor ID of s.

Theorem 3.6. If P1 	= L1, then LSLC − LCF 	= ∅.

Proof. Let T ∈ P1 − L1 be computed by a deterministic Turing machine M in
time p(n). Assume that p is log-space computable. We use the encoding system
described above. Assume that M has k states and so on input 0n, an ID of
M(0n) is of length 2ψ(n) + 2k + 4. We let sn,i, 0 ≤ i ≤ p(n), be the i-th ID of
the computation of M(0n). Define a real number x whose binary expansion is

x = 0.01τ(s1,0)τ(s1,1) · · · τ(s1,p(1))τ(s2,0) · · · τ(s2,p(2)) · · · ,
where τ is the local translation function defined by τ(0) = 01, τ(1) = 10, and
τ(ab) = τ(a)τ(b) for all a, b ∈ {0, 1}+.

We first show that x ∈ PCF − LCF . Let q(n) = 2p(n) + 2k + 4 and r(n) =∑n
i=1 2q(i)·(p(i)+1). From T ∈ P1, it is easy to see that x ∈ PCF . Furthermore,

note that for each 0n, we need only τ(sn,p(n)), or, from the (r(n)−2q(n)+3)-rd bit
to the r(n) + 2 bit of the binary expansion of x, to determine whether 0n ∈ T .
Therefore, if x ∈ LCF , then we can compute, in log space, an approximation
value d to x such that |d − x| ≤ 2r(n)+4, and by our coding system, the first
r(n)+2 bits of d must be identical to those of x and so we can determine whether
0n ∈ T in log space, which contradicts to the assumption of T ∈ P1 − L1.

Next we show that x ∈ LSLC , that is, SLCx = {d ∈ D : d < x} is in L. We
only need to consider dyadic numbers of even lengths, because for a dyadic
number d of an odd length, we can add a trailing zero to d. For a dyadic number
d ∈ D2n, we can tell whether d < x or d > x in log space (note that since
x /∈ LCF , x /∈ D and d 	= x). We achieve this by generating the initial IDs si,0

and applying Lemma 3.5 successively to each substring uv of d, where u is already
been verified to be equal to τ(si,j) for some j and �(v) = �(u); furthermore, we
check whether v > τ(w), v = τ(w) or v < τ(w), where w is the next ID of u. If
v > τ(w), d > x; if v < τ(w), d < x; if v = τ(w), we continue with the process.
If all bits of d agree with the first 2n bits of x, d < x. ��

Corollary 3.7. If P1 	= NC1, then NCSLC −NCCF 	= ∅.

Proof. The proof is the same as that of Theorem 3.6, except that we let T ∈
P1 −NC1 and the constructed number x ∈ LSLC ⊆ NCSLC . ��

On the Representations of NC and Log-Space Real Numbers 325

Corollary 3.8. If P1 	= L1, then LBE � LSLC.

Proof. Because we have LBE ⊆ LCF , LBE ⊆ LSLC and LSLC − LCF 	= ∅. ��

Corollary 3.9. (a) If P1 	= L1, then LCF and LSLC are incomparable.
(b) If P1 	= NC1, then NCCF and NCSLC are incomparable.

Proof. Statement (a) follows Theorems 3.6 and 3.3. Statement (b) follows Corol-
lary 3.7 and Theorem 3.3. ��

Corollary 3.10. (a) If P1 	= L1, then LCF � LGLC .
(b) If P1 	= NC1, then NCCF � NCGLC.

In summary, if P1 	= L1, then LSLC , LBE , LGLC and LCF are four distinct
classes (see Figure 1). If P1 	= NC1, then NCSLC , NCBE , NCGLC and NCCF

are four distinct classes. The converse also holds, since Ko [7] has shown that
PCF = LCF ⇔ P1 = L1 and PCF = NCCF ⇔ P1 = NC1. We state it as a
theorem.

Theorem 3.11. The following are equivalent:

(a) P1 	= L1.
(b) LSLC , LBE, LGLC and LCF are four distinct classes.

Similar results hold for NC real numbers.

The following corollary is an absolute result.

Corollary 3.12. LCF 	= LSLC , NCCF 	= NCSLC .

Proof. If LCF = LSLC , then from Theorem 3.11, P1 = L1, and from Ko’s results,
LCF = PCF , which implies LSLC = PCF and furthermore PSLC = PCF .
However, from Theorem 2.8 of Ko [7], PSLC � PCF . Therefore, LCF 	= LSLC .
We can prove in a similar way that NCCF 	= NCSLC . ��

4 Conclusion

In this paper we have shown that the four representations of real numbers,
standard left cut, general left cut, binary expansion and Cauchy function rep-
resentation, have distinct expressive powers in L and NC, unless L1 = P1 or
NC1 = P1, respectively. As the expressive powers of these four representations
only fall into two categories in P, our results show that the expressive powers
of these representations are more complicated in the parallel-time complexity
world unless some sequential-time complexity class collapses to some parallel-
time complexity class. Note that whether L = P and whether NC = P are
important open questions, maybe just second to the P versus NP question, in
the complexity theory.

326 F. Yu

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer
algorithms. Addison-Wesley, Reading (1974)

2. Allender, E., Loui, M.C., Regan, K.W.: Other Complexity Classes and Measures.
Chapter 29. In: Atallah, M.J. (ed.) Algorithms and Theory of Computation Hand-
book, CRC Press, Boca Raton (1999)

3. Chen, Q., Su, K., Zheng, X.: Primitive recursiveness of real numbers under differ-
ent representation. In: CCA. Electronic Notes in Theoretical Computer Science,
vol. 167, Elsevier, Amsterdam (2007)

4. Du, D.-Z., Ko, K.-I.: Theory of Computational Complexity. John Wiley & Sons,
Chichester (2000)

5. Hoover, H.J.: Feasible real functions and arithmetic circuits. SIAM J. Com-
put. 19(1), 182–204 (1990)

6. Ko, K.-I.: On the continued fraction representation of computable real numbers.
Theor. Comput. Sci. 47(3), 299–313 (1986)

7. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)
8. Yu, F.: On some complexity issues of NC analytic functions. In TAMC. In: Cai,

J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 375–386.
Springer, Heidelberg (2006)

Bounded Computable Enumerability and

Hierarchy of Computably Enumerable Reals�

Xizhong Zheng

1 Department of Computer Science, Jiangsu University, Zhenjiang 212013, China
2 Theoretische Informatik, BTU Cottbus, D-03044 Cottbus, Germany

zheng@informatik.tu-cottbus.de

Abstract. The computable enumerability (c.e., for short) is one of the
most important notion in computability theory and is regarded as the
first weakening of the computability. In this paper, we explore further
possible weakening of computable enumerability. By restricting numbers
of possible big jumps in an increasing computable sequence of rational
numbers which converges to a c.e. real number we introduce the notion
of h-bounded c.e. reals and then shown that it leads naturally to an
Ershov-style hierarchy of c.e. reals. However, the similar idea does not
work for c.e. sets. We show that there is a computability gap between
computable reals and the reals of c.e. binary expansions.

Keywords: c.e. sets, c.e. reals, bounded c.e. reals, Ershov’s Hierarchy.

1 Introduction

A set A is computably enumerable (c.e., for short) if it can be enumerated by an
effective procedure. That is, the elements of A can be enumerated effectively one
after another, if A is not empty. The computable enumerability is one of the most
important notion in the computability theory. This is not only because a lot of
problems in mathematics and computer science correspond to the c.e. sets, but
also the c.e. sets are regarded as the first natural weakening of the computable
sets.

The definition of c.e. sets is generalized by Putnam [6], Gold [5] and Ershov
[4] to k-c.e. for any constants k and h-c.e. for any functions h. The main idea
behind these definitions is to allow the mind-changes or, as Putnam called, trial
and error in the effective enumerations. For example, in an effective procedure
to enumerate a set A, some number n may be enumerated into A at a stage, be
removed from A at a later stage, and possibly be put into A afterwards again,
and so on. If the number of such kind of mind-changes is bounded by a constant k
for each n, then A is called k-c.e. A is called h-c.e. for a function h if the number
of mind-changes about n is bounded by h(n) for all n. An h-c.e. set is also called
ω-c.e. if h is a computable function. Ershov [4] shows that, if f(n) < g(n) for

� This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 327–337, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

328 X. Zheng

infinitely many n, then there is a g-c.e. set which is not f -c.e. This leads to a
nice Ershov’s hierarchy of the Δ0

2-sets:

EC = 0-CE ⊆ k-CE � (k + 1)-CE � ω-CE � Δ0
2,

for all constant k, where EC (for effectively computable), k-CE and ω-CE
denote the classes of computable, k-c.e. and ω-c.e. sets, respectively. Especially,
the class 1-CE is just the class of c.e. sets. The 2-c.e. sets are usually called
d-c.e. because they are the differences of c.e. sets. This hierarchy is even valid
for the corresponding classes of Turing degrees as shown by Cooper [1]. Namely,
there is a (k + 1)-c.e. degree which is not k-c.e.; There is an ω-c.e. degree which
is not k-c.e. for any constant k, and there is a Δ0

2-degree which is not ω-c.e.
The Ershov’s hierarchy classifies Δ0

2-sets nicely to different classes according
to the different levels of enumerability. However, from the computability point
of view, it has also some unnatural properties. For example, the classes k-CE for
k > 0 are not symmetrical. That is, a set and its complement do not necessarily
belong to the same class, although they have exactly the same computability.
The classes of Ershov’s hierarchy, as binary expansions, do not correspond to
the classes of reals of weaker computability defined by computable sequences
of rational numbers (see e.g., [13,15]). These problems disappear if we consider
the h-bounded computability (h-b.c.) introduced in section 2. In this case, we are
only interested in how many mind-changes are necessary to approximate a set
and do not demand an empty set to begin with.

To explore the notion weaker than c.e. we have to look at other properties
which are “stronger” than simply counting the changes of membership of n in an
approximation to the set A. A natural candidate here is considering the changes
of the initial segments As � n instead of As(n) in an approximation (As) to
A. Accordingly we define the notion of h-initially-bounded computable (h-i.b.c.,
for short) sets. Unfortunately, the classes of h-i.b.c. sets collapse to the set of
computable sets for any constant functions h. Therefore, h-i.b.c. sets do not lead
to an Ershov hierarchy of c.e. sets and we do not achieve a reasonable notion
weaker than c.e. by this approach.

As a new approach we consider the computable enumerability of reals. By
definition c.e. reals are limits of computable increasing sequences of rational
numbers. By restricting the numbers of possible big jumps in an increasing se-
quence of rational numbers converges to a c.e. real we introduce the notion of
h-bounded c.e. (h-b.c.e.) reals. We can see that the k-b.c.e. reals form an Ershov-
style hierarchy of c.e. reals for constants k. This hierarchy is valid even in the
sense of Turing degrees. A very interesting result here is that non-computable
k-b.c.e. reals do not have c.e. binary expansions. This means that there are reals
which have some weak computability between the computable reals and strongly
c.e. reals (the reals of c.e. binary expansions).

The paper is organized as follows. Section 2 introduces the new notions of
h-bounded computable and h-initially bounded computable sets and discusses
their basic properties. In section 3 we consider h-bounded c.e. real numbers and
show an Ershov hierarchy of k-b.c.e. reals. In the last section 4 we extend the

Bounded Computable Enumerability and Hierarchy 329

Ershov hierarchy of classes of k-b.c.e. reals to the classes of Turing degrees which
contain k-b.c.e. real numbers.

2 Bounded Computable Sets

This section discusses the bounded computability of sets. Firstly the notion of
h-c.e. sets is symmetrized to the notion of h-bounded computable sets. Then
we introduce the notion of initially-bounded computable sets to explore the
possible hierarchy of c.e. sets. We will see that an Ershov style hierarchy for
initially bounded computable sets fails.

By definition, a set A is c.e. (computably enumerable) means that there is a
computable sequence (As) of finite sets which converges to A such that A0 = ∅
and As ⊆ As+1 for all s. This has been generalized by Putnam [6], Gold [5], and
Ershov [4] to the following: A is called h-computably enumerable (h-c.e.) if A has
an h-enumeration (As) which is a computable sequence of finite sets converging
to A such that A = ∅ and

(∀n)(|{s : As(n) 	= As+1(n)}| ≤ h(n)). (1)

We identify in this paper a set with its characteristic function. Thus we have
A(n) = 1 if n ∈ A and A(n) = 0 if n /∈ A. Alternatively, a set A is h-c.e. iff there
is a computable function f such that f(0, n) = 0, lims f(s, n) = A(n) and

(∀n) (|{s : f(s, n) 	= f(s + 1, n)}| ≤ h(n)) . (2)

Obviously, c.e. sets are just the h-c.e. sets for the constant function h(n) ≡ 1.
It is worth noting that the condition f(0, n) = 0 in the second definition of
c.e. sets is necessary because otherwise the 1-c.e. sets were not necessarily c.e.
This corresponds to requiring A0 = ∅ in the first definition which is however
superfluous because A0 is a finite set and the h-c.e. is invariable under the
change on a finite set. Here the computable sequence (As) is regarded as an
enumeration instead of an approximation of A. If we are more interested in how
effectively a set can be approximated, we should consider the following variation.

Definition 1. A set A is called h-bounded computable (h-b.c., for short) if
there is a computable sequence (As) of finite sets which converges to A such that

(∀n)(|{s ≥ n : As+1(n) 	= As(n)}| ≤ h(n)). (3)

The additional condition s ≥ n in (3) ignores inessential changes of As(n) before
the stage s := n. This can be replaced equivalently by s ≥ g(n) for an increasing
computable function g. We summarize some important properties of h-b.c. sets
without proof as follows.

Theorem 1. Let h be a function and let A be a set.

1. If A is h-c.e. or co-h-c.e., then A is h-b.c.
2. If A is h-b.c., the A is h′-c.e. for h′(n) := h(n) + 1.

330 X. Zheng

3. If A is h-b.c., then so is the complement A.
4. A is h-b.c. iff there is a computable function f such that lims f(s, n) = A(n)

and |{s : f(s, n) 	= f(s + 1, n)}| ≤ h(n) for all n.
5. A is h-b.c. iff there is a computable function g and a computable sequence

(As) of finite sets such that (∀n)(|{s ≥ g(n) : As+1(n) 	= As(n)}| ≤ h(n)).

Analogous to the well known fact that a set A is computable if and only if A
as well as its complement A are c.e., we have the following result.

Theorem 2. For any functions h and h1(n) := h(n) + 1, a set A is h-b.c. if
and only if both A and its complement A are h1-c.e.

Proof. We need only to prove the direction “⇐”. Suppose that (As) and (Bs)
are h1-enumerations of A and A, respectively. Assume w.l.o.g. that A0 = B0 = ∅.
Since lims As(n) = A(n) 	= A(n) = lims Bs(n) for all n, we can define a total
computable increasing function v : N → N by

{
v(0) := min{s : As(0) 	= Bs(0)};

v(n + 1) := min{s > v(n) : As(n + 1) 	= Bs(n + 1)}.

Then we define a computable function f by

f(s, n) :=

⎧
⎪⎪⎨

⎪⎪⎩

Av(n)(n) if Av(n)(n) = 1 & s ≤ v(n);
As(n) if Av(n)(n) = 1 & s > v(n);
1 ·− Bv(n)(n) if Av(n)(n) = 0 & s ≤ v(n);
1 ·− Bs(n) if Av(n)(n) = 0 & s > v(n).

Obviously, we have lims f(s, n) = A(n) for all n. Given an n, suppose that
Av(n)(n) = 1. If s ≥ v(n) such that f(s, n) 	= f(s+1, n), then As(n) 	= As+1(n).
Since Av(n)(n) = 1 	= 0 = A0(n) and (As) is an h1-enumeration, there are at
most h1(n) − 1 such stages s ≥ v(n). The same holds if Av(n)(n) = 0. This
implies that

(∀n)(|{s ≥ v(n) : f(s, n) 	= f(s + 1, n)}| ≤ h(n)).

Because f(s, n) = f(s + 1, n) hold for all s < v(n), we have actually

(∀n)(|{s : f(s, n) 	= f(s + 1, n)}| ≤ h(n)),

and hence, by Theorem 1.4, A is h-b.c. �

From Theorem 1 we have seen that h-bounded computability is not very far from
the h-computably enumerability. The notion introduced in the next definition is
essentially different from h-computable enumerability. Here we count the changes
of the initial segment As � n instead of the changes of the single membership
As(n) for different indices s.

Definition 2. Let h : N → N be a function and let A ⊆ N be a set.

1. A sequence (As) of finite sets converges h-initially-bounded effectively to A
if lims→∞ As = A and

Bounded Computable Enumerability and Hierarchy 331

(∀n) (|{s ≥ n : As � n 	= As+1 � n}| ≤ h(n)) . (4)

2. A set A is called h-initially-bounded computable (h-i.b.c., for short) if there
is a computable sequence of finite sets which converges h-initially-bounded
effectively to A.

For constant function h ≡ k, we call h-i.b.c. sets simply k-i.b.c. Thus A is
computable iff it is 0-i.b.c. Analogous to h-b.c. sets, the condition s ≥ n in (4)
can be replaced by s ≥ g(n) for an increasing computable function g.

The following proposition can be proved straightforwardly.

Proposition 1. Let h : N → N be a function and let A be a set.

1. If A is h-c.e., then it is g-i.b.c. for the function g(n) :=
∑

i<n h(i);
2. If A is h-i.b.c., then it is g-c.e. for the function g(n) := h(n + 1) + 1;
3. If A is h-i.b.c., then so is its complement A.
4. If A and B are h-i.b.c. and g-i.b.c., respectively, then A∩B, A∪B and A\B

are (g + h)-i.b.c.

Given a constant k, any k-c.e. set is h-i.b.c. for h(n) := kn by Proposition 1.1.
Actually, even for the function g whose distance to the function h(n) := kn
is bounded by a constant, any k-c.e. set is also g-i.b.c. as shown in the next
theorem. This condition is even necessary.

Theorem 3. Let k be a constant.

1. If A is k-c.e., then it is hc-i.b.c. for any constant c, where hc(n) := kn ·− c.
2. If h is a nondecreasing computable function such that

(∀c)(∃n)(h(n) + c < kn), (5)

then there is a k-c.e. set which is not h-i.b.c.

Proof. 1. Let (As) be a k-enumeration of A. That is, (As) is a computable
sequence of finite sets satisfying (1) for h(n) ≡ k such that A0 = ∅, lims As = A.
Let N be a natural number such that As � c = A � c hold for all s ≥ N . Define
a computable sequence (Bs) of finite sets by Bs := AN+s. The initial segment
Bs � n can change only at the positions m ∈ [c, n) and at most k(n ·− c) ≤ hc(n)
times. Therefore (Bs) converges hc-initial-bounded effectively to A and hence A
is hc-i.b.c.

2. Let h be a nondecreasing computable function which satisfies condition (5).
Therefore, we can define an increasing computable sequence (vs) inductively as
follows:

{
v0 := 0

vn+1 := (μt)(kt > kvn + h(t)).

Let In := [vn; vn+1). Then the (Is) is a computable sequence of disjoint intervals
of natural numbers such that k · l(In) > h(vn+1) for all n, where l(In) is the
length of the interval In.

332 X. Zheng

Let (Ve) be a computable enumeration of all approximable sets and (Ve,s)s

be a computable sequence of finite sets which approximates the set Ve. Now we
can construct a k-c.e. set A which is not h-i.b.c., i.e., A satisfies, for all e, the
following requirements:

Re : (Ve,s) converges h-initially-bounded effectively to Ve =⇒ A 	= Ve.

The set A is constructed in stages such that, for any e, there is an ne ∈ Ie

which witnesses the inequality A(ne) 	= Ve(ne). The witness ne can be chosen
in the following way. We reserve the interval Ie exclusively for the requirement
Re. Suppose that A ∩ Ie = ∅ and let ne := ve at the stage s := ve+1. We put ne

into A if it is not yet in Ve. If ne enters Ve, then delete ne from A and it can
enter A again if ne leaves Ve at a later stage. In order to guarantee that A is
k-c.e., we do such kind of actions at most k times for the same ne. After that,
if Ve(ne) changes again, then we define ne := ne + 1 and let this new witness
be outside of A or put it into A at the beginning depending on if ne is already
in Ve or not. Repeat the above procedure again for the new ne, and so on. We
continue this process until ne = ve+1. If this process stops for some ne < ve+1,
then ne is a right witness for Re. Otherwise, if ne arrives ve+1, then this means
that the initial segment Ve,s � ve+1 changes at least k · l(Ie) > h(ve+1) times
and the sequence (Ve,s) does not converge h-initially bounded effectively. In this
case, the requirement Re is satisfied trivially. More precisely, the set A can be
constructed by a priority methods without injury. �

As an immediately corollary of Proposition 1, any c.e. set is hc-i.b.c. for the
function hc(n) := n ·− c. However, if h ∈ o(id), then there is a c.e. set which is
not h-i.b.c., where id is the identity function. This implies especially that there
is a c.e. set which is not k-i.b.c. for any constant k. Actually, the next theorem
shows that any non-computable c.e. sets are not k-i.b.c. for any constant k.

Theorem 4. Let k be a constant. Any k-i.b.c. set is computable.

Proof. Let A be a k-i.b.c. set and let (As) be a computable sequence of finite
sets which converges h-initially-bounded effectively to A. Suppose w.l.o.g. that
k is the least constant such that

|{s ≥ n : As � n 	= As+1 � n}| = k

for infinitely many n. Thus, for any m ∈ N, we can always effectively find an
n > m and an index s0 > n such that As � n changes already k times between
the stages n and s0. Therefore, As(m) does not change any more after stage s0

and we have A(m) = As0 (m). This implies that A is computable. �

Theorem 4 implies that the classes of k-i.b.c. sets collapse to the the first level—
the class of computable sets. Therefore the k-i.b.c. sets do not lead to an Ershov-
style hierarchy of c.e. sets.

Bounded Computable Enumerability and Hierarchy 333

3 Bounded C.E. Real Numbers

In this section we turn to the computability of real numbers. Motivated from
the notions of h-i.b.c. sets and h-effectively computable real numbers of [12] we
introduce the notion of h-bounded c.e. reals and show that this leads naturally
to an Ershov-style hierarchy of c.e. reals.

A real number x is called computably enumerable (c.e., for short) if there is an
increasing computable sequence (xs) of rational numbers which converges to x.
Equivalently x is c.e. iff its (left) Dedekind cut Lx := {r ∈ Q : r < x} is a c.e. set
of rational numbers. As it is pointed out in Soare [8,9], the c.e. real numbers
correspond naturally to c.e. sets and can be regarded as the first weakening
of computable real numbers (see [3,11,14]). We explore now the weakening of
c.e. reals by bounding the number of big jumps in the approaching sequences.

Definition 3. Let h be a function.

1. An increasing sequence (xs) converges to x h-effectively if, for all n, the
length of the index-chain n = s0 < s1 < s2 < · · · < sk which satisfies

(∀i < k)
(
xsi+1 − xsi > 2−n

)

is bounded by k ≤ h(n).
2. A real number x is called h-bounded c.e. (h-b.c.e., for short) if there is an

increasing computable sequence (xs) of rational numbers which converges to
x h-effectively.

The class of all h-b.c.e. real numbers is denoted by h-BCE. Especially, if h(n) ≡
k is a constant function, then k-BCE denotes the class of all k-b.c.e. real num-
bers. We call a real bounded computably enumerable (b.c.e., for short) if it is
k-b.c.e. for a constant k. The class of all b.c.e. real numbers is denoted by BCE.
The next lemma follows immediately from the definition.

Lemma 1. 1. A real number x is computable if and only if it is 0-b.c.e.
2. Any c.e. real number x is h-b.c.e. for the function h(n) := 2n.

Now we show that k-b.c.e. reals form an Ershov-style hierarchy.

Theorem 5. For any constant k, there is a (k + 1)-b.c.e. real number which is
not k-b.c.e.

Proof. For any constant k, we are going to construct an increasing computable
sequence (xs) of rational numbers which converges (k + 1)-effectively to a non-
k-b.c.e. real number x. To this end, the limit x has to satisfy all the following
requirements

Re : (ϕe(s))s is increasing and converges k-effectively to ye =⇒ x 	= ye

where (ϕe) is a computable enumeration of all partial computable functions
ϕe :⊆ N → Q.

334 X. Zheng

The sequence (xs) is constructed in stages. To satisfy a single requirement Re,
we choose a rational interval Ie−1 of the length 2−ne−1 for some natural number
ne−1 and divide it equidistantly into at least 2k+5 subintervals I0, I1, · · · , Ime of
the same length 2−ne for some natural number ne. Our goal is to find a witness
interval Ie for Re from I0, I1, · · · , Ime such that any element of Ie satisfy the
requirement Re. As default, let Ie := I1 be the first candidate of Ie and define
xs to be the middle point of I1 at the beginning. If at some stage s0 we find
that there is a t0 ≥ ne such that ϕe(t0) ∈ I1, then Ie := I3 is the new candidate
of the witness interval and redefine xs0+1 to be the middle point of the interval
I3. And if at a later stage s1 > s0, we find a t1 > t0 such that ϕe(t1) ∈ I3, then
change xs1+1 to the middle point of Ie := I5 which is the new current candidate
of witness interval and so on. Obviously, at most k + 1 redefinitions guarantee
that the limit x := lims→∞ xs is different from the possible limit lims→∞ ϕe(s)
if it converges k-effectively and we achieve finally a correct witness interval Ie.
On the other hand, the sequence (xs) converges (k + 1)-effectively.

In order to satisfy all requirements simultaneously, a finite injury priority
construction suffices. Here we mention only two important points. Firstly, the
candidates of witness interval for Re are chosen from the subintervals of the
current candidate of witness interval for Re−1. Secondly, the default candidate
of witness interval for Re (the interval I0 explained above) should be chosen
in such a way that the current xs which is defined from the current candidate
interval for Re−1 should be exactly its middle point. This avoids the extra jumps
of the sequence (xs) and guarantees that the constructed sequence converges
(k + 1)-effectively indeed. �

It is natural to ask whether b.c.e. reals exhaust all c.e. real numbers. We will
give a negative answer to this question. Actually we achieve a more stronger
result. Recall that a real x is called strongly c.e. (see [2]) if it has a c.e. binary
expansion A, i.e., x = xA :=

∑
i∈A 2−(i+1). As pointed out by Jockusch (see [8])

the class of strongly c.e. real numbers form a proper subset of c.e. real numbers.
The next theorem implies that there is a c.e. real number which is not b.e.c.

Theorem 6. If a real number is both b.c.e. and strongly c.e., then it must be
computable.

Proof. Let x be a b.c.e. real number for some constant k with a c.e. binary
expansion A (i.e., x = xA), and suppose that x is irrational. Then we have a
strictly increasing computable sequence (xs) of rational numbers which converges
to x k-effectively for some constant k as well as a computable sequence (As) of
finite sets such that As ⊂ As+1 and A = lims→∞ As. Since both sequences
(xs) and (xAs) are strictly increasing, we can define inductively two computable
increasing functions u, v : N → N as follows.

⎧
⎪⎪⎨

⎪⎪⎩

u(0) := 0
v(0) := min{s : xAs > x0}

u(n + 1) := min{s > u(n) : xs > xAv(n)}
v(n + 1) := min{s > v(n) : xAs > xu(n)}.

Bounded Computable Enumerability and Hierarchy 335

Let ys := xu(s) and Bs := Av(s) for all s. Then (ys) and (xBs) are computable
subsequences of (xs) and (xAs), respectively which satisfy the following

y0 < xB0 < y1 < xB1 < y2 < xB2 < · · ·

As a subsequence of (xs), the sequence (ys) converges k-effectively to x too. That
is, for any n, the length of any index-chain s0 < s1 < s2 < · · · < st such that
ysi+1 − ysi > 2−n for all i < t is bounded by t ≤ k.

Given a natural number n. If at a stage s+1 > n some element less than n is
enumerated into Bs+1, i.e. Bs � n 	= Bs+1 � n, then we have xBs+1 − xBs > 2−n,
and hence ys+2 − ys > 2−n. This means that the initial segment Bs � n can be
changed after the stage n at most 2k times. That is, we have

| {s > n : Bs � n 	= Bs+1 � n} | ≤ 2k, (6)

for all natural numbers n. Therefore, the computable sequence (Bs) converges
2k-initially bounded effectively to A and the set A is 2k-i.b.c. By theorem 4, A
is computable and hence the real x is computable. �

Although the proof of Theorem 6 is very simple, the result seems quite sur-
prising. As we have mentioned before, the computable enumerability of a set
is the first weakening of the computability. Therefore, the strongly computable
enumerability of a real number can be regarded as the first weakening of the
computability of real numbers with respective to binary expansion. However,
Theorem 6 shows that there is a gap between computability and strong com-
putability of real numbers if we consider how effectively a real number can be
approximated by computable sequence of rational numbers.

4 Hierarchy of Turing Degrees

In this section we discuss the hierarchy Turing degrees which contain k-b.c.e. real
numbers for different constant k. This strengthens the hierarchy of Theorem 5.
To simplify the notation we identify a real number x with its characteristic
binary sequence in this section.

Let (Φe) be an effective enumeration of computable partial functionals. By
definition, a real number x is Turing reducible to another real number y (denoted
by x ≤T y) if there is an index e such that x(n) = Φy

e(n) for all n. Two real
numbers x and y are Turing equivalent (notation x ≡T y) if x ≤T y and y ≤T x
hold. In other words, x is Turing equivalent to y if there are indices i and j such
that x(n) = Φy

i (n) and y(n) = Φx
j (n) for all n. From these it is not difficult to

find (possibly different) indices i and j such that

(∀n)
(
x � n = Φy

i (n) & y � n = Φx
j (n)

)
. (7)

We say that x is (i, j)-Turing equivalent to y (denote by x ≡(i,j)
T y) if they

satisfy condition (7). For the (i, j)-Turing equivalence relates more closely to the
topological property of real numbers. The following important technical lemma
will be used later.

336 X. Zheng

Lemma 2 (Rettinger and Zheng [7]). For any rational interval I0 and any
natural numbers i, j, t there are two open rational intervals I ⊆ I0 and J such
that

(∀x, y)
(
x ≡(i,j)

T y =⇒ (x ∈ I =⇒ y ∈ J) & (y ∈ J =⇒ x ∈ I0)
)

. (8)

We say that an intervals I is (i, j)-reducible to another interval J (denoted by
I ((i,j) J) if they satisfy the following condition

(∀x, y)
(
x ∈ I & x ≡(i,j)

T y =⇒ y ∈ J
)

.

By Lemma 2, there are I ⊆ I0 and J such that I ((i,j) J for any given interval
I0. If all elements of I0 are not (i, j)-Turing equivalent to some element, then
this holds trivially. Actually, the Lemma 2 holds even in an more effective sense.
Namely, if there exists x ∈ I0 which is (i, j)-Turing equivalent to some y, then
the intervals I and J which satisfy condition (7) can be effectively found (see
Lemma 2.2 of [7] for details). This fact will be used in the proof of the following
theorem.

Theorem 7. For any constant k, there is a (k + 1)-b.c.e. real number which is
not Turing equivalent to any k-b.c.e. real numbers.

Proof. We construct an increasing computable sequence (xs) of rational numbers
which converges (k + 1)-effectively to a non-k-b.c.e. real number x. The limit x
has to satisfy, for all i, j, k, all the following requirements

R〈i,j,k〉 : (ϕk(s)) converges k-effectively to yk =⇒ x 	≡(i,j)
T yk.

We explain firstly the idea how a single requirement Re for e := 〈i, j, k〉 can be
satisfied. Choose arbitrarily a rational interval Ie−1. We want to find a rational
subinterval Ie ⊆ Ie−1 such that all x ∈ Ie satisfy Re. This interval Ie is called a
witness interval of Re.

Divide the interval Ie−1 into at least 2k +5 rational subintervals I0, I1, I2, . . .
with the same length 2−ne for some natural number ne. According to (the effec-
tive version of) Lemma 2, either we can find an interval I2t+1 (for some t ≤ k)
whose elements do not (i, j)-Turing equivalent to any real number, or we can
find rational subintervals It

e ⊆ It and rational intervals J t such that It
e ((i,j) J t

for t = 1, 3, · · · , 2k + 3. W.l.o.g. we can assume that the distances between any
pair of J-intervals is larger than 2−me for some natural number me.

The sequence (xs) can be constructed in stages. At the beginning we choose I1
e

as default candidate of the witness interval of Re and let xs be its middle point.
We do not change xs as long as the sequence (ϕk(t)) does not enters the interval
J1 after the stage s := me. Otherwise, if at some stage s0 we find a t0 > me

such that ϕk(t0) ∈ J1, then change the candidate of witness interval of Re to
the interval I3

e and redefine xs0+1 as the middle point of I3
e . If at a late stage

s1 > s0, we find a new t1 > t0 such that ϕk(t1) ∈ J3, then change the candidate
interval to I5

e and redefine xs1+1 as its middle point, and so on. We allow at

Bounded Computable Enumerability and Hierarchy 337

most k + 1 times such kind of redefinition which suffices to guarantee that the
limit of the sequence (xs) is different to the possible limit of lims→∞ ϕk(s) if it
converges k-effectively.

We need only a standard finite injury priority construction to construct the
computable sequence (xs) and xs is chosen from the actually smallest witness
intervals defined at the stage s. The details are omitted here. �

References

1. Cooper, B.S.: Degrees of Unsolvability. Ph.D thesis, Leicester University, Leicester,
England (1971)

2. Downey, R.G.: Some computability-theoretic aspects of reals and randomness. In:
The Notre Dame lectures. Assoc. Symbol. Logic. Lect. Notes Log., vol. 18, pp.
97–147. Urbana, IL (2005)

3. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity.
Springer, Heidelberg, Monograph to be published

4. Ershov, Y.L.: A certain hierarchy of sets. i, ii, iii. (Russian). Algebra i Logika. 7(1),
47–73 (1968), 7(4), 15–47 (1968), 9, 34–51 (1970)

5. Gold, E.M.: Limiting recursion. J. Symbolic Logic 30, 28–48 (1965)
6. Putnam, H.: Trial and error predicates and the solution to a problem of Mostowski.

J. Symbolic Logic 30, 49–57 (1965)
7. Rettinger, R., Zheng, X.: A hierarchy of Turing degrees of divergence bounded

computable real numbers. J. Complexity 22(6), 818–826 (2006)
8. Soare, R.I.: Cohesive sets and recursively enumerable Dedekind cuts. Pacific J.

Math. 31, 215–231 (1969)
9. Soare, R.I.: Recursion theory and Dedekind cuts. Trans. Amer. Math. Soc. 140,

271–294 (1969)
10. Soare, R.I.: Recursively enumerable sets and degrees. A study of computable

functions and computably generated sets. Perspectives in Mathematical Logic.
Springer, Heidelberg (1987)

11. Weihrauch, K.: Computable Analysis, An Introduction. Springer, Heidelberg
(2000)

12. Zheng, X.: Classification of the computably approximable real numbers. Theory of
Computing Systems (to appear)

13. Zheng, X.: Recursive approximability of real numbers. Mathematical Logic Quar-
terly 48(Suppl. 1), 131–156 (2002)

14. Zheng, X.: Computability Theory of Real Numbers. Habilitation’s thesis, BTU
Cottbus, Germany (February 2005)

15. Zheng, X., Rettinger, R.: Weak computability and representation of reals. Mathe-
matical Logic Quarterly 50(4/5), 431–442 (2004)

Streaming Algorithms Measured in Terms of the

Computed Quantity�

Shengyu Zhang

California Institute of Technology
Computer Science Department and Institute for Quantum Information,

1200 E California Bl, MC 107-81, Pasadena, CA 91125, USA
shengyu@caltech.edu

Abstract. The last decade witnessed the extensive studies of algorithms
for data streams. In this model, the input is given as a sequence of items
passing only once or a few times, and we are required to compute (often
approximately) some statistical quantity using a small amount of space.
While many lower bounds on the space complexity have been proved for
various tasks, almost all of them were done by reducing the problems to
the cases where the desired statistical quantity is at one extreme end.
For example, the lower bound of triangle-approximating was showed by
reducing the problem to distinguishing between graphs without triangle
and graphs with only one triangle.

However, data in many practical applications are not in the extreme,
and/or usually we are interested in computing the statistical quantity only
if it is in some range (and otherwise reporting “too large” or “too small”).
This paper takes this practical relaxation into account by putting the com-
puted quantity itself into the measure of space complexity. It turns out that
all three possible types of dependence of the space complexity on the com-
puted quantity exist: as the quantity goes from one end to the other, the
space complexity can goes from max to min, remains at max, or goes to
somewhere between.

1 Introduction

Data stream is a very natural and important model for massive data sets in many
applications, where the input data is given as a stream of items with only one or
a few passes, and usually we want to determine or approximate some statistical
quantity of the input stream. See [16] for an excellent and comprehensive survey.

Many algorithms are designed and many lower bounds on the space com-
plexities are proven for various types of problems such as, just to name a few,
frequency moments [1, 7, 14, 3, 6], vector distance [11, 17], and some graph prob-
lems [2, 4, 9, 13]. Almost all lower bounds were proved by reducing the problem
to the cases where the desired statistical quantity is at an extreme end (and this
� This work was mostly done when the author was a graduate student in Computer

Science Department at Princeton University, supported in part by NSF grants CCR-
0310466 and CCF-0426582.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 338–348, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Streaming Algorithms Measured in Terms of the Computed Quantity 339

is further reduced to the communication complexity of some related problems).
For example, the lower bound for approximating the number of triangles was
proved by a reduction to distinguishing between the graph containing 0 and 1
triangle; the lower bound for the infinity frequency moment F ∗

∞ was proved by
reducing the problem to distinguishing between F ∗

∞ = 1 and F ∗
∞ = 2.

Despite its theoretical correctness, this reduction to extreme cases can be
misleading for many practical applications for at least the following two reasons.
First, the extreme case may not happen at all in practice. For example, the
number of triangles in a graph has many implications in various applications.
In a social network, the number of triangles characterizes the average strength
of the ties in the community [8, 18]. But note that in most (if not all) practical
communities, there are a large number of triangles, and those extreme cases (0
and 1 triangle) are never the case. As another example, in many applications
such as data mining, the number of common neighbors of two vertices in a
graph shows the amount of common interest. A canonical example is that if
two commodities have a large number of common buyers, then putting these
two commodities close to each other in a supermarket will make more sales for
both of them. Similar to the triangle example, the maximal number of common
neighbors from data in practice is always large.

The second reason is from the user side. Even if some data happen to have
the quantity at extreme, we are not interested in it in this case. For example,
if two commodities have a very small number (such as one) of common buyers,
then it barely means anything because that buyer may just happen to buy them.
Therefore, we have a threshold range in mind within which we care about the
quantity; if the quantity is outside the range, we will be satisfied if the algorithm
can report “too low” or “too high”.

Due to these two reasons, it is natural to ask the following question: is the
hardness of a problem essentially due to the extreme cases? To answer this ques-
tion, we study the space complexity in terms of both input size and the threshold
range. In particular, for any input size n and any possible quantity value q(n),
the stream space complexity s(n, q(n)) is, roughly speaking, the minimal space
used to compute f(x) for all inputs in {x : f(x) = Θ(q(n))}.

This question has been occasionally studied implicitly. In [2], Bar-Yosseff,
Kumar, and Sivakumar initialized the study of graph problems in the adjacency
stream model, where the graph is given by a sequence of edges (i, j) in an arbi-
trary order1. In particular they studied the problem of approximating the num-
ber of triangles, giving a one-pass algorithm using O(1

ε3 log 1
δ (1 + T1+T2

T3
)3 log n)

space, where Ti is the number of unordered triples containing i edges. Unfortu-
nately, they could not show when it is better than the naive sampling algorithm
(which uses O(1

ε2 log 1
δ (1 + T0+T1+T2

T3
)) space), and they asked this as an open

problem. They also gave an Ω(n2) lower bound for general graph, by reducing the
problem at one extreme end (distinguishing between graphs with no triangle vs.

1 They also proposed the incidence stream model, where each item in the stream is
a vertex with all its neighbors. In this paper we only study the adjacency stream
model.

340 S. Zhang

with one triangle) to the communication complexity of some Boolean function.
They then ask as another open problem for a lower bound in terms of T1, T2, T3

2.
Jowhari and Ghodsi [13] later proved a lower bound of Ω(n/T3). In this paper we
will show that their algorithm is always asymptotically worse than the naive sam-

pling algorithm (for any graph) by proving
(
1 + T1+T2

T3

)3

≥ Ω
(
1 + T0+T1+T2

T3

)

using algebraic graph theoretical arguments. Also, we prove a lower bound of
min{Ω(n3/T3), Ω(n2)}, which matches the naive sampling algorithms, and the
proof is much simpler than the previous (weaker) one [2]. It should be noted
that subsequent papers [13, 5] improve the upper bound and finally [5] achieve
O(1

ε2 log 1
δ · (1+ T1+T2

T3
)). So our lower bound does not mean that the naive sam-

pling algorithm is always the best, but that it is the best if the algorithm aims
at dealing with all the graphs with T3 in the known range.

For the problem of computing the maximal number of common neighbors,
previously Buchsbaum, Giancarlo and Westbrook [4] gave a lower bound of
Ω(n3/2

√
c) to compute the exact value, where c is the max number of the com-

mon neighbors. In this paper, after observing a matching upper bound, we con-
sider the approximation version of the problem, showing that approximating the
number needs Θ̃(n3/2/

√
c) space. Compared to the triangle counting example

where the space complexity Θ(min{n3/T3, n
2}) drops from the maximum pos-

sible value (Θ(n2)) to the minimum possible value (constant), in this common
neighbor example, the space complexity drops from some large value Θ(n3/2)
to some small value Θ(n). Note that the Θ̃(n) space capacity is a well-studied
model (called the semi-stream model) for graph problems, which is interesting
[9] partly because Θ̃(n) is affordable in some Internet applications but higher
space is not.

Not surprisingly, there are also many other problems whose space complexity,
though first proved by considering extreme inputs, remains hard even if the
computed quantity is not at extreme. We will give a simple example in this
category too.

2 Preliminaries and Definitions

We say that an algorithm A (ε, δ)-approximates the function f on input x if
Pr[|A(x) − f(x)| ≤ εf(x)] ≥ 1 − δ. In this paper, we will think of ε and δ as
small constants. A graph G = (V, E) is given in the adjacency streaming model
if the input is a sequence of edges (i, j) ∈ E in an arbitrary order.

2.1 Formulation of the Notion

The most naive way to formulate the notion in Section 1 is to define the space
complexity s(n, q) to be the minimum space needed to compute the quantity

2 A lower bound in terms of all T1, T2 and T3 does not seem quite justified: after all,
for an unknown given graph, we do not know what Ti’s are. But a lower bound in
terms of mere T3 is well-justified for the two reasons mentioned earlier.

Streaming Algorithms Measured in Terms of the Computed Quantity 341

f(x) for all those x satisfying f(x) = q. However, this is obviously a useless
definition because if we already know that f(x) = q then we do not need any
computation. Thus we need to be a little more careful about the definition.

Definition 1. A function f has stream space complexity Θ(s(n, q(n))) if for any
constants c2 > c1 > 0, the best algorithm (ε, δ)-approximating f on any input in
{x : c1q(n) ≤ f(x) ≤ c2q(n)} uses space Θ(s(n, q(n))).

Several comments are in order. First, as mentioned in Section 1, we may desire
that for those inputs that are not in the range, the algorithm outputs “too
high” or “too low”. Actually, in most (if not all) cases, the algorithm working
for Definition 1 can be easily modified (with a multiplicative constant factor
cost added) such that for any constants d1 and d2 with c1 < d1 < d2 < c2 and
d2−d1 ≥ 2ε, the algorithm has the following additional property: it outputs “too
low” if f(x) < d1q(n) and “too high” if f(x) > d2q(n); for those inputs x with
c1q(n) ≤ f(x) ≤ d1f(x) or d2q(n) ≤ f(x) ≤ c2f(x), either an ε-approximation
or a “too low/high” is considered correct. Second, distinguishing between f(x) ≤
(1−ε)cq and f(x) ≥ (1+ε)cq with success probability 1−δ is clearly a relaxation
of the above task for any constant c (since we can let d1 = (1 − ε)c and d2 =
(1 + ε)c). The lower bounds showed in this paper apply to this easier task.

A basic fact that will be used in the proofs is as follows. The problem Index
is a streaming problem where the input is an n-bit string x followed by an index
i ∈ [n], and the task is to output xi with success probability at least 1− δ.

Fact 1. The Index problem needs (1 − 2δ)n bits of memory.

A generalization of the fact is to consider k bits instead of just one bit. In the
problem k-Index, the input is an n-bit string x followed by k indices i1, ..., ik ∈
[n]. The task is to distinguish between “xi = 1, ∀i = i1, ..., ik” and “xi = 0, ∀i =
i1, ..., ik” with success probability at least 1− δ.

Fact 2. The k-Index problem needs (1− 2δ)n/k bits of memory.

This is easy to see by repeating each bit in Fact 1 k times. Also, a simple random
sampling argument shows an O(n

k log 1
2δ) upper bound for the number of memory

cells.

3 Three Types of Dependence of the Space Complexity
on the Computed Quantity

In this section, we will show three types of dependence of space complexity
s(n, q(n)) on q(n). In Section 3.1, we show a dependence which is the strongest
possible: as q(n) goes from one end (constant) to the other (Θ(n3)), the space
complexity s(n, q(n)) drops from the maximal possible value (Θ(n2)) to the
minimal possible value (constant). In Section 3.2, we show a weaker dependence:
s(n, q(n)) drops from Θ(n3/2) to Θ(n). In Section 3.3, we show one example in
which s(n, q(n)) is independent of q(n).

342 S. Zhang

3.1 Strong Dependence

The first problem that we study is triangle counting: Given a graph in the
adjacency streaming model, (ε, δ)-approximate the number of triangles in the
graph. Recall that Ti is the number of unordered triples of vertices with i edges,
and thus T3 is the number of triangles. The following theorem gives lower bounds
that match the naive upper bounds: O(n3/T3) for T3 ≥ n

3(1+ε) (by random
sampling) and O(n2) space for T3 < n

3(1+ε) (by storing all the edges).

Theorem 1. Any streaming algorithm distinguishing between T3 ≤ (1− ε)t and
T3 ≥ (1 + ε)t with error probability δ = 1/3 needs Ω(n3/t) space for t ≥ n

3(1+ε)

and Ω(n2) space for t < n
3(1+ε) .

Proof. Consider the case t ≥ n
3(1+ε) first. Let the input graph G consist of 2 parts.

One part is an (n/3, n/3)-bipartite graph H = (L, R, EH) (where L and R are
left and right side vertex sets), and another part J = (VJ , EJ) contains n/3 ver-
tices. Partition L into n/3k blocks L1, ..., Ln/3k, each of size k =

√
3(1 + ε)t/n;

similarly partition R = R1 ∪ ... ∪ Rn/3k. (See Figure 1.) Denote by Hi,j the
subgraph (Li, Rj , EH |Li×Rj). Now let the stream first give the graph H , with
the promise that each subgraph Hi,j is either empty or complete. Clearly it
needs (n/3k)2 bits of information to specify H . We claim that the streaming
algorithm needs to basically keep all these (n/3k)2 bits of information in order
to approximate the number of triangles in the whole graph.

Actually, we claim that for any (i, j), by choosing the rest of the graph in an
appropriate way, we can know whether Hi,j is empty or complete with probability
1 − δ. Suppose we want to know whether Hi,j is empty or complete, we let the
remaining stream contain all edges in {(a, b) : a ∈ Li ∪ Rj , b ∈ VJ}. If Hi,j is

L R

JH

n/3 n/3n/3

k nodes

blocks

n/(3k)

Fig. 1. A graph for illustration of the proof of triangle counting problem

Streaming Algorithms Measured in Terms of the Computed Quantity 343

complete, then G contains k2n/3 = (1 + ε)t triangles; if Hi is empty, then G
contains no triangle. Since the algorithm can distinguish between T3 ≤ (1 − ε)t
and T3 ≥ (1 + ε)t with probability 1 − δ, it follows that after the first half of
the stream (that specifies H) has passed, we can extract, for any (i, j), the one
bit information about whether Hi,j is empty or complete with probability 1− δ.
Therefore by Fact 1, we need

(1− 2δ)
(n

3k

)2

=
(1− 2δ)n3

27(1 + ε)t
= Ω

(
n3/t

)
(1)

bits of memory.
Note that in the above analysis, we implicitly require that block size k ≥ 1

and the number of blocks n/(3k) ≥ 1, for which we need n
3(1+ε) ≤ t ≤ (1/2−δ)n3

27(1+ε) .

For t > (1/2−δ)n3

27(1+ε) , the lower bound is trivially true. For t < n
3(1+ε) , let k = 1 and

then the graph has n/3 triangles if Hi,j is complete. Similar arguments give the
lower bound of (1/2− δ)n2/9 = Ω(n2), which completes our proof.

Another open question asked in [2] is about the comparison of their algo-
rithm and the naive random sampling one. Their algorithm uses O(1

ε3 log 1
δ (1 +

T1+T2
T3

)3 log n) space, and they asked when the algorithm is better than the naive
sampling algorithm which uses O(1

ε2 log 1
δ (1 + T0+T1+T2

T3
)) space. We now show

by some simple algebraic graph theory arguments that the algorithm in [2] is
always no better than the naive random sampling one.

Proposition 1. For any graph we have
(

1 +
T1 + T2

T3

)3

≥ Ω

(
1 +

T0 + T1 + T2

T3

)
, (2)

Proof. First observe that T0 + T1 + T2 + T3 =
(
n
3

)
and that T1 + 2T2 + 3T3 =

m(n − 2) where m is the number of edges in the graph. The latter implies
that T1 + T2 + T3 = Θ(mn). Thus it is enough to prove that T 2

3 = O(m3),
which can be easily done using algebraic arguments as follows. Suppose A is the
adjacency matrix of the graph, then Tr(A3) = 6T3. Now notice that Tr(A3) =∑

i

∑
k aikbki where B = [bij]ij = A2. It is easy to see that B is also symmetric,

so Tr(A3) =
∑

ik aikbik ≤
√

(
∑

ik a2
ik)(

∑
ik b2

ik). Note that
∑

ik a2
ik =

∑
ik aik =

2m, and
√∑

ik b2
ik = ‖B‖2 = ‖A · A‖2 ≤ ‖A‖22 = 2m, we thus have T3 ≤

(2m)3/2/6, as desired.

As mentioned in Section 1, new algorithms are known ([13, 5]) which are better
than the naive sampling algorithm for some graphs. So the above proposition is
mainly of discrete math interest.

3.2 Weak Dependence

The second problem that we study is max common neighbor counting: Given a
graph in the adjacency stream model, (ε, δ)-approximate the maximum number

344 S. Zhang

of common neighbors, i.e. mcn(G) = maxu,v |{w : (u, w) ∈ E, (v, w) ∈ E}|. In
[4], it is showed that computing the exact value of mcn(G) needs Ω(n3/2

√
c)

space, where c is the max number of common neighbors. In this paper, after
observing a matching upper bound for this exact counting problem, we consider
the approximate version of the problem and show that the space complexity of
approximating mcn(G) is Θ̃(n3/2/

√
c).

In both the upper and lower bounds, we will use the following theorem in
extremal graph theory. Denote by ex(n, H) is the maximal number of edges that
an n-vertex graph can have without containing H as a subgraph. The upper
bound is by Kovari, Sos and Turan [15], and the lower bound is by Furedi [12].

Theorem 2. 1
2

√
tn3/2 −O(n4/3) ≤ ex(n, K2,t+1) ≤ 1

2

√
tn3/2 + n/4.

Now there is a very easy algorithm: keep all the edge information until the
number of edges exceeds 1

2

√
tn3/2 +n/4, in which case the graph contains K2,t+1

for sure; otherwise, use the kept edge information to decide whether mcn(G) ≥ t.
Now we give the algorithm to approximate mcn(G) as in the Algorithm

Approx-mcn(G) box. Its analysis is given by the theorem below.

Algorithm Approx-mcn(G)
Input: a data stream of edges (i, j) ∈ E of a graph G in arbitrary order,
two constants a ∈ (0, 1) and b > 1.
Output: an (ε, δ)-approximate of mcn(G) if mcn(G) ∈ [ac, bc].

1. Use a counter to count the total number m of edges. Stop and output
“mcn(G) > bc” if m > M ≡ 1

2n3/2
√

bc + n/4.

2. Randomly pick (with replacement) t = 1
aε2

(log 3n2

δ
) 2n

c
vertices

v1, ..., vt. Denote this multi-set by T .
3. Keep all edges incident to T . (If the number exceeds 6Mt

δn
, output

FAIL.)
4. Use the kept edge information to get

c′ = max
u,v∈V −T

t∑

i=1

1[vi is a common neighbor of u and v]

where 1[φ] is the indicator variable for the event φ.
5. Output c′n/t as estimate to mcn(G). If c′ = 0, output mcn(G) < ac.

Theorem 3. For any c and any constants a ∈ (0, 1) and b > 1, Algorithm
Approx-mcn(G) (ε, δ)-approximates mcn(G) for those G with mcn(G) ∈
[ac, bc], and the algorithm uses space O(n3/2 log2 n/

√
c).

Proof. First it is obvious that if the number of edge exceeds M which is larger
than ex(n, K2,bc), then mcn(G) > bc for sure. Now consider m = |E| < M . By
Markov’s Inequality, the total degree of vertices in T is at most

Streaming Algorithms Measured in Terms of the Computed Quantity 345

3
δ

2mt

n
≤ 6Mt

δn
= O

(
n3/2(log n + log 1

δ)
ε2δ
√

c

)
(3)

with probability 1 − δ/3. Now assume mcn(G) = s ∈ [ac, bc], then ∃ u0, v0

sharing a set S0 of s common neighbors. Fix u0, v0 and S0. Since

Pr[u0 ∈ T or v0 ∈ T] ≤ 2t/n ≤ δ/3 (4)

if c ≥ 12
aδε2 log 3n2

δ . Let Xi(u, v) be the indicator random variable for the event
“the i-th vertex picked is a common neighbor of u and v”, and let X(u, v) =∑t

i=1 Xi(u, v). Then under the condition that u0, v0 /∈ T , we have X(u0, v0) ≤ c′.
Now by Chernoff’s bound,

Pr
[
X(u0, v0) <

(1− ε)ts
n

]
< e−

ε2ts
2n ≤ e−

ε2tac
2n = δ/(3n2). (5)

Therefore, Pr[c′n/t < (1 − ε)s] ≤ δ/(3n2) < δ/3. On the other hand, by the
definition of c′, we have

Pr[c′n/t > (1 + ε)s] = Pr[c′ > (1 + ε)st/n] (6)
= Pr[∃u, v ∈ V − T, s.t. X(u, v) > (1 + ε)st/n] (7)

≤ n2 ·Pr[X(u, v) > (1 + ε)st/n | u, v /∈ T] (8)

≤ n2 · δ/(3n2) = δ/3. (9)

Putting all things together, the algorithm outputs an ε-approximation with prob-
ability at least 1− δ.

The analysis of space that the algorithm uses is as follows. It needs O(log n) to
store an vertex v or an edge (u, v), and the algorithm needs to store t vertices and
6MT/(δn) edges. Step 4 is space efficient since we can reuse space to check each
pair (u, v). Thus the total number of bits used in the algorithm is O(Mt

δn log n) =

O
(

n3/2(log n+log 1
δ)

ε2δ
√

c
log n

)
, which is O

(
n3/2 log2 n√

c

)
if ε and δ are constants.

We can also prove a matching lower bound as follows.

Theorem 4. Distinguishing between mcn(G) ≤ (1− ε)c and mcn(G) ≥ (1+ ε)c
with small constant error probability δ needs Ω(n3/2/

√
c) space for small constant

ε (say ε = 0.1).

Proof. Consider the extremal graph H with n − (1 − ε)c − 1 vertices and no
K2,(1−ε)c+1 as a subgraph. For each vertex, partition its neighbors into subsets
of size 2εc, with possibly one subset of smaller size. The total number of edges
in the regular (i.e. not smaller) subsets is at least
√

(1 − ε)c(n−(1−ε)c−1)3/2/2−(n−(1−ε)c−1)2εc−O(n4/3) = Ω(
√

cn3/2) (10)

if ε ≤ 0.1. Now consider the graph G with n vertices, n− (1 − ε)c− 1 of which
are for the graph H , and the rest (1 − ε)c + 1 vertices are denoted by u and S
with |S| = (1 − ε)c. (See Figure 2.)

346 S. Zhang

S

T

v

u

Fig. 2. A graph for illustration of the proof of max common neighbor counting problem

We will use Fact 2 to show the lower bound. Let the streaming first provide
(a subgraph of) H , where for any v ∈ H and each of its 2εc-subsets T , the
edges from v to T may all exist or all not. Fix the content of the memory of
the algorithm. Then for any fixed v ∈ H and any of its 2εc-subsets T , we can
know whether v and T are connected or not by providing the remaining stream
(and running the streaming algorithm) in the following way. Connect v and S,
u and S ∪ T . Now note that if there is no edge between v and T , then an easy
case-by-case study shows that there are no two vertices in the whole graph G
sharing (1 − ε)c + 1 common neighbors. If, on the other hand, v connects to all
points in T , then clearly u and v share (1 + ε)c common neighbors. Thus if we
can distinguish the mcn(G) ≤ (1 − ε)c and mcn(G) ≥ (1 + ε)c with probability
1 − δ, then we can distinguish between the two cases that the edges between v
and T all exist and all of them do not exist with success probability 1− δ, which
need Ω(n3/2√c)/2εc = Ω(n3/2/

√
c) space by Fact 2.

3.3 Independence

Not surprisingly, there are also many problems whose hardness is not due to
the extreme case in nature, though the previous lower bounds were proved by
considering the extreme cases. We just mention one simple example here to
end this section. The problem is to estimate the distance between two vertices
on a graph: For two fixed vertices u, v on a graph G which is given in the
adjacency stream model, (ε, δ)-approximate d(u, v), the distance between u and
v on the graph G. It is not hard to see that distinguishing between d(u, v) ≤ 3
and d(u, v) ≥ n/2 needs Ω(n) bits of memory. Actually, consider the graph
consisting of two parts. One is a n/2-long path connecting u and v, and another
part contains n/4−1 disjoint edges (u1, v1), ..., (un/4−1, vn/4−1). We first stream
in these two parts, but each edge (ui, vi) may or may not exist. Then to know
whether a particular edge (ui, vi) exists or not, we connect (u, ui) and (v, vi). If

Streaming Algorithms Measured in Terms of the Computed Quantity 347

(ui, vi) exists, then the d(u, v) = 3; otherwise it is n/2. Thus we need n/4−1 bits
of memory to distinguish these two cases. Note that in [10], a 2t + 1 spanner is
constructed using O(tn1+1/t log2 n) space thus the graph distance problem can
be approximated up to a factor of 2t + 1 by using the same amount of space,
which implies that the Ω(n) lower bound is almost optimal for large constant
approximation.

4 Discussions

Previous research on streaming algorithms mainly focused on designing space-
efficient algorithms for important tasks; usually, log or even constant space com-
plexity is desired. There may be more problems that, though may be very im-
portant in practical applications, did not get well studied theoretically simply
because a high lower bound can be easily shown (by considering extreme inputs).
This paper studies some problems which are hard for general case but easy if the
computed quantity is within some range that we care about and/or the practical
data are actually in.

Clearly, the same question can be asked for general algorithms. And within
the domain of streaming algorithms, the problems studied in this paper happen
to be those on graphs, but we believe that there are many more other problems
having the same interesting phenomena.

Acknowledgement

The author thanks Sanjeev Arora, Moses Charikar, Yaoyun Shi and Martin
Strauss for listening to the results and giving valuable comments.

References

[1] Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58(1), 137–147
(1999)

[2] Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proceedings of the thir-
teenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pp. 623–
632. ACM Press, New York (2002)

[3] Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D.: Information statistics ap-
proach to data stream and communication complexity. In: Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 209–
218. IEEE Computer Society Press, Los Alamitos (2002)

[4] Buchsbaum, A., Giancarlo, R., Westbrook, J.: On finding common neighborhoods
in massive graphs. Theoretical Computer Science 299, 707–718 (2003)

[5] Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.:
Counting Triangles in Data Streams. In: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.
253–262. ACM Press, New York (2006)

348 S. Zhang

[6] Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-
party communication coplexity of set disjointness. In: Proceedings of the 18th
IEEE Conference on Computational Complexity, pp. 107–117. IEEE Computer
Society Press, Los Alamitos (2003)

[7] Coppersmith, D., Kumar, R.: An improved data stream algorithm for frequency
moments. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 151–156. ACM Press, New York (2004)

[8] Derenyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical
Review Letters 94, 160–202 (2005)

[9] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

[10] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph Distances in
the Streaming Model: The Value of Space. In: Proceedings of the 16th Symposium
on Discrete Algorithms (SODA), pp. 745–754 (2005)

[11] Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L1
difference algorithm for massive data streams. In: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, pp. 501–511 (1999)

[12] Furedi, Z.: New asymptotics for bipartite Turan numbers. Journal of Combinato-
rial Theory, Series A 75, 141–144 (1996)

[13] Jowhari, H., Ghodsi, M.: New Streaming Algorithms for Counting Triangles in
Graphs. In: Proceedings of the Eleventh International Computing and Combina-
torics Conference, pp. 710–716 (2005)

[14] Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments of
data streams. In: Proceedings of the 37th ACM Symposium on Theory of Com-
puting, pp. 202–208. ACM Press, New York (2005)

[15] Kovari, T., Sos, V.T., Turan, P.: On a problem of K. Zarankiewicz. Colloq. Math,
vol. 3, pp. 50–57 (1954)

[16] Muthukrishnan, S.: Data Streams: Algorithms and Applications. Roundations and
Trends in Theoretical Computer Science, vol. 1(2), pp. 117–236 (2005)

[17] Saks, M., Sun, X.: Space lower bounds for distance approximation in the data
stream model. In: Proceedings on 34th Annual ACM Symposium on Theory of
Computing, pp. 360–369. ACM Press, New York (2002)

[18] Shi, X., Adamic, L., Strauss, M.: Networks of strong ties. Physica A 378(1), 33–47
(2007)

A Randomized Approximation Algorithm for

Parameterized 3-D Matching Counting Problem�

Yunlong Liu1,2, Jianer Chen1,3, and Jianxin Wang1

1 College of Information Science and Engineering, Central South University,
Changsha 410083, P.R. China

2 School of Further Education, Hunan Normal University,
Changsha 410012, P.R. China

3 Department of Computer Science Texas A&M University,
College Station, TX 77843, USA

hnsdlyl@163.com, chen@cs.tamu.edu, jxwang@mail.csu.edu.cn

Abstract. The computational complexity of counting the number of
matchings of size k in a given triple set remains open, and it is conjec-
tured that the problem is infeasible. In this paper, we present a fixed
parameter tractable randomized approximation scheme (FPTRAS) for
the problem. More precisely, we develop a randomized algorithm that,
on given positive real numbers ε and δ, and a given set S of n triples and
an integer k, produces a number h in time O(5.483kn2 ln(2/δ)/ε2) such
that

prob[(1 − ε)h0 ≤ h ≤ (1 + ε)h0] ≥ 1 − δ

where h0 is the total number of matchings of size k in the triple set S. Our
algorithm is based on the recent improved color-coding techniques and
the Monte-Carlo self-adjusting coverage algorithm developed by Karp
and Luby.

1 Introduction

Counting, like decision, function and enumeration, is a kind of fundamental
computation in classical complexity theory, and is an important branch in theo-
retical computer science. Apart from being mathematically interesting, counting
is closely related to important practical applications, such as data processing,
reliability analyzing, artificial intelligence, and statistical physics [13].

Counting graph matchings is a central problem in computer science and has re-
ceived much attention since the seminal work of Valiant, who proved that count-
ing the perfect matchings in a bipartite graph is �P -complete [14]. Valiant also
proved that counting perfect matchings in a general graph is also �P -complete
[15]. Vadhan [13] proved that the problems of counting matchings and maximal
matchings are all �P -complete even restricted to planar bipartite graphs whose
� This work is supported by the National Natural Science Foundation of China

(60433020) and the Program for New Century Excellent Talents in University
(NCET-05-0683)

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 349–359, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

350 Y. Liu, J. Chen, and J. Wang

degree is bounded by a small constant or to k-regular graphs for a constant k.
Recently, Flum and Grohe set up a framework for a parameterized complexity
theory of counting problems and especially formulated the problem of counting
parameterized graph matchings, i.e., the p-�matching problem. [6]. The com-
putational complexity of p-�matching remains open and is conjectured to be
intractable (i.e., �W[1]-hard) [6]. Despite the fact that all the above mentioned
counting problems are intractable, many effective approaches have been pro-
posed. Especially, there have been considerable advances in recent years in the
design of efficient approximation algorithms for counting graph matchings (see,
e.g., [3,5,11] for a survey) or counting parameterized graph matchings [2].

In the current paper, we are focused on a generalization of the bipartite graph
matching problem, the 3-d matching problem. In particular, we will study
the complexity of counting parameterized 3-d matchings. We start with some
definitions related to the problem.

Let A1, A2, A3 be three pairwise disjoint finite symbol sets. A triple in A1 ×
A2 × A3 is given as (a1, a2, a3), where ai ∈ Ai for i = 1, 2, 3. A matching M in
a triple set S is a subset of triples in S such that no two triples in M share a
common symbol. A matching is a k-matching if it contains exactly k triples.

Definition 1. (Parameterized) 3-d matching: Given a pair (S, k), where S is
a triple set and k is an integer, either construct a k-matching in S or report that
no such a matching exists.

In its general form, 3-d matching is one of the six basic NP-complete problems
according to Garey and Johnson [8]. In recent years, 3-d matching has become
a focus in the study of parameterized algorithms. A series of improved algorithms
has been developed for the problem [7,9,12]. Currently the best parameterized
algorithm for 3-d matching is due to Liu et al. [12], and has its running time
bounded by O(2.773knO(1)).

Our focus in the current paper is to count the number of k-matchings in a
given triple set, defined as follows.

Definition 2. (Parameterized counting) 3-d matching : Given a pair (S, k),
where S is a triple set and k is an integer, count the number of distinct k-
matchings in S. Let p-�3d matching denote this problem.

The p-�3d matching problem is a generalization of the problem of counting pa-
rameterized matchings in bipartite graphs, and the latter has been conjectured
to be infeasible [6]. Therefore, p-�3d matching has no known efficient algo-
rithms. This fact makes approximation algorithms for the problem interesting
and meaningful.

2 Preliminaries

Fix three finite symbol sets A1, A2, A3. For a triple ρ = (a1, a2, a3) in A1 ×
A2 × A3, denote by Val(ρ) the set {a1, a1, a3}, and let Vali(ρ) = {ai} for 1 =

A Randomized Approximation Algorithm 351

1, 2, 3. For a collection S of triples, define Val(S) =
⋃

ρ∈S Val(ρ), and Vali(S) =⋃
ρ∈S Vali(ρ), for 1 = 1, 2, 3. The symbols in Vali(S) will be called the i-th

dimension symbols in S.
Our algorithms take the advantages of the recently developed improved algo-

rithms for the technique of color-coding. For this, we briefly review the necessary
terminologies and results.

Definition 3. Let F be a finite set. A k-coloring of F is a function mapping F
to the set {1, 2, . . . , k}. A subset W of F is colored properly by a coloring f if
no two elements in W are colored with the same color under f .

Definition 4. A collection C of k-colorings of a finite set F is a k-color coding
scheme if for every subset W of k elements in F , there is a k-coloring in C that
colors W properly. The size of the k-color coding scheme C is the number of
k-colorings in C.
The concept of color-coding was introduced by Alon, Yuster, and Zwick [1], who
proved that for a set of n elements there exists a k-color coding scheme whose
size is bounded by O(2O(k)n). Progress has been made recently. Chen et al. [4]
presented a construction that gives a k-color coding scheme of size O(6.4kn) for
a set of n elements, and developed an algorithm of running time O(6.4kn) that
generates such a k-color coding scheme.

Theorem 1. ([4]) For any finite set F of n elements and any integer k, n ≥ k,
there is a k-color coding scheme C of size O(6.4kn) for the set F . Moreover, such
a k-color coding scheme can be constructed in time O(6.4kn).

Before proceeding to details, we give a brief description of the ideas of our
algorithms. Let (S, k) be an input instance of the p-�3d matching problem,
where S is a set of n triples. Let H be the set of all k-matchings in S. Our
objective is to compute the value |H |.

Let F be the set of symbols that are in either 2nd-dimension or 3rd-dimension
in S. We construct a (2k)-color coding scheme C = {f1, . . . , fm} for the set F
such that the size m of C is bounded by O(6.42kn). For a (2k)-coloring fi in C
and a matching M in S, we say that M is properly colored by fi if all symbols
in the 2nd and the 3rd dimensions in M are colored with distinct colors under
the coloring fi.

For 1 ≤ i ≤ m, let Hi be the subset of H such that Hi consists all k-matchings
in S that are colored properly by the (2k)-matching fi. Since C is a (2k)-color
coding scheme for the set F , for every k-matching M in S, there is a (2k)-coloring
fi that properly colors M . Therefore, we have H =

⋃m
i=1 Hi.

This gives the standard union of sets problem studied by Karp, Luby, and
Madras [10]: given a collection of m sets H1, H2, . . ., Hm, compute the value
|H |, where H =

⋃m
i=1 Hi. This problem has been thoroughly studied in [10]. In

particular, the following theorem is proved1.
1 The theorem stated here is more detailed than the one presented in [10]. It is straight-

forward to follow the original proof in [10] to derive this version of the theorem.
Therefore, the proof of the theorem is omitted.

352 Y. Liu, J. Chen, and J. Wang

Theorem 2. (Karp-Luby [10]) Let H1, . . ., Hm be m sets such that
(1) for each i, the value |Hi| can be computed in time t1;
(2) for each i, in time t2 we can randomly pick an element in Hi with a

probability 1/|Hi|; and
(3) for each i and for any v ∈ H, we can decide if v ∈ Hi in time t3.
Then we can construct a randomized algorithm that for two given positive real

numbers ε and δ, and for given m sets satisfying the conditions (1)-(3), generates
a number h in time O(mt1 + mt2t3 ln(2/δ)/ε2) such that

prob[(1 − ε)|H | ≤ h ≤ (1 + ε)|H |] ≥ 1− δ,

where H =
⋃m

i=1 Hi.

Therefore, to develop an effective randomized approximation algorithm for
the p-�3d matching problem, we only need to show

(1) how to count the number |Hi| of k-matchings in S that are properly colored
by the (2k)-coloring fi, for each i;

(2) how to randomly pick, with uniform probability, a k-matching that is
properly colored by the (2k)-coloring fi, for each i; and

(3) how to determine if a k-matching is properly colored by the (2k)-coloring
fi, for each i.

In the rest of this paper, we present algorithms that solve the above three
problems. These algorithms combined with Theorem 2 give an algorithm that
effectively computes an approximation of the number of k-matchings in a given
triple set S.

3 Dealing with Properly Colored k-Matchings

As given in the previous section, for the given input instance (S, k) of the p-�3d
matching problem, let fi be a (2k)-coloring of the symbols in the 2nd and the
3rd dimensions in S, and let Hi be the set of all k-matchings in S that are
properly colored by fi.

3.1 Computing the Value |Hi|

We present an algorithm CM1(S, k, fi) to count the distinct k-matchings in S
that are properly colored by the (2k)-coloring fi, i.e., CM1(S, k, fi) computes
the value |Hi|. Figure 1 gives the algorithm in detail, where C in the pair (C, N)
denotes a color set, and N denotes the number of k-matchings whose 2nd and 3rd
dimension symbols colored exactly by the color set C, and cl(Vali(ρ)) denotes
the color of the symbol in column-i in the triple ρ, where i = 2, 3.

Theorem 3. The algorithm CM1(S, k, fi) runs in time O(22kkn) and returns
exactly the number of k-matchings in S that are properly colored by fi.

Proof. For each i, 1 ≤ i ≤ r, let Si be the set of triples in S′ whose symbols
in column-1 are among {x1, x2, · · · , xi}. By induction on i, we first prove that

A Randomized Approximation Algorithm 353

Algorithm CM1(S, k, fi)
Input: a (2k)-coloring fi of the symbols in the 2nd and 3rd dimensions in the

triple set S
Output: The number of k-matchings in S that are properly colored by fi;

1 remove any triples in S in which any two symbols have the same color ;
2 let the set of remaining triples be S′ ;
3 let the symbols in Val1(S′) be x1, x2, . . . , xr ;
4 Qold = {(∅, 0)}; Qnew = {(∅, 0)};
5 for i = 1 to r do
5.1 for each pair (C, N) in Qold do
5.2 for each ρ ∈ S′ with Val1(ρ) = xi do
5.3 if C ∩ {cl(Val2(ρ)) ∪ cl(Val3(ρ))} = ∅
5.4 then {C′ = C ∪ {cl(Val2(ρ)) ∪ cl(Val3(ρ))} ;
5.5 if N = 0 then N ′ = N + 1 else N ′ = N ;
5.6 if the number of colors in C′ is no more than 2k
5.7 then if there exists another pair (C′′, N ′′) in Qnew in which

C′′ is exactly the same color set as C′

5.8 then replace N ′′ in the pair (C′′, N ′′)
with N ′′ = N ′′ + N ′;

5.9 else add (C′, N ′) to Qnew directly ; }
5.10 Qold = Qnew;
6 if there exists (C, N) in Qold in which C contains 2k colors then return N

else return 0 .

Fig. 1. An algorithm computing |Hi|

for all h ≤ k, if Si has t h-matchings properly colored by the same color set C
containing 2h distinct colors, then after the i-th execution of the for-loop in step
5 of the algorithm, the super-collection Qold must contain a pair (C, t).

The initial case i = 0 is trivial since Qold = {(∅, 0)}.
Now consider a general value i ≥ 1. Suppose that Si has t h-matchings (h ≤ k)

properly colored by the same color set C. Let T be the set of triples whose symbol
in the 1st dimension is xi. Moreover, suppose that among the t h-matchings in
Si, exactly u of them are not in the set T , and t − u of them are in T . By
induction, the triple set Si−1 = Si − T has exactly u h-matchings properly
colored by the color set C. Moreover, there are exactly t− u (h− 1)-matchings
in Si−1 properly colored by 2(h − 1) colors that can be combined with the
two colors in a triple in T to form the color set C. Let these sets of 2(h − 1)
colors be C1, . . ., Cg. By the inductive hypothesis, after the (i− 1)-st execution
of the for-loop in step 5, the super-collection Qold must contain a pair (C, u)
and the pairs (C1, N1), . . ., (Cg, Ng), where Nj denotes the number of (h − 1)-
matchings colored properly by the color set Cj , for 1 ≤ j ≤ g. It is easy to
see that N1 + · · · + Ng = t − u. Therefore, during the i-th execution of the
for-loop in step 5, each of the pairs (C1, N1), . . ., (Cg , Ng) will respectively be
combined with the colors of a corresponding triple in T to form the color set
C. At the same time, the corresponding Nj is added to N in (C, N). After the

354 Y. Liu, J. Chen, and J. Wang

i-th execution of the for-loop in step 5, the value of N in (C, N) will become
N = u + (N1 + · · ·+ Ng) = u + (t− u) = t. Therefore, the pair (C, t) is included
in Qold by step 5.10, and thus Qold contains the pair (C, t).

There are two special cases: (1)u = 0, it means that each h-matching that uses
exactly the same color set C contains one triple in T , and it also means that
Si− T does not have an h-matching that uses exactly the color set C. After the
(i− 1)-st execution of the for-loop in step 5, the super-collection Qnew contains
no pair (C, u), and the pair (C, N1) produced during the i-th execution of the
for-loop in step 5 will directly be added to Qnew by step 5.9. (2) u = t, it means
that each h-matching that uses exactly the color set C does not contain a triple
in T , and it also means that Si − T has t h-matchings which use exactly the
same color set C. By the inductive hypothesis, after the (i− 1)-st execution of
the for-loop in step 5, the pair (C, t) will have already existed in Qold.

Now let i = r, it can be concluded that for any h ≤ k, if the collection Sr

(i.e the original collection S) contains w h-matchings properly colored by the
same color set C, then after the r-th execution of the for-loop in step 5, the
super-collection Qold must contain the pair (C, w). In particular, if the triple set
S contains t k-matchings properly colored by 2k colors (i.e., properly colored by
the (2k)-coloring fi), then at the end of the algorithm, the super-collection Qold

contains a pair (C, t), where C is exactly the entire color set used by fi.
The time complexity of the algorithm CM1(S, k, fi) can be analyzed as the

following. For each 0 ≤ h ≤ k and for each color set C containing 2h different
colors, the super-collection Qold keeps at most one pair (C, N). Since there are(
2k
2h

)
different subsets of 2h colors over a total of 2k colors, the total number of

pairs (C, N) in Qold is bounded by
∑k

h=0

(
2k
2h

)
≤ 22k. For each i, 1 ≤ i ≤ k, we

examine each pair (C, N) in Qold in step 5.3 and check if we can construct a
larger (C, N) by adding the colors of triple ρ to C. This can be done for each
pair (C, N) in time O(k). Step 5.7 can be done in time O(k) by constructing an
array of size 22k to record the status of all color sets. Although in step 5 there are
double for-loops (i.e step 5 and step 5.2), the total time of these double for-loops
is O(n). Thus, step 5 takes time O(22kkn). Since step 5 is the dominating step
of the algorithm, the algorithm CM1(S, k, fi) runs in time O(22kkn). ��

3.2 Random Sampling in the Set Hi

For a (2k)-coloring fi in our (2k)-color coding scheme C, let Hi be the set of all
k-matchings in S that are colored properly by fi. In this section, we present a
sampling algorithm, which randomly picks a k-matching in Hi with a probability
1/|Hi|. Figure 2 gives the algorithm in detail, where C in the pair (C, N, M)
denotes a color set, N denotes the number of matchings colored exactly by the
color set C, and M denotes one matching randomly chosen from these matchings
colored by C. In step 5.8, p(M = M ′) denotes the probability of matching M ′

being set to M .

Theorem 4. The algorithm CM2(S, k, fi) runs in time O(22kkn), and returns
a k-matching properly colored by fi with a probability 1/|Hi|.

A Randomized Approximation Algorithm 355

Algorithm CM2(S, k, fi)
Input: fi is a (2k)-coloring on the symbols in the 2nd and 3rd dimensions in S
Output: A random k-matching in S that is properly colored by fi;

1 remove any triples in S in which any two symbols have the same color ;
2 let the set of remaining triples be S′ ;
3 let the symbols in Val1(S′) be x1, x2, . . . , xr ;
4 Qold = {(∅, 0, ∅)}; Qnew = {(∅, 0, ∅)};
5 for i = 1 to r do
5.1 for each group (C, N, M) in Qold do
5.2 for each ρ ∈ S′ with Val1(ρ) = xi do
5.3 if C ∩ {cl(Val2(ρ)) ∪ cl(Val3(ρ))} = ∅
5.4 then {C′ = C ∪ {cl(Val2(ρ)) ∪ cl(Val3(ρ))} ; M ′ = M ∪ {ρ} ;
5.5 if N = 0 then N ′ = N + 1 else N ′ = N ;
5.6 if the number of triples in M ′ is no more than k
5.7 then if there exists another group (C′′, N ′′, M ′′) in Qnew

in which C′′ is exactly the same color set as C′

5.8 then{ replace M ′′ in (C′′, N ′′, M ′′) with
M=random(M ′, M ′′) such that p(M = M ′) =
N ′/(N ′ + N ′′) and p(M = M ′′) = N ′′/(N ′ + N ′′);

5.9 replace N ′′ in (C′′, N ′′, M ′′) with N ′′ = N ′ + N ′′;}
5.10 else add (C′, N ′, M ′) to Qnew directly ; }
5.11 Qold = Qnew ;
6 if there exists (C, N, M) in Qold where C contains 2k colors then return M
else return “no such a matching exists”.

Fig. 2. An algorithm for randomly choosing a properly colored k-matching from S

Proof. For each i, let Si be the set of triples in S′ whose symbols in column-1
are among {x1, x2, . . . , xi}. We first prove by induction on i that for all h ≤ k,
if Si has t h-matchings properly colored by the same color set C which contains
2h distinct colors, then the super-collection Qold must contain a group (C, t, M)
after the i-th execution of the for-loop in step 5 of the algorithm, where M is an
h-matching randomly chosen from the previous t h-matchings with probability
1/t. In other words, any h-matching colored by C in Si can be randomly set to
M with the same probability.

Since the algorithm CM2(S, k, fi) is similar to the algorithm CM1(S, k, fi),
we will only concentrate on the difference, that is, the proof that any h-matching
colored by C in Si can be randomly set to M with the same probability.

Suppose that Si has t h-matchings (h ≤ k) properly colored by the same
color set C and that T is the set of triples whose first symbol is xi. Suppose
that among the t h-matchings, u of them are not in T , and t − u of them are
in T . Then Si−1 = Si − T has u h-matchings properly colored by the same
color set C. By the induction, after the (i − 1)-st execution of the for-loop in
step 5, the super-collection Qold contains a 3-tuple (C, u, M0), where M0 is an
h-matching in Si−1 randomly picked with a probability 1/u. Moreover, Si−1 has
t−u (h−1)-matchings properly colored by 2(h−1) colors that can be combined

356 Y. Liu, J. Chen, and J. Wang

with the two colors in a triple in T to form the color set C. Let these sets of
2(h− 1) colors be C1, . . ., Cg. Let the number of (h− 1)-matchings in Si−1 that
use the color set Cj be Nj , 1 ≤ j ≤ g. Obviously, N1 + · · · + Ng = t− u. Then
by induction, after the (i− 1)-st execution of the for-loop in step 5, for each j,
1 ≤ j ≤ g, the super-collection Qold contains a 3-tuple (Cj , Nj , Mj), where Nj

is total number of (h−1)-matchings in Si−1 that are properly colored by the set
set Cj , and Mj is an (h− 1)-matching in Si−1 properly colored by the color set
Cj and randomly picked with a probability 1/Nj. Furthermore, let ρj , 1 ≤ j ≤ g,
be the triple in T , whose colors when combined with Cj make the color set C.

During the i-th execution of the for-loop in step 5, according to the order
assumed, the group (C, u, M) in Qold will firstly meet with triples in T through
running g times of the for-loop in step 5.2, but it will not be modified since the
condition in step 5.3 is not satisfied according to the previous assumption. While
in the next for-loop in step 5.2, the group (C1, N1, M1) in Qold will be combined
with at least one triple (let it be ρ1) in T . As a result, the probability for h-
matching M0 occurring in (C, u + N1, M) is (1/u) ∗ (u/(u + N1)) = 1/(u + N1),
and the probability for h-matching M1 ∪ {ρ1} occurring in (C, u + N1, M) is
(1/N1) ∗ (N1/(u + N1)) = 1/(u + N1).

After the group (C2, N2, M2) in Qold is combined with one triple (let it be
ρ2) in T through the for-loop in step 5.2, the probability for h-matchings M0,
M1∪{ρ1} occurring in (C, u+N1+N2, M) are all (1/(u+N1))∗((u+N1)/(u+N1+
N2)) = 1/(u+N1+N2), and the probability for h-matching M2∪{ρ2} occurring
in (C, u + N1 + N2, M) is (1/N2) ∗ (N2/(u + N1 + N2)) = 1/(u + N1 + N2),
Finally, after the group (Cg, Ng, Mg) in Qold is combined with one triple (let it
be ρg) in T through the for-loop in step 5.2, the probability for h-matching M0,
M1 ∪ {ρ1}, M2 ∪ {ρ2}, . . ., Mg−1 ∪ {ρg−1} occurring in (C, u + N1 + N2 + · · ·+
Ng−1+Ng, M) are all (1/(u+N1+· · ·+Ng−1))∗((u+N1+· · ·+Ng−1))/((u+N1+
N2+ · · ·+Ng−1+Ng)) = 1/(u+N1+N2+ · · ·+Ng−1+Ng) = 1/(u+t−u) = 1/t,
and the probability for h-matching Mg ∪ {ρg} occurring in (C, u + N1 + N2 +
· · · + Ng−1 + Ng, M) is (1/Ng) ∗ (Ng/(u + N1 + N2 + · · · + Ng−1 + Ng)) =
1/(u + N1 + N2 + · · · + Ng−1 + Ng) = 1/(u + t − u) = 1/t. Furthermore, M0,
M1∪{ρ1}, M2∪{ρ2}, . . ., Mg∪{ρg} are exactly h-matchings colored by color set
C and they are arbitrary. Therefore, after the i-th execution of the for-loop in
step 5, the super-collectionQold must contain a group (C, t, M), in which M is an
h-matching randomly chosen from the previous t h-matchings with probability
1/t . If these groups in Qold are in other orders, the proof is similar.

Now let i = r, it can be concluded that for any h ≤ k, if the collection Sr

(i.e. the original collection S′) contains w h-matchings properly colored by the
same color set C, then at end of the algorithm, the super-collection Qold must
contain the group (C, N, M), in which N = w and M is a k-matching randomly
chosen from the previous w k-matchings with probability 1/w.

The main difference between algorithm CM2(S, k, fi) and CM1(S, k, fi) lies in
step 5.8. This step can be done by firstly randomly choosing an integer b between
1 and N ′ + N ′′. If b > N ′, the matching M ′′ is set to M in group (C, N, M).
Otherwise, the matching M ′ is set to M in group (C, N, M). Obviously, this step

A Randomized Approximation Algorithm 357

can be done in time O(1) and the time complexity of the rest steps is similar
to that of CM1(S, k, fi). In consequence, the time complexity of the algorithm
CM2(S, k, fi) is O(22kkn). ��

3.3 On the Membership of the Set Hi

In this last subsection, we discuss how to decide if a k-matching is in the set Hi.
In other words, we need to decide if a given k-matching M is properly colored
by the (2k)-coloring fi. This is trivial: we only need to go through the symbols
in the 2nd and 3rd dimensions in M and check if there are two symbols colored
with the same color. This can be easily done in time O(n).

Theorem 5. For any (2k)-coloring fi in our (2k)-color coding scheme C, let Hi

be the set of all k-matchings in S that are properly colored by fi. We can decide
for any k-matching M in S if M ∈ Hi in time O(kn).

4 Conclusions

Putting all the discussions together, we obtain a randomized approximation
algorithm for the p-�3d matching problem.

Theorem 6. There is a randomized approximation algorithm that solves the p-
�3d matching problem in the following sense: for two given positive real num-
bers ε and δ, and a given instance (S, k) of the p-�3d matching problem, where
S is a set of n triples and k is an integer, the algorithm generates a number h
in time O(5.483kn2 ln(2/δ)/ε2) such that

prob[(1 − ε)h0 ≤ h ≤ (1 + ε)h0] ≥ 1− δ

where h0 is the total number of k-matchings in the triple set S.

Proof. The algorithm proceeds as follows. For the given instance (S, k) of p-�3d
matching, let F be the set of the symbols that are in either the 2nd or the 3rd
dimension in S. Obviously, |F | ≤ 2n. The algorithm then, using Theorem 1, con-
structs a (2k)-color coding scheme C for the set F in time O(6.42kn) such that
the size of C is also bounded by O(6.42kn). Let C = {f1, . . . , fm}, where each fi

is a (2k)-coloring of the set F and m = O(6.42kn). Now for each i, 1 ≤ i ≤ m,
we define Hi to be the set of all k-matchings that are properly colored by the
(2k)-coloring fi. By Theorem 3, for each i, we can compute the number |Hi| of
k-matchings that are properly colored by fi in time t1 = O(22kkn). By Theo-
rem 4, for each i, we can randomly pick in time t2 = O(22kkn) a k-matching in
Hi with a probability 1/|Hi|. Finally, by Theorem 5, for any k-matching M in S
and for any i, we can decide if M is in Hi, i.e., if M is properly colored by fi in
time t3 = O(kn). Combining all these with Theorem 2, we obtain an algorithm
that for any given positive real numbers ε and δ, generates a number h in time

358 Y. Liu, J. Chen, and J. Wang

O(6.42kn + mt1 + mt2t3 ln(2/δ)/ε2) (the first term is for the construction of the
(2k)-color coding scheme C) such that

prob[(1 − ε)h0 ≤ h ≤ (1 + ε)h0] ≥ 1− δ

where h0 = |
⋃m

i=1 Hi| is the total number of k-matchings in the triple set S. By
replacing t1 by O(22kkn), t2 by O(22kkn), and t3 by O(kn), we conclude that
the running time of the algorithm is O(5.483kn2 ln(2/δ)/ε2). ��

According to the literature [2,10], a randomized algorithm ΦQ for a count-
ing problem Q is a fully polynomial time randomized approximation scheme
(FPRAS) if for any instance x of Q, and any positive real numbers ε and δ,
the algorithm ΦQ runs in time polynomial in |x|, 1/ε, and log(1/δ), and pro-
duces a number h such that

prob[(1 − ε)h0 ≤ h ≤ (1 + ε)h0] ≥ 1− δ,

where h0 is the solution to the instance x. There have been some very interesting
results in the line of research in this direction. For example, although the problem
of counting the number of satisfying assignments for a DNF formula is �P -
complete [15], the problem has a very nice FPRAS [10].

Arvind and Raman [2] generalized the concept of FPRAS and proposed the
concept of fixed parameter tractable randomized approximation scheme (FP-
TRAS). A parameterized counting problem Q has an FPTRAS if for any in-
stance (x, k) of Q, and any positive real numbers ε and δ, the algorithm ΦQ runs
in time f(k)g(|x|, ε, δ), where f is a fixed recursive function and g(|x|, ε, δ) is a
polynomial of |x|, ε, and log(1/δ), and produces a number h such that

prob[(1 − ε)h0 ≤ h ≤ (1 + ε)h0] ≥ 1− δ,

where h0 is the solution to the instance (x, k). Arvind and Raman [2] have shown
that there are a number of interesting problems that have FPTRAS. In terms of
this terminology, the algorithm presented in the current paper is an FPTRAS
for the problem p-�3d matching, which adds another FPTRAS problem to the
literature.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856
(1995)

2. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002)

3. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic
approximation algorithms for counting matchings. In: Proc. 39th Symp. on Theory
of Computation (STOC 07) (to appear)

4. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: Proc. 18th Annual ACM-SIAM Symp. on Discrete Al-
gorithms (SODA 07), pp. 298–307. ACM Press, New York (2007)

A Randomized Approximation Algorithm 359

5. Chien, S.: A determinant-based algorithm for counting perferct matchings in a
general graph. In: Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 04), pp. 728–735. ACM Press, New York (2004)

6. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4), 892–922 (2004)

7. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thi-
likos, D., Whitesides, S.: Faster Fixed-parameter tractable algorithms for matching
and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221,
pp. 311–322. Springer, Heidelberg (2004)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

9. Koutis, I.: A faster parameterized algorithm for set packing. Information processing
letters 94, 7–9 (2005)

10. Karp, R., Luby, M., Madras, N.: Monte-Carlo Approximation Algorithms for Enu-
merartion Problems. Journal of Algorithms 10, 429–448 (1989)

11. Sankowski, P.: Alternative algorithms for counting all matchings in graph. In: Alt,
H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 427–438. Springer, Hei-
delberg (2003)

12. Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: improved
matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

13. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(22), 398–427 (2002)

14. Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Com-
put. 8(3), 410–421 (1979)

15. Valiant, L.: The complexity of computing the permanent. Theoretical Computer
Science (8), 189–201 (1979)

Optimal Offline Extraction
of Irredundant Motif Bases

(Extended Abstract)

Alberto Apostolico� and Claudia Tagliacollo��

Georgia Institute of Technology & Università di Padova

Abstract. The problem of extracting a basis of irredundant motifs from
a sequence is considered. In previous work such bases were built in-
crementally for all suffixes of the input string s in O(n3), where n is
the length of s. Faster, non-incremental algorithms have been based
on the landmark approach to string searching due to Fischer and Pa-
terson, and exhibit respective time bounds of O(n2 log n log |Σ|) and
O(|Σ|n2 log2 n log log n), with Σ denoting the alphabet. The algorithm
by Fischer and Paterson makes crucial use of the FFT, which is imprac-
tical with long sequences.

The algorithm presented in the present paper does not need to resort
to the FFT and yet is asymptotically faster than previously available
ones. Specifically, an off-line algorithm is presented taking time O(|Σ|n2),
which is optimal for finite Σ.

Keywords and Phrases: Design and Analysis of Algorithms, Pattern
Matching, Motif Discovery, Irredundant Motif, Basis.

1 Introduction

The extraction from a sequence or sequence ensemble of recurrent patterns con-
sisting of intermixed sequences of solid characters and wildcards finds multiple
applications in domains ranging from text processing to computational molecu-
lar biology (see, e.g., [11]). Like with most other problems of pattern discovery,
the process is often beset by the number of candidates to be considered, which
in this particular case can grow exponentially with the input size. Beginning
with [8,10], notions of pattern maximality or saturation have been formulated
that prove capable of alleviating this problem. This is achieved by the algebraic-
flavored notion of a basis, a compact subset of the set of all patterns the elements
� Corresponding author. Dipartimento di Ingegneria dell’ Informazione, Università di

Padova, Padova, Italy and College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30318, USA. axa@dei.unipd.it Work Supported
in part by the Italian Ministry of University and Research under the Bi-National
Project FIRB RBIN04BYZ7, and by the Research Program of Georgia Tech.

�� Work performed in part while visiting the College of Computing of the Georgia
Institute of Technology.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 360–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Offline Extraction of Irredundant Motif Bases 361

of which can account, by suitable combination, for any other pattern in the set.
The elements of the basis are called irredundant motifs, and a few algorithms
have been produced to this date for the extraction of a basis from a sequence.
In [2] bases are built incrementally for all suffixes of the input string s in O(n3),
where n is the length of s. Faster algorithms, based on the landmark string
searching algorithm by Fischer and Paterson [5], are given in [9] and [7], with
respective time bounds of O(n2 log n log |Σ|) and O(|Σ|n2 log2 n log log n). The
algorithm in [5] is based on the FFT, which is admittedly impractical for long
sequences.

In this work, we design algorithms that do not make use of the FFT and yet are
asymptotically faster than previously available ones. Specifically, we present here
an off-line algorithm taking time O(|Σ|n2). In a companion paper we also present
an incremental algorithm taking time O(|Σ|n2 log n). The explicit description of
a basis requires Ω(n2) worst-case time and space, whence the offline algorithm
described in the present paper is optimal for finite alphabets.

The paper is organized as follows. Basic definitions and properties are recap-
tured in the next section. Following that, we describe a basic tool used by our
algorithms, which consists of a speed-up in the computation of the occurrence
lists of all patterns needed in the computation of a basis. The application of these
constructs to the algorithms are then discussed. The paper is self-contained and
notation largely conforms to the one adopted in [3,2].

2 Preliminaries

Let Σ be a finite alphabet of solid characters, and let ‘•’ 	∈ Σ denote a don’t-
care character, that is, a wildcard matching any of the characters in Σ ∪ {•}.
A pattern is a string over Σ ∪ {•} containing at least one solid character. We
use σ to denote a generic character from Σ. For characters σ1 and σ2, we write
σ1 (σ2 if and only if σ1 is a don’t care or σ1 = σ2.

Given two patterns p1 and p2 with |p1| ≤ |p2|, p1 (p2 holds if p1[j] (p2[j],
1 ≤ j ≤ |p1|. We also say in this case that p1 is a sub-pattern of p2, and that p2

implies or extends p1. If, moreover, the first characters of p1 and p2 are matching
solid characters, then p1 is also called a prefix of p2. For example, let p1 = ab••e,
p2 = ak • •e and p3 = abc • e • g. Then p1 (p3, and p2 	(p3. Note that the (
relation is transitive. The following operators are further introduced.

Definition 1. (⊕) Let σ1, σ2 ∈ Σ ∪ •.

σ1 ⊕ σ2 =
{

σ1, if σ1 = σ2

• , if σ1 	= σ2

Definition 2. (Extended ⊕) Given patterns p1 and p2, p1 ⊕ p2 = p1[i] ⊕ p2[i],
∀1 ≤ i ≤ min{|p1|, |p2|}).

Definition 3. (Consensus, Meet) Given the patterns p1, p2, the consensus of
p1 and p2 is the pattern p = p1⊕ p2. Deleting all leading and trailing don’t cares
from p yields the meet of p1 and p2, denoted by [p1 ⊕ p2].

362 A. Apostolico and Claudia Tagliacollo

For instance, aac•tgcta ⊕ caact•cat = •a••t•c••, and [aac•tgcta ⊕ caact•cat]
= a••t•c. Note that a meet may be the empty word. Let now s = s1s2...sn be a
sequence of n over Σ. We use sufi to denote the suffix sisi+1...sn of s.

Definition 4. (Autocorrelation) A pattern p is an autocorrelation of s if p is
the meet of s and one of its suffixes, i.e., if p = [s⊕ sufi] for some 1 < i ≤ n.

For instance, the autocorrelations of s = acacacacabaaba are: m1 = s⊕ suf2 =
s⊕suf11 = s⊕suf14 = a, m2 = s⊕suf3 = acacaca•a••a, m3 = s⊕suf4 = aba,
m4 = s⊕ suf5 = acaca•a, m5 = s⊕ suf6 = s⊕ suf9 = s⊕ suf8 = s⊕ suf10 =
s⊕ suf12 = a•a, m6 = s⊕ suf7 = aca•a.

Definition 5. (Motif) For a sequence s and positive integer k, k ≤ |s|, a
k-motif of s is a pair (m,Lm), where m is a pattern such that |m| ≥ 1 and m[1],
m[|m|] are solid characters, and Lm = (l1, l2, . . . , lq) with q ≥ k is the exhaustive
list of the starting position of all occurrences of m in s.

Note that both components concur to this definition: two distinct location lists
correspond to two distinct motifs even if the pattern component is the same and,
conversely, motifs that have different location lists are considered to be distinct.
In the following, we will denote motifs by their pattern component alone, when
this causes no confusion. Consider s = abcdabcd. Using the definition of motifs,
the different 2-motifs are as follows: m1 = ab with Lm1 = {1, 5}, m2 = bc
with Lm2 = {2, 6}, m3 = cd with Lm3 = {3, 7}, m4 = abc with Lm4 = {1, 5},
m5 = bcd with Lm5 = {2, 6} and m6 = abcd with Lm6 = {1, 5}.

Given a motif m, a sub-motif of m is any motif m′ that may be obtained from
m by (i) changing one or more solid characters into don’t care, (ii) eliminating
all resulting don’t cares that precede the first remaining solid character or follow
the last one, and finally (iii) updating Lm in order to produce the (possibly,
augmented) list Lm′ . We also say that m is a condensation for any of its sub-
motifs.

We are interested in motifs for which any condensation would disrupt the list
of occurrences. A motif with this property has been called maximal or saturated.
In intuitive terms, a motif m is maximal or saturated if we cannot make it more
specific while retaining the cardinality of the list Lm of its occurrences in s. More
formally, in a saturated motif m no don’t care of m can be replaced by a solid
character that appears in all the locations in Lm, nor can m be expanded by a
pattern prefix or suffix without affecting the cardinality of Lm.

A motif (m, Lm) is redundant if m and its location list Lm can be deduced
from the other motifs without knowing the input string s. Trivially, every unsat-
urated motif is redundant. As it turns out, however, saturated motifs may be
redundant, too. More formally:

Definition 6. A saturated motif (m, Lm), is redundant if there exist saturated
motifs (mi, Lmi) 1 ≤ i ≤ t, such that

Lm = (Lm1 + d1) ∪ (Lm2 + d2) ∪ ... ∪ (Lmp + dt)

with 0 ≤ dj < |mj |.

Optimal Offline Extraction of Irredundant Motif Bases 363

Here and in the following, (L+d) is used to denote the list that is obtained by
adding a uniform offset d to every element of L. For instance, the saturated motif
m1 = a•a is redundant in s = acacacacabaaba, since Lm1 = {1, 3, 5, 7, 9, 12} =
(Lm2) ∪ (Lm3) ∪ (Lm4 + 1) where m2 = acac, m3 = aba and m4 = ca•a.

Saturated motifs enjoy some special properties.

Property 1. Let (m1,Lm1) and (m2,Lm2) be saturated motifs. Then,

m1 = m2 ⇔ Lm1 = Lm2 .

We also know that, given a generic pattern m, it is always possible to determine
its occurrence list in any sequence s. With a saturated motif m, however, it is
possible in addition to retrieve the structure of m from the sole list Lm in s,
simply by taking:

m =
[⊕

i∈Lm

sufi

]
.

We also have:

Property 2. Let (m1,Lm1), (m2,Lm2) be motifs of s. Then,

m1 (m2 ⇔ Lm2 ⊆ Lm1 .

Similarly:

Property 3. Let (m,Lm) be a saturated motif of s. Then ∀L ⊆ Lm we have

m (
[⊕

k∈L

sufk

]
.

Let now sufi(m) denote the ith suffix of m.

Definition 7. (Coverage) The occurrence at j of m1 is covered by m2 if m1 (
sufi(m2), j ∈ Lm2 + i− 1 for some sufi(m2).

For instance, m6 = aca•a with Lm6 = {1, 3, 5, 7} is covered at position 5 by m2

= acacaca•a••a, Lm2 = {1, 3}. In fact, let m′ be ith suffix of m3 with i = 5,
that is, m′ = aca•a••a. Then 5 ∈ Lm2 + 4 and m6 ≺ m′, which together lead to
conclude that m6 is covered at 5 by m2. An alternate definition of the notion of
coverage can be based solely on occurrence lists:

Definition 8. (Coverage) The occurrence at j of m1 is covered by m2 if j ∈
Lm2 + i ⊆ Lm1 for some i.

In terms of our running example, we have: 5 ∈ Lm2 + 4 and Lm2 + 4 = {5, 7} ⊂
Lm6 = {1, 3, 5, 7}.

A maximal motif that is not redundant is called an irredundant motif. Hence
a saturated motif (m, Lm) is irredundant if the components of the pair (m, Lm)
cannot be deduced by the union of a number of other saturated motifs.

We use Bi to denote the set of irredundant motifs in sufi. Set Bi is called
the basis for the motifs of sufi. In particular, B is used to denote the basis of s,
which coincides with B1.

364 A. Apostolico and Claudia Tagliacollo

Definition 9. (Basis) Given a sequence s on an alphabet Σ, letM be the set of
all saturated motifs on s. A set of saturated motifs B is called a basis of M iff
the following hold: (1) for each m ∈ B, m is irredundant with respect to B−{m},
and, (2) let G(X) be the set of all the redundant maximal motifs generated by
the set of motifs X , then M = G(B).

In general, |M| = Ω(2n). Luckily, however, it has been established that the basis
of 2-motifs has size linear in |s|. As will be recaptured later in the discussion, a
simple proof of this fact rests on the circumstance, that all motifs in the basis are
autocorrelations of the string s. Before getting to that, we discuss a crucial block
of our construction, which is the efficient computation of the lists of occurrences
of all meets between suffixes of s. From now on and for the remainder of this
paper, treatment will be restricted to 2-motifs.

3 Searching for Pattern Occurrences

String searching, which is the problem of finding all occurrences of an assigned
string into a larger text string, is one of the most battered problems of al-
gorithmics. Among the variants of the problem, a prominent role is held by
searching for approximate occurrences of a solid string (see, e.g., [1,6]), as well
as searching for patterns with don’t care of the kind considered here. A clas-
sical, O(n log m log |Σ|) time solution based on the FFT was provided in 1974
in a seminal paper by Fischer and Paterson [5] that exploited the convolutory
substrate of the problem. More recently, the complexity of that approach was
further reduced to O(n log n) by Cole and Hariharan [4].

All the existing approaches to the extraction of bases of irredundant motifs
must solve the problem of finding the occurrences of a special family of patterns
with don’t cares, namely, the autocorrelations of the input string s or of suffixes
thereof. The incremental approach in [2] proceeds by computing those lists for
consecutively increasing suffixes of each autocorrelation. This produces the basis
associated with each one of the suffixes of s, at the overall cost of O(n3) time.
The approaches of [9,7] compute the occurrences of autocorrelations off-line with
Fischer and Paterson [5], hence at an overall cost of O(n2 log n log |Σ|). The FFT-
based approach does not make use of the fact that the strings being sought are
autocorrelations of the input string s. The incremental approach uses this to
derive the list of occurrences of consecutive suffixes of the same autocorrelation
as consecutive refinements of previously computed lists. However, none of the
approaches available takes advantage of the fact, that the patterns of which the
occurrences are sought come all from the set of autocorrelations of the same
string. The analysis and exploitation of such a relationship constitutes a core
contribution of the present paper. In a nutshell, if m = sufi ⊕ sufj has an
occurrence at some position k in s, then this induces stringent relationships
among the number of don’t cares in each of the three patterns m = sufi ⊕
sufj, m

′ = sufi ⊕ sufk and m′′ = sufj ⊕ sufk. The specific structure of these
relationships depends on whether the alphabet is binary or larger. We examine
the case of a binary alphabet first.

Optimal Offline Extraction of Irredundant Motif Bases 365

3.1 Binary Alphabet

Let m = [sufi ⊕ sufj] and assume an occurrence of m at k. We establish here
a relationship among the number of don’t cares that are found respectively in
m and in the prefixes of length |m| of sufi ⊕ sufk and sufj ⊕ sufk, that is,
[sufi ⊕ sufk] and [sufj ⊕ sufk]. Such a relationship will enable us to decide
whether k ∈ Lm based solely on the knowledge of those three numbers of don’t
cares. We use dx to denote the number of don’t cares in x and prefi(x) to denote
the prefix of x of length i.

Lemma 1. Let m = [sufi ⊕ sufj], m′ = pref|m|(sufi ⊕ sufk) and m′′ =
pref|m|(sufj ⊕ sufk).

k ∈ Lm ⇔ dm = dm′ + dm′′ .

Proof. We show first that if m has an occurrence at k this implies the claim.
Under such hypotheses, we have i, j, k ∈ Lm, whence, by Property 3, also m (
m′ = pref|m|(sufi ⊕ sufk). Similarly, it must be m (m′′. Considering then
homologous positions in m, m′ and m′′, the following holds:

- If m[l] = σ then, from m (m′ and m (, m′′, we get m′[l] = m′′[l] = σ.
- If m[l] = •⇔ sufi[l] 	= sufj[l], and one of the following two cases is possible:

1. m′[l] = σ ⇔ sufi[l] = sufk[l] ⇔ sufj[l] 	= sufk[l] ⇔ m′′[l] = •.
2. m′[l] = •⇔ sufi[l] 	= sufk[l] ⇔ sufj[l] = sufk[l] ⇔ m′′[l] = σ.

The last one is summarized by m[l] = • ⇔ m′[l] 	= m′′[l]. Note that, since
m′ and m′′ both result from a meet of sufk with some other suffix of s, then
m′[l] 	= m′′[l] implies m′[l] = • or m′′[l] = •.

Thus, in correspondence with every don’t care of m, only one of the patterns
m′ and m′′ will have a don’t care. Since every solid character of m must also
appear in homologous positions in both m′ and m′′, we have that the total
number of don’t cares in m′ and m′′ equals the don’t cares in m.

Fig. 1. Illustrating Lemma 1

366 A. Apostolico and Claudia Tagliacollo

To prove the converse, we show that if k is not an occurrence of m then this
infringes the claimed relationship. Assume then k /∈ Lm. Hence, ∃l such that
m[l] = σ and sufk[l] 	= σ. Since m[l] = σ, it must be sufi[l] = σ and sufj[l] = σ,
whence m′[l] = • = m′′[l]. Upon re-examining the distribution of don’t cares in
m′ and m′′ with respect to m, we have the following cases:

- m[l] = σ. This splits into:
1. m′[l] = σ ⇔ m′′[l] = σ.
2. m′[l] = •⇔ m′′[l] = •.

- m[l] = •. There is no change with respect to the first part of the proof.

We see thus that the difference with respect to the assumption k ∈ Lm is
posed by some solid characters in m that become don’t care in m′ and m′′.
Every don’t care in m is balanced by corresponding don’t cares in m′ and m′′.
However, we must now add to the equation a positive contribution that amounts
to twice the number of positions of sufk that cause a mismatch with m. In other
words, when k /∈ Lm we have dm < dm′ + dm′′ , hence dm 	= dm′ + dm′′ . ��

Once the number of don’t cares in every suffix of each autocorrelation of the
binary string s has been tabulated, Lemma 1 makes it possible to decide in
constant time whether or not a meet occurs at any given position of s. Tallying
don’t cares in every suffix of a pattern is trivially accomplished in time linear in
the pattern length. Once this is done, the number of don’t cares in any substring
of that pattern is retrieved by a straightforward subtraction, in constant time.
In conclusion, the constant time implementation of occurrence queries based on
Lemma 1 requires only a trivial O(n2) preprocessing of s.

3.2 Alphabets with More Than 2 Symbols

The criterion offered by Lemma 1 can be generalized to a larger alphabet Σ
by first generating, from s, |Σ| binary instances of the problem, then handling
them separately and in analogy to Lemma 1, and finally combining the results
in a whole. To handle the instance relative to the generic σ ∈ Σ, a binary
version s̃ of s is built by changing every σ into a ’1’ and every σ′ 	= σ into a ’0’.
Upon computing any autocorrelation or meet of s̃, all 0’s are replaced by don’t
cares, yielding what will be referred to as the corresponding binary projection.
The overall operation will be denoted by ⊗ and it is equivalent to taking the
bitwise binary product or logical ’and’ of the two input strings. However, separate
accounting must now be kept based on the origin of each don’t care. Specifically,
relative to a given pattern m we keep individual tracks of:

1. the number of don’t cares originating by a 1 × 0, with ’1’ in s̃ and ’0’ in a
suffix of s̃; this number is denoted by d10

m ;
2. the number of don’t cares originating by a 0× 1, denoted by d01

m ;
3. the number of don’t cares originating by 0× 0, denoted by qm.

Optimal Offline Extraction of Irredundant Motif Bases 367

If now m = pref|m|(sufi(s̃)⊗ sufj(s̃)) is one of these binary patterns, we will
check its occurrence at k in analogy with Lemma 1 by comparing the don’t cares
in m, m′ = pref|m|(sufi(s̃)⊗ sufk(s̃)), and m′′ = pref|m|(sufj(s̃)⊕ sufk(s̃)).
Only, this time we will need to distinguish among the three possible origins of
the don’t cares.

The following relationships among homologous positions of m, m′ and m′′ are
readily checked.

- for any don’t care of the type 00 in m, there is one of the type 00 or 01 both
in m′ and m′′.

- for any don’t care of the type 10 in m, either:
- m′ has a don’t care 10 ⇔ m′′ has a don’t care 00.
- m′ has a solid character ⇔ m′′ has a don’t care 01.

- for any don’t care 01 the situation is dual, and we have one of the following:
- m′′ has a don’t care 10 ⇔ m′ has a don’t care of type 00.
- m′′ has a solid character ⇔ m′ has a don’t care 01.

- every 1 in m has homologous occurrences both in m′ and m′′.

Lemma 2. Let m = pref|m|(sufi(s̃)⊗sufj(s̃)), m′ = pref|m|(sufi(s̃)⊗ sufk(s̃)),
m′′ = pref|m|(sufj(s̃)⊗ sufk(s̃)), and set

t = qm −
(qm′ + qm′′)

2
.

Then,
k ∈ Lm ⇔ d10

m − d10
m′ = d01

m′′ − t.

Proof. Observe first that to every 00 don’t care of m there corresponds in m′

and m′′ a pair of don’t cares of the same or of 01 type, the latter being counted
precisely by the parameter t. Moreover, by the structure of ⊗, a 00 don’t care in
m cannot be covered by a solid character in m′ or m′′. In other words, the value
of t does not depend on whether or not k is an occurrence of m.

Assume now k ∈ Lm. Then, d10
m −d10

m′ represents the number of don’t cares of
m that are covered by a solid character in m′. The only such don’t cares of m
are of the 10 type, and the only case in which a 10 don’t care may originate in
m′ is by having a corresponding 10 don’t care in m. To any don’t care covered
by m′, there corresponds a 01 don’t care in m′′. However, m′′ will contain in
general additional don’t cares of 01 type, which correspond to the configuration,
described earlier, where a 00 don’t care of m corresponds a 01 don’t care both
in m′ and m′′. This yields the term t in the equality.

For the second part of the proof, assume that the equality holds and yet
k /∈ Lm. Imagine that, starting with an occurrence of m, one injects mismatches
(that is, solid 1 characters, that are transformed into as many 0’s in m′ e m′′).
Every new mismatch causes a unit increase in d10

m′ , whereas d10
m and d01

m′′ are not
affected. Consequently, t = d10

m′ + d01
m′′ − d10

m undergoes a unit increase. But this
is impossible, by the invariance of t. ��

368 A. Apostolico and Claudia Tagliacollo

Lemma 3. Let Σ = {σ1, σ2, ..., σ|Σ|} and m1, m2, ..., m|Σ| the binary projections
of a given meet m = [sufi ⊕ sufj].

k ∈ Lm ⇔ k ∈ Lm1 ∩ Lm2 ∩ ... ∩ L|Σ|

up to a suitable shift for each list.

Proof. Since the only solid characters of mi are precisely the occurrences of
σi in s, we have mi (m, ∀i = 1, ..., |Σ|. Then, Lm ⊆ Lmi , ∀i, hence Lm ⊆
Lm1 ∩ Lm2 ∩ ... ∩ Lm|Σ| . Assume an occurrence l ∈ Lm1 ∩ Lm2 ∩ ... ∩ Lm|Σ| but
l /∈ Lm. This implies the existence of a position in sufl that causes a mismatch
with a solid character, say, σk, of m. Consider then the projection involving σk.
From l /∈ Lm we get l /∈ Lmk

, hence l /∈ Lm1 ∩ Lm2 ∩ ... ∩ Lm|Σ| . ��

Theorem 1. Let s be a string of n characters over an alphabet Σ, and m the
meet of any two suffixes of s. Following an O(|Σ|n2) time preprocessing of s, it
is possible to decide for any assigned position k whether or not k is an occurrence
of m in time O(|Σ|).

Proof. By the preceding properties and discussion. ��

4 An O(|Σ|n2) Off-Line Basis Computation

We are now ready to develop in full the criterion upon which our optimal algo-
rithm is built. Recall that in order for a motif to be irredundant it must have at
least one occurrence that cannot be deduced from occurrences of other motifs. In
[2], such an occurrence is called maximal and the motif is correspondingly said
to be exposed at the corresponding position. Clearly, every motif with a maxi-
mal occurrence is saturated. However, not every saturated motif has a maximal
occurrence. In fact, the set of irredundant motifs is precisely the subset of sat-
urated motifs with a maximal occurrence. The following known definitions and
properties (see, e.g., [2,9]) systematize these notions and a few more important
facts.

Definition 10. (Maximal occurrence) Let (m,Lm) be a motif of s and j ∈ Lm.
Position j is a maximal occurrence for m if for no d′ ≥ 0 and (m′,Lm′) we have
Lm′ ⊆ (Lm − d′) with (j − d′) ∈ Lm′ .

For a given m ∈ B, let Lmax
m denote the list of maximal occurrences of m. The

following lemma contributes an alternative definition of irredundancy, whereby
the problem of identifying the basis for s translates into that of identifying the
motifs with at least one maximal occurrence in s.

Lemma 4. m ∈ B ⇔ |Lmax
m | > 0.

Proof. By the definition of irredundancy. ��

Optimal Offline Extraction of Irredundant Motif Bases 369

Lemma 5. If m ∈ B, then

j ∈ Lmax
m ⇔ [s⊕ suf(max{j,k}−min{j,k})] = m, ∀k ∈ Lm.

Proof. W.l.o.g., assume k > j and that ∃k ∈ Lm, k > j : w = [s⊕ sufk−j] 	= m.
Let w = vm′ with m′ = [sufj⊕sufk]. Since j, k ∈ Lm, it must be m (m′, hence
m ≺ m′ from the hypothesis. Then, the occurrence at j is covered by m′ (or by
the motifs that cover m′). Therefore, it must be m = m′ = [sufj⊕sufk], ∀k ∈ Lm

and then w = vm′ = vm. Likewise, if w 	= m, then the occurrence at j is covered
by w and thus cannot be maximal. It remains to be shown that the converse is
also true, i.e., that

[s⊕ suf(max{j,k}−min{j,k})] = m, ∀k ∈ Lm

implies that j is a maximal occurrence for m. But it follows from the hypothesis
that the occurrence at j cannot be covered by any motif with a list L ⊂ Lm,
whence this occurrence is maximal. ��

Lemma 5 gives a handle to check whether a position i is a maximal occurrence
for an assigned motif (m,Lm). For this, it suffices to check that [sufi ⊕ sufk] =
m, ∀k ∈ Lm. We note, for future record, that this holds in particular for i equal
to the smallest index in Lm.

Theorem 2. Every irredundant motif is the meet of s and one of its suffixes.

Proof. Let m ∈ B. By Lemma 4, we derive that m ∈ B ⇔ m must be exposed
at some position of s. Let j be this position. It follows from Lemma 5 that for
m to be exposed at j it must be m = [s⊕ suf(max{j,k}−min{j,k})], ∀k ∈ Lm. ��

We have thus:

Theorem 3. The number of irredundant motifs in a string of n characters is
O(n).

Proof. Immediate. ��

Lemma 6.
∑

m∈B |Lm| < 2n.

Proof. Let m be an irredundant motif in s, with a maximal occurrence at j.
>From Lemma 5, it follows that

∀k ∈ Lm, m = [s⊕ suf(max{j,k}−min{j,k})].

We charge each term of Lm other than j to a different shift (max{j, k} −
min{j, k}) between s and one of its suffixes, and we charge the occurrence at j to
s itself. By the maximality of m, each one of the possible shifts in {1, 2, ..., n−1}
is only charged once, while s gets charged at most n− 1 times overall. ��

370 A. Apostolico and Claudia Tagliacollo

Lemma 6 shows that the implicit specification of the basis takes linear space.
This provides a crucial pillar for an algorithm based entirely on the management
of occurrence lists, as is described next.

In the off-line basis computation the only patterns at play are the autocorre-
lations of the input string s, since the only candidate irredundant motifs consist
of the corresponding meets. The main stages of the computation are summarized
as follows:

1 compute the occurrence lists of the autocorrelations of s;
2 store these autocorrelations in a trie ;
3 identify the members of the basis by visiting the nodes of the trie.

In order to take advantage of Lemma 1 and its extensions, Stage 1 requires a
straightforward preprocessing that consists of computing, for each m = [s⊕sufi]
the number of don’t cares that are present in every suffix of m partitioned, for
large alphabets, among the implied binary projections. Once this information
is available, that Lemma and its extensions will support the compilation of the
occurrence lists of all autocorrelations of s.

Once this is done, the collection of all autocorrelations of s are stored in a trie
each node of which stores some additional information, as follows. Let us say
that sufk takes part in a autocorrelation m of s if m = [sufk ⊕ sufl] for some
l. Let v be a node of the trie and denote by index[k] the number of times that
sufk takes part in a autocorrelation of s that terminates at v.

Definition 11. The index of v is I(v) = max1≤k≤|s|{index[k]}.

We assume that it is possible to know, for every node of the trie, both I(v) and
the suffix of s that produces it. Then, the elements of the basis are identified
by comparing, for every terminal node of an autocorrelation, I(v) and |Lm|.
In fact, we know that if m has a maximal occurrence at i, then m = [sufi ⊕
sufj], ∀j ∈ Lm. Therefore, if I(v) = |Lm| then the suffix yielding I(v) is a
maximal occurrence for m.

Theorem 4. The basis of irredundant 2-motifs in a string s of n characters can
be computed in time (O|Σ|n2).

Proof. The dominant term in the computation is finding the occurrence lists for
the autocorrelations, which was found to take time O(|Σ|n2). Building the trie
takes O(n2) and the computation of I(v) for each v can be carried out during
this construction at no extra cost. The last step only calls for a constant check
at each node, which charges O(n) overall. ��

Since the explicit description of the O(n) motifs of the basis takes space O(n2),
then this algorithm is optimal for any alphabet of constant size. As it turns out,
the computation of the basis may be further simplified when |Σ| = 2. This rests
on some additional properties that will be described only in the full version of
the paper.

Optimal Offline Extraction of Irredundant Motif Bases 371

5 Concluding Remarks

Several issues are still open, notable among them, the existence of an optimal
algorithm for general alphabets and of an optimal incremental algorithm for
alphabets of constant or unbounded size.

References

1. Apostolico, A., Galil, Z.: Pattern matching algorithms. Oxford University Press,
New York (1997)

2. Apostolico, A., Parida, L.: ncremental paradigms of motif discovery. Journal of
Computational Biology 11(1), 15–25 (2004)

3. Apostolico, A.: Pattern discovery and the algorithmics of surprise. Artificial Intel-
ligence and Heuristic Methods for Bioinformatics, pp. 111–127 (2003)

4. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: STOC ’02. Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pp. 592–601 (2002)

5. Fischer, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.
(ed.) Proceedings of the SIAM-AMS Complexity of Computation, Providence, R.I.
American Mathematical Society, pp. 113–125 (1974)

6. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1), 31–88 (2001)

7. Pelfrêne, J., Abdeddaïm, S., Alexandre, J.: Extracting approximate patterns. Jour-
nal of Discrete Algorithms 3(2-4), 293–320 (2005)

8. Parida, L.: Algorithmic Techniques in Computational Genomics. PhD thesis, De-
partment of Computer Science, New York University (1998)

9. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.-F.: Bases of motifs for generating
repeated patterns with wild cards. IEEE/ACM Trans. Comput. Biol. Bioinformat-
ics 2(1), 40–50 (2005)

10. Parida, L., Rigoutsos, I., Floratos, A., Platt, D., Gao, Y.: Pattern discovery on
character sets and real-valued data: linear bound on irredundant motifs and an
efficient polynomial time algorithm. In: Symposium on Discrete Algorithms, pp.
297–308 (2000)

11. Wang, J.T.L., Shapiro, B.A., Shasha, D.E.: Pattern Discovery in Biomolecular
Data: Tools, Techniques and Applications. Oxford University Press, Oxford (1999)

Linear Algorithm for Broadcasting in Unicyclic

Graphs

(Extended Abstract)

Hovhannes Harutyunyan and Edward Maraachlian

Concordia University, Department of Computer Science and Software Engineering,
Montreal, QC. H4G 1M8, Canada

haruty@cs.concordia.ca, e maraac@cs.concordia.ca

Abstract. Broadcasting is an information dissemination problem in a
connected network, in which one node, called the originator, dissemi-
nates a message to all other nodes by placing a series of calls along the
communication lines of the network. Once informed, the nodes aid the
originator in distributing the message. Finding the minimum broadcast
time of a vertex in an arbitrary graph is NP-complete. The problem is
solved polynomially only for trees. It is proved that the complexity of the
problem of determining the minimum broadcast time of any vertex in an
arbitrary tree T = (V, E) is Θ|V |. In this paper we present an algorithm
that determines the broadcast time of any originator in an arbitrary uni-
cyclic graph G = (V, E) in O(|V |) time. This, combined with the obvious
lower bound, gives a Θ(|V |) solution for the problem of broadcasting in
unicyclic graphs. As a byproduct, we also find a broadcast center of the
unicyclic graph (a vertex in G with the minimum broadcast time).

1 Introduction

Computer networks have become essential in several aspects of modern society.
The performance of information dissemination in networks often determines their
overall efficiency. One of the fundamental information dissemination problems
is broadcasting. Broadcasting is a process in which a single message is sent
from one member of a network to all other members. Inefficient broadcasting
could degrade the performance of a network seriously. Therefore, it is of a major
interest to improve the performance of a network by using efficient broadcasting
algorithms.

Broadcasting is an information dissemination problem in a connected net-
work, in which one node, called the originator, must distribute a message to all
other nodes by placing a series of calls along the communication lines of the net-
work. Once informed, the informed nodes aid the originator in distributing the
message. This is assumed to take place in discrete time units. The broadcasting
is to be completed as quickly as possible, subject to the following constrains:

– Each call involves only one informed node and one of its uninformed neighbors.
– Each call requires one unit of time.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 372–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Linear Algorithm for Broadcasting in Unicyclic Graphs 373

– A node can participate in only one call per unit of time.
– In one unit of time, many calls can be performed in parallel.

A broadcast scheme of an originator u is a set of calls that completes the
broadcasting in the network originated at vertex u.

Formally, any network can be modeled as a connected graph G = (V, E), where
V is the set of vertices (or nodes) and E is the set of edges (or communication
lines) between the vertices in graph G.

Given a connected graph G = (V, E) and a message originator, vertex u, the
broadcast time of vertex u, b(u, G) or b(u), is the minimum number of time units
required to complete broadcasting from the vertex u. Note that for any vertex u
in a connected graph G on n vertices, b(u) ≥ �log n� since during each time unit
the number of informed vertices can at most be doubled. The broadcast time
b(G) of the graph G is defined as max{b(u)|u ∈ V }.

Determination of b(u, G) or b(u) for a vertex u in an arbitrary graph G is
NP -complete [17]. The proof of NP -completeness is presented in [20]. There-
fore, many papers have presented approximation algorithms to determine the
broadcast time of any vertex in G (see [2], [3], [8], [9], [11], [12], [13], [14], [18],
[19], [21]). Some of these papers give theoretical bounds on the broadcast time.
Given G = (V, E) and the originator u, the heuristic in [18] returns broadcast
algorithm with broadcast time at most b(u, G)+O(

√
|V |). The best theoreti-

cal upper bound is presented in [9]. Their approximation algorithm generates a
broadcast algorithm with broadcast time O(log(|V |)

loglog(|V |))b(G). The heuristics [3]
and [16] are the best existing heuristics for broadcasting in practice. Their perfor-
mance is almost the same for commonly used interconnection networks. However,
the broadcast algorithm from [16] outperforms the broadcast algorithm from [3]
in three graph models from a network simulator ns-2 (see[1,2,7,22]). Also, its
time complexity is O(|E|), while the complexity of the algorithm from [3] is
O(|V |2 · |E|).

Since the problem is NP -complete in general, another direction for research
is to design polynomial algorithms that determines the broadcast time of any
vertex for a class of graphs. To the best of our knowledge, the only known result
in this direction is the linear algorithm (called BROADCAST) designed in [20]
which determines the broadcast time of a given vertex in any tree. They also
find a broadcast scheme of a given tree T = (V, E) in linear time O(|V |).

In this paper we present an algorithm that determines the broadcast time
of any originator in an arbitrary unicyclic graph G = (V, E). The algorithm
is linear, O(|V |), for any originator. As a byproduct, we also find a broad-
cast center (a vertex in G with minimum broadcast time) of the unicyclic
graph.

The paper is organized as follows. The next section will present some aux-
iliary results that will be necessary to understand the algorithm and prove its
correctness and linearity. Section 3 presents the actual algorithm with a proof
of correctness and a complexity analysis. The final section is a conclusion.

374 H. Harutyunyan and E. Maraachlian

2 Definitions and Auxiliary Results

A unicyclic graph (Fig. 1) is a connected graph with only one cycle. Basically
it is a tree with only one extra edge. It can also be seen as a cycle where every
vertex on the cycle is the root of a tree. Denote the vertices of the cycle Ck by
r1, r2, · · · , rk and the tree rooted at ri by Ti, where 1 ≤ i ≤ k. We will use the
following definitions and results from [20].

T1

T2

Ti

Tk

r1

r2

ri

rk

w

Fig. 1. A unicyclic graph where the vertices ri, belonging to the cycle Ck, are the roots
of the trees Ti for 1 ≤ i ≤ k

Definition 1 ([20]). The minimum broadcast time, b(BC, G), of the graph G =
(V, E) is defined to be the minimum of the broadcast times of all the vertices.
b(BC, G) = minu∈V {b(u, G)}.

Definition 2 ([20]). The broadcast center of the graph G, BC(G), is defined to
be the set of all vertices whose broadcast time is equal to the minimum broadcast
time of the graph, BC(G) = {u|b(u, G) = b(BC, G)}.

Theorem 1 ([20]). Let v /∈ BC(T) be a vertex in a tree T such that the shortest
distance from v to a vertex x ∈ BC(T) is k. Then b(v, T) = k + b(BC, T).

Corollary 1 ([20]). For any tree T, BC(T) consists of a star with at least two
vertices.

The unicyclic graph can be converted into a tree by cutting one of the edges of
the cycle Ck = r1, r2, ..., rk, r1. A simple algorithm to determine the broadcast
time of a vertex w in an arbitrary unicyclic graph G = (V, E) would be the
following:

Linear Algorithm for Broadcasting in Unicyclic Graphs 375

SIMPLEBROADCASTALGORITHM(w, G):

1. Extract from G the cycle Ck and the trees Ti for 1 ≤ i ≤ k which are rooted
at a vertex on Ck.

2. Cut edge (ri, ri+1) from the cycle Ck, for i = 1, 2, ..., k. Denote the resulting
tree by Gi.

3. Apply BROADCAST(w, Gi) for i = 1, 2, ..., k from [20] and choose the tree
Gi with the minimum broadcast time b(w, Gi).

The complexity of step 1 of the algorithm is O(n), where |V | = n. The com-
plexity of steps 2 and 3 are O(k) and O(kn) respectively. Thus, the total com-
plexity of the above algorithm will be O(kn), which is O(n2) in the worst case.
However, Ω(n) is an obvious lower bound. In this paper we will show Θ(n)
bound by describing a linear algorithm that determines the broadcast time of
any vertex w in an arbitrary unicyclic graph.

Notation 1 If u and v are two vertices in graph G then (u, v) represents the
edge between them, and d(u, v) represents the distance between them.

Definition 3. Given trees T1 = (V1, E1), T2 = (V2, E2), · · ·, Ti = (Vi, Ei)
with roots r1, r2, · · ·, ri respectively, the tree T1,2,···,i = (V, E) = T1 ⊕ T2 ⊕
· · · ⊕ Ti is a tree where V = V1 ∪ V2 ∪ · · · ∪ Vi and E = E1 ∪ E2 ∪ · · · ∪ Ei ∪
{(r1, r2), (r2, r3), · · · , (ri−1, ri)}.
In other words, the trees Ti are connected by adding the edges (r1, r2), (r2, r3),
· · ·, (ri−1, ri).

2.1 The Broadcast Center of the Sum of Two Trees

In this section we will describe how to find a broadcast center and calculate the
minimum broadcast time of the sum of two trees.

Lemma 1. In any tree T , rooted at r, there exists a unique vertex u ∈ BC(T),
called the special broadcast center denoted as u = SBC(T), such that the path
joining u and r does not contain any other vertex v such that v ∈ BC(T).

Proof. First we will show the existence of vertex u. Let v be a vertex such that
v ∈ BC(T) and let P = v, v1, v2, · · · , vk, r be the unique path from v to r.
Due to Corollary 1 only v1 can be in BC(T). If v1 ∈ BC(T), then it is the
required vertex, and v1, v2, · · · , vk, r is the path from SBC(T) = v1 to the root
of T , r. If v1 	∈ BC(T) then v is the required vertex and P = v, v1, v2, · · · , vk, r
is the unique path from SBC(T) = v to the root of T , r. The uniqueness of
u = SBC(T) immediately follows from the fact that T is a tree and no cycles
are allowed in a tree.

From Lemma 1 it follows that if T1 and T2 are two trees with u1 = SBC(T1)
and u2 = SBC(T2), then the path that joins u1 and u2 does not contain any
other vertex v (different than u1 and u2) such that v ∈ (BC(T1) ∪BC(T2)).

In the remaining part of this section it is assumed that there are two trees
T1 and T2 with roots r1 and r2 respectively, T = T1 ⊕ T2, u1 = SBC(T1), and
u2 = SBC(T2).

376 H. Harutyunyan and E. Maraachlian

r1

r2

T2

T1

u1

u2

u

x’

Fig. 2. Sum of two trees

Theorem 2. There exists a vertex u such that u ∈ BC(T1 ⊕ T2) and u is on
the path joining u1 = SBC(T1) and u2 = SBC(T2).

Proof. We will prove this theorem by contradiction. Assume that there exists a
vertex x′ (Fig. 2) not on the path from u1 to u2 and such that b(x′, T) < b(u, T)
for all vertices u on the path joining u1 and u2. Without loss of generality assume
that x′ is in T1. Because T is a tree, there exists a unique path P that joins x′

to r1. Two cases may arise:
Case 1: The path P intersects the path from u1 to r1 at a vertex other than

u1. Let u ∈ P be this intersection vertex. We denote by t1(x) the minimum
time that is needed to inform all the vertices of T1 starting at the originator
x. Therefore, b(u, T1) = t1(u) = d(u, u1) + b(BC, T1) and t1(x′) = b(x′, T1) =
d(x′, u) + (d(u, u1) + b(BC, T1)) = d(x′, u) + t1(u). Similarly, the minimum time
to inform all the vertices in T2 starting at any originator x will be denoted
by t2(x). We have t2(u) = d(u, r1) + 1 + d(r2, u2) + b(BC, T2) = d(u, u2) +
b(BC, T2) and t2(x′) = d(x′, u) + d(u, u2) + b(BC, T2). Having calculated t1(x)
and t2(x) we can calculate b(x, T) since b(x, T) = t1(x) + 1 if t1(x) = t2(x)
and b(x, T) = max{t1(x), t2(x)} otherwise. Since, t1(x′) > t1(u) and t2(x′) >
t1(u) we conclude that b(x′, T) > b(u, T) which contradicts the assumption that
b(x′, T) < b(u, T).

Case 2: The path P , joining x′ and r1, does not intersect the path joining
u1 and r1. In this case the path P will merge with the path joining u1 and
r1 at vertex u1. Using arguments similar to the preceding case we can show
that there there is no vertex x′ such that b(x′, T) < b(u1, T). The details are
omitted.1

1 Refer to Fig. 3 for an example illustrating Theorems 2 and 3.

Linear Algorithm for Broadcasting in Unicyclic Graphs 377

Let u be a vertex such that u ∈ BC(T1⊕T2). Theorem 2 confirms the existence
of such a vertex on the path joining u1 and u2. The position of u can be found
as described in the following theorem.

Theorem 3. Let A = b(BC, T1)− b(BC, T2) and B = d(r1, u1) + d(r2, u2) + 1.
Three cases may arise:

If B −A < 0, then d(u, u1) = 0, i.e. u coincides with u1.
If A + B < 0, then d(u, u1) = B, i.e. u coincides with u2.
If B − A ≥ 0 and A + B ≥ 0, then d(u, u1) = �B−A

2 � or d(u, u1) = �B−A
2 �.

Both positions of u have equal broadcast times in the tree T .

Proof. If B −A < 0, then we have

b(BC, T1) > b(BC, T2) + d(u1, r1) + 1 + d(u2, r2). (1)

We will prove that u = u1 ∈ BC(T) by contradiction. Assume that there is
another vertex u′ on the path joining u1 and u2 such that b(u′, T) < b(u, T).
Because of Theorem 2 we do not have to consider a vertex not belonging to the
path joining u1 and u2. Using the definitions of the functions t1(x) and t2(x) from
above we get: t1(u′) = d(u′, u1) + b(BC, T1), t2(u′) = d(u′, r1) + 1 + d(u2, r2) +
b(BC, T2), t1(u) = b(BC, T1), and t2(u) = d(u1, r1) + 1 + d(u2, r2) + b(BC, T2).
Using the condition in equation 1 we get that t1(u) = b(BC, T1) > t2(u) =
d(u1, r1)+1+d(u2, r2)+b(BC, T2) Therefore, b(u, T) = t1(u). Similarly, t1(u′) =
d(u′, u1) + b(BC, T1) > d(u′, u1) + b(BC, T2) + d(u1, r1) + 1 + d(u2, r2) which
implies that t1(u′) > d(u′, u1)+ b(BC, T2)+d(u1, u

′)+d(u′, r1)+1+d(u2, r2) =
2d(u′, u1)+b(BC, T2)+d(u′, r1)+1+d(u2, r2) = 2d(u′, u1)+t2(u′) which implies
that t1(u′) > t2(u′) and hence b(u′, T) = t1(u′). But we have t1(u′) = d(u′, u1)+
b(BC, T1) and t1(u) = b(BC, T1) which implies that t1(u′) > t1(u). Therefore
we conclude that b(u′, T) > b(u, T) which contradicts the assumption.

The case A + B < 0 can be proved similarly.
Note that the two conditions A+B < 0 and B−A < 0 are mutually exclusive.

If either one of them is satisfied the other will not be satisfied. The only remaining
case is when both of them are not satisfied i.e. A+B ≥ 0 and B−A ≥ 0. Assume
the case where B − A is odd, the case if it is even can be dealt with similarly.
Without loss of generality, assume that there exists a vertex u′ ∈ T1, on the path
joining u1 and u2, such that b(u′, T) < b(u, T). Two cases may arise:

Case 1: d(u′, u1) < d(u, u1) = �B−A
2 �. Since B − A is assumed to be odd,

d(u, u1) = B−A−1
2 . Calculating t1(u) = d(u, u1) + b(BC, T1) and t2(u) =

d(u, r1)+1+d(u2, r2)+b(BC, T2) we deduce that t2(u) = (d(u1, r1)−d(u, u1))+
1 + d(u2, r2) + b(BC, T2). Substituting the value of d(u, u1), and b(BC, T2) =
b(BC, T1)−A we get: t2(u) = [d(u1, r1)+ 1+ d(u2, r2)] + b(BC, T2)− d(u, u1) =
B + (b(BC, T1) − A) − B−A−1

2 = B−A+1
2 + b(BC, T1) = t1(u) + 1. Therefore,

b(u, T) = t2(u). Now consider the vertex u′, t1(u′) = d(u′, u1) + b(BC, T1) and
t2(u′) = d(u′, u)+ d(u, r1)+ 1 + d(u2, r2)+ b(BC, T2). Since d(u′, u1) < d(u, u1),
we get t1(u′) < t1(u). Moreover, t2(u′) = d(u′, u) + t2(u) > t1(u′) since
t2(u) > t1(u) > t1(u′). Finally we arrive at: b(u′, T) = t2(u′) > b(u, T) which
contradicts the assumption.

378 H. Harutyunyan and E. Maraachlian

Case 2: d(u′, u1) > d(u, u1). As it was done in the previous case, we can
deduce that t2(u) = t1(u) + 1 and b(u, T) = t2(u). Now consider the vertex u′.
Calculating t1(u′) and t2(u′) we get: t1(u′) = d(u′, u)+ d(u, u1)+ b(BC, T1) and
t2(u′) = d(u′, r1) + 1 + d(r2, u2) + b(BC, T2). Using that d(u, r1) = d(u, u′) +
d(u′, r1) we get: t2(u′) = [d(u, r1)− d(u, u′)] + 1 + d(r2, u2) + b(BC, T2). Hence,
t2(u′) = t2(u)−d(u, u′) = t1(u)+1−d(u, u′). On the other hand, t1(u′) = t1(u)+
d(u, u′). Since d(u′, u1) > d(u, u1), we conclude that d(u, u′) ≥ 1. Subtracting
t2(u′) from t1(u′) we get: t1(u′)− t2(u′) = t1(u)+d(u, u′)− [t1(u)+1−d(u, u′)].
Therefore, t1(u′)− t2(u′) = 2d(u, u′)−1. Using d(u, u′) ≥ 1, we get that t1(u′) >
t2(u′) + 1. Hence, we conclude that b(u′, T) = t1(u′). So, b(u′, T) = t1(u′) =
t2(u′)+2d(u, u′)−1. Furthermore, using t2(u′) = t2(u)−d(u, u′) we get b(u′, T) =
t2(u) + d(u, u′) − 1 ≥ t2(u), which implies that b(u′, T) ≥ b(u, T) which is a
contradiction.

3 The UNICYCLICBROADCAST Algorithm

The algorithm, UNICY CLICBROADCAST (w, G), calculates the broadcast
time, b(w, G), of a given vertex w in any unicyclic graph G. For convenience we
will assume that w belongs to tree T1.

3.1 Description of the Algorithm

INPUT: A unicyclic graph G on n vertices and the broadcast originator w.
OUTPUT: Broadcast time of the originator w in G, b(w, G), and a broadcast
scheme.

T2

T1

BC(T1)
b(BC,T1) = 5

BC(T2)
b(BC,T2)=4

SBC(T1)=u1

r2=u2=SBC(T2)

r1

Possible
candidates for u

u = SBC(T1 + T2)
b(u,T) = b(BC,T) = 6

(r1,r2)

Fig. 3. An example of the sum of two trees. It shows the vertices in the broadcast
center and the special broadcast center of T1, T2, and T1 ⊕T2. The minimum broadcast
time of the three trees are calculated too.

Linear Algorithm for Broadcasting in Unicyclic Graphs 379

UNICYCLICBROADCAST(w, G):

1. Extract from G the cycle Ck, consisting of the vertices {r1, r2, · · · , rk}, and
the trees Ti rooted at the vertices ri for 1 ≤ i ≤ k.

2. For all trees Ti where 1 ≤ i ≤ k calculate and save the positions of ui =
SBC(Ti) relative to ri, as well as b(BC, Ti).

3. Calculate and save the distance d(w, u1) and the path joining w and u1.
4. Construct the trees T1,2,···,i, where 2 ≤ i ≤ k, and Tk,k−1,···,i, where 1 ≤ i ≤

k − 1. For each tree T , compute and store the position of the SBC(T) and
b(BC, T).

5. Construct the spanning trees Tj,j+1,···,k,1,2,···,j−1, where 1 ≤ j ≤ k. For each
tree T compute and store SBC(T), b(BC, T), d(w, SBC(T)), and b(w, T).

6. Out of the trees generated in the previous step, choose the spanning tree T
with the minimum value of b(w, T).

7. Run BROADCAST [20] to find a broadcast scheme for the originator w.

The algorithm first preprocesses the unicyclic graph and calculates the cycle
Ck consisting of the vertices {r1, r2, · · · , rk} and the trees Ti rooted at ri , where
1 ≤ i ≤ k. In step 2 the path joining w to u1 and d(w, u1) are calculated and
saved. This information will be needed to calculate the broadcast time of w.
Steps 3 and 4 construct several trees and calculate results that will be used in
constructing the k spanning trees of the graph G. More specifically the trees,
Ti, Ti,i+1,···,k for 1 ≤ i ≤ k − 1, and T1,2,···,i for 2 ≤ i ≤ k are constructed.
For each spanning tree T the position of the SBC(T) and b(BC, T) are calcu-
lated and stored. These results will be useful to calculate the broadcast centers
and the minimum broadcast times of the spanning trees. At the end of step
4 only one spanning tree will be constructed. In step 5, the algorithm builds
the remaining k − 1 spanning trees of the unicyclic graph. It also calculates the
broadcast time of w for each one of them. Note that for each spanning tree T ,
b(w, T) = d(w, SBC(T)) + b(BC, T) where the distance d(w, SBC(T) can be
easily calculated by using d(w, u1) and position of SBC(T) calculated in steps 2
and 4 respectively. The spanning tree that has the minimum broadcast time for
w is the required result. Finally in order to obtain the optimal broadcast scheme
for the originator w in the unicyclic graph G, the BROADCAST algorithm of
[20] is run on the spanning tree T that had the minimum value of b(w, T).

In step 5, k − 1 spanning trees are constructed each in a constant time. The
construction of each tree can be done easily by observing that the spanning tree
Ti,i+1,···,k,1,2,···,i−1 is the sum of the two trees Ti,i+1,···,k and T1,2,···,i−1 rooted at
rk and r1 respectively. These two trees and all the information pertinent to the
calculation of the b(w, Ti,i+1,···,k,1,2,···,i−1) were calculated in step 4.

3.2 Proof of Correctness and Complexity Analysis

Theorem 4. UNICY CLICBROADCAST (w, G) generates a broadcast
scheme for originator w, and finds b(w, G).

380 H. Harutyunyan and E. Maraachlian

Proof. Let Ck, consisting of the vertices {r1, r2, · · · , rk}, represent the cycle in
the unicyclic graph G. One of the spanning trees of G is obtained by removing
the edge (rk, r1). The resulting tree is T1,2,···,k. The minimum broadcast time
of T1,2,···,k is calculated iteratively by tree summations T1,···,i−1 ⊕ Ti rooted at
ri−1 and ri respectively, where 2 ≤ i ≤ k. The remaining minimum spanning
trees, Tj,j+1,···,k,1,2,···,j−1 where 2 ≤ j ≤ k, are calculated by performing the
summations Tj,···,k ⊕ T1,···,j−1. Theorems 2 and 3 guarantee that a broadcast
center and the minimum broadcast time of all the trees Tj,j+1,···,k,1,2,···,j−1, where
1 ≤ j ≤ k, are calculated correctly. Since, the trees Tj,j+1,···,k,1,2,···,j−1, where
1 ≤ j ≤ k, are the all possible spanning trees of the unicyclic graph G, the
algorithm correctly finds the spanning tree of the unicyclic graph G that has the
minimum broadcast time of all the spanning trees. We will prove the correctness
of the algorithm by contradiction. Assume that there exists a broadcast tree
T ′ and a broadcast scheme in G that performs broadcasting in time t such
that t = d(w, BC(T ′)) + b(BC, T ′) < b(w, G). T ′ should be one of the trees
Tj,j+1,···,k,1,2,···,j−1, where 1 ≤ j ≤ k. But the algorithm correctly calculated the
minimum broadcast time of all the spanning trees and chose the spanning tree
T with the minimum value of d(w, BC(T)) + b(BC, T). Therefore the existence
of T ′ creates a contradiction.

Theorem 5. The complexity of the UNICYCLICBROADCAST running on a
unicyclic graph G = (V, E) is O(|V |).
Proof. Steps 1 and 2 of the algorithm can be accomplished by a depth first
search in O(|V |) time. In Step 3, BROADCAST [20] is applied on the trees Ti

for 1 ≤ i ≤ k. The complexity of this step is O(|V1|+ |V2|+ · · ·+ |Vk|) = O(|V |).
Step 4 is of complexity O(k) since there are k sums to be done, and the sum of
two trees T1 and T2, T1 ⊕ T2, can be done in a constant time. Moreover, every
time a tree T is constructed as T = T1 ⊕ T2, calculating the distance between
the root of T and SBC(T), and b(BC, T) can be done in a constant time using
the positions of SBC(T1) and SBC(T2), and the broadcast times b(BC, T1) and
b(BC, T2). Step 5 involves the calculation of k−1 spanning trees. Each spanning
tree is constructed by summing two trees, hence the complexity of this step is
again O(k). Step 6 chooses the spanning tree with the least minimum broadcast
time hence its complexity is O(k). Adding all the complexities we get that the
complexity of the algorithm is O(|V |+ k). However, k ≤ |V |, so this proves that
the complexity of the algorithm UNICYCLICBRDCST is O(|V |).

4 Conclusion

In this paper we presented an algorithm that determines the broadcast time of
any vertex w in an arbitrary unicyclic graph G = (V, E) in linear time, O(|V |).
Therefore, the complexity of the problem of determining the broadcast time of
any vertex in an arbitrary unicyclic graph is Θ(|V |). The algorithm can find the
minimum broadcast time of G as well as the spanning tree of G which is the
broadcast tree corresponding to the minimum broadcast time. As a byproduct,
the algorithm also finds a broadcast center of the unicyclic graph.

Linear Algorithm for Broadcasting in Unicyclic Graphs 381

References

1. Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: FOCS’01.
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 510–519 (2001)

2. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Multicasting in Heterogeneous Net-
works. In: STOC’98. Proc. of ACM Symp. on Theory of Computing (1998)

3. Beier, R., Sibeyn, J.F.: A powerful heuristic for telephone gossiping. In:
SIROCCO’00. Proc. of the 7th International Colloquium on Structural Information
& Communication Complexity, L’Aquila, Italy, pp. 17–36 (2000)

4. Bermond, J.-C., Fraigniaud, P., Peters, J.: Antepenultimate broadcasting. Net-
works 26, 125–137 (1995)

5. Bermond, J.-C., Hell, P., Liestman, A.L., Peters, J.G.: Sparse broadcast graphs.
Discrete Appl. Math. 36, 97–130 (1992)

6. Dinneen, M.J., Fellows, M.R., Faber, V.: Algebraic constructions of efficient broad-
cast networks. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 539, pp. 152–158.
Springer, Heidelberg (1991)

7. Doar, M.B.: A better model for generating test networks. In: IEEE GLOBE-
COM’96, London, IEEE Computer Society Press, Los Alamitos (1996)

8. Elkin, M., Kortsarz, G.: A combinatorial logarithmic approximation algorithm for
the directed telephone broadcast problem. In: STOC’02. Proc. of ACM Symp. on
Theory of Computing, pp. 438–447 (2002)

9. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast:
path out of jungle. In: SODA’03. Proc. of Symposium on Discrete Algorithms,
Baltimore, Maryland, pp. 76–85 (2003)

10. Farley, A.M., Hedetniemi, S.T., Proskurowski, A., Mitchell, S.: Minimum broadcast
graphs. Discrete Math. 25, 189–193 (1979)

11. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
In: SIGAL’90. Proc. of International Symposium on Algorithms, pp. 128–137
(1990)

12. Fraigniaud, P., Vial, S.: Approximation algorithms for broadcasting and gossiping.
J. Parallel and Distrib. Comput. 43(1), 47–55 (1997)

13. Fraigniaud, P., Vial, S.: Heuristic Algorithms for Personalized Communication
Problems in Point-to-Point Networks. In: SIROCCO’97. Proc. of the 4th Collo-
quium on Structural Information and Communication Complexity, pp. 240–252
(1997)

14. Fraigniaud, P., Vial, S.: Comparison of Heuristics for One-to-All and All-to-All
Communication in Partial Meshes. Parallel Processing Letters 9(1), 9–20 (1999)

15. Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Math. 98,
81–102 (1999)

16. Harutyunyan, H.A., Shao, B.: An Efficient Heuristic for Broadcasting in Networks.
Journal of Parallel and Distributed Computing (to appear)

17. Johnson, D., Garey, M.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA (1979)

18. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum time broadcast.
SIAM J. Discrete Math. 8, 401–427 (1995)

382 H. Harutyunyan and E. Maraachlian

19. Ravi, R.: Rapid Rumor Ramification: Approximating the minimum broadcast time.
In: FOCS’94. Proc. of 35th Symposium on Foundation of Computer Science, pp.
202–213 (1994)

20. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J.Comput. 10(4), 692–701 (1981)

21. Scheuerman, P., Wu, G.: Heuristic Algorithms for Broadcasting in Point-to-Point
Computer Network. IEEE Transactions on Computers C-33(9), 804–811 (1984)

22. Zegura, E.W., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In:
INFOCOM’96. Proc. The IEEE Conf. on Computer Communications, San Fran-
cisco, CA, IEEE Computer Society Press, Los Alamitos (1996)

An Improved Algorithm for Online Unit

Clustering

Hamid Zarrabi-Zadeh and Timothy M. Chan

School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{hzarrabi,tmchan}@uwaterloo.ca

Abstract. We revisit the online unit clustering problem in one dimen-
sion which we recently introduced at WAOA’06: given a sequence of n
points on the line, the objective is to partition the points into a mini-
mum number of subsets, each enclosable by a unit interval. We present
a new randomized online algorithm that achieves expected competitive
ratio 11/6 against oblivious adversaries, improving the previous ratio of
15/8. This immediately leads to improved upper bounds for the problem
in two and higher dimensions as well.

1 Introduction

At WAOA’06 [1], we began investigating an online problem we call unit cluster-
ing, which is extremely simple to state but turns out to be nontrivial surprisingly:

Given a sequence of n points on the real line, assign points to clusters
so that each cluster is enclosable by a unit interval, with the objective
of minimizing the number of clusters used.

In the offline setting, variations of this problem frequently appear as textbook
exercises and can be solved in O(n log n) time by a simple greedy algorithm
(e.g., see [3]). The problem is equivalent to finding the minimum number of
points that stab a given collection of unit intervals (i.e., clique partitioning in unit
interval graphs, or coloring unit co-interval graphs), and to finding the maximum
number of disjoint intervals in a given collection (i.e., maximum independent set
in unit interval graphs). It is the one-dimensional analog of an often-studied and
important geometric clustering problem—covering a set of points in d dimensions
using a minimum number of unit disks (for example, under the Euclidean or L∞
metric) [5,6,8,11,12]. This geometric problem has applications in facility location,
map labeling, image processing, and other areas.

Online versions of clustering and facility location problems are natural to
consider because of practical considerations and have been extensively studied
in the literature [2,4,10]. Here, input points are given one by one as a sequence
over time, and each point should be assigned to a cluster upon its arrival. The
main constraint is that clustering decisions are irrevocable: once formed, clusters
cannot be removed or broken up.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 383–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 H. Zarrabi-Zadeh and T.M. Chan

For our one-dimensional problem, it is easy to come up with an algorithm with
competitive ratio 2; for example, we can use a näıve grid strategy: build a uniform
unit grid and simply place each arriving point in the cluster corresponding to the
point’s grid cell (for the analysis, just observe that every unit interval intersects
at most 2 cells). Alternatively, we can use the most obvious greedy strategy:
for each given point, open a new cluster only if the point does not “fit” in any
existing cluster; this strategy too has competitive ratio 2.

In the previous paper [1], we have shown that it is possible to obtain an online
algorithm with expected competitive ratio strictly less than 2 using randomiza-
tion; specifically, the ratio obtained is at most 15/8 = 1.875. This result is a
pleasant surprise, considering that ratio 2 is known to be tight (among both
deterministic and randomized algorithms) for the related online unit covering
problem [2,1] where the position of each enclosing unit interval is specified upon
its creation, and this position cannot be changed later. Ratio 2 is also known
to be tight among deterministic algorithms for the problem of online coloring of
(arbitrary rather than unit) co-interval graphs [7,9].

In this paper, we improve our previous result further and obtain a randomized
online algorithm for one-dimensional unit clustering with expected competitive
ratio at most 11/6 ≈ 1.8333. Automatically, this implies improved online algo-
rithms for geometric unit clustering under the L∞ metric, with ratio 11/3 in 2D,
for example.

The new algorithm is based on the approach from the previous paper but
incorporates several additional ideas. A key difference in the design of the algo-
rithm is to make more uses of randomization (the previous algorithm requires
only 2 random bits). The previous algorithm is based on a clever grid approach
where windows are formed from pairs of adjacent grid cells, and clusters cross-
ing two adjacent windows are “discouraged”; in the new algorithm, crossings of
adjacent windows are discouraged to a “lesser” extent, as controlled by random-
ization. This calls for other subtle changes in the algorithm, as well as a lengthier
case analysis that needs further technical innovations.

2 The New Randomized Algorithm

In this section, we present the new randomized algorithm for the online unit
clustering problem in one dimension. The competitive ratio of the algorithm is
not necessarily less than 2, but will become less than 2 when combined with the
näıve grid strategy as described in Section 5. Our new algorithm is based in part
on our previous randomized algorithm [1], although we will keep the presentation
self-contained. A key difference is to add an extra level of randomization.

Consider a uniform unit grid on the line, where each grid cell is a half-closed
interval of the form [i, i+1). To achieve competitive ratio better than 2, we have
to allow clusters to cross grid cells occasionally (for example, just consider the
input sequence

〈
1
2 , 3

2 , 5
2 , . . .

〉
, where the näıve grid strategy would require twice

as many clusters as the optimum). As in the previous algorithm, we accomplish
this by forming windows over the line each consisting of two grid cells and permit

An Improved Algorithm for Online Unit Clustering 385

clusters crossing two cells within a window. There are two ways to form windows
over the grid; we choose which according to an initial random bit. In the previous
algorithm, clusters crossing two adjacent windows are not strictly forbidden but
are discouraged in some sense.

In the new algorithm, the idea, roughly speaking, is to permit more clusters
crossing windows. More specifically, call the grid point lying between two adja-
cent windows a border ; generate a random bit for every border, where a 1 bit
indicates an open border and a 0 bit indicates a closed border. Clusters crossing
closed borders are still discouraged, but not clusters crossing open borders. (As
it turns out, setting the probability of border opening/closing to 1/2 is indeed
the best choice.)

The actual details of the algorithm are important and are carefully crafted. In
the pseudocode below, b(w, w′) refers to the border indicator between windows
w and w′. We say that a point lies in a cluster if inserting it to the cluster would
not increase the length of the cluster, where the length of a cluster refers to the
length of its smallest enclosing interval. We say that a point fits in a cluster if
inserting it to the cluster would not cause the length to exceed 1.

RandBorder Algorithm: Partition the line into windows each of the form
[2i, 2i+2). With probability 1/2, shift all windows one unit to the right. For each
two neighboring windows w and w′ set b(w, w′) to a randomly drawn number
from {0, 1}. For each new point p, find the window w containing p, and do the
following:

1: if p fits in a cluster intersecting w then
2: put p in the “closest” such cluster
3: else if p fits in a cluster u inside a neighboring window w′ then
4: if b(w, w′) = 1 then put p in u

5: else if w (completely) contains at least 1 cluster and
w′ (completely) contains at least 2 clusters

6: then put p in u

7: if p is not put in any cluster then open a new cluster for p

Thus, a cluster is allowed to cross the boundary of two grid cells within a
window freely, but it can cross the boundary of two adjacent windows only in
two exceptional cases: when the corresponding border indicator is set to 1, or
when the carefully specified condition in Line 5 arises (this condition is slightly
different from the one in the previous algorithm). We will see the rationale for
this condition during the analysis.

To see what the “closeness” exactly means in Line 2, we define the following
two preference rules:

– Rule I. If p lies in a cluster u, then u is the closest cluster to p.
– Rule II. If p lies in a cell c, then any cluster intersecting c is closer to p

than any cluster contained in a neighboring cell.

386 H. Zarrabi-Zadeh and T.M. Chan

B1 B2

Fig. 1. Two blocks of sizes 2 and 3

The first preference rule prevents clusters from overlapping each other, and the
second rule prevents clusters from unnecessarily crossing the boundary of two
neighboring cells. The above preference rules and exceptional cases will be vital
to the analysis.

Note that the random bits used for the border indicators can be easily gener-
ated on the fly as new borders are created.

3 Preliminaries for the Analysis

To prepare for the analysis, we first state a few definitions (borrowed from [1]).
Let σ be the input sequence. We denote by opt(σ) the optimal offline solution

obtained by the following greedy algorithm: sort all points in σ from left to
right; cover the leftmost point p and all points within unit distance to it by a
unit interval started at p; and repeat the procedure for the remaining uncovered
points. Obviously, the unit intervals obtained by this algorithm are disjoint.

We refer to a cluster as a crossing cluster if it intersects two adjacent grid
cells, or as a whole cluster if it is contained completely in a grid cell.

For any real interval x (e.g., a grid cell or a group of consecutive cells), the
cost of x denoted by μ(x) is defined to be the number of whole clusters contained
in x plus half the number of clusters crossing the boundaries of x, in the solution
produced by the RandBorder algorithm. We note that μ is additive, i.e., for two
adjacent intervals x and y, μ(x ∪ y) = μ(x) + μ(y).

A set of k consecutive grid cells containing k−1 intervals from opt(σ) is called
a block of size k (see Fig. 1). We define ρ(k) to be the expected competitive ratio
of the RandBorder algorithm within a block of size k. In other words, ρ(k)
upper-bounds the expected value of μ(B)/(k − 1) over all blocks B of size k.

In the following, a list of objects (e.g., grid cells or clusters) denoted by
〈xi, . . . , xj〉 is always implicitly assumed to be ordered from left to right on
the line. Moreover, p1 + p2 denotes the fact that point p1 arrives before point
p2 in the input sequence.

We now establish some observations concerning the behavior of the RandBor-
der algorithm. Observations 1(ii) and (iii) are basically from [1] and have similar
proofs (which are reproduced here for completeness’ sake since the algorithm
has changed); the other observations and subsequent lemmas are new and will
be used multiple times in the analysis in the next section.

Observation 1.

(i) Any interval in opt(σ) that does not cross a closed border can (completely)
contain at most one whole cluster.

An Improved Algorithm for Online Unit Clustering 387

(ii) Any grid cell c can contain at most one whole cluster. Thus, we always have
μ(c) ≤ 1 + 1

2 + 1
2 = 2.

(iii) If a grid cell c intersects a crossing cluster u1 and a whole cluster u2, then
u2 must be opened after u1 has been opened, and after u1 has become a
crossing cluster.

Proof. (i) Let u1 and u2 be two whole clusters contained in the said interval and
suppose that u1 is opened before u2. Then all points of u2 would be assigned
to u1, because Lines 2 and 4 precede Line 7. (ii) holds by the same argument,
because Line 2 precedes Line 7.

For (iii), let p1 be the first point of u1 in c and p′1 be the first point of u1 in
a cell adjacent to c. Let p2 be the first point of u2. Among these three points,
p1 cannot be the last to arrive: otherwise, p1 would be assigned to the whole
cluster u2 instead of u1, because of Rule II. Furthermore, p′1 cannot be the last
to arrive: otherwise, p1 would be assigned to u2 instead. So, p2 must be the last
to arrive. ��
Observation 2. Let u1 be a whole cluster contained in a grid cell c, and let u2

and u3 be two clusters crossing the boundaries of c. Then

(i) u1 and u2 cannot be entirely contained in the same interval from opt(σ).
(ii) there are no two intervals I1 and I2 in opt(σ) such that u1∪u2∪u3 ⊆ I1∪I2.

Proof. (i) Suppose by way of contradiction that u1 and u2 are entirely contained
in an interval I from opt(σ). Then by Observation 1(iii), u1 is opened after u2

has become a crossing cluster, but then the points of u1 would be assigned to
u2 instead: a contradiction.

(ii) Suppose that u1 ∪ u2 ∪ u3 ⊆ I1 ∪ I2, where I1 and I2 are the two intervals
from opt(σ) intersecting c. We now proceed as in part (i). By Observation 1(iii),
u1 is opened after u2 and u3 have become crossing clusters, but then the points
of u1 would be assigned to u2 or u3 instead: a contradiction. ��
Lemma 1. Let B = 〈c1, . . . , ck〉 be a block of size k ≥ 2, and S be the set of
all odd-indexed (or even-indexed) cells in B. Then there exists a cell c ∈ S such
that μ(c) < 2.

Proof. Let 〈I1, . . . , Ik−1〉 be the k − 1 intervals from opt(σ) in B, where each
interval Ii intersects two cells ci and ci+1 (1 ≤ i ≤ k − 1). Let O represent
the set of all odd integers between 1 and k. We first prove the lemma for the
odd-indexed cells.

Suppose by way of contradiction that for each i ∈ O, μ(ci) = 2. It means
that for each i ∈ O, ci intersects three clusters

〈
u�

i , ui, u
r
i

〉
, where ui is a whole

cluster, and u�
i and ur

i are two crossing clusters. We prove inductively that for
each i ∈ O, ui ∩ Ii 	= ∅ and ur

i ∩ Ii+1 	= ∅.
Base Case: u1 ∩ I1 	= ∅ and ur

1 ∩ I2 	= ∅.
The first part is trivial, because c1 intersects just I1, and hence, u1 ⊆ I1.
The second part is implied by Observation 2(i), because u1 and ur

1 cannot
be entirely contained in I1.

388 H. Zarrabi-Zadeh and T.M. Chan

Inductive Step: ui∩Ii 	= ∅ ∧ ur
i∩Ii+1 	= ∅⇒ ui+2∩Ii+2 	= ∅ ∧ ur

i+2∩Ii+3 	= ∅.
Suppose by contradiction that ui+2 ∩ Ii+2 = ∅. Therefore, ui+2 must be en-
tirely contained in Ii+1. On the other hand, ur

i ∩Ii+1 	= ∅ implies that u�
i+2 is

entirely contained in Ii+1. But this is a contradiction, because ui+2 and u�
i+2

are contained in the same interval, which is impossible by Observation 2(i).
Now, suppose that ur

i+2 ∩ Ii+3 = ∅. Since ur
i ∩ Ii+1 	= ∅, and clusters do not

overlap, u�
i+2, ui+2, and ur

i+2 should be contained in Ii+1 ∪ Ii+2, which is
impossible by Observation 2(ii).

Repeating the inductive step zero or more times, we end up at either i = k
or i = k− 1. If i = k, then uk ∩ Ik 	= ∅ which is a contradiction, because there is
no Ik. If i = k − 1, then ur

k−1 ∩ Ik 	= ∅ which is again a contradiction, because
we have no Ik.

Both cases lead to contradiction. It means that there exists some i ∈ O
such that μ(ci) < 2. The proof for the even-indexed cells is similar. The only
difference is that we need to prove the base case for i = 2, which is easy to get
by Observations 2(i) and 2(ii). ��

Lemma 2. Let B be a block of size k ≥ 2.

(i) μ(B) ≤ 2k − 1.
(ii) If all borders strictly inside B are open, then μ(B) ≤ 2(k − 1).

Proof. (i) is a direct corollary of Lemma 1, because there are at least two cells
in B (one odd-indexed and one even-indexed) that have cost at most 3/2, and
the other cells have cost at most 2.

(ii) is immediate from the fact that each block of size k ≥ 2 contains exactly
k − 1 intervals from opt(σ), and that each of these k − 1 intervals has cost at
most 2 by Observation 1(i). ��

4 The Analysis

We are now ready to analyze the expected competitive ratio of our algorithm
within a block of size k ≥ 2.

Theorem 1. ρ(2) = 27/16.

Proof. Consider a block B of size 2, consisting of two cells 〈c1, c2〉 (see Fig. 2).
Let I be the single unit interval in B in opt(σ). There are two possibilities.

Case 1: B falls completely in one window w. Let 〈b1, b2〉 be the two border
indicators at the boundaries of w. Let p0 be the first point to arrive in I. W.l.o.g.,
assume p0 is in c2 (the other case is symmetric). We consider four subcases.

– Subcase 1.1: 〈b1, b2〉 = 〈0, 0〉. Here, both boundaries of B are closed. Thus,
after a cluster u has been opened for p0 (by Line 7), all subsequent points in
I are put in the same cluster u. Note that the condition in Line 5 prevents
points from the neighboring windows to join u and make crossing clusters.
So, u is the only cluster in B, and hence, μ(B) = 1.

An Improved Algorithm for Online Unit Clustering 389

I

u1 u2 u3

c1 c2

B

b1 b2

Fig. 2. Illustration of Subcase 1.3

– Subcase 1.2: 〈b1, b2〉 = 〈1, 0〉. When p0 arrives, a new cluster u is opened,
since p0 is in c2, the right border is closed, and w contains < 1 cluster at
the time so that the condition in Line 5 fails. Again, all subsequent points
in I are put in the same cluster, and points from the neighboring windows
cannot join u and make crossing clusters. Hence, μ(B) = 1.

– Subcase 1.3: 〈b1, b2〉 = 〈0, 1〉. We show that μ(B) < 2. Suppose by contra-
diction that μ(B) = 2. By Observation 1(i), I cannot contain two clusters
entirely. Therefore, the only way to get μ(B) = 2 is that I intersects three
clusters 〈u1, u2, u3〉 (from left to right, as always), where u1 and u3 are
crossing clusters, and u2 is entirely contained in I (see Fig. 2). By a similar
argument as in the proof of Observation 1(iii), u2 is opened after u1 and u3

have become crossing clusters. Let p1 be the first point of u1 in w, and p2

be the first point of u1 in the neighboring window. We have two scenarios:
• Subsubcase 1.3.1: p1 + p2. In this case, cluster u1 is opened for p1.

But p2 cannot be put in u1, because upon arrival of p2, w contains < 2
clusters, and thus, the condition in line 5 does not hold.
• Subsubcase 1.3.2: p2 + p1. Here, cluster u1 is opened for p2. But p1

cannot be put in u1, because upon arrival of p1, w contains < 1 cluster,
and hence, the condition in line 5 does not hold.

Both scenarios leads to contradiction. Therefore, μ(B) ≤ 3/2.

– Subcase 1.4: 〈b1, b2〉 = 〈1, 1〉. Here, Lemma 2(ii) implies that μ(B) ≤ 2.

Since each of the four subcases occurs with probability 1/4, we conclude that
the expected value of μ(B) in Case 1 is at most 1

4 (1 + 1 + 3
2 + 2) = 11

8 .

Case 2: B is split between two neighboring windows. Let b be the single border
indicator inside B. Let μ0(B) and μ1(B) represent the value of μ(B) for the case
that b is set to 0 and 1, respectively. It is clear by Lemma 2(ii) that μ1(B) ≤ 2.
We rule out two possibilities:

– Subcase 2.1: μ0(B) = 3. Since I cannot contain both a whole cluster and
a crossing cluster by Observation 2(i), the only possible scenario is that c1

intersects two clusters 〈u1, u2〉, and c2 intersects two clusters 〈u3, u4〉, where
u1 and u4 are crossing clusters, and u2 and u3 are whole clusters. Let p1

be the first point in u2 and p2 be the first point in u3. Suppose w.l.o.g.
that p1 + p2. By Observation 1(iii), p1 arrives after u1 has been opened,
and p2 arrives after u4 has been opened. But when p2 arrives, the window

390 H. Zarrabi-Zadeh and T.M. Chan

containing it contains one cluster, u4, and the neighboring window contains
two clusters u1 and u2. Therefore, p2 would be assigned to u2 by Line 5
instead: a contradiction.

– Subcase 2.2: μ0(B) = 5/2 and μ1(B) = 2. Suppose that μ1(B) = 2. Then
I intersects three clusters 〈u1, u2, u3〉, where u1 and u3 are crossing clusters,
and u2 is completely contained in I. Let t be the time at which u1 becomes
a crossing cluster, and let σ(t) be the subset of input points coming up to
time t. By a similar argument as in the proof of Observation 1(iii), any point
in I ∩ c1 not contained in u1 arrives after time t. Therefore, upon receiving
the input sequence σ(t), u1 becomes a crossing cluster no matter whether
the border between c1 and c2 is open or closed. Using the same argument
we conclude that u3 becomes a crossing cluster regardless of the value of b.
Now consider the case where b = 0. Since both u1 and u3 remain crossing
clusters, μ0(B) must be an integer (1, 2, or 3) and cannot equal 5/2.

Ruling out these two subcases, we have μ0(B) + μ1(B) ≤ 4 in all remaining
subcases, and therefore, the expected value of μ(B) in this case is at most 2.

Since each of Cases 1 and 2 occurs with probability 1/2, we conclude that
ρ(2) ≤ 1

2 (11
8) + 1

2 (2) = 27
16 . (This bound is tight: to see this just consider the

block B = [2, 4), and the sequence of 8 points 〈1.5, 2.5, 0.5, 3.5, 4.5, 2.7, 3.2, 5.5〉
for which E[μ(B)] = 27

16 .) ��

Theorem 2. ρ(3) ≤ 17/8.

Proof. Consider a block B of size 3, consisting of cells 〈c1, c2, c3〉, and let b be the
single border indicator strictly inside B. We assume w.l.o.g. that c1 and c2 fall
in the same window (the other scenario is symmetric). We consider two cases.

– Case 1: b = 0. We rule out the following possibilities.
• Subcase 1.1: μ(c2) = 2. Impossible by Lemma 1.
• Subcase 1.2: μ(c1) = μ(c3) = 2. Impossible by Lemma 1.
• Subcase 1.3: μ(c1) = 2 and μ(c2) = μ(c3) = 3/2. Here, B intersects six

clusters 〈u1, . . . , u6〉, where u1, u3, u6 are crossing clusters and u2, u4, u5

are whole clusters. Let 〈I1, I2〉 be the two unit intervals in B in opt(σ).
By Observation 2(i), u3 cannot be entirely contained in I1. This implies
that u4 ∪ u5 ⊂ I2. Now suppose w.l.o.g. that u4 is opened after u5. By
Observation 1(iii), u4 is the last to be opened after u3, u5, u6. Consider
any point p in u4. Upon arrival of p, the window containing p contains at
least one cluster, u3, and the neighboring window contains two clusters
u5 and u6. Therefore, by the condition in Line 5, the algorithm would
assign p to u5 instead of u4, which is a contradiction.
• Subcase 1.4: μ(c1) = μ(c2) = 3/2 and μ(c3) = 2. Similarly impossible.

In all remaining subcases, μ(B) is at most 2 + 3
2 + 1 = 9

2 or 3
2 + 3

2 + 3
2 = 9

2 .

– Case 2: b = 1. Here, Lemma 2(ii) implies that μ(B) ≤ 4.

Each of Cases 1 and 2 occurs with probability 1/2, therefore ρ(3) ≤ 1
2 (4+ 9

2)/2 =
17/8. ��

An Improved Algorithm for Online Unit Clustering 391

Theorem 3. ρ(4) ≤ 53/24.

Proof. Consider a block B of size 4. We consider two easy cases.

– Case 1: B falls completely in two windows. Let b be the single border indi-
cator strictly inside B. Now, if b = 1, μ(B) ≤ 6 by Lemma 2(ii), otherwise,
μ(B) ≤ 7 by Lemma 2(i). Therefore, the expected cost in this case is at most
1
2 (6 + 7) = 13

2 .

– Case 2: B is split between three consecutive windows. Let 〈b1, b2〉 be the
two border indicators inside B. For the subcase where 〈b1, b2〉 = 〈1, 1〉 the
cost is at most 6 by Lemma 2(ii), and for the remaining 3 subcases, the cost
of B is at most 7 by Lemma 2(i). Thus, the expected cost in this case is at
most 1

4 (6) + 3
4 (7) = 27

4 .

Since each of Cases 1 and 2 occurs with probability exactly 1/2, we conclude
that ρ(4) ≤ 1

2 (13
2 + 27

4)/3 = 53
24 . ��

Theorem 4. ρ(k) ≤ (2k − 1)/(k − 1) for all k ≥ 5.

Proof. This is a direct implication of Lemma 2(i). ��

5 The Combined Algorithm

The RandBorder algorithm as shown in the previous section has competitive
ratio greater than 2 on blocks of size three and more. To overcome this deficiency,
we need to combine RandBorder with another algorithm that works well for
larger block sizes. A good candidate for this is the näıve grid algorithm:

Grid Algorithm: For each new point p, if the grid cell containing p contains
a cluster, then put p in that cluster, else open a new cluster for p.

It is easy to verify that the Grid algorithm uses exactly k clusters on a block
of size k. Therefore, the competitive ratio of this algorithm within a block of size
k is k/(k − 1). We can now randomly combine the RandBorder algorithm with
the Grid algorithm to obtain an expected competitive ratio strictly less than 2.

Combined Algorithm: With probability 8/15 run RandBorder, and with
probability 7/15 run Grid.

Theorem 5. The competitive ratio of the Combined algorithm is at most 11/6
against oblivious adversaries.

392 H. Zarrabi-Zadeh and T.M. Chan

Proof. The competitive ratios of RandBorder and Grid within blocks of size 2
are 27/16 and 2, respectively. Therefore, the expected competitive ratio of the
Combined algorithm is 8

15 (27
16) + 7

15 (2) = 11
6 within a block of size 2. For larger

block sizes, the expected competitive ratio of Combined is always at most 11/6,
as shown in Table 1. By summing over all blocks and exploiting the additivity
of our cost function μ(·), we see that the expected total cost of the solution
produced by Combined is at most 11/6 times the size of opt(σ) for every input
sequence σ. ��

Table 1. The competitive ratio of the algorithms within a block

Block Size Grid RandBorder Combined

2 2 27/16 11/6

3 3/2 ≤ 17
8 ≤ 11/6

4 4/3 ≤ 53
24 ≤ 9/5

k ≥ 5 k
k−1 ≤ 2k−1

k−1 ≤ 23k−8
15(k−1)

Remarks. Currently only a 4/3 randomized lower bound and a 3/2 determin-
istic lower bound are known for the one-dimensional problem [1]. Also, as a
corollary to Theorem 5, we immediately get an upper bound of (11

12) · 2d for the
d-dimensional unit clustering problem under the L∞ metric [1].

References

1. Chan, T.M., Zarrabi-Zadeh, H.: A randomized algorithm for online unit clustering.
In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 121–131.
Springer, Heidelberg (2007)

2. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

4. Fotakis, D.: Incremental algorithms for facility location and k-median. In: Albers,
S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 347–358. Springer, Heidelberg
(2004)

5. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inform. Process. Lett. 12(3), 133–137 (1981)

6. Gonzalez, T.: Covering a set of points in multidimensional space. Inform. Process.
Lett. 40, 181–188 (1991)

7. Gyárfás, A., Lehel, J.: On-line and First-Fit colorings of graphs. J. Graph The-
ory 12, 217–227 (1988)

8. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

9. Kierstead, H.A., Qin, J.: Coloring interval graphs with First-Fit. SIAM J. Discrete
Math. 8, 47–57 (1995)

An Improved Algorithm for Online Unit Clustering 393

10. Meyerson, A.: Online facility location. In: Proc. 42nd IEEE Sympos. Found. Com-
put. Sci., pp. 426–433 (2001)

11. Nielsen, F.: Fast stabbing of boxes in high dimensions. Theoret. Comput. Sci. 246,
53–72 (2000)

12. Tanimoto, S.L., Fowler, R.J.: Covering image subsets with patches. In: Proc. 5th
International Conf. on Pattern Recognition, pp. 835–839 (1980)

Linear Time Algorithms for Finding

a Dominating Set of Fixed Size
in Degenerated Graphs

Noga Alon1,� and Shai Gutner2,��

1 Schools of Mathematics and Computer Science, Tel-Aviv University,
Tel-Aviv, 69978, Israel
noga@math.tau.ac.il.

2 School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
gutner@tau.ac.il.

Abstract. There is substantial literature dealing with fixed parameter
algorithms for the dominating set problem on various families of graphs.
In this paper, we give a kO(dk)n time algorithm for finding a dominat-
ing set of size at most k in a d-degenerated graph with n vertices. This
proves that the dominating set problem is fixed-parameter tractable for
degenerated graphs. For graphs that do not contain Kh as a topological
minor, we give an improved algorithm for the problem with running time
(O(h))hkn. For graphs which are Kh-minor-free, the running time is fur-
ther reduced to (O(log h))hk/2n. Fixed-parameter tractable algorithms
that are linear in the number of vertices of the graph were previously
known only for planar graphs.

For the families of graphs discussed above, the problem of finding an
induced cycle of a given length is also addressed. For every fixed H and
k, we show that if an H-minor-free graph G with n vertices contains an
induced cycle of size k, then such a cycle can be found in O(n) expected
time as well as in O(n log n) worst-case time. Some results are stated
concerning the (im)possibility of establishing linear time algorithms for
the more general family of degenerated graphs.

Keywords: H-minor-free graphs, degenerated graphs, dominating set
problem, finding an induced cycle, fixed-parameter tractable algorithms.

1 Introduction

This paper deals with fixed-parameter algorithms for degenerated graphs. The
degeneracy d(G) of an undirected graph G = (V, E) is the smallest number d
for which there exists an acyclic orientation of G in which all the outdegrees are
at most d. Many interesting families of graphs are degenerated (have bounded
� Research supported in part by a grant from the Israel Science Foundation, and by

the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
�� This paper forms part of a Ph.D. thesis written by the author under the supervision

of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 394–405, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Linear Time Algorithms for Finding a Dominating Set of Fixed Size 395

degeneracy). For example, graphs embeddable on some fixed surface, degree-
bounded graphs, graphs of bounded tree-width, and non-trivial minor-closed
families of graphs.

There is an extensive literature dealing with fixed-parameter algorithms for
the dominating set problem on various families of graphs. Our main result is
a linear time algorithm for finding a dominating set of fixed size in degener-
ated graphs. This is the most general class of graphs for which fixed-parameter
tractability for this problem has been established. To the best of our knowledge,
linear time algorithms for the dominating set problem were previously known
only for planar graphs. Our algorithms both generalize and simplify the classical
bounded search tree algorithms for this problem (see, e.g., [2,13]).

The problem of finding induced cycles in degenerated graphs has been studied
by Cai, Chan and Chan [8]. Our second result in this paper is a randomized
algorithm for finding an induced cycle of fixed size in graphs with an excluded
minor. The algorithm’s expected running time is linear, and its derandomization
is done in an efficient way, answering an open question from [8]. The problem of
finding induced cycles in degenerated graphs is also addressed.

The Dominating Set Problem. The dominating set problem on general
graphs is known to be W [2]-complete [12]. This means that most likely there
is no f(k) ·nc-algorithm for finding a dominating set of size at most k in a graph
of size n for any computable function f : IN → IN and constant c. This suggests
the exploration of specific families of graphs for which this problem is fixed-
parameter tractable. For a general introduction to the field of parameterized
complexity, the reader is referred to [12] and [14].

The method of bounded search trees has been used to give an O(8kn) time
algorithm for the dominating set problem in planar graphs [2] and an O((4g +
40)kn2) time algorithm for the problem in graphs of bounded genus g ≥ 1
[13]. The algorithms for planar graph were improved to O(46

√
34kn) [1], then

to O(227
√

kn) [17], and finally to O(215.13
√

kk + n3 + k4) [15]. Fixed-parameter
algorithms are now known also for map graphs [9] and for constant powers of H-
minor-free graphs [10]. The running time given in [10] for finding a dominating
set of size k in an H-minor-free graph G with n vertices is 2O(

√
k)nc, where c is

a constant depending only on H . To summarize these results, fixed-parameter
tractable algorithms for the dominating set problem were known for fixed pow-
ers of H-minor-free graphs and for map graphs. Linear time algorithms were
established only for planar graphs.

Finding Paths and Cycles. The foundations for the algorithms for finding
cycles, presented in this paper, have been laid in [4], where the authors intro-
duce the color-coding technique. Two main randomized algorithms are presented
there, as follows. A simple directed or undirected path of length k−1 in a graph
G = (V, E) that contains such a path can be found in 2O(k)|E| expected time in
the directed case and in 2O(k)|V | expected time in the undirected case. A simple
directed or undirected cycle of size k in a graph G = (V, E) that contains such
a cycle can be found in either 2O(k)|V ||E| or 2O(k)|V |ω expected time, where

396 N. Alon and S. Gutner

ω < 2.376 is the exponent of matrix multiplication. These algorithms can be
derandomized at a cost of an extra log |V | factor. As for the case of even cycles,
it is shown in [23] that for every fixed k ≥ 2, there is an O(|V |2) algorithm
for finding a simple cycle of size 2k in an undirected graph (that contains such
a cycle). Improved algorithms for detecting given length cycles have been pre-
sented in [5] and [24]. The authors of [5] describe fast algorithms for finding
short cycles in d-degenerated graphs. In particular, C3’s and C4’s can be found
in O(|E| · d(G)) time and C5’s in O(|E| · d(G)2) time.

Finding Induced Paths and Cycles. Cai, Chan and Chan have recently intro-
duced a new interesting technique they call random separation for solving fixed-
cardinality optimization problems on graphs [8]. They combine this technique to-
gether with color-coding to give the following algorithms for finding an induced
graph within a large graph. For fixed constants k and d, if a d-degenerated graph
G with n vertices contains some fixed induced tree T on k vertices, then it can
be found in O(n) expected time and O(n log2 n) worst-case time. If such a graph
G contains an induced k-cycle, then it can be found in O(n2) expected time and
O(n2 log2 n) worst-case time. Two open problems are raised by the authors of the
paper. First, they ask whether the log2 n factor incurred in the derandomization
can be reduced to log n. A second question is whether there is an O(n) expected
time algorithm for finding an induced k-cycle in a d-degenerated graph with n ver-
tices. In this paper, we show that when combining the techniques of random sep-
aration and color-coding, an improved derandomization with a loss of only logn
is indeed possible. An O(n) expected time algorithm finding an induced k-cycle
in graphs with an excluded minor is presented. We give evidence that establishing
such an algorithm even for 2-degenerated graphs has far-reaching consequences.

Our Results. The main result of the paper is that the dominating set problem
is fixed-parameter tractable for degenerated graphs. The running time is kO(dk)n
for finding a dominating set of size k in a d-degenerated graph with n vertices.
The algorithm is linear in the number of vertices of the graph, and we further
improve the dependence on k for the following specific families of degenerated
graphs. For graphs that do not contain Kh as a topological minor, an improved
algorithm for the problem with running time (O(h))hkn is established. For graphs
which are Kh-minor-free, the running time obtained is (O(log h))hk/2n. We show
that all the algorithms can be generalized to the weighted case in the following
sense. A dominating set of size at most k having minimum weight can be found
within the same time bounds.

We address two open questions raised by Cai, Chan and Chan in [8] concerning
linear time algorithms for finding an induced cycle in degenerated graphs. An
O(n) expected time algorithm for finding an induced k-cycle in graphs with an
excluded minor is presented. The derandomization performed in [8] is improved
and we get a deterministic O(n log n) time algorithm for the problem. As for
finding induced cycles in degenerated graphs, we show a deterministic O(n)
time algorithm for finding cycles of size at most 5, and also explain why this is
unlikely to be possible to achieve for longer cycles.

Linear Time Algorithms for Finding a Dominating Set of Fixed Size 397

Techniques. We generalize the known search tree algorithms for the dominating
set problem. This is enabled by proving some combinatorial lemmas, which are
interesting in their own right. For degenerated graphs, we bound the number of
vertices that dominate many elements of a given set, whereas for graphs with an
excluded minor, our interest is in vertices that still need to be dominated and
have a small degree.

The algorithm for finding an induced cycle in non-trivial minor-closed fam-
ilies is based on random separation and color-coding. Its derandomization is
performed using known explicit constructions of families of (generalized) perfect
hash functions.

2 Preliminaries

The paper deals with undirected and simple graphs, unless stated otherwise.
Generally speaking, we will follow the notation used in [7] and [11]. For an
undirected graph G = (V, E) and a vertex v ∈ V , N(v) denotes the set of all
vertices adjacent to v (not including v itself). We say that v dominates the
vertices of N(v) ∪ {v}. The graph obtained from G by deleting v is denoted
G− v. The subgraph of G induced by some set V ′ ⊆ V is denoted by G[V ′].

A graph G is d-degenerated if every induced subgraph of G has a vertex of
degree at most d. It is easy and known that every d-degenerated graph G = (V, E)
admits an acyclic orientation such that the outdegree of each vertex is at most
d. Such an orientation can be found in O(|E|) time. A d-degenerated graph with
n vertices has less than dn edges and therefore its average degree is less than 2d.

For a directed graph D = (V, A) and a vertex v ∈ V , the set of out-neighbors
of v is denoted by N+(v). For a set V ′ ⊆ V , the notation N+(V ′) stands for
the set of all vertices that are out-neighbors of at least one vertex of V ′. For a
directed graph D = (V, A) and a vertex v ∈ V , we define N+

1 (v) = N+(v) and
N+

i (v) = N+(N+
i−1(v)) for i ≥ 2.

An edge is said to be subdivided when it is deleted and replaced by a path
of length two connecting its ends, the internal vertex of this path being a new
vertex. A subdivision of a graph G is a graph that can be obtained from G by
a sequence of edge subdivisions. If a subdivision of a graph H is the subgraph
of another graph G, then H is a topological minor of G. A graph H is called a
minor of a graph G if is can be obtained from a subgraph of G by a series of
edge contractions.

In the parameterized dominating set problem, we are given an undirected
graph G = (V, E), a parameter k, and need to find a set of at most k vertices that
dominate all the other vertices. Following the terminology of [2], the following
generalization of the problem is considered. The input is a black and white graph,
which simply means that the vertex set V of the graph G has been partitioned
into two disjoint sets B and W of black and white vertices, respectively, i.e.,
V = B ,W , where , denotes disjoint set union. Given a black and white graph
G = (B , W, E) and an integer k, the problem is to find a set of at most k
vertices that dominate the black vertices. More formally, we ask whether there

398 N. Alon and S. Gutner

is a subset U ⊆ B ,W , such that |U | ≤ k and every vertex v ∈ B − U satisfies
N(v) ∩ U 	= ∅. Finally we give a new definition, specific to this paper, for what
it means to be a reduced black and white graph.

Definition 1. A black and white graph G = (B ,W, E) is called reduced if it
satisfies the following conditions:

– W is an independent set.
– All the vertices of W have degree at least 2.
– N(w1) 	= N(w2) for every two distinct vertices w1, w2 ∈W .

3 Algorithms for the Dominating Set Problem

3.1 Degenerated Graphs

The algorithm for degenerated graphs is based on the following combinatorial
lemma.

Lemma 1. Let G = (B ,W, E) be a d-degenerated black and white graph. If
|B| > (4d + 2)k, then there are at most (4d + 2)k vertices in G that dominate at
least |B|/k vertices of B.

Proof. Denote R = {v ∈ B∪W
∣∣|(NG(v)∪{v})∩B| ≥ |B|/k}. By contradiction,

assume that |R| > (4d+2)k. The induced subgraph G[R∪B] has at most |R|+|B|
vertices and at least |R|

2 · (
|B|
k − 1) edges. The average degree of G[R∪B] is thus

at least
|R|(|B| − k)
k(|R|+ |B|) ≥

min{|R|, |B|}
2k

− 1 > 2d.

This contradicts the fact that G[R ∪B] is d-degenerated. ��

Theorem 1. There is a kO(dk)n time algorithm for finding a dominating set
of size at most k in a d-degenerated black and white graph with n vertices that
contains such a set.

Proof. The pseudocode of algorithm DominatingSetDegenerated(G, k) that
solves this problem appears below. If there is indeed a dominating set of size
at most k, then this means that we can split B into k disjoint pieces (some
of them can be empty), so that each piece has a vertex that dominates it. If
|B| ≤ (4d + 2)k, then there are at most k(4d+2)k ways to divide the set B into k
disjoint pieces. For each such split, we can check in O(kdn) time whether every
piece is dominated by a vertex. If |B| > (4d + 2)k, then it follows from Lemma
1 that |R| ≤ (4d + 2)k. This means that the search tree can grow to be of size
at most (4d + 2)kk! before possibly reaching the previous case. This gives the
needed time bound. ��

Linear Time Algorithms for Finding a Dominating Set of Fixed Size 399

Algorithm 1. DominatingSetDegenerated(G, k)
Input: Black and white d-degenerated graph G = (B � W,E), integers k, d
Output: A set dominating all vertices of B of size at most k or NONE if no

such set exists
if B = ∅ then

return ∅
else if k = 0 then

return NONE

else if |B| ≤ (4d + 2)k then
forall possible ways of splitting B into k (possibly empty) disjoint pieces
B1, . . . , Bk do

if each piece Bi has a vertex vi that dominates it then
return {v1, . . . , vk}

return NONE

else
R ← {v ∈ B ∪ W

∣∣|(NG(v) ∪ {v}) ∩ B| ≥ |B|/k}
forall v ∈ R do

Create a new graph G′ from G by marking all the elements of NG(v) as
white and removing v from the graph
D ← DominatingSetDegenerated(G′, k − 1)
if D �= NONE then

return D ∪ {v}
return NONE

3.2 Graphs with an Excluded Minor

Graphs with either an excluded minor or with no topological minor are known
to be degenerated. We will apply the following useful propositions.

Proposition 1. [6,18] There exists a constant c such that, for every h, every
graph that does not contain Kh as a topological minor is ch2-degenerated.

Proposition 2. [19,21,22] There exists a constant c such that, for every h,
every graph with no Kh minor is ch

√
log h-degenerated.

The following lemma gives an upper bound on the number of cliques of a pre-
scribed fixed size in a degenerated graph.

Lemma 2. If a graph G with n vertices is d-degenerated, then for every k ≥ 1,
G contains at most

(
d

k−1

)
n copies of Kk.

Proof. By induction on n. For n = 1 this is obviously true. In the general case,
let v be a vertex of degree at most d. The number of copies of Kk that contain
v is at most

(
d

k−1

)
. By the induction hypothesis, the number of copies of Kk in

G− v is at most
(

d
k−1

)
(n− 1). ��

We can now prove our main combinatorial results.

400 N. Alon and S. Gutner

Theorem 2. There exists a constant c > 0, such that for every reduced black
and white graph G = (B , W, E), if G does not contain Kh as a topological
minor, then there exists a vertex b ∈ B of degree at most (ch)h.

Proof. Denote |B| = n > 0 and d = ch2 where c is the constant from Proposition
1. Consider the vertices of W in some arbitrary order. For each such vertex
w ∈ W , if there exist two vertices b1, b2 ∈ N(w), such that b1 and b2 are not
connected, add the edge {b1, b2} and remove the vertex w from the graph. Denote
the resulting graph G′ = (B ,W ′, E′). Obviously, G′[B] does not contain Kh as
a topological minor and therefore has at most dn edges. The number of edges in
the induced subgraph G′[B] is at least the number of white vertices that were
deleted from the graph, which means that at most dn were deleted so far.

We now bound |W ′|, the number of white vertices in G′. It follows from the
definition of a reduced black and white graph that there are no white vertices
in G′ of degree smaller than 2. The graph G′ cannot contain a white vertex of
degree h−1 or more, since this would mean that the original graph G contained
a subdivision of Kh. Now let w be a white vertex of G′ of degree k, where
2 ≤ k ≤ h−2. The reason why w was not deleted during the process of generating
G′ is because N(w) is a clique of size k in G′[B]. The graph G′ is a reduced black
and white graph, and therefore N(w1) 	= N(w2) for every two different white
vertices w1 and w2. This means that the neighbors of each white vertex induce
a different clique in G′[B]. By applying Lemma 2 to G′[B], we get that the
number of white vertices of degree k in G′ is at most

(
d

k−1

)
n. This means that

|W ′| ≤
[(

d
1

)
+

(
d
2

)
+ · · ·+

(
d

h−3

)]
n. We know that |W | ≤ |W ′|+dn and therefore

|E| ≤ d(|B|+|W |) ≤ d
[
3d +

(
d
2

)
+ · · ·+

(
d

h−3

)]
n. Obviously, there exists a black

vertex of degree at most 2|E|/n. The result now follows by plugging the value
of d and using the fact that

(
n
k

)
≤ (en

k)k. ��

Theorem 3. There exists a constant c > 0, such that for every reduced black
and white graph G = (B , W, E), if G is Kh-minor-free, then there exists a
vertex b ∈ B of degree at most (c log h)h/2.

Proof. We proceed as in the proof of Theorem 2 using Proposition 2 instead of
Proposition 1. ��

Theorem 4. There is an (O(h))hkn time algorithm for finding a dominating
set of size at most k in a black and white graph with n vertices and no Kh as a
topological minor.

Proof. The pseudocode of algorithm DominatingSetNoMinor(G, k) that solves
this problem appears below. Let the input be a black and white graph G =
(B ,W, E). It is important to notice that the algorithm removes vertices and
edges in order to get a (nearly) reduced black and white graph. This can be done
in time O(|E|) by a careful procedure based on the proof of Theorem 2 combined
with radix sorting. We omit the details which will appear in the full version of
the paper. The time bound for the algorithm now follows from Theorem 2. ��

Linear Time Algorithms for Finding a Dominating Set of Fixed Size 401

Algorithm 2. DominatingSetNoMinor(G, k)
Input: Black and white (Kh-minor-free) graph G = (B � W, E), integer k
Output: A set dominating all vertices of B of size at most k or NONE if no

such set exists
if B = ∅ then

return ∅
else if k = 0 then

return NONE

else
Remove all edges of G whose two endpoints are in W
Remove all white vertices of G of degree 0 or 1
As long as there are two different vertices w1, w2 ∈ W with
N(w1) = N(w2), |N(w1)| < h − 1, remove one of them from the graph
Let b ∈ B be a vertex of minimum degree among all vertices in B
forall v ∈ NG(b) ∪ {b} do

Create a new graph G′ from G by marking all the elements of NG(v) as
white and removing v from the graph
D ← DominatingSetNoMinor(G′, k − 1)
if D �= NONE then

return D ∪ {v}

return NONE

Theorem 5. There is an (O(log h))hk/2n time algorithm for finding a domi-
nating set of size at most k in a black and white graph with n vertices which is
Kh-minor-free.

Proof. The proof is analogues to that of Theorem 4 using Theorem 3 instead of
Theorem 2. ��

3.3 The Weighted Case

In the weighted dominating set problem, each vertex of the graph has some
positive real weight. The goal is to find a dominating set of size at most k, such
that the sum of the weights of all the vertices of the dominating set is as small
as possible. The algorithms we presented can be generalized to deal with the
weighted case without changing the time bounds. In this case, the whole search
tree needs to be scanned and one cannot settle for the first valid solution found.

Let G = (B ,W, E) be the input graph to the algorithm. In algorithm 1 for
degenerated graphs, we need to address the case where |B| ≤ (4d + 2)k. In this
case, the algorithm scans all possible ways of splitting B into k disjoint pieces
B1, . . . , Bk, and it has to be modified, so that it will always choose a vertex
with minimum weight that dominates each piece. In algorithm 2 for graphs with
an excluded minor, the criterion for removing white vertices from the graph is
modified so that whenever two vertices w1, w2 ∈ W satisfy N(w1) = N(w2), the
vertex with the bigger weight is removed.

402 N. Alon and S. Gutner

4 Finding Induced Cycles

4.1 Degenerated Graphs

Recall that N+
i (v) is the set of all vertices that can be reached from v by a

directed path of length exactly i. If the outdegree of every vertex in a directed
graph D = (V, A) is at most d, then obviously |N+

i (v)| ≤ di for every v ∈ V and
i ≥ 1.

Theorem 6. For every fixed d ≥ 1 and k ≤ 5, there is a deterministic O(n)
time algorithm for finding an induced cycle of length k in a d-degenerated graph
on n vertices.

Proof. Given a d-degenerated graph G = (V, E) with n vertices, we orient the
edges so that the outdegree of all vertices is at most d. This can be done in time
O(|E|). Denote the resulting directed graph D = (V, A). We can further assume
that V = {1, 2, . . . , n} and that every directed edge {u, v} ∈ A satisfies u < v.
This means that an out-neighbor of a vertex u will always have an index which
is bigger than that of u. We now describe how to find cycles of size at most 5.

To find cycles of size 3 we simply check for each vertex v whether N+(v) ∩
N+

2 (v) 	= ∅. Suppose now that we want to find a cycle v1 − v2 − v3 − v4 − v1

of size 4. Without loss of generality, assume that v1 < v2 < v4. We distinguish
between two possible cases.

– v1 < v3 < v2 < v4: Keep two counters C1 and C2 for each pair of vertices.
For every vertex v ∈ V and every unordered pair of distinct vertices u, w ∈
N+(v), such that u and w are not connected, we raise the counter C1({u, w})
by one. In addition to that, for every vertex x ∈ N+(v) such that u, w ∈
N+(x), the counter C2({u, w}) is incremented. After completing this process,
we check whether there are two vertices for which

(
C1({u,w})

2

)
−C2({u, w}) >

0. This would imply that an induced 4-cycle was found.
– v1 < v2 < v3 < v4 or v1 < v2 < v4 < v3: Check for each vertex v whether

the set {v} ∪N+(v) ∪N+
2 (v) ∪N+

3 (v) contains an induced cycle.

To find an induced cycle of size 5, a more detailed case analysis is needed. It
is easy to verify that such a cycle has one of the following two types.

– There is a vertex v such that {v}∪N+(v)∪N+
2 (v)∪N+

3 (v)∪N+
4 (v) contains

the induced cycle.
– The cycle is of the form v − x − u − y − w − v, where x ∈ N+(v), u ∈

N+(x) ∩N+(y), and w ∈ N+(v) ∩N+(y). The induced cycle can be found
by defining counters in a similar way to what was done before. We omit the
details. ��

The following simple lemma shows that a linear time algorithm for finding an
induced C6 in a 2-degenerated graph would imply that a triangle (a C3) can
be found in a general graph in O(|V | + |E|) ≤ O(|V |2) time. It is a long stan-
ding open question to improve the natural O(|V |ω) time algorithm for this prob-
lem [16].

Linear Time Algorithms for Finding a Dominating Set of Fixed Size 403

Lemma 3. Given a linear time algorithm for finding an induced C6 in a 2-
degenerated graph, it is possible to find triangles in general graphs in O(|V |+|E|)
time.

Proof. Given a graph G = (V, E), subdivide all the edges. The new graph ob-
tained G′ is 2-degenerated and has |V | + |E| vertices. A linear time algorithm
for finding an induced C6 in G′ actually finds a triangle in G. By assumption,
the running time is O(|V |+ |E|) ≤ O(|V |2). ��

4.2 Minor-Closed Families of Graphs

Theorem 7. Suppose that G is a graph with n vertices taken from some non-
trivial minor-closed family of graphs. For every fixed k, if G contains an induced
cycle of size k, then it can be found in O(n) expected time.

Proof. There is some absolute constant d, so that G is d-degenerated. Orient
the edges so that the maximum outdegree is at most d and denote the resulting
graph D = (V, E). We now use the technique of random separation. Each vertex
v ∈ V of the graph is independently removed with probability 1/2, to get some
new directed graph D′. Now examine some (undirected) induced cycle of size k
in the original directed graph D, and denote its vertices by U . The probability
that all the vertices in U remained in the graph and all vertices in N+(U)− U
were removed from the graph is at least 2−k(d+1).

We employ the color-coding method to the graph D′. Choose a random color-
ing of the vertices of D′ with the k colors {1, 2, . . . , k}. For each vertex v colored
i, if N+(v) contains a vertex with a color which is neither i−1 nor i+1 (mod k),
then it is removed from the graph. For each induced cycle of size k, its vertices
will receive distinct colors and it will remain in the graph with probability at
least 2k1−k.

We now use the O(n) time algorithm from [4] to find a multicolored cycle
of length k in the resulting graph. If such a cycle exists, then it must be an
induced cycle. Since k and d are constants, the algorithm succeeds with some
small constant probability and the expected running time is as needed. ��

The next theorem shows how to derandomize this algorithm while incurring a
loss of only O(log n).

Theorem 8. Suppose that G is a graph with n vertices taken from some non-
trivial minor-closed family of graphs. For every fixed k, there is an O(n log n)
time deterministic algorithm for finding an induced cycle of size k in G.

Proof. Denote G = (V, E) and assume that G is d-degenerated. We derandomize
the algorithm in Theorem 7 using an (n, dk+k)-family of perfect hash functions.
This is a family of functions from [n] to [dk + k] such that for every S ⊆ [n],
|S| = dk + k, there exists a function in the family that is 1-1 on S. Such a
family of size edk+k(dk + k)O(log(dk+k)) log n can be efficiently constructed [20].
We think of each function as a coloring of the vertices with the dk + k colors

404 N. Alon and S. Gutner

C = {1, 2, . . . , dk + k}. For every combination of a coloring, a subset L ⊆ C of
k colors and a bijection f : L → {1, 2, . . . , k} the following is performed. All the
vertices that got a color from c ∈ L now get the color f(c). The other vertices
are removed from the graph.

The vertices of the resulting graph are colored with the k colors {1, 2, . . . , k}.
Examine some induced cycle of size k in the original graph, and denote its vertices
by U . There exists some coloring c in the family of perfect hash functions for
which all the vertices in U ∪N+(U) received different colors. Now let L be the k
colors of the vertices in the cycle U and let f : L → [k] be the bijection that gives
consecutive colors to vertices along the cycle. This means that for this choice
of c, L, and f , the induced cycle U will remain in the graph as a multicolored
cycle, whereas all the vertices in N+(U)− U will be removed from the graph.

We proceed as in the previous algorithm. Better dependence on the parameters
d and k can be obtained using the results in [3]. ��

5 Concluding Remarks

– The algorithm for finding a dominating set in graphs with an excluded mi-
nor, presented in this paper, generalizes and improves known algorithms
for planar graphs and graphs with bounded genus. We believe that similar
techniques may be useful in improving and simplifying other known fixed-
parameter algorithms for graphs with an excluded minor.

– An interesting open problem is to decide whether there is a 2O(
√

k)nc time
algorithm for finding a dominating set of size k in graphs with n vertices
and an excluded minor, where c is some absolute constant that does not
depend on the excluded graph. Maybe even a 2O(

√
k)n time algorithm can

be achieved.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed param-
eter algorithms for DOMINATING SET and related problems on planar graphs.
Algorithmica 33(4), 461–493 (2002)

2. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.A.,
Stege, U.: A refined search tree technique for dominating set on planar graphs. J.
Comput. Syst. Sci. 71(4), 385–405 (2005)

3. Alon, N., Cohen, G.D., Krivelevich, M., Litsyn, S.: Generalized hashing and parent-
identifying codes. J. Comb. Theory, Ser. A 104(1), 207–215 (2003)

4. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

5. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

6. Bollobás, B., Thomason, A.: Proof of a conjecture of Mader, Erdös and Hajnal on
topological complete subgraphs. Eur. J. Comb. 19(8), 883–887 (1998)

7. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. American Elsevier
Publishing, New York (1976)

Linear Time Algorithms for Finding a Dominating Set of Fixed Size 405

8. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solv-
ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

9. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter al-
gorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on
Algorithms 1(1), 33–47 (2005)

10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs. Jour-
nal of the ACM 52(6), 866–893 (2005)

11. Diestel, R.: Graph theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2005)

12. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, Heidelberg (1999)

13. Ellis, J.A., Fan, H., Fellows, M.R.: The dominating set problem is fixed parameter
tractable for graphs of bounded genus. J. Algorithms 52(2), 152–168 (2004)

14. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006)

15. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and
exponential speed-up. In: Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 168–177. ACM Press, New York (2003)

16. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on
Computing 7(4), 413–423 (1978)

17. Kanj, I.A., Perkovic, L.: Improved parameterized algorithms for planar dominating
set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410.
Springer, Heidelberg (2002)

18. Komlós, J., Szemerédi, E.: Topological cliques in graphs II. Combinatorics, Prob-
ability & Computing 5, 79–90 (1996)

19. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984)

20. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandom-
ization. In: 36th Annual Symposium on Foundations of Computer Science, pp.
182–191 (1995)

21. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cam-
bridge Philos. Soc. 95(2), 261–265 (1984)

22. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2), 318–338 (2001)

23. Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM Journal on Discrete
Mathematics 10(2), 209–222 (1997)

24. Yuster, R., Zwick, U.: Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming. In: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 254–260 (2004)

Single-Edge Monotonic Sequences of Graphs and

Linear-Time Algorithms for Minimal
Completions and Deletions�

Pinar Heggernes and Charis Papadopoulos

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pinar,charis}@ii.uib.no

Abstract. We study graph properties that admit an increasing, or
equivalently decreasing, sequence of graphs on the same vertex set such
that for any two consecutive graphs in the sequence their difference is
a single edge. This is useful for characterizing and computing minimal
completions and deletions of arbitrary graphs into having these proper-
ties. We prove that threshold graphs and chain graphs admit such se-
quences. Based on this characterization and other structural properties,
we present linear-time algorithms both for computing minimal comple-
tions and deletions into threshold, chain, and bipartite graphs, and for
extracting a minimal completion or deletion from a given completion
or deletion. Minimum completions and deletions into these classes are
NP-hard to compute.

1 Introduction

A graph property P is called monotone if it is closed under any edge or vertex re-
moval. Equivalently, a property is monotone if it is closed under taking subgraphs
that are not necessarily induced. A property is hereditary if it is closed under tak-
ing induced subgraphs. Every monotone property is hereditary but the converse
is not true. For example bipartiteness and planarity are monotone properties,
as they are characterized through forbidden subgraphs that are not necessarily
induced, whereas perfectness is a hereditary but not monotone property. Some
of the most well-studied graph properties are monotone [1,3] or hereditary [14].
If a given monotone (hereditary) property is equivalent to belonging to a graph
class then this graph class is called monotone (hereditary).

In this work, we introduce sandwich monotonicity of graph properties and
graph classes. We say that a graph property P is sandwich monotone if P sat-
isfies the following: Given two graphs G1 = (V, E) and G2 = (V, E ∪ F) that
both satisfy P , the edges in F can be ordered f1, f2, . . . , f|F | such that when
single edges of F are added to G1 one by one in this order (or removed from G2

in the reverse order), the graph obtained at each step satisfies P . Every mono-
tone property is clearly sandwich monotone as well. However every hereditary
� This work is supported by the Research Council of Norway through grant

166429/V30.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 406–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms 407

property is not necessarily sandwich monotone. Here, we are interested in identi-
fying non-monotone hereditary graph classes that are sandwich monotone. Until
now, sandwich monotonicity of only two such classes has been shown: chordal
graphs [28] and split graphs [15], and it has been an open question which other
graph classes are sandwich monotone [2]. Simple examples exist to show that the
hereditary classes of perfect graphs, comparability graphs, permutation graphs,
cographs, trivially perfect graphs, and interval graphs are not sandwich mono-
tone. In this extended abstract we show that threshold graphs and chain graphs
are sandwich monotone.

Our main motivation for studying sandwich monotonicity comes from the
problem of adding edges to or deleting edges from a given arbitrary graph so
that it satisfies a desired property. For example, a chordal completion is a chordal
supergraph on the same vertex set, and a bipartite deletion is a spanning bi-
partite subgraph of an arbitrary graph. Completions and deletions into other
graph classes are defined analogously. A completion (deletion) is minimum if it
has the smallest possible number of added (deleted) edges. Unfortunately min-
imum completions and deletions into most interesting graph classes, including
threshold, chain, and bipartite graphs, are NP-hard to compute [13,7,22,25,29].
However, minimum completions (deletions) are a subset of minimal completions
(deletions), and hence we can search for minimum among the set of minimal.
A completion (deletion) is minimal if no subset of the added (deleted) edges
is enough to give the desired property when added to (deleted from) the input
graph.

Given as input an arbitrary graph, there are two problems related to minimal
completions (deletions) : 1. Computing a minimal completion (deletion) of the
given input graph into the desired graph class, 2. Extracting a minimal comple-
tion (deletion) which is a subgraph (supergraph) of a given arbitrary completion
(deletion) of the input graph into the desired class. A solution of problem 2 re-
quires a characterization of minimal completions (deletions) into a given class,
and readily gives a solution of problem 1. A solution of problem 1 might gener-
ate only a subset of all possible minimal completions (deletions), and does not
necessarily solve problem 2. Solution of problem 2 in polynomial time is known
only for completions into chordal [4], split [15], and interval [18] graphs, and for
deletions into chordal [9], split [16], and planar [10,20] graphs. As an example of
usefulness of a solution of problem 2, various characterizations of minimal chordal
completions [21,6] have made it possible to design approximation algorithms [25]
and fast exact exponential time algorithms [11] for computing minimum chordal
completions. A solution of problem 2 also allows the computation of minimal
completions that are not far from minimum in practice [5].

For a graph property P that is sandwich monotone, problem 2 of extracting a
minimal completion from a given completion of an input graph into P has always
a polynomial time solution if P can be recognized in polynomial time. Given G
and a supergraph G2 of G satisfying P , if G2 is not a minimal completion,
then a minimal completion G1 exists sandwiched between G and G2. Hence by
trying one by one all edges of G2 that are not in G for removal, one obtains

408 P. Heggernes and C. Papadopoulos

a minimal extraction algorithm with a number of iterations that is quadratic
in the number of edges appearing in G2 but not in G. Similarly, problem 2 of
extracting a minimal deletion from a given deletion can also be solved with a
number of iterations that is quadratic in the number of deleted edges.

In this extended abstract, by showing that threshold graphs and chain graphs
are sandwich monotone, we thus establish that minimal completions and dele-
tions of arbitrary graphs into these graph classes can be computed in polynomial
time. Even more interesting, we give linear-time algorithms for minimal com-
pletions into threshold graphs and minimal deletions into bipartite and chain
graphs. This does not follow from sandwich monotonicity in general. Further-
more, we solve the extraction version of these problems (problem 2 above) in
linear time for these graph classes. Linear-time minimal completion algorithms
have been known only into two classes previously; split [15] and proper interval
[27] graphs. The only linear-time minimal extraction algorithm known is the one
into split graphs [15]. Linear-time minimal deletion algorithms are known only
into split [16] and planar graphs (which are monotone) [10,20].

Notation and Terminology: We consider simple undirected graphs. For a graph
G = (V, E), V (G) = V and E(G) = E, with n = |V | and m = |E|. For S ⊆ V ,
the subgraph of G induced by S is denoted by G[S]. Moreover, we denote by
G − S the graph G[V \ S] and by G − v the graph G[V \ {v}]. We distinguish
between subgraphs and induced subgraphs. By a subgraph of G we mean a graph
G′ on the same vertex set containing a subset of the edges of G, and we denote
it by G′ ⊆ G. If G′ contains a proper subset of the edges of G, we write G′ ⊂ G.
We write G− uv to denote the graph (V, E \ {uv}).

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The degree of x
in G is dG(x). For S ⊆ V NG(S) =

⋃
x∈S NG(x) \ S. The size of a largest clique

in G is ω(G). A chordless cycle on k vertices is denoted by Ck and a chordless
path on k vertices is denoted by Pk. The graph consisting of only two disjoint
edges is denoted by 2K2. The complement G of a graph G consists of all vertices
and all non-edges of G. For a graph class C, the class co-C is the set of graphs G
for which G ∈ C. A class C is self-complementary if C = co-C.

Given an arbitrary graph G = (V, E) and a graph class C, a C completion of
G is a graph H = (V, E ∪F) such that H ∈ C, and H is a minimal C completion
of G if (V, E ∪ F ′) fails to be in C for every F ′ ⊂ F . Similarly, H = (V, E \D)
is a C deletion of G if H ∈ C, and H is minimal if (V, E \ D′) fails to be in C
for every D′ ⊂ D. The edges added to the original graph in order to obtain a
completion are called fill edges, and the edges removed from the original graph
in order to obtain a deletion are called deleted edges.

2 Minimal Completions and Deletions into Sandwich
Monotone Graph Classes

Definition 1. A graph class C is sandwich monotone if the following is true for
any pair of graphs G = (V, E) and H = (V, E∪F) in C with E∩F = ∅: There is

Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms 409

an ordering f1, f2, . . . , f|F | of the edges in F such that in the sequence of graphs
G = G0, G1, . . . , G|F | = H, where Gi−1 is obtained by removing edge fi from Gi,
(or equivalently, Gi is obtained by adding edge fi to Gi−1), every graph belongs
to C.

Minimal completions and deletions into sandwich monotone graph classes have
the following algorithmically useful characterization, as observed on chordal
graphs [28] and split graphs [15] previously.

Observation 1. Let C be a graph class and let P be the property of belonging
to C. The following are equivalent:

(i) C is sandwich monotone.
(ii) co-C is sandwich monotone.

(iii) A C completion is minimal if and only if no single fill edge can be removed
without destroying the property P.

(iv) A C deletion is minimal if and only if no single deleted edge can be added
without destroying the property P.

Observation 2. Let C be a sandwich monotone graph class. Given a polynomial
time algorithm for the recognition of C, there is a polynomial time algorithm for
extracting a minimal C completion (deletion) of an arbitrary graph G from any
given C completion (deletion) of G.

Even though we know that minimal C completions and deletions can be com-
puted in polynomial time for a sandwich monotone graph class C, the actual
running time is not necessarily practical. In the following sections, we give linear-
time algorithms for computing and extracting minimal completions into thresh-
old, and deletions into bipartite and chain graphs.

For the sandwich monotone graph classes previously studied for completions
and deletions, linear-time algorithms exist for computing and extracting minimal
split completions [15] and deletions [16], and minimal planar deletions [10,20].
As a comparison, although chordal graphs are sandwich monotone and they can
be recognized in linear time, the best known running time is O(n2.376) for a
minimal chordal completion algorithm [19], and O(Δm) for a minimal chordal
deletion algorithm [9], where Δ is the largest degree in the input graph.

Minimal Bipartite Deletions: A graph is bipartite if its vertex set can be par-
titioned into two independent sets, called a bipartition. The bipartition of a
bipartite graph is unique if and only if the graph is connected. Bipartite graphs
are exactly the class of graphs that do not contain cycles of odd length. It is well
known that simple modifications of breadth-first search (BFS) can be used to
find an odd cycle in a graph or provide a bipartition of it in linear time. Bipartite
graphs are monotone, and hence also sandwich monotone. Computing minimum
bipartite deletions is NP-hard problem [13].

If an arbitrary input graph G is connected then there exists a connected
bipartite deletion of G, since G has a spanning tree, and trees are bipartite. If
G is not connected, then the following result can be applied to each connected
component of G separately.

410 P. Heggernes and C. Papadopoulos

Theorem 1. Let H = (V, E \ D) be a bipartite deletion of an arbitrary graph
G = (V, E) with D ⊆ E. A minimal bipartite deletion H ′ = (V, E \ D′) of G,
such that D′ ⊆ D can be computed in O(n + m) time.

Corollary 1. Any minimal bipartite deletion of an arbitrary graph can be com-
puted in O(n + m) time.

3 Minimal Threshold Completions

A graph G = (V, E) is called a threshold graph if there exist nonnegative real
numbers wv for v ∈ V , and t such that for every I ⊆ V ,

∑
v∈I wv ≤ t if and only

if I is an independent set [8,14,23].
A graph is a split graph if its vertex set can be partitioned into a clique K

and an independent set S, in which case (S, K) is a (not necessarily unique) split
partition of the graph. Split graphs can be recognized and a split partition can
be computed in linear time [14]. It is known that a graph is split if and only if
it does not contain any vertex subset inducing 2K2, C4, or C5 [12]. Hence the
next theorem states that a graph is threshold if and only if it is split and does
not contain any vertex set inducing a P4.

Theorem 2 ([8]). A graph is a threshold graph if and only if it does not contain
any vertex set inducing 2K2, C4, or P4.

Consequently, in a disconnected threshold graph there is at most one connected
component that contains an edge. An ordering v1, v2, . . . , v|S| of a subset S ⊆
V (G) of vertices is called nested neighborhood ordering if it has the property that
(NG(v1) \ S) ⊆ (NG(v2) \ S) ⊆ . . . ⊆ (NG(v|S|) \ S).

Theorem 3 ([23]). A graph is a threshold graph if and only if it is split and
the vertices of the independent set have a nested neighborhood ordering in any
split partition.

Threshold graphs can be recognized and a nested neighborhood ordering can
be computed in linear time, since sorting the vertices of the independent set
by their degrees readily gives such an ordering for threshold graphs [14]. It is
NP-hard to compute minimum threshold completions of arbitrary graphs; even
split graphs [26].

A split partition of a threshold graph is never unique [14]. Here we define a
threshold partition (S, K) of a threshold graph in a unique way. Note first that
all vertices of degree more than ω(G) − 1 must belong to K, and all vertices of
degree less than ω(G)−1 must belong to S. The set of vertices of degree exactly
ω(G) − 1 is either an independent set or a clique [15]. If this set is a clique, we
place all of these vertices in K, and if it is an independent set we place them in S.
We refine the sets S and K further as follows: (S0, S1, S2, . . . , S�) is a partition of
S such that S0 is the set of isolated vertices, and N(S1) ⊂ N(S2) ⊂ . . . ⊂ N(S�),
where � is as large as possible. Hence all vertices in Si have the same degree for
0 ≤ i ≤ �. This also defines a partition (K1, K2, . . . , K�) of K, where K1 = N(S1)

Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms 411

and Ki = N(Si) \ N(Si−1) for 2 ≤ i ≤ �. The remaining vertices of K form
another set K�+1 = K \ N(S�). Again, all vertices in Ki have the same degree
for 1 ≤ i ≤ � + 1. By definition, a graph is threshold if and only if its vertex
set admits such a threshold partition. Moreover the threshold partition of a
threshold graph is unique and all sets Si and Ki, 1 ≤ i ≤ �, are non-empty
except possibly the sets S0 and K�+1. If K�+1 = ∅ then S� contains at least two
vertices, and if K�+1 	= ∅ then K�+1 contains at least two vertices [14].

Lemma 1. Let G be a threshold graph with threshold partition ((S0, . . . , S�),
(K1, . . . , K�+1)) and let uv be an edge satisfying the following: either u ∈ Si and
v ∈ Ki for some i ∈ {1, . . . , �}, or u, v ∈ K�+1. Then G−uv is a threshold graph.

Proof. Assume first that u ∈ Si and v ∈ Ki for some i. Removing uv from G
results in a split graph since we remove and edge between the clique and the
independent set of the split partition. In the graph G′ = G − uv we have that
NG′(Si−1) ⊆ NG′(u) ⊂ NG′(Si\{u}). Thus the new independent set has a nested
neighborhood ordering also in G′, and hence G′ is threshold by Theorem 3.

Assume now that u, v ∈ K�+1. We describe the threshold partition of G′: If
K�+1 contains more than two vertices then the new threshold partition has the
sets (Ki, Si), 1 ≤ i ≤ �, unchanged, and it also contains the new sets K ′

�+1 =
K�+1 \ {u, v} and S′

�+1 = {u, v}. If K�+1 has exactly two vertices, then every
set remains as before, except K�+1 which is removed and S� which now becomes
S′

� = S� ∪ {u, v}. It is easy to check that removal of uv results in exactly the
described threshold partition for G′ and thus G′ is a threshold graph.

For simplicity, we will call an edge uv of G that satisfies the condition in Lemma
1 a candidate edge of G.

Lemma 2. Let G = (V, E) and G′ = (V, E ∪ F) be two threshold graphs such
that F ∩ E = ∅ and F 	= ∅. At least one edge in F is a candidate edge of G′.

Proof. Let ((S′
0, . . . , S

′
�), (K

′
1, . . . , K

′
�+1)) be the threshold partition of G′. As-

sume for a contradiction that F does not contain any candidate edge, and let
uv ∈ F . Since uv cannot be a candidate edge, it is of one of the following three
types: (i) u, v ∈ K ′

i, for some i satisfying 1 ≤ i ≤ �, (ii) u ∈ K ′
i and v ∈ K ′

j , for
some i and j satisfying 1 ≤ i < j ≤ � + 1, or (iii) u ∈ K ′

i and v ∈ S′
j , for some

i and j satisfying 1 ≤ i < j ≤ �. (Recall that there are no edges uv in G′ with
u ∈ K ′

i and v ∈ S′
j where j < i by the definition of threshold partition.)

If uv is of type (i), then since K ′
i is non-empty, there is a vertex x ∈ S′

i

such that ux and uv are edges of G′. Since there are no candidate edges in F ,
ux, uv ∈ E. Assume first that i 	= �. Then there is a vertex y ∈ K ′

� such that uy
and vy are edges of G′ and xy is not an edge of G′. If both uy and vy belong
to E, then {u, x, v, y} induces a C4 in G. If exactly one of uy and vy belongs
to E, say uy, and the other belongs to F , then {y, u, x, v} induces a P4 in G. If
both uy and vy belong to F , then there is a vertex z ∈ S′

l such that {x, u, z, y}
induces a 2K2 in G, since zy is a candidate edge of G′ and hence cannot be in F .
Hence all possibilities lead to a contradiction since G is a threshold graph and

412 P. Heggernes and C. Papadopoulos

cannot contain any of the mentioned induced subgraphs. If i = � and K ′
�+1 	= ∅

then there are at least two vertices y and z in K ′
�+1 that can substitute the role

of y and z as in the case i 	= �, since yz is a candidate edge of G′ and hence must
belong to E. If i = � and K ′

�+1 = ∅ then we know that there are at least two
vertices y, z ∈ S′

�, and that uy, uz, vy, vz ∈ E (since they are candidate edges).
Hence {u, y, v, z} induces a C4 in G, contradicting that G is threshold.

If uv is of type (ii), assume first that j 	= � + 1. Then we know that there is a
vertex x ∈ S′

i and a vertex y ∈ S′
j such that ux, vy ∈ E since they are candidate

edges. We know that xv is not an edge of G′. If yu ∈ E then {x, u, y, v} induces
a P4 in G, and if yu ∈ F then the same set induces a 2K2 in G, contradicting in
both cases that G is threshold. If j = �+1 then we know that there is at least one
more vertex z 	= v in K ′

�+1 where vz ∈ E (since it is a candidate edge). If uz be-
longs to F then {v, z, u, x} induces a 2K2 in G. Otherwise this set induces a P4 in
G, because zx and vx are not edges in G or G′, contradicting that G is threshold.

If uv is of type (iii), then we know that there are vertices x ∈ S′
i and y ∈ K ′

j

such that ux, vy ∈ E by the same arguments as before. If uy ∈ E then {x, u, y, v}
induces a P4 in G, and if uy ∈ F , then this set induces a 2K2 in G. Hence by by
Theorem 2, we reach a contradiction in all possible cases. Consequently, either G
is not threshold, or F must contain a candidate edge, and the proof is complete.

Theorem 4. Threshold graphs are sandwich monotone.

Proof. Given G and G′ as in the premise of Lemma 2, we know by Lemmas 1
and 2 that there is an edge f ∈ F such that G′ − f is threshold. Now the same
argument can be applied to G and G′ = G′ − f with F = F \ {f} repeatedly,
until G′ becomes equal to G.

Theorem 5. Let G be an arbitrary graph and H be a threshold completion of G.
H is a minimal threshold completion of G if and only if no fill edge is a candidate
edge of H.

Proof. If H is a minimal threshold completion of G, then there cannot be any fill
edge that is a candidate edge of H , because otherwise the removal of this edge
would result in a threshold graph by Lemma 1, contradicting that H is minimal.
If H is not a minimal threshold completion of G, then there exists a minimal
threshold completion M of G such that E(G) ⊆ E(M) ⊂ E(H). By Lemma 2
there is an edge e ∈ E(H) \ E(M) that is a candidate edge of H .

Now given any threshold completion H of an arbitrary graph G, let us consider
the problem of extracting a minimal threshold completion H ′ of G such that
G ⊆ H ′ ⊆ H .

Theorem 6. Let H = (V, E∪F) be a threshold completion of an arbitrary graph
G = (V, E) with F ∩ E = ∅. A minimal threshold completion H ′ = (V, E ∪ F ′)
of G, such that F ′ ⊆ F , can be computed in O(n + m + |F |) time.

For the proof of Theorem 6 we give Algorithm Extr Min Threshold which de-
scribes a way of computing H ′.

Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms 413

Algorithm. Extr Min Threshold
Input: A graph G = (V, E) and a threshold graph H = (V, E ∪F) with F ∩E = ∅.
Output: A minimal threshold completion H ′ = (V, E∪F ′) of G such that F ′ ⊆ F .
H ′ = H ; Unmark all vertices of H ′;
Let (S = (S0, S1, . . . , S�), K = (K1, K2, . . . , K�+1)) be the threshold partition of
H ′;
While there is an unmarked vertex v such that dH′(v) ≤ ω(H ′) − 1 do

Pick an unmarked vertex v of minimum dH′(v);
If v ∈ S then compute the index j for which v ∈ Sj ;
Else j = � + 1;
Find a vertex u ∈ NG(v) of minimum dH′(u);
Compute U = {u′ ∈ NG(v) | dH′(u′) = dH′(u)};
Compute the index i for which U ⊆ Ki;
Remove all edges between v and (Ki \ U) ∪ Ki+1 ∪ · · · ∪ Kj from H ′;
Update the threshold-partition of H ′ and mark v;

Return H ′;

Next we show how to obtain a minimal threshold completion H of G directly.
The motivation for this is that we now compute H in time linear in the size of G.
The idea behind our approach is the following: Compute a minimal split com-
pletion of G using the algorithm of [15], and then compute a minimal threshold
completion of the computed split completion by giving the vertices of the inde-
pendent set a nested neighborhood ordering. Computing a minimal split com-
pletion G′ with split partition (K, S) of G can be done in O(n + m) time by the
algorithm given in [15]. After that we compute an order of the vertices of S such
that d(v1) ≥ d(v2) ≥ . . . ≥ d(v|S|). The important point is that dG′(v) = dG(v)
for each v ∈ S, since all fill edges of G′ have both endpoints in K. Then for
each vertex vi we make it adjacent to the vertices of N({vi+1, vi+2, . . . , v|S′|}),
starting from v1. We show in the proof of the following theorem that this indeed
results in a minimal threshold completion of G.

Theorem 7. A minimal threshold completion of an arbitrary graph G can be
computed in O(n + m) time.

4 Minimal Chain Deletions

Yannakakis introduced chain graphs and defined a bipartite graph to be a chain
graph if one of the sides of the bipartition has nested neighborhood ordering
[30]. He also showed that one side has this property if and only if both sides
have the property. Chain graphs can be recognized in linear time [23]. It is also
known that a graph is a chain graph if and only if it does not contain a vertex
set inducing 2K2, C3, or C5 as an induced subgraph [23]. Computing a minimum
chain deletion of a bipartite graph is an NP-hard problem [29].

Theorem 8 ([23]). A graph G is a chain graph if and only if G is bipartite and
turning one side of the bipartition into a clique gives a threshold graph for any
bipartition of G.

414 P. Heggernes and C. Papadopoulos

By Theorem 8, a chain graph G can have at most one connected component that
contains an edge. Isolated vertices can belong to any side of the bipartition. We
will here define a unique way of partitioning the vertices of a chain graph that we
call chain partition, similar to threshold partition. Define X0 to be the set of all
isolated vertices of G. The remaining vertices induce a connected bipartite graph
which thus has a unique bipartition (X, Y). Partition X into (X1, X2, . . . , X�)
where NG(X1) ⊂ NG(X2) ⊂ . . . ⊂ NG(X�), and � is as large as possible. Hence
vertices of Xi have the same neighborhood, for each i. This defines a partition
of Y into (Y1, Y2, . . . , Y�), where Yi = NG(Xi) \ NG(Xi−1), 2 ≤ i ≤ �. Observe
that each set Xi contains at least one vertex which implies that the set Yi is also
a non-empty set. If there are only isolated vertices in G, we let � = 0. The chain
partition is unique (upon exchanging X with Y).

Theorem 9. Chain graphs are sandwich monotone.

Proof. Let G = (V, E) and G′ = (V, E ∪ F) be two chain graphs such that
E ∩ F = ∅ and F 	= ∅. We will show that there is an edge f ∈ F that can be
removed from G′ so that the resulting graph remains a chain graph, from which
the result follows by induction on the edges in F .

Let ((X ′
0, X

′
1, . . . , X

′
�), (Y

′
1 , Y ′

2 , . . . , Y ′
�)) be the chain-partition of G′. First we

prove that if F contains an edge xy such that x ∈ X ′
i and y ∈ Y ′

i for some
i ∈ {1, . . . , �} then removing xy from G′ results in a chain graph. Let G′′ be the
graph that we obtain after removing xy; that is, G′′ = G′ − xy. In G′′ we have
that NG′′(X ′

i−1) ⊂ NG′′(x) ⊂ NG′′(X ′
i \ {x}) ⊂ NG′′(X ′

i+1). Thus the nested
neighborhood ordering is maintained which implies that G′′ is a chain graph.

Now we prove that F contains at least one edge with one endpoint in X ′
i and

one endpoint in Y ′
i , for some i satisfying 1 ≤ i ≤ �. Assume for a contradiction

that there are no edges in F with one endpoint in X ′
i and the other in Y ′

i . Hence
for every edge xy ∈ F , x ∈ X ′

j and y ∈ Y ′
i , where 1 ≤ i < j ≤ �. Since X ′

j

and Y ′
i are non-empty, X ′

i and Y ′
j are non-empty, too by definition. Let x′ ∈ X ′

i

and y′ ∈ Y ′
j . Edges xy′ and x′y cannot belong to F and hence they are edges in

E by our assumption. Edge x′y′ is not an edge of G′ by the definition of chain
partition, and hence it is not an edge of G either. Since xy is not an edge of G,
{x, y′, x′, y} induces a 2K2 in G contradicting that G is a chain graph.

Lemma 3. Let G = (V, E) be an arbitrary graph, and let H be a chain deletion
of G with chain partition (X = (X0, X1, . . . , X�), Y = (Y1, . . . , Y�)). H is a
minimal chain deletion of G if and only if no deleted edge uv has the following
property: u ∈ Xi−1 and v ∈ Yi for some 1 ≤ i ≤ �, or u ∈ X� and v ∈ X0.

Next we consider the problem of extracting a minimal chain deletion from any
chain deletion H of an arbitrary graph G. We briefly describe such an algorithm.
Let (X, Y) be the chain partition of H . At the beginning we unmark all vertices
of X and at each step we pick an unmarked vertex v ∈ X of largest degree in H .
We find deleted edges incident to v not having the properties given in Lemma 3.
If the deleted edges can be added to H without destroying the chain property
then we add them and proceed with the next unmarked vertex of X of largest
degree in H .

Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms 415

Theorem 10. Let H = (V, E \ D) be a chain deletion of an arbitrary graph
G = (V, E) with D ⊆ E. A minimal chain deletion H ′ = (V, E \D′) of G, such
that D′ ⊆ D can be computed in time O(n + m).

Corollary 2. Any minimal chain deletion of an arbitrary graph graph can be
computed in O(n + m) time.

5 Concluding Remarks and Open Questions

In this extended abstract we proved sandwich monotonicity of threshold and
chain graphs. Moreover, we gave linear-time algorithms for computing minimal
threshold completions, minimal bipartite deletions, and minimal chain deletions;
and for extracting these from any given threshold completion, bipartite deletion,
or chain deletion, respectively. In fact, the results presented in this extended ab-
stract, by careful but not difficult argumentation, lead to linear-time algorithms
also for computing minimal threshold deletions and minimal co-bipartite
completions of arbitrary graphs, and minimal chain completions of bi-
partite graphs (see also [24]); as well as extracting these from any given such
completion or deletion. Details of these results are left to a full version [17].

It has been shown recently that minimum weakly chordal completions of arbi-
trary graphs are NP-hard to compute [7]. We would like to know whether weakly
chordal graphs are sandwich monotone. Also, we repeat the open question of [2]:
are chordal bipartite graphs sandwich monotone? In addition, we would like to
know whether minimum chordal bipartite completions of bipartite graphs are
NP-hard to compute.

References

1. Alon, N., Shapira, A.: Every monotone graph property is testable. In: Proceedings
of STOC 2005 - 37th Annual Symposium on Theory of Computing, pp. 128–137
(2005)

2. Bakonyi, M., Bono, A.: Several results on chordal bipartite graphs. Czechoslovak
Math. J. 46, 577–583 (1997)

3. Balogh, J., Bolobás, B., Weinreich, D.: Measures on monotone properties of graphs.
Disc. Appl. Math. 116, 17–36 (2002)

4. Blair, J., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs
minimal. Theoretical Computer Science 250, 125–141 (2001)

5. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete
Math. 306, 337–350 (2006)

6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput. 31, 212–232 (2001)

7. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Disc. Appl. Math. 154, 1824–1844 (2006)

8. Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Univ. Waterloo Res.
Report, CORR 73–21 (1973)

9. Dearing, P.M., Shier, D.R., Warner, D.D.: Maximal chordal subgraphs. Disc. Appl.
Math. 20, 181–190 (1988)

416 P. Heggernes and C. Papadopoulos

10. Djidjev, H.: A linear algorithm for finding a maximal planar subgraph. SIAM J.
Disc. Math. 20, 444–462 (2006)

11. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth
and minimum fill-in. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

12. Földes, S., Hammer, P.L.: Split graphs. Congressus Numer. 19, 311–315 (1977)
13. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-

lems. Theoretical Computer Science 1, 237–267 (1976)
14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals

of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)
15. Heggernes, P., Mancini, F.: Minimal split completions of graphs. In: Correa, J.R.,

Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer,
Heidelberg (2006)

16. Heggernes, P., Mancini, F.: A completely dynamic algorithm for split graphs. Re-
ports in Informatics 334, University of Bergen, Norway (2006)

17. Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and
linear-time algorithms for minimal completions and deletions. Reports in Informat-
ics 345, University of Bergen, Norway (2007)

18. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing minimal in-
terval completions: Towards better understanding of profile and pathwidth. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 2007–2024.
Springer, Heidelberg (2007)

19. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time
O(nα log n) = o(n2.376). SIAM J. Disc. Math. 19, 900–913 (2005)

20. Hsu, W.-L.: A linear time algorithm for finding a maximal planar subgraph based
on PC-trees. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 787–797.
Springer, Heidelberg (2005)

21. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-
put. 28(5), 1906–1922 (1999)

22. Kashiwabara, T., Fujisawa, T.: An NP-complete problem on interval graphs. IEEE
Symp. of Circuits and Systems, pp. 82–83. IEEE Computer Society Press, Los
Alamitos (1979)

23. Mahadev, N., Peled, U.: Threshold graphs and related topics. Annals of Discrete
Mathematics 56. North Holland, Amsterdam (1995)

24. Meister, D.: Recognition and computation of minimal triangulations for AT-free
claw-free and co-comparability graphs. Disc. Appl. Math. 146, 193–218 (2005)

25. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Disc. Appl. Math. 113, 109–128 (2001)

26. Peng, S.-L., Chen, C.-K.: On the interval completion of chordal graphs. Disc. Appl.
Math. 154, 1003–1010 (2006)

27. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 217–228. Springer, Heidelberg
(2006)

28. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput. 5, 266–283 (1976)

29. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth. 2, 77–79 (1981)

30. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10,
310–327 (1981)

On the Hardness of Optimization in Power Law

Graphs�

Alessandro Ferrante1, Gopal Pandurangan2, and Kihong Park2

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, University of
Salerno, Via Ponte don Melillo - 84084 Fisciano (SA), Italy

ferrante@dia.unisa.it
2 Department of Computer Science, Purdue University,

West Lafayette, IN 47907, USA
{gopal,park}@cs.purdue.edu

Abstract. Our motivation for this work is the remarkable discovery
that many large-scale real-world graphs ranging from Internet and World
Wide Web to social and biological networks exhibit a power-law distri-
bution: the number of nodes yi of a given degree i is proportional to
i−β where β > 0 is a constant that depends on the application domain.
There is practical evidence that combinatorial optimization in power-law
graphs is easier than in general graphs, prompting the basic theoreti-
cal question: Is combinatorial optimization in power-law graphs easy?
Does the answer depend on the power-law exponent β? Our main result
is the proof that many classical NP-hard graph-theoretic optimization
problems remain NP-hard on power law graphs for certain values of β.
In particular, we show that some classical problems, such as CLIQUE
and COLORING, remains NP-hard for all β ≥ 1. Moreover, we show
that all the problems that satisfy the so-called “optimal substructure
property” remains NP-hard for all β > 0. This includes classical prob-
lems such as MIN VERTEX-COVER, MAX INDEPENDENT-SET, and
MIN DOMINATING-SET. Our proofs involve designing efficient algo-
rithms for constructing graphs with prescribed degree sequences that
are tractable with respect to various optimization problems.

1 Overview and Results

The elegant theory of NP-hardness serves as an important cornerstone in under-
standing the difficulty of solving various combinatorial optimization problems
in graphs. A natural and relevant question is whether such hardness results on
combinatorial problems are applicable to “real-world” graphs since such graphs
possess certain well-defined special properties which may very well render them
tractable. Our motivation for this work is the remarkable discovery that many
large-scale real-world graphs ranging from Internet and World Wide Web to so-
cial and biological networks exhibit a power-law distribution. In such networks,
the number of nodes yi of a given degree i is proportional to i−β where β > 0
� Work partially supported by funds for research from MIUR ex 60% 2005.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 417–427, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

418 A. Ferrante, G. Pandurangan, and K. Park

is a constant that depends on the application domain. Power-law degree distri-
bution has been observed in the Internet (β = 2.1), World Wide Web (β = 2.1),
social networks (movie actors graph with β = 2.3, citation graph with β = 3),
and biological networks (protein domains with β = 1.6, protein-protein interac-
tion graphs with β = 2.5). In most real-world graphs, β ranges between 1 and
4 (see [3] for a comprehensive list). Thus, power-law graphs have emerged as
a partial answer to the perennial search for representative real-world graphs in
combinatorial optimization.

There is practical evidence that combinatorial optimization in real-world
power law graphs is easier than in general graphs. For example, experiments
in Internet measurement graphs (power law with β = 2.1) show that a simple
greedy algorithm that exploits the power law property yields a very good ap-
proximation to the MINIMUM VERTEX COVER problem (much better than
random graphs with no power law) [11,12]. Gkantsidis, Mihail, and Saberi [8]
argue that the performance of the Internet suggests that multi-commodity flow
can be routed more efficiently (i.e., with near-optimal congestion) in Internet
graphs than in general graphs. Eubank et al. [6] show that in power-law social
networks, a simple and natural greedy algorithm that again exploits the power-
law property (choose enough high-degree vertices) gives a 1+o(1) approximation
to the DOMINATING SET problem. There is also similar practical evidence that
optimization in power-law biological networks is easier [9]. All these results on
disparate problems on various real-world graphs motivate a coherent and sys-
tematic algorithmic theory of optimization in power law graphs (and in general,
graphs with prescribed degree sequences).

In this work, we study the following theoretical questions: What are the im-
plications of power-law degree distribution to the algorithmic complexity of NP-
hard optimization problems? Can the power-law degree distribution property
alone be sufficient to design polynomial-time algorithms for NP-hard problems
on power-law graphs? And does the answer depend on the exponent β?

A number of power law graph models have been proposed in the last few years
to capture and/or explain the empirically observed power-law degree distribution
in real-world graphs. They can be classified into two types. The first takes a
power-law degree sequence and generates graph instances with this distribution.
The second type arises from attempts to explain the power-law starting from
basic assumptions about a growth evolution. Both approaches are well motivated
and there is a large literature on both (e.g., [4,1,2]). Following Aiello, Chung, and
Lu [1,2], we adopt the first approach, and use the following model for (undirected)
power-law graphs (henceforth called ACL model): the number of vertices yi with
degree i is roughly given1 by yi = eα/iβ, where eα is a normalization constant (so
that the total number of vertices sum to the size of the graph, thus α determines
the size). While the above model is potentially less accurate than the detailed
modeling approach of the second type, it has the advantage of being robust and
general [1]: the structural properties that are true in this model will be true for
all graphs with the given degree sequence.

1 Our model is defined precisely in Section 2.

On the Hardness of Optimization in Power Law Graphs 419

Investigating the complexity of problems in power law graphs (in particular,
the ACL model) involves an important subtlety. The ACL model allows graphs
with self-loops and multi-edges. However, many real-world networks, such as In-
ternet domain graphs, are simple undirected power-law graphs. Thus, we restrict
ourselves to simple undirected power-law graphs (no multi-edges or self-loops).
In this paper we study the complexity of many classical graph problems in the
ACL model. In particular, we first show that problems such as COLORING and
CLIQUE remains NP-hard in simple power-law graphs of the the ACL model for
all β ≥ 1, and then we show that all the graph problems that satisfy an “optimal
substructure” property (such as MINIMUM VERTEX COVER, MAXIMUM IN-
DEPENDENT SET and MINIMUM DOMINATING SET) remain NP-hard on
simple power law graphs of the ACL model for all β > 0. This property essen-
tially states that the optimal solution for a problem on given graph is the union
of the optimal (sub-)solutions on its maximal connected components. A main
ingredient in our proof is a technical lemma that guarantees that any arbitrary
graph can be “embedded” in a suitably large (but polynomial in the size of the
given graph) graph that conforms to the prescribed power-law degree sequence.
This lemma may be of independent interest and can have other applications
as well e.g., in showing hardness of approximation of problems in power-law
graphs. Another contribution is constructions of graphs with prescribed degree
sequences that admit polynomial time algorithms. These constructions are useful
in showing the NP-hardness of certain optimization problems that do not satisfy
the optimal substructure property. In particular, we will use them to show the
NP-hardness of CLIQUE and COLORING for all β ≥ 1.

Our results show that the worst-case complexity of power law graphs is hard
with respect to many important graph optimization problems. However, exper-
imental evidence shows that optimization is considerably easier in real-world
power-law graphs. This suggests that real-world graphs are not “worst-case”
instances of power-law graphs, but rather typical instances which may be well
modeled by power law random graph models (e.g., [1,6,3,4,8,10]). Combinatorial
optimization is generally easier in random graphs and hence from an optimiza-
tion perspective this somewhat justifies using power law random graphs to model
real-world power law graphs. We believe that further investigation, both in the
modeling of real-world graphs and in the optimization complexity of real-world
graphs and their models, is needed to gain a better understanding of this im-
portant issue.

2 Notations and Definitions

In this section we introduce some notations and definitions that we will use
throughout the paper. For all x, y ∈ N with x ≤ y, we will use [x, y] to denote
{x, x + 1, . . . , y} and [x] to denote [1, x].

Given a graph, we will refer to two types of sequence of integers: y-degree
sequence and d-degree sequence. The first type lists the number of vertices with
a certain degree (i.e., the degree distribution) and the latter lists the degrees of

420 A. Ferrante, G. Pandurangan, and K. Park

the vertices in non-increasing order (i.e., the degree sequence of the graph in non-
increasing order). More formally, we can define the y-degree sequence as follows.
Given a graph G = (V, E) with maximum degree m, the y-degree sequence
is the sequence Y G = 〈yG

1 , . . . , yG
m〉 where yi = |{v ∈ V : degree(v) = i}|,

i ∈ [m]. Given a graph of n vertices, the d-degree sequence will be denoted by
DG = 〈dG

1 , . . . , dG
n 〉, where dG

i ’s are the vertex degrees in non-increasing order.
When the referred graph is clear from the context, we will use only Y and D to
denote the y- and d-degree sequence respectively. (We note that we don’t allow
vertices with zero degree (i.e., singletons) in G. This is not really a issue, because
we will deal with problems in which singletons can be treated separately from
the rest of the graph to obtain a (optimum) solution to the problem with “minor
effects” on the running time.)

Given a sequence of integers S = 〈s1, . . . , sm〉, we define the following operator
that expands S in a new non increasing sequence of integers.

Definition 1 (Expansion). Let S = 〈s1, . . . , sn〉 be a sequence of integers and
j ∈ [n]. Then we define

EXP(S) = 〈
sn︷ ︸︸ ︷

n, . . . , n, . . . ,

s1︷ ︸︸ ︷
1, . . . , 1〉.

Note that the expansion operation converts a y-degree sequence into a
d-sequence. In the rest of the paper, given two degree sequences S = 〈s1, . . . , sn〉
and T = 〈t1, . . . , tm〉 with n ≥ m, we will denote S − T = 〈x1, . . . , xn〉 with
xi = si − ti if i ∈ [m] and xi = si otherwise.

The ACL model of power-law graphs introduced in [1] have a particular kind of
y-degree sequence which we henceforth call (β, α)-degree sequence and is defined
as follows.

Definition 2 ((β, α)-degree sequence). Given α, β ∈ R+, the y-degree se-
quence of a graph G = (V, E) is a (β, α)-degree sequence (denoted by Y (β,α) =
〈y(β,α)

1 , . . . , y
(β,α)
m 〉) if m = �eα/β� and, for i ∈ [m]

yi =
{⌊

eα

iβ

⌋
if i > 1 or

∑m
k=1

⌊
eα

kβ

⌋
is even

�eα�+ 1 otherwise.

In the rest of the paper, given a sequence of integers S = 〈s1, . . . , sk〉, we will
define tot(S) =

∑k
i=1 si and w(S) =

∑k
i=1 isi. Note that if S is the y-degree

sequence of a graph, then w(S) is the total degree of the graph, whereas if S is
the d-degree sequence of a graph, then tot(S) is the total degree of the graph.

Our aim is to study the NP-hardness of graph-theoretic optimization problems
when they are restricted to ACL power-law graphs with a fixed β, in particular,
simple graphs belonging to this class. (Of course, showing hardness results for
this class implies hardness for arbitrary power law graphs as well.) Formally, we
define such graphs as:

Definition 3 (β-graph). Given β ∈ R+, a graph G = (V, E) is a β-graph if
it is simple and there exists α ∈ R+ such that the y-degree sequence of G is a
(β, α)-degree sequence.

On the Hardness of Optimization in Power Law Graphs 421

3 NP-Hardness of CLIQUE AND COLORING

In this section we introduce a general technique to prove the NP-hardness of
some optimization problems. The main idea of the proof is the following. Given
an arbitrary graph G, it is possible to construct a simple graph G1 which contains
G as a set of maximal connected components. Let G2 = G1\G be the remaining
graph. Obviously, G2 is simple and if we can show that we can efficiently (i.e.,
in polynomial time) compute the optimal solution in G2 then this essentially
gives us the result. However, it is a priori not obvious how to design an efficient
algorithm given a particular problem. The key idea we will use here is that we
have the choice of constructing G1 (and hence G2) and thus we can construct
the graph in such a way that it admits an efficient algorithm. If we construct the
graph in a careful way, it will be possible to design a polynomial time algorithm
that finds the optimal.

Below we illustrate this idea by showing the NP-completeness of certain prob-
lems, including CLIQUE AND COLORING, in β-graphs for β ≥ 1. Our idea
here is to make G2 to be a simple bipartite graph. Since bipartite graphs are
2-colorable and have a maximum clique of size 2, this immediately gives the
reduction. Obviously, the main difficulty is in constructing the bipartite graph.
We first need the following definitions.

Definition 4 (Contiguous Sequence). A sequence D = 〈d1, . . . , dn〉 with
maximum value m is contiguous if yD

i > 0 for all i ∈ [m], where yD
i = |{j ∈

[n] s.t. dj = i}|.

Definition 5 (Bipartite-Eligible Sequence). A sequence D = 〈d1, . . . , dn〉
with maximum value m is bipartite-eligible if it is contiguous and m ≤ �n/2�.

Given a simple graph G = (V, E), for every vertex u ∈ V we will denote
NEIG(u) = {v ∈ V \{u} s.t. (u, v) ∈ E}.

Lemma 1. Let D = 〈d1, . . . , dn〉 be a sequence. If D is non increasing and
bipartite-eligible and tot(D) is even, then it is possible to construct in time O(n2)
a simple bipartite graph G = (V, E) such that DG = D.

Proof. First note that since D is non increasing and bipartite-eligible, d1 ≤
�n/2�. We build the graph iteratively by adding some edges to certain vertices.
Define the residual degree of a vertex as its final degree minus its “current”
degree. Initially all the vertices have degree 0. To build the graph we use the
following algorithm:

1. let d(si) and d(ti) be the residual degree of the i-th vertex of S and T ;
2. E ← ∅; S ← ∅; T ← ∅; tot(S) ← 0; tot(S) ← 0; k ← |S|; l ← |T |;
3. while i ≤ n do

(a) while i ≤ n and tot(S) ≤ tot(T) do
i. S ← S ∪ {u | u 	∈ S}; k ← k + 1; d(sk) ← di; tot(S) ← tot(S) + di;

(b) while i ≤ n and tot(T) ≤ tot(S) do
i. T ← T ∪ {v | v 	∈ T }; l ← l + 1; d(tl) ← di; tot(T) ← tot(T) + di;

422 A. Ferrante, G. Pandurangan, and K. Park

4. while tot(S) > 0 do
(a) SORT S and T separately in non increasing order of the residual degree;
(b) for i ← 1 to d(s1) do

i. E ← E ∪ {(s1, ti)}; d(s1) ← d(s1) − 1; d(ti) ← d(ti) − 1; tot(S) ←
tot(S)− 1; tot(T) ← tot(T)− 1;

(c) for i ← 2 to d(t1) + 1 do
i. E ← E ∪ {(t1, si)}; d(t1) ← d(t1) − 1; d(si) ← d(si) − 1; tot(T) ←

tot(T)− 1; tot(S) ← tot(S)− 1;
5. return G = (S ∪ T, E);

Note that the entire loop 3) requires O(n2) time to be completed. Moreover,
in every iteration of the loop 4), at least one vertex is completed and will be no
longer considered in the algorithm. Therefore, the loop 4) is completed in O(n2)
time and the algorithm has complexity O(n2).

Now we prove that the algorithm correctly works. We first introduce some
notations. The residual degree of the set S (T respectively) after the SORT
instruction of the round i is denoted by Ri(S) (Ri(T) respectively). The number
of vertices with positive residual degree (non full vertices) in S (T) is denoted
by Ni(S) (Ni(T)). The set S is si

1, . . . , s
i
h and the set T is ti1, . . . , t

i
k.

The proof is by induction on the round i. More exactly, we prove the following
invariant: After the SORT instruction we have: (i) Ri(S) = Ri(T) and (ii)
Ni(T) ≥ d(si

1) and Ni(S) ≥ d(ti1).
It is easy to see that if this invariant holds, then the algorithm correctly builds

a bipartite graph. We start proving the base (i = 1) by showing that the above
two conditions hold.

1. Let totj(S) and totj(T) be the total degree of the sets S and T after the
insertion of the j-th vertex. We first show that |totj(S) − totj(T)| ≤ dj+1

for all j ∈ [2, n − 1]. This is obvious for j = 2 since the sequence is non
increasing and contiguous. Let us suppose that this is true until j − 1 and
let us show it for j.

Without loss of generality, let us suppose that the j-th vertex is as-
signed to T . Then this implies that totj−1(S) ≥ totj−1(T) and by induction
totj−1(S)− totj−1(T) ≤ dj and, therefore, totj(S)− totj(T) ≤ 0.

Now we can complete the proof of the bases. w.l.o.g. let us suppose that
the last one vertex is assigned to T . Then we have R1(S) ≥ R1(T)− 1. But
from the preceding proof we also know that R1(S) ≤ R1(T) and, from the
fact that the last one vertex has degree 1 and that the total degree of D is
even, we have the claim.

2. Since the degree sequence is contiguous and after the insertion we have
tot(S) = tot(T), it is easy to see that after the insertion we have −1 ≤
|S| − |T | ≤ 1. From this and from the hypothesis d1 ≤ �n/2� the claim
follows.

Let us suppose that the invariant is true until i− 1 and let us prove it for i.

1. We have Ri(S) = Ri−1(S) − d(si−1
1) − (d(ti−1

1) − 1) = Ri−1(T)− d(ti−1
1) −

(d(si−1
1)− 1) = Ri(T) as claimed.

On the Hardness of Optimization in Power Law Graphs 423

2. The case d(si
1) = 0 is trivial, therefore let us suppose that d(si

1) ≥ 1. If
d(si−1

2) = 1, then d(si
1) = 1 since the degrees in S are non increasing.

Moreover, from item (1) we have Ri(T) = Ri(S) ≥ 1 and this completes this
case.

If d(si−1
2) > 1, then we have two cases. If d(ti−1

2) = 1, from item (1) and
the fact that d(tij) ≤ 1 for all j we simply have the claim. On the other hand,
if d(si−1

2) > 1, we have Ni(T) = Ni−1(T) ≥ d(si−1
1) ≥ d(si

1). ��

The following lemma shows that for β ≥ 1 it is possible to embed a simple graph
G in a polynomial-size β-graph G1 such that G is a set of maximal connected
components of G1 and G2 = G1\G is bipartite-eligible.

Lemma 2. Let G = (V, E) be a simple graph with n1 vertices and β ≥ 1.
Let α0 = max{4β, β ln n1 + ln(n1 + 1)}. Then, for all α ≥ α0 the sequence
D = EXP(Y (β,α) − Y G) is contiguous and bipartite-eligible.

Proof. Let n2 be the number of elements in D and α ≥ α0. We have

n2≥
�eα/β∑

i=1

⌊
eα

iβ

⌋
−n1 > eα

�eα/β∑

i=1

1
iβ
−�eα/β�−n1≥eα

∫ �eα/β+1

i=1

1
iβ
−�eα/β�−n1.

If β = 1, then we have

n2 ≥ αeα − eα − n1 ≥ 4eα − 2eα + 1 ≥ 2m + 1.

and if β > 1 we have

n2 ≥
eα

β − 1
− eα/β − n1 ≥ 4eα/β − 2eα/β + 1 ≥ 2m + 1.

Moreover y
(β,α)
n1 ≥

⌊
eα

nβ
1

⌋
> eα

nβ
1
− 1 ≥ nβ+1

1 +nβ
1

nβ
1

− 1 = n1, that is EXP(Y) is

contiguous. Therefore, EXP(Y) is bipartite-eligible and this completes the proof
of this lemma. ��

We finally show the NP-completeness of certain problems in β-graphs with β ≥ 1.
The following definition is useful to introduce the class of problems we analyze
in what follows.

Definition 6 (c-Oracle). Let P be an optimization problem and c > 0 a con-
stant. A c-oracle for the problem P is a polynomial-time algorithm AP

c (I) which
takes in input an instance I of P and correctly returns an optimum solution for
P given that on the instance I the problem has an optimum solution with size
at most c.

The following theorem shows the NP-completeness of a particular class of deci-
sion problems defined using the c-oracle in β-graphs with β ≥ 1.

Theorem 1. Let β ≥ 1. Let P be a graph decision problem such that its opti-
mization version obeys the following properties:

424 A. Ferrante, G. Pandurangan, and K. Park

1. OPT (G) = max1≤i≤k OPT (Ci) (where Ci are the maximal connected com-
ponents of G),

2. exists a constant c > 0 such that for all bipartite simple graphs H it holds
|OPT (H)| ≤ c and

3. it admits a c-oracle.

If P is NP-complete in general graphs, then it is NP-complete in β-graphs too.

Proof. From Lemmas 2 and 1, it is possible to construct, in time poly(|G|), a
β-graph G1 embedding G such that |G1| = poly(|G|), G is a set of maximal
connected components of G1 and G2 = G1\G is a simple bipartite graph. Since
OPT (G1) = maxk{OPT (Ck)}, |OPT (G2)| ≤ c and the optimization version of
P admits a c-oracle, it is easy to see that P can be reduced in polynomial time
to β-P (where β-P is P restricted to β-graphs). ��

Since CLIQUE and COLORING satisfy all conditions of Theorem 1 with c = 2,
we easily obtain the following corollary.

Corollary 1. CLIQUE, and COLORING are NP-Complete in β-graphs for all
β ≥ 1.

4 Hardness of Optimization Problems with Optimal
Substructure

We show that if an optimization problem is NP-hard on (simple) general graphs
(i.e., computing a solution in polynomial time is hard) and it satisfies the follow-
ing “optimal substructure” property, then it is NP-hard on β-graphs also. We
state this property as follows. Let P be an optimization problem which takes a
graph as input. For every input G, the following should be true: every optimum
solution of P on G should contain an optimum solution of P on each of G’s
maximal connected components. To illustrate with an example, it is easy to see
that MINIMUM VERTEX COVER problem satisfies this property: an optimal
vertex cover on any graph G should contain within it an optimal vertex cover
of its maximal connected components. On the other hand, MINIMUM COLOR-
ING does not satisfy the above property, since the optimal coloring of a graph
need not contain an optimal coloring of all its maximal connected components.
We first need some definitions. We say that a sequence D is graphic if there
exists a simple graph G such that DG = D.

Definition 7 (Eligible Sequence). A sequence of integers S = 〈s1, . . . , sn〉 is
eligible if s1 ≥ · · · ≥ sn and, for all k ∈ [n], fS(k) ≥ 0, where

fS(k) = k(k − 1) +
n∑

i=k+1

min{k, si} −
k∑

i=1

si.

The following result due to Havel and Hakimi ([5]) gives a straightforward algo-
rithm to construct a simple graph from a graphic degree sequence.

On the Hardness of Optimization in Power Law Graphs 425

Lemma 3 ([5]). A sequence of integers D = 〈d1, . . . , dn〉 is graphic if and only
if it is non-increasing, and the sequence of values D′ = 〈d2−1, d3−1, . . . , dd1+1−
1, dd1+2, . . . , dn〉 when sorted in non-increasing order is graphic.

In the next technical lemma (whose complete proof appears in the full version
[7]), we introduce a new sufficient condition for a sequence of integers to be
eligible.

Lemma 4. Let Y (1) and Y (2) be two degree sequences with m1 and m2 elements
respectively such that (i) y

(1)
j ≤ y

(2)
j for all j ∈ [m1], and (ii) D(1) = EXP(Y (1))

and D(2) = EXP(Y (2)) are contiguous. If D(1) is eligible then D(2) is eligible.

Proof sketch. Let Y (1) and Y (2) be two degree sequences with m1 and m2

elements respectively such that (i) y
(1)
j ≤ y

(2)
j for all j ∈ [m1], and (ii) D(1) =

EXP(Y (1)) and D(2) = EXP(Y (2)) are contiguous.
We have to show that “if D(1) is eligible then D(2) is eligible”. Let us note

that the transformation from the degree sequence Y (1) to the degree sequence
Y (2) (and hence from D(1) to D(2)) can be seen as a sequence of rounds of the
following type: in every step a vertex with degree d is transformed into a vertex
with degree (d + 1) and the global sequence is rearranged with respect to the
relation y

(1)
j ≤ y

(2)
j for all j ∈ [m1]. In other words, to transform Y (1) to Y (2)

(and hence D(1) to D(2)) we can execute the following simple algorithm2:

1. S(0) ← D(1); i ← 0
2. while S(i) 	= D(2) do

(a) for j ← m2 downto 2 do

i. if |{x ∈ S(i+1) s.t. x = j}| < y
(2)
j and |{x ∈ S(i+1) s.t. x = j−1}| > 0

then
A. k ← min{x ∈ |S(i+1) s.t. s

(i+1)
x = j − 1}

B. s
(i+1)
k ← s

(i+1)
k + 1

(b) S(i+1) ← S(i+1) + x

(c) i ← i + 1

Let n2 = |D(2)|. From definition of eligibility, D(2) is eligible if fD(2)(k) > 0 for
all k ∈ [n2]. It can be showed that at the end of each iteration of the while loop of
the previous algorithms, if fS(i−1)(k) ≥ 0 for all i ∈ [n(i−1)] then fS(i)(k) ≥ 0 for
all i ∈ [n(i)], where n(i) = |S(i)|. Since fS(0)(k) ≥ 0 for k ∈ n(0), this completes
the proof of this lemma. ��

The previous lemma is useful to show the following key lemma (Embedding
Lemma) that shows that it is possible to quickly construct a β-graph with a
certain property.

2 In the rest of the paper, given a sequence S = 〈s1, . . . , sn〉 and an integer x we will
use the notation S + x = 〈s1, . . . , sn, x〉 to denote the concatenation of S with the
integer x.

426 A. Ferrante, G. Pandurangan, and K. Park

Lemma 5 (Embedding Lemma). Let G = (V, E) be a simple undirected
graph and β ∈ R+. Then there exists a simple undirected graph G1 = (V1, E1)
such that G is a set of maximal connected components of G1, |V1| = poly(|V |)
and G1 is a β-graph. Furthermore, given G, we can construct G1 in time poly-
nomial in the size of G.

Proof. Let n1 = |V |. From Lemma 3, we have only to show that there exist
α0 = O(ln n1) such that for all α ≥ α0, the degree sequence D = EXP(Y) =
Y (β,α)−Y G is graphic, that is, from Lemma 3 such that D is eligible. For β ≥ 1
the proof directly comes from Lemmas 2 and 1. Let us complete the proof for
0 < β < 1.

Note that, y
(1,α)
i ≤ y

(β,α)
i and �eα/β� ≥ �eα� for 0 < β < 1 and i ∈ �eα� and,

from Lemma 2, EXP(Y (1,α)−Y G) is contiguous for α ≥ max{4, lnn1+ln(n1+1)}.
Therefore, from Lemma 4, the sequence EXP(Y (β,α) − Y G) is eligible for

0 < β < 1 and α ≥ max{4, lnn1 + ln(n1 + 1)} and this completes the proof
of this lemma. ��

Now we are ready to show the main theorem of this section.

Theorem 2. Let P be an optimization problem on graphs with the optimal sub-
structure property. If P is NP-hard on (simple) general graphs, then it is also
NP-hard on β-graphs for all β > 0.

Proof. We show that we can reduce the problem of computing an optimal solu-
tion on general graphs to computing an optimal solution on β-graphs and this
reduction takes polynomial time. Let G = (V, E) be a simple undirected graph.
Lemma 5 says that we can construct (in time polynomial in the size of G) a sim-
ple undirected graph G1 = (V1, E1) such that G is a set of maximal connected
components of G1, and G1 is a β-graph with |V1| = poly(|V |). Since P has the
optimal substructure property and G is a set of maximal connected components
of G1, this implies that an optimum solution for the graph G can be computed
easily from an optimal solution for G1. ��

5 Concluding Remarks and Open Problems

We showed a general technique for establishing NP-hardness and
NP-completeness of a large class of problems in power-law graphs. Our technique
of “embedding” any arbitrary (given) graph into a polynomial-sized power-law
graph is quite general and can have other applications, e.g., in showing hardness
of approximation in power-law graphs (which is the next important question,
now that we have established hardness). On the positive side, one may investi-
gate approximation algorithms that exploit the power law property to get better
approximation ratios compared to general graphs. Another interesting and rele-
vant direction is to investigate the hardness or easiness of non-trivial restrictions
of the ACL model.

We conclude by mentioning some open problems that follow directly from
our work. We showed NP-hardness of CLIQUE and COLORING only for power

On the Hardness of Optimization in Power Law Graphs 427

law graphs with β ≥ 1. We believe that a different construction might show
that these problems are NP-Complete for all β > 0. It will also be interesting
to investigate the complexity of node- and edge-deletion problems, that is a
general and important class of problems defined in [13]. We finally note that our
technique does not directly imply hardness in connected power-law graphs. We
conjecture that our techniques can be extended to show these results.

References

1. Aiello, W., Chung, F.R.K., Lu., L.: A Random Graph Model for Massive Graphs.
In: Proceedings of STOC 2000, pp. 171–180. ACM Press, New York (2000)

2. Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for power law graphs.
In Experimental Mathematics 10, 53–66 (2000)

3. Barabasi, A.: Emergence of Scaling in Complex Networks. In: Bornholdt, S., Schus-
ter, H. (eds.) Handbook of Graphs and Networks, Wiley, Chichester (2003)

4. Bollobas, B., Riordan, O.: Mathematical Results on Scale-free Random Graphs.
In: Bornholdt, S., Schuster, H. (eds.) Handbook of Graphs and Networks (2003)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, Am-
sterdam (1976)

6. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural
and Algorithmic Aspects of Massive Social Networks. In: Proceedings of 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 711–720. ACM Press,
New York (2004)

7. Ferrante, A., Pandurangan, G., Park, K.: On the Hardness of Optimization in
Power-Law Graphs,
http://www.cs.purdue.edu/homes/gopal/papers-by-date.html

8. Gkantsidis, C., Mihail, M., Saberi, A.: Throughput and Congestion in Power-Law
Graphs. In: Proceedings of SIGMETRICS 2003, pp. 148–159. ACM Press, New
York (2003)

9. Koyuturk, M., Grama, A., Szpankowski, W.: Assessing significance of connectiv-
ity and conservation in protein interaction networks. In: Apostolico, A., Guerra,
C., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI),
vol. 3909, pp. 45–49. Springer, Heidelberg (2006)

10. Mihail, M., Papadimitriou, C., Saberi, A.: On Certain Connectivity Properties of
the Internet Topology. In: Proc. of FOCS 2003, pp. 28–35. IEEE Computer Society
Press, Los Alamitos (2003)

11. Park, K., Lee, H.: On the effectiveness of route-based packet filtering for distributed
DoS attack prevention in power-law internets. In: Proceedings of SIGCOMM 2001,
pp. 15–26. ACM Press, New York (2001)

12. Park, K.: The Internet as a complex system. In: Park, K., Willinger, W. (eds.)
The Internet as a Large-Scale Complex System. Santa Fe Institute Studies on the
Sciences of Complexity, Oxford University Press, Oxford (2005)

13. Yannakakis, M.: Node- and Edge-Deletion NP-Complete Problems. In: Proceedings
of STOC 1978. SIAM 1978, San Diego, California, pp. 253–264 (1978)

http://www.cs.purdue.edu/homes/gopal/papers-by-date.html

Can a Graph Have Distinct Regular Partitions?

Noga Alon1,�, Asaf Shapira2, and Uri Stav3

1 Schools of Mathematics and Computer Science, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

nogaa@tau.ac.il
2 Microsoft Research, Redmond, WA

asafico@microsoft.com
3 School of Computer Science, Raymond and Beverly Sackler Faculty of Exact

Sciences, Tel Aviv University, Tel Aviv, Israel
uristav@tau.ac.il.

Abstract. The regularity lemma of Szemerédi gives a concise approxi-
mate description of a graph via a so called regular-partition of its vertex
set. In this paper we address the following problem: can a graph have
two “distinct” regular partitions? It turns out that (as observed by sev-
eral researchers) for the standard notion of a regular partition, one can
construct a graph that has very distinct regular partitions. On the other
hand we show that for the stronger notion of a regular partition that has
been recently studied, all such regular partitions of the same graph must
be very “similar”.

En route, we also give a short argument for deriving a recent variant of
the regularity lemma obtained independently by Rödl and Schacht ([11])
and Lovász and Szegedy ([9],[10]), from a previously known variant of
the regularity lemma due to Alon et al. [2]. The proof also provides a
deterministic polynomial time algorithm for finding such partitions.

1 Introduction

We start with some of the basic definitions of regularity and state the regularity
lemmas that we refer to in this paper. For a comprehensive survey on the regu-
larity lemma the reader is referred to [7]. For a set of vertices A ⊆ V , we denote
by E(A) the set of edges of the graph induced by A in G, and by e(A) the size of
E(A). Similarly, if A ⊆ V and B ⊆ V are two vertex sets, then E(A, B) stands
for the set of edges of G connecting vertices in A and B, and e(A, B) denotes
the number of ordered pairs (a, b) such that a ∈ A, b ∈ B and ab is an edge of G.
Note that if A and B are disjoint this is simply the number of edges of G that
connect a vertex of A with a vertex of B, that is e(A, B) = |E(A, B)|. The edge
density of the pair (A, B) is defined as d(A, B) = e(A, B)/|A||B|. When several
graphs on the same set of vertices are involved, we write dG(A, B) to specify the
graph to which we refer.
� Research supported in part by a grant from the Israel Science Foundation, by the

Hermann Minkowski Minerva Center for Geometry at Tel Aviv University, and by
a USA-Israeli BSF grant.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 428–438, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Can a Graph Have Distinct Regular Partitions? 429

Definition 1 (ε-Regular Pair). A pair (A, B) is ε-regular, if for any two
subsets A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|, the inequality
|d(A′, B′)− d(A, B)| ≤ ε holds.

A partition A = {Vi : 1 ≤ i ≤ k} of the vertex set of a graph is called an
equipartition if |Vi| and |Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so
in particular each Vi has one of two possible sizes). For the sake of brevity, we
will henceforth use the term partition to denote an equipartition. We call the
number of sets in a partition (k above) the order of the partition.

Definition 2 (ε-Regular partition). A partition V = {Vi : 1 ≤ i ≤ k} of
V (G) for which all but at most ε

(
k
2

)
of the pairs (Vi, Vj) are ε-regular is called

an ε-regular partition of V (G).

The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 1 ([13]). For every m and ε > 0 there exists an integer T = T1(m, ε)
with the following property: Any graph G on n ≥ T vertices, has an ε-regular
partition V = {Vi : 1 ≤ i ≤ k} with m ≤ k ≤ T .

The main drawback of the regularity-lemma is that the bounds on the integer
T , and hence on the order of V , have an enormous dependency on 1/ε. The
current bounds are towers of exponents of height O(1/ε5). This means that the
regularity measure (ε in Lemma 1) is very large compared to the inverse of the
order of the partition (k in Lemma 1). In some cases, however, we would like
the regularity measure between the pairs to have some (strong) relation to the
order of the partition. This leads to the following definition.

Definition 3 (f-Regular partition). For a function f : N !→ (0, 1), a parti-
tion V = {Vi : 1 ≤ i ≤ k} of V (G) is said to be f -regular if all pairs (Vi, Vj),
1 ≤ i < j ≤ k, are f(k)-regular.

Note that as opposed to Definition 2, in the above definition, the order of the
partition and the regularity measure between the sets of the partition go “hand
in hand” via the function f . One can (more or less) rephrase Lemma 1 as saying
that every graph has a (log∗(k))−1/5-regular partition 1. Furthermore, Gowers
[6] showed that this is close to being tight. Therefore, one cannot guarantee that
a general graph has an f -regular partition for a function f approaching zero
faster than roughly 1/ log∗(k). One should thus look for certain variants of this
notion and still be able to show that any graph has a similar partition.

A step in this direction was first taken by Alon, Fischer, Krivelevich and
Szegedy [2] who proved a stronger variant of the regularity lemma. See Lemma
2 below for the precise statement. The following is yet another variant of the
regularity lemma that was recently proved independently by Rödl and Schacht
[11] and by Lovász [9] (implicitly following a result of Lovász and Szegedy in [10]).

1 This is not accurate because Definition 3 requires all pairs to be f(k)-regular, while
Lemma 1 guarantees that only most pairs are regular.

430 Noga Alon, Asaf Shapira, and Uri Stav

This lemma does not guarantee that for any f we can find an f -regular partition
of any given graph. Rather, it shows that any graph is “close” to a graph that
has an f -regular partition.

Theorem 1 ([11], [9]). For every m, ε > 0 and non-increasing function f :
N !→ (0, 1), there is an integer T = T1(f, ε, m) so that given a graph G with at
least T vertices, one can add-to/remove-from G at most εn2 edges and thus get
a graph G′ that has an f -regular partition of order k, where m ≤ k ≤ T .

Our first result in this paper is a new short proof of the above theorem. The proof
is a simple application of the variant of the regularity lemma of [2] mentioned
above. Basing the proof on this method provides both explicit bounds and a
polynomial time algorithm for finding the partition and the necessary modifica-
tions. Section 2 consists of the proof of Theorem 1 and in Section 3 we describe
a deterministic polynomial time algorithm for finding a regular partition and a
set of modifications that are guaranteed by this theorem.

We now turn to the second result of this paper. In many cases, one applies
the regularity lemma on a graph G, to get an ε-regular partition V = {Vi : 1 ≤
i ≤ k} and then defines a weighted complete graph on k vertices {1, . . . , k}, in
which the weight of the edge connecting vertices (i, j) is d(Vi, Vj). This relatively
small weighted graph, sometimes called the regularity-graph of G, carries a lot
of information on G. For example, it can be used to approximately count the
number of copies of any fixed small graph in G, and to approximate the size
of the maximum-cut of G. A natural question, which was suggested to us by
Madhu Sudan [12], is how different can two regularity-graphs of the same graph
be. We turn to define what it means for two regularity graphs, or equivalently
for two regular partitions, to be ε-isomorphic.

Definition 4 (ε-Isomorphic). We say that two partitions U = {Ui : 1 ≤
i ≤ k} and V = {Vi : 1 ≤ i ≤ k} of a graph G are ε-isomorphic if there is a
permutation σ : [k] !→ [k], such that for all but at most ε

(
k
2

)
pairs 1 ≤ i < j ≤ k,

we have |d(Ui, Uj)− d(Vσ(i), Vσ(j))| ≤ ε.

We first show that if one considers the standard notion of an ε-regular partitions
(as in Definition 2), then ε-regular partitions of the same graph are not necessar-
ily similar. In fact, as the following theorem shows, even f(k)-regular partitions
of the same graph, where f(k) = 1/kδ, are not necessarily similar. A variant of
this theorem has been proved by Lovász [9].

Theorem 2. Let f(k) = 1/k1/4. For infinitely many k, and for every n > n2(k)
there is a graph G = (V, E) on n vertices with two f -regular partitions of order
k that are not 1

4 -isomorphic.

The proof of Theorem 2 provides explicit examples. We note that an inexplicit
probabilistic proof shows that the assertion of the theorem holds even for f(k) =
Θ(log1/3 k

k1/3). See Section 4 for more details.
Using the terminology of Definition 2, the above theorem and its proof can

be restated as saying that for any (small) ε > 0 and all large enough n > n0(ε),

Can a Graph Have Distinct Regular Partitions? 431

there exists an n vertex graph that has two ε-regular partitions of order ε−4,
that are not 1

4 -similar. Therefore, ε-regular partitions of the same graph may be
very far from isomorphic.

Recall now that Theorem 1 guarantees that for any function f , any graph can
be slightly modified in a way that the new graph admits an f -regular partition.
As the following theorem shows, whenever f(k) < 1/k2 all the regular partitions
of the new graph must be close to isomorphic.

Theorem 3. Let f(k) be any function satisfying f(k) ≤ min{1/k2, 1
2ε}, and

suppose U and V are two f -regular partitions of some graph G. Then U and V
are ε-isomorphic.

This theorem illustrates the power of f -regular partitions, showing that (for
f(k) < 1/k2) they enjoy properties that do not hold for usual regular partitions.
Observe that the above results imply that when, e.g., f(k) > 1/k

1
4 , then two

f -regular partitions of the same graph are not necessarily similar, whereas when-
ever f(k) < 1/k2 they are. It may be interesting to find a tight threshold for f
that guarantees ε-isomorphism between f -regular partitions of the same graph.
It should also be interesting to find a similar threshold assuring that partitions
of two close graphs are similar.

2 Proof of Theorem 1

In this section we show how to derive Theorem 1 from a variant of the regularity
lemma due to Alon et al. [2]. Before we get to the proof we observe the following
three simple facts. First, a standard probabilistic argument shows that for every
δ and η, and for every large enough n > n0(δ) there exists a δ-regular pair (A, B)
with |A| = |B| = n and d(A, B) = η. 2 The additional two facts we need are
given in the following two claims, where we use the notation x = y± ε to denote
the fact that y − ε ≤ x ≤ y + ε.

Claim 2.1. Let δ and γ be fixed positive reals and let n > n0(δ, γ) be a large
enough integer. Suppose (A, B) is a δ-regular pair satisfying d(A, B) = η±γ and
|A| = |B| = n. Then, one can add or remove at most 2γn2 edges from (A, B)
and thus turn it into a 3δ-regular pair satisfying d(A, B) = η ± δ.

Proof. Let us assume that d(A, B) = η + γ. The general case where η − γ ≤
d(A, B) ≤ η + γ is similar. Suppose we delete each of the edges connecting A
and B with probability γ

η+γ . Clearly the expected value of d(A, B) after these
modifications is η and assuming n is large enough, we get from a standard ap-
plication of Chernoff’s bound that the probability that the new density deviates
from η by more than δ is at most 1

4 . Also, the expected number of edges removed
is γn2 and again, if n is large enough, the probability that we removed more than
2 Here and throughout the rest of the paper, we say that d(A, B) = η if |e(A,B) −

η|A||B| | ≤ 1. This avoids rounding problems arising from the fact that η|A||B| may
be non-integral.

432 Noga Alon, Asaf Shapira, and Uri Stav

2γn2 edges is at most 1
4 . Consider now two subsets A′ ⊆ A and B′ ⊂ B each of

size δn. As (A, B) was initially δ-regular we initially had d(A′, B′) = (η +γ)± δ.
As each edge is removed with probability γ

η+γ the expected value of d(A′, B′)
after these modifications is η ± δη

η+γ = η ± δ. By Chernoff’s bound we get that
for large enough n, for every such pair (A′, B′) the probability that d(A′, B′)
deviates from η ± δ by more than δ is bounded by 2−4n. As there are less than
22n choices for (A′, B′) we get that with probability at least 3

4 all pairs (A′, B′)
have density η ± 2δ. To recap, we get that with probability at least 1

4 we made
at most 2γn2 modifications, d(A, B) = η ± δ and d(A′, B′) = η ± 2δ, implying
that (A, B) is 3δ-regular. ��

Claim 2.2. Let (A, B) be a pair of vertex sets with |A| = |B| = n. Suppose A
and B are partitioned into subsets A1, . . . , Al and B1, . . . , Bl such that all pairs
(Ai, Bj) are 1

4δ2-regular and satisfy d(Ai, Bj) = d(A, B) ± 1
4δ. Then (A, B) is

δ-regular.

Proof. Consider two subsets A′ ⊆ A and B′ ⊆ B of size δn each, and set
A′

i = A′ ∩ Ai and B′
i = B′ ∩ Bi. The number of pairs (a ∈ A′, b ∈ B′), where

a ∈ A′
i, b ∈ B′

j , and either |B′
j | < 1

4δ2|Bj | or |A′
i| < 1

4δ2|Ai| is bounded by
1
2δ3n2. Therefore, the possible contribution of such pairs to d(A′, B′) is bounded
by 1

2δ.
Consider now the pairs (A′

i, B
′
j) satisfying |B′

j | ≥ 1
4δ2|Bj | and |A′

i| ≥ 1
4δ2|Ai|.

As (Ai, Bj) is 1
4δ2-regular we have d(A′

i, B
′
j) = d(Ai, Bj) ± 1

4δ. As d(Ai, Bj) =
d(A, B)± 1

4δ we conclude that d(A′
i, B

′
j) = d(A, B)± 1

2δ. As the pairs discussed
in the preceding paragraph can change d(A′, B′) by at most 1

2δ, we conclude
that d(A′, B′) = d(A, B) ± δ, as needed. ��

The following is the strengthened version of the regularity lemma, due to Alon
et al. [2], from which we will deduce Theorem 1.

Lemma 2 ([2]). For every integer m and function f : N !→ (0, 1) there exists
an integer T = T2(m, f) with the following property: If G is a graph with n ≥ T
vertices, then there exists a partition A = {Vi : 1 ≤ i ≤ k} and a refinement
B = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} of A that satisfy:

1. |A| = k ≥ m but |B| = kl ≤ T .
2. For all 1 ≤ i < i′ ≤ k, for all 1 ≤ j, j′ ≤ l but at most f(k)l2 of them, the

pair (Vi,j , Vi′,j′) is f(k)-regular.
3. All 1 ≤ i < i′ ≤ k but at most f(0)

(
k
2

)
of them are such that for all 1 ≤

j, j′ ≤ l but at most f(0)l2 of them, |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| < f(0) holds.

Proof of Theorem 1: Given a graph G, an integer m, a real ε and some function
f : N !→ (0, 1) as an input to Theorem 1, let us apply Lemma 2 with the function
f ′(k) = min{f2(k)/12, ε/8} and with m′ = m. By Lemma 2, if G has more than
T = T2(m′, f ′) vertices, then G has two partitions A = {Vi : 1 ≤ i ≤ k} and
B = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} satisfying the three assertions of the lemma.

Can a Graph Have Distinct Regular Partitions? 433

We claim that we can make less than εn2 modifications in a way that all pairs
(Vi, Vj) will become f(k)-regular.

We start by considering the pairs (Vi,j , Vi′,j′), with i < i′, which are not f ′(k)-
regular. Every such pair is simply replaced by an f ′(k)-regular bipartite graph
of density d(Vi,j , Vi′,j′). Such a pair exists by the discussion at the beginning
of this section. The number of edge modifications needed for each such pair is
at most (n/kl)2 and by the second assertion of Lemma 2 we get that the total
number of modifications we make at this stage over all pairs (Vi, Vj) is bounded
by

(
k
2

)
· f ′(k)l2 · (n/kl)2 ≤ ε

8n2.
We now consider the pairs (Vi, Vi′) that do not satisfy the third assertion of

Lemma 2, that is, those for which there are more than f ′(0)l2 pairs 1 ≤ j, j′ ≤ l
satisfying |d(Vi, Vi′) − d(Vi,j , Vi′,j′)| ≥ f ′(0). For every such pair (Vi, Vi′) we
simply remove all edges connecting Vi and Vi′ . As by the third assertion there
are at most f ′(0)

(
k
2

)
< ε

8k2 such pairs, the total number of edge modifications
we make is bounded by ε

8n2.
We finally consider the pairs (Vi, Vi′) that satisfy the third assertion of Lemma

2. Let us denote d = d(Vi, Vi′). We start with pairs (Vi,j , Vi′,j′) satisfying |d −
d(Vi,j , Vi′,j′)| ≥ f ′(0). Each such pair is replaced with an f ′(k)-regular pair of
density d. As there are at most f ′(0)l2 ≤ ε

8 l2 such pairs in each pair (Vi, Vj),
the total number of modifications made in the whole graph due to such pairs
is bounded by ε

8n2. Let us now consider the pairs (Vi,j , Vi′,j′) satisfying |d −
d(Vi,j , Vi′,j′)| ≤ f ′(0). If d(Vi,j , Vi′,j′) = d± f ′(k) we do nothing. Otherwise, we
apply Claim 2.1 on (Vi,j , Vi′,j′) with η = d, γ = |d−d(Vi,j , Vi′,j′)| and δ = f ′(k).
Note that here we are guaranteed to have γ ≤ f ′(0) ≤ 1

8ε. Claim 2.1 guarantees
that we can make at most 2γ(n/kl)2 ≤ 1

4ε(n/kl)2 modifications and thus turn
(Vi,j , Vi′,j′) into a 3f ′(k)-regular pair with density d ± f ′(k). The total number
of modifications over the entire graph is bounded by ε

4n2.
To conclude, the overall number of modifications we have made in the above

stages is less than εn2, as needed. Moreover, at this stage all the pairs (Vi,j , Vi′,j′)
satisfy |d(Vi,j , Vi′,j′) − d(Vi, Vi′)| ≤ f ′(k) ≤ 1

4f(k)2 and they are all 1
4f2(k)-

regular. Therefore, by Claim 2.2 all pairs (Vi, Vj) are f(k)-regular, as needed.
��

3 Deterministic Algorithmic Version of Theorem 1

As mentioned before, we show that it is also possible to obtain an algorith-
mic version of Theorem 1. Here is a rough sketch, following the proof of
Theorem 1 step by step. As described in [2], one can obtain the partition of
Lemma 2 in polynomial time. In order to find the modifications that make it
f -regular, the random graphs can be replaced by appropriate pseudo-random
bipartite graphs. The last ingredient we need is an algorithm for finding the
modifications to a bipartite graph (A, B) that are guaranteed by Claim 2.1. The
algorithm we describe here combines the use of conditional probabilities (see, e.g.,
[3]) with a certain local condition that ensures regularity. We first describe such a
condition.

434 Noga Alon, Asaf Shapira, and Uri Stav

Given a bipartite graph on a pair of vertex sets (A, B) we denote by dC4(A, B)
the density of four-cycles in (A, B), namely, the number of copies of C4 divided by(|A|

2

)(|B|
2

)
. A pair (A, B) is said to be ε-quad-regular if dC4(A, B) = d4(A, B)± ε.

This local condition indeed ensures ε-regularity, as detailed in the following
Lemma. The proof of the lemma appears in [5] and is based on the results
of [1].

Lemma 3 ([5]). Let (A, B) be a bipartite graph on A and B where |A| = |B| =
n and δ > 0. Then:

1. If (A, B) is 1
4δ10-quad-regular then it is δ-regular.

2. If (A, B) is δ-regular then it is 8δ-quad-regular.

We shall design a deterministic algorithm for the following slightly weaker ver-
sion of Claim 2.1.

Claim 3.1. There is a deterministic polynomial time algorithm that given a
1

200δ20-regular pair (A, B) with n vertices in each part (with n large enough) and
d(A, B) = η ± γ, modifies up to 2γn2 edges and thus turns the bipartite graph
into a 2δ-regular pair with edge density d′(A, B) = η ± δ .

Note that the polynomial loss in the regularity measure with respect to Claim
2.1 can be evened by modifying the definition of f ′ in the proof of Theo-
rem 1 so that f ′(k) = min{f2(k)/8, ε20/2000}. Hence Claim 3.1 indeed im-
plies an algorithm for finding the modifications and partition guaranteed by
Theorem 1.

Proof of Claim 3.1: Assume d(A, B) = η+γ and γ > δ. The case d(A, B) = η−γ
can be treated similarly.

Consider an arbitrary ordering of the edges of (A, B) and a random process in
which each edge is deleted independently with probability γ

η+γ . We first consider
this setting and later show that a sequence of deterministic choices of the dele-
tions can be applied so that the resulting graph satisfies the desired properties.

Define the indicator random variable Xi, 1 ≤ i ≤ t = ηn2, for the event
of not deleting the i’th edge. Denote the number of four cycles in (A, B) by
s = dC4(A, B)

(
n
2

)2
, and arbitrarily index them by 1, . . . , s. For every C4 in

(A, B) define the indicator Yi, 1 ≤ i ≤ s, for the event of its survival (i.e., none
of its edges being deleted). Also let X =

∑t
i=1 Xi and Y =

∑s
i=1 Yi which ac-

count for the numbers of edges and four-cycles (respectively) at the end of this
process. Now define the following conditional expectations for i = 0, 1, . . . , t.

fi(x1, . . . , xi) = E
[
n4(X − ηn2)2 + (Y − η4(n

2)
2)2 | X1 = x1, . . . , Xi = xi

]
(1)

where the expectation in (1) is taken over a uniform independent choice of
Xi+1, . . . , Xt.

We first obtain an upper bound on f0. Since X ∼ B((η + γ)n2, η
η+γ), hence

E[(X − ηn2)2] = V (X) = O(n2) and thus the first term in the expression for f0

is O(n6). The expectation of the second term is

E[(Y − η4(n
2)

2)2] = E[Y 2]− 2E[Y]η4(n
2)

2 + η8(n
2)

4

Can a Graph Have Distinct Regular Partitions? 435

For the linear term we have E[Y] =
∑s

i=1 E[Yi] = s(η
η+γ)4. As for the quadratic

term, for any pair 1 ≤ i < j ≤ s of four-cycles which share no common edge, the
corresponding Yi and Yj are independent and hence E[YiYj] = (η

η+γ)8. There
are only O(n6) non-disjoint pairs of C4s, thus E[Y 2] = E[

∑
1≤i,j≤s YiYj] =

s2(η
η+γ)8 ± O(n6). By Lemma 3, dC4(A, B) = (η + γ)4 ± 1

25δ20 and so s =

((η + γ)4 ± 1
25δ20)

(
n
2

)2. Therefore, we conclude that

E[(Y − η4(n
2)

2)2] = s2(η
η+γ)8 ±O(n6)− 2s(η

η+γ)4η4(n
2)

2 + η8(n
2)

4

≤ 1
5δ

20(n
2)

4 + O(n6)

This implies that altogether, for a large enough n, f0 ≤ 1
4δ20

(
n
2

)4
.

However, each fi(x1, . . . , xi) is a convex combination of fi+1(x1, . . . , xi, 0) and
fi+1(x1, . . . , xi, 1). Thus, there is some choice of a value xi+1 for Xi+1 such that
fi+1(x1, . . . , xi+1) ≤ fi(x1, . . . , xi). Therefore, choosing an xi+1 that minimizes
fi+1 sequentially for i = 0, . . . , t−1 results in an assignment of (x1, . . . , xt) such
that ft(x1, . . . , xt) ≤ f0 ≤ 1

4δ20
(
n
2

)4. In order to apply this process, one needs
to be able to efficiently compute fi. But this is straightforward, since for any
partial assignment of values to the Xis, the mutual distribution of any pair Yi, Yj

can be calculated in time O(1). Therefore, since there are at most O(n8) pairs
of four-cycles, computing the expected value of the sum in (1) requires O(n8)
operations. Repeating this for each edge accumulates to O(n10) . 3

To complete the proof of the claim, we only need to show that the modifica-
tions we obtained above, namely such that (x1, . . . , xt) satisfy ft(x1, . . . , xt) ≤
1
4δ20

(
n
2

)4
, are guaranteed to satisfy the conditions of the claim. Indeed, in this

case, each of the two addends which sum up to ft is bounded by 1
4δ20

(
n
2

)4. By
the first addend, the new edge density d′ is d′ = η± 1

2δ10. Thus, with much room
to spare, the conditions on the edge density and the number of modifications are
fulfilled. Note that it also follows that d′4 = η4 ± 3δ10 (for, e.g., δ < 1

4), and the
second addend implies that the new four-cycles density is η4± 1

2δ10 = d′4±4δ10.
By Lemma 3 the pair is now 41/5δ-regular, and hence the modified graph attains
all the desired properties. ��

Remark 1. Another possible proof of Claim 3.1 can be obtained by using an ap-
propriate 8-wise independent space for finding (x1, . . . , xt) such that ft attains
at most its expected value.

4 Isomorphism of Regular Partitions

In this section we prove Theorems 2 and 3. In order to simplify the presen-
tation, we omit all floor and ceiling signs whenever these are not crucial. We

3 Note that each edge effects only at most O(n6) pairs of four cycles, thus the com-
plexity can easily be reduced to O(n8), and in fact can be further reduced by a more
careful implementation.

436 Noga Alon, Asaf Shapira, and Uri Stav

start with the proof of Theorem 2. The basic ingredient of the construction is a
pseudo-random graph which satisfies the following conditions.

Lemma 4. Let k be a square of a prime power, then there exists a graph F =
(V, E) on |V | = k vertices such that

1. F is �k/2�-regular, and hence d(V, V) = �k/2
k

2. For any pair of vertex sets A and B, if |A| ≥ k
3
4 and |B| ≥ k

3
4 , then

d(A, B) = d(V, V)± k− 1
4

Proof: We use some known pseudo-random graphs as follows, see the survey [8]
for further definitions and details. An (n, d, λ)-graph is a d-regular graph on n
vertices all of whose eigenvalues, except the first one, are at most λ in their ab-
solute values. It is well known that if λ is much smaller than d, then such graphs
have strong pseudo-random properties. In particular, (see, e.g., [3], Chapter 9),
in this case for any two sets of vertices A and B of G: d(A, B) = d

n±λ(|A||B|)− 1
2 .

Thus, it is easy to verify that a (k, �k
2�,
√

k)-graph would satisfy the assertions
of the lemma.

There are many known explicit constructions of (n, d, λ)-graphs. Specifically,
we use the graph constructed by Delsarte and Goethals and by Turyn (see [8]).
In this graph the vertex set V (G) consists of all elements of the two dimensional
vector space over GF (q), where q is a prime power, so G has k = q2 vertices. To
define the edges of G we fix a set L of q+1

2 lines through the origin. Two vertices
x and y of the graph G are adjacent if x− y is parallel to a line in L. It is easy
to check that this graph is (q+1)(q−1)

2 = q2−1
2 -regular. Moreover, because it is

a strongly regular graph, one can compute its eigenvalues precisely and show
that besides the first one they all are either − q+1

2 or q−1
2 . Therefore, indeed, we

obtain an (k, �k
2 �, λ)-graph with λ <

√
k as necessary. ��

Proof of Theorem 2: We construct our example as follows. Pick a graph F on k
vertices V (F) = {1, . . . , k} which satisfies the conditions of Lemma 4. Suppose
n ≥ k2. The graph on n vertices G will be an n

k blow-up of F : every vertex
of F is replaced by an independent set of size n

k , and each edge is replaced by
a complete bipartite graph connecting the corresponding independent sets. Ev-
ery non-edge corresponds to an empty bipartite graph between the parts. Let
U = {Ui : 1 ≤ i ≤ k} be the partition of V (G) where Ui is an independent
set which corresponds to the vertex i in F . It follows from the construction
that for any 1 ≤ i < j ≤ k the edge density of (Ui, Uj) is either 0 or 1, and
(Ui, Uj) is ε-regular for any ε > 0. The second partition V is generated by ar-
bitrarily splitting every Ui into k equal-sized sets Wi,t, 1 ≤ t ≤ k, and setting
Vt =

⋃k
i=1 Wi,t. Note that for any 1 ≤ i < j ≤ k the edge density dG(Vi, Vj)

is exactly dF (V (F), V (F)). Yet by Lemma 4, dF (V (F), V (F)) = 2e(F)
k2 = �k/2

k ,
which for k ≥ 2 is strictly between 1

4 and 3
4 . Hence U and V are not 1

4 -similar,
as |d(Ui, Uj)− d(Vi′ , Vj′)| > 1

4 for all pairs i < j and i′ < j′.

Can a Graph Have Distinct Regular Partitions? 437

Thus, we complete the proof of the theorem by showing that all pairs (Vi, Vj)
are k− 1

4 -regular. Suppose, towards a contradiction and without loss of gener-
ality, that there are subsets A ⊆ V1 and B ⊆ V2 such that |A| ≥ k− 1

4 |V1|,
|B| ≥ k− 1

4 |V2| and |d(A, B)− d(V1, V2)| > k− 1
4 .

For any 1 ≤ i ≤ k we denote Ai = A ∩ Wi,1 and Bi = B ∩Wi,2. For any
vertex x ∈ A, let the fractional degree of x with respect to B be defined by
dB(x) = e({x}, B)/|B|. Note that d(A, B) = 1

|A|Σx∈AdB(x) and that if x1 and
x2 come from the same Wi,1, then dB(x1) = dB(x2). Therefore, d(A, B) is a
convex combination

d(A, B) =
k∑

i=1

|Ai|
|A| dB(x ∈Wi,1)

of (at most) k possible fractional degrees of vertices in A, which come from
different sets Wi,1.

First assume that d(A, B) > d(V1, V2) + k− 1
4 . We sort the vertices of A

by their fractional degrees with respect to B, and consider a subset Â of V1

which consists of the union of the k
3
4 sets Wi,1 which have the highest frac-

tional degrees with respect to B. Since |A| > k− 1
4 |V1| = |Â|, it follows that

d(Â, B) ≥ d(A, B). Similarly, by considering the fractional degrees of the vertices
of B with respect to the new subset Â, we may obtain a subset B̂ of V2 such that
d(Â, B̂) ≥ d(Â, B) ≥ d(A, B) > d(V1, V2) + k− 1

4 . It also follows that both Â and
B̂ are unions of sets Wi,1 and Wi,2 respectively. Thus, the edge density d(Â, B̂) is
exactly the edge density of the corresponding vertex sets in F (both of size k

3
4).

By Lemma 4, we get that d(Â, B̂) ≤ dF (V (F), V (F))+k− 1
4 = dG(V1, V2)+k− 1

4 ,
which leads to a contradiction and completes the proof of Theorem. 2. The case
where d(A, B) < d(V1, V2)− k− 1

4 can be treated similarly. ��

Remark 2. By using the random graph G(k, 1
2) one could establish an inexplicit

probabilistic proof for an analog of Lemma 4. The proof applies standard Cher-
noff bounds on the number of edges between any pair of small vertex sets. This
extends the result for any k > 2 and with a stronger regularity constraint. Re-
peating the proof of Theorem 2 with such a graph F implies that Theorem 2
holds even for f(k) = Θ(log1/3 k

k1/3).

We conclude this section with the proof of Theorem 3.

Proof of Theorem 3: Consider two f -regular partitions U = {Ui : 1 ≤ i ≤ k}
and V = {Vi : 1 ≤ i ≤ k} of order k. Let Wi,j denote Vi ∩ Uj. Consider a
matrix A where Ai,j = |Wi,j |

|Vi| is the fraction of vertices of Vi in Uj , and note that
A is doubly stochastic, that is, the sum of entries in each column and row is
precisely 1. A well known (and easy) theorem of Birkhoff [4] guarantees that A
is a convex combination of (less than) k2 permutation matrices. In other words,
there are k2 permutations σ1, . . . , σk2 of the elements {1, . . . , k}, and k2 reals
0 ≤ λ1, . . . , λk2 ≤ 1 such that

∑
t λt = 1 and A =

∑
t λtAσt , where Aσ is the

438 Noga Alon, Asaf Shapira, and Uri Stav

permutation matrix corresponding to σ. Let λp be the largest of these k2 coeffi-
cients. Clearly λp ≥ 1/k2, and observe that as A is a convex combinations of the
matrices Aσt , this means that for every 1 ≤ i ≤ k we have |Wi,σp(i)| ≥ 1

k2 |Vi| and
similarly |Wi,σp(i)| ≥ 1

k2 |Uσp(i)|. As both V and U are assumed to be f(k)-regular
and f(k) ≤ min{1/k2, ε/2}, this guarantees that for all 1 ≤ i < j ≤ k we have

|d(Vi, Vj)− d(Uσp(i), Uσp(j))| ≤

|d(Vi, Vj)− d(Wi,σp(i), Wj,σp(j))|+ |d(Wi,σp(i), Wj,σp(j))− d(Uσp(i), Uσp(j))| ≤ ε ,

completing the proof. ��

Acknowledgments. We would like to thank Madhu Sudan for a conversation
that initiated this study, and Laci Lovász for fruitful discussions.

References

1. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects
of the Regularity Lemma. In: Proc. 33rd IEEE FOCS, Pittsburgh, pp. 473–481.
IEEE, Los Alamitos (1992) Also: J. of Algorithms 16, 80–109 (1994)

2. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large
graphs. In: Proc. of the 40 IEEE FOCS, pp. 656–666. IEEE, Los Alamitos (1999)
Also: Combinatorica 20, 451–476 (2000)

3. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, New York
(2000)

4. Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tucumán. Rev. Ser.
A 5, 147–151 (1946)

5. Fischer, E., Matsliach, A., Shapira, A.: A hypergraph approach for finding small
regular partitions. (preprint 2007)

6. Gowers, T.: Lower bounds of tower type for Szemerédi’s uniformity lemma.
GAFA 7, 322–337 (1997)

7. Komlós, J., Simonovits, M.: Szemerédi’s Regularity Lemma and its applications
in graph theory. In: Miklós, D., Sós, V.T., Szönyi, T. (eds.) Combinatorics, Paul
Erdös is Eighty, Budapest. János Bolyai Math. Soc., vol. II, pp. 295–352 (1996)

8. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. In: Györi, E., Katona,
G.O.H., Lovász, L. (eds.) More sets, graphs and numbers. Bolyai Society
Mathematical Studies, vol. 15, pp. 199–262.

9. Lovász, L.: Private communication (2006)
10. Lovász, L., Szegedy, B.: Szemerédi’s lemma for the analyst, GAFA (to appear)
11. Rödl, V., Schacht, M.: Regular partitions of hypergraphs, Combinatorics,

Probability and Computing (to appear)
12. Sudan, M.: Private communication (2005)
13. Szemerédi, E.: Regular partitions of graphs. In: Bermond, J.C., Fournier, J.C., Las

Vergnas, M., Sotteau, D. (eds.) Proc. Colloque Inter. CNRS, pp. 399–401 (1978)

Algorithms for Core Stability, Core Largeness,

Exactness, and Extendability of Flow Games�

Qizhi Fang1, Rudolf Fleischer2, Jian Li2,��, and Xiaoxun Sun3

1 Department of Mathematics, Ocean University of China, Qingdao, China
qfang@ouc.edu.cn

2 Department of Computer Science and Engineering
Shanghai Key Laboratory of Intelligent Information Processing

Fudan University, Shanghai, China
rudolf,lijian83@fudan.edu.cn

3 Department of Mathematics and Computing, University of Southern Queensland
w0072830@mail.connect.usq.edu.au

Abstract. In this paper, we give linear time algorithms to decide core
stability, core largeness, exactness, and extendability of flow games on
uniform networks (all edge capacities are 1). We show that a uniform
flow game has a stable core if and only if the network is a balanced DAG
(for all non-terminal vertices, indegree equals outdegree), which can be
decided in linear time. Then we show that uniform flow games are exact,
extendable, and have a large core if and only if the network is a balanced
directed series-parallel graph, which again can be decided in linear time.

1 Introduction

In 1944, von Neumann and Morgenstern [19] introduced the concept of stable
sets to analyse bargaining situations in cooperative games. In 1968, Lucas [13]
described a ten-person game without a stable set. Deng and Papadimitriou [5]
pointed out that deciding the existence of a stable set for a given cooperative
game is not known to be computable. Jain and Vohra [8] recently showed that
it is decidable whether a balanced game has a stable core. When the game is
convex, the core is always a stable set. In general, however, the core and the
stable set are not related. Hence the question arises: when do the core and the
stable set coincide, and how can we decide core stability?

Several sufficient conditions for core stability have been discussed in the lit-
erature. Sharkey [14] introduced the concepts of subconvexity of a game and
core largeness. He showed that convexity implies subconvexity which implies
core largeness which implies core stability. In an unpublished paper, Kikuta and
Shapley [12] studied another concept, later called extendability of the game by

� The work described in this paper was supported by NCET, NSFC (No. 10371114s
and No. 70571040/G0105) and partially supported by NSFC (No. 60573025).

�� The work was partially done when this author was visiting The Hong Kong Univer-
sity of Science and Technology.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 439–447, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

440 Q. Fang et al.

Gellekom et al. [18], and proved that it is necessary for core largeness and suffi-
cient for core stability.

However, only few results are known about core stability and related concepts
for concrete cooperative games. Solymosi and Raghavan [15] studied these con-
cepts for assignment games, and Bietenhader and Okamoto [1] studied them for
minimum coloring games on perfect graphs.

In this paper we study flow games, introduced by Kalai and Zemel [10,11],
which arise from the profit distribution problem related to the maximum flow
in networks. We give the first linear time algorithms to decide core stability,
core largeness, exactness, and extendability of uniform flow games (all edge ca-
pacities are 1). We obtain these efficient algorithms by characterizing structural
properties of those networks that have flow games with the desired properties.
These characterizations might be useful in other contexts.

We show that a uniform flow game has a stable core if and only if the network
is a balanced DAG (for all non-terminal vertices, indegree equals outdegree). This
can easily be tested in linear time, so we get a linear time algorithm to decide
core stability, which improves a previous algorithm with runtime O(|V |2 · |E|2)
[16]. We also show that uniform flow games are exact, extendable, and have a
large core if and only if the network is a balanced directed series-parallel graph.
Again, this can be tested in linear time [17], so we also get a linear time algorithm
to decide exactness, extendability, and core largeness of uniform flow games. In
[16], Sun et al. established the equivalence of these three properties and proved
them to be equivalent to a certain structural property of the network (see Section
2.2.4) but left it as an open problem to design an efficient algorithm to decide
this property. Note that core largeness, exactness, and extendability of a flow
game all imply core stability (because flow games are totally balanced).

This paper is organized as follows. In Section 2 we define cooperative games
and review some results on the core of flow games and its stability. In Section 3,
we characterize those networks that have uniform flow games with these prop-
erties, leading to linear time algorithms to decide them. We conclude with some
open problems in Section 4.

2 Definitions

2.1 Graphs

A flow network is a directed graph G = (V, E; ω), where V is the vertex set, E is
the edge set, and ω : E → IR+ is the edge capacity function. Let s (the source)
and t (the sink) be two distinct vertices of G. W.l.o.g., we assume that every
edge in E lies on some simple (s, t)-path. G is a uniform flow network if all edge
capacities are equal. By scaling the capacities we can w.l.o.g. assume that the
edge capacities are equal to one in this case.

If S and T partition the vertex set into two parts such that s ∈ S and t ∈ T ,
then the set C of edges going from a node in S to a node in T is an (s, t)-cut.
The capacity of C is the sum of its edge capacities. C is a minimal (s, t)-cut if
no proper subset of C is an (s, t)-cut. C is a minimum (s, t)-cut if it has smallest

Algorithms for Core Stability, Core Largeness, Exactness, and Extendability 441

capacity among all (s, t)-cuts. We say a uniform network G is cut-normal if every
minimal (s, t)-cut is already a minimum (s, t)-cut.

A directed graph is a DAG (directed acyclic graph) if it does not contain a
directed cycle. A 2-terminal DAG is a DAG with two vertices s and t such that
the indegree of s and the outdegree of t are zero and every other vertex appears
in at least one simple (s, t)-path. A 2-terminal DAG is balanced if the indegree
of every vertex other than s and t equals its outdegree.

A 2-terminal directed series-parallel graph (2-DSPG) is a directed graph with
two distinguished vertices (terminals) s and t that is obtained inductively as fol-
lows. A basic 2-DSPG consists of two terminals s and t, connected by a directed
edge (s, t). If G1 and G2 are 2-DSPGs with terminals si and ti, i = 1, 2, then we
can combine them in series by identifying t1 with s2 to obtain a 2-DSPG with
terminals s1 and t2, or in parallel by identifying s1 with s2 and t1 with t2 to
obtain a 2-DSPG with terminals the combined vertex s1/s2 and the combined
vertex t1/t2.

2.2 Cooperative Games

A cooperative (profit) game Γ = (N, v) consists of a player set N = {1, 2, · · · , n}
and a profit function v : 2N → IR with v(∅) = 0. A coalition S is a non-empty
subset of N , and v(S) represents the profit that can be achieved by the players
in S without help of other players. The central problem in a cooperative game
is how to allocate the total profit v(N) among the individual players in a ‘fair’
way. An allocation is a vector x ∈ IRn with x(N) = v(N), where x(S) =

∑
i∈S xi

for any S ⊆ N .
Different requirements for fairness, stability and rationality lead to different

optimal allocations which are generally called solution concepts. The core is an
important solution concept.

An allocation x ∈ IRn is called an imputation if xi ≥ v({i}) for all players
i ∈ N . Every player is happy in this case because he gets at least as much as he
could expect from the profit function of the game. We denote by X(Γ) the set
of imputations of Γ .

The core C(Γ) of Γ is the set of imputations where no coalition S has an
incentive to split off from the grand coalition N and go their own way. Formally,
C(Γ) = {x ∈ IRn | x(N) = v(N) and x(S) ≥ v(S) for all S ⊆ N}. A game is
balanced if its core is not empty.

For a subset S ⊆ N , the induced subgame (S, vS) on S has profit function
vS(T) = v(T) for each T ⊆ S. A cooperative game Γ is called totally balanced if
all its subgames are balanced, i.e., all its subgames have non-empty cores.

2.3 Core Stability, Core Largeness, Extendability, and Exactness

In their classical work on game theory, von Neumann and Morgenstern [19]
introduced the stable set which is very useful for the analysis of bargaining
situations. Suppose that x and y are imputations. We say that x dominates y
if there is a coalition S such that x(S) ≤ v(S) and xi > yi for each i ∈ S. A

442 Q. Fang et al.

set F of imputations is stable if no two imputations in F dominate each other,
and any imputation not in F is dominated by at least one imputation in F . In
particular, the core of a game is stable if for any non-core imputation y there is
a core imputation x dominating y, i.e., x(S) = v(S) and xi > yi for each i ∈ S.

There are three other concepts closely related to the core stability. Let Γ =
(N, v) be an n-player cooperative game. The core of Γ is large if for every y ∈ IRn

satisfying y(S) ≥ v(S), for all S ⊆ N , there exists a core imputation x such that
x ≤ y. Γ is extendable if for every S ⊆ N and every core imputation y of the
subgame (S, vS) there exists a core imputation x ∈ C(Γ) such that xi = yi for
all i ∈ S. Γ is called exact if for every S ⊂ N there exists x ∈ C(Γ) such that
x(S) = v(S).

Kikuta and Shapley [12] showed that a balanced game with a large core is
extendable, and an extendable balanced game has a stable core. Sharkey [14]
showed that a totally balanced game with a large core is exact. Biswas et al. [2]
pointed out that extendability also implies exactness. Note that flow games are
totally balanced.

2.4 Flow Games

Flow games were introduced by Kalai and Zemel [10,11]. Consider a flow network
G = (V, E; ω). In the corresponding flow game Γ = (E, v) on G each player
controls one edge. The profit v(S) of a coalition S ⊆ E is the value of a maximum
(s, t)-flow that only uses edges controlled by S. The flow game is uniform if the
underlying network is uniform.

In this paper, we focus on uniform flow games. These games belong to the class
of packing and covering games introduced by Deng et al. [4]. Kalai and Zemel
[11] showed that flow games are totally balanced. Fang et al. [7] proved that the
problem of testing membership in the core of a flow game is co-NP-complete.
Deng et al. [4] showed that the core of a uniform flow game is exactly the convex
hull of the indicator vectors of the minimum (s, t)-cuts of the network, which
can be computed in polynomial time.

An edge e ∈ E is called a dummy edge if v(E \ {e}) = v(E), i.e., removal of e
does not change the value of the maximum (s, t)-flow. Sun et al. [16] showed that
a uniform flow game has a stable core if and only if the network does not contain
dummy edges. Based on this structural property they designed an O(|V |2 · |E|2)
time algorithm to decide core stability of uniform flow games. In Section 3 we
will see that we can recognize graphs without dummy edges much faster. Note
that dummy edges also play a role in the efficient computation of the nucleolus
of flow games [3].

Sun et al. [16] also showed that for uniform flow games the concepts of exact-
ness, extendability, and core largeness are equivalent, and that they are equiv-
alent to the property of the network that every (s, t)-cut contains a minimum
(s, t)-cut. It is easy to see that this is equivalent to being cut-normal.

Lemma 1. A 2-terminal DAG with terminals s and t is cut-normal if and only
if every (s, t)-cut contains a minimum (s, t)-cut. ��

Algorithms for Core Stability, Core Largeness, Exactness, and Extendability 443

In next section we show that the cut-normal uniform flow networks are exactly
the balanced directed serial-parallel graphs with two terminals. This immediately
implies a linear time algorithm to decide whether a uniform flow game is exact,
extendable, and has a large core.

3 Efficient Algorithms

3.1 Core Stability

Let G = (V, E) be a uniform flow network with source s and sink t. In this
section we will give a linear time algorithm to decide core stability of the flow
game on G.

Theorem 2. G contains no dummy edge if and only if G is a balanced DAG.

Proof. If: Suppose G is a balanced DAG. Let f be a maximum integer (s, t)-flow
(which is also a maximum (s, t)-flow). Then, f pushes either zero or one unit of
flow along each edge. Consider the subgraph G′ of G of all edges e ∈ E with
f(e) = 0. Since G is balanced and f satisfies the flow conservation property in
every vertex except s and t, G′ is also balanced. As a subgraph of G it is also
acyclical. Thus, if G′ is not empty, there must be a simple (s, t)-path in G′.
But then we can push one more unit of flow along this path, contradicting the
maximality of f . Thus, G′ is empty, i.e., G contains no dummy edge.

Only if: The flow conservation property and the fact that all edges have ca-
pacity one imply that for each maximum flow f at least one edge incident to
an unbalanced vertex is not used by f . Thus, every unbalanced graph contains
dummy edges.

Suppose G contains a directed cycle C. Since we may w.l.o.g. assume that a
maximum (s, t)-flow f does not have flow flowing around in cycles, at least one
edge of C will not be used by f , i.e., it is a dummy edge. ��

Corollary 3. We can decide core stability of uniform flow games in linear time.

Proof. Sun et al. [16] have shown that a uniform flow game has a stable core if
and only if the network does not contain dummy edges. ��

3.2 Extendability, Exactness, and Core Largeness

In this section we will give a linear time algorithm to decide exactness, extend-
ability, and core largeness of uniform flow games. Note that these properties
imply core stability. In view of Theorem 2 we can therefore w.l.o.g. assume in
this subsection that flow networks are balanced DAGs.

Two graphs are homeomorphic if they can be made isomorphic by inserting
new vertices of degree two into edges, i.e., substituting directed edges by directed
paths (which does not change the topology of the graph). Let H denote the graph
shown on the left side of Fig. 1.

444 Q. Fang et al.

h1 h2 h3 h4
s tva

vb

vc

vd

psb

psa1

psa2

pct

pdt1

pdt2

Fig. 1. Left: the graph H ; Right: the graph G3

Theorem 4. [6,9,17] A 2-terminal DAG is a 2-DSPG if and only if it does not
contain a subgraph homeomorphic to H. ��

We now give a characterization of balanced 2-DSPGs.

Theorem 5. A balanced 2-terminal DAG is cut-normal if and only if it is a
balanced 2-DSPG.

Proof. If: It is easy to see that balanced 2-DSPGs can be generated inductively
as 2-DSPGs with the additional constraint that a combination in series step
(where we identify the two terminals t1 and s2) requires the indegree of t1 being
equal to the outdegree of s2.

We now prove the claim by induction on |E|. If |E| = 1, the graph is (s, t)-
normal. Suppose the statement holds for all balanced 2-DSPGs with fewer than
|E| edges. If G was generated from G1 = (V1, E1) and G2 = (V2, E2) by com-
bination in parallel, then any minimal (s, t)-cut C in G consists of a minimal
(s1, t1)-cut C ∩E1 in G1 and a minimal (s2, t2)-cut C ∩E2 in G2. By inductive
hypothesis, these are minimum cuts. Thus, C is a minimum (s, t)-cut in G.

If G was generated from G1 and G2 by combination in series, then a minimal
(s, t)-cut C in G is either a minimal (and thus minimum) (s1, t1)-cut in G1 or a
minimal (and thus minimum) (s2, t2)-cut in G2. Since the indegree of t1 equals
the outdegree of s2 and cutting all edges incident to t1 (s2) defines a minimal
(s1, t1)-cut in G1 (minimal (s2, t2)-cut in G2), a minimum (s1, t1)-cut in G1

has the same capacity as a minimum (s2, t2)-cut in G2. Thus, C is a minimum
(s, t)-cut in G.

Only if: Let G = (V, E) be a balanced 2-terminal DAG with terminals s and t.
Let V = {s = v1, v2, . . . , vn = t} be a topological ordering of G.

Let k denote the outdegree of s. If G is not a 2-DSPG, then we can con-
struct a minimal cut of size larger than k, contradicting the assumption that
G is cut-normal. By Theorem 4, G contains a subgraph homeomorphic to H
which we denote by H(a, b, c, d, Pab, Pbc, Pcd, Pac, Pbd), where va is the node cor-
responding to h1, vb the node corresponding to h2, vc the node corresponding
to h3, vd the node corresponding to h4, and the vertex-disjoint (except at their
endpoints) paths Pab, Pbc, Pcd, Pac and Pbd correspond to the edges (h1, h2),
(h2, h3), (h3, h4), (h1, h3), and (h2, h4) in H , respectively. Among all subgraphs
homeomorphic to H we choose one, GH , with largest b.

Algorithms for Core Stability, Core Largeness, Exactness, and Extendability 445

s tva

vb

vc

vd

psb

psa1

psa2

pct

pdt1

pdt2

vr

vq
s tva

vb

vc

vd

psb

psa1

psa2

pct

pdt1

pdt2

vr

vq

Fig. 2. Cases (1) and (2) in the proof of Theorem 5

s tva

vb

vc

vd

psb

psa1

psa2

pct

pdt1

pdt2

vr

vq

s tva

vb

vc

vd

psb

psa1

psa2

pct

pdt1

pdt2

vr

vq

Fig. 3. Cases (3) and (4) in the proof of Theorem 5

GH is not balanced, but since G is balanced we can find in G six pairwise
edge-disjoint paths (they are also edge-disjoint with GH) Psa1, Psa2, Psb, Pct,
Pdt1, and Pdt2 that we can add to GH to obtain a balanced graph G3 (see
Fig. 1, right side). Note that G3 is the union of three edge-disjoint (s, t)-paths
Psa1 + Pab + Pbd + Pdt1, Psa2 + Pac + Pcd + Pdt2, and Psb + Pbc + Pct (we use
P1 + P2 to denote the concatenation of paths P1 and P2).

Consider the (s, t)-cut Cb in G induced by the partition of V into {v1, . . . ,
vb−1} and {vb, . . . , vn}. Since G is a DAG and all vertices lie on some (s, t)-path,
this is a minimal cut. If |Cb| > k, we have a minimal cut that is not a minimum
cut. So assume |Cb| = k. We partition the edges of Cb into two classes, Cb1 and
Cb2. An edge e belongs to Cb1 if every (s, t)-path containing e passes through
vc, otherwise it belongs to Cb2.

We will now show that Cb1 is not empty. Specifically, we show it contains the
edge e = Pac∩Cb. Assume there is an (s, t)-path Pe containing e but not vc. Let
vr be the largest node in Pac ∩ Pe. Let vq be the first node corresponding to a
node in G3 that we encounter on Pe when starting to walk at vr (such a node
exists because Pe ends at t ∈ G3). Let Prq denote the path from vr to vq.

Since e ∈ Cb, r ≥ b. Actually, r > b because vb is not on Pac. And r < c be-
cause vr ∈ Pac and vc 	∈ Pe. But then there exists another H(a, r, vc′ , . . .) in G,
a contradiction because r > b. To see this, we distinguish five cases, depending
on the location of vq (see Fig. 2–4). Let Pxy(i, j) denote the subpath of Pxy from
vi to vj , where x, y ∈ {a, b, c, d}.

1. vq ∈ Pbc: H(a, r, q, c, Pac(a, r), Prq , Pbc(q, c), Pab + Pbc(b, q), Pac(r, c)).
2. vq ∈ Pcd: H(a, r, c, q, Pac(a, r), Pac(r, c), Pcd(c, q), Pab + Pbc, Prq).
3. vq ∈ Pbd: H(a, r, q, d, Pac(a, r), Prq , Pbd(q, d), Pab + Pbd(b, q), Pac(r, c) + Pcd).
4. vq ∈ Pct: H(a, r, c, q, Pac(a, r), Pac(r, c), Pct(c, q), Pab + Pbc, Prq).
5. vq∈Pdt1 or vq∈Pdt2: H(a, r, d, q, Pac(a, r), Pac(r, c)+Pcd, Pdq, Pab+Pbd, Prq).

446 Q. Fang et al.

s tva

vb

vc

vd

psb

psa1

psa2

pct

pdt1

pdt2

vr

vq

Fig. 4. Case (5) in the proof of Theorem 5

Next, we show that |Cb1| < cout, where cout denotes the outdegree of vc in
G. Let U be a maximal set of edge-disjoint (s, t)-paths containing vc that in-
cludes the path Psa1 + Pab + Pbc + Pcd + Pdt1. Note that |U | ≤ cout. Clearly,
Cb1 is a subset of U ∩ Cb by the definition of Cb1. Since the last edge of Pab

belongs to U ∩ Cb but not to Cb1, it is even a proper subset, proving the
claim.

Let C be the set Cb2 plus all edges outgoing from vc. C is an (s, t)-cut be-
cause every (s, t)-path must either contain an edge in Cb2 or the node vc. C is
a minimal (s, t)-cut because every outgoing edge of vc is necessary because Cb1

is not empty, and every edge in Cb2 is necessary by definition. The size of C
is |C| = |Cb2| + cout > |Cb2| + |Cb1| = |Cb| = k. Thus, C is not a minimum
(s, t)-cut, a contradiction. Therefore, the assumption that G is not a 2-DSPG
must be wrong. �

Corollary 6. We can test in linear time whether a balanced uniform flow net-
work is cut-normal. Consequently, we can decide exactness, extendability, and
core largeness of uniform flow games in linear time.

Proof. We can test in linear time whether a DAG is balanced and whether it
is a 2-DSPG [17]. By Theorem 5 this is equivalent to being cut-normal. By
Lemma 1, a uniform flow network is cut-normal if and only if every (s, t)-cut
contains a minimum (s, t)-cut. Sun et al. [16] have shown that this is equivalent
to the flow game being exact, extendable, and having a large core. ��

4 Open Problems

In this paper, we gave structural characterizations of exact, extendable, large-
core and stable-core uniform flow games that can be tested in linear time.
Currently, little is known about core stability of flow games on networks with
arbitrary capacities. Although it is co-NP-complete to decide whether an impu-
tation belongs to the core this does not rule out the possibility that core stability
can be decided efficiently. We leave it as an open problem.

Acknowledgements

We would like to thank Mordecai Golin for his helpful discussions.

Algorithms for Core Stability, Core Largeness, Exactness, and Extendability 447

References

1. Bietenhader, T., Okamoto, Y.: Core stability of minimum coloring games. In:
Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp.
389–401. Springer, Heidelberg (2004)

2. Biswas, A.K., Parthasarathy, T., Potters, J.A.M., Voorneveld, M.: Large cores and
exactness. Game and Economic Beheavior 28, 1–12 (1999)

3. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. In: Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pp.
124–131. ACM Press, New York (2006)

4. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of com-
binatorial optimization games. Mathematics of Operations Research 24, 751–766
(1999)

5. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts.
Mathematics of Operations Research 19, 257–266 (1994)

6. Duffin, R.: Topology of series-parallel networks. Journal of Mathematical Analysis
and Applications 10, 303–318 (1965)

7. Fang, Q., Zhu, S., Cai, M., Deng, X.: Membership for core of LP games and other
games. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 247–256. Springer,
Heidelberg (2001)

8. Jain, K., Vohra, R.V.: On stability of the core. Manuscript (2006),
http://www.kellogg.northwestern.edu/faculty/vohra/ftp/newcore.pdf

9. Jakoby, A., Lískiewicz, M., Reischuk, R.: Space efficient algorithms for directed
series-parallel graphs. Journal of Algorithms 60(2), 85–114 (2006)

10. Kalai, E., Zemel, E.: Totally balanced games and games of flow. Mathematics of
Operations Research 7, 476–478 (1982)

11. Kalai, E., Zemel, E.: Generalized network problems yielding totally balanced
games. Operations Research 30, 998–1008 (1982)

12. Kikuta, K., Shapley, L.S.: Core stability in n-person games. Manuscript (1986)
13. Lucas, W.F.: A game with no solution. Bulletin of the American Mathematical

Society 74, 237–239 (1968)
14. Sharkey, W.W.: Cooperative games with large cores. International Journal of Game

Theory 11, 175–182 (1982)
15. Solymosi, T., Raghavan, T.E.S.: Assignment games with stable cores. International

Journal of Game Theory 30, 177–185 (2001)
16. Sun, X., Fang, Q.: Core Stability of Flow Games. In: Akiyama, J., Chen, W.Y.C.,

Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005. LNCS, vol. 4381, pp. 189–199.
Springer, Heidelberg (2007)

17. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series-parallel digraphs.
In: Proceedings of the 11th Annual ACM Symposium on Theory of Computing
(STOC’79), pp. 1–12. ACM Press, New York (1979)

18. van Gellekom, J.R.G., Potters, J.A.M., Reijnierse, J.H.: Prosperity properties of
TU-games. International Journal of Game Theory 28, 211–227 (1999)

19. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour.
Princeton University Press, Princeton (1944)

http://www.kellogg.northwestern.edu/faculty/vohra/ftp/newcore.pdf

Computing Symmetric Boolean Functions by

Circuits with Few Exact Threshold Gates

Kristoffer Arnsfelt Hansen

Department of Computer Science
University of Aarhus�

arnsfelt@daimi.au.dk

Abstract. We consider constant depth circuits augmented with few
exact threshold gates with arbitrary weights. We prove strong (up to
exponential) size lower bounds for such circuits computing symmetric
Boolean functions. Our lower bound is expressed in terms of a natu-
ral parameter, the balance, of symmetric functions. Furthermore, in the
quasi-polynomial size setting our results provides an exact characteriza-
tion of the class of symmetric functions in terms of their balance.

1 Introduction

A central program of circuit complexity is that aimed towards strong size lower
bounds for larger and larger classes of constant depth circuits. Such lower bounds
have been obtained for constant depth circuits consisting of AND and OR gates
(AC0 circuits) [1,2,3,4]. If we however allow gates performing modular counting
or a majority vote, we obtain classes of circuits (ACC0 and TC0) for which no
strong size lower bounds are known. The present work belongs to two distinct
lines of research both aimed at increasing the understanding of these classes
thereby approaching such lower bounds.

The first of these lines of research considers AC0 circuits augmented with
just few additional more powerful gates. A series of papers [5,6,7,8] considers
circuits with few MAJ gates, resulting in the result that such circuits with no(1)

MAJ gates require size 2nΩ(1)
to compute the MODm function for any m. More

recently have lower bounds been obtained for circuits with few modular counting
gates and symmetric gates [9,10,11].

The second line of research concerns classifying which symmetric Boolean
functions a class of circuits can compute. This naturally relies heavily on strong
lower bounds for the class of circuits in question, but provides much more in-
formation than just a lower bound for a particular Boolean function. These re-
sults are usually stated in terms of properties of the value vector of a symmetric
Boolean function, being composed of the outputs of the function for inputs of the
n+1 different weights. Fagin et al. [12] prove that the symmetric functions com-
puted by AC0 circuits of polynomial size are precisely those whose value vector
� Currently at The University of Chicago, supported by a Villum Kann Rasmussen

Post.Doc. fellowship.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 448–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computing Symmetric Boolean Functions by Circuits 449

is constant except within both ends of poly-logarithmic length. Interestingly, the
class remains the same when allowing quasi-polynomial size circuits. Zhang et al.
[13] prove that the symmetric functions computed by quasi-polynomial size
THR ◦AC0 circuits (AC0 circuits with an arbitrary threshold gate at the out-
put) are precisely those whose value vector has only a poly-logarithmic number
of sign changes (positions in the value vector where there is a change of values).
Lu [14] prove that the symmetric functions computed by quasi-polynomial size
AC0 circuits augmented with MODq gates, where q = pk is a prime power,
are precisely those whose value vector is periodic with poly-logarithmic period
pt(n) = logO(1) n, except within both ends of poly-logarithmic length.

Beigel [7] showed that a quasi-polynomial size AC0 circuit augmented with a
poly-logarithmic number of MAJ gates can be converted into a quasi-polynomial
size MAJ ◦AC0 circuit computing the same function, which implies that the
characterization of Zhang et al. extends to this class of circuits.

A natural next step would be to consider circuits with few threshold gates,
however here no strong lower bounds are known for computing simple functions
such as symmetric Boolean functions. (For more complicated functions, some
lower bounds can be obtained by the results of [9,10] combined with a multi-
party protocol for evaluating threshold gates due to Nisan [15]). In this paper we
instead consider circuits with few exact threshold gates computing symmetric
Boolean functions. This class of circuits is simpler than the class of circuits with
few threshold gates but seems to be incomparable to the class of circuits with
few majority gates.

We state our lower bounds in terms of a notion of balance b(f) of a symmetric
Boolean function f , defined as the minimum number of 0’s or 1’s in the value
vector of f . Our main result is the following general lower bound statement.

Theorem 1. There is a constant c > 0 such that any depth h circuit containing
s exact threshold gates and computing a symmetric function f must have size
at least

1
n2s+1

2
1
14

(
c b(f)

s log(n
b(f))

) 1
h

.

A notable special case to single out is quasi-polynomial size circuits. In this case
we obtain a complete characterization of the symmetric functions computable.

Theorem 2. A symmetric Boolean function can be computed by a constant
depth AC0 circuit of size 2logO(1) n containing logO(1) n exact threshold gates
if and only if it has balance logO(1) n.

2 Preliminaries

2.1 Constant Depth Circuits

We consider circuits built from families of unbounded fanin gates. Inputs are
allowed to be Boolean variables and their negations as well as the constants
0 and 1. In addition to AND, OR and NOT gates we consider the following

450 K.A. Hansen

variants of threshold functions. Let x1, . . . , xn be n Boolean inputs. The majority
function, MAJ, is 1 if and only if

∑n
i=1 xi ≥ n

2 . Similarly, the exact majority
function, EMAJ, is 1 if and only if

∑n
i=1 xi = n

2 . Introducing weights we get
a much richer class of functions. Let w ∈ Rn and let t be any real number.
The threshold function with weights w and threshold t, THRw,t is 1 if and only
if

∑n
i=1 wixi ≥ t. Similarly, the exact threshold function with weights w and

threshold t, ETHRw,t is 1 if and only if
∑n

i=1 wixi = t. For both these functions
it is easy to see that we can in fact assume that the weights and threshold are
integer valued, although this is not needed for our results.

Additionally, for a positive integer m, let MODm be the function that outputs
1 if and only if

∑n
i=1 xi 	≡ 0 (mod m).

Let AND and OR denote the families of unbounded fanin AND and OR
gates. Let MAJ, ETHR, THR denote the families of MAJ, ETHRw,t and
THRw,t gates, for arbitrary w and t. If G is a family of boolean gates and C is a
family of circuits we let G ◦ C denote the class of circuits consisting of a G gate
taking circuits from C as inputs.

AC0 is the class of functions computed by constant depth circuits built from
AND, OR and NOT gates. We define the larger class TC0 as the class of func-
tions computed by constant depth circuits built from AND, OR and MAJ gates.
When there is no special restrictions on the number of threshold gates, we can
exchange MAJ gates in this definition with either of the other three variants of
threshold gates defined above without changing the class of functions computed.

2.2 The Switching Lemma

A restriction on a set V of boolean variables is a map ρ : V → {0, 1, �}. It acts
on a boolean function f : V → {0, 1}, creating a new boolean function fρ on
the set of variables for which ρ(x) = �, obtained by substituting ρ(x) for x ∈ V
whenever ρ(x) 	= �. Let Rl

n denote the set of all restriction ρ leaving l of n
variables free.

A decision tree is a binary tree, where the internal nodes are labeled by vari-
ables and leafs are labeled by either 0 or 1. On a given input x, its value is the
value of the leaf reached by starting at the root, and at any internal node labeled
by xi proceeding to the left child if xi = 0 and to the right child otherwise. We
will use the following version of H̊astads Switching Lemma due to Beame [16].

Lemma 1. Let f be a DNF formula in n variables with terms of length at most
r. Let l = pn and pick ρ uniformly at random from Rl

n. Then the probability that
fρ does not have a decision tree of depth d is less than (7pr)d.

The advantage of using this version of the switching lemma is that it directly gives
us a decision tree. If we convert a decision tree into a DNF, we in fact obtain a
disjoint DNF, i.e. a DNF where all terms are mutually contradictory. We can view
it as a sum of terms, instead as an OR of AND’s. This view allows us to absorb the
sum into a threshold gate. We elaborate on this after the next proposition.

Using the switching lemma several times, allows one to obtain decision trees
for every gate in a given AC0 circuit.

Computing Symmetric Boolean Functions by Circuits 451

Proposition 1. Let C be a AC0 circuit of depth h and size S. Let d be any pos-
itive integer, and choose a restriction ρ ∈ Rnh

n , where nh = n
14(14d)h−1 . Then with

probability greater than 1 − S2−d, is every function computed by any gate of C
computed by a decision tree of depth less than d, after applying the restriction ρ.

Proof. First, whenever an input to a NOT gate is computed by a decision tree
of depth less than d, the function computed by the NOT gate is also computed
by a decision tree of depth less than d, by simply negating the constants at the
leaves of the decision tree. Henceforth we will only consider OR and AND gates.

Define, for 0 ≤ i ≤ h− 1, ni+1 = n
14(14d)i . We choose the restriction ρ ∈ Rnh

n

at random as a composition of randomly chosen restrictions ρ1, . . . , ρh, where
ρ1 ∈ Rn1

n and ρi+1 ∈ R
ni+1
ni for 1 ≤ i ≤ h − 1. Consider an AND or OR gate

at level 1 of C. We can consider the inputs of the gate to be terms or clauses
of size 1. This means that we can consider the gate to be a CNF with clauses
of size 1 or a DNF with terms of size 1. Then by Lemma 1, after applying ρ1,
the probability that the function computed by the gate is not computed by a
decision tree of depth less than d is at most (7n1

n)d = 2−d.
Now assume that after having applied the restrictions ρ1, . . . , ρi, every func-

tion computed by a gate at level i is also computed by a decision tree of depth at
most d. Consider now a gate at level i + 1. If the gate is an OR gate we rewrite
every input to the gate as DNF’s with terms of size at most d. The OR gates
of these can then be merged with the OR gate at level i + 1, thus obtaining a
DNF with terms of size at most d computing the same function. Similarly, if the
gate is an AND gate we rewrite every input to the gate as CNF’s with clauses
of size at most t. The AND gates of these can then be merged with the AND
gate at level i + 1, thus obtaining a CNF with clauses of size at most d for the
same function. Then by using Lemma 1 again, the probability that the function
computed by the gate at level i + 1 is not computed by a decision tree of depth
less than d is less than (7ni+1

ni
d)d = 2−d.

To conclude, since the probability of error at a single gate is less than 2−d,
the total probability of error is less than S2−d and the result follows.

Consider now an ETHR ◦AC0 circuit C. After successful use of Proposition 1
we have a restriction ρ such that after applying ρ, every function computed at an
input to the output gate of C is computed be a decision tree of depth at most d,
and hence by disjoint DNF’s with terms of size at most d. Assume that the output
gate evaluates whether

∑m
i=1 wixi = t, and let tij be the terms of the i’th DNF.

Then we have that the output of Cρ evaluates whether
∑m

i=1 wi(
∑

j(
∏

xk∈ti
j
xk ·∏

¬xk∈ti
j
(1− xk))) = t. This means we have a real polynomial P (x) of degree at

most d such P (x) 	= 0 if and only if Cρ(x) = 1 for all x.

2.3 Representation by Polynomials

Let P be a real polynomial on n variables and f a Boolean function on n vari-
ables. We say that P is a weak equality representation f , if P is not identically
0 and whenever P (x) 	= 0 for x ∈ {0, 1}n we must have f(x) = 1. (Thus our

452 K.A. Hansen

definition is a real valued analogue of the notion of weak representation over Zm

as defined by Green [17]).
Let f be a symmetric Boolean function on n variables. Since f then only

depends on the weight of its input, i.e.
∑n

i=1 xi, we will identify f with a func-
tion f : {0, . . . , n} → {0, 1}. By v(f) we denote the string f(0)f(1) · · · f(n) ∈
{0, 1}n+1, called the value vector of f .

For a string s ∈ {0, 1}∗, let n0(s) denote the number of 0’s in a, and likewise
let n1(s) denote the number of 1’s in s. Let further n0(f) = n0(v(f)) and n1(f) =
n1(v(f)). Define the balance b(f) of f by b(f) = min(n0(f), n1(f)).

Using the symmetrization technique of Minsky and Papert [18] we can prove
lower bounds on the degree of a polynomial representing a symmetric Boolean
function, in terms of the number of 0’s of its value vector.

Proposition 2. Let P be a polynomial, not identically 0, that is a weak equality
representation of a symmetric Boolean function f on n variables. Then the degree
of P must be at least n0(f)

2 .

Proof. Let d be the degree of P . Define

Q(x) =
∑

σ∈Sn

(P (xσ(1), . . . , xσ(n)))2 .

Observe that Q is a symmetric polynomial of degree 2d that is also a weak
equality representation of f . We thus have a polynomial H of degree 2d such
that H(

∑n
i=1 xi) = Q(x) for all x ∈ {0, 1}n. This polynomial H is not identically

0, and if H(w) 	= 0 we must have f(w) = 1. Since H must have at least n0(f)
roots it then follows that 2d ≥ n0(f).

For our purposes we will for a given function f need lower bounds for polynomials
that represents either f or its negation ¬f . We get precisely such a lower bound
from Proposition 2 in terms of the balance of f .

Corollary 1. Let f be any symmetric Boolean function. If P is a polynomial
that is either a weak equality representation of f or ¬f , the degree of P must be
at least b(f)

2 .

Proof. For representing f , Proposition 2 implies that the degree of P must be
at least n0(f)

2 , and similarly for representing ¬f the degree of P must be at least
n0(¬f)

2 . Since n1(f) = n0(¬f) the result follows.

3 Circuit Lower Bounds

By use of the switching lemma we will be able to obtain lower bounds of the
size of circuits with few exact threshold gates computing a Boolean function
f depending on the degree required for a polynomial to represent either fρ or
¬fρ, where ρ is a random restriction. If fρ is a symmetric function we can use
Corollary 1 to express the lower bound in terms of the balance of fρ. To express

Computing Symmetric Boolean Functions by Circuits 453

the lower bound solely in terms of a symmetric f , we will carefully choose a
restriction f ′ of f , for which we can relate the balance of f ′

ρ to that of f , for a
suitable random restriction ρ.

By an interval of the value vector of a symmetric Boolean function f we mean
a contiguous substring. We will denote such an interval by [a, b], where a and b
are the endpoints of the interval. When applying a restriction ρ to a symmet-
ric Boolean function f , the function fρ obtained is also a symmetric Boolean
function, and its value vector is an interval of the value vector of f . Conversely,
every interval of the value vector of f is the value vector of a restriction of f . Let
fI = f[a,b] be the Boolean function whose value vector is the interval I = [a, b]
of the value vector of f .

With these definitions in place, we can outline the properties we desire of f ′.
We would like to have f ′ = fI for an interval I = [a, b], such that a smaller
interval I ′ in the middle of I has as large a balance as possible. This will mean
that we can ensure that fI′ is a further restriction of f ′

ρ and thus will the balance
of f ′

ρ be at least as large as the balance of fI′ .
This is precisely the approach that Zhang et al.[13] took using sign changes

instead of balance to prove their lower bound. However, while our approach here
is similar, we have to be more careful. The reason is as follows. If we divide an
interval containing a certain number of sign changes into two parts then one of
the parts must contain at least half of the sign changes. For balance, the same
thing clearly does not hold. As a simple example consider an interval where the
first half is all 0 and the other half is all 1. Although this interval has maximal
balance, each of the two halves have balance 0. What is true instead, is that there
is some subinterval of half the length with half the balance. We will establish
that we can find the function f ′ we desire in the following series of lemmas.

Lemma 2. Let s ∈ {0, 1}∗. Suppose that n0(s[a, a + l]) ≥ n1(s[a, a + l]) and
n1(s[c, c + l]) ≥ n0(s[c, c + l]) for a ≤ c. Then there exists b such that a ≤ b ≤ c
and n0(s[b, b + l]) ≤ n1(s[b, b + l]) ≤ n0(s[b, b + l]) + 1.

Proof. Define f : {a, . . . , c}→ Z by f(d) = n1(s[d, d+l])−n0(s[d, d+l]). Observe
that f(b + 1) − f(b) ∈ {−2, 0, 2}. Since by assumption f(a) ≤ 0 and f(c) ≥ 0
there exists a ≤ b ≤ c such that 0 ≤ f(b) ≤ 1, which implies n0(s[b, b + l]) ≤
n1(s[b, b + l]) ≤ n0(s[b, b + l]) + 1.

Lemma 3. Let f be a symmetric Boolean function on n variables. Let n′ =
2k − 1, where 2k < n + 1 ≤ 2k+1. Then there is a restriction f ′ of f on n′

variables such that b(f ′) ≥ b(f)−1
2 .

Proof. Assume without loss of generality that n0(f) ≤ n1(f). We will then find
an interval I of length at most 2k of the value vector of f such that n1(fI) ≥
n0(fI) ≥ n0(f)−1

2 . This interval can then be extended to an interval I ′ of length
2k such that min(n0(fI′), n1(fI′)) ≥ n0(fI). Thus for f ′ = fI′ on n′ variables
we have b(f ′) ≥ b(f)−1

2 .
Consider the two intervals I1 = [0, �n+1

2 � − 1] and I2 = [�n+1
2 �, 2�

n+1
2 � − 1].

Note that each of these are of length �n+1
2 � ≤ 2k. Since at most one index is

454 K.A. Hansen

left out, we must have either n0(fI1) ≥
n0(f)−1

2 or n0(fI2) ≥
n0(f)−1

2 . Assume
without loss of generality that n0(fI1) ≥

n0(f)−1
2 . If also n1(fI1) ≥ n0(fI1)

we may choose I = I1. Thus assume n0(fI1) > n1(fI1). Now we must have
n1(fI2) ≥ n0(fI2), as otherwise we would have n0(f) ≥ n0(fI1) + n0(fI2) ≥
n1(fI1) + n1(fI2) + 2 ≥ n1(f) + 1. Then using Lemma 2 we can find an interval
I3 of length �n+1

2 � ≤ 2k such that n0(fI3) ≤ n1(fI3) ≤ n0(fI3)+1. We then have
n0(f) ≤ �n+1

2 � = n0(fI3) + n1(fI3) ≤ 2n0(fI3) + 1, and we may choose I = I3.

Lemma 4. Let s ∈ {0, 1}2k

. If n0(s) ≥ n1(s) then there is a substring s′ of s of
length 2k−1 such that n0(s′) ≥ n1(s′). Analogously if n1(s) ≥ n0(s) then there is
a substring s′ of s of length 2k−1 such that n1(s′) ≥ n0(s′).

Proof. We prove the case n0(s) ≥ n1(s). We then have n0(s[0, 2k−1 − 1]) +
n0(s[2k−1, 2k−1]) ≥ n1(s[0, 2k−1−1])+n1(s[2k−1, 2k−1]) and thus we must have
n0(s[0, 2k−1−1]) ≥ n1(s[0, 2k−1−1]) or n0(s[2k−1, 2k−1]) ≥ n1(s[2k−1, 2k−1]).
We can then let s′ = s[0, 2k−1 − 1] or s′ = s[2k−1, sk − 1].

Lemma 5. Let f be a symmetric Boolean function on n variables, where n =
2k − 1. Let 2h ≤ b(f) < 2h+1, and assume that h > 2. Then there exist an
interval I of length 2k′

, where k′ ≥ h − 2, such that I is a subinterval of the
interval [2k′

, n− 2k′
] and b(fI) ≥ b(f)

4 log2(8(n+1)
b(f)) .

Proof. Let b = 2h−2, and assume without loss of generality that n0(f[b,n−b]) ≤
n1(f[b,n−b]). Consider the intervals IL

i = [b2i, b2i+1 − 1] and IR
i = [n − b2i+1 +

1, n− b2i] for i = 0, . . . , k − h. Note that these 2(k − h + 1) intervals precisely
cover the interval [b, n− b].

Suppose first that n1(IL
i) ≥ n0(IL

i) and n1(IR
i) ≥ n0(IR

i) for all i. Then
we may select I among the IL

i and IR
i intervals obtaining n1(fI) ≥ n0(fI) ≥

n0(f[b,n−b])

2(k−h+1) ≥
b(f)−2b

2(k−h+1) ≥
b(f)

4 log2(4(n+1)
b(f))

.

Otherwise we must have two intervals I1 and I2 chosen from the IL
i and

IR
i intervals, such that n0(fI1) ≥ n1(fI1) and n1(fI2) ≤ n0(fI2), (By assump-

tion n0(f[b,n−b]) ≤ n1(f[b,n−b]), so we can not have that n1(IL
i) < n0(IL

i) and
n1(IR

i) < n0(IR
i) for all i). Suppose I1 is of length 2k1 and I2 is of length 2k2 ,

and let k = min(k1, k2). Note then that I1 and I2 are subintervals of the interval
[2k, n− 2k].

Using Lemma 4 we may find subintervals I ′1 of I1 and I ′2 of I2 of length k,
that are also subintervals of the interval [2k, n−2k], such that n0(fI′

1
) ≥ n1(fI′

1
)

and n1(fI′
2
) ≤ n0(fI′

2
).

Then using Lemma 2 we can find an interval I of length 2k ≥ b, which is a
subinterval of the interval [2k, n − 2k], such that n0(fI) ≤ n1(fI) ≤ n0(fI) +
1, which means in fact, n0(fI) = n1(fI). Thus we have b(fI) ≥ b

2 > b(f)
16 =

b(f)

4 log2

(
8(n+1)

n+1
2

) ≥ b(f)

4 log2(8(n+1)
b(f))

.

Computing Symmetric Boolean Functions by Circuits 455

Corollary 2. Let f be a symmetric Boolean function on n variables, where
n = 2k − 1. Assume that b(f) ≥ 8 and let m be such that 2m ≤ b(f)

8 . Then there
exist exist an interval I ′ of length 2k′

, for some k′ > m, such that the interval
I ′′ of length 2k′−m in the middle of I ′ satisfies b(fI′′) ≥ b(f)

2m+2 log2(8(n+1)
b(f))

.

Proof. Let I be the interval given by Lemma 5 and divide it into interval
I1, . . . , I2m , each of length 2k′−m. We will find an subinterval I ′′ of I such that
b(fI′′) ≥ b(fI)

2m . Then since I is a subinterval of [2k′
, n − 2k′

], we can let I ′ be
the interval of length 2k′

with I ′′ in the middle. Assume without loss of gen-
erality that n0(fI) ≤ n1(fI). If n0(fIi) ≤ n1(fIi) for all i, then for some j we
have n1(fIj) ≥ n0(fIj) ≥

n0(fI)
2m , and we can let I ′′ = Ij . Otherwise, we have

n0(fIi) ≤ n1(fIi) and n1(fIj) > n0(fIj), for some i and j. By Lemma 2 we then
have a subinterval I ′′ of I such that n0(fI′′) = n1(fI′′), and thus b(fI′′) ≥ b(fI)

2m .

By combining Lemma 3 and Corollary 2 we finally obtain the following propo-
sition we will use in the proof of our main lower bound.

Proposition 3. Let f be a symmetric Boolean function on n variables. Assume
that m is an integer such that 2m ≤ b(f)

16 . Then there exist an interval I of
length 2k for some k > m such that the interval I ′ of length 2m in the middle of
I satisfies b(fI′) ≥ b(f)−1

2m+3 log2(16n
b(f)−1)

With this proposition in place we can give the proof of Theorem 1.

Proof. (Theorem 1) Assume that C is a depth h circuit containing s exact thresh-
old gates g1, . . . , gs computing f . Assume there is no path from the output of gj

to an input of gi if i < j. Define b = b(f)−1

8 log2(16n
b(f)−1) and d = 1

14

(
b

4(s+1)

) 1
h

. Assume

the size of C is S = 2d−(s+1)−log2 n. For α ∈ {0, 1}s let Cα
i be the ETHR◦AC0

subcircuit of C with gi as output, where every gj for j < i is replaced by the
constant αj . Similarly let Cα be the AC0 circuit obtained from C when every
gi is replaced by αi.

Now let m be an integer such that 2m ≥ 14(14t)h−1 > 2m−1. Using Proposi-
tion 3 we have a restriction of f to a Boolean function f ′ on n′ = 2k−1 variables
such the subinterval I ′ of length 2k−m in the middle of the value vector of f ′

satisfies b(fI′) ≥ b
2m .

Pick a random restriction ρ ∈ Rnh

n′ , where nh = n′

14(14d)h−1 and apply it simul-
taneously to the circuits Cα and the circuits obtained from Cα

i by removing the
output gate. Using Proposition 1 we then have that after applying ρ, except with
probability at most 2s+1S2−d = 1

n is every function computed by any gate of
these circuits computed by a decision tree of depth at most d. By the discussion
following Proposition 1 we obtain real polynomials Pα

i and Qα of degree less then
d, such that for all x, Ci,ρ(x) = 1 if and only if Pα

i (x) = 0 and Cα
ρ (x) = Qα(x).

Pick a maximal set G of the ETHR gates that are 0 at the same time for some
input x to Cρ, and define α such that αi = 1 if and only if gi ∈ G.

456 K.A. Hansen

The probability that the number of variables assigned 0 and 1 by ρ differ
by at most 1 is at least 1

n′−nd

(n′−nd
n′−nd

2

)
. Using Stirling’s approximation this is

Ω
(
(n′ − nd)−

1
2

)
= Ω(n− 1

2). Thus for sufficiently large n we can assume that
ρ gives the polynomials as above and the number of variables assigned 0 and 1
by ρ differ by at most 1. We then have that I ′ is a subinterval of the interval
defined by ρ.

Now, if there exists x such that all gates in G evaluate to 0 and at the same
time Cρ(x) = 1, then the polynomial Qα(x)

∏
gi∈G Pα

i (x) is a weak equality
representation of f ′

ρ. Otherwise the polynomial
∏

gi∈G Pα
i (x) is a weak equality

representation of ¬f ′
ρ. The correctness of this claim follows from the maximality

of the set G.
These polynomials are of degree less than (s + 1)t and since b(f ′

ρ) ≥ b
2m , we

must have (s + 1)t ≥ b
2m+1 using Corollary 1.

However we have

t(s + 1) =
1
14

(
b

4(s + 1)

) 1
h

(s + 1)

=
b

4 · 14
(

b
4(s+1)

) h−1
h

=
b

4 · 14(14d)h−1
<

b

2m+1

thus contracting the existence of C.

For concrete symmetric Boolean function slightly better lower bounds can be
obtained by avoiding the use of Proposition 3. For example for the MAJ func-
tion the subinterval in the middle satisfies the requirements of the proof. For
the MOD2 function things are even better, since any subinterval satisfies the
requirements. We just state the bounds since the proof is similar to the proof of
Theorem 1.

Theorem 3. Let C be a depth h AC0 circuit containing s exact threshold gates.
If C computes the MAJ function or the MOD2 function the size of C must be
at least

1
n2s+1

2
1
14 (n

4(s+1))
1
h

and
1

2s+1
2

1
14 (n

4(s+1))
1
h

respectively.

Turning to the proof of Theorem 2, one half of theorem follows readily from
Theorem 1. The other half follows from the following proposition.

Proposition 4. Any symmetric function f can be computed by a depth 3 AC0

circuit of size b(f) + 2 augmented with b(f) exact threshold gates.

Proof. If b(f) = n1(f) we can compute f by a OR ◦ETHR circuit where there
is an exact threshold gate corresponding to every 1 in the value vector of f . If
b(f) = n0(f) we construct the circuit as before for ¬f and then add a negation
gate at the output.

Computing Symmetric Boolean Functions by Circuits 457

4 Conclusion

We have obtained strong lower bounds for circuits with few exact threshold
gates with arbitrary weights computing symmetric Boolean functions. With our
results we have essentially reached the best we could hope for with our current
techniques: the approach taken in this paper does not provide the possibility
to prove lower bounds with a superlinear amount exact threshold gates. Fur-
thermore we would obviously also need to consider non-symmetric functions
since every symmetric function can be computed with a linear number of exact
threshold gates.

However, we find that further exploration of the power of exact threshold
in constant depth circuits could prove to be very fruitful. In general, while
circuits with threshold have been extensively studied, especially depth 2 and
3 circuits, very little research have considered circuits with (weighted) exact
threshold gates, even though such a study is likely to provide insight into cir-
cuits with threshold gates. Many lower bounds are known for various classes of
circuits with a (weighted or unweighted) threshold gate at the output. Interest-
ingly, most of these lower bounds holds equally well with an exact threshold gate
at the output, since the lower bounds actually holds with a Boolean function
at the output that is determined by sign of a very small degree (e.g constant)
polynomial. This allows one to simulate an exact threshold gate, since p(x) = 0
if and only if (p(x))2 ≤ 0.

For a concrete question, proving lower bounds for depth 2 threshold circuits
is well known as being a notoriously difficult problem. Is the same true for depth
2 exact threshold circuits?

References

1. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. Mathematical Systems Theory 17(1), 13–27 (1984)

2. Ajtai, M.: Σ1
1 -formulae on finite structures. Annals of Pure and Applied Logic 24,

1–48 (1983)
3. H̊astad, J.: Computational limitations of small-depth circuits. MIT Press, Cam-

bridge (1987)
4. Yao, A.C.C.: Separating the polynomial–time hierarchy by oracles. In: Proceedings

26st Annual Symposium on Foundations of Computer Science, pp. 1–10. IEEE
Computer Society Press, Los Alamitos (1985)

5. Aspnes, J., Beigel, R., Furst, M.L., Rudich, S.: The expressive power of voting
polynomials. Combinatorica 14(2), 135–148 (1994)

6. Beigel, R., Reingold, N., Spielman, D.A.: PP is closed under intersection. Journal
of Computer and System Sciences 50(2), 191–202 (1995)

7. Beigel, R.: When do extra majority gates help? Polylog(n) majority gates are
equivalent to one. Computational Complexity 4(4), 314–324 (1994)

8. Barrington, D.A.M., Straubing, H.: Complex polynomials and circuit lower bounds
for modular counting. Computational Complexity 4(4), 325–338 (1994)

458 K.A. Hansen

9. Chattopadhyay, A., Hansen, K.A.: Lower bounds for circuits with few modular
and symmetric gates. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 994–1005. Springer, Heidelberg
(2005)

10. Viola, E.: Pseudorandom bits for constant depth circuits with few arbitrary sym-
metric gates. In: Proceedings of the 20th Annual IEEE Conference on Compu-
tational Complexity, pp. 198–209. IEEE Computer Society Press, Los Alamitos
(2005)

11. Hansen, K.A.: Lower bounds for circuits with few modular gates using exponential
sums. Technical Report 79, Electronic Colloquium on Computational Complexity
(2006)

12. Fagin, R., Klawe, M.M., Pippenger, N.J., Stockmeyer, L.: Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Sci-
ence 36(2–3), 239–250 (1985)

13. Zhang, Z.L., Barrington, D.A.M., Tarui, J.: Computing symmetric functions with
AND/OR circuits and a single MAJORITY gate. In: Enjalbert, P., Wagner, K.W.,
Finkel, A. (eds.) STACS 93. LNCS, vol. 665, pp. 535–544. Springer, Heidelberg
(1993)

14. Lu, C.J.: An exact characterization of symmetric functions in qAC0[2]. Theoretical
Computer Science 261(2), 297–303 (2001)

15. Nisan, N.: The communication complexity of threshold gates. In: Miklós, D.,
Szönyi, T., S., V.T. (eds.) Combinatorics, Paul Erdös is Eighty. Bolyai Society.
Mathematical Studies 1, vol. 1, pp. 301–315 (1993)

16. Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, De-
partment of Computer Science and Engineering, University of Washington (1994),
Available online at www.cs.washington.edu/homes/beame

17. Green, F.: A complex-number fourier technique for lower bounds on the mod-m
degre. Computational Complexity 9(1), 16–38 (2000)

18. Minsky, M., Papert, S.: Perceptrons - An Introduction to Computational Geometry.
MIT Press, Cambridge (1969)

www.cs.washington.edu/homes/beame

On the Complexity of Finding an Unknown Cut

Via Vertex Queries

Peyman Afshani, Ehsan Chiniforooshan, Reza Dorrigiv, Arash Farzan,
Mehdi Mirzazadeh, Narges Simjour, and Hamid Zarrabi-Zadeh

School of Computer Science, University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

{pafshani,echinifo,rdorrigiv,afarzan,
mmirzaza,nsimjour,hzarrabi}@cs.uwaterloo.ca

Abstract. We investigate the problem of finding an unknown cut
through querying vertices of a graph G. Our complexity measure is the
number of submitted queries. To avoid some worst cases, we make a
few assumptions which allow us to obtain an algorithm with the worst
case query complexity of O(k) + 2k log n

k
in which k is the number of

vertices adjacent to cut-edges. We also provide a matching lowerbound
and then prove if G is a tree our algorithm can asymptotically achieve
the information theoretic lowerbound on the query complexity. Finally,
we show it is possible to remove our extra assumptions but achieve an
approximate solution.

1 Introduction

Consider a graph G together with a partition of its set of vertices, V (G), into
two sets, A and B. Here, we study the problem of finding the sets A and B by
only asking queries about the vertices of G. In other words, the algorithm has
only access to the graph G and an oracle which given a vertex v will tell the
algorithm whether v ∈ A or v ∈ B. Although we study this problem from a
theoretical point of view, we can establish connections to the existing concepts
and problems studied in machine learning.

In the standard learning problems, the learner is given a collection of labeled
data items, which is called the training data. The learner is required to find a “hy-
pothesis”, using the training data and thus predict the labels of all (or most of)
the data items, even those not seen by the learner algorithm. In this context, la-
beling the data points is considered to be an expensive operation. Thus, reducing
the size of the training data is one of the important objectives. Semi-supervised
learning attempts to accomplish this by using additional information about the
whole data set. Recently, new models for semi-supervised learning have emerged
which use spectral or graph techniques. We can name the work of Blum et al. [1],
in which they built a graph and proposed several strategies to weigh the edges
of the graph and proved finding a minimum cut corresponds to several of the
previously employed learning algorithms based on Random Markov Fields. This
is supported by the fact that it is common to restrict the set of possible labels

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 459–469, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

460 P. Afshani et al.

to {+,−} [7] which implies a cut in graph G. We need to mention that spectral
clustering techniques (for instance [9,8]) which are closely related to cuts have
also been used in context of learning (for instance see [3,5]). We refer the reader
to a line of papers in this area [1,10,4,2].

Other concepts related to the problem studied here are Query learning and
active learning. Basically, under these assumptions the learner algorithm is al-
lowed to interactively ask for the label of any data item. Thus, we can claim
the problem studied in this paper has strong connection to the existing topics
in machine learning; in short, our problem can be described as actively learning
an unknown cut in a graph G.

In the next section, we define the problem precisely and obtain a simple lower
bound on the number of queries. Then, in Section 3 we develop an algorithm
that can solve a stronger version of our problem. We prove that the number
of queries needed by our algorithm matches the lower bound. We discuss the
problem for trees as a special family of graphs in Section 4. Finally, we relax the
balancedness assumption and develop an ε-approximation algorithm instead of
an exact algorithm in Section 5.

2 Preliminaries

Given a graph G, here we choose to represent the cut using a labeling l : V (G)→
{+,−} which is the assignment of + or − to the vertices of G. Our goal is to
design an algorithm which through querying labels of vertices can detect all the
cut-edges. Clearly, the challenge is to minimize the number of queries or other-
wise n queries can trivially solve the problem. Thus, we measure the complexity
of the problem by the number of submitted queries and the parameters involved
are the number of vertices, n, number of edges in the cut, k, and number of
vertices adjacent to cut-edges, k′.

Notice that if graph G is a k-regular graph and all the vertices except one
vertex v are labeled +, then it is easy to see that the algorithm must perform
n queries in the worst case to find the single vertex v. This (the unbalanced cut
having undesirable properties) is a common phenomenon which also appears in
the spectral and clustering techniques. For instance, the definitions of normalized
cut and ratio cut both factor in a form of balancedness condition. Here, we re-
quire a different form of balancedness: suppose we remove all the cut-edges in the
graph. We call a labeling of a graph α-balanced, if each connected component in
the new graph has at least αn vertices. Now we formally define our first problem:

Definition 1 (Problem A). Suppose a graph G with an unknown α-balanced
labeling of cut-size k is given. Use the structure of G together with the value of
α to find this labeling using a small number of queries.

Now, we show how to reduce the above problem to a seemingly easier problem
by a probabilistic reduction. For a cut C, define G \ C as the graph constructed
from G by deleting all cut-edges of C. Given a graph G, a hint-set is a set S of
vertices of G such that S has at least one vertex from each connected component
of G \ C.

On the Complexity of Finding an Unknown Cut Via Vertex Queries 461

Definition 2 (Problem B). Given an input graph G and a hint-set for an
unknown labeling of G, find the labeling using a small number of queries.

To show that Problem A can be reduced to Problem B, we select c log n
α ver-

tices uniformly at random and query the labels of the selected vertices. Since
a connected component C contains at least αn vertices, the probability that a
randomly selected vertex is not in C is at most 1 − α. Hence, the probability
that all selected vertices fall outside C is at most

(1− α)
c log n

α ≤ ((1− α)
1
α)c log n ≤ (

1
n

)c

The number of connected components is α−1 thus, with high probability we have
obtained a hint-set and reduced the Problem A to Problem B.

In addition to this probabilistic reduction, a non-probabilistic one, though
with an exponential running time, can also be proposed for the situation in
which an upper bound k on the number of cut-edges of the labeling is given.
As follows from a theorem proved by Kleinberg [6], for any graph G, parameter
α, and integer k < α2

20 |V (G)|, any subset of size O(1
α log 2

α), with probability at
least 1

2 , is a hint-set for all α-balanced cuts of G with at most k cut-edges. So,
we may examine each subset of vertices of G against every α-balanced cut of G
with at most k cut-edges to find a subset that is a hint-set for all possible input
labellings; then we will have an equivalent instance of problem B.

2.1 The Lower Bound

The balancedness condition prevents the problem from having a huge and trivial
lowerbound. The idea behind our lowerbound is to construct a large number of
balanced cuts on a fixed hint-set S.

Lemma 1. Treating α as a constant, any algorithm that solves Problem A or B
needs k log n

k − O(k) queries in the worst case, where n is the size of the graph
and k is the cut-size of the labeling.

Proof. Let G consist of k paths, each of length n/k, connected to each other
through their endpoints as depicted in Figure 1. Suppose that the vertices in the

αn
k (1− 2α)n

k

k

+ −

αn
k

Fig. 1. Construction of the lowerbound

462 P. Afshani et al.

first (respectively, the last) α portion of each path are labeled with + (respec-
tively, with −). The cut we are looking for is formed by k edges from the middle
(1 − 2α) portion of the paths, one from each path. There are

(
(1− 2α)(n

k)
)k

choices for selecting these edges. Thus, any algorithm for finding the cut in this
graph needs log((1 − 2α)n

k)k = k log n
k −O(k) queries in the worst case. ��

3 An Optimal Algorithm

First we examine a very special case in which the graph G is a path and the cut
is a single edge. This special case will come handy in the solution for the general
case.

3.1 Algorithm for Paths with Cut-Size One

In this case the cut essentially is just one edge and all vertices to one side of it
are all labeled + and the vertices on the other side are all labeled −. The solution
is direct and is similar to the binary search algorithm. We start from both ends
and query the labels of the endpoints. These will have opposite labels. Then we
query the label of the midpoint and depending on the answer our search will be
confided to one side of the path. We continue this binary search which eventually
will find the cut using O(log n) queries.

Notice this binary search approach can still be used to find a cut-edge provided
we start from two vertices with opposite labels.

3.2 Algorithm for Balanced Cuts

In this section, we develop an algorithm which matches the lowerbound proved in
Section 2.1. We also focus on Problem B and assume a hint set S = {v1, . . . , vc}
is given. First, the algorithm uses c queries to find out labels of vertices in S. It
then computes a sequence G0 = G, G1, . . . , Gk = G\C of subgraphs of G where,
for 1 ≤ i ≤ k, Gi = Gi−1−ei for a cut-edge ei of C. To find a cut-edge ei in Gi−1,
it selects vertices u and v of S that are in the same connected component of Gi

but have different labels. Then a “binary search” on a path between u and v in
Gi is used to find a cut-edge. If computed naively, this path can have Ω(n) nodes,
causing the algorithm to perform too many queries (Ω(log n) in the worst case)
at each step. Thus this naive approach will only result in the bound O(k log n).
Although this bound of O(k log n) seems efficient, it still does not match the
lowerbound in the previous section. To obtain a matching upperbound, we need
one last ingredient: “domination sets” of Gi.

Definition 3. In a connected graph G, a set of vertices R is an r-domination
set, if the distance of any vertex in G to the set R is at most r. We use f(r) to
denote the size of an r-domination set with the least number of vertices among
all r-domination sets of G.

The next two lemma shows how domination sets are used to find a path of length
at most 2r + 1 connecting two vertices with different labels in Gi−1.

On the Complexity of Finding an Unknown Cut Via Vertex Queries 463

Lemma 2. Given a graph G and an r-domination set R of G, for every two
vertices u and v of the same connected component of G, one can construct a
walk W from u to v such that every 2r + 1 consecutive vertices in W contain at
least one vertex from R.

Proof. Let P = (u = p1, p2, . . . , pl = v) be an arbitrary path between u and
v in G. Since R is an r-domination, for each vertex pi ∈ P there is a vertex
ri ∈ R such that there is a path Pi of length at most r connecting pi to ri.
We define P ′

i to be the reverse of Pi, for all 1 ≤ i ≤ l, and W to be the
walk (P1, P

′
1, P2, P

′
2, . . . , Pl, P

′
l). Intuitively, the walk W starts walking along the

vertices in P and at each vertex pi, it first goes to ri and then returns to pi. So,
each segment of size 2r + 1 of W contains at least one vertex from R. ��

Lemma 3. Suppose l is a labeling of a graph G, R is an r-domination set in
G, and u1 and u2 are vertices with l(u1) 	= l(u2). There are vertices v1 and v2

of distance at most 2r + 1 in R ∪ {u1, u2} such that l(v1) 	= l(v2).

Proof. Consider the walk W form u1 to u2 described in Lemma 2 and let
r1, r2, . . ., rp be the vertices of R appearing in W in order from u1 to u2. Also,
define r0 = u1 and rp+1 = u2. By Lemma 2, there are at most 2r vertices in
W between ri and ri+1, exclusive, for 0 ≤ i ≤ p. Since l(r0) 	= l(rp+1), there is
an 0 ≤ i ≤ p such that l(ri) 	= l(ri+1). The correctness of the lemma follows by
setting v1 = ri and v2 = ri+1. ��

Our algorithm will use the above two lemmas to iteratively find and extract the
cut edges. Since at each step of the algorithm we will remove a cut edge, we
must be able to update the r-domination set under edge deletions. Furtunately,
this can be done trivially as the next lemma shows. We omit the prove since the
proof is mostly intuitive.

Lemma 4. If R is an r-domination set in G and uv ∈ E, then R′ = R∪ {u, v}
is an r-domination set in G′ = G− uv.

The following property of r-domination sets allow the algorithm to asymptoti-
cally achieve the query complexity of the existing lower bound.

Lemma 5. In any n-vertex connected graph, f(r) ≤ 2n/r.

Proof. This upper bound can be achieved by a naive greedy algorithm. Start
with one vertex as the initial domination set R and progressively add vertices to
R in steps. In each step, find a vertex with distance more than r to R and add
it to R (if there is no such vertex, we are finished). We claim |R| ≤ 2n/r.

We define the d-neighborhood of a vertex u, denoted by Nu(d), as the set
of all vertices within distance d of u. If v and w are in the greedily-selected r-
domination set R, then Nv(r/2) and Nw(r/2) have an empty intersection. Hence,
there are |R| r

2 -neighborhoods formed around vertices of R that are pairwise
disjoint. Since, there are at least r/2 vertices (including v) in Nv(r/2), for any
vertex v, r|R|/2 is a lower bound on the number of vertices n. This immediately
implies that |R| ≤ 2n/r. ��

464 P. Afshani et al.

Algorithm FindCutEdges(graph G, hint-set S, integers r and κ)

1. Find an r-domination set R for G using the greedy approach

2. Query labels of vertices in S and R

3. Set C = ∅
4. while there are u1, u2 in S in the same component of G with l(u1) �= l(u2) do
5. Find a path P between two vertices v1 and v2 in R ∪ {u1, u2} with length

at most 2r + 1 such that l(v1) �= l(v2)

6. Use binary search to find an edge e = wx of P such that l(w) �= l(x)

7. Set C = C ∪ e, G = G − e, and R = R ∪ {w, x}
8. if |C| > κ then Fail;

9. Return C

Fig. 2. Algorithm for finding the cut-edges of an unknown labeling of a graph

The greedy algorithm above seems naive as it can be far from achieving the
optimal value of f(r). However we prove, in the next lemma, that the size of its
output can be upper bounded by the function f in some way.

Lemma 6. Suppose, on an input graph G, the greedy algorithm, as described in
Lemma 5, comes up with an r-domination set of size Greedy(r). Then,

f(r) ≤ Greedy(r) ≤ f(r/2).

Proof. It is obvious that f(r) ≤ Greedy(r), as f(r) is the minimum size of a dom-
ination set and Greedy(r) is the size one such set. To prove Greedy(r) ≤ f(r/2),
it is sufficient to consider the r

2 -neighborhoods formed around the selected ver-
tices in Lemma 5. For a set to be an eligible r

2 -domination set, it has to include at
least one vertex from each of these r

2 -neighborhoods; otherwise the center would
be at a distance more than r/2 from all the vertices in the domination set. Since
these neighborhoods are pairwise disjoint (see the proof of Lemma 5), the size of
any eligible r

2 -domination set must be at least the number of r
2 -neighborhoods

which is exactly Greedy(r). Hence, f(r/2) ≥ Greedy(r). ��

Consider the algorithm shown in Figure 2. It accepts additional parameters r
and κ where κ is enforced to be an upper-bound on the cut-size. The algorithm
starts by constructing an r-domination set R of G. Then, it performs |R| + |S|
queries to find out the labels of the vertices in R and in S. The algorithm runs in
at most κ steps and in the i-th step it constructs the graph Gi. We use Gi, Ri,
and Ci, respectively, to denote values of variables G, R, and C at the beginning
of the i-th iteration of the while loop (i ≥ 0).

At the beginning of the iteration i, we have a partially computed cut Ci, a
graph Gi = G \ Ci, and an r-domination set Ri for Gi. Also, the algorithm
knows the labels of vertices in S and Ri. Next, it uses Lemma 3 to find a path
P of length at most 2r +1 between two vertices with different labels. Hence, the
algorithm uses at most �log (2r + 1)� queries to find a new cut-edge e in Gi. The
edge e is removed from the graph and the r-domination set is updated based on

On the Complexity of Finding an Unknown Cut Via Vertex Queries 465

Lemma 4. If κ ≥ k, removing all edges of C one by one in this way, the algorithm
finds the solution using |S| + Greedy(r) + κ log r queries. The algorithm fails,
when κ < k, before submitting more than |S|+ Greedy(r) + κ log r queries.

Notice that we can compute Greedy(r) for different values of r in advance and
choose the value which minimizes the query complexity. Then, the number of
queries will be at most |S|+ O(κ) + minr{Greedy(r) + κ log r} which is at most

|S|+ O(κ) + min
r
{f(r/2) + κ log r} = |S|+ O(κ) + min

r
{f(r) + κ log r}

according to Lemma 6.
Let U be the set of endpoints of all cut-edges. We can further reduce the

number of queries by noticing that every edge between a vertex u with positive
label and a vertex v with negative label must be a cut-edge. Once we remove
all such trivial cut-edges, the next step of the algorithm will find a new vertex
v ∈ U . This implies we can bound the number of steps by k′ = |U |. The final
theorem is as follows:

Theorem 1. For a graph G, a labeling l, and an integer κ, one can use |S| +
O(κ)+minr{f(r)+κ log r)} queries to discover if κ < k′ and to solve the problem
B when κ ≥ k′, where S is a hint-set for l.

According to Lemma 5, f(2n/κ) ≤ κ. Thus, if we run the algorithm of Theorem 1
with parameters κ = 1, κ = 2, κ = 4, . . . and r = 2n/κ, until κ becomes as large
as k′, we get the following theorem.

Corollary 1. For a graph G and a labeling l, the problem B can be solved using
|S| + O(k′) + 2k′ log n

k′ queries, where k′ is the number of vertices adjacent to
cut-edges and S is a hint-set for l.

Finally, we must mention that our probabilistic reduction of problem A to prob-
lem B used c log n

α queries which is always asymptotically smaller than the above
query complexity and thus we can safely omit this term.

4 The Tightness of the Bounds

The result of the Corollary 1 is tight with respect to parameters n and k′.
However, for specific graphs better bounds might be possible. Note that given
a graph G and a hit-set S one available lowerbound is the logarithm of the
number of cuts for which S is the hint-set. Clearly, this number depends entirely
on the structure of graph G. Same can be said about the result of Theorem 1.
For instance, if G is a full binary tree then we have f(r) = θ(n

2r) which means
the query complexity of Theorem 1 is in fact κ log log n

κ + O(κ) with a matching
asymptotic lowerbound for this particular tree. In this section we generalize this
observation for all trees. In other words, we prove if G is a tree then the result
of Theorem 1 is asymptotically tight by providing a matching lowerbound which
entirely depends on the structure of G and thus throughout this section we
always assume G is a tree.

466 P. Afshani et al.

We use the output S of the greedy algorithm of Lemma 5 to construct many
of labellings for G, all with the same hint-set S. Consider an arbitrary r and
the r-domination set S returned by greedy algorithm. This special r-domination
set has the property that for every u, v ∈ S, dist(u, v) ≥ r + 1. We call any
r-domination set with this property a distributed r-domination set. For a vertex
v ∈ S let Nv be the � r

2�-neighborhood of v. If u 	= v, then the edge-sets of the
graphs induced by Nu and Nv do not intersect, that is, E(G[Nu])∩E(G[Nv]) = ∅.
Suppose v0, . . . vm−1 is an ordering of the vertices of S. We have assumed G is
a tree and thus there is a unique path connecting vi to vj . Define Pij to be the
portion of this path which falls inside Nvi . We have |Pij | ≥ 1 + �r/2�, for every
0 ≤ i < j ≤ m− 1. The fact that E(G[Nvi1

]) ∩ E(G[Nvi2
]) = ∅ implies that the

edge sets of the paths Pi1j1 and Pi2j2 do not intersect, for i1 	= i2. This results
in the following lemma.

Lemma 7. If S is a distributed r-domination set of size m in a tree G and
k < m be an arbitrary integer then, there are at least � r

2�
k cuts each having k

cut-edges such that S is a hint-set for every one of them.

Proof. Consider the notation above and the following algorithm:

Set C = ∅
while |C| < k do

- Choose the lexicographically smallest pair (i, j), 0 ≤ i < j ≤ m− 1
such that vi and vj are in the same component of G \ C.

- Nondeterministically select an edge of Pij and add it to C

Since k ≤ m− 1, the selection of the pair (i, j) in each execution of the body
of the while loop is feasible. As each path Pij has � r

2� edges and the body of
the while loop is executed k times, there are � r

2�k possibilities, in overall, for
nondeterministic choices of the algorithm. Moreover, each time that an edge is
deleted from G \ C and a connected component of G \ C is split into two, each
new connected component still includes a vertex of S (either vi or vj). Therefore,
S is a hint-set for the cut specified by any set C generated by this algorithm.

It remains to show that all the � r
2�k sets C generated by the algorithm are

distinct. Consider two different executions E1 and E2 of the algorithm and con-
sider the first point that the algorithm makes different decisions in E1 and in E2.
Suppose E1 chooses an edge e1 of Pij while E2 selects a different edge e2 of Pij .
Without loss of generality, assume e1 appears before e2 in Pij . The edge e2 is
in � r

2�-neighborhood of vi and after adding e1 to C in E1, e2 is not in the same
component as vi anymore; so E1 will never add e2 to C. Thus, the value of C in
E2 will be different form the value of C in E1. So, each execution of the algorithm
generates a distinct set of edges. ��

Next theorem uses this set of cuts to give a lowerbound.

Theorem 2. For every tree G with n vertices and integer k > 0, there is an
integer r such that any algorithm solving problem B must perform f(r)+k log r−
O(k) queries.

On the Complexity of Finding an Unknown Cut Via Vertex Queries 467

Proof. Due to the term−O(k), we can assume k ≤ n
2 . Define mt as the maximum

size of any distributed t-domination set. The size of the maximum independent
set of a tree is at least n

2 which implies m1 ≥ n
2 . As r increases, mr must decrease,

and in particular mn = 1. We know k ≤ � r
2� and thus there is an integer t > 1

such that f(t + 1) ≤ mt+1 ≤ k < mt. According to Lemma 7 any algorithm
solving problem B must perform k log t

2 queries and a simple calculation shows
that f(t + 1) + k log(t + 1)−O(k) ≤ k log t which means f(r) + k log r−O(k) is
a lowerbound for the number of queries for r = t + 1. ��

5 Relaxing the Balancedness Assumption

In this section we show how to remove the balancedness assumption at the ex-
pense of obtaining an approximation algorithm. Thus, we present an
ε-approximation algorithm that performs k ln(3/ε) + k log(n/k) + O(k) queries
on a given graph with n vertices and cut-size k and reports a labeling which
with high probability has at most εn vertices mislabeled.

The algorithm is fundamentally same as before. We select a random set of
vertices uniformly as the hint-set and perform Algorithm 2 just once for κ = k
and r = n/k. Nevertheless, the probabilistic analysis presented in Section 2 holds
no more; the connected components here can be arbitrarily small so there could
be components which do not contain any vertex from the hint set.

We call the components that have a vertex representative in the sample as
the represented components and the rest as the unrepresented. Firstly, we claim
that if we select (k + 1) ln(ε/3) sample vertices, with high probability, the num-
ber of vertices in an unrepresented component is at most εn. The argument is
probabilistic; we compute the expected number of vertices in unrepresented com-
ponents. We denote by n1, . . . , nt the sizes of connected components C1, . . . , Ct

in the initial graph respectively. Using basic probability arguments, the prob-
ability that the component Ci is unrepresented is at most

(
1− ni

n

)(k+1) ln(ε/3).
Therefore, the expected total number of vertices in unrepresented components is

EI =
t∑

i=1

ni

(
1− ni

n

)(k+1) ln(ε/3)

≤ n

t∑

i=1

ni

n
e−

ni
n (k+1) ln(ε/3).

As the function xe−cx is convex for any fixed c, the maximum happens when ni

n

are equal and thus EI ≤ n
(
t 1

t e
− 1

t (k+1) ln(ε/3)
)
≤ nε/3. The last inequality is due

to the fact that k cannot be less than t−1. By using Markov inequality, one can
assert that the probability that there are more than εn vertices in unreported
components is less than 1/3.

Secondly, we observe that by a run of Algorithm 2, labels of vertices of repre-
sented components are reported correctly. This fact follows from the correctness
of the algorithm, and the observation that it never reports an edge as a cut-edge
if it is not indeed a cut-edge. The algorithm might miss some cut-edges in con-
trast to the previous setting, as some components are unrepresented, and so the
labeling of such components can be reported arbitrarily.

468 P. Afshani et al.

Combining the two latter facts, we conclude that the total number of vertices
whose labels are misreported is less than εn for an arbitrary small ε < 1.

6 Conclusion

In this paper we studied the query learning problem, while we assumed both
labeled and unlabeled data were available to us and we had a similarity graph
constructed on data items. The problem was discussed in the following two
settings: We studied the case where we are given a hint set of vertices in which
there exists at least one vertex from each connected component of the same label.
We gave the lower bound k log n/k−O(k) on the number of queries required for
this case. We provided an algorithm that finds the optimal hypothesis using at
most O(k log n/k) queries, which matched our lower bound for general graphs.
Hence, our proposed algorithm is optimal in terms of the number of queries.

In the second setting, we showed that if the labeling is α-balanced, i.e. each
connected component of the vertices with the same label has at least α fraction
of all vertices, we could find a hint set with high probability using c log n

α random
queries. Note that our previous lower bound works for the α-balanced graphs,
too. This gives an evidence of the optimality of our algorithm for general graphs
in the latter setting.

Although our algorithm for the first setting was proved to be optimal for gen-
eral graphs, we may have different lower bounds for special families of graphs.
In Section 4, we investigated the problem for trees and proved for tree our algo-
rithm is asymptotically optimal. One natural question is whether it is possible
to extend this result to other classes of graphs or not.

Finally, we considered the problem for non-balance cuts. We developed an
ε-approximation algorithm for this case. However, we assumed that the number
of cut-edges is given to the algorithm. Thus, the following problem remained
open:

Open Problem: Suppose that G is a graph, l is a labeling of G with k cut-edges,
and 0 < ε ≤ 1 is a real number. Does there exist an ε-approximation algorithm
that runs in polynomial time and submits at most O(poly(1/ε)k log n/k) queries
without knowing k in advance?

References

1. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph min-
cuts. In: Proceedings of the Eighteenth International Conference on Machine Learn-
ing, pp. 19–26. Morgan Kaufmann Publishers, San Francisco (2001)

2. Blum, A., Lafferty, J., Rwebangira, M.R., Reddy, R.: Semi-supervised learning
using randomized mincuts. In: Proceedings of the twenty-first international con-
ference on Machine learning, p. 13. ACM Press, New York (2004)

3. Joachims, T.: Transductive learning via spectral graph partitioning. In: Twentieth
International Conference on Machine Learning (2003)

On the Complexity of Finding an Unknown Cut Via Vertex Queries 469

4. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceed-
ings of the International Conference on Machine Learning, pp. 290–297 (2003)

5. Kamvar, S., Klein, D., Manning, C.: Spectral learning. In: International Joint Con-
ference On Artificial Intelligence (2003)

6. Kleinberg, J.: Detecting a network failure. In: Proceedings of the Forty-First An-
nual Symposium on Foundations of Computer Science, p. 231. IEEE Computer
Society Press, Los Alamitos (2000)

7. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
8. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm.

In: Advances in Neural Information Processing Systems (2001)
9. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell. 22(8), 888–905 (2000)
10. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian

fields and harmonic functions. In: Proceedings of the Twentieth International Con-
ference on Machine Learning, pp. 912–919 (2003)

“Resistant” Polynomials and Stronger Lower

Bounds for Depth-Three Arithmetical Formulas�

Maurice J. Jansen and Kenneth W. Regan��

Dept. of CSE, University at Buffalo (SUNY), 201 Bell Hall, Buffalo, NY 14260-2000
Tel.: (716) 645-3180 x114; Fax: 645-3464

regan@cse.buffalo.edu.

Abstract. We derive quadratic lower bounds on the ∗-complexity of
sum-of-products-of-sums (ΣΠΣ) formulas for classes of polynomials f
that have too few partial derivatives for the techniques of Shpilka and
Wigderson [10,9]. This involves a notion of “resistance” which connotes
full-degree behavior of f under any projection to an affine space of suf-
ficiently high dimension. They also show stronger lower bounds over the
reals than the complex numbers or over arbitrary fields. Separately, by
applying a special form of the Baur-Strassen Derivative Lemma tailored
to ΣΠΣ formulas, we obtain sharper bounds on +, ∗-complexity than
those shown for ∗-complexity by Shpilka and Wigderson [10], most no-
tably for the lowest-degree cases of the polynomials they consider.

Keywords: Computational complexity, arithmetical circuits, lower
bounds, constant depth formulas, partial derivatives.

1 Introduction

In contrast to the presence of exponential size lower bounds on constant-depth
Boolean circuits for majority and related functions [3,13,7], and depth-3 arith-
metical circuits over finite fields [5,6], Shpilka and Wigderson [10] observed
that over fields of characteristic zero (which are infinite), super-quadratic lower
bounds are not known even for constant-depth formulas. Indeed they are un-
known for unbounded fan-in, depth 3 formulas that are sums of products of affine
linear functions, which they call ΣΠΣ formulas. These formulas have notable
upper-bound power because they can carry out forms of Lagrange interpolation.
As they ascribed to M. Ben-Or, ΣΠΣ formulas can compute the elementary
symmetric polynomials Sk

n (defined as the sum of all degree-k monomials in n
variables, and analogous to majority and threshold-k Boolean functions) in size
O(n2) independent of k. Thus ΣΠΣ formulas present a substantial challenge for
lower bounds, as well as being a nice small-scale model to study.

Shpilka and Wigderson defined the multiplicative size of an arithmetical (cir-
cuit or) formula φ to be the total fan-in to multiplication gates. We denote this

� Part of this work by both authors was supported by NSF Grant CCR-9821040.
�� Corresponding author.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 470–481, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

“Resistant” Polynomials and Stronger Lower Bounds 471

by �∗(φ), and write �(φ) for the total fan-in to all gates, i.e. + gates as well. The
best known lower bound for general arithmetical circuits has remained for thirty
years the Ω(n log n) lower bound on �∗ by the “Degree Method” of Strassen
[11] (see also [1,2]). However, this comes nowhere near the exponential lower
bounds conjectured by Valiant [12] for the permanent and expected by many for
other NP-hard arithmetical functions. For polynomials f of total degree nO(1),
the method is not even capable of Ω(n1+ε) circuit lower bounds, not for any
ε > 0. Hence it is notable that [10] achieved better lower bounds on �∗3(f), where
the subscript-3 refers to ΣΠΣ formulas. These were Ω(n2) for f = Sk

n when
k = Θ(n), n2−εk for Sk

n with small values of k, and Ω(N2/ polylog(N)) for the
determinant, with N = n2. However, Ω(n2) is the best this can do for ΣΠΣ
formulas. Shpilka [9] got past this only in some further-restricted cases, and also
considered a depth-2 model consisting of an arbitrary symmetric function of
sums. This barrier provides another reason to study the ΣΠΣ model, in order
to understand the obstacles and what might be needed to surpass them.

The techniques in [8,10,9] all depend on the set of dth-order partial derivatives
of f being large. This condition fails for functions such as f(x1, . . . , xn) = xn

1 +
. . . + xn

n, which has only n dth-order partials for any d. We refine the analysis
to show the sufficiency of f behaving like a degree-r polynomial on any affine
subspace A of sufficiently high dimension (for this f , r = n and any affine line
suffices). Our technical condition is that for every polynomial g of total degree
at most r− 1 and every such A, there exists a d-th order partial of f − g that is
non-constant on A. This enables us to prove an absolutely sharp n2 bound on
�∗3(f) for this f computed over the real or rational numbers, and a lower bound
of n2/2 over any field of characteristic zero. Note the absence of “O, Ω” notation.
We prove similar tight bounds for sums of powered monomial blocks, powers of
inner-products, and functions depending on �p-norm distance from the origin,
and also replicate the bounds of [10,9] for symmetric polynomials. Even in the
last case, we give an example where our simple existential condition may work
deeper than the main question highlighted in [9] on the maximum dimension of
subspaces A on which Sk

n vanishes.
In Section 5 we prove lower bounds on +, ∗ complexity �3(f) that are signifi-

cantly higher (but still sub-quadratic) than those given for �∗3(f) in [10] when the
degree r of f is small. This is done intuitively by exploiting a closed-form appli-
cation of the Baur-Strassen “Derivative Lemma” [1] to ΣΠΣ formulas, showing
that f and all of its n first partial derivatives can be computed with only a
constant-factor increase in � and �∗ over ΣΠΣ formulas for f .

2 Preliminaries

A ΣΠΣ-formula is an arithmetic formula consisting of four consecutive layers:
a layer of inputs, next a layer of addition gates, then a layer of multiplication
gates, and finally the output sum gate. The gates have unbounded fan-in from
the previous layer (only), and individual wires may carry arbitrary constants
from the underlying field. Given a ΣΠΣ-formula we can write p =

∑s
i=1 Mi,

472 M.J. Jansen and K.W. Regan

where Mi = Πdi

j=1li,j , and li,j = ci,j,1x1 + ci,j,2x2 + . . . + ci,j,nxn + ci,j,0. Here di

is the in-degree of the ith multiplication gate, and ci,j,k is nonzero iff there is a
wire from xk to the addition gate computing li,j.

Let X = (x1, . . . , xn) be an n-tuple of variables. For any affine linear subspace
A ⊂ Fn, we can always find a set of variables B ⊂ X , and affine linear forms
lb in the variables X \ B, for each b ∈ B, such that A is the set of solutions
of {xb = lb : b ∈ B}. This representation is not unique. The set B is called a
base of A. The size |B| always equals the co-dimension of A. In the following,
we always assume some base B of A to be fixed. Any of our numerical “progress
measures” used to prove lower bounds will not depend on the choice of a base.

Following Shpilka and Wigderson [10], for polynomial f ∈ F [x1, . . . , xn], the
restriction of f to A is defined to be the polynomial obtained by substitution of
lb for variable xb for each b ∈ B, and is denoted by f|A . For a set of polynomials
W , define W|A = {f|A | f ∈ W}. For a linear form l = c1x1 + . . . + cnxn + c0,
we denote lh = c1x1 + . . . + cnxn. For a set S of linear forms, Sh = {lh : l ∈ S}.

3 Resistance of Polynomials

We state our new definition in the weakest and simplest form that suffices for the
lower bounds, although the functions in our applications all meet the stronger
condition of Lemma 1 below.

Definition 1. A polynomial f in variables x1, x2, . . . , xn is (d, r, k)-resistant if
for any polynomial g(x1, x2, . . . , xn) of degree at most r−1, for any affine linear
subspace A of co-dimension k, there exists a dth order partial derivative of f − g
that is non-constant on A.

For a multiset X of size d with elements taken from {x1, x2, . . . , xn}, we will
use the notation ∂df

∂X to indicate the dth-order derivative with respect to the
variables in X . As our applications all have r = deg(f), we call f simply (d, k)-
resistant in this case. Then the case d = 0 says that f itself has full degree on any
affine A of co-dimension k, and in most cases corresponds to the non-vanishing
condition in [10]. We separate our notion from [10] in applications and notably
in the important case of the elementary symmetric polynomials in Section 4.4
below.

The conclusion of Definition 1 is not equivalent to saying that some (d+1)st-
order partial of f−g is non-vanishing on A, because the restriction of this partial
on A need not be the same as a first-partial of the restriction of the dth-order
partial to A. Moreover, (d, k)-resistance need not imply (d−1, k)-resistance, even
for d, k = 1: consider f(x, y) = xy and A defined by x = 0.

Theorem 1. Suppose f(x1, x2, . . . , xn) is (d, r, k)-resistant, then

�∗3(f) ≥ r
k + 1
d + 1

.

“Resistant” Polynomials and Stronger Lower Bounds 473

Proof. Consider a ΣΠΣ-formula that computes f . Remove all multiplication
gates that have degree at most r − 1. Doing so we obtain a ΣΠΣ formula F
computing f − g, where g is some polynomial of degree at most r − 1. Say F
has s multiplication gates. Write: f − g =

∑s
i=1 Mi, where Mi = Πdi

j=1li,j and
li,j = ci,j,1x1 + ci,j,2x2 + . . . + ci,j,nxn + ci,j,0. The degree of each multiplication
gate in F is at least r, i.e. di ≥ r, for each 1 ≤ i ≤ s. Now select a set S of input
linear forms using the following algorithm:

S = ∅
for i = 1 to s do

repeat d + 1 times:
if (∃j ∈ {1, 2, . . . , di}): Sh ∪ {lhi,j} is a set of independent vectors

then S = S ∪ {li,j}

Let A be the set of common zeroes of the linear forms in S. Since Sh is an
independent set, A is affine linear of co-dimension |S| ≤ (d + 1)s.

We claim that if at a multiplication gate Mi we picked strictly fewer than
d + 1 linear forms, then any linear form that was not picked is constant on A.
Namely, each linear form l that was not picked had lh already in the span of Sh,
for the set S built up so far. Hence we can write l = c + lh = c +

∑
g∈S cgg

h, for
certain scalars cg. Since each gh is constant on A, we conclude l is constant on
A. This settles the claim, and yields that for each multiplication gate either

1. (d + 1) input linear forms vanish on A, or
2. fewer than (d + 1) linear forms vanish on A, with all others constant on A.

For each multiset X of size d with elements from { x1, x2, . . . , xn }, the dth
order partial derivative ∂d(f − g)/∂X is in the linear span of the set

⎧
⎪⎪⎨

⎪⎪⎩

di∏

j=1
j /∈J

lij : 1 ≤ i ≤ s, J ⊆ {1, 2, . . . , di}, |J | = d

⎫
⎪⎪⎬

⎪⎪⎭

This follows from the sum and product rules for derivatives and the fact that a
first order derivative of an individual linear form lij is a constant. Consider 1 ≤
i ≤ s and J ⊆ {1, 2, . . . , di} with |J | = d. If item 1. holds for the multiplication
gate Mi, then

∏di
j=1
j /∈J

lij vanishes on A, since there must be one lij that vanishes

on A that was not selected, given that |J | = d. If item 2 holds for Mi, then this
product is constant on A.

Hence, we conclude that ∂d(f − g)/∂X is constant on A. Since f is (d, r, k)-
resistant, we must have that the co-dimension of A is at least k + 1. Hence
(d + 1)s ≥ k + 1. Since each gate in F is of degree at least r, we obtain �∗3(F) ≥
r k+1

d+1 . Since F was obtained by removing zero or more multiplication gates from
a ΣΠΣ-formula computing f , we have proven the statement of the theorem. ��

To prove lower bounds on resistance, we supply the following lemma:

474 M.J. Jansen and K.W. Regan

Lemma 1. Over fields of characteristic zero, for any d ≤ r, k > 0, and any
polynomial f(x1, x2, . . . , xn), if for every affine linear subspace A of co-dimension
k, there exists some dth order partial derivative of f such that

deg

((
∂df

∂X

)

|A

)
≥ r − d + 1, then f is (d, r + 1, k)-resistant.

Proof. Assume for every affine linear subspace A of co-dimension k, there exists
some dth order partial derivative derivative of f such that

deg

((
∂df

∂X

)

|A

)
≥ r − d + 1.

Let g be an arbitrary polynomial of degree r. Then

(
∂df − g

∂X

)

|A
=

(
∂df

∂X
− ∂dg

∂X

)

|A
=

(
∂df

∂X

)

|A
−

(
∂dg

∂X

)

|A
.

The term
(

∂df
∂X

)

|A
has degree at least r − d + 1, whereas the term

(
∂dg
∂X

)

|A
can

have degree at most r − d. Hence deg(
(

∂df−g
∂X

)

|A
) ≥ r − d + 1 ≥ 1. Since over

fields of characteristic zero, syntactically different polynomials define different
mappings, we conclude ∂df−g

∂X must be non-constant on A. ��

The main difference between Lemma 1 and the original Definition 1 appears to
be the order of quantifying the polynomial “g” of degree r − 1 out front in the
former, whereas analogous considerations in the lemma universally quantify it
later (making a stronger condition). We have not found a neat way to exploit
this difference in any prominent application, however.

4 Applications

4.1 Sum of nth Powers Polynomial

Consider f =
∑n

i=1 xn
i . By repeated squaring for each xn

i , one obtains ΣΠ
circuits (not formulas) of size O(n log n). All arithmetical circuits require size
Ω(n log n) for f [1]. The expression for f yields a ΣΠΣ formula φ with n mul-
tiplication gates of degree n, with n2 wires in the top linear layer fanning in to
them. This works over any field, but makes �(φ) = �∗(φ) = n2. We prove that
this is close to optimal.

Theorem 2. Over fields of characteristic zero, any ΣΠΣ-formula for f =∑n
i=1 xn

i has multiplicative size at least n2/2.

“Resistant” Polynomials and Stronger Lower Bounds 475

Proof. By Theorem 1 it suffices to show f is (1, n − 1)-resistant. Let g be an
arbitrary polynomial of degree n − 1. Letting g1, . . . , gn denote the first order
partial derivatives of g, we get that the ith partial derivative of f − g equals
nxn−1

i − gi(x1, . . . , xn). Note that the gi’s are of total degree at most n− 2.
We claim there is no affine linear subspace of dimension greater than zero on

which all ∂f/∂xi are constant. Consider an arbitrary affine line xi = ci + dit
parameterized by a variable t, where ci and di are constants for all i ∈ [n],
and with at least one di nonzero. Then ∂(f−g)

∂xi
restricted to the line is given by

n(ci + dit)n−1 − hi(t), for some univariate polynomials hi(t) of degree ≤ n− 2.
Since there must exist some i such that di is nonzero, we know some partial
derivative restricted to the affine line is parameterized by a univariate polynomial
of degree n − 1, and thus, given that the field is of characteristic zero, is not
constant for all t. ��

In case the underlying field is the real numbers R and n is even, we can improve
the above result to prove an absolutely tight n2 lower bound.

Theorem 3. Over the real numbers, for even n, any ΣΠΣ-formula for f =∑n
i=1 xn

i has multiplicative size at least n2.

Proof. Since f is symmetric we can assume without loss of generality that A has
the base representation xk+1 = l1(x1, . . . , xk), . . . , xn = ln−k(x1, . . . , xk). Then

f|A = xn
1 + . . . xn

k + ln1 + . . . + lnn−k.

Hence f|A must include the term xn
1 , since each lnj has a non-negative coefficient

for the term xn
1 and n is even. Thus via Lemma 1 we conclude that over the

real numbers f is (0, n− 1)-resistant. Hence, by Theorem 1 we get that �∗3(f) ≥
deg(f)n

1 = n2. ��

Let us note that f =
∑n

i=1 xn
i is an example of a polynomial that has few

d-th partial derivatives, namely only n of them regardless of d. This renders
the partial derivatives technique of Shpilka and Wigderson [10]—which we will
describe and extend in the next section—not directly applicable.

4.2 Blocks of Powers Polynomials

Let the underlying field have characteristic zero, and suppose n = m2 for some
m. Consider the “m blocks of m powers” polynomial f =

∑m
i=1

∏im
j=(i−1)m+1 xm

j .

The straightforward ΣΠΣ-formula for f , that computes each term/block using
a multiplication gate of degree n, is of multiplicative size n3/2. We will show this
is tight.

Proposition 1. The blocks of powers polynomial f is (0, m− 1)-resistant.

Proof. Consider an affine linear space of co-dimension m−1. For any base B of A,
restriction to A consists of substitution of the m−1 variables in B by linear forms
in the remaining variables X/B. This means there is at least one term/block

476 M.J. Jansen and K.W. Regan

Bi :=
∏im

j=(i−1)m+1 xm
j of f whose variables are disjoint from B. This block Bi

remains the same under restriction to A. Also, for every other term/block there
is at least one variable that is not assigned to. As a consequence, Bi cannot be
canceled against terms resulting from restriction to A of other blocks. Hence
deg(f|A) = deg(f). Hence by Lemma 1 we have that f is (0, m−1)-resistant. ��

Corollary 1. For the blocks of powers polynomial f , �∗3(f) ≥ nm = n3/2.

Alternatively, one can observe that by substitution of a variable yi for each
variable appearing in the ith block one obtains from a ΣΠΣ-formula F for f a
formula for f ′ =

∑m
i=1 yn

i of the same size as F . Theorem 2 generalizes to show
that �∗3(f

′) ≥ 1
2n3/2, which implies �∗3(f) ≥ 1

2n3/2.

4.3 Polynomials Depending on Distance to the Origin

Over the real numbers, d2(x) = x2
1 +x2

2 + · · ·+x2
n is the square of the Euclidean

distance of the point x to the origin. Polynomials f of the form q(d2(x)) where q
is a single-variable polynomial can be readily seen to have high resistance. Only
the leading term of q matters. For example, consider f = (x2

1 + x2
2 + · · ·+ x2

n)m.
On any affine line L in Rn, deg(f|L) = 2m. Therefore, by Lemma 1, over the
reals, f is (0, n− 1)-resistant. Hence by Theorem 1 we get that

Proposition 2. Over the real numbers, �∗3((x
2
1 + x2

2 + · · ·+ x2
n)m) ≥ 2mn.

Observe that by reduction this means that the “mth-power of an inner product
polynomial”, defined by g = (x1y1 +x2y2 + · · ·+xnyn)m, must also have ΣΠΣ-
size at least 2mn over the reals numbers. Results for lp norms, p 	= 2, are similar.

4.4 The Case of Symmetric Polynomials

The special case of (0, k)-resistance is implicitly given by Shpilka [9], at least
insofar as the sufficient condition of Lemma 1 is used for the special case d = 0
in which no derivatives are taken. For the elementary symmetric polynomial Sr

n

of degree r ≥ 2 in n variables, Theorem 4.3 of [9] implies (via Lemma 1) that Sr
n

is (0, n− n+r
2)-resistant. Shpilka proves for r ≥ 2, �∗3(S

r
n) = Ω(r(n − r)), which

can be verified using Theorem 1: �∗3(Sr
n) ≥ (r + 1)(n− n+r

2) = Ω(r(n − r)).
The symmetric polynomials Sk

n collectively have the “telescoping” property
that every dth-order partial is (zero or) the symmetric polynomial Sk−d

n−d on
an (n − d)-subset of the variables. Shpilka [9] devolves the analysis into the
question, “What is the maximum dimension of a linear subspace of Cn on which
Sr

n vanishes?” In Shpilka’s answer, divisibility properties of r come into play as
is witnessed by Theorem 5.9 of [9]. To give an example case of this theorem, one
can check that S2

9 vanishes on the 3-dimensional linear space given by

{(x1, ωx1, ω
2x1, x2, ωx2, ω

2x2, x3, ωx3, ω
2x3) : x1, x2, x3 ∈ C},

where ω can be selected to be either primitive 3rd root of unity. Let

ρ0(f) = max{k : for any linear A of codim. k, f|A 	= 0}.

“Resistant” Polynomials and Stronger Lower Bounds 477

Shpilka proved for r > n/2, that ρ0(Sr
n) = n − r, and for r ≥ 2, that n−r

2 <
ρ0(Sr

n) ≤ n−r. For S2
9 we see via divisibility properties of d that the value for ρ0

can get less than the optimum value, although the n−r
2 lower bound suffices for

obtaining the above mentioned �∗3(S
r
n) = Ω(r(n−r)) lower bound. We have some

indication from computer runs using the polynomial algebra package Singular
[4] that the “unruly” behavior seen for ρ0 because of divisibility properties for
r ≤ n/2 can be made to go away by considering the following notion:

ρ1(f) = max

{
k : for any linear A of codim. k, there exists i,

(
∂f

∂xi

)

|A
	= 0

}

One can still see from the fact that Sr
n is homogeneous and using Lemma 1 and

Theorem 1 that �∗3(S
r
n) ≥ r·(ρ1(S

r
n)+1)

2 . Establishing the exact value of ρ1(Sr
n),

which we conjecture to be n + 1− r at least over the rationals, seems at least to
simplify obtaining the �3(Sr

n) = Ω(d(n− d)) lower bound. In the full version we
prove that for r ≥ 2, ρ1(Sr+1

n+1) ≥ ρ0(Sr−1
n).

For another example, S3
6 is made to vanish at dimension 3 not by any sub-

space that zeroes out 3 co-ordinates but rather by A = { (u,−u, w,−w, y,−y) :
u, w, y ∈ C }. Now add a new variable t in defining f = S4

7 . The notable fact is
that f 1-resists the dimension-3 subspace A′ obtained by adjoining t = 0 to the
equations for A, upon existentially choosing to derive by a variable other than t,
such as u. All terms of ∂f/∂u that include t vanish, leaving 10 terms in the vari-
ables v, w, x, y, z. Of these, 4 pairs cancel under the equations x = −w, z = −y,
but the leftover vwx + vyz part equates to uw2 + uy2, which not only doesn’t
cancel but also dominates any contribution from the lower-degree g. Gröbner
basis runs using Singular imply that S4

7 is (1, 4)-resistant over C as well as the
rationals and reals, though we have not yet made this a consequence of a general
resistance theorem for all Sr

n.
Hence our (1, k)-resistance analysis for S4

7 is not impacted by the achieved
upper bound of 3 represented by A. Admittedly the symmetric polynomials
f have O(n2) upper bounds on �3(f), so our distinction in this case does not
directly help surmount the quadratic barrier. But it does show promise of making
progress in our algebraic understanding of polynomials in general.

5 Bounds for +,*-Complexity

The partial derivatives technique used by Shpilka and Wigderson [10] ignores
the wires of the formula present in the first layer. In the following we show how
to account for them. As a result we get a sharpening of several lower bounds,
though not on �∗3 but on total formula size. We employ the concepts and lemmas
from [10]. For f ∈ F [x1, . . . , xn], let ∂d(f) be the set of all dth order formal
partial derivatives of f w.r.t. variables from {x1, . . . , xn}. For a set of poly-
nomials A = {f1, . . . , ft} span(A) = {

∑t
i=1 cifi | ci ∈ F}. Write dim[A] as

shorthand for dim[span(A)]. Note span(f1, . . . , ft)|A = span(f1|A , . . . , ft|A), and
that dim[W|A] ≤ dim[W]. The basic inequality from [10] then becomes:

478 M.J. Jansen and K.W. Regan

Proposition 3. dim[∂d(c1f1 + c2f2)|A] ≤ dim[∂d(f1)|A] + dim[∂d(f2)|A].

We refine two main results in [10] ∗-complexity into results with tighter bounds
but for +, ∗-complexity. In each case we compare old and new versions.

Theorem 4 ([10]). Let f ∈ F [x1, . . . , xn]. Suppose for integers d, D, κ it holds
that for every affine subspace A of co-dimension κ, dim(∂d(f)|A) > D. Then
�∗3(f) ≥ min(κ2

d , D

(κ+d
d));

Theorem 5 (new). Let f ∈ F [x1, . . . , xn]. Suppose for integers d, D, κ it holds
that for every affine subspace A of co-dimension κ,

∑n
i=1 dim[∂d(∂f

∂xi
)|A] > D.

Then �3(f) ≥ min(κ2

d+2 , D

(κ+d
d)).

Proof. Consider a minimum-size ΣΠΣ-formula for f with multiplication gates
M1, . . . , Ms. We have that f =

∑s
i=1 Mi, where for 1 ≤ i ≤ s, Mi = Πdi

j=1li,j
and li,j = ci,j,1x1 +ci,j,2x2 + . . .+ci,j,nxn +ci,j,0, for certain constants ci,j,k ∈ F .
Computing the partial derivative of f w.r.t. variable xk we get

∂f

∂xk
=

s∑

i=1

di∑

j=1

ci,j,k
Mi

li,j
. (1)

Let S = {i : dim[Mh
i] ≥ κ}. If |S| ≥ κ

d+2 , then �3(f) ≥ κ2

d+2 . Suppose |S| < κ
d+2 .

If S = ∅, then let A be an arbitrary affine subspace of co-dimension κ. Otherwise,
construct an affine space A as follows. Since |S|(d + 2) < κ, and since for each
j ∈ S, dim[Mh

i] ≥ κ, it is possible to pick d + 2 input linear forms lj,1, . . . , lj,d+2

of each multiplication gate Mj with j ∈ S, such that {lhj,1, . . . , lhj,d+2|j ∈ S} is a
set of |S|(d + 2) < κ independent homogeneous linear forms. Define

A = {x : li,j(x) = 0, for any i ∈ S, j ∈ [d + 2]}.

We have that the co-dimension of A is at most κ. W.l.o.g. assume the co-
dimension of A equals κ. For each i ∈ S, d+2 linear forms of Mi vanish on
A. This implies that dim[∂d(Mi

li,j
)|A] = 0. for any i ∈ S. For any i /∈ S, by

Proposition 2.3 in [10], dim[∂d(Mi

li,j
)|A] <

(
κ+d

d

)
. Let Dk = dim[∂d(∂f

∂xk
)|A]. By

Proposition 3 and equation (1),

Dk ≤
∑

i/∈S

∑

j

ci,j,k �=0

dim

[
∂d

(
Mi

li,j

)

|A

]
.

Hence there must be at least Dk

(κ+d
d) terms on the r.h.s., i.e. there are at least

that many wires from xk to gates in the first layer. Hence in total the number
of wires to the first layer is at least

∑n
i=1

Di

(κ+d
d) > D

(κ+d
d) . ��

Theorem 6 ([10]). Let f ∈ F [x1, . . . , xn]. Suppose for integers d, D, κ it holds
that for every affine subspace A of co-dimension κ, dim(∂d(f|A)) > D. Then for
every m ≥ 2, �∗3(f) ≥ min(κm, D

(m
d)).

“Resistant” Polynomials and Stronger Lower Bounds 479

Theorem 7 (new). Let f ∈ F [x1, . . . , xn]. Suppose for integers d, D, κ with
d ≥ 1, it holds that for every affine subspace A of co-dimension κ,∑n

i=1 dim[∂d(∂f
∂xi |A

)] > D. Then for every m ≥ 2, �3(f) ≥ min(1
2κm, D

(m−1
d)).

The proof of Theorem 7 is analogous to above and appears in the full version.

In [10] it was proved that for d ≤ log n, �∗3(S
2d
n) = Ω(n

2d
d+2

d). Note that for
d = 2, this lower bound is only Ω(n). We can apply Theorem 5 to prove the
following stronger lower bound on the total formula size of S2d

n . In particular for
d = 2, we get an Ω(n

4
3) bound.

Theorem 8. For 1 ≤ d ≤ log n, �3(S2d
n) = Ω(n

2d
d+1

d).

Proof. For any affine subspace A of co-dimension κ and d ≥ 2 we have that

n∑

i=1

dim

[
∂d−1

(
∂S2d

n

∂xi

)

|A

]
≥ dim[∂d(S2d

n)|A] ≥
(

n− κ

d

)
.

The latter inequality follows from Lemma 4.4 in [10]. Applying Theorem 5 we
get that

�3(S2d
n) ≥ min

(
κ2

d + 1
,

(
n−κ

d

)
(
κ+d−1

d−1

)
)

= min

(
κ2

d + 1
,

(
n−κ

d

)
(
κ+d

d

) κ + d

d

)
. (2)

Set κ = 1
9n

d
d+1 . Then we have that

(
n−κ
d

)
(

κ+d
d

) κ+d

d
≥

(
n−κ

κ+d

)d
κ+d

d
≥

(
8/9n

2/9n
d

d+1

)d
κ+d

d
= 4dn

d
d+1

κ+d

d
≥ 4d

9d
n

2d
d+1 ≥ n

2d
d+1 .

Hence (2) is at least min(n
2d

d+1

81(d+1) , n
2d

d+1) = Ω(n
2d

d+1

d). ��

Corollary 2. �3(S4
n) = Ω(n4/3).

Shpilka and Wigderson defined the “product-of-inner-products” polynomial over
2d variable sets of size n (superscript indicate different variables, each variable
has degree one) by PIP d

n =
∏d

i=1

∑n
j=1 xi

jy
i
j .

Theorem 9. For any constant d > 0, �3(PIP d
n) = Ω(n

2d
d+1).

Proof. Let f = PIP d
n . Essentially we have that ∂f

∂xi
j

= yi
jPIP d−1

n , where the

PIP d−1
n must be chosen on the appropriate variable set. Let A be an arbitrary

affine linear subspace of co-dimension κ. Then

d∑

i=1

n∑

j=1

dim

[
∂d−1

(
∂f

∂xi
j

|A

)]
=

d∑

i=1

n∑

j=1

dim[∂d−1(yi
jPIP d−1

n |A)]

≥ (dn− κ)dim[∂d−1(PIP d−1
n |A)]

480 M.J. Jansen and K.W. Regan

The last inequality follows because at least dn − κ of the y-variables are not
assigned to with the restriction to A. From Lemma 4.9 in [10] one gets

dim[∂d−1(PIP d−1
n |A) ≥ nd−1 − 22d−1κnd−2.

Using Theorem 7 we get

�3(f) ≥ min

(
κ2

2
,
(dn− κ)(nd−1 − 22d−1κnd−2)(

κ−1
d−1

)
)

.

Taking κ = n
d

d+1 , one gets for constant d that �3(PIP d
n) = Ω(n

2d
d+1). ��

For comparison, in [10] one gets �∗3(PIP d
n) = Ω(n

2d
d+2).

6 Conclusion

We have taken some further steps after Shpilka and Wigderson [10,9], obtain-
ing absolutely tight (rather than asymptotically so) multiplicative size lower
bounds for some natural functions, and obtaining somewhat improved bounds
on +, ∗-size for low-degree symmetric and product-of-inner-product polynomi-
als. However, these may if anything enhance the feeling from [10,9] that the
concepts being employed may go no further than quadratic for lower bounds.
One cannot after all say that a function f(x1, . . . , xn) is non-vanishing on an
affine-linear space of co-dimension more than n. The quest then is for a mathe-
matical invariant that scales beyond linear with the number of degree-d-or-higher
multiplication gates in the formula.

Acknowledgments. We thank Avi Wigderson for comments on a very early
version of this work, and referees of later versions for very helpful criticism.

References

1. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comp. Sci. 22,
317–330 (1982)

2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Springer, Heidelberg (1997)

3. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy.
Math. Sys. Thy. 17, 13–27 (1984)

4. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra
System for Polynomial Computations, Centre for Computer Algebra, University of
Kaiserslautern (2005), http://www.singular.uni-kl.de

5. Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic
circuits. In: Proc. 30th Annual ACM Symposium on the Theory of Computing, pp.
577–582. ACM Press, New York (1998)

6. Grigoriev, D., Razborov, A.A.: Exponential lower bounds for depth 3 algebraic
circuits in algebras of functions over finite fields. Applicable Algebra in Engineering,
Communication, and Computing 10, 465–487 (1998) (preliminary version FOCS
1998)

http://www.singular.uni-kl.de

“Resistant” Polynomials and Stronger Lower Bounds 481

7. H̊astad, J.: Almost optimal lower bounds for small-depth circuits. In: Micali, S.
(ed.) Randomness and Computation. Advances in Computing Research, vol. 5, pp.
143–170. JAI Press, Greenwich, CT (1989)

8. Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial deriva-
tives. Computational Complexity 6, 217–234 (1996)

9. Shpilka, A.: Affine projections of symmetric polynomials. J. Comp. Sys. Sci. 65,
639–659 (2002)

10. Shpilka, A., Wigderson, A.: Depth-3 arithmetic formulae over fields of characteristic
zero. Computational Complexity 10, 1–27 (2001)

11. Strassen, V.: Berechnung und Programm II. Acta Informatica 2, 64–79 (1973)
12. Valiant, L.: The complexity of computing the permanent. Theor. Comp. Sci. 8,

189–201 (1979)
13. Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proc. 26th An-

nual IEEE Symposium on Foundations of Computer Science, pp. 1–10. IEEE Com-
puter Society Press, Los Alamitos (1985)

An Improved Algorithm for Tree Edit Distance

Incorporating Structural Linearity�

Shihyen Chen and Kaizhong Zhang

Department of Computer Science,
The University of Western Ontario, London, Ontario, Canada, N6A 5B7

{schen,kzhang}@csd.uwo.ca

Abstract. An ordered labeled tree is a tree in which the nodes are la-
beled and the left-to-right order among siblings is significant. The edit
distance between two ordered labeled trees is the minimum cost of trans-
forming one tree into the other by a sequence of edit operations. Among
the best known tree edit distance algorithms, the majority can be cat-
egorized in terms of a framework named cover strategy. In this paper,
we investigate how certain locally linear features may be utilized to im-
prove the time complexity for computing the tree edit distance. We de-
fine structural linearity and present a method incorporating linearity
which can work with existing cover-strategy based tree algorithms. We
show that by this method the time complexity for an input of size n
becomes O(n2 + φ(A, ñ)) where φ(A, ñ) is the time complexity of any
cover-strategy algorithm A applied to an input size ñ, with ñ ≤ n, and
the magnitude of ñ is reversely related to the degree of linearity. This
result is an improvement of previous results when ñ < n and would be
useful for situations in which ñ is in general substantially smaller than n,
such as RNA secondary structure comparisons in computational biology.

Keywords: Tree edit distance, dynamic programming, RNA secondary
structure comparison.

1 Introduction

An ordered labeled tree is a tree in which the nodes are labeled and the left-to-
right order among siblings is significant. Trees can represent many phenomena,
such as grammar parses, image descriptions and structured texts, to name a
couple. In many applications where trees are useful representations of objects,
the need for comparing trees frequently arises.

The tree edit distance metric was introduced by Tai [7] as a generalization
of the string edit distance problem [9]. Given two trees T1 and T2, the tree edit
distance between T1 and T2 is the minimum cost of transforming one tree into
the other, with the sibling and ancestor orders preserved, by a sequence of edit
operations on the nodes (relabeling, insertion and deletion) as shown in Figure 1.
� Research supported partially by the Natural Sciences and Engineering Research

Council of Canada under Grant No. OGP0046373 and a grant from MITACS, a
Network of Centres of Excellence for the Mathematical Sciences.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 482–492, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Improved Algorithm for Tree Edit Distance Incorporating 483

T1

(c → ∅)

c

T1 T2

a b

T2T1

(a → b)

(∅ → c)
c

T2

Fig. 1. Tree edit operations. From top to bottom: relabeling, deletion and insertion.

Among the known algorithms of comparable results such as in [1,2,4,10], the
majority [2,4,10] can be categorized in terms of a generalized framework by the
name of cover strategy [3] which prescribes the direction by which a dynamic
program builds up the solution. Briefly, a tree is decomposed into a set of disjoint
paths which, in this paper, we refer to as special paths. Each special path is
associated with a subtree such that the special path coincides with a path of the
subtree which runs from the root to a leaf. The dynamic program proceeds in a
bottom-up order with respect to the special paths such that for any node i on a
special path, the subtrees hanging off the portion of the special path no higher
than i have been processed before the node i is reached. When there are subtrees
hanging off on both sides of a special path, the decision as to which side takes
precedence is referred to as strategy. In the Zhang-Shasha algorithm [10], the
special paths are chosen to be the leftmost paths. In Klein’s algorithm [4] as well
as that of Demaine et al. [2], the special paths are chosen such that every node
on a special path is the root of a largest subtree over its sibling subtrees. These
special paths are referred to as heavy paths [6]. Examples of leftmost paths and
heavy paths are shown in Figure 2.

In these algorithms, no consideration is given to any structural characteristics
which may exist in the tree. In this paper, we investigate the possibility of
utilizing certain linear features within the trees to speed up the computation of
the tree edit distance. We show that by embedding a procedure in any cover-

Fig. 2. Left: Decomposition of a tree into leftmost paths (in bold). Right: Decomposi-
tion of a tree into heavy paths (in bold).

484 S. Chen and K. Zhang

strategy algorithm A, the resulting time complexity is O(n2 + φ(A, ñ)) where n
is the original input size, φ(A, ñ) is the time complexity of algorithm A applied
to an input size ñ, with ñ ≤ n, and the magnitude of ñ is reversely related to
the degree of linearity. This result would be useful for applications in which ñ is
in general substantially smaller than n.

The rest of the paper is organized as follows. In Section 2, we define structural
linearity and give a new representation of trees based on reduction of the tree
size due to the linearity. In Section 3, we show the algorithmic aspects as a result
of incorporating the linearity and the implications on the time complexity. In
Section 4, we describe one suitable application of our result. We give concluding
remarks in Section 5.

2 Preliminaries

2.1 Notations

Given a tree T , we denote by t[i] the ith node in the left-to-right post-order num-
bering. The index of the leftmost leaf of the subtree rooted at t[i] is denoted by l(i).
We denote by F [i, j] the ordered sub-forest of T induced by the nodes indexed i to
j inclusive. The subtree rooted at t[i] in T is denoted by T [i], i.e., T [i] = F [l(i), i].
The sub-forest induced by removing t[i] from T [i] is denoted by F [i], i.e., F [i] =
F [l(i), i − 1]. When referring to the children of a specific node, we adopt a sub-
script notation in accordance with the left-to-right sibling order. For example, the
children of t[i], from left to right, may be denoted by (t[i1], t[i2], · · · , t[ik]).

2.2 Linearity

Definition 1 (V-Component). Given a tree T with left-to-right post-order
and pre-order numberings, a path π of T is a v-component (i.e., vertically linear
component) if all of the following conditions hold.

– Both the post-order and the pre-order numberings along this path form a
sequence of continuous indices.

– No other path containing π satisfies the above condition.

Definition 2 (V-Reduction). The v-reduction on a tree is to replace every
v-component in the tree by a single node.

Definition 3 (H-Component). Given a tree T and another tree T̃ obtained
by a v-reduction on T , any set of connected components of T corresponding to a
set of leaves L̃ in T̃ form an h-component (i.e., horizontally linear component)
if all of the following conditions hold.

– |L̃| ≥ 2.
– All the leaves in L̃ share the same parent.
– A left-to-right post-order or pre-order numbering on T̃ produces a sequence

of continuous indices for L̃.
– No other set of leaves containing L̃ satisfy the above conditions.

An Improved Algorithm for Tree Edit Distance Incorporating 485

Definition 4 (H-Reduction). The h-reduction on a tree is to replace every
h-component in the tree by a single node.

A tree possesses vertical (horizontal) linearity if it contains any v-component
(h-component). A tree is v-reduced if it is obtained by a v-reduction only. A tree
is vh-reduced if it is obtained by a v-reduction followed by an h-reduction.

Note that a reduced tree is just a compact representation of the original tree.
The edit distance of two reduced trees is the same as the edit distance of the
original trees. In the case when a tree does not possess any linearity as defined
above, the reduced tree is the same as the original tree.

In Figure 3, we give an example showing the v-components and h-components
of a tree and the corresponding reduced trees. Note that an h-component can
also contain v-components.

Each node in a v-reduced tree corresponds to either a v-component or a
single node in the corresponding full tree. Given a v-reduced tree T̃ , we define

h−reduced

v−reduced

Fig. 3. The v-components (in dashed enclosures) and the h-components (in dotted
enclosures). Also shown are the reduced trees as a result of reduction. The parts of the
original tree affected by reduction are represented by black nodes in the reduced tree.

t[α(i)]

T̃ [i]

T [α(i)]

t̃[i]

t[β(i)]

Fig. 4. A partial view of the mapping of nodes between a tree (left) and its v-reduced
tree (right)

486 S. Chen and K. Zhang

two functions α() and β() which respectively map a node t̃[i] to the highest
indexed node t[α(i)] and the lowest indexed node t[β(i)] of the corresponding v-
component in the full tree T . In the special case when t̃[i] corresponds to a single
node in T , t[α(i)] = t[β(i)]. An example of this mapping is given in Figure 4.
When T̃ is h-reduced to yield T̂ , α() and β() apply in the same way for the
mapping from T̂ to T̃ .

3 Algorithm

In this section, we show how to incorporate vertical linearity in the Zhang-
Shasha algorithm. We will also show that the method can be incorporated in all
the cover-strategy algorithms.

Due to space limitation, we shall not discuss the incorporation of horizontal
linearity in this paper. The method involves adapting techniques from matrix
searching and will be given elsewhere in the future.

3.1 Incorporating Vertical Linearity

We denote by d(,) the edit distance. The following lemmas incorporate vertical
linearity in the Zhang-Shasha algorithm.

Lemma 1

1. d(∅, ∅) = 0.
2. ∀i ∈ T̃1, ∀i′ ∈ [l(i), i], d(F̃1[l(i), i′], ∅) = d(F̃1[l(i), i′ − 1], ∅) + d(t̃1[i′], ∅).
3. ∀j ∈ T̃2, ∀j′ ∈ [l(j), j], d(∅, F̃2[l(j), j′]) = d(∅, F̃2[l(j), j′− 1])+ d(∅, t̃2[j′]).

Proof Case 1 requires no edit operation. In case 2 and case 3, the distances
correspond to the costs of deleting and inserting the nodes in F̃1[l(i), i′] and
F̃2[l(j), j′], respectively. ��

Lemma 2. ∀(i, j) ∈ (T̃1, T̃2), ∀i′ ∈ [l(i), i] and ∀j′ ∈ [l(j), j],
if l(i′) = l(i) and l(j′) = l(j),

d(F̃1[l(i), i′], F̃2[l(j), j′]) = d(T̃1[i′], T̃2[j′]) ;

otherwise,

d(F̃1[l(i), i′], F̃2[l(j), j′]) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(F̃1[l(i), i′ − 1], F̃2[l(j), j′]) + d(t̃1[i′], ∅),
d(F̃1[l(i), i′], F̃2[l(j), j′ − 1]) + d(∅, t̃2[j′]),
d(F̃1[l(i), l(i′)− 1], F̃2[l(j), l(j′)− 1])
+d(T̃1[i′], T̃2[j′])

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Proof. The condition “l(i′) = l(i) and l(j′) = l(j)” implies that the two forests
are simply two trees and the equality clearly holds. We now consider the other
condition in which “l(i′) 	= l(i) or l(j′) 	= l(j)”. If t1[α(i′)] = t1[β(i′)] and

An Improved Algorithm for Tree Edit Distance Incorporating 487

t2[α(j′)] = t2[β(j′)], the formula holds as a known result. Otherwise, at least one
of t̃1[i′] and t̃2[j′] corresponds to a v-component in (T1[α(i)], T2[α(j)]). Consider
the connected components in (T1[α(i)], T2[α(j)]) corresponding to (t̃1[i′], t̃2[j′]).
There are two cases to consider: either (1) there is no occurrence of node-to-node
match between the connected components; or (2) there is at least one occurrence
of node-to-node match between the connected components. In case 1, one of the
components must be entirely deleted which implies that either t̃1[i′] must be
deleted or t̃2[j′] must be inserted. In case 2, in order to preserve the ancestor-
descendent relationship T̃1[i′] and T̃2[j′] must be matched. ��

Note. In Lemma 2 for the condition “l(i′) 	= l(i) or l(j′) 	= l(j)” the value of
d(T̃1[i′], T̃2[j′]) would already be available if implemented in a bottom-up order,
since it involves a subproblem of d(F̃1[l(i), i′], F̃2[l(j), j′]) and would have been
computed. For the condition “l(i′) = l(i) and l(j′) = l(j)”, however, we en-
counter the problem involving (T̃1[i′], T̃2[j′]) for the first time and must compute
its value.

We show how to compute d(T̃1[i′], T̃2[j′]) in the following lemmas.

Lemma 3. ∀u ∈ [β(i′), α(i′)],

d(T1[u], F2[β(j′)]) = min

⎧
⎨

⎩

d(F1[u], F2[β(j′)]) + d(t1[u], ∅),
minj′

1≤q≤j′
l
{d(T1[u], T2[α(q)]) − d(∅, T2[α(q)])}

+d(∅, F2[β(j′)])

⎫
⎬

⎭ .

Proof. This is the edit distance between the tree T1[u] and the forest F2[β(j′)].
There are two cases. In the first case, t1[u] is constrained to be deleted and the
remaining substructure F1[u] is matched to F2[β(j′)]. In the second case, t1[u] is
constrained to be matched to a node somewhere in F2[β(j′)]. This is equivalent
to stating that T1[u] is constrained to be matched to a subtree in F2[β(j′)]. The
question thus becomes finding a subtree in F2[β(j′)] to be matched to T1[u] so
as to minimize the distance between T1[u] and F2[β(j′)] under such constraint.
This can be done by considering the set of all combinations in which exactly one
tree in F2[β(j′)] is matched to T1[u] while the remainder of F2[β(j′)] is deleted.
The minimum in this set is the edit distance for the second case. ��
Lemma 4. ∀v ∈ [β(j′), α(j′)],

d(F1[β(i′)], T2[v]) = min

⎧
⎨

⎩

d(F1[β(i′)], F2[v]) + d(∅, t2[v]),
mini′

1≤p≤i′
k
{d(T1[α(p)], T2[v])− d(T1[α(p)], ∅)}

+d(F1[β(i′)], ∅)

⎫
⎬

⎭ .

Proof. This is symmetric to that of Lemma 3. ��
Lemma 5. ∀u ∈ [β(i′), α(i′)] and ∀v ∈ [β(j′), α(j′)],

d(T1[u], T2[v]) = min

⎧
⎨

⎩

d(F1[u], T2[v]) + d(t1[u], ∅),
d(T1[u], F2[v]) + d(∅, t2[v]),
d(F1[u], F2[v]) + d(t1[u], t2[v])

⎫
⎬

⎭ .

Proof. This is a known result for the tree-to-tree edit distance. ��

488 S. Chen and K. Zhang

Note. In the computation for every d(T̃1[i′], T̃2[j′]), we save the values for
d(T1[u], T2[α(j′)]) ∀u ∈ [β(i′), α(i′)] and d(T1[α(i′)], T2[v]) ∀v ∈ [β(j′), α(j′)].
This ensures that when d(T1[u], F2[β(j′)]) in Lemma 3 and d(F1[β(i′)], T2[v]) in
Lemma 4 are evaluated in a bottom-up order the values of the terms involving
d(T1[u], T2[α(q)]) and d(T1[α(p)], T2[v]) would be available.

Lemma 6. d(T̃1[i′], T̃2[j′]) = d(T1[α(i′)], T2[α(j′)]) .

Proof. The result follows from the tree definitions. ��

3.2 The New Algorithm

For every node i of tree T , we designate a child of i, if any, to be its special
child, denoted by sc(i). Note that in the Zhang-Shasha algorithm sc(i) is the
leftmost child of i whereas in a different cover-strategy the choice of sc(i) may
be different. Denote by p(i) the parent of i. We define a set of nodes, called key
roots, for tree T as follows.

keyroots(T) = {k | k = root(T) or k 	= sc(p(k))} .

This is a generalized version of the LR keyroots used in [10] and is suitable for
any known decomposition strategy as in [2,4,10]. Referring to Figure 2, in every
special path the highest numbered node in a left-to-right post-order is a key
root.

We now give the new algorithm in Algorithms 1 and 2. Algorithm 1 contains
the main loop which repeatedly calls Algorithm 2 to compute d(T̃1[i], T̃2[j])
where (i, j) are key roots in (T̃1, T̃2).

Theorem 1. The new algorithm correctly computes d(T1, T2).

Proof. The correctness of all the computed values in Algorithm 2 follows from
the lemmas. By Lemma 6, d(T̃1, T̃2) = d(T1, T2) when (i′, j′) are set to be the
roots of (T̃1, T̃2). Since these roots are key roots, d(T1, T2) is always computed
by Algorithm 1. ��

Algorithm 1. Computing d(T̃1, T̃2)

Input: (T̃1, T̃2)

Output: d(T̃1[i], T̃2[j]), where 1 ≤ i ≤ |T̃1| and 1 ≤ j ≤ |T̃2|
1: Sort keyroots(T̃1) and keyroots(T̃2) in increasing order into arrays K1 and K2,

respectively
2: for i′ ← 1, · · · , |keyroots(T̃1)| do
3: for j′ ← 1, · · · , |keyroots(T̃2)| do
4: i ← K1[i

′]
5: j ← K2[j

′]

6: Compute d(T̃1[i], T̃2[j]) by Algorithm 2
7: end for
8: end for

An Improved Algorithm for Tree Edit Distance Incorporating 489

Algorithm 2. Computing d(T̃1[i], T̃2[j])
1: d(∅,∅) ← 0
2: for i′ ← l(i), · · · , i do
3: d(F̃1[l(i), i

′], ∅) ← d(F̃1[l(i), i
′ − 1], ∅) + d(t̃1[i

′], ∅)
4: end for
5: for j′ ← l(j), · · · , j do
6: d(∅, F̃2[l(j), j

′]) ← d(∅, F̃2[l(j), j
′ − 1]) + d(∅, t̃2[j

′])
7: end for
8: for i′ ← l(i), · · · , i do
9: for j′ ← l(j), · · · , j do

10: if l(i′) = l(i) and l(j′) = l(j) then
11: for u ← β(i′), · · · , α(i′) do
12: d(T1[u], F2[β(j′)]) ←

min

⎧
⎨

⎩

d(F1[u], F2[β(j′)]) + d(t1[u], ∅),
minj′

1≤q≤j′
l
{d(T1[u], T2[α(q)]) − d(∅, T2[α(q)])}

+d(∅, F2[β(j′)])

⎫
⎬

⎭

13: end for
14: for v ← β(j′), · · · , α(j′) do
15: d(F1[β(i′)], T2[v]) ←

min

⎧
⎨

⎩

d(F1[β(i′)], F2[v]) + d(∅, t2[v]),
mini′

1≤p≤i′
k

{d(T1[α(p)], T2[v]) − d(T1[α(p)], ∅)}
+d(F1[β(i′)], ∅)

⎫
⎬

⎭

16: end for
17: for u ← β(i′), · · · , α(i′) do
18: for v ← β(j′), · · · , α(j′) do

19: d(T1[u], T2[v]) ← min

⎧
⎨

⎩

d(F1[u], T2[v]) + d(t1[u], ∅),
d(T1[u], F2[v]) + d(∅, t2[v]),
d(F1[u], F2[v]) + d(t1[u], t2[v])

⎫
⎬

⎭
20: end for
21: end for
22: d(T̃1[i

′], T̃2[j
′]) ← d(T1[α(i′)], T2[α(j′)])

23: else
24: d(F̃1[l(i), i

′], F̃2[l(j), j
′]) ←

min

⎧
⎪⎨

⎪⎩

d(F̃1[l(i), i
′ − 1], F̃2[l(j), j

′]) + d(t̃1[i
′], ∅),

d(F̃1[l(i), i
′], F̃2[l(j), j

′ − 1]) + d(∅, t̃2[j
′]),

d(F̃1[l(i), l(i
′) − 1], F̃2[l(j), l(j

′) − 1]) + d(T̃1[i
′], T̃2[j

′])

⎫
⎪⎬

⎪⎭
25: end if
26: end for
27: end for

Theorem 2. The new algorithm runs in O(n2 + ñ4) time and O(n2) space,
where n is the original input size and ñ ≤ n.

Proof. We first consider the time complexity. The v-reduced trees can be built
in linear time in a preprocess. Identifying and sorting the key roots can be
done in linear time. As well, all the values associated with insertion or deletion
of a subtree or a sub-forest, as appearing in Lemma 3 and Lemma 4, can be

490 S. Chen and K. Zhang

obtained beforehand in linear time during a tree traversal. The Zhang-Shasha
algorithm has a worst-case running time of O(ñ4) for an input size ñ. Referring
to Algorithm 2, we consider the block from line 11 to 21 which concerns compu-
tation involving the (i′, j′) pairs on leftmost paths, based on Lemmas 3, 4 and
5. This is the part of the algorithm that structurally differs from its counter-
part in the Zhang-Shasha algorithm. For each such (i′, j′) pair, this part takes
O((α(i′)−β(i′)+ 1)× (j′l − j′1 +1)+ (α(j′)− β(j′)+ 1)× (i′k − i′1 + 1)+ (α(i′)−
β(i′) + 1)× (α(j′)− β(j′) + 1)). All the subproblems of (T1, T2) associated with
these (i′, j′) pairs are disjoint. Summing over all these pairs, we can bound the
complexity by O(n2). Hence, the overall time complexity is O(n2 + ñ4).

We now consider the space complexity. We use three different arrays: the full-
tree array, the reduced-tree array and the reduced-forest array. The reduced-
forest array is a temporary array and its values can be rewritten during the
computation of the reduced-forest distances. The other two arrays are permanent
arrays for storing tree distances. The space for the reduced-tree array and the
reduced-forest array is bounded by O(ñ2). The space for the full-tree array is
bounded by O(n2). Hence, the space complexity is O(n2). ��

Theorem 3. Given (T1, T2) of maximum size n, the edit distance d(T1, T2) can
be computed in O(n2 + φ(A, ñ)) time where φ(A, ñ) is the time complexity of
any cover-strategy algorithm A applied to an input size ñ, with ñ ≤ n.

Proof. Since a v-component is consisted of a simple path, there is only one way a
dynamic program can recurse along this path regardless which strategy is used.
Hence, Lemmas 3 to 6 are valid for all cover strategies. Lemmas 1 and 2, after a
proper adjustment of the subtree orderings in each forest to adapt to the given
strategy, are also valid. The theorem is implied from Theorems 1 and 2 when
the lemmas are properly embedded in any cover-strategy algorithm. ��

4 Application

We describe one application which would benefit from our result, namely RNA
secondary structure comparison. RNA is a molecule consisted of a single strand of
nucleotides (abbreviated as A, C, G and U) which folds back onto itself by means
of hydrogen bonding between distant complementary nucleotides, giving rise to a
so-called secondary structure. The secondary structure of an RNA molecule can
be topologically represented by a tree. An example is depicted in Figure 5. In this
representation, an internal node represents a pair of complementary nucleotides
interacting via hydrogen bonding. When a number of such pairs are stacked up,
they form a local structure called stem, which corresponds to a v-component
in the tree representation. The secondary structure plays an important role in
the functions of RNA [5]. Therefore, comparing the secondary structures of RNA
molecules can help understand their comparative functions. One way to compare
two trees is to compute the edit distance between them.

To gain an impression, we list the size reductions for a set of selected tRNA
molecules in Table 1. |T | is the size of the original tree. |T̃ | is the size of the

An Improved Algorithm for Tree Edit Distance Incorporating 491

U

C

G C

A

G

U

C
U

U
C

C

A U A C A

U
U

A
A

G
G

AUAAU

G
U

UC
G

U

A

C

U

CG

GC

AU

UA UA

UA

CG

CG

AU

UA

GC

UA

AC

C G U

U C UA

U

A

Fig. 5. Left: Secondary folding of RNA. Dotted lines represent hydrogen bonds. Right:
The corresponding tree representation.

Table 1. Reduction of tree sizes for selected tRNA molecules [8]

Name |T | |T̃ | Reduction (%)

Athal-chr4.trna25 52 35 33%
cb25.fpc2454.trna15 52 40 23%
CHROMOSOME I.trna38 51 38 25%
chr1.trna1190 51 34 33%
Acinetobacter sp ADP1.trna45 55 38 31%
Aquifex aeolicus.trna21 55 38 31%
Azoarcus sp EbN1.trna58 55 38 31%
Bacillus subtilis.trna63 52 35 33%
Aeropyrum pernix K1.trna3 56 39 30%
Sulfolobus tokodaii.trna25 53 36 32%

v-reduced tree. The last column shows the size reductions in percentage. On
average, we observe a size reduction by nearly one third of the original size,
which roughly translates into a one-half decrease of running time for the known
cover-strategy algorithms.

5 Conclusions

We presented a new method for computing tree edit distance by incorporating
structural linearity. This method can work with any existing cover-strategy based
algorithm to yield a time complexity of O(n2 + φ(A, ñ)) where n is the original
input size and φ(A, ñ) assumes the same form of the time complexity of the given
algorithm A when it is applied to an input size ñ, with ñ ≤ n. The magnitude
of ñ is reversely related to the degree of linearity.

This result would be useful when ñ is in general substantially smaller than
n. Therefore, incorporating our technique in any existing cover-strategy algo-
rithm may yield an improved performance for such situations. One application
which can readily benefit from this improvement is RNA secondary structure
comparisons in computational biology.

492 S. Chen and K. Zhang

References

1. Chen, W.: New algorithm for ordered tree-to-tree correction problem. Journal of
Algorithms 40(2), 135–158 (2001)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Proceedings of the 34th International Collo-
quium on Automata, Languages and Programming (To appear)

3. Dulucq, S., Touzet, H.: Decomposition algorithms for the tree edit distance prob-
lem. Journal of Discrete Algorithms 3, 448–471 (2005)

4. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Pro-
ceedings of the 6th European Symposium on Algorithms(ESA), pp. 91–102 (1998)

5. Moore, P.B.: Structural motifs in RNA. Annual review of biochemistry 68, 287–300
(1999)

6. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Com-
puter and System Sciences 26, 362–391 (1983)

7. Tai, K.: The tree-to-tree correction problem. Journal of the Association for Com-
puting Machinery (JACM) 26(3), 422–433 (1979)

8. Genomic tRNA Database. http://lowelab.ucsc.edu/gtrnadb/
9. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of

the ACM 21(1), 168–173 (1974)
10. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

http://lowelab.ucsc.edu/gtrnadb/

Approximation Algorithms for Reconstructing

the Duplication History of Tandem Repeats

Lusheng Wang1,�, Zhanyong Wang1, and Zhizhong Chen2

1 Department of Computer Science, City University of Hong Kong, Hong Kong
cswangl@cityu.edu.hk, zhyong@cs.cityu.edu.hk

2 Department of Mathematical Sciences, Tokyo Denki University,
Hatoyama Saitama, 350-0394, Japan

cswangl@cityu.edu.hk

Abstract. Tandem repeated regions are closely related to some genetic
diseases in human beings. Once a region containing pseudo-periodic re-
peats is found, it is interesting to study the history of creating the re-
peats. It is important to reveal the relationship between repeats and
genetic diseases. The duplication model has been proposed to describe
the history [3,10,11]. We design a polynomial time approximation scheme
(PTAS) for the case where the size of the duplication box is 1. Our PTAS
is faster than the best known algorithm in [11]. For example, to reach
ratio-1.5, our algorithm takes O(n5) time while the algorithm in [11]
takes O(n11) time. We also design a ratio-2 approximation algorithm for
the case where the size of the duplication box is at most 2. This is the
first approximation algorithm with guaranteed ratio for this case.

1 Introduction

The genomes of many species are dominated by short sequences repeated con-
secutively. It is estimated that over 10% of the human genome, the totality of
human genetic information, consists of repeated sequences. About 10-25% of all
known proteins have some form of repeated structures ranging from simple ho-
mopolymers to multiple duplications of entire globular domains. In some other
species, repeated regions can even dominate the whole genome. For example, in
the Kangaroo rat (Dipomys ordii) more than half of the genome consists of three
patterns of repeated regions: AAG (2.4 billion repetitions), TTAGG (2.2 billion
repetitions) and ACACAGCGGG (1.2 billion repetitions) [9]. Recent studies
show that tandem repeats are closely related with human diseases, including
neurodegenerative disorders such as fragile X syndrome, Huntington’s disease
and spinocerebellar ataxia, and some cancers [1,2]. These tandem repeats may
occur in protein coding regions of genes or non-coding regions. Since the initial
discovery of tandem repeats [12], many theories on the biological mechanisms
that create and extend tandem repeats have been proposed, e.g., slipped-strand

� Lusheng Wang is supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 1196/03E].

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 493–503, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

494 L. Wang, Z. Wang, and Z. Chen

mis-paring, unequal sister-chromatid exchange and unequal genetic recombina-
tion during meiosis. (See [8] for details.) The exact mechanisms responsible for
tandem repeat expansion are still controversial. Thus, the study of repeated re-
gions in biological sequences has attracted lots of attentions [4,8,11,10,7,6,5].

The Duplication Model
The model for the duplication history of tandem repeated sequences was proposed
by Fitch in 1977 [3] and re-proposed by Tang et al. [10] and Jaitly et al. [11]. The
model captures both evolutionary history and the observed order of sequences on
a chromosome. Let S = s1s2 . . . sn be an observed string containing n segment
si for i = 1, 2, . . . , n, where each si has exactly m letters. Let riri+1 . . . ri+k−1 be
k consecutive segments in an ancestor string of S in the evolutionary history. A
duplication event generates 2k consecutive segments lc(ri)lc(ri+1) . . . lc(ri+k−1)
rc(ri)rc(ri+1) . . . rc(ri+k−1) by (approximately) copying the k segments
riri+1 . . . ri+k−1 twice, where both lc(ri+j) and rc(ri+j) are approximate copies
of ri+j . See Figure 1. Assume that the n segments s1, s2, . . . sn were formed from
a locus by tandem duplications. Then, the locus had grown from a single copy
through a series of duplications. A duplication replaces a stretch of DNA contain-
ing several repeats with two identical and adjacent copies of itself. If the stretch
contains k repeats, the duplication is called a k-duplication.

riri+1...ri+k−1

lc(ri)lc(ri+1)...lc(ri+k−1) rc(ri)rc(ri+1)...rc(ri+k−1)

Fig. 1. A duplication event generates consecutive segments lc(ri) lc(ri+1) . . . lc(ri+k−1)
rc(ri) rc(ri+1) . . . rc(ri+k−1) by (approximately) copying the k segments riri+1 . . . ri+k

twice, where both lc(ri+j) and rc(ri+j) are approximate copies of ri+j

A duplication model M for tandem repeated sequences is a directed graph
that contains nodes, edges and blocks. A node in M represents a repeated seg-
ment. A directed edge (u, v) from u to v indicates that v is a child of u. A
node s is an ancestor of a node t if there is a directed path from s to t. A node
that has no outgoing edges is called a leaf; it is labeled with a given segment
si. A non-leaf node is called an internal node; it has a left child and a right
child. The root, which has only outgoing edges, represents the original copy at
the locus. A block in M represents a duplication event. Each internal node ap-
pears in a unique block; no node is an ancestor of another in a block. If the
block corresponds to a k-duplication, then it contains k nodes v1, v2, . . ., vk

from left to right. Let lc(vi) and rc(vi) be the left and right child of vi. Then,
lc(v1), lc(v2), . . . , lc(vk), rc(v1), rc(v2), . . . , rc(vk) are placed from left to right in
the model. Hence, for any i and j, 1 ≤ i < j ≤ k, the edges (vi, rc(vi)) and
(vj , lc(vj)) cross each other. However, no other edge crosses in the model. For

Approximation Algorithms for Reconstructing the Duplication History 495

simplicity, we will only draw a box for a block representing a q-duplication event
for q ≥ 2. Figure 2 gives an example. We also refer q as the size of the duplication
box. The cost on each edge in the duplication model is the hamming distance
between the two segments associated with the two ends of the edge. The cost of
the duplication model is the total cost of all edges in the model.

AAAC

AAAC

s1:AAAC AAAC AAAA

s2:AAAC s3:AAAA s4:AAAC s5:AAAA

duplication box of size 2

Fig. 2. A duplication model for S = s1s2s3s4s5, where s1 = AAAC, s2 = AAAC,
s3 = AAAA, s4 = AAAC, and s5 = AAAA

Reconstructing the Duplication History: Given S = s1, s2, . . . sn, find a
duplication model with the smallest cost.

In this paper, we only consider the cases, where the size of the duplication
box is 1 or at most 2. When the size of the duplication box is 1, we design a
polynomial time approximation scheme (PTAS). For ratio 1+ 2t

t2t−2q , the running
time is O(nk+1(f(k) + g(k))), where k = 2t − q, and f(k) and g(k) are constant
for any constant k. Our PTAS is faster than the best known algorithm in [11]. For
example, to reach ratio-1.5, our algorithm takes O(n5) time while the algorithm
in [11] takes O(n11) time. We also design a ratio-2 approximation algorithm for
the case where the size of the duplication box is at most 2. This is the first
approximation algorithm with guaranteed ratio for this case.

2 The PTAS When the Size of the Duplication Box is 1

A full phylogeny is a phylogeny in which all internal nodes are associated with
sequences. Any sequence in {s1, s2, .., sn} is called a leaf sequence. A sequence
of length m is a non-leaf sequence if it is not in {s1, s2, .., sn}. A real full k-
phylogeny is a full phylogeny with k leaves, where each internal node except
possibly the root is assigned a non-leaf sequence.

Consider a full phylogeny T , where some of the internal nodes are assigned
some leaf sequences. The full phylogeny T can be decomposed into a set of
small real full phylogenies. The roots of those (except the one on top) small
real full phylogenies are leaf sequences and they are connected via identical leaf
sequences. (See Figure 3.)

A phylogeny for n terminals is called a k-size phylogeny if the sizes of all its
real full phylogenies are at most k. The basic idea of the approximation algorithm
is to assign leaf sequences to some internal nodes so that the whole phylogeny
is decomposed into a set of small phylogenies and we do local optimization for
each small phylogeny.

496 L. Wang, Z. Wang, and Z. Chen

s1 s2

s3 s4

s5 s6

s1 s6

Fig. 3. A full phylogeny is decomposed into a set of three small real full phylogenies.
Each rectangle contains a small real full phylogeny.

Let T be a binary tree and P a path in T . We use c(T) and c(P) to represent
their costs. Let Topt be the optimal phylogeny for s1, s2, . . ., sn.

2.1 The Ratio for k = 2t

Now, we want to show that there exists a 2t-size phylogeny T for s1, s2, . . ., sn

such that the cost c(T) is at most (1 + 1
t)c(Topt). In order to prove the theorem,

we need some definitions and a preliminary lemma. Let Topt be the optimal
phylogeny for s1, s2, . . ., sn. Starting from the root, a counter-clockwise walk
along the outside of the optimal tree Topt travels through all the edges twice, one
in each direction, and comes back to the root. The cost of the clockwise walk is
twice of the optimal, i.e., 2c(Topt).

Consider an internal node v in Topt. We use l(v) and r(v) to represent the left
most and right most decedent leaves of v in Topt, respectively. Let in(T) be the
set of all internal nodes other than the root T .

For each internal node u ∈ in(Topt), there is a connecting path P (u) such
that it is from r(u) to u in the counter-clockwise walk if u is the left child of its
parent, or it is from u to l(u) if u is the right child of its parent. (See Figure 4.)

v v

l(v) r(v)r(v)l(v)

v

v1

(a) (b)

v2

Fig. 4. (a) The connecting paths of v. (b) The walk and connecting paths.

The total length of all connecting paths in the clockwise walk is at most
c(Topt). Formally, we have

Lemma 1 ∑

u∈in(Topt)

c(P (u)) ≤ c(Topt).

Approximation Algorithms for Reconstructing the Duplication History 497

Proof. The total length of the clockwise is 2c(Topt). Let v1 and v2 be the two
children of v. The path

P : r(v1), . . . , v1, v, v2, . . . , l(v2)

in the clockwise walk of Topt connects the two subtrees Topt(v1) and Topt(v2).
Deleting the two edges (v1, v) and (v, v2), we have the two connecting paths
P (v1) and P (v2), where path P (v1) in the clockwise walk is from r(v1) to v1

and P (v2) is from v2 to l(v2). Note that, for each node v in Topt, there are two
edges (v, v1) and (v, v2) in Topt.

∑

v∈in(Topt)∪r

d(v, v1) + d(v, v2) = c(Topt). (1)

By (1), the total length of all the deleted edges in the clockwise walk is c(Topt).
Therefore, the total length of the connecting paths is at most 2(Topt)−c(Topt) ≤
c(Topt). ��

Theorem 1. There exists a 2t-size phylogeny T for s1, s2, . . ., sn such that the
cost c(T) is at most (1 + 1

t)c(Topt).

Proof. Let Topt be an optimal tree. Let Vi be a set containing all nodes at level
i in Topt. We partition the nodes of Topt into t groups G0, G1, . . ., Gt−1, where

Gi =
⋃

i=j mod t

Vj .

For any node v in Gi (i = 0, 1, . . . , t − 1), define Topt(v, t) to be a subtree of
Topt rooted at v containing t + 1 levels of nodes. If v is at level k, then all the
leaves in Topt(v, t) are at level k + t. Given a subtree Topt(v, t), we can obtain
a full 2t-phylogeny STopt(v, t), where 2t is the number of leaves in Topt(v, t), as
follows: (1) We replace the sequence associated with every leaf u in Topt(v, t)
with the sequence that is on the leaf r(u) if u is the left child of its parent, or on
the leaf l(u) if u is the right child of its parent. (Note that u is an internal node
in Topt and l(u) and r(u) are leaves in Topt.) (2) any other nodes including v in
STopt(v, t) are assigned the sequence as in Topt.

Let r be the root of Topt. The set of all subtrees STopt(r, i) and STopt(v, t)
for v ∈ Gi, forms a 2t-size full phylogeny STopt[i, t] for s1, s2, . . ., sn. Here each
internal node u ∈ Gi appears as a leaf of some STopt(v, t) once, and appears
as the root of the subtree STopt(u, t) once. The full 2t-phylogenies STopt(v, t)
for v ∈ Gi are connected via the nodes associated with common sequences sq’s.
Figure 5 gives an example for t = 2. The left to right linear order among the
leaves in Topt is still kept in STopt[i, t].

Consider the cost c(STopt[i, t]) of STopt[i, t].

c(STopt[i, t]) ≤ c(Topt) +
∑

v∈Gi−r

c(P (v)),

498 L. Wang, Z. Wang, and Z. Chen

19 20 21 22 23 24 25 26 27 28 29 30 31

(a)

1

2

18

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

3

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(b)

16

4/19 5/20 6/27 7/28

4’ 5’ 6’ 7’

8 9 10 11 12 13 14 15

1

Fig. 5. (a) The tree Topt. The dark nodes are in G0. (b) The tree STopt(i, t) for t = 2
and i = 0. The connection of subtrees STopt(v, t) is via those nodes sharing common se-
quences. For example, the subtree STopt(4, 2) is connected with the subtree STopt(1, 2)
with the sequence on node 19.

where the extra cost
∑

v∈Gi−r c(P (v)) are the costs for those connecting paths
P(v) for v ∈ Gi. The total cost of the t trees ST (0, t), ST (2, t), . . ., ST (t−1, t) is

t−1∑

i=0

c(STopt(i, t)) ≤ t · c(Topt) +
t−1∑

i=0

∑

v∈Gi−r

c(P (v)) ≤ (t + 1) · c(Topt). (2)

From (4), the cost of t trees is at most (t+1) · c(Topt). Thus, we know that there
exists a STopt(i, t) whose cost c(STopt(i, t)) is at most t+1

t c(Topt) = (1+ 1
t)c(Topt).

This completes the proof of Theorem 1. ��

The Algorithm
Now, we describe our algorithm. Consider a fixed integer t. Let D(i, j, k) be the
cost of a minimum cost k-tree T (i, j, k) for segment si, si+1, . . ., sj , where i ≤ j,
such that (1) the leaves are labeled, from left to right, by si, si+1, . . ., sj ; and
(2) the top of the tree is a k-tree.

Consider the computation of D(i, j, k). The top of the tree is a k-tree that
divides the consecutive segments si, si+1, . . . , sj , denoted as (i, j), into k parts,
(k1, k2−1), (k2, k3−1), . . ., (kk−1, kk−1), (kk, kk+1), where k1 = i and kk+1 = j.

Consider the k-tree with topology Ttop at the top of T (i, j, t). The k leaves
of Ttop are si1 , si2 , . . . , sik

, where sij is either kj of kj+1 − 1 depending on the
topology Ttop, i.e., if leaf j is the left child of its parent in Ttop, then ij = kj+1−1;
if leaf j is the right child of its parent, then ij = kj . Let c(si1 , si2 , . . . , sik

, Ttop)
be the cost the k-tree at the top with topology Ttop such that sij is assigned to
the j-th leaf of Ttop.

Approximation Algorithms for Reconstructing the Duplication History 499

D(i, j, k) = c(si1 , si2 , . . . , sik
, Ttop) +

k∑

j=1

D(kj , kj+1 − 1, k). (3)

In fact, equation (3) is for the ideal case, where the top topology Ttop is a tree
F whose leaves are all at the same level and the number of leaves is k. We have
to consider the degenerated cases, where the top topology Ttop becomes a tree
obtained by deleting some subtrees of F . In that case, we have to have a formula
corresponding to (3), where if a subtree in F is deleted, we have to merge some
consecutive regions (kj , kj+1−1), . . ., (kjj , kjj+1−1) corresponding to the leaves
of the subtree into one region (sj , sjj+1 − 1). To compute D(i, j, k), we have to
consider all the degenerated case. The number of all degenerated cases is upper
bounded by 22t−1 since there are 2t − 1 internal nodes in F and each node may
become a leaf in the degenerated topology.

It follows that D(1, n, 2t) is at most (1 + 1
t) times of the optimum.

Computing D(i, j, k) needs to know k − 1 breaking points in (i, j). Thus, for
each D(i, j, k) the time required is O(nk−1(f(k)+g(k))), where f(k) is the total
number of possible degenerated cases upper bounded by 2k−1 and g(k) is the time
required for computing c(si1 , si2 , . . . , sik

, T op). Since there are O(n2) D(i, j, t)’s
for a fixed t, the total time required for the algorithm is O(nk+1(f(k) + g(k))).

Theorem 2. The algorithm is a PTAS with ratio 1 + 1
t and runs in O(n2t+1

(f(2t) +g(2t))) time.

For a ratio-1.5 algorithm, the running time of our approach is O(n5(f(2)+g(2))),
where the old algorithm in [11] requires O(n11 + n5g(r)).

2.2 The Ratio for k-Size Phylogenies

For any k > 1, k can be written as k = 2t− q for some t ≥ 2 and 0 ≤ q ≤ 2t− 1.

Theorem 3. The algorithm is a PTAS with ratio 1+ 2t

t2t−2q and runs in O(nk+1

(f(k) +g(k))) time.

To reach ratio 1.67, we needs O(n4) time, while the algorithm in [11] needs
O(n7) time.

3 A Ratio-2 Algorithm When the Size of the Duplication
Box ≤ 2

In this section, we consider the case where each block in a duplication model has
size at most 2. We give a ratio-2 algorithm for this case.

Let T be a minimum cost tree fitting a duplication model for segments
s1, s2, . . . , sn. Consider the counter-clockwise walk of T starting from s1 and
ending with sn. In this walk, if we ignore all the internal nodes and directly con-
nect the leaves (segments) according to the order in the walk, we get a spanning

500 L. Wang, Z. Wang, and Z. Chen

path for T . Obviously, if the size of all the duplication boxes is 1, then the span-
ning path is s1, s2, . . . si, si+1, . . . , sn. However, if there are size-2 duplication
boxes, the order will be different. An arbitrary order of the n segments may not
admit a duplication model and thus may not be a spanning path. Zhang et. al.
gives an algorithm to test if a given order of the segments can fit a duplication
model [4].

Let Topt be the optimal (minimum cost) tree for all possible duplication mod-
els. SPopt is the spanning path for Topt.

Lemma 2. The cost of the spanning path SPopt is at most twice of that for Topt.

From Lemma 2, if we can compute SPopt, then we get a ratio-2 algorithm. How-
ever, SPopt is defined from the optimal solution Topt and is hard to compute.
Instead, we will compute a spanning path with minimum cost among all possible
duplication models for S = s1s2 . . . sn. Note that if the size of all duplication
boxes is 1, then for any range [i, j], the set of segments sk’s with k ∈ [i, j] forms
one sub-path of the spanning path. The key idea for computing a spanning path
with minimum cost is based on the observation that the spanning path for a
duplication model can be decomposed into a set of ranges [i, j] such that for
each range [i, j], all the segments sk’s with k ∈ [i, j] form at most two sub-paths
of the spanning path.

Decomposition of the Spanning Path
We give a decomposition of the spanning path that will be used for the compu-
tation of the optimal spanning path. Let T be the tree for a duplication model.
In the decomposition, each internal node in T corresponds to a sub-path. A
sub-path is complete if the sub-path contains all the segments sk with k ∈ [i, j],
where i is the smallest index and j is the largest index in the sub-path. Two
sub-paths form a complete pair if the two sub-paths contain all the segments sk

with k ∈ [i, j], where i is the smallest sub-index, j is the largest sub-index in the
two sub-paths and one path is from si to sj′ and the other path is from si′ to
sj with i < i′ < j′ < j.

Let us consider the duplication boxes at the bottom of T . For a size-1 box
at the bottom, it corresponds to a sub-path (actually an edge) si and si+1.
For a size-2 box at the bottom, it corresponds to a complete pair (actually two
edges), (si, si+2) and (si+1, si+3). For simplicity, we use [si, sj] to represent a
complete sub-path from si to sj and use [si, sj , sk, sl] to indicate a complete
pair containing a sub-path from si to sk and a sub-path from sj to sl.

Lemma 3. Each internal node in a size-1 box of the duplication model corre-
sponds to a complete path.

Lemma 4. Each size-2 box in the duplication model corresponds to a complete
pair of paths.

Approximation Algorithms for Reconstructing the Duplication History 501

(a)
i1 i2 i3 i4 i5 i6 i7 i8

(b)
i1 i2 i3 i4 i6 i7 i8

i1 i2 i3 i6 i7 i8
(c)

i1 i2 i3 i4 i5 i6 i7 i8
(d)

Fig. 6. Cases (a) to (d)

(a)
i j k l

(b)
i j k l

Fig. 7. Cases (a) There are more than four nodes that are co-related. (b) We ‘cut’
at node i. The component shown in the dashed part in (a) and the component in (b)
share the common node i.

Let E[i, j] be the minimum cost for all complete paths [si, sj]. Let D[i, i2, i3, j]
denote the minimum cost for all complete pairs of paths [si, si2 , si3 , sj]. Let
d(si, sj) be the distance between the two segments si and sj .

Lemma 5

E[i, i] = 0; E[i, i + 1] = d(si, si+1). (4)
E[i, j] = min{ min

i<i′≤j
d(si′ , si′+1) + E[i, i′] + E[i′ + 1, j],

min
i≤i2<i3≤j

D[i, i2, i3, j] + d(si2 , si3)}. (5)

Two size-2 boxes could be connected via a node and form a component con-
taining three co-related nodes as shown in Figure 6 (a) and (b). The result-
ing configuration is shown in Figure 6 (c), where we use [si1 , si2 , si3 , si6 , si7 ,
si8] to denote the component and F [i1, i2, i3, i6, i7, i8] to denote its cost. This
case can be further extended to have four co-related nodes as shown in Fig-
ure 6 (d). We use [si1 , si2 , si3 , si4 , si5 , si6 , si7 , si8] to denote the component and
G[i1, i2, i3, i4, i5, i6, i7, i8] to denote its cost. There is no need to consider further
extension of Figure 6 (d) since a size-2 duplication event contains at most four
nodes. If there are more than four nodes that are co-related, we can ‘cut’ the
component such that it has four co-related nodes. (See Figure 7.) Thus, in order
to get Lemma 6 there are ten cases that we have to consider as shown in Figure 8.

502 L. Wang, Z. Wang, and Z. Chen

i j k1 l1 j1 k l
(a)

i j j1 k l
(b)

i j i1 j1 k l
(c)

i j k1 l1 k l
(d)

i j j1 k1 k l
(e)

i j k1k2 k3 k l
(f)

i j k1k2k3 k l
(g)

i j j1 j2 j3 j4 k l
(h)

i j k l1 l
(i)

i i1 j k l
(j)

Fig. 8. Cases (a) to (j)

Besides, we can show that

F [i1, i2, i3, , i6, i7, i8] = min
i3<i4<i6

{(E[i1, i2, i3, i4] + E[i4, i6, i7, i8]),

(E[i1, i2, i3, i4] + E[i4 + 1, i6, i7, i8] + d(si4 , si4+1))} and
G[i, j, j1, j2, j3, j4, k, l] = min

j1<l1<j2
{(E[i, j, j1, l1] + F [l1, j2, j3, j4, k, l]),

(E[i, j, j1, l1] + F [l1 + 1, j2, j3, j4, k, l] + d(sl1 , sl1+1))}.

Lemma 6. D[i, j, k, l] is the minimum of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minj<k1<l1<j1<k(D[i, j, k1, l1] + D[l1 + 1, j1, k, l] + d(sk1 , sl1+1)
+ d(sl1 , sj1))

minj<j1<k(E[i, j − 1] + E[j, j1] + E[j1 + 1, k] + E[k + 1, l]
+ d(sj−1, sj1+1) + d(sj1 , sk+1))

minj<i1<j1<k(E[i, j − 1] + E[j, i1 − 1] + D[i1, j1, k, l] + d(sj−1, si1)
+ d(si1−1, sj1))

minj<k1<l1<k(D[i, j, k1, l1] + E[l1 + 1, k] + E[k + 1, l] + d(sk1 , sl1−1)+
d(sl1 , sk+1))

minj<j1<k1<k(E[i, j − 1] + D[j, j1, k1, k] + E[k + 1, l] + d(sj−1, sj1)
+ d(sk1 , sk+1))

mini+1<k1<k2<k3<k F [i + 1, k1, k2, k3, k, l] + d(si, sk1) + d(sk2 , sk3), (j = i + 1)
minj<k1<k2<k3<k F [i, j, k1, k2, k3, k] + d(sk1 , sk2) + d(sk3 , sl), (l = k + 1)
minj<j1<j2<j3<j4<k(G[i, j, j1, j2, j3, j4, k, l] + d(sj1 , sj2) + d(sj3 , sj4)).
mink<l1<l D[i, j, k, l1] + E[l1, l])
mini<i1<j E[i, i1] + D[i1, j, k, l]}

Approximation Algorithms for Reconstructing the Duplication History 503

References

1. Boby, T., Patch, A.-M., Aves, S.J.: TRbase: a database relating tandem repeats
to disease genes for the human genome. Bioinformatics, Advance Access published
on October 12, 2004

2. Subramanian, S., Mishra, R.K., Singh, L.: Genome-wide analysis of Bkm sequences
(GATA repeats): predominant association with sex chromosomes and potential role
in higher order chromatin organization and function. Bioinformatics 19, 681–685
(2003)

3. Fitch, W.: Phylogenies constrained by cross-over process as illustrated by human
hemoglobins in a thirteen cycle, eleven amino-acid repeat in human apolipoprotein
A-I. Genetics 86, 623C644 (1977)

4. Zhang, L., Ma, B., Wang, L., Xu, Y.: Greedy method for inferring tandem dupli-
cation history. Bioinformatics 19, 1497–1504 (2003)

5. Otu, H.H., Sayood, K.: A new sequence distance measure for phylogenetic tree
construction. Bioinformatics 19, 2122–2130 (2003)

6. Macas, J., Mszros, T., Nouzov, M.: PlantSat: a specialized database for plant satel-
lite repeats. Bioinformatics 18, 28–35 (2002)

7. Lillo, F., Basile, S., Mantegna, R.N.: Comparative genomics study of inverted re-
peats in bacteria. Bioinformatics 18, 971–979 (2002)

8. Benson, G., Dong, L.: Reconstructing the duplication history of a tandem repeat.
In: Proceedings of the Seventh International Conference on Intelligent Systems for
Molecular Biology (ISMB-99), pp. 44–53 (1999)

9. Widegren, B., Arnason, U., Akusjarvi, G.: Characteristics of a conserved 1,579-bp
highly repetitive component in the killer whale, Ornicus orca. Mol. Biol. Evol. 2,
411–419 (1985)

10. Tang, M., Waterman, M.S., Yooseph, S.: Zinc Finger Gene Clusters and Tandem
Gene Duplication. Journal of Computational Biology 9(2), 429–446 (2002)

11. Jaitly, D., Kearney, P.E., Lin, G.-H., Ma, B.: Methods for reconstructing the history
of tandem repeats and their application to the human genome. J. Comput. Syst.
Sci. 65(3), 494–507 (2002)

12. Wyman, A.H., White, R.: A highly polymorphic locus in human DNA. Proc. Natl.
Acad. Sci. 77, 6745–6758 (1980)

Priority Algorithms for the Subset-Sum Problem

Yuli Ye and Allan Borodin

Department of Computer Science
University of Toronto

Toronto, ON, Canada M5S 3G4
{y3ye,bor}@cs.toronto.edu

Abstract. Greedy algorithms are simple, but their relative power is
not well understood. The priority framework [5] captures a key notion
of “greediness” in the sense that it processes (in some locally optimal
manner) one data item at a time, depending on and only on the current
knowledge of the input. This algorithmic model provides a tool to assess
the computational power and limitations of greedy algorithms, especially
in terms of their approximability. In this paper, we study priority algo-
rithm approximation ratios for the Subset-Sum Problem, focusing on the
power of revocable decisions. We first provide a tight bound of α ≈ 0.657
for irrevocable priority algorithms. We then show that the approximation
ratio of fixed order revocable priority algorithms is between β ≈ 0.780
and γ ≈ 0.852, and the ratio of adaptive order revocable priority algo-
rithms is between 0.8 and δ ≈ 0.893.

1 Introduction

Greedy algorithms are of great interest because of their simplicity and efficiency.
In many cases they produce reasonable (and sometimes optimal) solutions. Sur-
prisingly, it is not obvious how to formalize the concept of a greedy algorithm and
given such a formalism how to determine its power and limitations with regard to
natural combinatorial optimization problems. Borodin, Nielson and Rackoff [5]
suggested the priority model which provides a rigorous framework to analyze
greedy-like algorithms. In this framework, they define fixed order and adaptive
(order) priority algorithms, both of which capture a key notion of greedy algo-
rithms in the sense that they process one data item at a time. For fixed order
priority, the ordering function used to evaluate the priority of a data item is
fixed before execution of the algorithm, while for adaptive priority, the ordering
function can change during every iteration of the algorithm. By restricting al-
gorithms to this framework, approximability results and limitations1 for many
problems have been obtained; for example, scheduling problems [5,18], facility

1 We note that similar to the study of online competitive analysis, negative priority
results are in some sense incomparable with hardness of approximation results as
there are no explicit complexity considerations as to how a priority algorithm can
choose its next item and how it decides what to do with that item. Negative results
are derived from the structure of the algorithm.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 504–514, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Priority Algorithms for the Subset-Sum Problem 505

location and set cover [1], job interval selection (JISP and WJISP) [12], and
various graph problems [6,9]. The original priority framework specified that de-
cisions (being made for the current input item) are irrevocable. Even within this
restrictive framework, the gap between the best known algorithm and provable
negative remains significant for most problems. Following [10,4], Horn [12] ex-
tended the priority framework to allow revocable acceptances when considering
packing problems. That is, input items could be accepted and then later rejected,
the only restriction being that a feasible solution is maintained at the end of each
iteration. The revocable (decision) priority model is intuitively more powerful
and almost as conceptually simple as the irrevocable model and it is perhaps
surprising that it is not a more commonly used type of algorithm. Erlebach and
Spieksma [10] and independently Bar-Noy et al. [4] provide a simple revocable
priority approximation algorithm for the WJISP problem, and Horn [12] formal-
izes this model and provides an approximation upper bound2 of ≈ 1/(1.17) for
the special case of the weighted interval scheduling problem. Moore’s [17] opti-
mal “greedy algorithm” for the unweighted throughput maximization problem
without release times (i.e. 1||

∑
j Ūj in Graham’s scheduling notation) can be

implemented as a fixed order revocable priority algorithm. It is not difficult to
show that this problem cannot be solved optimally by an irrevocable priority
algorithm.

The Subset-Sum Problem (SSP) is one the most fundamental NP-complete
problems [11], and perhaps the simplest of its kind. Approximation algorithms
for SSP have been studied extensively in the literature. The first FPTAS (for
the more general knapsack problem) is due to Ibarra and Kim [13], and the best
current approximation algorithm is due to Kellerer et al. [15], having time and
space complexity O(min{n

ε , n+ 1
ε2 log 1

ε}) and O(n+ 1
ε) respectively. Greedy-like

approximation algorithms have also been studied for SSP; an algorithm called
greedy but using multiple passes, has approximation ratio 0.75, see [16]. In this
paper, we study priority algorithms for SSP. Although in some sense one may
consider SSP to be a “solved problem”, the problem still presents an interesting
challenge for the study of greedy algorithms. We believe the ideas employed for
SSP will be applicable to the study of simple algorithms for other (say schedul-
ing) problems which are not well understood, such as the throughput maximiza-
tion problem (with release times) and some of its more tractable subcases. In
particular, can we derive priority approximation algorithms for throughput max-
imization when all jobs have a fixed processing time (i.e. 1|rj , pj = p|

∑
j wj Ūj)?

(We note that Horn’s [12] 1/(1.17) bound also applies to this problem.) Bap-
tiste [3] optimally solves this special case of throughput maximization using a
dynamic programming algorithm with time complexity O(n7). (See also Chuzhoy
et al. [8] and Chrobak et al. [7] for additional throughput maximization results.)

In spite of the conceptual simplicity of the SSP problem and the priority
framework, there is still a great deal of flexibility in how one can design algo-
rithms, both in terms of the ordering and in terms of which items to accept and

2 As we are considering maximization problems in this paper, all approximation ratios
will be ≤ 1 so that negative results become upper bounds on the ratio.

506 Y. Ye and A. Borodin

(for the revocable model) which items to discard in order to fit in a new item.
We give a tight bound of α ≈ 0.657 for irrevocable priority algorithms showing
that in this case adaptive ordering does not help. For fixed order revocable algo-
rithms, we can show that the best approximation ratio is between β ≈ 0.780 and
γ ≈ 0.852; for adaptive revocable priority algorithms, the best approximation
ratio is between 0.8 and δ ≈ 0.893. All omitted proofs can be found in [19].

2 Definitions and Notation

We use bold font letters to denote sets of data items. For a given set R of data
items, we use |R| to denote its cardinality and ‖R‖, its total weight. For a data
item u, we use u to represent the singleton set {u} and 2u, the multi-set {u, u};
we also use u to represent the weight of u since it is the only attribute. The
term u here is an overloaded term, but the meaning will become clear in the
actual context. For set operations, we use ⊕ to denote set addition, and use /
to denote set subtraction.

2.1 The Subset-Sum Problem

Given a set of n data items with positive weights and a capacity c, the max-
imization version of SSP is to find a subset such that the corresponding total
weight is maximized without exceeding the capacity c. Without loss of gener-
ality, we make two assumptions. First of all, the weights are all scaled to their
relative values to the capacity; hence we can use 1 instead of c for the capacity.
Secondly, we assume each data item has weight ∈ (0, 1]. An instance of SSP
is a set I = {u1, u2, . . . , un} of n data items, where the set I is the input set,
and u1, u2, . . . , un are the data items. A feasible solution is a subset B of I such
that ‖B‖ ≤ 1. An optimal solution is a feasible solution with maximum weight.
Let A be an algorithm for SSP, we denote ALG the solution achieved by A and
OPT, the optimal solution, then the approximation ratio of A on that instance
is denoted by ρ = ‖ALG‖

‖OPT‖ . The approximation ratio of A is the infimum of the
set of ratios achieved by A over all instances of SSP.

2.2 Priority Model

We base our terminology and model on that of [5], and start with the class of
fixed order irrevocable priority algorithms for SSP. For a given instance, a fixed
order irrevocable priority algorithm maintains a feasible solution B throughout
the algorithm. The structure of the algorithm3 is as follows:
3 We formalize the allowable (fixed) orderings by saying that the algorithm specifies

a total ordering on all possible input items. The items that constitute the actual
input set I will then inherit this ordering. That is, the priority model insists that
the ordering satisfies Arrow’s Independence of Irrelevant Attributes IIA Axion [2].
For adaptive orderings the algorithm can construct a new IIA ordering based on all
the items that it has already seen as well as those items it can deduce are not in the
input set.

Priority Algorithms for the Subset-Sum Problem 507

Fixed Order Irrevocable Priority

Ordering: Determine a total ordering of all possible data items
while I is not empty

next := index of the data item in I that comes first in the ordering
Decision: Decide whether or not to add unext to B, and then remove unext

from I
end while

An adaptive irrevocable priority algorithm is similar to a fixed order one, but
instead of looking at a data item according to some pre-determined ordering, the
algorithm is allowed to reorder the remaining data items in I at each iteration.
This gives the algorithm an advantage since now it can take into account the
information that has been revealed so far to determine which is the best data
item to consider next. The structure of an adaptive irrevocable priority algorithm
is described as follows:

Adaptive Irrevocable Priority

while I is not empty
Ordering: Determine a total ordering of all possible (remaining) data items
next := index of the data item in I that comes first in the ordering
Decision: Decide whether or not to add unext to B, and then remove unext

from I
end while

The above defined priority algorithms are “irrevocable” in the sense that once
a data item is admitted to the solution it cannot be removed. We can extend
our notion of “fixed order” and “adaptive” to the class of revocable priority
algorithms, where revocable decisions on accepted data items are allowed.
Accordingly, those algorithms are called fixed order revocable and adaptive revo-
cable priority algorithms respectively. The extension4 to revocable acceptances
provides additional power; for example, as shown in [14], online irrevocable
algorithms for SSP cannot achieve any constant bound approximation ratio,
while online revocable algorithms can achieve a tight approximation ratio of√

5−1
2 ≈ 0.618.

2.3 Adversarial Strategy

We utilize an adversary in proving approximation bounds. For a given priority
algorithm, we run the adversary against the algorithm in the following scheme.
At the beginning of the algorithm, the adversary first presents a set of data
items to the algorithm, possibly with some data items having the same weight.
Furthermore, our adversary promises that the actual input is contained in this
set5. Since weight is the only input parameter, the algorithm give the same pri-
4 This extension applies to priority algorithms for packing problems.
5 This assumption is optional. The approximation bounds clearly hold for a stronger

adversary.

508 Y. Ye and A. Borodin

ority to all items having the same weight6. At each step, the adversary asks the
algorithm to select one data item in the remaining set and make a decision on
that data item. Once the algorithm makes a decision on the selected item, the
adversary then has the power to remove any number of data items in the re-
maining set; this repeats until the remaining set is empty, which then terminates
the algorithm.

For convenience, we often use a diagram to illustrate an adversarial strategy.
A diagram of an adversarial strategy is an acyclic directed graph, where each
node represents a possible state of the strategy, and each arc indicates a possible
transition. Each state of the strategy contains two boxes. The first box indicates
the current solution maintained by the algorithm, the second box indicates the
remaining set of data items maintained by the adversary. A state can be either
terminal or non-terminal. A state is terminal if and only if it is a sink, in the sense
that the adversary no longer need perform any additional action; we indicate
a terminal state using bold boxes. Each transition also contains two lines of
actions. The first line indicates the action taken by the algorithm and the second
line indicates the action taken by the adversary. Sometimes the algorithm may
need to reject certain data items in order to accept a new one, so an action may
contain multiple operations which occur at the same time; we use 0 if there
is no action. Note that to calculate a bound for the approximation ratio of an
algorithm, it is sufficient to consider the approximation ratios achieved in all
terminal states. We will see such diagrams in Sect. 3.

3 Priority Algorithms and Approximation Bounds

We first define four constants that will be used for our results. Let α, β, γ and δ
be the real roots (respectively) of the equations 2x3+x2−1 = 0, 2x2 +x−2 = 0,
10x2 − 5x − 3 = 0 and 6x2 − 2x − 3 = 0 between 0 and 1. The corresponding
values are shown in Table 1.

Table 1. Corresponding values

name α β γ δ

value ≈ 0.657 ≈ 0.780 ≈ 0.852 ≈ 0.893

We now give a tight bound for irrevocable priority algorithms. It is interesting
that there is no approximability difference between fixed order and adaptive
irrevocable priority algorithms.

Theorem 1. There is a fixed order irrevocable priority algorithm for SSP with
approximation ratio α, and every irrevocable priority algorithm for SSP has ap-
proximation ratio at most α.
6 Technically we can use an item number identifier to further distinguish items, but

by providing sufficiently many copies of an item the adversary can effectively achieve
what the statement claims.

Priority Algorithms for the Subset-Sum Problem 509

The case for revocable priority algorithms is more interesting. The ability to
make revocable acceptances gives the algorithm a certain flexibility to “regret”.
The data items admitted into the solution are never “safe” until the termination
of the algorithm. Therefore, if there is enough “room”, it never hurts to accept
a data item no matter how “bad” it is, as we can always reject it later at any
time and with no cost. For the rest of the paper, we assume our algorithms will
take advantage of this property. We start with fixed order revocable priority
algorithm by giving two tight bounds for non-increasing order (i.e. items are
ordered so that u1 ≥ u2 . . . ≥ un) and non-decreasing order revocable priority
algorithms.

Theorem 2. There is a non-increasing order revocable priority algorithm for
SSP that has approximation ratio α, and every such algorithm has approximation
ratio at most α. (Note that the simple ordering here is different from the fixed
order irrevocable algorithm of Theorem 1.)

Theorem 3. There is a non-decreasing order revocable priority algorithm for
SSP that has approximation ratio β, and every such algorithm has approximation
ratio at most β.

The improvement using non-decreasing order is perhaps counter-intuitive 7 as
one might think it is more flexible to fill in with small items at the end. Next,
we give a approximation bound for any fixed order revocable priority algorithm;
this exhibits the first approximation gap we are unable to close. The technique
used in the proof is based on a chain of possible item priorities. It turns out, in
order to achieve certain approximation ratio, some data items must be placed
before some other data items. This order relation is transitive and therefore, has
to be acyclic.

Theorem 4. No fixed order revocable priority algorithm of SSP can achieve
approximation ratio better than γ.

Proof. Let u1 = 0.2, u2 = 1
2γ − 1

10 ≈ 0.326, u3 = 0.5, and u4 = 0.8. For a data
item u, we denote by rank(u) its priority. There are four cases:

1. If rank(u4) > rank(u3), then the adversarial strategy is shown in Fig. 1.
If the algorithm terminates via state s1, then

ρ =
‖ALG‖
‖OPT‖ =

u3

u4
< γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖
‖OPT‖ ≤

u4

2u3
= u4 < γ.

7 As another example, in the identical machines makespan problem, it is provably
advantageous to consider the largest items first.

510 Y. Ye and A. Borodin

s2

u3 ⊕u3,�u4
�u3

u3u4

�
⊕u3,�u3

u4 2u3

s1

Fig. 1. Adversarial strategy for rank(u4) > rank(u3)

s1 �
⊕u2,�u2⊕u2,�u3

�u2

u2 2u2u3 u3 u2 u2

s2

2u2

Fig. 2. Adversarial strategy for rank(u3) > rank(u2)

2. If rank(u3) > rank(u2), then the adversarial strategy is shown in Fig. 2.
If the algorithm terminates via state s1, then

ρ =
‖ALG‖
‖OPT‖ =

2u2

u2 + u3
=

γ − 1
5

1
2 + 1

2γ − 1
10

=
10γ − 2
5γ + 4

< γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖
‖OPT‖ ≤

u2 + u3

3u2
=

1
2 + 1

2γ − 1
10

3
2γ − 3

10

=
5γ + 4
15γ − 3

< γ.

3. If rank(u2) > rank(u1), then the adversarial strategy is shown in Fig. 3.

u1

�
⊕u1,�u1

�
⊕u1,�u1

�
⊕u1,�u1

⊕u1,�u2
�3u1

u12u2 u12u2 2u1

2u2 u1

⊕u1,�u2

s1 s2u2 2u1

2u2 u1 4u1 3u1

�2u1

⊕u1,�u2
�u1

Fig. 3. Adversarial strategy for rank(u2) > rank(u1)

If the algorithm terminates via state s1, then

ρ =
‖ALG‖
‖OPT‖ ≤

2u1 + u2

u1 + 2u2
=

2
5 + 1

2γ − 1
10

1
5 + γ − 1

5

=
1
2γ + 3

10

γ
=

5γ + 3
10γ

= γ.

If the algorithm terminates via state s2, then

ρ =
‖ALG‖
‖OPT‖ ≤

u1 + 2u2

5u1
= u1 + 2u2 =

1
5

+ γ − 1
5

= γ.

4. If rank(u1) > rank(u2) > rank(u3) > rank(u4), then the adversarial strat-
egy is shown in Fig. 4.
If the algorithm terminates via state s1, then

ρ =
‖ALG‖
‖OPT‖ =

u1 + u3

u2 + u3
=

1
5 + 1

2
1
2γ − 1

10 + 1
2

=
7

5γ + 4
< γ.

Priority Algorithms for the Subset-Sum Problem 511

s1

u1 u3 u3 u4u2

�u4

⊕u3,�u2 ⊕u3,�u1
�

u2u1 u3 u4

s2

Fig. 4. Adversarial strategy for rank(u1) > rank(u2) > rank(u3) > rank(u4)

If the algorithm terminates via state s2, then

ρ =
‖ALG‖
‖OPT‖ ≤

u2 + u3

u1 + u4
= u2 + u3 =

1
2
γ − 1

10
+

1
2

< γ.

As a conclusion, no fixed order revocable priority algorithm of SSP can achieve
approximation ratio better than γ. This completes the proof. ��

Finally, we study adaptive revocable priority algorithms. This is the strongest
class of algorithms studied in this paper and arguably represents the ultimate
approximation power of greedy algorithms (for packing problems). We show
that no such algorithm can achieve an approximation ratio better than δ, and
then we develop a relatively subtle algorithm having approximation ratio 0.8 in
Theorem 6, thus leaving another gap in what is provably the best approximation
ratio possible.

Theorem 5. No adaptive revocable priority algorithm of SSP can achieve ap-
proximation ratio better than δ.

Proof. Let u1 = 1
3δ ≈ 0.298 and u2 = 0.5. For a given algorithm, we utilize

the following adversary strategy shown in Fig. 5. If the algorithm terminates via
state s1 or s2, then

ρ =
‖ALG‖
‖OPT‖ ≤

3u1

2u2
= 3u1 = δ.

2u2

2u2

u1

u1

u1

u1

u2

u2

u2

u2

⊕u1

⊕u2

⊕u2

2u1

3u1

3u1

2u1

2u12u2 3u1

u1

u1 u2

2u2 2u1

u1 2u1

u2

⊕u1

⊕u1

⊕u1,�u2⊕u1,�u1⊕u1⊕u2,�u2 ⊕u2,�u1

⊕u2,�2u1 ⊕u2,�u2

�u2

�u2

�u2 �u1

�u2

s1 s3 s5

s2s4

�

�

� � �

�

�

3u1

Fig. 5. Adversarial strategy for adaptive revocable priority algorithms

512 Y. Ye and A. Borodin

If the algorithm terminates via state s3 or s4, then

ρ =
‖ALG‖
‖OPT‖ ≤

u1 + u2

3u1
=

1
3δ + 1

2

δ
=

2δ + 3
6δ

= δ.

If the algorithm terminates via state s5, then

ρ =
‖ALG‖
‖OPT‖ =

2u1

u1 + u2
=

2
3δ

1
3δ + 1

2

=
4δ

2δ + 3
< δ.

In all three cases, the adversary forces the algorithm to have approximation ratio
no better than δ; this completes the proof. ��

Our 0.8 approximation adaptive priority algorithm is facilitated by a few simpli-
fying observations. First of all, since we are targeting a ratio of 0.8, the algorithm
can terminate whenever it detects an item u in the remaining input such that a
subset of (B⊕u) has total weight≥ 0.8; such an item is adaptively given the high-
est priority and we call this a terminal condition. In our algorithm description,
it is understood that the algorithm first adaptively checks for such a condition,
and terminates if it is satisfied. Note that the running time of checking such
condition is bounded by a constant. Secondly, data items outside (0.2, 0.8) are
not needed for the analysis of the algorithm. That is, items in [0.8, 1] trivialize
the problem and items in (0, .2] can be considered at the end and added to B
(if necessary) to achieve the desired bound. Finally, we assume the current set
of accepted items B operates in one of the following four modes:

1. Queue Mode: In this mode, accepted items are discarded in the FIFO order
to accommodate the new data item u.

2. Queue_1 Mode: In this mode, the first accepted item is never discarded, the
rest data items are discarded in the FIFO order to accommodate the new
data item u.

3. Stack Mode: In this mode, accepted items are discarded in the FILO order
to accommodate the new data item u.

4. Optimum Mode: In this mode, accepted items are discarded to maximize ‖B‖;
the new data item u may also be discarded for this purpose.

We use Bmode to represent the operational mode of B. The algorithm can switch
among these four modes during the processing of data items; we do not explicitly
mention in the algorithm what data items are being discarded since it is well-
defined under its operational mode.

The algorithm uses an ordering of data items which is determined by its
distance to 0.3, i.e., the closer a data item to 0.3, the higher its priority is,
breaking tie arbitrarily. Note that by the first observation given earlier, this
ordering may be interrupted if at any point of time a terminal condition is
satisfied, so this is not a fixed order priority algorithm. The algorithm is described
below.

Priority Algorithms for the Subset-Sum Problem 513

Algorithm ADAPTIVE

1: B := ∅;
2: if the first data item is in (0.2, 0.35) then
3: Bmode := Queue;
4: else
5: Bmode := Queue_1;
6: end if
7: while I contains a data item ∈ (0.2, 0.4] do
8: let u be the next data item in I;
9: I := I/ u;

10: accept u;
11: end while
12: if B contains exactly three data items and all are ∈ (0.2, 0.3] then
13: Bmode := Stack;
14: else
15: Bmode := Optimum;
16: end if
17: while I contains a data item ∈ (0.4, 0.8) do
18: let u be the next data item in I;
19: I := I/ u;
20: accept u;
21: end while

Theorem 6. Algorithm ADAPTIVE achieves approximation ratio 0.8 for SSP.

It is seemingly a small step from a 0.78 algorithm to a 0.8 algorithm, but the
latter algorithm requires a substantially more refined approach and detailed
analysis. The detailed analysis can be found in the full paper. The merit, we
believe, in studying such a class of “simple algorithms” is that the simplic-
ity of the structure suggests algorithmic ideas and allows a careful analysis of
such algorithms. Limiting ourselves to simple algorithmic forms and exploiting
the flexibility within such forms may very well give us a better understand-
ing of the structure of a given problem and a better chance to derive new
algorithms.

4 Conclusion

We analyze different types of priority algorithms for SSP leaving open two ap-
proximability gaps, one for fixed order and one for adaptive revocable priority
algorithms. It is interesting that such gaps and non-trivial algorithms exist for
such a simple class of algorithms and such a basic problem as SSP. We opti-
mistically believe that surprisingly good algorithms can be designed within the
revocable priority framework for problems which are currently not well under-
stood.

514 Y. Ye and A. Borodin

References

1. Angelopoulos, S., Borodin, A.: On the power of priority algorithms for facility
location and set cover. Algorithmica 40, 271–291 (2004)

2. Arrow, K.: Social Choice and Individual Values. Wiley, Chichester (1951)
3. Baptiste, P.: Polynomial time algorithms for minimizing the weighted number of

late jobs on a single machine with equal processing times. Journal of Scheduling 2,
245–252 (1999)

4. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating throughput in real-
time scheduling. SIAM Journal of Computing 31, 331–352 (2001)

5. Borodin, A., Nielsen, M., Rackoff, C.: (Incremental) priority algorithms. Algorith-
mica 37, 295–326 (2003)

6. Borodin, A., Boyar, J., Larsen, K.: Priority algorithms for graph optimization
problems. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp.
126–139. Springer, Heidelberg (2005)

7. Chrobak, M., Durr, C., Jawor, W., Kowalik, L., Kurowski, M.: On scheduling equal
length jobs to maximize throughput. To appear in Journal of Scheduling.

8. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job
interval scheduling problem and related scheduling problems. In: Proceedings of
42nd Annual IEEE Symposium of Foundations of Computer Science, pp. 348–356.
IEEE Computer Society Press, Los Alamitos (2001)

9. Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. In:
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 381–390. ACM Press, New York (2004)

10. Erlebach, T., Spieksma, F.: Interval selection: Applications, algorithms, and lower
bounds. Journal of Algorithms 46, 27–53 (2003)

11. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco (1979)

12. Horn, S.: One-pass algorithms with revocable acceptances for job interval selection.
Master’s thesis, University of Toronto (2004)

13. Ibarra, O., Kim, C.: Fast approximation algorithms for the knapsack and sum of
subset problem. Journal of the ACM 22, 463–468 (1975)

14. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002)

15. Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.: An efficient fully polyno-
mial approximation scheme for the subset-sum problem. Journal of Computer and
System Science 66, 349–370 (2003)

16. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley and Sons, Chichester (1990)

17. Moore, J.: An n-job, one machine sequencing algorithm algorithm for minimizing
the number of late jobs. Management Science 15, 102–109 (1968)

18. Regev, O.: Priority algorithms for makespan minimization in the subset model.
Information Processing Letters 84, 153–157 (2002)

19. Ye, Y., Borodin, A.: Priority algorithms for the subset-sum problem. Technical
Report, University of Toronto (2007) http://www.cs.toronto.edu/∼bor

http://www.cs.toronto.edu/~bor

Distributed Approximation Algorithms for

Weighted Problems in Minor-Closed Families�

A. Czygrinow1 and M. Hańćkowiak2

1 Department of Mathematics and Statistics
Arizona State University

Tempe, AZ 85287-1804, USA
andrzej@math.la.asu.edu

2 Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań, Poland

mhanckow@amu.edu.pl

Abstract. We give efficient distributed approximation algorithms for
weighted versions of the maximum matching problem and the minimum
dominating set problem for graphs from minor-closed families. To com-
plement these results we indicate that no efficient distributed algorithm
for the minimum weight connected dominating set exists.

1 Introduction

Efficient distributed algorithms for only very few graph-theoretic problems are
known. At the same time there has been much more success in designing effi-
cient distributed algorithms in case the underlying topology of the network has
additional properties. For example, many problems can be solved efficiently in
constant maximum degree graphs and some problems admit rather easy dis-
tributed approximations in graphs of bounded arboricity (for example in planar
graphs). In this paper, we will study distributed complexity of three funda-
mental problems in proper minor-closed families of graphs. We will show that
the maximum-weight matching problem and the minimum-weight dominating
set problem admit efficient distributed approximations but the minimum-weight
connected dominating set problem does not. This extends and complements the
results from [3] where distributed complexity of unweighted versions of the above
problems is analyzed. Note however that algorithms for weighted problems are
significantly different than the ones from [3]. In fact, even the distributed com-
plexity of weighted and unweighted problems can be different. For example, in
[3] we proved that the minimum-connected dominating set problems admits an
efficient distributed approximation in connected graphs which come from minor-
closed families. This is not the case for the weighted analog as we indicate in
the last section of this paper. The algorithms for weighted versions of the maxi-
mum matching and the minimum dominating set problems are in turn based on
a completely new and provably more powerful partitioning algorithm than the
corresponding clustering procedure in [3].
� This work was supported by grant N206 017 32/2452 for years 2007-2010.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 515–525, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

516 A. Czygrinow and M. Hańćkowiak

1.1 Terminology and Notation

We will consider the message-passing distributed model (see Linial [10]). In
this model, network is represented by an undirected graph with vertices cor-
responding to processors, and edges corresponding to communication links be-
tween processors. The network is synchronized and computations proceed in
discrete rounds. In a single round a vertex can send and receive messages from
its neighbors, and can perform some local computations. Neither the amount of
local computations nor the lengths of messages are restricted in any way. We will
also assume that nodes in the network have unique identifiers which are positive
integers from {1, . . . , |G|} where |G| is the order of G and is globally known.
Although different possible measures of efficiency of a distributed algorithm can
be assumed, following [10] we call a distributed algorithm efficient if it runs in
a poly-logarithmic (in the order of the graph) number of rounds. Consequently,
if the diameter of the underlying network is poly-logarithmic then any of the
above problems admits a trivial efficient solution. In this paper, we shall focus
on distributed approximation algorithms for minor-closed families. All graphs
are simple and in the graph-theoretic terminology we will follow [5]. A graph H
is called a minor of G if it can be obtained from a subgraph of G by a series
of edge contractions. A family C is called minor-closed if for any graph G ∈ C
every minor of G is also in C. A family C is proper if there is a graph G which
is not in C and is non-trivial if it contains a graph with at least one edge. We
will always assume that our minor-closed family is both proper and non-trivial.
Although the most important example of a minor-closed family is certainly the
class of planar graphs, algorithmic questions for different minor-closed classes
of graphs, like the family of graphs with a bounded tree-width or a bounded
genus, have recently attracted attention. Let C be a minor-closed family and let
ρ := supG∈C

||G||
|G| be the edge density of C. It is known (see for example [12])

that ρ is finite if and only if C is a proper minor-closed family. We will write
Cρ for a minor-closed family with edge density ρ and assume that ρ is known
by an algorithm. A matching in graph G is a subset M of edges of G with no
two edges from M sharing a vertex. For an edge-weighted graph (G, ω̄) with
ω̄ : E(G) → R+ ∪{0} we denote by β(G) the maximum weight of a matching in
G, that is β(G) = maxM

∑
e∈M ω̄(e). A dominating set in a graph G is a subset

D of vertices such that for every vertex v /∈ D a neighbor of v is in D. For a
vertex-weighted graph (G, ω) with ω : V (G) → R+ ∪ {0} we denote by γ(G)
the minimum weight of a dominating set in G, that is γ(G) = minD

∑
v∈D ω(v).

Finally, a dominating set D is called a connected dominating set in G if it is a
dominating set and the subgraph of G induced by D is connected.

We will denote by |G| the order of G, that is the number of vertices of G and by
||G|| the size of G, that is the number of edges of G. As already noted we assume
that each vertex v has a unique identifier ID(v) and ID : V (G) → {1, . . . , |G|}.
Since our partitioning algorithm will be applied to an auxiliary graph of G and it
will be important to distinguish between the range of identifiers in the auxiliary
graph and the order of the graph we denote by ID(H) =

⋃
v∈V (H){ID(v)}.

Distributed Approximation Algorithms for Weighted Problems 517

1.2 Results

We give distributed approximation algorithms for the maximum-weight match-
ing problem and for the minimum-weight dominating set problem for graphs
from a minor-closed family Cρ. In the case of the maximum-weight matching
problem we will give a distributed algorithm which given a positive integer d
finds in an edge-weighted graph (G, ω̄) with G ∈ Cρ a matching M of weight

ω̄(M) ≥
(
1− 1

logd |G|

)
β(G). The algorithm runs in a poly-logarithmic number

of rounds. (Theorem 4.) For the minimum-weight dominating set problem, we
will prove that there is a distributed algorithm which given a positive integer
d finds in vertex-weighted graph (G, ω) with G ∈ Cρ a dominating set D such

that ω(D) ≤
(
1 + 1

logd |G|

)
γ(G). This algorithm again runs in a poly-logarithmic

number of rounds. (Theorem 5.) For the minimum-weight connected dominating
set problem we indicate that to accomplish any finite multiplicative approxima-
tion error, Ω(|G|) rounds are needed. Both algorithms use a vertex partitioning
procedure which partitions the vertex set of a graph G into sets V1, . . . , Vl so
that each G[Vi] has a poly-logarithmic diameter and the weight of the border
vertices is small with respect to the total weight of G (see Corollary 3 for a
precise statement).

1.3 Related Work

We will briefly put our results in a more general context. The reader is directed
to Elkin’s survey [6] for a more comprehensive overview of distributed approx-
imation algorithms. Let us first note that efficient distributed algorithms that
find exact solutions to the above problems do not exist (even for unweighted
analogs). For example, the minimum dominating set problem and the maximum
matching problem when restricted to a cycle G cannot be found in o(|G|) rounds
([10]). In addition, to achieve a poly-logarithmic approximation ratio for mini-
mum dominating set at least max{Ω(

√
log |G|/ log log |G|)Ω(log Δ/ log log Δ)}

rounds are required ([8]).
Distributed approximation algorithms for planar graphs were studied in [2]

and [4]. In particular, [2] contains an efficient distributed approximation for the
maximum-weight independent set problem in planar graphs and [3] contains
efficient distributed algorithms for unweighted versions of the three problems in
minor-closed families of graphs.

1.4 Organization

In the rest of the paper we will first discuss vertex partitioning problems in
weighted graphs and give our main auxiliary procedure (Section 2). Then, in
Section 3, we give our approximation algorithms.

2 Partitioning of Vertex-Weighted Graphs

We will start with fixing some general graph-theoretic terminology. For a graph
G, V (G) will denote the vertex set of G and E(G) will denote the edge set of

518 A. Czygrinow and M. Hańćkowiak

G. If U, U ′ are two disjoint subsets of V (G) then EG(U, U ′) denotes the set of
edges with one endpoint in U , another in U ′. For v ∈ V (G), N(v) denotes the
set of neighbors of v in G and if U ⊆ V (G) then NG(U) :=

⋃
u∈U N(u) \ U .

For two vertices u, u′, distG(u, u′) is the length of the shortest path between u
and u′, the diameter of G, diamG, is the maximum of distG(u, u′) over all pair
(u, u′), and for sets U, U ′, we set distG(U, U ′) := minu∈U,u′∈U ′ distG(u, u′). In
addition for a subgraph H of G we will consider two different diameters of H .
The strong diameter of H , SDiamG(H), will be defined as as diamH and the
weak diameter of H , WDiamG(H), will be defined as maxu,u∈V (H)distG(u, u′).
Clearly WDiamG(H) ≤ SDiamG(H).

Let Cρ be a minor-closed family of graphs G with the edge-density ρ, that is

ρ = sup
||G||
|G|

where the supremum is taken over all graphs from Cρ. It is known (see [12] for this
and many other results) that ρ is finite if and only if Cρ is a proper minor-closed
family. In addition, in the paper, we will always assume that Cρ is proper and ρ > 0.

Although vast majority of the paper is concerned with vertex-weighted graphs,
we will start with a brief discussion that shows a connection between distributed
partitioning problems for vertex-weighted and edge-weighted graphs (Section
2.1). In Section 2.2, we will give an efficient distributed partitioning algorithm
for vertex-weighted graphs from Cρ. The distributed algorithm is deterministic
but we assume that both |G| and ρ are known to all vertices of G.

2.1 Weighted Graphs

For a graph G ∈ Cρ we will consider two types of weight functions on G. Pair
(G, ω) with ω : V (G) → R+ ∪ {0} will be called vertex-weighted graph G and
the pair (G, ω̄) with ω̄ : E(G) → R+ ∪ {0} will be called edge-weighted graph G.
We need some more notation and terminology. Let (G, ω) be a vertex-weighted
graph. For a set S ⊆ V (G) we define ω(S) :=

∑
v∈S ω(v). A vertex of S is called

a border vertex in S if it has a neighbor in V (G)\S. The set of all border vertices
in S is denoted by ∂(S) and for a partition P = (V1, V2, . . . , Vl) of V (G) we set
∂(P) :=

⋃l
i=1 ∂(Vi). In the case of an edge-weighted graph (G, ω̄) we define ∂̄(S)

to be the set of all edges with one endpoint in S and another in V (G) \S. Then
for a partition P = (V1, V2, . . . , Vl) of V (G), ∂̄(P) :=

⋃l
i=1 ∂̄(Vi).

Definition 1. Let (G, ω) be a vertex-weighted graph and let a(·), b(·) be functions
to R. A partition P = (V1, V2, . . . , Vl) of V (G) is called an (a, b)-vertex-weight
partition if the following two conditions are satisfied:

– For i = 1, . . . , l, G[Vi] is connected and WDiamG(G[Vi]) ≤ a(|G|).
– ω(∂(P)) ≤ ω(V (G))/b(|G|).

Similarly we define an (a, b)-edge-weight partition of (G, ω̄). We will be almost
exclusively interested in cases when both a and b are poly-logarithmic functions.

Distributed Approximation Algorithms for Weighted Problems 519

In [2], a distributed algorithm that finds a (log |G|, log |G|)- edge-weight par-
tition of an edge-weighted planar graph G is given. The algorithm runs in a
poly-logarithmic number of rounds. This edge-weight partition can be used to
give distributed approximation algorithms for the maximum-weight independent
set problem. In addition, a similar procedure can be used to give distributed ap-
proximations for the unweighted versions of the maximum matching problem
or the minimum dominating set problem in graphs G which come from a fixed
minor-closed family. On the other hand, the edge-weight partition property is
not strong enough to yield approximations for weighted analogs of the maximum
matching problem or the minimum dominating set problem. As we will show in
the next section, vertex-weight partition can be found by a distributed algorithm
efficiently and can be used to design approximations for the weighted versions
of the above two problems. Let us first note however the vertex-weight partition
is indeed stronger than an edge-weight partition.

2.2 Partitioning Algorithm

We will now give an algorithm which finds an (a, b)-vertex-weight partition. Let
us start by fixing some additional terminology. Let G be a graph from Cρ and let
ω : V (G) → R+∪{0}. A small modification (change in the number of iterations)
of the algorithms Clustering and WISPlanar from [2] yields the following two
facts.

Lemma 1. Let Cρ be a minor-closed family of graphs. Let G ∈ Cρ and let (G, ω̄)
be an edge-weighted graph. There exists a distributed algorithm which given a
constant d > 1 finds in O(log |G| log∗ |G|) rounds a (Dρ, d)-edge-weight partition
for some constant Dρ = Dρ(d).

Lemma 2. Let Cρ be a minor-closed family of graphs. Let G ∈ Cρ and let (G, ω)
be a vertex-weighted graph. There exists a distributed algorithm which given a
constant d > 2ρ finds in O(log |G| log∗ |G|) rounds a maximal independent set I
in G with

ω(I) ≥ ω(V (G))/d.

Our first procedure, Heavy Subset, finds a subset of vertices of a large weight
which induces subgraphs of small weak diameter. As the procedure is a bit
technical we will divide it into two phases.

Heavy Subset Phase 1. Use the algorithm Decomposition from [3] to find
a partition (V1, . . . , Vk) of V (G) with properties that each Vi is an independent
set, k = O(log |G|), and for every i, if v ∈ Vi then |N(v) ∩

⋃
j>i Vj | ≤ 3ρ.

Give the orientation (u, v) (from u to v) to every edge {u, v} with u ∈ Vi and
v ∈ Vj whenever i < j and define the weight of (u, v) by setting ω̄(u, v) := ω(u).
Note that the out-degree of this directed graph is at most 3ρ. Let d := 3 ·
ρ/

(
1− 1

2ρ+1

)
and let Dρ denote the constant from Lemma 1. Find a (Dρ, d)-

edge-weight partition (V1, . . . , Vk) of (G, ω̄). Consider two sets of vertices: B
(black) and W (white). Set initially B := V (G) and W := ∅. For every vertex u,

520 A. Czygrinow and M. Hańćkowiak

in parallel, if u ∈ Vi and there is a vertex v ∈ V \ Vi such that (u, v) is an arc,
then change the color of u to white. We will end the phase one here. First note
the following fact.

Fact 1. After Heavy Subset Phase 1 all edges with endpoints in different
Vi’s have at least one endpoint in W .

In addition, we have the following easy lemma.

Lemma 3. Let B be the set of black vertices in G after Heavy Subset Phase

1. We have

ω(B) ≥ ω(V (G))
2ρ + 1

.

Heavy Subset Phase 2. After the execution of phase one (V1, . . . , Vk) is a
partition of V (G) and every edge with endpoints in different Vi’s has at least
one endpoint in W . Consequently some of the border vertices of each Vi can
be white. A vertex w is called a troubler if w ∈ W and for some vi ∈ Vi ∩ B
and vj ∈ Vj ∩ B with i 	= j, viwvj is a path (of length two) in G. In other
word a troubler is a white vertex which is connected by an edge with two black
vertices in different Vi’s. Clearly only a border vertex can be a troubler. Recall
that in phase one we gave an orientation to all edges of G. We shall now define
an auxiliary hypergraph. For each troubler w, if w is in Vi and has more than
one out-neighbor in B ∩ (V \ Vi) then consider the hyper-edge fw consisting of
these out-neighbors and let H be the hypergraph H := (B,

⋃
{fw}). Note that

as H is on B, there can be many isolated vertices in H. In addition |fw| ≤ 3ρ
for any troubler w as the out-degree is at most 3ρ.

Next task is to find a ”heavy” maximal independent set I in H. This is done
by consider the graph G′ with V (G′) := B and the edge set E(G′) obtained in
the following way. Every troubler w selects two distinct vertices u, v ∈ fw and
adds the edge {u, v} to E(G′). Then every edge in G′ corresponds to a path
uwv in G with w ∈ W and different paths contain different w’s. Therefore G′

is a topological minor of G and so G′ ∈ Cρ. Use Lemma 2 to find a maximal
independent set I in G′ with ω(I) ≥ ω(B)/(2ρ + 1) ≥ ω(V (G))/(2ρ + 1)2 and
repaint vertices from B\I with the white color. Repeat the process after updating
sets fw and the hypergraph H. Note that in each round of the above procedure,
the size of fw drops by at least one and so after 3ρ − 1 rounds |fw| ≤ 1 for
every troubler w. Consequently, the last instance of I from the loop above is
an independent set in the initial hypergraph H. In addition we see that I has a
large weight.

Fact 2. Set I of vertices in G is an independent set in the hypergraph H and
ω(I) ≥ ω(V (G))/(2ρ + 1)3ρ.

Now for every troubler w with |fw| = 1 let uw denote the vertex in fw and
let S = {{w, uw} : |fw| = 1}. Consider the subgraph G̃i of G[Vi] induced by
edges which have at least one endpoint in B ∩ Vi. In addition, consider another
auxiliary graph G′′: For every i = 1, . . . , k, contract every component U of the
subgraph G̃i to a vertex and let vU denote the vertex obtained from set U . Put

Distributed Approximation Algorithms for Weighted Problems 521

an edge between two vertices vU , vU ′ whenever EG(U, U ′) ∩ S 	= ∅. In addition,
set ω(vU) :=

∑
w∈B∩U ω(w). Finally, note that the graph G′′ is in Cρ and so

by Lemma 2, we can find an independent set I in G′′ of weight which is at
least ω(V (G′′))/(2ρ + 1) which by Fact 2 is at least ω(V (G))/(2ρ + 1)3ρ+1. Now
repaint all vertices of B which are not in a set U with vU ∈ I with the white
color. Finally consider the subgraph G̃ of G induced by edges from E(G) which
have at least one endpoint in B and return the components of G̃. This is the
end of phase two.

Lemma 4. Let B be the set obtained in Phase 2 and let L1, L2, . . . , Lp be the
components of G̃ which are returned in the end of phase two. We have:

– ω(B) ≥ ω(V (G))/(2ρ + 1)3ρ+1.
– For i = 1, . . . , p, WDiamG(Li) ≤ Dρ + 2.

Proof. We have already proved the first part. Recall that I denotes the inde-
pendent set in G′′ obtained in HeavySubset Phase 2 and let vU , vU ′ ∈ I. We
will first show that distG(U ∩ B, U ′ ∩ B) ≥ 3. To that end assume first that
U ⊂ Vi and U ′ ⊂ Vj with i 	= j and suppose that there is a path of length at
most two with one endpoint in U ∩ B and another in U ′ ∩ B. Clearly the path
cannot have length one as every edge from EG(Vi, Vj) has one endpoint in W
(Fact 1). Consequently the path has length two and has the form viwvj with
w ∈ W . Thus w is a troubler after all of the iterations in H and either vi = uw

or vj = uw which yields an edge between vU , vU ′ in G′′ and contradicts the fact
that I is independent.

Now suppose that U, U ′ ⊂ Vi. Then the graphs induced by U, U ′ are compo-
nents in G̃i and so the distance between U ∩ B and U ′ ∩ B in G[Vi] is at least
three. In addition, if there is vertex w ∈ Vj for j 	= i with a neighbor in U∩B and
U ′∩B then w ∈ W and |fw| ≥ 2 which is not possible. Now take a component L
of G̃ and let vU ∈ I be such that L and U intersect in a black vertex. Also let i be
such that U ⊆ Vi. If NG̃(U∩B) ⊆ Vi then the vertex set of L is a subset of Vi and
so the diameter of L is at most Dρ. Otherwise take a vertex u ∈ NG̃(U ∩B)\Vi.
Then u is white and so u is troubler. As there are no edges in G̃ with both
endpoints white, u has at most two neighbors in G̃ and both of them are black.
If one of them is in U ′ 	= U then distG(B ∩ U, B ∩ U ′) ≤ 2. Consequently
u has one neighbor in G̃ from B ∩ U . Therefore V (L) is a subset of NG(U ∩
B) ∪ U ⊆ NG(Vi) ∪ Vi. Since WDiamG(G[Vi]) ≤ Dρ we have WDiamG(L) ≤
Dρ+2. �

Now we can describe our main partitioning algorithm.
Vertex-weight Partition. Given is a vertex-weighted graph (G, ω) with
G ∈ Cρ and a positive integer t which can depend on |G|. Iterate with i from 1 to
t. In the ith iteration, invoke Heavy Subset to find the set of black vertices B
and the components L1, L2, . . . , Lp from Lemma 4. Obtain the minor Gi of Gi−1

by contracting each of the L1, L2, . . . , Lp to a single vertex and set the weight of
the vertex obtained from Li to be equal to the total weight of white vertices in
Li. Let Gt be the graph obtained from G after all t iterations. For each vertex Q

522 A. Czygrinow and M. Hańćkowiak

in Gt consider the set VQ of all vertices in G which have been contracted to Q
in the above iterations and return the partition P = (VQ|Q ∈ V (Gt)).

Lemma 5. Let P = (V1, V2, . . . , Vk) be the partition of graph G ∈ Cρ obtained
by Vertex-weight Partition with given parameter t.

(a) Let Dρ be the constant from Lemma 1 obtained by setting d=3·ρ/
(
1− 1

2ρ+1

)
.

Then
WDiamG(G[Vi]) ≤ (Dρ + 3)t.

(b) ω(∂(P)) ≤
(
1− 1

(2ρ+1)3ρ+1

)t

ω(V (G)).

Proof. Let Gi denote the graph obtained after the ith iteration of Vertex-

Weight Partition and let G0 := G. To show (a), let diami be the maximum of
WDiamG(G[V ′]) over subsets V ′ ⊂ V (G) that are contracted to single vertices
in Gi. Clearly diam0 = 0 and by Lemma 4 (part two) diami+1 ≤ (Dρ + 3) ·
diami +Dρ +2. Consequently diamt ≤ (Dρ +3)t. To verify part (b), we consider
the sequence of partitions {Pi} where Pi is the partition of V (G) obtained be
creating a partition class for each vertex Q in Gi consisting of vertices that has
been contracted to Q in iterations 1, . . . , i. Let ∂i = ∂(Pi) with ∂0 := V (G).
Note that after the coloring of V (Gi) performed by Heavy Subset only white
vertices in a component L have neighbors in V (Gi)\L. Therefore, ω(∂i) is smaller
than or equal to the weight of white vertices in Gi. By definition of the weights
in Vertex-Weight Partition, ω(V (Gi+1)) is equal to the weight of white

vertices in Gi and so ω(V (Gi)) ≤
(
1− 1

(2ρ+1)3ρ+1

)i−1

ω(V (G)) which in view of
Lemma 4 (part one) gives

ω(∂i) ≤
(

1− 1
(2ρ + 1)3ρ+1

)i

ω(V (G)).

�
For the next corollary, recall that ID : V (G) → {1, . . . , m} is a function with
ID(v) equal to the identifier of vertex v. Although, as mentioned in the intro-
duction, in the original graph G, ID(V (G)) is assumed to be equal to V (G),
in applications we will partition auxiliary graphs and it will be important to
distinguish between |G| and the order of the auxiliary graph.

Corollary 3

(a) There is a distributed algorithm which given 0 < ε < 1 finds in a vertex-
weighted graph (G, ω) with G ∈ Cρ an (a, b)-vertex-weight partition P =
(V1, . . . , Vk) with b ≥ 1/ε and a ≤ D(ε) for some constant D(ε). The algo-
rithm runs in O(log |G| log∗ |G|) rounds.

(b) There is a distributed algorithm which given a positive integer p finds in a
vertex-weighted graph (G, ω) with G ∈ Cρ and ID(v) ≤ m for every v ∈
V (G) an (a, b)-vertex-weight partition P = (V1, . . . , Vk) with b = logp m and
a = polylog(m). The algorithm runs in a pol-logarithmic (in m) number of
rounds.

Distributed Approximation Algorithms for Weighted Problems 523

3 Applications

We will now show how to use the vertex-weight partition to design distributed ap-
proximations for the minimum-weight dominating set problem and the
maximum-weight matching problem.

3.1 Matchings

Let us start with the maximum-weight matching problem. Let (G, ω̄) be an edge-
weighted graph with G ∈ Cρ. In the algorithm, we first find a subgraph of G and
use it to define the vertex-weighted graph (G, ω). Then we apply the partition-
ing procedure from Corollary 3. The procedure takes a positive integer d as an
input.

ApproxMWM. Use the algorithm Decomposition from [3] to find a par-
tition of V (G) into k sets V1, . . . , Vk so that each Vi is an independent set,
k = O(log |G|), and for every i, if v ∈ Vi then |N(v) ∩

⋃
j>i Vj | ≤ 3ρ. For every

vertex v if v ∈ Vj then v properly colors all edges in E({v},
⋃

j>i Vj) using colors
from {1, . . . , 3ρ}. Let Fi be the subgraph of G induced by edges of color i. Then
Fi is a forest every component of which has diameter O(log |G|). Find in each Fi

a maximum weight matching Ni and let Q :=
⋃

Ni. Now for every vertex v set
ω(v) := ω̄(e) where e is an edge in Q of maximum weight which is incident to
v. If no such edge exists set ω(v) := 0. Use the algorithm from Corollary 3 (b)
with p = d+1 and m = |G| to obtain a vertex-weight partition P = (V1, . . . , Vk)
of (G, ω). Find a maximum weight matching Mi in each of (G[Vi], ω̄) and return⋃

Mi.

Theorem 4. Let (G, ω̄) be an edge-weighted graph with G ∈ Cρ. There is a dis-
tributed algorithm which given a positive integer d finds a matching M in G
with

ω̄(M) ≥
(

1− 1
logd |G|

)
β(G)

where β(G) is the weight of a maximum-weight matching in G. The algorithm
runs in a poly-logarithmic number of rounds.

Proof. We use ApproxMWM. Note that ω̄(Q) ≤ 3ρβ(G) and so the total ver-
tex weight of G satisfies ω(V (G)) ≤ 3ρβ(G). Moreover we have that, for every
edge {u, v} ∈ E(G), ω̄({u, v}) ≤ ω(u) + ω(v). Indeed if {u, v} ∈ Q then this is
clear. If {u, v} is not in Q and {u, v} is in Fi then there exist at most two edges
e1 = {u, w}, e2 = {v, z} in Mi such that ω̄({u, v}) ≤ ω̄(e1)+ω̄(e2). Consequently
ω̄({u, v}) ≤ ω(u) + ω(v). We have

ω(∂(P)) ≤ ω(V (G))/ logd+1 |G| ≤ 3ρβ(G)
logd+1 |G|

≤ β(G)
logd |G|

. (1)

524 A. Czygrinow and M. Hańćkowiak

Every matching in G contains two types of edges: edges with both endpoints
in some Vi and edges that are incident to ∂(P). The total weight of the latter
is at most β(G)

logd |G| by (1) and so the matching M returned by ApproxMWM

satisfies

β(G) ≤ ω(M) +
β(G)

logd |G|
.

�

3.2 Dominating and Connected Dominating Sets

In this section we discuss dominating set problems. Due to space limitations,
we will not be able to provide full details (the full version is available from au-
thors’ web sites). Let (G, ω) be a vertex-weighted graph. Recall that for any
D ⊆ V (G) we have ω(D) :=

∑
v∈D ω(v). We will denote by γ(G) = min ω(D)

where the minimum is taken over all dominating sets in graph G. For a vertex
v, recall that N(v) denotes the set of neighbors of v and N [v] := N(v) ∪ {v}.
Pick one vertex in N [v], s(v), with ω(s(v)) := minw∈N [v] ω(w) and set D̄ :=⋃
{s(v)}.

Lemma 6. Let (G, ω) be a vertex-weighted graph and let D̄ :=
⋃
{s(v)}. Then

D̄ is a dominating set and ω(D̄) ≤ |G|γ(G).

Our approximation algorithm proceeds in two main phases. First we find a con-
stant approximation of γ(G) and next we find a more accurate approximation.
For a dominating set D in G, every vertex v ∈ V (G) \ D selects one vertex
w in N(v) ∩ D and joints group Uw. Let GD be obtained from G by con-
tracting Uw ∪ {w} to a single vertex uw with ω(uw) := ω(w). Then, clearly,
ω(V (GD)) = ω(D). Our algorithm ApproxMWDS is given a positive integer d
which will be used in the second phase of the procedure.

ApproxMWDS Phase 1. Let D := D̄. We iterate with i from 1 to log2 |G|. In
the ith iteration, we consider (GD, ω) and use Corollary 3 (a) with ε = 1/2 to
find a vertex-weight partition (V ′

1 , . . . , V ′
k) of GD. This gives a partition P of G

by setting Vj to be the the union of Uw’s with uw ∈ V ′
j . In each G[Vj] we find a

dominating set Di with ω(Dj) = γ(G[Vj]) and set D :=
⋃k

j=1 Dj . Then we have
the following fact.

Lemma 7. Let (G, ω) be a vertex-weighted graph with G ∈ Cρ and let D be the
set obtained by ApproxMWDS Phase 1. Then ω(D) ≤ γ(G)/2.

ApproxMWDS Phase 2. Let D be the dominating set obtained from Ap-

proxMWDS Phase 1. Consider GD and use the algorithm from Corollary 3
(b) with p := d + 1 and m = |G| to find a vertex-weight partition (V ′

1 , . . . , V ′
k)

of GD. This gives a partition P = (V1, . . . , Vk) of G as in phase one and
we again find an optimal solution in each of G[Vi]’s and return the
union.

Distributed Approximation Algorithms for Weighted Problems 525

Theorem 5. Let Cρ be a minor-closed family. There exists a distributed algo-
rithm which given a positive integer d finds in vertex-weighted graph (G, ω) with
G ∈ Cρ a dominating set D with

ω(D) ≤
(

1 +
1

logd |G|

)
γ(G).

The algorithm runs in a poly-logarithmic number of rounds.

In the case of the weighted connected dominating set problem, one can show
that no non-trivial approximation factor can be obtained in o(|G|) rounds even
when G is a cycle.

References

1. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network Decomposition
and Locality in Distributed Computation. In: Proc. 30th IEEE Symp. on Founda-
tions of Computer Science (FOCS), pp. 364–369. IEEE Computer Society Press,
Los Alamitos (1989)

2. Czygrinow, A., Hańćkowiak, M.: Distributed algorithms for weighted problems in
sparse graphs. Journal of Discrete Algorithms 4(4), 588–607 (2006)

3. Czygrinow, A., Hańćkowiak, M.: Distributed almost exact approximations for
minor-closed families. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 244–255. Springer, Heidelberg (2006)

4. Czygrinow, A., Hańćkowiak, M., Szymańska, E.: Distributed approximation algo-
rithms in planar graphs, 6th Conference on Algorithms and Complexity (CIAC).
In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998,
pp. 296–307. Springer, Heidelberg (2006)

5. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
6. Elkin, M.: An Overview of Distributed Approximation. In ACM SIGACT News

Distributed Computing Column. 35(4,132), 40–57 (2004)
7. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approx-

imation. 22nd ACM Symposium on the Principles of Distributed Computing
(PODC), pp. 25–32. ACM Press, New York (2003)

8. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed Locally!
In: Proceedings of 23rd ACM Symposium on the Principles of Distributed Com-
puting (PODC), pp. 300–309. ACM Press, New York (2004)

9. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and appli-
cations. In: Proceedings of the 14th ACM symposium on Principles of Distributed
Computing (PODC), pp. 238–251. ACM Press, New York (1995)

10. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

11. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15(4), 1036–1053 (1986)

12. Nesetril, J., de Mendez, P.O.: Colorings and homomorphisms of minor closed
classes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Com-
putational Geometry, The Goodman-Pollack Festschrift. Algorithms and Combi-
natorics, vol. 25, pp. 651–664. Springer, Heidelberg (2003)

A 1-Local 13/9-Competitive Algorithm for

Multicoloring Hexagonal Graphs

Francis Y.L. Chin1,�, Yong Zhang1, and Hong Zhu2,��

1 Department of Computer Science, The University of Hong Kong, Hong Kong
{chin,yzhang}@cs.hku.hk

2 Institute of Theoretical Computing, East China Normal University, China
hzhu@sei.ecnu.edu.cn

Abstract. In the frequency allocation problem, we are given a mobile
telephone network, whose geographical coverage area is divided into cells,
wherein phone calls are serviced by assigning frequencies to them so that
no two calls emanating from the same or neighboring cells are assigned
the same frequency. The problem is to use the frequencies efficiently, i.e.,
minimize the span of frequencies used. The frequency allocation prob-
lem can be regarded as a multicoloring problem on a weighted hexagonal
graph. In this paper, we give a 1-local 4/3-competitive distributed algo-
rithm for multicoloring a triangle-free hexagonal graph, which is a special
case. Based on this result, we then propose a 1-local 13/9-competitive
algorithm for multicoloring the (general-case) hexagonal graph, thereby
improving the previous 1-local 3/2-competitive algorithm.

1 Introduction

Wireless communication based on Frequency Division Multiplexing (FDM) tech-
nology is widely used in the area of mobile computing today. In such FDM
networks, a geographic area is divided into small cellular regions or cells, each
containing one base station. Base stations communicate with each other via
a high-speed wired network. Calls between any two clients (even within the
same cell) must be established through base stations. When a call arrives, the
nearest base station must allocate a frequency from the available spectrum to
the call without causing any interference to other calls. In practice, when the
same frequency is assigned to two different calls emanating from cells that are
geographically close to each other, interference may occur which distorts the
radio signals. To avoid interference, the temptation is to use many frequencies.
However, spectrum is a scarce resource and efficient utilization of the available
spectrum is essential for FDM networks.

The frequency allocation problem has been extensively studied
[6,9,12,13,1,10,2,3,4]. Both the off-line and online versions of the problem have

� This research was supported by Hong Kong RGC Grant HKU-7113/07E.
�� This research was supported in part by National Natural Science Fund (grant no.

60496321).

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 526–536, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs 527

been studied. For the off-line problem on cellular networks (where cells are hexag-
onal regions as shown in Fig. 1 and the calls to be serviced are known a priori),
McDiarmid and Reed [12] have shown that the problem of minimizing the span
of frequencies to satisfy all the call requests is NP-hard, and 4/3-approximation
algorithms were given in [12,14].

A cell

Fig. 1. Example of a cellular network (with hexagonal cells)

For the online version, there are mainly three strategies, which have been
introduced: the fixed allocation assignment (FAA) [11], the greedy algorithm
(Greedy) [5] and the hybrid algorithm [4]. FAA partitions cells into indepen-
dent sets which are each assigned a separate set of frequencies. It is easy to see
that FAA is 3-competitive as cellular networks are 3-colorable. Greedy assigns
the minimum available number (frequency) to a new call so that the call does
not interfere with calls of the same or adjacent cells. Caragiannis et al. [5] proved
that the competitive ratio of Greedy for FAC is at least 17/7 and at most 2.5.
Chan et al. [3] gave a tighter analysis to show that Greedy is 17/7-competitive.
Furthermore, Chan et al. [4] proposed a 2-competitive hybrid algorithm, which
combines the FAA and Greedy approach and which is optimal since the lower
bound of this problem is also 2.

The frequency allocation problem in cellular network can be abstracted to the
problem of multicoloring a weighted hexagonal graph, in which each vertex has
a weight which specifies how many different colors have to be assigned to the
vertex. Given the constraint that the same color cannot be assigned to adjacent
vertices, the target is minimize the number of assigned colors.

In frequency allocation problem, the size of cellular network is very large, when
handling a call request, the computation will be very complex if all information
needed. In reality, each server in the cells knows its position before processing
the sequence of calls; when satisfying call requests, each server only know its
local information, i.e., some information within a fixed distance. In this paper,
we focus on distributed algorithms for the multicoloring, i.e., each vertex is an
independent server, which runs the algorithm to assign multicolors to the vertex
based on what is known as k-local information. The concept of k-local distributed
algorithms was introduced by Janssen et al [8], where an algorithm is k-local if
the computation at a vertex depends only on the information of the neighboring
vertices of at most k distance away (suppose each edge has unit distance). We can

528 F.Y.L. Chin, Y. Zhang, and H. Zhu

also assume that in multicoloring problem, each vertex is also know its position
in the graph.

In [8], Janssen et al. proved (the next lemma) that a k-local c-approximate off-
line algorithm can be easily converted to a k-local c-competitive online algorithm.
Thus, to design a k-local online algorithm, we need only to focus on the off-line
problem.

Lemma 1. [8] Let A be a k-local c-approximate off-line algorithm for multicol-
oring. Then A can be converted into a k-local c-competitive online algorithm for
multicoloring.

An interesting induced graph, called a triangle-free hexagonal graph, has been
studied for the multicoloring problem. A graph is triangle-free if there are no 3-
cliques in the graph, i.e., there are no three mutually-adjacent vertices with pos-
itive weights. An example of a triangle-free hexagonal graph is shown in Fig. 2.

i− 2

i− 1

i

i + 1

i + 2

i + 3

j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3j − 4

k − 4 k − 3 k − 2 k − 1 k k + 1 k + 2 k + 3 k + 4

Fig. 2. An example of a triangle-free hexagonal graph, where solid circles are vertices
with positive weights

The best known competitive ratios for 0-, 1-, 2- and 4-local distributed al-
gorithms for multicoloring on (general) hexagonal graphs are 3, 3/2, 4/3 and
4/3, respectively [8,17]. It is possible to do better for triangle-free hexagonal
graphs. For example, in [16], a 2-local 5/4 competitive algorithm was given, and
an inductive proof for the 7/6 ratio was reported in [7].

In this paper, we first give a 1-local 4/3-competitive algorithm for multicol-
oring a triangle-free hexagonal graph in Section 3. Based on this result, we then
propose, in Section 4, a 1-local 13/9-competitive algorithm for the multicoloring
problem in hexagonal graph, which improves the previous 3/2-competitive re-
sult. Section 2 introduces some preliminary terminology to be used in this paper,
and Section 5 concludes.

2 Preliminary Terminology

Suppose the hexagonal graph has been three-colored with each vertex colored
with one of three base colors, without loss of generality, say Red, Green and

A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs 529

Blue. We assume a transitive order on these three base colors: namely, Red <
Green < Blue.

We use a 3-coordinate system to represent each vertex. In particular, referring
to the lines shown in Fig. 2, each vertex can be represented by coordinate (i, j, k)
where i is the coordinate for the horizontal line, j for the up-sloping line and
k for the down-sloping line. (In fact, two coordinates are enough to represent
vertices since coordinate k is redundant, but we find it convenient to refer to
three coordinates.) For example, a vertex with coordinate (i, j, k) and its six
neighboring vertices, denoted by UL, L, DL, UR, R and DR, are represented as
shown in Fig. 3.

(i,j,k)
L: (i,j-1,k-1)

UL: (i+1,j-1,k) UR: (i+1,j,k+1)

R: (i,j+1,k+1)

DL: (i-1,j,k-1) DR: (i-1,j+1,k)

Fig. 3. Coordinates of a vertex (i, j, k) and its neighboring vertices

Next, we use the definition in [17] to define the parity of a vertex with respect
to its various neighbors. We say that the parity of a vertex v with coordinate
(i, j, k) is:

1. odd (alternatively, even) with respect to its L or R neighbor if j ≡ 1 mod 2
(correspondingly, j ≡ 0 mod 2);

2. odd (alternatively, even) with respect to its UL or DR neighbor if i ≡ 1
mod 2 (correspondingly, i ≡ 0 mod 2);

3. odd (alternatively, even) with respect to its DL or UR neighbor if k ≡ 1
mod 2 (correspondingly, k ≡ 0 mod 2).

Let wv be the weight of vertex v, which corresponds to the number of colors
needed to multicolor v. After the multicoloring assignment, each vertex v will
be assigned a set Fv of colors, such that Fv ⊂ Z+ and |Fv| = wv, where, for any
two adjacent vertices u and v, Fu ∩ Fv = φ.

3 Multicoloring in Triangle-Free Hexagonal Graphs

In this section, we shall study the problem of multicoloring a special type of
hexagonal graph. Finding a good solution for this problem will lead to an algo-
rithm for finding good solutions for general hexagonal graphs.

A graph is triangle-free if no three mutually-adjacent vertices have positive
weights. For a given vertex u with positive weight wu, from this definition of

530 F.Y.L. Chin, Y. Zhang, and H. Zhu

triangle-free graph, only two possible configurations may exist for the structure
of neighbors with positive weights, which are shown in Fig. 4. There exist a
simple structure in triangle-free graph, i.e., a vertex has only one neighbor, we
can regard this structure as the case in Fig. 4(b).

u

(a) Structure A:
neighbors with the
same base color

u

(b) Structure B:
neighbors with
different base colors

Fig. 4. Structure of neighbors with positive weight

Consider vertex u with positive weight wu. Compute cu = wu + max{wv | v
is u’s neighbor}. cu is the weight of the maximum 2-clique adjacent to u, which
also gives the minimum number of colors needed for multicoloring a triangle-free
hexagonal graph. From the definition of cu, any feasible coloring of vertex u and
its neighbors requires at least cu colors.

Let du = �cu/3�. For each vertex u, we define four color sets, each of size du:

1. colorsetu(Red) = {j ∈ {1, . . . , 4du} | j = 1 mod 4},
2. colorsetu(Green) = {j ∈ {1, . . . , 4du} | j = 2 mod 4},
3. colorsetu(Blue) = {j ∈ {1, . . . , 4du} | j = 3 mod 4}, and
4. extrasetu = {j ∈ {1, . . . , 4du} | j = 0 mod 4}.

We will give a strategy to multicolor any vertex u with weight wu by assigning
wu colors from the above four sets so that no adjacent vertices are assigned the
same color. The assignment strategy assigns multicolors to u according to its
base color and neighboring structure and can be described as follows.

Assume vertex u with base color X has neighboring structure A, i.e. all its
neighbors have the same base color Y 	= X . Let the third base color be Z where
Z 	= X and Z 	= Y . In this case, our strategy would be to assign multicolors to
vertex u first from colorsetu(X), then colorsetu(Z) and finally colorsetu(Y).

On the other hand, if vertex u with base color X has neighboring structure
B, then all three base colors will be used by u and its neighbors. The strategy
will first assign multicolors from colorsetu(X), then from the extra color set
extrasetu and finally from colorsetu(Y) where base color Y > Z 	= X .

Note that in both cases, the colors in each color set may be assigned either
from bottom to top or from top to bottom, depending on the base color or the
parity of the vertex so as to avoid any conflicts.

A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs 531

THE STRATEGY

1. If vertex u has no neighbors, just assign wu colors from 1 to wu.
2. If vertex u with base color X has neighboring structure A (Fig. 4(a)), let Y

be the base color of u’s neighbors and Z be the other third color. Assign wu

multicolors to vertex u as follows:
(a) Assign colors from colorsetu(X) in bottom-to-top order.
(b) If not enough, assign colors from colorsetu(Z) in bottom-to-top order if

X < Y ; top-to-bottom otherwise.
(c) If still not enough, assign colors from colorsetu(Y) in top-to-bottom

order.
3. If vertex u with base color X has neighboring structure B (Fig. 4(b)), let Y

and Z be the base colors of the left neighbor and the right neighbor, respec-
tively. Without loss of generality, assume Y > Z. Assign wu multicolors to
vertex u as follows:
(a) Assign colors from colorsetu(X) in bottom-to-top order.
(b) If not enough, assign colors from extrasetu in bottom-to-top order if

u is odd with respect to its left or right neighbor; top-to-bottom order
otherwise.

(c) If still not enough, assign colors from colorsetu(Y) in top-to-bottom
order.

Theorem 1. The above strategy is 1-local and can solve the multicoloring prob-
lem in triangle-free hexagonal graphs with performance ratio 4/3.

Proof. From the description of the strategy, it is clear that the colors assigned
to any vertex depend only on neighboring information within distance 1, and
thus, the strategy is 1-local.

To prove that the above strategy solves the multicoloring problem, we must
prove that the colors assigned to any two adjacent vertices u and v are all
different. As it turns out, we need to analyze the three structures shown in
Fig. 5. X and Y denote the two respective different base colors of u and v. It is
easy to see that different kinds of color sets of u and v have no common colors.
For example, colorsetu(Red)

⋂
extrasetv = ∅.

From the definition of cu, we have cu ≥ wu + wv and, since du = �cu/3�,
cu ≤ 3du.

For Case A, the strategy would assign colors to u from colorsetu(X), then
colorsetu(Z) and then colorsetu(Y), and would assign colors to v from
colorsetv(Y), then colorsetv(Z) and then colorsetv(X). There are three sub-
cases to consider:

(A-1) Case where u is assigned colors from colorsetu(X) and v is assigned col-
ors from colorsetv(X) after exhausting all colors in colorsetv(Y) and
colorsetv(Z). Then, the weight wv of vertex v should be very large since
all the colors in colorsetv(Y) and colorsetv(Z) must be used up. Since
wu + wv ≤ cu ≤ 3du, wu + wv ≤ cv ≤ 3dv, and since u and v use
colorset(X) = colorsetu(X)∪colorsetv(X) from opposite directions (de-
pending on whether X < Y or otherwise), u and v will not be assigned
the same color.

532 F.Y.L. Chin, Y. Zhang, and H. Zhu

vu
base color X

base color Y

(a) Case A

vu
base color X base color Y

(b) Case B

vu
base color X base color Y

(c) Case C

Fig. 5. The local structure of vertices u and v

(A-2) Case where u is assigned colors from colorsetu(Z) and v is assigned colors
from colorsetv(Z). Then, all the colors in colorsetu(X) are assigned to
u and all the colors in colorsetv(Y) are assigned to v. Since wu + wv ≤
3du, 3dv, and since u and v use colorset(Z) = colorsetu(Z)∪colorsetv(Z)
from opposite directions, u and v will not be assigned the same color.

(A-3) Case where u is assigned colors from colorsetu(Y) and v is assigned colors
from colorsetv(Y). By similar analysis as in case (A-1), we can say that
u and v will not be assigned the same color.

In Case B, the strategy would assign colors to u from colorsetu(X), then
colorsetu(Z) and then colorsetu(Y). Also, the strategy would assign colors to
v from colorsetv(Y), then extrasetv and then colorsetv(X) or colorsetv(Z) de-
pending whether X < Z or otherwise. Without loss of generality, we assume
colorsetv(X) is used. There are two subcases to consider:

(B-1) Case where u is assigned colors from colorsetu(X) and v is assigned col-
ors from colorsetv(X) after exhausting all colors in colorsetv(Y) and
extrasetv. This means the weight wv of v is very large. Since wu +
wv ≤ 3du, 3dv, and since u and v use colorset(X) = colorsetu(X) ∪
colorsetv(X) from opposite directions, u and v will not be assigned the
same color.

(B-2) Case where u is assigned colors from colorsetu(Y) and v is assigned colors
from colorsetv(Y). By similar analysis as in case (B-1), we can say that
u and v will not be assigned the same color.

In Case C, the strategy would assign colors to u from colorsetu(X), then
extrasetu and then colorsetu(Y), and would assign colors to v from colorsetv(Y),
then extrasetv and then colorsetv(X). There are three subcases to consider:

(C-1) Case where u is assigned colors from colorsetu(X) and v is assigned
colors from colorsetv(X) after exhausting all colors in colorsetv(Y) and
extrasetv. This means the weight wv of v is very large. Since

A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs 533

wu +wv ≤ 3du, 3dv, and since u and v use colorset(X) = colorsetu(X)∪
colorsetv(X) from opposite directions, u and v will not be assigned the
same color.

(C-2) Case where u is assigned colors from extrasetu and v is assigned colors
from extrasetv. This means all the colors in colorsetu(X) and
colorsetv(Y) have been assigned to u and v, respectively. Since wu+wv ≤
3du, 3dv, and since u and v use extraset = extrasetu ∪ extrasetv from
opposite directions (the parities of u and v are different), u and v will
not be assigned the same color.

(C-3) Case where u is assigned colors from colorsetu(Y) and v is assigned colors
from colorsetv(Y). By similar analysis as in case (C-1), we can say that
u and v will not be assigned the same color.

For the whole triangle-free hexagonal graph, the maximal weight clique (2-
clique) c = maxu{cu} is a lower bound on the optimal value, and our algorithm
uses at most 4 maxu{�cu/3�} colors. Thus, the above strategy has a performance
ratio of 4/3. ��
From Theorem 1, we can easily have a 1-local 4/3-competitive online algorithm
for frequency allocation in triangle-free cellular networks.

4 Multicoloring in Hexagonal Graphs

In this section, we consider multicoloring hexagonal graphs. Our strategy works
in two stages. In the first stage, each vertex assigns colors using local information
on the weights of this vertex and its neighboring vertices. After the first stage,
some vertices may be unsatisfied, i.e. not all of the necessary colors have been
assigned, and the unsatisfied vertices, along with the edges connecting them,
form a triangle-free graph. Applying the algorithm in the previous section, each
vertex can be assigned colors, to satisfy all the remaining unsatisfied vertices,
by using 1-local information. Combining these two stages, we have a 1-local
algorithm for multicoloring hexagonal graphs.

We now describe the first stage, which is similar to the first stage in [12].
In [12], the algorithm needs to have the global information about the maximum
weights of “all” 3-cliques in the graph (stage 1) so as to have an acyclic graph
of the remaining unsatisfied vertices (for stage 2). As for an algorithm which is
1-local, only the maximal weights of the local 3-cliques will be available (stage
1) and a triangle-free hexagonal graph (which can be cyclic) will result (for
stage 2). Consider vertex u with base color X . Let Cu be the maximal weights
among the 3-cliques including u, and let ku = � Cu/3�. For the three base colors
Red, Green and Blue, we define a cyclic order among them as Red → Green,
Green → Blue and Blue → Red. If X → Y , let mu be the maximal weight of
the neighboring vertices with color Y . We define color sets: colorsetu(Red) =
{j ∈ {1, . . . , 3ku} | j ≡ 1 mod 3}, colorsetu(Green) = {j ∈ {1, . . . , 3ku} | j ≡ 2
mod 3} and colorsetu(Blue) = {j ∈ {1, . . . , 3ku} | j ≡ 0 mod 3}. In the first
stage, vertex u with base color X and weight wu is assigned colors from these
sets using the strategy described as follows:

534 F.Y.L. Chin, Y. Zhang, and H. Zhu

1. Vertex u is assigned colors from colorsetu(X) in bottom-to-top order.
2. If not enough and mu < ku, vertex u is assigned the upper min{ku−mu, wu−

ku} colors from colorsetu(Y).

After the first stage, each vertex has been assigned with some colors. The
remaining graph contains only those vertices whose calls have not been totally
satisfied, i.e., the number of assigned colors in vertex u is less than its weight.

Lemma 2. The remaining graph is triangle-free, i.e., contains no 3-clique.

Proof. If some vertex u is still unsatisfied, it must be that wu > max{ku,
2ku − mu}. Thus, the remaining unsatisfied weight in vertex u is w′

u = wu −
max{ku, 2ku−mu}. For any three mutually-adjacent vertices (3-clique) u, v and
t, since min{Cu, Cv, Ct} ≥ wu +wv +wt, min{ku, kv, kt} ≥ min{wu, wv, wt} and
at most two of {w′

u, w′
v, w′

t} are strictly positive, at least one of the vertices (u, v
and t) has all its required colors totally assigned in the first stage. Therefore, the
remaining graph contains no 3-clique, i.e., is a triangle-free hexagonal graph. ��

Lemma 3. The total weight of two neighboring vertices u and v in the remaining
graph is at most max{Cu, Cv}/3.

Proof. For the remaining unsatisfied vertices, since w′
u = wu − max{ku, 2ku −

mu}, we have w′
u ≤ wu− (2ku−mu) = wu + mu− 2ku ≤ Cu− 2ku. For any two

adjacent unsatisfied vertices u and v, we can also get w′
u +w′

v ≤ wu− ku +wv −
kv ≤ Cv/3. If Cu ≥ Cv, which implies ku ≥ kv, then we have w′

u +w′
v ≤ Cv−2kv

as Cv ≥ wu + wv. Similarly, if Cu ≤ Cv, which implies ku ≤ kv, then we have
w′

u + w′
v ≤ Cu − 2ku ≤ Cu/3. Thus, the total remaining weight of any two

adjacent unsatisfied vertices is at most max{Cu, Cv}/3. ��

From Lemma 2, the remaining graph is triangle-free, so in the second stage, we
can use the algorithm in Section 3 to process the remaining unsatisfied vertices.
Each vertex gets the remaining weight information from its adjacent vertices and
the total number of colors used in this stage is at most 4 maxu�Cu

9 � (Theorem 1
and Lemma 3).

Combining these two stages, we use at most maxu(3ku + 4�Cu

9 �) ≤
maxu(3�Cu

3 � + 4�Cu

9 �) ≤
13
9 Cu + 7 colors. Since Cu is a lower bound on the

optimal solution, the performance ratio for our strategy is 13/9.
Thus, we have the following theorem.

Theorem 2. For the multicoloring problem in hexagonal graphs, a 1-local 13/9-
competitive algorithm can be achieved.

5 Conclusion

We have given a 13/9-approximation algorithm for multicoloring hexagonal
graphs. This implies a 13/9-competitive solution for the online frequency alloca-
tion problem, which involves servicing calls in each cell in a cellular network. The

A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs 535

distributed algorithm is practical in the sense that frequency allocation can be
done based on information about its neighbors and itself only. We note that, in
fact, when calls are requested or released in a cell, a constant number of frequen-
cies might have to be reassigned so as to actually achieve the 13/9-competitive
bound.

Acknowledgements. The authors thank Dr. Bethany M.Y. Chan for her efforts
in making this paper more readable.

References

1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.:
Models and solution techniques for frequency assignment problems. Quarterly Jour-
nal of the Belgian, French and Italian Operations Research Societies (4OR) 1(4),
261–317 (2003)

2. Chan, W.-T., Chin, F.Y.L., Ye, D., Zhang, Y., Zhu, H.: Frequency Allocation
Problem for Linear Cellular Networks. In: Asano, T. (ed.) ISAAC 2006. LNCS,
vol. 4288, pp. 61–70. Springer, Heidelberg (2006)

3. Chan, W.-T., Chin, F.Y.L., Ye, D., Zhang, Y., Zhu, H.: Greedy Online Frequency
Allocation in Cellular Networks. Information Processing Letters 102, 55–61 (2007)

4. Chan, W.-T., Chin, F.Y.L., Ye, D., Zhang, Y.: Online Frequency Allocation in
Cellular Networks. To appear in Proc. of the 19th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’07)

5. Caragiannis, I., Kaklamanis, C., Papaioannou, E.: Efficient on-line frequency allo-
cation and call control in cellular networks. Theory Comput. Syst. 35(5), 521–543
(2002) A preliminary version of the paper appeared in SPAA 2000

6. Hale, W.: Frequency assignment: Theory and applications. Proceedings of the
IEEE 68(12), 1497–1514 (1980)

7. Havet, F.: Channel assignment and multicoloring of the induced subgraphs of the
triangular lattice. Discrete Math. 233, 219C231 (2001)

8. Janssen, J., Krizanc, D., Narayanan, L., Shende, S.M.: Distributed online frequency
assignment in cellular networks. J. Algorithms 36(2), 119–151 (2000)

9. Jaumard, B., Marcotte, O., Meyer, C.: Mathematical models and exact meth-
ods for channel assignment in cellular networks. In: Sansò, B., Soriano, P. (eds.)
Telecommunications Network Planning, pp. 239–255. Kluwer Academic Publishers,
Dordrecht (1999)

10. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile
telecommunication systems: A comprehensive survey. IEEE Personal Communi-
cations 3(3), 10–31 (1996)

11. MacDonald, V.: Advanced mobile phone service: The cellular concept. Bell Systems
Technical Journal, vol. 58(1) (1979)

12. McDiarmid, C., Reed, B.A.: Channel assignment and weighted coloring. Net-
works 36(2), 114–117 (2000)

13. Narayanan, L.: Channel assignment and graph multicoloring. In: Stojmenović, I.
(ed.) Handbook of Wireless Networks and Mobile Computing, pp. 71–94. John
Wiley & Sons, Chichester (2002)

14. Narayanan, L., Shende, S.M.: Static frequency assignment in cellular networks.
Algorithmica 29(3), 396–409 (2001)

536 F.Y.L. Chin, Y. Zhang, and H. Zhu

15. Narayanan, L., Tang, Y.: Worst-case analysis of a dynamic channel assignment
strategy. Discrete Applied Mathematics 140(1-3), 115–141 (2004)

16. Sparl, P., Zerovnik, J.: 2-local 5/4-competitive algorithm for multicoloring trianglr-
free hexagonal graphs. Information Processing Letters 90, 239–246 (2004)

17. Sparl, P., Zerovnik, J.: 2-local 4/3-competitive algorithm for multicoloring hexag-
onal graphs. J. Algorithms 55(1), 29–41 (2005)

Improved Algorithms for Weighted and

Unweighted Set Splitting Problems�

Jianer Chen and Songjian Lu

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112, USA
{chen,sjlu}@cs.tamu.edu

Abstract. In this paper, we study parameterized algorithms for the set

splitting problem, for both weighted and unweighted versions. First, we
develop a new and effective technique based on a probabilistic method
that allows us to develop a simpler and more efficient (deterministic)
kernelization algorithm for the unweighted set splitting problem. We
then propose a randomized algorithm for the weighted set splitting

problem that is based on a new subset partition technique and has its
running time bounded by O∗(2k), which even significantly improves the
previously known upper bound for the unweigthed set splitting prob-
lem. We also show that our algorithm can be de-randomized, thus derive
the first fixed parameter tractable algorithm for the weighted set split-

ting problem.

1 Introduction

Let X be a set. A partition of X is a pair of subsets (X1, X2) of X such that
X1 ∪ X2 = X and X1 ∩ X2 = ∅. We say that a subset S of X is split by the
partition (X1, X2) of X if S intersects with both X1 and X2. The set splitting

problem is defined as follows: given a collection F of subsets of a ground set X ,
construct a partition of X that maximizes the number of split subsets in F .

A more generalized version of the set splitting problem is the weighted set

splitting problem, in which each subset in the collection F is associated with
a weight that is a real number, and the objective is to construct a partition of
the ground set that maximizes the sum of the weights of the split subsets.

The set splitting problem is an important NP-complete problem [10]. A
number of well-known NP-complete problems are related to the set splitting

problem, including the hitting set problem that is to find a small subset of
the ground X that intersects all subsets in a collection F , and the set packing

problem that is to find a large sub-collection F ′ of the collection F of subsets
such that the subsets in F ′ are all pairwise disjoint.

In terms of approximability, the set splitting problem is APX-complete
[3]. Andersson and Engebretsen [2] gave an approximation algorithm for the
� This work was supported in part by the National Science Foundation under the

Grants CCR-0311590 and CCF-0430683.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 537–547, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

538 J. Chen and S. Lu

problem that has an approximation ratio bounded by 0.724. Zhang and Ling [16]
presented an improved approximation algorithm of approximation ratio 0.7499
for the problem. Better approximation algorithms can be achieved if we further
restrict the number of elements in each subset in the input [11,16,17,18].

On the need of applications, such as the analysis of micro-array data, people
have studied the parameterized version of the set splitting problem, by asso-
ciating each input with a parameter k, which is in general small. Formally, an
instance of a parameterized weighted set splitting problem consists of a col-
lection F of subsets of a ground set X , in which each subset has a weight, and a
parameter k. The objective is to construct a partition of the ground set X that
maximizes the weight sum of k split subsets in F , or report that no partition of
X can split k subsets in F . A restricted version of the parameterized weighted
set splitting problem is the parameterized unweighted set splitting problem
in which all subsets in the collection F has weight 1.

In this paper, we are mainly concerned with fixed parameter tractable algo-
rithms [8] for the parameterized set splitting problems, where the algorithms
run in time f(k)nO(1), with f(k) being a function that only depends on the pa-
rameter k. In particular, for small values of the parameter k, a fixed parameter
tractable algorithm for the parameterized set splitting problem may become
effective in practice. Since we will be only considering parameterized versions of
the set splitting problems, we will drop the word “parameterized” when we
refer to the problems.

The unweighted set splitting problem has been studied in the literature.
Dehne, Fellows, and Rosamond [6] were the first to study the problem and pro-
vided a fixed parameter tractable algorithm of running time O∗(72k) for the
problem1. In the same paper, the authors also proved that the unweighted set

splitting problem has a kernel of size bounded by 2k: that is, there is a poly-
nomial time algorithm that on a given instance (X,F , k) of unweighted set

splitting, produces another instance (X ′,F ′, k′) for the problem such that
|X ′| ≤ |X |, |F ′| < 2k, k′ ≤ k, and that the set X has a partition that splits
k subsets in the collection F if and only if the set X ′ has a partition that
splits k′ subsets in the collection F ′. Later, Dehne, Fellows, Rosamond, and
Shaw [7] developed an improved algorithm of running time O∗(8k) for the prob-
lem. The improved algorithm was obtained by combining the recently devel-
oped techniques greedy localization and modeled crown reduction in the study of
parameterized algorithms. The current best algorithm for the unweighted set

splitting problem is developed by Lokshtanov and Sloper [14], where they used
Chen and Kanj’s result for max-sat problem [4] and reached a time complexity
of O∗(2.65k).

No fixed parameter tractable algorithms have been known for the weighted
set splitting problem. In fact, none of the techniques developed previously for
the unweighted set splitting problem, such as those in [6,7,14], seems to be
extendable to the weighted case.

1 Following the recent convention, by the notation O∗(ck), where c > 1 is a constant,
we refer to a function of order O(cknO(1)g(k)), where g(k) = co(k).

Improved Algorithms for Weighted and Unweighted Set Splitting Problems 539

In this paper, we develop new techniques in dealing with the set split-

ting problems. First, we develop a new and effective technique based on a
probabilistic method that allows us to develop a (deterministic) kernelization
algorithm for the unweighted set splitting problem. The new kernelization al-
gorithm is simpler and more efficient compared to the previous algorithm given
in [6]. We then propose a randomized algorithm for the weighted set splitting

problem that is based on a new subset partition technique and has its running
time bounded by O∗(2k). This even significantly improves the previous best up-
per bound O∗(2.65k) given in [14] for the (simpler) unweighted set splitting

problem. We also show that, using the subset partition family proposed by Naor,
Schulman, and Srinivasan [15], we can de-randomize our randomized algorithm,
which gives the first fixed parameter tractable algorithm for the weighted set

splitting problem.

2 A New Kernelization Algorithm for the Unweighted
Set Splitting Problem

In this section, we focus on the unweighted set splitting problem. By a ker-
nelization algorithm for unweighted set splitting, we mean a polynomial time
algorithm that, on an instance (X,F , k) of unweighted set splitting, produces
another instance (X ′,F ′, k′) for the problem such that the size of the instance
(X ′,F ′, k′) only depends on the parameter k. The instance (X ′,F ′, k′) will be
called a kernel for the instance (X,F , k). Dehne, Fellows, Rosamond and Shaw [6]
developed a kernelization algorithm by which the kernel (X ′,F ′, k′) satisfies the
conditions |F ′| < 2k and that each subset in F ′ has at most 2k elements. Lok-
shtanov and Sloper [14] used the crown decomposition and obtained a kernel
that both |F ′| and |X ′| are less than 2k. We introduce a new method to find the
kernel for the unweighted set splitting problem. What is interesting in our
method is that we use a probabilistic method to derive a deterministic kerneliza-
tion algorithm. In particular, our method is simpler, has lower time complexity,
and can also get a better kernel in term of the number of subsets in F ′ if there
are many subsets that have more than two elements.

Lemma 1. Given an instance (X,F , k) of the unweighted set splitting prob-
lem, let m1 be the number of subsets in F that have only one element. If |F| −
m1 ≥ 2k, then a partition of X exists that splits at least k subsets in F .

Proof. For each subset S ∈ F , if S has at least two elements, we pick any two
elements from S. Let V be the set of all these elements picked from the subsets
in F that have more than one element. Note that for two subsets S1 and S2 in F
that have more than one element, the two elements in S1 and the two elements
in S2 may not be disjoint.

Suppose |V | = t. We randomly partition V into two subsets Vl and Vr, such
that |Vl| = �t/2�, |Vr| = t−|Vl|, i.e. we randomly pick �t/2� elements of V into Vl

and let the remaining t−�t/2� elements of V in Vr. Thus, for any subset S in F :

540 J. Chen and S. Lu

Pr(S is split)

⎧
⎨

⎩
≥2(t−2

�t/2�−1)
(t

�t/2�)
=2�t/2(t−�t/2)

t(t−1) > 1
2 , if S has more than one element

=0, otherwise.

If we let:

XS =
{

1, if S is split,
0, otherwise,

then the expectation of the number of split subsets in F satisfies

E

(
∑

S∈F
XS

)
≥ 1

2
(|F| −m1),

Therefore, if |F| − m1 ≥ 2k, there must exist a partition of the ground set X
such that the number of split subsets in F is at least k. This completes the proof
of the lemma. �

The following lemma shows that we can directly include subsets of at least k
elements in our split subsets while we are solving the unweighted set splitting

problem.

Lemma 2. Let (X,F , k) be an instance of the unweighted set splitting prob-
lem, and let S be a subset in F that contains at least k elements. Then there is
a partition of X that splits k subsets in F if and only if there is a partition of
X that splits k − 1 subsets in F − {S}.

Proof. Suppose that there is a partition (Xl, Xr) of X that splits k subsets in
F . Then it is obvious that (Xl, Xr) splits (at least) k − 1 subsets in F − {S}.

On the other hand, suppose that there is a partition (Xl, Xr) of X that splits
k − 1 subsets S1, . . ., Sk−1 in F − {S}. Let li, ri ∈ Si, li ∈ Xl, and ri ∈ Xr, for
all 1 ≤ i ≤ k−1. Since S has at least k elements, there are at least two elements
l and r in S such that l 	∈ {r1, . . . , rk−1} and r 	∈ {l1, . . . , lk−1}. Therefore, if
we modify the partition (Xl, Xr) to enforce l in Xl and r in Xr (note that this
modification still keeps li in Xl and ri in Xr for all 1 ≤ i ≤ k − 1), then the
new partition splits the subset S, as well as the k − 1 subsets S1, . . ., Sk−1 in
F −{S}. In consequence, the new partition of the ground set X splits (at least)
k subsets in the collection F . �

Now we are ready to state our first kernelization result.

Theorem 1. Given an instance (X,F , k) of the unweighted set splitting

problem, we can construct in time O(N + 2k2), where N is the input size in
terms of (X,F , k), a kernel (X ′,F ′, k′) such that |F ′| < 2k, k′ ≤ k, |X ′| < 2k2,
and that each subset in F ′ has at most k − 1 elements.

Proof. We use the following procedure to find the kernel: given an instance
(X,F , k) of the unweighted set splitting problem, we delete each subset that
has only one element, also delete each subset that has at least k elements and
decrease k by 1. Let the resulting instance be (X ′,F ′, k′). If |F| ≥ 2k, then

Improved Algorithms for Weighted and Unweighted Set Splitting Problems 541

by Lemma 1 (note that F ′ contains no subsets of one element), we know that
the given instance is a “Yes” instance; otherwise we have |F ′| < 2k, k′ ≤ k.
Moreover, since we have removed all subsets of at least k elements, every subset
in F ′ contains at most k − 1 elements. In consequence, |X ′| < 2k2. The time to
find this kernel is obviously O(N + 2k2). �

Theorem 1 improves the time complexity of the kernelization algorithm given in
[6], which takes time O(N + n4), as well as that given in [14], which takes time
O(N + n2), where n is a number satisfying |F| = O(n) and |X | = O(n).

From intuition, when we randomly partition X into Xl ∪Xr such that each
element in X has a probability of 1/2 to be assigned to Xl and a probability of
1/2 to be assigned to Xr, a big subset has more chance to be split. This is true,
if many subsets in F have many elements, we can obtain a better kernel, or a
kernel that has fewer subsets in F ′.

Lemma 3. Let (X,F , k) be an instance of the unweighted set splitting prob-
lem. Suppose the number of subsets that have i elements is mi for 1 ≤ i ≤ k− 1
and the number of subsets that have at least k elements is m′

k. If
∑k−1

i=2
2i−2
2i mi+

m′
k ≥ k, then a partition of X exists that splits at least k subsets in F .

Proof. Let S1, . . . , Sm′
k

be the subsets in F that have at least k elements and let
F<k = F − {S1, . . . , Sm′

k
}.

We use a randomized process to partition X into (Xl, Xr) and let each element
in X go to Xl with a probability of 1/2 and go to Xr with a probability of 1/2,
then for any subset S ∈ F<k that has i elements:

Pr(S is split) =
2i − 2

2i
.

If we let:

XS =
{

1, if S is split,
0, otherwise.

then the expectation of the number of split subsets in F<k satisfies

E

⎛

⎝
∑

S∈F<k

XS

⎞

⎠ =
k−1∑

i=1

∑

|S|=i

E(S is split) =
k−1∑

i=1

2i − 2
2i

mi.

So there exists a partition of X such that the number of subsets in F<k that
are split is at least

∑k−1
i=1

2i−2
2i mi. Hence if

∑k−1
i=1

2i−2
2i mi ≥ k −m′

k, there must
exist a partition of X such that k −m′

k subsets in F<k are split. By repeatedly
using Lemma 2, we conclude that there is a partition of X that splits k−m′

k +1
subsets in F<k ∪{S1}; there is a partition of X that splits k−m′

k +2 subsets in
F<k ∪ {S1, S2}; and so on. In consequence, there is a partition of X that splits
k subsets in F<k ∪ {S1, . . . , Sm′

k
} = F . �

Using the procedure that is similar to Theorem 1, but counting the number of
subsets in F of different size and using the result of Lemma 3, we have the
following Theorem that is stronger than Theorem 1.

542 J. Chen and S. Lu

Theorem 2. Given an instance (X,F , k) of set splitting problem, suppose
the number of subsets in F that have i elements is mi for 1 ≤ i ≤ k− 1 and the
number of subsets that have at least k elements is m′

k. Then in time O(N +2k2),
where N is the input size in terms of (X,F , k), we can find a kernel (X ′,F ′, k′)
such that |F ′| < 2k−

∑k−1
i=3

2i−1−2
2i−1 mi− 2m′

k, that k′ ≤ k, that each subset in F ′

has at most k − 1 elements, and that |X ′| < 2k2.

Proof. We use the procedure that is similar to Theorem 1 to find the kernel:
given an instance (X,F , k) of the unweighted set splitting problem, we delete
each subset that has only one element, also delete each subset that has more
than k − 1 elements and decrease k by 1. In this procedure, we also obtain mi

for 1 ≤ i ≤ k − 1 and m′
k. By Lemma 3, if

∑k−1
i=2

2i−2
2i mi + m′

k ≥ k, we know
the given instance is a “Yes” instance; otherwise

∑k−1
i=2

2i−2
2i mi + m′

k < k, i.e.
|F ′| =

∑k−1
i=2 mi < 2k −

∑k−1
i=3

2i−1−2
2i−1 mi − 2m′

k. So we find a kernel (X ′,F ′, k′)
that |F ′| < 2k−

∑k−1
i=3

2i−1−2
2i−1 mi − 2m′

k, that k′ ≤ k, that each subset in F ′ has
at most k− 1 elements, and that |X ′| < 4k2. The time needed to find the kernel
is O(N + 2k2). �

3 A Randomized Algorithm for the Weighted Set

Splitting Problem

For the unweighted set splitting problem, Lokshtanov and Sloper [14] have
currently the best parameterized algorithm, whose running time is bounded by
O∗(2.65k). Unfortunately, their method does not seem to be extendable to the
weighted case, neither do the methods presented in [6,7] for the unweighted
case. In fact, no previous work is known that gives a fixed parameter tractable
algorithm for the weighted set splitting problem.

In this section, we present a randomized algorithm to solve the weighted set

splitting problem. Our basic idea is that if a given instance (X,F , k) of the
weighted set splitting problem has a partition of the ground set X that splits
k subsets in the collection F , then there exists a subset X ′ of at most 2k elements
in X such that a proper partition of the elements in X ′ can split at least k subsets
in F . If we use a randomized process to partition X into (Xl, Xr) and let each
element in X go to Xl with a probability of 1/2 and go to Xr with a probability
of 1/2, then the probability that the elements in X ′ are partitioned properly is
at least 2/22k. Thus, if we try O(4k) times, we have a good chance to find a
proper partition if it exists. In fact, we can do better than this in a randomized
algorithm.

Theorem 3. The weighted set splitting problem can be solved by a random-
ized algorithm of running time O(2kN), where N is the input size in terms of
(X,F , k).

Proof. Let (X,F , k) be an instance of the weighted set splitting problem.
Suppose that there is a partition of the ground set X that splits at least k subsets

Improved Algorithms for Weighted and Unweighted Set Splitting Problems 543

Algorithm-1 SetSplitting(X, F , k)
input: A ground set X, a collection F of subsets of X, and an integer k
output: A partition (Xl, Xr) of X and k subsets in F that are split by

(Xl, Xr), or report ”no partition of X splits k subsets in F”.
1. Q0 = ∅;
2. for i = 1 to 10 · 2k do
2.1. randomly partition X into Xl and Xr such that each element

in X has a probability 1/2 in Xl and a probability 1/2 in Xr;
2.2. let Q be the collection of subsets in F that are split by (Xl, Xr);
2.3. if Q contains at least k subsets then

delete all but the k subsets of maximum weight in Q;
2.4. if the weight sum of subsets in Q is larger than that in Q0 then

Q0 = Q;
3. return Q0.

Fig. 1. Randomized algorithm for weighted set splitting problem

in the collection F . Let (Xl, Xr) be a partition of the ground set X and let S1,
. . ., Sk be k subsets in the collection F that are split by the partition (Xl, Xr),
such that the weight sum of S1, . . ., Sk is the maximum over all collections of k
subsets in F that can be split by a partition of X . More specifically, let (l1, r1),
. . ., (lk, rk) be k pairs of elements in the ground set X such that li, ri ∈ Si,
li ∈ Xl, and ri ∈ Xr for all 1 ≤ i ≤ k. Note that it is possible that li = lj
or ri = rj for some i 	= j. In consequence, each of the sets {l1, . . . , lk} and
{r1, . . . , rk} may contain fewer than k elements.

We construct a graph G = (V, E), where V = {l1, l2, . . . , lk} ∪ {r1, r2, . . . , rk}
and E = {(li, ri) | 1 ≤ i ≤ k}. It is obvious that G is a bipartite graph with the
left vertex set L = {l1, l2, . . . , lk} and the right vertex set R = {r1, r2, . . . , rk}.
Suppose that the graph G has t connected components C1, · · · , Ct, where Ci =
(Vi, Ei), with ni = |Vi| and mi = |Ei|, for 1 ≤ i ≤ t. Then ni ≤ mi + 1 for
1 ≤ i ≤ t and

∑t
i=1 mi = k. If we use a randomized process to partition X into

(Xl, Xr) and let each element in X go to Xl with a probability of 1/2 and go
to Xr with a probability of 1/2, then for each connected component Ci of the
graph G, the probability that the vertex set Vi of Ci is properly partitioned,
i.e., either L ∩ Vi ⊆ Xl and R ∩ Vi ⊆ XR, or R ∩ Vi ⊆ Xl and L ∩ Vi ⊆ XR, is
2/2ni. Therefore, the total probability that the vertex set Vi for every connected
component Ci is properly partitioned, i.e., that the pair (li, ri) intersects with
both Xl and Xr for all 1 ≤ i ≤ k, is not less than

2
2n1
· 2
2n2
· · · · · 2

2nt
≥ 2

2m1+1
· 2
2m2+1

· · · · · 2
2mt+1

=
2t

2
∑ t

i=1 mi+t
=

1
2k

.

The algorithm in Figure 1 implements the above idea. By the above discussion,
each random partition (Xl, Xr) constructed in step 2.1 has a probability of at
least 1/2k to split the k subsets S1, . . ., Sk (recall that S1, . . ., Sk are the k
subsets in F whose weight sum is the maximum over all collections of k subsets

544 J. Chen and S. Lu

in F that are split by a partition of X). Since step 2 loops 10 · 2k times, with a
probability of at least

1−
(

1− 1
2k

)10·2k

≥ 99.99%,

one partition (Xl, Xr) constructed by step 2.1 splits the k subsets S1, . . ., Sk.
For this partition (Xl, Xr), steps 2.2-2.4 produces a collection Q of k subsets in
F whose weight sum is the maximum over all collections of k subsets in F that
are split by a partition of the ground set X .

Since each execution of steps 2.1-2.4 obviously takes time O(N), we conclude
that the running time of the algorithm SetSplitting is bounded by O(2kN). �

Obviously, the algorithm SetSplitting of running time O(2kN) can be directly
used to solve the unweighted set splitting problem, and its running time
significantly improves the previous best algorithm [14] for the unweighted set

splitting problem. Moreover, the algorithm SetSplitting is much simpler than
the one presented in [14].

4 Derandomization

For many parameterized NP-Complete problems, such as the k-path, 3-set
packing, and 3d-matching problems, the solution is a subset of size O(k).
If we have a way to partition this subset properly, we only need to deal with
several subproblems of smaller solution sizes, such as two (k

2)-path problems.
For a given subset of size k, or a k-subset, we have 2k ways of partitioning it into
two subsets. If we know this k-subset, we can enumerate all possible partitions
in time O(2k). But usually, we do not know this k-subset. In this section, we
present a set partition method such that given any set V of size n and an integer
k, we can get a partition family F(V, k) to partition any k-subset S of V in
all 2k partition ways. The method was described in an extended abstract by
Noar, Schulman, and Srinivasan [15], with many details omitted. In this section,
we provide further details and concrete constructions for the parts related to
our problems, and show how these techniques can be used to derive efficient
parameterized algorithms for the weighted set splitting problem.

Lemma 4 ([1]). Suppose n=2d − 1 and k=2t + 1≤n. Then there exists a uni-
form probability space Ω of size 2(n + 1)t and k-wise independent random vari-
ables ξ1, . . . , ξn over Ω each of which takes the values 0 and 1 with probability 1/2.

The Ω in lemma 4 is a n× 2(n + 1)�k/2 matrix that takes only value 0 and 1.
In our case, we can see each row as an element in a set V of size n and each
column as a partition of V . By the lemma 4, for each k-subset S of V and each
partition of S, there are 1

2k 2(n + 1)�k/2 columns to partition S this way. This
result was used by paper [15] to prove Lemma 7.

Improved Algorithms for Weighted and Unweighted Set Splitting Problems 545

Lemma 5. a) Given two sets A and B and a relation R ⊂ A×B, if (a, b) ∈ R,
we say element a in set A relates to element b in set B. If each element in set
A relates to at least fraction p of elements in set B, then there is an element b′

in set B such that there are at least fraction p of elements in A that relate to it.
b) For any given n and k and k ≤ n, if t > ek2k(log n + 1), then

(
n
k

)
2k(1 −

1
2k)t < 1.

Proof. a) Each element in set A relates to p|B| elements in set B, then there
are p|B||A| elements in set R ⊂ A×B. So there is at least one element in set B
that there exist p|A| elements in set A that relate to it.

b) Because
(
n
k

)
2k(1 − 1

2k)t < nk2k(1 − 1
2k)t, just let t = ek2k(log n + 1), you

can verify the inequality:
(
n
k

)
2k(1− 1

2k)t < 1 for t > ek2k(log n + 1) . �

Lemma 6. [9] Given U = {1, 2, . . . , n} with p = n + 1 a prime number, and
given W ⊂ U with |W | = k, then there exists a k′ ∈ U , such that mapping
x → (k′x mod p) mod k2 is one-to-one from W to {0, 1, 2, . . . , k2 − 1}.

Lemma 6 was proposed by Fredman, Komlos, and Szemeredi. It was used in
Theorem 4 to reduce the size of ground set V from n to k2. Now we give the
most important Lemma in the construction of partition family F(V, k).

Lemma 7. [15] For any given set V of size n and k ≤ n, there is a partition
function family F(V, k) of V such that for any k-subset V ′ of V , any partition
of V ′ can be done by a partition function in F(V, k). Furthermore the cardinality
of F(V, k) is O(k2k log n). And F(V, k) can be constructed deterministically in
time O(

(
n
k

)
k22kn� k

2).

Proof. For each k-subset S of V and each partition p of S, we make a pair
(S, p) and let A be a set of all such pairs; thus |A| =

(
n
k

)
2k. Let B = Ω, where

Ω is the probability space as in Lemma 4. Any (S, p) ∈ A and p′ ∈ B, if p′

agree the partition p in subset S (We say partition p′ covers pair (S, p)), let
((S, p), p′) ∈ R ⊂ A×B.

By Lemma 4, each (S, p) ∈ A, if we randomly choose p′ ∈ B, the probability
that p′ covers (S, p) is 1

2k , i.e. there are |B| 1
2k elements in B that cover (S, p).

So by Lemma 5-a), there is a partition p′ in B such that p′ covers |A| 1
2k pairs

in A. We put this p′ into F(V, k) and delete the pairs that are covered by p′.
The number of pairs remaining in A is |A|(1 − 1

2k). If we do this process again,
the number of pairs remaining in A becomes |A|(1− 1

2k)2. By Lemma 5-b), if we
repeat this process ek2k(log n + 1) + 1 times, the number of pairs remaining in
A is less than 1. This means that every pair in A is covered by some partitions
in F(V, k) and the cardinality of F(V, k) is O(k2k log n).

Because |A| =
(
n
k

)
2k, |B| = 2n�k/2, the time to construct F(V, k) is:

O(k2k log n)∑

i=0

|A||B|
(

1− 1
2k

)i

< O

((
n

k

)
k22kn� k

2
)

.

�

546 J. Chen and S. Lu

Lemma 7 gave a way to construct partition family F(V, k) of cardinality
O(k2k log n), but the time complexity is too large. In fact, Lemma 7 is only
a middle step result, the final construction is in the theorem 4.

Theorem 4. [15] For any given set V of size n and k ≤ n, there is a partition
function family F(V, k) of V such that for any k-subset V ′ of V , any partition
of V ′ can be done by a partition function in F(V, k) applying to V ′. The family
F(V, k) contains O(n2k+12 log2 k−4 log k) partitions of V , and can be constructed
in time O(n2k+12 log2 k−4 log k).

Proof. The construction of F(V, k) includes three steps:

First step: Mapping V to {0, 1, . . . , k2 − 1} by function fi(x) = (ix mod p)
mod k2, where p is a prime number between n and 2n. From number theory,
this prime number p must exist. By Lemma 6, for a fixed k-subset V ′ of V , there
is 1 ≤ i < 2n such that every element in V ′ is mapped to different value in
{0, 1, . . . , k2 − 1} by fi(x). This step has O(n) branches.

Second step: Partitioning {0, 1, . . . , k2 − 1} into 4 log k subsets V1, V2, . . . ,
V4 log k such that each subset has k

4 log k elements of the fixed k-subset V ′. This
step has O(k8(log k−1)) branches.

Third step: Enumerating all possible combinations of F(Vi,
k

4 log k) that ob-
tained by using the method from Lemma 7. The number of branches in this step
is O((k

4 log k)4 log k(2 log k)4 log k2k).

Because the time to construct all F(Vi,
k

4 log k) is O(k2
3k
4 + k

2 log k), both the cardi-

nality of F(V, k) and the time to construct F(v, k) are O(n2k+12 log2 k−4 log k).
�

Using the result of Theorem 4, we derive the first fixed parameter tractable
algorithm for the weighted set splitting problem, as given below.

Theorem 5. The weighted set splitting problem can be solved determi-
nately by an algorithm of running time O((|F|k + n))n22k+12 log2 k).

Proof. Given an instance of weighted set splitting problem, if it has at least
k subsets in F that can be split by a partition of X , then there exist two sets
{l1, l2, . . . , lk} and {r1, r2, . . . , rk}. If we can partition {l1, l2, . . . , lk} and {r1, r2,
. . . , rk} into two different groups, then there are at least k subsets in F that are
split by this partition. Using the partition family F(V, 2k) that is constructed
as in Theorem 4, we can do it. So we replace line 1 in Algorithm-1 by looping
all partitions in this F(V, 2k), then we can find a partition to split at least k
subsets in F determinately if this partition exists. �
Finally, we remark that the partition function family F(V, k) can also be used
to derandomize the algorithms for k-path, 3d-matching and 3-set packing

problems that are based on the divide-and-conquer techniques [5,12].

Improved Algorithms for Weighted and Unweighted Set Splitting Problems 547

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7, 567–683 (1986)

2. Andersson, G., Engebretsen, L.: Better approximation algorithms and tighter anal-
ysis for set splitting and not-all-equal sat. In: ECCCTR: Electronic colloquium on
computational complexity (1997)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Heidelberg (1999)

4. Chen, J., Kanj, I.: Improved Exact Algorithms for Max-Sat. Discrete Applied
Mathematics 142, 17–27 (2004)

5. Chen, J., Lu, S., Sze, S., Zhang, F.: Improved algorithms for path, matching, and
packing problems. In: SODA, pp. 298–307 (2007)

6. Dehne, F., Fellows, M., Rosamond, F.: An FPT Algorithm for Set Splitting. In:
Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 180–191. Springer, Heidel-
berg (2003)

7. Dehne, F., Fellows, M., Rosamond, F., Shaw, P.: Greedy localization, iterative
compression, modeled crown reductions: new FPT techniques, and improved algo-
rithm for set splitting, and a novel 2k kernelization of vertex cover. In: Downey,
R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137.
Springer, Heidelberg (2004)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
9. Fredman, M., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst

case access time. Journal of the ACM 31, 538–544 (1984)
10. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisco (1979)
11. Kann, V., Lagergren, J., Panconesi, A.: Approximability of maximum splitting of k-

sets and some other apx-complete problems. Information Processing Letters 58(3),
105–110 (1996)

12. Kneis, J., Molle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V.
(ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

13. Liu, Y., Lu, S., Chen, J., Sze, S.: Greedy localization and color-coding: Improved
Matching and Packing Algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

14. Lokshtanov, D., Sloper, C.: Fixed parameter set splitting, linear kernel and im-
proved running time. Algorithms and Complexity in Durham 2005, King’s College
Press, Texts in Algorithmics 4, 105–113 (2005)

15. Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: FOCS, pp. 182–190 (1995)

16. Zhang, H., Ling, C.: An improved learning algorithm for augmented naive bayes. In:
Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035,
pp. 581–586. Springer, Heidelberg (2001)

17. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In: SODA, pp. 201–220 (1998)

18. Zwick, U.: Outward rotations: A tool for rounding solutions of semidefinite pro-
gramming relaxation, with applications to max cut and other problem. In: STOC,
pp. 679–687 (1999)

An 8
5-Approximation Algorithm for a Hard

Variant of Stable Marriage

Robert W. Irving� and David F. Manlove∗

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
rwi@dcs.gla.ac.uk, davidm@dcs.gla.ac.uk

Abstract. When ties and incomplete preference lists are permitted in
the Stable Marriage problem, stable matchings can have different sizes.
The problem of finding a maximum cardinality stable matching in this
context is known to be NP-hard, even under very severe restrictions
on the number, size and position of ties. In this paper, we describe a
polynomial-time 8

5 -approximation algorithm for a variant in which ties
are on one side only and at the end of the preference lists. The particular
variant is motivated by important applications in large scale centralized
matching schemes.

1 Introduction

Background

An instance of the Stable Marriage problem with Ties and Incomplete Lists
(SMTI) comprises a set of n1 men m1, . . . , mn1 and a set of n2 women w1, . . . ,
wn2 . Each person has a preference list consisting of a subset of the members
of the opposite sex, his or her acceptable partners, listed in order of preference,
with ties, consisting of two or more persons of equal preference, permitted. If
man m and woman w appear on each other’s preference list then (m, w) is called
an acceptable pair. If w precedes w′ on m’s list then m is said to prefer w to
w′, while if w and w′ appear together in a tie on m’s list then m is said to be
indifferent between w and w′.

A matching is a set M of acceptable pairs so that each person appears in at
most one pair of M . If M is a matching and (m, w) ∈ M we write w = M(m)
and m = M(w), and we say that m and w are partners in M . A pair (m, w) is a
blocking pair for M , or blocks M , if m is either unmatched in M or prefers w to
M(m), and simultaneously w is either unmatched in M or prefers m to M(w).
A matching for which there is no blocking pair is said to be stable.

SMTI is an extension of the classical Stable Marriage problem (SM) intro-
duced by Gale and Shapley [2]. In the classical case, the numbers of men and
women are equal, all preference lists are complete, i.e., they contain all members
of the opposite sex, and ties are not permitted, i.e., all preferences are strict.
Gale and Shapley proved that, for every instance of SM, there is at least one
� Supported by EPSRC research grant EP/E011993/1.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 548–558, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An 8
5 -Approximation Algorithm for a Hard Variant of Stable Marriage 549

stable matching, and they described an O(n2) time algorithm to find such a
matching; this has come to be known as the Gale-Shapley algorithm.

This algorithm is easily extended to the case in which the numbers of men and
women differ and preference lists are incomplete (SMI – Stable Marriage with
Incomplete lists); it has complexity O(a) in this case, where a is the number of
acceptable pairs [4]. In the case of SMI, not everyone need be matched in a stable
matching. In general, for a given instance of SMI, there may be many stable
matchings – exponentially many in extreme cases – but all stable matchings
have the same size and match exactly the same sets of men and women [15,3].

The Gale-Shapley algorithm may be applied from either the men’s side or the
women’s side, and in general these two applications will produce different stable
matchings. When applied from the men’s side, the man-optimal stable matching
is found; in this, every man has the best partner that he can have in any stable
matching, and every woman the worst. When the algorithm is applied from
the women’s side, the woman-optimal stable matching results, with analogous
properties. Exceptionally, the man-optimal and woman-optimal stable matchings
may coincide, in which case this is the unique stable matching, but in general
there may be other stable matchings – possibly exponentially many – between
these two extremes. However, for a given instance of SMI, all stable matchings
have the same size and match exactly the same sets of men and women [15,3].

The situation for SMTI is dramatically different. Again, at least one stable
matching exists for every instance, and can be found in O(a) time by breaking
all ties in an arbitrary way to give an instance of SMI, and applying the Gale-
Shapley algorithm to that instance. However, the ways in which ties are broken
can significantly affect the outcome. In particular, not all stable matchings need
be of the same size, and in the most extreme case, there may be two stable
matchings M and M ′ with |M | = 2|M ′|. Furthermore, the problem of finding
a stable matching of maximum cardinality for an instance of SMTI – problem
MAX-SMTI – is NP-hard [13]. This hardness result holds even under severe
restrictions, for example, if the ties are on one side only, each list contains at
most one tie, and that tie, if present, is at the end of the list.

Practical Applications

The practical importance of stable matching problems arises from their ap-
plication in the assignment of applicants to positions in various job markets.
The many-one version of the problem has come to be known as the Hospi-
tals/Residents problem (HR) because of its widespread application in the med-
ical employment domain [15,9,14,1,16]. In an instance of HR, each resident has
a preference list of acceptable hospitals, while each hospital has a preference list
of acceptable residents together with a quota of positions. A matching M is a
set of acceptable resident-hospital pairs such that each resident is in at most one
pair, and each hospital is in a number of pairs that is bounded by its quota. If
pair (r, h) is in M , we write h = M(r) and r ∈ M(h), so that M(h) is a set of
residents for each hospital h. A matching is stable if it admits no blocking pair,
i.e., an acceptable pair (r, h) such that r is either unmatched in M or prefers h

550 R.W. Irving and D.F. Manlove

Men’s preferences Women’s preferences
m1 : w1 w2 w1 : (m1 m2)
m2 : w1 w2 : m1

Fig. 1. An instance of SSMTI with stable matchings of sizes 1 and 2.

to M(r), and simultaneously h is either under quota or prefers r to at least one
member of M(h).

As in the case of SMI, all stable matchings for an instance of HR have the
same size, and so-called resident-optimal and hospital-optimal stable matchings
can be found by applying an extended version of the Gale-Shapley algorithm
from the residents’ side or the hospitals’ side respectively. But if ties are allowed
in the preference lists - the Hospitals/Residents problem with Ties (HRT) – then
as in the case of SMTI, stable matchings can have different sizes, and it is NP-
hard to find a stable matching of maximum size, even under severe restrictions
on the number, size, and position of ties.

Variants of the extended Gale-Shapley algorithm are routinely used in a num-
ber of countries, including the United States [14], Canada [1] and Scotland [16], to
allocate graduating medical students to hospital posts, and in a variety of other
countries and contexts. In large scale matching schemes of this kind, participants,
particularly large popular hospitals, may not be able to provide a genuine strict
preference order over what may be a very large number of applicants, so that
HRT is a more appropriate model than HR. If artificial tie-breaking is carried
out, either by the participant, because a strictly ordered list is required by the
matching scheme, or by the administrators of the scheme, prior to running an
algorithm that requires strict preferences, then the size of the resulting stable
matching is likely to be affected. Breaking ties in different ways will typically
yield stable matchings of different sizes; what would be ideal would be to find a
way of breaking the ties that maximizes the size of the resulting stable matching,
but the NP-hardness of this problem makes this an objective that is unlikely to
be feasible.

A special case of HRT arises if residents are required to strictly rank their
chosen hospitals but hospitals are asked to rank only as many of their appli-
cants as they reasonably can, and then place the remainder in a single tie at
the end. For example this variant has been employed in the Scottish Founda-
tion Allocation Scheme (SFAS). The correspondingly restricted version of SMTI,
where all men’s lists are strict and women’s lists may contain one tie at the
end, is the special case in which all quotas are equal to one. We refer to these
restricted versions of SMTI and HRT as Special SMTI/HRT (SSMTI/SHRT),
and use the terms MAX-SSMTI and MAX-SHRT for the problems of finding
maximum cardinality stable matchings in these cases, which remain NP-hard
problems [13].

Figure 1 shows an example of SSMTI in which there are two stable matchings,
M1 = {(m1, w2), (m2, w1)} of size 2 and M2 = {(m1, w1)} of size 1. A tie in the
preference lists is indicated by parentheses.

An 8
5 -Approximation Algorithm for a Hard Variant of Stable Marriage 551

Related Results

It is trivial to establish that there can be at most a factor of two difference
between the sizes of a minimum and maximum cardinality stable matching for
an instance of SMTI, and as a consequence, breaking ties arbitrarily and applying
the Gale-Shapley algorithm gives a 2-approximation algorithm for MAX-SMTI.
A number of improved approximation algorithms for versions of SMTI have
recently been proposed.

For the general case, Iwama et al [11] gave an algorithm with a performance
guarantee of (2 − c/

√
n), (for the case of n men and n women), for a constant

c. Very recently, Iwama et al [12] gave the first approximation algorithm for the
general case with a constant performance guarantee better than 2, namely 15

8 .
From the inapproximability point of view, Halldórsson et al showed the problem
to be APX-complete [5], and gave a lower bound of 21

19 on any polynomial-time
approximation algorithm (assuming P 	= NP) [6]. This lower bound applies even
to MAX-SSMTI.

As far as special cases are concerned, Halldórsson et al [6] gave a (2/(1+L−2))-
approximation algorithm for the case where all ties are on one side, and are of
length at most L – so, for example, this gives a bound of 8

5 when all ties are of
length 2. If ties are on both sides and restricted to be of length 2, a bound of
13
7 is shown in [6]. Halldórsson et al [7] also described a randomized algorithm
with an expected performance guarantee of 10

7 for the same special case under
the additional restriction that there is at most one tie per list.

The Contribution of This Paper

In this paper, we focus on the problem MAX-SSMTI described above, and give
a polynomial-time 8

5 -approximation algorithm for this case. The algorithm is
relatively easy to extend to MAX-HRT, and the same 8

5 performance guarantee
holds in this more general setting. We also show that this performance guarantee
is the best that can be proved for the algorithm by providing an example for
which this bound is realised.

2 The Algorithm

In what follows, we assume that each man’s preference list is strict, and each
woman’s preference list is strict except for a tie (of length ≥ 1) at the end. The
algorithm consists of three phases. The first phase is a variant of the Gale-Shapley
algorithm for the classical stable marriage problem, applied from the women’s
side, but with women proposing only as far as the tie (if any) in their list. This
results in a provisional matching involving precisely those men who received
proposals. The second phase adds to this provisional matching a maximal set of
acceptable pairs from among the remaining men and women. Finally, in Phase
3 all ties are broken, favouring unmatched men over matched men, and the
standard Gale-Shapley algorithm is run to completion on the resulting instance
of SMI.

552 R.W. Irving and D.F. Manlove

assign each person to be free;
while (some woman w is free) and (w has a non-empty list)

and (w has an untied man m at the head of her list) {
w proposes, and becomes engaged to m;
for each successor w′ of w on m’s list {

if w′ is engaged to m
break the engagement, so that w′ becomes free;

delete the pair (m, w′) from the preference lists;
}

}

Fig. 2. Phase 1 of Algorithm SSMTI-APPROX

Phase 1 of Algorithm SSMTI-APPROX

The first phase of the algorithm is a variant of the Gale-Shapley algorithm for
the classical stable marriage problem, applied from the women’s side. During
this phase, zero or more deletions are made from the preference lists – by the
deletion of the pair (m, w), we mean the removal of w from m’s list and the
removal of m from that of w. Initially, everyone is free. During execution of the
algorithm, a woman may alternate between being free and being engaged, but
once a man becomes engaged, he remains in that state, though the identity of his
partner may change over time. A free woman w who still has an untied man on
her current list proposes to the first such man and becomes (at least temporarily)
engaged to that man. When a man m receives a proposal from woman w, he
rejects his current partner (if any), setting her free, and all pairs (m, w′) such
that m prefers w to w′ are deleted. This phase of the algorithm is summarised
in Figure 2.

When Phase 1 of the algorithm terminates on a given instance I, a woman
w’s preference list must be in one of three possible states – it may be empty, it
may consist of a single tie, or it may have a unique untied man m at its head.
In the latter case, it is clear that m cannot be the unique man at the head of
any other woman’s list, and that w is the last entry in m’s list.

Lemma 1. On termination of Phase 1 of Algorithm SSMTI-APPROX,
(i) no deleted pair can belong to a stable matching;
(ii) if man m is the unique man at the head of some woman’s list then m is
matched in every stable matching.

Proof. (i) Suppose that (m, w) is a deleted pair that belongs to a stable matching
M , and that (m, w) was the first such pair to be deleted in an execution of Phase
1 of the algorithm. This must have happened because m received a proposal from
some woman w′ whom he prefers to w. Woman w′ is either unmatched in M or
prefers m to M(w), because any pair (m′, w′) such that w′ prefers m′ to m must
have been previously deleted, and by our assumption, this pair cannot be in a
stable matching. Hence (m, w′) blocks M , a contradiction.

An 8
5 -Approximation Algorithm for a Hard Variant of Stable Marriage 553

V = Y1 ∪ Q1;
E = {(m, w) ∈ Y1 × Q1 : (m, w) is a Phase 1 acceptable pair};
construct the bipartite graph G = (V, E);
K = a maximum cardinality matching in G;
for each pair (m,w) ∈ K

promote m from the tie to the head of w’s list;
re-activate the proposal sequence of Phase 1;

Fig. 3. Phase 2 of Algorithm SSMTI-APPROX

(ii) Suppose that m is the unique man at the head of woman w’s list, and that
M is a stable matching in which m is unmatched. Then, by part (i), w is either
unmatched in M or prefers m to M(w), so that (m, w) blocks M , a contradiction.

��

We refer to the men who appear untied at the head of some woman’s list after
Phase 1 of the algorithm as the Phase 1 X-men and the other men as the Phase 1
Y-men, and we denote these sets by X1 and Y1 respectively. Likewise, the women
who have an untied man at the head of their list are the Phase 1 P-women and
the others are the Phase 1 Q-women, denoted by P1 and Q1. So the engaged
pairs at the end of Phase 1 constitute a perfect matching between X1 and P1,
and the essence of Lemma 1(ii) is that each member of X1 is matched in every
stable matching. We call the preference lists that remain after Phase 1 the Phase
1 lists, and if man m and woman w are in each other’s Phase 1 lists, we say that
(m, w) is a Phase 1 acceptable pair.

Phase 2 of Algorithm SSMTI-APPROX

In Phase 2 of the algorithm, we seek to increase the number of men who are
guaranteed to be matched. To this end, we find a maximum cardinality matching
K of Y1 to Q1, where a pair (m, w) can be in this matching only if m ∈ Y1,
w ∈ Q1, and (m, w) is a Phase 1 acceptable pair. For each pair (m, w) in K, we
break the tie in w’s Phase-1 list by promoting m to the head of that list (and
leaving the rest of the tie intact). We then re-activate the proposal sequence of
Phase 1, which will lead to a single proposal corresponding to each pair in K,
and which may result in some further deletions from the preference lists, but no
rejections and no other proposals. This produces an instance I ′ of SSMTI that
is a refinement of the original instance I – or more properly, a refinement of the
variant of I that results from application of Phase 1; clearly any matching that
is stable for I ′ is also stable for I, but not necessarily vice-versa. Phase 2 of the
algorithm is summarised in Figure 3.

Lemma 2. Every man who is untied at the head of some woman’s list on ter-
mination of Phase 2 of Algorithm SSMTI-APPROX is matched in every stable
matching for I ′.

554 R.W. Irving and D.F. Manlove

Proof. The proof is completely analogous to that of Lemma 1(ii). ��

Note that, while Lemma 2 can be expected, in many cases, to give a stronger
lower bound on the size of a stable matching than is given by Lemma 1, this
need not be the case. It is perfectly possible that the Phase 1 Q-women have
only Phase 1 X-men in their preference lists, and that, as a consequence, K is
the empty matching. However, we now extend the set of X-men and P -women to
include those who became engaged during Phase 2. Henceforth, we use the term
X-men to refer to those men who appear untied at the head of some woman’s list,
and the P-women are the women who have an X-man at the head of their list,
after Phase 2 of the algorithm. Let x be the number of X-men and P -women,
and suppose that these sets are X = {m1, . . . , mx} and P = {w1, . . . , wx} re-
spectively. We also define Y = {mx+1, . . . , mn1} and Q = {wx+1, . . . , wn2}, and
refer to these sets as the Y-men and Q-women respectively.

Lemma 3. Let A be a matching that is stable for I ′, and let M be a maximum
cardinality stable matching for I. Then
(i) A Y -man who is matched in M must be matched in M with a P -woman.
(ii) |M | ≤ |A|+ x;
(iii) |M | ≤ 2x.

Proof. (i) Suppose that m is a Y -man and that (m, w) ∈ M . Then if w were a
Q-woman, she must be a Phase 1 Q-woman who failed to be matched during
Phase 2, and therefore the matching found in Phase 2 could have been extended
by adding the pair (m, w), contradicting its maximality.
(ii) By Lemma 2, all of the X-men are matched in A. So the only men who can
be matched in M but not in A are Y -men. By (i), such a man must be matched
in M with a P -woman. The inequality follows, as there are just x P -women.
(iii) Men matched in M are either X-men, and there are x of these, or Y -men
matched with P -women (by (i)), and there are x of the latter, hence at most 2x
such men in total. ��

Phase 3 of Algorithm SSMTI-APPROX

Phase 3 of the algorithm involves completely breaking the remaining ties and
then applying to the resulting instance of SMI the standard Gale-Shapley algo-
rithm (or at least the extended version of that algorithm that deletes redundant
entries from the preference lists - see [4]). The algorithm may be applied from
either the men’s or women’s side; as is well known, the size of the resulting
matching will be the same in each case. Tie-breaking is carried out according
to just one restriction, namely, for each tie, the Y -men are given priority over
the X-men. In other words, each tie is resolved by listing the Y -men that it
contains, in arbitrary order, followed by the X-men that it contains, again in
arbitrary order. It is immediate that the algorithm produces a matching that is
stable for the original instance of SMTI. For an instance I of SMTI, we denote
by I ′′ an instance of SMI obtained by application of Phases 1 and 2 of Algo-
rithm SSMTI-APPROX, followed by tie-breaking according to this rule. Again

An 8
5 -Approximation Algorithm for a Hard Variant of Stable Marriage 555

for each woman w
break the tie (if any) in w’s list, placing the Y -men ahead of the X-men;

/* Now apply the standard Gale-Shapley algorithm */
assign each person to be free;
while (some man m is free) and (m has a non-empty list) {

w = the first woman on m’s list;
m proposes, and becomes engaged to w;
for each successor m′ of m on w’s list {

if m′ is engaged to w
break the engagement, so that m′ becomes free;

delete the pair (m′, w) from the preference lists;
}

}
return the set A of engaged pairs;

Fig. 4. Phase 3 of Algorithm SSMTI-APPROX

it is immediate that a matching that is stable for I ′′ is also stable for I. Phase
3 of the algorithm is summarised in Figure 4.

The Performance Guarantee

Let A be a matching produced by application of Algorithm SSMTI-APPROX,
and let M be a maximum cardinality stable matching for the original instance
I of SSMTI. As previously established, all of the X-men are matched in A.
Suppose that exactly r of the Y -men, say mx+1, . . . , mx+r, are matched in M
but not in A. Let us call these men the extra men (for M), and their partners
in M the extra women.

Lemma 4. (i) Each extra woman is matched in A.
(ii) An extra woman is either matched in A to a Y -man or strictly prefers her
A-partner to her M -partner.

Proof. Let w be an extra woman, and let m be her partner in M . Recall that
M is stable for the original instance I, while A is stable for the refined instance
I ′′ (of SMI), and therefore also for the instances I ′ and I (of SSMTI).
(i) By definition, m is an extra man and therefore is not matched in A, so that
if w is not matched in A it is immediate that the pair (m, w) blocks A.
(ii) Let a be w’s A-partner. If w strictly prefers m to a then, since m is unmatched
in A, the pair (m, w) blocks A in I, a contradiction. If m and a are tied in w’s
list, and a is an X-man then, when that tie was broken to form I ′′, m, being a
Y -man, must have preceded a in the resulting strict preference list. Hence, again
since m is unmatched in A, the pair (m, w) blocks A in I ′′, a contradiction. ��

We partition M ’s extra men into two sets U and V ; those in U have an M -
partner who is matched in A to an X-man, and those in V have an M -partner
who is matched in A to a Y -man. Suppose, without loss of generality, that

556 R.W. Irving and D.F. Manlove

U = {mx+1, . . . , mx+s} and V = {mx+s+1, . . . , mx+r}, i.e., |U | = s, |V | = r− s.
Let M(U) denote the set of women who are matched in M to a man in U .
Suppose that, among the men who are matched in A with women in M(U),
exactly t (≤ s) are unmatched in M . (These are all X-men, by definition of U ,
but some X-men – those who became so during Phase 2 of the algorithm, need
not be matched in M .)

Our next lemma gives us certain inequalities involving the sizes of matchings
M and A that will enable us to establish the claimed performance guarantee for
Algorithm SSMTI-APPROX.

Lemma 5. (i) |M | ≤ |A|+ r − t.
(ii) |A| ≥ x + r − s.
(iii) |A| ≥ r + s− t.

Proof. (i) All the X-men are matched in A, but at least t of them are not
matched in M , and the Y -men who are matched in M but not in A number
exactly r.
(ii) Consider the set V . Each woman w who is the partner in M of a man in V
is matched in A to a Y -man, and there are r − s such women w. This gives us
r− s of the Y -men who are matched in A, and together with all x of the X-men
who, by Lemma 1(ii), are all matched in A, we have a total of x + r− s distinct
men who are matched in A.
(iii) Consider the set U , and suppose that (mx+j , wij) is in M for j = 1, . . . , s.
By definition of U , each wij has an X-man as her partner in A; without loss
of generality, suppose that (mj , wij) is in A, for j = 1, . . . , s. By Lemma 4, wij

strictly prefers her A-partner mj to her M -partner mx+j. Each mj is an X-man
and s− t is the number of these men who are matched in M ; suppose, without
loss of generality, that (mj , wkj) is in M , for j = 1, . . . , s− t. Then none of these
wkj can be an extra woman, for the M -partners of the latter are Y -men. Also,
each of the men mj prefers wkj to wij , for otherwise (mj , wij) would block M .
Furthermore, each wkj must be matched in A. For if not, the pair (mj , wkj)
would block A. It follows that we have a total of r + s− t women who must be
matched in A, namely the r extra women, by Lemma 4, and the s − t women
wk1 , . . . , wks−t . ��

We are now in a position to establish our main theorem.

Theorem 1. For a given instance of SSMTI, let M be a maximum cardinality
stable matching and let A be a stable matching returned by Algorithm SSMTI-
APPROX. Then |M | ≤ 8|A|/5.

Proof. By Lemma 5 we have |A| ≥ max(x + r − s, r + s− t) ≥ 1
2 ((x + r − s) +

(r + s− t)) = x/2 + r− t/2. So, by Lemma 3(iii), |A| ≥ |M |/4 + r− t/2. Hence,
by Lemma 5(i), |A| ≥ |M |/4 + |M | − |A|+ t− t/2, and so 2|A| ≥ 5|M |/4 + t/2,
from which the claimed bound follows. ��

An 8
5 -Approximation Algorithm for a Hard Variant of Stable Marriage 557

Complexity of the Algorithm

The worst-case complexity of Algorithm SSMTI-APPROX is dominated by the
maximum cardinality matching step in Phase 2. Using the Hopcroft-Karp algo-
rithm [8], this can be achieved in O(

√
na) time, where n is the total number of

men and women, and a is the sum of the lengths of the preference lists. However,
there is a variant of the algorithm that achieves the same performance guaran-
tee but with O(a) complexity. This is obtained by observing that, in Phase 2, it
suffices to find a maximal matching – i.e., a matching that cannot be extended
to a larger matching by adding further pairs – rather than a maximum cardinal-
ity matching, of men in Y1 to women in Q1. The only place in the subsequent
argument where the relevant property of this matching is needed is in the proof
of Lemma 3(i), and it is indeed merely maximality that is required. A maximal
matching can be found in O(a) time, and all other parts of the algorithm are
merely variants of the Gale-Shapley algorithm. It is not hard to show that these
can also be implemented to run in O(a) time (see [4]).

Tightness of the Approximation Guarantee

This is the tightest bound that can be established for Algorithm
SSMTI-APPROX. Figure 5 shows an example where the ratio of |M | to |A| is 8

5 .
The matching M = {(m1, w5), (m2, w6), (m3, w7), (m4, w8), (m5, w1), (m6, w2),
(m7, w3), (m8, w4)} is a maximum cardinality stable matching of size 8, whereas
if ties are broken simply by removing the parentheses, the algorithm returns
matching A = {(m1, w2), (m2, w3), (m3, w5), (m4, w6), (m8, w1)}, of size 5. By
duplicating this pattern, we can obtain arbitrarily large instances realising the
8
5 ratio.

Men’s preferences Women’s preferences
m1 : w5 w2 w1 : m3 (m8 m5)
m2 : w6 w3 w2 : m1 m6

m3 : w5 w7 w8 w1 w3 : m2 m7

m4 : w6 w8 w7 w4 w4 : m4 m8

m5 : w1 w5 : (m3 m1)
m6 : w2 w6 : (m4 m2)
m7 : w3 w7 : (m4 m3)
m8 : w1 w4 w8 : (m3 m4)

Fig. 5. An instance of SSMTI with ratio 8
5

Extension to Special HRT

In view of the fact that our study was motivated by practical applications of the
HRT problem, it is important to note that we can obtain exactly the same 8

5
performance guarantee for an analogous algorithm for the special case of HRT
in which each hospital’s preference list has a tie of length ≥ 1 at the end. Full
details of the extended algorithm and a correctness proof can be found in [10].

558 R.W. Irving and D.F. Manlove

3 Summary and Open Problems

We have described a polynomial-time approximation algorithm with a perfor-
mance guarantee of 8

5 for a maximum cardinality stable matching in NP-hard
variants of the Stable Marriage and Hospitals/Residents problems that are of sig-
nificant practical interest. We have also shown that this performance guarantee
is the best that can be proved for the algorithm.

The most obvious open question to pursue is whether this or a similar ap-
proach can yield useful performance guarantees for more general versions of
SMTI and HRT, for example when there can be a single tie at the end of the
lists on both sides, or when the lists on one side can contain arbitrary ties.

References

1. (Canadian Resident Matching Service) http://www.carms.ca/jsp/main.jsp
2. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American

Mathematical Monthly 69, 9–15 (1962)
3. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete

Applied Mathematics 11, 223–232 (1985)
4. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-

rithms. MIT Press, Cambridge (1989)
5. Halldórsson, M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki, S., Morita,

Y., Scott, S.: Approximability results for stable marriage problems with ties. The-
oretical Computer Science 306(1-3), 431–447 (2003)

6. Halldórsson, M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxima-
tion of the stable marriage problem. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 266–277. Springer, Heidelberg (2003)

7. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Randomized approx-
imation of the stable marriage problem. Theoretical Computer Science 325(3),
439–465 (2004)

8. Hopcroft, J.E., Karp, R.M.: A n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2, 225–231 (1973)

9. Irving, R.W.: Matching medical students to pairs of hospitals: a new variation on
a well-known theme. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G.
(eds.) ESA 1998. LNCS, vol. 1461, pp. 381–392. Springer, Heidelberg (1998)

10. Irving, R.W., Manlove, D.F.: 8/5-approximation algorithms for hard variants of the
stable marriage and hospitals/residents problems. Technical Report TR-2007-232,
University of Glasgow, Department of Computing Science (February 2007)

11. Iwama, K., Miyazaki, S., Yamauchi, N.: A
(
2 − c 1√

n

)
approximation algorithm for

the stable marriage problem. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS,
vol. 3827, pp. 902–914. Springer, Heidelberg (2005)

12. Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875–approximation algorithm for the
stable marriage problem. In: Proceedings of SODA 2007, pp. 288–297 (2007)

13. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)

14. (National Resident Matching Program) http://www.nrmp.org/about nrmp/
15. Roth, A.E.: The evolution of the labor market for medical interns and residents: a

case study in game theory. Journal of Political Economy 92(6), 991–1016 (1984)
16. (Scottish Foundation Allocation Scheme) http://www.nes.scot.nhs.uk/sfas/

http://www.carms.ca/jsp/main.jsp
http://www.nrmp.org/about_nrmp/
http://www.nes.scot.nhs.uk/sfas/

Approximation Algorithms for the Black and

White Traveling Salesman Problem

Binay Bhattacharya1,�, Yuzhuang Hu2, and Alexander Kononov3

1 School of Computing Science, Simon Fraser University, Burnaby, Canada, V5A 1S6
{binay,yhu1}@cs.sfu.ca

2 Laboratory “Mathematical Models of Decision Making”, Sobolev Institute of
Mathematics, Acad. Koptyug Avenue, 630090 Novosibirsk, Russia

alvenko@math.nsc.ru

Abstract. The black and white traveling salesman problem (BWTSP)
is to find the minimum cost hamiltonian tour of an undirected complete
graph G, containing black and white vertices, subject to two restrictions:
the number of white vertices, and the cost of the subtour between two
consecutive black vertices are bounded. This paper focuses on designing
approximation algorithms for the BWTSP in a graph satisfying the tri-
angle inequality. We show that approximating the tour which satisfies
the length constraint is NP-hard. We then show that the BWTSP can
be approximated with tour cost (4 − 3

2Q
) times the optimal cost, when

at most Q white vertices appear between two consecutive black vertices.
When exactly Q white vertices appear between two consecutive black
vertices, the approximation bound can be slightly improved to (4 − 15

8Q
).

This approximation bound is further improved to 2.5 when Q = 2.

1 Introduction

In this paper, we consider an extension of the classical traveling salesman prob-
lem (TSP). The problem is defined on an undirected graph, G = (V, E), where
a vertex set, V = VB ∪ VW , is partitioned into a set of black vertices, VB , and a
set of white vertices, VW , and an edge set, E, with edge costs w(e) for all e ∈ E
satisfying the triangle inequality. The black and white traveling salesman prob-
lem (BWTSP) is to determine a minimum cost hamiltonian tour of G subject
to the following restrictions:

1. Cardinality constraint in which the number of white vertices on “black to
black” paths is bounded above by a positive integer constant Q, and

2. Length constraint in which the cost of any path between two consecutive
black vertices is bounded above by a positive value L.

Clearly, BWTSP reduces to the classical TSP when L = Q = ∞, and is
therefore NP-hard. An application of the directed BWTSP arises in short-haul
airline operations ([14,13]). The flight leg between two stations p and q is de-
termined by a white vertex vpq and a maintenance station s corresponds to a
� Research was partially supported by MITACS and NSERC.

G. Lin (Ed.): COCOON 2007, LNCS 4598, pp. 559–567, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

560 B. Bhattacharya, Y. Hu, and A. Kononov

black vertex vs. An arc represents a leg-leg, leg-maintenance, or maintenance-leg
sequence. The problem is to determine a flying sequence such that the number of
takeoffs and landings, as well as the total operating cost between any two main-
tenance sequences are bounded as above. The undirected case has applications
in telecommunications ([6,15]). Cosares et al. [6] and Wasem [15] describe an ap-
plication of the undirected BWTSP arising in the design of telecommunication
ring networks, in which black vertices are ”ring offices” and white vertices are
”hubs”. In order to achieve a survivable synchronous optical network (SONET)
architecture, any two consecutive ring offices on the network must be separated
by at most Q hubs and a length not exceeding L. Another particular case of
the BWTSP is the vehicle routing problem (VRP) where each client has unit
demand, the vehicle has capacity Q, and maximal route length of the vehicle is
at most L.

Attempts have been made to optimally solve BWTSP for small size problems
([2,15]). Ghiani, Laporte and Semet recently developed an exact branch-and-cut
algorithm for the undirected case ([10]). Mak and Boland [13] have proposed
a simulated annealing algorithm for the directed BWTSP and have applied it
to instances involving 36 vertices. Bourgeois, Laporte and Samet [2] proposed
five heuristic algorithms for the BWTSP, along with extensive computational
computational comparisons.

In this paper we are interested in designing efficient approximation algorithms
with guaranteed performances for the BWTSP. We show that BWTSP cannot
be approximated if the length constraint is specified. However, approximation
algorithms with guaranteed performances can be designed when only the car-
dinality constraint is specified. BWTSP with the cardinality constraint Q = 1
occurs in routing papers with different names: bipartite traveling salesperson
problem or k-delivery problem where k = 1. Anily and Hassin [1] have shown a
2.5-approximation algorithm for another generalization of this problem, known
as the swapping problem. Their algorithm finds a perfect matching M , consist-
ing of edges that connect black and white vertices, and it uses the Christofides-
Serdyukov heuristic [4] to find a tour, T , of the black vertices. The final route
consists of visiting the black vertices in the sequence specified by the tour T,
using the matching edges in M. Later, Chalasani and Motwani [3] developed
a 2-approximation algorithm for 1-delivery problem using some combinatorial
properties of bipartite spanning trees and matroid intersection. We expand the
idea proposed in [1] and present a (4− 3

2Q)-approximation algorithm, when the
number of white vertices between two consecutive black vertices is bounded
above by Q. The bound can be slightly improved to (4 − 15

8Q), if the number
of white vertices is exactly Q · |VB |. When |VW | = 2 · |VB |, the bound can be
improved to 2.5.

The organization of this paper is as follows: In section 2, we show that the
BWTSP is NP-hard when the length constraint is specified. Section 3 deals with
the BWTSP when only the cardinality constraint is specified. Various approx-
imation algorithms are provided for different variants of the cardinality con-
straint. Section 4 discusses our conclusions.

Approximation Algorithms for the BWTSP 561

2 BWTSP with Length Constraint

We first show that the following problem is NP-complete. Given a complete
weighted graph G, with black and white vertices, satisfying the triangle inequal-
ity, determine whether G has a BWTSP route wherein the cost of the path be-
tween two consecutive black vertices in the cycle is no more than L. The above
result then implies that the problem of designing approximation algorithms for
the BWTSP is NP-hard, if the length constraint is specified.

Let us consider an instance of the hamiltonian path problem. Let G = (V, E)
be the input graph with |V | = n. Consider the following graph G′. G′ has n black
vertices VB and n copies of V (say, V1, V2, . . . , Vn) which are all white. Suppose
L = n + 1 and Q = ∞. The cost of the edge between u and v is fixed as follows:

(i) if u ∈ VB and v ∈ VB, w(u,v) = 2,
(ii) if u ∈ VB and v ∈ Vi, for any i, w(u,v) = 1,
(iii) if u ∈ Vi and v ∈ Vj , for any i 	= j, w(u,v) = 2,
(iv) if u ∈ Vi, v ∈ Vi and (u, v) ∈ E, w(u,v) = 1, and
(v) if u ∈ Vi, v ∈ Vi and (u, v) 	∈ E, w(u,v) =2.

G′ is a complete weighted graph satisfying the triangle inequality. Clearly, G′ has
a BWTSP route satisfying the length constraint, if and only if, the graph G has a
hamiltonian path.

3 BWTSP with Only the Cardinality Constraint Specified

The result from the previous section implies the impossibility of finding approxi-
mate solutions to BWTSP when the length constraint is specified. Therefore, we
consider the case where only the cardinality constraint is satisfied. In other words,
Given a graph G = (V, E) where V = VB ∪VW , VB ∩VW = ∅, with the edges sat-
isfying the triangle inequality, determine a minimum cost traveling salesman tour
such that the number of white vertices between two consecutive black vertices in
the tour is at most a given integer Q.

Let |VB | = n and |VW | = m. Without any loss of generality, we assume that
m ≤ Q ·n, otherwise an instance does not have a feasible solution. Also note that
if m ≤ Q, any Hamiltonian cycle satisfies the cardinality constraint and we get
the classical traveling salesman problem. So in our paper, we assume that Q <
m ≤ Q · n.

3.1 Lower Bounds

Let L∗ be the length of the optimal tour of the BWTSP in G = (V, E), satisfy-
ing the cardinality constraint. The fact that the given graph satisfies the triangle
inequality implies that the cost of the optimal traveling salesman tour that visits
only a subset of vertices is a lower bound of optimal tour of the BWTSP. Let L∗

B

and L∗
W denote the lengths of the optimal traveling salesman tour of the black and

white vertices respectively. Hence L∗ ≥ L∗
B and L∗ ≥ L∗

W .

562 B. Bhattacharya, Y. Hu, and A. Kononov

We define a Q-factor of G as a set of edges EQ ⊆ E, such that for each black
vertex v ∈ VB , σ(v) ≤ Q, and for each white vertex, v ∈ VW , σ(v) = 1, where
σ(v) is the number of edges of EQ incident on v.

Given a tour TBW of black and white vertices, a white vertex w is said to be
closer to a black vertex u than to a black vertex v in TBW if the number of ver-
tices between w and u in TBW is less than the number of vertices between w and
v in TBW . Suppose in the optimal tour we connect each white vertex to the clos-
est black vertex. If black to black path in the optimal tour has an odd number
of white vertices, the middle white vertex can be connected to either of the black
vertices. Our strategy of connection is such that each black vertex is allowed to be
connected to one such middle vertex. This way each black vertex is connected to
at most Q white vertices. Thus, the obtained set of edges is a Q-factor.

Let L∗
EQ

be the total cost of edges connecting the black and white vertices, using
the above rule on the optimal tour of the BWTSP. We can estimate the cost of each
edge between black and white vertices by using the triangle inequality. When Q
is even, clearly L∗

EQ
≤ Q

2 L∗. A similar inequality results when Q is odd.

3.2 Approximation Algorithm when Q < m ≤ Q · n

We describe our approximation algorithm below. In the following we assume that
in any tour of G there are at most Q white vertices between two consecutive black
vertices. Each step is followed by a brief discussion and implementation details if
needed.

Algorithm BWTSP (n, m)

Step 1: Construct a complete bipartite graph K in the following way. One part
contains n black vertices, VB, and the other part contains m white vertices,
VW .

Step 2: Find a minimum cost Q-factor EQ of K.
We solve this problem in the following way. We add Q−1 copies of each black
vertex to the first part of bipartite graph. We also copy the edges incident on
the black vertex. We then find a minimum cost matching M in the augmented
complete bipartite graph K [7]. Note that the total cost of the edges in EQ,
denoted by‖EQ‖, is at most L∗

EQ
.

Step 3: Transform graph G to graph Ĝ as follows. Let hv be the degree of black
vertex v in the induced graph (V, EQ). For each black vertex v add Q − hv

“dummy” white vertices, and associate them with black vertex v in the fol-
lowing way. Each dummy white vertex is connected to v with edge cost zero.
The dummy vertices are connected to other black and white vertices with edge
costs being the same as the edge costs with v. This way we get Q ·n white ver-
tices in total. It is easy to show that the triangle inequality is still satisfied in
Ĝ.

Consider any tour where the black vertices v1, v2, . . . , vn are ordered, and
the number of white vertices between consecutive black vertices vi and vi+1

is t = hvi . Let these white vertices be in order b1, b2, . . . , bt. We now augment

Approximation Algorithms for the BWTSP 563

the path vi, b1, b2, . . . , bt, vi+1 to vi, a1, a2, . . . , as, b1, b2, . . . , bt, vi+1, for s+t =
Q. Here a1, a2, . . . , as are the dummy white vertices associated with vi. This
means that the cost of the edge between vi and a1 is 0, and the cost of the
edge between as and b1 is the same as the cost of the edge between vi and b1.
Therefore the cost of the augmented black and white tour is the same as that
of the original tour. Let ĜW = (V̂W , ÊW) be the graph induced by the white
vertices.

Step 4: Find a near optimal hamiltonian tour T̂W in graph ĜW = (V̂W , ÊW).
This tour fixes the order of the white vertices in the proposed tour of the
BWTSP. We use Christofides-Serdyukov algorithm [4] to obtain T̂W . Let LT̂W

denote the length of T̂W . From the discussions in step 3, the optimal TSP
tour T̂ ∗

W involving all the white vertices of ĜW has the same cost as the opti-
mal TSP tour of G, and therefore the cost of T̂ ∗

W is less than L∗. So we have
LT̂W

≤ 1.5L∗.

Step 5: Partition the tour T̂W into paths Pi on Q vertices, i = 1, 2, . . . n of min-
imum cost.

Let Pi = (ui1, ui2, . . . , uiQ), i = 1, 2, . . . , n be the minimum cost paths.
Since there exist Q different ways to partition tour T̂W , the total cost of the
paths in Pi, i = 1, 2, . . . , n is at most Q−1

Q L(T̂W).
Step 6: Construct a bipartite multigraph H in the following way. One part con-

tains the vertices VB and the other part contains n vertices y1, y2, . . . , yn where
the element yi represents path Pi computed in step 5. Now (u, y), u ∈ VB and
y ∈ {y1, y2, . . . , yn}, is an edge in H , if and only if there exists an edge (u, v′)
in EQ (computed in step 2) such that u ∈ VB and v′ is a vertex of the path
represented by y.

Thus H is a bipartite multigraph and each vertex of H is of degree Q.
Step 7: Find a proper edge coloring of H in Q colors.

Each vertex in H has degree Q. According to König [11], the chromatic index
of a bipartite multigraph with maximum degree h is h. It is also shown in [11]
that in a bipartite multigraph, there exists a matching that saturates all the
vertices with the maximum degree. Therefore, the edges of H can be colored
using Q colors, and the set of edges of the same color covers the vertices of
H . Let C1, C2, . . . , CQ be the partition of the set of edges of EQ where Ci con-
tains all the i-colored edges. Note here that each Ci determines an assignment
between black vertices and paths P1, P2, . . . , Pn.

Step 8: Select the set Cq from C1, C2, . . . , CQ with minimum length.
Clearly, ‖Cq‖ ≤ 1

Q‖EQ‖. Therefore, ‖Cq‖ ≤ 1
2L∗.

Step 9: Let vi be the black vertex assigned to Pi. Construct two hamiltonian
tours R1 = (v1, u11, u12, . . . , u1Q, v2, u21, u22, . . . , u2Q, . . . , vi, ui1, ui2, . . . ,
uiQ, vi+1, . . . , vn, un1, un2, . . . , unQ) and R2 = (u11, u12, . . . , u1Q, v1, u21,
u22, . . . , u2Q, v2, . . . , ui1, ui2, . . . , uiQ, vi, . . . , un1, un2, . . . , unQ, vn). Remove
the dummies from R1 and R2, and take the tour, say R, with the minimal
cost as a BWTSP tour of G.

564 B. Bhattacharya, Y. Hu, and A. Kononov

3.3 Performance Analysis

We can estimate the total cost of each tour by separately estimating the cost of the
edges between the white vertices and between the black and white vertices. The
total length of the edges between the white vertices is the total cost of n paths
obtained in step 4 and is at most Q−1

Q LT̂W
.

We now estimate the total edge cost of the edges between black and white ver-
tices in tour R. Let us first consider the total cost of edges connected to the black
vertex vi in routes R1 and R2. For route R1, suppose (vi, uik) ∈ Cq for some k,
1 ≤ k ≤ Q, then

w(ui−1,Q, vi) + w(vi, ui1) ≤ w(ui−1Q, ui1) + L(ui1, ui2, . . . , uik) + w(uik, vi)
+L(ui1, ui2, . . . , uik) + w(vi, uik).

Here L(Pi) indicates the cost of path Pi.
For tour R2 we have

w(uiQ, vi) + w(vi, ui+1,1) ≤ w(uik, vi) + L(uik, . . . , uiQ) + w(uik, vi)
+L(uik, . . . , uiQ) + w(uiQ, ui+1,1).

Since min{LR1 , LR2} ≤
LR1+LR2

2 we can now write

min{LR1, LR2} ≤ (4‖CQ‖+ 2
Q− 1

Q
LT̂W

+ 2LT̂W
)/2

≤ 2‖CQ‖+
Q− 1

Q
LT̂W

+ LT̂W

≤ (4− 3
2Q

)L∗.

Theorem 1: The black and white traveling salesman problem with only the cardi-
nality constraint can be approximated to within (4− 3

2Q), where Q is the maximum
number of consecutive white vertices that can appear in the route.

Running Time. The following computations dominate the running time of the
algorithm.

1. Computing near optimal hamiltonian tour T̂W of ĜW = (VW , ÊW) (Step 4).
The running time of Christofides-Serdyukov’s algorithm [4] to compute T̂W is
dominated by the perfect matching problem in a subgraph of ĜW which, in
the worst case, takes O(|VW |3) time[12]. Since |VW | = Q ·n, it takes O(Q3n3)
time to compute T̂W .

2. Computing a Q-factor EQ (Step 2).
This problem has been shown to be equivalent to a matching problem in a
complete bipartite graph K involving O(Q · n) vertices. Therefore, we can
find the minimum cost Q-factor of K in O(Q3n3) time.

3. Finding a proper edge coloring of bipartite multigraph H (Step 6).
We can use the algorithm proposed by Cole and Hopcroft [5] to find an edge
coloring of the bipartite multigraph in O(Q2n2 log n) time.

Approximation Algorithms for the BWTSP 565

Thus, the approximation algorithm proposed to solve cardinality constrained
BWTSP in a graph with n black vertices and m (Q < m ≤ Q · n) white vertices
takes O(Q3n3) time to compute.

3.4 Approximation Algorithms When m = Q · n

In this section we discuss ways of improving the performance bounds in the case
when m = Q · n. Let E∗

BW be the 2n edges of the optimal BWTSP solution L∗

connecting the black and white edges. The cost of the Q-factor, described in sec-
tion 3, can be alternately bounded by ‖E∗

BW ‖+ Q−2
2 ∗L∗. The argument for this

new bound is almost the same once the edges of E∗
BW are separated. Also note

that G and Ĝ are the same in Step 3 of BWTSP (n, m). Let α = ‖E∗
BW ‖
L∗ , then we

can write

min{LR1, LR2} ≤ 2‖CQ‖+
Q− 1

Q
LT̂W

+ LT̂W
≤ (4− 7

2Q
+

2α

Q
)L∗.

We describe below another algorithm, called BWTSP2(n, Q · n), where the
number of white vertices between two consecutive black nodes is exactly Q. Most
of the steps of Algorithm BWTSP (n, m) are the same in the new algorithm. Steps
3, 4 and 5 are replaced by step 3-4-5 and steps 8 and 9 are replaced by steps 8-9(a)
and 8-9(b). As before, each new step is followed by a brief discussion and com-
ments, if needed.

Algorithm BWTSP2(n, Q · n)

Step 3-4-5: Partition the white vertices into a set of paths, each containing ex-
actly Q vertices, using the algorithm of Goemans and Williamson [9].

As described in [9], the exact path partitioning problem (partitioningGW =
(VW , EW) into disjoint paths, each path containing exactly Q vertices) can be
approximated to within 4(1− 1

Q)(1− 1
|V |), i.e. within 4(1− 1

Q). Thus the set
of paths we found in this step has a total cost of less than 4(1− 1

Q)(1− α)L∗.
This step can be performed in time O(n2 log n) [9] which was later improved
to O(n2) [8]. Let PW be the set of paths.

Step 8-9(a): Find a near-optimal tour TB in GB = (VB , EB).
Step 8(b): Construct a tour involving the edges of Cq, PW and TB.

This tour uses the edges of Cq and the edges of the paths in PW , found in step
3-4-5, twice and the edges of TB once. Thus we can get a feasible solution of
BWTSP with a cost less than (1.5 + 8(1− 1

Q)(1 − α) + 2
Q (α + Q−2

2))L∗, i.e.
less than (10.5− 10

Q − (8− 10
Q)α)L∗.

We now have two solutions with the costs of (4− 7
2Q + 2α

Q)L∗ and (10.5− 10
Q −

(8− 10
Q)α)L∗ respectively. We can choose the one with the smaller cost to be our

final solution. It is interesting to verify that the two cost functions have the same

566 B. Bhattacharya, Y. Hu, and A. Kononov

value for all Q when α = 13
16 . Substituting 13

16 for α, the approximation ratio is
then 4− 15

8Q . The gain of 3
8Q from our previous ratio of 4− 3

2Q is meaningful for
small Q.

Further Improvement when m = 2n. In the following we show that for
m = 2n (Q = 2), the approximation bound can be improved to 2.5. This is due to
the fact that both the white-white edges (denoted by E∗

WW) and the black-white
edges (denoted by E∗

BW) of an optimal BWTSP solution L∗
BW can be efficiently

approximated. Note that there are n edges in E∗
WW and 2n edges in E∗

BW . The
algorithm is formally described below.

Algorithm BWTSP3(n, 2 · n)

Step 1: Construct a bipartite graph K in the following way. One part contains n
black vertices of VB and the other part contains all 2n white vertices of VW .
Only the edges of G connecting the black and white vertices are present in K.

Step 2: Find a minimum cost 2-factor E2 of K.
Since E∗

BW is a 2-factor, then ‖E2‖ ≤ ‖E∗
BW ‖.

Step 3: Find a minimum cost perfect matching M of GW = (VW , EW).
Clearly ‖M‖ ≤ ‖E∗

WW ‖. Consider the induced graph (V, M ∪E2). This graph
is a collection of cycles. Each cycle involving black and white vertices is a tour
(on a subset of vertices) satisfying the cardinality constraint. We represent
each cycle by CY CLE(v) where v is an arbitrary black vertex in the cycle.
Let VA be the set of arbitrary black vertices chosen to represent the cycles.
We note that ‖M ∪E2‖ = ‖M‖+ ‖E2‖ ≤ ‖E∗

BW ‖+ ‖E∗
WW ‖ = L∗.

Step 4: Find a near-optimal TSP tour TA of GA, the subgraph of G induced by
the vertices of VA.

Step 5: Starting from an arbitrary black vertex v ∈ VA we make the round of all
vertices of CY CLE(v). After that we move to the next black vertex in tour
TA. The order in which the vertices appear in this walk define a tour T .

The cost of T is bounded by the total cost of the edges of M ∪E2 and edges
in tour TA. So we have LT = LTA + ‖M‖ + ‖E2‖ ≤ 5

2L∗ and therefore, the
algorithm BWTSP3(n, 2n) is a 2.5-approximation algorithm.

4 Conclusions

We have designed approximation algorithms with guaranteed performances for
the black and white traveling salesman problem. We have shown that BWTSP
cannot be approximated if the length constraint is specified. However, approxi-
mation algorithms with guaranteed performances can be designed when the car-
dinality constraint Q is only specified. For arbitrary Q, the designed algorithm has
an approximation ratio of less than 4. This ratio is slightly improved for smaller
values of Q if the number of white vertices is exactly Q ·n where n is the number of
black vertices. The approximation bound of 2.5 is possible for the BWTSP when
the number of white vertices is exactly 2n.

Approximation Algorithms for the BWTSP 567

References

1. Anily, S., Hassin, R.: The swapping problem. Networks 22, 419–433 (1992)
2. Bourgeois, M., Laporte, G., Samet, F.: Heuristics for the black and white traveling

salesman problem. Computers and Operations Research 30, 75–85 (2003)
3. Chalasani, P., Motwani, R.: Approximating capacitated routing and delivery prob-

lems. SIAM Journal on Computing 28, 2133–2149 (1999)
4. Christofides, N.: The traveling salesman problem. In: Christofides, N., Mingozzi, A.,

Toth, P., Sandi, C. (eds.) Combinatorial Optimization, pp. 315–318 (1979)
5. Cole, R., Hopcroft, J.: On edge coloring bipartite graphs. SIAM Journal on Com-

puting 11, 540–546 (1982)
6. Cosares, S., Deutsch, D.N., Saniee, I., Wasem, O.J.: SONET Toolkit: A decision

support system for designing robust and cost effective fibre-optic networks. Inter-
faces 25, 20–40 (1995)

7. Dinitz, D.: The solution of two assignment problems. In: Fridman, A.A. (ed.) Rus-
sian; Studies in Discrete Optimization, Nauka, Moscow, pp. 333–348 (1976)

8. Gabow, H.N., Pettie, S.: The dynamic vertex minimum problem and its applica-
tion to clustering-type approximation algorithms. In: Penttonen, M., Schmidt, E.M.
(eds.) SWAT 2002. LNCS, vol. 2368, pp. 190–199. Springer, Heidelberg (2002)

9. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

10. Ghiani, G., Laporte, G., Semet, F.: The black and white traveling salesman problem.
Operations Research 54, 366–378 (2006)

11. König, D.: Über Graphen und ihre Anwendungen. Math. Annalen 77, 453–465
(1916)

12. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt. Rinehart
and Winston, New York (1976)

13. Mak, V., Boland, N.: Heuristic approaches to the asymmetric traveling salesman
problem with replenishment arcs. International Transactions in Operations Re-
search 7, 431–437 (2000)

14. Talluri, K.T.: The four-day aircraft maintenance routing problem. Transportation
Science 32, 43–53 (1998)

15. Wasem, O.J.: An algorithm for designing rings in survivable fibre networks. IEEE
Transactions on Reliability 40, 428–432 (1991)

Author Index

Afshani, Peyman 459
Alon, Noga 394, 428
Aluru, Srinivas 1
Apostolico, Alberto 360
Arpe, Jan 296

Bhattacharya, Binay 559
Bodlaender, Hans L. 86
Borodin, Allan 504
Boros, Endre 222
Borys, Konrad 222
Brandes, U. 254
Brown, Dan 51
Buchin, Kevin 97
Buragohain, Chiranjeeb 210

Chan, Timothy M. 383
Chang, Ching-Lueh 285
Chen, Danny Z. 4, 232
Chen, Jianer 349, 537
Chen, Shihyen 482
Chen, Zhizhong 493
Chin, Francis Y.L. 2, 526
Chiniforooshan, Ehsan 459
Chor, Benny 75
Christodoulou, George 187
Czygrinow, A. 515

Deng, Xiaotie 264
Dessimoz, Christophe 151
Dorrigiv, Reza 459
Duchesne, Jean-Eudes 27

El-Mabrouk, Nadia 27
Elbassioni, Khaled 222
Erten, C. 254

Fang, Qizhi 439
Farzan, Arash 459
Fellows, Michael R. 75, 86
Ferrante, Alessandro 417
Fleischer, Rudolf 439
Fomin, Fedor V. 65, 165
Fowler, J. 254
Frati, F. 254

Frid, Yelena 51
Fung, Stanley P.Y. 176

Gaspers, Serge 65
Geyer, M. 254
Giraud, Mathieu 27
Glaßer, Christian 307
Gourvès, Laurent 187
Gurvich, Vladimir 222
Gusfield, Dan 16, 51
Gutner, Shai 394
Gutwenger, C. 254

Hańćkowiak, M. 515
Hansen, Kristoffer Arnsfelt 274, 448
Harkins, Ryan C. 129
Harutyunyan, Hovhannes 372
Healy, Mark A. 4
Heggernes, Pinar 406
Hitchcock, John M. 129
Hong, S. 254
Hu, Yuzhuang 559
Hüffner, Falk 140

Irving, Robert W. 548
Iwama, Kazuo 108, 264

Jansen, Maurice J. 470

Katoh, Naoki 243
Kaufmann, M. 254
Knauer, Christian 97
Kobourov, S.G. 254
Komusiewicz, Christian 140
Kononov, Alexander 559
Kratochv́ıl, Jan 118
Kriegel, Klaus 97

Langston, Michael A. 86
Ledergerber, Christian 151
Li, Jian 439
Li, Ming 3
Liotta, G. 254
Liu, Sheng 198
Liu, Yunlong 349

570 Author Index

Lu, Songjian 537
Lyuu, Yuh-Dauh 285

Ma, Bin 40
Makino, Kazuhisa 222
Manlove, David F. 548
Maraachlian, Edward 372
Miltersen, Peter Bro 274
Mirzazadeh, Mehdi 459
Misio�lek, Ewa 232
Moser, Hannes 140
Mutzel, P. 254

Nakashima, Takuya 108
Niedermeier, Rolf 140

Pandurangan, Gopal 417
Papadopoulos, Charis 406
Park, Kihong 417
Pascual, Fanny 187
Pergel, Martin 118
Poon, Chung Keung 176

Qi, Qi 264

Ragan, Mark A. 75, 86
Razgon, Igor 75
Regan, Kenneth W. 470
Reischuk, Rüdiger 296
Rosamond, Frances A. 75, 86
Rudolf, Gabor 222

Saurabh, Saket 65
Schulz, André 97
Seidel, Raimund 97
Selman, Alan L. 307
Shapira, Asaf 428
Simjour, Narges 459

Snir, Sagi 75
Sørensen, Troels Bjerre 274
Stav, Uri 428
Stepanov, Alexey A. 165
Sun, Aries Wei 264
Sun, Xiaoxun 439
Suri, Subhash 210
Symvonis, A. 254

Tagliacollo, Claudia 360
Tanigawa, Shin-ichi 243
Tasaka, Toyotaka 264
Tóth, Csaba D. 210

Wang, Chao 4
Wang, Jianxin 349
Wang, Lusheng 493
Wang, Zhanyong 493
Weyer, Mark 86
Wu, Xiaodong 4
Wu, Yufeng 16

Xin, Lei 40

Ye, Yuli 504
Yu, Fuxiang 318

Zarrabi-Zadeh, Hamid 383, 459
Zhang, Jian 198
Zhang, Kaizhong 40, 482
Zhang, Liyu 307
Zhang, Shengyu 338
Zhang, Yong 526
Zheng, Feifeng 176
Zheng, Xizhong 327
Zhou, Yunhong 210
Zhu, Binhai 198
Zhu, Hong 526

	Title Page
	Preface
	Organization
	Table of Contents
	The Combinatorics of Sequencing the Corn Genome
	Online Frequency Assignment in Wireless Communication Networks
	Information Distance from a Question to an Answer
	A New Field Splitting Algorithm for Intensity-Modulated Radiation Therapy
	Introduction
	Preliminaries
	Our Algorithm for the FSMP Problem
	An Overview of the Algorithm
	Correctness of the Algorithm
	Improving the Time Complexity of the Algorithm

	AnExtension
	Implementation and Experiments
	References

	A New Recombination Lower Bound and the Minimum Perfect Phylogenetic Forest Problem
	Introduction
	Background
	Recombination and ARGs
	Lower Bounds on $Rmin(M)$

	The Forest Bound and the Minimum Perfect Phylogenetic Forest (MPPF) Problem
	Definition of the Forest Bound
	The Complexity of the Forest Bound

	Practical Computation of the Forest Bound
	Computing the Forest Bound Precisely Using Integer Linear Programming
	Simulations of Data with Missing Data

	References

	Seed-Based Exclusion Method for Non-coding RNA Gene Search
	Introduction
	Preliminary Definitions
	RNA Structures
	Descriptors
	The Sagot-Viari Notations

	AnExclusionMethodforRNASearch
	The Preprocessing Phase
	The Partition Phase
	The Anchor Search Phase
	The Check Phase

	Choosing the Anchor Sequences and Seed Shapes
	Testing on RNA Stem-Loops
	Conclusion
	References

	A New Quartet Approach for Reconstructing Phylogenetic Trees: Quartet Joining Method
	Introduction
	Notations and Definitions
	Quartet-Joining Algorithm
	Experimental Results
	Computer Simulation Results
	Real Data Set Experiment

	Improvement of Experimental Results
	Conclusion
	References

	Integer Programming Formulations and Computations Solving Phylogenetic and Population Genetic Problems with Missing or Genotypic Data
	Introduction
	Missing Data Problems
	Imputing Values to Minimize Incompatibility
	Imputing Values to Minimize Site-Removals
	Estimating Recombination in Data with Missing Values

	Haplotyping Problems
	Haplotyping Versions of M1, S1, R1
	The MinPPH Problem

	References

	Improved Exact Algorithms for Counting 3- and 4-Colorings
	Introduction
	Preliminaries
	Framework for Combining Enumeration and Pathwidth Arguments
	Applications
	Counting 3-Colorings
	Counting 4-Colorings
	4-Coloring

	References

	Connected Coloring Completion for General Graphs: Algorithms and Complexity
	Introduction
	Connected Coloring Completion Is NP-Hard
	1-CCC for k Uncolored Vertices Is Fixed-Parameter Tractable
	Bounded Treewidth
	1-CCC Parameterized by Treewidth is Linear-Time FPT
	r-CCC Parameterized by Treewidth is $W[1]$-Hard for $r \geq 2$

	References

	Quadratic Kernelization for Convex Recoloring of Trees
	Introduction
	Preliminaries
	Kernelizing to a Linear Number of Vertices Per Color
	Kernelizing to a Quadratic Number of Vertices
	Bad Colors
	Gluing Colors
	Stitching Colors
	Pieces of a Stitching Color
	Kernel Size

	Linear Time FPT with Treewidth and MSOL
	References

	On the Number of Cycles in Planar Graphs
	Introduction
	Lower Bounds
	Upper Bounds
	Hamiltonian Cycles
	Simple Cycles

	Discussion
	References

	An Improved Exact Algorithm for Cubic Graph TSP
	Introduction
	Eppstein’s Algorithm
	New Algorithm
	Analysis of the Algorithm
	References

	Geometric Intersection Graphs: Do Short Cycles Help?
	Introduction
	Polygon-Circle Graphs
	Preliminaries
	PC-Graphs of Low Connectivity and Their Decompositions
	Pseudoears
	Minimal Representations of Biconnected Pc-Prime Graphs
	Algorithms

	Segment Intersection Graphs
	Conclusion
	References

	Dimension, Halfspaces, and the Density of Hard Sets
	Introduction
	Preliminaries
	Threshold Circuits
	Dimension and Learning
	Learning Algorithms

	Majority Reductions
	Iterated Reductions
	Conclusion
	References

	Isolation Concepts for Enumerating Dense Subgraphs
	Introduction
	Enumerating Isolated Cliques
	Problems with the Algorithm
	Repairing the Enumeration Stage
	Improved Screening of Cliques

	Alternative Isolation Concepts
	Minimum Isolation
	Maximum Isolation

	Enumerating Isolateds s-Plexes
	References

	Alignments with Non-overlapping Moves, Inversions and Tandem Duplications in $O(n^{4})$ Time
	Introduction
	Definition of the Problems and Preliminaries
	Notation and Definitions
	Definition of Alignment with Non-overlapping Moves
	Definition of Alignment with Non-overlapping Moves, Inversions and Tandem-Duplications
	Other Preliminaries

	Algorithms
	Alignment with Non-overlapping Moves
	Alignment with Non-overlapping Moves, Inversions, and Tandem Duplications

	Implementation and Experiments
	Conclusions
	References
	Appendix

	Counting Minimum Weighted Dominating Sets
	Introduction
	Preliminaries
	Algorithm for Counting Minimum Weighted Set Covers
	Analysisof countMWSC Algorithm
	Conclusions and Open Problems
	References

	Online Interval Scheduling: Randomized and Multiprocessor Cases
	Introduction
	Preliminaries
	A Randomized Algorithm
	Lower Bounds
	Randomized Algorithms
	Barely Random Algorithms

	The Multiprocessor Case
	A 2-Processor Algorithm
	Lower Bounds

	Conclusion
	References

	Scheduling Selfish Tasks: About the Performance of Truthful Algorithms
	Introduction
	Notations
	About Truthful Algorithms for the Strong Model of Execution
	Deterministic Algorithms
	Randomized Algorithms

	About Truthful Algorithms for the Weak Model of Execution
	A Truthful Deterministic Algorithm
	Deterministic Algorithms: Lower Bounds

	About Truthful Coordination Mechanisms
	Conclusion
	References

	Volume Computation Using a Direct Monte Carlo Method
	Introduction
	The Framework of the Sampling Algorithm
	Implementation
	Generating Random Points
	On Selecting the Center of the Sphere
	On Radius Selection

	Experiments and Analysis
	Simple Examples
	Variance Analysis
	On the Mean Ratio

	Concluding Remarks
	References

	Improved Throughput Bounds for Interference-Aware Routing inWireless Networks
	Introduction
	Preliminaries and Related Work
	Maximum Throughput for Grid Topologies
	Throughput in Arbitrary Topologies
	Experimental Results
	References

	Generating Minimal k-Vertex Connected Spanning Subgraphs
	Introduction
	Main Results
	The X − e + Y Method

	Proof of Theorem 1
	(k − 1)-Separators of $(V,X\smallsetminus e)$
	Procedures $First(X,e)$ and $Next(\cY,X,e)$
	Structure of (k − 1)-Separators
	Bounding the Number of (k − 1)-Sources
	Generating Minimal Hyperedge Covers of $\cH_{X,e}$
	Complexity

	References

	Finding Many Optimal Paths Without Growing Any Optimal Path Trees
	Introduction
	Preliminaries
	Optimally Triangulating a 3-D Surface Band
	The Surface Band Triangulation and a Previous Algorithm
	Our Basic Algorithm
	A Space Improvement Scheme
	Our Final Algorithm

	References

	Enumerating Constrained Non-crossingGeometric Spanning Trees
	Introduction
	Smallest Indexed Triangulation
	Notations
	Constrained Smallest Indexed Triangulation
	Greedy Flipping in Constrained Triangulations

	Constrained Non-crossing Spanning Trees
	Enumerating Constrained Non-crossing Spanning Trees
	References

	Colored Simultaneous Geometric Embeddings
	Introduction
	Two-Colored Simultaneous Embeddings
	A Tree and Paths on Two Colors
	Planar Graph and Paths on Two Colors

	k-Colored Simultaneous Embeddings
	Three Colors
	Four and Five Colors
	Six and Nine Colors

	Conclusions and Open Problems
	References

	Properties of Symmetric Incentive Compatible Auctions
	Introduction
	Preliminaries
	Basic Model and Notations
	Basic Properties and Their Notations
	Useful Results

	Monotone Properties
	Some Exotic Auctions
	Implication Relationships

	Vickrey Auction in Depth
	Fixed Number of Winners
	Homogeneous Monotone Auction and Vickrey Auction

	Conclusions
	References

	Finding Equilibria in Games of No Chance
	Introduction
	Preliminaries
	Maximin Pure Strategies in Games with Perfect Recall
	Enumerating All Pure Equilibria of Games with Perfect Recall
	Optimal Behavior Strategies in One-Player Games Without Perfect Recall
	Determining Whether a Two-Player Game Without Perfect Recall has an Equilibrium
	References

	Efficient Testing of Forecasts
	Introduction
	Definitions
	Forecasters with Arbitrary Time Complexity
	Impossibility of Working for All Durations
	Conclusion
	References

	When Does Greedy Learning of Relevant Attributes Succeed?
	Introduction
	Preliminaries
	The Reduction to Set Cover and the Greedy Algorithm
	Key Lemmata for the Algorithm Analysis
	Analysis of Greedy
	Robustness Against Noise
	Concluding Remarks
	References

	The Informational Content of Canonical Disjoint NP-Pairs
	Introduction
	Preliminaries
	Proof Systems and Many-One Degrees of Canonical Pairs
	Proof Systems with Equivalent Canonical Pairs
	Strongly Many-One Degrees of Canonical Pairs
	Proof Systems and Turing-Degrees of Canonical Pairs
	References

	On the Representations of NC and Log-Space Real Numbers
	Introduction
	Notations
	Representations
	Complexity Classes

	MainResults
	$Absolute$ Results
	Results Under Assumptions $\P_1\ne \L_1$ and $\P_1\ne \NC_1$

	Conclusion
	References

	Bounded Computable Enumerability and Hierarchy of Computably Enumerable Reals
	Introduction
	Bounded Computable Sets
	Bounded C.E. Real Numbers
	Hierarchy of Turing Degrees
	References

	Streaming Algorithms Measured in Terms of the Computed Quantity
	Introduction
	Preliminaries and Definitions
	Formulation of the Notion

	Three Types of Dependence of the Space Complexity on the Computed Quantity
	Strong Dependence
	Weak Dependence
	Independence

	Discussions
	References

	A Randomized Approximation Algorithm for Parameterized 3-D Matching Counting Problem
	Introduction
	Preliminaries
	Dealing with Properly Colored k-Matchings
	Computing the Value |H_i|
	Random Sampling in the Set H_i
	On the Membership of the Set H_i

	Conclusions
	References

	Optimal Offline Extraction of Irredundant Motif Bases
	Introduction
	Preliminaries
	Searching for Pattern Occurrences
	Binary Alphabet
	Alphabets with More Than 2 Symbols

	$O(|\Sigma|n^2)$ Off-Line Basis Computation
	Concluding Remarks
	References

	Linear Algorithm for Broadcasting in Unicyclic Graphs
	Introduction
	Definitions and Auxiliary Results
	The Broadcast Center of the Sum of Two Trees

	The UNICYCLICBROADCAST Algorithm
	Description of the Algorithm
	Proof of Correctness and Complexity Analysis

	Conclusion
	References

	An Improved Algorithm for Online Unit Clustering
	Introduction
	The New Randomized Algorithm
	Preliminaries for the Analysis
	TheAnalysis
	The Combined Algorithm
	References

	Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs
	Introduction
	Preliminaries
	Algorithms for the Dominating Set Problem
	Degenerated Graphs
	Graphs with an Excluded Minor
	The Weighted Case

	Finding Induced Cycles
	Degenerated Graphs
	Minor-Closed Families of Graphs

	Concluding Remarks
	References

	Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions
	Introduction
	Minimal Completions and Deletions into Sandwich Monotone Graph Classes
	Minimal Threshold Completions
	Minimal Chain Deletions
	Concluding Remarks and Open Questions
	References

	On the Hardness of Optimization in Power Law Graphs
	Overview and Results
	Notations and Definitions
	NP-Hardness of CLIQUE AND COLORING
	Hardness of Optimization Problems with Optimal Substructure
	Concluding Remarks and Open Problems
	References

	Can a Graph Have Distinct Regular Partitions?
	Introduction
	Proof of Theorem 1
	Deterministic Algorithmic Version of Theorem 1
	Isomorphism of Regular Partitions
	References

	Algorithms for Core Stability, Core Largeness, Exactness, and Extendability of Flow Games
	Introduction
	Definitions
	Graphs
	Cooperative Games
	Core Stability, Core Largeness, Extendability, and Exactness
	Flow Games

	Efficient Algorithms
	Core Stability
	Extendability, Exactness, and Core Largeness

	OpenProblems
	References

	Computing Symmetric Boolean Functions by Circuits with Few Exact Threshold Gates
	Introduction
	Preliminaries
	Constant Depth Circuits
	The Switching Lemma
	Representation by Polynomials

	Circuit Lower Bounds
	Conclusion
	References

	On the Complexity of Finding an Unknown Cut Via Vertex Queries
	Introduction
	Preliminaries
	The Lower Bound

	An Optimal Algorithm
	Algorithm for Paths with Cut-Size One
	Algorithm for Balanced Cuts

	The Tightness of the Bounds
	Relaxing the Balancedness Assumption
	Conclusion
	References

	“Resistant” Polynomials and Stronger Lower Bounds for Depth-Three Arithmetical Formulas
	Introduction
	Preliminaries
	Resistance of Polynomials
	Applications
	Sum of nth Powers Polynomial
	Blocks of Powers Polynomials
	Polynomials Depending on Distance to the Origin
	The Case of Symmetric Polynomials

	Bounds for +,*-Complexity
	Conclusion
	References

	An Improved Algorithm for Tree Edit Distance Incorporating Structural Linearity
	Introduction
	Preliminaries
	Notations
	Linearity

	Algorithm
	Incorporating Vertical Linearity
	The New Algorithm

	Application
	Conclusions
	References

	Approximation Algorithms for Reconstructing the Duplication History of Tandem Repeats
	Introduction
	The PTAS When the Size of the Duplication Box is 1
	The Ratio for $k=2^t$
	The Ratio for k-Size Phylogenies

	A Ratio-2 Algorithm When the Size of the DuplicationBox ≤ 2 2
	References

	Priority Algorithms for the Subset-Sum Problem
	Introduction
	Definitions and Notation
	The Subset-Sum Problem
	Priority Model
	Adversarial Strategy

	Priority Algorithms and Approximation Bounds
	Conclusion
	References

	Distributed Approximation Algorithms for Weighted Problems in Minor-Closed Families
	Introduction
	Terminology and Notation
	Results
	Related Work
	Organization

	Partitioning of Vertex-Weighted Graphs
	Weighted Graphs
	Partitioning Algorithm

	Applications
	Matchings
	Dominating and Connected Dominating Sets

	References

	A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs
	Introduction
	Preliminary Terminology
	Multicoloring in Triangle-Free Hexagonal Graphs
	Multicoloring in Hexagonal Graphs
	Conclusion
	References

	Improved Algorithms for Weighted and Unweighted Set Splitting Problems
	Introduction
	A New Kernelization Algorithm for the Unweighted SET SPLITTING Problem
	A Randomized Algorithm for the Weighted SET SPLITTING Problem
	Derandomization
	References

	An $\frac{8}{5}$-Approximation Algorithm for a Hard Variant of Stable Marriage
	Introduction
	The Algorithm
	Summary and Open Problems
	References

	Approximation Algorithms for the Black and White Traveling Salesman Problem
	Introduction
	BWTSP with Length Constraint
	BWTSP with Only the Cardinality Constraint Specified
	Lower Bounds
	Approximation Algorithm whenQ <m≤ Q · n
	Approximation Algorithm when {\bf $Q < m \le Q\cdot{n}$}

	Performance Analysis
	Approximation Algorithms When $m = Q\cdot{n}$
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

