
Spatio-temporal Network Databases and
Routing Algorithms: A Summary of Results

Betsy George�, Sangho Kim, and Shashi Shekhar

Department of Computer Science and Engineering, University of Minnesota
200 Union St SE, Minneapolis, MN 55455, USA

{bgeorge,sangho,shekhar}@cs.umn.edu
http://www.spatial.cs.umn.edu/

Abstract. Spatio-temporal networks are spatial networks whose topol-
ogy and parameters change with time. These networks are important due
to many critical applications such as emergency traffic planning and route
finding services and there is an immediate need for models that support
the design of efficient algorithms for computing the frequent queries on
such networks. This problem is challenging due to potentially conflicting
requirements of model simplicity and support for efficient algorithms.
Time expanded networks which have been used to model dynamic net-
works employ replication of the network across time instants, resulting
in high storage overhead and algorithms that are computationally ex-
pensive. In contrast, proposed time-aggregated graphs do not replicate
nodes and edges across time; rather they allow the properties of edges and
nodes to be modeled as a time series. Since the model does not replicate
the entire graph for every instant of time, it uses less memory and the
algorithms for common operations (e.g. connectivity, shortest path) are
computationally more efficient than those for time expanded networks.
One important query on spatio-temporal networks is the computation of
shortest paths. Shortest paths can be computed either for a given start
time or to find the start time and the path that leads to least travel
time journeys (best start time journeys). Developing efficient algorithms
for computing shortest paths in a time varying spatial network is chal-
lenging because these journeys do not always display greedy property
or optimal substructure, making techniques like dynamic programming
inapplicable. In this paper, we propose algorithms for shortest path com-
putations in both contexts. We present the analytical cost models for the
algorithms and provide an experimental comparison of performance with
existing algorithms.

Keywords: time-aggregated graphs, shortest paths, spatio-temporal
data bases.

1 Introduction

The underlying data of interest for many significant applications such as trans-
portation networks is structured as a spatio-temporal network, which consists
� Corresponding author.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 460–477, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Spatio-temporal Network Databases and Routing Algorithms 461

of a finite collection of points (i.e. nodes) with location information, the line-
segments (i.e. edges) connecting the points, and the time-varying attributes at-
tached to the elements. For example, a spatio-temporal network database for a
traveler’s trip planning may store the intersections as nodes, the road segments
as edges, and time dependent travel time attached to the road segments. In the
case of evacuation planning, time dependent capacity may be added to the road
segments as another important attribute.

Related work in the field of databases falls into three broad categories (1)Spa-
tial network databases, (2) Graph Databases, and (3) Spatio-temporal databases.
The recent release of Oracle (version 10g) includes a network data model to
store and maintain the connectivity of link-node networks and supports basic
features such as shortest path [14]. The Network Analyst extension of ArcMap
from ESRI supports a network geodatabase and provides basic algorithms (e.g.,
shortest path, service area, closest facility, etc.) [7]. However, these products do
not address the time variance of spatial networks, which is crucial in applications
such as route computations and emergency planning.

Graph databases [5,6,7,19,22,24] also primarily deal with spatial networks
that do not vary with time. Research in graph databases that accounts for tem-
poral variations perform computations over a snapshot of the network [4,9,18],
and does not consider the interplay between the edge travel times and the ex-
istence of edges. For example, Ding [4] proposed a model that addresses the
time-dependency by associating a temporal attribute to every edge and node of
the network so that its state at any instant of time can be retrieved. This model
performs path computations over a snapshot of the network. Since the network
can change over the time taken to traverse these paths, this computation might
not give realistic solutions. The model does not propose an algorithm for the
least travel time paths.

Although the need for live traffic information is increasing, there has been lit-
tle work on the modeling and algorithms for spatio-temporal network databases.
Chorochronos [12], studied various aspects of spatio-temporal databases includ-
ing ontology, modeling, and implementation. However, the researchers have yet
to study spatio-temporal networks in this framework.

Research in Operations Research is based on the time expanded network
[10,11,13,15,17,21]. This model duplicates the original network for each discrete
time unit t = 0, 1, . . . , T where T represents the extent of the time horizon. The
expanded network has edges connecting a node and its copy at the next instant
in addition to the edges in the original network, replicated for every time in-
stant. This significantly increases the network size and is very expensive with
respect to memory. Because of the increased problem size due to replication of
the network, the computations become expensive.

As the first step towards the study of spatio-temporal network databases,
we previously proposed a spatio-temporal network model named the time ag-
gregated graph [8]. In this paper, we introduce a case study of this model using
routing algorithms. The proposed algorithms (SP-TAG and BEST) compute the
shortest path in the given network for a given start time at the source node and

462 B. George, S. Kim, and S. Shekhar

the least travel time route over the entire time period. The proposed model
and algorithms are evaluated with a real world static graph appended with a
synthetically generated travel time series.

1.1 An Illustrative Application Domain

Transportation networks are the kernel framework of many advanced transporta-
tion systems such as the Advanced Traveler Information System and Intelligent
Vehicle Highway Systems. Transportation networks are spatio-temporal in na-
ture and require significant database support to handle the storage of their large
amounts of multi-dimensional data. Many important applications based on trans-
portation networks, including travelers’ trip planning, consumer business logis-
tics, and evacuation planning need to be built upon spatio-temporal network
databases. For example, commuters try to find a suitable time to start their
commute so that they spend the least time in traffic. Figure 1 illustrates traffic
sensor networks on urban highways which measure congestion levels at two dif-
ferent times (e.g. 5:07pm and 9:37pm) illustrating possible changes in shortest
route travel times at different times of the day. With the increasing use of sensor
networks to monitor traffic data on spatial networks and the subsequent avail-
ability of time-varying traffic data, it becomes important to incorporate this data
in the models and algorithms related to transportation networks. However, exist-
ing spatio-temporal databases do not offer adequate support for spatio-temporal
networks.

Fig. 1. Sensor networks periodically report time-variant traffic volumes on Twin Cities
highways (Best viewed in color, Source: Mn/DOT)

The problem of finding best start time has similar applications in freight
delivery services, one of whose main concerns is to reduce logistic costs such as
fuel consumption. Another important application is in emergency traffic manage-
ment. Emergencies caused by natural or manmade disasters can result in atypical

Spatio-temporal Network Databases and Routing Algorithms 463

demands on a transportation network, resulting in severe congestion. Emergency
managers may be interested in using spatio-temporal network databases to un-
derstand non-equilibrium traffic dynamics and to make informed decisions about
evacuation route planning.

1.2 Broad Challenges

A time-variant graph is a graph whose edge and node properties and topological
structure are time dependent. For example, traffic volume on urban highways
varies over the time of day, which leads to a variation in travel time. In addi-
tion to network parameter values, the network topology can also change with
time due to the unavailability of certain road segments during some periods of
time due to repair or natural calamities. Conventional graph algorithms cannot
easily be applied to the snapshot graphs at discrete time instants to evaluate
frequent queries without accounting for relationships among snapshots. How-
ever, time-variant graphs raise many challenges for database research. Due to
their potentially large and evergrowing sizes, a storage-efficient representation
is critical to reduce and possibly eliminate redundant information across differ-
ent time-points. Second, new data model concepts need to be investigated to
represent and classify potentially new alternative semantics for common graph
operations such as shortest-path and connectivity. For example, a shortest path
between a given pair of nodes may have at least two interpretations, one for a
given start time-point and the other for the shortest travel-time for any start
time in a given time interval. A third challenge is the design of efficient and
correct query processing strategies and algorithms since some of the commonly
assumed graph-properties may not hold for spatio-temporal graphs. For exam-
ple, consider the optimal substructure (required in dynamic programming, [2])
for shortest paths in a graph. While each prefix path (path from a source node to
an intermediate node in an optimal path) is optimal in a static graph, it may not
be optimal in a spatio-temporal graph due to a potential wait at an intermediate
node.

Our Contribution: The paper describes a model for spatio-temporal networks
called the time aggregated graph, that uses a time series to represent time-
varying attributes. We propose algorithms to compute shortest paths for a fixed
start time and the best start time (Best Start Time Algorithm) and consequently
the least commute time paths. These problems are challenging since common al-
gorithm design techniques like greedy design cannot always be applied. The Best
Start Time algorithm uses a node cost time series instead of a scalar node cost.
The entries in the time series are updated when a path of smaller cost is found.
The algorithm iterates until every entry reaches a minimum value and hence
does not depend on the greedy choice property. This removes the FIFO restric-
tion from the edge travel times. We also present the experimental analysis of
the best start time algorithm and the shortest path algorithm for a given start
time [8].

464 B. George, S. Kim, and S. Shekhar

1.3 Scope and Outline of the Paper

The paper presents a case study of time aggregated graphs using routing algo-
rithms to compute shortest paths in two different contexts. Shortest paths can
be computed from a given source node for a fixed start time and at the best
start time which minimizes the travel time over the entire time horizon.

The rest of the paper is organized as follows. For the sake of completeness,
Section 2 provides a brief description of the time aggregated graph model that
is used to represent spatio-temporal networks. This section also describes the
shortest path algorithm for a given start time. Section 3 describes the proposed
algorithm to compute the best start time at a given source node for any destina-
tion node. In Section 4, we present the experimental design and the performance
analysis. In Section 5 we conclude and describe the direction of future work.

2 Basic Concepts

Spatial networks that show time-dependence serve as the underlying networks
for many applications such as routing in transportation networks. Traditionally
graphs have been extensively used to model spatial networks (e.g. road net-
works) [19]; weights assigned to nodes and edges are used to encode additional
information. In a real world scenario, it is not uncommon for these network
parameters to be time-dependent. It is important to be able to formulate com-
putationally efficient and correct algorithms for the shortest path computation
that take into account the dynamic nature of the networks. Models of these net-
works need to capture the possible changes in topology and values of network
parameters with time and provide the basis for the formulation of computation-
ally efficient and correct algorithms for the frequent computations like shortest
paths.

Given a set of frequent queries posed by an application on a spatial network
and the pattern of variations of the spatial network with time, we need to find
a model that supports efficient and correct algorithms for computing the query
results, while trying to minimize the storage and cost of computation. In this
section we discuss the basics of the model used to represent time dependent spa-
tial networks called “Time Aggregated Networks” [8]. The algorithms presented
in this paper are formulated based on this model. Time aggregated graphs can
not only capture the time-dependence of network parameters, but also account
for the possibility of edges and nodes being absent during certain instants of
time.

2.1 The Conceptual Model

A graph G = (N, E) consists of a finite set of nodes N and edges E between
the nodes in N . If the pair of nodes that determines the edge is ordered, the
graph is directed; if it is not, the graph is undirected. In most cases, additional
information is attached to the nodes and edges. In this section, we discuss how

Spatio-temporal Network Databases and Routing Algorithms 465

3

(c) t=3

2

2

4

21
3

N1 N2

N3 N4

LEGEND

(a) t=1

Snapshots of the Network

Node

Edge

(Travel Time Series) [Edge Time Series]

1
N1 N2

N3 N4
1

222

1

1

[2,2,2]
(2,3)(1,3)

(1,2)

(1,2)

[−,−,3]

[−,1,1][2,−,2]

[1,5,−]

[1,1,−]

N4N3

N2N1

(d) Time Aggregated Graph

(1,2,3)

5

1

(b) t=2

2

2 21

N4N3

N2N1

(3)

[1,−,4](1,3)

[−,2,2](2,3)

[2,2,3]
(1,2,3)

Fig. 2. Network at Various Time Instants and the Time Aggregated Graph

the time dependence of these edge/node parameters are handled in the proposed
time-aggregated graph model.

We define the time-aggregated graph as follows.

taG = (N, E, TF, f1 . . . fk, g1 . . . gl, w1 . . . wp|fi : N → R
TF ; gi : E → R

TF ; wi :
E → R

TF)

where N is the set of nodes, E is the set of edges, TF is the length of the entire
time interval, f1 . . . fk are the mappings from nodes to the time-series associated
with the nodes, g1 . . . gl are mappings from edges to the time series associated
with the edges, and w1 . . . wp indicate the time dependent weights (eg. travel
times) on the edges.

Each edge has an attribute, called an edge time series that represents the time
instants for which the edge is present. This enables the time aggregated graph
to model the topological changes of the network with time. We assume that each
edge travel time has a positive minimum and the presence of an edge at time
instant t is valid for the closed interval [t, t + σ].

Figure 2(a,b,c) shows a network at three time instants. The network topology
and parameters change over time. For example, the edge N2-N1 is present at
time instants t = 1, 2, and disappears at t = 3, and its weight changes from 1 at
t = 1 to 5 at t = 2. The time aggregated graph that represents this dynamic net-
work is shown in Figure 2(d). In this figure, edge N2-N1 has two attributes, each
being a series. The attribute (1, 2) represents the time instants at which the edge
is present and [1, 1, −] is the weight time series, indicating the weights at vari-
ous instants of time. Though this model can include spatial properties at nodes
and edges, these properties are not incorporated in the algorithms presented
in this paper. Figure 3(a) shows the time aggregated graph (corresponding to
Figure 2(a),(b),(c)) and a time expanded graph that represent the same

466 B. George, S. Kim, and S. Shekhar

(a) Time−aggregated Graph

N3N3

N1 N1 N1 N1

N4 N4 N4 N4

 t=1 t=2 t=3 t=4 t=5 t=6 t=7

N3

(b) Time Expanded Graph

N1

N2

N3

N4 N4

N3

N2

N1 N1

N2N2 N2 N2 N2

N3

N4

N3

[2,−,2] [−,1,1]

[−,−,3]

[2,2,3]

(1,2)

(1,2)

(1,3) (2,3)
[2,2,2]
(1,2,3) (1,2,3)

(3)

[1,−,4](1,3)

[−,2,2](2,3)

[1,5,−]
N1 N2

N3 N4

[1,1,−]

Fig. 3. Time-aggregated Graph vs. Time Expanded Graph

scenario. Edge weights in a time expanded graph are not explicitly shown as
edge attributes; instead they are represented by edges that connect the copies
of the nodes at various time instants. For example, the weight 1 of edge N2-N1
at t = 1 is represented by connecting the copy of node N2 at t = 1 to the copy
of node N1 at time t = 2. The time expansion for the example network needs to
go through 7 steps since the latest edge traversal in the network ends at t = 7.
The traversal of the edge N3-N4 that starts at t = 3 ends at t = 7, the travel
time of the edge being 4 units. The number of nodes is larger by a factor of T ,
where T is the number of time instants and the number of edges is also larger in
number compared to the time-aggregated graph. If the value of T is very large in
a spatial network, it would result in enormously large time expanded networks
and consequently slow computations.

Comparison of Storage Costs with Time Expanded Networks: Accord-
ing to the analysis in [20], the memory requirement for a time expanded network
is O(nT)+O(n+mT), where n is the number of nodes, m is the number of edges
in the original graph, and T is the length of the travel time series. The memory
requirement for the time-aggregated graphs would be O(n + m)T , assuming an
adjacency list representation of the graph. Each edge has a travel time series
associated with it, instead of a scalar cost as in the case of a static graph.

This comparison shows that the memory usage of time-aggregated graphs is
less than that of time expanded graphs by a factor of O(nT).

2.2 Shortest Path Computation for Time Aggregated Graphs
(SP-TAG Algorithm)

In time dependent networks, the shortest path and its traversal time are depen-
dent on the start time at the source node. Here we give an outline of the algorithm
that computes the shortest path for a given start time in a time-dependent net-
work. The algorithm uses the time aggregated graph to represent the network.
The application of a greedy strategy in the shortest path computation (which
is a popular choice in most optimization problems) in a time-aggregated graph

Spatio-temporal Network Databases and Routing Algorithms 467

N3

N4 N5

1

2 2
1

1

[1,2,5,8]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

Edge

Node

LegendN2

Travel Time

Edge Time Series

N1

Fig. 4. Optimal Sub-structure of Shortest Paths

faces a challenge. Not all shortest paths display the optimal sub-structure, as
illustrated by Figure 4. For the sake of simplicity, the travel times are constant
in this example. It can be seen that a shortest path (N1-N3-N4-N5) from N1 to
N5 for the start time t = 1, which takes 5 time units, does not display optimal
substructure. The path from N1 to N4 following the above path is not optimal
(shortest path being N1-N2-N4). Although such paths that do not display opti-
mal sub-structure could exist, it can be proved that there is at least one optimal
path which satisfies the optimal sub-structure property [8]. This result enables
us to use a greedy approach to compute the shortest path. The algorithm, called
the SP-TAG algorithm, uses greedy strategy to find the shortest path for a fixed
start time. Every node has a cost associated with it which represents the travel
time to reach the node from the source node. The algorithm picks the node with
the least cost and updates the costs of its adjacent nodes. While finding the
adjacent nodes, each edge is selected at its earliest available time instant (min t
operation in the algorithm description). A trace of the algorithm is given in
Table 1. The table entries are the costs associated with each node (representing
the arrival times at the node) at each iteration. The node marked as “closed”
is the node with the minimum cost selected for expansion. The travel times are
assumed to follow the FIFO property.

Lemma 1: The SP-TAG algorithm is correct.

Proof: As Figure 4 illustrates, the shortest path fails to have optimal struc-
ture due to a potential wait at the intermediate node (u), after reaching this
node traversing the optimal path from s to u. Consider the optimal path from
s to u. Append this path to the path u − d (allowing a wait at the intermedi-
ate node u) from the optimal path. This would be still the shortest path from
s to d. Otherwise, it would contradict the optimality of the original shortest path.

Lemma 2: The time complexity of the SP-TAG algorithm is O(m(log T +logn))
where T is the number of time instants, n is the number of nodes and m is the
number of edges in the time aggregated graph.

468 B. George, S. Kim, and S. Shekhar

Algorithm 1. Shortest Path (SP-TAG) Algorithm
Input:

1) G(N, E): a graph G with a set of nodes N and a set of edges E;
Each node n ∈ N has a property:

Node Presence Time Series : series of positive integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;
4) tstart: Start Time;

Output: Shortest Route from s to d for tstart

Method:
c[s] = tstart; ∀v �= s, c[v] = ∞;
// c[u] is the cost at the node u.
Insert s in priority queue Q.
while Q is not empty do {

u = extract min(Q);
for each node v adjacent to u do {

t = min t((u, v), c[u]);
if t + σu,v(t) < c[v] {

c[v] = t + σu,v(t); parent[v] = u;
if v is not in Q, insert v in Q;

}
update Q;

}
}

}
Output the route from s to d.

Proof: The cost model analysis assumes an adjacency list representation of the
graph with two significant modifications. The edge time series is stored in the
sorted order. Attached to every adjacent node in the linked list are the edge time
series and the travel time series.

For every node extracted from the priority queue Q, there is one edge time
series look up and a priority queue update for each of its adjacent nodes. The
time complexity of this step is O(log T + log n). The asymptotic complexity of
the algorithm would be

O(Σv∈N [degree(v).(log T + log n]) = O(m(log T + log n)).

The time complexity of the SP-TAG shortest path algorithm based on a time
expanded network is O(nT log T + mT) [3]. It can be seen that the algorithm
based on a time-aggregated graph is faster if log n < T log T .

Spatio-temporal Network Databases and Routing Algorithms 469

Table 1. Trace of the SP-TAG Algorithm for the Network shown in Figure 4

Iteration N1 N2 N3 N4 N5

1 1 (closed) ∞ ∞ ∞ ∞
2 1 2 (closed) 3 ∞ ∞
3 1 2 3 (closed) 3 ∞
4 1 2 3 3 (closed) 6
5 1 2 3 3 6 (closed)

3 Case Study: Best Start Time Shortest Paths

The time dependency of network parameters affects the connectivity and the
shortest paths between nodes in a spatial network. As illustrated in Figure 5,
the travel time from node N1 to node N3 changes with the start time. If the
travel starts at t = 1, the commute time would be 6 units. A journey that starts
at t = 1 reaches N2 at t = 2 and waits at N2 until edge N2-N3 becomes available
at t = 5, thus taking a total travel time of 6 units to reach node N3. The
travel on the same route would take 4 units if the start time is moved to t = 4.
This shows that the shortest paths in a time-dependent network vary with time,
which adds an interesting dimension to shortest path computation. A path that
takes the smallest travel time for a source-destination traversal over the entire
time horizon (called ’Best Start Time shortest Path’) can be computed. This is
significant since it suggests that it is possible to reduce the travel time for the
same source-destination pair if the travel starts at the “right” time instant.

The formulation of algorithms to compute the paths that take the least com-
mute time becomes non-trivial since most of the techniques that are used in
static networks might not be applicable in dynamic scenarios. Since the network
changes in its parameter values and the topology, meeting the requirements of
efficiency and correctness can pose challenges. The potential waits at intermedi-
ate nodes can increase the total journey time even if an initial part of the path
turns out to be optimal. Figure 5 shows a spatial network that changes with
time. The figure shows the snapshots of the network at various instants of time,
and the edges are marked with the travel times. It is significant to note that the
prefix journeys of the best start time shortest path journey are not always opti-
mal since some optimal prefix journeys can lead to longer waits at intermediate
nodes. The best start time for a journey from node N1 to Node N3 is t = 4,
which takes 4 time units. The optimal path from N1 to N3 that starts at t = 4

N1 N3N2

N1 N3N2 N1 N3N2

N1 N3 N1 N3

N1 N3

1 2 2

2 2 2

2

2 2

N2 N2

N2

t=1 t=3

t=4 t=5 t=6

t=2

Node

Edge

Legend

Travel time

Fig. 5. Network at various instants

470 B. George, S. Kim, and S. Shekhar

is not optimal for the intermediate node N2. The best start time for a path from
N1 to N2 is t = 1, which proves to be sub-optimal for a journey from N1 to N3.
The lack of an optimal substructure in the best start time shortest paths rules
out the possibility of using a greedy strategy in the algorithm design.

We propose an algorithm that computes the best start time based on a node-
cost time series. The proposed algorithm uses the time aggregated network model
to represent a time dependent spatial network.

3.1 BEst Start Time Shortest Path (BEST) Algorithm

While computing the best start time, each node needs to keep track of the travel
times to the destination for every start time instant. The proposed algorithm
attributes each node with a time series, with ith entry representing the current,
least travel time to the destination node for the start time ti. Due to the lack
of optimality of prefix paths and lack of ordering of nodes based on the costs
(ie. travel times), nodes cannot be selected and “closed” based on a minimum
scalar cost. The algorithm uses an iterative, label correcting approach [1] and
each entry in a node time series is modified according to the following condition.

Cu[t] = minimum{Cu[t], σuv(t) + Cv[t + σuv(t)]} where, uv ∈ E (1)

Cu[t] - Travel time from u ∈ N to the destination for the start time t.
σuv(t) - Travel time of the edge uv at time t.

The algorithm maintains a list of all nodes that change its cost according to the
condition and terminates when there is no further improvement indicated by an
empty list. Though the list can be implemented using several data structures,
studies on static networks [25,1] have shown that the Two Q implementation [16]
of label correcting algorithms performs the best on road networks.

The search starts at the destination node and proceeds to update the remain-
ing nodes, finally finding the best start time shortest paths from all nodes to the
destination. Figure 6 illustrates the trace of the algorithm on a small network.
In this example, the destination node is the node N4. The node cost series C4
is initalized to [0, 0, 0, 0, 0] and the cost series Ci, i = 1, 2, 3 are initialized to
[∞, ∞, ∞, ∞, ∞]. The nodes that have N4 in their adjacency lists (that is, all
nodes Ni such that NiN4 ∈ E), N2 and N3 are relaxed according to condition
(1). These nodes are added to the queue since there is a change in their cost
series. The steps continue until the queue is empty, indicating that there is no
further cost improvement at any of the nodes. At every iteration, the node that
contributes to a cost improvement is stored in a descendant array to facilitate
the trace of the shortest paths when the algorithm terminates. At the termina-
tion, the cost time series has the travel times for every start time t = 1, 2 · · ·T .
For example, the cost time series of node N1 shows that the travel times from
N1 to N4 for start times t = 1 is 4 time units, while the best start time at this
node is t = 4, which results in a travel time of 2 time units and a best start time
shortest path N1-N2-N4. N1-N2 takes 1 time unit at t = 4, reaches N2 at t = 5
and continues on N2-N4 at t = 5, reaching N4 at t = 6, taking a total travel
time of 2 time units. A more detailed trace is shown in Table 2.

Spatio-temporal Network Databases and Routing Algorithms 471

Algorithm 2. BEST Algorithm
Input:

G(N, E): a graph G with a set of nodes N and a set of edges E;
Each node n ∈ N has a property:

Node Presence Time Series : series of positive integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
Output:

Best Start Time shortest route from s to d;
Intialize;
While Queue not Empty

v = Dequeue();
For every node u such that uv ∈ E

For every entry in the cost series Cu of u
if Cu(t) > σuv(t) + Cv(t + σuv(t))

Update Cu(t);
Enqueue(u);
Update the descendant array of u.

Find the minimum entry in the node time series.
Return the BestStartTime and the ShortestRoute;

Table 2. Trace of the BEST Algorithm for the Network shown in Figure 6

Iteration N1 N2 N3 N4 Queue

1 ∞ · · · ∞ ∞· · · ∞ ∞ · · · ∞ [0, 0, 0, 0, 0] N1
2 ∞ · · · ∞ [1, 1, 2, 2, 1] [4, 4, 2, 4, 3] [0, 0, 0, 0, 0] N2, N3
3 ∞ · · · ∞ [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N3
4 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N1
5 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] –

Lemma 3: The algorithm terminates and computes the best start time paths
from every node to the destination.

Proof: The algorithm terminates because there is a positive minimum for the
travel time over every path, for every pair of nodes in the network since the
edge weights (travel times) are positive and each such path has a finite number
of edges. The updates on the costs according to condition(1) will generate the
optimal travel times from a node to the destination at the termination of the
algorithm. This can be proved by induction on the number of edges on the path.
The base condition would be for paths with two edges, say from any node u
to the destination node d. Every path with two edges from u to d will transit
to some node v and then traverse the edge to d which takes the least time. If
we assume the inductive hypotheses is true for every path with k edges, the

472 B. George, S. Kim, and S. Shekhar

4 4 4 4 4
1 1 2 2 1[]

2 2 4 4 4
2 3 2 4 3[]

2 2 2 2 2
5 5 3 2 3[]

3 3 2 2 2
4 3 3 2 3[]

0 0 0 0 0[]− − − −−

0 0 0 0 0[]
1

− −−

0 0 0 0 0[]− − − −−

(Result)
Best Start Time: 4
Route: 1 − 2 − 4

1

3

4 4 4 4 4
1 1 2 2 1[]

2 2 4 4 4
2 3 2 4 3[]

−

4

(Input Network)

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Legend)

Parent Pointer List[]Distance List from Destination

4

4

2

3

Expansion Node

Best Start Time

− − −−

2

#

−

ooo oooo[]− − − − −

2

1 4

3

o
2

1 4

3 oooooo oooo[]− − − − −

oo

(4,4,1,1,2)

]− − − − −

oooooo oooo[]− − − − −

0 0 0 0 0[]−[

(1,1,2,2,1)

(1,1,2,2,3) (4,4,2,4,3)

(1,1,1,3,2)

2

1

3

4 4 4 4 4
1 1 2 2 1[]

oooooooo oo

][4 4 2 4 3
4 4 4 4 4

Fig. 6. Trace of the BEST Algorithm

minimality must hold for a path from u with (k + 1) edges since we can reach
node u that with a minimal k−edge path and append uv with travel time σuv(t).

Lemma 4: The computational complexity of the BEST algorithm is O(n2mT),
where n is the number of nodes, m is the number of edges and T is the length
of the time series.

Proof: The worst case computational complexity of the label correcting algo-
rithm based on Two-Q data structure is O(n2m) when the node costs and edge
weights are scalar quantities [1]. In the BEST algorithm, the relaxation step
operates on a time series (node cost and edge weight) of length T . Hence the
computational complexity of the algorithm is O(n2mT).

4 Experimental Analysis

In this section, the experimental analysis of the BEST algorithm and the SP-
TAG algorithm are provided. The purpose of the performance evaluation of the
algorithm is to compare the run-times with algorithms based on a time-expanded
graph.

Experiment Design. Figure 7 illustrates the experiment design to compare
the performance of the proposed algorithm and the algorithm based on a time
expanded network. Time expanded graphs make copies of the original network

Spatio-temporal Network Databases and Routing Algorithms 473

Analysis
Add Time
Dimension

Generate
Time Series

Read Data
without Time Series

Best Start Time
Shortest Path Algorithm

Algorithm based on
Time Expanded Graph

Length of Time Series

Fig. 7. Experiment Design

for every time instant under consideration. The model used for the proposed
algorithm is time-aggregated graphs. In our experiments the following were se-
lected as the independent parameters: 1) network size represented by number of
nodes; and 2) the length of the time interval in terms of number of time instants.
The data sets have two main components: (1) the network data that consists of
the graph structure and (2) the travel time series. The networks chosen are road
maps from the Minneapolis downtown area with radii of .5 mile, 1 mile, 2 miles
and 3miles. This is appended with travel time series of various lengths. The
travel time series were synthetically generated. This data was fed to both a time
expanded graph generator, which generates the expanded graph encoding the
travel time information. An algorithm for for computing the shortest path for a
given start time was run on this graph. The SP-TAG algorithm was run on the
same dataset and the results were compared. The time expanded graph was then
used to find the start time that results in the least travel time and the results
were compared to the results from the BEST algorithm.

The experiments were conducted on a SUN Solaris workstation with 1.77GHz
CPU, 1GB RAM and UNIX operating system. Each experimental result reported
in the following sections is the average over 5 experiment runs with networks
generated using the same input parameters, but with different destination nodes.

4.1 Experimental Results and Anlaysis

We wanted to answer three questions: (1) How does the network size (number
of nodes, number of edges) affect the performance of the algorithms? (2) How
does the length of the time series affect the performance of the algorithms? (3)
How do the the two representations, time expanded graph and time aggregated
graph, compare with respect to algorithm performance?

Experiment 1: How does the network size affect the performance of the algo-
rithms?
The purpose of the first experiment was to evaluate how the network size in
terms of the number of nodes affects the performance of the algorithms. We
fixed the length of the travel time series, and varied the network size to observe

474 B. George, S. Kim, and S. Shekhar

Table 3. Description of Datasets

Dataset Radius No: of Nodes No: of Edges

1 0.5 mile 111 287
2 1 mile 277 674
3 2 miles 562 1443
4 3 miles 786 2106

111

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

277 562 786

1000

100

10

1

0.1

Number of Nodes

SP−TAG Algorithm

Fig. 8. SP-TAG Algorithm: Run-
time With Respect to Network Size

111

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

BEST Algorithm

277 562 786

Number of Nodes

1

10

100

1000

10000

Fig. 9. BEST Algorithm: Run-time
With Respect to Network Size

the run times of both the fixed start time(SP-TAG) and best start time(BEST)
algorithms and time-expanded graph based algorithms.

The experiment was done with four datasets that represent the road maps
from the Minneapolis downtown area of .5 mile, 1 mile, 2 mile and 3mile radius.
The length of the time series was fixed at 240. The number of nodes and edges in
these datasets are provided in Table 3. Figure 8 shows the run-time of the fixed
start time algorithm based on the time aggregated graph and the performance of
the algorithm based on the time expanded graph. The SP-TAG algorithm runs
faster than the time-expanded graph based algorithm in all cases; further, its
run-time seens to increase at a slower rate. Figure 9 shows the performance of
the BEST algorithm and that of the time expanded graph algorithm. The run
time of the BEST algorithm is much lower than that of the time expanded graph
algorithm.

Experiment 2: How does the length of the time series affect the performnace of
the algorithms?
In the second experiment, we evaluated how the number of time instants affects
the performance of the algorithms. We fixed the network size, and varied the
length of the time series to observe the run-time. The number of time instants
was varied from 120 to 480 and the network size parameters were fixed at 562
nodes and 1443 edges. As seen in Figure 10, the SP-TAG algorithm performs

Spatio-temporal Network Databases and Routing Algorithms 475

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

SP−TAG Algorithm

Fig. 10. SP-TAG Algorithm: Run-time
With Respect to Length of Time series

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

BEST Algorithm

Fig. 11. BEST Algorithm: Run-time With
Respect to Length of Time series

better. Figure 11 shows the performance of the BEST algorithm and that of the
time expanded graph algorithm. As the length of the time series increases, the
number of copies of the entire network required in the case of the time expanded
graph increases, resulting in a considerable increase in the size of the entire
network, leading to almost exponential increases in run time.

3: How do the the two representations, time expanded graph and time aggregated
graph, compare with respect to algorithm performance?
Based on the results of Experiments (1) and (2), it can be seen that algorithms
based on the time aggregated graph perform better than those based on the time
expanded graph.

5 Conclusions and Future Work

Spatio-temporal networks form a key part of critical applications such as emer-
gency planning and there is a great need for database support in this area. The
paper describes a model to represent a spatio-temporal network and proposes two
algorithms for shortest path computations. The formulation of these algorithms
is based on a model for spatio-temporal networks called time-aggregated graphs.
In addition to the algorithm that computes the shortest path for a given start
time, we also addressed the time-dependence of shortest paths in networks by
formulating an algorithm that computes shortest paths which result in the least
travel time over the entire time period. We also present an experimental analysis
of the best start time (BEST) algorithm and the fixed start time algorithm (SP-
TAG) (which was proposed in [8]). Experiments show that the algorithms based
on time aggregated graphs significantly reduce the computational cost compared
to similar algorithms based on time expanded networks.

We plan to evaluate the performance of the algorithms using real-traffic
datasets shortly. We recently acquired a dataset for interstate highway I-66.

476 B. George, S. Kim, and S. Shekhar

This data contains time-stamped occupancy, speed and volume collected from a
number of stations on I-66 on November 6, 2006 using the Advanced Interactive
Traffic Visualization System [23]. We anticipate that this evaluation will give
new insights into the average case run time of the algorithms, which we expect
to be significantly better than the worst case complexity, especially in the case
of the BEST algorithm based on a label correcting approach. We are also plan-
ning to extend our experiments with Google traffic data and traffic archive data
collected by the Traffic Management Center at the University of Minnesota.

The time aggregated graphs can accomodate the time-varying capacities of
the road networks. The proposed algorithms need to be extended to give opti-
mal solutions subject to the constraints of time-varying capacities. This would
extend the use of the algorithms to domains such as evacuation planning in
emergency management, where capacity constraints in the network pose signif-
icant challenges. We plan to include spatial attributes at nodes and edges and
incorporate necessary changes in the algorithms. We plan to incorporate the al-
gorithms as building blocks that find the shortest paths in the CCRP evacuation
planner [13]. We will also explore other graph problems in the context of time
aggregated graphs.

Acknowledgments

We are particularly grateful to the members of the Spatial Database Research
Group at the University of Minnesota for their helpful comments and valuable
suggestions. We would also like to express our thanks to Kim Koffolt for improv-
ing the readability of this paper.

This work was supported by the NSF SEI grant and Minnesota Department
of Transportation. The content does not necessarily reflect the position or the
policy of the government and no official endorsement should be inferred.

References

1. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest Paths Algorithms: Theory
and Experimental Evaluation . Mathematical Programming 73, 129–174 (1996)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(Chapter 26, Flow Networks). MIT Press, Cambridge, MA, USA (2002)

3. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks. net-
works 44(1), 41–46 (2004)

4. Ding, Z., Guting, R.H.: Modeling temporally variable transportation networks.
Proc. 16th Intl. Conf. on Database Systems for Advanced Applications , 154–168
(2004)

5. Erwig, M.: Graphs in Spatial Databases. PhD thesis, Fern Universität Hagen (1994)
6. Erwig, M., Guting, R.H.: Explicit graphs in a functional model for spatial

databases. IEEE Transactions on Knowledge and Data Engineering 6(5), 787–804
(1994)

7. ESRI. ArcGIS Network Analyst (2006),
http://www.esri.com/software/arcgis/extensions/

http://www.esri.com/software/arcgis/extensions/

Spatio-temporal Network Databases and Routing Algorithms 477

8. George, B., Shekhar, S.: Time-aggregated Graphs for Modeling Spatio-Temporal
Networks - An Extended Abst ract . Proceedings of Workshops at International
Conference on Conceptual Modeling (2006)

9. Hamre, T.: Development of Semantic Spatio-temporal Data Models for Integration
of Remote Sensing and in situ Data in Marine Information System. PhD thesis,
University of Bergen, Norway (1995)

10. Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for intelli-
gent vehicle highway systems applications. IVHS Journal 1(1), 1–11 (1993)

11. Kohler, E., Langtau, K., Skutella, M.: Time-expanded graphs for flow-dependent
transit times. In: Proc. 10th Annual European Symposium on Algorithms, pp.
599–611 (2002)

12. Sellis, T., Koubarakis, M., Frank, A., Grumbach, S., Güting, R.H., Jensen,
C., Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Theodoulidis,
B., Tryfona, N., Schek, H.-J., Scholl, M.O.: Spatio-Temporal Databases: The
CHOROCHRONOS Approach. In: Sellis, T., Koubarakis, M., Frank, A., Grum-
bach, S., Güting, R.H., Jensen, C., Lorentzos, N.A., Manolopoulos, Y., Nardelli,
E., Pernici, B., Theodoulidis, B., Tryfona, N., Schek, H.-J., Scholl, M.O. (eds.)
Spatio-Temporal Databases. LNCS, vol. 2520, Springer, Heidelberg (2003)

13. Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for
Evacuation Planning: A Summary of Resu lts. In: Bauzer Medeiros, C., Egenhofer,
M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, Springer, Heidelberg (2005)

14. Oracle. Oracle Spatial 10g, An Oracle White Paper. August (2005),
http://www.oracle.com/technology/products/spatial/

15. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. net-
works 21, 295–319 (1991)

16. Pallottino, S.: Shortest-Path Methods: Complexity, Interrelations and New Propo-
sitions. Networks 14, 257–267 (1984)

17. Pallottino, S., Scuttella, M.G.: Shortest path algorithms in tranportation models:
Classical and innovative aspects. Equilibrium and Advanced transportation Mod-
elling , 245–281 (1998)

18. Rasinmäki, J.: Modelling spatio-temporal environmental data. In: 5th AGILE Con-
ference on Geographic Information Science, Palma, Balearic Islands, Spain (April
2002)

19. Shekhar, S., Chawla, S.: Spatial Databases: Tour. Prentice-Hall, Englewood Cliffs
(2003)

20. Sawitzki, D.: Implicit Maximization of Flows over Time. Technical report, Univer-
sity of Dortmund (2004)

21. Dreyfus, S.E.: An appraisal of some shortest path algorithms. Operations Re-
search 17, 395–412 (1969)

22. Shekhar, S., Liu, D.: CCAM: A Connectivity-Clustered Access Method for Net-
works and Networks Computations. IEEE Transactions on Knowledge and Data
Engineering, 9 (January 1997)

23. Spatial Data Management Lab, Virginia Polytechnic Institute and State Uni-
versity. AITVS: Advanced Interactive Traffic Visualization System (2007),
http://spatial.nvc.cs.vt.edu/traffic zhh/

24. Stephens, S., Rung, J., Lopez, X.: Graph data representation in oracle databese
10g: Case studies in life sciences. IEEE Data Engineering Bulletin 27(4), 61–66
(2004)

25. Zhan, F.B., Noon, C.E.: Shortest Paths Algorithms: An Evaluation Using Real
Road Networks. Transportation Science 32, 65–73 (1998)

http://www.oracle.com/technology/products/spatial/
http://spatial.nvc.cs.vt.edu/traffic_zhh/

	Spatio-temporal Network Databases and Routing Algorithms: A Summary of Results
	Introduction
	An Illustrative Application Domain
	Broad Challenges
	Scope and Outline of the Paper

	Basic Concepts
	The Conceptual Model
	Shortest Path Computation for Time Aggregated Graphs (SP-TAG Algorithm)

	Case Study: Best Start Time Shortest Paths
	BEst Start Time Shortest Path (BEST) Algorithm

	Experimental Analysis
	Experimental Results and Anlaysis

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

