

Lecture Notes in Computer Science 4605
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dimitris Papadias Donghui Zhang
George Kollios (Eds.)

Advances in Spatial
and Temporal Databases

10th International Symposium, SSTD 2007
Boston, MA, USA, July 16-18, 2007
Proceedings

13

Volume Editors

Dimitris Papadias
Hong Kong University of Science and Technology
Department of Computer Science and Engineering
Clearwater Bay, Hong Kong, China
E-mail: dimitris@cs.ust.hk

Donghui Zhang
Northeastern University, College of Computer & Information Science
360 Huntington Avenue, #202WVH, Boston, MA 02115, USA
E-mail: donghui@ccs.neu.edu

George Kollios
Boston University, Computer Science Department
111 Cummington Street, Boston, MA 02215, USA
E-mail: gkollios@cs.bu.edu

Library of Congress Control Number: 2007929929

CR Subject Classification (1998): H.2, H.3, H.4, I.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-73539-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73539-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12088263 06/3180 5 4 3 2 1 0

Preface

SSTD 2007 was the tenth in a series of biannual events that discuss new and
exciting research in spatio-temporal data management and related technologies.
Previous symposia were successfully held in Santa Barbara (1989), Zurich (1991),
Singapore (1993), Portland (1995), Berlin (1997), Hong Kong (1999), Los Ange-
les (2001), Santorini, Greece (2003) and Angra dos Reis, Brazil (2005). Before
2001, the series was devoted solely to spatial database management, and called
SSD. From 2001, the scope was extended in order to accommodate also temporal
database management, in part due to the increasing importance of research that
considers spatial and temporal aspects jointly.

SSTD 2007 received 76 submissions from 19 countries (based on the affilia-
tion of the first author). A thorough review process led to the acceptance of 26
high-quality papers, geographically distributed as follows: USA 10, Germany 3,
Denmark 2, Hong Kong 2, Singapore 2, Brazil 1, Canada 1, France 1, Greece
1, Israel 1, South Korea 1, and Taiwan 1. The papers are classified in the fol-
lowing categories, each corresponding to a conference session: (1) Continuous
Monitoring, (2) Indexing and Query Processing, (3) Mining, Aggregation and
Interpolation, (4) Semantics and Modeling, (5) Privacy, (6) Uncertainty and
Approximation, (7) Streaming Data, (8) Distributed Systems, and (9) Spatial
Networks.

The success of SSTD 2007 was the result of team effort. First, we would like
to thank the authors for providing the content of the program. We would also like
to apologize to the authors of rejected papers, as some good submissions had to
be left out. Second, we are grateful to the members of the Program Committee
(and the external reviewers) for their thorough and timely reviews. We were
impressed by the fact that 95% of the reviews were submitted on time, despite a
reviewing process that lasted less than a month. Third, we are grateful to Ellen
Grady and the students at Boston University and Northeastern University for
their help with organizing and running the conference. Finally, we would like to
thank Oracle Spatial, ESRI, and Microsoft Research for their generous support.

We believe that SSTD 2007 continued the successful tradition of the
series, providing an interesting program and lively discussions in a pleasant
environment.

May 2007 Dimitris Papadias
Donghui Zhang
George Kollios

Organization

SSTD 2007 was organized by Boston University.

Executive Committee

General Chair George Kollios (Boston University)
Program Chairs Dimitris Papadias (Hong Kong University of

Science and Technology)
Donghui Zhang (Northeastern University)

Organizing Chair Ellen Grady (Boston University)
Web Master Ling Hu (Northeastern University)

Program Committee

Walid Aref Purdue University (USA)
Lars Arge University of Aarhus (Denmark)
Spiros Bakiras John Jay College, CUNY (USA)
Elisa Bertino Purdue University (USA)
Thomas Brinkhoff Oldenburg University of Applied Sciences

(Germany)
Reynold Cheng Hong Kong Polytechnic University

(Hong Kong)
Max Egenhofer National Center for Geographic Information

and Analysis, Maine (USA)
Amr El Abbadi University of California, Santa Barbara (USA)
Dimitrios Gunopulos University of California, Riverside (USA)
Ralf Hartmut Güting Fernuniversität Hagen (Germany)
Marios Hadjieleftheriou AT&T Labs Inc. (USA)
Erik Hoel ESRI (USA)
Christian S. Jensen Aalborg University (Denmark)
Panos Kalnis National University of Singapore (Singapore)
George Kollios Boston University (USA)
Ravi Kothuri Oracle Spatial (USA)
Nick Koudas University of Toronto (Canada)
Ki-Joune Li Pousan National University (South Korea)
David Lomet Microsoft Research (USA)
Nikos Mamoulis Hong Kong University (Hong Kong)
Yannis Manolopoulos Aristotle University (Greece)
Claudia Bauzer Medeiros University of Campinas (Brazil)
Mohamed Mokbel University of Minnesota (USA)
Kyriakos Mouratidis Singapore Management University (Singapore)

VIII Organization

Mario Nascimento University of Alberta (USA)
Gultekin Ozsoyoglu Case Western Reserve University (USA)
Spiros Papadimitriou IBM T.J. Watson Research Center (USA)
Dieter Pfoser Computer Technology Institute (Greece)
Siva Ravada Oracle Spatial (USA)
John Roddick Flinders University (Australia)
Simonas Šaltenis Aalborg University (Denmark)
Markus Schneider University of Florida (USA)
Bernhard Seeger Philipps-Universität Marburg (Germany)
Timos Sellis National Technical University of Athens

(Greece)
Cyrus Shahabi University of Southern California (USA)
Shashi Shekhar University of Minnesota (USA)
Richard Snodgrass University of Arizona (USA)
Jianwen Su University of California, Santa Barbara (USA)
Kian-Lee Tan National University of Singapore (Singapore)
Yufei Tao Chinese University of Hong Kong (Hong Kong)
Yannis Theodoridis University of Piraeus (Greece)
Vassilis J. Tsotras University of California, Riverside (USA)
Agnès Voisard Fraunhofer ISST and Freie Universität Berlin

(Germany)
Kyu-Young Whang KAIST (South Korea)
Jun Yang Duke University (USA)
Ke Yi AT&T Labs Inc. (USA)
Man Lung Yiu Aalborg University (Denmark)

External Reviewers

Ping Wu
Stacy Patterson
Dan Lin
Hai Yu
Ahmed Metwally
Hui Ding
Mohamed Shehab
Huagang Li

Jeffrey Xie
Chuck Freiwald
Shyam Antony
Elias Frentzos
Jinchuan Chen
Gabriel Ghinita
Kiyoung Yang
Hyunjin Yoon

Mehrdad Jahangiri
Leyla Kazemi
Hua Lu
Maria M. Ruxanda
Luiz Celso Gomes Jr
Gilberto Pastorello
Jaudete Daltio

Sponsors

Oracle Spatial (Platinum Sponsor)
ESRI (Silver Sponsor)
Microsoft Research (Silver Sponsor)

Table of Contents

Continuous Monitoring of Exclusive Closest Pairs . 1
Leong Hou U, Nikos Mamoulis, and Man Lung Yiu

Continuous Evaluation of Fastest Path Queries on Road Networks 20
Chia-Chen Lee, Yi-Hung Wu, and Arbee L.P. Chen

Continuous Medoid Queries over Moving Objects . 38
Stavros Papadopoulos, Dimitris Sacharidis, and Kyriakos Mouratidis

Efficient Index Support for View-Dependent Queries on CFD Data 57
Christoph Brochhaus and Thomas Seidl

Generalizing the Optimality of Multi-step k-Nearest Neighbor Query
Processing . 75

Hans-Peter Kriegel, Peer Kröger, Peter Kunath, and Matthias Renz

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial
Networks . 93

Xuegang Huang, Christian S. Jensen, Hua Lu, and Simonas Šaltenis

Efficiently Mining Regional Outliers in Spatial Data 112
Richard Frank, Wen Jin, and Martin Ester

A Two Round Reporting Approach to Energy Efficient Interpolation of
Sensor Fields . 130

Brian Harrington and Yan Huang

Online Amnesic Summarization of Streaming Locations 148
Michalis Potamias, Kostas Patroumpas, and Timos Sellis

Spatial Partition Graphs: A Graph Theoretic Model of Maps 167
Mark McKenney and Markus Schneider

Geographic Ontology Matching with iG-Match . 185
Guillermo Nudelman Hess, Cirano Iochpe, and Silvana Castano

Local Topological Relationships for Complex Regions 203
Mark McKenney, Alejandro Pauly, Reasey Praing, and
Markus Schneider

MobiHide: A Mobilea Peer-to-Peer System for Anonymous
Location-Based Queries . 221

Gabriel Ghinita, Panos Kalnis, and Spiros Skiadopoulos

X Table of Contents

Blind Evaluation of Nearest Neighbor Queries Using Space
Transformation to Preserve Location Privacy . 239

Ali Khoshgozaran and Cyrus Shahabi

Enabling Private Continuous Queries for Revealed User Locations 258
Chi-Yin Chow and Mohamed F. Mokbel

Computing a k-Route over Uncertain Geographical Data 276
Eliyahu Safra, Yaron Kanza, Nir Dolev, Yehoshua Sagiv, and
Yerach Doytsher

Querying Objects Modeled by Arbitrary Probability Distributions 294
Christian Böhm, Peter Kunath, Alexey Pryakhin, and
Matthias Schubert

Invisible Graffiti on Your Buildings: Blind and Squaring-Proof
Watermarking of Geographical Databases . 312

Julien Lafaye, Jean Béguec, David Gross-Amblard, and Anne Ruas

Transformation of Continuous Aggregation Join Queries over Data
Streams . 330

Tri Minh Tran and Byung Suk Lee

Continuous Constraint Query Evaluation for Spatiotemporal Streams . . . 348
Marios Hadjieleftheriou, Nikos Mamoulis, and Yufei Tao

Collaborative Spatial Data Sharing Among Mobile Lightweight
Devices . 366

Zhiyong Huang, Christian S. Jensen, Hua Lu, and Beng Chin Ooi

A Study for the Parameters of a Distributed Framework That Handles
Spatial Areas . 385

Verena Kantere and Timos Sellis

Distributed, Concurrent Range Monitoring of Spatial-Network
Constrained Mobile Objects . 403

Hua Lu, Zhiyong Huang, Christian S. Jensen, and Linhao Xu

Compression of Digital Road Networks . 423
Jonghyun Suh, Sungwon Jung, Martin Pfeifle, Khoa T. Vo,
Marcus Oswald, and Gerhard Reinelt

Traffic Density-Based Discovery of Hot Routes in Road Networks 441
Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez

Spatio-temporal Network Databases and Routing Algorithms: A
Summary of Results . 460

Betsy George, Sangho Kim, and Shashi Shekhar

Author Index . 479

Continuous Monitoring of Exclusive Closest Pairs�

Leong Hou U1, Nikos Mamoulis1, and Man Lung Yiu2

1 Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
{hleongu,nikos}@cs.hku.hk

2 Department of Computer Science, Aalborg University, DK-9220 Aalborg, Denmark
mly@cs.aau.dk

Abstract. Given two datasets A and B, their exclusive closest pairs (ECP) join
is a one-to-one assignment of objects from the two datasets, such that (i) the clos-
est pair (a, b) in A×B is in the result and (ii) the remaining pairs are determined
by removing objects a, b from A, B respectively, and recursively searching for
the next closest pair. An application of exclusive closest pairs is the computation
of (car, parking slot) assignments. In this paper, we propose algorithms for the
computation and continuous monitoring of ECP joins in memory, given a stream
of events that indicate dynamic assignment requests and releases of pairs. Exper-
imental results on a system prototype demonstrate the efficiency of our solutions
in practice.

1 Introduction

Due to the increasing popularity of location-based services, continuous monitor-
ing of spatial queries emerges as an important research topic. Existing work
[18, 11, 21, 13, 16, 17] focuses on range or k nearest neighbor (kNN) queries on mov-
ing objects. These problems can also be viewed as continuous joins between queries
and data objects, according to their spatial relationship. However, there has not been
much research done related to the continuous monitoring of spatial join results. Several
variants of spatial join queries exist, such as the intersection join [2], the distance (or
similarity) join [14], the all k nearest neighbors join [24], and the k (inclusive) closest
pairs query (kICP) [9, 4].

In this paper, we study an interesting type of spatial joins that has received little
attention in the past. We call this operation the k exclusive closest pairs join (kECP).
kECP produces k one-to-one assignments of objects between two datasets A and B,
such that (i) the closest pair (a, b) in A×B belongs to the result and (ii) the remaining
pairs are determined by removing objects a, b from A, B respectively, and recursively
searching for the next closest pair. Thus, each object appears only once in the result.

A real-life application of a kECP query is the car-parking assignment problem. Con-
sider a set A of car drivers that request for a parking slot and another set B of available
slots. The well-known assignment problem [19] searches for the 1-to-1 assignment of
cars to parking spaces, such that the sum of travel distances is minimized. However, in
a world of selfish users, it is more reasonable to assign each car c ∈ A to the parking

� Supported by grant HKU 7160/05E from Hong Kong RGC.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 1–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L.H. U, N. Mamoulis, and M.L. Yiu

space p ∈ B that may not be taken by another driver c′, which happens to be closer
to p than c is. Therefore, our formulation of the kECP query (assuming that k is the
minimum of cardinalities |A| and |B|) searches for a practical solution to the problem.

We propose a technique for computing the ECP pairs efficiently given a set of cars
and a set of parking slots. In addition, we extend it to monitor the ECP results, in a
dynamic environment, where parking requests from cars and availability events from
parking slots arrive from a data stream. Due to such events, ECP assignments must be
deleted (i.e., when a car un-parks), new assignments must be added (i.e., when a new
car requests parking), and current assignments may have to be changed. For instance,
assume that pair (c, p) is in the current assignment and a new parking slot p′ becomes
available which is closer to c than p is. In this case, c must be re-assigned to p′ and
p should become available for other cars. This change may trigger a “chaining” effect
which could alter the whole assignment. Our method processes incoming events in
an appropriate order, such that the correct ECP results are maintained correctly and
efficiently.

We assume that a centralized server monitors the locations of objects. When an ob-
ject moves to another location, it informs the server about its new location. Since the
frequent updates render disk-based management techniques inefficient, our solution is
based on a memory grid-based indexing approach [16, 18].

Our contributions can be summarized as follows:

– We identify ECP as a new type of spatial join that finds application in real-life
dynamic allocation problems (e.g., car/parking assignment).

– We show that the kECP for k = min{|A|, |B|} is equivalent to a special case of the
stable marriage problem [7], where assignment preferences are derived from the
distance function. Based on this observation, we adapt the Gale-Shapley algorithm
[6] to solve kECP queries by computing only a small fraction of the distances
dynamically and on-demand.

– We define a dynamic version of ECP for moving objects and streaming events that
indicate (i) availability of slots and (ii) demand for new kECP pairs. We propose
an appropriate extension of our static kECP query evaluation algorithm that solves
this continuous kECP query.

– We conduct a set of experiments to verify the efficiency of the proposed methods
for a wide range of problem parameters.

The rest of the paper is organized as follows. Section 2 surveys related work on clos-
est pair queries in spatial data, continuous monitoring problems, and the stable marriage
problem. Section 3 formally defines ECP and presents our solution to it for a static in-
put. Section 4 presents an update framework for ECP calculation with two optimizations
to improve its performance. Our solutions are evaluated in Section 5. Finally, Section 6
concludes the paper, giving directions for future work.

2 Background and Related Work

2.1 Closest Pairs Queries in Spatial Databases

Computation of closest pairs queries have been studied for several decades. Main-
memory algorithms, such as the Neighbor Heuristic [1] and Fast Pair [3, 5], focus on

Continuous Monitoring of Exclusive Closest Pairs 3

1CP problems. Fast Pair was shown to have the best overall performance. However, this
method is not directly applicable to: (i) kCP queries for arbitrary values of k, and (ii)
other variants of CP queries.

Some previous work [4, 9, 22] employ spatial indexes to solve kICP queries in sec-
ondary memory. [4,9] assume that the datasets are indexed by R-trees [8]. On the other
hand, Yang et al. [22] extended the R-tree to a b-Rdnn tree, by augmenting each non-leaf
entry with the maximum nearest neighbor distance (with respect to the other dataset) of
points in its subtree. During query evaluation, such distances are utilized for reducing
the search space. [22] showed that their approach outperforms previous R-tree based
methods. Since these methods operate on indexed data they may not be applied in a dy-
namic environment. A high rate of streaming events imposes a high burden to the update
of the indexes, which in combination with the expensive refreshing of the query results,
renders the overall approach inefficient or impossible. In addition, although an kICP al-
gorithm can be tuned to process the kECP query (i.e., by remembering assigned points
and avoiding their re-assignment), such an approach would require a large amount of
memory (for k=min{|A|, |B|}, as large as the size of a dataset).

2.2 Continuous Monitoring of Spatial Queries

Various spatial applications, like the car-parking problem of the Introduction, handle
large amounts of information at fast arrival rate. Several extensions of R-trees have
been developed for supporting frequent updates of spatial data. Lee et al. [15] proposed
the FUR-tree (Frequent Update R-tree), which uses localized bottom-up update strate-
gies into the traditional R-tree. Recently, Xiong et al. [20] developed the RUM-tree
(R-tree with Update Memo), which was shown to have better update performance than
FUR-tree. [12] applied an event-driven approach to maintain query results for kNN and
spatial join queries, with the assumption that moving objects can be modeled by linear
motion functions.

Continuous monitoring of multiple spatial queries (e.g., range [16, 17] and kNN
[21, 23, 18]) adopt the shared execution paradigm to reduce the processing cost. In-
stead of monitoring the results for different queries separately, the problem is viewed
as a large spatial join between the query objects and data objects. As illustrated in
Figure 1, grid cells (of cell length δ) are employed for indexing the objects. In practice,

δ

q1

q2

p1

p2

p3

p4

p5

Fig. 1. Monitoring spatial queries

4 L.H. U, N. Mamoulis, and M.L. Yiu

memory grid cells [23,18] are used (instead of disk-based structures) in order to handle
very high update rate. q1 corresponds to a range query (shown in bold rectangle) and
its influence region consists of the (gray) cells that intersect with q1. Since data object
updates outside the influence region cannot affect the query result, the processing cost
is significantly reduced. As another example, q2 represents a NN query (shown in bold
circle). Its difference from q1 is that its influence region is a circular region centered at
q2 with dynamic radius equal its NN distance. For example, when the NN of q2 moves
closer to (further from) q2, then the influence region of q2 shrinks (grows).

Observe that continuous monitoring of range/kNN queries is different from that of
kECP queries. For range and kNN queries, only query results near a change triggered
by a streaming event (i.e., appearance, disappearing, or movement of an object) need
to be updated (i.e., only for queries whose influence region intersects the location of
the change). On the other hand, as we will discuss in Section 4, a streaming event can
generate a sequence of changes in the kECP result. Thus, the idea of influence regions
is not appropriate for kECP monitoring, which calls for novel techniques.

2.3 The Stable Marriage Problem

The kECP join is closely related to the classic stable marriage problem [6, 7]. Given
two set of objects A and B, M is said to be a matching between A and B if (i) M is
a set of min{|A|, |B|} pairs of objects (a, b) where a ∈ A, b ∈ B, and (ii) each object
a ∈ A (b ∈ B) appears in at most one pair in M . A matching M is stable if there are no
pairs (a, b) and (a′, b′) in M such that a prefers b′ to b and b′ prefers a to a′. Given the
preference lists of all objects a ∈ A and b ∈ B, the stable marriage problem seeks for
a stable matching. In our context, the preference list of an object a is implicitly defined
by the total order defined by the Euclidean distance; if a is closer to b than to b′, then a
prefers b to b′.

[7] is a nice reference text that introduces the stable marriage problem and presents
solutions to it, for special cases of the input. For the generic problem, Gale and Shap-
ley [6] proved that, if |A| = |B|, it is always possible to find a solution and provided
an algorithm for this. For the ease of discussion, we call the objects in A and B as
senders and receivers, respectively. In the first round, each sender (in A) calls its most
preferred receiver (in B). If a receiver hears from at least one sender, then the receiver
matches with the best sender (according to the receiver’s preference) and the corre-
sponding sender is removed from A. The above procedure is applied iteratively in sub-
sequent rounds, but with an additional rule: if a receiver has been assigned a sender
aold (in previous rounds) and now it hears from a better sender anew (in the current
round), then the receiver matches with the new sender and the remaining set of senders
becomes A := {aold} ∪ A − {anew}. Eventually, the stable matching between A and
B is obtained after all objects in A or B have been removed.

For example, Table 1 illustrates a set A of three jobs and a set B of three applicants,
such that the applicants (jobs) can be totally ordered based on their qualification (pref-
erence) for the job (applicant). In the first round of the Gale-Shapley algorithm, both
jobs a1 and a2 call the applicant b1, who prefers a1 to a2. Thus, b1 matches with a1

and a1 is removed from A. Also, a3 calls b2, b2 matches with a3 and a3 is removed
from A. In the second round, a2 calls b2. Since b2 prefers the new job a2 to its old

Continuous Monitoring of Exclusive Closest Pairs 5

Table 1. Example of stable marriage

Job Preference Applicant Preference
a1 b1 � b3 � b2 b1 a1 � a3 � a2

a2 b1 � b2 � b3 b2 a2 � a3 � a1

a3 b2 � b3 � b1 b3 a2 � a1 � a3

job a3, b2 now matches with a2 instead and the job a3 is added back to A. In the third
round, a3 calls b3 and b3 matches with a3. Thus, the stable matching contains the pairs
(a1, b1), (a2, b2), (a3, b3). Note that at least one pair is finalized at each round, thus the
worst-case time complexity of the algorithm is O(|A| × |B|).

The stable marriage algorithm is asymmetric; if the roles of A and B are reversed, a
different solution may be found. Furthermore, it has been shown that it is sender-optimal
(i.e., A-optimal if A is the sender dataset); its execution will derive the optimal pair in
B for any a ∈ A, for any order of examined objects from A. Thus, there is a unique
solution when taking A as the sender input and another unique solution when taking B
as the sender. We now prove that if the preference list is derived by a symmetric weight
function w (e.g., Euclidean distance), such that w(a, b) = w(b, a), ∀a ∈ A, b ∈ B, then
these two solutions are identical.

Theorem 1. If preferences are defined by a weight function w, such that a prefers b to
b′ if and only if w(a, b) < w(a, b′) and b prefers a to a′ if and only if w(b, a) < w(b, a′),
and w(a, b) = w(b, a), for any a, a′ ∈ A, b, b′ ∈ B then the optimal stable marriage
result is unique independently on whether A or B is the sender set.

Proof. Without loss of generality, assume that |A| = |B| = n. Let MA={{(a(1), b(1))},
{(a(2), b(2))}, . . ., {(a(n), b(n))}} be the A-optimal matching, such that (a(i), b(i))
models the pair which is finalized at the i-th loop of the Gale-Shapley algorithm.1

Let the B-optimal matching, generated by the Gale-Shapley algorithm, be MB =
{{(b′(1), a′

(1))}, {(b′(2), a′
(2))}, ..., {(b′(n), a

′
(n))}}. We will first prove that a(1) = a′

(1)

and b(1) = b′(1), i.e., the first assignments output by the two runs of the algorithm are
identical. Since (a(1), b(1)) is the first finalized pair of the A-sender run, w(a(1), b(1))
should be the smallest w(a, b), for any a ∈ A, b ∈ B. Similarly, w(b′(1), a

′
(1)) should

be the smallest w(b, a), for any a ∈ A, b ∈ B. Since w(a, b) = w(b, a), it must be
a(1) = a′

(1) and b(1) = b′(1). By induction, we can prove that a(i) = a′
(i) and b(i) = b′(i),

for 1 ≤ i ≤ n, since by removing pairs {(a(1), b(1)), (a(2), b(2)), . . . , (a(i), b(i))} from
the problem we showed that the first pair (a(i+1), b(i+1)) in the resulting subproblem is
identical for both A-sender and B-sender runs. ��

A subtle issue to note is that the uniqueness argument for the A-sender (or B-sender)
Gale-Shapley’s output and Theorem 1 holds only for cases where the preference lists are
unique, strictly total orders. Non-unique orders can be derived from weight functions

1 Without loss of generality, we assume that only one pair is finalized at each loop. If there are
multiple such pairs we could modify the algorithm to output only the one with the smallest
w(a, b), without affecting the correctness of the result.

6 L.H. U, N. Mamoulis, and M.L. Yiu

w, for which there exist pairs (a, b) and (a′, b′), such that w(a, b) = w(a′, b′) and
(a = a′ ∧ b 	= b′) or (a 	= a′ ∧ b = b′). In such cases, e.g., a = a′ ∧ b 	= b′, object a has
the same preference to b and b′, therefore the stable marriage result may not be unique;
there could be a stable solution that includes (a, b) and another that includes (a, b′).

3 The Static kECP Query

In this section, we define and solve the static case of the kECP query, where the kECP
result is requested for two sets of static points. For completeness, we also provide the
definition of the k inclusive closest pairs (kICP) query.

Definition 1. Given two set of points A, B and a k < |A× B|, the k inclusive closest
pairs kICP (A, B) is defined as the set S ⊂ A × B, such that |S| = k and ∀(a, b) ∈
S, (a′, b′) ∈ (A×B)− S, d(a, b) ≤ d(a′, b′).

Definition 2. Given two set of points A and B, the k exclusive closest pairs kECP
(A, B) is recursively defined as:

kECP (A, B) = kICP (A, B), for k = 1, and
kECP (A, B) = 1ECP (A, B) ∪ (k − 1)ECP (A− {a}, B − {b}), otherwise.

Note that the maximum possible value for k is min{|A|, |B|} in kECP and k ≤ |A| · |B|
in kICP. It is easy to prove that kECP, for k = min{|A|, |B|} is a special case of the
stable marriage problem, where the preference order is derived by the weight function
w(a, b) = d(a, b) (d denotes Euclidean distance). Therefore the Gale-Shapley stable
marriage algorithm (SMA) can be applied to solve kECP queries; the preference list of
a point a ∈ A is constructed by placing points in B in ascending order of their distances
to a. The preference lists of points b ∈ B are generated symmetrically. After running
SMA on the preference lists, the obtained results correspond to the results of ECP. Since
d(a, b) ≡ d(b, a), and assuming that the distances between a point a ∈ A and the points
in B are distinct (and vice versa)2, SMA will derive the unique ECP result according to
Theorem 1, no matter whether we take A of B as the sender set.

Nevertheless, the direct application of SMA requires the computation of a large num-
ber of distances and large space to store them (for |A| · |B| distances), thus it does not
scale well for large problems. We conjecture that the spatial properties of the query, in
combination with appropriate indexes can be utilized to accelerate SMA. For example,
we need not compute the distance of a point a ∈ A to all in B before running SMA;
instead, we can applying spatial ranking techniques [10, 18] to generate the preference
list of a incrementally and on-demand.

We adopt CPM; the grid-based technique of [18] for indexing data points in our
problem, due to its good performance in environments with frequent updates. CPM is
the state-of-the-art grid-based index for monitoring NN queries. Each query point is
associated with a heap such that the objects and grid cells are visited in ascending order
of their distances from the query point. In this way, query results can be computed
fast and unnecessary accesses to other points are avoided. In particular, [18] propose a

2 This is a realistic assumption since distances are real numbers and they are unlikely to coincide.

Continuous Monitoring of Exclusive Closest Pairs 7

D3

D2

D1

D0

R3R2R1R0L0L1L2L3

U0

U1

U2

U3

q

Fig. 2. Conceptual Partitioning Monitoring (CPM) space division

Table 2. Notation

Symbol Description
A, B a set of points (cars), a set of points (parking slots)
a (b) a point in A (B)

d(a, b) Euclidean distance between a and b

dmin(r, a) minimum distance between rectangle r and point a

DIRlvl rect. of direction (DIR) in level lvl (in CPM)
a.ψ (b.ψ) a’s (b’s) current ECP point
a.λ (b.λ) the distance between a (b) and its ECP point

conceptual partitioning of the cells (see Figure 2) for reducing distance computations.
Each rectangle DIRlvl is associated with a direction DIR and a level number lvl. The
direction can be U (up), D (down), L (left), or R (right). The level number denotes the
number of rectangles between DIRlvl and the cell containing the query point q.

Our static ECP algorithm (see Algorithm 1) uses the CPM index to search for the
optimal matching, and (due to the hardness of the ECP problem) it is more sophisticated
compared to the simple NN algorithm of [18]. Recall that we have two datasets A and
B in our problem. In order to optimize performance, we consider the smallest dataset
as a query set (that will generate nearest neighbor lists to be used as preference lists
in the stable marriage evaluation). Accordingly, the other dataset represents an objects
set. For the ease of exposition, let A be the query set and B be the objects set. For each
point o in A and B keep track of the following information: (i) its current ECP object
(o.ψ), and (ii) the distance (o.λ) to that object. Initially, o.λ is set to∞, and o.ψ is set
to NULL. Table 2 summarizes the notation used in our algorithm description.

In its initialization phase (Lines 1–5), SECP allocates a min-heap a.H for each ob-
ject a ∈ A, and inserts in it Cell(a) (i.e., the cell containing a) and all 0-level CPM
rectangles (see Figure 2) that surround a. During SECP, a.H contains cells, rectan-
gles, and/or objects from B and can identify the one with the smallest dmin to a in O(1)

8 L.H. U, N. Mamoulis, and M.L. Yiu

time.3 In addition, all points in A are inserted to a patients set P , containing query
points that have not found their exclusive closest pair yet.

SECP then starts a sequence of iterations (Lines 7-16); after each loop a number of
ECP pairs are identified and inserted to the result. At the i-th iteration, for each query
point a ∈ P , SECP incrementally retrieves from B nearest neighbors of a which are no
further than the i-th level rectangle of the CPM partition and attempts to find the ECP
pair of a in them (Lines 10-12).

Algorithm 1. SECP
V, P, P ′ : Queue
Result : Heap
algorithm SECP(Integer k)

1: for all a ∈ A do
2: insert 〈Cell(a), dmin(a, Cell(a))〉 into a.H
3: for each direction DIR do
4: insert 〈DIR0, dmin(a, DIR0)〉 into a.H

5: insert a into P
6: loop:=0
7: while |Result| < k do
8: loop:=loop + 1
9: maxdist := (loop − 1/2) · δ

10: while P �= ∅ do
11: dequeue an object a from P
12: ε-INNECP(a,maxdist, V, P, P ′)
13: for all b ∈ V do
14: if b = (b.ψ).ψ then
15: insert (b.ψ, b) into Result

16: P :=P ′; P ′:=∅

We now describe in more detail the core search module of SECP which is called at
Line 12. Algorithm 2 is a pseudo-code for this ε-bounded incremental nearest neighbor
search with integrated ECP assignment (ε-INNECP). ε-INNECP browses the nearest
neighbors of a query point a incrementally, subject to the constraint that their distance
to a is not greater than ε. At Lines 3-9, it processes the element on top of the a.H
heap, if it is a rectangle or a cell, exactly like the original NN algorithm of [18]. If the
next a.H entry is an object b, it is processed according to Lines 11-19. If d(a, b) is
smaller than b.λ (this happens if b is unassigned or b has been previously assigned to
a further query point), then the current ECP of a (resp. b) is tentatively set to b (resp.
a). If b is unassigned, we insert it into a candidates list V . Otherwise, the previous
assigned pair of b (b.ψ ∈ A), is added to P and marked as unassigned. Then, b.λ and
b.ψ are updated as d(a, b) and a respectively. Search terminates if a is assigned to a
point b ∈ B (while-loop break of Line 19) or if a has not been assigned after all its
ε-bounded nearest neighbors in B have been examined. In the latter case, a is inserted

3 Given a point p and a rectangle r, dmin(p, r) is the minimum distance between p and any
possible point in r.

Continuous Monitoring of Exclusive Closest Pairs 9

into next loop’s patients list P ′ (Line 21). Note that ε-INNECP does not search for
neighbors of a beyond ε distance from a, and ε is increased at each loop.

After each loop of SECP has examined all points in P , for each b in the candidate
list V , it checks whether a = b.ψ has also a.ψ = b (Lines 13-15 of SECP). In this
case (a, b) is definitely a pair in the ECP result. The reason is that d(a, b) ≤ ε and
there could not be an unassigned neighbor to a (or b) with a smaller distance (those
have already been retrieved by ε-INNECP). The algorithm terminates when the number
of results reaches k. Otherwise, ε-INNECP is invoked again with a new distance ε =
(loop− 0.5) · δ, where loop is the current loop and δ is the extent of a grid cell.

Algorithm 2. ε-bounded INN search and tentative ECP assignment
algorithm ε-INNECP(Object a, Distance ε, Queue V , P , P ′)

1: while a.H �= ∅ and a.H’s top entry’s distance ≤ ε do
2: 〈o, odist〉 := deheap(a.H)
3: if o is a cell c then
4: for all objects b′ ∈ c do
5: insert 〈b′, d(a, b′)〉 into a.H

6: else if o is a rectangle DIRlvl then
7: for each cell c′ in DIRlvl do
8: insert 〈c′, dmin(a, c′)〉 into a.H

9: insert 〈DIRlvl+1, dmin(a,DIRlvl+1)〉 into a.H
10: else � o is an object b
11: if b.λ > odist then � b prefers a to its previous pair
12: set a.ψ := b and a.λ := odist � update ECP for a
13: if b.ψ is NULL then
14: insert b into V � insert to ECP candidates V
15: else
16: (b.ψ).ψ:=NULL; (b.ψ).λ:=∞ � unset pair of b
17: insert b.ψ into P

18: set b.ψ := a and b.λ := odist � update ECP for b
19: break � break while-loop

20: if a.ψ=NULL then � a has not been assigned in this loop
21: insert a into P ′

Figure 3 exemplifies how SECP algorithm works. Assume that 4 cars (in A) and 3
parking slots (in B) remain unassigned after the first loop. Then, ε is set to (2−0.5)∗ δ,
thus the maximum search range around each a ∈ P is shown by the gray circles in
Figure 3a. Assume that the order of points in P is (a1, a2, a3, a4). Figure 3b shows the
running steps of this example in loop=2. At the first call of ε-INNECP, a1 is assigned
to b1, since b1 is the NN of a1 and b1 is currently unassigned. Then, a2 takes b1 and a1

is put back to P (Lines 16-17 of ε-INNECP). This happens because (i) b1 is the NN of
a2 and (ii) a1 is the current ECP pair of b1 and d(a2, b1) < d(a1, b1). The algorithm
continues and eventually outputs the assignments (a2, b1) and (a1, b2), whereas P ′ =
{a3, a4} are moved to the next loop (so is b3). Although ε-INNECP runs with a larger
searching area in the next loop, it avoids accessing unnecessary elements, because it
continues searching using the current min-heap a.H for each a ∈ P .

10 L.H. U, N. Mamoulis, and M.L. Yiu

a1

a3

a2

b1

b3
b2

a4

Loop a a.ψ P P ′

2 a1 b1 (a2, a3, a4) -
2 a2 b1 (a3, a4, a1) -
2 a3 b2 (a4, a1) -
2 a4 - (a1) (a4)
2 a1 b2 (a3) (a4)
2 a3 - - (a4, a3)

(a) locations of points (b) Iterations (Lines 10-12)

Fig. 3. An example of SECP (loop=2)

4 Continuous Monitoring of ECP Pairs

In this section, we set up the problem of monitoring ECP pairs dynamically and propose
a solution that uses the SECP algorithm presented in the previous section. To motivate
our problem setting, we base it on a realistic application, where the ECP join between
a set of moving cars (C) and a set of static parking slots (S) is to be computed and in-
crementally maintained. When the car-parking assignment system starts up, it receives
a number of events Er from cars (c ∈ C) in the monitored area, corresponding to as-
signment requests. It then runs a static ECP join algorithm to determine the slots to be
assigned to these cars.

While the system is running, it receives events from cars and pushes them into a
buffer Buf . At regular time intervals (e.g., every few seconds), the events collected in
Buf are handled in batch. Three types of events are collected in Buf : Er events from
cars that have just requested to park, Ep events from cars that have just parked to their
assigned slot, and Em events from cars that have just unparked and they are moving.
Accordingly, we can divide the sets of cars (and slots) into four classes based on their
current state, as specified in Table 3. Figure 4 shows how streaming events or system
decisions define the transitions of cars and parking slots among states. We assume that
at each timestamp the system receives a number of Er, Ep, and Em events from cars.
First, all Ep events are processed, which change the statuses of the corresponding cars
and slots from Ca to Cp and Sa to Sp, respectively. Then, the Em events are processed
and the corresponding cars in Cp and slots in Sp will move to classes Cm and Sf ,
respectively (we will explain the role of Sf shortly). Finally, the Er events move cars
from Cm state to Cr state. Unassigned cars in Cr and currently assigned cars in Ca

must be processed by a continuous ECP algorithm based on the following.

– If an assigned car c ∈ Ca can be assigned a better slot (due to the availability of a
new free parking slot which is closer) then perform this change.

– For all cars in c ∈ Cr, find their ECP pairs after having considered the optimal
re-assignments for cars in Ca.

Continuous Monitoring of Exclusive Closest Pairs 11

Table 3. Classification of objects based on their current status

Symbol Description
Cm set of cars which move and do not want to park
Cr set of cars which move and request to park
Ca set of cars which move and are assigned to a parking slot
Cp set of parked cars
Se set of slots which are unoccupied and unassigned
Sa set of slots which are assigned but not occupied
Sp set of slots which are currently occupied
Sf set of slots which are set free at the current timestamp

Cm Cr

CaCp

Er

ECP algo

Ep

Em

Se Sa

SpSf

Ep

ECP algo

Em

time

ECP
algo

Cars Parking Slots

Fig. 4. State transition diagrams for objects

Note that a re-run of the ECP join for the union of Cr ∪ Ca cars could result in
the unfavorable assignment of a c ∈ Ca to a slot which is further than its currently
assigned slot. In order to avoid such situations4, we must run a special version of ECP
that handles cars in Ca separately.

Our continuous ECP algorithm (CECP) (see Algorithm 3) is based on the realistic
assumption that only slots in Sf can change a current assignment (ca, ca.ψ) for ca ∈ Ca

to a better one. The rationale is that once assigned to its slot, ca will have moved towards
it, so it is unlikely for a slot in Se (i.e., the empty slots from the previous timestamp) will
suit ca now (since it did not suit it in the previous timestamp). Based on this assertion,
we examine all slots in Sf to see if any of them could change the current assignment
of a ca ∈ Ca to a better one. If a slot sf ∈ Sf can replace the current assignment
ca.ψ of a car ca, we perform this change and push ca.ψ to Sf (since it could update the
assignment of another car). Otherwise, we put sf to Se (the set of empty slots). After
all slots in Sf have been examined and the set becomes empty, we perform a static ECP
join for the pair of requesting cars and empty slots (Cr, Se). For this join, we use the
SECP algorithm described in Section 3. We now discuss two optimization techniques
for speeding up the search operation at Line 3 of CECP.

4 Imagine that you’ve been assigned to a parking and while moving towards it, the system in-
forms you that you have to change to a further slot!

12 L.H. U, N. Mamoulis, and M.L. Yiu

Algorithm 3. Continuous ECP
algorithm CECP(C,S)

1: while Sf �= ∅ do � first phase
2: sf := remove slot sf from Sf

3: if for a ca ∈ Ca d(ca, ca.ψ) > d(ca, sf) then
4: move ca.ψ to Sf ; set ca.ψ := sf

5: move sf to Sa;
6: else
7: move sf to Se;

8: SECP(Cr, Se) � second phase

4.1 Distance-Bounded Search

For each sf , CECP scans Ca to find a car ca ∈ Ca for which sf can replace ca.ψ or
verify that no such car exists in Ca. This search can be accelerated if the cars in Ca are
checked in increasing distance from sf . Therefore, before CECP begins for the current
timestamp, we organize the existing Ca (from the previous timestamp) in a CPM index.
In addition, we compute the maximum distance Γ of any assigned pair in Ca (i.e.,
Γ = max{d(ca, ca.ψ)|ca ∈ Ca}). This preprocessing phase requires a only single pass
over Ca, whereas the resulting index can be used for any sf ∈ Sf .

For each sf , we examine the objects ca ∈ Ca incrementally according to their dis-
tance to sf (i.e., we perform a NN search on the CPM-index [18]). This way, the chances
to find an assignment for sf early are maximized because assigned cars close to sf are
examined earlier. More importantly, NN search can terminate as soon as d(sf , ca) ≥ Γ ,
for a neighbor ca of sf .

4.2 Partitioning in CPM Cells

Recall that each sf ∈ Sf attempts to find any ca ∈ Ca, for which dist(ca, sf) <
dist(ca, ca.ψ). If the distance between ca and its assigned slot sa (ca.ψ) is smaller
than the minimum distance between ca and the boundary of the CMP cell Cell(ca)
which encloses ca (i.e., d(ca, ca.ψ) ≤ dmin(ca, Cell(ca))), then ca cannot be re-
assigned to any sf outside Cell(ca). For example, consider three assigned pairs (c0, s0),
(c1, s1), (c2, s2), and a newly available slot sf , as shown in Figure 5. Since d(c0, s0) ≤
dmin(c0, Cell(c0)) and sf /∈ Cell(c0), we know that c0 cannot be re-assigned to sf .

We can extend this argument for arbitrary cars as follows. For each ca ∈ Ca, we
define level(ca) to be the minimum number of CPM levels around Cell(ca) such that ca

cannot be re-assigned to sf , for any sf further than these levels. This can be computed
by comparing d(ca, ca.ψ) to dmin(ca, L) where L is the boundary (MBR) of successive
cell layers around ca. For example, in Figure 5, level(c0) = 0, level(c1) = 1, and
level(c2) = 2.

The idea behind our second optimization is to partition the cars ca in each cell,
based on their level(ca). For example, in Figure 5, c0 belongs to the level-0 partition of
Cell(c0), c1 belongs to the level-1 partition of Cell(c1), and c2 belongs to the level-2
partition of Cell(c2). Then, for each sf , when we examine a cell C during NN search,
we only check all ca ∈ C, for which level(ca) ≥ sf .cpmlevel, where sf .cpmlevel is

Continuous Monitoring of Exclusive Closest Pairs 13

Level 0Level 1

Level 2

Level 0

Level 1

else

If

else …

slot car

s
f

s
0

c
0

s
2

c
2

s
1

c
1

Fig. 5. Partitioning of objects to levels

the current search level around sf . The further C is from sf the more partitions inside it
will be pruned. For example, in Figure 5, while searching for a better assignment con-
taining sf , when visiting Cell(c0), we don’t have to check its level-0 partition (which
contains c1). Similarly, when visiting Cell(c2), we can prune its level-0 and level-1 par-
titions (but not the level-2 partition which contains c2; therefore c2 has to be examined).

5 Experimental Evaluation

In this section we experimentally evaluate the efficiency of our proposed ECP algo-
rithms using synthetic data. First, we compare the SECP algorithm proposed in Section
3 with two alternative approaches to the same problem. Second, we validate CECP;
the algorithm for continuous monitoring of ECP pairs proposed in Section 4. The algo-
rithms were implemented in C++ and all experiments were performed on a Pentium IV
1.8GHz machine with 512MB memory, running Windows XP.

5.1 ECP Computation

To our knowledge, this is the first paper studying ECP computation, so there are no
previous approaches to compare SECP with. Clearly, computing the distances between
all pairs of points and running the stable-marriage algorithm (SMA) would be very
inefficient. Alternatively, we compare SECP with two alternative methods, which (like
SECP) avoid computing all distances:

– pINN ECP search. This method is similar to our SECP. The difference is that at
each step it (incrementally) fills a list with the next p nearest neighbors in B for
each unassigned A-point, where p is an input parameter of the algorithm. Given
the pNN lists of all such A-points to their p-th neighbors, let ε be the smallest of
these distances. We can use this distance as a bound and run Lines 10-12 of SECP

14 L.H. U, N. Mamoulis, and M.L. Yiu

to finalize ECP pairs for some of the A-points. For this purpose, we directly use
the pNN lists, instead of re-computing the nearest points by running ε-INNECP. At
each step, after all A-points have been processed, some of them will have found
their ECP pair. For the remaining ones, we continue the INN search until their NN
set contains exactly p neighbors. For these points we repeat the whole process at
the next step.

– 1INN ECP search. In the initial state of the 1INN ECP algorithm, for each unas-
signed query a we maintain a CPM heap H for it and use it to find the nearest CPM
element of a (this could be a rectangle, a cell, or an object). The nearest elements of
all unassigned a ∈ A are stored in a candidate queue (CQ) which is a priority queue
organizing them in ascending order of the distance. At each step of the algorithm,
we pop the top element from CQ. If this is a rectangle or a cell, we proceed to find
the next nearest CPM element of the corresponding query object and push it into
CQ. If the popped element from CQ is an unassigned object, it must be the ECP
result of the corresponding query (by definition). If it is an assigned one, we ignore
it and get the next nearest neighbor of the query object, which is pushed back to
CQ. This process is continued until all ECP results are computed.

We evaluate the performance of the static ECP algorithms with synthetic datasets
(to study their scalability with respect to various parameters and due to lack of real
data for ECP problems). In each dataset, the coordinates of points are random values
uniformly generated in a [0, 10000]× [0, 10000] space. By default, the total number of
queries and objects is 100K and there are as many objects as queries (i.e., |A| = |B|
and |A| + |B| =100K). By default the CPM grid used was 128×128 and the value
of p used by the pINN ECP search algorithm is 8 (we found out by experimentation
that this method performs best for p = 8). The k parameter of the ECP join is set to
k = min{|A|, |B|} (i.e., we seek for the maximum possible assignment).

Figure 6 shows the performances of the three static ECP algorithms for CPM grid
sizes |G| × |G| ranging from 32 × 32 to 256 × 256. Although the grid sizes with the
best CPU time performance are between 64 × 64 and 96 × 96, |G| = 128 presents a
good trade-off between the CPU time and the memory usage by all three algorithms.
Furthermore, as we will show later, the 128 × 128 grid outperforms other sizes when
larger amounts of data are searched. Note that our SECP algorithm outperforms the
other two methods, while having only slightly higher memory requirements than 1INN
ECP. The reason behind the good performance of SECP is that (i) unlike pINN ECP,
it searches only up to the necessary nearest neighbors for each query and (ii) it avoids
using and updating the huge CQ heap of 1INN ECP.

Figure 7 compares the three algorithms for various grid sizes and database sizes
|O| = |A| + |B|. The results are consistent with the previous experiment. SECP per-
forms the best in terms of CPU while the costs of pINN and 1INN are more sensitive
to the database size. Note that when the number of objects increases finer grids become
more efficient; this is expected since the space becomes denser and using a finer parti-
tioning pays off. Note that more memory is required for smaller grid sizes, since more
individual objects (instead of cells and rectangles) enter the search heaps of the queries.
Again, SECP has slightly higher memory requirements than 1INN. Finally, Figure 8
shows the performance as a function of different data size ratios (|A|/|B|) and database

Continuous Monitoring of Exclusive Closest Pairs 15

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 50 100 150 200 250 300

C
P

U
 ti

m
e

(s
)

|G|

CPU time (s) versus |G|

pINN ECP
1INN ECP

SECP

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50 100 150 200 250 300

P
ea

k
m

em
or

y
(M

B
yt

es
)

|G|

Peak memory (MBytes) versus |G|

pINN ECP
1INN ECP

SECP

(a) CPU time (b) Peak memory

Fig. 6. Effect of |G|

 64
 96

 128
 40

 80
 120

 160
 200

 2
 4
 6
 8

s

CPU Time (s) versus |G| versus |O|

pINN ECP
1INN ECP

SECP

|G|
|O|

s

 64
 96

 128
 40

 80
 120

 160
 200

 40
 80

 120
 160

MBytes

CPU Time (s) versus |G| versus |O|

pINN ECP
1INN ECP

SECP

|G|
|O|

MBytes

(a) CPU time (b) Peak memory

Fig. 7. Combined effect of |G| and |O|

 100
 200

 300
 0.2

 0.4
 0.6

 0.8
 1

 3
 6
 9

 12
 15

s

CPU Time (s) versus |O| versus Ratio

pINN ECP
1INN ECP

SECP

|O|
Ratio

s

 100
 200

 300
 0.2

 0.4
 0.6

 0.8
 1

 50

 100

 150
MBytes

Memory Usage (MBytes) versus |O| versus Ratio

pINN ECP
1INN ECP

SECP

|O|
Ratio

MBytes

(a) CPU time (b) Peak memory

Fig. 8. Combined effect of |O| and |A|/|B| ratio

sizes (|O| = |A| + |B|). SECP has the best performance and its relative difference
to other methods increases with the database size and |A|/|B| ratio. We do not need
to consider ratios larger than 1, since the ECP computation is symmetric (the smallest
dataset is taken as the query dataset A).

16 L.H. U, N. Mamoulis, and M.L. Yiu

5.2 Maintenance of ECP Results

We developed a data generator that simulates a real-life car-parking assignment prob-
lem and monitoring problem, based on the specifications of Section 4. The generator
starts with a set of parking slots and a set of cars which are uniformly distributed in a
[0, 10000]× [0, 10000] space. A parking-request probability Preq , an unparking proba-
bility Punpark , and a velocity V are assigned to each car. Initially, all cars are moving
to a random direction and they request for parking with probability Preq at each times-
tamp. If a car c issues a parking request to the system (Er) it moves to the parking
request state and the system attempts to assign a slot to it. Once a slot s is assigned to
c, c moves towards s according to its velocity and when it reaches s it parks, issuing a
Ep event. After c has parked, at each subsequent timestamp it has Punpark probability
to issue a Em event. A car that unparks sets its slot free and starts moving to a direction
90 degrees different than its direction when moving towards its parking slot. At each
timestamp, the system processes all incoming events according to Section 4.

Table 4 shows the parameters of the generator, their range of values and their default
value in bold font. In each experiment, only one parameter varies while the others are
fixed to their default values. We measured the average CPU cost and memory require-
ments of the CECP algorithm for each timestamp, after letting the system to run for
1000 timestamps.

In the first experiment, we verify the effectiveness of the optimizations of
Sections 4.1 and 4.2 in CECP. These optimizations aim at reducing the re-assignment
cost for cars in Ca using Sf (i.e., Lines 1–7 of Algorithm 3). Figure 9 shows the re-
assignment cost of CECP without, with one (CECP+O1 or CECP+O2), and with both
(CECP+O1+O2) optimizations, for different time instants with different sizes of Ca and
Sf . Optimization 2 (Section 4.2) incurs larger improvement compared to optimization
1 (Section 4.1) since it avoids additional accesses. The combination of both methods
result in the best performance for CECP at all settings. In the remaining experiments
we use both optimizations in the first phase of CECP.

Figure 10a shows the average performance per timestamp of both CECP phases for
different values of Preq . The first phase (i.e., the handling of Sf and Ca) uses both
optimizations of Sections 4.1 and 4.2. The second phase (Line 8 of Algorithm 3) is per-
formed by the SECP algorithm. For small values of Preq the distances between assigned
cars and their slots tend to be large, a fact that increases the cost of CECP’s first phase
(as many re-assignments are performed). Larger Preq reduces the cost of the first phase
due to the decrease of the average distance between assigned pairs. On the other hand,

Table 4. Stream generation parameters

Parameter Values
Number of cars, |C| 600K
Number of slots, |S| 150K

Parking request probability, Preq% 0.5%, 1%, 2%, 4%, 8%
Unparking probability, Punpark% 0.5%, 1%, 2%, 4%, 8%

Average velocity of cars, V 1.67, 3.33, 5.27, 6.67, 13.33

Continuous Monitoring of Exclusive Closest Pairs 17

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80

C
P

U
 ti

m
e

(s
)

|C_a| (K)

CPU time (s) versus |C_a| (K)

CECP
CECP+O1
CECP+O2

CECP+O1+O2

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
)

|S_f| (K)

CPU time (s) versus |S_f| (K)

CECP
CECP+O1
CECP+O2

CECP+O1+O2

(a) CPU time (sec.), |Sf | = 10K (b) CPU time (|Ca| = 40K)

Fig. 9. Effect of |C| and |Sf |

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 10

C
P

U
 ti

m
e

(s
)

Requesting Rate (%)

CPU time (s) versus Requesting Rate

phase 2
phase 1

 0

 20

 40

 60

 80

 100

 120

 140

 1 10

P
ea

k
m

em
or

y
(M

B
yt

es
)

Requesting Rate (%)

Peak memory (MBytes) versus Requesting Rate

phase 2
phase 1

(a) CPU time (b) Peak memory

Fig. 10. Effect of requesting rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 10

C
P

U
 ti

m
e

(s
)

Unparking Rate (%)

CPU time (s) versus Unparking Rate

phase 2
phase 1

 0

 20

 40

 60

 80

 100

 120

 140

 1 10

P
ea

k
m

em
or

y
(M

B
yt

es
)

Unparking Rate (%)

Peak memory (MBytes) versus Unparking Rate

phase 2
phase 1

(a) CPU time (b) Peak memory

Fig. 11. Effect of leaving rate

as Preq increases |Cr| becomes larger and the second phase of CECP becomes more
expensive. Figure 10a shows that the memory requirements of both phases of CECP are
slightly affected by Preq , with the same trend as the CPU time difference.

18 L.H. U, N. Mamoulis, and M.L. Yiu

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14

C
P

U
 ti

m
e

(s
)

Velocity

CPU time (s) versus Velocity

phase 2
phase 1

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14

P
ea

k
m

em
or

y
(M

B
yt

es
)

Velocity

Peak memory (MBytes) versus Requesting Rate

phase 2
phase 1

(a) CPU time (b) Peak memory

Fig. 12. Effect of different velocities

Figure 11 shows the effect of Punpark on the performance of the algorithm, after
fixing Preq and V to their default values. There is a slight increase on the CPU time
and memory requirements for both phases as Punpark increases (due to the increase of
|Sf |. Finally, Figure 12 shows that our problem is not sensitive to the objects velocity
(Preq and Punpark are fixed to their default values).

6 Conclusion

In this paper we identified the exclusive closest pairs (ECP) problem, which is a spatial
assignment problem. A motivating application of it is the matching of cars and parking
slots. We proposed an efficient main-memory algorithm for solving the static version of
the problem. In addition, we defined the problem of continuous monitoring ECP pairs in
a dynamic environment where assignment requests and de-assignment notifications ar-
rive from a stream. We presented a thorough experimental evaluation that demonstrates
the efficiency of the proposed solutions on synthetically generated data that simulate
a real-life dynamic car/parking assignment problem. In the future, we will consider
other types of one-to-one assignments (e.g., finding and maintaining an assignment that
minimizes an aggregate distance).

References

1. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, Inc, London (1973)
2. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In:

SIGMOD Conference, pp. 237–246 (1993)
3. Cardinal, J., Eppstein, D.: Lazy algorithms for dynamic closest pair with arbitrary distance

measures. In: Algorithm Engineering and Experiments Workshop (ALENEX) (2004)
4. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair queries in

spatial databases. In: SIGMOD Conference, pp. 189–200 (2000)
5. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest pairs.

ACM Journal of Experimental Algorithms 5(1) (2000)

Continuous Monitoring of Exclusive Closest Pairs 19

6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer. Math. 69,
9–14 (1962)

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem, Structure and Algorithms. MIT
Press, Cambridge (1989)

8. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD
(1984)

9. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In:
SIGMOD Conference, pp. 237–248 (1998)

10. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database
Syst. 24(2), 265–318 (1999)

11. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries
over moving objects. In: SIGMOD Conference (2005)

12. Iwerks, G.S., Samet, H., Smith, K.P.: Maintenance of k-nn and spatial join queries on con-
tinuously moving points. ACM Trans. Database Syst. 31(2), 485–536 (2006)

13. Koudas, N., Ooi, B.C., Tan, K.-L., Zhang, R.: Approximate nn queries on streams with guar-
anteed error/performance bounds. In: VLDB, pp. 804–815 (2004)

14. Koudas, N., Sevcik, K.C.: High dimensional similarity joins: Algorithms and performance
evaluation. In: ICDE (1998)

15. Lee, M.-L., Hsu, W., Jensen, C.S., Cui, B., Teo, K.L.: Supporting frequent updates in r-trees:
A bottom-up approach. In: VLDB, pp. 608–619 (2003)

16. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous
queries in spatio-temporal databases. In: SIGMOD Conference, pp. 623–634 (2004)

17. Mokbel, M.F., Xiong, X., Hammad, M.A., Aref, W.G.: Continuous query processing of
spatio-temporal data streams in place. In: STDBM, pp. 57–64 (2004)

18. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An efficient
method for continuous nearest neighbor monitoring. In: SIGMOD Conference, pp. 634–645
(2005)

19. Nering, E.D., Tucker, A.W.: Linear Programs & Related Problems: A Volume in the Com-
puter Science and Scientific Computing Series. Academic Press, Inc. London (1992)

20. Xiong, X., Aref, W.G.: R-trees with update memos. In: ICDE (2006)
21. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest

neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)
22. Yang, C., Lin, K.-I.: An index structure for improving nearest closest pairs and related join

queries in spatial databases. In: IDEAS, pp. 140–149 (2002)
23. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects.

In: ICDE, pp. 631–642 (2005)
24. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial

databases. In: SSDBM, pp. 297–306 (2004)

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 20 – 37, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Continuous Evaluation of Fastest Path Queries on Road
Networks

Chia-Chen Lee1, Yi-Hung Wu2, and Arbee L.P. Chen3,∗

1 Department of Computer Science, National Tsing Hua University, Taiwan, R.O.C.
pasha1105@gmail.com

2 Department of Information & Computer Engineering, Chung Yuan Christian University,
Taiwan, R.O.C.

yhwu@ice.cycu.edu.tw
3 Department of Computer Science, National Chengchi University, Taiwan, R.O.C.

alpchen@cs.nccu.edu.tw

Abstract. The one-shot shortest path query has been studied for decades.
However, in the applications on road networks, users are actually interested in
the path with the minimum travel time (the fastest path), which varies as time
goes. This motivates us to study the continuous evaluation of fastest path
queries in order to capture the dynamics of road networks. Repeatedly
evaluating a large number of fastest path queries at every moment is infeasible
due to its computationally expensive cost. We propose a novel approach that
employs the concept of the affecting area and the tolerance parameter to avoid
the reevaluation while the travel time of the current answer is close enough to
that of the fastest path. Furthermore, a grid-based index is designed to achieve
the efficient processing of multiple queries. Experiments on real datasets show
significant reduction on the total amount of reevaluation and therefore the cost
for reevaluating a query.

Keywords: Fastest Path, Road Network, Continuous Query Processing.

1 Introduction

When driving on the road, the driver often wants to know the best path from the
current position to the target place. Most of the existing navigation systems find the
path with the shortest distance in response to the query. However, the traffic
conditions often vary as time goes and the user actually wants to know the path with
the minimum travel time even if it may not have the shortest distance. Such need
incurs a demand for the fastest path query on road networks.

The advances in GPS and sensor networks enable us to get an object’s position and
the traffic conditions, and to perform the fastest path query in real time. We represent
the road network as an undirected and weighted graph, called the travel time network,
as described in [11]. In this graph, edges represent road segments, vertices denote the
intersections and end points of the road segments, and the weight attached to each

∗ Corresponding author.

 Continuous Evaluation of Fastest Path Queries on Road Networks 21

edge stands for the travel time for the associated road segment. The fastest path query
posted on the travel time network contains an origin point and a destination point in
an arbitrary location of an edge. The query answer should be the path between the two
points with the minimal total weight of the edges in the path in the entire graph.
Evaluating a one-shot fastest path query is equivalent to evaluating the single source
shortest path problem addressed in [2], and can be solved by the conventional
algorithms such as Dijkstra’s algorithm [4] or A* search [13][14].

Given a large graph, the execution time of both the above methods can be huge.
Two kinds of approaches were developed for performance improvement. One relies
on the pre-computation of the shortest paths, and the other uses the skills of space
transformation. The former approaches [1][5][8][9][10] pre-compute and tabulate the
shortest paths between all pairs of vertices in the entire or a part of the graph. The
shortest path can then be found by a table lookup. The latter approaches [7][17][18]
transform the graph into another representation in which a shortest path between two
points can be found in constant time. However, both approaches described above are
not suitable for the graph we consider in this paper, where the weights (travel time)
may change as time goes. Under this setting, the fastest path initially computed may
become invalid at some instant. That is, whenever the travel time of a road segment
changes, the “pre-computation” approach has to re-compute the fastest paths in the
table previously built, and the “space transformation” approach needs to rerun the
encoding method for all nodes in order to fit the current network. Therefore, several
studies are made to investigate the processing of fastest path queries in a dynamic
environment.

Fu and Rilett [6] solve the dynamic and stochastic shortest path problem by
modeling the travel time of each road segment as a continuous stochastic process to
estimate the travel time and find the expected fastest path. Kanoulas et al. [12]
introduce the Time-Interval All Fastest Path (allFP) query. The speed pattern, which
specifies the predicted speeds in different time periods for each road segment, is
given. The fastest paths corresponding to different time periods can then be derived.
Both of these works adopt the predicted travel time to find the expected fastest path,
which may not be the true fastest path.

Frigioni et al. [5] take into account the changes on edge weights, and repeatedly
find the shortest paths between the origin and the destination. Its first search is the
same as A*, but the subsequent searches can be much faster because it reuses those
parts in the previous search tree that do not change. Unfortunately, it is inadequate to
preserve the information of all previous search trees while a large number of queries
are simultaneously running. Moreover, this method can be applied only when the
edge with a changed weight is close to the origin or the destination.

To our knowledge, there is no satisfactory solution to the problem of the
continuous fastest path query processing. An efficient method to continuously keep
track of the fastest paths for multiple queries on the travel time network is required.
An intuitive way to process the continuous fastest path query is to periodically re-
compute the fastest path. However, this approach will repeatedly rerun a query even
when its fastest path does not change. Moreover, the processing time of a fastest path
query increases with the number of nodes in the network. If a huge number of fastest
path queries are simultaneously executed in a large network, the computational cost
may become too much to afford. Therefore, in this paper we propose a novel

22 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

approach, named the ellipse bounding method (EBM), to eliminate the unnecessary
reevaluations of fastest path queries and to reduce the search space for finding the
fastest path.

Given the maximal speed V of a moving object and a fastest path query Q = (p1,
p2) and its current answer with travel time T, we can compute the maximal distance
D=V×T this moving object can travel from p1 to p2 within time T. We want to derive
an area for Q according to D such that any path containing a point that falls out of this
area cannot be a faster path than the current answer. As Figure 1(a) shows, for any
point p, d1 and d2 denote the Euclidean distances from p1 and p2 to p respectively.
The network distance of a path is defined as the total weight of the edges in this path.
The network distance from p1 to p2 through p must be larger than or equal to d1 plus
d2. This is because the Euclidean distance between two points is a lower bound of
their network distance. We have the following property that if a path contains a point
p such that d1 plus d2 is larger than D then it cannot be a faster path than the current
answer. Mathematically, the points with an equal sum of the distances to two fixed
points form the curve of an ellipse. We therefore define the region within this ellipse
as the affecting area (the gray area in Figure 1(b)) of the given query.

According to the affecting area, we can determine whether the current answer is
invalid. A query should be reevaluated only if the travel time of the current answer
increases or in its affecting area the travel time of an edge not in the current answer
decreases. Moreover, once we decide to re-compute the fastest path for a query, the
search space is also limited to the corresponding affecting area.

p1

p2

T = 10 mins

D = 10 km

p

d1

d2

p1

p2

T = 10 mins

D = 10 km

p

d1

d2

p1

p2

T = 10 mins

D = 10 km

d1

d2

p

Affecting area

p1

p2

T = 10 mins

D = 10 km

d1

d2

p

Affecting area

p1

p2

T = 10 mins

D = 10 km

d1

d2

p

Affecting area

(a) (b)

Fig. 1. Concept of the affecting area

To process more than one continuous fastest path query simultaneously, we design
a grid-based index structure to record all the affecting areas. While an edge’s weight
changes, we find all the queries whose affecting areas cover this edge to re-compute
the corresponding fastest paths. The affecting area changes when the object moves
toward its destination or the travel time of the current path varies. The maintenance of
the grid-based index by dynamically updating the affected areas will result in
considerable overheads. We design a mechanism to efficiently perform the updates
with the accuracy of the query answers guaranteed.

 Continuous Evaluation of Fastest Path Queries on Road Networks 23

The rest of the paper is organized as follows. The definitions and storage of the
travel time network are described in Section 2. In Section 3, the main idea of EBM
and the methods for query processing are presented. Section 4 describes how to
maintain index in a dynamic environment. Section 5 experimentally evaluates the
proposed method. Finally, a summary of our work and some future works are
provided in Section 6.

2 Travel Time Network

In this section, the problem definition and the storage structure for the travel time
network are introduced.

2.1 Problem Definition

In this paper, a road network together with its current traffic is modeled as the travel
time network [11], which can be defined as follows.

Definition 1. Given a road network, the travel time network is a directed weighted
graph G = {V, E, W}, where the vertices in V are the end points or the intersections of
the road segments, each edge e, denoted by <ni, nj>, in E is the road segments with
start point ni and end point nj, and each weight in W is the travel time of the
corresponding road segment.

In the road network, we use a point p represented by <ni, nj, d> to indicate a location
in <ni, nj> where d is the travel time from ni to p.

Definition 2. A sub-edge of an edge e = <ni, nj> in the travel time network is denoted
by <ni, p> or <p, nj> where p is a point in e. The weight of a sub-edge <ni,p>

(<p,nj>) is equal to e

ji

i w
nn

pn
⋅ (e

ji

j
w

nn

pn
⋅) where bnan is the length of <na,nb> and

we is the weight of e.

In the following, we define a path, the path weight, and the fastest path, respectively.

Definition 3. A path P from p1 to p2 is formed by two sub-edges, and several con-
junctive edges. We denote P as {<p1,n1>, <n1,n2>,…, <nk-1,nk>, <nk,p2>}. The path
weight is the sum of the weights associated with the edges and sub-edges on P. More
than one path may exist from a specific point to another, and the one with the
minimum path weight is termed the fastest path.

The travel time of a road segment will vary as the traffic varies, and so does the
fastest path for a travel, the movement from the origin to the destination. However, if
the difference between the travel times of the new fastest path and the old one is
below a threshold, the new fastest path does not need to be computed. We propose the
concepts of the tolerance parameter and the continuous fastest path query in
Definitions 4 and 5 respectively.

Definition 4. A tolerance parameter is a user-defined time period, denoted by ΔT. If
the difference between the travel times of the new fastest path and the old one is lower

24 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

than ΔT, we say that the old fastest path is tolerable and there is no need to re-
compute the new fastest path; otherwise, we say that the old fastest path expires.

As a result, the problem we consider in this paper can be formulated as follows.

Definition 5. According to a tolerance parameter, the continuous fastest path query
processing keeps monitoring and returning the new fastest path for the user when
needed to reach the destination.

2.2 Basic Storage

There are two basic storage components, the adjacency list and the edge table. The
adjacency list preserves the connectivity among vertices. Each vertex in the graph is
stored as a node in the adjacency list and associated with three pieces of information,
including the vertex’s identifier, its coordinates, and a pointer to a list of all the
adjacent vertices. Referring to the gray table in Figure 2(b), each node u corresponds
to a vertex in Figure 2(a). In addition to the identifier and the coordinates, u is also
followed by a list of pairs in the form of (v, w), indicating an adjacent vertex v and the
edge weight w of <u, v>. For example, the pair (2, 18) in the linked list of the first
node n1 represents an edge from n1 to n2 with weight 18.

n1
n2 n3 n4

n5

n9

n7

n10

n8

n11

(-46.6521,62.2545)

(-46.6514,62.2560)(-46.6518,62.2552)

(-46.6515,62.2560)

n6

 11

4

3

2

1

(x11,y11)

(x4,y4)

(x3,y3)

(x2,y2)

(x1,y1)

11

4

3

2

1

(x11,y11)

(x4,y4)

(x3,y3)

(x2,y2)

(x1,y1) 182 182 205 205

181 181 253 253 126 126

252 252 404 404 167 167

403 403 308 308

228 228 6010 6010

nid Id1 w1 Id2 w2position

 (a) (b)

(-46.6516,62.2560)

Right_upper

(-46.6518,62.2552)

End Point 1

(-46.6515,62.2560)(-46.6521,62.2545)n1,n2

End Point 2Left_lowerEdge

(-46.6516,62.2560)

Right_upper

(-46.6518,62.2552)

End Point 1

(-46.6515,62.2560)(-46.6521,62.2545)n1,n2

End Point 2Left_lowerEdge

 (c)

Fig. 2. (a) a road network (b) the adjacency list (c) the edge table

In order to retrieve the spatial information of edges, the minimum bounding
rectangle (MBR) is adopted to build the edge table. Since the MBRs of <ni,nj> and
<nj,ni> are identical, we therefore only store one copy of them by keeping the indices
in the order of ni, nj where i<j. For instance, the rectangle in dotted lines in Figure 2(a)
is the MBR of edge <n1,n2> and <n2,n1>. For each edge, in addition to the coordinates
of end points, two more pieces of information, i.e., the left-bottom and right-top
coordinates of the corresponding MBR, are stored. Figure 2(c) shows the coordinates
of <n1, n2> and <n2,n1>.

 Continuous Evaluation of Fastest Path Queries on Road Networks 25

3 Ellipse Bounding Method

Time is conceptually divided into discrete slots in our work. In this way, edge weights
and query answers are updated only at the beginning of each time slot. Some
notations we will use in the rest of this paper are summarized in Table 1.

In this section, we first illustrate the concept of the affecting area, which is used to
reduce unnecessary re-computations and to prune the search space while the queries
are reevaluated. The property is then applied to the method for continuous query
processing.

Table 1. Summary of notations

Notation Description
tj The jth time slot
Pi,j The path returned to the ith query at the beginning of tj
Pi,j* The fastest path of the ith query at the beginning of tj
Tj(Pi,j-1) The travel time of Pi,j-1 at the beginning of tj

Ti,j* The travel time of Pi,j*

△Ti The tolerance parameter of the ith query
dN(p1,p2) The network distance between p1 and p2
dE(p1,p2) The Euclidean distance between p1 and p2

3.1 Affecting Area

The affecting area is mainly developed from the ellipse bounding property as
described below.

Property 1. Given two points p1 and p2, a path P between them with travel time T, and the
highest speed of the object movement V, any path faster than P must entirely fall within an
ellipse E, in which the foci are p1 and p2 and the length of the major axis is T×V.

Proof: Assume that a path P’ is faster than P and does not entirely fall in E. Let q
be a point on P’ but not in E. By definition, dN(p1,p2) via P’ = dN(p1,q)+dN(q,p2) ≥
dE(p1,q)+dE(q,p2). Moreover, the maximum length of P can be computed as T×V,
which equals the length of the major axis, i.e., dE(p1,x)+dE(x,p2), for any x on E.
Since q is located outside E, dE(p1,q)+dE(q,p2) > dE(p1,x)+dE(x,p2) = T×V. There-
fore, dN(p1,p2) via P’ > T×V and the minimum travel time of P’ > (T×V)/V = T, which
contradicts the assumption. ■

Example 1. In Figure 3, P is a path between p1 and p2 with travel time 5 minutes. The
highest speed V is 2 km/min. E is the ellipse in which the foci are p1 and p2 and the
length of the major axis is 10km. P’ is a path that is not entirely covered by E. We
know that the length of P’ is larger than d1+d2, and d1+d2 is larger than 10km.
Therefore, even if a user move from p1 to p2 along P’ at the highest speed 2 km/min,
the travel time will be larger than 5 minutes. It means that any path not entirely in E
cannot be faster than P.

26 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

P

T=5 min V=2 km/min T×V=5 km

P’

p1

p2

q

d1

d2

E

Fig. 3. Illustration of the ellipse bounding property

P

Tj(Pi,j-1)=5 min

ΔTi=1 min

V=2 km/min

Tj(Pi,j-1)-ΔTi =4 min

(Tj(Pi,j-1)-ΔTi)V=8 km

p1

p2
E’

b

c d

e

e

f

g

E

ah

Fig. 4. The affecting area defined by the tolerance parameter

For simplicity, we use E(p1,p2,D) to represent an ellipse with foci are p1 and p2, and
the length of its major axis is D. For each query, we only care if the current answer P
is tolerable, i.e., its travel time T is lower than or equal to the travel time of the fastest
path T* plus the tolerance parameter ΔT. In other words, P is tolerable if T-T*≦ΔT,
i.e. T* ≥ T-ΔT. According to Property 1, any path with travel time lower than T-ΔT
must entirely fall within the ellipse E(o,d,(T-ΔT)×V), where o and d denote the origin
and destination of the query respectively and V is the highest speed. We define the
affecting area of each query qi at tj as the ellipse E(oi,j,di,(Tj(Pi,j-1)-ΔTi)×V), where oi,j
and di are the origin of qi at tj and its destination, respectively. If there is an edge with
its weight decreased, we have to check whether there is a path passing this edge and
its travel time less than Tj(Pi,j-1)-ΔTi. Since this path must entirely fall within the
affecting area of the query, the check should be done only if the edge with weight
decreased is entirely covered in the affecting area.

Example 2. Figure 4 shows how the ellipse bounding property still works even when
the tolerance parameter is used. Assume that the travel time Tj(Pi,j-1)of the current
answer Pi,j-1 is 5 minutes and the tolerance parameter ΔTi is 1 minute. If the travel
time of the fastest path is more than 4 minutes, P is tolerable and we do not have to
search the fastest path for the user. That is, we find and return the fastest path only

 Continuous Evaluation of Fastest Path Queries on Road Networks 27

when its travel time is less than 4 minutes. With the tolerance parameter, we derive
the affecting area E’ as described above and thus the length of its major axis is 8 km.
By property 1, only if the weight of an edge in the set {<e,b>, <f,c>, <b,c>, <c,d>,
<d,e>, <e,g)>} decreases, P may expire and the query needs to be reevaluated.

Notice that E is the ellipse in which the length of its major axis is Tj(Pj,j-1)×V and
<a,h> is covered by E. If the weight of <a,h> decreases, any path passing <a,h> will
be faster. However, by property 1, its travel time will never be lower than Tj(Pi,j-1)-
ΔTi. Therefore, in this case Pi,j-1 is always tolerable and the query needs not be
reevaluated. In this way, unnecessary computation is avoided while the quality of the
returned answers, specified by the tolerance parameter, is guaranteed.

3.2 Query Processing

In this subsection, we first focus on single query processing and then describe how to
process multiple queries. In the case of single query processing, only query i exists in
the system. Initially, the fastest path from the given origin to the destination is
computed by the Dijkstra’s algorithm. At the beginning of each subsequent time slot
k, two tasks, update and check, are performed. The first task is to update the current
origin of the query, the travel time network, and the affecting area. We have to update
the affecting area since both the origin and the travel time network, according to
which the affecting area is computed, vary. The second task examines the query
answer to decide whether any edges with weights updated have impact on its
accuracy, i.e., it is tolerable or expires. If the query answer is tolerable, it is not
necessary to reevaluate the query and thus the considerable cost can be saved. The
two conditions for making this decision are described below.

Suppose that the query answer at the beginning of tj-1 is Pi,j-1 and some edge
weights are updated in tj-1. We compute the travel time Tj(Pi,j-1) at the beginning of tj
according to the current origin and the travel time network. To see whether the answer
Pi,j-1 is still tolerable, i.e., Ti,j* ≧ Tj(Pi,j-1) - ΔTi, a natural but costly way is to directly
reevaluate the query for getting Ti,j

*. For efficiency, before the query reevaluation, we
apply two necessary conditions that must be satisfied for the above inequality to fail.
For clarity, we denote the set of edges entirely falling in the affecting area of query i
at the beginning of tj as Eij.

1. Any edge weight on Pi,j-1 increases: Since the increased weight makes the travel
time higher than what we expected previously, the query must be reevaluated no
matter whether any other edge is updated.

2. At least one edge e in Eij but not on Pi,j-1 has its weight decreased: Since there
exist some paths other than Pi,j-1 in the affecting area with decreased travel time,
the answer Pi,j-1 may expire and the query reevaluation is needed.

The above conditions come from the property that the query answer Pi,j-1 expires
only if the weight of an edge on it increases or the weight of an edge in Eij but not on
Pi,j-1 decreases. If neither of them holds, by property 1 the answer Pi,j-1 is tolerable at tj
and therefore it is not necessary to reevaluate the query. We perform the two tasks for
every time slot until the destination is reached.

While there are more than one query posed in the system, the initial answers are
computed similarly as soon as the queries are posed and the update task for each

28 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

query is performed at the beginning of every time slot. If any edge has its weight
updated, the conditions described above are checked to identify which queries must
be reevaluated. The query that satisfies the first condition, implying that the travel
time of its current answer increases, is called an increased query. The query that
satisfies the second condition, implying that its affecting area entirely contains an
edge with a decreased weight, is called an affected query. Both kinds of queries are
then put into a Pool of Queries to be Reevaluated (abbreviated as PQR). Finally, each
query in this pool is reevaluated.

4 Grid-Based Index for Efficient Query Reevaluation

In every time slot, EBM consists of two main tasks, update and check, as the two
dotted rectangles shown in Figure 5. For the first task, in addition to the update of the
travel time network and the origins of queries, the MBRs of queries are also either

Compute the fastest paths & affecting areas for newly posed queries

Start

Reevaluate the queries in PQR

Wait until the beginning of
the next time slot

Update

Update the Travel Time Network

Update current origins

For the next query, is current MBR invalid?

Update the MBR Shrink the MBR

Are all queries examined?

Yes

Yes No

No

Check

Retrieve the set of the queries related to each changed edge

Select the increased queries from Qie for each increased edge ie

Select the affected queries from Qde for each decreased edge de

Fig. 5. The flow chart of EBM

 Continuous Evaluation of Fastest Path Queries on Road Networks 29

updated or shrunk. For the second task, each updated edge is used to select either kind
of queries for reevaluation. In this section, for convenience of presentation, we first
introduce the construction of our grid index and then show how it is used in the
second task. After that, we present the manipulation of the MBRs for queries in the
first task.

To select the queries for PQR, the edges with their weights updated are related to
the queries by checking their spatial relationships with the current answers (for
increased queries) and the affecting areas (for affected queries). Finding the queries
related to an edge based on their spatial relationships is called a spatial join. There are
two kinds of spatial joins, corresponding to the two kinds of queries in PQR,
respectively. One returns the queries whose current answers contain the given edge
(for increased queries), while the other returns the queries whose affecting areas
entirely contain the given edge (for affected queries). Since the spatial joins are time-
consuming, an efficient method to perform them is required. We design a grid-based
indexing method for this purpose and introduce it in the following.

4.1 Index Construction and Utilization

Conceptually, we decompose the entire 2D-space of the travel time network into
fixed-sized cells, each with width α and height β. The affecting area of each query is
represented by the MBR (minimum bounding rectangle) that exactly covers the
corresponding ellipse. Specifically, the query identifier is stored in each of the cells
covered by or intersects with the MBR corresponding to its affecting area. To find
such cells for a query, we adopt formulae derived from a geometric property to
compute the bottom-left and top-right coordinates of the MBR for the corresponding
ellipse. The related definitions and the geometric property are given in the following.

Definition 6. Given two points p1 and p2 on the 2D-space, we define their minimum
distance constrained by a straight line L, denoted as MD(p1,p2,L), as the minimum of
the sum of Euclidean distances from p1 to a point q on L and from q to p2, i.e.,
min{dE(p1,q)+dE(p2,q)} for any q on L. In our work, the straight line L can only be
either vertical (x=a) or horizontal (y=a).

Property 2. Let p1 and p2 be two points with coordinates (x1,y1) and (x2,y2). We have:
(a) () () 22

21 2 −+ +−== YaXax,p,pMD

(b) () 22
21 2)aY(Xay,p,pMD −+== +−

where X+=x1+x2, X-=|x1-x2|, Y+=y1+y2, and Y-=|y1-y2|.

Proof: (a) Consider the points p1(x1,y1), p2(x2,y2) and the vertical line L in
Figure 6. By the plane geometry, we have the mirror point p1’(2a-x1,y1) of p1 across
L. Moreover, for any point q on L triangles △p1qn and △p1’qn are congruent
and dE(p1,q) equals dE(p1’,q). Thus, dE(p1,q)+dE(p2,q) can be replaced by
dE(p1’,q)+dE(p2,q). Let m be the intersection of L and the line segment 2p'

1p .

By the triangular inequality, we have dE(p1’,m) + dE(m,p2) = dE(p1’,p2) ≤ dE(p1’,q)

+ dE(p2,q) for any point q on S4. () () ()() () =−+−−== 2
12

2
122121 2,',, yyxaxppdLppMD E

() 222 −+ +− YaX ,where X+ = x1+x2 and Y-=|y1-y2|. Similarly, (b) can also be proved
by replacing L with a horizontal line. ■

30 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

p1(x1,y1)

p2(x2,y2)

p1’(2a-x1,y1)

m

L: x=a

q

Fig. 6. The MD function

Definition 7. For an ellipse E(o,d,D) where D is the length of its major axis, the
vertical line tangent to the left (right) of E is denoted as Sleft (Sright). Similarly, the
horizontal line tangent to the top (bottom) of E is denoted as Stop (Sbottom). By property
2, we can compute MD(o,d,Sleft), MD(o,d,Sright), MD(o,d,Stop), and MD(o,d,Sbottom),
which are abbreviated as MDleft, MDright, MDtop, and MDbottom, respectively.

Property 3. Given an ellipse E(o,d,D) whose foci are (xo , yo) and (xd , yd), the
bottom-left and top-right coordinates of the corresponding MBR are:

() ()()2,2 2222
−+−+ −−−− XDYYDX , () ()()2,2 2222

−+−+ −+−+ XDYYDX

where X+=xo+xd, X-=|xo-xd|, Y+=yo+yd, and Y-=|yo-yd|.

Proof: According to the plane geometry, the four sides of the corresponding MBR
are Sleft, Sright, Stop, and Sbottom as defined above. The two coordinates can be derived
from the property that each side of the MBR is tangent to E. Without loss of
generality, we use Sleft: x=a to show the derivation. Let m be the intersection of E
and Sleft. Since the other points on Sleft are all outside E, m is the only point getting
MD(o,d,Sleft). By property 2 and the definition of ellipse, MDleft= () D=+− −+

222 YaX ,

where X+=xo+xd and Y-=|yo-yd|. Since Sleft is on the left of E, 2a < X+. Solving this

equation will get a= 222
−+ −− YDX , which is the x-value of the bottom-left

coordinate of the MBR. Similarly, the other three values of the two coordinates can
also be derived from the remaining sides, respectively. ■

By using the above formulae, when a query is posed, all the cells covered by its MBR
are located and then the query identifier is stored into these cells. As a result, each cell
is associated with a set of query identifiers. An example grid recording q1 and q2 is
shown in Figure 7. When an edge is updated, we use the grid to select all the queries
relevant to this edge in two steps. At first, the MBR corresponding to this edge is
retrieved from the edge table and all the cells covered by it are collected. We then
compute the intersection of all the sets of query identifiers in these cells. If a query is
not in the intersection, neither its MBR nor its affecting area will entirely cover the
edge. Let the set of query identifiers in the intersection be noted as Q. The second step
further examines Q and proceeds in two cases, depending on how the edge is updated.

Case 1. If the edge weight is increased, the increased queries in Q are selected. For
each query in Q, the edges in its current answer are examined. A query is an increased
query and will be selected into PQR if its current answer contains the increased edge.

 Continuous Evaluation of Fastest Path Queries on Road Networks 31

Case 2. If the edge weight is decreased, the affected queries in Q are selected. Since
to select all queries whose affecting area entirely covers a given edge is costly, we
select a subset of the affected queries without destroying the guarantee of the answer
precision. Notice that, in this stage, the queries selected are fewer than all affected
queries, and this can save more unnecessary reevaluations. A rule is applied to prune
the queries that need not be reevaluated, as expressed by Property 4 bellow.

Property 4. Given an decreased edge e=<n1,n2> at the beginning of tk, we define SQe
as the set of queries in which every query q satisfies the following inequality:

min{dE(p1,n1)+lene+dE(n2,p2),dE(p1,n2)+lene+dE(n1,p2)} ≤ D,

where p1 and p2 are the origin and destination of q, D is the major axis length of q’s
affecting area, i.e. D=(Tk(Pqk-1)-△Tq)×V, and lene is the length (network distance) of
e. Moreover, let AQ be the set of all affected queries covering e. Then, the following
two conditions always hold:

1) SQe is a subset of AQ.
2) For each query not in SQe, no path from p1 to p2 containing e can have travel

time lower than or equal to Tk(Pqk-1)-△T.
Proof:
1) We prove this condition by showing that any query q not in AQ will not belong to
SQe. Let E(p1,p2,D) denote the affecting area of such q. Since E, the affecting area of q,
does not entirely cover e, at least one point in e must be outside E. We assume the point
nx on e is outside E and thus lene = dN(n1,nx)+dN(nx,n2) and dE(p1,nx)+dE(nx,p2) > D. The
left-hand side of the above inequality considers the following two sums of distances:

(a) dE(p1,n1)+lene+dE(n2,p2): According to the triangle inequality, we obtain that
dE(p1,n1)+dE(n1,nx) ≥ dE(p1,nx) and dE(nx,n2)+dE(n2,p2) ≥ dE(nx,p2). Therefore, we have
that dE(p1,n1)+dN(n1,nx)+dN(nx,n2)+dE(n2,p2) ≥ dE(p1,n1)+dE(n1,nx)+dE(nx,n2)+dE(n2,p2)
≥ dE(p1,nx)+dE(nx,p2) > D.

(b) dE(p1,n2)+lene+dE(n1,p2): Similarly, because dE(p1,n2)+dE(n2,nx) ≥ dE(p1,nx) and
dE(nx,n1)+dE(n1,p2) ≥ dE(nx,p2), we have that dE(p1,n2)+dN(n2,nx)+dN(nx,n1)+dE(n1,p2) ≥
dE(p1,n2)+dE(n2,nx)+dE(nx,n1)+dE(n1,p2) ≥ dE(p1,nx)+dE(nx,p2) > D.

From the above, we conclude that q is not be in SQ and thus SQ is a subset of AQ.
2) Let E(p1,p2,D) denote the affecting area of q, which is not in SQ. The network
distance of the path P containing e is equal to min{dN(p1,n1)+lene+dN(n2,p2),
dN(p1,n2)+lene+dN(n1,p2)}, which is larger than or equal to min{dE(p1,n1)+lene

+dE(n2,p2),dE(p1,n2)+lene+dE(n1,p2)}. Because q is not in SQ, the minimum length of
such P > D and thus the minimum travel time of such P > D/V=Tk(Pqk-1)-△Tq. ■

Suppose that q is a query not in any SQe where e is the edge with decreased weight.
By Property 4, we have that any path containing a decreased edge from the origin to
the destination of q will have travel time larger than or equal to Tk(Pqk-1) - △Tq.
Moreover, all the paths which contains no decreased edge for q also can not have
travel time smaller than Tk(Pqk-1)-△Tq.. That is the current answer of q is tolerable and
do not need to be reevaluated. Thus, we only select the queries in SQe for each
decreased edge e into PQR.

32 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

Consider the grid in Figure 7 as an example. If the edge <n4,n20> has its weight
decreased, we apply Case 2 to find the affected queries. Since this edge covers the
four cells (5,5), (5,6), (6,5), and (6,6), only q1 is left in the intersection after the first
step. In the second step, q1 is not selected as SQ<n4,n20> and is not put into the PQR
when examining <n4,n20> because the inequality in property 4 does not hold.

222222

222222

222221.21111

222221.21111

222221.21111

222221.21111

11111

11111

11111

222222

222222

222221.21111

222221.21111

222221.21111

222221.21111

11111

11111

11111

1
2

(58 , 53)(45, 40)(n4,n20)

Right_upperLeft_lowere_id

(58 , 53)(45, 40)(n4,n20)

Right_upperLeft_lowere_id

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11

o

d
n4

n20

Fig. 7. Grid-based index

4.2 Index Maintenance

In the dynamic environment, the origin of a query and the travel time of a path often
vary as time goes, and so do the affecting area of a query and its MBR. The grid index
will incur considerable costs due to the large amount of updates for these varying
MBRs, especially for the re-computations of current MBRs for all queries. Therefore,
we further design a method for efficient index update, in which the MBRs are not
continuously updated but the accuracy of query answers is guaranteed. Recall that
there is no need to reevaluate a query if its answer previously computed is tolerable.
Similarly, it is not necessary to update the MBR if the previously computed answer is
guaranteed to be tolerable at this moment.

For illustration, consider the two affecting areas in Figure 8, a1 and a2, for the same
query at two time slots t1 and t2, respectively. Suppose that at t1 the origin is o1 and the
destination is fixed at d. The corresponding MBR, which can be computed from
Property 3, is denoted as r1. After a while, at t2 the origin moves to o2 and the affecting
area becomes a2. If the query is reevaluated, the corresponding MBR will be updated as
r2. If we do not update the MBR, any path passing the region a2-r1 will not be
considered as the query answer even though it is indeed the fastest path inside a2. We
name the path (from o2 to d) passing the region a2-r1 the potentially missed path.

According to the tolerance parameter, whenever the origin of a query is updated,
our method quickly estimates a lower bound on the travel time of all the potentially
missed paths, denoted as LB. Then, the MBR is not updated if the lower bound is
higher than the travel time of the previously computed answer minus the tolerance
parameter, i.e., LB > Tt2(Pt1) − ΔT. The lower bound LB is derived as below. In
Figure 8, we find that a potentially missed path must visit a point under S3 and
therefore its length must exceed MD(o2,d,Sbottom). In fact, while the object movement
is unpredictable, the potentially missed paths can be located in any region outside the

 Continuous Evaluation of Fastest Path Queries on Road Networks 33

four sides of the MBR, including Sleft, Stop, and Sright. As a result, the length of a
potentially missed path must be larger than min{MD(o2,d,Sleft), MD(o2,d,Stop),
MD(o2,d,Sright), MD(o2,d,Sbottom)}, which is denoted as MDmin. It follows that the
travel time of a potentially missed path is lower bounded by MDmin/V, where V is the
highest speed of object movements. We set LB as MDmin/V for the reason that no
potentially missed path can make the answer expire if all the potentially missed paths
have travel times higher than Tt2(Pt1) − ΔT. Let MAXD denote V*(Tt2(Pt1) − ΔT), i.e.,
the maximal distance an object can move in Tt2(Pt1) − ΔT. Based on the current
affecting area, the criteria for deciding whether the MBR of a query should be
updated are stated in the following.

(40,30)

(90,80)

r1 Stop

SrightSleft

Sbottom
r2

a1
a2

d
o1

o2

o2=(66,38) d=(78,56)

Fig. 8. An update of the affecting area

Lemma 1. Let the bottom-left and the top-right coordinates of the MBR recorded in
the last time slot be (a1,b1) and (a2,b2). Given the current origin o2=(xo2, yo2) and the
destination d=(xd, yd), if the following four conditions are all met, we do not need to
update the MBR with the accuracy of the answer guaranteed.

2

XMAXDY
b1

2

YMAXDX
a1

2222
−+−+ −−

≤
−−

≤ (ii)(i)

2

XMAXDY
b2

2

YMAXDX
a2

2222
−+−+ −+

≥
−+

≥ (iv)(iii)

where X+=xo2+xd, X−=|xo2-xd|, Y+=yo2+yd, and Y−=|yo2-yd|.

Proof: As described, we do not update the MBR if LB = MDmin/V > Tt2(Pt1) − ΔT. It
implies that for every side S = Sleft, Stop, Sright, Sbottom, MD(o2,d,S) ≥ MDmin > V*
(Tt2(Pt1)−ΔT) = MAXD. Solving the inequality with one side will get one of the four
conditions. Without loss of generality, we use Sbottom: y=b1 to show the derivation.
From property 2(b), we have that MD(o2,d,Sbottom) = ()22 12YX b*−+ +−

 ≥ MAXD. In

this way, the condition (ii) can be obtained. Similarly, the other three conditions can
also be derived from a1, a2, and b2, respectively.

■

Example 2. According to the coordinates in Figure 8, we have X+=144, Y+=96, X-

=12, and Y-=18. If MAXD is currently equal to 35, we examine the criteria in Lemma
1 as follows and conclude that no update is needed:

34 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

 30 b1 30.56
2

123596
 40 a1 55.99

2

1835144
(

22

=≥=−−=≥=−− 22

(ii)i)

8064.44
2

123596
 9087

2

1835144

22

=≤=−+=≤=−+
22

22

b(iv)a(iii)

If it is decided not to update the affecting area and the corresponding MBR, we
further shrink it by removing the query identifier from the cells that have been outside
the current affecting area. For example, let the ellipse E in Figure 9 be the current
affecting area, where D is the length of its major axis and m is the mean of its origin o
and destination d. Since E is exactly contained by circle C with m as its center and
D/2 as the radius, the cells covered by E must also be covered by C. Obviously, the
cells that are outside C must also be outside E. Therefore, the cells marked in gray
must be outside the current affect area and the query identifier corresponding to E
stored in them can then be removed.

D/2

R1

m

o

d

E

Fig. 9. Update by shrinking the MBR

Finally, we summarize the procedure of EBM. The initial answer of a query is
computed as soon as it is posed. At the beginning of every time slot, update is first
performed, followed by the check and reevaluation of queries in PQR. Notice that in
the check stage, we apply Lemma 1 to decide whether to update the MBRs. For the
query whose MBR is not updated, we shrink its MBR by deleting the query id from
parts of its cells to further reduce the cost of index maintenance.

5 Experiment

5.1 Experiment Settings

The road network of Nova Scotia, Canada, extracted from the GML file in 2005 Road
Network File project [19], is used in our experiments. There are 77,084 edges and
58,379 vertices in the road network. The method based on the cellular automata [3] is
adopted to simulate the traffic flow on road segments at the beginning of each time
slot. Initially, five million objects are generated with velocities and positions in the
network randomly assigned. Subsequently, at the beginning of every time slot, each
object is assigned an event such as acceleration and deceleration by considering its
velocity and the number of objects in front of it. The travel time of each edge is
computed per minute. For each edge, its current travel time will be reported if the

 Continuous Evaluation of Fastest Path Queries on Road Networks 35

difference on the travel time of the current answer and last one is larger than 60
seconds. More details of the traffic simulation can be referenced in [3].

In our implementation, the width and the height of a cell in the grid are both set to 1
km and each time period is equal to two minutes. Remember that EBM aims on saving
unnecessary re-computations to accelerate the processing of fastest path queries. We
design experiments in which our EBM method is compared with a naïve method, which
re-computes the fastest path at the beginning of every time slot, by respectively
observing the number of re-computations for single query processing and the processing
time for multiple queries in a time slot. In addition, EBM restricts the search space
within the affecting area so that the number of nodes processed is reduced. Since a large
road network must be stored in the secondary storage, the number of nodes processed is
related to the number of disk I/O, which directly influences the processing time of a
fastest path query. Therefore, we also compare EBM with the Dijkstra’s algorithm on
the number of nodes processed for the one-shot query. All the experiments are
performed on Intel Pentium 4 CPU 2.8 GHz with 1GB RAM.

5.2 Experiment Results

In the first experiment, we generate queries with network distances that range from 12
km to 84 km in multiples of 12 km. For each network distance, one thousand queries
are generated. We generate different sets of queries according to the network distance
because the numbers of re-computations correspond to the naïve method of the
queries with the same network distance are similar. The averages on the numbers of
re-computations for two methods are shown in Figure 10. It can be seen that our
method saves 43% re-computations on average.

0

20

40

60

80

100

120

12000 24000 36000 48000 60000 72000 84000

network distance of queries

n
u
m
b
e
r
o
f
re
-c
o
m
p
u
ta
ti
o
n
s

EBM

naive

Fig. 10. Comparison on the numbers of re-computations for single query processing

Secondly, we consider the processing time needed for multiple queries in a time slot.
In this experiment, we generate query sets by considering the number of nodes to be
processed for evaluating a query by the Dijkstra’s algorithm (NumOfNodes), and aims
on equalizing the processing time of the queries in the same query set. Five sets of one
thousand queries, the NumOfNodes ranges from 2,000 to 10,000 in multiples of 2,000,
are generated. As Figure 11 shows, our method outperforms the naïve method since
unnecessary re-computations are avoided and the search space is reduced in EBM. As it
can be seen from Figure 11, EBM saves 34% processing time on average.

Finally, the numbers of nodes processed for the one-shot query by our method and
Dijkstra’s algorithm are compared in Figure 12. For this experiment, we generate five

36 C.-C. Lee, Y.-H. Wu, and A.L.P. Chen

sets of queries by the same manner as the second experiment. The vertical axis of
Figure 12 indicates the ratio of nodes saved, compared to the Dijkstra’s algorithm,
while the ellipse bounding property is applied to reduce the number of re-
computations. The result shows that only 24% of the nodes processed by Dijkstra’s
have to be processed by EBM.

0

20

40

60

80

100

2000 4000 6000 8000 10000

number of nodes processed

p
ro
c
e
s
si
n
g
 t
im
e
(s
)

EBM

naive

Fig. 11. Comparison on the processing time for multiple queries in a time slot

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

number of nodes processed by Dijkstra's

ra
ti
o
 o
f
th
e
 n
u
m
b
e
r
o
f
p
ro
c
e
ss
e
d

n
o
d
e
s
sa
v
e
d
 b
y
 E
B
M

Fig. 12. Comparisons on the number of nodes processed for the one-shot query

6 Conclusion and Future Works

The problem of continuously processing the fastest path queries on road networks is
addressed in this paper. Differing from the previous works, our work considers the
environment in which the traffic varies with time and cannot be predicted. Our
method, EBM, reduces both the number of re-computations and the search space for
reevaluating a query and substantially speeds up the query processing in such a
dynamic environment. We design a grid-based index structure to reflect the affecting
areas of multiple queries currently running in the system. Moreover, we propose
novel techniques for efficient index maintenance with user-specified precision
guaranteed. We perform experiments using the data from a real road network and
simulate the traffic based on the cellular automata. Experiment results confirm that
our method saves on average 43% re-computations during the evaluation of a single
query. While continuously monitoring multiple queries, at each time instant, on
average 34% processing time for all the running queries can be reduced.

 Continuous Evaluation of Fastest Path Queries on Road Networks 37

In the future, how to divide the queries into groups in a way that the scalability of
our approach can be improved by processing the queries in the same groups in a batch
will be studied. In addition, the other kinds of continuous queries, e.g., kNN queries
and range queries, are also important to various location-aware applications on road
networks. It will be interesting and challenging to adapt the techniques proposed in
this paper to these kinds of queries.

Reference

[1] Agrawal, R., Jagadish, H.: Materialization and Incremental Update of Path Information.
In: Proc. Fifth Int’l Conf. Data Eng. pp. 374-383 (1989)

[2] Cormen, T., Lieserson, C., Rivest, R.: Introduction to algorithms (1990)
[3] Esser, J., Schrechenberg, M.: Microscopic Simulation of Urban Traffic Based on Cellular

Automata. International Journal of Modern Physics 8, 1025–1036 (1997)
[4] Dijkstra, E.: A Note on Two Problems in Connection with Graphs. Numerische

Mathematik 1, 269–271 (1959)
[5] Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Lifelong planning A*. Artificial

Intelligence 155, 93–146 (2004)
[6] Fu, L., Rilett, L.: Expected shortest paths in dynamic and stochastic traffic networks.

Transportation Research, Methodological 32, 499–516 (1998)
[7] Gupta, S., Kopparty, S., Ravishankar, C.: Roads, Codes, and Spatiotemporal Queries. In:

Proc. of the 19th ACM Symp. on Principles of Database Systems (PODS), pp. 13–18.
ACM Press, New York (2004)

[8] Huang, Y., Jing, N., Rundensteiner, E.: A Semi-Materialized View Approach for Route
Maintenance in Intelligent Vehicle Highway Systems. In: Proc. Second ACM Workshop
Geographic Information Systems, pp. 144–151. ACM Press, New York (1994)

[9] Huang, Y., Jing, N., Rundensteiner, E.: Hierarchical Path Views: A Model Based on
Fragmentation and Transportation Road Types. In: Proc. Third ACM Workshop
Geographic Information Systems, pp. 93–100. ACM Press, New York (1995)

[10] Jing, N., Huang, Y., Rundensteiner, E.: Hierarchical Encoded Path Views for Path Query
Processing: An Optimal Model and Its Performance Evaluation. IEEE Transactions on
Knowledge and Data Engineering 10, 409–432 (1998)

[11] Ku, W., Zimmermann, R., Wang, H., Wan, C.: Adaptive Nearest Neighbor Queries in
Travel Time Networks. In: Proc. of the 13th annual ACM international workshop on
Geographic information systems, ACM Press, New York (2005)

[12] Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding Fastest Paths on A Road Network with
Speed Patterns. In: 22nd International Conference on Data Engineering (2006)

[13] Nilsson, N.: Problem-Solving Methods. Artificial Intelligence (1971)
[14] Pallottino, S., Scutella, M.: Shortest Path Algorithms in Transportation Models: Classical

and Innovative Aspects. Equilibrium and Advanced Transportation Modeling (1998)
[15] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (2003)
[16] Shekhar, S., Fetterer, A., Goyal, B.: Materialization Trade-Offs in Hierarchical Shortest

Path Algorithms. In: Proc. Of 4th Advances in Spatial and Temporal Databases (1997)
[17] Shahabl, C., Kolahdouzan, M., Sharifzadeh, M.: A Road Network Embedding Technique for

K-nearest Neighbor Search in Moving Object Databases. GeoInformatica 7, 255–273 (2003)
[18] Sankaranarayanan, J., Alborzi, H., Samet, H.: Efficient Query Processing on Spatial

Networks. In: Proc. of the 13th annual ACM international workshop on Geographic
information systems, ACM Press, New York (2005)

[19] http://geodepot.statcan.ca/Diss/2006Dissemination/Data/FRR_RNF_e.cfm

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 38–56, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Continuous Medoid Queries over Moving Objects

Stavros Papadopoulos1, Dimitris Sacharidis2, and Kyriakos Mouratidis3

1 Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
stavros@cse.ust.hk

2 School of Electrical and Computer Engineering
National Technical University of Athens Greece, 15780

dsachar@dblab.ntua.gr
3 School of Information Systems, Singapore Management University

Singapore, 178902
kyriakos@smu.edu.sg

Abstract. In the k-medoid problem, given a dataset P, we are asked to choose k
points in P as the medoids. The optimal medoid set minimizes the average
Euclidean distance between the points in P and their closest medoid. Finding the
optimal k medoids is NP hard, and existing algorithms aim at approximate
answers, i.e., they compute medoids that achieve a small, yet not minimal,
average distance. Similarly in this paper, we also aim at approximate solutions.
We consider, however, the continuous version of the problem, where the points in
P move and our task is to maintain the medoid set on-the-fly (trying to keep the
average distance small). To the best of our knowledge, this work constitutes the
first attempt on continuous medoid queries. First, we consider centralized
monitoring, where the points issue location updates whenever they move. A
server processes the stream of generated updates and constantly reports the
current medoid set. Next, we address distributed monitoring, where we assume
that the data points have some computational capabilities, and they take over part
of the monitoring task. In particular, the server installs adaptive filters (i.e.,
permissible spatial ranges, called safe regions) to the points, which report their
location only when they move outside their filters. The distributed techniques
reduce the frequency of location updates (and, thus, the network overhead and the
server load), at the cost of a slightly higher average distance, compared to the
centralized methods. Both our centralized and distributed methods do not make
any assumption about the data moving patterns (e.g., velocity vectors, trajectories,
etc) and can be applied to an arbitrary number of medoids k. We demonstrate the
efficiency and efficacy of our techniques through extensive experiments.

Keywords: Medoid Queries, Continuous Query Processing, Moving Object
Databases.

1 Introduction

Given a dataset P and a user-specified parameter k, a k-medoid query returns a subset
of P consisting of k points. These points are called the medoids and are selected so

 Continuous Medoid Queries over Moving Objects 39

that the average distance between the points in P and their closest medoid is
minimized. The k-medoid problem arises in many fields and application domains,
including resource allocation, data mining, spatial decision making, etc. Consider the
example in Figure 1, where P = {p1, ..., p24} is the set of residential blocks in a city,
and fire stations are to be opened at three of them. To achieve the shortest average
response time to emergency calls, we should minimize the average distance between
residential blocks and their closest station. In this case, the best blocks to open fire
stations at are the k = 3 medoids of P. In our example, the medoids are blocks p6, p15
and p22, shown in grey. The lines in the figure signify the assignment of the residential
blocks to their responsible (i.e., closest) fire station. Due to this implicit assignment,
k-medoids have also been used in different contexts for partitioning clustering.

p

1 p
2

p
3

p4

p5

p20

p
19

p
18

p
17

p16

p15

p14

p13

p12

p11

p10

p
9p

8

p
7

p6

p22

p
23

p
21

p24

Fig. 1. A 3-medoid example

Computing an optimal medoid set is NP hard [GJ79], and only approximate
answers are possible even for relatively small input datasets. To this end, existing
methods range from theoretical approximation schemes (e.g., [ARR98]), to hill-
climbing approaches for moderate size datasets (e.g., [KR90, NH94]), to heuristic-
based algorithms for disk-resident data (e.g., [EKX95a, EKX95b, MPP]). All
previous methods assume a static P, i.e., they compute the k medoids once and then
terminate. In this paper, we address a dynamic version of the problem, where the
points in P send frequent location updates and the medoid set needs to be
continuously maintained. In accordance with most real-world scenarios, the points in
P move arbitrarily, with unknown motion patterns. We term the problem continuous
medoid monitoring.

As a medoid monitoring example, consider a number of users accessing a location
based service through their mobile devices, e.g., cellular phones or PDAs. To reduce
the communication cost (and, thus, energy consumption), a number k of supernodes
are selected among the mobile devices; the supernodes collect, aggregate and forward
to the location server messages received from their vicinity. Due to signal attenuation
for long distances, the devices should be close to some supernode. In other words, the
supernode selection essentially reduces to a k-medoid computation over the set of
devices. Additionally, the mobile nature of the system requires on-the-fly medoid

40 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

maintenance. All the devices (supernodes or not) move frequently and arbitrarily,
necessitating supernode re-assignment in order to retain the quality of service.

We consider two system models, corresponding to different mobile environments.
First, we address centralized medoid monitoring. In this setting, the data objects1 in P
send updates to a central server whenever they move. The server processes the
location updates and computes/reports the new medoid set. We propose two
incremental monitoring algorithms that aim at minimizing the processing time for
medoid maintenance. In the centralized model, the objects issue frequent location
updates. This raises the additional concern about the communication cost. In
particular, in many mobile computing applications, the objects have scarce power
resources and we wish to preserve battery life by limiting the number of messages
transmitted to the server. This motivates our second, distributed processing model. In
this context, the server assigns safe regions to the data objects, which issue location
updates only if they move outside their region. We design effective safe region
computation strategies and incorporate them to our medoid monitoring framework.
We demonstrate that the distributed methods drastically reduce the object
communication overhead, while sacrificing minimal medoid quality (i.e., they result
in marginally higher average distance compared to their centralized counterparts).

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 describes our two centralized methods, while Section 4 presents their
distributed versions. Section 5 experimentally evaluates the performance of our
algorithms. Finally, Section 6 concludes the paper.

2 Related Work

In this section, we survey previous work on medoid queries (in Section 2.1), focusing
on solutions targeted at large datasets. We also review spatial query monitoring
techniques (in Section 2.2), since we assume a similar system architecture and use
related geometric techniques and indexes.

2.1 Medoid Queries

Finding the k-medoids is a classic problem in Computational Geometry, where it is
usually referred to as the k-medians problem. Since it is NP hard, several
approximation schemes have been proposed for its solution (e.g., [ARR98]). These
schemes are of theoretical nature, aiming at graceful asymptotic bounds. More
practical solutions include hill-climbing algorithms, such as PAM and CLARA
[KR90]. Starting with a randomly chosen k-medoid set, these methods consider
swapping one medoid with another, randomly chosen data point. If the swap leads to
a lower average distance, then the resulting medoid set becomes the new candidate
answer. This procedure is repeated for a fixed number of possible swaps. It terminates
when no considered swap achieves a lower distance than the current medoid set, and
returns the latter as the solution. To achieve better scalability than PAM and CLARA,
Ng and Han [NH94] propose CLARANS. It builds upon CLARA, examining

1 Henceforth, the terms point and object are used interchangeably.

 Continuous Medoid Queries over Moving Objects 41

however a smaller set of possible swaps, and, thus, speeding up the execution (i.e.,
converging faster to a local minimum). CLARANS is still slow for large problem
instances (being restricted to inputs of just a few thousand objects), and it is
impractical for disk-resident data. Motivated by this fact, Ester et al. [EKX95a,
EKX95b] design FOR. In FOR, dataset P is indexed with an R-tree [G84, BKSS90],
and a sample is formed by drawing one data point from each leaf of the R-tree. FOR
executes CLARANS on this sample and returns the computed medoids. Focused also
on disk-resident data, Mouratidis et al. [MPP] propose TPAQ, a method that solves k-
medoid and related problems. TPAQ assumes that P is indexed with an R-tree and
exploits its grouping properties to avoid reading the entire dataset, while achieving a
low average distance. To exemplify, consider dataset P = {p1, ..., p24} in Figure 2a
and its R-tree in Figure 2b.

N2

N1

N3

N4

N5

N6
N7

N8

N9

p1

p2

p3

p4

p 5

p20

p 19

p18

p17

p 16

p 15

p 14

p 13

p 12

p11

p 10p9p8

p7

p6

p 22

p23

p21

p24

s3

s2

s1

N3 N4 N5

Root node

N6 N7 N8 N9

N1 N2

N1

N2

p5 ... p8

N4

... p19

N7

p16 ... p21

N8

p20 ... p24

N9

p22

p9 ... p11

N5

p1 ... p4

N3

... p15

N6

p12

(a) Points and node extents (b) The R-tree structure

Fig. 2. Example R-tree and TPAQ execution for 3-medoid computation

Assume that TPAQ is posed with a 3-medoid query. It descends the R-tree from
the root down to the topmost level that contains more than (or equal to) k entries. This
level is called the partitioning level, and let E denote the set of its entries. In Figure 2,
the partitioning level is the second one, and its entries are E = {N3, ..., N9}. The entries
in E are sorted according to their center’s Hilbert value, and the resulting sorted list is
divided into k groups Si of equal cardinality (i.e., |E|/k entries each). The sorted list in
our example (as given by the Hilbert curve shown in Figure 2a) is N6, N7, N8, N9, N5,
N4, N3, and the 3 groups are S1 = {N6, N7}, S2 = {N8, N9}, and S3 = {N5, N4, N3}. For
each Si, TPAQ computes the geometric centroid2 si and performs a nearest neighbor
(NN) search at si among the underlying data points (i.e., among the points
corresponding to the sub-trees of entries in Si). In Figure 2a, the centroids of the three
groups are points s1, s2, and s3 (appearing hollow). The three medoids returned are

2 The geometric centroid of group Si is point si with coordinates si.x and si.y equal to the

average x- and y- coordinates, respectively, of the entry centers in Si.

42 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

their NNs, i.e., points p15, p22, and p6. TPAQ is shown to achieve lower distance than
FOR and exhibits better scalability.

The existing k-medoid algorithms are unsuitable for our continuous monitoring
setting. All aforementioned methods are designed for static datasets and snapshot
queries (i.e., they compute the medoids once and then terminate); their extension to
incremental medoid maintenance (in the presence of updates) is non-trivial, if
possible at all. On the other hand, the naïve approach of re-computing from scratch
the medoids (with some existing algorithm) in each update processing cycle is
prohibitively expensive in a highly dynamic scenario, failing to reuse previous results.
Additional problems of existing methods are: (i) the hill-climbing approaches (PAM,
CLARA, CLARANS, etc.) are very slow for moderate or large input sizes, while (ii)
TPAQ and FOR are designed for disk-resident data, with primary objective the
minimization of the I/O cost; disk accesses are not an issue in our main memory
setting, where CPU time (and communication cost, in the distributed case) is the only
concern. On the other hand, an important finding of previous work to our problem is
the efficiency and, more so, the efficacy of TPAQ, which motivates us to use a similar
Hilbert-based (or, in general, space filling curve-based) approach for our purposes.

Regarding medoid-related problems in dynamic settings, Guha et al. [GMM+03]
solve the k-medoid problem in a streaming environment. In the assumed model, the
points of the input dataset P stream into the system. The main memory is not enough
to store entire P, so the streamed data points are processed once and then discarded as
new ones arrive. When the entire input set is seen, the system reports its k-medoids.
[GMM+03] proposes an one-pass k-medoid algorithm that solves the above problem,
using a small amount of space. Even though this is a dynamic method, it does not
apply to our setting; in our case, (i) the memory does fit the entire dataset, but the
points therein receive location updates in an on-line fashion, and (ii) the system needs
to continuously report the k-medoid set at any time.

A problem related to k-medoids is min-dist optimal-location (MDOL) computation.
The input consists of a set of data points P, a set of existing facilities (i.e., a set of
existing medoids) and a user-specified spatial region R, wherein a new facility should
open. The output of an MDOL query is the location in R where the new facility
should be built in order to minimize the overall average distance between the data
points and their closest facility. Zhang et al. [ZDXT06] propose an exact method for
this problem. The main differences from the k-medoid problem is that (i) MDOL
assumes that a set of facilities already exists, (ii) it computes a single point (as
opposed to k), and (iii) the returned point does not necessarily belong to P, but it can
be anywhere inside region R.

The k-medoid problem is related to clustering; essentially, given the medoids, the
input dataset can be partitioned into k clusters by assigning each point to its closest
medoid. The other direction, however, does not work; although there are numerous
clustering methods for large input sets (e.g., DBSCAN [EKSX96], BIRCH [ZRL96],
CURE [GRS98] and OPTICS [ABKS99]), their objective is to create clusters such
that the points in any cluster are more similar to each other than to points in other
clusters. In addition to addressing a problem of different nature, most clustering
algorithms are computationally intensive and unsuitable for the highly dynamic
environments we tackle in this work.

 Continuous Medoid Queries over Moving Objects 43

2.2 Continuous Spatial Queries

The first spatial monitoring techniques were targeted at range queries, where the data
objects send location updates to a central server, and the latter continuously reports
the objects that fall in each monitored range. Q-index [PXK+02] processes static
range queries. It indexes the ranges using an R-tree and probes moving objects against
the index in order to determine the affected queries and update their results. SINA
[MXA04] monitors (potentially moving) range queries using a three-step spatial join
between moving objects and ranges. Mobieyes [GL04] and MQM [CHC04] follow a
distributed processing approach, where the objects utilize their computational
capabilities and suppress some location updates. In particular, all of Q-index,
Mobieyes and MQM utilize the concept of safe regions, according to which each
object p is assigned a circular or rectangular region, such that p needs to issue an
update only if it exits this area (because, otherwise, it does not influence the result of
any query). Figure 3 shows a range monitoring example, where the current result of
query Q1 is object p1, of Q2 is object p2, while no object qualifies queries Q3, Q4, Q5.
The safe regions for p1 and p4 are circular, while for p2 and p3 they are rectangular, as
shown in the figure (the safe rectangle for p2 coincides with the boundary of Q2). Note
that even if the objects move, unless they fall outside their assigned safe regions, no
query result can change.

Q5

p1

p2

p4

Q1

Q3

safe circle

Q2

p3

Q4

safe circle

safe rectangle

Fig. 3. The safe regions concept

In addition to rage queries, several methods have been recently proposed for k
Nearest Neighbor (k-NN) monitoring. Koudas et al. [KOTZ04] present a system for
approximate k-NN queries over streams of multidimensional points. Yu et al.
[YPK05], Xiong et al. [XMA05] and Mouratidis et al. [MHP05] describe algorithms
for exact k-NN queries; all three methods index the data with a regular grid and
maintain the k-NN results by considering only object movements that may influence
some query. The aforementioned techniques aim at low processing time. There exist,
however, methods designed for network cost minimization [MPBT05, HXL05] by
exploitation of the objects’ computational resources; their rationale is similar to that
of the safe regions explained in Figure 3.

44 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

3 Centralized Medoid Monitoring

In this section we present our centralized methods. We assume that dataset P consists
of |P| two-dimensional points. Although our methods are applicable to higher
dimensions, in accordance with most real-world mobile environments, we focus on
two dimensions. Furthermore, for ease of presentation, we consider a unit dataspace,
i.e., all data fall in [0,1]2. Every point p in P is a tuple of the form <p.id, p.x, p.y>,
where p.id is a unique identifier and (p.x, p.y) are p’s coordinates. Whenever p moves,
it issues an update to the monitoring server; the update has the form <p.id, p.xold,
p.yold, p.xnew, p.ynew>3, implying that p moves from (p.xold, p.yold) to (p.xnew, p.ynew). The
objects move frequently and arbitrarily.

We present two centralized medoid monitoring algorithms, based on a common
intuition exemplified in Figure 4. Dataset P contains two clusters C1 and C2. Suppose
that a 2-medoid query returns one medoid in C1 and another in C2. Now consider that
we wish to compute three medoids. Observe that, although C1 has a smaller diameter
than C2, it contains more points. Due to the larger cardinality of C1, the distances of
its points from its medoid affect the global average distance to a greater extent than
that of the points in C2. Therefore, placing the third medoid in C1 leads to a larger
distance reduction than placing it in C2. Intuitively, more medoids must be assigned to
denser areas of the dataspace.

C1

C2

medoids

Fig. 4. The three medoids of a dataset consisting of two clusters

Motivated by this observation, our algorithms (i) partition the points in P into k
groups of (roughly) equal cardinality and, then, (ii) select the most centrally located
object from each group as the corresponding medoid. To quickly perform step (i) we
project the points on a one-dimensional space using a space filling curve. We employ
the Hilbert curve since it is shown to best preserve locality compared to alternatives
[MJFS01]. Next, we partition the Hilbert-sorted list of points into k groups of equal
cardinality (i.e., |P|/k). Due to the locality preservation of the Hilbert curve, the
resulting groups can be regarded as well-defined partitions of P in the two-
dimensional space. Finally, we extract a medoid from each group; the medoid is the
point in the group with the median Hilbert value, as it is expected to be the most
centrally located. The above rationale underlies both modules of our algorithms,
namely, the initial medoid computation and their maintenance.

3 If the update is an insertion (deletion), p.xold, p.yold (p.xnew, p.ynew) are set to a negative value.

 Continuous Medoid Queries over Moving Objects 45

3.1 The HBM Algorithm

Our first method is Hilbert-based Monitoring (HBM). It indexes the data objects with
an in-memory 2-3 B+-Tree [C79] (i.e., a B+-Tree where each internal node has two or
three children), using their Hilbert values as search keys. We denote this tree by BT.
At the leaf level, except for the standard right sibling pointers, BT is modified to also
accommodate left sibling pointers. In other words, the leaves are organized as a
doubly connected linked list. When the continuous medoid query is installed at the
server for the first time and BT is built, every entry E in an internal node N
temporarily stores aggregate information about the number of points E.a contained in
its subtree. E.a facilitates the initial medoid computation and is discarded afterwards.

In particular, according to our general approach, the i-th medoid of P is the
[(i-0.5)·|P|/k]-th object in the linear order imposed by the Hilbert values. HBM locates
the k medoids by performing k traversals in BT, at a total cost of O(k·log|P|). Before
each traversal i, an auxiliary variable V is initialized to zero. The traversal starts from
root NR and it checks whether V+E1.a is larger than or equal to (i-0.5)·|P|/k, where E1
is NR’s first entry. If that is the case, the medoid is located in E1’s subtree and,
therefore, the traversal continues by visiting E1’s child. Otherwise, E1.a is added to V
and the algorithm continues similarly by checking V+E2.a against (i-0.5)·|P|/k (E2 is
NR’s second entry). V always keeps the number of points preceding (in the Hilbert
order) the point with the smallest search key that is reachable by the traversal. Finally,
the algorithm reaches the leaf node containing the i-th medoid. For every computed
medoid m, an array M of size k stores a tuple of the form <m.id, m.hv, m.ptr, m.off>,
where m.id is the identifier of the point selected as m, m.hv is m’s Hilbert value, m.ptr
points to the leaf node of BT that accommodates m, and m.off is an integer (initialized
to zero) used by the maintenance module and whose functionality is explained later.
The temporary E.a values are discarded after the end of the initial computation step.
Figure 5 summarizes the data structures in HBM.

2-3 B+ -Tree (BT)

M

<mi.id, mi.hv, mi.ptr, mi.off>

1 2 ... i ... k

Fig. 5. The data structures of the HBM method

The server periodically receives updates from the objects in batches. HBM
accordingly updates BT, after computing the necessary Hilbert values of the inserted,
deleted or moving points. Note that the movement of an object involves its deletion
from the index followed by its subsequent re-insertion with the new Hilbert value.
Whenever a split or merge operation moves a medoid m to a different leaf node, the
corresponding m.ptr must also be altered in M. While updates are reflected in BT,
HBM stores some book-keeping information, to be used for result maintenance

46 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

according to its medoid selection strategy. In particular, after processing the
insertion/deletion of a point p, HBM performs a binary search in array M to locate the
leftmost medoid mu with Hilbert value greater than (or equal to) p.hv. In case p
initiated an insertion (deletion), the algorithm increases (decreases) mu.off by one.
Particular care must be taken when a medoid m is deleted. In this case, HBM
substitutes it with its predecessor in the Hilbert order and decreases m.off by one.

After processing all updates, HBM computes the new medoids as follows. The i-th
medoid mi was formerly data point pold at position (i-0.5)·|P|/k. After the updates, pold
moves to position (i-0.5)·|P|/k + Σi-1

j=1 mj.off. The actual medoid must be located at
position (i-0.5)·|P΄|/k, where P΄ is the updated version of dataset P (which may have
different cardinality if new objects were inserted or existing ones deleted). Therefore,
the new medoid mi can be found OFFi = (i-0.5)·|P΄|/k - (i-0.5)·|P|/k - Σi-1

j=1 mj.off
positions to the right or left of pold in the linear order, depending on whether OFFi is
positive or negative, respectively. For every medoid mi in M, HBM first visits the leaf
node pointed by mi.ptr to find its old corresponding point pold. Then, using the
left/right sibling pointers of BT, it locates the new medoid and properly updates mi’s
entry in M. The pseudocode of the maintenance procedure is given in Figure 6.

Function updateMedoids (array M, Tree T)
1. Initialize V to 0
2. For i=1 to k
3. Locate medoid mi in leaf M[i].ptr of T
4. OFFi = (i-0.5)·|P΄|/k - (i-0.5)·|P|/k - V
5. If OFFi = = 0, continue
6. Else if OFFi > 0, find point p located |OFFi| positions to the right of mi
7. Else if OFFi < 0, find point p located |OFFi| positions to the left of mi
8. V += M[i].off;
9. Assign p.id, p.hv, the pointer of the leaf of T that accommodates p and 0 to M[i].id,

M[i].hv, M[i].ptr and M[i].off, respectively

Fig. 6. The maintenance module of HBM

Figure 7 illustrates the initial computation and maintenance of k = 2 medoids in a
set of points, which at timestamp T1 has cardinality 14. For ease of demonstration, we
omit the BT operations and focus on the leaf level of the tree, which constitutes a
doubly connected linked list of points sorted on their Hilbert values. At timestamp T1,
the set is subdivided into two subsets of seven points each. The medians of the subsets
(p4 and p12) are selected as the medoids (m1 and m2, respectively). At timestamp T2,
four updates occur; p1 and p13 are deleted, and p3 and p5 move to new positions. Due
to p1’s deletion, m1.off is decreased by one. On the contrary, the deletion of p13 does
not affect any off value because there is no medoid with higher (or equal) Hilbert
value. Regarding p3 and p5, recall that a point movement is handled as a deletion
followed by an insertion. Upon p3’s deletion, the algorithm decreases m1.off.
Subsequently, the point is re-inserted in a position between m1 and m2 and, therefore,
m2.off is increased by one. Finally, p5’s movement causes m2.off to decrease (due to its
deletion) and immediately increase (due to its re-insertion) by one, because both its
old and new Hilbert values are between m1.hv and m2.hv. Let old_posi be the position

 Continuous Medoid Queries over Moving Objects 47

(in the Hilbert order) of the point that was selected as medoid mi at timestamp T1.
Also let curr_posi be the position of the new point to become mi at timestamp T2. For
m1, old_pos1 = 4, curr_pos1 = 3, and OFF1 = 1. Similarly for m2, old_pos2 = 11,
curr_pos2 = 9, and OFF2 = -1. The algorithm locates the new medoids p3 and p11, by
moving one position to the right and one to the left from old medoids p4 and p12,
respectively.

p2 p3

p1 p7

p6

p4

p5

p10

p14

p9

p8

p13

p11
p12

p1 p2 p3 p4 p5 p6 p7 p8 p10 p11 p12 p9 p13 p14

Hilbert Order
Subset 1 Subset 2

Timestamp T1

p2

p7

p6

p4

p10

p14

p9

p8

p11
p12

Timestamp T2

p5

p3
Updates:
DEL p1, m1.off--
DEL p13

MOV p3, m1.off--, m2.off++
MOV p5, m2.off--, m2.off++

p2 p4 p3 p6 p7 p5 p8 p10 p11 p12 p9 p14

Hilbert Order
Subset 1 Subset 2

m1 m2
OFF1 = curr_pos1 - old_pos1 -

m1.off = 3-4-(-2)=1
OFF2 = curr_pos2 - old_pos2 -

(m1.off+m2.off) = 9-11-(-2+1)=-1

Fig. 7. A medoid monitoring example in HBM

3.2 The GBM Algorithm

The Grid-based Monitoring (GBM) algorithm utilizes a C×C regular grid for indexing
P. Let δ be the side-length of each cell. A point p in P with coordinates (p.x, p.y) can
be located in constant time in cell ci,j (i.e., the cell in column i and row j, starting from
the low-left corner of the grid), where i = ⎣p.x/δ⎦ and j = ⎣p.y/δ⎦. GBM imposes a
linear order on the cells by sorting them according to the Hilbert values of their
centers. Every cell c is associated with a tuple <c.n, c.prev, c.next, c.BT>, where c.n is
the cardinality of the set of points contained in c, c.prev and c.next are the cells
preceding and succeeding c in the Hilbert order respectively, and c.BT is a BT that
indexes the points in c (using their Hilbert values as search keys). Similarly to HBM,
the internal nodes in the BTs temporarily incorporate aggregate information, which is
discarded after the initial computation of the medoids.

The grouping strategy of GBM is similar to HBM, the difference being in the
linear order of the points, which now takes into account firstly the order of the cells.
Specifically, the points are considered sorted according to the following rules; (i) a
point p1 in cell c1 precedes point p2 in cell c2, if c1 precedes c2 in their Hilbert order,
and (ii) the order of the points in the same cell is determined by their Hilbert values.
Following similar reasoning as in HBM, the i-th medoid mi is the [(i-0.5)·|P|/k]-th
object in the above order. GBM starts by initializing an auxiliary variable V to zero
and scans the linked list of the (sorted) cells. To locate medoid mi, in every visited cell
ci, it checks whether V+ci.n is larger than or equal to (i-0.5)·|P|/k. If that is the case, it

48 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

traverses ci.BT in order to find the [V+ci.n-(i-0.5)·|P|/k]-th object in the cell, which is
then selected as medoid mi. Otherwise, it adds ci.n to V and continues to the next cell.
V keeps the number of points encountered by the scan so far. Note that GBM locates
all medoids in a single linear scan of the cells, i.e., after finding medoid mi, it does not
restart the scan for finding mi+1; instead, it continues from the cell that contains mi.
Finally, it maintains an array M with functionality identical to that used by HBM.
Figure 8 depicts the data structures of GBM.

M

<mi.id, mi.hv, mi.ptr, mi.off>

1 2 ... i ... k

c.BT
c

c.prev

c.next

c.n

Fig. 8. The data structures of the GBM method

For every received update, GBM first determines in constant time the cell c where
the insertion/deletion takes place, and properly updates c.BT. Subsequently, it scans M
and updates the off value of the leftmost medoid with Hilbert value larger than or
equal to that of the object that initiated the update, in a similar fashion to HBM. After
processing all the updates, the maintenance module of GBM identifies the points to be
selected as the new medoids as follows. It scans M and for every mi, it computes OFFi
in a fashion similar to Section 3.1. Suppose that mi lies in cell c. Then, starting from
the leaf of c.BT that accommodates mi and is pointed by mi.ptr, it searches for the
point that will be selected as the new mi. This point lies OFFi positions to the left or
right of old mi, depending on whether OFFi is negative or positive, respectively. If the
search reaches the leftmost or rightmost (in the Hilbert order) point of cell c, it
continues to the cell pointed by c.prev or c.next, respectively. Note that the algorithm
may skip entire cells (i.e., it may not traverse their BTs at all), since it can always
determine whether mi is located in a visited cell by comparing the cell’s cardinality
against OFFi. After finding a new medoid, GBM updates the respective entry in M
accordingly.

In Figure 9 we exemplify the initial medoid computation and monitoring in a
scenario where k = 2 and P contains points p1 to p14. Consider cells c2,2 and c1,2 at
timestamp T1. The Hilbert curve first passes through c2,2 and, thus, p11 precedes p1 in
the GBM order, although it succeeds it in the global Hilbert order (i.e., p11.hv > p1.hv,
where p11.hv and p1.hv are the Hilbert values of p11 and p1, respectively). At
timestamp T1, the medoids are m1 = p4 and m2 = p14, since they are at positions
0.5·|P|/k = 4 and 1.5·|P|/k = 11, respectively, in the linear order. At timestamp T2,
objects p7, p6 and p11 issue updates, as shown in the figure. Their movement leads to
OFF1 = 1 and OFF2 = 1, and updates the medoids to m1 = p7 and m2 = p11.

 Continuous Medoid Queries over Moving Objects 49

p1
p2

p3

p4

p6
p5

p7

p8

p9

p10p11

p12

p13

p14

p3 p5 p6 p4 p2 p11 p1 p13 p12 p10 p14 p7 p 8p9

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2 c4,2

p3 p5 p4 p7 p2 p1 p13 p12 p10 p14 p11 p9 p8 p6

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2

Updates:
MOV p7, m2.off++
MOV p6, m1.off--
MOV p11, m2.off--

m1 m2

Timestamp T1

OFF1 = curr_pos1 - old_pos1 -
m1.off = 4-4-(-1)=1

OFF2 = curr_pos2 - old_pos2 -
(m1.off+m2.off) = 11-11-(-1+0)=1

p1
p2

p3

p4

p6p5

p8

p9

p10

p11

p12

p13

p14

Timestamp T2

p7

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

Fig. 9. A medoid monitoring example in GBM

Compared to HBM, index update and medoid maintenance in GBM are expected
to be faster. HBM keeps a common BT over all |P| points, which leads to an O(log|P|)
cost for every point insertion or deletion. On the other hand, letting c be the cell of the
inserted/deleted point, c.BT contains c.n objects (where c.n << |P|), requiring
O(log|c.n|) time per update. Furthermore, maintaining the medoids is also more
efficient in GBM, because for large OFFi values, entire cell contents may be skipped
when sliding in the linear point order towards the new medoid position. Another
major advantage of GBM over HBM, is the fact that its data index is compatible with
existing methods for other spatial query types; most range and nearest neighbor
monitoring algorithms use a regular grid index4. This allows GBM to be used in
conjunction with other methods, in a system that answers general spatial queries over
moving objects, utilizing a single data index.

A final remark concerns the average distance, which is in general different but
similar for GBM and HBM, since their medoid selection rationale is alike. In
particular, if the grid granularity in HBM is selected so that C is a power of two
(recall that the grid has C×C cells), their medoids are identical. The reason is that the
Hilbert values themselves are computed by definition based on a transparent space
partitioning with a grid, whose granularity on each axis is always a power of two (this
power is called the order of the Hilbert curve). If C is also a power of two, the cells of
the object grid contain continuous, non-overlapping intervals of the curve. In other
words, if cell c1 precedes c2 on the curve, then any point p1 in c1 precedes every p2 in
c2. In turn, this fact implies that the linear point orders of GBM and HBM are
identical and, thus, the medoids are the same.

4 Distributed Medoid Monitoring

The main idea in the distributed version of our methods is to allow objects to move
within assigned safe regions, without having to transmit updates to the server. Since

4 All methods covered in Section 2.2 use a regular grid, except for [MPBT05] and [HXL05],

where processing time minimization is not the main objective.

50 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

our general medoid selection strategy relies on a linear point order, the safe regions
are defined with respect to the neighboring objects (in the order). Particularly, let
leeway λ be an integer system parameter. The safe region of the i-th object in the
order pi is a Hilbert interval SRλ

i = [pi.srL, pi.srR]. The left boundary pi.srL is the mean
of the Hilbert values of pi and its λ-th left neighbor pi-λ (i.e., pi.srL = ⎣(pi.hv +
pi-λ.hv)/2⎦). The right boundary pi.srR is set similarly with respect to the λ-th right
neighbor (i.e., pi.srR = ⎡(pi.hv + pi+λ.hv)/2⎤). Object pi may change location without
issuing an update, as long as pi.hv ∈ SRλ

i . When pi does move outside SRλ
i , it sends its

new location to the server. The latter updates its index and the medoid set
accordingly5, and assigns a new safe region to pi. Note that the new SRλ

i is defined
based on the latest point positions reported. Particularly for GBM, the linear point
order takes into account the grid cells ordering. Thus, the safe regions are defined
within each cell individually (i.e., in the Hilbert order of the objects therein).
Whenever an object exits its cell, it sends an update regardless of whether it violates
its safe region.

Figure 10 demonstrates the safe region function in the case of HBM (the case of
GBM is similar, subject to the aforementioned modifications), showing the position of
the points on the Hilbert curve. At timestamp T1, the safe region SRλ=1

3 (SRλ=2
3) of p3 is

defined according to p2 and p4 (p1 and p5) for λ = 1 (λ = 2). Similarly, SRλ=1
4 is

determined by p3 and p5. Assuming that λ = 1, at timestamp T2, points p3 and p4 move.
However, only p3 issues an update, because p4 remains within its safe region. The
solid points in the figure correspond to the positions known by the server, the hollow
point is p3’s old Hilbert value, while the grey is p4’s actual one. Object p3 is assigned
a new region, based on the Hilbert values of p2 and p4. Note that the server is not
aware of the new location of p4 and, thus, uses the last reported one (as of T1).

22 30 48

p1 p2 p3 p4 p5

56

]39,26[1
3 ==λSR

]43,18[2
3 ==λSR

]52,39[1
4 ==λSR

6
T1

22 48
p1 p2 p3 p4 p5

56

]37,23[1
3 ==λSR

]52,39[1
4 ==λSR

6 25
T2

4230

Fig. 10. Safe regions and update handling

5 Experimental Evaluation

In this section we evaluate the performance of our methods, in terms of processing
time (at the server), number of object updates (i.e., communication cost for the

5 Medoid maintenance at the server side is identical to the centralized case.

 Continuous Medoid Queries over Moving Objects 51

objects) and achieved average distance. We generate datasets of cardinality |P|
ranging between 10K and 200K objects as follows. For each tested |P|, we randomly
select the initial position and the destination of each object among the points of a real
spatial dataset (North America, available at www.maproom.psu.edu/dcw). The object
follows a linear trajectory between the two points. Upon reaching the endpoint, a new
random destination is selected and the process is repeated. At every timestamp, a
percentage a of the objects move towards their endpoint (while the remaining ones
remain static), covering a distance v. We refer to a and v as the object agility and
velocity, respectively. The velocity is expressed as a percentage of the dataspace
extent on the x axis (we have a [0,104]×[0,104] dataspace). The simulation length is
100 timestamps for each setting, and the reported measurements are the average
observed values over all timestamps. We process continuous k-medoid queries for k
between 2 and 512. We evaluate our four methods HBM, GBM, dHBM, and dGBM
(where the latter two are the distributed versions of HBM and GBM). Also, we use as
a competitor the TPAQ method with a main memory R-tree, since none of the other
existing algorithms works for the large cardinalities tested, even for snapshot queries.
To adapt TPAQ to medoid monitoring, we rerun it for the timestamps where (i) some
of the medoids move, or (ii) the object updates affect the extents of the R-tree entries
at the partitioning level. In each experiment we vary one parameter, while setting the
remaining to their default values. The parameter ranges and defaults are shown in
Table 1. For GBM and dGBM we fine-tuned the grid granularity (with respect to the
average distance) for the default settings and use the best one (100×100) in all our
experiments. We use a machine with a 3.2 GHz Pentium IV CPU and 1 GB RAM.

Table 1. Parameter ranges and default values

Parameter Default Range
Dataset cardinality |P| 100K 10, 50, 100, 150, 200 (K)
No. of medoids k 32 2, 8, 32, 128, 512
Agility a 50% 10, 30, 50, 70, 100 (%)
Velocity v 0.5% 0.1, 0.3, 0.5, 0.7, 1 (%)
Leeway λ 300 100, 200, 300, 400, 500

In Figure 11, we measure the effect of object cardinality |P|, varying it from 10K to
200K objects and setting the other parameters to their defaults. Figure 11a shows the
CPU cost (in logarithmic scale) for medoid maintenance per timestamp, i.e., the time
to update the object index and the medoids. We observe that the centralized methods
have similar cost (with GBM being slightly faster). The distributed algorithms have
shorter running time, because they process fewer updates; dHBM (dGBM) takes less
than 45% (60%) of the time of its centralized counterpart. dHBM is faster than
dGBM, because the latter’s safe regions are practically smaller, as they are bounded
by the grid cell boundaries (leading to more reported updates and, thus, higher
processing cost). Compared to our methods, TPAQ is slower by an order of
magnitude, mainly due to the excessive update cost of its R-tree index. An important
remark about Figure 11a (and all remaining CPU time charts) is that we focus on

52 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

pure maintenance cost, i.e., we exclude the initial k-medoid computation. For the sake
of completeness, the first-time medoid extraction for the default setting takes 12.9,
12.4 and 54.4 sec for HBM, GBM and TPAQ, respectively (the times for dHBM and
dGBM are identical to HBM and GBM).

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

10K 50K 100K 150K 200K

2

-1

-2

CPU time (sec)

|P|

0

20

40

60

80

100

120

10K 50K 100K 150K 200K

Updates issued (thousands)

|P|
310

320

330

340

350

360

370

10K 50K 100K 150K 200K

Average distance

|P|

(a) CPU time (b) Number of updates (c) Average distance

Fig. 11. Performance versus dataset cardinality |P|

Figure 11b shows the number of updates sent to/processed by the server in the
same experimental setup. All centralized methods (i.e., HBM, GBM, TPAQ) have the
same communication cost, with the objects reporting their positions whenever they
move. On the other hand, the safe regions of dHBM and dGBM save around 55% and
40% of these updates, respectively. dGBM avoids less updates than dHBM, due to the
necessary updates required when the objects move to another cell, as explained in the
context of Figure 11a. Figure 11c illustrates the achieved distance for the various
cardinalities, expressed in distance units in our [0,104]×[0,104] dataspace. We observe
that the distributed methods compute only slightly worse medoid sets, verifying their
efficacy. Note that both versions of GBM are better than those of HBM. The reason is
that HBM is solely based on the one-dimensional Hilbert mapping, while GBM
preserves a stronger connection to the original (two-dimensional) space, due to its
spatial grid index. For a similar reason, TPAQ achieves 4 to 11% smaller distance
than our methods, exploiting the graceful grouping properties of its R-tree. However,
this benefit comes to a prohibitive update cost, leading to an excessive processing
time (see Figure 11a). Another remark for TPAQ is that it improves with |P|; for a
denser space, the nearest neighbor queries (in its final step) retrieve medoids that lie
closer to the “ideal” geometric centroids of the k groups, leading to a lower distance.

In Figure 12 we use the default settings and vary k between 2 and 512. Figure 12a
shows the CPU time. Again dGBM is the fastest, for the reasons explained above. We
observe that the processing cost is almost constant for each method and unaffected by
k. The reason is that, in all methods (and especially in TPAQ), the monitoring cost is
dominated by the number of processed updates (mainly due to index maintenance),
which is irrelevant to k. Furthermore, in our algorithms, for larger k, there are more
medoids to maintain, but the offsets (to slide in the linear point order) are smaller. On
the other hand, the average distance drops with k for all methods, and our techniques’
difference from TPAQ decreases.

 Continuous Medoid Queries over Moving Objects 53

HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

2 8 32 128 512

2

-1

-2

CPU time (sec)

k
0

200

400

600

800

1000

1200

1400

1600

1800

2 8 32 128 512

Average distance

k

(a) CPU time (b) Average distance

Fig. 12. Performance versus number of medoids k

In Figure 13 we examine the effect of object agility a, with 10% up to 100% of the
data points moving at each timestamp. The CPU cost (Figure 13a) increases with a due
to the larger number of updates processed. Figure 13b shows the number of issued
updates, which, as expected, is linear to a. In terms of average distance (Figure 13c),
there is not much fluctuation; the small differences are due to the randomness of the
dataset generation.

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

10 30 50 70 100

2

-1

-2

CPU time (sec)

a

 0

20

40

60

80

100

120

10 30 50 70 100

Updates issued (thousands)

a 300

310

320

330

340

350

360

370

380

10 30 50 70 100

Average distance

a

(a) CPU time (b) Number of updates (c) Average distance

Fig. 13. Performance versus object agility a

In Figure 14 we vary the object velocity v from 0.1 to 1% of the dataspace extent
on the x dimension. Figure 14a shows the CPU time. The centralized methods are
unaffected by v. On the other hand, the cost of the decentralized increases as more
objects move outside their safe regions for larger v, sending more updates to the
server for processing. This is also evident in Figure 14b. Interestingly, for v = 0.1%,
dGBM incurs less object updates than dHBM (because its cells are large with respect
to v, without practically limiting the safe regions), while for v = 1% their number is
almost as high as for the centralized methods. The average distance (Figure 14c) is
similar for all values of v.

Figure 15 investigates the effect of the leeway λ, varying it from 100 to 500. The
performance of the centralized methods is identical, because they do not use safe
regions. As shown in Figure 15b, for λ = 500, dHBM achieves 65% reduction of the
location updates. For dGBM, however, there is a marginal decrease, because the safe
regions are restricted by the grid cells, rather than by λ. The number of updates has a
direct impact on the CPU time and, thus, the trends in Figure 15a are similar as in
Figure 15b. In terms of average distance, λ affects only dHBM, whose performance

54 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

deteriorates for larger λ. This trend verifies the tradeoff between update cost and
medoid quality. On the other hand, dGBM is not affected because the server processes
a similar set of updates.

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

0.1 0.3 0.5 0.7 1

CPU time (sec)

v

2

-1

-2

 0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 1

Updates issued (thousands)

v
310

320

330

340

350

360

370

0.1 0.3 0.5 0.7 1

Average distance

v

(a) CPU time (b) Number of updates (c) Average distance

Fig. 14. Performance versus object velocity v

HBM GBM dHBM dGBM centralized dHBM dGBM HBM GBM dHBM dGBM

0

1

2

3

4

5

6

7

8

100 200 300 400 500

CPU time (sec)

λ

0

10

20

30

40

50

60

100 200 300 400 500

Updates issued (thousands)

λ
354

356

358

360

362

364

366

100 200 300 400 500

Average distance

λ

(a) CPU time (b) Number of updates (c) Average distance

Fig. 15. Performance versus leeway λ

6 Conclusion

In this paper we address the problem of k-medoid monitoring. To the best of our
knowledge this is the first work on this topic. We consider a central server that
continuously receives the locations of frequently moving objects and incrementally
maintains their medoid set. Without making any assumption about the data moving
patterns, our methods achieve low running times while keeping the medoid quality
high. Furthermore, we consider distributed environments, where the data objects have
limited power resources and attempt to preserve them by reducing the number of
updates they transmit to the server. In this context, the server assigns safe regions to
the objects, which report their position only when they exit their region. We evaluate
our methods through extensive experiments and investigate tradeoffs between
communication cost and medoid quality.

Acknowledgements

This work was supported by grant HKUST 6184/06E from Hong Kong RGC, and by
an award from the Lee Foundation.

 Continuous Medoid Queries over Moving Objects 55

References

[ARR98] Arora, S., Raghavan, P., Rao, S.: Polynomial Time Approximation Schemes for
Euclidean k-Medians and Related Problems. In: STOC (1998)

[ABKS99] Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering Points To
Identify the Clustering Structure. In: SIGMOD (1999)

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: SIGMOD (1990)

[C79] Comer, D.: The Ubiquitous B-Tree. ACM Computing Surveys 11(2), 121–137
(1979)

[CHC04] Cai, Y., Hua, K., Cao, G.: Processing Range-Monitoring Queries on
Heterogeneous Mobile Objects. In: MDM (2004)

[EKX95a] Ester, M., Kriegel, H.P., Xu, X.: A Database Interface for Clustering in Large
Spatial Databases. In: KDD (1995)

[EKX95b] Ester, M., Kriegel, H.P., Xu, X.: Knowledge Discovery in Large Spatial
Databases: Focusing Techniques for Efficient Class Identification. In: SSD (1995)

[EKSX96] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In: KDD (1996)

[G84] R-Trees, A.: dynamic index structure for spatial searching. In: SIGMOD (1984)
[GJ79] Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman, New York (1979)
[GL04] Gedik, B., Liu, L.: MobiEyes: Distributed Processing of Continuously Moving

Queries on Moving Objects in a Mobile System. In: Lindner, W., Mesiti, M.,
Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268,
Springer, Heidelberg (2004)

[GMM+03] Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
Data Streams: Theory and Practice. IEEE TKDE 15(3), 515–528 (2003)

[GRS98] Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for
Large Databases. In: SIGMOD (1998)

[HXL05] Hu, H., Xu, J., Lee, D.: A generic framework for monitoring continuous spatial
queries over moving objects. In: SIGMOD (2005)

[KOTZ04] Koudas, N., Ooi, B., Tan, K., Zhang, R.: Approximate NN queries on Streams
with Guaranteed Error/performance Bounds. In: VLDB (2004)

[KR90] Kaufman, L., Rousseeuw, P.: Finding Groups in Data. Wiley-Interscience,
Chichester (1990)

[MHP05] Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual Partitioning: An
Efficient Method for Continuous Nearest Neighbor Monitoring. In: SIGMOD
(2005)

[MJFS01] Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve. IEEE TKDE 13(1), 124–141 (2001)

[MPBT05] Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A Threshold-based Algorithm
for Continuous Monitoring of k Nearest Neighbors. IEEE TKDE 17(11), 1451–
1464 (2005)

[MPP] Mouratidis, K., Papadias, D., Papadimitriou, S.: Tree-based Partition Querying: A
Methodology for Computing Medoids in Large Spatial Datasets. In: VLDBJ (to
appear)

[MXA04] Mokbel, M., Xiong, X., Aref, W.: SINA: Scalable Incremental Processing of
Continuous Queries in Spatio-temporal Databases. In: SIGMOD (2004)

56 S. Papadopoulos, D. Sacharidis, and K. Mouratidis

[NH94] Ng, R., Han, J.: Efficient and Effective Clustering Methods for Spatial Data
Mining. In: VLDB (1994)

[PXK+02] Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S.: Query Indexing
and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries
on Moving Objects. IEEE Transactions on Computers 51(10), 1124–1140 (2002)

[XMA05] Xiong, X., Mokbel, M., Aref, W.: SEA-CNN: Scalable Processing of Continuous
K-Nearest Neighbor Queries in Spatio-temporal Databases. In: ICDE (2005)

[YPK05] Yu, X., Pu, K., Koudas, N.: Monitoring K-Nearest Neighbor Queries Over
Moving Objects. In: ICDE (2005)

[ZDXT06] Zhang, D., Du, Y., Xia, T., Tao, Y.: Progressive Computation of the Min-Dist
Optimal-Location Query. In: VLDB (2006)

[ZRL96] Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering
Method for Very Large Databases. In: SIGMOD (1996)

Efficient Index Support for View-Dependent Queries on
CFD Data

Christoph Brochhaus and Thomas Seidl

Data Management and Exploration Group
RWTH Aachen University, Germany

{brochhaus,seidl}@informatik.rwth-aachen.de

Abstract. Recent years have revealed a growing importance of Virtual Reality
(VR) visualization techniques which offer comfortable means to enable users to
interactively explore 3D data sets. Particularly in the field of computational fluid
dynamics (CFD), the rapidly increasing size of data sets with complex geomet-
ric and supplementary scalar information requires new out-of-core solutions for
fast isosurface extraction and other CFD post-processing tasks. Whereas spatial
access methods overcome the limitations of main memory size and support fast
data selection, their VR support needs to be improved. Firstly, interactive users
strongly depend on quick first views of the regions in their view direction and,
secondly, they require quick relevant views even when they change their view
point or view direction.

We develop novel view-dependent extensions for access methods which sup-
port static and dynamic scenarios. Our new human vision-oriented distance func-
tion defines an adjusted order of appearance for data objects in the visualization
space and, thus, supports quick first views. By a novel incremental concept of
view-dependent result streaming which interactively follows dynamic changes of
users’ viewpoints and view directions, we provide a high degree of interactiv-
ity and mobility in VR environments. Our integration into the new index based
graphics data server “IndeGS” proves the efficiency of our techniques in the con-
text of post-processing CFD data with dynamically interacting users.

1 Introduction

In recent years, numerical simulations in the area of fluid dynamics offer a very high
level of accuracy and reproducibility of fluid behavior and replace tedious and ex-
pensive physical experiments which often strongly depend on environmental condi-
tions. Both in industrial development and in research, simulations are acknowledged
methods in application domains including physics, automotive engineering and analy-
sis of aerodynamic forces. These methods, simulating the interaction of gases or flu-
ids with complex surfaces, are generally described as computational fluid dynamics
(CFD).

During a post-processing step certain features of the CFD data sets are extracted
by request of interactive users which are often experts in the application domain. The
results are commonly visualized in virtual reality environments, e.g. the HoloBench,

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 57–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

58 C. Brochhaus and T. Seidl

a stereo projection table composed of two right-angled projection surfaces, or two-
to six-sided rear projection systems called CAVE (cf. figure 1), or even small mobile
devices like PDAs. They offer a high degree of interactivity by letting users immerse
into the visualized objects. Common post-processing tasks include isosurface extraction
(“display regions with a temperature of exactly 125◦C”) amongst others.

a) CAVE b) HoloBench

Fig. 1. Examples of VR hardware

With increasing CPU powers, comput-
ers are able to produce larger and more
accurate simulation data sets, often up to
many gigabytes in size. Efficient post-
processing is one of the major require-
ments that VR frameworks have to satisfy,
reducing expensive idle times until a re-
sult is presented and ready for visual in-
spection, thus not delaying the user’s flow
of work. A significant increase in effi-
ciency can be achieved by streaming parts
of the solution, thus enabling the user to

catch a first impression of the overall result set and react with change of view or
post-processing parameters. The first impression can be improved by dynamically in-
corporating the user’s position and view direction into query processing: fractions of
the solution set that are close to and in front of the users regarding view direction
contribute more to the first impression than others. In this paper, we introduce a new
distance function for a view-dependent ranking of the results which is aligned to the
special characteristics of human perception. We present streaming techniques incorpo-
rating dynamically changing view parameters (users’ view points and directions), thus
offering a qualitative first impression to moving users.

State-of-the-art frameworks mainly use standard PCs for post-processing, which al-
low for lower costs and a high degree of scalability. They work with the CFD data
stored in main memory and quickly extract interesting features by completely scan-
ning the data set. We present external memory techniques for efficiently indexing and
accessing CFD data sets through post-processing, thus breaking main memory limi-
tations and allowing for data sets of almost arbitrary size, as well as supporting fast
query processing. We propose the Index based Graphics data Server “IndeGS”, us-
ing secondary storage methods to offer dynamic view-dependent access methods with
the above mentioned benefits of offering quick first impressions, enabling the user to
change view and post-processing parameters “on the fly” with immediate response from
the system, thus increasing efficiency and speed of knowledge extraction. This server
can be integrated into almost any network and a multitude of available visualization
frameworks.

The paper is organized as follows: In section 2, we present related work from the
field of spatial indexing and query processing. We introduce our new human vision
oriented distance function in section 3. Efficiently querying CFD data by a static user
is presented in section 4, with dynamic query adaptation aspects shown in section 5.
Section 6 presents efficient secondary memory indexing methods for CFD. Section 7
presents the results of experiments on real world data sets.

Efficient Index Support for View-Dependent Queries on CFD Data 59

2 Related Work

A great variety of secondary storage index methods for handling multidimensional data
exists. Many of these methods hierarchically and spatially divide the data space into
regions. One main characteristic and advantage of the structures is the property that
objects with local proximity in the data space are stored with topological proximity in
the index. Index structures like the R-Tree [1] and its variants (e.g. R+-Tree [2], R∗-
Tree [3]) use hierarchically nested minimum bounding rectangles (MBRs) for the inner
directory nodes to manage the data points stored in the leaf nodes.

In [4], efficient methods for performing isosurface extraction on external memory in-
terval trees is presented. These techniques do not support streaming and view-dependent
ordering of the result data, and combinations of post-processing queries are not endorsed.

Nearest neighbor algorithms such as the Depth-first Traversal algorithm of [5] and
the Priority Search algorithm described in [6] use these index structures to prune whole
branches of the tree once the feature space region they represent can be guaranteed to
not include the nearest neighbor. We focus on the second approach and modify it in
order to achieve a complete and exact ranking of all result cells depending on the query
point, which represents the user’s standpoint in our application.

To be able to exchange the distance function in the context of these index structures
and access methods, new pruning measures have to be introduced. These determine
the minimum distance (MINDIST) of directory node elements to the query point and
define the priority by which these node have to be visited. In the context of quadratic
form distance functions, [7] introduces a MINDIST calculation by applying a gradient
technique to find the location on the MBR which has least distance to the query point.

In the field of dynamic indexing and query processing, several methods for index-
ing moving objects have been proposed [8,9]. The mentioned papers introduce R-Tree
based techniques for indexing and querying moving objects in dynamic data sets. In-
stead of indexing moving objects, the processing of continuous queries is discussed in
[10]. Query results are updated over time via invalidating and joining previous results
sets. In [11], nearest neighbor sets for query points at sampled positions in the data
space are calculated by utilizing results of neighboring query points to reduce the over-
all number of expensive nearest neighbor queries. Due to the immense size of CFD data
sets and the high complexity of post-processing queries, approaches using precalcula-
tion of queries and maintaining precalculated results render inefficient.

3 Human Vision Oriented Distance Functions

In order to decrease costly operation times of complex VR hardware and at the same
time increase efficiency of expert users performing CFD post-processing, it is of utmost
importance to reduce query times for isosurface extraction and to allow the user to get
a quick first impression of the query result. Our presented access methods show the
following benefits: (1) results close to the viewer are presented rapidly, (2) results in di-
rect line of sight are ranked with higher priorities, (3) changing view position and view
direction are reflected by dynamic query adaptation. Queries q are specified as follows:

q := (view point v, view direction a, box b, scalar range sc1, . . . , scalar range scn).

60 C. Brochhaus and T. Seidl

a) Euclidean b) Manhattan c) Maximum d) Quadratic Form√∑d
i=1(qi − pi)2

∑d
i=1 |qi − pi| maxi=1...d{|qi − pi|}

√
(p − q)T · A · (p − q)

Fig. 2. Traditional distance functions: isolines around a viewpoint v

Here, v is the exact position of the viewer in or around the visualized data set, and by
a we denote the view direction specified as a three-dimensional vector. Box b specifies
the geometrical range of the query. Usually, this box covers the complete range of the
three dimensions, as no results shall be omitted from the result set, except in the case of
“geometrical selection” post-processing. Ranges of the scalar values sci are specified
to meet the requirements of each query. In the case of isosurface extraction, the cor-
responding scalar range sci has to be set to the designated value. CFD data is usually
provided by simulation software as a collection of numerous cells with geometrical and
supplemental scalar information. Cells are considered active, if all their values intersect
with the corresponding ranges specified in q.

3.1 Traditional Distance Functions

Standard ranking methods based on k-nearest neighbor queries like presented in [5]
and [6] perform a recursive walk through the underlying spatial data structure by cal-
culating distance approximations for MBRs in directory nodes based on distances like
Euclidean, Manhattan or Maximum distance etc. Using these distance functions ranks
the results in a spherical or octahedron-like manner, respectively, around the query view
point v (cf. figure 2a-c). One side effect is, that results not in the user’s line of sight are
visualized with the same priority as results directly in the line of sight. To improve the
speed of result extraction we assign higher priorities to objects directly in or close to
the line of sight and therefore letting the output “grow” faster in direction of the user’s
view. This can be achieved by using quadratic form distances, which stretch the corre-
sponding ellipsoids representing isoline/isosurfaces in the direction of the user’s view
(cf. figure 2d). One obvious shortcoming with quadratic forms is the assignment of
higher priorities to objects along the viewing axis independent of their orientation from
the users standpoint (i.e. in front or in the back of the user).

3.2 View Direction Oriented Heuristics

In a first approach, we developed a distance function based on polar coordinates. As
illustrated in figure 3, α denotes the angle/deviation between the user’s line of sight
a and the connecting line between the viewpoint v and object pi. By di we denote the
Euclidean distance between pi and v. In the following, we present some straightforward
heuristics and discuss their suitability for our purposes:

Efficient Index Support for View-Dependent Queries on CFD Data 61

Fig. 3. Heuristics based on polar coordinates Fig. 4. Human vision oriented hv-distance

1. d(v, pi) := di +w ·α: Finding an appropriate weight w is problematic. This weight
strongly depends on the distribution of distances between v and objects pi in the
data set. If the closest active cell is relative far from v, the angle α is probably
dominated by all possible Euclidean distances di. On the other hand, if the user is
standing “inside” the data set and the maximum distance to the farthest active cell
is quite low, α’s influence can become inappropriately high.

2. d(v, pi) := di · α: Objects directly on the line of sight show unfavorable behavior,
as they all share the distance value of 0, independent of their Euclidean distance.
Furthermore, objects far from v, but close to the axis of view a, are assigned lower
priorities as objects with a lower Euclidean distance di, but the same distance from
a. The decreasing α overrules the increasing di.

3. d(v, pi) := di · eα: Objects directly on the line of sight are now assigned their
Euclidean distances di, as eα = e0 = 1. The effect of the overruling of di is
compensated by applying the exponential function on α. Still problematic is the
separation of objects in front of the user from objects in the back.

4. lexicographical order (α, di): Ranking active cells by their lexicographical order
(α, di) leads to the effect that objects with small α are reported first in the order
of increasing Euclidean distances. Objects very close to the user, but with a high α
are presented unwantedly late. This inhibits a quick impression of the result objects
in the direct vicinity of the user as objects with a large distance are ranked before
objects with a very low distance and a marginally larger corresponding α. A clear
separation of objects in front of the user from the objects in the back is possible, as
objects with α ≥ 90◦ are only displayed after all objects with α < 90◦ have been
visualized. This heuristic does not work well without an appropriate discretization
of the range of α.

3.3 Human Vision Oriented Distance Function

To combine the advantages of both, traditional distance functions and the heuristics
presented above, we define a distance function which joins positive attributes of both

62 C. Brochhaus and T. Seidl

types and perfectly reflects the characteristics of human vision. We use the following
symbols to explain our new distance function:

v represents the view point/location of user
A similarity matrix to be used in quadratic form calculations
p object/point, for which distance has to be calculated
m center of ellipsoid which traverses v and p and is located on axis of sight
a user’s line of sight (vector representation), normalized to a length of 1

Our distance, referred to as hv-distance (human vision oriented distance, disthv)
caters for an accelerated growth of the result set in direction of the line of sight and
at the same time a delayed growth in the area of human peripheral vision. The corre-
sponding isolines are illustrated in figure 4: the distance of p is defined by the radius
of the ellipsoid which crosses p and the user’s standpoint v with center point m, which
necessarily lies on the line of sight a starting at v. To avoid that the ellipsoid is covering
space in the back of the user, we let the ellipsoid’s center move (with increasing radius)
along the vector a. Elements behind the user (located in the hatched region defined
by the hyperplane running through v and perpendicular to a) are treated separately, as
we describe in the following paragraphs. The ellipsoids of both the standard quadratic
forms and our distance function are stretched in direction of a. The ratio of growth in
direction of the line of sight compared to growth to any orthogonal direction is defined
by a parameter.

The formula dA(q, p) :=
√

(p− q)T · A · (p− q) defines standard quadratic form
distances, with A being a similarity matrix specifying cross-similarity weights for the
dimensions. For our purpose to derive an appropriate matrix A, we start with the diago-
nalization A = RT ·D ·R with a diagonal matrix D and orthonormal transformation R.
We set the first column of R to the user’s viewing direction a. The remaining columns
r2, · · · , rn of R are vectors which are orthonormal to a and to each other. These can be
calculated via the Gram-Schmidt process or the numerically more stable QR decompo-
sition. The diagonal matrix D contains eigenvalues of the transformation matrix R. To
acquire a “stretching” of the ellipsoid along the view axis, we increase the top left-most
value in D to a value d1

2 >> 1. The effect of this is that vector a is mapped to itself,
but its length is increased by factor d1

2. All in all, matrix R is a basis transformation
depending on the view direction and D caters for the stretching of the quadratic form
ellipsoid in the desired direction. The mathematical notation is as follows:

A := RT ·D · R with D =

⎛
⎝

d1
2 0 0

0 1 0
0 0 1

⎞
⎠ and R =

⎛
⎝

a1 r2,1 r3,1

a2 r2,2 r3,2

a3 r2,3 r3,3

⎞
⎠

Our hv-distance function differs from standard quadratic form distances on one im-
portant property: the centers of the ellipsoids are not equal to the query point, they
instead move along the line of sight, depending on the object for which the distance
is calculated. Figure 4 shows several ellipsoids and additionally the ellipsoid relevant
for the distance calculation of disthv(v, p) with center m. The radius of the ellipsoid
passing through v and p defines disthv:

disthv(v, p) := d(v, m)

Efficient Index Support for View-Dependent Queries on CFD Data 63

The following equations represent our design concepts that the distance between v and
m (2) is equal to the distance between p and m (5), i.e. the ellipsoid around m is passing
through v and p. This distance is the radius of the corresponding ellipsoid. Furthermore,
m is on the user’s axis of sight, located λ times vector a from origin v (3).

d(p, m) = d(v, m) (1)

Let us first prove that d(v, m) is proportional to the ellipsoids’ stretching factor d1, i.e.
d(v, m) = λ · d1:

d(v, m) =
√

(v −m)T ·A · (v −m) (2)

m = v + λ · a (3)

After insertion of (3) in (2):

d(v, m) =
√

(v − (v + λ · a))T ·A · (v − (v + λ · a))

⇒ d(v, m) =
√

λ · aT ·A · λ · a
With aT · A = d1

2 · aT , because eigenvector a is mapped to itself with d1
2 times its

length, and aT · a = 1, because a is normed, d(v, m) simplifies to:

d(v, m) = λ ·
√

d1
2 = λ · d1 (4)

�
The distance d(p, m) is defined as:

d(p, m) =
√

(p−m)T ·A · (p−m) (5)

Inserting (3) in (5):

d(p, m) =
√

(p− (v + λ · a))T · A · (p− (v + λ · a)) =
√

(p− v)T ·A · (p− v)− 2 · λ · aT ·A · (p− v) + λ2 · aT · A · a︸ ︷︷ ︸
=d1

2

With (4):

⇔ λ =
(p− v)T ·A · (p− v)
2 · d1

2 · aT · (p− v)
The overall formula for the hv-distance is defined as follows:

disthv(v, p) := d(v, m) = λ · d1 =
(p− v)T ·A · (p− v)
2 · d1 · aT · (p− v)

(6)

Let us note a useful side effect: objects in the back of the user all have negative dis-
tances. The ellipsoids in front of the user are mirrored along the separating hyper-
plane introduced above (cf. figure 4). Distances of objects on these ellipsoids and
their mirrored counterparts only differ in their sign. Whereas this property hinders the
hv-distance to be a metric, it can be utilized to start a ranking of the objects in the
back of the user, once all objects in front have been completely visualized during post-
processing.

64 C. Brochhaus and T. Seidl

4 Static Query Scenarios

In state-of-the-art VR frameworks, users start post-processing queries and results are vi-
sualized, once the query is completely processed. Thus, the efficiency of post-
processing strongly depends on the speed of query execution, and with larger and larger
data sets, query execution times increase. A continuous presentation of partial results
based on streaming techniques enables the user to catch a first impression of the result
set even before query completion. The quality of the impression is improved by pre-
senting partial results which are close to the viewer and in the direction of view earlier
than objects which contribute less to the impression. The quality of the first impression
at any stage of query processing can be assessed by the fraction of the user’s vision
field which is covered by the partial result set. We present view-dependent streaming
techniques, which achieve a high coverage at early stages of post-processing. In VR
frameworks, these result streams are usually received by the so called visualizer, a soft-
ware component which caters for the presentation of the results to the user.

We base our external memory index structure on wide-spread tree-like data structures
using minimum bounding rectangles (MBRs), as described in detail in section 6. After
starting the query execution at the root node, child nodes (MBRs or data objects/cells)
are assigned priorities based on a specific distance between their geometrical location
and the user’s standpoint v. Objects qualified for the result set regarding their scalar
values are then ranked according to their distance in e.g. a priority queue, handling the
object with the lowest distance first: in the case of directory nodes, their child nodes are
assigned priorities and ranked in the queue; for leaf nodes containing CFD cell infor-
mation, these cells are inserted in the queue, and cells at the top position are streamed to
the visualizer. The distance between directory node and the query point is determined
with help of a MINDIST approximation defining a lower bound for all objects contained
in the subtree of the respective node. For static users, wide spread access methods based
on Euclidean or Manhattan distance like presented in [5] and [6] can be utilized to en-
able view point oriented post-processing. The use of quadratic form distance functions
incorporates the user’s view axis into query processing. We choose a matrix for the
distance calculation which stretches ellipsoids along the axis of sight a. One effect is
shown in figure 2d: objects along the axis but in the back of the user are assigned the
same priorities as equi-distant objects in front of the user.

To additionally consider the viewing direction, we use our human vision oriented
distance function disthv from above. The corresponding MINDIST calculation is per-
formed by a modification of the gradient procedure presented in [7]. Starting on an
appropriate corner point of the MBR (here: nearest corner point to v according to Eu-
clidean distance), we iteratively perform a walk on the surface of the MBR defined by
the gradient of the quadratic form. After each iteration, we adjust the gradient, as the
center points of the intermediate ellipsoids move along the line of sight a. These itera-
tions are repeated until an ellipsoid is found, which is tangent to the MBR. MINDIST
is then set to the radius of this ellipsoid. The speed of data extraction can be increased
by heuristics to find the approximation MINDISTapprox at the the cost of losing the
correctness of the ranking process:

– Limit number of iterations: The maximum number of iterations performed during
gradient descent is limited to a fixed value.

Efficient Index Support for View-Dependent Queries on CFD Data 65

– Nearest (Euclidean) corner point: Calculate the Euclidean distance for each corner
point of the MBR point and define MINDISTapprox to be the hv-distance of this
corner point to the query point. This heuristic is equal to the previous one with a
limit of zero iterations.

– Center point: Determine the center point for the MBR and select the corresponding
hv-distance to be the MINDISTapprox distance.

In the first heuristic, the accuracy of MINDISTapprox compared to the correct MIN-
DIST depends on the number of iterations performed. Experiments on our sample
data demonstrate that a reduction of the number of iterations to 3 only introduced a
MINDISTapprox error of 0.035%, but reduced the overall number of iterations to one
third during processing of a complete query. The second heuristic is supposed to work
well on data sets with relative constant CFD cell sizes. A data set with a large variety in
cell sizes perform worse because of the changing quality of MINDIST approximations.
Same applies for the third heuristic, which is calculated with the least complexity of
all three heuristics, but performs worse for large MBRs in the upper levels of the index
structure with an overall average error of 30%.

The heuristics are not defining lower bounds in all cases, as it holds for the MINDIST
function, so it can possibly happen that a directory node at the first queue position
contains data objects that have a lower distance to the query point than objects that
were streamed to the visualizer at an earlier stage. Thus, the optimal ranking order
is not guaranteed when using heuristics, nevertheless it is ensured that no result cell
is omitted. A detailed examination of these heuristics’ accuracy can be found in the
experimental section (cf. figure 10).

For communication via standard network protocols, data is sent in packages for
which the size needs to be tuned appropriately. Answer packets containing numerous
cell specifications as well as point data are sent and their content is visualized after
reception by the visualizer. One effect is that only cells which are displaced crossing
packet boundaries, can be perceived as displaced. The choice of packet sizes is vital
and has the following influences: If the packet size is chosen very small, too much
communication overhead is generated and streaming of results is slowed down. A very
large packet size leads to a discontinuous streaming and jerky result visualization. Our
evaluations have shown, that packet sizes between 100 and 1,000 cells performed best
regarding query times and visualization smoothness.

5 Dynamic Query Adaptation

In this section we present novel approaches to dynamic query processing, supporting
interactive users who perform post-processing on CFD data in VR environments and
freely move in VR environments and change their view direction.

With our methods, the result stream is simultaneously adapted, with the effect that
the result set is steadily growing in the proximity and aligned to the view direction of
the user, thus always enabling the user to obtain a quick impression of the result data
set from dynamically chosen view positions. Results prior to query update are incor-
porated during further processing. Figure 5 shows an exemplary isosurface extraction
from a bird’s eye view with a moving user (depicted by the arrows). It can be clearly

66 C. Brochhaus and T. Seidl

observed that the result set is growing in front of the user, whenever a new query is
triggered (here: one arrow represents one view modification). This screenshot shows
query execution up to 9,000 out of ≈150,000 result cells.

Fig. 5. Dynamic query example

Depending on the distance function used
for ranking (cf. section 3), different pa-
rameters become relevant for queue reorga-
nization. For the traditional distances like
Euclidean or Manhattan distance (view di-
rection independent), only the changes of
the view point v induce a change on the
priorities of elements in the queue. In the
case of reorganization, the elements in queue
are assigned new priorities and the queue is
rebuilt. The use of distance functions that
take the view direction into account require
an additional step when view parameter
updates take place. Besides the resorting of
elements stored in the queue, the distance

function itself has to be adapted to the changed viewing axis. For quadratic forms, the
similarity matrix A needs recalculation depending on view direction a, before applying
the new quadratic form distance function on the queue elements. When using our hu-
man vision oriented hv-distance, the similarity matrix A is recalculated similarly to the
quadratic form distances.

5.1 Queue Rearrangement Strategies

The most time-consuming part of queue rearrangements after a view parameter change
is to calculate new priority values for all queue elements and then generate a new queue
according to these values. We developed heuristics to speed up the expensive regen-
eration of the queue at the cost of losing the correctness of the result ranking order,
but nonetheless a completeness of the result set is guaranteed. The goal is to keep the
ranking disorder at a tolerable level and to reduce the effect of queue rearrangement
calculations on the overall query processing time.

– Heuristic 1: Stream leaf nodes: The queue is emptied and leaf node objects con-
taining cell data are streamed to the visualizer without recalculating their priorities.
Only priorities of inner nodes are recalculated and stored in the queue.

– Heuristic 2: Insert only directory nodes in queue: The average queue size is reduced
by only holding directory nodes in the queue. When visiting a leaf node, all stored
cells are streamed to the visualizer. This approach is justified by the fact that cells
referenced by leaf nodes at the top of the queue are most likely to appear next in
the result stream due to their locality in the index.

– Heuristic 3: Stream subtree: To keep the average queue size low, a fixed level l is
defined prior to query invocation. When a node in the tree on level l is reached
during traversal, the referenced subtree is completely streamed to the visualizer.
The degree of randomization is depending on the definition of l. The closer l is to
leaf node level, the higher is the correctness of ranking.

Efficient Index Support for View-Dependent Queries on CFD Data 67

– Heuristic 4: No recalculation: No distances of elements in the queue are recalcu-
lated. Query processing is continued, ranking visited nodes or cells according to
the updated distance function. This drastically reduces the calculation costs due to
a “lazy” handling of query updates. Consequently, elements in the queue prior to
query update are possibly displaced in the result stream.

Due to the packet-wise communication with the visualizer, the same observation
as described in the context of MINDIST-approximations (cf. section 4) holds here:
Only cells, which are displaced crossing packet boundaries, can be perceived as dis-
placed. For an experimental evaluation of the queue heuristics’ quality, we refer to
section 7.

5.2 Query Update Frequency

In VR environments, the users’ standpoints and viewing directions are observed con-
stantly by optical or electromagnetic tracking systems at relative high frequencies (e.g.
60 Hertz). Therefore even minor movements yield changes in query parameters with the
need for rearrangements of the result queue. Effects of the queue rearrangement calcu-
lations on the overall query response time are examined in the experimental section
(cf. section 7). We followed three approaches: (1) time dependent updates triggered by
regular clock cycles, (2) result cell amount dependent updates triggered by result por-
tions or (3) user dependent updates triggered by user movement passing a predefined
threshold, or arbitrary combinations of these. With the time dependent approach, the
query is adjusted after a predefined time interval t has passed, integrating previously
calculated results. The second approach is very similar: instead of restarting query pro-
cessing after time interval t, queries are adjusted after the streaming of n result cells.
The third approach measures the degree of change Δ of view parameters between two
query adaptation triggers. If this change is below a predefined threshold, query process-
ing will not be adjusted. This avoids queue rearrangements after only minor changes
in view parameters. We propose a Δ which reflects the average relative change Δi of
each geometrical dimension i normed by the geometrical extent rangei of the data set
regarding dimension i as well as the change of view direction (Δα):

Δ :=
1
4
· (Δα

360◦
+

3∑
i=1

Δpi

rangei
)

We integrated the above mentioned query update mechanisms into “IndeGS”. The
subjectivity of perception of query result presentation using different settings of pa-
rameters rangei and Δα renders an extensive experimental evaluation almost impos-
sible. We concentrated our experiments on the result cell amount dependent method
(cf. section 7).

6 Index Support for View-Oriented CFD Post-Processing

The immense data sets which are created during CFD simulations require efficient
indexing to enable post-processing with acceptable response times. Many secondary
storage index methods exist for appropriately indexing spatial data sets and offer a

68 C. Brochhaus and T. Seidl

multitude of different access methods. So far, no customized index structures in the
field of CFD post-processing exist to reflect the characteristics of simulation data sets
and existing structures prove inept for these purposes. Over many years, index struc-
tures based on the R-Tree [1] like the R∗-Tree [3] or X-Tree [12] have proven to be
appropriate for indexing spatial data. Certain characteristics of CFD data sets render
these structures inefficient and ask for a different storage scheme. So far, CFD data has
been stored in interval trees, without offering appropriate view-dependent access meth-
ods. We have decided to integrate a rectangular index structure as a basis for our query
processor. Candidates for such an index structure are R-Trees or Octtrees. To simplify
matters, we decided to use the R-Tree as the basis for our new index structure for inte-
grating view-dependent access methods. During index creation, we use the bulk-loading
method STR (sort tile recursive) [13] which appropriately arranges the data before cre-
ating the index in a bottom-up manner. We concentrate on the use of CFD simulation
data in the format proposed by the open-source library VTK [14]. CFD data consists of
cells (tetrahedra, hexahedra, pyramids etc.) which are defined by a topology descriptor
and their corner points, which carry information about their geometrical position and
additional scalar information (temperature, pressure, density etc.).

A naive approach is to use a standard R-Tree implementation which indexes the ele-
ments of their geometrical as well as scalar dimensions. Three severe problems emerge:
(1) The use of a high number of dimensions leads to the phenomenon called “Curse of
Dimensionality”, which describes the rapidly degrading performance with increasing
dimensionality. The data sets in the experimental section include 5 and 8 scalar fields,
and together with the geometrical dimensions x, y, z, this leads to an overall dimension-
ality of 8 and 11, respectively, which cannot be handled by R-Trees efficiently. With the
advancements in the field of CFD simulations, higher dimensionalities through intro-
duction of additional scalar values are easily imaginable. Even data structures like the
X-Tree [12], which were developed to handle higher dimensionalities, come to their
limits. (2) The leaf nodes need not only store MBRs of cells and the cells themselves,
but additionally the exact cell information consisting of all cell-constructing data points
and their scalars. This consequently decreases the payload of leaf nodes, thus increasing
the height of the R-Tree and query response times. (3) Another effect is the high redun-
dancy when storing data points, as each data point can be part of an arbitrary number of
cells and is therefore stored redundantly in the leaf nodes containing the related cells.
In the data sets used in our experiments (cf. section 7), each data point is on average
part of eight (engine data set) or twelve cells (delta wing data set), and therefore on
average stored eight and twelve times, respectively, providing for an explosion of the
index structure in size.

Optimizing the Dimensionality of the Index Structure: By carefully examining the
data sets prior to indexing and taking a reasonable choice of dimensions to be subsumed
to form several lower dimensional indexes, the effects of the “Curse of Dimensionality”
can be bypassed. If certain scalar values appear more frequent in combined queries,
storing these scalars together in one index avoids querying on multiple indexes and
stream result joining. As studies on query behavior of post-processing experts are not
part of this paper and for reasons of simplicity, we arbitrarily distributed scalar values
to indexes with adequate dimensionalities.

Efficient Index Support for View-Dependent Queries on CFD Data 69

Reducing Index Size and Swapping Out Data Points: The second and third problem
(low payload in leaf nodes, high redundancy of data points) are solved by swapping out
cells to a subordinate index. Instead of storing exact cell information consisting of all
cell-forming data points with geometrical and scalar information, only point identifiers
are stored in leaf nodes. The data points themselves are stored only once in a secondary
index, despite their number of occurrences in cells (which can be up to 140 times for the
delta wing data set). Thereby redundancy and the size which is occupied by each cell in
the leaf nodes is reduced at the same time, significantly reducing the overall index size.

To avoid unnecessary block reads in the secondary index, data points, which are
neighboring each other in the data space, are ideally stored in the same or a neighboring
blocks on hard disk. We developed heuristics to achieve the local proximity of point
data in the secondary index with regards to the proximity of cells in the R-Tree:

1. “Appearance in index” heuristics: A traversal of the index’ leaf nodes from left to
right induces an order on cells and indirectly on the data points. As points are most
likely to appear several times in different cells, we have the choice of choosing their
1st, 2nd, · · · , nth appearance for defining their order in the secondary index.

2. “Space-filling curves” heuristics: We order the point data based on space-filling
curves according to their geometrical coordinates. With space-filling curves, we
can assign each data point in the 3D space one 1D value, by which the data points
are ordered in the secondary index with the effect of local proximity in the data
space and index. As a discrete data space is required for space-filling curves, we
partition the data space up to a predefined resolution and apply different curves,
e.g. Z curve, Hilbert curve and Peano curve. An overview over these curves can be
found in [15].

To evaluate our secondary index heuristics, we performed queries extracting isosur-
faces on the delta wing data set for different scalar values. We chose the results of
our experiments with scalar value “density” (cf. figure 6) as representative for the ex-
perimental series, as the heuristics’ performances show similar results on the different
scalars. “Random” describes the heuristic using a random order of the data points per-
forms worst. The order given by the VTK source file performs significantly better. The
space-filling Z curve and Hilbert curve both show similar performance. Best heuristic
proved to be the heuristic choosing the first appearance of the data point regarding leaf
node level of the primary index, followed by the heuristic choosing the eighth appear-
ance and the Peano curve.

7 Experiments

Our graphics data server “IndeGS” offers communication to arbitrary software com-
ponents through a clearly defined interface, to enable the inexpensive integration in
any VR framework. We integrated “IndeGS” in the ViSTA framework [16] which of-
fers advanced interaction and visualization methods for post-processing in numerical
simulations. Together with the post-processing toolkit ViSTA Flowlib [17], ViSTA is a
freely available and very powerful toolkit for integrating VR technology in technical
and scientific applications.

70 C. Brochhaus and T. Seidl

0

10,000

20,000

30,000

40,000

50,000

60,000

1.0
58

1.0
82

1.1
07

1.1
31

1.1
56

1.1
80

1.2
05

1.2
29

1.2
54

1.2
78

1.3
03

scalar value density

bl
oc

k
re

ad
s

(s
ec

on
da

ry
 in

de
x) random

as is (VTK file)
Z curve
Hilbert Curve
Peano curve
8th appearance
1st appearance

Fig. 6. Secondary index heuristics

a) Engine b) Delta wing

Fig. 7. Sample shapes used in CFD simulations

For our experiments, we used two different CFD data sets: a data set of a simulated
fuel injection into a combustion engine cylinder and a data set of simulated aerody-
namic flows over the surface and in the surroundings of a delta wing airplane. The basic
shapes, around which fluid dynamics are simulated, are shown in figure 7. The engine
data set consists of 62 simulated time steps, each time step consisting of 50,000 to
200,000 cells (hexahedra) and 50,000 to 200,000 data points containing 4 scalar values
per point, resulting in file sizes between 5 and 30 MB. The delta wing data set com-
prises of 3 time steps with approximately 15 million cells (tetrahedra and hexahedra)
and 4.5 million data points per time step with 8 scalar values each. The file size for the
overall delta wing data set is 2.2 GB. The experiments were run on a 2 GHz PC with 2
GB of RAM running Windows XP.

The first experiment shows the effects of the different distance functions on the qual-
ity of the user’s first impression of the result. We measure the relative coverage of in-
termediate results in terms of pixels displayed on a 2D screen at different stages during
query execution compared to the number of pixels visualized after query completion.
A high percentage of coverage after a short period induces a quick and representative
first impression. We performed isosurface extractions using scalar value “mach num-
ber” on both CFD data sets. Figure 8 shows the coverage in percent for the different
ranking methods, with the elapsed time (including secondary storage IO, communica-
tion as well as visualization costs) displayed on the x-axis for the delta wing data set. It
can be clearly observed that query processing using our hv-distance covers the largest
part of the screen compared to other distance functions at any time during query pro-
cessing, although it is the most complex to calculate. The unranked processing performs
worst, as cells are almost randomly streamed to the visualizer and cells with a very large
distance to the viewer or outside the vision field consequently only contribute a small
number of pixels to the visible result set. The quadratic forms distance function works
slightly better than Euclidean distance, but the absolute advantage of a higher cover-
age is reduced by the more complex calculations. Heuristic 1 shows similar behavior as
the unranked processing, but speeds up after approx. 3 seconds. It populates the screen
at a low rate in the beginning, as many cells far away from the viewer are visualized
early, which only contribute few pixels. Heuristic 2 provides for a high coverage after
a very short time, but slows down after a few seconds and is overtaken by the rank-
ing using Euclidean or quadratic form distances, due to the effect described in section
3.2. Heuristics 3 and 4 show similar behavior and are omitted for visibility reasons. We

Efficient Index Support for View-Dependent Queries on CFD Data 71

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
elapsed time (sec)

co
ve

ra
ge

 (p
er

ce
nt

)

hv-distance heuristic 2
quadratic forms euclidean distance
unranked (random) heuristic 1

Fig. 8. Coverage “delta wing”

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.5 1.0 1.5 2.0
elapsed time (sec)

co
ve

ra
ge

 (p
er

ce
nt

)

hv-distance heuristic 2
quadratic forms euclidean distance
unranked (random) heuristic 1

Fig. 9. Coverage “engine”

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
iteration limit

re
la

tiv
e

er
ro

r i
n

%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

sa
ve

d
ca

lc
ul

at
io

ns
 in

 %

inner nodes
average
leaf nodes
saved calculations (right scale)

 it
er

at
io

ns

 d
is

pl
ac

ed
 c

el
ls

 m
ax

im
um

 d
is

pl
ac

em
en

t

 d
is

pl
ac

ed
 c

el
ls

 (p

ac
ke

t m
od

e)

 m
ax

.
 d

is
pl

ac
em

en
t

 (p
ac

ke
t m

od
e)

 o
ve

ra
ll

qu
er

y
 p

ro
ce

ss
in

g
 s

pe
ed

up

1 6968 1402 146 14 114.71%
2 2033 1025 31 10 113.97%
3 850 719 11 7 113.37%
4 514 446 5 4 112.95%
5 290 240 2 2 111.94%
6 110 54 1 1 111.43%
7 48 1 0 0 110.48%
8 20 1 0 0 109.55%
9 18 1 0 0 108.33%
10 4 1 0 0 105.41%
11 0 0 0 0 102.31%

a) MINDIST-error b) effect on query processing (50,000 cells)

Fig. 10. MINDIST approximations evaluation

performed a comparable experiment on the engine data set (cf. figure 9), showing that
our hv-distance outperforms the competing ranking methods. All ranking methods reach
higher percentages after a shorter time in comparison to the delta wing results, which
is a consequence of the significantly lower complexity of the engine data set. To prove
the suitability of our approaches in the context of very large data sets, we focus on the
delta wing data set in the following.

In further experiments performed using the delta wing data set, we compare our
MINDIST-heuristics (cf. section 4) to the correct MINDIST. When calculating the exact
MINDIST using the gradient descent method, a maximum of 132 iterations is needed
for a very limited number of MINDIST-calculations. When limiting the number of itera-
tions to 15, the calculated MINDISTapprox is on average only 0.012% above the correct
MINDIST. Figure 10a shows the average error of MINDISTapprox for leaf and inner
nodes after 1 to 15 iterations compared to the exact MINDIST. The averaged error is
dominated by the leaf node error, as the number of leaf nodes visited is up to ≈16 times
higher than the number of inner nodes. Figure 10a also displays the percentage of saved
MINDIST iterations when applying an interation limit. Figure 10b shows the number of

72 C. Brochhaus and T. Seidl

0

50

100

150

200

250

2 4 6 8 10
number of query updates

m
ax

im
um

 d
is

pl
ac

em
en

t

no resorting only dir. nodes stream cells stream leaves

0.5

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10
number of query updates

ru
nt

im
e

(s
ec

)

exact order
no resorting
stream cells
stream leaves
only dir. nodes

a) displacement of cells (packet size: 1,000 cells) b) heuristic runtimes

Fig. 11. Dynamic query heuristics evaluation

cells (out of an overall amount of 50,000 cells) which are not delivered in their correct
ranking position (column “displaced cells”). Column “maximum displacement” shows
the maximum difference of displaced cells between the correct position and the position
in the approximated ranking. As the cells are delivered over the network in packets (in
this experiment: 100 cells per packet to guarantee a smooth visualization), cells that are
not displaced in different packets are not perceived as displaced. The next two columns
(“packet mode”) show the displacement in the scale of packets, which is minor even
with the relative small packet size chosen for this experiment. The last column shows
the overall speedup of query processing (including IO costs) that is achieved by limit-
ing the number of iterations. When setting the limit to 7 iterations, no displaced cell is
perceived and a speedup of 110% is achieved.

We examined the heuristics for dynamic query adaptation from section 5 by mea-
suring the disorder of the ranking and the runtimes for each of the heuristics. The
result set consists of 29,172 cells and the packet size was set to 1,000 cells, and the
query point was updated 2 to 10 times during query processing. Figure 11a shows
the maximum packet-wise displacement of cells when comparing the result streams
with the correct stream, which is produced by a complete regeneration of the priority
queue after each query update. The heuristics “no resorting” and “insert only directory
nodes in queue” produce displacement maxima independent of query update frequency,
whereas the “stream leaves” (equal to heuristic “stream subtree” heuristic from section
5.1 with l set to leaf node level) and “stream cells” heuristics’ maxima are increasing, as
they both remove many elements (leave nodes and cells, respectively) from the queue
at query update, streaming a high number of cells in incorrect order, producing a high
overall degree of disorder. Figure 11b shows the runtimes for the query execution using
exact ranking as well as the heuristics: The complexity for the exact ranking rises with
number of updates due to the complexity of distance calculations for each update. Run-
times for “stream cells” and “stream leaves” are getting lower marginally with higher
update frequency: the removal of cells and leaf nodes at query update reduces the av-
erage queue size and consequently the queue management costs. Recapitulating the
experiment results, heuristics with high runtimes perform best (“exact order”), whereas
heuristics with low runtimes (e.g. “only directory nodes”) produce higher levels of dis-
order, affecting the smoothness of visualization.

Efficient Index Support for View-Dependent Queries on CFD Data 73

fir
st

pe
rs

on
bi

rd
’s

ey
e

5,000 cells 10,000 cells 15,000 cells 5,000 cells 10,000 cells 15,000 cells
a) unranked b) ranked (hv-distance)

Fig. 12. Query processing “delta wing tip”

Figure 12 shows an exemplary query processing (isosurface extraction on delta wing
data set for scalar “density”) at different stages of processing. The simulated query point
is located in front of the tip of the delta wing and the screen shots show the visualized
partial results as well from first person view as from a bird’s eye perspective. We fo-
cused here on the unranked (figure 12a) and ranked processing using our hv-distance
(figure 12b).

8 Conclusion and Future Work

In this paper we presented our new index based graphics data server “IndeGS”, a compo-
nent capable of being integrated in any VR framework and offering indexing and access
methods for computational fluid dynamics (CFD) data. “IndeGS” enables the handling
of data of almost arbitrary size by employing an efficient spatial external memory index-
ing structure. We hereby overcome the main memory limitations which are a restrictive
factor for the effectiveness of post-processing on very large data sets. “IndeGS” also of-
fers an access structure which supports dynamic view-dependent result extraction based
on streaming techniques. “IndeGS” significantly increases the productivity of users per-
forming post-processing on CFD data by view-dependent result streaming which enables
the user to catch a quick first impression of his query. Instead of waiting for the whole
query to be processed, the users can change query type and parameters and freely roam
the VR environment while their queries are processed and displayed. For this purpose,
we developed a human vision oriented distance function to reflect the characteristics of
human vision, where objects in the focus of sight are perceived with greater interest.

In future work, we plan to explore the suitability of index structures utilizing rela-
tional database systems, like proposed with the RI-Tree [18] which efficiently answers
interval queries on very large data sets. Integrating time as an additional dimension to
the data sets offers new possibilities of browsing query results over time. In connec-
tion with CFD data sets that were simulated including a time component, the user can
dynamically change view parameters as well as visualized time steps. We plan to in-
tegrate intelligent prefetching strategies for time steps close to the currently displayed
time step.

74 C. Brochhaus and T. Seidl

Acknowledgments

The authors would like to thank Christian Bischof and Marc Wolter from the Center for
Computing and Communication of the RWTH Aachen University for providing access
to their virtual reality infrastructure and for supporting the integration of “IndeGS” in
the ViSTA framework. We also thank Christian Klaus and Dennis Meichsner for their
valuable work on the basic implementation of the graphics data server.

References

1. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conf,
pp. 47–57 (1984)

2. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects.. In: VLDB Conference, pp. 507–518 (1987)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: SIGMOD Conf. pp. 322–331 (1990)

4. Chiang, Y.J., Silva, C.T., Schroeder, W.J.: Interactive out-of-core isosurface extraction. In:
VIS Conference, pp. 167–174 (1998)

5. Roussopoulos, N., Kelley, S., Vincent, S.: Nearest Neighbor Queries. In: SIGMOD Confer-
ence, pp. 71–79 (1995)

6. Hjaltason, G.R., Samet, H.: Ranking in Spatial Databases. In: Egenhofer, M.J., Herring, J.R.
(eds.) SSD 1995. LNCS, vol. 951, pp. 83–95. Springer, Heidelberg (1995)

7. Seidl, T., Kriegel, H.-P.: Efficient user-adaptable similarity search in large multimedia
databases. In: VLDB Conference, pp. 506–515 (1997)

8. Iwerks, G.S., Samet, H., Smith, K.P.: Continuous k-nearest neighbor queries for continuously
moving points with updates. In: VLDB Conference, pp. 512–523 (2003)

9. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of contin-
uously moving objects. In: SIGMOD Conference, pp. 331–342 (2000)

10. Mokbel, M., Xiong, X., Aref, W.: SINA: Scalable incremental processing of continuous
queries in spatio-temporal databases. In: SIGMOD Conference, pp. 623–634 (2004)

11. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen,
C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96.
Springer, Heidelberg (2001)

12. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-Tree: An Index Structure for High-
Dimensional Data. In: VLDB Conference, pp. 28–39 (1996)

13. Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: STR: A Simple and Efficient Algorithm
for R-Tree Packing. In: ICDE, pp. 497–506 (1997)

14. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit. Kitware Inc. (2004)
15. Sagan, H.: Space-filling curves. Springer, Heidelberg (2006)
16. Reimersdahl, T.v., Kuhlen, T., Gerndt, A., Heinrichs, J., Bischof, C.: ViSTA - a multimodal,

platform-independent VR-Toolkit based on WTK, VTK, and MPI. In: IPT Workshop (2000)
17. Schirski, M., Gerndt, A., Reimersdahl, T.v., Kuhlen, T., Adomeit, P., Lang, O., Pischinger,

S., Bischof, C.: ViSTA FlowLib - framework for interactive visualization and exploration of
unsteady flows in virtual environments. In: EGVE Workshop, pp. 77–85. ACM Press, New
York (2003)

18. Kriegel, H.-P., Pötke, M., Seidl, T.: Managing intervals efficiently in object-relational
databases. In: VLDB Conference, pp. 407–418 (2000)

Generalizing the Optimality of Multi-step
k-Nearest Neighbor Query Processing

Hans-Peter Kriegel, Peer Kröger, Peter Kunath, and Matthias Renz

Institute for Computer Science, Ludwig-Maximilians Universität München
{kriegel,kroegerp,kunath,renz}@dbs.ifi.lmu.de

http://www.dbs.ifi.lmu.de

Abstract. Similarity search algorithms that directly rely on index struc-
tures and require a lot of distance computations are usually not applica-
ble to databases containing complex objects and defining costly distance
functions on spatial, temporal and multimedia data. Rather, the use of
an adequate multi-step query processing strategy is crucial for the per-
formance of a similarity search routine that deals with complex distance
functions. Reducing the number of candidates returned from the filter
step which then have to be exactly evaluated in the refinement step is
fundamental for the efficiency of the query process. The state-of-the-art
multi-step k-nearest neighbor (kNN) search algorithms are designed to
use only a lower bounding distance estimation for candidate pruning.
However, in many applications, also an upper bounding distance ap-
proximation is available that can additionally be used for reducing the
number of candidates. In this paper, we generalize the traditional concept
of R-optimality and introduce the notion of RI -optimality depending on
the distance information I available in the filter step. We propose a new
multi-step kNN search algorithm that utilizes lower- and upper bound-
ing distance information (Ilu) in the filter step. Furthermore, we show
that, in contrast to existing approaches, our proposed solution is RIlu -
optimal. In an experimental evaluation, we demonstrate the significant
performance gain over existing methods.

1 Introduction

In many database applications such as molecular biology, CAD systems, multi-
media databases, medical imaging, location-based services, etc. the support of
similarity search on complex objects is required. In general, the user wants to
obtain as many true hits as soon as possible. Usually, in all these applications,
similarity is measured by metric distance functions. The most popular query
types are distance range (or ε-range) queries, k-nearest neighbor (kNN) queries,
and – more recently – reverse kNN queries. Those queries can be supported by
index structures such as the R-tree [1] or the R*-tree [2] and their variants for Eu-
clidean data or by the M-tree [3] and its variants for general metric data. These
index structures are designed for shrinking down the search space of tentative
hits in order to scale well for very large databases.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 75–92, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 H.-P. Kriegel et al.

However, index structures usually invoke a large number of distance computa-
tions and, thus, do neither account for the increasing complexity of the database
objects nor for the costly distance functions used for measuring the similarity.
To cope with complex data objects and costly distance functions, the paradigm
of multi-step query processing has been defined for spatial queries such as point
queries and region queries [4,5]. This paradigm has been extended to similarity
search in databases of complex objects performing distance range queries [6,7]
and kNN queries [8,9]. The key idea of multi-step query processing is to apply
a so-called filter step using a cheaper distance function, the so-called filter dis-
tance, in order to prune as many objects as possible (as true hits or true drops).
For the remaining candidates, for which the query predicate cannot be decided
using the filter distance, the exact (more costly) distance needs to be evaluated
in the so-called refinement step.

In most applications, two different types of filter distances are commonly used
for multi-step query processing. First, a lower bounding filter distance produces
distances that are always lower or equal to the exact distance and can be used to
discard true drops. Second, an upper bounding filter distance produces distances
that are always greater or equal to the exact distance and can be used to identify
true hits. While both types of filter distances have successfully been used for
distance range queries, all existing multi-step kNN query processing algorithms
only use the lower bounding filter distance. Thus, these approaches can only
prune true drops, but cannot identify true hits in the filter step. Furthermore,
these approaches cannot report true hits already after the filter step, but need
to refine the candidates before reporting them as hits. However, in applications
where the results are further processed and this processing is quite costly due
to the complexity of the data objects, it is desirable to output true hits as soon
as possible even if the result set is not yet complete. Obviously, using an upper
bounding filter distance may allow to output a first set of true hits already after
the filter step before refinement. In addition, using an upper bounding filter
distance could significantly reduce the number of candidates that need to be
refined and, thus, could clearly improve query execution times. As a consequence,
the storage required to manage intermediate candidates during the entire filter-
refinement procedure can also be reduced.

In general, using also upper bounding distance information in the filter step
yields several advantages as long as no ranking of the kNNs is needed. However,
in many applications, users only want the result of a given kNN query rather
than a ranking. For example, a restaurant owner planning a public relations
campaign by sending a fixed number k of flyers to potential costumers may
choose the k customers with the smallest distance to the restaurant’s location.
In addition, many data mining algorithms that rely on kNN computation such
as density-based clustering, kNN classification, or outlier detection only require
the result of a kNN query, but not its ranking. Many of those methods use the
result of kNN queries for further processing steps.

In this paper, we propose a novel multi-step query processing algorithm for
kNN search using both a lower and an upper bound in the filter step. We show

Generalizing the Optimality of Multi-step kNN Query Processing 77

that this algorithm is optimal, i.e. that it produces a minimum number of can-
didates which need to be refined. For that purpose, we generalize the notion
of r-optimality taking the distance estimations available in the filter step into
account. In a broad experimental evaluation, we show that when using our novel
multi-step query algorithm, the application of an upper bound in addition to
a lower bound in the filter step yields a significant performance gain over the
traditional approach using only lower bounding distance approximations. In par-
ticular, we show that this performance gain is not only in terms of the number
of candidates that need to be refined, implying a runtime improvement, but also
in terms of space requirements.

The rest of the manuscript is organized as follows. In Section 2 we discuss
existing multi-step kNN query processing algorithms. A generalized notion of
the optimality for multi-step kNN algorithms is presented in Section 3. Section
4 presents a novel multi-step kNN algorithm that meets the requirements of our
new generalized optimality. Section 5 presents our experimental evaluation and
Section 6 concludes the paper.

2 Multi-step kNN Query Processing

Let D be a database of objects and dist be a distance function on these objects.
For a given query object q and a given positive integer k ∈ N+, a k-nearest
neighbor (kNN) query on a database D retrieves the objects in D that have the
k smallest distances to q, formally

Definition 1 (kNN query, kNN-distance). For a query object q and a query
parameter k ∈ N, a kNN query in D returns the smallest set NND(q, k) ⊆ D
that contains (at least) k objects from D, for which the following condition holds:

∀o ∈ NND(q, k), ∀o′ ∈ D −NND(q, k) : dist(q, o) < dist(o′, q).

With nnk-dist(q,D) = max{dist(q, o)|o ∈ NND(q, k)} we denote the kth nearest
neighbor distance (also called kNN-distance) of q (w.r.t. D).

Since the database D is usually clear from context, we write NN(q, k) and
nnk-dist(q) instead of NND(q, k) and nnk-dist(q,D), respectively.

Let us note that in case of tie situations we include all ties into the result set.
Thus, the cardinality of the result set may exceed k and the result of a kNN
query is deterministic.

A naive solution for answering a given kNN query is to scan the entire database
D and test for each object if it is currently among the k-nearest neighbors. This
naive algorithm has a runtime complexity of O(N ·QP), where N = |D| denotes
the number of objects in D and QP denotes the cost of evaluating the query
predicate for one single object, which is usually dominated by the complexity
of the applied distance function dist. Obviously, using such a naive solution for
kNN query processing is very expensive and not feasible for a very large set
of complex objects. In fact, the problem is two-fold: On one hand, since the

78 H.-P. Kriegel et al.

d
a
ta
b
a
s
e

fi
lt
e
r
s
te
p

drops

re
fi
n
e
m
e
n
t

re
s
u
lt

hits

candidates

multi-step query processor

q
u
e
ry

Fig. 1. Multi-step query processor

number of objects N in a database is usually very large, a sequential scan over
all objects to evaluate the query predicate would produce very high I/O cost.
On the other hand, due to the complexity of the distance function used in the
above mentioned applications, the evaluation of the query predicate QP of one
single object usually demands high CPU cost. In addition, many applications
deal with very large objects such as audio or video sequences. As a consequence,
the evaluation of the query predicate also invokes I/O cost and, thus, the cost
for evaluating a query predicate become the bottleneck during query processing.

Indexing methods (i.e., single-step query processing solutions) that enable
to prune large parts of the search space help to reduce the set of objects for
which the query predicate has to be evaluated, i.e. address the first problem
of high I/O cost due to a sequential scan. Theoretically, using an index, the
runtime complexity is decreased to O(log N · QP). However, index structures
have two important drawbacks when dealing with complex objects and costly
distance functions. First, indexes in general rely on the assumption that the
distance function used is a metric. Otherwise, if the distance function defined
on the database objects is not metric (in particular if the triangle inequality is
not fulfilled), indexes cannot be applied. Second, and more severely, indexes are
primarily designed to reduce the number of page accesses, but usually invoke the
evaluation of the query predicate for many objects, e.g. during the index traversal
and for the evaluation of the candidates reported from the indexing method.
Obviously, when dealing with complex objects where QP is the bottleneck, a
single-step query processing strategy is no longer feasible. Rather, a multi-step
query processing approach is required reducing the set of result candidates in a
filter step using an approximate evaluation of the query predicate which can be
computed much faster than the exact evaluation (and optimally does not invoke
extra I/O cost). This reduces the QP -part of the runtime complexity. In the filter
step, as many hits and drops as possible (the amount obviously depends on the
quality of the approximation) may already be identified. Finally, the remaining
candidates have to be exactly evaluated in a refinement step in order to complete
the result set. Since the filter step can also be supported by an index structure,
additionally the N part in the runtime complexity is decreased. A schematic
description of the multi-step query processor is illustrated in Figure 1.

Generalizing the Optimality of Multi-step kNN Query Processing 79

k-NearestNeighborSearch(q,k)
1 initialize ranking on index I
2 initialize result = sorted list〈key, object〉
3 initialize dmax = ∞ // stop distance
4 while o= ranking.getnext() and LB(q, o) ≤ dmax do
5 if dist(q, o) ≤ dmax then result.insert(dist(q, o),o)
6 if result.length ≥ k then dmax = result [k].key
7 remove all entries from result where key > dmax

8 endwhile
9 report all entries from result

Fig. 2. Multi-step kNN algorithm proposed in [9]

Obviously, a multi-step kNN algorithm is correct if the algorithm does nei-
ther produce false drops in the filter step, i.e. all drops do not fulfill the query
predicate, nor produce false hits, i.e. all hits reported from the filter step really
fulfill the query predicate.

The state-of-the-art multi-step kNN search method is the algorithm proposed
in [9]. It uses a lower-bounding distance estimation LB in the filter step which is
always lower or equal to the exact distance, i.e. for any query object q the lower
bounding property

∀o ∈ D : LB(q, o) ≤ dist(q, o)

holds. A lower bounding filter can be used to prune true drops. The basic idea
of the proposed method in [9] is to iteratively generate candidates sorted by
ascending lower bounding filter distances to the query object q. For that purpose,
a ranking [10] of the database objects w.r.t. their filter distances to q is used.
The multistep kNN query processing proposed in [9] is initialized with the first
k objects from the ranking sequence having the k smallest filter distances. These
objects are refined, i.e. their exact distances to q are computed, and are inserted
into the current result set (sorted by ascending exact distances to q), representing
the kNN of q w.r.t. the already refined objects. A so-called stop distance dmax

is initialized as the distance of q to the kth object in the current result set
representing the kNN-distance of q w.r.t. the already refined objects. Now, an
iteration starts that, in each step, performs the following: First, the next object c
from the ranking sequence is fetched. If this object has a lower bounding distance
estimation to q larger than the stop distance, i.e. LB(q, c) > dmax, the iteration
stops. Otherwise, c is refined, i.e. the exact distance dist(q, c) is computed, and,
if necessary, c is added to the current result set and the stop distance dmax is
adjusted. When the iteration stops, the current result set contains the kNN of
q. The pseudo code of this algorithm is depicted in Figure 2.

In [9], the optimality w.r.t. the number of refined objects necessary for mul-
tistep kNN query processing is evaluated and formalized by the concept of R-
optimality. An algorithm is defined to be R-optimal, if it produces no more
candidates for refinement than necessary. It is shown that a multi-step kNN

80 H.-P. Kriegel et al.

o1
o2
o3
o4
o5
o6
o7
o8
o9
o10
o11
o12

LB(q,o1) dist(q,o1)

distance
nn8-dist(q)

(a) only with lower-bounding filter
distance.

o1
o2
o3
o4
o5
o6
o7
o8
o9
o10
o11
o12

LB(q,o1)

dist(q,o1)

distance

UB(q,o1)

nn8-dist(q)

(b) with lower- and upper-bounding
filter distances.

Fig. 3. k-nearest neighbor candidates (k=8)

algorithm is correct and R-optimal iff it exactly retrieves the candidate set
{o|LB(o, q) ≤ nnk-dist(q,D)} from the filter step.

3 Generalizing the Definition of Optimality

As indicated above, the algorithm presented in [9] uses only a lower bounding
distance estimation in the filter step. However, it is in general sensible to use
additional information, in particular an upper bounding filter distance. An upper
bounding filter distance estimation UB is always greater or equal to the exact
distance, i.e. for any query object q the following upper bounding property holds:

∀o ∈ D : UB(q, o) ≥ dist(q, o).

Using also an upper bounding filter distance yields several important advan-
tages. First, beside pruning true drops with the lower bound we can additionally
identify true hits using the upper bounding filter distance. This is illustrated in
Figure 3. It depicts for a given query object q the exact distances dist(q, o) for
twelve sample objects o1, .., o12 (k = 8). We can distinguish two cases of correct
candidate sets returned from the filter-step depending on the distance approx-
imations used: Figure 3(a) shows the case where only a lower bounding filter
distance LB is given in the filter-step and Figure 3(b) shows the case where we
are given both a lower bounding LB and an upper bounding UB filter distance
(illustrated by the bars). In both cases, we marked those objects which have to
be returned as candidates from the filter-step. In the first case (cf. Figure 3(a)),
we have to refine all objects o ∈ D for which the lower bounding distance LB(q, o)

Generalizing the Optimality of Multi-step kNN Query Processing 81

is smaller than or equal to the kNN-distance of q, i.e. we have to refine the ten
objects o1, ..., o10. In fact, this does not hold for the second case (cf. Figure 3(b)),
where the objects o1, o2, o4, o5 and o6 can immediately be reported as true hits in
the filter step due to the upper bounding distance information. Thus, in contrast
to Case 1, the objects o1, o2, o4, o5 and o6 need not to be refined.

A second advantage of using also an upper bounding filter distance is that
the storage requirements of the kNN algorithm can be significantly reduced. As
discussed above, [9] uses a ranking algorithm (e.g. [10]). Such a ranking algorithm
is usually based on a priority queue. For kNN queries, we can delete true drops
(identified using LB) from that queue. Analogously, we can also delete the true
hits (identified using UB) from the queue. Thus, the storage cost during query
execution are reduced. We will see in our experiments, that using both an upper
and a lower bounding filter distance significantly decreases the size of the priority
queue (used for producing the ranking sequence) compared to algorithms that
use only a lower bound.

Last but not least, a third advantage of using not only a lower bound but also
an upper bound in the filter step is the fact that those true hits, identified already
in the filter step, can be immediately reported to the user. Thus, the user may
receive a part of the complete result directly after the filter step before the query
process is completely finished, sometimes even before the exact evaluation of the
query predicate for any object has been carried out. The produced hits in the
filter step allow the user to inspect the first results very early which is obviously
a big advantage in real applications. Unfortunately, none of the existing multi-
step query processors provide this feature because none of these methods use
suitable distance estimations in the filter step.

The first obvious question following from these considerations is whether the
algorithm proposed in [9] is really R-optimal. We will see that the answer to
this question is “yes” and “no” – and in fact depends on the type of information
(only lower bound or upper and lower bound) available in the filter step. In the
traditional sense, a multi-step kNN algorithm is called R-optimal if it does not
produce more candidates in the filter-step than necessary. As discussed above,
the number of candidates that definitely need to be refined depends on the
distance approximation available in the filter step. Obviously, it is sensible to
define “optimality” in the context of which kind of information I is available
in the filter step. In the following, we present the notion of RI -optimality as a
generalization of the traditional R-optimality.

Definition 2 (Generalized Optimality). Given an information class I defin-
ing a set of distance approximations available in the filter step, a multi-step kNN
algorithm is called RI -optimal if it does not produce more candidates in the filter-
step than necessary.

Interesting information classes are Il = {LB}, i.e. only a lower bounding dis-
tance approximation is available in the filter step, and Ilu = {LB, UB}, i.e.
both a lower and an upper bounding distance approximation is available in the
filter step. In general, RIl

-optimality corresponds to the traditional concept of
R-optimality proposed in [9]. The lemma given in [9] identifies those algorithms

82 H.-P. Kriegel et al.

nnk-dist(q)

LB UB

<

case 1:
case 2:
case 3:
case 4:
case 5:

correctness
correctness
r-optimality

case 6:

(a)

case 1:
case 2:
case 3:
case 4:
case 5:

r-optimality
correctness
correctness

case 6:

LB UB

nnk-dist(q) <

(b)

Fig. 4. Illustration of the proof of Lemma 1

which are correct and RIl
-optimal. It states that a multi-step kNN algorithm

is correct and RIl
-optimal if and only if it exactly retrieves the candidate set

{o|LB(q, o) ≤ nnk-dist(q,D)} from the filter step. In [9], such an RIl
-optimal

algorithm is presented.
For the information class Ilu we can also identify the minimum set of candi-

dates that is produced by a correct and RIlu
-optimal algorithm.

Lemma 1. A multi-step kNN algorithm is correct and RIlu
-optimal, iff it refines

the candidate set

{o ∈ D|LB(q, o) ≤ nnk-dist(q,D) ≤ UB(q, o)} (Case 1)

if there are more than k candidates c ∈ D with LB(q, c) ≤ nnk-dist(q,D)
and, otherwise, it refines the candidate set

{o ∈ D|LB(q, o) ≤ nnk-dist(q,D) < UB(q, o)} (Case 2)

from the filter step.

Proof. Assume the following algorithm: For an arbitrary query range ε, we obtain
the object set S = {o ∈ D|LB(q, o) ≤ ε}. The objects in D − S are pruned as
true drops. Then, we retrieve the candidate set C = {o ∈ S|ε < UB(q, o)} ⊆ S
which has to be refined in the refinement step, the remaining objects in S−C are
immediately reported as hits. We show that this algorithm can only be correct
and RIlu

-optimal if ε = nnk-dist(q,D).

1. Let ε < nnk-dist(q,D):
Then, there may exist an object o ∈ D for which the following estimation
chain holds: ε < LB(q, o) ≤ dist(q, o) ≤ nnk-dist(q,D) (cf. Cases 2-3 in
Figure 4(a)). The last inequality implies that o ∈ NN(q, k). However, due
to the first inequality of the chain, we have o 	∈ S, i.e. o will be pruned as a
false drop. This contradicts the correctness of the algorithm.

Furthermore, there may exist an object o ∈ D for which the following
estimation chain holds: LB(q, o) ≤ ε < UB(q, o) ≤ nnk-dist(q,D) (cf. Case

Generalizing the Optimality of Multi-step kNN Query Processing 83

4 in Figure 4(a)). The first and second inequalities indicate that o ∈ C, i.e.
o is a candidate that will be refined. However, due to the third inequality,
it can be definitely decided that o ∈ NN(q, k) and, thus, a refinement of
the distance between q and o is not necessary which contradicts the RIlu

-
optimality.

2. Let ε > nnk-dist(q,D):
Then, there may exist an object o ∈ D for which nnk-dist(q,D) < LB(q, o) ≤
ε < UB(q, o) (cf. Case 2 in Figure 4(b)), i.e. o ∈ C will be refined. However,
due to the lower bounding property, nnk-dist(q,D) < LB(q, o) ≤ dist(q, o)
holds. Thus, o 	∈ NN(q, k), and the algorithm cannot be RIlu

-optimal.
Furthermore, there may exist an object o ∈ D for which nnk-dist(q,D) <

dist(q, o) ≤ UB(q, o) ≤ ε (cf. Cases 3 and 4 in Figure 4(b)). The second
and the third inequalities indicate that LB(q, o) ≤ ε and o ∈ S − C, i.e. o
is reported as hit without refinement. However, from the first inequality it
follows that o 	∈ NN(q, k) and, thus, the algorithm cannot be correct.

Thus, only ε = nnk-dist(q,D) achieves correctness and RIlu
-optimality does

not lead to any contradiction.
Obviously, all objects in the set {o ∈ D|LB(q, o) ≤ nnk-dist(q,D) < UB(q, o)}

have to be refined in order to determine, whether they fulfill the query predi-
cate or not (Case 2). All objects o ∈ D for which UB(q, o) ≤ nnk-dist(q,D)
holds, need not be refined, because dist(q, o) ≤ nnk-dist(q,D) due to the up-
per bounding property. However, if the number of candidates c with LB(q, c) ≤
nnk-dist(q,D) exceeds k (Case 1), we cannot decide whether those objects c
for which UB(q, o) = nnk-dist(q,D) holds, are hits or drops. The reason for
this is the following: no algorithm can anticipate the real nnk-dist(q,D) and,
thus, other candidates c′ could have a smaller dist(q, c′). If so, we would have
nnk-dist(q,D) < UB(q, c) and, thus, c would be a true drop. To make this deci-
sion in a correct way, c needs to be refined although UB(q, c) ≥ nnk-dist(q,D). In
tie situations, there may be more such objects c that need to be refined although
nnk-dist(q,D) ≥ UB(q, c). �
At first glance, Case 1 of Lemma 1 may appear to be rather arbitrary. However,
as discussed in the proof of Lemma 1, there may be some situations where we
need to consider both cases. Let oi be the kNN of a query object q such that
UB(q, oi) = dist(q, oi) = nnk-dist(q,D). Let the object oj be a candidate with
LB(q, oj) ≤ UB(q, oi) = nnk-dist(q,D). Then, oj cannot be pruned before the
exact kNN-distance has been computed. In addition, if we have a tie situation,
e.g. dist(q, oj) = nnk-dist(q,D) = dist(q, oi), the kNN set of q cannot be deter-
mined correctly without the refinement of the object oi (contradicting Case 2).
The reason for this is that we cannot evaluate the query predicate for oj cor-
rectly even if we refine oj and compute dist(q, oj). If dist(q, oi) < dist(q, oj), then
oj 	∈ NN(q, k), otherwise, if dist(q, oi) = dist(q, oj), then oj ∈ NN(q, k). How-
ever, the exact value of dist(q, oi) is obviously not known before the refinement
of oi.

From Lemma 1 it follows, that the algorithm proposed in [9] is RIl
-optimal

but not RIlu
-optimal.

84 H.-P. Kriegel et al.

algorithm kNN(QueryObject q, Integer k, DBIndex I)

// Step 1: Initialization
SortedList result;
SortedList candidates;
initialize ranking on I w.r.t. lower bounding distance approximation;
fetch the first k objects from ranking and add them to candidates;
dmin = kth smallest lower bound of the elements in candidates;
dmax = kth smallest upper bound of the elements in candidates;
df next = lower bounding distance of the next element in ranking ;

do {
update dmin, dmax, and df next;

// Step 2: Fetch a candidate
if dmin ≥ df next then

fetch next object from ranking → candidates; // only if dmax ≥ df next

update dmin, dmax, and df next;

// Step 3: Identify true hits and true drops by using dmin and dmax

for all c ∈ candidates do
if UB(q, c) < dmin then add c to result;
if LB(q, c) > dmax then prune c;

// Step 4: Refine a candidate
if |results|+|candidates| > k ∨ df next ≤ dmax then

for all c ∈ candidates with LB(q, c) ≤ dmin ∧ dmax ≤ UB(q, c) do
if dist(q, c) ≤ nnk-dist(q, result) then add c to result;

else
add all remaining c ∈ candidates to result;

} while (df next ≤ dmax ∨ |candidates| > 0)

return result;

Fig. 5. RI -Optimal k-NN Algorithm

4 RIlu
-Optimal Multi-step kNN Search

Based on the above observations, we are able to design an algorithm that is RIlu
-

optimal. The pseudo-code of our algorithm is depicted in Figure 5. The algorithm
iteratively reduces the candidate set, where in each iteration it identifies true
drops, true hits and/or refines a candidate for which the query predicate cannot
be determined without the refinement.

The algorithm starts with the initialization of the incremental ranking on the
used index according to the lower-bounding distances of all objects. Then, the
first k candidates are fetched from the ranking sequence into the candidate list
(Step 1). In order to detect which candidate must be refined, we use two variables
dmin and dmax generating a lower-bounding and an upper-bounding distance
estimation of the exact k-NN distance, i.e. dmin ≤ nnk-dist(q,D) ≤ dmax. The
basic idea of our algorithm is that we can use this restriction of the exact k-NN
distance in order to identify those candidates c with LB(q, c) ≤ nnk-dist(q,D) ≤
UB(q, c) which must be refined due to Lemma 1. Furthermore, as the stop

Generalizing the Optimality of Multi-step kNN Query Processing 85

criterion of the main loop, we initialize the variable df next reflecting the lower-
bounding distance of the top element of the ranking sequence to q.

In the main loop, we first update the variables dmin, dmax and df next as
depicted. Then, we fetch the next candidate o from the ranking sequence into
the candidate set candidates, if dmin ≥ df next holds (Step 2). This condition
guarantees that we fetch only the next candidate from the ranking query if the
variable dmin does not guarantee the conservative estimation of the exact k-
NN distance any more. This ensures the RIlu

-optimality of the algorithm and
guarantees that our algorithm does not produce unnecessary candidates. Then,
the lower-bounding distance estimation of the newly fetched candidate must lie
on the new dmin value after the update of the dmin variable. Hence, the fetch
candidate either is a true hit or covers the exact kNN-distance, and thus, must
be refined. This guarantees, that our algorithm is optimal w.r.t. the number of
fetches from the ranking sequence which in turn is responsible for the optimality
according to the number of index accesses. Let us note, that our fetch routine
additionally hands over the actual dmax value to the ranking query method. This
allows us to proceed the exploration of the index only when necessary and to cut
the priority queue according to dmax in order to decrease the size of the queue.
After fetching a new candidate, we have to update the variables dmin, dmax and
df next in order to keep the consistency of the used distance estimation variables.

Step 3 of the algorithm identifies the hits and drops according to the dmin and
dmax values. Obviously, all candidates c with UB(q, c) < dmin can be returned
immediately as hits and all candidates c′ with LB(q, c′) > dmax can be pruned.

Next, if the number of received results plus the remaining number of can-
didates are greater than k and if the condition df next ≤ dmax holds, then we
refine the next candidate (Step 4). The first condition indicates whether it is still
necessary to refine a candidate. The reason for this condition is, that, if the re-
maining candidates definitely must belong to the query result because there are
no concurrent candidates available any more, we can stop the refinement and
immediately report the remaining candidates as hits. If both conditions hold,
the algorithm refines a candidate c with LB(q, c) ≤ dmin and dmax ≤ UB(q, c).
As mentioned above, this procedure guarantees the RIlu

-optimality of this algo-
rithm. We will show later that there must always be a candidate that fulfills the
above refinement criterion.

If df next > dmax, i.e. the top element of the ranking sequence can be pruned
as true drop or if there are no more candidates left, the main loop stops.

In the following, we show that our algorithm RI -Optimal kNN is (1) fetch
optimal in the number of fetches from the ranking sequence, (2) correct, and (3)
RIlu

-optimal. Let us note, that fetch optimal corresponds to a minimal number of
disk accesses of the underlying index on which the ranking sequence is computed
when using access optimal ranking query algorithms (e.g. [10]).

We start with showing that the variables dmin and dmax conservatively and
progressively approximate the exact kNN-distance nnk-dist(q,S), where S ⊆ D
is the set of candidates in a particular iteration of the algorithm.

86 H.-P. Kriegel et al.

Lemma 2. Let q be a query object and S ⊆ D be the set of candidates in a
particular iteration of the algorithm. Then, dmin ≤ nnk-dist(q,S) ≤ dmax.

Proof. dmin is the kth lower-bounding distance of objects from S to q and dmax

is the kth upper-bounding distance of objects from S to q.
First, we show that dmin ≤ nnk-dist(q,S). We know that there are at least

k objects o ∈ S with dist(q, o) ≤ nnk-dist(q,S). Consequently, there must be
at least k objects o ∈ S with LB(q, o) ≤ nnk-dist(q,S), and thus, dmin ≤
nnk-dist(q,S).

The second property nnk-dist(q,S) ≤ dmax can be shown in a similar way.
We know that there are at least k objects o ∈ S with UB(q, o) ≤ dmax. Conse-
quently, there must be at least k objects o ∈ S with dist(q, o) ≤ dmax, and thus,
nnk-dist(q,S) ≤ dmax. �

Fetch-optimality. In order to verify that our novel algorithm is fetch optimal,
we have to show that the lower-bounding distance estimation LB of the newly
fetched candidate in Step 2 is equal to the new dmin value after the update
of the dmin variable. dmin corresponds to the kth-smallest lower-bounding dis-
tance of the candidates which are already fetched from the ranking sequence.
Let c denote the already fetched candidate for which LB(q, c) = dmin actually
holds. We only fetch the next candidate c′ if LB(q, c′) ≤ dmin. Then, either
LB(q, c′) = dmin which trivially fulfills the criterion, or LB(q, c′) < dmin. In
the last case, LB(q, c) would not be the kth-smallest lower-bounding distance
estimation anymore, because c′ is an additional already fetched candidate with
LB(q, c′) < LB(q, c). Hence, dmin has to be set to LB(q, c′). Consequently, as
mentioned above, the fetched candidate c′ either is a true hit or certainly covers
the kNN-distance and, thus, must be refined.

Correctness. Due to Lemma 2, the candidates c with UB(q, c) ≤ dmin can safely
be reported as hits because dist(q, c) ≤ UB(q, c) ≤ dmin. Similarly, candidates c
with LB(q, c) > dmax can be safely pruned, since dist(q, c) ≥ LB(q, c) ≥ dmax.
In summary, our algorithm is correct, i.e. does not produce false hits or false
drops.

RIlu
-optimality. We can prove that our algorithm is RIlu

-optimal by showing
that we only refine candidates whose lower- and upper-bounding filter distances
cover the exact kNN-distance. In fact, we only refine those candidates c with
LB(q, c) ≤ dmin and dmax ≥ UB(q, c). Thus, according to Lemma 2, the RI -
optimality is guaranteed. However, this works only if in Step 4 of the algorithm
there exists at least one candidate c with LB(q, c) ≤ dmin and dmax ≤ UB(q, c).

Lemma 3. Let q be the query object and S ⊆ D be a set of candidates for
which the lower-bounding and upper-bounding distance estimations (LB(q, c)
and UB(q, c) for all c ∈ S) are known. Furthermore, let dmin denote the kth-
smallest lower-bounding distance estimation and dmax denote the kth-smallest
upper-bounding distance estimation in S. Then, the following statement holds:

∃o ∈ S : LB(q, o) ≤ dmin ≤ dmax ≤ UB(q, o).

Generalizing the Optimality of Multi-step kNN Query Processing 87

Proof. Obviously, there must exist at least one candidate o ∈ S with dmin =
LB(q, o) and at least one candidate p ∈ S with dmax = UB(q, p). Let us assume,
that the statement in Lemma 3 does not hold, then for all candidates c ∈ S it
holds that LB(q, c) > LB(q, o) ∨ UB(q, c) < UB(q, p), i.e. this also holds for
o and p. Thus, if LB(q, o) < LB(q, p) and UB(q, o) < UB(q, p) it follows that
o 	= p.

As a consequence, for k = 1, we have dmin = LB(q, o) and dmax = UB(q, o) 	=
UB(q, p) which contradicts the assumption about dmax.

Analogously, for k > 1, there must be at least k candidates c ∈ S with
LB(q, c) ≤ LB(q, o) and there must be at most k − 1 candidates c ∈ S with
UB(q, c) < LB(q, p). Consequently there must be at least one candidate c ∈ S
with LB(q, c) ≤ LB(q, o) and UB(q, c) ≥ LB(q, p), which contradicts our above
assumption. �

In summary, assuming that a lower- and upper-bounding filter distance is avail-
able for each processed object, our novel multi-step kNN algorithm is correct,
requires the minimal number of index page accesses and is optimal w.r.t. the
number of refinements required to answer the query.

5 Experimental Evaluation

We conducted our experiments on Windows workstations with a 32-bit 3.2 GHz
CPU and 4 GB main memory. All evaluated methods were implemented in Java.

5.1 Setup

Our experimental testbed contains four real-world datasets with different char-
acteristics summarized in Table 1. We applied a special form of Lipschitz embed-
ding [11] for the first three datasets using randomly chosen singleton reference
sets in order to derive upper and lower bounds. For the timeseries dataset, we
generated lower- and upper-bounding distance approximations for the Dynamic
Time Warping (DTW) distance as described in [12] where we set the size of the
Sakoe-Chiba band width to 10%. Let us note, that for many applications there
may exist filter distance measures that yield an even better pruning power in the
filter step. We processed 50 randomly selected kNN queries for the particular
dataset and averaged the results.

Table 1. Summary of real-world test datasets

Dataset description # objects distance ratio of the cost of
filter vs. refinement

San Joaquin road network 18,263 nodes Dijkstra 1/300
Protein protein graph 1,128 proteins graph kernel 1/2,000
Plane voxelized 3D CAD 35,950 voxel Euclidean 1
Timeseries audio timeseries 2400 clips DTW 1/150

88 H.-P. Kriegel et al.

0

10

20

30

40

50

60

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(a) San Joaquin

0

10

20

30

40

50

60

70

80

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(b) Protein

0

5

10

15

20

25

30

35

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(c) Plane

0

10

20

30

40

50

60

70

80

2 5 10 25 50 100 250 500 1000

k parameter

p
er

ce
n

t

unrefined fetches

unrefined hits

(d) Timeseries

Fig. 6. Relative number of unrefined candidates

5.2 RIlu-Optimality vs. RIl-Optimality

In the first experiment we demonstrate the superiority of our novel RIlu
-optimal

algorithm based on lower- and upper-bounding distance estimations over the tra-
ditional RIl

-optimal algorithm that uses only lower-bounding distance estima-
tions in the filter step. Figure 6 shows the results of multi-step kNN queries on
our four datasets for different settings of the k parameter. In particular, the num-
ber of hits and the number of fetches (in percent) that both need no refinement are
depicted. Note, that an RIl

-optimal algorithm has to refine all fetched candidates,
and thus, produces zero unrefined candidates. The results show that, due to the
use of an upper-bounding filter distance, a significant amount of the hits does not
need to be refined. If we consider that the filter step is 150 (time series), 300 (road
network), and 2,000 (proteins) times faster than the refinement step, the runtime
improvement is drastic. For three datasets we observe that the amount of unre-
fined hits and fetches first decreases with increasing k and then again increases.
This is due to the characteristics of the datasets and the used Lipschitz embed-
ding: When increasing k, the distances first increase very quickly, then stabilize at
some point and finally increase again very quickly when k converges to the num-
ber of objects in the dataset. As a consequence, for very low and very high values
of k, the distance approximations produce rather selective stop criteria, whereas
for medium values of k, the pruning power decreases.

Generalizing the Optimality of Multi-step kNN Query Processing 89

0

200

400

600

800

1000

1200

2 5 10 25 50 100 250 500 1000
k parameter

re
fin

em
en

ts

LB-Opt
LB+UB-Opt

(a) San Joaquin

0

200

400

600

800

1000

1200

2 5 10 25 50 100 250 500 1000

k parameter

re
fi

n
em

en
ts

LB-Opt

LB+UB-Opt

(b) Protein

0

200

400

600

800

1000

1200

1400

2 5 10 25 50 100 250 500 1000
k parameter

re
fin

em
en

ts

LB-Opt
LB+UB-Opt

(c) Plane

0

200

400

600

800

1000

1200

1400

2 5 10 25 50 100 250 500 1000

k parameter

re
fi

n
em

en
ts

LB-Opt

LB+UB-Opt

(d) Timeseries

Fig. 7. Absolute number of needed refinements of RIl and RIlu approach

Figure 7 compares the RIlu
-optimal algorithm and an RIl

-optimal algorithm
according to the absolute number of refinement operations. The refinement re-
duction using the upper-bounding filter distance was clearly improved. In par-
ticular, for high k settings we have to refine only about half of the objects in
comparison to competing techniques using only the lower bound filter. For all
four datasets, we can also observe that the approximation qualities of the upper
bound and the lower bound are rather similar.

5.3 Size of the Priority Queue of the Ranking Query

In the next experiment, we examine the influence of the dmax value on the size
of the priority queue of the ranking query. Figure 8 depicts the size of Input,
Output and Pruned. Input denotes the objects that are inserted into the priority
queue while traversing the index. Output denotes the objects removed from the
priority queue while fetching the next candidate. Pruned denotes the objects in
the priority queue that can be pruned according to the dmax value during the
execution of our novel algorithm. It can be observed that we achieve a significant
reduction of the priority queue. On the average, we can save more than 50% of
memory space when pruning the queue using dmax.

90 H.-P. Kriegel et al.

0

500

1000

1500

2000

2500

3000

2 5 10 25 50 100 250 500 1000

k parameter

Pr
io

rit
yQ

ue
ue

 A
cc

es
se

s Input Output Pruned

(a) San Joaquin

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 5 10 25 50 100 250 500 1000

k parameter

Pr
io

rit
yQ

ue
ue

 A
cc

es
se

s Input Output Pruned

(b) Plane

Fig. 8. Pruning of the priority queue by means of dmax

0

200

400

600

800

1000

1200

0 100 200 300
refinements

ob

je
ct

s

 fetched hits

(a) Protein (k=1000)

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800
refinements

ob

je
ct

s

fetched hits

(b) Plane (k=1000)

0

50

100

150

200

250

300

0 25 50 75 100
refinements

ob

je
ct

s

fetched hits

(c) San Joaquin (k=250)

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600
refinements

ob

je
ct

s

 fetched hits

(d) San Joaquin (k=1000)

Fig. 9. Number of reported results against the number of query iterations

5.4 Early Output of Result Tuples

As mentioned in Section 4, the proposed upper bound filter allows the early out-
put of some true hits even before refinement. Our last experiment evaluates the
capability of early outputs for queries with k = 1000 and k = 250. Figure 9 de-
picts the number of fetches and true hits detected by our RIlu

-optimal algorithm
against the number of refinements. The number of refinements corresponds to
the number of iterations in the main loop of our algorithm (cf. Figure 5). It can
be observed that already about 45% of the results of the Protein dataset can

Generalizing the Optimality of Multi-step kNN Query Processing 91

be reported before starting the refinement of the first object. On that dataset
this corresponds to a speed-up of approximately 2,000 for each of these objects.
After the 25th refinement, we have reported 500 of 1000 results. Similar results
can be seen for the experiments on the San Joaquin and Plane datasets. In
summary, a significant portion of the result could be reported very early. Very
few refinements are sufficient in order to report more than half of the entire re-
sults. Note, that the traditional RIl

-optimal algorithm proposed in [9] could be
adapted such that it would generate the first results before the need to refine the
first k candidates. However, it would be impossible to report more results than
there are refined candidates. As we can see in the experiments, our algorithm
reports significantly more results than required refinements. Thus, the user can
already evaluate the results before the query execution is finished. In an appli-
cation scenario where the first results are already sufficient for the user, e.g. a
doctor wants to confirm his diagnosis drawn from an X-ray image by comparing
the actual image to some of the k most similar images in his database, our algo-
rithm would yield a very high performance gain as very few refinements would
be necessary before the user stops the query execution procedure after getting
enough intuition about the result.

6 Conclusion

In this paper, we generalized the traditional notion of R-optimality in order
to capture the optimality of multi-step kNN query processing using both lower
and upper bounding filter distances. We proposed a novel kNN multi-step query
algorithm and showed that this algorithm is R-optimal in the generalized sense,
correct and fetch-optimal, i.e. requires a minimum number of fetch operations
on the underlying ranking algorithm. In our experiments, we demonstrated the
superiority of our novel query processing algorithm in comparison to state-of-the-
art competitors. In particular, we showed that our approach drastically reduces
the number of refinement operations and, thus, the query execution time since
the refinement is usually three orders of magnitude slower than the filter step.
Our approach features a considerably decreased storage requirement compared
to existing solutions and can be used to report first hits as early as possible even
before any object has been refined.

References

1. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proc.
SIGMOD, pp. 47–57 (1984)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient
and robust access method for points and rectangles. In: Proc. SIGMOD, pp. 322–
331 (1990)

3. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity
search in metric spaces. In: Proc. VLDB (1997)

92 H.-P. Kriegel et al.

4. Orenstein, J., Manola, F.: Probe spatial data modelling and query processing in an
image database application. IEEE Trans. on Software Engineering 14(5), 611–629
(1988)

5. Brinkhoff, T., Horn, H., Kriegel, H.P., Schneider, R.: A storage and access archi-
tecture for efficient query processing in spatial database systems. In: Abel, D.J.,
Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, Springer, Heidelberg (1993)

6. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, Springer, Heidelberg
(1993)

7. Faloutsos, C., Manolopoulos, M R.a.Y.: Fast subsequence matching in time series
database. In: Proc. SIGMOD (1994)

8. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest
neighbor search in medical image databases. In: Proc. VLDB (1996)

9. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor search. In: Proc.
SIGMOD (1998)

10. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Egenhofer, M.J.,
Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, Springer, Heidelberg (1995)

11. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, San Francisco (2006)

12. Keogh, E.: Exact indexing of dynamic time warping. In: Proc. VLDB (2002)

S-GRID: A Versatile Approach to Efficient Query
Processing in Spatial Networks

Xuegang Huang, Christian S. Jensen, Hua Lu, and Simonas Šaltenis

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220, Aalborg, Denmark
{xghuang,csj,luhua,simas}@cs.aau.dk

Abstract. Mobile services is emerging as an important application area for
spatio-temporal database management technologies. Service users are often con-
strained to a spatial network, e.g., a road network, through which points of inter-
est, termed data points, are accessible. Queries that implement services will often
concern data points of some specific type, e.g., Thai restaurants or art museums.
As a result, the relatively few data points are relevant to a query in comparison
to the number of network edges, meaning that queries, e.g., k nearest-neighbor
queries, must access large portions of the network.

Existing query processing techniques pre-compute distances between data
points and network vertices for improving the performance. However, pre-
computation becomes problematic when the network or data points must be
updated, possibly concurrently with the querying; and if the data points are mov-
ing, the existing techniques are inapplicable. In addition, multiple pre-computed
structures must be maintained—one for each type of data point. We propose a
versatile pre-computation approach for spatial network data. This approach uses
a grid for pre-computing a simplified network. The above-mentioned shortcom-
ings are avoided by making the pre-computed data independent of the data points.
Empirical performance studies show that the structure is competitive with respect
to the existing, more specialized techniques.

1 Introduction

In step with the emergence of an infrastructure that enables the deployment of mobile
services, the database research community has begun to consider the challenges brought
on by scenarios where services are delivered to large populations of mobile users. In one
important setting, the service users are constrained to a spatial network such as a road
network, and the services involve nearest-neighbor queries on points of interest, which
we term data points, that are accessible via the network.

As an example, consider Figure 1 where we aim to find the nearest restaurant for a
mobile user q among six restaurants R1, R2, . . . , R6. To address this type of problem, we
model the spatial network as a graph structure. Specifically, a spatial network is mod-
eled as a directed and labeled spatial graph RN = (V, E), where V = {v0, v1, . . . , vm}
is a finite set of vertices and E is a finite set of edges. Vertices model intersections
and starts and ends of roads, and each vertex has an associated point position in two-
dimensional Euclidean space.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 93–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

94 X. Huang et al.

An edge models the part of a road in-between two vertices. It is a three-tuple ei,j =
(vi, vj , l), where vi, vj ∈ V is the start and end vertex of the edge, respectively, and
l captures the travel length of the edge (for simplicity, we assume only bi-directional
edges, i.e., edge ei,j is equivalent to edge ej,i, but are oppositely directed).

q
R

R2
R3

R

5R1

4

R6

Fig. 1. Example Spatial Network

Two sets of points, termed query points and data
points are also assumed. Each such point p is either a
vertex or a two-tuple s = (ei,j , pos) consisting of an
edge ei,j and a travel length pos from vi along edge
ei,j .

Next, the graph and data points must be stored
on disk using an appropriate data structure (e.g., the
CCAM structure [14]). Then a query such as the ex-
ample query from above is processed by accessing this
data structure.

The example spatial network and data points in Figure 1 are represented as shown in
Figure 2. To find the nearest neighbor among dp1, . . . , dp6 of the query point, which is
located at vertex v6, a graph search is performed. For example, an algorithm similar to
Dijkstra’s algorithm or the A* algorithm [11] can be used to incrementally search the
graph starting at v6 until the nearest neighbor is found.

To be more specific, the INE search algorithm [12] uses two priority queues, Qv

for adjacent vertices and Qdp for data points. Given the query point q = v6, adjacent
vertices of q are visited and out into Qv (i.e., Qv = 〈(v7, 1), (v5, 2), (v9, 3), (v2, 3)〉).
As no data points are found, the vertex v7 in Qv is dequeued, and its adjacent vertices v3

and v8 are inserted, i.e., Qv = 〈(v5, 2), (v3, 2), (v8, 2), (v9, 3), (v2, 3)〉. Data point dp1

is found when v5 is dequeued and its adjacent vertices are accessed (Qdp = 〈(dp1, 3)〉).
The process continues until the minimum distance from q to a vertex in Qv is no smaller
than the distance to the nearest data point (i.e., 3).

1

1 v2
v3 v4

v5

v6
v7 v8

v9 v10

v11

v12 v13 v14

1dp
5dp

6dp

3dp2dp 4dp

v15

1 1

1

2

1

2
3

13

2

1

1

1

1

2

3

3

5

4

4

4

5
1

1

5

2

v

Fig. 2. Example Network

This process, termed in-
cremental network expansion,
has been used as an ingredi-
ent in most existing algorithms
for spatial-network queries, in-
cluding (continuous) k nearest
neighbors ((C)KNN), reverse
nearest neighbors (RNN), k
closest pairs, e-distance join,
and aggregate nearest neigh-
bors (ANN).

Nearest neighbor queries
have been studied extensively
in settings where the Euclidean

distance is assumed and R-trees are used. The problem of computing KNN queries
in spatial network databases has only been addressed more recently. Early work in
this direction presented a general framework for supporting NN queries, that included
a detailed data model and hierarchical search algorithms [8]. Subsequent work has

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 95

considered the optimization of the disk accesses to the network data and data points
during query processing.

The INE algorithm and extensions of it have been used for computing range queries,
KNN queries, k closest pair queries, and e-distance joins [12]. This approach works
well for dense data points, but it entails excessive accesses to the network data when
the data points are sparse. To improve performance, pre-computation techniques have
been proposed for primarily KNN and CKNN queries. In the next section, we review
three such proposals, namely the VN3 [9], Islands [3], and SPIE [5] approaches.

While these approaches represent significant advances, they also have shortcomings.
The data points are assumed to be known to the system prior to any queries. While
this assumption will work in some (important) settings, it does not make for a versatile
solution. Another limitation is that all data points are assumed to be relevant for all
queries, while each query will generally concern only certain types of data points. Next,
the approaches do not contend well with updates. Queries have to be “frozen” until
the updates (including costly re-pre-computations) have been performed. The query
performance then depends on the performance of the updates.

Motivated by these limitations and the need for versatile techniques, we propose a
novel and more general pre-computation structure, the S-GRID (Scalable Grid), that
enables the efficient computation of a broad range of query types in spatial networks.
Results of experimental studies show that the S-GRID provides excellent performance
in comparison to its competitors.

In summary, the S-GRID approach optimizes the network expansion inherent to
many query processing algorithms in spatial networks, while offering the following
features.

1. Unlike the existing pre-computation approaches, the S-GRID does pre-computation
solely on the network data, and data points are associated with the pre-computed
data only at query time.

2. With the existing approaches, updates may cause queries to pause until the updates
are complete. With the S-GRID, queries affected by an update are able to expand on
the original network data inside the grid cell being updated.

3. While the handling of traffic restrictions such as one-way streets and turn restrictions
at intersections is difficult with the existing approaches, the S-GRID encapsulates
these into a simple, virtual network so that the query processing can be kept simple
and efficient.

The rest of the paper is organized as follows. Section 2 explores previous techniques
for efficient KNN query processing in spatial networks. The next section presents the
details of the solution. Section 4 empirically compares this solution to existing algo-
rithms. Finally, Section 5 summarizes the paper and suggests research directions.

2 Related Work

As mentioned already, network expansion has been used in a range of query processing
algorithms, including algorithms for KNN [12,4], CKNN [1], RNN [18], and ANN [17]
queries, as well as for data clustering [16]. We proceed to consider briefly two early

96 X. Huang et al.

proposals for KNN query processing and then proceed to consider three additional pro-
posals in some detail.

The first proposal is to transform a road network to a high-dimensional Euclidean
space in which the traditional KNN search algorithms can be applied [13]. This trans-
formation involves the off-line pre-computation of the network distances between all
pairs of vertices, and it uses high-dimensional spatial indexes. As a result, the proposal
is of limited interest in our setting.

The next proposal involves two approaches to KNN query processing, namely the
INE approach already explained and an approach called IER that exploits Euclidean
distances for achieving better performance [12]. To find the KNNs of a query point
q, this approach uses an incremental KNN algorithm to find the nearest neighbors in
Euclidean distance. These are then sorted in ascending order of their network distance
to q and the distance of the k-th neighbor is denoted as dmax. These KNNs and dmax

are being maintained while subsequent Euclidean neighbors are retrieved incrementally,
until the next Euclidean nearest neighbor has larger Euclidean distance than dmax. It is
shown that the INE approach clearly outperforms the IER approach. Further, the IER
approach is inapplicable for all notions of distance such as travel time.

Inspired by the use of Voronoi diagrams in Euclidean spaces, the Voronoi-based
Network Nearest Neighbor approach (VN3 [9]) generates a Network Voronoi Diagram
based on a given set of data points and pre-computes the network distances within each
generated Voronoi polygon. Nearest neighbor computations can then utilize the pre-
computed distances.

Figure 3 shows the network Voronoi diagram for our example. The Voronoi polygon
of data point dp3 contains four border points: b1, b2, b3, b4. The first nearest neighbor
of query point q can be directly found as dp3 because q is inside the Voronoi polygon
of dp3. To find the next nearest neighbors, the data points of the neighboring Voronoi

1

dp

2dp

1b 5b
6b

7b

8b
10b

9b 6dp

11b

5dp

4b 3b

2b
4dp

3dp
q 2.5

2.5

1

Fig. 3. NN Search with VN3

polygons are collected as the can-
didate set. Then a refinement is
applied to find the actual network
distance from q to these data
points. Specifically, a network ex-
pansion is made to find the net-
work distances from q to the
border points of dp3. Then the
distance from q to the neighbor-
ing data points can be found by
adding the query-to-border dis-
tances to the pre-computed border-
to-data point distances of the

adjacent polygons. As shown in Figure 3, since the distance from q to b2 is 2.5 and the
pre-computed distance from b2 to dp4 is 2.5, the network distance from q to dp4 is 5.

The VN3 approach excels when there are few data points. One limitation is that a
Voronoi diagram cannot be generated without knowledge of all the data points. Another
is that it does not contend well with queries that concern only data points of certain
types. Thus, the approach of generating a Voronoi diagram for each type of data points,

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 97

such as Thai restaurants, museums, and shopping malls, renders it difficult to process
“multi-type” queries such as “find the k nearest Thai and Chinese restaurants and mu-
seums” (or “sub-type” queries such as “find the k nearest modern art museums”). A
service that identifies all nearest friends will need a diagram for each unique set of
friends.

The Islands approach provides versatility as it enables to control the amount of pre-
computation done in preparation for computing KNN queries [3]. First “islands” are
pre-computed: starting from each data point, all vertices that are within a given radius
rmin to the data point are part of the data point’s island, and the distance to the data
point for each such data point is recorded.

A KNN query processing algorithm then makes network expansions from the query
point while using the pre-computed “islands” encountered during the expansions.

Using a radius of 3, Figure 4 shows the islands generated for our example. Here,
query point q is inside the island of dp3, which is the nearest neighbor of q. To find
subsequent nearest neighbors, a network expansion is made from q. Since vertex v10 is
inside the island of dp4 and v6 is inside the islands of dp1 and dp5, we can find their
network distance to q as DN (q, dp4) = 6, DN(q, dp1) = 7, DN(q, dp5) = 7. The
expansion continues until the distance from q to the next vertex plus rmin is no smaller
than the distance to the kth nearest neighbor.

2

dp
6dp

2dp

v13

v6

v10

3dp

5dp

4dp

3

3

2
1

1
q

1

1 1
1

Fig. 4. NN Search with Islands

In the Islands approach, it is pos-
sible to control the sizes of the is-
lands (i.e., the radius value rmin).
This offers flexibility in balanc-
ing the amount of pre-computation
data, the cost of updating the pre-
computed data, and the efficiency
of the KNN queries. But as for
the VN3, the Islands approach re-
quires a pre-knowledge of all the
data points. And when updating
the pre-computation data in both
approaches, all the KNN queries

“covering” the network area that is being updated must wait for the update to complete.
Thus, the update performance affects the query performance.

The SPIE approach reduces the network into a set of inter-connected shortest path
trees (SPTs) [5]. Dijkstra’s algorithm is adapted to grow the SPTs, which are later trans-
formed into SPIEs (Shortest Path tree with horizontal edges and triangular Inequality
Edges). Making the assumption that the data points are located on the network vertices,
an index is built that stores, for each tree node, the nearest data points in its descendants
as well as the distances. The KNN queries are then processed on the SPIEs instead of
the real network.

The assumption that the data points are located on network vertices is a limitation
in many situations. In practice, data points are located on the edges and are represented
using linear referencing [2]. Adding a vertex for each data point on an edge will sub-
stantially increase the size of the network. Next, transportation networks often involve

98 X. Huang et al.

one-way streets, u-turn restrictions, and turn-restrictions at intersections. As a result,
although the SPIE approach yields a nice reduction of a network that is a simple undi-
rected graph, the same reduction process does not apply when the constraints and re-
strictions on edges and vertices are considered.

Previous work on hierarchical structures for path-finding in road networks [7] is not
closely related to this paper’s contribution. While that work focuses on shortest-path
computations, this paper focuses on KNN and other queries. Also, the S-GRID does
not use a hierarchical structure, but a simple 2D grid to organize the pre-computation
process and direct the KNN queries.

Summarizing the existing solutions, three basic techniques exist that aim to reduce
the cost of expensive network expansions. First, by pre-computing network distances
between the vertices of the network and the data points in a specific area of the network,
the network expansion covering this area can be avoided by instead looking up the
distance values. For example, in the VN3 approach, expansions in each Voronoi cell can
be avoided as there is only one data point in each cell and the pre-computed border-to-
border and border-to-data distances are used. Second, by linking more data points with
each vertex, the query algorithm has knowledge of more candidate nearest neighbors at
earlier stages of a network expansion, which restricts the expansion scope. For example,
in the Islands approach, the k nearest neighbors can be found immediately if the query
point is inside at least k islands. Third, by simplifying the network (as in the SPIE
approach), queries are processed more efficiently because the expansions are applied
on a sparser network.

Common to all of the above approaches is that the pre-computations are data-point
dependent: distances to data points are pre-computed (in all three approaches) and the
network is subdivided based on the positions of the data points (in the VN3 approach).
However, as mentioned in the introduction, this dependence on the data points is often
either undesirable or not possible at all. Thus, in contrast to the previous research, we
make the fundamental assumption that the data points and their positions are known to
the system only at query time. This yields a much more versatile solution. The challenge
then becomes one of achieving competitive performance while using only data-point
independent pre-computations.

The idea of network partitioning and network connectivity indexing is extensible to
other application domains where graphs are queried. For instance, a recent paper [6]
introduces a similar divide-and-conquer approach for keyword searches on graphs. The
proposed BLINKS approach uses heuristic-based algorithms to partition the graph. In
contrast, the S-GRID takes advantage of the spatial embedding of the network and
employs a regular spatial grid to partition the network.

3 The S-GRID Approach

The S-GRID approach is so named because it employs a 2-dimensional grid for “sum-
marizing” a network and performing pre-computations. In particular, distance pre-com-
putations are made that involve the intersection points between the grid and the network.
These grid-based pre-computations usually simplify the network—the grid-network in-
tersection points together with the connections among these points form a simpler,

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 99

virtual network. At query time, it is possible to link, in a simple and efficient way,
queries and data points to the pre-computations.

By varying the number of cells, the trade-offs between query performance, update
performance, the pre-computation costs, and the size of the pre-computation data can
be tuned. Although grids have been used for a variety of purposes in many contexts in
spatial databases (e.g., in [15]), we believe that our use of a grid in the context of a
spatial network database is novel. We proceed with the details of the new approach.

3.1 Grid Partitioning and Pre-computation

As described, we apply a 2-dimensional grid to the spatial network. The part of the
network inside a grid cell forms one or more mutually disconnected sub-networks. A
vertex belongs to a grid cell if its coordinates place it inside the cell. If the two vertices
of an edge belong to different cells, we define the midpoint of this edge as a border point
between the two cells. A vertex with coordinates that intersect with a grid boundary is
also a border point. For example, points p1, p2, . . . , p7 in Figure 5(a) are the border
points when we apply the shown 2 × 2 grid to the network in Figure 2 (note that p7

is a vertex while the others are midpoints). We model each grid cell as a three-tuple
ce = (V ,BP ,DP) where V is the set of vertices belonging to the cell, BP is the set
of border points of the cell, and DP is the set of data points inside the cell. Next, if a
vertex or a border point is connected to another border point through a sub-network of
the cell, the length of the shortest path connecting them in the sub-network is termed
their connected distance in the cell. For instance, in Figure 5(b), the connected distance
between vertex v2 and border point p2 in Cell1 is 4.5.

For each cell, we pre-compute two types of distance values: (a) the connected dis-
tance for each pair of connected border points; (b) the connected distance for each
pair of a connected vertex and a border point. The spatial network as well as the pre-
computation data are stored on disk in the Vertex-Edge, Cell-Border, and Vertex-Border
components. The Vertex-Edge component corresponds to a similar structure in the INE
and Islands approaches [3,12]: adjacency lists of vertices are mapped to disk pages
based on the Hilbert values of the vertices.

For our example, page pg1 in Figure 6 contains the adjacency lists of vertices v1 and
v2. Each entry in an adjacency list corresponds to an edge in the graph and contains the

2

p4

p6

p3

p7

p1

p5

3Cell 4Cell

Cell1 2Cell

�
�
�
�

p
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

(a) A 2 × 2 Grid

2

1 v2 v3

p4p2p1

v8
v5

1dp

v6 v7

5dp

p5

1.5

1

v

�
�
�
�

1

1

12
1

3

2.5

1

3
2

1

1

�
�
�
�

�
�
�
�

�
�
�
�

(b) Cell1 in Detail

Fig. 5. Example Grid Partition

100 X. Huang et al.

Vertex−Border Component

1

l 2

l 3

l4

pg1

pg2

l5

l6

pg1

pg5

pg5

pg5

pg1
pg3

v1
1Cell 2p1p
1Cell 1p 4p

pg4

pg3

1Cell
2Cell
3Cell

1v 1p
1p 1v

2p 1v
2p1v

4.5
4.5

5.5
5.5

... ...
pg5

Page:

... ...

2
2

2

51v
1v

v2 2

v
v
v1... ...

Adjacency List of
6
7.5... ...

Vertex−Edge Component

Cell−Border Component

... ...
In−Memory
Hash Table

l

Fig. 6. Example Data Structure

identifications of the start vertex (e.g., v1) and the end vertex (e.g., v5), the length of the
edge (e1,5 = 2), a pointer to the disk page (pg3) containing the adjacency list of the end
vertex (v5), and a pointer to the disk page (pg5) in the Vertex-Border component that
stores the connected distances between the start vertex (v1) and the border points of the
cell to which this vertex belongs (Cell1).

The Cell-Border component stores the distances between the border points of the
grid cells. For example, in Figure 6, the entries in page pg4 record the connected dis-
tances between border points p1, p2, p4, p5 of Cell1 in Figure 5(b). The in-memory hash
table links each grid cell to its corresponding disk pages in the Cell-Border component.
Note that no data points are represented in these data structures.

The computation of connected distances among the border points and vertices in a
cell is simple. From each border point, a network expansion is made in the sub-network
of the cell following the edges in the reverse direction to find the distances from the
reachable vertices. For each vertex discovered in the expansion, the distance to the
border point is recorded in the Vertex-Border component. The expansion stops when
an edge contains another border point; in this case, the connected distance between the
two border points is recorded in the Cell-Border component.

The resulting pre-computation data structure has a number of features useful when
processing queries and performing network updates.

First, with the 2-dimensional grid and the Vertex-Border component, it is easy to link
the data points with the pre-computation data. We introduce a function discoverData-
Points(DP , ce) that returns all the data points from the set DP that belong to the grid
cell ce. The function scans the data points in DP . A data point dp = (e, pos) belongs
to a cell if its nearest vertex on edge e belongs to this cell. The cell memberships of
data points can also be maintained dynamically as data points are inserted, deleted, or
updated. Finally, for each of the returned data points dp, the function returns a set of
entries (p, dp, d(p, dp)), where p is a border point and d(p, dp) is the connected distance
from p to dp in ce. It is straightforward to compute these distances, since distances from
end-vertices of edge e to border points of the cell can be found in the Vertex-Border
component.

Second, the border points together with the links among them form a virtual network.
Unless the grid is very dense, the shortest path connecting two border points in the
virtual network has fewer edges than the shortest path connecting the same points in the

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 101

underlying network. Note that if no pre-computation is done, to find a data point that is
one of the nearest neighbors of a query point, the shortest path between the query point
and this data point has to be traversed in the underlying network. If this shortest path
traverses border points p1, . . . , pb (where b ≥ 2), a sub-path connecting border points
pi and pi+1 is a shortest path between these two points in some cell of the grid, i.e., it
corresponds to an edge in the virtual network. Thus, once a network expansion reaches a
border point, it can proceed more efficiently in the virtual network. The above-described
discoverDataPoints function extends the virtual network with data points so that they
can be discovered via expansion in the virtual network.

Third, update operations to the pre-computation data are local and data-point inde-
pendent. Specifically, when a vertex or an edge is added, modified, or deleted from
the Vertex-Edge component, network expansions from each of the border points of the
corresponding grid cell should be made to refresh the distances. Since we only com-
pute the connected distance inside one cell, the cost of update operations is limited to
the sub-networks inside this cell. Thus, by varying the number and thus size of the grid
cells, the cost of updates can be controlled. In addition, when the network expansions of
queries visit cells that are being updated, these expansions can use the underlying net-
work instead of the virtual network in these cells. This way, network update operations
do not block querying.

Finally, as mentioned, the number of grid cells can be varied. If the data point density
is low, a sparse grid (i.e., with large cells) improves query performance as the expan-
sion process is on a virtual network with fewer vertices. In contrast, a dense grid will
have better update performance since the part of the network influenced by an update
becomes smaller. In the two extremes, i.e., when there is only one cell in the grid or the
grid cells become too small, the approach is not efficient. However, by tuning the cell
size, it is possible to achieve improved update and query performance.

We proceed to describe how S-GRID is used to process the KNN query.

3.2 KNN Query Processing

We adapt the INE algorithm [12] to compute the KNN query using the S-GRID. Briefly,
given a query point q, a value k, and a set of data points DP , we first start a network
expansion, termed the inner expansion, in the cell where q is located. Whenever a border
point is reached, the outer expansion proceeds from that point. The outer expansion is
an expansion on the virtual network formed by the border points and their links.

If the cell holds no data points or when the shortest paths to all data points inside the
cell have been discovered, the inner expansion is stopped. The Vertex-Border compo-
nent is used to traverse directly from inside a cell and into the virtual network. When
the outer expansion visits a border point, the discoverDataPoints function is used to
find all data points in the cells that share this border point. This process continues until
k nearest neighbors are found.

We provide the pseudo code of the KNN algorithm in the following. In addition to
the three above-mentioned parameters, the algorithm gets a set of grid cells CE as a
parameter. We use two priority queues, Qdp and Qv, to record, respectively, data points
and vertices (or border points) together with their distance to the query point, denoted

102 X. Huang et al.

as d(q, dp) and d(q, v). Both queues sort elements by the distance value and do not
allow duplicate data points or vertices. The size of Qdp is limited to k elements.

Both queues have update and deque operations. The update(dp/v, dist) operation in-
serts a new data point or vertex and the corresponding distance into the queue. If this data
point or vertex is already in the queue then, if dist is smaller than the distance stored
in the queue, the distance value in the queue is updated to dist. The deque operation
removes a vertex or a border point with the smallest distance and returns it. Another
in-memory list L caches all the “discovered” data points returned by the discoverDat-
aPoints function. Queues Qv and Qdp and list L are assumed to be empty initially.

(1) procedure KNN (q, k,DP ,CE)
(2) sort(DP , CE) // put DP into subsets based on cells
(3) Let the subsets of DP be ce1.DP , . . . , cem.DP
(4) ceq ← findcell(q)
(5) for each dp ∈ findDP(q.e, ceq): Qdp.update(dp, d(q, dp))
(6) for each v ∈ {q.e.vs, q.e.ve}: Qv.update(v, d(q, v))
(7) for each bp ∈ ceq.BP : Qv.update(bp, d(q, bp)) // Vertex-Border is used
(8) Qdp = 〈(dp1, d(q, dp1)), . . . , (dpk, d(q, dpk))〉
(9) dk ← d(q, dpk) // dk ← ∞ if dpk = ∅
(10) vx ← Qv .deque, mark vx as visited
(11) while d(q, vx) < dk ∧ Qv �= ∅
(12) if vx is a vertex
(13) for each non-visited adjacent vertex vy of vx

(14) for each dp ∈ findDP(ex,y, ceq)
(15) Qdp.update(dp, d(q, vx) + d(vx, dp))
(16) if vy ∈ ceq .V : Qv .update(vy , d(q, vx) + ex,y.l)
(17) if ceq.DP = ∅ ∨ (ceq .DP ⊂ Qdp ∧ ∀dp ∈ ceq.DP , d(q, dp) ≤ d(q, vx))

// shortest paths found to all dp ∈ ceq.DP
(18) prune each (v, d(q, v)) from Qv if v is a vertex
(19) else // vx is a border point; switch to the virtual network
(20) for each ceki ∈ findcells(vx,CE)
(21) if ceki �= ceq ∧ |ceki.DP | > 0 ∧ ceki is undiscovered
(22) L ← L ∪ discoverDataPoints(DP , ceki)
(23) mark ceki as discovered
(24) for each non-visited adjacent border point vy ∈ ceki of vx

(25) Qv .update(vy , d(q, vx) + d(vx, vy)) // Cell-Border is used
(26) for each (vx, dpxi, d(vx, dpxi)) ∈ L
(27) Qdp.update(dpxi, d(q, vx) + d(vx, dpxi))
(28) dk ← d(q, dpk)
(29) vx ← Qv.deque, mark vx as visited
(30) return Qdp

The algorithm first partitions the data points in DP according to the cells they belong
to. Then the network expansion begins with the part of the network inside the cell
ceq (lines 12–16). The border points of ceq are treated as additional vertices of the
network. When the shortest paths to all the data points in ceq have been computed, the
inner expansion on the actual network is completed (lines 17–18), and the algorithm
continues only with the outer expansion on the virtual network (lines 19–27). When
border points are visited by the outer expansion, the algorithm discovers data points in

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 103

p3

p2

p6

p7

p5
1dp

5dp

v6v5
v7

p4

v2 v3

Cell1 2Cell

3Cell 4Cell

�
�
�
�

�
�
�
�

1

1

2

2.5

6q
p

3

3 1

1

1
21

1.52.5

1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) 2NN at q

Step Qv Qdp dk

1 (v7, 1), (v3, 1), (p4, 1), (p2, 3.5),
(p5, 4), (p1, 6.5)

∅ ∞

2 (v3, 1), (p4, 1), (v6, 2), (p2, 3.5),
(p5, 4), (p1, 6.5)

∅ ∞

3 (p4, 1), (v6, 2), (p2, 3.5), (p5, 4),
(v2, 4), (p1, 6.5)

(dp5, 2) ∞

4 (v6, 2), (p2, 3.5), (p3, 3.5), (p5, 4), . . . (dp5, 2), (dp4, 4) 4
5 (p2, 3.5), (p3, 3.5), (p5, 4), . . . (dp5, 2), (dp4, 4) 4
6, 7 (p5, 4), . . . (dp5, 2), (dp4, 4) 4

(b) Running Steps

Fig. 7. Example KNN Query

the cells that share the border points (lines 20–23). Note that it is possible for inner and
outer expansions to run concurrently, which may happen, for example, if the query point
is quite close to the border of a cell. The algorithm guarantees that both expansions will
stop if KNNs are found.

The algorithm uses three auxiliary functions. Function findDP(ex,y, ce) returns the
data points in ce.DP that are located on one of the edges ex,y and ey,x and also belong
to cell ce. Function findcell(q) returns the cell that q belongs to, i.e., the cell that its
nearest vertex, either q.e.vs or q.e.ve, belongs to. Finally, findcells(p,CE) returns the
cells that have p as a border point.

To illustrate the working of the algorithm, consider a 2NN query at vertex v8 in
Figure 2. The algorithm first scans the network inside the cell of query point q = v8—
see Figure 7(a). The border points of the cell are also inserted into Qv based on their
distance to q. The steps in computing the query are listed in Figure 7(b). In step 3, since
the border point p4 is closer to q than other vertices such as v6, the algorithm discovers
data points in cell4, and data point dp4 is found through p4. After data points dp5 and
dp4 are found, steps 6 and 7 continue and visit adjacent points (in the virtual network)
of p2 and p3, and then the algorithm stops.

The KNN algorithm with the S-GRID improves the efficiency of the INE algorithm
in three ways. First, the inner expansion is avoided fully or in part, if there are no
data points in the cell of the query point or if all these data points have been reached,
respectively. Second, by doing the inner and outer expansions concurrently, more data

104 X. Huang et al.

points are inserted into Qdp early in the algorithm, which restricts the expansion scope.
Finally, the expansion on the virtual network formed by the border points and their links
utilizes the pre-computation data to link data points with border points, which makes it
possible to find these data points in the virtual network.

In some cases, these optimizations will not take effect. For instance, when there
are more than k data points in the cell of the query point and the query point is close
to the center of the cell, all the nearest neighbors needed may be found by the inner
expansion, in which case the efficiency of the S-GRID algorithm is equal to that of
the INE algorithm. To improve this, the system can maintain several S-GRIDs with
different cell sizes and assign a proper S-GRID to run the KNN algorithm based on the
location of the query point and the data point density.

3.3 Extensions

The S-GRID approach is useful for the computation of many different kinds of queries.
To illustrate this, we describe how the S-GRID can be used for computing range and
CKNN queries.

Range Query. The range query retrieves all data points that are within a given network
distance R of a query point. Intuitively, the same network expansion process can be
used for the range query as for the KNN query, except that the termination condition in
line 11 of the KNN algorithm has to be changed to d(q, vx) < R ∧ Qv 	= ∅. Note that
the S-GRID is used in the same way to maintain the inner and the outer expansions.

CKNN Query. The CKNN query retrieves k nearest data points along a given query
path, i.e., it finds k nearest neighbors to any point of a given path in the network.
Existing solutions for CKNN query in spatial networks [1,10] depend on an efficient
algorithm for the static KNN query. Specifically, as indicated by the most recent pro-
posal, UNICONS (UNIque Continuous Search) [1], to perform a CKNN query on a
path ni, ni+1, . . . , nj , it is sufficient to retrieve data points directly on the path and then
run a static KNN query at each vertex nk on the path (i ≤ k ≤ j) [1, Lemma 2]. To
improve the efficiency of such KNN queries, the UNICONS approach pre-computes
and stores KNNs of a selected nodes in the network. The S-GRID approach can be used
for processing the static KNN queries at the path nodes. Similar to the UNICONS ap-
proach, we can also store KNNs of every border point of the S-GRID so that when a
KNN query reaches a border point, it can re-use the KNNs of this border point and does
not need to expand further from this point.

Accommodating Traffic Regulations. The S-GRID approach only requires few mod-
ifications in order to be able to contend with traffic regulations when computing KNN
queries. Specifically, when one-way roads, streets with u-turn restrictions, and road
junctions with turn restrictions have to be considered in the expansion process, only the
inner expansion needs to check these constraints. The outer expansion on the virtual
network needs not contend with such restrictions, as they have already been addressed
during pre-computation.

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 105

4 Empirical Evaluation

4.1 Settings

To gain insight into the performance of the S-GRID, we conduct experiments with two
datasets. The first represents the real-world road network and points of interest in Aalborg
(AAL), Denmark, and it contains 11, 300 vertices, 13, 375 bi-directional edges, and 279
data points. The second dataset is the road network data of San Francisco (SF) (down-
loaded from http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/),which
contains 175, 343 vertices and 223, 140 bi-directional edges. For the SF dataset, we use
synthetic data points that are generated randomly with a density of 0.1% (the density is
the number of data points versus the number of bi-directional edges in the network).

The road network and pre-computation data are arranged into disk pages based on
the data structures described in Section 3.1. We set the page size to 4k and use an LRU
buffer for caching the disk pages read by the algorithms. The total size of the LRU
buffer is 15% of the network data (i.e., the Vertex-Edge component). The AAL and SF
datasets contain, respectively, 129 and 4, 023 pages in the Vertex-Edge component.

We compare with the INE and the Islands approaches [3], and the consider the per-
formance of these approaches in terms of the CPU running time and the amount of disk
I/O operations. All the tested approaches are implemented in C++ and performed on a
Pentium IV 1.3 GHZ processor with 512 MB of main memory and running Windows
2000. Query points are randomly generated in all the experiments. Each reported per-
formance number is the average number obtained after measuring the performance in
several runs of the experiment.

Two series of experiments are conducted. The first series studies the performance of
the KNN query comparing the S-GRID, the INE, and the Islands approaches. In these
experiments, we vary k, the density of the data points, and the number (and size) of
grid cells. The second series of experiments examines the cost of pre-computation and
update operations in the Islands and S-GRID approaches.

4.2 Experiments on KNN Query Performance

In this experiment, we examine how the performance of KNN queries is related to the
value of k, the density of data points, the size of the grid cells in the S-GRID approach,

Fig. 8. Effect of K

and the island size in the
Islands approach. We set
k = 5 for the experi-
ments with the density, the
grid cell size, and the is-
land size. The AAL and SF
networks use grids of size
8× 8 and 20× 20, respec-
tively.

To express the island
size, we define the max-
imum Euclidean distance

106 X. Huang et al.

between all vertices in the road network as Dmax. The island radius used is then repre-
sented as a fraction of Dmax. In all experiments, the islands of the same network have
the same radius. In the case where the island size is less than the edge length, we set
the island to cover the edge of the data point. The AAL network uses an island size of
0.05Dmax while the SF network uses 0.01Dmax.

As shown in Figures 8 and 9, the KNN algorithm with the S-GRID requires more
CPU time than the INE and Islands approaches. This is because each vertex in the

Fig. 9. Effect of Data Point Density

virtual network has
more adjacent edges
than the original spa-
tial network. This in-
creases the insertion
and sorting times in
queue Qv of the net-
work expansion algo-
rithm. The S-GRID
requires fewer disk
accesses than INE,
but is slightly worse
than the Islands ap-

proach. The superior performance of the Islands approach (when compared to the
S-GRID) is due to the usage of pre-computed distances to the queried data-points in
the Islands approach. The slightly lower performance of the S-GRID is the price that
is paid for the flexibility of not having to know the set of data points at the time of
pre-computation.

Figure 10 reports on experiments where the S-GRID cell size is varied. As expected,
the results of the experiments show that when the number of cells increases, the per-
formance of the KNN queries improves. However, as illustrated in Figure 10, when the

Fig. 10. Effect of Number of Grid Cells

cells get too small,
there are too many
border points and
links, which increase
the cost of expansions
on the virtual network
to the point where it
becomes even more
expensive than just
making expansions
on the original net-
work.

4.3 Experiments with Pre-computation and Update

With the objective of exploring the cost of pre-computations with the Islands and
S-GRID approaches, the second series of experiments measure the disk I/O and number
of generated data items (i.e., the amount of border points, links, and pairs of distances)

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 107

Fig. 11. Pre-computation and Storage Costs—S-GRID and Islands

during pre-computation. We do not report the time for writing the pre-computation data
to disk as this time is proportional to the number of generated items. Updates to the
network edges and vertices are relatively rare when only the spatial coordinates and the
topology of the network are considered. However, for applications where the distance in
the road network is measured as the travel time, the frequency of network updates can
surpass even the frequency of queries. That is why we also study the network update
performance of the compared pre-computation approaches.

The “pair of distances” recorded in Figure 11 shows the number of distances (i.e., the
distances from vertices to data points or border points) collected during pre-computa-
tion. The figure shows that the pre-computation cost for the S-GRID is higher than the
corresponding cost for the Islands approach for small islands, but that it decreases with
increasing numbers of grid cells since the network expansion scope from each border
point gets smaller.

To illustrate the difference between the original network and the virtual network of
the S-GRID, we list the number of vertices and edges (edges ei,j , ej,i are counted as
one) in the original AAL and SF networks as well as the corresponding virtual networks.

108 X. Huang et al.

As shown in Figure 12, the 3×3 and 8×8 grids on the AAL network have fewer vertices
and edges, which can lead to improved KNN query performance (as in Figure 10). Note
that the 15 × 15 grid on the AAL network produces fewer vertices, but more edges,
when compared to the original network. Nevertheless, an order of magnitude reduction
in the number of vertices (for the 15 × 15 grid) results in improvements of the query
performance (compared to the INE in Figure 10). Similar to this, the 10×10 and 20×20
grids on the SF network improve the query performance. When the grid is too dense,
i.e., 50 × 50 or 100 × 100, there are too many edges in the virtual network, which
negatively effects the efficiency of the query algorithms. The space consumption of the
S-GRID, while dependent on the number of grid cells, is generally larger than the space
consumption of the Islands approach (see Figure 11). Again, the space is sacrificed for
the flexibility of the S-GRID. To discover the appropriate number of grid cells for the
specific network and data sets, an iterative approach can be used which, by running
a certain amount of test queries over several different grid partitionings, chooses the
number of grid cells that results in the most efficient execution of the test queries.

To examine the cost of updates in the S-GRID and the Island approaches, we ran-
domly pick one edge in the AAL network and vary its length so as to collect the CPU
and disk I/O costs of the re-computations of pre-computed data. We vary the amount of
grid cells and the size of islands and measure the update cost.

Network Vertices Edges
AAL 11, 300 13, 375

AAL (3 × 3 Grid) 221 7, 282
AAL (8 × 8 Grid) 485 10, 774

AAL (15 × 15 Grid) 1, 006 16, 986
SF 175, 343 223, 140

SF (10 × 10 Grid) 2, 213 172, 275
SF (20 × 20 Grid) 4, 726 262, 187
SF (50 × 50 Grid) 11, 692 381, 705

SF (100 × 100 Grid) 22, 822 419, 307

Fig. 12. Reduction of Network Size

As illustrated in Figure 13, the update cost
in the S-GRID decreases as the cells get
smaller since the cost of doing network ex-
pansions is smaller for smaller cells. The cost
of doing updates on the islands increases dra-
matically as the islands increase in size. With
small islands, it is very likely that an edge is
not in any island, in which case the update
cost is close to zero (one only needs to up-
date the network data). When the island size
increases, each edge is likely associated with
more than one island so that the update oper-
ation has to re-generate more islands.

Fig. 13. Update Cost of S-GRID

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 109

Fig. 14. “Sub-Category” Query and Update

To test how efficiently the S-GRID and other approaches perform “sub-type” KNN
queries that search for NNs belonging to a sub-type of data points in the dataset, we
randomly divide the 279 data points in AAL network into 10 groups (with 28 or 27 data
points in each group) and implement KNN query algorithms that use the INE, S-GRID,
and Islands approaches for finding KNNs in one of the groups. The default value of k
is 5 and we use an 8× 8 grid. We vary the size of the islands.

To support sub-type queries, the Islands approach creates islands for all the data
points and the online expansion algorithm checks if a newly-discovered island belongs
to the target category, to determine whether further expansion is necessary. In addi-
tion, we show the update cost (changing one edge weight) of the Islands and S-GRID
approaches. As demonstrated in Figure 14, for the KNN query, the S-GRID approach
requires fewer disk accesses than the INE, and the island size has to grow to 0.3Dmax

for the Islands approach to have better performance than the INE and S-GRID. How-
ever, the cost of updates in the Islands approach with islands of even smaller size (e.g.,
0.05, 0.1, 0.2 of Dmax) is worse than the update cost of S-GRID. Thus, in terms of over-
all performance of processing sub-type queries and processing updates, the S-GRID is
better than the Islands approach. Note that, in the reported experiments, all data points
are divided only into 10 “sub-types.” In real applications, the data points may be divided
into much more “sub-types,” which further increases the advantage of the S-GRID over
the Islands approach.

5 Summary and Future Work

Spatial network databases have gained substantial attention with the development of ad-
vanced positioning and mobile communication and computing technologies. One cur-
rent focus is on how to reduce the amount of disk accesses needed for executing spatial
and spatio-temporal queries in spatial network databases.

In particular, different approaches to pre-computation has been studied with the pur-
pose of achieving efficient query processing. Motivated by the limitations of existing
pre-computation approaches, this paper proposes a more versatile approach, termed the
S-GRID, to pre-computation.

110 X. Huang et al.

In a world where few query processing and indexing techniques proposed by the
research community are finding their way into products, and where software vendors
tend to prefer versatile and robust techniques over more specialized ones, even though
the latter perform factors better, we believe that the S-GRID is significant.

The key new benefit of the S-GRID is that it offers competitive query performance
without making the assumption that all data points are known in advance, i.e., before
the pre-computation can be accomplished in preparation for the processing. As another
benefit, the S-GRID also enables query processing to proceed in parallel with updates
to, and the consequent re-pre-computation on, the spatial network. Yet another benefit
is that it is easy to integrate support for traffic regulations into the S-GRID approach.

Several directions for future work exist. First, it is of interest to perform analytical
cost modeling of the S-GRID and to compare with the existing VN3, Island, and SPIE
approaches. Second, a uniform two-dimensional grid has been used in the S-GRID.
Since a non-uniform grid can capture more appropriately a network with dense and
sparse regions, it is of interest to consider if or how a non-uniform grid can be used with
the S-GRID approach. In addition, the partitioning can be made much more “network-
aware” [6] in order to reduce the number of boundary points, which in turn may reduce
the space consumption and the running time of the S-GRID approach. Third, this paper
has hinted at how traffic regulations of real-world road networks can be accommodated
in pre-computation. We believe, however, that real-world complexities such as those
that stem from traffic regulations should be considered in more detail.

References

1. Cho, H.J., Chung, C.W.: An Efficient and Scalable Approach to CNN Queries in A Road
Network. In: Proc. VLDB, pp. 865–876 (2005)

2. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated Data Management
for Mobile Services in the Real World. In: Proc. VLDB, pp. 1019–1030 (2003)

3. Huang, X., Jensen, C.S., Šaltenis, S.: The Islands Approach to Nearest Neighbor Querying in
Spatial Networks. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

4. Huang, X., Jensen, C.S., Šaltenis, S.: Multiple k Nearest Neighbor Query Processing in Spa-
tial Network Databases. In: Manolopoulos, Y., Pokorný, J., Sellis, T. (eds.) ADBIS 2006.
LNCS, vol. 4152, pp. 266–281. Springer, Heidelberg (2006)

5. Hu, H., Lee, D.L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Grust, T.,
Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sat-
tler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 186–203.
Springer, Heidelberg (2006)

6. He, H., Wang, H., Yang, J., Yu., P.: BLINKS: Ranked Keyword Searches on Graphs. In:
Proc. SIGMOD (to appear, 2007)

7. Jing, N., Huang, Y.W., Rundenstener, E.: Hierarchical Optimization of Optimal Path Finding
for Transportation Applications. In: Proc. CIKM,, pp. 261–268 (1996)

8. Jensen, C.S, Kolář, J., Pedersen, T.B., Timko, I.: Nearest Neighbor Queries in Road Net-
works. In: Proc. ACM GIS,, pp. 1–8. ACM Press, New York (2003)

9. Kolahdouzan, M., Shahabi, C.: Voronoi-based Nearest Neighbor Search for Spatial Network
Databases. In: Proc. VLDB,, pp. 840–851 (2004)

10. Kolahdouzan, M., Shahabi, C.: Alternative Solutions for Continuous k Nearest Neighbor
Queries in Spatial Network Databases. GeoInformatica 9(4), 321–341 (2005)

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 111

11. Pearl, J.: Heuristics: Intelligent Search Strageties for Computer Problem Solving. Addison
Wesley, Reading (1984)

12. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network
Databases. In: Proc. VLDB, pp. 802–813 (2003)

13. Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A Road Network Embedding Technique
for K-Nearest Neighbor Search in Moving Object Databases. GeoInformatica 7(3), 255–273
(2003)

14. Shekhar, S., Liu, D.: CCAM: A Connectivity-Clustered Access Method for Networks and
Network Computations. TKDE 19(1), 102–119 (1997)

15. Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-Temporal Databases. In: Proc. ICDE, pp. 643–654
(2005)

16. Yiu, M.L., Mamoulis, N.: Clustering Objects on A Spatial Network. In: Proc. SIGMOD, pp.
443–454 (2004)

17. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate Nearest Neighbor Queries in Road Net-
works. TKDE 17(6), 820–833 (2005)

18. Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse Nearest Neighbors in Large Graphs.
TKDE 18(4), 540–553 (2006)

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 112 – 129, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficiently Mining Regional Outliers in Spatial Data

Richard Frank, Wen Jin, and Martin Ester

School of Computing Science
Simon Fraser University

Burnaby B.C., Canada V5A 1S6
{rfrank,wjin,ester}@cs.sfu.ca

Abstract. With the increasing availability of spatial data in many applications,
spatial clustering and outlier detection have received a lot of attention in the
database and data mining community. As a very prominent method, the spatial
scan statistic finds a region that deviates (most) significantly from the entire
dataset. In this paper, we introduce the novel problem of mining regional outliers
in spatial data. A spatial regional outlier is a rectangular region which contains an
outlying object such that the deviation between the non-spatial attribute value of
this object and the aggregate value of this attribute over all objects in the region is
maximized. Compared to the spatial scan statistic, which targets global outliers,
our task aims at local spatial outliers. We introduce two greedy algorithms for
mining regional outliers, growing regions by extending them by at least one
neighboring object per iteration, choosing the extension which leads to the largest
increase of the objective function. Our experimental evaluation on synthetic
datasets and a real dataset demonstrates the meaningfulness of this new type of
outliers and the greatly superior efficiency of the proposed algorithms.

Keywords: Data mining, Spatial outliers, Efficient algorithms, Delaunay-
triangulation.

1 Introduction

Spatial data is being collected, made available and used more and more both for
research and commercial purposes. For the automatic analysis of such data, spatial
data mining methods have received a lot of attention in the database and data mining
community [21] [27], in particular methods for spatial clustering and outlier detection.
Spatial clustering aims at partitioning the spatial region into sub-regions with high
intra-region similarity and inter-region difference [13], the goal of spatial outlier
detection is to find objects inconsistent with their spatial neighbours even though they
may not be significantly different from the entire set of objects [27]. Hotspot analysis
is related to both of the above tasks, attempting to discover spatial regions with
densities or attribute values that are significantly different from the whole dataset.
Important applications are the discovery of disease outbreaks, of crime hotspots or of
acts of bio-terrorism.

The goal of the spatial scan statistic [16] is to find such hotspots and various
efficient methods for it have been proposed in the literature [10] [20]. Just as

 Efficiently Mining Regional Outliers in Spatial Data 113

non-spatial outliers can be categorized into global [17] and local [7] outliers, so can
spatial outliers. The spatial scan statistic is a global method, targeting a region that
deviates (most) significantly from the entire dataset. In many applications however,
users are interested in finding local outliers, spatial regions that enclose exceptional
knowledge because they contain objects within the region that are outliers relative to
the region itself. For example, according to Tips & Traps when buying a home [14], if
someone wishes to multiply their chances for making money when reselling a home
they have to buy an inexpensive house in the most expensive neighbourhood they can
afford. As the neighbourhood appreciates over time, the least inexpensive property
will appreciate more than its neighbours, relative to its price; the reverse is also true
and purchasing an attractive house in a bad neighbourhood will not yield a good
investment [30]. By searching for local spatial outliers in property data, it would be
possible to find the least expensive properties within the best neighbourhoods, which
could become promising investment opportunities.

In this paper we introduce the problem of mining regional outliers in spatial data.
A spatial regional outlier is defined as a (rectangular) region with a spatial object in
this region such that the value of the objective function, which measures the degree of
outlierness of the object within the region, is maximized. For example, in our
motivating real estate application, the object would be one (expensive) property, and
the rectangle would be the equivalent to its (inexpensive) neighborhood. In a crime
dataset, rectangles (neighbourhoods) could be found that have, for example, locations
with very different crime rates than the neighbourhood.

A Naïve algorithm enumerating all possible rectangles has a runtime complexity of
O(n4) which does not scale to large datasets as they appear in many practical
applications. Therefore, greedy algorithms are presented which take advantage of the
implicit neighbourhood relationships between objects and the different algorithms use
different neighbourhood definitions to prune the search-space. In our methods
however, the rectangles are "grown" from a seed and at each iteration are extended to
include the object which causes the largest increase in the objective function.

The main contributions of our work are as follows:

1) We introduce the novel problem of mining regional outliers in spatial data.
2) We propose two greedy algorithms for efficiently mining such outliers in large

datasets, reducing runtime from O(n4) to O(n2) compared to the Naïve algorithm.
3) Our extensive experimental evaluation on both synthetic and real datasets

demonstrates the meaningfulness of spatial regional outliers and the efficiency of
the proposed algorithms.

The rest of the paper is organized as follows. In Section 2, we discuss related work.
Section 3 introduces our problem definition and presents the corresponding
algorithms, including a comparative analysis of these algorithms. In Section 4 we
report the results of our experiments on both synthetic and real datasets; Section 5
concludes the paper with a summary and outlook on future work.

2 Related Work

There are three parts of the literature related to our study: outlier detection, spatial
scan statistics, and the use of Voronoi/Delaunay calculations. We survey them below.

114 R. Frank, W. Jin, and M. Ester

(Outlier detection) Outliers can be defined as “data objects that appear inconsistent
with respect to the remainder of the database” [5]. Outlier detection methods include
distribution-based using standard statistical distributions, depth-based which map
data objects into an m-dimensional information space and distance-based approaches
which calculate the proportion of database objects that are a specified distance from a
target object [13].

Statistical approaches to outlier detection [5] include distribution-based and depth-
based methods. However, the first method has the problem that it must assume the
dataset owns some probability distribution even though it is difficult to know the
underlying data distribution. The second method is not efficient for high dimensions.

The concept of global distance-based outliers is first introduced in [17], which
defines an object p being an outlier, if at most n objects are within distance d of p. It
generalizes the notion of statistical outlier tests, but the running time of the proposed
method is still exponential to the number of dimensions. Ramaswamy et al. [25] use
the distance of the kth-nearest neighbor to rank outliers and give an efficient algorithm
for mining top-n global outliers. Bay and Schwabacher [8] improved the method in
[17] by using the block nested loop strategy with pruning and randomization
techniques. Recently, Tao et al. [29] presented a disk-resident algorithm of finding
global outliers with a linear I/O cost. Shekhar et al. [27] studied spatial outliers, which
refer to spatially referenced objects whose non-spatial attributes are significantly
inconsistent with its neighbors, even though they may not be significantly different
from the entire objects. Their neighbourhood relationship however is limited to
adjacent locations along directed edges in the underlying spatial graph and not
derived from the natural spatial relationships between regions.

Breunig et al. introduced the concept of local outlier, a kind of density-based outlier,
which assigns each data a local outlier factor LOF of being an outlier depending on their
neighborhood [7]. The outlier factors can be computed very efficiently only if some
multi-dimensional index structures such as R-tree and X-tree [6] are employed. A top-n
based local outlier mining algorithm which uses distance bound micro-cluster to
estimate the density was presented in [15]. Lazarevic and Kumar [18] proposed a local
outlier detection algorithm with a technique called “feature bagging”.

Some clustering algorithms like DBSCAN [9] consider identifying outliers, but
only to the point of ensuring that they do not interfere with the clustering process.
Further, outliers are only by-products of clustering algorithms.

(Spatial Scan Statistics) The task of spatial scan statistics, which computes the
maximum discrepancy region by scanning a set of circular regions with different
radius in the spatial space [16], has received much attention in the data mining
community. Authors in [10] proposed a greedy method to find a sub-region R of the
input domain S for which the mean value of R is as large as possible. Neill and Moore
[20] aimed to find a 2-dimensional rectangular or square region with highest density
given an n×n grid of rectangles/squares. As an extension work, assuming a uniform,
multidimensional grid of bivariate data, where each cell of the grid has a count Ci and
a baseline Bi, they aim to find spatial regions (d-dimensional rectangles) where the Ci
are significantly higher than expected given Bi [21]. Agarwal et al.[2] studied the
problem of largest discrepancy region in a domain, and present a new exact algorithm,
which has the same asymptotic running time as the algorithm of Neill and
Moore [20], but with much simpler implementation. Authors in [3] present algorithms

 Efficiently Mining Regional Outliers in Spatial Data 115

for maximizing statistical discrepancy functions over the space of axis-parallel
rectangles with provable approximation guarantees, both additive and relative. Their
methods apply to any convex discrepancy function.

(Voronoi Diagrams) With spatial datasets, Voronoi diagrams and Delaunay
triangulations represent the spatial relationships between the objects [1], [12]. The
dataset is partitioned into regions, called Voronoi cells, containing all the points that
are closest to the object in the Voronoi cell [19]. For point data, the bisector segments
will be the perpendicular bisectors of neighbouring pairs of sites while for spatially
extended data, the borders will be circular arcs or arcs of parabolas [19].

Without a loss of usefulness the distance measure could be exchanged for any
distance measure, for example, the Manhattan distance or the distance covered by
visiting k shops, as illustrated in [23]. [12] defined the distance measure as ‘furthest-
distance’ indicating regions of least influence. [24] applied Voronoi diagrams to
measure flow in population samples and then model profitability of destination points
(i.e.: stores). Voronoi diagrams are also used to describe the internal structure of
objects in [19] while [11] uses it for two applications: a) the catchment area of each
object and b) denoting the largest polluter of the object in the Voronoi cell.

The dual of the Voronoi diagram, the
Delaunay triangulation, is the structure
that is the result of connecting all objects
with neighbouring Voronoi cells (Fig. 1).
[19] defines the Delaunay triangulation of
a set of points S as “a partition of the
convex hull of S into polytopical regions
whose vertices are the points in S. The
convex hull of the nearest neighbour set
of a Voronoi vertex v is called the
Delaunay cell of v.”

3 Mining Regional Outliers in Spatial Data

In this section, we introduce the problem of mining regional outliers in spatial data
(Section 3.1). We present a Naïve algorithm that enumerates all possible solutions to
search for the best regional outlier (Section 3.2). Section 3.3 proposes a greedy
algorithm, Global Neighbourhood Algorithm (GNA), which at each iteration
considers adding to the region the object which causes the largest increase in the
objective function. Section 3.4 introduces another greedy algorithm, Local
Neighbourhood Algorithm (LNA), which prunes the search-space even further by
only considering objects which are direct neighbours. The most expensive operation
of the greedy algorithms is the calculation of the objective function for each rectangle
evaluated, which is efficiently supported by a method of caching (Section 3.5).

3.1 Problem Definition

According to Tobler’s First Law of Geography ‘everything is related to everything
else; but that near things are more related than those far apart’ [28]. Hence it is

Fig. 1. Voronoi Diagram and corresponding
Delaunay triangulation

116 R. Frank, W. Jin, and M. Ester

expected that within the spatial data relationships exist between objects that are near
each other, but not necessarily between those that are far apart. The existence of the
relationships causes neighbourhoods to be formed within the spatial data. The
neighbourhoods can exhibit spatial trends which illustrate the correlation of one or
more non-spatial attributes and the distance away from a central object [26]. A spatial
outlier is an object which is inconsistent with its spatial neighbours even if the non-
spatial values are normal for the rest of the objects of the same class. Due to this, non-
spatial outlier detection methods cannot work accurately without somehow taking into
account the spatial location [13].

Fig. 2. Sample of the BC Assessment dataset

Fig. 2 shows a representation of a small part of the British Columbia Assessment
Authority dataset, consisting of properties with spatial attributes (street-address and
object polygons) and non-spatial attributes (various values, for example the total
value of the property and building). The street-addresses are converted to a
longitude/latitude and used for outlier detection. In the case of overlapping or
containment between different objects, when the objects are geocoded they could
geocode to the same point or different points and a neighbourhood relationship would
be established between them. In the following, we formally define the problem.

Definition 1. A spatial dataset D is a set of objects P with 2 dimensional coordinates
(X,Y) and at least one non-spatial descriptive attribute value v.

We find rectangular regions, which contain the most deviating outlier given the values
of all the objects in the region. This is equivalent to finding, for example, the most
expensive, or cheapest, building in a neighbourhood. For each region that is
considered, an objective function f calculates and assigns to the region a value which
indicates the degree to which the region is an outlier. This is then maximized across
the entire dataset to determine the best region with the largest outlier value. The
proposed approach and algorithms work equally well for regions of other shapes, but
for cities with grid-like road-networks, rectangular blocks are appropriate. Unlike
other methods, such as [7], which can also be applied to spatial datasets, our proposed
approach does not rely on any index-structures or database constructs.

 Efficiently Mining Regional Outliers in Spatial Data 117

Definition 2. Given a spatial dataset D. A region R is an axis-parallel rectangular area
R=(PL,PU), PL ,PU

2∈h , where PL denotes the lower-left vertex (XL,YL) and PU the
upper-right vertex (XU,YU). For every edge of R, there exists an object P∈D that lies
on the edge. More precisely, for each pair of neighbouring vertices (Xi,Yi) and (Xj,Yj)
of R there is a λ ∈ h , such that ()(,) (,) (,)i i j j i iX Y X Y X Y Pλ+ − = , [0,1]λ ∈ . The set

of objects in R is given by { , (,) |)}R L U L US P D P X Y X X X Y Y Y= ∈ = ≤ ≤ ∧ ≤ ≤ . The

complimentary set is given by
RR

S D S= − .

Definition 3. Given a spatial dataset D and a region R. The value of the region under
consideration, VR∈h , is the result of applying the objective function f to R and all
objects P∈SR.

The objective function has to compare the range of values within the region against
the value of a certain individual object in the same region. This is done by
aggregating the attribute values of all objects in the region and comparing the
individual against the aggregate value. For example, some alternate objective
functions are shown below, where vi is the value of object i which is in the region R:

• (average of all objects in R) – (lowest value of an object):

1 1() ()R R
i i i iAVG v MIN v= =− (1)

• (average of all above-average objects) – (lowest value of an object):

1
11, ()

() ()R
i ii

R R
i i ii V AVG v

AVG v MIN v
=

== >
− (2)

• (average of above-average objects) – (average of below-average objects):

1 11, () 1, ()
() ()R R

i i i ii i

R R
i ii V AVG v i V AVG v

AVG v AVG v
= == > = <

− (3)

• (average of top-k highest) – (average of top-k lowest):

1, () 1, ()() ()R R
i i TOP k i i i BOTTOM k iAVG v AVG v= ∈ = ∈− (4)

• ABS[(average of all objects in R) – (value of most extreme object)]:

1 1 1 1[() (), () ()]R R R R
i i i i i i i iMAX AVG v MIN v MAX v AVG v= = = =− − (5)

Definition 4. Given a dataset D and an objective function f, a Spatial Regional Outlier
is the region R such that its VR is maximum over all possible regions. The top-k
Spatial Regional Outliers for D are the top-k regions with the k-highest VR values.

As an example, using Fig. 9, the Spatial Regional Outlier is the region enclosing the
set of points {34, 92, 46}, it is the region with the highest VR out of all possible
regions. Although any of the objective functions above could be used in our problem
definition, we used function (5) in our experimental evaluation. It is an intuitive and
understandable objective function that would find the largest deviation from the
average value. The result would be, for example, the least/most expensive property in
the most/least expensive neighbourhood. The pseudo-code for the algorithm that
calculates VR according to f is shown in Fig. 3.

118 R. Frank, W. Jin, and M. Ester

INPUT: region R, eval function
OUTPUT: value of rectangle

Method GetRectangleValue(R,f)
1 Get the bin that R would in
2 If R already in bin
3 VR retrieve R from cache
4 else
5 retrieve objects SR in R
6 VR value of SR using f
7 add {R, VR} to cache
8 Return VR

INPUT:dataset D, eval function, k
OUTPUT: TOP-k outlier regions

Algorithm Naïve(D, f, k)
 1 VR = 0, VR’ = 0, TOP-k = {}
 2 For P1 ∈ D
 3 For P2 ∈ D
 4 For P3 ∈ D
 5 For P4 ∈ D
 6 () ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)L LX Y MIN X X X X MIN Y Y Y Y=

 7 () ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)U UX Y MAX X X X X MAX Y Y Y Y=

 8 R rectangle({XL,YL},{XU,YU})
 9 VR GetRectangleValue(R,f)
10 If VR>MIN(VR) for R∈TOP-k
11 Add R to TOP-k
12 Return TOP-k

Fig. 3. The function that calculates, and
caches, the values of each region R

Fig. 4. Naïve algorithm. Function f is a user-
defined objective function.

Fig. 5. Sample rectangles created by the Naïve algorithm with seed-point: {71}

3.2 Naïve Algorithm

The Naïve algorithm, Fig. 4, enumerates all possible rectangles defined by at most
four objects from the dataset, line 2-5, with one object lying on at least one edge of
the rectangle. Assume four objects would make up a rectangle: P1=(X1,Y1),
P2=(X2,Y2), P3=(X3,Y3), P4=(X4,Y4); the left bottom vertex of the rectangle can be
given by:

() ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)L LX Y MIN X X X X MIN Y Y Y Y=

and the right upper vertex given by

() ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)U UX Y MAX X X X X MAX Y Y Y Y= .

The naïve algorithm has a run-time complexity of O(n4), given that there are n objects
in the dataset. This runtime complexity applies both to the worst case and the average
case. Fig. 5 shows a sample execution of the naïve algorithm.

 Efficiently Mining Regional Outliers in Spatial Data 119

3.3 Greedy Global Neighbourhood Algorithm

The naïve algorithm is too inefficient for large datasets. We propose to improve the
efficiency, although at the expense of guaranteeing optimality, through an iterative
greedy algorithm. Using any of the objects as seed, we iteratively grow the rectangle
by including one or more object at a time, always choosing the one that leads to the
highest increase of the objective function. In the Global Neighbourhood Algorithm
(GNA), each object is defined to be a ‘neighbour’ to each other object, hence the
entire dataset consists of a ‘global neighbourhood’. At each iteration the current
region R is extended by adding to R the object which yields the largest increase in f
until there are no objects in

R
S that increase the value of f. For the pseudo-code of

algorithm GNA see Fig. 6 and Fig. 7.

INPUT:datasetD, eval function,k
OUTPUT: TOP-k outlier regions

Algorithm GNA(D, f, k)
 1 for each seed-object O in D
 2 VR=0, SR = {O}, TOP-k={}
 3 loop
 4 R bounding region for SR
 5 O' FindExtensionG(D,R,f)
 6 SR' add O' to SR
 7 R' bounding region for SR'
 8 VR' GetRectangleValue(R',f)
 9 If VR' > VR then
10 VR = VR', SR add O' to SR
11 Else exit
12 If VR>MIN(VR) for R∈TOP-k
13 Add R to TOP-k
14 Return TOP-k

INPUT: D, R, f
OUTPUT: object with highest f

Method FindExtensionG(D,R,f)
1 SR objects in R
2

R
S D - SR

3 for object O in
R

S

4 R’ expand R to include O
5 VR GetRectangleValue(R’,f)
6 if VR > VR' then
7 VR = VR', O' = O
8 Return O'

Fig. 6. Pseudo-code of the GNA algorithm Fig. 7. Method to find best extension

Given a starting set of objects SR in region R, which in the initial iteration only contains
a single object called the seed, the greedy algorithm considers all objects in

R
S as possible

extensions to R (Fig. 7, line 3). During each iteration, a locally optimal object O’, yielding
the highest VR from

R
S , is selected after which O’ is added to SR (Fig. 7 line 5-10). The

addition of an object O causes R to expand, and since R is limited to a rectangular shape, it
will also add all intermediate objects to SR between the original R and O. For example,
given the shaded region R in Fig. 8 the extension adding the circled object would create a
much larger rectangle which includes all intermediary objects. Hence when calculating the
value of the objective function for a potential extension, the entire rectangle needs to be
constructed and all objects falling into it considered.

Analysis
Algorithm GNA has a worst-case runtime complexity of O(n3), and expected runtime of
O(n2). For the worst-case scenario assume that at each iteration a single object is added
into SR. Given a seed-object, the first iteration will consider all (n-1) objects in

R
S , the

120 R. Frank, W. Jin, and M. Ester

second iteration will consider (n-2) objects, the third iteration (n-3), etc, with the last
iteration considering a single object. Since each iteration only adds a single object to SR,
thus there are a total of n iterations, each considering on average 2

n objects and this is

repeated for all n seed-objects. Thus the worst-case runtime is O(n3).
For the proof of the O(n2) expected run-time, we first analyze the runtime

complexity per seed object. Assume that with each iteration p percent of the data are
additionally covered. Hence, in the first iteration n-1 objects are considered, of those
pn are added to SR and removed from

R
S . With the second iteration n-pn-1 objects are

left and considered, with pn added to SR. At the ith iteration n-(i-1)pn-1 are considered.
Hence the expected number of rectangles, T, that are considered until iteration i is:

1 1

(1) (1) (2 1) ...((1) 1) [(1)] (1)
i i

j j

T n n pn n pn n i pn in i j np in i np j
= =

= − + − − + − − + − − − = − − − = − − −∑ ∑

Since at each iteration pn objects are removed, hence there are at most 1
pi =

iterations. Thus,

2

3
1 1 1

1

(1) ()
i

n n n i n n n
p p p p p p p p p

j

T j O n
=

= − − − = − − = − − →∑ .

Since there are n seed-objects, hence the expected runtime of GNA is O(n2).

Fig. 8. Original region and its extension, optimal object for extension is circled

Optimal solution:
Object-values:{34, 92, 46}
VR = 34.66

Solution of GNA:
Seed-object is object 34
{34, 92, 46, 71, 99} VR = 34.4
Seed-object is object 92
{92, 34, 69} VR=31
Seed-object is object 46
{46, 71, 99} VR=27

Fig. 9. Algorithm GNA cannot guarantee optimality

 Efficiently Mining Regional Outliers in Spatial Data 121

The drawback to the GNA algorithm is that it cannot guarantee finding the optimal
solution. This is best illustrated with a counter-example (Fig. 9). In this case, the
optimal solution consists of the set of three objects with attribute values {34, 46, 92}.
By definition, starting at any object not in this set cannot yield the optimal value.
Starting at any of the objects in the set, the greedy algorithm chooses a local-optimal
object which happens not to be in the solution-set and hence any further extension can
never be optimal.

The reason for the inability of the greedy algorithm to find the optimal solution is
because: starting from any object in the optimal solution, two objects have to be
added to the region simultaneously in order for the optimal solution to be found. The
greedy algorithm is only able to consider adding one object at a time. Adding two
objects at a time would require considering pairs of objects at each iteration, yielding
an O(n4) algorithm. However, even this algorithm would not be able to find rectangles
where three objects have to be added simultaneously.

3.4 Greedy Local Neighbourhood Algorithm

Algorithm GNA, at every iteration, attempts to extend the region R by considering all

other objects in
R

S . This means R could grow arbitrarily large during any given

extension. An alternative approach is to limit the number of possible extensions
considered in the iterations which would also allow R to grow at a much more
controlled pace. A uniform and consistent way of accomplishing this would be to
allow only locally neighbouring objects of R to be considered for extension. Since
each iteration only extends R locally, hence the greedy Local Neighbourhood
Algorithm (LNA) has to consider a smaller number of objects at each iteration.

Definition 5. Let the set of all objects be divided into 3 subsets. The objects in R are still
called SR with the complimentary set

R
S now being split into two subsets: those objects

neighbouring objects in R are denoted by
RN

S , and those not neighbouring R are

Fig. 10. Region under consideration, SR in dark,
with its neighbors,

RN
S in light-shading.

Everything outside SR and
RN

S is called
R N

S .

Fig. 11. A single object in SR is
related to many objects in

R N
S

122 R. Frank, W. Jin, and M. Ester

INPUT: region R, eval function
OUTPUT: object with highest f

Method FindBestExtensionL(D,R,f)
1

RN
S neighbours to objects in R

2 for object O in
RN

S

3 R’ expand R to include O
4 VR GetRectangleValue(R’,f)
5 if VR > VR’ then
6 VR’= VR, O’ = O

7 Return O’ corresponding to VR’

Fig. 12. Method to find best extension Fig. 13. Example dataset where LNA will not
find the optimal solution (neighhourhood
relationships are dashed, optimal solution in
grey)

denoted by
R N

S , i.e.:
RRN R N

S D S S= − − . The neighbourhood relationships are

established via the dual of the Voronoi diagram, the Delaunay triangulation.

According to [4], a non-random dataset’s Voronoi structure has complexity O(n) in 2
dimensions and more specifically, on average, in a random or non-random dataset
there are 6 Voronoi neighbours [22] for each object. Given that multiple objects in R
could share the same neighbour and that some objects on the inside of R will only
have neighbours that are also in R, hence the number of actual neighbours to R is
much less than 6*|R|.

Given any region R, only objects that are direct neighbours to at least one object in
R would be considered as possible extensions. For example, given the original region,
shaded dark-grey, in Fig. 10, this approach would only consider the objects shaded in
light-grey as further extensions instead of all other objects in the dataset. Each object

could have multiple neighbours and the union of neighbours of SR is
RN

S (Fig. 11).

The main algorithm is the same as GNA's, Fig. 6, except on line 5 it uses the method
FindBestExtensionL (Fig. 12), instead of FindBestExtensionG. FindBestExtensionL
determines the next best object to add to the region taking into account the
neighbourhood relationships.

Analysis
The worst-case runtime for this approach is also O(n3) because there are at most n
objects considered at each iteration, and assuming that a single object is added to R at
each iteration, there will be n iterations. The algorithm also analyzes each of the n
seed-objects independently and hence the worst-case run-time is also O(n3). The
expected runtime complexity is similar to the GNA, but since at each iteration only
the local neighbourhood is analyzed rather than the global neighbourhood, hence the
constant ratio is much smaller.

Optimality is not guaranteed with this approach either, since it prunes the search
space even more strictly than GNA. LNA restricts the extension-search to only the

 Efficiently Mining Regional Outliers in Spatial Data 123

local neighbourhood, but if the optimal solution contains objects which are not
connected according to the Delaunay triangulation (i.e.: not direct neighbours), then
this approach will not find them. As a counter-example assume the dataset contains 6
objects (Fig. 13) with the optimal solution being disconnected. With this approach,
that region could not be discovered since the objects in the region do not share
neighbourhood relationships (shown as dashes) and hence would never be considered.

This method might also not find the optimal solution if the data is connected. For
example, the 6 data-objects (dashed lines indicate neighbourhood relationships)

will not yield an optimal solution using the LNA. Starting at any of the objects in
subset {10-8-4-8} will lead to a local-optimal solution of “10-8-4-8”, while starting
with any of the objects in {8-7-0} will lead to a local-optimal solution of “8-7-0”.
Although this algorithm theoretically cannot guarantee finding the optimal solution, in
practice it often finds target outliers that are very close to the optimal. For a
discussion on the optimality of our approaches based on experiments, see Section 4.3.

3.5 Rectangle Caching

One of the most expensive operations within the algorithm was the calculation of VR
for each region R that had to be evaluated. One solution to this is to keep a cache of
all the regions that have been evaluated.

Each region can be described by two pairs of (X,Y) (or longitude/latitude)
coordinates, an (X,Y) pair for the lower-left and upper-right corners of the region. Let
this region be represented by the 4 numbers {X1,Y1,X2,Y2}. Since the numbers could
be arbitrary, unbound and possibly negative, and not necessarily bound
longitude/latitude values, hence guaranteeing a 4D matrix representation is not
possible. All 4 coordinates however can be binned by normalizing to an integer value
between 1 and 10 after which they can be represented as a 4D matrix or a tree. For
example, {X1,Y1,X2,Y2} could become bin number {5, 4, 6, 8}. There will be multiple
{X1,Y1,X2,Y2} regions that will map into the same bin, but for any given
{X1,Y1,X2,Y2} only the bin it is mapped into would have to be scanned to see if it has
already been evaluated. If it exists in the bin then retrieve the value, otherwise
evaluate the region and place it into the bin. By modifying the number of bins, it is
possible to significantly influence the number of comparisons that must be done,
depending on the dataset. This caching is shown in Fig. 3.

4 Experimental Evaluation

The experiments were run on both synthetic and real data. The synthetic data was
generated using a uniform distribution of n objects and was used to compare the three
approaches in order to evaluate the efficiency of each. This is presented in
Section 4.1. In order to test non-uniformly distributed data, and to find
neighbourhoods where an individual property is most different from the
neighbourhood, experiments (Section 4.2) were also run on the real-life British

124 R. Frank, W. Jin, and M. Ester

Columbia Assessment Authority (BCAA) dataset. The dataset consists of 667,734
properties, and includes the location and assessed values of each property in BC, Canada.

All experiments were performed on an Intel Core2Duo 6300 @ 2.5GHz with 2GB
of RAM. The implementation did not take advantage of multi-threading. We searched
for the top 5 outlier regions in each dataset. Our rectangle-cache size was 500 bins for
each of the four coordinates describing a region. The neighbourhood relationships
were calculated via a call to MatLab, which is treated as a black-box.

4.1 Synthetic Datasets

Different size datasets were generated randomly with both uniformly distributed
(X,Y) coordinates and descriptive attribute values. The data-size was doubled for each
consecutive run. The results are shown in Fig. 14. The runtime for the naïve algorithm
quickly becomes prohibitive, running a small dataset of 160 objects took 2.5 hours to
process and each iteration increased the number of rectangles evaluated as well as
runtime by approximately a factor of 16. The runtime for the GNA was much better,
but it also quickly became prohibitive as anything above 1000 records already
required hours to run. With the GNA, the number of rectangular regions that must be
evaluated also increased exponentially. The LNA approach however had a super-
linear runtime and was able to process datasets larger than 20,000. This was due to the
much smaller neighbourhood it had to evaluate at each iteration.

Fig. 14. Synthetic Results: Run-time results and number of regions vs. dataset size

Fig. 15. Factor of increase in runtime as a
result of a doubling the dataset

Fig. 16. Property types and cities used

 Efficiently Mining Regional Outliers in Spatial Data 125

Since the naïve algorithm become infeasible even with a small dataset, the effect
on the run-time as a result of doubling the dataset was investigated and is presented in
Fig. 15. ‘Number of Doublings’ of 0 corresponds to a dataset size of 10. It is clear in
these results that the naïve complexity approximately increases by a factor of 16 when
the dataset is doubled: O(n4). It becomes prohibitive after only 4 doublings (dataset
size of 160). The GNA is two factors better at O(n2) but it still became prohibitive
after 7 doublings (corresponding to a dataset size of 1280). The LNA algorithm was
surprisingly much better because a doubling of the dataset led to a straight doubling
of the run-time implying that this is actually an O(n) algorithm; it became prohibitive
after 11 doublings (dataset size of 20480).

4.2 Real Dataset

The experiments were run on the 2005 dataset of the British Columbia Assessment
Authority (BCAA). The dataset consists of the street-address, assessed property and
building values of all taxable properties (homes, businesses, etc) within the borders of
British Columbia. Each plot was also categorized into 191 types of properties. The
original dataset consisted of 667,734 such records. 15,268 of those properties had no
specified street-address since they were classified as ‘vacant’ and hence are not
assigned addresses. As a preprocessing step, the addresses were converted into a
latitude and longitude coordinate value, a process known as geo-coding. This was
accomplished with the use of Microsoft MapPoint 2006 (MMP). The locations were
determined to within 10 decimal places. After geo-coding was complete, it was found
that 27,331 addresses existed in the source data but not on the street-network of
MMP, hence were discarded, leaving 625,135 entries for outlier detection. Through
the geo-coding process, each address was mapped to a single (X,Y) point. Note that
our problem definition requires spatial objects that are points, not polygons.

Selecting a single large dataset and creating samples of different sizes from within
that set to evaluate our performance would not at all have yielded correct results. For
example, creating equal sized non-overlapping random samples from the set of 'Stores
and Offices' in Vancouver resulted in value-ranges in one subset of ($180,400
$1,795,000) while another subset had a value-range of ($186,600 $10,977,000)
while a third subset had a range of ($215,300 $42,848,000). Performing analysis
on these subsets would clearly have been impacted by the sampling.

Considering all types of properties together also would not yield relevant results.
For example, Simon Fraser University, with an assessed value of $468million, would
immediately be flagged as an outlier since it is mainly surrounded by residential
properties with values between $100,000 and $500,000. Hence outlier detection is
performed only within each type of property. Different types of properties were
extracted from the BCAA dataset to create the data that our experiments would be run
on. The criteria for the different datasets used for experimentation is shown in Fig. 16.
All algorithms were run on each dataset unless the runtime was infeasible.

As can be seen in Fig. 17, the run-time of both the GNA and LNA is still
significantly better than the naïve algorithm, with the LNA significantly out-
performing both. Whereas the naïve was only able to process a data-size of 70
properties (of type ‘Multi-Family - Garden Apartment & Row Housing’) in a
reasonable time due to its O(n4) behaviour, the GNA was able to process 220

126 R. Frank, W. Jin, and M. Ester

('Churches & Bible Schools') and was roughly O(n3). With LNA however we were
able to get results for a data-size of 4794 properties (of type Single Family Dwelling)
since it still behaved near-linearly.

The time required to process real data was significantly larger than with uniformly
distributed data. This was due to one major difference between the uniformly
distributed and real datasets. The real datasets included properties that shared the
same address and hence geo-coded to identical coordinates, such as condominiums
which could include hundreds of such residences. If all coordinates are unique then
the neighbourhood relationship between them is straightforward: there is one
neighbourhood relationship. However, between two neighbouring condominiums,
let’s say each with 100 properties, there will be 100*100=10,000 neighbourhood
relationships significantly increasing the runtime since each will be evaluated.

The naïve method could only evaluate 12 regions/second while the LNA was able
to evaluate 150 regions/second, hence although the number of regions is small for the
naïve it was expensive compared to the LNA. This was due to our use of the cache
(section 3.5); with the naïve, no region was evaluated twice whereas lots of duplicate
regions were not evaluated with the LNA due to the cache, saving considerable time.

Fig. 18 shows three regional outliers found in the BCAA dataset. The 'Single-
Dwelling' region identified had an average property value of $452,263 but had a
single property in it worth over $1million and was the largest regional outlier

Fig. 17. BCAA Dataset Results: Runtime and number of regions vs. dataset size

Fig. 18. Three spatial regional outliers in the BCAA dataset

 Efficiently Mining Regional Outliers in Spatial Data 127

identified. One of the properties within the 'Duplex' regional outlier (rectangle A,
Fig. 18) had a value of $959,000, more than $200,000 more than the next most-
expensive property in the neighbourhood where the average price was $587,052.
Another outlier region of the same type (rectangle B) had a single property valued at
$552,000 in a region with average values of $392,337.

The test-dataset only included a single year of data, but by retrieving multi-year
property assessment data from the City Of North Vancouver website1, it was possible
to further investigate. By taking 2005 as the baseline, it was possible to calculate
percentage increases in some below, near and above,-average-priced properties for the
'Single-Dwelling' property type. Interestingly, the results indicated that the more
expensive properties increased at a lower-rate than, while the below-average
properties kept pace with, properties valued close to the average value within the
region. This perfectly illustrates the significance and interestingness of our results:
that purchasing an inexpensive property in a relatively expensive neighbourhood is a
good investment. These results would be useful for anyone interested in purchasing a
single-dwelling in North Vancouver.

4.3 Optimality

Since the naïve approach exhaustively tests each possible region, it is guaranteed to find
the optimal solution. However, in the analysis of our proposed greedy algorithms it was
found that neither is able to make the same guarantee. In order to determine how close
GNA and LNA are to the true optimal solution, we compared the greedy optimal
solutions to all possible region values (VR). The set of all VR values for a sample
experiment is shown in Fig. 19 as a distribution graph. It illustrates that the bulk of the
rectangles are sub-optimal. In our tests, for about half the cases, the greedy approaches
were not able to find the global optimal solution, but they did consistently find local
optima that were very close to the global optimal. In almost all cases where the global-
optimal solution was not found there were less than 10 possible regions, equivalent to
less than 0.0008% of all regions, which yielded a more optimal solution than the local-
optima found by the greedy algorithm. Had the distribution graph of Fig. 19 followed an
exponential curve, the argument also could have been made that the majority of regions
are close-to-optimal and a simple random algorithm could outperform GNA or LNA.
This however was not the case. These results illustrate that our greedy approaches
sacrifice very little in optimality and are much better than the baseline random algorithm.

1 http://www.cnv.org/?c=3&i=167

Fig. 19. Distribution of VR both on real and synthetic data

128 R. Frank, W. Jin, and M. Ester

5 Conclusion

With the increasing availability of spatial data in many applications, methods for
clustering and outlier detection in spatial data have received a lot of attention in the
database and data mining community. In this paper, we have introduced the novel
problem of mining regional outliers in spatial data. A spatial regional outlier is
defined as a (rectangular) region which contains an outlying object such that the
deviation between the non-spatial attribute value of this object and the aggregate
value of this attribute over all objects in the region is maximized. In a real estate
application, for example, these outliers could represent the least expensive properties
within the best neighbourhoods, which could become promising investment
opportunities for investors or consumers. We have proposed two greedy algorithms
for efficiently mining such outliers in large datasets, reducing the runtime from O(n4)
to O(n2) compared to the Naïve algorithm that enumerates all possible rectangles. Our
algorithms grow regions starting from a seed object and extend them by at least one
neighboring object per iteration, always choosing the extension which leads to the
largest increase of the objective function. An extensive experimental evaluation has
been conducted, using synthetic datasets as well as the BC Assessment dataset. Our
experimental results demonstrate the meaningfulness of spatial regional outliers. They
also show that the proposed greedy algorithms scale much better to large datasets than
the Naïve algorithm, while producing results that are close to the optimum solution.

There are several interesting directions for future research. In this paper we have
considered only simple rectangular regions. This definition is very generic and widely
applicable, but in certain applications other types of regions may be more appropriate.
We plan to explore, for example, regions that are taking into account an underlying
road-network or system of waterways. In the context of spatio-temporal data, it seems
to be promising to investigate temporal aspects as well to find objects that have
clearly deviated from their region over time, e.g. properties which have demonstrated
a historic trend of outperforming their neighbourhoods.

References

[1] Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Computing Surveys 23(3), 345–405 (1991)

[2] Agarwal, D., McGregor, A., Phillips, J.M., Venkatasubramanian, S., Zhu, Z.: Spatial scan
statistics: approximations and performance study. In: KDD (2006)

[3] Agarwal, D., Phillips, J.M., Venkatasubramanian, S.: The hunting of the bump: on
maximizing statistical discrepancy. In: Proc. 17th Ann. ACM-SIAM Symp. on Disc. Alg.
pp. 1137–1146 (2006)

[4] Bereg, S.: Recent Developments and Open Problems in Voronoi Diagrams. 3rd
International Symposium. In: ISVD ’06 (2006)

[5] Barnett, V., Lewis, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1994)
[6] Berchtold, S., Keim, D., Kriegel, H.-P.: The X-tree: An efficient and robust access

method for points and rectangles. In: VLDB (1996)
[7] Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying Density-Based

Local Outliers. In: SIGMOD 2000 (2000)

 Efficiently Mining Regional Outliers in Spatial Data 129

[8] Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time with
randomization and a simple pruning rule. In: KDD (2003)

[9] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases. In: KDD (1996)

[10] Friedman, J.H., Fisher, N.I.: Bump Hunting in High-dimensional Data. Stat. and
Comp. 9(2), 123–143 (1999)

[11] Graf, M., Winter, S.: Netzwerk-Voronoi-Diagramme. Österreichische Zeitschrift für
Vermessung und Geoinformation 91(3), 166–174 (“Network Voronoi Diagrams”, english
translation available at www.sli.unimelb.edu.au/winter/pub.htm) (2003)

[12] Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized
voronoi diagrams using graphics hardware. In: Proceedings of ACM SIGGRAPH 1999,
ACM Press, New York (1999)

[13] Han, J., Kamber, M., Tung, A.K.H.: Spatial clustering methods in data mining: A survey.
In: Miller, H., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, Taylor
& Francis, Abington (2001)

[14] Irwin, R.: Tips and Traps When Buying a Home, 3rd edn. McGraw-Hill, New York (2003)
[15] Jin, W., Tung, A.K.H., Han, J.W.: Mining Top-n Local Outliers in Large Databases. In:

KDD (2001)
[16] Kulldorff, M.: A spatial scan statistic. Comm. in Stat.: Th. and Meth. 26, 1481–1496 (1997)
[17] Knorr, E.M., Ng, R.T.: Algorithms for Mining Distance-Based Outliers in Large

Datasets. In: VLDB (1998)
[18] Lazarevic, A., Kumar, V.: Feature Bagging for Outlier Detection. In: KDD (2005)
[19] Mayya, N., Rajan, V.T.: Voronoi diagrams of polygons: A framework for shape

representation. Journal of Mathematical Imaging and Vision 6(4), 355–378 (1996)
[20] Neill, D.B., Moore, A.W.: Rapid Detection of Significant Spatial clusters. In: KDD (2004)
[21] Neill, D.B., Moore, A.W., Pereira, F., Mitchell, T.: Detecting significant multidimensional

spatial clusters. Saul, L.K. et al. (eds.) Adv. Neur. Info. Proc. Sys 17, 969–976 (2005)
[22] Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete

approach. In: ACM Symposium on Parallel Algorithms and Architectures, ACM Press,
New York (2003)

[23] Ohyama, T.: Some Voronoi diagrams that consider consumer behavior analysis. Industrial
Mathematics of the Japan Journal of Industrial and Applied Mathematics (July 2005)

[24] Ohyama, T.: Application of the Additively Weighted Voronoi Diagram to Flow Analysis.
In: The 2nd International Symposium on Voronoi Diagrams in Science and Engineering,
Seoul, Korea, (October 2005)

[25] Ramaswamy, S., Rastogi, R., Shim, K.: Efficient Algorithms for Mining Outliers from
Large Data Sets. In: SIGMOD (2000)

[26] Santos, M.Y., Amaral, L.A.: Geo-spatial data mining in the analysis of a demographic
database, Soft Computing - A Fusion of Foundations, Methodologies and Applications,
vol. 9(5) pp. 374–384 (May 2005)

[27] Shekhar, S., Lu, C.T., Zhang, P.: A unified approach to detection spatial outliers.
GeoInformatica 7, 139–166 (2003)

[28] Tobler, W.R.: A computer movie simulating urban growth in the Detroit region.
Economic Geography 46, 234–240 (1970)

[29] Tao, Y.F., Xiao, X.K., Zhou, S.G.: Mining Distance-based Outliers from Large Databases
in Any Metric Space. In: KDD (2006)

[30] Weiss, M.B.: The Everything Homebuying Book - All the Ins and Outs of Making the
Biggest Purchase of Your Life (Paperback). In: Adams Media Corporation, 2nd edn.
(February 2003)

A Two Round Reporting Approach to Energy
Efficient Interpolation of Sensor Fields

Brian Harrington1,� and Yan Huang2,��

1 Yahoo! Corporation
brh@yahoo-inc.com

2 University of North Texas
huangyan@cs.unt.edu

Abstract. In-network aggregation has been proposed as one of the main
mechanisms for reducing messaging cost (and thus energy) in prior sensor
network database research. However, aggregated values of a sensor field
are of limited use in natural science domains because many phenomena,
e.g., temperature and soil moisture, are actually continuous and thus
best represented as a continuous surface over the sensor fields. Energy
efficient collection of readings from all sensors became a focus in recent
research literature. In this paper, we address the problem of interpolating
maps from sensor fields.

We propose a spatial autocorrelation aware, energy efficient, and error
bounded framework for interpolating maps from sensor fields. Our work
is inspired by spatial autocorrelation based interpolation models com-
monly used in natural science domains, e.g., kriging, and brings together
several innovations. We propose a two round reporting framework that
utilizes spatial interpolation models to reduce communication costs and
enforce error control. The framework employs a simple and low overhead
in-network coordination among sensors for selecting reporting sensors so
that the coordination overhead does not eclipse the communication sav-
ings. We conducted extensive experiments using data from a real-world
sensor network deployment and a large Asian temperature dataset to
show that the proposed framework significantly reduces messaging costs.

1 Introduction

Sensor networks are expected to form a digital nervous system embedded in
physical spaces to extend human beings’ “tactile” sensations to every corner of
the world. In recent years, coin-to-palm sized, programmable sensors have begun
to be able to locate their positions, self-organize into a network, and communi-
cate through multi-hop protocols with a gateway which incorporates long-haul
communication capacity. This enables the deployments of robust distributed net-
works of hundreds to thousands of sensors to interact with the physical world.
� The work was completed while at the University of North Texas.

�� This work was partially supported by the Texas Advanced Research Program under
Grant No. 003594-0010-2006 and by the National Science Foundation under Grant
No. OCI-0636421 and Grant No. CNS-0709285.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 130–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Two Round Reporting Approach to Energy Efficient Interpolation 131

The feasibility of abstracting a sensor network as a database has been doc-
umented and prototyped in pioneer sensor database systems [4,29,22]. In an
acquisitional sensor network database, a collection of sensors of the same type
may be treated as a table, e.g. lightSensors, in a database. The rows of the
table are distributed among sensors in a physical space. Each sensor generates
records in the format of < sensorID, reading, time >. Users can interact with
the network using declarative database query languages. The query is inserted
into the network by either broadcasting or targeted routing. For example, users
can issue queries such as “SELECT avg(readings) FROM lightSensors WHERE
location IN P EVERY 5 seconds” where P is a given polygon.

On the one hand, full duty cycle operations on a sensor node, e.g. Berkeley
Mica Motes, will deplete its energy supply in a few days. In-network aggregation
[11,25] has been proposed as one of the main mechanisms to reduce messaging
cost due to the fact that communication is much more expensive than computa-
tion in sensors. For example, the power consumed by a sensor to transmit 1 bit
of data is equivalent to 220 - 2,900 instructions on different architectures [29].
On the other hand, the average/sum/max readings of a spatial region is often of
limited use to domain scientists. Many phenomena in natural science, e.g., tem-
perature, hydraulic head, soil moisture, and ocean current velocity, are actually
continuous, and thus best represented as a continuous surface over the sensor
fields. In fact, a raster surface map, e.g. soil moisture map, is frequently created
by domain scientists using interpolation upon receiving readings from sensors,
and is fundamental for many subsequent field based operations. Energy efficient
algorithms that allow domain scientists to interpolate the surface/map of the
sensor fields for months to years are critical to future large scale deployments of
sensor networks.

In this paper, we address the problem of interpolating maps from sensor fields.
The naive way to interpolate the continuous spatial phenomena at the sink is
to have all sensors report their readings and perform an interpolation at the
sink. This approach depletes the energy of the sensor network very quickly. An
alternative way is to utilize spatial autocorrelation to select a subset of sensors
to report, and then use them to interpolate a map at the sink. However, for
the sensors that do not report, the estimation should be under a user given
error bound. Error bounded data collection is sufficient, especially considering
that for mapping interpolation residual errors are generally considered common.
This problem is also referred to as the “SELECT *” problem with error bound
in recent research publications [5]. In this paper, we focus on utilizing spatial
autocorrelation to perform energy efficient and error bounded map interpolation.

One way to utilize spatial autocorrelation is to divide the sensors into groups
and let the group leader aggregate/select the readings to report in the group and
represent the whole group. Unfortunately, the group leader selection process is
non-trivial and usually incurs substantial messaging cost if done dynamically in
the sensor field. In many cases, the benefit of grouping can not offset the overhead
of dynamic group leader selection. When the group selection is static and once-

132 B. Harrington and Y. Huang

for-all, the grouping may not be able to adapt to the dynamic topological changes
in the field and frequent sensor failures.

We propose a spatial autocorrelation aware, energy efficient, and yet error
bounded framework for interpolating maps from sensor fields. The framework
utilizes a simple probabilistic selection process to determine the sensors that
need to report in the first round and relies on a second round to control report-
ing errors for all other sensors. The error bound is achieved in second round
by pushing spatial interpolation models used by the sink to sensors in the field
allowing the sensors to make decisions on the importance of their readings. The
model utilizes qualitative measurements in spatial autocorrelation models, e.g.
variograms, to allow a simple, localized, and energy efficient in-network coordi-
nation scheme among sensors so that the coordination overhead does not eclipse
the communication savings.

We performed extensive experiments using two datasets. One is a real world
sensor network deployment from the Intel Berkeley Research Lab [20]. This
dataset is small with only 54 sensors. To further evaluate our framework, we
evaluated various schemes using a large dataset consisting of thousands of points
for 600 months. We compare the proposed model with 6 other simple models
for approximate data collection from sensor networks. Our experimental results
show that the proposed model provides significant savings.

The rest of the paper is organized as follows. We discuss related work in
section 2. In section 3, we first formally define the problem and present an
overview of our framework. Then we look into the details of using our framework
with kriging as the spatial interpolation method along with a short discussion
of other interpolation schemes. An extensive experimental study evaluating our
proposed framework is presented in section 4. The paper is concluded with a
discussion of possible future extensions of this work in section 5.

2 Related Work

We classify related work in the broad area of sensor network databases into
four categories: in-network aggregation, correlation based sensor reporting, data
compression, and interrogation.

TinyDB [22] is a sensor network database system with a traditional SQL like
interface. Due to the resource and communication constrained nature of current
sensors, query optimization schemes to reduce the energy consumption are the
focus of much research effort [23,6,21,26,25]. In particular, in-network aggrega-
tion is considered an effective way to reduce the messaging cost for aggregation
queries (e.g. sum and average) at the cost of simple in-network computations.
The rationale is that communication is much more expensive than computa-
tion. In the TAG system [21], an aggregation tree is created when a query is
broadcast to the sensors. The tree is used to aggregate the sensor readings from
children to a parent all the way up to the root where the query originates. For
distributive (e.g. sum, min, and max) and algebraic (e.g. average) aggregations,
the TAG method significantly reduces the messaging cost by reducing message

A Two Round Reporting Approach to Energy Efficient Interpolation 133

hops. Recent work [25] pointed out that aggregation without considering the
area that a sensor is representing may not be adequate for spatial aggregations
such as average. With aggregation queries, detailed locational information is lost.
Our work focuses on representing a field as faithful as possible while reducing
communication cost.

Correlation based sensor reporting techniques utilize spatial and/or temporal
correlation. Traditional temporal suppression schemes from stream processing
that utilize approximate caching [24], time-series models [19], and Kalman Filters
[14] have been adapted for mote size sensors. Approximate caching [24] relies on
cached values to reduce the number of reports needed from the data stream to
the sink. More sophisticated time-series models to capture the temporal trends
of the sensor readings have been used in [19,12]. Each sensor node calculates a
function based on past readings to predict the readings of the node in the near
future and sends it to the sink. In the case of high temporal autocorrelation, a
time series is condensed into a single function, thus reducing communication cost.
Our work focuses more on utilizing spatial autocorrelations and is orthogonal to
models that use temporal autocorrelation. The approach to incorporate temporal
models to the framework proposed in this paper will be discussed in the extended
version of this paper.

Utilizing spatial autocorrelation has been suggested in prior research work.
The clustering based approaches [12,2,27,13] group sensor nodes according to the
spectrum of sensing values or spatial proximity, and then select leaders to rep-
resent the group. Election and voting algorithms are important in selecting the
representatives for a group of value correlated sensors [12,31]. These algorithms
must be distributed and localized in order to scale well for large sensor networks.
Energy needs to be budgeted among representative election and communication
of selected sensors. Spatial suppression was suggested through clustering sensors
into groups and letting a group leader represent the whole group. The challeng-
ing problem of dynamic grouping and leader rotation were left for future research
in [12].

Snapshot [16] investigated various heuristics for for electing a small set of
representative nodes in the network in a localized manner to form a snapshot
of the network and provide quick approximate answers to user queries. Unlike
the scheme we propose in this paper, the representative selection process in
Snapshot can only be performed very infrequently to achieve overall saving. In
Ken [5], sensors are partitioned into disjoint cliques with one sensor in each clique
selected as the leader of the clique. The leader assumes the duty of selecting a
subset of data to be sent back to the sink according to a dynamic probabilistic
predication model. The dynamic probabilistic predication model is obtained by a
set of training data and is maintained by both the sink and the sensor field. Thus
the sink can calculate the expected readings for sensors that do not report using
the same predication model as the sensor field. Compared to Ken, our model
has a simple probabilistic voting process to select sensors to report in the first
round and relies on spatial interpolation models to control errors in the second

134 B. Harrington and Y. Huang

round. Our scheme can be extended to incorporate temporal compression and
be compared with Ken in future work.

Data compression may be performed spatially or temporally in sensor net-
works. The information theoretical approaches [8] aim to find an optimal rate to
compress redundant information in individual sensor readings. The joint routing
and source coding approach [17] attempts to compress redundant information
along the routing paths to reduce the number of bits transmitted. For these
techniques, the number of transmitted messages are condensed but not reduced.
Data compression is orthogonal to and may be applied on top of correlation
based data suppression.

Selectively interrogating sensors is another way to avoid requiring all sensors
to report. Bash et al. proposed an energy efficient uniform sampling scheme
for sensor networks [3]. A random sampler from the central station probes the
sensor network to select the set of samples. A sensor uses its Voronoi cell to
decide a probability to accept or reject the probe. Uniform sampling is useful for
application domains such as querying the average sensor battery life. For other
application domains such as finite element analysis uniform sampling may not
be suitable. Other approaches include the Binocular system [10]. This approach
divides sensors into working and sleeping sets and only collects data from the
working set. A system model is used to estimate the values for the sleeping set.
To avoid error accumulation the system model is updated by having all sensors
report at some specified interval. Deshpande et al. [9] proposed a model based
probabilistic approach in the central site to answer queries which samples a few
sensors when necessary to improve the estimation and achieve a confidence level
guarantee. In general the interrogation based approach is “pull based” (compared
with a “push based approach” such as Ken [5] and our model). A “pull based
approach” does not provide an error guarantee and is insensitive to outliers which
are more important for application domains such as environmental monitoring.

3 E2K Framework

In this section we will provide a formal definition of the problem and present our
proposed E2K (Error Bounded Energy Efficient Kriging) framework. In addition,
we discuss how to select an appropriate spatial interpolation model which is very
important in our framework.

Once we have the readings from all sensors within some error threshold, the
map interpolation problem becomes routine. To obtain a map, simply grid the
space using a given spatial resolution, then interpolate using the readings from
sensors to determine a value for each cell. So the problem is reduced to the fol-
lowing “SELECT * FROM sensorType FREQUENCY f WITHIN ε FOR t”, or
more formally:

Problem Statement: Let S be a set of spatially distributed sensors that mon-
itor some attribute A at a time instance t ∈ T , and for s ∈ S let Zt(s) be the
value of A for sensor s at time t. Let C be a central collection sink that processes

A Two Round Reporting Approach to Energy Efficient Interpolation 135

the information received from S, and let Z∗
t (s) be the value C estimates for A

for sensor s at time t. Devise an algorithm for C and the sensors in S, such that
for all s, t the estimated value is within a user specified error threshold ε > 0
from the actual value, i.e. |Zt(s)−Z∗

t (s)| < ε, with the objective of reducing the
total messaging cost.

Reducing total messaging cost is chosen as the objective because sending and
receiving messages dominate the energy consumption in current sensor networks
[5,9,21]. When a message is sent from a sensor, all the neighbors of that sensor
will receive the message even though in many cases only a subset of the neighbors
are intended destinations. Because sending and receiving have similar energy
cost, it is fair to use the total message count sent or relayed from all sensors
as the message cost (the actual total message cost that includes receiving and
sending messages will be some multiple of the total message cost that we use).

-25
-20
-15
-10

-5
 0
 5

 10
 15
 20
 25
 30

1950 1951

T
em

pe
ra

tu
re

Month

Asia Data: Month vs Temperature

60.25oE, 75.25oN
60.25oE, 74.25oN
118.25oE, 1.25oN

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 20 40 60 80 100 120

(h
)

Distance (h)

Asia Semivariogram

Emperical
(h)=79(1-e(-h/29))

Fig. 1. Sample Spatial Autocorrelation and Empirical and Theoretical Variograms

Tobler’s first law of geography [7] states that in space everything is related
to everything else, but nearby things are more related than distant things. For
example, the left chart in figure 1 shows temperatures of three locations from
Asia for 2 years with a monthly sampling rate [1] (this dataset will be described
further in section 4). The location (118.25◦E, 1.25◦N) is close to the equator
and far away from the other two locations. The two close-by locations show very
high correlation while the far-away location shows very little or no correlation
with the other two.

Various models, e.g. variograms, Moran’s I, and Geary’s C [7], have been
developed to quantify this phenomena (formally spatial autocorrelation). Spatial
autocorrelation models have been incorporated into spatial interpolation models
to create maps in many natural science domains. The spatial autocorrelation
based interpolation models create “better maps” in the sense that the sum of
the residual errors of the created map is closer to zero.

Our work is mainly inspired by spatial interpolation models utilizing spatial
autocorrelation. The main thrust is a two round reporting framework featuring a
probabilistic first round reporting and a spatial interpolation model based error
control scheme in the second round.

136 B. Harrington and Y. Huang

Query Interface Historical DBMS

Collection and Interpolation

Gateway Sensor

Sensor readings

MapMap Query

User Application

Interpolation
Model

Fig. 2. System Overview

3.1 The Two Round Reporting Framework

The system level process is illustrated in Figure 2. Map queries are injected from
a user interface into the sensor field. Each sensor makes a local decision about
the importance of its reading and decides if it needs to report. As a result only a
subset of the sensors (red or gray sensors in Figure 2) will actually report. The
reporting sensors route their readings through any multi-hop protocol [30,15],
e.g. GPSR [15], to the gateway sensor or sink. The sink estimates the values for
non-reporting sensors, and then interpolates a raster map from the sensor values
using the same spatial interpolation model that was used in the field.

The key challenge here is the tradeoff between the complexity of coordina-
tion among sensors in dynamically deciding which ones should report, and the
savings that result from having fewer sensors report while maintaining an error
threshold from all sensors. We need to make sure that the coordination over-
head does not eclipse the communication savings. Furthermore, it is desirable
to have an error guarantee for each sensor. The three, often conflicting, goals
are: (1) minimizing the number of sensors that report and thus save energy;
(2) minimizing coordination costs among sensors; and (3) allowing the sink to
interpolate readings for non-reporting sensors within an error threshold ε in the
face of possible error propagation due to simple coordination schemes.

A naive probabilistic approach would let each sensor report with a probability
p. This approach does not require coordination. However, there is no error bound
for sensors that do not report. An alternative would be to have all sensors send
their value to neighbors. Each sensor interpolates its own reading using the
readings from its neighbors. If the interpolated value deviates from the real
reading by more than ε, then the sensor reports. This approach again does not

A Two Round Reporting Approach to Energy Efficient Interpolation 137

have error guarantee for non-reporting sensors because of concurrent decision
making and error propagation in sensor fields. We propose a two round reporting
framework called E2K that is both energy efficient and has an error guarantee.
E2K consists of algorithm 1 for individual sensors and algorithm 2 for the central
site.

Algorithm 1. Sensor (s0) Algorithm
1: Zt(s0) ← value of A for this sensor at time t.
2: rand ← a random number ∈ [0, 1]
3: if (rand < p) then
4: {Round 1}
5: Report (Zt(s0), round1) to the central site and neighbors within distance r.
6: else
7: {Round 2}
8: R ← the set of readings from sensors within distance r that reported in first

round.
9: Z∗

t (s0) ← interp(R)
10: if (|Z∗

t (s0) − Zt(s0)| ≥ ε) then
11: Report (Zt(s0), round2) to the central site.
12: end if
13: end if

The algorithm for sensors is divided into two rounds. In the first round a
sensor decides to report with a probability p. As a result, a set of representative
sensors are selected to temporarily represent the field. Reporting sensors route
their readings to the sink and also send their readings to all sensors within
distance r for use in the second round. The second round is needed because the
first round does not have error bounds for non-reporting sensors. In the second
round, a non-reporting sensor in the first round will interpolate its reading
assuming it does not report, using only the readings received from reporting
sensors in the first round. If the estimated value deviates from the real value by
more than ε, then it reports.

Any kind of interpolation method can be used in the second round, e.g., a
simple average. However, a better interpolation method results in fewer sensors
that need to report in the second round. Basically, the probabilistic first round
provides a reasonable number of sensors to report so that the estimation methods
will work well in the second round, and the better the interpolation method is
the better the overall result will be. We will revisit spatial interpolation methods
in section 3.2.

The algorithm for the central site is meant to mirror what is done by the
individual sensors. If a reading is sent by a sensor, then that reading will be used.
For sensors where no reading was received, then the reading will be estimated
using the same method, and same set of neighbors, that the sensor used to
determine whether to report in the second round which gives us an error bound
for each sensor location of ε. Note that we assume a reliable (or at least best

138 B. Harrington and Y. Huang

Algorithm 2. Central Site Algorithm
1: Let S be the set of all sensors.
2: R1 ← the set of values received from sensors for attribute A at time t in round 1.
3: R2 ← the set of values received from sensors for attribute A at time t in round 2.
4: for all s ∈ S do
5: if (s reported a value) then
6: Z∗

t (s) ← value of s in R1 ∪ R2

7: else
8: Rn ← the subset of R1 within distance r of s.
9: Z∗

t (s) ← interp(Rn)
10: end if
11: end for

effort messaging) sensor network in this paper. Reliability is an important issue
in sensor network and will be addressed in a more extended version of this paper
in the future due to space constraint. More formally:

Lemma 1 (Error Bounding). For any sensor s, let Zt(s) be the actual value
and Z∗

t (s) be the estimated value of s for attribute A at time t. The |Z∗
t (s) −

Zt(s)| < ε using the proposed algorithms for each sensor and the central site.

Proof. There are two cases to consider:

1. If s reported its value, then Z∗
t (s) = Zt(s) which implies |Z∗

t (s) − Zt(s)| =
0 < ε since from the problem statement ε > 0.

2. If s did not report its value, then Z∗
t (s) = interp(R) where R is the set

of values that reported in the first round and that are within distance r
from s. This is the same as the estimated value used in the second round
for sensor s. If |Z∗

t (s) − Zt(s)| ≥ ε, them s would have reported. Therefore
|Z∗

t (s)− Zt(s)| < ε.

Once all the sense readings are recovered, the space is gridded based on a given
spatial resolution. A raster map is created by interpolating locations/cells with-
out any sensor readings from all the sensors (Z∗

t (s), s ∈ S).

3.2 E2K: Choosing Interpolation Method

Although our framework is general with respect to the interpolation method
used and always guarantees an error bound, which interpolation method is used
has a great impact on the performance of the E2K framework. Furthermore, we
need to make sure the sensor field can handle sophisticated interpolation models
without incurring too much storage and computation cost.

Let Z(e) be a random function at a location e of a sensor field. The value of
a location e0 is estimated by a linear estimator using the neighbors, e1, e2, ...,
en, within distance r:

Z∗(e0) =
n∑

i=1

λiZ(ei) (1)

A Two Round Reporting Approach to Energy Efficient Interpolation 139

e3

e1
e2

e0

Fig. 3. Kriging Example

where Z∗(e0) represents the estimated value at location e0, and λi refers to the
weight given to the ith neighbor’s value. For example, in Figure 3, we wish to
estimate a value at e0, using the data values from the n neighboring sample
points ei, i = 1, 2, 3. So, we have Z∗(e0) = λ1Z(e1) + λ2Z(e2) + λ3Z(e3).

There are a number of ways to assign the weights. It is desirable for the
sum of the weights to be one so that if all neighbors have the same value, then
this value will be the estimate. One way would be to assign equal weights to
all neighbors, i.e., to take a simple average of the neighbors values (Simple
Average). Another scheme would be to use the inverse of the distance as the
weights, i.e., λj = 1/dj∑ n

i=1 1/di
, where di is the distance from ei to e0 (Inverse

Distance). However, these techniques do not examine the spatial structure of
the data and may result in large estimation errors.

Kriging [7,28] is widely used and has a long history of popularity in many
natural science domains. It is a best fit linear unbiased estimator of a spatial
variable at a particular site or geographic area. The goal of kriging is to create
a raster map of a given resolution to represent a surface using a set of sample
readings. It estimates a value at a location of a region for which a covariance/-
variogram is known, or can be estimated using data in the neighborhood of the
estimation location.

We assume Z(e) is second-order stationary. This means the expected value
E[Z(e)] = m, where m is the mean, for any point of the domain; and the
covariance between any pair of locations depends only on the vector h that
separates them, i.e., C(h) = C(e, e + h) = E[Z(e) × Z(e + h)] −m2. We chose
ordinary kriging due to its adaptivity to local conditions, i.e., it only requires
local second-order stationarity as opposed to global. In ordinary kriging, the
estimation of a location e0 can be expressed by equation 1.

Kriging assigns weights according to a known or estimated covariance/vari-
ogram function which captures the spatial autocorrelation. The variogram
2γZ(h) is defined as V ar[Z(e + h) − Z(e)]. Using sampled data the semivari-
ogram is estimated as:

γ̂z(h) =
1

2Nh

Nh∑
i=1

(z(ei)− z(ei + h))2

where Nh is the number of pairs of samples whose distance from each other is h.

140 B. Harrington and Y. Huang

The empirical semivariogram is then fit with a theoretical model. For example,
right figure of 1 shows the empirical semivariogram for an Asia temperature
dataset [1] fit with an exponential model. (the two datasets will be described
further in section 4).

There are two important parameters of the variogram model: the range and
the sill. The range is the distance it takes for the variogram to reach the sill. The
sill is an asymptotic bound the variogram reaches indicating that those values
no longer have a meaningful correlation. We use range as a guidance in choosing
the neighborhood parameter r for our algorithms in our E2K framework. The
covariance can be expressed in terms of the variogram as C(h) = C(0)− γ(h).

Once the variogram is known, the weights are chosen to minimize the error
variance of the estimated values. The error variance can be calculated as:

σ2
E = E[(Z∗(e)− Z(e))2]

= E[(Z∗(e))2]− 2E[Z∗(e)× Z(e)] + E[(Z(e))2]

=
n∑

i=1

n∑
j=1

λiλjE[Z(ei)× Z(ej)]

−2
n∑

i=1

λiE[Z(ei)× Z(e)] + E[(Z(e))2]

=
n∑

i=1

n∑
j=1

λiλj(C(ei, ej) + m2)

−2
n∑

i=1

λi(C(ei, e) + m2) + C(0)

Since the sum of the weights should be one, a Lagrange parameter μ is added
to get L = σ2

E +2μ{1−
∑n

i=1 λi} along with the constraint
∑n

i=1 λi = 1. Optimal
values for weights λi, i = 1, 2, . . . , n, are then obtained by the standard method
of taking first derivatives of L with respect to each weight λi and setting them
to zero.

∂(L)
∂(λi)

= 2
n∑

j=1

λj(C(ei, ej) + m2)− 2(C(ei, e) + m2)− 2μ

= 2
n∑

j=1

λjC(ei, ej)− 2C(ei, e)− 2μ

= 2
n∑

j=1

λj(C(0)− γ(ei, ej))− 2(C(0)− γ(ei, e))− 2μ

= −2
n∑

j=1

λjγ(ei, ej) + 2γ(ei, e)− 2μ = 0

=⇒
n∑

j=1

λjγ(ei, ej) + μ = γ(ei, e), for i = 1, 2, . . . , n

A Two Round Reporting Approach to Energy Efficient Interpolation 141

If the variogram function γ(ei, ej) is given or can be estimated, this system
along with the constraint on the weights gives us n + 1 equations, n unknown
weights λi, i = 1, . . . , n, and the unknown Lagrange parameter μ that we wish
to obtain through solving the linear system. In Figure 3, to obtain the weights
for estimating the value of e0, we have the following system:

⎛
⎜⎜⎝

γ(e1, e1) γ(e1, e2) γ(e1, e3) 1
γ(e2, e1) γ(e2, e2) γ(e2, e3) 1
γ(e3, e1) γ(e3, e2) γ(e3, e3) 1

1 1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ1

λ2

λ3

μ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ(e1, e0)
γ(e2, e0)
γ(e3, e0)

1

⎞
⎟⎟⎠

Because kriging is preceded by an analysis of the spatial structure of the
data by using a variogram model to integrate the average variability into the
estimation model, the interpolation is likely to be more accurate than simple
models. For the ordinary kriging that we described, the interpolation is exact,
meaning if a sample value is available at the location of estimation, the kriging
solution is equal to that value. Furthermore, kriging as a statistical method
provides an indication of the estimation error.

The two main issues in the E2K framework using kriging are training and
processing. Unlike the simple average and inverse distance schemes, kriging uses
a variogram that is determined using previous data. Fortunately, all the training
could be performed at the sink where resources are not constrained. After the
training, only a few values used to describe the theoretical variogram need to be
disseminated to the sensor network. Specifically, we use a training surface to ob-
tain an empirical variogram at the sink. Then a theoretical variogram is fit to
the empirical variogram with the goal of fitting the data with distance less than
r as close as possible, again at the sink. The theoretical variogram is described
by three parameters, namely a type (exponential, spherical, etc), range, and sill
is provided to each sensor. As such, a fairly small amount of information needs
to be sent to the sensors to allow sensor field and the sink to have the same
interpolation model.

In terms of processing the main requirement is that the sensor is capable of
solving the linear system once it determines which neighbors report in the first
round. Due to the computation constraint of sensors, a large linear system is not
desirable. Fortunately for kriging not many neighbors are needed to interpolate a
value. E2K achieves a desired number of neighbors for each sensor by setting the
value of the probability to report in the first round in our sensor side algorithm to
ndesired

ncurrent
, where ndesired is the number of neighboring sensors desired and ncurrent

is the current number of neighboring sensors within the distance r. With a sensor
deployment following a Poisson distribution, we expect ndesired

ncurrent
percent of all the

sensors will report in the first round. By setting a small value for the ndesired

parameter, e.g. 5, it also results in the beneficial effect of dynamically adapting
to the density of the sensor network and provides more savings for dense sensor
networks with a similar level of spatial autocorrelation.

The only messages that need to be sent for coordination are the messages
sent by the sensors that decide to report in the first round to their neighbors.
However, since the sensors which decide to report in the first round need to send

142 B. Harrington and Y. Huang

their readings to the sink, the other sensors in the neighborhood can ear-drop
the reading. So when the interpolation neighborhood is less than the radio range
of the sensors, the coordination cost in terms of messaging is 0. Formally, we
have:

Lemma 2 (Conditional Zero Coordination Cost). In E2K, the number of
messages sent in order to coordinate sensors in deciding which ones need to report
and maintain an error bound is 0 when the spatial interpolation neighborhood is
less than or equal to the radio range.

4 Evaluation

Performance of E2K was evaluated using two datasets: (1) Lab: an Intel lab
dataset [20] consisting of 54 sensors running for a little over a month monitoring
temperature, voltage, humidity, and light. This data contains traces from a real
sensor network deployment including network failure information, so it is partic-
ularly useful for examining failures. (2) Asia Temperature: the Asian portion of
a dataset created using station records from the Global Historical Climatology
Network (GHCN) and Legates and Willmott’s [18] datasets for monthly precip-
itation and air temperature. We used version 1.02 of this dataset, released in
July of 2001, that contains data for each month from January 1950 to December
1999 [1]. The Asia subset was sampled randomly to get two densities with 25%
and 75% of the points respectively. In our experiments, these sampled points
were treated as sensors that formed a sensor network. This data set provides a
large number of sensors in an outdoor environment where spatial correlations
are stronger.

We compare our model with 6 other models on the two datasets:

– A base line model TinyDB (T) [22]: Every sensor will report in every
epoch. The error is always 0, thus it is bounded in this scheme.

– Three models where each sensor only reports if its readings deviates from a
reading agreed upon by both the sensor field and the sink by more than ε:
(1) Global Average (G): Both the sink and sensors keep a global average
reading of all sensors obtained from the training data. If a sensor deviates
from the global average by more than ε, then it reports; (2) Approximate
Caching (A) [24]: Every sensor caches the last reported reading to the
sink so the sink knows the same value as the sensor in case the sensor does
not report. A sensor reports if the real reading deviates from the cached
values by more than ε; (3) Periodical Approximate Caching (P): Same
as approximate caching except that every sensor caches the last reported
readings for a set of episodes and uses the previous episode to determine its
value, e.g. for a 24 hour cycle the value is checked against the reading from
the same hour in the previous day. The lab data uses a 24 hour period and
the Asian temperature data uses a 12 month period.

– Ordinary Kriging (O): E2K with ordinary kriging as the interpolation
method. For the Asian temperature data, we removed the trend of the data

A Two Round Reporting Approach to Energy Efficient Interpolation 143

for each sensor by subtracting periodic means obtained from the training
data for each location. Each sensor will subtract that mean and use E2K for
reporting its residual. The sink knows the same mean and will add it back
upon receiving or interpolating the residual.

– Two schemes using the E2K framework but with simple interpolation meth-
ods without considering spatial structure: (1) Simple Average (S): E2K
with simple average as the interpolation method; (2) Inverse Distance (I):
E2K with inverse distance as the interpolation method.

The abbreviations for the schemes are summarized in Table 1 for the conve-
nience of the readers. For all schemes, we implemented a program using Java to
simulate the reporting behavior of each sensor node using the readings of each
sensor and its neighboring sensors for a given time from Lab and Asia datasets
(we are currently implementing the algorithms on Berkeley Motes for a project
to monitor soil moisture at Ray Roberts Greenbelt of North Texas). Unless oth-
erwise specified, the radio range is 30 meters and the error threshold is 0.5◦C
for the lab data, and the radio range is 5 degrees with an error threshold 1◦C
for the Asian temperature data.

Table 1. Abbreviations of Comparison Schemes

T:TinyDB G:Global Avg. A:Appr. Caching P:Periodical Appr. Caching
S :Simple Avg.I :Inverse DistanceO:Ordinary Kriging

For the lab dataset the total messaging cost was estimated using a fixed
multiple of the number of reporting sensors, i.e, we assumed each sensor had to
send a message to the central site using some fixed number of hops. This was
done because the area and number of sensors are too small for there to be a
large number of hops. For the Asia data set the central site was chosen to be
the center of the map and the number of hops to send a message was estimated
taking into account the distance of each reporting sensor to the sink. For the lab
data the first 94 hours was used for training and the next 452 hours was used for
testing. For the Asian temperature data the first 10 years was used for training
and the next 40 years was used for testing. We performed extensive experiments
using various values for the parameters and, due to the limitation of space, we
present a representative set.

4.1 Performance on Asia Temperature Dataset

Messaging Savings in Percentage that Report. In this section, we examine
the percentage of sensors that actually reported for all the schemes. Note the
communication cost needed to route the data to the sink are not factored in yet.

Figure 4 shows the performance of the schemes with respect to the density
of the sensors and the error threshold ε. The figures in Figure 4 show that E2K
outperforms all the other schemes in terms of percentage of sensors that need

144 B. Harrington and Y. Huang

Asia Temperature

 0

 20

 40

 60

 80

 100

T G A P S I O

%
 R

ep
or

te
d

Method

d=25%, eps=1oC

 0

 20

 40

 60

 80

 100

T G A P S I O
Method

d=25%, eps=2oC

 0

 20

 40

 60

 80

 100

T G A P S I O
Method

d=75%, eps=1oC

Rnd 1
Rnd 2 S

Fig. 4. Percentage Report for Asia Temperature Data

to report. Compared to the baseline method T, two round reporting helps E2K
schemes, i.e., O, S and I, avoid unnecessary reporting from sensors that can be
interpolated from the sink. E2K using ordinary kriging reduces the percentage
of sensors that need to report to 19% with ε = 1 and 12% with ε = 2 for density
of 25%. For density of 75%, the percentage of sensors that need to report are
13% with ε = 1.

With increased density from 25% to 75%, the spatial related schemes includ-
ing ordinary kriging (O), simple average (S), and inverse distance (I) show var-
ious levels of increased savings, ranging from 3% to 6%. There is no noticeable
increase in savings for G when the density is increased. As expected, perfor-
mance of temporal methods including approximate caching (A) and periodical
approximate caching (P) do not change according to sensor density. In general

Asia Temperature

 0

 20

 40

 60

 80

 100

T G A P S I O

To
ta

l M
es

sa
ge

 C
os

t

Method

d=25%, eps=1oC

 0

 20

 40

 60

 80

 100

T G A P S I O
Method

d=25%, eps=2oC

 0

 20

 40

 60

 80

 100

T G A P S I O
Method

d=75%, eps=1oC

Fig. 5. Total Messaging Cost for Asia Temperature Data

A Two Round Reporting Approach to Energy Efficient Interpolation 145

approximate caching and global average do not do well resulting in more than
80% reporting sensors.

Total Messaging Savings. In this section, we report the performance of the
schemes with routing cost taken into consideration. Figure 5 shows the percent
of total messaging cost for each method. It is important to note that the trend is
the same as the percentage to report discussed previously. By keeping neighbors
within radio range to eliminate coordination cost the most important factor is
the number of sensors to report.

4.2 Performance on Lab Dataset

For lab data, schemes using E2K framework, i.e. O, S, and I, outperforms T,G,
and P by more than 20%. With ε increasing, the savings increase. Approximate
caching performs the best due to the strong temporal correlation in this dataset.
Incorporating temporal compression schemes into our E2K framework to allow
adaptive utilization of spatial or temporal autocorrelation based on whichever is
stronger will be an interesting topic for future work. An interesting observation is

Lab Temperature

 0

 20

 40

 60

 80

 100

T G A P S I O

%
 R

ep
or

te
d

Method

eps=0.5oC

 0

 20

 40

 60

 80

 100

T G A P S I O
Method

eps=1oC

Rnd 1
Rnd 2 S

Fig. 6. Percentage Report for Lab Data

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 10 20 30 40 50 60

(h
)

Distance (h)

Lab Semivariogram

Emperical
(h)=(h==0) ? 0 : 25

Fig. 7. Lab Data Empirical and Theoretical Variograms

146 B. Harrington and Y. Huang

that the schemes using E2K framework achieve similar performance to each other
with no method being clearly superior. The reason is that the lab data is not a
typical outdoor environmental monitoring setup and the spatial autocorrelation
is not be captured well by variograms. When using a nugget theoretical function
(straight line parallel to x-axis) as shown in Figure 7 for the variogram, kriging
interpolation degenerates into a simple average model. A promising topic for
future research is a query optimizer for the sink that uses variograms to choose
the best interpolation model. In case a simple average or reverse distance model
is chosen, we will have the advantage of a simplified decision making process at
sensor nodes.

5 Extensions and Conclusion

In this work, we proposed the E2K framework which can use any general spatial
interpolation method. When the spatial interpolation method works well, i.e.,
the residual errors are small and it requires only localized information for spatial
interpolation, our framework is likely to save more on messaging cost. Possible
future extensions of our framework include incorporating temporal compression
to and considering the use of regression or co-kriging to utilize auxiliary variables.

References

1. University of delaware surface air temperature data.
http://climate.geog.udel.edu/∼climate

2. Ali, M.H., Aref, W.G., Nita-Rotaru, C.: Spass: Scalable and energy-efficient data
acquisition in sensor databases. In: MobiDE (2005)

3. Bash, B.A., Byers, J.W., Considine, J.: Approximately uniform random sampling
in sensor networks. In: DMSN (2004)

4. Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards Sensor Database Systems. In: Proc.
of Second International Conference on Mobile Data Management (2001)

5. Chu, D., Deshpande, A., Hellerstein, J., Hong, W.: Approximate data collection in
sensor networks using probabilistic models. In: ICDE (2006)

6. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques
for sensor databases. In: ICDE (2004)

7. Cressie, N.A.C.: Statistics for Spatial Data. Wiley and Sons, Chichester (1991)
8. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Compressing historical informa-

tion in sensor networks. In: ACM SIGMOD, pp. 527–538. ACM Press, New York
(2004)

9. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-
driven data acquisition in sensor networks. In: Proc. of VLDB, pp. 588–599 (2004)

10. Emekci, F., Tuna, S.E., Agrawal, D., Abbadi, E.: Binocular: A system monitoring
framework. In: International Workshop on Data Management for Sensor Networks
(August 2004)

11. Fang, Q., Zhao, F., Guibas, L.: Counting targets: Building and managing aggre-
gates in wireless sensor networks. Tech. Report, Palo Alto Research Center (2002)

12. Goel, S., Passarella, A., Imielinski, T.: Using buddies to live longer in a boring
world, 2004. Rutgers Depart. of Computer Science Tech. Report DCS-TR-558
(2004)

http://climate.geog.udel.edu/~climate

A Two Round Reporting Approach to Energy Efficient Interpolation 147

13. Harrington, B., Huang, Y.: In-network surface simplification for sensor fields. In:
ACM-GIS, ACM Press, New York (2005)

14. Jain, A., Chang, E.Y., Wang, Y.-F.: Adaptive stream resource management using
kalman filters. In: SIGMOD (2004)

15. Karp, B., Kung, H.T.: Gpsr: greedy perimeter stateless routing for wireless net-
works. In: MobiCom (2000)

16. Kotidis, Y.: Snapshot queries: Towards data-centric sensor networks. In: ICDE, pp.
131–142 (2005)

17. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems, pp. 575–578 (2002)

18. Legates, R.D., Willmott, C. J.: Mean seasonal and spatial variability in global
surface air temperature. Theor. Appl. Climatol. , 11–21 (1990)

19. Li, M., Ganesan, D., Shenoy, P.: Presto: Feedback-driven data management in
sensor networks. In: Proceedings of the Third ACM/USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI) (May 2006)

20. Madden, S.: Intel lab data. http://berkeley.intel-research.net/labdata/
21. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation

service for ad-hoc sensor networks. In: OSDI (2002)
22. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Design of an acquisi-

tional query processor for sensor networks. In: SIGMOD (2003)
23. Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate

queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Applications (2002)

24. Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approxi-
mate values. In: SIGMOD Conference (2001)

25. Sharifzadeh, M., Shahabi, C.: Supporting spatial aggregation in sensor network
databases. In: GIS ’04: Proceedings of the 12th annual ACM international workshop
on Geographic information systems, ACM Press, New York (2004)

26. Trigoni, N., Yao, Y., Demers, A., Gehrke, J., Rajaraman, R.: WaveScheduling:
Energy-Efficient Data Dissemination for Sensor Networks. Internet Draft (2004)

27. Vuran, M.C., Akan, B., Akyildiz, I.F.: Spatio-temporal correlation: theory and
applications for wireless sensor networks. Comput. Networks 45(3) (2004)

28. Wackernagel, H.: Mulitvariate Geostatistics. Springer, Heidelberg (1995)
29. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor

networks. In: Proceedings of SIGMOD (2002)
30. Yu, Y., Govindan, R., Estrin, D.: Geographical and energy aware routing: A re-

cursive data dissemination protocol for wireless sensor networks, UCLA Computer
Science Department Technical Report UCLA/CSD-TR-01-0023 (2001)

31. Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Ap-
proach. Morgan Kaufmann, San Francisco (2004)

http://berkeley.intel-research.net/labdata/

Online Amnesic Summarization of Streaming
Locations

Michalis Potamias1, Kostas Patroumpas2, and Timos Sellis2

1 Computer Science Department, Boston University, MA, USA
2 School of Electrical and Computer Engineering
National Technical University of Athens, Hellas

mp@cs.bu.edu, {kpatro,timos}@dbnet.ece.ntua.gr

Abstract. Massive data streams of positional updates become increas-
ingly difficult to manage under limited memory resources, especially in
terms of providing near real-time response to multiple continuous queries.
In this paper, we consider online maintenance for spatiotemporal sum-
maries of streaming positions in an aging-aware fashion, by gradually
evicting older observations in favor of greater precision for the most re-
cent portions of movement. Although several amnesic functions have
been proposed for approximation of time series, we opt for a simple, yet
quite efficient scheme that achieves contiguity along all retained stream
pieces. To this end, we adapt an amnesic tree structure that effectively
meets the requirements of time-decaying approximation while taking ad-
vantage of the succession inherent in positional updates. We further ex-
emplify the significance of this scheme in two important cases: the first
one refers to trajectory compression of individual objects; the other offers
estimated aggregates of moving object locations across time. Both tech-
niques are validated with comprehensive experiments, confirming their
suitability in maintaining online concise synopses for moving objects.

1 Introduction

The tremendous amount of information flowing as transient data streams in
many modern applications that monitor the current position of people, vehicles,
animals etc. or track their trajectories, clearly calls for single-pass processing. It
is inevitable that not all data can be retained permanently in memory, so stale
items can either be archived on disk or even discarded to make room for newly
arriving tuples. Sometimes, it is indispensable to maintain a finite window over
the stream, which provides access to the most recent stream items [1].

More importantly, the significance of each isolated positional tuple is time-
decaying: when it first arrives, it perhaps conveys critical information, but it
gets less and less important as time goes by, until it eventually becomes obso-
lete and practically useless. Therefore, the older a data item gets, the coarser
its representation could become in a progressive fashion, implying that greater
precision should be reserved for the most recent items. This is essentially rem-
iniscent of the way human memory actually works: we can accurately describe

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 148–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Online Amnesic Summarization of Streaming Locations 149

Fig. 1. Amnesic approximation of a trajectory

recent events in much detail, but we can hardly recollect facts that occurred a
long time ago.

This treatment of data has been termed amnesic with respect to time series
approximation [9], in the sense that acceptable error margin in data is allowed to
increase in proportion to its age. A wide range of amnesic functions was identified
for controlling the amount of error tolerated at every single point in the time
series. Piecewise linear approximation (PLA) functions were superior in terms
of incremental computation and availability of various distance metrics [9].

In this paper, we turn our focus on amnesic approximation of spatiotemporal
data streams generated by tracking a large number of moving objects. This
approach is mainly dictated by the sheer volume of data: trajectories can become
rather lengthy when continuously accumulating positional updates, and thus
difficult to accommodate in full precision for their entire history. In addition,
different levels of abstraction are also inherent in semantics related to multi-
scale representation of spatial features, given that more precision is allocated to
a user-defined area of interest. In a spatiotemporal context, this specific interest
can be interpreted as the current or most recent location of objects.

Although our primary interest is on spatiotemporal streams, the framework
we propose can certainly be applied over typical streams comprised of items in a
sequence, such as sensor readings or stock tickers across time. In particular, we
present the multiple-granularity AmTree framework, by adapting a tree struc-
ture from [3]. AmTree accepts streaming items and maintains summaries over
hierarchically organized levels of precision, realizing an amnesic treatment over
stream portions. This mechanism can produce reduced data representations for
approximate query answering, by efficiently handling streaming locations from
moving point objects or retaining a rough outline of their trajectories. As il-
lustrated in Fig. 1, this summary keeps more dense information for the recent
past, while older segments are evidently underrepresented. As we show in this
paper, not only is this specific framework proven sufficient to cope with on-
line trajectory approximation, but it can further be used in spatiotemporal ag-
gregation, in order to estimate distinct count queries over locations of moving
objects.

The distinguishing characteristics of our approach as opposed to general piece-
wise linear approximation are twofold. First, we preserve contiguity among suc-
cessive trajectory segments for each individual object, no matter how coarse
the level of approximation gradually becomes. In fact, we do not purposely in-
troduce fictitious points to obtain a smoother approximation, but we retain a
subset of actual locations to keep the reduced representation consistent to the
original data. Second, the hierarchical behavior of our transform fits well to the

150 M. Potamias, K. Patroumpas, and T. Sellis

streaming nature of incoming locations. Our amnesic tree structure gradually
achieves a coarser representation for each trajectory without sacrificing its lat-
est details.

Our contributions can be summarized as follows:

– We propose a generic structure named AmTree and we formalize its basic
operations. AmTree exploits the notion of temporal timeliness and is capable
to maintain a compact amnesic representation of streaming items.

– We demonstrate how this structure can be applied to address two challenging
issues in spatiotemporal data compression, namely concise approximation of
entire trajectories and distinct count estimation over moving objects.

– We present an extensive experimental study of our techniques, using large
synthetic datasets. These experiments confirm the robustness of the proposed
structure and the high-quality synopses it produces.

The remainder of this paper proceeds as follows. Section 2 discusses some
preliminary concepts. In Section 3, we present the structure of AmTree along
with its basic operations and characteristics. In Section 4, this scheme is utilized
to maintain amnesic approximations at a single-trajectory level. In Section 5, we
introduce a composite structure based on AmTree capable to estimate distinct
counts of numerous moving objects. Experimental results are discussed in Section
6. Section 7 reviews related work, while Section 8 offers concluding remarks.

2 Aging Stream Features at Multiple Time Granularities

Time dimension is intuitively liaised to several levels of detail with respect to a
time domain. A time granule is a unified set of discrete time instants that can be
used as a time reference for data items. Consecutive and non-overlapping time
granules can be merged into greater ones in an iterative fashion, thus defining
several levels of granularity [2], like seconds, minutes, hours, days etc.

More concretely, let G0, G1, . . . , Gk−1 denote k successive levels of granular-
ity, respectively characterized by a granule unit δ0, δ1, . . . , δk−1. Granule unit δi

at level i consists of a fixed set of primitive time instants, e.g., an hour granule
consists of 3600 seconds (assuming seconds as primitive instants). In our ap-
proach, we require that each granule unit δi at level i subsumes a fixed number
of contiguous non-overlapping granules of unit δi−1 at level i−1. Assuming that
granularity level Gi consists of n granules gi

0, g
i
1, . . . , g

i
n−1, each such granule is

equivalent to a fixed-size finite set of contiguous instants. In general, it may oc-
cur that the number of granules making up the immediately higher granule (i.e.,
the granularity factor) varies across levels, as occurs for hours, days, months etc.

The whole process implies a hierarchical composition of granules, as long as
their endpoints coincide throughout different levels of granularity. Days, months
and years can be defined in that order one from the other, since the intervals they
span are entirely contained in a granule higher up in the hierarchy. Apparently,
such a hierarchical scheme can be effectively represented by a tree: its lower level
corresponds to the finer granules, and each successive level higher in the tree to

Online Amnesic Summarization of Streaming Locations 151

coarser ones, up to the root level that denotes the coarsest granule available. By
simply ascending or descending that tree, we achieve varying levels of detail.

When it comes to data representation, a hierarchical scheme can be advan-
tageous in referencing aging stream portions. A data stream S may be regarded
as an ordered sequence of items 〈s, τ〉, where s is a typical relational tuple (e.g.,
carrying object id’s and positions) and τ its timestamp value.

We envisage a mechanism where streaming tuples are taken in at the finest
granularity δ0; periodically, as soon as all items spanning the duration δi of any
given level i > 0 have been received, they are combined into a summary assigned
to a granule at level i. Although this process is similar for all levels, it is applied
at time instants that denote endpoints of the respective granules. For instance,
stream items may arrive every second and a synopsis is emitted each minute;
when 60 such synopses have been produced, a more coarse synopsis is made up
over past hour and so on, until the higher level (e.g., year) is reached. In addition,
data items of a finer granule unit δi−1 could get discarded as soon as they are
summed up at a coarser granule unit δi. This way, less and less detailed infor-
mation will be maintained for older stream portions, practically implementing a
deterministic time-decaying policy regarding data stream summarization.

3 The Amnesic Tree

Next, we present the proposed AmTree structure, which maintains a time-aware,
hierarchical amnesic synopsis of a data stream. As it will become evident soon,
we opt for a summarization scheme that manipulates pairs of items at every
granularity level. Still, the proposed framework is much more general and can
be easily calibrated to work with varying number of granules at each level.

3.1 Structure and Properties

The general structure of an AmTree is illustrated in Fig. 2. We enumerate gran-
ularity levels of the tree starting from the lowest one (0th level). We assume that
the granularity factor is 2; hence, a granule at each level spans two granules half
its size at the level beneath. Except for the root, each level i of the tree consists
of two nodes, the right (Ri) and the left one (Li). At the 0th level, each node
accepts data with reference to the finest granularity unit δ0, which characterizes
every timestamp attached to incoming tuples. Each node at the ith level contains
information about twice as many timestamps as a node at the (i − 1)th level.
Hence, a node at level i contains information characterizing 2i timestamps.

Let N denote the number of stream items received thus far by AmTree, each
one carrying information at the finest granularity unit δ0. Then, we can easily
calculate the height H of the tree, i.e., the total number of levels, as H =
�log2 N�+ 1. Thus, the number of tree nodes is 2 ∗H − 1.

Without loss of generality, we assume that AmTree accepts tuples with dis-
tinct successive timestamps, so we adhere to a count-based stream model where
each new item is timestamped with the next available sequential integer value.

152 M. Potamias, K. Patroumpas, and T. Sellis

Fig. 2. Basic structure of AmTree

Even without this precondition, we may assume a mapping f that is applied
over the batch of tuples with current timestamp value τ and transforms them
into a single tuple that can be the content of a tree node. As shown in Fig. 2,
the resulting content is assigned to node R0, while the previous content of R0

is shifted to node L0. As time goes by and new data comes in, the contents of
each level are combined using a function g and propagated higher up in the tree,
retaining less detail. This process is performed using the following methods:

– new(τ) is invoked as soon as a new item of timestamp τ has arrived and it
simply assigns the result of mapping f into node R0. Note that node R0 is
the only entry point to the synopsis prepared by the AmTree.

– shift(i) discards the contents of node Li and shifts contents of Ri into Li.
If node Li does not exist, then shift(i) allocates appropriate node space.

– merge(i) invokes function g over the contents of Li and Ri and assigns their
combined result to node Ri+1. If Ri+1 does not yet exist, then node space is
allocated, effectively increasing the height H of the tree.

3.2 Streaming Operation

In stream processing, sliding windows are utilized to fetch the most recent items
qualifying to a standard extent of interest in terms of time interval (e.g., ten
minutes long) or number of stream tuples (e.g., 100 tuples). Landmark windows
specify a fixed anchor point in time and they continue appending newly arriving
tuples (e.g., get all items after 10 a.m. today). Our intention is to handle stream
elements in a way that combines the characteristics of both window modes.
While we need to follow stream evolution in a sliding fashion, we must still
keep some reference to its long-running history after a specific “landmark” in
time. This approach actually resembles a tilt time frame model [4] and fulfils the
requirements of a time-decaying representation.

We will demonstrate the update procedure with an example depicted in Fig. 3.
For clarity, nodes are shown filled with timestamps and not with the actual

Online Amnesic Summarization of Streaming Locations 153

Fig. 3. Successive snapshots of an AmTree

stream values. We illustrate 9 successive states of AmTree, starting (Fig. 3a)
from a snapshot after 16 insertions (i.e., timestamps 0, 1, 2, . . . , 14, 15 have been
processed). The case when tuple with τ = 16 is inserted into the tree is depicted
in Fig. 3b, where all updated nodes are highlighted. In particular, shift(0) is
invoked to transfer the current contents of R0 into L0, and subsequently new(16)
assigns a new content to R0, as always occurs at every new insertion.

When tuple of τ = 17 arrives, another update call is invoked; this time, level 1
will be also updated as long as both nodes of level 0 have entirely new information
since the last update of level 1 occurred (Fig. 3c). Level 0 is processed in exactly
the same way as before, while level 1 is processed in two steps: first, shift(1) is
employed to discard contents of L1 and transfer R1 to L1; consequently, merge(0)
causes the new content of R1 to be a combination of R0 and L0.

Observe that updates work in a bottom-up fashion. So, level 0 will be updated
at every insertion, by always calling shift(0); new(τ). Accordingly, level 1 will
be updated every second tuple, because only then contents of level-0 nodes have
not yet been merged. So, whenever the update procedure reaches level 1, calls
shift(0); new(τ); shift(1); merge(0) must have been invoked. At τ = 19 (Fig.
3e), levels 0, 1 and 2 will be updated, but updates will not proceed to level 3,
since R3 still temporally overlaps with L2.

Intuitively, level 2 will be updated every fourth tuple, level 3 every eighth
tuple and so on. This example indicates that each level i is updated every 2i

timestamps (i = 0, 1, 2, . . .). We can now predict that level 3 is updated at
timestamps 7, 15, 23 (Fig. 3i), and so on. At each incoming timestamp, the
update procedure ascends the tree up to a maximum level M , which depends on
the N stream items seen so far. Clearly, M can be derived as the power of 2, if
N is analyzed in its prime factors, i.e., M = max{k : ∃ γ ∈ IN, γ · 2k = N}.

154 M. Potamias, K. Patroumpas, and T. Sellis

Updating AmTree is clearly an online technique that incurs logarithmic mem-
ory storage and can be performed quite quickly. More formally:

Lemma 1. The space complexity of the AmTree structure is O(log N).

Lemma 2. The amortized time complexity of the AmTree update procedure is
O(1) per stream tuple.

Proof. Each level i of the AmTree is updated every 2i timestamps and we assume
cost O(1) to update a single level. So, when N tuples (i.e., timestamps) have
arrived, every level has been updated �N

2i � times. Since the total number of tree
levels is H = �log N�+1, this results to a cost of

∑H−1
i=0 O(1)N

2i = O(N), because∑H−1
i=0

1
2i < 2. Thus, the amortized update cost per tuple is O(1). ��

3.3 Multiple Concurrent AmTrees

The basic AmTree structure (Section 3.1) has non-tunable characteristics that de-
termine its aging approximations. Relaxing this strict control over time decaying
rate, we can generalize it into a forest of AmTrees of varying resolution.

AmTreeH is a set of m concurrently maintained AmTree structures. When a
stream tuple arrives for processing, it gets inserted into just one AmTree. The
appropriate AmTree(p) is determined by a hash function p = h(τ) computed
over the current timestamp value τ . Therefore, amortized update complexity is
still O(1) per tuple, while worst-case space complexity is O(m log N).

AmTreeH achieves tunable amnesic features depending on the mappings per-
formed by function h. To exemplify its usage, we consider hash function p =
h(τ) = max{i ∈ IN : ∃ λ ∈ IN, τ = 2i + λ · 2i+1}, τ = 1, 2, 3, ..., which
assigns tuples into any given AmTree(p). Figure 4 illustrates a snapshot of this
multi-AmTree structure after tuple with τ = 1024 has been inserted. Assum-
ing tuples of distinct timestamps, items with τ = 1, 3, 5, 7, . . . are inserted into
AmTree(0), items with τ = 2, 6, 10, 14, . . . get inserted into AmTree(1), those
with τ = 4, 12, 20, 28, . . . are consumed by AmTree(2), etc. A new AmTree is
initiated whenever a tuple of timestamp equal to a power of 2 is received. So,
another AmTree will be created as soon as tuple of τ = 2048 arrives.

Essentially, this hash function demultiplexes the incoming stream into several
substreams consumed by diverse trees. In fact, the first AmTree(0) is updated
every second tuple consuming half of the incoming items, the second AmTree(1)

is updated every fourth tuple consuming a quarter of the total items and so on.
Clearly, AmTree(0) evolves rapidly, AmTree(1) is updated more slowly (at the
half rate) and so on. Thus, any given AmTree(p) has one level less compared
to its predecessor AmTree(p−1). The overall space complexity of AmTreeH is
O((log N − 1) + (log N − 2) + ... + 1) = O((log N − 1) · 1+log N−1

2) = O(log2 N).
Meanwhile, amortized update complexity still remains O(1) per tuple, since each
item is inserted into exactly one AmTree.

Not only does this scheme provide more dense approximations, but it may
be also valuable for multi-resolution stream representations. Thus, a query may

Online Amnesic Summarization of Streaming Locations 155

Fig. 4. Multiple concurrent AmTrees

be given a quick approximate answer using data from the last AmTree in the
forest. Upon user request, further refinements may be retrieved from other trees
with more levels, gradually enhancing result with extra details.

4 Amnesic Trajectory Synopses

So far, we have presented our generic summarization structure, but we believe
that AmTree is best suited for summarizing streams of sequential features, i.e.,
time series that must retain contiguity among their consecutive elements. This is
exactly the case of streaming locations that track the movement of many moving
objects across time. In this section, we will study amnesic synopses concerning
singleton trajectories, before proceeding to give a technique for computing ag-
gregates over moving objects in Section 5.

4.1 Linear Representation of Trajectories

Consider a set of numerous point objects continuously moving over the Euclidean
2-dimensional plane. Obviously, the evolving sequence of locations recorded for
each object constitutes its trajectory. Since it is not realistic to maintain a con-
tinuous trace of each object, only point samples can be practically collected from
the respective data source at distinct time instants (e.g., every few seconds a car
sends its location measured by a GPS device).

Therefore, trajectory T of a point object moving over the Euclidean plane
is a possibly unbounded sequence of timestamped locations across time. Thus,
we consider a sequence of tuples 〈oid, τi, xi, yi〉, i = 1, . . . , N, . . ., assuming that
for an object with identity oid, spatial position (xi, yi) has been recorded at
timestamp τi. Note that this representation implies that a trajectory is essentially
a collection of points put in order by their timestamp values.

Instead of such a “chain” of points, a linear representation of each trajectory
is sometimes more adequate, since it conveys the sense of a continuous, though

156 M. Potamias, K. Patroumpas, and T. Sellis

approximate, trace of its movement. Such a polyline is composed of consecutive
line segments, each one connecting a pair of successive point locations recorded
for this object. Effectively, each line segment indicates the displacement of an
object between two successive recordings, that is, it reveals the change of its
position with respect to its previously known location. More concretely, let two
successive positional updates 〈oid, τi, xi, yi〉, 〈oid, τj , xj , yj〉 of the same moving
object oid, where τi < τj and 	 ∃ 〈oid, τk, xk, yk〉, ∀ τk ∈ (τi..τj). Then, we can
calculate in constant time the displacements dx = xi−xj and dy = yi−yj during
time interval [τi..τj] along axes x, y respectively. This process can be applied in
an incremental fashion for each object; every time a positional update arrives,
this calculation requires just the (already maintained) last known location.

Therefore, as an alternative representation to a time series of points, a tra-
jectory can be trivially transformed to a sequence of displacements of the form
〈oid, τstart, τend, dx, dy〉. In fact, τstart = τi and τend = τj denote the bounds
of the corresponding time interval, but, for storage savings, we may even omit
attribute τend from the schema of tuples, thanks to contiguity property.

4.2 Updating Trajectory Synopses

For compressing a single trajectory, we suggest an instantiation of AmTree that
manipulates all successive displacement tuples recorded for this object. In di-
rect correspondence to AmTree functionality presented in Section 3.1, mapping
f converts each current position 〈oid, τcur, xcur, ycur〉 into a displacement tu-
ple 〈oid, τprev, τcur, dx, dy〉. This tuple is then inserted into node R0, possibly
triggering further updates at higher levels as mentioned in Section 3.2.

When the contents of level i must be merged to produce a coarser repre-
sentation, a function g must be invoked in order to combine the displacements
stored in nodes Li and Ri. In the case of trajectories, this can be handled as
a concatenation of two trajectory segments that span consecutive time inter-
vals of identical size. More formally, let two displacement tuples l1, l2 concerning
the same object oid with τ

(1)
end = τ

(2)
start, that are stored in nodes Li and Ri,

respectively. Function g(l1, l2) is used to concatenate them into a single tuple
l ≡ l1 ◦ l2 = 〈oid, τ

(1)
start, τ

(2)
end, dx(1) + dx(2), dy(1) + dy(2)〉. This concatenation

inevitably leads to a loss of information, since the common articulation point
of segments l1 and l2 is removed altogether, i.e., the point location that was
recorded at timestamp τ

(1)
end = τ

(2)
start. In effect, the resulting displacement l is

defined solely by the two non-common endpoints of l1, l2, which are exactly the
locations recorded at timestamps τ

(1)
start and τ

(2)
end. This process can be easily gen-

eralized to k ≥ 2 consecutive displacement tuples l1, l2, . . . lk, retaining only the
first and the last point location in this subsequence.

It must be stressed that endpoints of all displacements stored in AmTree nodes
correspond to original positional updates, while displacements remain connected
to each other at every level. However, as trajectory information propagates into
higher levels of the tree, line segments of increasing temporal extent and less
positional accuracy get created by progressively eliminating intermediate point

Online Amnesic Summarization of Streaming Locations 157

locations. Thus, when going higher in each tree snapshot, more rough segments
are derived for the more distant trajectory parts, while more precise segments
at the lower levels correspond to recent portions of its movement. Evidently, an
amnesic behavior is realized for trajectory segments through levels of gradually
less detail in such bottom-up tree maintenance.

4.3 Reconstructing Trajectories from Synopses

Trajectory synopses accomplished by AmTree can give a reduced representation
of an object’s movement utilizing several tree traversal schemes. As long as con-
secutive displacements are preserved, we are able to reconstruct the movement
of a particular object starting from its most recent position and going steadily
backwards in time by choosing points in descending temporal order. Any trajec-
tory reconstruction process can be gradually refined by combining information
from multiple levels and nodes of the tree.

A simple reconstruction scheme would be a tree traversal in a bottom-up
fashion, starting from node R0 and then accessing right and left nodes at each
level. Yet, many nodes that do not contribute any additional points will also
be visited. In the snapshot at Fig. 3a, none of the Li nodes will provide any
additional point, since their content is already merged into their parent Ri+1.

By construction, all Ri nodes contain displacements concerning gradually ag-
ing positions of an object, as their time granules span more extended periods
in the past. Besides, each new location does not necessarily incur changes to all
tree levels, but up to a maximum level M that depends on the arrival order of
this point. But how many of those Li nodes should be used to further refine any
trajectory approximation? Further, which is the minimal set of these nodes?

The important observation is that tree updates take place in waves that in-
volve levels up to M . Each such wave synchronizes these levels to the current
timestamp value, but nodes at levels higher than M remain completely un-
touched, meaning that the granules of RM and RM+1 are time intervals that do
not end up at the same timestamp value. Thus, after each insertion, consecutive
tree levels are clustered into groups according to the time instant they were up-
dated for the last time, as shown in Fig. 3g. Intuitively, if we were able to locate
at which level each successive wave has finished its updates, we could get the
required Li nodes as these are the upper left nodes of each such cluster.

Let c denote the number of Li nodes that are able to contribute to trajectory
reconstruction. Not surprisingly, c can be easily computed from the number of
1’s in the binary representation of the current number N of positional updates
received thus far for this particular object, after excluding the most significant
bit (since always MSB=1). Referring back to Fig. 3g, when point with times-
tamp τ = 21 arrives, it is the 22nd tuple in the sequence; hence, N = 22 and
its binary representation (10110) contains three 1’s, so c = 2 after excluding the
MSB. It is precisely the position of those 1’s in this binary representation that
dictates the level of the Li nodes that suffices to be visited, i.e., left nodes at
levels 1 and 2. Hence, for reconstructing the trajectory that corresponds to the

158 M. Potamias, K. Patroumpas, and T. Sellis

Fig. 5. Multiple resolutions of a trajectory

snapshot of Fig. 3g, apart from all Ri, nodes L1 (18-19) and L2 (12-15) should
also be taken.

In total, all H (height of the tree) of the Ri nodes and a number c of the Li nodes
can provide all knowledge contained in anyAmTree state. This reconstruction pro-
cess will produce H +c+1 points, because there are H +c consecutive segments in
that approximation. This simple calculation gives 6 points for the state at τ = 15
(Fig. 3a), while it yields 9 points when τ = 22 (Fig. 3h).

4.4 Multi-resolution Trajectory Approximation

The aforementioned bottom-up approach will retrieve all available positional
data stored in an AmTree. Instead of such an exhaustive process, we will describe
another reconstruction policy that can produce amnesic trajectory approxima-
tions at multiple resolutions. Clearly, trajectory segments stored in successive
tree levels are connected to each other. Therefore, if we take any number of the
higher levels of the tree, we can still reconstruct an uninterrupted representation
of the movement for the corresponding time intervals. Essentially, we still apply
the bottom-up technique of Section 4.3, but for a restricted number of levels.

If this process is repeated H times, each time getting another level lower
in the hierarchy, we will be able to get multiple trajectory approximations,
at progressively finer resolutions for the most recent portions, as illustrated in
Fig. 5. The initial approximation is performed using only the upmost level of
the tree depicted in Fig. 3h. Since the point at hand is the last seen location, we
get the other point from the displacement available in node R4. Note that, since
the tree is not entirely synchronized at this timestamp, this procedure will not
yield the actual location of the moving object 16 timestamps ago (Fig. 5a). The
second approximation will include information from level 3 as well, and will be
slightly better (Fig. 5b). The final approximation (Fig. 5e) retrieves all informa-
tion currently summarized in the tree and the locations it yields are the original
positions at the respective timestamps.

Online Amnesic Summarization of Streaming Locations 159

Multi-resolution reconstruction is application dependent, enabling fast esti-
mations from coarse trajectory representations. Critical features (e.g., movement
orientation) can be quickly conjectured by inspecting just a few upmost levels.

5 Computing Aggregates over Moving Objects

In this section, we present a summarization technique that provides unbiased
estimates about the number of objects moving in an area of interest during a
specified time interval. When each object must be counted only once, the problem
is known as distinct counting [12]. We introduce an amnesic treatment for this
problem, utilizing the AmTree structure with a powerful sketching algorithm
over a static spatial decomposition.

5.1 Overview of Flajolet-Martin (FM) Sketches

FM sketches [6] were designed to approximate the zeroth frequency moment
(F0), which actually provides an estimate for the number of distinct objects in a
multiset. They have since widely used in stream summarization (e.g., [7,12]).

As described in [12], an FM sketch is a bit-vector consisting of r bits, all of
them initially set to 0. The appropriate size of this bitmap is O(log2 DC), where
DC is an upper bound on the number of distinct objects. FM algorithm employs
a hash function h that maps an object identity oid into a pseudo-random integer
h(oid) with a geometric distribution, meaning that Pr[h(oid) = v] = 2−v, where
v ∈ [1, r]. For every object oid in the multiset, the algorithm sets the h(oid)-th
bit of the FM sketch to 1. Regardless of how many times object oid is found in the
set, the same bit will always be switched on; this fact establishes the duplicate-
insensitivity property of FM sketches. No matter in which order objects will
appear, the same bitmap will be eventually created. For n distinct objects, it is
expected that n/2 of them will map to bit 1, n/4 objects go to bit 2, and so on.

It turns out that, if we locate in the sketch vector its first bit k that is still 0,
we can get a good unbiased estimate of n as 1.29 · 2k. To improve probabilistic
confidence, Flajolet and Martin [6] suggested the use of m independent sketches,
each with its own hash function, and finally averaging all results to estimate
n. Furthermore, to keep processing cost per object to O(1) instead of O(m),
Probabilistic Counting with Stochastic Averaging (PCSA) was proposed, which
utilizes m atomic FM sketches. Every time an update is due, only one of these
sketches is chosen using another hash function h′(oid). Thus, every sketch keeps
count for about n

m distinct objects. Assuming that k1, k2, . . . , km are the first
non-zero bits in each of the m atomic sketches, the distinct count is estimated
to n = 1.29 ·m · 2 1

m

∑ m
i=1 ki , with expected standard error O(m− 1

2) and overall
space complexity O(m log2 DC).

Another important property of FM sketches is that they can be composed
from other partial FM sketches. If a sketch FMA is maintained over multiset A
and a sketch FMB is independently computed over multiset B, we can get the
FM sketch of A

⋃
B, by applying a bit-wise OR over their bitmaps (and between

respective sketches for the PCSA variation), i.e., FM(A
⋃

B) = FMA ∨ FMB.

160 M. Potamias, K. Patroumpas, and T. Sellis

Fig. 6. (a) The 3-tier FM-AmTree structure (b) Evaluating a range query

5.2 Applying 3-Tier Compression

We consider queries of the form “How many distinct moving objects have been
observed in area α during time interval Δτ?”. In our terminology, α is the spatial
extent of the query region defined as a 2-d polygonal area, while Δτ is the
temporal extent. The distinguishing feature of our approach is that we allow an
amnesic behavior to the resulting estimations: as long as the temporal extent
remains close to the current time, it is probable that certain time intervals stored
in the AmTree can approximate it with more precision. To this end, we introduce
a 3-tier structure that accomplishes compression at three levels (Fig. 6a):

1. We utilize a regular decomposition of the 2-d spatial plane into equal-area
cells. If HG and V G are respectively the number of subdivisions along axes
x, y of this grid partitioning, then a set of HG·V G cells is used to maintain a
simplified spatial reference of moving objects instead of their actual locations.

2. To accommodate temporal extents, each cell points to an AmTree, which
maintains gradually aging count of objects within that cell.

3. Query-oriented compression is achieved using FM PCSA sketches. Each node
of an AmTree corresponds to m bitmap vectors utilized by the FM PCSA
sketch. Hence, we avoid enumeration of objects, as we are satisfied with an
acceptable estimate of their distinct count given by the sketching algorithm.

Assuming that N locations have been received for each object and that DC
is an upper bound of the distinct objects, it is easy to see that the overall space
complexity is O(HG·V G·log N ·m·log DC). Beyond its small memory footprint,
this technique is well suited to a streaming context, due to its low update cost.

Indeed, when a positional update of an object arrives for processing, initially
its location (x, y) is hashed against the spatial grid and the appropriate cell is
identified. Then, the FM sketch linked to node R0 of the corresponding AmTree
must be updated. This is carried out by hashing the object’s id over this FM

Online Amnesic Summarization of Streaming Locations 161

sketch. When updates must propagate to higher levels of the tree, merging func-
tion g takes advantage of the ability to compose partial FM sketches into a
single sketch. Thus, the union of sketches FMRi

⋃
FMLi at the same level i

is assigned to node Ri+1. For synchronization, AmTree updates are performed
when all point locations for the current timestamp τ have arrived, assuming that
each object discloses its position at every τ . In total, HG · V G trees need to be
updated at each timestamp, so update complexity is O(HG·V G) per timestamp.

5.3 Estimating Count of Distinct Objects

In order to estimate the number of distinct objects moving within area α during
time interval Δτ , we initially start by identifying which cells of the grid par-
titioning completely cover region α. As shown in Fig. 6b, the cells overlapping
with polygon α constitute a greater area β. Next, those cells are used to deter-
mine the group of qualifying AmTree structures that maintain the aggregates.
Corresponding nodes at every AmTree actually refer to identical time intervals,
since all trees are concurrently updated. Thus, we need to locate the set of nodes
that overlap time period Δτ specified by the query; these nodes are the same
for each qualifying tree. As illustrated in Fig. 6b, when the AmTree snapshot
is traversed, nodes L5 of interval [192..223] and L6 of [128..191] are found to
make up the minimal time period [128..223] that contains the query interval
Δτ = [135..220]. This means that we should access only the FM sketches linked
to these two nodes in each of the AmTrees qualifying for area β. By taking the
union of all those sketches (i.e., an OR operation over the respective bitmaps),
we finally get an approximate answer to our query.

Clearly, the response given by this algorithm is an overestimation of the actual
distinct count, as it is influenced by the approximations performed in each tier.
First, the degree of grid partitioning into cells apparently controls the spatial
resolution of aggregates. Second, the temporal granularity determines the aging
rate inherent in the AmTree mechanism, and consequently the extent of time
intervals maintained. Last but not least, the number of bitmaps in each sketch
affect the precision of the estimated counts. It goes without saying that there
is a trade-off between processing time and each of these three parameters that
guide response accuracy, a fact empirically confirmed in the experiments.

6 Experimental Evaluation

Next, we report on an experimental validation of AmTree when utilized (i) to ap-
proximate trajectories of moving objects (Section 4) and (ii) to provide estimates
for distinct count queries (Section 5), always working in main memory.

All experiments were performed on an Intel Pentium-4 2.5GHz CPU running
WindowsXP with 512 MB of main memory. We generated synthetic datasets for
trajectories of objects moving at various speeds along the road network of greater
Athens (an area of about 250 km2). Geometric nodes of the road segments were
randomly chosen as origin and destination points for a shortest path algorithm.
Finally, 500 sample points were taken for each calculated route.

162 M. Potamias, K. Patroumpas, and T. Sellis

Fig. 7. Approximation quality for trajectories

We run simulations for several time intervals (up to 500 timestamps) and
number of objects (up to 20,000). The interarrival time of streaming tuples was
constant for all trajectories, assuming that all objects reported their positional
updates concurrently at regular time intervals. This is actually the most intensive
situation, since agility of objects was set to 100%.

6.1 Quality of Trajectory Approximation

In this set of experiments, we maintained an AmTree structure for each trajec-
tory from a set of 1000 moving objects, each recorded for 500 timestamps. To
assess approximation quality, we utilized spatiotemporal range queries that con-
tinuously return objects contained in a given spatiotemporal hyper-rectangle.
We defined 10 static spatial rectangles, each covering about 1% of the total
space, and at every 8 timestamps we observed which approximate trajectories
fell within the spatial area. Hence, temporal extents proceed by 8 timestamps
each time, so that each window spans the entire movement history thus far.

We counted qualifying trajectories in each query region and results were av-
eraged for each temporal interval. Then, we compared these estimations against
exact answers based on original trajectories. We measured approximation quality
as ρ = TP

P+FN , where TP denotes the number of true positives, P is the number
of (false and true) positives, whereas FN signifies the number of false negatives.

We calculated values of ρ as plotted in Fig. 7a, where the x-axis of the diagram
shows the query intervals used, i.e., the size of landmark windows. As expected,
the quality of approximation deteriorates as the query interval becomes gradually
larger due to the time-decaying positional accuracy of the trajectory segments.
As stated in Section 4.3, the most remote trajectory segments progressively ob-
tain an increasingly rough outline maintaining a reduced number of the original
points. Although recent segments are always more accurate, overall error heavily
depends on the temporal extent in the past, since we steadily get away from the
“landmark” time instant the query was issued.

Notice that abrupt drops in approximation quality occur at timestamp values
that correspond to major updates in AmTree, i.e., changes across the majority
of tree levels. When all nodes get synchronized, segments from the right nodes
suffice to provide all information contained in the tree. Subsequently, changes

Online Amnesic Summarization of Streaming Locations 163

Fig. 8. Quality of aggregate estimation

occur at waves that always propagate to a higher level until a complete update
happens again. Recall from Section 4.3 that, at snapshots where more tree levels
have been updated at diverse waves, the number H+c of reconstructed segments
has a local maximum, so we can get more additional points by taking advantage
of information stored in left nodes. This is reflected in the sporadic “spikes” in
Fig. 7a that signify trajectory representations with maximal number of points.

Fig. 7b shows approximation quality versus the compression rate achieved.
Compression rate denotes the ratio in the size of an approximated trajectory
with respect to the original, i.e., the percentage of original points retained in the
coarsened trajectory. Not surprisingly, approximation quality decreases for more
compressed trajectories, since more points are discarded. As the temporal extent
gradually increases, the amnesic behavior of AmTree gets more pronounced and
a trajectory obtains exponentially more compressed representation.

Still, even for heavily compressed trajectories (rates close to 2%), accuracy
index ρ is quite satisfactory (about 93.5%). For small compression rates, the
additional deviation is attributed to trajectory segments far away from the cur-
rent time, i.e., those that have been consistently reduced over and over again,
eventually devoid of much positional information. In contrast, answers recon-
structed from most recent time intervals are remarkably more accurate, since
the respective segments have not been altered much yet.

6.2 Quality of Distinct Count Estimates

To validate the algorithm for estimating aggregates, we utilized a dataset con-
taining locations of 20,000 objects, each recorded for 100 timestamps. We as-
sumed square-shaped grid cells, so the degree of spatial decomposition SG is a
single parameter for both axes x, y, i.e., SG = HG = V G.

In Fig. 8a we illustrate the effect of the number m of bitmaps per FM PCSA
sketch on relative error, with respect to distinct count queries for various tem-
poral extents, fixing SG = 10. Quite predictably, the more bitmaps allocated to
each sketch, the more confidence is attained for the estimates. While for m = 8
estimation quality was off even by 40%, for m = 64 the relative error was less
than 4%. Further increase in m did not seem to yield better results.

164 M. Potamias, K. Patroumpas, and T. Sellis

In Fig. 8b we plot the total update cost against the spatial decomposition SG
at each dimension, for m = 32 sketches. Note that the cost is quadratic to the
number of cells, i.e., a finer grid partitioning incurs more processing time at the
expense of increased accuracy. Besides, computation over the entire stream of
locations (and the update cost per tuple as well) is linear to the number m of
sketch bitmaps, as depicted in Fig. 8c, when SG = 10.

7 Related Work

The notion of time-decaying significance in data items is widespread in streaming
applications, such as telecom usage patterns or connections through Internet
gateways. Aging-aware computation of aggregates and statistics over a stream
was first formalized in [5]. Several types of time-decaying functions were defined
and theoretically analyzed in terms of their storage requirements to fine-tune the
rate of decay, considering exponential, polynomial and sliding-window variants.

Amnesic approximation of streaming time series was set forth in [9], offering
the intuitive idea that data can be approximated with a precision proportional
to its age. A taxonomy of amnesic functions was provided, along with online al-
gorithms that can incrementally compute reduced representations of scalar time
series with time complexity independent of the total stream size. Our approach
falls naturally under this generic framework, as an amnesic structure with expo-
nential decay especially tailored for streaming positional updates.

AmTree scheme extends the time-varying SWAT mechanism proposed in
[3], which produces multi-resolution approximations of a data stream. Despite
its external similarity to SWAT, AmTree is more generic in certain aspects.
First, SWAT is intrinsically bound to wavelet transform of scalar stream values,
whereas AmTree can even handle multi-dimensional points with user-specified
approximation functions. Further, in functionality terms, at each tree level we
eliminate the intermediate node, which SWAT utilizes for maintenance of tran-
sient values. Finally, we can effectively tune approximation accomplished at each
level, by properly controlling the number of granules (i.e. tree nodes).

A multi-resolution tree structure was introduced in [8] for computing aggre-
gates (SUM, COUNT, etc.) over multi-dimensional points, by employing typical
spatial indices (e.g., quad-trees, R-trees). Still, this technique cannot cope with
streaming data that arrive at high rates, while it cannot easily accommodate
the sequential nature of positional updates. Temporal aggregation over streams
was also studied in [13], but the emphasis was mainly on indexing schemes that
could be dynamically maintained using multiple time granularities. Efficient ex-
act computation of aggregates over sliding windows is tackled in [1] with a par-
ticular interest in sharing resources for numerous continuous queries over scalar
stream values. In contrast, our concern is to maintain age-biased synopses to get
reduced representations, rather than just computing aggregate statistics.

The distinct-count problem over moving objects was tackled in [12]. Their so-
lution applies to spatiotemporal databases and builds a sketch index [6] equipped
with R-trees to maintain spatial regions and B-trees to host temporal intervals.

Online Amnesic Summarization of Streaming Locations 165

This scheme maintains all successive stages of aggregation without any notion
of time-decay; instead, our 3-tier approach is geared towards a streaming model.

In [10] we proposed two single-pass sampling techniques to achieve effective
trajectory compression, exploiting spatial locality and temporal timeliness inher-
ent in trajectory streams. The underlying principle of those heuristics was that
speed and orientation of each object play an important role in deciding which
samples to retain. Departing from this data-driven approach, in this paper we
elaborate on our ideas briefly outlined in [11]. Thus, we focus on aging-aware
schemes where all stream tuples have a lifespan, instead of discarding data upon
admission to the system as carried out with a sampling technique.

8 Conclusion

In this paper, we presented a hierarchical structure called AmTree, capable of
maintaining multiple-granularity approximations over streaming locations of nu-
merous moving objects. This method works in an online amnesic fashion, by re-
serving more precision for the most recent items while accepting increasing error
for gradually aging stream portions. We empirically confirmed that this time-
decaying approach can effectively cope with online trajectory approximation,
also providing affordable estimates for distinct count spatiotemporal queries.

In the future, we intend to study other types of amnesic behavior adjusting
this structure to deal with user-specified aging patterns. In terms of answering
queries over positional streams, we plan to explore spatiotemporal associations,
such as the aging rate of query intervals or topological relations between moving
objects and query regions, in order to better assess approximation quality.

References

1. Arasu, A., Widom, J.: Resource Sharing in Continuous Sliding-Window Aggre-
gates. In: VLDB, pp. 336–347 (2004)

2. Bettini, C., Dyreson, C.E., Evans, W.S., Snodgrass, R.T., Wang, X.S.: A Glossary
of Time Granularity Concepts. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Tem-
poral Databases: Research and Practice. LNCS, vol. 1399, pp. 406–413. Springer,
Heidelberg (1998)

3. Bulut, A., Singh, A.K.: SWAT: Hierarchical Stream Summarization in Large Net-
works. In: ICDE, pp. 303–314 (2003)

4. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-Dimensional Regression
Analysis of Time-Series Data Streams. In: VLDB, pp. 323–334 (2002)

5. Cohen, E., Strauss, M.: Maintaining Time-Decaying Stream Aggregates. In: PODS,
pp. 223–233 (2003)

6. Flajolet, P., Martin, G.N.: Probabilistic Counting Algorithms for Database Appli-
cations. Journal of Computer and Systems Sciences 31(2), 182–209 (1985)

7. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing Set Expressions over Contin-
uous Update Streams. In: SIGMOD, pp. 265–276 (June 2003)

8. Lazaridis, I., Mehrotra, S.: Progressive Approximate Aggregate Queries with a
Multi-Resolution Tree Structure. In: SIGMOD, pp. 401–412 (May 2001)

166 M. Potamias, K. Patroumpas, and T. Sellis

9. Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., Truppel, W.: Online Amnesic
Approximation of Streaming Time Series. In: ICDE, pp. 338–349 (2004)

10. Potamias, M., Patroumpas, K., Sellis, T.: Sampling Trajectory Streams with Spa-
tiotemporal Criteria. In: SSDBM, pp. 275–284 (2006)

11. Potamias, M., Patroumpas, K., Sellis, T.: Amnesic Online Synopses for Moving
Objects. In: CIKM, pp. 784–785 (2006)

12. Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-Temporal Aggre-
gation Using Sketches. In: ICDE, pp. 214–226 (2004)

13. Zhang, D., Gunopulos, D., Tsotras, V.J., Seeger, B.: Temporal Aggregation over
Data Streams using Multiple Granularities. In: Chaudhri, A.B., Unland, R., Djer-
aba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 646–663. Springer,
Heidelberg (2002)

Spatial Partition Graphs:
A Graph Theoretic Model of Maps

Mark McKenney and Markus Schneider�

University of Florida, Department of Computer and Information Sciences
{mm7,mschneid}@cise.ufl.edu

Abstract. The notion of a map is a fundamental metaphor in spatial
disciplines. However, there currently exist no adequate data models for
maps that define a precise spatial data type for map geometries for use
in spatial systems. In this paper, we consider a subclass of map geome-
tries known as spatial partitions that are able to model maps containing
region features. However, spatial partitions are defined using concepts
such as infinite point sets that cannot be directly represented in com-
puters. We define a graph theoretic model of spatial partitions, called
spatial partition graphs, based on discrete concepts that can be directly
implemented in spatial systems.

1 Introduction

In spatially oriented disciplines such as geographic informations systems (GIS),
spatial database systems, computer graphics, computational geometry, computer
vision, and computer aided design, a map is a fundamental metaphor. Many of
these systems fundamentally represent space through more primitive concepts,
such as points, lines, or regions, which we denote the traditional spatial types.
These more basic representations of space are often combined to form maps in
many applications. Furthermore, in applications such as GIS, global positioning
systems, and navigation systems, the map itself tends to play a central role in
that the map is the primary user interface tool. Thus, users tend to manipulate
data in terms of maps instead of the underlying types of point, line, and region.

Despite the intimate ties between maps and a wide variety of spatial applica-
tions, spatial systems tend to represent space as collections of individual points,
lines, and regions, and utilize maps as a visualization tool for these more sim-
ple types. For example, a system may display a collection of regions to a user
as a map, but the system itself can only process space based on points, lines,
and regions. Thus, a map in this sense is not being used as a representation of
space, but as a visualization of more basic spatial entities. However, treating
a map simply as a visualization gives rise to problems at both the conceptual
and implementation levels. At the conceptual level, maps must conform to some
set of properties in order to handle certain configurations of map components.
� This work was partially supported by the National Science Foundation under grant

number NSF-CAREER-IIS-0347574.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 167–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

168 M. McKenney and M. Schneider

Consider two regions r and s such that s fits completely in the interior of r.
If a user attempts to construct a map visualization of these regions, then it
is possible that s will be completely hidden by r, indicating that some set of
properties is required to govern the construction of maps. Therefore, even when
using maps only as visualizations, a type definition of maps is required that poses
constraints on the map contents and indicates how situations such as this one
should be handled. Furthermore, map operations are not purely geometric. For
example, components of maps are typically labeled with thematic information
(e.g., names of states, cities, rivers, etc.). When considering the intersection of
two maps, not only must a spatial intersection operation be defined, but some
method of labelling the resulting map must be defined too that takes into account
the labels of the argument maps.

At the implementation level, systems that utilize maps as visualization tools
cannot take advantage of map properties in algorithms. For example, maps im-
plicitly model topological relationships such as the adjacency between regions.
Thus querying a map for neighborhoods of adjacent regions or regions that are
disjoint from a query region is intuitive and simple in the map context. Given
a spatial system that cannot take advantage of map properties, maps must be
simulated as collections of other spatial objects and such topological information
must be calculated explicitly. Additionally, when implementing operations such
as map intersection in such systems, a Cartesian product of both collections of
spatial objects must be computed.

In this paper, we take the view that maps themselves are a spatial data type,
and not merely a visualization tool. We view a map as a map geometry, i.e.,
as a spatial data type with its own type definition and operations. The idea of
using map geometries to represent space in spatial systems aligns nicely with the
current practice of having users interact with spatial systems through maps. As
was mentioned before, maps implicitly model topological relationships between
the spatial components, such as regions, within the map. Furthermore, the use
of map geometries in spatial systems unifies the user interface model and the
data model such that user queries can be computed over maps.

Despite the advantages that processing space in map form provides for spatial
systems, research into modeling maps has not resulted in an adequate data model
for maps (see Section 2). Current models define maps as sets of traditional
spatial types. These models lack a mechanism to enforce constraints over the
traditional types, and tend to lack closure properties. Conceptual models exist
that define abstract mathematical models of map geometries that are able to
address problems other models have with constraint enforcement and closure
concerns; however, such models rely on concepts such as infinite point sets and
mappings that cannot be directly implemented in computer systems.

In this paper, we only consider a particular subclass of map geometries that we
call spatial partitions. A spatial partition is a subdivision of the plane into regions
such that each region has a label that identifies it and its characteristic thematic
properties, and regions either meet or are disjoint with one another. We do not
consider map geometries that contain features such as line networks or spatial

Spatial Partition Graphs: A Graph Theoretic Model of Maps 169

point entities, but leave this to future work. By considering map geometries as
spatial partitions, we are able to model a map as a single entity containing re-
gional features satisfying particular topological constraints and define operations
and predicates over it. We provide the formal definition of spatial partitions in
Section 4. However, this definition is not sufficient for modeling map geometries
in spatial systems because it defines an abstract model of spatial partitions.

The main contribution of this paper is the unique characterization of a spatial
partition as a spatially embedded graph called a spatial partition graph. We de-
fine the type of spatial partition graphs along with constraints for these graphs
that are enforced implicitly by the data type. Furthermore, we define spatial par-
tition graphs at the discrete level, meaning that the definition avoids concepts
such as infinite point sets that cannot be directly represented in computers. The
result is a precise conceptual data type for map geometries that can be directly
implemented in computer systems. Thus, our model resolves the existing con-
ceptual and implementation level problems associated with current uses of map
visualizations in spatial systems. Because we define a graph theoretic model, it is
possible to directly utilize the many known graph algorithms for implementing
operations such as reachability and connectivity. Finally, a discrete definition
of map geometries provides a foundation upon which new algorithms for map
operations can be specified.

In Section 2, we discuss related research into spatial data types for map geome-
tries. The abstract model of spatial partitions, upon which we base our model
of spatial partition graphs, is presented formally in Section 3. In Section 4, we
define and discuss the properties of spatial partition graphs. Finally, in Section 5,
we draw some conclusions.

2 Related Work

Research into spatial data types has focused on the development of simple and
complex points, lines, and regions. Simple lines are continuous, one-dimensional
features embedded in the plane with two endpoints; simple regions are two di-
mensional point sets that are topologically equivalent to a closed disc. Increased
application requirements and a lack of closure properties of the simple spatial
types lead to the development of the complex spatial types. In [1], the authors
formally define complex data types, such as complex points (a single point object
consisting of a collection of simple points), complex lines (which can represent
networks such as river systems), and complex regions that are made up of mul-
tiple faces and holes (i.e., a region representing Italy, its islands, and the hole
representing the Vatican). These types are defined based on concepts from point
set topology, which allow the identification of the interior, exterior, and bound-
ary of spatial the types. The notations S◦, ∂S, and S− respectively indicate the
interior, boundary, and exterior of a point, line, or region spatial data type.

The idea of a map as a spatial data type has received significant atten-
tion in the literature. In [2,3,4,5], a map is not defined as a data type itself,
but as a collection of spatial regions that satisfy some topological constraints.

170 M. McKenney and M. Schneider

Because these map types are essentially collections of more basic spatial types,
it is unclear how the topological constraints can be enforced, and how thematic
information can be effectively modeled. Furthermore, these models focus on an
implementation model that can be directly incorporated into spatial systems
while neglecting spatial data type considerations such as closure of maps under
map operations. Other approaches [6,7] to defining map types have focused on
raster or tessellation models. However, such approaches are not general enough
for our purposes in the sense that the geometries of maps in these models are
restricted to the tessellation scheme in use. In [8], the authors consider a map to
be a planar subdivision; however, they do not discuss how a planar subdivision
should be modeled except to say that data structures such as winged edge or
quad edge structures should be used.

The work that comes closest to ours is [9,10] in which the authors consider
modeling maps as special types of plane graphs. However, the authors of these
works define such graphs based on modeling a map as a collection type consist-
ing of spatial point, line, and region objects. Problems in the proposed methods
arise when different spatial objects in the map share coordinates. For exam-
ple, given the method of deriving a plane graph from a collection of points,
lines, and regions, it is unclear if a spatial point object that has the same co-
ordinates as the endpoint of a spatial line object in the plane graph can be
distinguished. Furthermore, the authors require a separate structure to model
what they term the combinatorial structure of a plane graph, which includes
the topological relationships between different spatial components of the graph.
Finally, the plane graph, as defined, is not able to model thematic properties of
the map.

We base our work on the model of maps presented in [11]. The authors of this
paper define an abstract, mathematical data model that formally describes the
type of spatial partitions. A spatial partition is the partitioning of the plane into
regular, open point sets such that each point set is associated with a label. The
use of labels to identify point sets allows thematic information to be modeled
explicitly in spatial partitions. Furthermore, operations are defined over spatial
partitions, and it is shown that the operations are closed over the type of spatial
partitions. A detailed description of the type of spatial partitions is provided
in Section 3. The main drawback to this model is that it is based on the con-
cepts of infinite point sets and mappings that are not able to be represented
discretely.

3 The Spatial Partition Model

In this section, we review the definition of spatial partitions upon which we base
our graph model of spatial partitions. We begin by providing a high level descrip-
tion of the type of spatial partitions that indicates their properties and introduces
their terminology. We then introduce the mathematical notation and definitions
required to formally define spatial partitions. Finally, the formal mathematical
type definition of spatial partitions is presented.

Spatial Partition Graphs: A Graph Theoretic Model of Maps 171

3.1 Description of Spatial Partitions

A spatial partition, in two dimensions, is a subdivision of the plane into pairwise
disjoint regions such that each region is associated with a label or attribute having
simple or complex structure, and these regions are separated from each other by
boundaries. The label of a region describes the thematic data associated with
the region. All points within the spatial partition that have an identical label are
part of the same region. Topological relationships are implicitly modeled among
the regions in a spatial partition. For instance, neglecting common boundaries,
the regions of a partition are always disjoint; this property causes maps to have
a rather simple structure. Note that the exterior of a spatial partition (i.e.,
the unbounded face) is always labeled with the ⊥ symbol. Figure 1a depicts an
example spatial partition consisting of two regions.

We stated above that each region in a spatial partition is associated with a
single attribute or label. A spatial partition is modeled by mapping Euclidean
space to such labels. Labels themselves are modeled as sets of attributes. The
regions of the spatial partition are then defined as consisting of all points which
contain an identical label. Adjacent regions each have different labels in their
interior, but their common boundary is assigned the label containing the labels
of both adjacent regions. Figure 1b shows an example spatial partition complete
with boundary labels.

In [11], operations over spatial partitions are defined based on known map
operations in the literature. It is shown that all known operations over spatial
partitions can be expressed in terms of three fundamental operations: intersec-
tion, relabel, and refine. Furthermore, the type of spatial partitions is shown
to be closed under these operations, indicating that the type of spatial parti-
tions is closed under all known operations over them. In this paper, we only
require the use of the refine operation, which is discussed later. We direct the
reader to [11] for the definitions of intersection and relabel due to space con-
straints.

{A}

{B}

{A}

 { }

{ }

a

{A}

{B}

{A}

{ }

{B, }

{A,B}

{A, }

{A, }

{A, }

{ }{A,B, }

b

Fig. 1. Figure a shows a spatial partition with two regions and annotated with region
labels. Figure b shows the same spatial partition with its region and boundary labels.
Note that labels are modeled as sets of attributes in spatial partitions.

3.2 Notation

We now briefly summarize the mathematical notation used throughout the fol-
lowing sections. The application of a function f : A → B to a set of values

172 M. McKenney and M. Schneider

S ⊆ A is defined as f(S) := {f(x)|x ∈ S} ⊆ B. In some cases we know that
f(S) returns a singleton set, in which case we write f [S] to denote the single
element, i.e. f(S) = {y} =⇒ f [S] = y. The inverse function f−1 : B → 2A of f
is defined as f−1(y) := {x ∈ A|f(x) = y}. It is important to note that f−1 is a
total function and that f−1 applied to a set yields a set of sets. We define the
range function of a function f : A→ B that returns the set of all elements that
f returns for an input set A as rng(f) := f(A).

Let (X, T) be a topological space [12] with topology T ⊆ 2x, and let S ⊆ X .
The interior of S, denoted by S◦, is defined as the union of all open sets that
are contained in S. The closure of S, denoted by S is defined as the intersection
of all closed sets that contain S. The exterior of S is given by S− := (X − S)◦,
and the boundary or frontier of S is defined as ∂S := S ∩X − S. An open set is
regular if A = A

◦
[13]. In this paper, we deal with the topological space R2.

A partition of a set S, in set theory, is a complete decomposition of the set
S into non-empty, disjoint subsets {Si|i ∈ I}, called blocks: (i) ∀i ∈ I : Si 	=
∅, (ii)

⋃
i∈I Si = S, and (iii) ∀i, j ∈ I, i 	= j : Si ∩ Sj = ∅, where I is an index

set used to name different blocks. A partition can equivalently be regarded as
a total and surjective function f : S → I. However, a spatial partition cannot
be defined simply as a set-theoretic partition of the plane, that is, as a partition
of R2 or as a function f : R2 → I, for two reasons: first, f cannot be assumed
to be total in general, and second, f cannot be uniquely defined on the borders
between adjacent subsets of R2.

3.3 The Definition of Spatial Partitions

In [11], spatial partitions have been defined in several steps. First a spatial
mapping of type A is a total function π : R2 → 2A. The existence of an un-
defined element ⊥A is required to represent undefined labels (i.e., the exte-
rior of a partition). Definition 1 identifies the different components of a par-
tition within a spatial mapping. The labels on the borders of regions are mod-
eled using the power set 2A; a border of π (Definition 1(ii)) is a block that
is mapped to a subset of A containing two or more elements, as opposed to
a region of π (Definition 1(i)) which is a block mapped to a singleton set.
The interior of π (Definition 1(iii)) is defined as the union of π’s regions. The
boundary of π (Definition 1(iv)) is defined as the union of π’s borders. The
exterior of π (Definition 1(v)) is the block mapped ⊥A. As an example, let
π be the spatial partition in Figure 1 of type X = {A, B,⊥}. In this case,
rng(π) = {{A}, {B}, {⊥}, {A, B}, {A,⊥}, {B,⊥}, {A, B,⊥}}. Therefore, the re-
gions of π are the blocks labeled {A}, {B}, and {⊥} and the boundaries are
the blocks labeled {A, B}, {A,⊥}, {B,⊥}, and {A, B,⊥}. Figure 2 provides
a pictorial example of the interior, exterior, and boundary of a more complex
example map (note that the borders and boundary consist of the same points,
but the boundary is a single point set whereas the borders are a set of point
sets).

Spatial Partition Graphs: A Graph Theoretic Model of Maps 173

a b c d

Fig. 2. Figure a shows a spatial partition π with two disconnected faces, one containing
a hole. The interior (π◦), boundary (∂π), and exterior (π−) of the partition are shown
if Figures b c, and d, respectively. Note that the labels have been omitted in order to
emphasize the components of the spatial partition.

Definition 1. Let π be a spatial mapping of type A

(i) ρ(π) := π−1(rng(π) ∩ {X ∈ 2A| |X | = 1}) (regions)
(ii) ω(π) := π−1(rng(π) ∩ {X ∈ 2A| |X | > 1}) (borders)
(iii) π◦ :=

⋃
r∈ρ(π)|π[r] 	=⊥A

r (interior)
(iv) ∂π :=

⋃
b∈ω(π) b (boundary)

(v) π− := π−1({⊥A}) (exterior)

A spatial partition of type A is then defined as a spatial mapping of type A
whose regions are regular open sets [13] and whose borders are labeled with the
union of labels of all adjacent regions. From this point forward, we use the term
partition to refer to a spatial partition.

Definition 2. A spatial partition of type A is a spatial mapping π of type A
with:

(i) ∀r ∈ ρ(π) : r = r◦

(ii) ∀b ∈ ω(π) : π[b] = {π[r]|r ∈ ρ(π) ∧ b ⊆ ∂r}

As was mentioned before, the type of spatial partitions is closed under all known
partition operations. In this paper, we require the use of the refine operation.
We provide a high-level description of the operation, and direct the reader to [11]
for the formal definition. The refine operation uniquely identifies the connected
components of a partition. Recall that two regions in a partition can share the
same label if they are disjoint or meet at a point. Given a partition π containing
multiple regions with the same label, the operation refine(π) returns a partition
with identical structure to π, but with every region having a unique label. This is
achieved by appending an integer to the label of each region that shares a label
with another region. Figure 3 shows an example partition and the same partition
after performing a refine operation. Note that the notation (A, 1) indicates that
the integer 1 has been appended to label A.

The boundary of a spatial partition implicitly imposes a graph on the plane.
Specifically, the boundaries form an undirected planar graph. The edges of the
graph are the points mapped to the boundaries between two regions. The vertices
of the graph are the points mapped to boundaries between three or more regions.
We identify edges and vertices based on the cardinality of their labels. However,
due to degenerate cases, we must use the refinement of a partition to identify

174 M. McKenney and M. Schneider

{A, } {A, }{C, }

{C, }

{A} {A,C} {C}
{A,C}

{A}
{ }

a

{(A,1), } {(A,2), }{C, }

{C, }

{(A,1)} {(A,1),C}
{C}

{(A,2),C}
{(A,2)}

{ }

b

Fig. 3. Figure a shows a spatial partition with two regions and its boundary and region
labels. Figure b shows the result of the refine operation on Figure a.

these features. We define the set of edges and vertices imposed on the plane by
a spatial partition as follows:

Definition 3. Boundary points of a spatial partition π are classified as being a
vertex or as being part of an edge by examining the refinement σ = refine(π) as
follows:

(i) ε(π) = {b ∈ ω : |σ(b)| = 2}
(ii) ν(π) = {b ∈ ω : |σ(b)| > 2}

4 A Discrete Model of Maps

The abstract model of spatial partitions maps each point in the plane to a specific
label. However, computers provide only a finite resolution for the representation
of data which is not adequate for the explicit representation of abstract spatial
partitions. In order to represent maps in computers, a discrete map model is
required that preserves the properties of spatial partitions while providing a
representation that is suitable for storage and manipulation in computers. In this
section, we provide a graph model of spatial partitions, which is a graph theoretic,
discrete model of spatial partitions. Note that there is some ambiguity among
graph terms in the literature, especially concerning terms indicating graphs that
are allowed to contain loops and multiple edges between pairs of vertices. We
begin this section by first providing an overview of graph terms and definitions
that we use to develop our model.

4.1 Definitions from Graph Theory

In graph theory, a graph is a pair G = (V, E) of disjoint sets such that V is a
set of vertices and E ⊆ V × V is a set of vertex pairs indicating edges between
vertices. We denote the sets of vertices and edges for a given graph g as V (g)
and E(g), respectively. A multigraph is a pair GM = (V, E) of disjoint sets with
a mapping E → V × V allowing a multigraph to have multiple edges between a
given pair of vertices. A loop in a graph is an edge that has a single vertex as
both of its endpoints. A multigraph with loops is a pseudograph, and is defined as
a pair GP = (V, E) with a mapping E → V ×V . Finally, a nodeless pseudograph
is a pseudograph that (possibly) contains edges that form loops that connect
no vertices and that intersect no other edges or vertices. We define a nodeless
pseudograph as a triple GN = (V, E, N) (where N is the set of nodeless edges)
with mapping E → V × V .

Spatial Partition Graphs: A Graph Theoretic Model of Maps 175

A path is a non-empty graph P = (V, E) such that V = {v1, . . . , vn}, E =
{v1v2, . . . , vn−1vn} and all vi are distinct. Given a graph g = (V, E), a path of
g is a graph p = (Vp, Ep) where Vp ⊆ V (g) ∧ Ep ⊆ E(g) where p satisfies the
definition of a path. A cycle is a path whose first and last vertices are identical,
defined by a non-empty graph C = (V, E) such that V = {v1, . . . , vn}, E =
{v1v2, . . . , vnv1} where all vi are distinct and n ≥ 3. Given a graph g = (V, E),
a cycle of g is a graph c = (Vc, Ec) where Vc ⊆ V (g) ∧ Ec ⊆ E(G) where c
satisfies the definition of a cycle. The length of a cycle is the number of its edges.
A polygonal arc is the union of finitely many straight line segments embedded
into the plane and is homeomorphic to the closed unit interval [0, 1]. We use the
terms arc and polygonal arc interchangeably.

A graph is planar if it can be embedded in the plane such that no two edges
intersect. A particular drawing of a graph is an embedding of the graph. A
particular planar graph can have multiple embeddings in the plane such that
edges in each embedding are drawn differently. A particular embedding of a
planar graph is a plane graph. Formally, a plane graph is a pair (V, E) such
that V ⊆ R2, every edge is an arc between two vertices, the interior of an edge
contains no vertex, and no two edges intersect except at their vertices. A plane
graph g may contain cycles. We say a cycle c in plane graph g is minimal if there
does not exist a path in g that splits the polygon induced by c into two pieces.
We use the notation C(g) to indicate the set of minimal cycles in the graph g.

4.2 Representing Spatial Partitions as Graphs

In this section, we define the type of spatial partition graphs that is able to model
both the structural and labelling properties of spatial partitions in a graph. We
first attempt to define a graph based on the vertex and edge structure of a
partition, but show that this is not sufficient because the labels of the partition
are not explicitly represented in such a graph. We then define a new type of graph
that is capable of representing both the structural and labelling properties of a
spatial partition and that is defined based on discrete concepts. We then show
how such a graph can be obtained from a given spatial partition.

Recall that in the abstract model of spatial partitions, we can identify a graph
structure based on the boundary of a partition π. Specifically, we observe that we
can identify ν(π), the set of points that are vertices, and ε(π), the set of point sets
belonging to edges of a partition. However, we cannot simply assign the vertices
and edges to a pair (V, E) in order to achieve a graph representation of π since
it is possible for nodeless edges to be present in ε(π). For example, the boundary
of the rightmost face of region A in Figure 1 is composed of two nodeless edges;
these edges are nodeless because the label of every point they contain is a set
containing two attributes (i.e., no point in the edge satisfies the definition of a
vertex in a partition). Therefore, we must use a triple (V, E, N) consisting of the
sets of vertices, edges, and nodeless edges to represent a partition as a graph.
Deriving the set V from a partition π is trivial because we can directly identify
the set of vertex points ν(π). Definition 3 defines the set of all edges of π as ε(π);
thus, it does not differentiate between edges and nodeless edges. It follows that

176 M. McKenney and M. Schneider

{(A,1)}

{B}

{(A,2)}

{ }

{B, }

{(A,1),B}

{(A,1), }

{(A,2), }

{(A,2), }

{ }
{(A,1),B, }

a b

Fig. 4. Figure a shows the refinement of the partition in Figure 1a. Figure b shows the
SSPG of a. Nodeless edges are dashed.

the set of nodeless edges of a partition, N , is a subset of ε(π), but we cannot
identify N by simply examining labels. Intuitively, the label of a nodeless edge
should not form a subset of the label of any vertex. However, in Figure 1, the
label of the boundary of the upper border of the left face of region A and the
labels of both borders of the right face of region A are the same. Therefore, we
cannot necessarily differentiate nodeless edges from edges by comparing labels.
We can circumvent this problem if we can differentiate identically labeled edges
from different faces of the same region. This can be achieved through the refine
operation. Each nodeless edge in π can be identified as an edge in σ = refine(π)
whose label does not form a subset of any vertex label (a vertex lies on an edge
in the refinement of a partition iff the edge label is a subset of the vertex label).
Note that the refine operation does not alter the edge structure of a partition,
only its labels. Therefore, we can use σ = refine(π) to identify the set of nodeless
edges N in π by saying that each edge in σ whose label does not form a subset
of any vertex label in σ is in the set N . The edges of π can then be calculated as
E = ε(π)−N . Figure 4a shows the refinement of the partition in Figure 1. Figure
4b shows the graph representation of the partition in Figure 4a obtained by the
method described above (nodeless edges are dashed). Because deriving a graph
from a partition in this fashion results in a graph that exactly represents the
edge structure of the partition from which it is derived, we call this type of graph
a structural spatial partition graph (SSPG), and define it formally as follows:

Definition 4. Given a spatial partition π of type A and its refinement σ =
refine(π), we construct a structural spatial partition graph SSPG = (V, E, N)
with:

V = ν(π)
E = ε(σ)−N
N = {n ∈ ε(σ)|�v ∈ ν(σ) : σ(n) ⊆ σ(v)}

The SSPG is able to represent the structural aspects of a spatial partition, but
it does not maintain the labelling information of the partition. Because a SSPG
is defined based on a given partition, the spatial mapping for the partition is
known. Therefore, the label for any edge or vertex in a SSPG can be determined
through the associated spatial mapping, but this is insufficient for our purposes
as we require an explicit representation of labels. However, the SSPG has the
property that it is a plane nodeless pseudograph (PNP):

Spatial Partition Graphs: A Graph Theoretic Model of Maps 177

Theorem 1. Given a partition π of type A, its corresponding SSPG is a plane
nodeless pseudograph.

Proof. The definition of a nodeless graph states that a nodeless graph may con-
tain nodeless edges; therefore, an SSPG is nodeless by definition. Similarly, the
definition of a pseudograph states that the graph may contain multiple edges
between the same vertices and loops. An SSPG is therefore a pseudograph by
definition because it does not exclude such features. Now we must prove that a
SSPG is a plane graph. The edges of an SSPG are taken directly from a spatial
partition, which is embedded in R2, indicating that the SSPG is an embedded
graph. By the definition of spatial partitions, an edge in a partition is a border
defined by a one-dimensional point set consisting of points mapped to a single
label. Furthermore, this label is derived from the regions which the border sep-
arates. Assume that there exists two borders in a spatial partition that cross,
which implies that the SSPG for this partition will contain two edges that inter-
sect. In order for this to occur, these edges must separate regions that overlap,
which violates the definition of spatial partitions. Therefore, a spatial partition
cannot contain two borders that intersect, except at endpoints. Because the
edges of an SSPG are taken directly from a spatial partition, then no two edges
of an SSPG can intersect. Thus, the SSPG is a plane nodeless pseudograph. �
Although an SSPG can be easily obtained from a spatial partition, using a
SSPG to model spatial partitions is inadequate for two reasons. First, spatial
partitions depend on the concept of labels, so the graph representation of a
partition must include a label representation. The SSPG does not implicitly
model the labels of regions, edges, or vertices; rather, it depends on the existence
of a spatial mapping. Second, the edges in the SSPG are taken directly from a
spatial partition, which is defined on the concept of infinite point sets that we
cannot directly represent discretely. Despite these drawbacks, the SSPG does
have the nice property that because a SSPG is defined based on a given spatial
partition, we know that any given SSPG is valid in the sense that it represents
a valid spatial partition. Therefore, we proceed in two phases: we first define a
type of graph that is capable of discretely representing the structural properties,
and explicitly representing the labeling properties, of spatial partitions. We then
show how we can derive graphs of this type from spatial partitions. This allows
us to define a valid graph representation of any given spatial partition.

It follows from Theorem 1 that an embedded graph that models a spatial
partition such that its edges and vertices correspond to the partition’s edges
and vertices, respectively, must be a PNP. However, a PNP does not model
the labeling of spatial partitions. In order to model labels in a graph, we must
associate labels with some feature in a graph. In spatial partitions, the labels of
boundaries can be derived from the labels of the regions they represent. Thus,
it is possible to derive all edge and vertex labels in a partition from the region
labels. Therefore, we choose to associate labels in a graph with features that are
analogous to regions in spatial partitions. We are tempted to associate labels
with minimum cycles in a graph representing a spatial partition; however, this is
not able to accurately model situations in which a region in the spatial partition

178 M. McKenney and M. Schneider

contains another region such that the boundaries of the regions are disjoint (e.g.,
the region labeled A2 and the hole it contains in Figure 4a). Instead, we associate
labels with minimum polycycles (MPCs) in graphs representing partitions. A
minimum polycycle in a PNP G is a set of minimum cycles consisting of a
minimum cycle co (the outer cycle), and all other minimum cycles in G that
lie within co, and not within any other minimum cycle. Note that a minimum
cycle of a plane graph induces a region in the plane defined by a Jordan curve.
Therefore, we can differentiate between the interior, boundary, and exterior of
such a region. We denote the region induced in the plane by the minimum cycle
C of plane graph G as R(C). We now formally define minimum polycycles:

Definition 5. Given a plane nodeless pseudograph G, a minimum polycycle of
G is a graph MPC = (V, E, N) where V ⊆ V (G), E ⊆ E(G), N ⊆ N(G), and
C(MPC) ⊆ C(G), containing an outer cycle co ∈ C(MPC) and zero or more
inner cycles c1, . . . , cn ∈ C(MPC) such that:

(i) ∀v ∈ V : (∃d ∈ C(MPC)|v ∈ V (d))
(ii) ∀e ∈ E : (∃d ∈ C(MPC)|e ∈ E(d))
(iii) ∀n ∈ N : (∃d ∈ C(MPC)|n ∈ N(d))
(iv) ∀ci 	= co ∈ C(MPC) : ∂R(ci) ⊆ (∂R(co) ∪R(co)◦)
(v) �cj , ck ∈ C(MPC)|cj 	= co ∧ ck 	= co ∧ cj 	= ck

∧ ∂R(cj) ⊆ (∂R(ck) ∪R(ck)◦)
(vi) �d ∈ C(G)|(∂R(d) ⊆ (∂R(co) ∪R(co)◦)) ∧ ¬(d ∈ C(MPC))

∧ (∀ci 	= co ∈ C(MPC) : ¬(∂R(d) ⊆ (∂R(ci) ∪R(ci)◦))

Thus, a MPC induces a region in the plane that may contain holes defined by
the minimum cycles that lie in the interior of the outer cycle. Furthermore, by
associating labels with MPCs in a graph representing a spatial partition, we do
not need to explicitly represent the labels of edges and vertices in the graph
since they can be derived by simply finding all MPCs that an edge or vertex
participates in. We denote the set of all MPCs for a PNP G as MC(G).

The second problem with SSPGs is that the edges are defined as infinite
point sets. We require a discrete representation of edges. Therefore, in addition
to assigning labels to MPCs, we define our new type of graph such that its
edges are arcs consisting of a finite number of straight line segments. We define
the labeled plane nodeless pseudograph (LPNP) as a PNP with labeled MPCs,
denoted faces, and edges modeled as arcs as follows:

Definition 6. Given an alphabet of labels ΣL, a labeled plane nodeless pseu-
dograph is defined by the four-tuple LPNP = (V, E, N, F) consisting of a set of
vertices, a set of arcs forming edges between vertices, a set of arc loops forming
nodeless edges, and a set of faces, with:

V ⊆ R2

E ⊆ V × V × (R2)n where n is finite and each edge is an arc (arcs
with endpoints in V and segment endpoints in R2)

N ⊆ (R2)n where n is finite (nodeless arc loops)
F ⊆ {(l ∈ ΣL, m ∈MC((V, E, N)))}

Spatial Partition Graphs: A Graph Theoretic Model of Maps 179

Recall that in the definition of spatial partitions, an unbounded face is explicitly
represented with an empty label corresponding to the exterior of the partition.
We do not explicitly model this unbounded face in the LPNP for two reasons: (i)
we cannot guarantee that the edges incident to the unbounded face of a LPNP
will form a connected graph, and (ii) if the edges incident to the unbounded face
do form a connected graph, we cannot guarantee that it will be a cycle. However,
we can determine if an edge in a LPNP is incident to the unbounded face if it
participates in only a single MPC. This follows from the fact that each edge
separates two regions in a partition. Because all bounded faces are modeled as
MPCs in a LPNP, an edge that participates in only a single face must separate
a MPC and the unbounded face.

The LPNP allows us to discretely model a labeled graph structure, but we
have not yet discussed how we can obtain a LPNP for a given spatial parti-
tion. Note that because the edges of a LPNP are defined as arcs, they cannot
directly represent edges from a partition. Instead, each edge in a LPNP is an
approximation of an edge in its corresponding spatial partition. Therefore, we
define the approximation function α that takes an edge from a partition and
returns an arc which approximates that edge. Given a spatial partition π of type
A and an edge approximation function α, we derive the corresponding LPNP in
a similar manner as we derived the SSPG from a partition. The set of vertices
in the LPNP is equivalent to ν(π). In order to calculate the nodeless edges, we
consider the refinement σ = refine(π). Nodeless edges are then identified as all
edges in σ whose label is not a subset of any vertex label. The set of edges is
then difference of ε(π) and the set of nodeless edges. Finally, each labeled MPC
consists of the set of approximations of the edges surrounding each region in σ
along with the label of the corresponding face in π. Given an edge e, we use the
notation Ve(e) to indicate the set of vertices that e connects. Figure 5 depicts
the LPNP for the partition shown in Figure 1.

Definition 7. Given a spatial partition π of type A, edge approximation func-
tion α, and σ = refine(π), we derive a LPNP = (V, E, N, F) from π as follows:

V = ν(π)
E = {α(e ∈ ε(σ)|¬(α(e) ∈ N))}
N = {α(n ∈ ε(σ)|�v ∈ ν(σ) : σ(n) ⊆ σ(v))}
F := ∀r ∈ ρ(σ)|r ⊆ s ∈ ρ(π) : (l, (Vm, Em, Nm)) ∈ F where :

l = π−1(r)
Em = {α(e)|e ∈ ω(σ) ∧ e ⊆ ∂r ∧ α(e) ∈ E}
Nm = {α(n)|n ∈ ω(σ) ∧ n ⊆ ∂r ∧ α(n) ∈ N}
Vm =

⋃
e∈Em

Ve(e)

Note that it is possible to approximate edges in a partition in multiple ways.
Thus, a single spatial partition may have multiple LPNPs that represent it.

In the definition of LPNPs, no restrictions are placed on the labels of MPCs.
Therefore, it is possible for an labeled graph to fit the definition of an LPNP, but
be labeled in such a way that violates the definition of spatial partitions. In other
words, a LPNP may be labeled such that no spatial partition exists from which

180 M. McKenney and M. Schneider

V1
V2

E1

E2

E3

N1

N2

V = { V 1, V 2 }
E = { E1, E2, E3 }
N = { N1, N2 }
F = { (A, ({V 1, V 2}, {E1, E2}, ∅)),

(A, (∅, ∅, {N1, N2})),
(B, {V 1, V 2}, {E2, E3}, ∅)),
(⊥, (∅, ∅, {N2})) }

Fig. 5. A labeled plane nodeless pseudograph for the partition in Figure 1. The edges
and vertices are marked so that the sets of vertices, edges, nodeless edges, and faces
can be expressed more easily.

the LPNP can be derived. A simple example of this is a LPNP containing two
MPCs that have the same label and share an edge. Because edges only separate
regions with different labels in a partition, this LPNP can not be derived from
any valid spatial partition. Thus, the set of all valid LPNPs is larger than the set
of LPNPs that can be derived from some spatial partition. We define a LPNP
that can be derived some spatial partition as a spatial partition graph (SPG).

Definition 8. A spatial partition graph G is a labeled plane nodeless pseudo-
graph such that there exists some valid partition from which G can be derived.

4.3 Properties of Spatial Partition Graphs

In the previous section, we defined the type of spatial partition graphs and
showed how a SPG can be derived from a given spatial partition. However, we
currently define a SPG as being valid only if it can be derived from a valid
spatial partition. Given a labeled graph in the absence of a spatial partition, we
currently cannot determine if the graph is a SPG. In this section, we discuss the
properties of SPGs such that we can determine if a SPG is valid by examining
its structure and labels.

Given a LPNP in the absence of a source partition from which it can be
derived, we must ensure that structural and labelling properties of the LPNP are
consistent with the properties of spatial partitions. To achieve this, we examine
the properties of spatial partitions, defined by Definition 2 and Definition 3, and
show how these properties are expressed in SPGs derived from spatial partitions.
We then define the properties of SPGs and show that any LPNP that satisfies
these properties is a SPG.

Recall that a SSPG is a PNP. It follows from Theorem 1 that any graph that
models the edges of a partition as graph edges and vertices of a partition as
graph vertices must be a PNP. Therefore, a graph cannot be a SPG if it is not a
PNP. This is already expressed indirectly by the definition of SPGs as LPNPs.

Definition 2 formally defines constraints on spatial mappings that specify the
type of partitions. These constraints indicate that (i) the regions in a partition
are regular open point sets, and (ii) the borders separate uniquely labeled regions
and carry the labels of all adjacent regions. From these properties of partitions,
we can derive properties of SPGs. By (i), we infer that all edges and vertices in a
SPG must be part of a MPC. If an edge is not part of a MPC, then the edge does
not separate two regions. Instead, it extends either into the interior of a MPC or

Spatial Partition Graphs: A Graph Theoretic Model of Maps 181

into the unbounded face of the SPG, forming a cut in the polygon induced by
the MPC or the unbounded face. If a vertex exists that is not part of a MPC,
then it is either a lone vertex with no edges emanating from it, or it is part of a
sequence of edges that are not part of a MPC. In the first case, the vertex either
exists within the region induced by a MPC or the unbounded face of the LPNP,
forming a puncture. In the second case, the vertex exists in a sequence of edges
that is not part of a MPC, which we have already determined to be invalid.

By the second property of spatial partitions (ii), we infer that edges must
separate uniquely labeled MPCs. Therefore, there cannot be an edge in an LPNP
that participates in two MPCs with the same label. Futhermore, every region in
a partition must be labeled. It follows that every MPC in a SPG must be labeled.
Because the unbounded face is not explicitly labeled in a SPG, one special case
exists: a MPC forming a hole in a SPG (i.e., labeled with ⊥) cannot share an
edge with the unbounded face, as this would result in an edge separating two
regions with the same label.

Definition 3 further identifies properties of spatial partitions. According to this
definition, edges in spatial partitions always have two labels, and vertices always
have three or more labels. Recall that in LPNPs, the unbounded face of the
graph is not explicitly labeled. Therefore, in a SPG, all edges must participate
in either one or two MPCs. Edges incident to the unbounded face of the graph
will participate in only one MPC. The requirement that vertices have three
or more labels in a spatial partition indicates that at a vertex, at least three
regions meet. It follows that in a SPG, each vertex has at least a degree of three.
Furthermore, because the unbounded face is not explicitly labeled, vertices must
have at least two labels in a SPG (i.e., a vertex must participate in at least two
MPCs). We summarize the properties of SPGs and show that any LPNP that
satisfies these properties is a SPG:

Definition 9. An SPG G has the following properties:

(i) G is a plane nodeless pseudograph (Theorem 1)
(ii) ∀e ∈ E(G) ∪N(G), ∃(l, X) ∈ F (G)|e ∈ E(X) ∪N(X) (Definition 2(i))
(iii) ∀v ∈ V (G), ∃(l, X) ∈ F (G)|v ∈ V (X) (Definition 2(i))
(iv) ∀v ∈ V (G) : degree(v) ≥ 3 (Definition 3)
(v) ∀e ∈ E(G) ∪N(G) :

1 ≤ |{(l, X) ∈ F (G)|e ∈ E(X) ∪N(X)}| ≤ 2 (Definition 3)
(vi) ∀(l1, X1), (l2, X2) ∈ F (G)|l1 = l2 :

(�e1 ∈ E(X1) ∪N(X1), e2 ∈ E(X2) ∪N(X2)|e1 = e2) (Definition 2(ii))
(vii) ∀m ∈MC(G), ∃f = (l, X) ∈ F (G)|m = X (Definition 2(ii))
(viii) ∀e ∈ E(G) ∪N(G)|

|{(l, X) ∈ F (G)|e ∈ E(X) ∪N(X)}| = 1 : l 	= {⊥} (Definition 2(ii))

Theorem 2. Any LPNP that satisfies the properties in Definition 9 is a SPG.

Proof. The properties listed in Definition 9 indicate how the properties of spatial
partitions are expressed in SPGs. From Theorem 1, we know that a valid SPG
must be a PNP. Definition 2(i) states that all regions in a partition must be

182 M. McKenney and M. Schneider

regular open sets. Because the faces in a SPG are analogous to regions in a
spatial partition, this means that all edges and vertices must belong to some
face; otherwise, they form a puncture or cut in some face of the SPG. Definition
9(ii) and Definition 9(iii) express this requirement. Definition 2(ii) states that
borders in a partition between regions carry the labels of both regions. This
implies that an edge in a spatial partition separates regions with different labels,
and that every region in a spatial partition has a label. Definition 9(vi) and
Definition 9(vii) express this by stating that if an edge participates in two faces
of a SPG, those faces have different labels, and that every MPC in a SPG is a
labeled face of the SPG. Because the unbounded face is not labeled, we must
explicitly state that no edge that participates in a cycle forming a hole can have
only a single label, as this implies that an edge is separating two regions with
the ⊥ label (Definition 9(viii)). Definition 3 states that edges in a partition carry
two region labels, and that vertices carry three or more region labels. Because
the unbounded face is not labeled in a SPG, we cannot directly impose these
properties on a SPG. Instead, we observe that the number of region labels on
a vertex in a partition indicates a minimum number of regions that meet at
that vertex. Therefore, we can express this property in SPG terms by stating
that vertices in a SPG must have degree of at least three (Definition 9(iv)). The
edge constraint from Definition 3 can be specified in terms of a SPG by the
property that an edge must participate in exactly one or two faces, indicating
that the edge will have exactly one or two labels (Definition 9(v)). Therefore, all
properties of partitions are expressed in terms of SPGs in Definition 9, and any
LPNP that satisfies these properties is a SPG. �

We now have the ability to either derive a valid SPG from a spatial partition, or
verify that a SPG is valid in the absence of a spatial partition from which it can
be derived. Finally, we show that given a valid SPG, we can directly construct a
valid spatial partition that exactly models the SPG’s spatial structure and labels.
Recall that a spatial partition is defined by a spatial mapping that maps points to
labels and satisfies certain properties. Therefore, to construct a partition from a
SPG, we must be able to derive a spatial mapping from a SPG. We can construct
such a mapping based on the labeled MCPs of a SPG. Each MCP of a SPG induces
a polygon in the plane that is associated with a label. Each of these polygons is a
spatial region, and is defined by its boundary, which separates the interior of the
polygon from its exterior. Therefore, we can identify the interior, boundary, and
exterior of suchapolygon.Weuse thenotationR(X) to denote thepolygon induced
in the plane by MCP X . A point that falls into the interior a polygon can therefore
be mapped directly to that polygon’s label. The labels of points belonging to edges
in the SPG are slightly more difficult to handle. Each point belonging to an edge is
mapped to the labels of each face in which the edge participates. If an edge happens
tobe incident to theunbounded face (it is an edgeparticipating ina singleminimum
cycle), it also is mapped to the ⊥ label. Similarly, each vertex is mapped to the
labels of each cycle in which it participates. If a vertex is incident to the unbounded
face, it is also mapped to the ⊥ label. A vertex is incident to the unbounded face
if and only if it is the endpoint of an edge that is incident to the unbounded face.

Spatial Partition Graphs: A Graph Theoretic Model of Maps 183

In order to define this mapping, we first provide a notation to distinguish between
edges and vertices that are incident to the unbounded face, and those that are not.
We then show how to derive a spatial partition from a SPG:

Definition 10. Given a SPG G, we distinguish two sets of edges: the set con-
taining edges incident to the unbounded face, denoted E⊥, and the set containing
edges not incident to the unbounded face, denoted Eb. Likewise, we distinguish
two sets of vertices: the set containing vertices incident to the unbounded face,
denoted V⊥, and the set containing vertices not incident to the unbounded face,
denoted Vb. These sets are defined as follows:

E⊥(G) = {e ∈ E(G) ∪N(G)| |{(l, X) ∈ F (G)|e ∈ E(X) ∪N(X)}| = 1}
Eb(G) = (E(G) ∪N(G))− E⊥(G)
V⊥(G) = {v ∈ V (G)|(∃e ∈ E⊥|v ∈ Ve(e))}
Vb(G) = V (G) − V⊥(G)

Definition 11. Given a SPG G, we can directly construct a spatial partition π
of type A as follows:

A={l|(l,X) ∈ F (G)} ∪ {⊥}

π(p)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{l|(l, X) ∈ F (G) ∧ p∈R(X)◦} if ∃(l, X) ∈ F (G)|p ∈ R(X)◦ (1)
{⊥} if �(l, X) ∈ F (G)|

p ∈ R(X)◦ ∪ ∂R(X) (2)
{l|(l, X) ∈ F (G) ∧ p ∈ ∂R(X)} if (∃(l, X) ∈ F (G)|p ∈ ∂R(X))

∧ (�e ∈ E⊥(G)|p ∈ e) (3)
{l|(l, X) ∈ F (G) ∧ p ∈ ∂R(X)}∪{⊥} if (∃(l, X) ∈ F (G)|p ∈ ∂R(X))

∧ (∃e ∈ E⊥(G)|p ∈ e) (4)

In Definition 11, the type of a spatial partition derived from a SPG consists of
the set of labels of faces in the SPG. The mapping is then defined by finding the
labels of all faces a point participates in. If a point p lies in the interior of a face
(1), then the label of that point will be the label of the face. If p does not lie
in the interior or boundary of any face (2), it maps to the label ⊥. If p lies on
a boundary that is not incident to the unbounded face (3), it is mapped to the
set of labels of all faces that include p in its boundary. Note that because face
boundaries include vertex points, this case handles the mapping of both edge
and vertex points. Similarly, if p lies on a face boundary that is incident to the
unbounded face (4), then p is mapped to the set of labels from all faces which
include p, as well as the label ⊥.

5 Conclusions and Future Work

The notion of a map geometry as a data type in spatial systems has received
much attention in the literature. The type of spatial partitions is, so far, the
only representation of map geometries that is able to implicitly model both the
spatial and thematic properties of maps and guarantee closure of the spatial
partition type under all known operations over spatial partitions. In this paper,
we have provided a discrete, graph theoretic model of spatial partitions suitable

184 M. McKenney and M. Schneider

for implementation in spatial systems. This contribution overcomes the main
drawback of the type of spatial partitions, i.e., that they are defined on abstract
concepts such as infinite point sets that are not implementable in computers. We
have defined the type of spatial partition graphs, and identified their properties.
Furthermore, we have shown how spatial partition graphs can be derived from
spatial partitions, and vice versa. By defining a precise, discrete, mathematical
model of spatial partition graphs, we have provided a basis which can be used
to implement map geometries in spatial systems, and to carry out research into
algorithms for map geometries.

Future work includes extending the spatial partition model, and the spatial
partition graph model, to allow the inclusion of point and line features in map
geometries. Additionally, map geometries have shown promise in being used for
spatial query processing. We plan to implement the spatial partition graph model
at various levels of a spatial database system to test its functionality in different
roles. Finally, we plan to investigate new operations over map geometries.

References

1. Schneider, M., Behr, T.: Topological Relationships between Complex Spatial Ob-
jects. ACM Trans. on Database Systems (TODS) 31(1), 39–81 (2006)

2. Güting, R.H.: Geo-relational algebra: A model and query language for geometric
database systems. In: Schmidt, J.W., Missikoff, M., Ceri, S. (eds.) EDBT 1988.
LNCS, vol. 303, pp. 506–527. Springer, Heidelberg (1988)

3. Güting, R.H., Schneider, M.: Realm-Based Spatial Data Types: The ROSE Alge-
bra. VLDB Journal 4, 100–143 (1995)

4. Huang, Z., Svensson, P., Hauska, H.: Solving spatial analysis problems with geosal,
a spatial query language. In: Proceedings of the 6th Int. Working Conf. on Scien-
tific and Statistical Database Management, Institut f. Wissenschaftliches Rechnen
Eidgenoessische Technische Hochschule Zürich, pp. 1–17 (1992)

5. Voisard, A., David, B.: Mapping conceptual geographic models onto DBMS data
models. Technical Report TR-97-005, Berkeley, CA (1997)

6. Ledoux, H., Gold, C.: A Voronoi-Based Map Algebra. In: Int. Symp. on Spatial
Data Handling (July (2006)

7. Tomlin, C.D.: Geographic Information Systems and Cartographic Modelling.
Prentice-Hall, Englewood Cliffs (1990)

8. Filho, W.C., de Figueiredo, L.H., Gattass, M., Carvalho, P.C.: A topological data
structure for hierarchical planar subdivisions. In: 4th SIAM Conference on Geo-
metric Design (1995)

9. De Floriani, L., Marzano, P., Puppo, E.: Spatial queries and data models. In: Frank,
I.C.A.U., Formentini, U. (eds.) Information Theory: a Theoretical Basis for GIS.
LNCS, vol. 716, pp. 113–138. Springer, Heidelberg (1992)

10. Viana, R., Magillo, P., Puppo, E., Ramos, P.A.: Multi-vmap: A multi-scale model
for vector maps. Geoinformatica 10(3), 359–394 (2006)

11. Erwig, M., Schneider, M.: Partition and Conquer. In: Frank, A.U. (ed.) COSIT
1997. LNCS, vol. 1329, pp. 389–408. Springer, Heidelberg (1997)

12. Dugundi, J.: Topology. Allyn and Bacon (1966)
13. Tilove, R.B.: Set Membership Classification: A Unified Approach to Geometric

Intersection Problems. IEEE Trans. on Computers C-29, 874–883 (1980)

Geographic Ontology Matching with iG-Match

Guillermo Nudelman Hess1,2, Cirano Iochpe1,3, and Silvana Castano2

1 Universidade Federal do Rio Grande do Sul
Instituto de Informática - Av. Bento Gonçalves, 9500, 15064 Porto Alegre - Brazil

2 Università degli Studi di Milano
DICo - Via Comelico, 39, 20135 Milano - Italy

3 Procempa - Empresa da Tecnologia da Informação e Comunicação de Porto Alegre
Av. Ipiranga, 1200, Porto Alegre - Brazil

{hess,ciochpe}@inf.ufrgs.br, castano@dico.unimi.it

Abstract. To achieve accurate results when matching geographic on-
tologies, it is important to have clear what has to be compared, and just
then start comparing them. In this paper we define a geographic ontol-
ogy reference model and, from it, the set of heterogeneities that may
occur when comparing two geographic ontologies is elaborated, at both
the concept and instance-level. Based on the heterogeneities set we then
present the iG-Match, which consists in a software architecture that
implements a methodology to perform geographic ontology matching,
using some metrics specially developed for the geographic domain.

1 Introduction

Since the creation of Geographic Information Systems (GIS), new fields of re-
search are emerging due to the peculiarities of the geographic data, which is
much more specific than conventional (alphanumeric) data. In fact, besides the
descriptive components, geographic data is featured by at least other two char-
acteristics, namely geometry and location [1,2]. Geographic data may also have
the temporal component [3], even if this cannot be pointed as a specific fea-
ture for geographic data. In general, geographic data is stored in a Geographic
Database (GDB). A GDB has all the functionalities and capabilities of a con-
ventional database; in addition it can handle spatial relationships among two
or more geographic data as well as their spatial component (geometry and
location).

Actually GIS are used every day. Some examples are the Global Positioning
Systems (GPS) used in cars, the Google Earth tool, maps generators on the
web, and so on. Producing geographic data is time consuming and expensive.
Furthermore, in many cases the data needed is already available in some other
systems or organizations.

At the same time, the diffusion of the Internet allowed the interchange of
information all around the world. If, on one hand, this interchange offers a lot
of benefits, such as the reuse of information and knowledge sharing, on the
other hand it generates the need to deal with the heterogeneities among the

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 185–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 G.N. Hess, C. Iochpe, and S. Castano

information obtained from distinct geographic sources. This problem is difficult
to solve due to poor documentation as well as implicit semantics of the data and
diversity of data sets.

The scenario above encouraged the present research, in which propose one
solution for the problem of geographic information integration. Our solution,
called iG-Match, is conceived for both concept and instance-level matching,
and consists in a methodology with similarity metrics tailored specially for the
particularities of the geographic information.

1.1 Motivating Example

Figures 1 and 2 presents two geographic ontologies to be compared. The rect-
angles with continuous lines represent concepts, the ellipses the properties rep-
resenting attributes associated with a concept and the dashed rectangles the
instances belonging to a concept. The arcs linking two concepts correspond to
the properties which represent relationships holding between them, while the isa
labeled arrows are the taxonomic relationships (axioms) between two concepts,
in which one is the specialization of the other.

Fig. 1. Geographic ontology O

The examples are rather simple, but complete for our purposes. They have
both spatial concepts, such as Park, City, Factory and non-geographic concepts
(Administration). There are spatial relationships in both ontologies (crosses,
inside, overlaps) as well as conventional relationships (hasAdministration held
between City and Administration). The geometries of the concepts are of various
types. We use these two ontologies throughout this paper and in the following
sections we analyze how these elements may affect the matching of geographic
ontologies.

The rest of the paper is organized as follows. In Section 2 we define a geo-
graphic ontology model, which guide the heterogeneities identification and the
matching process as well. Section 3 formalizes the types of heterogeneities that

Geographic Ontology Matching with iG-Match 187

Fig. 2. Geographic ontology O
′

may occur when comparing two geographic ontologies. In Section 4 we present
the iG-Match, which consists in an software architecture and similarity met-
rics to assess the degree of similarity between two geographic ontologies. Some
related works are presented in Section 5. Finally, the conclusions and future
directions are discussed in section 6.

2 Definition of a Reference Model

A geographic ontology (or geo ontology) can be defined as a 4-tuple O =
(C, P, I, A), where C is the set of concepts, P is the set of properties, I is the
set of instances, and A is the set of axioms. A concept c ∈ C is classified into
domain concept, such as a River, a Park or a Building, or geometry concept,
such as Point, Line or Polygon. Furthermore, a geographic domain concept gc is
a specialization of a domain concept which represents a geographic phenomena.
By definition, a geographic domain concept gc must have at least one associ-
ated geometric property, which is explained in the following. In this paper the
terms geographic class, geographic concept and geographic domain concept are
synonyms and may be interchanged.

In an ontology a property can be defined by itself, i.e., outside the context of a
concept. However, for matching purposes a property is relevant when associated
to a concept, directly in its domain or through a restriction. Thus, we opted to
associate the concept to a property in the definition of the latter.

In a geographic ontology, each property p ∈ P can be of one of four possible
types: conventional, spatial, geometric or positional. A conventional property
may be even a data type property or an object type property. In the first case it
represents an attribute of a domain concept. In the second case it represents an
association between a domain concept (geographic or not) with a non-geographic
domain concept.

An attribute a ∈ P is a ternary relation of type a(c, an, dtp), where an is the
name of the attribute and dtp is a data type (such as string, integer, etc.).

188 G.N. Hess, C. Iochpe, and S. Castano

A conventional property cr is defined as:

cr = {r(c, rn, cx, minCard, maxCard) ∈ P |((c : ¬gc) ∨ (cx : ¬gc))
∨((r : ¬ge) ∧ (r : ¬sr))}

where c is the domain concept, rn is the property name, cx is the related concept
and minCard and maxCard are, respectively, the property minimum and maxi-
mum cardinality. ge is a geometric property and sr represents a spatial relation.
Both will be detailed in the following.

A spatial property sr can be of three types: topological, directional or metric.
As the metric property is, in general, processed by a GIS system, we focus on
the topological and directional ones. Thus, sr is always an object type property,
and represents an association between two geographic domain concepts.

sr = {r(c, rn, cx, minCard, maxCard) ∈ P |(c : gc) ∧ (cx : gc)}
A geometric property (always an object type property) ge is an association

between a geographic domain concept with a geometry concept.
ge = {r(c, rn, cx, minCard, maxCard) ∈ P |(c : gc) ∧ (cx : geo)}

Finally, a positional property is a data type property that must be associated
to a geometry concept, to give its location (set of coordinates).

The set of axioms A describes the hierarchical (IS-A) relationships between
concepts and provides associations among properties and concepts. A hierarchy
h ∈ A is a binary relation of type h(c, cx), where cx is superclass of the concept c.

A geographic instance i ∈ I is defined as i = (type, id, vP, coord), where type
is the concept c it instantiates, id is the unique identifier of the instance, vP
is the set of values defined for the properties associated to the concept c that i
instantiates, and coord is the set of geographic coordinates of the instance.

On the basis of this reference model, it is possible to point out at least
three differences between geographic information and conventional (ontology or
schema) matching:

– The spatial relationships have a pre-defined semantics and are standardized,
while conventional relationships may assume different semantics depending
on the associated concepts.

– Every geographic concept has, at least, one associated geometry representing
it. The geometry plays a fundamental role on defining the possible spatial
relationships the concept may have.

– A geographic instance has a number of pair of coordinates (x,y) represent-
ing its spatial position over the earth surface. These coordinates may be
expressed in a given coordinate system.

3 A Clarification of Geographic Information
Heterogeneities

In order to know what to consider when matching two geographic ontologies,
in this section we define the kinds of heterogeneities that should be taken into
account at both the concept-level and the instance-level.

Geographic Ontology Matching with iG-Match 189

3.1 Concept-Level Heterogeneities

In this section the possible heterogeneities are classified regarding the comparison
of a concept c ∈ ontology O against a concept c

′ ∈ ontology O
′
. Considering the

definition of ontology, concepts, instances, properties and axioms presented in
the preview section, the possible heterogeneities are defined as follows.

Name heterogeneity: The concept name heterogeneity NH occurs when, given
two concepts names t(c) and t(c

′
) they are neither equal nor synonyms. The syn-

onym relation SY N(t(c), t(c
′
)) is obtained by searching an external thesaurus.

NH(c, c
′
) = {(t(c) 	= t(c

′
)) ∧ (SY N(t(c), t(c

′
)) = false)}

Considering the ontologies O and O
′
, the concepts Park from O and GreenArea

from O
′
are examples of name heterogeneity. On the other hand, City and Town

do not have name heterogeneity, because even if the terms are not the same, the
function SY N(t(c), t(c

′
)) returns true when searching a external dictionary.

Property heterogeneity: The concept property heterogeneity PH occurs when
there is an attribute heterogeneity AH or a relationship heterogeneity RH.

The AH heterogeneity between c ∈ O and c
′ ∈ O

′
occurs when at least one

of the attributes a(c, an, dtp) ∈ P in ontology O does not match with any of
the attributes a(c

′
, an

′
, dtp

′
) ∈ P

′
in ontology O

′
. The heterogeneity can be

generated due to different attribute names or different attribute datatypes.

AH(c, c
′
) = {∃a(c, an, dtp) ∈ P |∀a(c

′
, an

′
, dtp

′
) ∈ P

′
, (an 	= an

′
) ∨ (dtp 	= dtp

′
)}

As an example of attribute heterogeneity, lets consider the concepts City from
O and Town from O

′
. The attribute hasMajor is a property of Town, but is not

associated to City.
The RH heterogeneity between c ∈ O and c

′ ∈ O
′

is defined over the con-
ventional relationships (not geometric nor spatial). It applies to both geographic
as to non-geographic concepts. It occurs when at least one of the relationships
cr(c, rn, cx, minCard, masCard) ∈ P in ontology O does not have a correspon-
dent cr(c

′
, rn

′
, c

′

x, minCard
′
,maxCard

′
) ∈ P

′
in ontology O

′
. The hetero-

geneity may occur due to a different associated concept cx as well as due to
the relationship cardinalities minCard and maxCard. As in many times the
conventional relationships names are not significant as to identify the relation-
ship, the component rn can be ignored.

RH(c, c
′
) = {∃cr(c, rn, cx, minCard, maxCard) ∈ P |∀r(c′

, rn
′
, c

′

x,

minCard
′
, maxCard

′
) ∈ P

′
, (cx 	= c

′

x) ∨ (minCard 	= minCard
′
)

∨(maxCard 	= maxCard
′
)}

The concepts City from O and Town from O
′
present an example of relation-

ship heterogeneity. The property hasAdministration, which relates City with the
concept Administration is not in the context of the concept Town.

190 G.N. Hess, C. Iochpe, and S. Castano

Regarding the geographic domain concepts, two additional types of hetero-
geneity exist, one for each type of relationship (geometry and spatial relation).

The geometric concept heterogeneity GH between gc ∈ O and gc
′ ∈ O

′

happens when the two geographic concepts gc and gc
′

have different geome-
tries, i.e., the hasGeometry property relates the geographic domain concept to
concepts representing different geometries.

GH(gc, gc
′
) = {∃ge(gc, hasGeometry, geo, minCard, maxCard) ∈ P |

∀ge(gc
′
, hasGeometry

′
, geo

′
, minCard

′
, maxCard

′
) ∈ P

′
, geo 	= geo

′}

In this case only the associated geometry concept geo counts, because it is
the one which defines the geometry (point, line, polygon) of the geographic con-
cept. Due to the possibility of the multi-representation of a geographic concept,
i.e., multiple geometries, if at least one of the geometries of gc matches with a
geometry of gc

′
, there is no heterogeneity.

As an example of geometric heterogeneity, lets consider the concepts Park
from O and GreenArea from O

′
. While the former is associated to a geometry

concept Polygon, the latter is associated to a geometry concept Point, for the
same hasGeometry property.

The spatial relationship heterogeneity SH between two geographic con-
cepts gc ∈ O and gc

′ ∈ O
′

happens when there is at least one spatial rela-
tionship sr(gc,rn,gcx,minCard,maxCard) ∈ P in ontology O without a matching
sr(gc

′
, rn

′
, gc

′

x, minCard
′
, maxCard

′
) ∈ P

′
in ontology O

′
.

SH(gc, gc
′
) = {∃sr(gc, rn, gcx, minCard, maxCard) ∈ P |∀sr(gc

′
, rn

′
, gc

′

x,

minCard
′
, maxCard

′
) ∈ P

′
, (gcx 	= gc

′

x) ∨ (minCard 	= minCard
′
) ∨

(maxCard 	= maxCard
′
) ∨ (rn 	= rn

′
)}

The names of the spatial relationships are, in general, standardized in the
literature. Hence, the component rn, which holds the relationship name, has to
be considered. The topological and directional relationships are considered. The
metrics one do not count because in general they are calculated by a GIS and
not defined as properties or restrictions of a concept.

Example of a spatial relationship heterogeneity is the association Road crosses
Park in ontology O and Road overlaps GreenArea in ontology O

′
. Even if we

consider that GreenArea and Park could be synonyms, in ontology O the rela-
tionship name is crosses, while in O

′
rn

′
=overlaps. As will be discussed in the

paper, these relationships can be equivalent, but in a first analysis it seems that
there is a spatial relationship heterogeneity.

Hierarchy heterogeneity: The hierarchy heterogeneity HH between two con-
cepts c ∈ O and c

′ ∈ O
′

occurs when the set of superclasses SUP (c) of the
concept c ∈ O is different from the set of superclasses SUP (c

′
) of the compared

concept c
′ ∈ O

′
. This means that at least one of the superclasses present in

SUP (c) is not found in SUP (c
′
).

HH(c, c
′
) = {∃cx ∈ h(c, cx)|∀c

′

x ∈ h(c, c
′

x), cx 	= c
′

x}

Geographic Ontology Matching with iG-Match 191

The concepts City and Town from O and O
′
, respectively, are examples of

hierarchy heterogeneity. The former has as superclass the concept UrbanArea,
while the latter do not have a superclass (actually, in an ontology, all concepts
are subclasses of thing, but for easiness of comprehension we omitted it from the
ontology).

3.2 Instance-Level Heterogeneities

As important as the matching of the concepts is the matching of their instances.
Especially in the geographic field there are many features that can influence
the similarity measurement process which are not present when dealing with
non-geographic ontologies. These features are, for example, the scale, spatial
position, time when the instances were obtained, and so on. However, the non-
spatial properties, such as the attributes (property) values, cannot be neglected.
In this section we define the heterogeneities that may occur at the instance-level
when comparing two geographic ontologies.

Identifier heterogeneity: When a concept in an ontology is instantiated, in
general the unique identifier has a really significant value. It is not like the
objectId of an instance of a class which is automatically generated. In the case
of an ontology is the main way to both the user and the computer identify the
instance. When two instances i ∈ O and i

′ ∈ O
′
do not have the same identifier

(in OWL, the ID parameter) there is an identifier heterogeneity IIH.

IIH(i, i
′
) = {∃i ∈ O|∀i

′
∈ O

′
, id(i) 	= id(i

′
)}

The concepts c and c
′
the instances belong are not considered because maybe

they are not known.

Coordinate heterogeneity: As already stated, one of the main characteristics
of the geographic data is that is has a position over the earth surface. The set
of coordinates of a given instance i ∈ O can be defined as a unary function
coord(i).

If two instances i ∈ O and i
′ ∈ O

′
do not have the same spatial position, there

is a coordinate heterogeneity ICH.

ICH(i, i
′
) = {i ∈ O, i

′ ∈ O
′ |coord(i) 	= coord(i

′
)}

Attribute heterogeneity: When a property of a concept is a data type prop-
erty it represents an attribute, i.e., a property to which the allowed values are
string, float, integer, etc. In this case the relation vp(i, p, val) can be identified
as at(i, p, v).

When two instances i ∈ O and i
′ ∈ O

′
have different values v for the same

data type property p there is an attribute heterogeneity IAH.

IAH(i, i
′
) = {∃at(i, p, v) ∈ O|∀at(i

′
, p

′
, v

′
) ∈ O

′
, (p ≡ p

′
) ∧ (v 	= v

′
)}

Relationship heterogeneity: When a property of a concept is an object type
property it represents a relationship, i.e., a property which allowed values are

192 G.N. Hess, C. Iochpe, and S. Castano

instances of other concepts. In this case the relation vp(i, p, val) can be identified
as rl(i, p, ix).

When two instances i ∈ O and i
′ ∈ O

′
have associated, respectively, the

instances ix and i
′

x which represent different concepts, there is a relationship
heterogeneity IRH.

IRH(i, i
′
) = {∃rl(i, p, ix) ∈ O|∀rl(i′

, p
′
, i

′

x) ∈ O
′
, (ix 	= i

′

x)}

4 The iG-Match Matchmaker

In this section we detail our proposal for a geographic matchmaker. We start
from the iG-Match architecture and then explain the procedure to measure the
degree of similarity of two compared geographic ontologies, at both the concept
and the instance-level. The procedure starts by determining the similarity among
the concepts of the two ontologies and based on the results the instance similarity
is measured.

4.1 iG-Match Architecture

The iG-Match architecture is depicted in Figure 3. It receives as input two
ontologies O and O

′
to be compared and produces as an output the mappings

among the concepts and instances of these two ontologies in a tabular format as
as an XML file. Furthermore, it makes use of an external dictionary or thesaurus,
such as WordNet [4], for the linguistic affinity measure, during the process of
matching.

The iG-Match architecture is composed by three different layers, namely
ConceptWrapper, Concept matcher and instance matcher. Each layer works as
an independent module, and depending on the input ontologies it is executed or
not. In the following we provide the details for each one of the layers.

ConceptWrapper: It may happen that one (or both) of the input ontologies
O and O

′
contain only the data (instances), without the explicit definition of

the concepts, properties and restrictions. As we are dealing with semi-structured
information (in our case, OWL - Ontology Web Language), even if the structure
of a concept is not explicitly defined, it may be inferred from its instances. This
can be done by parsing the document XML’s tags in a kind of reverse engineering
process. For example, if we consider the following piece of OWL document (taken
from the ontology O example)

<City rdf:ID="Milan">
<Population>1.568.920</Population>
<hasAdm rdf:resource="#Adm2006"/>
<hasGeometry>

<Polygon rdf:ID="pol1"/>
</hasGeometry>

</City>

Geographic Ontology Matching with iG-Match 193

Fig. 3. iG-Match architecture

it is possible to infer that Milan is an instance of a concept called City which has a
data type property population of type integer. Furthermore is has an object type
property hasAdm associating it to an instance identified as Adm2006 and another
object type property hasGeometry which points to an instance of Polygon. Once
one discover to which concept the instance Adm2006 belongs, it is possible to
define the allowed values for the property hasAdm at the concept-level. In other
words, it is possible to know to which concept cx the concept City is associated.

For the case when there are instances i ∈ O and/or i
′ ∈ O

′
to which there

is not a concept c or c
′

explicitly defined, before of matching them (the in-
stances) the concepts to which they belong must be determined. This is manda-
tory because the instance similarity measurement depends on the similarity of
the concepts they instantiate, i.e., the instances are compared only if they belong
to concepts already identified as equivalents or very similar. As the input on-
tologies must be described in a semi-structured language, the ConceptWrapper
first parses the document and extracts the structure of the concept the instance
belongs, from its tags. This is done by the InstanceParser module. Then, the in-
ferred concepts are actually defined, by the ConcepCreator module. The output
of this layer is a file, called Ontology Concepts describing concepts not explicitly
defined in the incoming ontologies O and O

′
.

ConceptMatcher: When all the concepts which have associated instances are
known, the ConceptMatcher layer performs the process of similarity measure-
ment at the concept-level. This process is performed in two phases. Firstly, the
name (module NameMatcher) and attribute similarities (data type properties
- module AttributeMatcher) are measured. The second phase uses the results
obtained in the first as parameters do calculate the similarity regarding the tax-
onomies (module TaxonomyMatcher), conventional relationships (object type
properties - module ConvRelMatcher) and spatial relations (object type proper-
ties - module SptRelMatcher). We decided to perform the similarity measurement

194 G.N. Hess, C. Iochpe, and S. Castano

in two phases because to infer if two relations are equivalent it is mandatory to
know how similar are the associated concepts. At last the results of each module
are combined and a concept mapping document is produced.

InstanceMatcher: Once the process of identifying similarities between con-
cepts is finished, the Instance Matcher layer is executed. Using the results pro-
duced by the ConceptMatcher layer, the InstanceMatcher performs the instance
similarity measurement. Only instances belonging to equivalent (or very similar)
concepts c ∈ O and c

′ ∈ O
′
are compared. The output produced by this layer is

a document containing the instance mapping results.
The modules IIdMatcher, IAtrMatcher, IConvRelMatcher and ISpatialRel-

Matcher perform the similarity measurement between two instances. Again we
chose a two phases processing. In the first phase the id similarity (module IId-
Matcher), the attribute value similarity (data type properties - module IAtr-
Matcher) are analyzed. Based on the partial results obtained, the second phase
performs the conventional relationship (module IConvRelMatcher) and spatial
relationship (module ISpatialRelMatcher) similarity measurement.

4.2 Concept Matching

Name Similarity: To measure the similarity between the terms which nomi-
nate a concept, iG-Match is conceived to execute a three-step procedure.

I. Verify if the term t(c) for the concept c ∈ O is exactly equal to the term
t(c

′
) for the concept c

′ ∈ O
′

II. Search in an external dictionary or thesaurus, such as the WordNet [4] the
level of linguistic affinity between the terms t(c) for the concept c ∈ O
and the term t(c

′
) for the concept c

′ ∈ O
′
. We call this the SY N(c, c

′
)

function. This function returns a value within [0,1], where 1 means the
terms are synonyms and 0 means they are not related at all.

III. Using a string comparison metric, confront t(c) for the concept c ∈ O
against t(c

′
) for the concept c

′ ∈ O
′
. In this work we adapt the Stoilos

et al. [5] metric, which considers all the common substrings the two com-
pared strings share and also the JaroWinkler metric.

SimName(c, c
′
) =

2 ∗ length(max(ComSubstring(t(c),t(c
′
))))

length(t(c))+length(t(c′))
+ JaroWinkler(t(c), t(c

′
))

2
(1)

Step II is executed only if step I returns 0. Step III is executed only if the
step II does not return a satisfactory value, which is defined by the user.

The name similarity measure returns a value within [0,1] where 0 means the
terms are completely different and 1 that they are exactly equals (or synonyms).

Geographic Ontology Matching with iG-Match 195

Property Similarity: As the property heterogeneity is classified in attribute
(AH), relationship (RH), geometric (GH) and spatial relationship (SH),
iG-Match is designed to separately measure the similarity for each one of these
aspects.

Attribute similarity: To measure the similarity between an attribute a(c, an,
dtp) ∈ P in an ontology O and an attribute a(c

′
, an

′
, dtp

′
) ∈ P

′
in ontology O

′

the two components to be analyzed are the attributes’ names and data types.
The similarity regarding the attributes’ name an is measured in a similar way

to the one used to concept names. The main difference is that only the steps I
and II are performed. This means that first is checked if the attributes’ names
an and an

′
are equal and in case they are not the linguistic affinity is calculated.

SimNAt(a(c, an, dtp), a(c
′
, an

′
, dtp

′
)) =

{
1 if an = an

′

SY N(an, an
′
) otherwise

The similarity of data types is measured by checking if the data types are the
same (dtp = dtp

′
, such as both integer or string) or if one is a subclass of the

other (dtp ⊆ dtp
′
or dtp ⊇ dtp

′
, such as float and integer).

SimDAt(a(c, an, dtp), a(c
′
, an

′
, dtp

′
)) =

{
1 if (dtp ⊆ dtp

′
) ∨ (dtp ⊇ dtp

′
)

0 otherwise

Each attribute has an associated weight ε, corresponding to its relevance to
the concept. ε is given by

ε = 1− (min((
Ca− 1

C
)(

Ca
′ − 1
C ′))) (2)

which means that the less concepts have an attribute, the more relevant it is. In
the equation, Ca is the number of concepts having the attribute a and C is the
total number of concepts of the ontology.

The final final measure of the attribute similarity is given by

SimAt(c, c
′
) =

∑
max((δ ∗ SimNAt(ai, aj) + (1 − δ) ∗ SimDAt(ai, aj)) ∗ ε)

|A ∪ A′ | (3)

where δ is the weight for the attribute name similarity. A is the subset of P
which contains only attributes (data type properties).

Conventional relationships similarity: To measure the similarity regarding
the conventional relationships, two components that determine the relationship
heterogeneity RH(c, c′) have to be considered: (1) the concepts cx and c

′

x asso-
ciated, respectively, to c and c

′
and, (2) the relationship cardinalities. The name

of the property that defines the association can be ignored because many times

196 G.N. Hess, C. Iochpe, and S. Castano

it is not semantic relevant. The conventional relationship similarity between two
concepts c ∈ O and c

′ ∈ O
′
is given by:

SimRel(c, c
′
) =

∑
cr(c, rn, cx, minCard, maxCard) ∩ cr(c

′
, rn

′
, c

′
x, minCard

′
, maxCard

′
)

|CR(c) ∪ CR(c′)| (4)

where CR and CR
′

are, respectively, the subset of properties from P and P
′

which correspond to conventional relationships involving, respectively, c and c
′
.

The computation of the conventional relationship similarity is based on the
results obtained by the similarity name (SimName(c, c

′
)) measurement. This is

due the necessity of determining if the concepts cx and c
′

x are equivalent. If c
is associated to a concept cx and c

′
is associated to a concept c

′

x and the name
similarity SimName(cx, c

′

x) is higher than a certain threshold the relationships
are considered as equivalent, if the cardinalities are also equal.

Geometric similarity: Because of the possibility of having the same phe-
nomenon described using different spatial representations, in iG-Match we do
not compare directly the geometry of the compared concepts c and c

′
. Instead,

the geometry is used in the spatial relationship similarity measure.

Spatial relationships similarity: To measure the similarity between two con-
cepts regarding the spatial relationships, the three components which cause the
spatial heterogeneity must be considered: the concepts cx and c

′

x associated,
respectively, to c and c

′
, the cardinalities of the relationships, and the names

rn and rn
′
of the relationships. The name of the association cannot be ignored

because for the spatial relations the names are, in general, standardized and
semantically relevant. For example, although River crosses City and River inside
City involve the same concepts, they do not mean the same.

The spatial relations considered in iG-Match are the directional and the
topological. We do not measure the similarity of the metric relationships because
in general they are calculated by a GIS and not stored in the ontology. The
similarity measurement of the spatial relationships between two concepts c ∈ O
and c

′ ∈ O
′
is given by:

SimSpt(c, c
′
) =∑

sr(gc, rn, gcx, minCard, minCard)∩sr(gc
′
, rn

′
, gc

′

x, minCard
′
, maxCard

′
)

|SR(c)∪SR(c′)|
(5)

where SR and SR
′

are, respectively, the subsets of P and P
′

that contain the
spatial relationships.

Due to the possibility of multi-spatial representation for a geographic concept,
the similarity measurement regarding to topological relationships must take into
consideration the geometries of the concepts. Depending on the geometry of
the involved concepts c and c

′
relationships with different names are equivalent.

An exhaustive study of the topological equivalences based on the geometries is
presented in [6] and is used in the present work.

Geographic Ontology Matching with iG-Match 197

For the directional relationships the geometry is not relevant, because the
relationships do not depend on the geometric shapes but on the spatial coordi-
nates. As at the concept-level the coordinates are not defined, the directional
relationships is measured in terms of the restrictions of the concepts. For exam-
ple, on the definition of a concept Bridge there may be a restriction that says
that is must be above a concept River.

The computation of the spatial relationship similarity is based on the results
obtained by the similarity name (SimName(c, c

′
)) measurement. This is due the

necessity of determining if the concepts cx and c
′

x are equivalent. If c is associ-
ated to a concept cx and c

′
is associated to a concept c

′

x and the name similarity
SimName(cx, c

′

x) is higher than a certain threshold the relationships are con-
sidered as equivalent, if the other components (cardinalities and relationship
names) are also equivalent.

Hierarchy (Axiom) Similarity: As defined in section 3.1, two concepts have
hierarchy heterogeneity when there are differences in the concepts present in
the superclasses tree. The superclass similarity is then given by the number of
common superclasses of the concepts c and c

′
divided by the total number of

superclasses of both concepts, as follows.

SimHier(c, c
′
) =

∑
(h(c, cx) ∩ h(c

′
, c

′

x)) ∗ ψ

|H(c) ∪H(c′)| (6)

where ψ is the difference of the superclasses level. If both classes cx and c
′

x are
at the same distance from the concepts c and c

′
, respectively, ψ is equal to 1.

Otherwise, ψ is decreased. SUP (c) is the number of superclasses of the concept
c, direct or indirect. The similarity measure is a value within [0,1].

Overall Similarity: The final value for the similarity between two concepts
c ∈ O and c

′ ∈ O is a weighted sum which considers all the similarities detailed
previously.

Sim(c, c
′
) = WN ∗ SimName(c, c

′
) + WA ∗ SimAt(c, c

′
) +

WH ∗ SimHier(c, c
′
) + WR ∗ SimRel(c, c

′
) + WS ∗ SimSpt(c, c

′
) (7)

where WN, WA, WH, WR and WS are, respectively, the weights for the name,
attributes, hierarchy, conventional relationships and spatial relationships simi-
larities. The sum of these weights must be 1, and thus the value of Sim(c, c

′
) is

within [0,1]. The combination of these parameters to achieve bests results is yet
an open issue.

4.3 Instance Matching

Two instances i ∈ O and i
′ ∈ O

′
are compared only if the concepts c and c

′

they instantiate were already identified as equivalents. The instance similarity
measurement is based on five main components, which may cause the instance

198 G.N. Hess, C. Iochpe, and S. Castano

heterogeneity: (1) the instance identifier, (2) the value of the descriptive at-
tributes (data type properties), (3) the value of the descriptive relationships
(object type properties), (4) the value of the spatial relations (spatial object
type properties) and, (5) the spatial position of the instances (coordinates).

When a concept is instantiated, each associated property has a value vp =
(i, p, val). When two instances are compared, only the equivalent properties are
verified, i.e., if p ≡ p

′
, which is determined previously, in the concept similarity

measure phase. Thus, the only component to be confronted is the value (val)
from the triple. The similarity among the property values vp = (i, p, val) of two
instances depends on the type of the property.

Identifier: When measuring the similarity between two instances i and i
′
, the

instance identifier has to be considered. As mentioned in section 3.1 the id is
the instance component property which represents the unique identifier of an
instance, i.e., the id component of the 4-tuple cannot be the same for two in-
stances in the same ontology O. The measurement of the similarity between the
identifiers SimIId(i, i

′
) for two instances i and i

′
is given by

SimIAtS(i(type, id, vP, coord), i(type
′
, id

′
, vP

′
, coord

′
)) =

(2 ∗
∑

i
length(max(ComSubstringi))

length(id)+length(id′)
) + (JaroWinkler(id, id

′
))

2
(8)

Properties Similarity: Attributes: In the case of a data type property, i.e.,
an attribute, to which the allowed values are numeric, a simple equality compar-
ison is performed:

SimIAtN(vp(i, p, val), vp(i
′
, p

′
, val

′
)) =

{
1 if val = val

′

0 otherwise
(9)

If the numeric types are different, for example integer x float, only the common
part is compared. This means that if one property value is 10 and the other is
10.5 only the integer part of the numbers is compared.

In the case of a data type property to which the allowed values are text
(string) the similarity measurement is performed according to the string metric
similarity defined for the concept-level.

SimIAtS(vp(i, p, val), vp(i
′
, p

′
, val

′
)) =

(2 ∗
∑

i
length(max(ComSubstringi))

length(val)+length(val′)
) + (JaroWinkler(val, val

′
))

2
(10)

Relationships: If the property is an object type property, it represents a rela-
tionship. At the instance-level, as we are concerned if the associated instances are
equivalent, for both conventional and spatial relationships the similarity measure
is the same. We simply compare if the instances ix and i

′

x associated, respec-

Geographic Ontology Matching with iG-Match 199

tively, to i and i
′
are equivalent. The instances ix and i

′

x are the val component
of the triple vp(i, p, val).

SimIR(vp(i, p, val), vp(i
′
, p

′
, val

′
)) =

{
1 if val = val

′

0 otherwise
(11)

If a property is present in only one of the compared instances, i.e., it is as-
sociated to only one of the concepts, the similarity regarding that property is
considered zero. Hence, the final equation for measuring the similarity between
two instances i and i

′
is

SimPrp(i, i
′
) =

∑
SimIAtN +

∑
SimIAtS +

∑
SimIR

|vP (i)| ∪ |vP (i′)| (12)

Geographic Coordinates: The geographic coordinates are aspects which play
a crucial role in the integration of geographic instances. Although the spatial
position of an instance may vary along time, the coordinates may be of great
use in most of the cases.

To compare the similarity regarding the geographic coordinates from two ge-
ographic instances i ∈ gc and i

′ ∈ gc
′
, first it is necessary to reduce them to the

same geometry. Thus, all the instances are transformed to points. In the case
of a line string, this is done by the coordinates (x, y) of the middle of the line
string. In the case of a polygon the (x, y) coordinates of the centroid are used.
Then, given two pair of coordinates (x, y) ∈ i and (x

′
, y

′
) ∈ i

′
the similarity

is measured by the inverse of the euclidian distance between these two pairs of
coordinates, as follows:

SimCoord(i, i
′
) =

1
dist(i, i′)

(13)

The coordinates similarity may not be used for the final similarity measure,
but this can exclude some pairs of instances which are located to far from each
other. Thus, if the coordinates similarity does not reach a certain threshold, the
pair (i, i

′
) is excluded from the list of possible matches.

Overall Similarity: The final similarity value when comparing two instances
i and i

′
is then given by:

SimInst(i, i
′
) = ρ ∗ SimIId(i, i

′
) + (1 − ρ) ∗ SimPrp(i, i

′
) (14)

where ρ is the weight for the identifier similarity and can be a value within [0,1].
In the case the instances are not geographic, i.e., they instantiate conventional
concepts, the coordinate similarity is not considered. Furthermore, the spatial
relationships similarity is also ignored.

5 Related Works

There are a number of proposals trying to address the problem of geographic
information integration and mapping. However, none of them cope all the issues
involved in the process.

200 G.N. Hess, C. Iochpe, and S. Castano

At the concept-level, Stoimenov and Djordjevic-Kajan’s [7] and Rodriguez
and Egenhofer’s [8] proposals deal with the name, hierarchy and property het-
erogeneities, especially attributes and part-of relationships. Kokla, Kavouras and
Tomai [9,10] consider only the description of the concepts, from which they ex-
tract the information used for solving the name, attribute and some spatial
relationships heterogeneities. The same idea of extracting the needed informa-
tion is adopted in [11], but considering only the name heterogeneity and two
context features, the spatial relations and geometry [12]. Quix et al. [13] de-
veloped a matcher specific for geographic features, to be used together with an
existing conventional matcher for non-geographic features (attributes and part-
of relationships and hierarchies). Dobre, Hakimpour and Dittrich [14] proposal
consider the hierarchies as well as attributes and relationships in the matching
process. The former is also the only aspect considered in Cruz et al.’s proposal
[15]. Besides attributes, hierarchy and relationships, the work of Sotnykova et al.
[3] also considers spatiality (spatial relations) and temporality in the integration
process.

At the instance level, most of the works consider that if two instances belong-
ing to matching concepts are in the same spatial position, i.e., have the same
spatial coordinates, probably they would refer to the same real world phenom-
ena [16,17,18,19]. The approaches of Sehgal, Getoor and Viechnicki [16], Worboys
and Duckham [18] and Beeri et al. [17], however, are limited to instances with
point geometries. Besides the point geometry, Volz [19] considers also the line
geometry. Furthermore, in that proposal also the topological relationships are
considered. In all proposals the scales and reference system must be the same
for the two ontologies. In addition to the spatial position, in [16] the name of
the instances in the matching process is also considered, and for that they use
some string-distance based metrics.

6 Conclusions and Future Directions

When integrating geographic information, the matching plays a central role in
order to achieve correct results. However, the matching process is not trivial
and due to the particular characteristics of the geographic data (geometry, spa-
tial location and spatial relationships) it cannot be performed just as the con-
ventional, non-geographic, matching. Furthermore, considering only the spatial
features of the geographic data is also a naive approach, because two elements
(concepts or instances) may be described using different spatial representations,
and then these features may be not enough to determine is the elements are
equivalent or not.

In this paper we presented an ontology reference model and the set of hetero-
geneities that may occur when comparing two ontologies, both at the concept
and at the instance-level. Based on them we proposed the iG-Match, a software
architecture that implements a methodology for geographic ontology matching.
iG-Match’s methodology is based on a number of metrics, one for each type
of heterogeneity. Some of the metrics are for ontologies in general, which means

Geographic Ontology Matching with iG-Match 201

that can be applied for matching non-geographic ontologies as well, and some of
them are specially tailored for geographic ontology matching.

At the moment, iG-Match depends on the user to determine the parameters
for the combination of the different metrics, i.e., the user has to set the values
for WN, WA, WH, WR and WS at the concept-level and for ρ at the instance-
level. For the future we plan to develop a methodology for automatic tuning this
parameters according to the input ontologies. The weight for each parameter
may vary depending on the granularity of the ontologies.

Another important issue not studied so far and not addressed in the related
works is the role of the metadata in the matching process. For example, if two in-
stances are described using different reference systems, their spatial coordinates
will not be the same, even if they refer to the same spatial position. Further-
more, the period (date) of acquisition of the data is also important, because
many properties may change along time, such as the population of a city, the
coverage (location) of a forest, and so on.

References

1. Aronoff, S.: Geographic Information Systems: A Management Perspective. WDL
Publications (1991)

2. Fonseca, F.T., Davis, C.A., Camara, G.: Bridging ontologies and conceptual
schemas in geographic information integration. GeoInformatica 7(4), 355–378
(2003)

3. Sotnykova, A., Vangenot, C., Cullot, N., Bennacer, N., Aufaure, M.A.: Semantic
mappings in description logics for spatio-temporal database schema integration.
[20] 143–167

4. Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

5. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
Springer, Heidelberg (2005)

6. Belussi, A., Catania, B., Podestá, P.: Towards topological consistency and similar-
ity of multiresolution geographical maps. In: GIS’05: Proceedings of the 13th annual
ACM international workshop on Geographic information systems, Bremen, Ger-
many, pp. 220–229. ACM Press, New York (2005), doi:10.1145/1097064.1097096

7. Stoimenov, L., Djordjevic-Kajan, S.: An architecture for interoperable gis use in a
local community environment. Computers and Geosciences 31, 211–220 (2005)

8. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity
classes from different ontologies. IEEE Trans. Knowl. Data Eng 15(2), 442–456
(2003)

9. Kavouras, M., Kokla, M., Tomai, E.: Comparing categories among geographic on-
tologies. Computers & Geosciences 31(2), 145–154 (2005)

10. Kokla, M., Kavouras, M.: Semantic information in geo-ontologies: Extraction, com-
parison, and reconciliation. [20] 125–142

11. Kuhn, W.: Modeling the semantics of geographic categories through conceptual
integration. [21] 108–118

202 G.N. Hess, C. Iochpe, and S. Castano

12. Schwering, A., Raubal, M.: Spatial relations for semantic similarity measurement.
In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van
den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) Perspectives in
Conceptual Modeling. LNCS, vol. 3770, pp. 259–269. Springer, Heidelberg (2005)

13. Quix, C., Ragia, L., Cai, L., Gan, T.: Matching schemas for geographical informa-
tion systems using semantic information. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops.
LNCS, vol. 4278, pp. 1566–1575. Springer, Heidelberg (2006)

14. Dobre, A., Hakimpour, F., Dittrich, K.R.: Operators and classification for data
mapping in semantic integration. In: Song, I.-Y., Liddle, S.W., Ling, T.-W.,
Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 534–547. Springer, Hei-
delberg (2003)

15. Cruz, I.F., Sunna, W., Chaudhry, A.: Semi-automatic ontology alignment for
geospatial data integration. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.)
GIScience 2004. LNCS, vol. 3234, pp. 51–66. Springer, Heidelberg (2004)

16. Sehgal, V., Getoor, L., Viechnicki, P.D.: Entity resolution in geospatial data inte-
gration. In: ACM-GIS’06, ACM Press, New York (2006)

17. Beeri, C., Doytsher, Y., Kanza, Y., Safra, E., Sagiv, Y.: Finding corresponding
objects when integrating several geo-spatial datasets. In: GIS ’05: Proceedings
of the 13th annual ACM international workshop on Geographic information sys-
tems, Bremen, Germany, pp. 87–96. ACM Press, New York, NY, USA (2005),
doi:10.1145/1097064.1097078

18. Worboys, M.F., Duckham, M.: Integrating spatio-thematic information [21] 346–
362

19. Volz, S.: Data-driven matching of geospatial schemas. In: Cohn, A.G., Mark, D.M.
(eds.) COSIT 2005. LNCS, vol. 3693, pp. 115–132. Springer, Heidelberg (2005)

20. Spaccapietra, S., Zimányi, E.: Journal on Data Semantics III. In: Spaccapietra,
S., Zimányi, E. (eds.) Journal on Data Semantics III. LNCS, vol. 3534, Springer,
Heidelberg (2005)

21. Egenhofer, M.J., Mark, D.M.: Geographic Information Science. In: Egenhofer, M.J.,
Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 25–28. Springer, Heidel-
berg (2002)

Local Topological Relationships for Complex Regions

Mark McKenney, Alejandro Pauly, Reasey Praing, and Markus Schneider�

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611, USA
{mm7,apauly,rpraing,mschneid}@cise.ufl.edu

Abstract. Topological relationships between spatial objects are important for
querying, reasoning, and indexing of data within spatial databases. These re-
lationships are qualitative and respond to questions about the relative positions
(e.g., disjointedness or containment) of spatial objects. Several models have been
proposed that effectively define formal sets of topological relationships between
simple spatial data types. The generalization of topological relationship models
to complex spatial data types, which are roughly defined as multi-component ver-
sions of their simple counterparts, has raised awareness of the fact that these
models only provide a global view of topological relationships whereas details
of the topological relationships between individual components of the spatial ob-
jects involved are often ignored. In this paper, we introduce a fine-grained view on
topological relationships between complex regions. Our model focuses on lever-
aging information about the local topological relationships that hold between the
components of two spatial objects, thereby providing a localized view of the over-
all global topological relationship.

1 Introduction

The exploration of relationships between spatial objects is an important topic in fields
such as robotics, VLSI design, linguistics, CAD, and GIS. Object relationships can be
used not only to learn information about the objects involved but also for inferring new
non-explicit information as well as creating fast access and indexing structures in spa-
tial databases. Specifically, topological relationships have been the focus of extensive
research for a long time. This research includes the design of models of topological
relationships between all types of spatial objects as well as related topics like the explo-
ration of topological relationships as a reasoning tool.

Models for topological relationships have predominantly considered simple spatial
data types. A simple point object is defined as a single pair of coordinates, a simple line
object is given as a non self-intersecting connected curve, and a simple region object is
represented as an areal object topologically equivalent to a closed disc. A well-known
model that defines the topological relationships between simple spatial objects is the
9-intersection model (9IM). The commonly known set of eight topological relation-
ships originally defined by the 9IM between simple regions includes the relationships
overlap, meet, inside, contains, coveredBy, covers, equal, and disjoint.

� This work was partially supported by the National Science Foundation under grant number
NSF-CAREER-IIS-0347574.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 203–220, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

204 M. McKenney et al.

More recently, the 9IM has effectively been applied to the latest generation of com-
plex spatial data types that, for example, have been propagated by the Open GeoSpatial
Consortium. Roughly, a complex point is defined by a set of disjoint simple points.
A complex line is composed of a set of blocks of connected simple lines. A complex
region is defined as a set of one or more faces, each possibly containing holes. The
application of the 9IM to complex spatial data types has raised awareness of the global
nature of the 9IM. That is, the 9IM considers the interior, exterior, and boundary point
sets of the whole objects, and ignores the fact that complex spatial objects are com-
posed of individual and separate components. As a result, local topological information
regarding the relationship between individual components from each object is lost. Con-
sider a scenario where an oil spill has occurred on a coral reef system. If the oil spill
overlaps a section of the reef, then the global relationship would be overlap. However,
there may be isolated portions of the reef which are not yet affected by the oil spill, but
will be soon if no action is taken. For example, a portion of the reef may meet the edge
of the oil spill. The overall topological relationship according to the 9IM will be con-
sidered as an overlap and the local meet relationship will be ignored. If we can identify
the local meet interaction, then a barrier can be constructed to save this portion of the
reef. This example illustrates the domination of a local overlap over a local meet. But
it turns out that this dominance problem is not the only way in which local information
is lost within the 9IM. For example, an overlap can exist globally when one face of a
region B is coveredBy a face of another region A and vice versa a face of A is contained
in the other face of B. Even without the existence of a local overlap, a global overlap
appears due to the composition of other local relationships.

In this paper, we propose a model for topological relationships between complex re-
gions that is at least as expressive as the 9IM with respect to global information, and
at the same time, is able to retain information regarding local relationships between in-
dividual components of these regions. We achieve this by defining global topological
relationships based on the existence of local topological relationships between the com-
ponents of the objects involved. This work provides a more fine-grained tool for query-
ing spatial objects and increases the expressive power available to a spatial database
user. Furthermore, we provide a notation to specify spatial queries that utilize local
topological information.

Section 2 introduces previous related work. Section 3 formally defines the topologi-
cal relationships between simple regions with holes which are necessary for the formal
description of our model. In Section 4, the dominance and composition problems are de-
tailed. Our locality aware model of topological relationships between complex regions
is presented in Section 5. We consider the expressiveness of our locality aware model
compared to the global model in Section 6. In Section 7, we connect our concept with
the user by providing the notation that allows our model to be embedded into a common
database query language. Finally, Section 8 gives conclusions and future work.

2 Related Work

This section briefly introduces the most important background concepts that are neces-
sary to fully understand and to solve the dominance and composition problems

Local Topological Relationships for Complex Regions 205

interior

boundary

exterior

(a) (b)

Fig. 1. (a) Illustrates the interior, boundary, and exterior point sets of a complex region composed
of three faces. (b) Illustrates a single face, also denoted as a simple region with holes.

introduced earlier. We concentrate on introducing the definition of complex regions
upon which this paper is based. We also describe the 9IM and cover a previous ap-
proach that deals with preserving local topological relationships.

We are interested in distinguishing between the interior, boundary and exterior point
sets of complex regions, as defined in [1]. Based on this definition, Figure 1(a) illustrates
a complex region with its interior, exterior, and boundary.

In order to be able to describe the topological predicates between components of
complex regions, we must define their structural components. Complex regions are
composed of faces. Each face is regarded as a simple region with holes, an example
of which is illustrated in Figure 1(b). A simple region with holes has a connected in-
terior and (possibly) disconnected exterior and boundary due to the existence of holes.
Informally, a simple region with holes is made up of an outer polygon denoting its outer
boundary and zero or more hole polygons representing its holes. All holes must be com-
pletely contained within the outer polygon and can share a finite number of boundary
points with the outer cycle and with other holes. We denote the set of all simple regions
with holes as SRH.

Topological relationships between spatial objects can be defined by the 9-intersection
model by evaluating the non-emptiness of the intersection between all combinations of
the interior (◦), boundary (∂) and exterior (−) of the objects involved. A unique 3× 3
matrix with Boolean values filled as illustrated in Figure 2 describes the topological
relationship between each pair of spatial objects.

Originally defined for simple regions, the 9IM has been extended to handle simple
regions with holes [2], complex spatial objects [1], and composite regions (i.e., complex
regions without holes) [3]. The model in [2] characterizes the topological relationships
between two simple regions with holes as the conjunction of topological relationships
between their underlying simple regions (the holes are considered simple regions). For
two simple regions with holes A and B with n and m holes respectively, a matrix of
(n + 1)(m+ 1) elements represents the topological relationship between A and B. This
means that under this model, the number of topological relationships between two sim-
ple regions with holes is dependent on the number of holes in each region, resulting in
an arbitrary number of predicates. To avoid this, we identify the finite set of topological
relationships between simple regions with holes based on the 9IM (Section 3) that is
independent of the number of holes and that we use as a basis for the rest of this paper.

In [4], the authors introduce a model that preserves local topological relationships
between composite regions while still maintaining global information. The approach
used to define that model is a precursor to the approach used in this paper, where we

206 M. McKenney et al.

⎛
⎝

A◦ ∩B◦ 	= ∅ A◦ ∩∂B 	= ∅ A◦ ∩B− 	= ∅
∂A∩B◦ 	= ∅ ∂A∩∂B 	= ∅ ∂A∩B− 	= ∅
A− ∩B◦ 	= ∅ A− ∩∂B 	= ∅ A− ∩B− 	= ∅

⎞
⎠

Fig. 2. The 9-intersection matrix for topological relationships

see that the more general problem of modeling local and global topological relation-
ships between complex regions is significantly more complex. Furthermore, in this pa-
per we introduce and define the global topological predicates between simple regions
with holes. We also define a local topological relationship specification mechanism for
querying spatial objects with local spatial information. This mechanism allows the user
to fully exploit locality aware models of topological relationships, and it can be applied
to the model presented in this paper as well as the model in [4].

3 Topological Predicates Between Components of Complex
Regions

Given that the set of simple regions with holes is a subset of the set of complex regions, it
follows that the set TPsrh of topological relationships that can hold between two simple
regions with holes is a subset of the set TPcr of topological relationships that can hold
between two complex regions. This is due to the fact that a SRH object represents a
specific instance of a complex region; thus, any topological relationship defined for
such an object must also be defined for complex regions. This means that we must find
the elements (if any) from TPcr that are not members of TPsrh. To do so, we impose a
new constraint to the relationships denoted by the 9-intersection matrices as originally
defined in [1].

Lemma 1. Let R and S be two simple regions with holes. If the interior of R intersects
both the interior and exterior of S, then the interior of R must also intersect the bound-
ary of S, and vice versa, i.e.,

∀ R,S ∈ SRH,
(R◦ ∩S◦ 	= ∅ ∧ R◦ ∩S− 	= ∅⇒ R◦ ∩∂S 	= ∅) ∧
(R◦ ∩S◦ 	= ∅ ∧ R−∩S◦ 	= ∅⇒ ∂R∩S◦ 	= ∅)

Proof. It follows from the Jordan-Curve theorem that any point set which intersects
both the interior and the exterior of a region but not its boundary must be disconnected.
Based on its definition, any SRH must have a connected interior; therefore, it cannot
intersect the interior and exterior of another region without intersecting its boundary. �

This new constraint eliminates 15 of the 33 originally identified topological relation-
ships between complex regions. The remaining 18 relationships represent the members
of TPsrh. We must now prove that all 18 can actually hold between two SRH objects
and that no further constraints are necessary. We follow the method of proof by drawing
and show in Table 1 sample configurations of each relationship.

Local Topological Relationships for Complex Regions 207

Table 1. The 18 topological predicates between simple regions with holes. One object is shaded
dark and the other light as in the disjoint, whereas the shared areas have the darkest shade.

⎛
⎝

0 0 1
0 0 1
1 1 1

⎞
⎠

disjoint

⎛
⎝

0 0 1
0 1 0
1 1 1

⎞
⎠

fillingHole

⎛
⎝

0 0 1
0 1 1
1 0 1

⎞
⎠

holeFilled

⎛
⎝

0 0 1
0 1 1
1 1 1

⎞
⎠

meet

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

equal

⎛
⎝

1 0 0
1 0 0
1 1 1

⎞
⎠

inside

⎛
⎝

1 0 0
1 1 0
1 0 1

⎞
⎠

holeCoveredBy

⎛
⎝

1 0 0
1 1 0
1 1 1

⎞
⎠

coveredBy

⎛
⎝

1 1 1
0 0 1
0 0 1

⎞
⎠

contains

⎛
⎝

1 1 1
0 1 0
0 0 1

⎞
⎠

holeCovers

⎛
⎝

1 1 1
0 1 1
0 0 1

⎞
⎠

covers

⎛
⎝

1 1 1
1 0 0
1 1 1

⎞
⎠

insideOverfill

⎛
⎝

1 1 1
1 0 1
1 0 1

⎞
⎠

containsOverfill

⎛
⎝

1 1 1
1 0 1
1 1 1

⎞
⎠

insideContains

⎛
⎝

1 1 1
1 1 0
1 0 1

⎞
⎠

coversCoveredBy

⎛
⎝

1 1 1
1 1 0
1 1 1

⎞
⎠

coversOverfill

⎛
⎝

1 1 1
1 1 1
1 0 1

⎞
⎠

coveredByOverfill

⎛
⎝

1 1 1
1 1 1
1 1 1

⎞
⎠

overlap

4 Locality of Models for Topological Relationships

In this section, we introduce the problem of locality (or globality) of models for topo-
logical predicates that apply to multi-component spatial objects. The degree of locality
of a topological predicate model refers to the ability of the model to distinguish be-
tween an overall view of a relationship between spatial objects and the relationships
between the individual components of those objects. Section 4.1 identifies three de-
grees of locality and classifies current models of topological relationships according to
these degrees. This classification motivates the need to develop a more comprehensive
model in terms of locality. This need is illustrated by two main drawbacks found in the
9IM: the dominance problem, which we present in Section 4.2, and the composition
problem, presented in Section 4.3. Once these drawbacks are identified, we sketch the
requirements and procedure to derive a locally and globally aware model for topological
predicates between complex regions in Section 4.4.

4.1 Views of Topological Predicates

Many models of topological predicates have been proposed in the literature, some of
which have been derived from the 9IM model for simple objects; however, there has
been little attempt to classify the models in any meaningful way. Here we use an ex-
ample to motivate a classification of topological predicate models into three views of
predicates where each view defines a different degree of locality. We provide a single
scene of complex region objects (Figure 3) and use it to demonstrate the various views.

The first view of topological predicates we consider is the global view. Topological
predicates that take into account the global view of a scene equate any given scene to a
single topological predicate. For instance, the 9IM for simple regions is a global view
model, as is the 9IM for complex regions, which is an extension of the 9IM for simple

208 M. McKenney et al.

A1 A2

B1

B2

Fig. 3. Two complex regions, one darker and one lighter. Their common area is shaded darkest.

regions. The 9IM for complex regions classifies the objects in Figure 3 as satisfying
the overlap predicate. However, such a global view does not necessarily indicate com-
plete information about a scene. In this case, regions A and B do indeed overlap, but
a holeFilled situation (between A1 and B1) also exists, as well as a disjoint. While the
global view of the 9IM does assign a unique predicate to this scene, it effectively hides
other interactions between components of the complex regions.

A second category is the local view of topological relationships, which can also be
characterized as the existence view. This view focuses solely on the topological relation-
ships between the individual components of multi-component objects. Queries that take
advantage of the local view can typically be posed in the form of an existence question;
for example, a user may wish to ask “does there exist a meet interaction between object A
and object B?”. The local view is fundamentally different from the other views in that it
does not attempt to assign a unique predicate to a given configuration of objects. Instead,
it assigns a unique predicate to the interaction of any two components between spatial
objects. In the case of complex regions, these components are simple regions with holes.

Finally, the hybrid view combines the information provided by global and local views
to allow multiple local interactions in a given scene to be expressed in a unique global
predicate. One example of such a view is given in [3], where the authors present a model
for topological predicates which describes a scene as a matrix of predicates where each
entry in the matrix represents a 9IM predicate between components of each object.
Such a view provides a single, although complex, predicate for the entire scene while
maintaining the information about all interactions between all faces of the objects. The
advantage of the hybrid view is that a global predicate can be assigned to a scene such
that local information is not hidden.

4.2 The Dominance Problem

A major drawback to global views of modeling topological relationships is the domi-
nance problem. The dominance problem is characterized by a global topological config-
uration overshadowing the existence of other local topological configurations between
a pair of given objects. Figure 3 depicts an arrangement of two complex region objects
A and B in the plane. As described above, the regions are globally in an overlap con-
figuration due to the overlapping of components A2 and B2. However, if the interaction
of each face of object A with object B is examined independently i.e., locally, then in
addition to the overlap configuration, a holeFilled configuration is observed between A1

and B1. Because the global configuration for regions is overlap, we say that the overlap
configuration dominates the holeFilled configuration. Another dominated relation in the
figure is the disjoint configuration between A1 and B2.

Local Topological Relationships for Complex Regions 209

overlap

coversOverfill insideContains coveredByOverfill meet

insideOverfill containsOverfill covers
holedFilled

fillingHole

inside
coveredBy

contains coversCoveredBy

holeCovers

equal

holeCoveredBy

disjoint

Fig. 4. The dominance hierarchy for topological predicates between simple regions with holes.
An arrow p→ q means that p dominates q.

In order to cope with the dominance problem, it is necessary to determine which
topological predicates dominate which other topological predicates. In other words, we
must define a dominance order among the topological predicates. We can determine
a dominance order based on the 9-intersection matrices of each topological predicate.
For a 9-intersection matrix (pi j)0≤i, j≤2 representing a topological predicate, we define
the not-empty-entry set NEp to be the set of matrix coordinates corresponding to matrix
entries that are equal to 1 (true). Conversely, we define the empty-entry set Ep to be
the set of all matrix coordinates corresponding to entries in matrix (pi j)0≤i, j≤2 that are
equal to 0 (false). Formally, we define:

NEp = {(i, j)|0 ≤ i, j ≤ 2∧ pi j = 1}
Ep = {(i, j)|0 ≤ i, j ≤ 2∧ pi j = 0}

Let TPsrh be the set of topological predicates between simple regions with holes. For
two topological predicates p,q ∈ TPsrh, we define the dominates operator to return true
if, and only if, the not-empty-entry set of q is a subset of the not-empty-entry set of p:

dominates : TPsrh×TPsrh −→ B
dominates(p,q) := if NEq ⊂ NEp then true else false

Based on the dominates operator, for illustration purposes we construct the dom-
inance hierarchy for the elements of the set TPsrh of topological predicates between
simple regions with holes as shown in Figure 4. It becomes apparent that the domi-
nance problem only affects the topological predicates between multi-component spatial
objects; thus, the dominance hierarchy can be determined for the topological predicates
between complex points, lines, and regions, as well as any combination of those.

4.3 The Composition Problem

The composition problem arises due to the observation that global topological relation-
ships can be present without actually existing locally. For example in Figure 5, locally

210 M. McKenney et al.

A1 A2

A3
B1

B2

B3

Fig. 5. A scene exposing the composition problem of the 9IM

we distinguish the existence of a disjoint between A1 and B2, a meet (A3, B2), an equal
(A3, B3), a coveredBy (A2, B2) and a covers (A1, B1). If we look at the global 9IM
describing the topological relationship between A and B, we notice that it represents
the overlap predicate even though no such overlap exists locally. Whereas the dom-
inance problem relates to the fact that the global view hides information about local
relationships that do exist, the composition problem hides information about global re-
lationships that do not exist locally.

4.4 Deriving a Hybrid Model for Topological Predicates

We now focus on defining the requirements of a hybrid model for topological predicates
between complex regions and developing a procedure to define such a model. The first
and obvious requirement is that the model must be able to describe global topological
relationships, and at the same time, preserve the necessary information that may be
required about the local relationships between components of the objects involved. This
is achieved in principle, by defining a model that does not suffer from the dominance or
composition problems as described in the previous sections.

The new hybrid model must also be at least as expressive as the 9IM. That is, the new
model should be able to distinguish between all (and possibly more) of the relationships
that the 9IM between complex regions can distinguish. We define two topological pred-
icate models as equally expressive if there is exactly a one-to-one correspondence be-
tween their predicates. Ideally, the new model will have a many-to-one correspondence
with the 9IM, yielding one or more predicates for each predicate derived by the 9IM.

The first step in deriving our model is to find a formal characterization of topological
predicates between complex regions. This characterization must allow us to describe a
topological relationship between two complex regions in such a way that the dominance
and composition problems are avoided. Once such a characterization is reached, we
must discover all the characterizations that are realizable based on the definition of com-
plex regions. These valid characterizations are now considered topological predicates.
Next, we must be able to compare the expressiveness of the 9IM and the new character-
izations. This is done in order to ensure that the third requirement set above is fulfilled.
The comparison is performed by finding the two-way correspondence between elements
in the new characterization and elements (topological predicates) in the global 9IM.

Once we have ensured that the new model is as expressive as the 9IM globally, we
must provide a mechanism that will allow the user to exploit the local information re-
tained by the new characterization. This ensures that the hybrid model can be used both
from a global, and from a local perspective.

Local Topological Relationships for Complex Regions 211

5 A Model for Preserving Local Interactions

In this section, we present a novel model of localized topological relationships for
multi-component spatial objects that does not suffer from the dominance and compo-
sition problems. The localized topological predicate (LTP) model is a hybrid view of
topological relationships in that it utilizes local information to provide a global rela-
tionship between two objects. We begin by exploring the characterization of LTP, and
then discovering all LTPs that are possible between complex regions. Finally we com-
pare this new model with the 9IM between complex regions and attempt to reach a
completely hybrid (local and global) model based on this comparison.

5.1 Characterization of Localized Topological Predicates

In order to discover the local topological relationships between complex regions, we
define existence topological predicates (ETP). Let cr be the set of all complex regions,
and ETcr be the set of all existence topological predicates between complex regions.
For p ∈ TPsrh, the ETP pe ∈ ETcr is defined as a function pe : cr× cr→ boolean. For
any A,B ∈ cr:

pe(A,B) =

{
true, ∃Ai ∈ A,∃B j ∈ B : p(Ai,B j) = true

false, otherwise

Based on this definition, for complex regions we identify a total of 18 existence
topological predicates that exactly correspond to the 18 topological predicates between
simple regions with holes, i.e., ETcr = {disjointe, fillingHolee, holeFillede, meete,
equale, insidee, holeCoveredBye, coveredBye, containse, holeCoverse, coverse,
insideOverfille, containsOverfille, insideContainse, coversCoveredBye, coversOverfille,
coveredByOverfille, overlape}.

For complex regions A and B we define the localized topological predicate that de-
scribes their relationship as a conjunctive boolean expression with exactly eighteen
clauses, each with a single element that corresponds to a predicate from ETcr or its
negation. That is, an LTP characterizes the topological predicate between two complex
regions by asserting which ETPs hold and which do not hold between the complex re-
gions. Let E(A,B) and F(A,B) be the sets of ETPs that yield true and false respectively,
for A and B, i.e.

E(A,B) = {e ∈ ETcr| e(A,B) = true}
F(A,B) = { f ∈ ETcr| f (A,B) = false}

We define l ∈ LTcr (where LTcr is the set of LTPs between complex regions) as:

l(A,B) =

⎛
⎝ ∧

e∈E(A,B)

e(A,B)

⎞
⎠ ∧

⎛
⎝ ∧

f∈F(A,B)

¬ f (A,B)

⎞
⎠

For notation purposes, we represent each LTP as a 18-bit vector where each bit cor-
responds to an existence predicate in the order shown in Table 1. Based on this defi-
nition, we denote the set of all valid 18-bit vectors as LTBVcr. The element from this
set that represents the scenario in Figure 5 is [1,0,0,1,1,0,0,1,0,0,1,0, 0,0,0,0,0,0],

212 M. McKenney et al.

because the local topological relationships that exist between components in the scene
are disjoint, meet, equal, coveredBy, and covers.

5.2 Identifying the Valid Characterizations

In order to identify the elements that belong to LTcr, we first consider the complete set of
18-bit vectors that can exist (i.e., 218 such vectors). By considering the semantics of the
bits, we can see that not all combinations are possible. A trivial example is represented
by the all-zeros TBV that we can determine to be topologically invalid due to the fact
that every pair of (non-empty) simple regions with holes must satisfy at least one of the
eighteen topological predicates. We follow a procedure of constraint and validation in
order to successfully identify the complete set of valid TBVs for complex regions. The
first step of the procedure is to eliminate, by way of constraint rules, TBVs that are topo-
logically invalid. The second step entails validating the remaining TBVs. If all remaining
TBVs are successfully validated, then we have reached a complete set, otherwise we must
identify a new constraint rule. This sequence is repeated until the validation is complete.

The constraint rules for the first step are expressed by way of lemmas that provide for-
mal proof that certain situations within bit vectors cannot concurrently occur. For exam-
ple, take the complex regions A and B such that a component (simple region with hole) Ai

of A and a component B j of B are equal. Besides this local relationship, there exists a local
overlap relationship between some other component Ak of A and Bl of B. For such a con-
figuration, we know that so far the equal and overlap bits are set to 1. But we can also de-
termine that either the disjoint or the meet bits must be set to account for the relationships
between Ai and Bl and between Ak and B j. It must be true that (Ai 	= Ak) ∧ (B j 	= Bl),
otherwise two components from the same complex region object would have intersecting
interiors which are disallowed by the definition of complex regions. Formally,

Lemma 2. Let A,B∈ SRH, let Ai, Ak, B j, and Bl be faces of A and B, respectively, and
let q,r ∈ TPsrh:

equal(Ai,B j) ∧ q(Ak,Bl)⇒ r(Ai,Bl) where
(q(Ak,Bl)⇒ A◦k ∩B◦l 	= ∅) ∧ r ∈ {disjoint,meet}

Proof. equal(Ai,B j) ⇒ A◦i = B◦j
q(Ak,Bl) ⇒ A◦k ∩B◦l 	= ∅
A◦i = B◦j ∧ A◦k ∩B◦l 	= ∅⇒ A◦i ∩B◦l = ∅

⇒ disjoint(Ai,Bl) ∨ meet(Ai,Bl) �

We have identified a total of 17 lemmas, including Lemma 2 above and the trivial case
of an all zeros bit vector (Lemma 0). All lemmas other than the trivial all zero case are
of the form p(Ai,B j) ∧ q(Ak,Bl)⇒ r(Ai,Bl). Table 2 includes the definitions of p, q,
and r for the remaining 15 lemmas. The proofs for all these follow a structure similar
to the proof of Lemma 2; thus, we choose to omit such proofs due to space constraints.

The completeness of these lemmas is validated by a mechanism designed to ensure
that each 18-bit vector that is not covered by the constraints, is realizable and valid.
The mechanism is based on concepts of topological reasoning that are applied through
a theory of Binary Constraint Networks (BCN). In the mechanism we are able to rea-
son about topological relationships by computing the composition operation [5]. The

Local Topological Relationships for Complex Regions 213

Table 2. The remaining lemmas acting as constraints for the invalidation of topological bit vectors

Lemma p q r

3 p ∈ {inside} q(Ak,Bl)⇒ Ak ⊇ Bl r ∈ {disjoint}

4 p ∈ {contains} q(Ak,Bl)⇒ Ak ⊆ Bl r ∈ {disjoint}

5 p ∈ {coveredBy} q(Ak,Bl)⇒ A◦k ⊇ ∂ Bl r ∈ {disjoint,meet}

6 p ∈ {covers} q(Ak,Bl)⇒ ∂ Ak ⊆ B◦l r ∈ {disjoint,meet}

7 p ∈ {overlap} q(Ak,Bl)⇒ ∂ Ak ∩B−l = ∅ ∧ A−k ∩∂ Bl = ∅ r ∈ {disjoint,meet}

8 p ∈ {fillingHole} q(Ak,Bl)⇒ A−k ∩∂ Bl = ∅ r ∈ {disjoint,meet}

9 p ∈ {holeFilled} q(Ak,Bl)⇒ ∂ Ak ∩B−l = ∅ r ∈ {disjoint,meet}

10 p ∈ {holeCoveredBy} q(Ak,Bl)⇒ ∂ Ak ∩∂ Bl 	= ∅ ∨ ∂ Ak ∩B◦l 	= ∅ r ∈ {disjoint,meet}

11 p ∈ {holeCovers} q(Ak,Bl)⇒ ∂ Ak ∩∂ Bl 	= ∅ ∨ A◦k ∩∂ Bl 	= ∅ r ∈ {disjoint,meet}

12 p ∈ {insideOverfill} q(Ak,Bl)⇒ A−k ∩∂ Bl = ∅ ∧ A−k ∩B◦l 	= ∅ r ∈ {disjoint}

13 p ∈ {containsOverfill} q(Ak,Bl)⇒ ∂ Ak ∩B−l = ∅ ∧ A◦k ∩B−l 	= ∅ r ∈ {disjoint}

14 p ∈ {insideContains} q(Ak,Bl)⇒ A−k ∩∂ Bl = ∅ ∧ A−k ∩∂ Bl = ∅ r ∈ {disjoint,meet}

15 p ∈ {coversCoveredBy} q(Ak,Bl)⇒ A−k ∩B◦l 	= ∅ ∧ A◦k ∩B−l 	= ∅ r ∈ {disjoint,meet}

16 p ∈ {coversOverfill} q(Ak,Bl)⇒ A−k ∩∂ Bl = ∅ ∧ A−k ∩B◦l 	= ∅ r ∈ {disjoint,meet}

17 p ∈ {coveredByOverfill} q(Ak,Bl)⇒ ∂ Ak ∩B−l = ∅ ∧ A◦k ∩B−l 	= ∅ r ∈ {disjoint,meet}

composition of two relationships p and q between A and B, and between B and C
respectively, is able to at least partially derive the relationship r between A and C. A
common way to denote this operation is p(A,B);q(B,C)⇒ r(A,C).

We model each of the 18-bit vectors as a Binary Spatial Constraint Network (BSCN).
A BSCN is considered valid if it is path-consistent [6]. Path-consistency is computed by
using the composition of topological relationships between simple regions with holes.
For example take a BSCN M where Mi j refers to the constraints (relationships) be-
tween variables (objects) i and j. We say that M is path-consistent if it holds that
Mi j ⊆Mik;Mk j for every i, j, and k variable of M.

To model a bit vector as a BSCN we consider a scene made up of two complex re-
gions A and B with n and m simple region with holes components respectively such that
A = {A0,A1, . . . ,An}, and B = {B0,B1, . . . ,Bm}. A BSCN is a graph constructed by con-
sidering each component as a variable (vertex of graph) and then assigning constraints
between each variable as the topological relationships represented in the edges of the
graph. The edges between two components of the same object are implicitly defined
by the definition of complex regions, whereas the rest of edges are defined by the bit
vector that is validated. For each bit vector we construct several scenarios with different
numbers of components, and for each scenario we iterate over all possible assignments
of predicates matching the bit vector. This is repeated for each bit vector until it is either
validated or a constraint can be proven that invalidates the vector.

As seen in Table 2, for complex regions we have identified the 17 constraints which
eliminate all the invalid bit vectors. The final set LTcr is composed of 137209 18-bit
vectors.

214 M. McKenney et al.

A1

A1
B1

B1 B2B2

(a) (b)

Fig. 6. Two spatial configurations with the same topological bit vector but a different 9-
intersection matrix

5.3 Comparing the Models

Although the LTBVcr model of localized topological relationships effectively exposes
the local interactions among components of complex regions, it is not yet clear how
expressive the model is in comparison to the 9IM. We determine the expressiveness of
the LTP model for complex regions with respect to the 9IM based on the following: if
every spatial configuration that is representable and distinguishable by the 9IM can also
be represented and distinguished by the LTP model, then the LTP model is at least as
globally expressive as the 9IM. Otherwise, we say that the LTP model is globally less
expressive than the 9IM.

It turns out that a number of spatial configurations are distinguishable by the 9-
intersection model (i.e., they have different matrix representations) but not by the LTP
model. For example, both scenes in Figure 6 are represented by different 9-intersection
matrices but by the single bit vector [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], i.e., all
pairs of components from the respective objects overlap. Thus, we conclude that the
LTP model is globally less expressive than the global 9IM.

Conversely, we compare the local expressiveness of the models to determine whether
every spatial configuration that is representable and distinguishable by the LTP model
can also be represented and distinguished by the 9IM. Figures 7(a), and 7(b) illus-
trate two spatial configurations which are distinguished by two different bit vectors
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], and [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
respectively. However, both scenes are represented only by a single 9-intersection ma-
trix. Thus, we conclude that the 9IM is locally less expressive than the LTP model.

Due to the differences in expressiveness of the LTP model and the 9IM at both the
global and local levels we cannot draw any conclusion as to the relative general ex-
pressiveness of the models. This is due to the fact that the models are fundamentally
incomparable. Our goal is to produce a hybrid model of topological predicates that is
at least as globally expressive as the 9IM. We observe that the scenes in Figure 6 can-
not be differentiated due to the fact that a global matrix can include global information
that cannot be determined from examining purely local information. For example, the
bit vector for the scenes in Figure 6 merely indicates that there exists a local overlap
between a component of complex region A and a component of complex region B,
whereas both scenes are distinguished by two different global matrices because of the
difference in the existence of intersection between the boundary of A and the exterior
of B. The non-existence of this intersection in Figure 6a occurs because another local
overlap exists such that the boundary of A is now part of the closure of B. To determine
such global information from a bit vector, more than simply local information must be
included in the LTP model.

Local Topological Relationships for Complex Regions 215

A1
A1

A2
A2

B1
B1

B2B2

(a) (b)

Fig. 7. Two spatial configurations with the same 9-intersection matrix but a different TBV

6 Maintaining Global Information

Since we have shown the incomparability of the expressiveness between the LTP and
the 9IM, we must determine a different, hybrid view model that is at least as globally
expressive as the 9IM model. As described in Section 5.3, some global information
cannot be expressed by the LTP model, which keeps purely local information. In or-
der to handle this issue, the necessary global information must also be represented in
the model. In this section, we present a hybrid topological predicate (HTP) model that
combines both local and global information into a single predicate. We refer to the set
of all HTPs between complex regions as HTcr. We begin by determining which global
information must be included into the HTP model, and then define a new bit vector
for HTPs and use it to derive a complete set of valid HTPs between complex regions.
Finally, we compare the 9IM and the HTP model.

6.1 Hybrid Characterization of Topological Predicates

In order to determine which global information is needed in the HTP model, we exam-
ine the effects of local interactions on global interactions, and vice versa. To do this,
we identify the collections of matrix entries in the global matrix that must be 1 (non-
empty intersection) in order for a given local interaction to be possible. In other words,
if an existence predicate yields true, we must define how it is expressed in the global
matrix. For example, if a meet interaction occurs between any pair of components from
two complex regions, then we know that in the global matrix representing the scene,
the boundaries of the objects must intersect. In general, if any local interaction exists
between two complex regions such that the interiors intersect, the boundaries intersect,
or the interior intersects the boundary, then the corresponding matrix entry in the global
9-intersection matrix will be 1. This is because if any of these interactions occur lo-
cally, the existence of other local interactions cannot cause them to not be reflected
at the global level. In contrast, any local interactions involving the exterior of either
region may not be reflected in the global matrix because other local interactions can
overwhelm them. For example, in Figure 6a, the interiors and boundaries of A1 and B1

intersect, and adding other local interactions cannot cause them to no longer intersect;
thus, they will intersect in the global matrix. Locally, A1 and B1 overlap, thus their
boundaries and interiors intersect with each other’s exteriors. However, the inclusion of
B2 in the scene causes the interaction involving the boundary of A1 with the exterior of
B1 to not be reflected in the global matrix. This is because globally, the exterior of B1

is not considered independently, instead the exterior of B is considered as a whole.

216 M. McKenney et al.

We determine that the global information that is required to distinguish the scenes in
Figure 6 from each other involves only the interactions of the exteriors of the objects.
Based on [1], we know that the intersection between exteriors is always non-empty.
Based on the observations detailed above, we must be able to represent the other four
exterior interactions (i.e., intersections between interior and exterior, boundary and ex-
terior, and their converses) in order to achieve a one-to-many relationship from the 9IM
to the HTP model so that all cases that the 9IM can differentiate can also be uniquely
identified by the HTP model.

To support the HTP model, we extend the topological bit vector into a new hybridized
topological bit vector whose bit entries represent both local information and global in-
formation. The local information bits represent the eighteen ETPs between complex
regions described earlier, whereas the global information bits represent the global ex-
terior interactions. We denote the four meaningful global interactions involving the
exterior of either object as global interaction predicates (GIPs) and define them as:
ie = (A◦∩B− 	= ∅), be = (∂A∩B− 	= ∅), ei = (A−∩B◦ 	= ∅), and eb = (A−∩∂B 	= ∅).
GIPs are expressed by four global information bits in the hybridized topological bit vec-
tor. Thus, each element of HTcr is represented by a 22-bit vector where the first 18 bits
represent the local interactions, and the last four represent the GIP in the order we have
just presented them. A bit in the vector is set to 1 if its corresponding ETP or GIP
yields true and 0 otherwise. The set of all hybridized topological bit vectors is denoted
HTBVcr. Now, we can distinguish between the scenes in Figure 6: the bit vectors cor-
responding to Figure 6a and 6b are [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1],
and [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1] respectively.

6.2 Ensuring Expressive Power

The final step in the definition of hybridized topological predicates is the identification
of the set HTBVcr that represents the elements in HTcr. We make the assertion that
for the elements in HTBVcr, the first 18 bits (local information) of all 22-bit vectors
must match one of the elements in LTBVcr identified following the method described in
Section 5.2. This assertion is based on the fact that the information contained in those
bits must be identical to an element in LTBVcr or else it describes a topologically invalid
scene. The addition of GIPs only reflects global information and thus does not affect
the validity of the topological configuration described by the first 18 bits.

To identify the set of valid 22-bit vectors we provide a two stage method for deter-
mining the relationship between the set of 9-intersection matrices and the set of 22-bit
vectors: (1) determine the set of 9-intersection matrices that correspond to each 18-bit
configuration, and (2) create a 22-bit vector for each corresponding 18-bit vector and 9-
intersection matrix by taking the four bits ie, be, ei, and eb of the 9-intersection matrix
and extending the 18-bit vector into a 22-bit vector using these GIPs.

We achieve stage one using the matrix templates shown in Table 3. For each ETP
we derive a set of template matrices so that each template shows how the existence of
a local interaction can be expressed in a global 9-intersection matrix. The values of the
templates are based on two observations: first, interactions between the exterior of one
component of a complex region and the interior or boundary of a component of an-
other complex region may not be expressed globally due to the existence of other local

Local Topological Relationships for Complex Regions 217

Table 3. Templates for mapping 9IM to HTP. Hyphens indicate “don’t care” values.

⎛
⎝
− − −
− − −
− − 1

⎞
⎠

disjointe

⎛
⎝
− − 1
− 1 −
1 − 1

⎞
⎠

fillingHolee

⎛
⎝
− − 1
− 1 −
1 − 1

⎞
⎠

holeFillede

⎛
⎝
− − −
− 1 −
− − 1

⎞
⎠

meete

⎛
⎝

1 − −
− 1 −
− − 1

⎞
⎠

equale

⎛
⎝

1 − −
1 − −
1 − 1

⎞
⎠

insidee⎛
⎝

1 − −
1 1 −
1 − 1

⎞
⎠

holeCoveredBye

⎛
⎝

1 − −
1 1 −
1 − 1

⎞
⎠

coveredBye

⎛
⎝

1 1 1
− − −
− − 1

⎞
⎠

containse

⎛
⎝

1 1 1
− 1 −
− − 1

⎞
⎠

holeCoverse

⎛
⎝

1 1 1
− 1 −
− − 1

⎞
⎠

coverse

⎛
⎝

1 1 1
1 − −
1 − 1

⎞
⎠

insideOverfille⎛
⎝

1 1 1
1 − −
1 − 1

⎞
⎠

containsOverfille

⎛
⎝

1 1 1
1 − −−
1 − 1

⎞
⎠

insideContainse

⎛
⎝

1 1 1
1 1 −
1 − 1

⎞
⎠

coversCoveredBye

⎛
⎝

1 1 1
1 1 −
1 − 1

⎞
⎠

coversOverfille

⎛
⎝

1 1 1
1 1 −
1 − 1

⎞
⎠

coveredByOverfille

⎛
⎝

1 1 1
1 1 −
1 − 1

⎞
⎠

overlape

interactions. This argument is exposed in the previous section as the reason for the
GIPs. As an example of this observation, in Figure 6a, the local interaction between the
exterior of B1 and the boundary of A1 is not expressed globally because of the existence
of B2. Therefore, for each template all given values of 1 signify that the value must be
set in the global matrix if the existence predicate bit is set in the bit vector. Values for
which no global assumption can be made based on the local predicate are denoted in
the template with a dash.

The second observation used to derive the templates is that the existence of a local
interaction involving the interior or boundary of a component of one complex region
and the interior or boundary of a component of another complex region asserts that the
corresponding interaction will be reflected in the global matrix describing the scene.
Thus, if an ETP is true for a scene and it involves one of these four interactions, then
all of its corresponding matrix templates will also have a 1 in the corresponding matrix
entry. The first observation leads us to denote template values that may not occur even if
they occur in a local matrix from the same scene, whereas the second observation leads
us to denote template values that must occur in the global matrix if they occur in any
local matrix. Once the templates are computed, we compute all possible permutations
of template matrices where dashes in the entries involving the exterior of a region are
replaced with values of 1 such that the non-empty-entry set of the template is a subset of
the non-empty-entry set of its corresponding 9-intersection matrix. These permutations
show all possible ways a local interaction may be reflected in a global matrix.

Using the matrix templates, we construct a correspondence between global matri-
ces and 18-bit configurations as follows. First, we consider the set Km of all matrix
templates whose non-empty-entry set is a subset of the non-empty-entry set of a given
9-intersection matrix m (the non-empty-entry set of a template matrix consists of all en-
tries that are set to 1). Then we consider all elements of the powerset of Km where their
boolean sum1 is equivalent2 to m. For each of these elements, we create an 18-bit config-
uration in which a corresponding ETP has a value of 1 if any of its templates exist in the
combination. If the resulting 18-bit configuration does not match one of the identified

1 If an entry is equal to 1 in any matrix in the set, it is equal to 1 in the boolean sum of the
matrices of that set.

2 We consider two matrices to be equivalent if their non-empty-entry sets are equal.

218 M. McKenney et al.

topologically valid 18-bit vectors, it is discarded. The non-discarded configurations de-
scribe the same topological scene as the given 9-intersection matrix m.

In the second stage, we extend each 18-bit configuration to a 22-bit configuration by
assigning the combination of GIPs from each 9-intersection matrix to the global infor-
mation bits of the corresponding 22-bit configurations. This results in a set of 22-bit
vectors that represent the elements in HTBVcr. We know this set to be complete based
on two arguments: first, the 18-bit configurations are proved to be complete based on
the constraint and validation mechanism. Second, the values of the global information
bits in a 22-bit vector are directly derived from the 9-intersection matrices that map to
the corresponding 18-bit configuration. Any other combination of values for the global
information bits would force a mapping into a global matrix that has been proven topo-
logically invalid in Section 3.

Besides identifying the elements of HTcr, the method described above also identifies
a one-to-many relationship between a 9-intersection matrix and elements of HTBVcr.
For this reason we determine that the hybridized topological predicate model can distin-
guish more topological scenes than the 9IM, and is therefore more globally expressive
than the 9IM while maintaining local information.

7 Querying with Local Information

In this section, we introduce a proposal for making localized topological predicates
available to a user intending to perform queries involving complex regions. We focus
on leveraging features of a common database query language, SQL, to bring the LTP
concept closer to the user. Section 7.1 introduces the notation that allows users to pre-
define locality aware predicates that can be used in queries. In Section 7.2 we present
sample queries that can make use of these predefined predicates but that can also be
specified by embedding their definition within the query.

7.1 Constructing Locality Aware Topological Predicates

For the design of a syntactic construction for defining locality aware topological pred-
icates, we focus on what the user may know and may want to express in her queries.
The user needs not be aware of the underlying topological bit vector. Instead, the user
simply wants to pose a query based on local topological relationships. For example, the
user may want to retrieve all pairs of regions that have local situations of disjoint and
overlap but where no meet situations occur. Thus, the user is specifying what must oc-
cur (disjoint, overlap), and what must not occur (meet). The rest of the local predicates

CREATE LTP
ON <type1>, <type2>
AS <name> (
[MUST ALL (<predlist1>)],
[MUST NOT ALL (<predlist2>)],
[MUST ONE (<predlist3>)],
[MUST NOT ONE (<predlist4>)])

CREATE LTP
ON region, region
AS surrounded(
MUST ONE (equal,

inside, contains),
MUST NOT ALL (overlap))

CREATE LTP
ON region, region
AS meeting(

MUST ONE (holeFilled,
fillingHole, meet))

(a) (b) (c)

Fig. 8. SQL syntax and examples of DDL for predefining locality aware topological predicates

Local Topological Relationships for Complex Regions 219

A1

A2

A3B1

B2
B3

SELECT a.name, b.name

FROM animals a, animals b

WHERE meeting(a.roam, b.roam)

(a) (b)

Fig. 9. Sample illustration and sample query using locality aware topological predicates

would be assessed as optional, meaning that they may (or may not) occur. In addition
to specifying local existence predicates, the user should be able to specify any of the
global interaction predicates that must, must not, and may occur. In implementation, the
user can make use of the construct CREATE LTP which is defined as part of the query
language’s data definition language (DDL) and whose syntax is shown in Figure 8(a).

In the syntactic definition in Figure 8(a), type1 and type2 refer to the spatial data
types upon which the predicates operate; these are currently only (complex) regions.
The parameter name refers to a user defined label for the predicate that is being cre-
ated. There are four optional clauses in the construct, divided into two groups: the ALL
clauses and the ONE clauses. Each group has two options, the MUST and the MUST NOT.
For the MUST clauses the user specifies a list of local predicates and GIPs that must ap-
pear to make the predefined predicate true. In the case of the MUST ALL clause, all local
predicates and GIPs included in the clause must appear. For the MUST ONE clause, at
least one of the predicates must appear. Similarly, the MUST NOT clauses allows the user
to specify local predicates and GIPs that must not appear for the predicate to result in
true. It also has two flavors: MUST NOT ALL, and MUST NOT ONE. All local predicates
and GIPs that are not included in any clause are implicitly considered to be optional,
thus they may or may not appear without changing the outcome of the predicate.

7.2 Local Topological Queries

Having defined a mechanism that allows the user to predefine locality aware topological
predicates on complex regions, we move on to show two examples of how this prede-
fined predicates can be used. We use Figure 9 to illustrate both sample queries. For the
first example, assume that the elements in Figure 9(a) are complex regions that repre-
sent the roaming areas of two distinct species of animals. Although the areas of both
species globally overlap, the user is interested in finding animals whose roaming areas
somehow meet, as defined by the LTP meeting predefined in the previous section. Such
a query would use the predefined predicate in the WHERE clause as shown in Figure 9(b).

From this example we notice how predefined LTPs can be used just as existing
Boolean predicates. A system implementing LTPs should have system predefined pred-
icates for all local topological predicates operating on the components of supported
types. This means that the user may use locality aware existence predicates such as
fillingHole and containsOverfill for a system supporting complex regions and their com-
ponent simple regions with holes.

In lieu of predefining LTPs, users can also define them inline within the WHERE
clause. The syntax definition of the sub-clause that is necessary for the inline definition
is shown in Figure 10(a). In Figure 10(b) we show how this inline mechanism can be

220 M. McKenney et al.

WHERE LTP on <attr1>, <attr2> (
[MUST ALL (<predlist1>)],
[MUST NOT ALL (<predlist2>)],
[MUST ONE (<predlist3>)],
[MUST NOT ONE (<predlist4>)])

SELECT a.name, b.name
FROM animals a, animals b
WHERE a.avgsize<50
AND b.avgsize>50
AND b.diet=CARNIVORE
AND LTP on a.roam, b.roam

(MUST ONE (fillingHole,
inside, coveredBy))

(a) (b)

Fig. 10. Inline use of locality aware predicates within SQL queries: (a) syntax, (b) query

exploited to retrieve all animals and their predators whose average weight is less than 50
lbs. and whose roaming areas are surrounded by the roaming areas of larger carnivores.

8 Conclusion

In this paper, we have defined the concept of local topological predicates between com-
plex regions. We have provided details for the identification of valid LTPs, and shown
how these LTPs can be exploited by users through querying. The query language exten-
sions described allow the users to define their own locality aware topological predicates
that either can test for the existence of certain local interactions, or can be used to group
LTPs together based their common attributes. The result of this work is a new model of
topological predicates that is more expressive than the global 9IM and does not suffer
from the dominance and composition problems.

Future work on this concept includes the actual implementation of LTPs within a
spatial database and its application in real world scenarios. Another interesting topic of
related research is the application of the LTP concept as part of indexing mechanisms
for complex spatial objects.

References

1. Schneider, M., Behr, T.: Topological Relationships between Complex Spatial Objects. ACM
Trans. on Database Systems 31, 39–81 (2006)

2. Egenhofer, M., Clementini, E., Di Felice, P.: Topological Relations between Regions with
Holes. Int. Journal of Geographical Information Systems 8, 128–142 (1994)

3. Clementini, E., Di Felice, P., Califano, G.: Composite Regions in Topological Queries.
Information Systems 20, 579–594 (1995)

4. McKenney, M., Pauly, A., Praing, R., Schneider, M.: Preserving Local Topological Relation-
ships. In: ACM Symp. on Geographic Information Systems, pp. 123–130. ACM Press, New
York (2006)

5. Egenhofer, M.J.: Deriving the Composition of Binary Topological Relations. Journal of
Visual Languages and Computing 2, 133–149 (1994)

6. Ladkin, P., Maddux, R.: On Binary Constraint Problems. Journal of the Association for
Computing Machinery 41, 435–469 (1994)

MobiHide: A Mobilea Peer-to-Peer System for
Anonymous Location-Based Queries�

Gabriel Ghinita1, Panos Kalnis1, and Spiros Skiadopoulos2

1 Dept. of Computer Science
National University of Singapore

{ghinitag,kalnis}@comp.nus.edu.sg
2 Dept. of Comp. Science & Technology

University of Peloponnese, Greece
spiros@uop.gr

Abstract. Modern mobile phones and PDAs are equipped with posi-
tioning capabilities (e.g., GPS). Users can access public location-based
services (e.g., Google Maps) and ask spatial queries. Although communi-
cation is encrypted, privacy and confidentiality remain major concerns,
since the queries may disclose the location and identity of the user.
Commonly, spatial K-anonymity is employed to hide the query initia-
tor among a group of K users. However, existing work either fails to
guarantee privacy, or exhibits unacceptably long response time.

In this paper we propose MobiHide, a Peer-to-Peer system for anony-
mous location-based queries, which addresses these problems. MobiHide

employs the Hilbert space-filling curve to map the 2-D locations of mo-
bile users to 1-D space. The transformed locations are indexed by a
Chord-based distributed hash table, which is formed by the mobile de-
vices. The resulting Peer-to-Peer system is used to anonymize a query by
mapping it to a random group of K users that are consecutive in the 1-D
space. Compared to existing state-of-the-art, MobiHide does not pro-
vide theoretical anonymity guarantees for skewed query distributions.
Nevertheless, it achieves strong anonymity in practice, and it eliminates
system hotspots. Our experimental evaluation shows that MobiHide has
good load balancing and fault tolerance properties, and is applicable to
real-life scenarios with numerous mobile users.

1 Introduction

Consider the following scenario: Bob uses his GPS enabled mobile phone (e.g.,
iPAQ hw6515, Mio A701) to ask the query “Find the nearest AIDS clinic to
my present location”. This query can be answered by a Location-Based Service
(LBS), e.g., Google Maps, which is not trusted. To preserve his privacy, Bob
does not contact the LBS directly. Instead he submits his query via a trusted

� This work has been partially supported by project PENED 03 funded by the Eu-
ropean Social Fund (75%) and the General Secretariat of Research and Technology
(25%).

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 221–238, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

222 G. Ghinita, P. Kalnis, and S. Skiadopoulos

pseudonym service which hides his identity (services for anonymous web surf-
ing are commonly available). Nevertheless, the query still contains the exact
coordinates of Bob. One may reveal sensitive data by combining the location
with other publicly available information. If, for instance, Bob uses his mobile
phone within his residence, the untrustworthy owner of the LBS may infer Bob’s
identity (e.g., through a white-pages service) and speculate that he suffers from
AIDS. Bob may even hesitate to ask innocuous queries such as “Find the nearest
restaurant”, in order to avoid unsolicited advertisement.

Recent research on LBS privacy focused on theK-anonymity [17,20] technique,
which is used in relational databases for publishing census, medical and other
sensitive data. A dataset is K-anonymous, if each record is indistinguishable
from at least K−1 other records with respect to certain identifying attributes.
In the LBS domain, a similar idea appears in Ref. [7,9,12,15], which employ spa-
tial cloaking to conceal the location of the querying user u: Instead of reporting
the coordinates of u, they construct an Anonymizing Spatial Region (ASR or
K-ASR) which encloses u and K−1 additional users. Typically, a central trusted
server (called location anonymizer, or simply anonymizer in the sequel) exists
between the users and the LBS. All users subscribe to the anonymizer and con-
tinuously update their position while they move. Each user sends his query to
the anonymizer, which constructs the appropriate K-ASR and contacts the LBS.
The LBS computes the answer based on the K-ASR, instead of the exact user
location; thus, the response may contain false hits. The anonymizer filters the
result and returns the exact answer to the user.

The centralized approach has several drawbacks; for example, the anonymizer
may become bottleneck since it must handle frequent location updates as users
move [8]. Most importantly, the centralized anonymizer poses a serious security
threat. If it is compromised by an attacker, or forced to cooperate with a gov-
ernment agency, the history of all user movements and their queries may be re-
vealed. For these reasons, two fully distributed systems emerged: (i) cloakP2P

[5] is a Peer-to-Peer system which constructs K-ASRs by considering users in the
neighborhood of the querying user. (ii) Privé [8], on the other hand, clusters
users in a hierarchical overlay network, resembling a distributed B+-tree. Both
systems minimize the security risk by distributing the sensitive information in
numerous peers. However, we will show that cloakP2P fails to provide privacy
for many user distributions, whereas Privé may suffer from slow response time,
since root-level nodes constitute potential bottlenecks.

In this paper we propose MobiHide, a Peer-to-Peer (P2P) system for anony-
mous location-based queries which addresses the problems of existing
approaches. In MobiHide the participating mobile devices form a hierarchical
distributed hash table, based on the Chord P2P architecture [19], which indexes
the locations of all users. In order to map the 2-D user locations to the 1-D
Chord space, we employ the Hilbert space-filling curve [16]. K-ASRs are collab-
oratively assembled by peers in a distributed fashion, by choosing random groups
of K users (including the querying user) that are consecutive in the 1-D space.
We prove that for uniform query distribution MobiHide guarantees privacy,

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 223

and we show experimentally that even for skewed distributions, the probabil-
ity of identifying the querying user is very close to the theoretical bound. A
clear trade-off emerges between MobiHide and existing state-of-the-art Privé:
the latter provides anonymity guarantees under any query distribution, but has
an hierarchical architecture. On the other hand, MobiHide alleviates system
hotspots, and still achieves strong anonymity in practice. Our experiments sug-
gest that MobiHide is resilient to failures, achieves good load balancing and
supports efficiently the relocation of users (as users move) and the construction
of K-ASRs (while querying); therefore, it is scalable to a large number of mobile
users.

The rest of the paper is organized as follows: Section 2 presents an overview of
MobiHide. Section 3 surveys the related work. Section 4 introduces our Hilbert-
based randomized K-ASR construction algorithm, whereas Section 5 describes
the implementation of our system on top of Chord. Section 6 presents the ex-
perimental evaluation of MobiHide. Finally, Section 7 concludes the paper and
discusses directions for future work.

2 Overview of MobiHide

We assume a large number of users who carry mobile devices (e.g., mobile phones,
PDAs) with embedded positioning capabilities (e.g., GPS). The devices have
processing power and access the network through a wireless protocol such as
WiFi, GPRS or 3G. Moreover, each device has an IP address and can establish
point-to-point communication with any other device in the system through a
base station (i.e., the two devices do not need to be within the range of each
other). For security reasons, all communication links are encrypted. In addition,
we assume the existence of a trusted central Certification Server (CS), where
users are registered. Prior to entering the system, a user u must authenticate
against the CS and obtain a certificate. Users having a certificate are trusted
by all other users. Typically, a certificate is valid for several hours; it can be
renewed by recontacting the CS. Apart from the certificate, the CS returns to u
a list of possible entry points to the P2P network (i.e., IP addresses of on-line
users). Note that the CS does not know the locations of the users and does not

u1

u2

u3

u4

u5

Location-Based

 Service
Certification

Server

Pseudonym
Service

Fig. 1. System architecture

u1

u2

u3 u4

u5

3-ASR
o2

o1

o4

o3

Fig. 2. Anonymized query, K=3

224 G. Ghinita, P. Kalnis, and S. Skiadopoulos

participate in the anonymization process; therefore, it is not a security threat or
a bottleneck.

The mobile users self-organize into a P2P system (see Figure 1) based on the
Chord [19] distributed hash table architecture, well-known for its good scalability
and fault-tolerance properties. The P2P system defines a 1-D space of index keys;
MobiHide uses the Hilbert space-filling curve to map the 2-D user coordinates
to 1-D space. The Hilbert curve is a continuous fractal (see Figure 2) which maps
each region of the space to an integer. With high probability, if two points are
close in the 2-D space, they will also be close in the Hilbert transformation [16].

Typically users ask Range or Nearest-Neighbor (NN) queries with respect to
their location. In the example of Figure 2, user u4 asks for the nearest object to
his location (i.e., o4). Assume that the required degree of anonymity is K = 3 (K
may vary among users). MobiHide identifies in a distributed manner a random
set of 3 users (including u4) that are consecutive in the 1-D space (i.e., u2, u3 and
u4 in the example), and constructs the corresponding 3-ASR (i.e., the rectangle
which encloses the 3 users). Next, u4 submits the 3-ASR NN query to the LBS
through any existing pseudonym service [2]. Note that the pseudonym service
hides the IP address of u4 but is not aware of the users’ locations. Further-
more, it does not become a bottleneck, since each user may choose his preferred
pseudonym service.

The LBS returns to u4 (through the pseudonym service) the NN of every
point of the 3-ASR. Intuitively, the nearest neighbors of a region are all data
objects inside the region plus the NNs of every point in the perimeter of the
region [11]. In our example, these are objects o2 and o4. Finally, u4 filters the
false hits and determines his true NN (i.e., o4). Note that the number of false
hits depends on the K-ASR; therefore we aim to minimize the size of the K-ASR.
Query processing at the LBS [11,12,15] is orthogonal to our work but outside
the scope of this paper.

3 Background and Related Work

K-anonymity was first discussed in relational databases, where sensitive pub-
lished data (e.g., census, medical) should not be linked to specific persons. Sama-
rati and Sweeney [17,20] proposed the following definition: A relation satisfies
K-anonymity if every tuple is indistinguishable from at least K−1 other tuples
with respect to every set of quasi-identifier attributes. Quasi-identifiers are sets
of attributes (e.g., date of birth, gender, zip code) which can be linked to pub-
licly available data to identify individuals. Machanavajjhala et al. [14] proposed
�-diversity, an anonymization method that extends K-anonymity by providing
diversity among the sensitive attribute values of the anonymized set.

Privacy in location-based services has recently attracted a lot of attention.
Spatial K-anonymity is defined as [8]:

Definition 1 (Spatial K-anonymity). Let A be a set of K users with locations
enclosed in an arbitrary spatial region K-ASR. User u ∈ A is said to possess K-

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 225

anonymity, if the probability of distinguishing u among the other users in A does
not exceed 1/K, where K is the required degree of anonymity.

Note that: (i) The definition assumes a snapshot of the users’ locations. Although
we support user mobility, K-anonymity is undefined across multiple snapshots.
(ii) Spatial K-anonymity does not depend on the size of the K-ASR. In the
extreme case, the K-ASR can degenerate to a point, if K users are at the same
location. In general, we prefer small K-ASRs, in order to minimize the pro-
cessing cost at the LBS and the communication cost between the LBS and the
mobile user. Nevertheless, some applications impose a lower bound on the size of
the K-ASR [15]. In such cases, the K-ASR can be trivially scaled to satisfy the
lower bound. The same procedure can also be used to avoid having users on
the perimeter of the K-ASR.

Also observe that the näıve solution of generating an arbitrary K-ASR around
the querying user, is not applicable. If, for instance, the user resides in a rural
area, the K-ASR may include only himself, whereas in a densely populated area, a
too large K-ASR will affect the query processing cost. Moreover, we cannot select
K−1 random users and send K distinct queries, because this would reveal the
exact locations of K users; this is not desirable for any anonymization technique.

Ref. [7] considers mobile users who send queries to the anonymizer together
with a spatial cloaking range δx, δy and a temporal cloaking interval δt. If
K-1 other users generate queries within this cloaking box, the query is issued,
otherwise it is dropped. Ref. [9], on the other hand, assumes that users report pe-
riodically their location to the anonymizer, and focuses on concealing the exact
location without considering query processing. The anonymizer indexes the lo-
cations of all users with a Quad-tree [18]. For a user u, it traverses the Quad-tree
until it encounters a quadrant which includes u and less than K−1 additional
users. Then it selects the parent of that quadrant as K-ASR. Casper [15] also
employs a variation of the Quad-tree anonymization method. Casper attempts
to build K-ASRs by combining two neighboring quadrants, rather than going
one level up in the tree every time more users are required. Finally, Ref. [12]
introduces the hilbASR algorithm based on space-filling curves, and proposes
an integrated framework for K-ASR construction and query processing in LBS.

The previous approaches assume a centralized anonymizer. Recall from
Section 1 that centralized approaches, among other drawbacks, are potential
security threats. Closer to our approach is cloakP2P [5], which addresses the
drawbacks of centralized anonymization by employing a fully distributed mobile
Peer-to-Peer (P2P) system. In cloakP2P, the querying user u initiates K-ASR
construction by contacting all peers within a given physical radius r, which is
a fixed system parameter. If the set of peers S0 found in the initial iteration
is larger than K, the closest K of them are chosen to form the K-ASR; other-
wise, the process continues recursively, and all peers in S0 issue a request to all
peers within radius r. Intuitively, cloakP2P determines a K-ASR by finding the
K −1 users closest to u. Unfortunately, this heuristic fails to achieve anonymity
in many cases, since u tends to be closest to the center of the K-ASR. We call this
“center-of-K-ASR” attack. In Section 6 we demonstrate that, in many cases, an

226 G. Ghinita, P. Kalnis, and S. Skiadopoulos

attacker can identify u with probability much higher that 1/K. The experiments
show that MobiHide is considerably more secure compared to cloakP2P.

Privé [8] is another P2P system, which uses the Hilbert transformation to
generate a sorted 1-D sequence of all users. Privé constructs fixed partitions ofK
users each (except the last one, which may have up to 2K−1 users). It is formally
proved that this method guarantees anonymity (i.e., prevents identification of
the query source) against any location-based attack, for any distribution of users
and queries, even if an attacker knows the exact location of users. To generate
fixed partitions, Privé must determine the absolute rank of each user in the
sorted Hilbert sequence. To achieve this, it implements an overlay network which
resembles a distributed B+-tree. For each query the search must start at the root
of the tree; this can overload the root peer. Although Privé has a load-balancing
mechanism, its purpose is to equally share load among users during long periods
of time, but it cannot avoid the root hotspot when the number of users or the
query rate increases. In Section 6 we will show that even with 10,000 users and a
moderate query rate, the response time is almost 10 minutes, while as many as
60% of the queries are rejected due to buffer overflows. In contrast, MobiHide

does not maintain fixed partitions, therefore it is much faster than Privé.
The privacy of user locations has also been studied in the context of related

problems. Probabilistic Cloaking [4] does not apply spatial K-anonymity. In-
stead, given an ASR, the LBS returns the probability that each candidate result
satisfies the query, based on its location with respect to the ASR. Kamat et al.
[13] focus on sensor networks and examine the privacy characteristics of differ-
ent routing protocols. Hoh and Gruteser [10] describe techniques for hiding the
trajectory of users in applications that continuously collect location samples.

MobiHide is built on top of Chord [19], a Distributed Hash Table (DHT)
protocol that supports scalable, fully decentralized key searching. Chord has a
flat structure, where all peers have equal responsibilities and equally share the
system load among themselves. Our work is also related to CANON [6], which
is a framework for building hierarchical DHTs, while retaining the homogeneity
of load and functionality offered by flat designs.

4 The MobiHide Spatial Anonymization Algorithm

We introduce MobiHide, a P2P system which employs a randomized K-ASR
construction technique to offer query source anonymity, and is scalable to a
large number of mobile users. Similar to Privé, MobiHide is using the Hilbert
ordering of the users’ locations. However, instead of grouping users into fixed
partitions, it forms a K-ASR by randomly choosing K consecutive users, includ-
ing the querying user.

Let [u1, . . . , uN] be the sequence of all users, ordered by their Hilbert value. To
allow random K-ASR selection for the users at the start and end of the sequence,
the 1-D space becomes a ring (or torus), instead of an array. Therefore, u1 is
after uN (and uN is before u1). Figure 3 presents an example, where uq is the
user who issues a query. There are K ways to choose a set of consecutive K

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 227

u1 uN

uq uq+1uq-1uq-2 uq+2 uq+K-1 ...uq-K+1...

uq

......

2K-1 users

Fig. 3. Hilbert sequence ring

u2 u3 u4 u5u6 u1u7 u8 u9 u10

5 10 15 1827 333 43 56 58
Hilbert value

K=4

u1

u2

u3

u4

u10

4-ASR

u5

u6

u7

u8

u9

Fig. 4. K-ASR construction in MobiHide

users which includes uq: [uq−K+1 : uq], [uq−K+2 : uq+1], . . . , [uq : uq+K−1]. This
is equivalent to choosing a random offset l ∈ [0, K−1], representing the offset
of uq in the resulting sequence. For example, if l = 0, the resulting sequence is
[uq : uq+K−1]. Observe that we only need information in the neighborhood of
uq in order to select the sequence (as opposed to Privé, which needs the global
ranking). Therefore, MobiHide works in a fully decentralized manner, and can
be deployed on top of a scalable structure such as Chord.

Figure 4 shows an example of K-ASR construction, where u2 is the querying
user. Let K = 4 and assume that u2 randomly selects offset l = 2. According
to the Hilbert ordering, the resulting sequence of users is [u10, u1, u2, u3]. The
corresponding K-ASR is the minimum bounding rectangle (MBR) which encloses
these four users. In this particular example it was necessary to wrap around the
Hilbert sequence (from u10 to u1). Observe that the “jump” in Euclidean distance
due to wrapping, is not necessarily larger than other “jumps” that may occur
within the sequence (e.g., from user u8 to u9). Therefore, the average size of
the K-ASRs (thus the query cost) is not affected significantly by wrapping. We
investigate further this issue in Section 6.

Theorem 1. If all users issue queries with the same probability (i.e., uniform
distribution), MobiHide guarantees query anonymity.

Proof. Denote by PQ the probability of a user issuing a query (same for all
users). The query source generates a random offset l ∈ [0, K−1]; we denote by
〈u, l〉 the event of user u generating a set of users with offset l. The probability
P〈u,l〉 = PQ/K. Refer to Figure 3, where uq is issuing a query. Obviously, uq must
belong to the set associated to his query. To guarantee anonymity, the probability
of identifying uq as the query source must not exceed 1/K. We denote by Aq

any set of users that includes uq, and by PAq the probability of such a set being
generated. We denote by Pui the probability of user ui being the source of the
query associated with Aq. Then, Pui > 0 only for users [uq−K+1 : uq+K−1], and
by symmetry, Puq−j = Puq+j . We have:

228 G. Ghinita, P. Kalnis, and S. Skiadopoulos

Puq =
K−1∑
l=0

P〈uq,l〉 = PQ, Pui =
K−1∑

l=i−q

P〈ui,l〉 =
K − i + q

K PQ, i > q

Puq + 2
q+K−1∑
i=q+1

Pui = PAq

The probability of pinpointing uq as the query source is

Puq

PAq

=
PQ(

1 + 2
K−1∑
i=1

K − i

K

)
PQ

=
1
K , (1)

hence user uq is K-anonymous.

4.1 The Correlation Attack

In practice, the query distribution is not always uniform, hence Theorem 1 may
not hold. In the extreme case, the same user (e.g., uq) would send all queries
and he would be included in all K-ASRs. An attacker can intersect the K-ASRs
and pinpoint uq as the querying user with high probability. It is more realistic,
however, that many users ask queries, even if the query distribution is skewed.
In this case, intersecting the K-ASRs is unlikely to compromise the system,
since the random sequence selection in MobiHide distributes the anonymized
regions in the entire space. In order to succeed, the attacker should know the
exact locations of all users, to be able to reconstruct the Hilbert sequence. Then,
he could find the users included in each K-ASR by reverse-engineering the K-
ASR construction mechanism, and speculate that the users who appear more
frequently are the ones who issued the queries.

Consider the extreme case where the attacker knows the exact location of all
users and intercepts the set R of K-ASRs. We formalize the correlation attack
as follows: (i) Construct a histogram F with the number of occurrences of every
user in any of the queries. (ii) For each R ∈ R: infer the query source as the
user in R with the highest number of occurrences in F .

The correlation attack gives an attacker powerful means to infer the query
source. Privé guarantees anonymization against this type of attack, but as dis-
cussed in Section 3, scales poorly as the number of users increases. MobiHide

cannot offer theoretical guarantees when the query distribution is extremely
skewed. However, we believe that in practice this attack is hard to stage, since it
is difficult for an attacker to know the exact locations of all users at each snap-
shot. Furthermore, we show experimentally (Section 6) that the probability of
identifying the querying user in MobiHide is very close to the theoretical bound
1/K, even if the attacker knows all users’ locations and the query distribution is
skewed. Finally, observe that MobiHide does not suffer from the “center-of-K-
ASR” attack (see Section 3) because, by construction, the probability of uq to
be closest to the center of the K-ASR is 1/K.

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 229

5 Implementation of MobiHide

MobiHide users organize themselves into a Chord [19] P2P system. Chord is a
Distributed Hash Table (DHT), where each peer (or node) has an m-bit key (the
Hilbert value in our case), and it stores a routing table with pointers to other
nodes (see Figure 5). The routing table at peer n with key keyn consists of:

– a successor and predecessor pointer to the node with the key that immedi-
ately follows (respectively, precedes) keyn on the ring

– a successor list, used mainly for fault tolerance, with a list of consecutive
peers that follow n on the ring

– a finger table, with m pointers to nodes that are situated at 2i distances
from n (i = 0, 1, .., m− 1}.

Fig. 5. MobiHide implementation over Chord

We denote by H(u) the Chord key of user u. Assume that each user is mapped
to a distinct Chord node. When user u wants to ask a query, he initiates the K-
ASR construction procedure, denoted by K-request. u generates a random offset
l ∈ [0, K−1], and contacts the set P of l predecessors and the set S of K−1− l
successors on the Chord ring. The resulting K-ASR is the MBR that encloses
users in P ∪ S ∪ {u}. The complexity of a K-request is O(K) overlay hops.

Since K can be large (e.g., 50-100) in practice, we wish to reduce the number
of hops, and hence the latency of K-request. We introduce an additional level of
hierarchy, such that each overlay node represents a cluster of users, rather than
a single user. Each cluster has between α and 3α-1 users, where α is a system
parameter. If the cluster reaches 3α, a split is performed and an additional ring
node is created. If the size falls below α, a merge operation with another overlay
node is performed1. We chose 3α, instead of 2α, as the upper bound on size, to
minimize frequent merge and split operations. Each cluster has a representative,
or cluster head, which is part of the Chord ring. In the example of Figure 5, u12 is
the head of cluster {u8, u11, u12}. The head’s key on the ring is the maximum of
all keys inside its cluster, in order to preserve the key ordering on the ring. The
cluster membership is maintained by the head, and is replicated to all cluster
1 Obviously, if more keys fall within a Chord segment, there will also be proportionally

more nodes in that segment; therefore, hot-spots are avoided.

230 G. Ghinita, P. Kalnis, and S. Skiadopoulos

Fig. 6. Join and Split, α=2

members, to enhance fault-tolerance. Heads are rotated periodically to achieve
load-balancing. We denote by Cu the cluster that contains user u, and by CHu

the head of Cu.
We further describe how various operations are performed in MobiHide. For

each operation, we consider two performance metrics:

– latency: the time to completion, measured as the number of overlay hops on
the longest path followed. Multiple paths may be followed in parallel.

– cost: the communication cost of an operation, measured as the number of
transmitted messages (communication cost typically prevails over CPU cost).

Join and Departure. User join is illustrated in Figure 6a. User u with key
H(u) = 71 authenticates at the certification server and receives the address of
some user ubs inside the system. ubs issues a search for key H(u), which returns
the address of u85, the successor of 71 on the ring. u contacts u85 and joins
cluster C. Hence, Cu ≡ C and CHu ≡ u85. Upon u’s join, CHu checks the new
size of cluster Cu, and if size(Cu) = 3α, CHu splits his cluster into two halves,
in increasing order of key values. He appoints one of his cluster members, CH ′

u,
as head of the newly formed cluster. All nodes in the initial cluster are notified.
CHu and CH ′

u also notify their predecessor and successor on the ring. CH ′
u

inherits a large part (if not all) of the finger table of CHu; the rest of the table
is determined through the Chord stabilization process [19].

In our example, the new size of C is 6 and α = 2, so u85 triggers a split
operation (Figure 6b). u85 divides his cluster C into two halves, C′ with members
61, 67 and 71, and C′′ with members 74, 82 and 85. u71 is appointed as head
of C′, while u85 remains head for C′′. u85 sets his predecessor pointer to u71,
and notifies the former predecessor u52 to change its successor from u85 to u71.
The complexity of join is O(log N − log α) latency and O(log N − log α + α)
communication cost (the last term stands for notifying all cluster members).

User u can depart gracefully, or fail; failure is addressed in Section 5.1. When
u departs gracefully, he notifies his cluster head CHu, who updates the cluster
membership. If the departing node is cluster head, he appoints one of his mem-
bers as new head. A merge can be triggered by departure. In this case, user CHus

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 231

u.findASR(H,K)
compute rankH in sorted order of Cu

generate random offset l
before = max(0,l - rankH)
after = max(0,K-l + rankH − size(Cu))
if (after > 0)

succ.FwdReq(after,1)
if (before > 0)

pred.FwdReq(before,−1)
wait for partial MBRs
K-ASR = union of all received MBR

u.K-request(K)
call CHu.findASR(H(u),K)

u.FwdReq(count,direction)
if (direction == 1) /*Look Forward*/

return MBR of first count keys
if (count > size(Cu))

succ.FwdReq(count − size(Cu),1)
else /*Look Backward*/

return MBR of last count keys
if (count > size(Cu))

pred.FwdReq(count − size(Cu),−1)

Fig. 7. Pseudocode for K-Request

triggering the merge contacts randomly either his successor s or predecessor p
on the Chord ring to merge2. CHu transfers his members (including himself) to
the merging peer and ceases to be cluster head. All members are notified and
the successor and predecessor pointers are updated.

Relocation. When user u moves to a new location, his Hilbert value H(u)
changes. If the new H′(u) falls within the key range of other users in cluster Cu,
u only needs to inform his cluster head of the key change. Otherwise, u performs
a graceful departure followed by a join. Since Hilbert ordering preserves locality,
it is likely that the relocation will be within a small distance from the initial ring
position. The worst case complexity of relocation is O(log N− log α) latency and
O(log N − log α + α) communication cost.

K-request. To generate a K-ASR, u forwards a K-request to his cluster head
CHu (unless u himself is the cluster head). CHu generates a random offset
l ∈ [0, K−1]. Then, CHu examines the membership list of his cluster Cu and
determines how many users in Cu will belong to the K-ASR. CHu computes the
values before and after corresponding to the number of users in K-ASR that are
outside Cu and precede (respectively, follow) the set of keys in Cu. CHu issues
a request for the MBR3 of these members to his predecessor p and successor s.
In p and s the same procedure is followed recursively, until K users are found.
CHu waits for all answers, and assembles the K-ASR as the union of the received
MBRs. The pseudocode4 for K-request is given in Figure 7. The complexity is
O(K/α) in terms of both latency and communication cost. Once the K-ASR is
assembled, u can submit it to the LBS using his preferred pseudonym service.

2 Alternatively, an interrogation phase can find which of s or p has fewer members,
and merge with that one (to avoid cascaded splits and to equalize cluster sizes).

3 CHu only acquires the MBR, not the exact location of users in other clusters.
4 We use the Remote Procedure Call convention u.routine(); i.e., u is the node where

routine is executed.

232 G. Ghinita, P. Kalnis, and S. Skiadopoulos

Fig. 8. Leader Election Protocol

5.1 Fault-Tolerance and Load Balancing

MobiHide inherits the good fault-tolerance properties of Chord [19]. Similar to
Chord, some of the pointers to other peers (i.e., successor and predecessor point-
ers, the successor list and the finger table) may be temporarily corrupted (e.g.,
when a user fails). Such pointers are corrected periodically through a stabiliza-
tion process. In addition to stabilization, MobiHide implements an intra-cluster
maintenance mechanism. Each cluster head periodically (i.e., every δt seconds)
checks if all cluster members are alive, by sending beacon messages; beacons con-
tain the current cluster membership in addition to the successor and predecessor
nodes of the head on the Chord ring. If a user fails to respond for 2δt seconds, he
is considered failed and is removed from the cluster. Similarly, a non-head node
that does not receive a beacon from his head for 2δt seconds, concludes that the
head has failed and initiates a leader election protocol (see Figure 8). The Re-
coveryState (RS) variable of each node indicates whether the node is in normal
operation (RS = 0) or participates in the election protocol. Since the cluster
membership is replicated at all cluster nodes, recovery is facilitated. Upon de-
tecting leader failure, node n enters the RS = 1 state, sends a candidate(n.IP)
message to all peers in the cluster and sets an election timer large enough to
allow other peers to respond to the candidature proposal. When a node receives
the candidate(IP) message, it initiates its own candidature only if its address is
smaller than IP ; otherwise, it enters the RS = 2 state and waits for a setParent
message. The user with the smallest address declares himself leader and notifies
all other cluster members, as well as the predecessor and successor on the ring.

To prevent unequal load sharing, a simple rotation mechanism is enforced
among cluster members. The rotation is triggered when a certain load thresh-
old is reached. This threshold is measured in terms of number of messages
sent/received, since the communication cost is predominant in terms of both
energy consumption and fees payed to the service provider. When the cluster
head CH transfers leadership to another cluster member CH ′, he transfers his
routing state on the Chord ring and the cluster membership to CH ′. Observe
that the Chord key does not change, since it is the maximum key among all
cluster members. Therefore, the overhead for the P2P network is minimal.

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 233

6 Experimental Evaluation

We implemented MobiHide on top of Chord in the p2psim [1] suite, a packet-
level simulator for P2P systems. We consider topologies with 1sec average round-
trip delay, a typical value for wireless devices. To highlight the behavior of our
system, we only consider packet loss as an effect of queueing at the processing
nodes, and not as a result of link faults. Our dataset corresponds to the San
Francisco Bay Area (Figure 9) and is constructed with the Network-based Gen-
erator of Moving Objects [3], which models the movement of mobile users on
public road infrastructures. We consider scenarios with 1,000 to 10,000 users
and anonymization degree K between 10 and 160. If not stated differently, we
set α = 5 (see Section 5). We compare MobiHide against the two existing
distributed spatial anonymization systems (i.e., cloakP2P and Privé).

Anonymization Strength. Theorem 1 theoretical demonstrates that Mobi-

Hide guarantees K-anonymity for a uniform query distribution. To complete our
study, we also evaluate the anonymity strength of MobiHide for skewed query
distributions. To this end, we assume 10K users and 10K queries and consider a
Zipfian query distributions with ϑ = 0.8. We start by focusing on the “center-
of-K-ASR” attack. We revisit the query scenario from Ref [8], and present a
comparison of MobiHide against Privé and cloakP2P. Let us denote by uc

the closest user to the center of the K-ASR. Figure 10 illustrates the probability
of uc being the query source (i.e., the user initiating the query). Theoretically,
to achieve anonymity, the above probability should be bounded by 1/K. In other
words, the performance of the evaluated algorithms should be under line 1/K
(the dotted line of Figure 10). cloakP2P, for K≥ 20, does not satisfy the the-
oretical bound. For instance, for K=40, the probability of uc being the query
source is 10%, i.e., four times the maximum allowed bound (1/K=2.5%). The
users are likely to come uniformly from all directions; hence, uc is disclosed as
the query source. Contrary, Privé and MobiHide always satisfy the theoretical
bound. Notice that in some cases, the MBR of the K-ASR may contain a few
more than K users. This is why the results for Privé and MobiHide are not
identical to the 1/K line.

Fig. 9. Dataset

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 20 40 60 80 100 120 140 160

P
(I

de
nt

ify
S

ou
rc

e)

K

1/K
MobiHide

Prive
CloakP2P

Fig. 10. “center-of-K-ASR” attack

234 G. Ghinita, P. Kalnis, and S. Skiadopoulos

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 20 40 60 80 100 120 140 160

P
(I

de
nt

ify
S

ou
rc

e)

K

1/K
MobiHide-Unif

MobiHide-Zipf0.5
MobiHide-Zipf0.8

Fig. 11. Correlation attack (MobiHide)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160

A
S

R
 A

re
a

(%
)

K

Prive-Unif
MobiHide-Unif

Prive-Zipf
MobiHide-Zipf

Fig. 12. K-ASR Area

In Figure 11 we consider the correlation attack (see Section 4.1). We assume
the extreme case, where the attacker knows the exact locations of all users (re-
call that this attack is unlikely to occur in practice). We show the results for
uniform and Zipf query distribution, with ϑ = 0.5 and ϑ = 0.8. As expected, for
uniform distribution anonymity is always preserved. Actually, in this case Mo-

biHide behaves almost identical to Privé (not shown in the graph). Anonymity
is also entirely preserved for ϑ = 0.5. As the distribution becomes more skewed,
MobiHide may fail to preserve anonymity by a small margin. In most cases,
however, the probability of identifying the query source is very close to the the-
oretical bound 1/K. In the worst case, for K= 160, ϑ = 0.8, the probability
of identifying the query source was 1.2/K. Observe that in Figure 11 we did
not consider cloakP2P, as it can be easily compromised by the much simpler
“center-of-K-ASR” attack. Since it fails to provide anonymity in many cases, we
will not consider cloakP2P any further.

K-ASR Size. MobiHide wraps around the Hilbert sequence in order to handle
users near the start/end of the sequence. In some cases, this may yield K-ASRs
with larger area, compared to Privé; consequently, the query processing cost
will increase. To investigate this issue, we considered uniform and Zipf (ϑ = 0.8)
query distributions over a set of 10K users and varying K. In Figure 12 we plot
the average area of the K-ASRs as a percentage of the entire dataspace. Observe
that for the Zipf distribution the two systems behave almost identical, while for
uniform distribution MobiHide generates 25% larger K-ASRs in the worst case.
Therefore, we tradeoff at most 25% in additional query processing cost, but we
obtain far superior system scalability as we will show next.

Scalability (response time). The most important advantage of MobiHide is
its increased scalability due to the highly decentralized structure. Here, we eval-
uate the response time of the system for 1K, 5K and 10K users. The querying
users are selected with a Zipf (ϑ = 0.8) distribution5. We use exponential distri-
bution to model the query rate, and the mean is varied between 0.5 and 60quh
(Queries per User per Hour). Processing time at each node is exponentially dis-
tributed with mean 50ms. This is a realistic processing time that includes CPU

5
MobiHide behaves even better for uniform distribution of the querying user.

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 235

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

R
es

po
ns

e
T

im
e

(s
ec

)

QueryRate(quh)

N=10k
N=5k
N=1k

(a) MobiHide

 1

 10

 100

 1000

 0 10 20 30 40 50 60

R
es

po
ns

e
T

im
e

(s
ec

)

QueryRate(quh)

N=10k
N=5k
N=1k

(b) Privé

Fig. 13. Scalability, K = 40

 0

 2

 4

 6

 8

 10

 5 10 15 20

La
te

nc
y

(h
op

s)

α

N=1k
N=2k
N=5k

N=10k

(a) Latency

 0

 10

 20

 30

 40

 50

 5 10 15 20

C
os

t(
m

es
sa

ge
s)

α

N=1k
N=2k
N=5k

N=10k

(b) Communication cost

Fig. 14. Join

processing and network buffer access. We set K=40 and inject queries for a pe-
riod of 600sec. From Figure 13(a), we can see that the response time is short (i.e,
does not exceed 5sec) even for large user populations and high query rates. Note
that the experiment assumes unbounded message queues at the nodes; therefore
the drop rate of requests is 0. We also considered bounded queues (size = 100);
in the worst case, the drop rate was 3.4%.

In Figure 13(b) we repeated the same experiment for Privé. Observe that
the response time grows sharply with the query rate, due to delays at the root
node. For 10K users and 10quh the response time is almost 600sec (whereas,
MobiHide needs only 2.5sec). Again, these results are for unbounded queues.
For the bounded case (queue size = 100), the drop rate was 26% for 8quh; for
10quh the drop rate surges as high as 60%. From the previous experiments it is
obvious that MobiHide outperforms Privé.

Join. In this experiment, we measure the latency (i.e., number of hops) and com-
munication cost (i.e., total number of messages) for the user join operation. Start-
ing from a stable system, an additional 10% of the initial user population joins
randomly the system. Figure 14(a) shows the latency for N = 1K, 2K, 5K and
10K users, for varying α (recall that the cluster size is between α and 3α). The plot

236 G. Ghinita, P. Kalnis, and S. Skiadopoulos

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20

La
te

nc
y

(h
op

s)

α

K=10
K=20
K=40
K=80

K=160

(a) Latency

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20

C
os

t(
m

es
sa

ge
s)

α

K=10
K=20
K=40
K=80

K=160

(b) Communication cost

Fig. 15. K-Request Operation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Lo
ad

 C
D

F

User ID

No Rotation
Rotation

Ideal

Fig. 16. Load Balancing

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

N
et

w
or

k
C

or
re

ct
ne

ss
 (

%
)

Time(sec)

Finger Table
Succ/Pred

Cluster Membership

Fig. 17. Fault Tolerance

confirms the theoretical expected complexity O(log N − logα). For low α values,
we observe a slight increase, due to the increasing proportion of split operations. In
terms of communication cost (see Figure 14(b)), the dominant factor is O(α) due to
the intra-cluster notification. There is a tradeoff between join latency and commu-
nication cost in terms of α. For low α values, the cluster maintenance cost is lower,
but the latency increases. Furthermore, a low α also causes increased latency and
communication cost during K-requests, as we will show shortly. Our experiments
suggest that a value 5 < α < 10 is likely to yield good results in practice.

K-Request. We consider a 10K user population with 10K uniformly distributed
queries (note that the distribution does not influence the latency or communi-
cation cost in the absence of queuing). Figure 15(a) and 15(b) show the average
latency and communication for constructing the K-ASRs (α is varied). Both the
latency and communication cost are favored by larger α values. However, a com-
promise must be reached among the K-Request performance, maintenance cost
and system scalability. Larger α determines higher maintenance cost and also
yields a more centralized system, with inferior peak-load performance.

Load Balancing. Due to the hierarchical nature of MobiHide, the cluster
heads that participate on the Chord ring bear more load than other cluster

MobiHide: A Mobilea P2P System for Anonymous Location-Based Queries 237

members. Here, we evaluate the rotation mechanism of MobiHide which aims
at distributing the load evenly. We set α=5, K=20 and simulated a 10K user
network, where an average of 3.6quh are generated. The total simulated time is
3 hours, and a rotation is triggered at every 300 messages received by a node.
Figure 16 shows the cumulative distribution function (CDF) of the sorted node
loads. Without rotation, the roughly 1,000 cluster heads (i.e., 10000/2α as 2α is
the average cluster size) bear 90% of the system load. With rotation, the load
balancing is very close to the ideal (i.e., linear CDF, plotted as dotted line).
Note that, for a load unit setting of 300 and a rotation cost of 2α messages, the
rotation overhead is only 2α/300 = 3%. This overhead can be decreased further
by increasing the load unit.

Fault Tolerance. In this experiment we evaluate the fault-tolerance features
of MobiHide. We consider 10K users and α=5. Chord performs periodical
maintenance for its pointers. The respective timers are set at 3sec for the suc-
cessor/predecessor, 10sec for the successor list and 30sec for the finger table
pointers. The intra-cluster beacon timer δt = 10sec. We consider three network
correctness metrics: (i) the intra-cluster correctness, measured as the ratio of
correct cluster membership entries out of the total entries, (ii) the succ/pred
correctness, measured as the ratio of correct successors/predecessors over the
total number of successor/predecessor pointers, and (iii) we define similarly the
correctness of finger tables. Note that, for correct execution of K-request op-
erations, only the successor/predecessor and intra-cluster membership need to
be 100% accurate; the finger table pointers are only used for join and reloca-
tion operations, and their inaccuracy can only cause a slight increase in latency.
Figure 17 shows the evolution in time of the three metrics, starting with a cor-
rect network, when 25% of the users fail simultaneously; t = 0 is the time of
failure. We observe that the succ/pred and intra-cluster correctness are estab-
lished after 60sec. For the intra-cluster correctness, it takes the system roughly
three purge intervals (6δt) to detect head failure, elect new leaders and establish
correct cluster membership. The finger table is restored after 120sec.

7 Conclusion

While location-based services become essential in supporting a broad area of ap-
plications (navigation systems, emergency services, etc), new privacy concerns
arise for LBS users (e.g. in the near future GSM phones will be equipped with
a “clipper” chip that accurately tracks users). In this paper, we propose Mo-

biHide, a scalable P2P system for anonymous LBS queries. MobiHide indexes
users into a hierarchical Chord network, according to the 1-D Hilbert ordering of
their coordinates, and builds K-ASRs by randomly choosing Hilbert sequences
of K users. Our results confirm that in practice, MobiHide outperforms existing
solutions: our system provides strong anonymity, it is fault-tolerant, and scales
to large numbers of mobile users.

In future work, we plan to address the issue of anonymizing user trajecto-
ries, as opposed to user locations. Furthermore, we plan to investigate efficient

238 G. Ghinita, P. Kalnis, and S. Skiadopoulos

methods to anonymize queries for infrastructure-less environments, such as ad-
hoc wireless networks (Wi-Fi, Bluetooth), where point-to-point communication
channels do not exist between any pair of users, and only users within a limited
physical range can be contacted.

References

1. p2psim: The Peer-to-Peer Network Simulator,
http://pdos.csail.mit.edu/p2psim.

2. Tor: Anonymity Online, http://tor.eff.org/
3. Brinkhoff, T.: A framework for generating network-based moving objects. Geoin-

formatica 6(2), 153–180 (2002)
4. Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving User Location Pri-

vacy in Mobile Data Management Infrastructures. In: Proc. of Privacy Enhancing
Technology Workshop (2006)

5. Chow, C.-Y., Mokbel, M.F., Liu, X.: A Peer-to-Peer Spatial Cloaking Algorithm
for Anonymous Location-based Services. In: ACM International Symposium on
Advances in Geographic Information Systems, ACM Press, New York (2006)

6. Ganesan, P., Gummadi, K., Garcia-Molina, H.: Canon in G Major: Designing DHTs
with Hierarchical Structure. In: Proc. of ICDCS, pp. 263–272 (2004)

7. Gedik, B., Liu, L.: Location Privacy in Mobile Systems: A Personalized Anonymiza-
tion Model. In: Proc. of ICDCS, pp. 620–629 (2005)

8. Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: Anonymous Location-Based
Queries in Distributed Mobile Systems. In: Proc of WWW (2007)

9. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: Proc. of USENIX MobiSys (2003)

10. Hoh, B., Gruteser, M.: Protecting Location Privacy through Path Confusion. In:
Proc. of SecureComm (2005)

11. Hu, H., Lee, D.L.: Range Nearest-Neighbor Query. IEEE TKDE 18(1), 78–91
(2006)

12. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preserving Anonymity in
Location Based Services. Technical Report TRB6/06, National University of Sin-
gapore (2006)

13. Kamat, P., Zhang, Y., Trappe, W., Ozturk, C.: Enhancing Source-Location Privacy
in Sensor Network Routing. In: Proc. of ICDCS (2005)

14. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity:
Privacy Beyond k-Anonymity. In: Proc. of ICDE (2006)

15. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: Query Processing for
Location Services without Compromising Privacy. In: Proc. of VLDB (2006)

16. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve. IEEE TKDE 13(1), 124–141 (2001)

17. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE
TKDE 13(6), 1010–1027 (2001)

18. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading (1990)

19. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking 11(1), 17–32 (2003)

20. Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. Int. J. of Uncertainty,
Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

http://pdos.csail.mit.edu/p2psim.
http://tor.eff.org/

Blind Evaluation of Nearest Neighbor Queries Using
Space Transformation to Preserve Location Privacy�

Ali Khoshgozaran and Cyrus Shahabi

University of Southern California
Department of Computer Science
Information Laboratory (InfoLab)

Los Angeles, CA 90089-0781
{jafkhosh,shahabi}@usc.edu

Abstract. In this paper we propose a fundamental approach to perform the class
of Nearest Neighbor (NN) queries, the core class of queries used in many of the
location-based services, without revealing the origin of the query in order to pre-
serve the privacy of this information. The idea behind our approach is to utilize
one-way transformations to map the space of all static and dynamic objects to
another space and resolve the query blindly in the transformed space. However,
in order to become a viable approach, the transformation used should be able
to resolve NN queries in the transformed space accurately and more importantly
prevent malicious use of transformed data by untrusted entities. Traditional en-
cryption based techniques incur expensive O(n) computation cost (where n is the
total number of points in space) and possibly logarithmic communication cost for
resolving a KNN query. This is because such approaches treat points as vectors
in space and do not exploit their spatial properties. In contrast, we use Hilbert
curves as efficient one-way transformations and design algorithms to evaluate a
KNN query in the Hilbert transformed space. Consequently, we reduce the com-
plexity of computing a KNN query to O(K × 22N

n
) and transferring the results

to the client in O(K), respectively, where N , the Hilbert curve degree, is a small
constant. Our results show that we very closely approximate the result set gener-
ated from performing KNN queries in the original space while enforcing our new
location privacy metrics termed u-anonymity and a-anonymity, which are stronger
and more generalized privacy measures than the commonly used K-anonymity
and cloaked region size measures.

1 Introduction

An important class of spatial queries consists of nearest-neighbor (NN) query and its
variations. These queries search for data objects that minimize a distance-based function
with reference to one or more query objects (e.g., points). In location-based services, a
group of mobile users want to find the location of their K closest objects to their current

� This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), IIS-0238560
(PECASE), IIS-0324955 (ITR), and unrestricted cash gifts from Google and Microsoft. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 239–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

240 A. Khoshgozaran and C. Shahabi

location (KNN). One obvious requirement with KNN queries is that the location of
the query point(s) needs to be known in order to perform the query. However, in many
applications such as in location-based services, a user may not want to reveal its location
in order to preserve his/her privacy.

In this paper, we propose blind evaluation of Nearest Neighbor queries in order to
preserve users’ location from being revealed to location servers addressing such queries.
For clarity reasons, for the rest of this paper, we will focus on location-based services
in the 2-D space as the motivating application since it is clear that the query point is
identical to the user location and hence its hiding preserves user’s location privacy.
While this application by itself is important enough to justify this research effort, we
believe that the blind evaluation of KNN queries is fundamental and core to many other
privacy preserving applications in sensor networks, online mapping services, geospatial
information systems and numerous other applications in geospatial decision making.

Protecting users locations while responding to a KNN query is challenging due to the
fact that there is an interesting dilemma in resolving such queries: while precise query
location is needed to generate the result set for a KNN query, the privacy constraints of
the problem does not allow revealing users’ location information to the untrusted entity
responding to such queries. In order to resolve this dilemma, we propose a fundamental
approach based on utilizing the power of one-way transformations to preserve users’
location privacy by encoding the space of all static and dynamic objects and answering
the query blindly in the encoded space.

There is an inherent limitation in using traditional encryption techniques for blind
evaluation of KNN queries. To illustrate, assume our server uses recently proposed en-
cryption techniques to compute the encryption of the Euclidean distance between an
encrypted point (i.e., the query origin) and each point of interest [8]. These encrypted
distances can then be sent back to the client who can decrypt them and find the top
K results. Trivially, this protocol satisfies our definition of blind KNN evaluation (see
Section 3) since the location of neither the query point nor the result set is revealed to
the server. However, the main limitation here is that distance between query point and
each and every point of interest must both be computed and transferred to the client, i.e.,
O(n) computation and communication complexity where n is the size of the database.
There are cryptographic binary search communication protocols that may reduce the
communication complexity to logarithmic; however, the computation complexity at the
server cannot be reduced further. This is because the points of interest are treated as
vectors with no exploitation of the fact that they are in fact points in space. Instead,
we use Hilbert curves to transform original space to an encoded space stored at the
server. Consequently, the server’s encoded space still has the property that the nearby
points stay close to each other and hence can reduce the KNNs computational com-
plexity to O(K × 22N

n) where N , the curve order, is a small constant. Moreover, since
only the K closest points are sent back to the client, the communication complexity
becomes O(K). We also introduce two new location privacy metrics termed user-based
anonymity or u-anonymity and area-based anonymity or a-anonymity. These metrics
are stronger and more generalized than the privacy measures commonly used by the
K-anonymity and spatial cloaking based approaches. We analytically prove that our
technique satisfies these two stronger privacy metrics.

Blind Evaluation of Nearest Neighbor Queries 241

We have performed several experiments to evaluate the effectiveness of our ap-
proach. As detailed in Section 7, we show that our proposed technique achieves a very
close approximation of performing KNN queries in the original space by generating a
result set whose elements on average have less than 0.08 mile displacement to the ele-
ments of the actual result set in a 26 mile by 26 mile area containing more than 10000
restaurants. We also show that a malicious attacker gains almost no useful knowledge
about the parameters of our encoding techniques, even when significant knowledge
about the key is compromised. In other words, a nominal displacement error in approx-
imating only one of the key parameters, (a meter displacement in a 670 square mile
area) results in no useful information for compromising our encryption scheme.

We stress that our technique does not always generate the exact ground-truth answer
for a query because of its nature of reducing the dimensionality of data. However we be-
lieve there are many use case scenarios in location-based services where a satisfactory
approximation of the result is still useful as long as users’ privacy is preserved.

2 Related Work

The closest set of studies to our work is the class that preserves user location privacy
using the cloaking techniques. With this approach, a trusted anonymizer is usually in
charge of receiving user’s precise location information and trying to disguise it by blur-
ring user’s exact location by (for example) extending it from a point location to an area
(spatial extent) and sending a region containing several other users instead of a point
to the server. A similar approach based on the concept of K-anonymity is extending the
cloaked area until it is large enough to include a minimum of K−1 other users. Hence,
the user’s location cannot be distinguished from the location of the other K−1 users in
the same extended area. This extended area will then be used to resolve spatial queries
such as NN queries. Several techniques based on cloaking and K-anonymity have been
proposed in the literature to reduce the resolution of the user’s location information
[1, 2, 4–6, 13, 14].

Cloaking and K-anonymity approaches have some limitations. First, by design
cloaking relies on a trusted entity to “anonymize” users’ locations which means all
queries should trust the anonymizer during the system’s normal mode of operation. The
anonymizer will also become a single point of failure and a potential scalability bottle-
neck as several handshakes must occur between the user and anonymizer to exchange
user profiles and anonymity measures. Another limitation of cloaking techniques in
general is that either the quality of service or overall system performance degrades sig-
nificantly as users choose to have more strict privacy preferences. For example, if the
user requires a better K-anonymity, the system needs to increase K for that user which
would result in a larger cloaked area and hence less accurate query response. Alterna-
tively, if one requires to maintain the quality of service the location server has to resolve
the spatial query for each and every point in the cloaked region and send the entire bulky
result to the anonymizer to be filtered out. This will obviously affect the overall system
performance, communication bandwidth and server throughput and results in more so-
phisticated query processing. Finally, the concept of K-anonymity does not work in all
scenarios. For example, in a less populated area, the size of the extended area can be
prohibitively large in order to include K − 1 other users. Some studies try to address

242 A. Khoshgozaran and C. Shahabi

this limitation by proposing more robust ways of determining the area of cloaking [11].
However, they will still need a trusted anonymizer to be able to respond to user queries
and in the most optimistic scenario will reveal the region a user is located in, to an un-
trusted location server. In Section 6, we explain how our proposed approach eliminates
the need for an anonymizer and why the accuracy of the result only depends on the
quality of the transformation and remains consistent for all users.

3 Preliminaries

In this section, we first formally define the problem of blindly evaluating a KNN query
and briefly discuss our approach and its use of one-way transformations. We also study
the challenges associated with finding the right transformations and review an important
class of many-to-one dimensional mappings called space filling curves which are used
in our approach to achieve location privacy.

3.1 Formal Problem Definition

Given a set of static objects S = (o1, o2, . . . , on) in 2-D space, a set of users U =
(u1, u2, . . . , uM) and a set of dynamic query points Q = (q1, q2, . . . , qm), the KNN
query with respect to query point qi finds a set S′ ⊂ S of K objects where for any
object o′ ∈ S′ and o ∈ S − S′, D(o′, qi) ≤ D(o, qi) where D is the Euclidean distance
function. In a typical KNN query scenario, the static objects represent points of interest
(POI) and the query points represent user locations. We now define some of the prop-
erties a location server should posses in order to enable user location protection while
responding to a KNN query.

Definition 1. u-anonymity: While resolving a KNN query, the user issuing the query
should be indistinguishable among the entire set of users. In other words, for each query
Q, P (Q) = 1

M where P (Q) is the probability that query Q is issued by a user ui and M
is the total number of users. Note that this definition ensures the server does not know
which user queried from a point qi; however, we also need to ensure that the server
does not know which point the query Q is issued from. This requirement is captured in
Definition 2.

Definition 2. a-anonymity: While resolving a KNN query, the location of the query point
should not be revealed. In other words, for each query Q, P ′(Q) = 1

area(A) , where A

is the entire region covering all the objects in S, and P ′(Q) is the probability that query
Q was issued by a user located at any point inside A.

Note that Definitions 1 and 2 impose much stronger privacy requirements than the com-
monly used K-anonymity [18, 4, 5, 11, 1, 6, 13, 14], in which a user is indistinguishable
among K other users or his location is blurred in a cloaked region R. The above defini-
tions of location privacy are free of metrics such as K and R. They are in fact identical
to an extreme case of setting R = A for spatial cloaking, and an extreme case of setting
K = M for K-anonymity.

Definition 3. Result set anonymity: The location of all points of interest in the result
set should be kept secret from the location server. More precisely Ṗ (oj) = 1/n for

Blind Evaluation of Nearest Neighbor Queries 243

j = 1 . . . n where Ṗ (oj) is the probability that oj is a member of the result set for
query Q and n is the total number of POI’s.

Definition 4. Blind evaluation of KNN: We say a KNN query is blindly evaluated if
the u-anonymity, a-anonymity and result set anonymity constraints defined above are
all satisfied. In other words, in blind evaluation of KNN, the identity and location of
the query point as well as the result set should not be revealed. We term our approach
blind evaluation of KNN queries because it attempts to prevent any leak of information
to essentially blind the server from acquiring information about a user’s location. For
the rest of the paper, we use the term user to refer to the user located at query point
P issuing the query Q. The following example shows how the above properties should
be satisfied in a typical KNN query. Suppose a user asks for his 3 closest gas-stations.
In this case a malicious entity should acquire neither the location of the user (i.e., a-
anonymity) not its identity (i.e., u-anonymity) nor the actual location or identity of any
of the 3 closest gas stations in the response set (i.e., result set anonymity) while the user
should receive the actual points of interest matching his query.

Based on the above properties, we term a location server privacy aware if it is capable
of blindly evaluating a KNN query while providing accurate results. The challenge in
blind evaluation of KNN queries is that the above two constraints cannot be perfectly
met at anytime. If precise KNN is desired for each query, one should reveal his exact
location and this violates the privacy constraint imposed on the problem (i.e., preserving
user’s location). Therefore an ideal approach should respect both constraints as much as
possible i.e., it should be a very close approximation of S′ (we will define the notion of
closeness in Section 3.2) while keeping P (Q), P ′(Q) and Ṗ (oj)’s as low as possible.

3.2 Space Encoding

In this section, we introduce our novel approach for protecting user’s location from the
malicious location servers. Our approach is based on transforming the static objects in
the 2-D space as well as dynamic query points by mapping them to another space using
a one-way transformation and addressing the query in the transformed space. As men-
tioned earlier we address the issue of location privacy in the context of location-based
services and thus focus on the 2-D space of static objects (i.e., points of interest) and
dynamic query points (i.e., users). Transforming such a 2-D space requires using a one-
way function to map each point from the original space to a point in the transformed
space. A transformation is one-way if it can be easily calculated in one direction (i.e.,
the forward direction) and is computationally impossible to calculate in the other (i.e.,
backward) direction [20]. The process of transforming the original space with such a
one-way mapping can be viewed as encrypting the elements of the 2-D space. With
this view, in order to make decryption possible the function has to allow fast computa-
tion of its inverse given some extra knowledge, termed trapdoor [19]. In practice, many
one-way transformations may be reversible even without the knowledge of the trap-
door but the process must be too complex (equivalent to exhaustive try) to make such
transformation computationally secure.

Therefore , as depicted in Figure 1, any one-way transformation which respects the
proximity of the original space can replace the first black box in Figure 1 to make the

244 A. Khoshgozaran and C. Shahabi

Fig. 1. Space Encoding

location server privacy aware. We view such one-way transformations as modules that
encode the original space into another space which is capable of addressing encoded
transformed queries. In order to enable decoding of query results one should define the
notion of a trapdoor or a key for the space encoding module. In this paper we use the
properties of our mapping function as the trapdoor for fast decryption of query results.
Such trapdoor will be only provided to the user to reverse the encoded results and get
the response set back in its original format.

Note that hiding the location of the query point is different than hiding its identity
and the focus of this paper is on hiding the locations of the query points and result sets.
No matter what type of space encoder is used, a user will only have to report its encoded
position to the location server in order to get the exact location of her result set back. In
Section 6 we will discuss how this property separates user anonymization issues from
protecting user’s location.

Identifying the right space encoders is very challenging because there are several
one-way transformations which could be applied to a 2-D space of objects (e.g., random
perturbation of points), however, the majority of such transformations do not respect
the notion of distance and proximity . The transformations that respect such properties
are the only candidates resulting in satisfactory KNN query in an encoded space. We
term such transformations complete KNN-invariant if performing the KNN query in
the transformed space and decoding the result set back to the original space, generates a
result set exactly equal to the result set obtained from performing the query in the orig-
inal space. However, as we will discuss in Section 4, our proposed approach generates
an approximation of the actual result for each KNN due to its nature of reducing the
dimensionality of data. Therefore we define a weaker notion of closeness for a trans-
formation and call it semi KNN-invariant (or for simplicity KNN-invariant) if it yields
satisfactory values for the two metrics introduced in the following definition.

Definition 5. Suppose the actual result of a KNN query, issued by a user located at
point Q is R = (o1, o2, . . . , oK), and it is approximated by a transformation T as R′ =
(o′1, o

′
2, . . . , o

′
K). T is KNN-invariant if it yields acceptable values for the following two

metrics:
Metric 1: The Resemblance, denoted by α, defined as

α =
|R ∩R′|
|R| (1)

where |R| denotes the size of a set R. In fact α measures what percentage of the points
in the actual query result set R are included in the approximated result set R′.

Blind Evaluation of Nearest Neighbor Queries 245

Metric 2: The Displacement, denoted by β, defined as

β =
1
K

(
K∑

i=1

||Q− o′i|| −
K∑

i=1

||Q− oi||) (2)

where ||Q− oi|| is the Euclidean distance between the query point Q and oi. Therefore
β measures how closely R is approximated by R′ on average. Obviously, since R is the
ground truth, β ≥ 0.

Although there is no fixed threshold for acceptable α and β values, depending on the
application and the scenario, certain values may or may not be considered satisfactory.
In Section 7 we will evaluate our approach against these two metrics and will show that
it uses an effective KNN-invariant transformation.

In this paper, we study an important class of transformations called space filling
curves as candidate space encoders for our framework. Such curves have interesting
properties which have made them a popular tool in different domains such as querying
multi-dimensional data and image compression [12, 16]. It is important, however, to
note that we are not claiming that space filling curves are the best possible encoders. In
Section 3.3 we show how such space filling curves can be treated as one-way functions
if certain properties of those curves are kept secret from malicious attackers.

3.3 Space Filling Curves

Introduced in 1890 by an Italian mathematician G. Peano [17], space filling curves
belong to a family of curves which pass through all points in space without crossing
themselves. The important property of these curves is that they retain the proximity and
neighboring aspects of the data. Consequently, points which lie close to one another in
the original space mostly remain close to each other in the transformed space. One of
the most popular members of this class is Hilbert curves [7] since several studies show
the superior clustering and distance preserving properties of these curves [3, 9, 12, 15].

Similar to [15] we define Hd
N for N ≥ 1 and d ≥ 2, as the N th order Hilbert curve

for a d-dimensional space. Hd
N is therefore a linear ordering which maps an integer

set [0, 2Nd − 1] into a d-dimensional integer space [0, 2N − 1]d as follows:
H = �(P) for H ∈ [0, 2Nd − 1], where P is the coordinate of each point in the d-
dimensional space. We call the output of this function its H-value throughout the paper.
Note that it is possible for two or more points to have the same H-value in a given curve.

As mentioned above, our motivating application is location privacy and therefore we
are particularly interested in 2-D space and thus only deal with 2-D curves (N = 2).
Therefore H = �(X, Y) where X and Y are the coordinates of each point in the 2-D
space. Figure 2 illustrates a sample scenario showing how a Hilbert curve can be used
to transform a 2-D space into H-values. In this example, points of interest (POI) are
traversed by a second order Hilbert curve and are indexed based on the order they are
visited by the curve (i.e., H in the above formula). Therefore, in our example the points
a, b, c, d, e are represented by their H-values 7, 14, 5, 9 and 0, respectively. Depending
on the desired resolution, more fine-grained curves can be recursively constructed as
depicted in Figure 3.

246 A. Khoshgozaran and C. Shahabi

Fig. 2. A H2
2 Pass of the 2-D Space

Fig. 3. First Three Orders of Hilbert Curves

As we will show in Section 7, the most interesting feature of Hilbert curves is how
they can act as KNN-invariant transformations with satisfactory values of α and β when
used in location-based services. This property suits our approach as we are interested to
address the KNN query in a transformed space and still get satisfactory results. Further-
more, another important property of a Hilbert curve that makes it a very suitable tool
for our proposed scheme is that � becomes a one-way function if the curve parameters
are not known. These parameters, which collectively form a key for this one-way trans-
formation, include the curve’s starting point (X0, Y0), curve orientation θ, curve order
N and curve scale factor Γ . We term this key, Space Decryption Key or SDK where
SDK = {X0, Y0, θ, N, Γ}.

Therefore a malicious entity, not knowing this key, has to exhaustively check for all
combinations of curve parameters to find the right curve by comparing the H-values for
all points of interest. As we show in Theorem 1, we make it computationally impossible
to reverse the transformation and get back the original points. Even a nominal error in
approximating curve parameters will generate a completely different set of H-values.
We now prove two important properties of our approach which give more insight on the
security of our proposed method.

THEOREM 1. The complexity of a brute-force attack to find the transformation key
discussed above is O(24p) where p is the number of bits used to discretisize each pa-
rameter.

PROOF. In order to accurately find the curve’s starting point, it should exactly lie on
the intersection of two edges (lines) coming from each of the X and Y axes. Therefore
one has to locate the exact values of both X0 and Y0 in the continuous domain of
X and Y axes. Theoretically, the probability of finding the right value for the above
two parameters in a continuous space is zero. However, in real world scenarios, the
attacker can approximate X0 and Y0 by constructing the finest grid possible to guarantee

Blind Evaluation of Nearest Neighbor Queries 247

that his best guess (X ′
0, Y

′
0) located at an intersection of two edges, lies very close to

(X0, Y0) so that |X0 − X ′
0| ≤ ε and |Y0 − Y ′

0 | ≤ ε. When ε is sufficiently small
then replacing (X0, Y0) with (X ′

0, Y
′
0) generates a set of H-values indifferentiable from

the original set. The attacker should thus search the entire space exhaustively for a
very close approximation of this starting point. Using p bits the attacker can generate
2p candidate values on each axis. Therefore, assuming a square region covering all
POI’s, the attacker’s entire search space for the starting point will have 2p∗2p elements.
Similarly, the entire continuous 360◦ space for θ should be discretized to the finest
possible extent to ensure that |θ − θ′| ≤ ε for at least one value of θ′. With q bits, that
attacker can generate 2q different candidate values of θ each corresponding to a curve
orientation. The curve scale factor Γ is a continuous number between 0 and 1 and thus
similarly, r bits can divide the 0 to 1 range into 2r values each can approximate Γ so
that |Γ −Γ ′| ≤ ε for at least one value of Γ ′. Assuming N different possibilities for the
curve order, the entire solution space will have 2p ∗2p ∗2q ∗2r ∗N elements. Assuming
2q = O(2p) and 2r = O(2p) and since N 2p, the complexity of an exhaustive
search is O(24p) where p is the number of bits used by the attacker to represent each
parameter. ❑

Note that for a given N , there is an upper bound for p, after which there is no rea-
son to increase p further because ε becomes sufficiently small to estimate X0 and Y0

accurately. However, by simply increasing N to N + 1 we can make the curve twice
condense in each direction that results in a new threshold of ε′ = ε

2 for the curve’s start-
ing point and similar tighter thresholds for other curve parameters. Therefore, a linear
increase in N will make ε exponentially smaller and thus p should increase linearly with
N as well to ensure close approximation of curve parameters. However, as Theorem 1
shows, increasing p will result in an exponential increase of the search space. Conse-
quently, N is chosen large enough to make reversing an H2

N mapping impossible and
thus to make H act as a one-way mapping. Hence, we consider this transformation as a
space encryption scheme whose key is the curve parameters (i.e., SDK).

THEOREM 2. Using an H2
N Hilbert curve to encode the space satisfies the a-anonymity,

u-anonymity and result set anonymity properties defined in Section 3.1.

PROOF. An H2
N fills a 2N ∗ 2N grid in the 2-D space visiting each point exactly once.

Theorem 1 states that having an H-value for the query point Q, one cannot reverse the
process to find �−1(XQ, YQ) because H is one-way for large values of N (i.e., curve
degree) and thus Q cannot be located anywhere in the grid. With n and A being the
total number of POI’s and the entire region covering these n objects, respectively (see
Definition 1), there are 2p ∗ 2p equiprobable choices for the location of Q and thus
P ′(Q) = 1/22p = 1

area(A) . Furthermore, since no information beyond the H-value of
the query point is needed to resolve the query, Q could be issued by any user ui and
thus P (Q) = 1

M where M is the total number of users. Finally, for each static object
o, �−1(Xo, Yo) cannot be found and thus Ṗ (oi) = P ′(Q) = 1/22p << 1/n because
22p >> n. ❑

248 A. Khoshgozaran and C. Shahabi

4 2-Phase Query Processing

Making a query processing engine privacy-aware based on our idea of space transfor-
mation discussed above, requires a two-step process consisting of an offline encryption
of original space followed by online query processing. First, during an offline process,
necessary data structures and encryption schemes are utilized to encode the space of
POI’s. Next, during an online process, the query is resolved in the transformed space
and is then decoded to obtain the original points satisfying the query in the 2-D space.
The following sections describe the details of these two phases and the modules per-
formed in each phase.

4.1 Offline Space Encryption

Figure 4 depicts Algorithm 1, the Offline Space Encryption algorithm. The first step of
this phase is to choose the curve parameters from which the curve will be constructed
and the value of SDK will be determined. These parameters are listed in Section 3.3.
Next, assuming the entire area covering all points of interest is a square S1, an H2

N

Hilbert curve is constructed starting from (X0, Y0) in a (possibly larger) square S2

surrounding S1 until the entire S2 is traversed (see Figure 2). After visiting each point
P , its H-value = �(P.X, P.Y) is computed using SDK. We use an efficient bitwise
interleaving algorithm from [3] to compute the H-values for points of interest. This
process is performed once for all points of interest and thus at the end of this step, a
look-up table DB which consists of H-values for all POI’s is constructed. Note that the
size of DB is only dependant upon the number of POI’s to be indexed and not the size of
the region in which they are located. The result of applying Algorithm 1 on the example
from Figure 2 looks like the following look-up table: DB = {(0), (5), (7), (9), (14)}
where each element is the point’s index in the curve (i.e., its H-value).

4.2 Online Query Processing

Algorithm 2 (Figure 5) summarizes the online query resolution process and its two
modules KNN-Encode and KNN-Resolve. Using the look-up table DB, we can now
show how the result of a KNN query is evaluated in the transformed space. For each
query point Q located at position (XQ, YQ), KNN-Encode uses SDK to compute H =
�(XQ, YQ). The value of H , along with K (i.e., the number of desired nearest neigh-
bors), is all KNN-Resolve needs to resolve a query using DB. During this phase we
begin searching from both directions in DB starting from �(XQ, YQ) until K closest

Fig. 4. Offline Space Encryption

Blind Evaluation of Nearest Neighbor Queries 249

Fig. 5. Online KNN Query Resolution

matches are found. Note that these matches are nothing but K (distinct or overlapping)
H-values. Knowing SDK, KNN-Encode transfers the result set back to the original 2-D
space, using H−1 to decrypt the H-values of all points in result set. To illustrate, in our
example, having K = 3, and Q = (2, 0), KNN-Encode computes H = 4 = �(2, 0)
and calls KNN-Resolve(4, 3) to obtain R = {(0), (5), (7)}. Next, H−1 is applied to all
above H-values to obtain their original 2-D coordinates.

We can now derive the complexity of the KNN-Resolve module which represents
the overall query processing complexity. As discussed in Section 4.1, an H2

N Hilbert
curve divides the entire space into 22N equally spaced indices. This division, results
in an average density of n

22N POI’s per each H-value where n is the total number of
POI’s. Therefore, finding the K closest objects in this space will on average require
only K × 22N

n H-value comparisons. Therefore, the overall complexity of our online

query processing scheme is O(K × 22N

n) compared to O(n) if traditional encryption
schemes were used. Also the communication complexity of our scheme is O(K) since
the result set generated by KNN-Resolve includes only the K matching points compared
to an O(log(n)) complexity using traditional encryption schemes and to K-anonymity
or cloaking approaches in which the query result has to be generated for K − 1 other
points or an entire region, respectively. The efficiency of our query processing algorithm
is more pronounced with real-world datasets where the value of n is significantly large.

Notice that the order of the result set might not be accurate because there are cases
in which elements with smaller difference in H-values to Q are actually located further
from it compared to other objects with larger H-value difference. However, this is
essentially resolved by simply having the entire result set back in its original format.
Knowing Q’s location, KNN-Encode sorts the result set in the correct order. This
is a very efficient process given the relatively small values of K . In addition, it is
important to note that the result set of a KNN query might not precisely match the
actual K nearest neighbors of a user because of loss of a dimension in the transformed
space. Depending on different curve parameters and the data distribution, the accuracy
of the result may vary. In Section 7, we conducted several experiments with real-world
datasets and show that the Resemblance and Displacement values are acceptable for
many real applications.

250 A. Khoshgozaran and C. Shahabi

5 Dual Curve Query Resolution

Using a single Hilbert curve as a space encoder for KNN query processing discussed
in Section 4 has two major drawbacks. We first discuss these two drawbacks and then
introduce our Dual Curve Query Resolution approach or DCQR which overcomes the
weaknesses of the former scheme and generates significantly more satisfactory results.

A closer study of Hilbert curves reveals two important properties of such curves.
First, consider the 1st degree curve of Figure 6 (the left image). The curve naturally
is constructed by traversing a U-shaped pattern. Regardless of its orientation, such a
curve will fill the space at a specific direction at any given time sweeping the space in a
clockwise fashion. Starting from the first degree curve of Figure 6, the curve misses one
side in its first traversal. As the curve order grows, the number of missed sides grows
exponentially as well so that an H2

N curve misses M = 22N − 2N+1 + 1 sides of
a (2N − 1) by (2N − 1) grid. The above property of the curve will make H-values of
certain points farther as N increases. For instance the Euclidean distance between points
a and d is similar to the that of points b and c in the original 2-D space, however due
to the above property, a and d’s H-values will be significantly further from each other
as compared to H-values of b and c. This difference grows exponentially as N grows.
Therefore points closer to two quadrants of the space (i.e., the first and last quadrants
filled by the curve) will be spatially furthest from one another in the transformed space.

The second drawback of using a single Hilbert curve is due to the fact that such
space-filling curves essentially reduce the dimensionality of the space from 2 (or in
general case N) to 1. Naturally, each element in the 1-D space constructed by the Hilbert
curve will have two nearest neighbors compared to the original case where each element
(except those at the edges) has four (or in general case 2N) nearest neighbors. Therefore
as [10] suggests, in the best case scenario, only half of these nearest neighbors in 2-D
space will remain a nearest neighbor of the same point in the transformed 1-D space.

The above two properties result in a loss of precision and thus a negative effect
on overall quality of returned results. We mitigated this issue by replicating the same
curve and rotating it 90 degrees. Our intuition is to index the same data simultaneously
by two perpendicular curves and ask each one independently to resolve a KNN query
using modules discussed in Section 4. Having two different result sets in the original
domain, we merge the results and choose the K best candidates among the 2K points
of the sets.

We now discuss how DCQR ensures a better quality of results. By rotating the de-
gree N curve, all lower degree curves constructing the main curve will be rotated as
well. At each curve order, the curve rotation ensures that the missed sides generated by
the discontinuation of the curve (such as the missed sides between points a and d in

Fig. 6. Missed Sides of 2 by 2 and 3 by 3 Grids for H2
1 and H2

2, respectively

Blind Evaluation of Nearest Neighbor Queries 251

Figure 6), will be covered by the rotated curve. Therefore, the points deemed spatially
far from each other in one curve will be indexed correctly in the other curve. This will
address the first issue when using Hilbert curves for indexing. DCQR also mitigates the
effect of the second property discussed above by transforming the 2-D space to two
1-D spaces. Therefore each point will now have two nearest neighbors in each curve.
It is important however, to note that these two neighbor pairs can (and do) often have
overlaps and that is the main reason the dual curve approach will generate (significantly
more accurate) approximate answers. Furthermore, with regards to complexity, know-
ing the first curve’s SDK makes it easy to derive the key for the second curve (curve
order and scale factor are the same while curve orientation and starting point are rotated
90 degrees). Therefore, the complexity of finding DCQR’s keys differs from what we
derived for a single curve approach in Section 3.3 by a constant factor. The query pro-
cessing discussed in Section 4 should also be modified slightly to work with the new
dual curve scheme as follows (note that these modifications do not change the query
computation and communication complexities derived in Section 4.2).

5.1 Offline Space Encryption for DCQR

During this phase, we again assume that the entire static objects set is located inside a
square S1. Consequently two Hilbert curves H2

N and H ′
2
N are constructed based on

SDK to sweep the (possibly larger) square S2 (surrounding S1), until the entire S2 is
traversed. Visiting each point, H and H ′ will compute �(X, Y) and �′(X, Y) respec-
tively in the similar fashion discussed in Section 4.1. After this process is performed
once for all POI’s, the two sequences of H and H′-values will form two separate look-
up tables DB and DB′.

5.2 Online Query Processing for DCQR

Similarly, the query processing follows the logic from Section 4.2 with the difference
that for each query point Q, we compute H = �(XQ, YQ) and H ′ = �′(XQ, YQ) using
SDK and SDK′, respectively. We then initiate two parallel query resolution schemes
applying H-value and H′-value to DB and DB′, respectively and simultaneously retrieve
K closest matches for each curve separately. Similar to Section 4.2, we decrypt the two
results sets and choose the K best candidates (based on their Euclidean distance to Q).

6 Proposed End-to-End Architecture

In previous sections, we showed in detail how we can utilize Hilbert curves as space
encoders to blindly resolve KNN queries. As we mentioned earlier, the focus of this
paper is on hiding locations and not identities of static objects or query points. How-
ever, in order to propose a complete solution, we briefly discuss how we can extend
our proposed scheme to deal with non-spatial attributes of each POI (such as its iden-
tity or name) in the following way; Similar to SDK, we define a Textual Decryption
Key or TDK, which is used to encrypt (decrypt) the non-spatial attributes of each POI
during the offline space encryption (online query resolution) phase. Therefore, during
the offline phase, in addition to the steps discussed in Section 5.1, we generate TDK

252 A. Khoshgozaran and C. Shahabi

Fig. 7. DCQR Architecture for KNN Query Processing

and TDK′ and use them to encrypt the textual attributes of each point P represented by
E(P.T) where E is the function used to encrypt P.T (the textual attributes of P). The
above modifications will add a new attribute to DB and DB′ to include any textual
information of POI’s. Therefore DB and DB′ become look-up tables with the schemas
(H-value, E(o.T)) and (H′-value, E′(o.T)), respectively.

6.1 End-to-End Query Processing

We are now ready to explain how a KNN-invariant one-way transformation can be used
for blinding KNN queries in location-based services. The client (e.g., a portable device)
issues a K-nearest-neighbor (KNN) query and provides its own location. Without loss
of generality, we assume the client location is a point and is identified by two values
such as its latitude and longitude. In order to make the location server privacy-aware,
we first assume the architecture of Figure 7 which details the sequence of client-server
communications required in order to resolve a KNN query and use the algorithms dis-
cussed in Section 5 to modify the classic location-based services architecture in the
following three ways:

1) A trusted entity is added to the architecture. The main task of the trusted entity is
to perform the KNN-CreateIndex module once and to create and update their encoded
indexes and identities. A second functionality of the trusted entity is to provide users
with (SDK,SDK′) and (TDK,TDK′) pairs required to decrypt query results. We refer to
these four values as Key Pairs. Finally, the trusted entity provides the location server
with the two look-up tables DB and DB′ instead of the original dataset and keeps
the two key pairs secret from the location server. Note that unlike an anonymizer, the
trusted entity is not involved in the query processing.

2) Users will perform the KNN-Encode module and use the two key pairs embedded
in their devices to decrypt the result set returned to them from the location server and
get back the location of the returned points as well as their textual attributes. Note that
in order to prevent users from being able to access the encrypted result set received from
the location server and learning the transformation, the key pairs should be embedded
in tamper-proof devices. Furthermore, in order to remain anonymous, users generate a
random session-id for each KNN query request in order to enable the client and server
to communicate with each other during the course of each KNN query.

3) The un-trusted location server will perform the KNN-resolve module to construct
the two results sets and returns them to the user.

Blind Evaluation of Nearest Neighbor Queries 253

7 Experimental Evaluation

We have conducted several experiments to evaluate the performance of our proposed
approach. The effectiveness of DCQR is determined in terms of 1) the effect of the
curve order N on our proposed indexing, 2) accuracy of the result sets in terms of the
Displacement and Resemblance metrics defined in Section 3.2, using DCQR instead
of a single curve, and 3) DCQR’s vulnerability to attacks. We were unable to compare
our approach with other approaches discussed in Section 2, because they mostly eval-
uate performance, based on the size of the K-anonymity set, the size of the cloaked
region or the effectiveness of the anonymization techniques used and our approach is
free of these metrics and satisfies stronger privacy metrics defined in Section 3. We have
also performed other experiments that investigate the effect of other key parameters on
quality of indexing and demonstrate our fast overall system response time (typically
less than 0.5 seconds even for large values of K and N). We do not discuss these exper-
iments here due to lack of space and we plan to fully investigate them in an extended
version of this paper. Our experiments are performed on a real-world dataset obtained
from NAVTEQ covering a 26 mile by 26 mile area surrounding the city of Los Angeles
which contains more than 10000 restaurants. Experiments were run on an Intel P43.20
GHz with 2 GB of RAM.

7.1 The Curve Order N

In our first set of experiments, we evaluate the effectiveness of our proposed indexing
technique. It is important to analyze the curve behavior for different values of N (i.e.,
curve order) and to decide on the value of SDK and use it throughout the rest of our
experiments. For the first set of experiments, we measure the effectiveness of two H2

N

curves in indexing POI’s for fixed values of X0 = Y0 = θ = 0 and Γ = 1 and
varying N from 1 to 15 for the first curve (note that SDK of the dual curve, i.e., SDK′,
can be derived from SDK). We measure the minimum and average number of POI’s
which are assigned the same H-value for each value of N . It is clear that having a
large number of POI’s with the same H-value has a negative effect on Resemblance and
Displacement metrics because the location server has no way of choosing a closer point,
in a set of POI’s with the same H-value while responding to a KNN query. Varying
N , makes an entirely different curve and thus changes the assignments of H-values
to POI’s significantly. Figure 8 shows how POI/H-value changes with N . It suggests
acceptable values of this number (i.e., POI/H-value≤ 2) for curves with N ≥ 8. Our
next experiments confirm this intuition.

7.2 The Single Curve Approach vs. DCQR

In the second sets of experiments we first compare the single curve approach with
DCQR in terms of the Displacement and Resemblance metrics defined in Section 3.2.
As Figure 9 illustrates, for different curve orders (i.e., N) and different values of K (i.e.,
different KNN queries), DCQR outperforms the single curve approach for both metrics,
achieving lower average Displacement and higher Resemblance values.

Next, we evaluate DCQR using the same metrics. As shown in Figure 10, for a fixed
value of N = 12, an increase in K improves the Resemblance while it does not have a

254 A. Khoshgozaran and C. Shahabi

Fig. 8. Curve Order Vs. H-Values

Fig. 9. Comparing Single Curve Approach vs. DCQR for Different Values of K and N

Fig. 10. DCQR Performance vs. K and N

significant effect on the Displacement. The reason is that as K increases, the result set
size grows twice as fast (since using DCQR, its size is 2K for each KNN query) which in
turn increases the chance of visiting the right points as we move on the curve. However,
searching for more POI’s on the curve also causes moving further away from the query
point’s index on the Hilbert curves which might increase the probability of hitting a
missed side and thus including a false positive in the result set. However this negative
effect is nominal and the Displacement stays less than 0.08 mile for all possible values
of K. Similarly, for a fixed value of K=3, while the Displacement takes satisfactory
values (less than 0.09 mile on average) for N ≥ 8, Resemblance usually improves as
N grows, confirming our intuition from the first set of experiments. Similar trends were
observed for other fixed values of K and N .

7.3 DCQR’s Vulnerability to Attacks

Our last set of experiments empirically evaluates the vulnerability of our proposed ap-
proach against malicious attackers to confirm the hypotheses discussed in Section 3.3
for the one-wayness of transformations used in DCQR and the security of SDK based

Blind Evaluation of Nearest Neighbor Queries 255

Fig. 11. Attacking SDK by Approximating |Y0 − Y ′
0 | (left) and Γ

Γ ′ (right)

on the following two extreme scenarios. First we assume the malicious location server
(which is capable of becoming the most powerful attacker due to its access to DB and
DB′), has somehow gained precise knowledge for the values of X0, θ, Γ and N and
only needs to find Y0. Using p bits, it divides the Y-axis to 2p distinct values hoping to
get close enough to Y0. For each of its guesses Y ′

0 , the location server forms an SDK and
performs the KNN-CreateIndex module to compare the resulting look-up table against
DB (or DB′) and measures the Resemblance metric to evaluate Y ′

0 . Figure 11 (left)
illustrates the result of this attack for p taking 12, 15, 18 and 22 bits (which correspond
to a minimum of 10−2, 10−3, 10−4 and 10−5 mile displacement between Y0 and Y ′

0),
respectively. The location server’s best guess is where it uses the maximum number of
bits (i.e., p = 17 and |Y0 − Y ′

0 | ! 1meter) which results in a look-up table less than
10% similar to DB. Note that the location server does not even know which H-values
belong to the above 10% subset of DB and thus even by getting very close to real curve
parameters, the key cannot be compromised.

Similar to the above case, we now assume that the malicious location server knows
the exact values of X0, Y0, θ and N and should only approximate the value of Γ with
Γ ′. Taking the same approach, the location server uses 4, 7, 10 and 14 bits so that
the value of Γ

Γ ′ approaches 0.9, 0.99, 0.999 and 0.9999, respectively. Figure 11 (right)
shows that in the best case where it uses the maximum number of bits, (i.e., p = 14)
the generated look-up table bears less than 5% similarity to DB again without the
location server knowing the subset of points indexed accurately. Therefore the last two
sets of experiments demonstrate the strong robustness of our proposed scheme against
malicious attacks.

8 Conclusion and Future Work

In this paper, we discussed the problem of location privacy in location-based services.
We studied the challenges of achieving location privacy and introduced a novel way of
blindly evaluating KNN queries, an important class of spatial queries in location-based
services, by using one-way space transformations to map objects and query points into
an unknown space and evaluate the query in that space. The major contributions of our
work can be summarized as follows:

– We proposed blind evaluation of queries using Hilbert curves as space encoders
and introduced DCQR, our proposed Dual Curve Query Resolution approach and
designed an O(K× 22N

n) computation and O(K) communication algorithm which
enables DCQR to resolve KNN queries in the transformed space (where n is the
total number of POI’s and N , the curve order, is a small constant.

256 A. Khoshgozaran and C. Shahabi

– We introduced two new privacy metrics, u-anonymity and a-anonymity, which are
much stronger and more generalized than the privacy constraints of commonly used
K-anonymity and spatial cloaking based approaches.

– We analytically proved the one-wayness property of our space encoding technique
and showed how DCQR achieved the result set anonymity as well as u-anonymity
and a-anonymity metrics to become privacy-aware.

– We studied a set of powerful attacks based on the number of bits used to encode the
space and empirically evaluated the resilience of DCQR against these attacks.

– We conducted extensive experiments to show the superior properties of our blind
KNN query resolution scheme.

We intend to study other space mappings and identify new KNN-invariant transfor-
mations and propose efficient ways of turning them into space encoders allowing exact
answers to be generated for KNN queries while still respecting the location privacy
constraints discussed in this paper.

References

1. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Com-
puting 2(1), 46–55 (2003)

2. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based personal iden-
tification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199.
Springer, Heidelberg (2005)

3. Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In: PODS ’89: Proceed-
ings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pp. 247–252. ACM Press, New York, NY, USA (1989), doi:10.1145/73721.73746

4. Gedik, B., Liu, L.: A customizable k-anonymity model for protecting location privacy
5. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial

and temporal cloaking. In: MobiSys. USENIX (2003)
6. Gruteser, M., Liu, X.: Protecting privacy in continuous location-tracking applications. IEEE

Security & Privacy 2(2), 28–34 (2004)
7. Hilbert, D.: Uber die stetige abbildung einer linie auf ein flachenstuck. Math. Ann. 38, 459–

460 (1891)
8. Indyk, P., Woodruff, D.P.: Polylogarithmic private approximations and efficient matching.

In: Theory of Cryptography, Third Theory of Cryptography Conference, pp. 245–264. New
York, NY, USA (2006)

9. Jagadish, H.V.: Linear clustering of objects with multiple atributes. In: Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, pp. 332–342. ACM
Press, Atlantic City, NJ (1990)

10. Jagadish, H.V.: Analysis of the hilbert curve for representing two-dimensional space. Inf.
Process. Lett. 62(1), 17–22 (1997)

11. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preserving anonymity in location based
services. A Technical Report TRB6/06, National University of Singapore (2006)

12. Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the hilbert space-
filling curve. SIGMOD Record 30(1), 19–24 (2001)

13. Mokbel, M.F.: Towards privacy-aware location-based database servers. In: Barga, R.S., Zhou,
X. (eds.) ICDE Workshops, p. 93. IEEE Computer Society Press, Los Alamitos (2006)

Blind Evaluation of Nearest Neighbor Queries 257

14. Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new casper: Query processing for location ser-
vices without compromising privacy. In: Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, pp. 763–774. ACM Press, New York (2006)

15. Moon, B., Jagadish, H.v., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties of
the hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering 13(1),
124–141 (2001), doi:10.1109/69.908985

16. Pinciroli, F., Combi, C., Pozzi, G., Negretto, M., Portoni, L., Invernizzi, G.: A peano hilbert
derived algorithm for compression of angiocardiographic images. In: Computers in Cardiol-
ogy, pp. 81–84. IEEE Computer Society Press, Los Alamitos (1991)

17. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)
18. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and

its enforcement through generalization and suppression
19. Schroeder, M.R.: Number Theory in Science and Communication. Springer, Heidelberg

(1984)
20. Stinson, D.R.: Cryptography, Theory and Practice. Chapman & Hall/CRC (2002)

Enabling Private Continuous Queries for
Revealed User Locations

Chi-Yin Chow and Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota
{cchow,mokbel}@cs.umn.edu

Abstract. Existing location-based services provide specialized services
to their customers based on the knowledge of their exact locations. With
untrustworthy servers, location-based services may lead to several privacy
threats ranging from worries over employers snooping on their workers’
whereabouts to fears of tracking by potential stalkers. While there exist
several techniques to preserve location privacy in mobile environments,
these techniques are limited as they do not distinguish between location
privacy (i.e., a user wants to hide her location) and query privacy (i.e., a
user can reveal her location but not her query).This distinction is crucial in
many applications where the locations of mobile users are publicly known.
In this paper, we go beyond the limitation of existing cloaking algorithms
as we propose a new robust spatial cloaking technique for snapshot and con-
tinuous location-based queries that clearly distinguishes between location
privacy and query privacy. By this distinction, we achieve two main goals:
(1) supportingprivate location-based services to those customerswithpub-
lic locations, and (2) performing spatial cloaking on-demand basis only
(i.e., when issuing queries) rather than exhaustively cloaking every single
location update. Experimental results show that the robust spatial cloak-
ing algorithm is scalable and efficient while providing anonymity for large
numbers of continuous queries without hiding users’ locations.

1 Introduction

The emergence of the state-of-the-art location-detection devices, e.g., cellular
phones, global positioning system (GPS) devices, and radio-frequency identifica-
tion (RFID) chips, results in a location-dependent information access paradigm,
known as location-based services. Location-based services provide convenient
information access for mobile users who can issue location-based snapshot or
continuous queries to a database server at anytime and anywhere. Examples
of snapshot queries include “where is my nearest gas station” and “what are
the restaurants within one mile of my location”, while examples of continuous
queries include “continuously report my nearest police car” and “continuously
report the taxis within one mile of my car”. Although location-based services
promise safety and convenience, they threaten the security and privacy of their
customers [1, 2, 3, 4]. With untrustworthy servers, an adversary may access sen-
sitive information about individuals based on their issued location-based queries.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 258–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enabling Private Continuous Queries for Revealed User Locations 259

For example, an adversary may check a user’s habit and interest by knowing the
places she seeks. In many real life scenarios, GPS devices have been used in
stalking personal locations [5, 6, 7].

To tackle the privacy threats in location-based services, several spatial
cloaking algorithms have been proposed for preserving user location privacy
(e.g., [8, 9, 10, 11, 12, 13]). The key idea of spatial cloaking algorithms is to
blur the exact user location information into a spatial region that satisfies cer-
tain privacy requirements. Privacy requirements can be represented in terms
of k-anonymity [14] (i.e., a user location is indistinguishable among k users)
and/or minimum spatial area (i.e., a user location is blurred into a region with
a minimum size threshold).

Unfortunately, existing techniques for preserving location privacy have lim-
ited applicability as they do not distinguish between location and query privacy.
In many applications, mobile users cannot hide their locations as these locations
are publicly known. In other applications, mobile users do not mind to reveal
their exact location information; however, they would like to hide the fact that
they issue some location-based queries as these queries may reveal their personal
interests. So far, none of the existing spatial cloaking algorithms support this
distinction between location privacy and query privacy where it is always as-
sumed that users have to hide both their locations and their queries. Examples
of applications that call for this distinction between location privacy and query
privacy include:

– Business operation. A courier business company has to know the locations
of its employees to decide which employee is the nearest one to collect a
certain package. However, the company is not allowed to keep track of the
employees’ behavior in terms of their location-based queries. Thus, company
employees reveal their location information, but not their query information.

– Monitoring system. Monitoring systems (e.g., transportation monitoring)
rely on the accuracy of user locations to provide their valuable services.
In order to convince users to participate in these systems, certain privacy
guarantees should be imposed for users’ behavior through preserving the
privacy of the users’ location-based queries although users’ locations will be
revealed.

– Regular working hours. During daytime, the locations of company em-
ployees are publicly known as their office cubes. Yet, these employees still
want to maintain their privacy when they issue location-based queries as
these queries would reveal their private personal interests.

In this paper, we present a new robust spatial cloaking algorithm that clearly
distinguishes between location privacy and query privacy where mobile users
can entertain private snapshot and continuous location-based queries even if
their locations are revealed. With this distinction, we achieve two main goals:
(1) supporting private location-based services to those customers with public
locations, and (2) performing spatial cloaking on-demand basis only (i.e., when
issuing queries) rather than exhaustively cloaking every single location update

260 C.-Y. Chow and M.F. Mokbel

as in traditional spatial cloaking techniques. The main idea of our robust spatial
cloaking algorithms is to anonymize the link between user locations and location-
based queries in this a way that even the user locations are known, an adversary
would not be able to link the user location to the submitted query. This paradigm
is a radical shift from almost all of existing location privacy techniques that aim
to anonymize the user location itself with the assumption that if an adversary
cannot get access to the user location, then the adversary cannot know the user
query.

To achieve our goals, we go through three main steps. First, we identify two
main adversary attacks, namely, query sampling and query tracking attacks, that
take place in almost all existing location privacy techniques when distinguishing
between location and query privacy. Second, we identify two main properties,
namely, k-sharing region and memorization, that if satisfied in any location cloak-
ing technique, the underlying technique will be free of the query sampling and
query tracking attacks. Finally, we present our robust algorithm that possesses
the k-sharing region and memorization properties to support private continuous
location-based queries for users with public location information. In general, the
contributions of this paper can be summarized as follows:

– We introduce a novel query privacy notion in which mobile users are either
obligated or willing to reveal their locations, yet they do not want to be
identified as the issuer of their location-based queries. This privacy notion is
relaxed from the widely used notion that considers hiding the user location
and user query in one process. Several applications can make use of our new
notion to enhance the overall quality of location-based services.

– We show that directly applying existing spatial cloaking techniques to the
new query privacy notion would immediately result in two privacy attack
models, namely, query sampling and query tracking attacks, that can be
used by adversaries to infer the actual querying users.

– We identify two main properties, namely, k-sharing region and memorization
that if applied to any location cloaking technique, would make it free from
the introduced attack models.

– We propose a new robust spatial cloaking technique that: (a) distinguishes
between location privacy and query privacy, (b) employs the k-sharing region
and memorization properties, and (c) supports continuous location-based
queries.

– We provide experimental evidence that the robust spatial cloaking algorithm
is scalable in terms of supporting large numbers of users and continuous
queries, efficient in terms of supporting various user privacy requirements,
provides high-quality services without compromising users’ query privacy.

The rest of the paper is organized as follows: Section 2 highlights the related
work. The underlying system model is presented in Section 3. Section 4 outlines
the adversary attacks. Section 5 presents the required properties to avoid the
identified adversary attacks. Our proposed robust spatial cloaking technique
is presented in Section 6. Section 7 delineates experimental evaluation of our
proposed techniques. Finally, Section 8 concludes the paper.

Enabling Private Continuous Queries for Revealed User Locations 261

2 Related Work

Almost all previous techniques for location privacy do not distinguish between
location privacy and query privacy where the main focus is always to pre-
serve the location privacy. Preserving query privacy is done as a by product
of preserving the location privacy. For example, if a certain user wants to
have her location k-anonymized, then each query issued by this user will be
also k-anonymized. Unfortunately, these techniques would not work if the loca-
tion cannot be anonymized. In general, existing research efforts for preserving
location privacy can be categorized based on three orthogonal dimensions,
namely employed techniques, underlying system architecture, and user privacy
requirements:

– Employed techniques. Based on the underlying employed technique, lo-
cation privacy techniques can be classified to either: (a) reporting false loca-
tions [15, 16] where the main idea is to cheat the server by either generating
a set of n locations in which only one of them is true [15] or aligning the ac-
tual location to the nearest prescribed landmark location [16], or (b) spatial
cloaking [8, 9, 10, 11, 12, 13, 17, 18] where the main idea is to blur user lo-
cations into spatial regions that satisfy certain privacy requirements. In this
paper, we focus on spatial cloaking techniques as they are more efficient,
accurate, and most commonly used than false location techniques.

– Underlying system architecture. Based on the underlying system archi-
tecture, location privacy techniques utilize either: (a) a centralized architec-
ture in which a third trusted party is responsible in cloaking the locations
of mobile users [8, 9, 10, 11, 12, 13], or (b) a peer-to-peer architecture in
which mobile users collaborate with other peers to find cloaked spatial re-
gions [18, 19, 20]. In this paper, we do not have any assumption for the
underlying system architecture as our proposed techniques can be applied
to both centralized and peer-to-peer architecture.

– User privacy requirements. Based on user privacy requirements, location
privacy techniques consider at least one of two main privacy requirements:
(a) k-anonymity in which the user wants to be indistinguishable among k
users [9, 10, 11, 12, 13, 18], and (b) minimum area in which the user wants
to have a blurred region with an area size at least Amin [8, 12, 18]. Our
proposed techniques in this paper support both of these requirements.

In terms of continuous queries, existing research efforts for location privacy
techniques (e.g., see [8, 9, 10, 12, 13, 15, 16, 17, 18]) focus only on the case of
snapshot queries with no direct extension to the case of continuous queries .

Our proposed robust location privacy technique distinguishes itself from all
previous techniques in the following: (1) It distinguishes between location privacy
and query privacy, thus it can still provide anonymity to location-based queries
even if the user locations are known, (2) It preserves the privacy of continuous
queries as well as snapshot queries, (3) It does not hold any assumption about
the system architecture as it can work for both centralized and peer-to-peer
architecture.

262 C.-Y. Chow and M.F. Mokbel

3 System Architecture

Figure 1 depicts the underlying system architecture that can employ our tech-
niques. In general, the system architecture includes three main entities, mobile
users, spatial cloaking techniques, and back-end database server.

3.1 Mobile Users

To distinguish between location privacy and query privacy, mobile users register
in the system with a privacy profile (kl, kq), where kl indicates that the user
wants her location to be kl-anonymous, i.e., the cloaked region for user location
should contain at least kl users, while kq indicates that the user wants her query
to be kq-anonymous, i.e., the cloaked region for user query can be reported by
at least kq users (if all these users want to issue queries). Based on the values of
kl and kq, we distinguish between two privacy modes:

– Public location with private query (kl = 1, kq > 1). In this mode, users are
willing or obligated to reveal their locations (kl = 1), yet they do not want
adversaries to link their locations to the queries they issue (kq > 1). Thus,
the user location is simply sent to a database server without any perturbation
processing while the location information of queries is cloaked into spatial
regions that satisfy the query privacy requirement before forwarding them
to the database server.

– Private location with private query (kl > 1, kq > 1, kq ≥ kl). In this mode,
users want to hide both their locations and query information. However, users
have the luxury to request different privacy requirements for their locations
and queries. In this case, both user locations and queries are blurred into
spatial regions according to the privacy requirements before sending them
to the database server.

It is important to note that in all cases, kq ≥ kl; otherwise, a user query
would degrade the degree of privacy protection of the user location. For example,
consider the extreme case of a user with kq = 1, even this user has very high

User locations
& queries

Centralized Spatial
Cloaking Algorithm

A
B

C

Mobile Users

A
B

C

Public location with private query mode

Private location with private query modeDistributed Architecture

Distributed Spatial Cloaking Algorithm

Centralized Architecture

L1
L2

L3

Private locations

Q1
Q2

Q3

Private queries

Q1
Q2

Q3

Private queries

A

B
C

Public locations

System Architecture The Output of Spatial Cloaking Algorithms

Location-
based

Database
Server

Privacy-aware
Query Processor

Mobile Users

Fig. 1. System architecture and privacy modes

Enabling Private Continuous Queries for Revealed User Locations 263

kl, whenever the user issues a query, the user will be the only person within the
query region, thus her personal location can be immediately revealed. Another
thing to note is that all existing spatial cloaking techniques implicitly consider
only the case of kl = kq, where no distinction is made between location privacy
and query privacy.

For simplicity, we do not include the minimum area requirements for the
spatial cloaked region. As have been proposed in the literature, integrating the
minimum area requirements can be done simply be aligning the cloaked area
from the k-anonymity requirement to a grid area that satisfies the minimum
area requirements [12, 18].

3.2 Spatial Cloaking Techniques

At the core of the system, spatial cloaking techniques are employed to blur the
user locations and queries into spatial regions that satisfy each user profile. Our
robust spatial cloaking techniques can be incorporated into either centralized
or distributed architecture. In the centralized architecture (top left corner of
Figure 1), a third trusted party is employed to blur the user locations and/or
queries into cloaked spatial regions while in the distributed architecture (bottom
left corner of Figure 1), system users employ a peer-to-peer spatial cloaking
algorithm to blur their locations and/or queries into cloaked regions. Regardless
of the architecture, the output of the spatial cloaking algorithm has two sets.
The first output set is either a set of exact point locations in case of public
location mode, kl = 1 (represented as black dots A, B, and C in Figure 1)
or a set of cloaked location regions in case of private location mode, kl > 1
(represented as regions L1, L2, and L3 in Figure 1). The second output set is
spatial query regions for the query privacy requirements kq ≥ kl (represented as
query rectangles Q1, Q2, and Q3 in Figure 1).

3.3 Database Server

At the back-end of the system, a privacy-aware query processor is embedded
inside the location-based database server in order to tune its functionalities to
deal with cloaked spatial regions for user locations and user queries rather than
exact point locations. The details of the privacy-aware query processor is beyond
the scope of this paper where it has been well studied in [12, 21].

4 Privacy Leakage in Spatial Cloaking Techniques

This section presents two privacy attack models that can be used by adversaries
to link users with revealed locations to their queries. The first attack, query sam-
pling, is applicable for snapshot queries while the second attack, query tracking,
is applicable for continuous queries. For these two attacks, we briefly discuss the
applicability of the following spatial cloaking algorithms: the adaptive interval
cloaking [10], CliqueCloak [9], k-area cloaking [11], Casper [12], hilbASR [13],
nnASR [13], and the uncertainty cloaking [8].

264 C.-Y. Chow and M.F. Mokbel

D, E, F 3
B, C 3

A 3
Users k

x

A

B

D

C

E

y

F

R3
R2
R1

Cloaked Region

R1
R2

R3

(a) Query sampling

At time ti

A

B

D

C
E

x

y

G

F

H

J I

K

At time ti+1

y

A B

G
F

H

D

C

E

J

I K
At time ti+2

y

A

I

K

J

B

G

F

H
D

C

E

x x

(b) Query tracking

Fig. 2. Privacy attack models

4.1 Query Sampling Attacks

In many cases, the location distribution of users is not uniform, e.g., there are
many users in a shopping mall (a dense area), but there are only a few users in a
small cafe near the mall (a sparse area). Thus, the users located in sparse areas
become outliers in the system [13]. As a result of this non-uniform user location
distribution, most of existing spatial cloaking algorithms tend to generate larger
cloaked spatial regions for the users in sparse areas than that of users in dense
areas. If the user location information in a sparse area is known, then, using the
query sampling attack, an adversary can link this location to a certain query.

Attack scenario. Figure 2(a) gives an example of the query sampling attack
where there are six users A, B, C, D, E, and F . Since almost most of existing spa-
tial cloaking techniques do not distinguish between location privacy and query
privacy, users can provide only one value for k-anonymity (k=3). The cloaking
result is that user A has R1 as its cloaked region, users B and C have R2 as
their cloaked region, while users D, E, and F have R3 as their cloaked region.
In case that user locations are publicly known, an adversary can see that user A
is an outlier to the system. Then, from the cloaked region R1, the adversary can
infer that the query is sent by user A located in the sparse area. The main idea
is that if the query has been issued by any other user, the cloaked spatial region
must first cover the surrounding users in the dense area to generate a smaller
cloaked spatial region. As a result, given the knowledge of the user locations, an
adversary can link location-based queries to their users.

Analysis. With the exception of CliqueCloak [9] and hilbASR [13], all other
spatial cloaking techniques suffer from the query sampling attack. For example,
the techniques that rely on k-anonymity (the adaptive interval cloaking [10],
Casper [12], and nnASR [13]) would simply result in a scenario similar to that of
Figure 2(a). On the other hand, spatial cloaking techniques that rely only on a
spatial area (e.g., k-area cloaking [11] and uncertainty cloaking [8]) may end up
to the case where only one user is located at the cloaked spatial region. Given

Enabling Private Continuous Queries for Revealed User Locations 265

the public knowledge of the locations of these users, it would be trivial to link a
query to its issuer. Both the CliqueCloak algorithm [9] and hilbASR [13] are free
from the query sampling attack as these algorithms ensure that a cloaked spatial
region R contains at least k users and all these k users report R as their cloaked
regions. However, the CliqueCloak algorithm suffers from high computational
cost as it can support only k-anonymity up to k = 10 [9] while the static version
of hilbASR lacks flexibility in supporting various k-anonymous requirements [13].

4.2 Query Tracking Attacks

For continuous queries, mobile users have to continuously report their location
information to a database server. Although the location information of a query is
cloaked as regions, an adversary could link consecutive time snapshots together
to identify the query issuer.

Attack scenario. Figure 2(b) gives an example of the query tracking attack
where there are eleven mobile users A to K. At time ti, user A issues a five-
anonymous continuous query. Cloaking algorithms would give an area that con-
tains users A, B, C, D, and E. Assuming uniform distribution, an adversary can
only guess that this query is coming from any of these five users within the query
area. At time ti+1, mobile users change their locations while the five-anonymous
continuous query is still running. An adversary can see that currently the con-
tinuous query area contains users A, B, F , G, and H . By linking the snapshots
of the continuous query at time ti and ti+1, the adversary can guess that the
query issuer is either A or B as they are the only common users between these
two snapshots. Similarly at time ti+2, the adversary can conclude that A is the
user query issuer as A is the only common user within the query area for all
three consecutive snapshots.

Analysis. Since all of our studied cloaking techniques focus only on the case of
snapshot queries, these algorithms will suffer from the query tracking attack.

5 Privacy-Preserving Properties

In this section, we identify two main general properties, namely, k-sharing re-
gion and memorization, that if employed by any spatial cloaking technique, the
cloaking technique will be free from query sampling and query tracking attacks:

– k-sharing region. Employing the k-sharing region property would directly
eliminate the query sampling attack. The main idea of the k-sharing region
property is to define a more restrictive k-anonymity requirement: A cloaked
spatial region not only contains at least k users, but the region is also shared
by at least k of these users. Figure 3(a) depicts the result of applying the
k-sharing region property to the example given in Figure 2(a). Each cloaked
region R1 and R2 is reported and shared by at least three users. Thus, with
the knowledge of user locations and regardless of the user distribution in the
space, an adversary cannot link a query to a certain user.

266 C.-Y. Chow and M.F. Mokbel

D, E, F 3
B, C 3

A 3
Users k

x

A

B

D

C

E

y

F

R3
R1
R1

Cloaked Region

R1

R3

(a) Query sampling

At time ti

A

B

D

C
E

x

y

G

F

H

J I

K

At time ti+1

y

A B

G
F

H

D

C

E

J

I K
At time ti+2

y

A

I

K

J

B

G

F

H
D

C

E

x x

(b) Query tracking

Fig. 3. Solutions for privacy attack models

– Memorization. Employing the memorization property would directly elim-
inate the query tracking attack. The main idea of the memorization property
is that the spatial cloaking algorithm has to memorize the users who are con-
tained in the cloaked spatial region of a continuous query at the time when
the query is initially issued. Then, with each snapshot of the query, the spa-
tial cloaking algorithm should make sure that these initial users are still
within the query cloaked area. Figure 3(b) depicts the result of applying the
memorization property to the example given in Figure 2(b). The cloaked
query regions at all instances of the continuous query at time ti, ti+1, and
ti+2 include the five users A, B, C, D, and E. Thus, an adversary cannot
narrow down his search to less than the five original users.

It is important to note that both the k-sharing region and memorization prop-
erties are algorithm-independent. So, any spatial cloaking algorithm that has
these properties is free from the query sampling and query tracking attacks.

6 Robust Spatial Cloaking Algorithm

This section presents our robust spatial cloaking algorithm that distinguishes be-
tween location privacy and query privacy while supporting continuous queries.
The main idea is to group a set of mobile users together such that the cloaked
query region for each mobile user in a group G is the spatial region that in-
cludes all users in G. The rest of this section is organized as follows: Section 6.1
introduces the dynamic group concept which is the main underlying idea of
our proposed robust spatial cloaking algorithm. Section 6.2 discusses the algo-
rithm details. Section 6.3 depicts that the proposed algorithm satisfies both the
k-sharing region and memorization properties.

6.1 Dynamic Group Concept

The main idea of the dynamic group concept is to group users together based
on their privacy requirements where each group of users has at least one user

Enabling Private Continuous Queries for Revealed User Locations 267

currently issuing a location-based query. Formally, a group of users should have
the following three properties:

1. The number of users in a group is equal to or larger than the most restrictive
k-anonymity query requirement among all querying users in the group.

2. All users in the same group report the same cloaked spatial region as their
cloaked query regions. This spatial region is the minimum region (aligned to
some grid) that includes all users belong to that group.

3. For each group, if there are more than one user issuing the same query, the
query is only registered once with the database server.

In general, a user is not allowed to issue a snapshot or continuous query unless
the user belongs to a certain group. Users may leave their groups once their
queries are terminated. Similarly, users may join a new group whenever they
want to issue new queries. In the same time, users may be added to or removed
from some groups to help other users form a cloaked query area. A user can be
either in a grouped or ungrouped state. Initially, all users are in the ungrouped
state. Whenever a user joins an existing group or form a new group, the user
becomes in the grouped state. Only grouped users are allowed to issue location-
based queries. Each user maintains a tuple U = (id, L, Kl, Kq,Q, G), where id
is a unique user identifier, L is the user’s current location, Kl and Kq are the
location anonymity and query anonymity privacy requirements, respectively, Q
is a set of queries sent by the user, and G is the identifier of the group where the
user is assigned to. Setting G to null indicates that the user is in the ungrouped
state. For each group, we maintain a tuple G = (id,M, R, K,Q), where id is
a unique group identifier, M is a set of users assigned to G, K is the most
restrictive k-anonymity query privacy requirement of all users assigned to G, R
is the cloaked spatial region of G, and Q is a set of queries issued by at least one
user assigned to G. For each query, we maintain a tuple Q = (id, Sl, Sc), where
id is an unique query identifier (all queries with the same content have the same
id), Sl memorizes the set of members when the query is issued by a member,
and Sc is the set of current members that were included in Sl.

6.2 Algorithm

Our robust spatial cloaking algorithm has four main modules: (1) Query regis-
tration which is called whenever a user wants to issue a snapshot or continuous
location-based query, (2) Query termination which is called whenever a user
wants to terminate its previously issued query, (3) Group join which is called
from the query registration module to find the most suitable group for the query-
ing user, and (4) Group leave which is called by the user to act as a cleanup
process whenever the user wants to disconnect from the system. Details of these
modules as follow:

Query registration. Algorithm 1 depicts the pseudo code of the query registra-
tion module. This module is called only when a user issues a snapshot or continu-
ous location-based query. The goal of query registration is to find a suitable group

268 C.-Y. Chow and M.F. Mokbel

Algorithm 1. Robust Spatial Cloaking: Issue a Query
1: procedure QueryRegistration (Query Q, User U)
2: if U.G = null then
3: GroupJoin(Q, U) (See Algorithm 3)
4: else
5: G ← U.G
6: if |G.M| > U.Kq then
7: Q.Sl ← G.M; Q.Sc ← G.M
8: if Q /∈ G.Q then
9: G.Q ← G.Q ∪ {Q}

10: Send Q to the database server as cloaked region G.R
11: end if
12: else
13: GroupLeave(U)
14: GroupJoin(Q, U) (See Algorithm 3)
15: end if
16: end if

G that matches the querying user location and the query privacy requirements.
Then, the cloaked region for the issued query is the minimum spatial region R that
includes all users in G. To avoid having mobile users lying on the cloaked area
boundary, the minimum spatial region R is aligned to a certain grid. The query
registration module starts by checking the status of the querying user (Line 2 in
Algorithm 1). If the querying user is ungrouped, i.e., does not belong to any cur-
rent group (U.G = null), then we call the group join module to find the suitable
group for the user (Line 3 in Algorithm 1). Then, the algorithm terminates as the
query cloaked region would be computed from the group that the user will join. On
the other side, if the querying user is already in the grouped state (i.e., belongs to
a group G), we check if the current user group does satisfy the user query privacy
requirement, i.e., the number of users within G (|G.M|) is equal to or greater than
the user query anonymity (U.Kq) (Line 6 in Algorithm 1). If this is the case, we set
the query’s Sl and Sc to the users within G (G.M) (Line 7 in Algorithm 1). Then,
we check if the user query is already registered by some other users in the same
group. If this is the case, we do nothing as the current user can share the query
answer with other users. However, if the issued query is a new one, we add it to
the current outstanding queries of G and send it as cloaked region to the database
server (Lines 8 to 11 in Algorithm 1). Finally, if the current user group G does not
satisfy the user query privacy requirements, the user has to leave G and join an-
other group thatwouldbemore suitable to the query privacy requirement (Lines 13
to 14 in Algorithm 1). In this case, the query cloaked region will be produced from
the new group that the user will join.

Query termination. Algorithm 2 depicts the pseudo code of the query termi-
nation module. This module is called when a user decides to terminate its out-
standing continuous query or when the result of the snapshot query is received.
The main idea of the algorithm is to update the user and group information with
respect to the terminated query, and unregister the query if there are no other
group members that are interested in this query. This process is done in two
phases. In the first phase, we clean the group information while in the second
phase we clean the user information. For the first phase, we start by checking if

Enabling Private Continuous Queries for Revealed User Locations 269

Algorithm 2. Robust Spatial Cloaking: Terminate a Query
1: procedure QueryTermination (Query Q, User U)
2: G ← U.G
3: if no other querying users in G are interested in Q then
4: Wait until |Sc| − |Sl| ≥ k, unregister Q with the database server; G.Q ← G.Q − {Q}
5: if G.Q is empty then Annihilate G, and mark all users in G as ungrouped; return;
6: end if
7: U.Q ← U.Q − {Q}
8: if U.Q is empty then
9: G.K ← max(∀ Ui.Kq, Ui ∈ G.M∧ Ui.Q 	= {∅});

10: if |G.M| > G.K then
11: Determine a centroid of all querying users in G
12: Remove |G.M|− G.K non-querying members that are furthest away from the centroid
13: end if
14: end if

there are any other group members in G who are interested in the terminated
query Q (Line 3 in Algorithm 2). If this is not the case, we remove Q from the
list of outstanding queries in G. Also, we have to unregister Q from the database
server. To do this process safely, we wait until at least k users in Q’s Sl have left
G before we can safely unregister Q from the server. The key idea of suspending
query termination is to mix the query termination event with at least k related
group removal events, in order to avoid an adversary linking the query termi-
nation event to a particular user with a probability higher than 1/k (Line 4 in
Algorithm 2). After terminating Q, if there are no more querying users in G,
we annihilate the group G by marking all group members as ungrouped while
updating their tuples accordingly (Line 5 in Algorithm 2). The second phase
(cleaning user information) is invoked only if group G is still outstanding. In
this phase, we start by removing the terminated query Q from the list of out-
standing queries associated with the user U (Line 7 in Algorithm 2). Then, we
update the group privacy information G.K to be the current maximum privacy
requirements of all querying users within G (Line 9 in Algorithm 2). Since, we
are updating the maximum group privacy requirement G.K, we may end up in
having G.K less than the number of current user in G (|G.M|). In this case,
G is considered to have additional |G.M| −G.K users than what it needs. So,
we aim to to release all these additional group members as this would mainly
reduce the group region area G.R and in the same time allow released users to
either form new groups or join other existing groups that could be more suitable
to their privacy requirements. To do this process, we remove the |G.M| −G.K
non-querying members that are furthest away from the centroid of all querying
users in the group. (Lines 11 to 12 in Algorithm 2). The key idea of using the
centroid of all querying members is to minimize the group region area G.R with
respect to querying members. Minimizing a group region area would result in
better accuracy in the query answer reported from the database server.

Group join. Algorithm 3 depicts the pseudo code of the group join operation.
The key idea of this module is to find a group for a user that is suitable to the
user query privacy requirement. We start by finding a set of groups G covering
the user location, and then sort them by their group region area in an increasing
order (Lines 3 to 4 in Algorithm 3). The main idea of sorting based on the area

270 C.-Y. Chow and M.F. Mokbel

Algorithm 3. Robust Spatial Cloaking: Group Join
1: procedure GroupJoin (Query Q, User U)
2: G′ ← {∅};
3: G ← all existing groups G that cover the user location, i.e., U.L ∈ G.R
4: Sort G by the area of G.R in an increasing order
5: for each group G in G do
6: if |G.M| + 1 ≥ U.Kq then
7: G′ ← G′ ∪ {G}
8: if Q ∈ G.Q then G.M ← G.M ∪ {U.id}; Q.Sc ← G.M; Q.Sl ← G.M return
9: end if

10: end for
11: if G′ 	= null then
12: G ← the first group in G′

13: G.M ← G.M ∪ {U.id}; Q.Sc ← G.M; Q.Sl ← G.M; G.Q ← G.Q ∪ {Q}
14: Send the query in U.Q to the database server as cloaked region G.R
15: else
16: if the number of ungrouped users < U.Kq then
17: Suspend the request for a certain period of time
18: Go to Line 2
19: end if
20: Construct a new group G
21: U.G ← G;G.M ← {U.id}; Q.Sc ← G.M; Q.Sl ← G.M; G.Q ← {Q}; G.K ← U.Kq

22: Add G.K ungrouped users that are closest to U.L into G
23: Send the query in U.Q to the database server as cloaked region G.R
24: end if

is to give preference to those groups with minimum region area G.R Then, we
join the user to a group G based on following prioritized cases with the first one
is the highest priority while the last one is the lowest priority:

1. If there is a group G ∈ G satisfying the user’s query privacy requirement, i.e.,
|G.M| + 1 ≥ U.Kq and the user’s required query Q has already registered
in G, i.e., Q ∈ G.Q, we simply assign the user U to G, and set Q’s Sl and
Sc to the users within G (G.M). Notice that, due to the pre-sorting step,
if there are several groups with this property, we pick the group G with the
minimum region area G.R (Lines 5 to 10 in Algorithm 3).

2. If there is a group G ∈ G satisfying the user’s query privacy requirement,
i.e., |G.M| + 1 ≥ U.Kq but does not have the query Q among its query
list, we assign U to G. In this case, we would need to register Q with G
and send Q to the database server as the cloaked region G.R. Notice that
if there multiple groups G, we would select the one with the minimum area
G.R (Lines 5 to 10 in Algorithm 3).

3. Otherwise, we check whether there are enough number of ungrouped users
to construct a new group for the user. In case that the number of ungrouped
users is less than the user’s query privacy requirement, we suspend the re-
quest a prescribed period of time, and then it restarts (Lines 17 to 18 in
Algorithm 3). On the other side, if we are able to construct a new group G
for the user U , we add G.K (that is equal to U.Kq) ungrouped users that
are closest to the user’s location to G, in order to satisfy the user’s query
privacy requirement (Lines 20 to 22 in Algorithm 3). The reason of adding
nearby ungrouped users to G is to minimize the group region size. Finally,
the algorithm registers the query with a database server with the cloaked
region G.R from by the locations of the new group members.

Enabling Private Continuous Queries for Revealed User Locations 271

Algorithm 4. Robust Spatial Cloaking: Group Leave
1: function GroupLeave (User U)
2: // U is a tuple of a leaving user
3: G ← U.G
4: if U.Q is not empty then
5: for each Q ∈ U.Q do
6: QueryTermination (Q, U)
7: end for
8: end if
9: for each Q ∈ G.Q, if U.id ∈ Q.Sc then Q.Sc ← Q.Sc − {U.id}

10: U.G ← null; G.M ← G.M − {U.id};
11: if |G.M| < G.K then
12: Determine a centroid of all querying users in G
13: Add one ungrouped users that is closest to the centroid into G
14: end if

Group leave. Algorithm 4 depicts the pseudo code of the group leave module.
This module is executed when a user U decides to leave the system. The first
thing to do when is to go through all outstanding queries of U and terminate
them one by one (Lines 4 to 7 in Algorithm 4). If the user is included in some
query memorization sets, the user is removed from these sets (Line 9 in Algo-
rithm 4). Then, we set the user group to null and remove the user from its current
group. It may happen that removing this user would reduce the number of users
in the group (|G.M|) to be less than the most restrictive query privacy require-
ment (G.K). If this is the case, we add another ungrouped user, if possible, that
is the closest to the centroid of querying users (Lines 12 to 13 in Algorithm 4).

6.3 Correctness

In this section, we depict that the robust spatial cloaking algorithm has the k-
sharing region and memorization privacy-preserving properties, and thus is free
from query sampling and query tracking privacy attacks.

The robust spatial cloaking algorithm is free from query sampling at-
tacks. For each group G, the number of users in G (|G.M|) is guaranteed to
satisfy the most restrictive query privacy requirement among the querying mem-
bers. As depicted in Line 22 in Algorithm 3 and Line 13 in Algorithm 4, when-
ever the number of users becomes less than the most restrictive query privacy
requirement, we immediately add more users to the group. Thus, the group re-
gion satisfies the query privacy requirement of all querying members. Since we
only report the group region G.R as the location information of all snapshot
or outstanding continuous queries, so the group region is always shared by all
group members. Therefore, the algorithm possesses the k-sharing region privacy-
preserving property.

The robust spatial cloaking algorithm is free from query tracking at-
tacks. We will consider four cases, no member admission or removal, non-
querying member admission, querying member admission, and member removal.
Let S be the set of members located within the group region G.R at the time
when a query Q is initially registered with a database server. First, if there is no

272 C.-Y. Chow and M.F. Mokbel

member admission or removal, the subsequent G.R must contain all members
in S. Thus, the algorithm has the memorization privacy-preserving property.
Second, a non-querying member admission does not affect the memorization
property, because G.R must still contain all members in S. Third, a querying
member admission also does not affect this property, since this member has been
located within G.R for some time, i.e., we do not expand G.R to include any new
members. Thus, an adversary cannot link the newly issued query to a particular
user within G.R. Fourth, for each registered query, the query is only unregistered
with a database server after at least k candidate issuers have left G. Thus, an
adversary cannot link the query to these candidate issuers with a probability
higher than 1/k. Therefore, the algorithm possesses the memorization privacy-
preserving property.

7 Experimental Result

In this section, we experimentally evaluate the robust spatial cloaking algorithm,
in terms of scalability and privacy requirements. In all experiments of this sec-
tion, we use the Network-based Generator of Moving Objects [22] to generate a
set of moving objects. The input to the generator is the road map of Hennepin
County in Minnesota, USA. The output of the generator is a set of moving ob-
jects that move on the road network of the given map. We consider continuous
nearest-neighbor queries for a randomly selected object type, i.e., “continuously
report my nearest object”. Furthermore, we consider three performance metrics,
cloaked region area, number of continuous queries, and number of groups. The
cloaked region area metric is defined as the ratio of the average area of the cloaked
spatial region reported to a database server to the entire system area, while the
number of continuous queries metric is defined as the total number of query reg-
istration. The number of groups metric is the total number of groups created by
the robust spatial cloaking algorithm. In all experiments, 10% of system users
issue continuous queries.

7.1 Scalability

Figures 4 and 5 give the scalability of the robust spatial cloaking algorithm with
increasing the number of users from 10K to 50K (with three different levels of
k-anonymity for their queries [1, 10], [10, 50], and [50, 100]), and the number of
object types from 10 to 100 (with different numbers of users from 20K to 50K),
respectively. In this experiment, there are 50 object types. Figure 4(a) depicts that
the cloaked spatial region area reduces with increasing the number of users. When
there are more users, the user density is higher, so each group generally has smaller
region area. With more querying users, the number of groups and registered
continuous queries increases, as depicted in Figures 4(b) and 4(c), respectively.
Furthermore, the cloaked region area gets larger, when the users have more restric-
tive query privacy requirements (Figure 4(a)). This is because we need to assign
more users to a group, in order to satisfy the querying user’s privacy requirement.
Figures 4(b) and 4(c) depict that there is less number of groups and continuous

Enabling Private Continuous Queries for Revealed User Locations 273

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

Number of Users (K)

C
lo

a
k

e
d

 R
e

g
io

n
 A

re
a

 /
 S

y
s

te
m

 A
re

a
 (

%
)

k=[1, 10]
k=[10, 50]
k=[50, 100]

(a) Cloaked Region Area

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Number of Users (K)

N
u

m
b

e
r

o
f

G
ro

u
p

s
 (

K
)

k=[1, 10]
k=[10, 50]
k=[50, 100]

(b) No. of Groups

10 20 30 40 50
0

1

2

3

4

5

Number of Users (K)

N
u

m
b

e
r

o
f

C
o

n
ti

n
u

o
u

s
 Q

u
e
ri

e
s
 (

K
)

k=[1, 10]
k=[10, 50]
k=[50, 100]

(c) No. of Queries

Fig. 4. Number of users

10 20 40 60 80 100
0.15

0.2

0.25

0.3

0.35

0.4

Number of Object Types

C
lo

a
k

e
d

 R
e

g
io

n
 A

re
a

 /
 S

y
s

te
m

 A
re

a
 (

%
)

20K
30K
40K
50K

(a) Cloaked Region Area

10 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Object Types

N
u

m
b

e
r

o
f

G
ro

u
p

s
 (

K
)

20K
30K
40K
50K

(b) No. of Groups

10 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Object Types

N
u

m
b

e
r

o
f

C
o

n
ti

n
u

o
u

s
 Q

u
e
ri

e
s
 (

K
) 20K

30K
40K
50K

(c) No. of Queries

Fig. 5. Number of object types

queries, respectively, as the users have more restrictive query privacy requirement.
With more restrictive privacy requirement, there are more users in a group that
leads to a higher chance for them to share query answer.

Figure 5 depicts the performance of our robust spatial cloaking algorithm
with respect to various number of object types. In this experiment, the query k-
anonymity requirement is between 10 and 50. Figures 5(a) and 5(b) give that the
cloaked region area and number of groups are only slightly affected by increasing
the number of object types. However, the number of registered continuous queries
rises with more different object types (Figure 5(c)). This is due to the fact that if
there are more different object types, there is a higher chance for the users issuing
continuous queries for distinct object types in a group. As a result, each group
has to register more continuous queries with a database server with increasing
the number of object types.

7.2 Effect of Query Privacy Requirement

In this experiment, we increase the k-anonymity query privacy requirement Kq

from 10 to 160 with various number of users from 20K to 50K, and the number
of object types is 50. With more restrictive query privacy requirements, more
users are assigned to each group, so the group region area increases (Figure 6(a)).
When the group region area gets larger, there is a higher chance for a querying

274 C.-Y. Chow and M.F. Mokbel

10 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

Value of k

C
lo

a
k

e
d

 R
e

g
io

n
 A

re
a

 /
 S

y
s

te
m

 A
re

a
 (

%
)

20K
30K
40K
50K

(a) Cloaked Region Area

10 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Value of k

N
u

m
b

e
r

o
f

G
ro

u
p

s
 (

K
)

20K
30K
40K
50K

(b) No. of Groups

10 20 40 60 80 100 120 140 160
1.5

2

2.5

3

3.5

4

4.5

5

Value of k

N
u

m
b

e
r

o
f

C
o

n
ti

n
u

o
u

s
 Q

u
e
ri

e
s
 (

K
) 20K

30K
40K
50K

(c) No. of Queries

Fig. 6. k-anonymity query privacy requirement

user joining an existing group. Thus, the number of groups reduces with increas-
ing the value of k, as depicted in Figure 6(b). With more querying users in a
group, more users are interested in the same object type, i.e., they can share the
query answer; and therefore, the number of registered continuous queries drops
when the query privacy requirement gets more restrictive (Figure 6(c)).

8 Conclusion

In this paper, we have introduced a new privacy notion in which mobile users can
protect their query privacy even if their locations are revealed. This privacy no-
tion is crucial in many applications where users are obligated or willing to reveal
their locations. We show that with this new privacy notion, existing techniques
for preserving the privacy of location-based queries would fail as these techniques
do not distinguish between location privacy and query privacy. Namely, we iden-
tify two privacy attacks models, query sampling and query tracking that take
place upon distinguishing between location privacy and query privacy. Then, we
outline two main properties, namely k-sharing region and memorization that if
satisfied by location privacy techniques would make them resilient to the identi-
fied attack. Then, we present a robust spatial cloaking technique that: (1) clearly
distinguishes between location privacy and query privacy, (2) supports continu-
ous and snapshot location-based queries, (3) employs both the k-sharing region
and memorization properties, hence, free from the identified attacks. Experi-
mental results show that the robust spatial cloaking algorithm is scalable and
efficient in terms of large numbers of mobile users, object types, and various
privacy requirements.

References

[1] Ackerman, L., Kempf, J., Miki, T.: Wireless Location Privacy: A Report on Law
and Policy in the United States, the Europrean Union, and Japan. Technical
Report DCL-TR2003-001, DoCoMo Commuinication Laboratories, USA (2003)

[2] Barkhuus, L., Dey, A.K.: Location-Based Services for Mobile Telephony: a Study
of Users’ Privacy Concerns. In: Proceeding of the IFIP Conference on Human-
Computer Interaction, INTERACT (2003)

Enabling Private Continuous Queries for Revealed User Locations 275

[3] Beresford, A.R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE
Pervasive Computing 2(1), 46–55 (2003)

[4] Warrior, J., McHenry, E., McGee, K.: They Know Where You Are . IEEE Spec-
trum 40(7), 20–25 (2003)

[5] Foxs News: Man Accused of Stalking Ex-Girlfriend With GPS. (September
4, 2004), http://www.foxnews.com/story/0,2933,131487,00.html

[6] USAToday: Authorities: GPS System Used to Stalk Woman. (December 30, 2002)
htt://usatoday.com/tech/news/2002-12-30-gps-stalker x.htm

[7] Voelcker, J.: Stalked by Satellite: An Alarming Rise in GPS-enabled Harassment.
IEEE Spectrum 47(7), 15–16 (2006)

[8] Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving User Location Pri-
vacy in Mobile Data Management Infrastructures. In: Proceedings of Privacy En-
hancing Technology Workshop (2006)

[9] Gedik, B., Liu, L.: Location Privacy in Mobile Systems: A Personalized
Anonymization Model. In: ICDCS (2005)

[10] Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: MobiSys (2003)

[11] Gruteser, M., Liu, X.: Protecting Privacy in Continuous Location-Tracking Ap-
plications. IEEE Security and Privacy 2(2), 28–34 (2004)

[12] Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The New Casper: Query Processing for
Location Services without Compromising Privacy. In: VLDB (2006)

[13] Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preserving Anonymity in
Location Based Services. Technical Report TRB6/06, Department of Computer
Science, National University of Singapore (2006)

[14] Sweeney, L.: k-anonymity: A Model for Protecting Privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

[15] Hong, J.I., Landay, J.A.: An Architecture for Privacy-Sensitive Ubiquitous Com-
puting. In: MobiSys (2004)

[16] Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous Communication Technique
using Dummies for Location-based Services. In: ICPS (2005)

[17] Duckham, M., Kulik, L.: A Formal Model of Obfuscation and Negotiation for
Location Privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE
2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

[18] Chow, C.Y., Mokbel, M.F., Liu, X.: A Peer-to-Peer Spatial Cloaking Algorithm
for Anonymous Location-based Services. In: ACM GIS, ACM Press, New York
(2006)

[19] Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVÉ: Anonymous Location-Based
Queries in Distributed Mobile Systems. In: WWW (to appear, 2007)

[20] Mokbel, M.F., Chow, C.-Y.: Challenges in Preserving Location Privacy in Peer-to-
Peer Environments (Invited paper). In: Proceedings of the International Workshop
on Information Processing over Evolving Networks, WINPEN. (2006)

[21] Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The New Casper: A Privacy-Aware
Location-based Databse Server (Demonstration). In: ICDE (2007)

[22] Brinkhoff, T.: A Framework for Generating Network-Based Moving Objects.
GeoInformatica 6(2), 153–180 (2002)

http://www.foxnews.com/story/0,2933,131487,00.html
htt://usatoday.com/tech/news/2002-12-30-gps-stalker_x.htm

Computing a k-Route over Uncertain
Geographical Data

Eliyahu Safra1, Yaron Kanza2, Nir Dolev1, Yehoshua Sagiv3,�, and Yerach Doytsher1

1 Department of Transportation and Geo-Information, Technion, Haifa, Israel
{safra,dolev,doytsher}@technion.ac.il

2 Department of Computer Science, University of Toronto, Toronto, Canada
yaron@cs.toronto.edu

3 School of Engineering and Computer Science, The Hebrew University, Jerusalem, Israel
sagiv@cs.huji.ac.il

Abstract. An uncertain geo-spatial dataset is a collection of geo-spatial objects
that do not represent accurately real-world entities. Each object has a confidence
value indicating how likely it is for the object to be correct. Uncertain data can be
the result of operations such as imprecise integration, incorrect update or inexact
querying. A k-route, over an uncertain geo-spatial dataset, is a path that travels
through the geo-spatial objects, starting at a given location and stopping after
visiting k correct objects. A k-route is considered shortest if the expected length
of the route is less than or equal to the expected length of any other k-route that
starts at the given location. This paper introduces the problem of finding a shortest
k-route over an uncertain dataset. Since the problem is a generalization of the
traveling salesman problem, it is unlikely to have an efficient solution, i.e., there
is no polynomial-time algorithm that solves the problem (unless P=NP). Hence,
in this work we consider heuristics for the problem. Three methods for computing
a short k-route are presented. The three methods are compared analytically and
experimentally. For these three methods, experiments on both synthetic and real-
world data show the tradeoff between the quality of the result (i.e., the expected
length of the returned route) and the efficiency of the computation.

1 Introduction

Spatial datasets store objects that represent real-world geographical entities. When such
datasets are uncertain, users who see only the information stored in the dataset cannot
be sure whether objects correctly represent real-world entities. However, we assume
that users can verify the correctness of objects by using additional information or by
visiting the geographical locations of these objects. In such datasets, each object has
a correctness value of either true or false, and a confidence value; yet, users do not
know the correctness values. Thus, when querying uncertain datasets, users consider
the confidence of an object as the probability that the correctness value of the object is
true. Applications over uncertain datasets should be able to utilize confidence values.

Some cases in which uncertain datasets occur are integration of heterogeneous
sources, incorrect updates and inexact querying. We start by describing the first case.

� This author was supported by The Israel Science Foundation (Grant 893/05).

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 276–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computing a k-Route over Uncertain Geographical Data 277

When integrating two geo-spatial sources, the result consists of pairs and singletons. A
pair is correct if it comprises two objects that represent the same real-world entity in
the different sources. A singleton (i.e., a set that contains a single object) is correct if
it represents a real-world entity that does not have a corresponding object in the other
source. In the absence of keys, integration can be done by using object locations [3,4] or
by using locations and additional attributes [17]. However, since locations are inaccu-
rate, it is uncertain whether any given pair of the result is correct, that is, whether its two
objects indeed represent the same real-world entity. Thus, the result of the integration
is an uncertain spatial dataset.

Incorrect data manipulation can also yield uncertain datasets. The following example
illustrates this.

Example 1. Consider a dataset of hotels, and suppose that no key constraint is imposed
on this dataset. An incorrect insertion of data into the dataset may cause some hotel
to appear twice with two different rates. In this case, users cannot know which object
shows the correct rate of the hotel. Updates can cause a similar problem, for instance,
when the name of some hotel is replaced with a name of a different hotel that already
exists in the dataset.

Andritsos et al. [1] showed how to assign confidence values to objects in such cases.
Another important usage of uncertain datasets is representing the result of queries

that contain an imprecise condition, namely, an adjective instead of a comparison be-
tween an attribute and a value. For example, find good restaurants, rather than find
restaurants that have a rating of five stars. Additional examples are find a luxury ho-
tel, find a popular tourist site, etc. The ability to cope with such queries is important
in systems that are designed to answer requests for information, formulated by non-
expert users. Such queries are useful when providing tourist and municipal information
to laymen who send their request through some limited device, such as a cellular phone.
When processing requests that are sent from a mobile device, one should bear in mind
that the answer may depend on the location of the user.

Recently, location-based services have become a growing and important area in both
research and commerce. Location-based services supply information through mobile
devices, and the answer to a particular request depends on the location from which the
request was sent, i.e., the location of the mobile device [21]. For instance, a user who
asks about a nearby restaurant will get different answers when the user location is in
Times Square, Manhattan, and in Piccadilly Circle, London.

In this paper, we consider a specific location-based service of finding the shortest
k-route over an uncertain dataset. In this application, the input consists of an uncertain
geo-spatial dataset, a location and some k. The output is a route that starts at the given
location and goes via objects of the given dataset. The route is such that the expected
distance from the starting point till visiting k correct objects is minimal. The following
examples demonstrate the need for providing this service.

Example 2. Consider a user located in Times Square, Manhattan, that is looking for
an inexpensive and good restaurant nearby. The answer to this query can be a list of
restaurants that presumably satisfy the request. However, it can also be an uncertain
dataset that contains all the restaurants in Manhattan, such that the confidence value of

278 E. Safra et al.

each restaurant is correlated with the likelihood that the user will consider this restau-
rant as inexpensive and good. Suppose that the user wants to compare three good and
inexpensive restaurants before deciding in which one to dine. The user may also want to
walk as little as possible when visiting restaurants until she sees three that she likes. In
this case, the information system should find a 3-route starting at the location of the user
in Times Square and going through restaurants in the dataset in a way that increases the
likelihood to visit three inexpensive, good restaurants after a short walk.

There are many other scenarios in which finding the shortest k-route can be useful. For
instance, before leasing or buying a house, it may be reasonable to visit and compare
several options, and to do that efficiently means to go through a short route. Also, for
planing a tour in some city or in some country, it may be useful to use such an application.

Finding the shortest k-route can be seen as the spatial version of computing top-k
answers to a query. In many information-retrieval systems and also in some database
applications, the result of a query contains only the top-k answers to the query. For
instance, search engines on the World-Wide Web may present to users only the top
1000 results out of the millions of answers to a query. In geographical applications,
answers should not be ranked merely according to how well they match the query.
Objects should be returned with a recommended route to take in order to visit them.
Moreover, choosing such a route may have an influence on how the objects are ranked
in the answer to the user. The shortest k-route that we propose in this paper is one way
of doing it.

The problem of finding the shortest k-route is a generalization of the traveling sales-
man problem (TSP). TSP (in the version where the salesman need not return to the
origin) is the same as finding the shortest k-route in the case where there is no uncer-
tainty (i.e., all the objects have confidence equal to one) and k is equal to the number of
objects in the dataset. Since TSP is known to be NP-hard, we do not expect to find an
efficient polynomial-time algorithm to the shortest k-route problem. Thus, we settle for
heuristics.

In this paper, we introduce three novel algorithms for finding a short k-route and
we explain the differences between them. We also present the results of extensive ex-
perimentation that compares the algorithms on different types of data. Our experiments
were conducted on both synthetic data and real-world data.

The main contributions of this paper are as follows.

– We introduce the problem of finding the shortest k-route over uncertain geo-spatial
datasets.

– We present three algorithms for finding a short k-route and explain the different
behaviors of these algorithms.

– We conducted thorough experiments that show the tradeoff between effectiveness
of the algorithm (i.e., the ability to compute a path with a short expected length)
and its efficiency.

2 Framework

In this section, we formally present our framework and the problem of finding a shortest
k-route over uncertain datasets.

Computing a k-Route over Uncertain Geographical Data 279

Uncertain Geo-Spatial Datasets. A geo-spatial dataset is a collection of geo-spatial
objects. Each object has a location and may have additional spatial and non-spatial
attributes. Height and shape are examples of spatial attributes. Address and name are
examples of non-spatial attributes. We assume that locations are points and objects are
disjoint, i.e.,, different objects have different locations. For objects that are represented
by a polygonal shape and do not have a specified point location, we consider the center
of mass of the polygonal shape to be the point location. The distance between two
objects is the Euclidean distance between their point locations. We denote the distance
between two objects o1 and o2 by distance(o1, o2). Similarly, if o is an object and l is a
location, then distance(o, l) is the distance from o to l.

An uncertain geographical dataset is a pair (D, ϕc), where D is a geo-spatial dataset
and ϕc : D → [0, 1] is a function that maps each object of D to a value between 0 and 1,
called confidence. An instance of (D, ϕc) is a pair (D, τ) where τ : D → {true, false}
is a function that maps each object of D to a correctness value, which is either true
or false. An uncertain dataset (D, ϕc) has 2|D| possible instances, where |D| is the
number of objects in D. We consider the confidence of an objects as an indication of
how likely it is for the object to be correct, i.e., to be mapped to true by τ . To each
instance I = (D, τ), we assign a probability P (I) according to the confidence values
of the objects: P ((D, τ)) = [Π{oi|τ(oi)=true}ϕc(oi)] · [Π{oi|τ(oi)=false}(1−ϕc(oi))].
When computing a route over an uncertain dataset, the actual instance is not known.
Hence, the probabilities of possible instances should be taken into account.

Usually, users know only D and ϕc when querying or using uncertain data. However,
when developing algorithms for uncertain data, it is important to test them on data for
which τ is known in order to determine the quality of the results of each algorithm.
Thus, the datasets in our experiments included full information about τ .

Shortest k-Route. Consider a dataset D with n objects o1, . . . , on. A complete route
over D is a sequence ρ = oi1 , . . . , oin where i1, . . . , in is some permutation of 1, . . . , n.
The complete route ρ provides an order for traversing the objects of D. Now, suppose
that we are given an instance I = (D, τ), which includes τ in addition to D. Consider a
traversal that starts at some given point s and visits the objects according to ρ. For each
object o, we can count the number of correct objects and the distance until we get to o.
Formally, we denote by correctρ(oij) the number of correct objects among oi1 , . . . , oij .
That is,

correctρ(oij) = |{oil
| 1 ≤ l ≤ j and τ(oil

) = true}|.

Also, we denote by distanceρ(s, oij) the distance of the path that starts at s and leads to
oij according to ρ. That is,

distanceρ(s, oij) = distance(s, oi1) + Σj−1
l=1 distance(oil

, oil+1).

Given an instance I = (D, τ) and a complete route ρ = oi1 , . . . , oin over D, a k-
route is the shortest subsequence oi1 , . . . , oij such that correctρ(oij) = k; however, if
such a subsequence does not exist (i.e., correctρ(oin) < k), then the k-route is ρ itself.
Intuitively, a k-route is a traversal that stops at the k-th correct object. We denote by
k-distance(s, ρ, I) the distance of the k-route oi1 , . . . , oij when starting at s, that is,
k-distance(s, ρ, I) = distanceρ(s, oij).

280 E. Safra et al.

For an uncertain dataset, there can be many possible instances having k-routes with
different lengths. Thus, we consider an expected length rather than an exact length.
Given an uncertain dataset (D, ϕc), a starting point s and a complete route ρ over D,
the expected length of a k-route is

ΣI is an instance of (D,ϕc)
[P (I) · k-distance(s, ρ, I)].

The shortest k-route over an uncertain dataset (D, ϕc) is a complete route ρ that has
an expected length smaller or equal to the expected length of any other k-route over
(D, ϕc). Since computing the shortest k-route is computationally hard, our goal in this
work is to provide polynomial-time algorithms for computing a short k-route.

Assessing the Quality of the Result. In this work, we present three algorithms to the
problem of finding a short k-route. In order to assess the quality of the results of these
algorithms, we compare the expected length of the k-routes that the different algorithms
compute. An algorithm A1 is considered better than algorithm A2 with respect to an
uncertain dataset (D, ϕc) and a starting point s, if the expected length of the k-route
produced by A1 is shorter than the expected length of the k-route produced by A2.
Given a digital map that contains D, algorithm A1 is better than A2 for (D, ϕc) if the
number of points s (of the map) for which A1 is better than A2 is greater than the
number of points s for which A2 is better than A1.

3 Algorithms

In this section, we present three novel algorithms for finding a short k-route. We use
the following notation when presenting the algorithms. We denote by (D, ϕc) the given
uncertain dataset and by o1, . . . , on the objects of D. We denote by s the location where
the traversal should start. The result of the algorithms is a sequence oi1 , . . . , oin that
defines a complete route.

3.1 The Greedy Algorithm

In the greedy algorithm, a route is constructed iteratively. Intuitively, in each iteration,
the algorithm adds (to the sequence) the object that has the best ratio of confidence
to distance among the objects that have not yet been added in previous iterations. The
algorithm is presented in Fig. 1. Note that when choosing which object to add, while
constructing the route, objects with high confidence are preferred over objects with low
confidence and near objects are preferred over far objects.

The greedy algorithm is simple and efficient. No preprocessing is required and it has
O(|D|2) time complexity. It usually performs well (i.e., provides a short k-route) in the
following two cases. First, when k is very small. In particular, this is true for k = 1.
Secondly, when the objects of D are uniformly distributed and there is no correlation
between confidence values and locations. Intuitively, in such cases, there is no preferred
direction for the first leg of the traversal (which starts at s). Hence, the initial direction
chosen by the greedy algorithm is as good as any other direction, and the produced
route will have an expected distance close to the optimal.

Computing a k-Route over Uncertain Geographical Data 281

Greedy (D, ϕc, s)

Input: A dataset D with confidence values ϕc, and a start location s
Output: A route over D

1: let π be an empty sequence
2: CurrentLocation ← s
3: NotVisited ← D
4: while NotVisited �= ∅ do
5: let o be the object in NotVisited such that ϕc(o)

distance(CurrentLocation,o)
=

max{ ϕc(o′)
distance(CurrentLocation,o′)

| o′ ∈ NotVisited}
6: add o to π
7: remove o from NotVisited
8: let CurrentLocation be the location of o
9: return π

Fig. 1. The greedy algorithm

Fig. 2. An example where the greedy algorithm does not perform well. The starting point is
marked by a diamond. Objects are marked by crosses.

When k is large and the distribution of either the objects or their confidences is not
homogeneous, the greedy algorithm is not likely to provide good results. The following
example illustrates a problematic behavior of the greedy algorithm.

Example 3. Fig. 2 shows a dataset that has a cluster of objects on the right side, and
three objects with growing distances between them on the left side. Suppose that all
the objects have the same confidence value. Given the starting location marked by a
diamond, the route computed by the greedy algorithm will first go to the three objects
on the left instead of going to the cluster on the right. For k = 4, for instance, it is better
to start the route by going to objects in the cluster on the right side.

From Example 3, we can learn that the greedy algorithm is not an approximation al-
gorithm to the shortest k-route problem. That is, for any given positive constant c, it is
possible to construct an example in which the greedy algorithm will return a k-route
whose expected length is greater than the expected length of the shortest k-route mul-
tiplied by c. Constructing such an example is done by generating a dataset similar to
the one in Example 3, choosing a large enough k, and appropriately adding more ob-
jects (with growing distances between them) on the left side of the starting location and
adding objects to the cluster on the right side.

282 E. Safra et al.

AAG (D, ϕc, s)

Parameter: An accuracy parameter ε
Input: A dataset D with confidence values ϕc, and a start location s
Output: A route over D

1: generate a weighted graph G from D and ϕc

2: generate a transition matrix P from G
3: create a uniform distribution X1 = (1

n
, . . . , 1

n
)

4: t ← 1
5: while ||P t+1X1 − P tX1|| ≥ ε do
6: t ← t + 1
7: create from P tX1 a function Xs that provides an aa-value to each node
8: π ←Greedy(D, Xs, s)
9: return π

Fig. 3. The Adjacency-Aware Greedy algorithm

While the greedy algorithm is not an approximation algorithm to the shortest k-
route problem, it is an approximation algorithm for TSP [15]. This shows that in some
aspects, the shortest k-route problem is inherently different from TSP.

3.2 The Adjacency-Aware Greedy Algorithm

Dealing with clusters of objects is important in many real-world scenarios. For example,
in many cities, hotels are grouped near airports or tourist sites. Restaurants are usually
located in the city center, near tourist sites and in the business district. Similarly, other
utilities, such as shops or municipal buildings, are usually grouped together rather than
being uniformly dispersed all over the city.

When a given dataset contains clusters of objects, a good heuristic is to give prece-
dence to points that are in a cluster over points that are not in a cluster. This, however,
is not done by the greedy algorithm, as shown in Example 3. The Adjacency-Aware
Greedy Algorithm (AAG) improves the greedy algorithm by preferring objects that are
surrounded by many near objects, especially if the near objects have high confidence
values. This is done by means of assigning adjacency-aware values (abbr. aa-values)
to objects as follows.

The aa-value given to an object should be based not only on the distances of the other
objects and their confidence values, but also on their configuration. For example, we
should prefer an object that has a neighboring cluster of four objects, within a distance
of 100 meters, over an object that has four neighbors, all of them at a distance of 100
meters but in four different directions.

To compute the aa-values, we represent the dataset as a graph with weighted edges.
We use the weighs to compute, for each object, an aa-value that is the probability of
reaching that object in a random walk on the graph. The weight of an edge (o1, o2)
represents the probability of moving from o1 to o2 and is determined by the distance
between the two objects and their confidence values. In a random walk on the graph, an
object with many near neighbors has a higher probability to be visited than an object

Computing a k-Route over Uncertain Geographical Data 283

with fewer near neighbors. Furthermore, an increase in the aa-value of a node raises the
aa-values of its neighbors for the following reason. If a node o has a higher probability
to be visited in a random walk, then there is an increased likelihood of visiting the near
neighbors of o. Hence, the aa-values of objects are affected by the configuration of the
dataset.

Now, we formally define the weighted graph and show how to compute the proba-
bility of reaching a node by a random walk on this graph. Given the uncertain dataset
(D, ϕc), we generate a weighted graph G = (V, E, w), where the set of nodes V con-
sists of all the objects in D, the set of edges E is D × D, i.e., there is an edge in G
between every two nodes, and w is a function that maps each edge e = (o1, o2) of E,
where o1 	= o2, to the weight w(e) = ϕc(o2)

distance(o1,o2)
. For each object o, we define

w((o, o)) = 0. A random walk over G is a stochastic process that chooses the next node
to visit as follows. If we are at some node v, we randomly choose an outgoing edge of
v. The probability of choosing an edge is proportional to its weight. The random walk
creates a sequence v1, v2, . . . , vt, . . . of nodes. Since the walk is random, the node vt

that is visited after t steps can be any node of G—each node with a different probabil-
ity. We denote by Xt the probability distribution over V of being at each node after t
steps. We represent Xt as a vector of probabilities of length |D|. That is, Xt[i] is the
probability to be at node oi after t steps.

The random walk is a memoryless process, that is, each step depends only on the last
state. In other words, the probability of choosing an outgoing edge for making the next
step is independent of the path that led to the current node. Hence, it is a Markov chain,
which means that the random walk can be described using an n × n transition matrix
P , such that Xt+1 = PXt holds for every t (note that n is the number of objects in
D). We denote by Pij the element in the ith column and the jth row of P . The element
Pij is the probability to move from node oi to node oj . Since the choice of edges is
according to their weights, we define P as follows.

Pij =
w(oi, oj)

Σn
j′=1w(oi, oj′)

Note that Σn
i=1Pij = 1 holds for every row j.

The transition matrix P defines an irreducible and aperiodic Markov chain. (Intu-
itively, irreducible means that from each node there is a non-zero probability to reach
any other node, since the graph is connected; aperiodic means that for each node, 1 is
the greatest common divisor of the lengths of all paths from this node to itself, since
the graph is not bipartite.) So, given an initial uniform distribution X1 = (1

n , . . . , 1
n),

we have that P tX1 → Xs as t → ∞, where Xs is a stationary distribution, that is,
PXs = Xs. For each i, the distribution Xs gives the probability to be at oi in a ran-
dom walk on G.

The AAG algorithm of Fig. 3 computes the stationary distribution Xs and then ap-
plies the greedy algorithm where Xs replaces ϕc. Computing Xs can be done as a pre-
processing step. Thus, given a user request with a specific location, the time complexity
of computing a route is the same as the time complexity of the greedy algorithm.

Our experiments show that the AAG algorithm improves the greedy algorithm. How-
ever, AAG has the disadvantage that the probability distribution Xs must be computed

284 E. Safra et al.

k-EG (D, ϕc, s)

Parameter: The number k of correct objects to visit
Input: A dataset D with confidence values ϕc, and a start location s
Output: A route over D

1: K ← ∅
2: S ← {{o} | o ∈ D}
3: while S �= ∅ do
4: for each set S in S do
5: if k ≤ Σo∈Sϕc(o) then
6: add S to K
7: remove S from S
8: else
9: minLength ← ∞

10: for each o ∈ D − S do
11: let lS,o be the length of the route created by a greedy algorithm for the

starting point s and the objects S ∪ {o}, based on merely distances,
without using confidence values (at each iteration the greedy adds to
the path the nearest object to the current location among the objects not
added so far)

12: if lS,o < minLength then
13: objToAdd ← o
14: minLength ← lS,o

15: add objToAdd to S
16: minLength ← ∞
17: chosenSet ← ∅
18: for each S in K do
19: let lS be the length of the route created by a greedy algorithm for the starting

point s and the objects of S, according to distance and without using the confi-
dence values

20: if lS < minLength then
21: chosenSet ← S
22: minLength ← lS
23: let π be the route that starts at s and is generated by a greedy algorithm using only

distances, over the objects of chosenSet
24: complete π to include all the objects of D using the greedy algorithm as in Fig. 1

(when choosing which object to add use the ratio of distance and confidence)
25: return π

Fig. 4. The k-Expectancy Grouping algorithm

before computing a route, and hence AAG is less efficient than the greedy algorithm for
datasets that change frequently. AAG also suffers from the following two problems.

1. AAG ignores k when computing the route. For instance, consider the case that is
depicted in Fig. 5, assuming that all the objects have the same confidence value.
There is a small cluster on the left side of the starting point and a larger cluster on
the right side of the starting point. The smaller cluster is closer to the starting point

Computing a k-Route over Uncertain Geographical Data 285

Fig. 5. An example where the AAG algorithm does not perform well. The starting point is marked
by a diamond. Objects are marked by crosses.

than the larger cluster. For large values of k, it is better to go to the bigger cluster
first. But for small values of k, going to the nearer (and smaller) cluster may be a
better approach. In AAG, however, the same path is returned for all values of k.

2. A second problem is that by going directly to points in a cluster, there may be points
on the way to the cluster, such that visiting them would not increase the distance of
the route and yet, in the AAG method, such points are not always visited.

Our third method solves the above problems.

3.3 The k-Expectancy Grouping Algorithm

We now present the third method, namely, the k-Expectancy Grouping (k-EG) algo-
rithm. Differently from the previous methods, the route generated by this algorithm
depends not only on the dataset and the starting point, but also on the value of k. The
k-EG algorithm consists of two steps. The first creates sets of objects such that the ex-
pected number of correct objects in each one is k. The second step applies the greedy
algorithm to each one of these sets, and chooses the set for which the greedy algorithm
generates the shortest route.

The k-EG algorithm is shown in Fig. 4. In the first part of the algorithm, sets of
objects are generated and inserted into K. The sets in K are constructed so that the sum
of confidence values, of the objects in each set, is greater than k. This means that for
the sets in K, the average number of correct objects is at least k. Initially, K is empty.

The algorithm uses S to store sets that are eventually moved to K. Initially, for each
object o in D, the set {o} is in S. Then, we iteratively extend the sets in S by adding
one object at a time, as described below. When a set has (for the first time) a confidence
sum that is at least k, it is moved to K. In order to extend a set S of S by one object,
we examine all the objects o of D that are not yet in S. For each object o, we compute
a route that starts at s and traverses the objects of S ∪ {o}. This route is computed by a
greedy algorithm that uses ordinary distances (i.e., it is essentially the same algorithm
as in Fig. 1, except that all the confidence values are equal to 1). The object o for which
the constructed route is the shortest is the one that is added to S.

After constructing the sets (Lines 1–15), we choose the one that has the shortest
route (Lines 16–22). Then, a route is created from the chosen set by applying the greedy
algorithm with ordinary distances. After traversing all the objects of the chosen set, we
continue the route by visiting all the remaining objects of D, but now we apply the
greedy algorithm that uses the ratio of the confidence to the distance.

In general, k-EG has O(n5) time complexity, where n is the number of objects in D.
To see why this is true, note that initially there are n sets in S. Since the number of sets

286 E. Safra et al.

in S does not grow, there are at most n sets in S during the entire run of the algorithm.
Also, each set contains at most n objects. Every set can be extended at most n times,
each time by choosing an object from a set of at most n possible objects. So, there are
at most n2 times of considering whether to add a certain object to a certain set, which
means no more than n3 times of computing a route using a greedy algorithm, for all the
n sets. Since for each set S the greedy algorithm has an O(|S|2) running time, the total
time is O(n5).

In practice, the sets in S are expected to have a size that is much smaller than n. It is
reasonable to assume that in practical cases, the sets of S (and hence, also the sets in K)
have an O(k) size. If we consider, for instance, the case where all the objects in D have
confidence values greater than 0.5, then every set in S has at most 2k objects. Under
the assumption that sets in S have an O(k) size, the running time of the algorithm is
O(n2k3). When k is constant, we actually get an O(n2) running time.

4 Experiments

In this section, we describe the results of extensive experiments on both real-world
data and synthetically-generated data. The goal of our experiments was to compare the
three methods presented in Section 3, over data with varying levels of object spread and
different distributions of confidence values.

4.1 Tests on Synthetic Data

We used synthetic datasets to test the differences between our algorithms. One of the
synthetic datasets on which we conducted experiments is depicted in Fig. 6. In this
figure, objects are marked by crosses. Potential starting points are marked by circles
and have a letter (A, B or C) next to the circle. The confidence values were chosen
randomly according to a Gaussian distribution (normal distribution) with mean 0.7 and
standard deviation 0.1. We do not show the confidence values in Fig. 6 because in some
parts of the figure, objects are too dense for writing visible numbers next to them.

For estimating the expected distance of a route ρ over some given dataset (D, ϕc),
when testing the quality of some algorithm, we generated 100 instances of (D, ϕc) and
computed the average distance of a k-route over these instances. That is, for every given
dataset (D, ϕc), we generated 100 instances (D, τ1), . . . , (D, τ100) where each τi was
the result of randomly choosing truth values τi(o1), . . . , τi(on), such that ϕc(oj) and
1 − ϕc(oj) were the probabilities of choosing τi(oj) to be true and false, respectively.
We then computed the distances d1, . . . , d100, where di is the length of the route from
the starting point to the kth correct object when traversing (D, τi) according to ρ. We
consider the average (Σ100

i=1di)/100 as the expected distance of ρ over (D, ϕc).
Fig. 8 shows the results of our algorithms when computing a route over the dataset

of Fig. 6, where A is the starting point. The graph in this figure shows the expected
k-distance, of the routes computed by the algorithms, as a function of k. The results of
the greedy algorithm are presented by diamonds. For AAG, the results are depicted by
squares, and for k-EG, the results are depicted by triangles. The graph shows that for
small k values (k = 1 or k = 2), all three algorithms provide a route with a similar ex-
pected distance. For larger k values, the greedy algorithm is much worse than AAG and

Computing a k-Route over Uncertain Geographical Data 287

Fig. 6. A synthetic dataset Fig. 7. A dataset of hotels in Soho, Manhattan

Fig. 8. Results on the dataset of Fig. 6,
starting at point A

Fig. 9. Results on the dataset of Fig. 6,
starting at point B

k-EG. For instance, when k = 7, the route of greedy algorithm has an expected length
that is greater than 10 kilometers while AAG and k-EG provide routes with expected
lengths of less than 5 kilometers. The differences are because AAG and k-EG generate
a route that goes directly to a near cluster while the route generated by the greedy al-
gorithm does not go directly to a cluster. For the starting point B, the differences in the
quality of the results, between the greedy and the other two algorithms, are even larger,
because it takes longer for the route of the greedy algorithm to get to a cluster.

Fig. 10 shows the results of our algorithms when computing a route over the dataset
of Fig. 6 using C as the starting point. In this case, there is a difference between the
results provided by AAG and those of k-EG. In order to understand the behavior of the
different algorithms in this case, we present the routes that are computed. The greedy

288 E. Safra et al.

Fig. 10. Results on the dataset of Fig. 6, starting at point C

algorithm returns the route that is depicted in Fig. 11. AAG returns the route in Fig. 12.
The route that k-EG returns for k = 7 is presented in Fig. 13. In these figures, it can
be seen that the route computed by the greedy algorithm reaches a cluster after a long
travel. AAG reaches a cluster directly and thus is better than the greedy algorithm for
large k values. The main problems with the route that AAG computes is that it goes
directly to a cluster and skips objects that are on the way to the cluster. Going through
these objects increases the likelihood of reaching k correct object sooner without length-
ening the route. Thus, for this case, k-EG provides a better route than AAG.

Fig. 11. The route by the greedy algorithm
on the dataset of Fig. 6 starting at point C

Fig. 12. The route by AAG on the dataset of
Fig. 6 starting at point C

We conducted several additional tests on synthetic datasets. In these tests, we had
datasets with a few large clusters, datasets with several small clusters and datasets with
no clusters at all. Our experiments confirmed that in the presence of clusters, the greedy

Computing a k-Route over Uncertain Geographical Data 289

Fig. 13. The route by k-EG on the dataset of
Fig. 6 starting at point C, for k = 7

Fig. 14. The route by k-EG on the dataset of
Fig. 7 starting at point B, for k = 7

algorithm is much worse than the other two algorithms, and they showed that k-EG
provides the best results in almost all cases.

4.2 Tests on Real-World Data

We tested our algorithms on several real-world datasets to which we added confidence
values. A dataset of hotels in Soho, Manhattan, is depicted in Fig. 7. The objects were
taken from a map of New-York City and the confidence values were added randomly
according to a Gaussian distribution with mean 0.7 and standard deviation 0.1. The
results of our algorithms on this dataset are depicted in Fig. 15 and Fig. 16 for the
starting points A and B, respectively. In this test, once again, the greedy algorithm
provides the worst route and k-EG provides the best route, for almost all cases. The
routes computed by the greedy, AAG and k-EG algorithms are depicted in Figures 17,
18 and 14, respectively.

In k-EG, a route is chosen from a set of possible routes. Intuitively, this reduces
the number of cases where the algorithm produces an extremely bad route. To show
it, we conducted experiments over three real-world datasets that are very different one
from the other, using two distinct confidence distributions. One dataset that we used
is of embassies in Tel-Aviv. In this dataset, almost all the objects are in two clusters
that are quite far one from the other. A second dataset is of gas stations in the area of
Tel-Aviv. This dataset contains three large clusters (dense urban areas) but also many
objects that do not belong to a cluster. A third dataset that we used is of points of interest
where objects are dispersed without any visible cluster. For each one of these datasets,
we chose confidence values randomly. First, according to a uniform distribution in the
range 0 to 1, and secondly, according to a Gaussian distribution with mean 0.7 and
standard deviation 0.1. For each case, we chose a starting location.

290 E. Safra et al.

Fig. 15. Results on real-world dataset, start-
ing at point A

Fig. 16. Results on real-world dataset, start-
ing at point B

Fig. 17. The route by the greedy algorithm
on the dataset of Fig. 7, starting at point B

Fig. 18. The route by AAG on the dataset of
Fig. 7, starting at point B

Over each dataset, we summarized for AAG and k-EG the quality of the result with
respect to the result of the greedy algorithm. To do so, we computed for k = 2, . . . , 10
the ratio of the distance of the route produced by the tested algorithm (AAG or k-EG)
to the distance of the route produced by the greedy algorithm. We show the minimal
and the maximal ratios for these cases in Fig. 19.

The graph in Fig. 19 shows that AAG sometimes generates a route that is much worse
than that of the greedy algorithm. This is due to the fact that in the presence of clusters,
the route generated by AAG goes directly to a cluster even when all the clusters are far
from the starting point. This approach can be expensive, especially for small k values.
In the presence of clusters, both AAG and k-EG sometimes produce a route that is much
better than the route produced by the greedy algorithm. Not surprisingly, when there are
no clusters, the differences between the algorithms are smaller. Note that we get similar
results for different distributions of confidence values, but an increase in the variance
of confidence values leads to an increase in the difference between the smallest and the
largest ratios.

Computing a k-Route over Uncertain Geographical Data 291

Fig. 19. The results of the algorithms
summed up for several real-world sources

Fig. 20. The runtimes (in seconds) of k-EG as
a function of k, on dataset of different sizes

4.3 Running Times

We now consider the time it takes to compute a route using our algorithms. To give
running-time estimations, we measured the computation of a route on datasets of dif-
ferent sizes. When measuring the times, we used a PC with a Core 2 Duo, 2.13 GHz,
processor (E6400) and 2GB of main memory. In Table 1, we show the time it takes to
compute, using the greedy and AAG algorithms, a route over four datasets with 50, 100,
150 and 200 objects. For AAG, we show both the time it takes to compute adjacency-
aware values, in the preprocessing part of the method, and the time it takes to compute
a route after the preprocessing has been completed. For k-EG, we present in Fig. 20
the time for computing a route as a function of k. Table 1 and Fig. 20 show that the
greedy algorithm is the most efficient among the three algorithms while k-EG is less
efficient than the other two methods. AAG is less efficient than the greedy algorithm
when including the preprocessing time, but without the preprocessing time, AAG is as
efficient as the greedy algorithm.

Table 1. The time for computing a route over datasets of different sizes

50 objects 100 objects 150 objects 200 objects

Greedy <0.01 sec 0.02 sec 0.02 sec 0.02 sec
AAG preprocessing 0.02 sec 0.03 sec 0.08 sec 0.13 sec
AAG compute route <0.01 sec <0.01 sec 0.02 sec 0.02 sec

5 Related Work

With the ongoing advances in the areas of wireless communication and positioning
technologies, it has become possible to provide mobile, location-based services. These
services may track the movements and requests of their customers in multidimensional
data warehouses, and later use this information for answering complex queries [10].
Data models for location-based services have been developed and implemented in re-
cent years. An R-tree-based technique for indexing data about the current positions of
objects in highly dynamic databases has been proposed by Saltenis and Jensen [18]. An

292 E. Safra et al.

efficient search for specific information over multiple collections has been described
by Goodchild and Zhou [9], who have also reported on several conceptual designs
for a searching process that is based on collection-level metadata (CLM). Miller and
Shaw [12] have described the use of GIS-T data models and different aspects of path
finding in geospatial systems for transportation purposes.

Manipulating uncertain and probabilistic data has received a lot of attention recently.
Several papers deal with managing probabilistic and uncertain data, and propose mod-
els for representing the data [2,5,8,11]. In some papers, the problem of querying proba-
bilistic data is considered and various techniques for efficient evaluation of queries over
probabilistic data are proposed [6,7,14,16,23]. The above papers are concerned with
probabilistic data in general, and not with spatial data. For probabilistic spatial data,
the problem of computing a join of spatial polygonal-shaped objects with imprecise
locations is investigated in [13]. Computing nearest-neighbor on probabilistic spatial
databases is discussed in [22]. Probabilistic spatial data has also been considered in
the context of dealing with moving objects [18,19,20]. All these problems are different
from the one discussed in this paper, namely, finding the shortest k-route.

6 Conclusion

In this work, we introduced the problem of finding the shortest k-route over uncer-
tain geo-spatial datasets. Since the problem is computationally hard, we presented three
heuristic algorithms for computing a short k-route, and illustrated the differences be-
tween these algorithms. We compared the algorithms using extensive experiments over
synthetic and real-world data. Our experiments show that in most cases, k-EG provides
the best route (i.e., provides a route that is expected to lead to k correct objects within a
shorter distance) and the greedy algorithm provides the worst route. However, for these
algorithms, there is a tradeoff between the quality of the results and the efficiency of
the algorithm. The greedy algorithm is the most efficient and k-EG is the least effi-
cient among the three. As future work, we intend to develop optimization techniques to
improve the efficiency of k-EG.

References

1. Andritsos, P., Fuxman, A., Miller, R.J.: Clean answers over dirty databases: A probabilistic
approach. In: Proceedings of the 22 International Conference on Data Engineering (2006)

2. Barbara, D., Garcia-Molina, H., Poter, D.: The management of probabilistic data. IEEE
Transaction on Knowledge and Data Engineering 4(5), 487–502 (1992)

3. Beeri, C., Doytsher, Y., Kanza, Y., Safra, E., Sagiv, Y.: Finding corresponding objects when
integrating several geo-spatial datasets. In: ACM-GIS, Bremen, Germany, pp. 87–96. ACM
Press, New York (2005)

4. Beeri, C., Kanza, Y., Safra, E., Sagiv, Y.: Object fusion in geographic information systems.
In: VLDB, pp. 816–827 (2004)

5. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Proceedings of 13th
International Conference on Very Large Data Bases (1987)

6. Cheng, R., Kalashnikov, D., Parbhakar, S.: Evaluating probabilistic queries over imprecise
data. In: Proc. of ACM SIGMOD International Conference on Management of Data, San
Diego (CA, USA), ACM Press, New York (2003)

Computing a k-Route over Uncertain Geographical Data 293

7. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: Proceedings
of the 30th International Conference on Very Large Data Bases (2004)

8. Fuhr, N.: A probabilistic framework for vague queries and imprecise information in
databases. In: Proc. of the 16th International Conference on Very Large Data Bases (1990)

9. Goodchild, M.F., Zhou, J.: Finding geographic information: Collection-level metadata.
Geoinformatica 7(2), 95–112 (2003)

10. Jensen, C.S., Kligys, A., Pedersen, T.B., Timko, I.: Multidimensional data modeling for
location-based services. The VLDB Journal 13(1), 1–21 (2004)

11. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible proba-
bilistic database system. ACM Trans. on Database Systems 22(3), 419–469 (1997)

12. Miller, H.J, Shih-Lung, S.: Geographic Information Systems for Transportation: Principles
and Applications (Spatial Information Systems). Oxford University Press, Oxford (2001)

13. Ni, J., Ravishankar, C.V., Bhanu, B.: Probabilistic spatial database operations. In: Proc. of
the 8th International Symposium on Advances in Spatial and Temporal Databases (2003)

14. Pittarelli, M.: An algebra for probabilistic databases. IEEE Transactions on Knowledge and
Data Engineering 6(2), 293–303 (1994)

15. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the
traveling salesman problem. SIAM Journal on Computing 6, 563–581 (1977)

16. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. Jour-
nal of the ACM 52(1), 54–101 (2005)

17. Safra, E., Kanza, Y., Sagiv, Y., Doytsher, Y.: Integrating data from maps on the world-wide
web. In: Proceedings of the 6th International Symposium on Web and Wireless Geographical
Information Systems, pp. 180–191 (2006)

18. Saltenis, S., Jensen, C.S.: Indexing of moving objects for location-based services. In: Pro-
ceedings of the 18th International Conference on Data Engineering, Washington DC (USA)
(2002)

19. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in moving
objects databases. ACM Transactions on Database Systems 29(3), 463–507 (2004)

20. Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The geometry of uncertainty in
moving objects databases. In: Proceedings of the 8th International Conference on Extending
Database Technology (2002)

21. Virrantaus, K., Markkula, J., Garmash, A., Terziyan, Y.V.: Developing GIS-supported
location-based services. In: Proceedings of the 1st International Conference on Web Geo-
graphical Information Systems, pp. 423–432 (2001)

22. Zhang, S.: A nearest neighborhood algebra for probabilistic databases. Intelligent Data Anal-
ysis 4(1), 29–49 (2000)

23. Zimányi, E.: Query evaluation in probabilistic relational databases. Theoretical Computer
Science 171(1-2), 179–219 (1997)

Querying Objects Modeled by Arbitrary Probability
Distributions

Christian Böhm, Peter Kunath, Alexey Pryakhin, and Matthias Schubert

Institute for Computer Science, Ludwig-Maximilians Universität München
{boehm,kunath,pryakhin,schubert}@dbs.ifi.lmu.de

http://www.dbs.ifi.lmu.de

Abstract. In many modern applications such as biometric identification systems,
sensor networks, medical imaging, geology, and multimedia databases, the data
objects are not described exactly. Therefore, recent solutions propose to model
data objects by probability density functions(pdf). Since a pdf describing an un-
certain object is often not explicitly known, approximation techniques like Gaus-
sian mixture models(GMM) need to be employed. In this paper, we introduce a
method for efficiently indexing and querying GMMs allowing fast object retrieval
for arbitrary shaped pdf. We consider probability ranking queries which are very
important for probabilistic similarity search. Our method stores the components
and weighting functions of each GMM in an index structure. During query pro-
cessing the mixture models are dynamically reconstructed whenever necessary. In
an extensive experimental evaluation, we demonstrate that GMMs yield a com-
pact and descriptive representation of video clips. Additionally, we show that our
new query algorithm outperforms competitive approaches when answering the
given probabilistic queries on a database of GMMs comprising about 100.000
single Gaussians.

1 Introduction

In recent years, a large variety of database applications has emerged where it is benefi-
cial to consider the uncertainty of the given data. The object uncertainty might be caused
by the inexactness of feature measurement like in biometrical or biological databases.
Furthermore, object uncertainty is often introduced to obtain a compact description of
very large or complex objects. For example, in sensor networks, it is not feasible to
transmit an exact value at all points of time. Therefore, several points of time are ag-
gregated into a single uncertain description. In order to model this uncertainty, the data
objects are described by probability density functions (pdf) over a given feature space
(cf. [1,2,3,4,5,6]).

In most applications, there is no explicitly known pdf describing the uncertain data
object. Instead, the density function is given by a sample of feature values or in the case
of data compression, the set of feature values being compressed. Thus, approximation
techniques have to be employed in order to find an explicit density function. In other
words, we need to describe each object as a function instead of set of sample points. A
large number of database applications in all fields of science and industry approximate
the underlying data distributions by a Gaussian mixture model (GMM). The idea of a

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 294–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Querying Objects Modeled by Arbitrary Probability Distributions 295

(a) 3D view. (b) 2D view.

Fig. 1. Approximation of an arbitrary complex bivariate probability density by a mixture of Gaus-
sians with independent attributes

GMM is to model a complex density function by a weighted sum of several Gaussian
distributions. If a GMM is not exact enough, the quality can be arbitrarily increased
by adding further Gaussians (cf. Figure 1). The popularity of GMMs can be explained
by the following characteristics. A GMM has the ability to approximate an arbitrary
statistical data distribution very closely [7,8]. An example for such an approximation
can be seen in Figure 1. In particular, GMMs are capable of modeling arbitrarily shaped
correlations in data (cf. [8]) by a mixture containing distributions with independent
attributes (cf. Figure 2). Moreover, GMMs can be efficiently derived by a variety of
mathematical methods from any given sample set. The widespread use of these methods
contributes to prevalent employment of GMMs in several applications.

In the following, we survey some of example application areas employing GMMs
more closely. The first example for using objects represented by GMMs is managing
multimedia data. An ordinary movie of about 90 minutes contains about 140.000 sin-
gle images, called frames. Storing all these images for content-based video retrieval
would require large storage capacities and an enormous computational effort for com-
paring videos. To avoid this problem, the multimedia community often employs sum-
marization techniques representing videos as mixture models [9]. Thus, a video clip
is described by a GMM over the feature space representing single frames. Storing the
videos as a GMM dramatically reduces the resource consumption and still allows ac-
curate content-based video retrieval. Moreover, the use of mixture models is justified
by the demand to consider high level or semantic features (cf. [10,11,12] for details) in
order to guarantee effectiveness in the retrieval of multimedia data. For instance, [13]
describes the usage of face detection and recognition techniques in order to calculate
a compact description of video data. Another example for the use of GMMs is biocli-
matic research. For instance, the authors of [14] propose the use of GMMs to describe
species ranges from mapped climatic variables. Moreover, authors of [15] employ a
GMM in order to describe drug dissolution profiles. They also discuss implications of
the GMMs for pharmaceutical product formulation tasks. Further application areas of
GMMs are sensor networks (e.g. [16,4]), audio signal analysis (e.g. [17]), economics
(e.g. [18]). Additionally, the authors of [7,8] list several examples of the use of GMMs
in the following application areas: medicine, psychology, geology, agriculture.

296 C. Böhm et al.

Fig. 2. A Gaussian mixture model representing correlated 2D data

In his paper, we propose a novel method for query processing on arbitrarily shaped
pdf modeling each data object as a GMM. Our new models aims to answer identifi-
cation queries of the following form: Given a query GMM and a database of GMMs,
return the k database objects which might describe the same data object with the high-
est probability. Unlike previous approaches, we additionally consider the case that no
database object describes the same object as the query. Thus, we can handle the case
that it is most likely that there is no object in the database resembling the given query.
To efficiently handle this type of query, we propose a method for storing GMMs in a
probabilistic index structure. The principal idea of this method is to store each compo-
nent (i.e., each Gaussian of a GMM and its weighting) as a separate object. To calculate
the probability that a given query object corresponds to a database object, the GMMs
are reconstructed during query time. Therefore, we store the information about the pos-
sible candidates in a so-called candidate table. The candidate table is located in main
memory and stores two values for each object that was touched but is not yet complete.
Based on these two values, it is possible to calculate a conservative approximation of
the probability for a database object (see Section 4 for details). When a component be-
longing to an object o is retrieved from the underlying index structure the information
about o (i.e., two values in the candidate table) is updated.

The main contributions of this paper are: (1) A new probabilistic model for handling
uncertain objects represented by GMMs. (2) A method to allow unsuccessful search for
probabilistic queries. (3) A new query algorithm for efficiently answering probabilistic
ranking queries that are based on decomposing the GMMs.

The rest of the paper is organized as follows. In Section 2, we survey the related work
on managing and searching databases of uncertain objects. Section 3 introduces our new
uncertainty model and specifies the examined types of queries. Section 4 introduces a
new method for object indexing and query processing. Our experimental results are
shown in Section 5 and the paper concludes with a summary in Section 6.

2 Related Work

Statistical Modeling of Data in Sensor Networks. In [1], a new probabilistic abstract
datatype (ADT) based on a one-dimensional Gaussian is introduced. In order to han-
dle large amounts of data, the authors store the Gaussian ADT data in an ORDBMS.
For query processing, a two-stage process based on linear constraints is applied. How-
ever the GADT approach considers neither a mixture of probability density functions

Querying Objects Modeled by Arbitrary Probability Distributions 297

(pdf) nor multivariate probability distributions. The basic idea in [4] is to build a prob-
abilistic model from both historical and current sensor readings and to query the model
instead of the actual sensor network. The authors present an architecture, called BBQ,
that realizes this idea by a model based on time-varying multivariate Gaussians. Users
then submit one-shot queries to a relational database to request real-time information
about the network. However, the authors do not discuss the usage of index structures
for efficient query processing. The authors of [19] propose to use probabilistic mod-
els for acquisitional settings such as sensor networks and Internet monitoring. Such a
probabilistic model enables them to define new query types, exploit correlations when
answering queries and to provide probabilistic guarantees on the correctness of the an-
swers. While it is possible to use many different types of models, the authors explicitly
describe the time-varying multivariate Gaussian model as an example. However, the
authors do not consider an index structure for query processing.

Spatial Uncertainty. Authors of [2,3,5,20] deal with an uncertainty model for spatially
uncertain objects and propose queries which are specified by intervals in the query
space. In this setting a query retrieves uncertain objects w.r.t. the likelihood that the
uncertain object is indeed placed in the given query interval. Let us consider the con-
tributions more exactly. In [2] a new uncertainty model is introduced and several new
types of queries are described that allow the handling of inexact data. [5] introduced
the U-Tree for indexing uncertain 2D objects. Authors of [20] adapt the Gauss-tree pro-
posed in [6] to spatial uncertainty model and discuss probabilistic ranking queries. The
authors of [21] address the evaluation of probabilistic queries over uncertain data in
constantly-evolving environments and discuss among others the so-called probabilistic
nearest neighbor query that retrieves the set of objects being closest to a query object.
All of these contributions employ the so-called interval uncertainty model and pose
queries based on intervals in the data space. Thus, the mentioned approaches rather
deal with spatial uncertainty (i.e., the location of an object is considered to be uncer-
tain). Besides the mentioned methods for indexing spatially uncertain objects, [22] in-
troduces existential uncertainty. The idea of this approach is that the existence of each
data object is uncertain.

Uncertainty in Object Identification. In [6], the Gauss-tree is introduced which is
an index structure for managing large amounts of Gaussian distribution functions. The
proposed system aims at efficiently answering so-called identification queries. Addi-
tionally, [6] proposed probabilistic identification queries which are based on a Baysian
setting (i.e., given a query pdf, retrieve those pdfs in the database that correspond to the
query pdf with the highest probability). An example for this setting is: Given a facial
image represented by a normal distribution, retrieve the person in the database whose
face corresponds to the query image with the highest probability. However, the meth-
ods in [6] underly the limitation that each object can only be described by a single,
axis-parallel Gaussian. In this paper, we approximate arbitrary probability distributions
that are approximated by GMMs. Furthermore, unlike [6] our method facilitates un-
successful search which is an important feature for several application areas (e.g., the
content-based retrieval of multimedia data).

298 C. Böhm et al.

Fig. 3. Two uncertain objects (i.e., (dark) red object and (light) blue object) modeled by GMMs

Indexing Techniques for Uncertain Objects. The indexing methods introduced in
[3,5,6] have serious problems that strongly limit their use for applications with objects
modeled by GMMs. The first limitation of the introduced uncertainty models is that
each object is represented as a single multivariate distribution. Though this type of pdf
is rather common, it is for many of the above mentioned applications too simplifying.
Figure 3 illustrates two uncertain objects modeled by GMMs (object A in blue and ob-
ject B in red) in order to exemplify the problem. Each probabilistic object consists of
two distinct sets of Gaussians that are placed on a diagonal in oppositional edges of fea-
ture space. The indexing techniques described in [3,5,6] would approximate each object
with a node N that ranges over whole feature space (i.e., from 0 to 1 in each dimension).
Therefore, the selectivity of query processing algorithms is very low (i.e., we should ac-
cess all available nodes of an index structure while performing a probabilistic query).
Additionally, several of the existing methods (e.g., [3,6]) are based on distributions that
do not consider any correlation between the dimensions of the underlying feature space
which is a rather problematic assumption even for application were Gaussians are rather
well-suited. Last, but not least, the models derive probabilities based on the assumption
that the object which is searched for is always stored in the database. If the query object
is unknown, the model does not necessarily calculate a small probability because the
probability is relative to the total probability that the query belongs to at least one object
in the database. Recently, [23]introduced a method and a corresponding index structure
modeling pdfs using piecewise-linear approximations. This new approach also employs
linear functions as the U-Tree but is more exact in its approximation.

GMMs in Multimedia Retrieval. In our experimental evaluation, we test our general
approach of indexing arbitrary probability functions on a database of video clips being
represented by GMMs. To demonstrate that this method is competitive with existing
approaches to video retrieval, we will sketch some relevant work in this area. In [9], a
summarization technique is presented which is based on GMMs. However, the authors
do not propose any technique for speeding up the search on these summarizations. Fur-
thermore, the named approach yields a specialized solution for video retrieval and is
thus not concerned with the efficient search in general probabilistic data sets. The au-
thors of [24] propose an approach for obtaining a compact representation of videos that
computes the optimal representatives by minimizing the Hausdorff distance between

Querying Objects Modeled by Arbitrary Probability Distributions 299

the original video and its representation. If the Euclidian metric is used, k-means can
be applied to summarize video clips [25] by a set of centroides. A randomized technique
for summarizing videos, called video signature, is proposed in [26]. A video sequence
in the database is described by selecting a number of its frames closest to a set of ran-
dom vectors. The authors of [26] also propose a specialized distance function on the
derived summarization vectors. However, to the best of our knowledge, none of these
techniques uses an index structure to accelerate query processing.

3 Probabilistic Similarity Search Using a Mixture of Gaussians

3.1 Gaussian Mixture Model (GMM)

We assume that our objects are given by a probability density function (pdf) over a d-
dimensional feature space Rd. The pdf is defined in terms of a mixture of Gaussians, as
specified in the following definition:

Definition 1 (Gaussian Mixture Model). Let x ∈ Rd be a variable from a d-dimens-
ional feature space. A Gaussian mixture model (GMM) GO of an object O is the fol-
lowing probability density function corresponding to a weighted sum of kO Gaussian
functions:

GO(x) =
∑

1≤i≤kO

WO,i ·NO,i(x) (1)

where WO,i is a weight factor 0 ≤WO,i ≤ 1 with

∑
1≤i≤kO

WO,i = 1 (2)

and NO,i(x) is the density of a multivariate normal distribution:

NO,i(x) =
∏

1≤l≤d

NμO,i,l ,σ2
O,i,l

(xl) =
∏

1≤l≤d

1√
2πσ2

O,i,l

· e
−(xl−μO,i,l)

2

2σ2
O,i,l . (3)

Note that we assume the attribute independence of the single Gaussians involved in a
GMM (i.e., axis-parallel Gaussians). This assumption does not limit the generality of
our approach, because it can be shown that a mixture of axis-parallel Gaussians is able
to model arbitrary pdfs including those distributions where some of the attributes are
strongly correlated to each other [8,7]. As an example, consider Figure 2 where a 2D
Gaussian distribution with a strong correlation is modeled by a mixture of k = 5 axis-
parallel Gaussians. Thus, the attribute independence assumption of the single Gaussian
does not imply an attribute independence of the pdf modeled by the complete GMM.

3.2 Similarity of Objects Described by GMMs

After defining a GMM for describing an uncertain object, we now turn to the question
how to determine the probability of an object O to be a hit for a query object Q. As a

300 C. Böhm et al.

GQ(x)

GO(x)

GQ(x).GO(x)

x

Fig. 4. An example of two GMM in univariate space

starting point, we assume that the query Q is provided as by an exact feature vector (i.e.,
a point x ∈ Rd). In this case, Formula 1 can be used in combination with the Bayes
theorem to determine this probability:

P (O|x) =
P (O) ·GO(x)∑

U∈DB P (U) ·GU (x)
.

Since it makes sense to assume that each database object is part of the answer with
the same prior probability, P (O) = P (U) for all O, U ∈ DB and thus, we can can-
cel out the prior probability from the formula. Please note that the use of probability
densities instead of probabilities is common practice in Bayes classification, as can be
verified in [27,28].

The situation becomes more complex if both data and query object (O and Q) are
given as a GMM. We have to find a probability measure which indicates the probability
that both GMMs O and Q correspond to the same unknown true object x (which is a
traditional vector, and is used as a stochastic variable here). In general, we know nothing
about x except that it is taken from Rd. For every position of x in this data space, we
can determine the probability density of O and Q, respectively. Both are given by a pdf
modeled as a GMM. But for every position x, we can also determine the probability
density with which x belongs to both O and Q. As belonging to O and belonging to Q
are independent events, this is simply the product of the two corresponding pdfs. Since
the true object x can be any point of Rd, we have to form a d-dimensional volume
integral over all possible positions of x to determine the overall probability that O and
Q correspond to the same unknown x.

A one-dimensional example is visualized in Figure 4: Two objects, Q and O, each
modeled as a mixture of k = 3 Gaussians are depicted. We have also indicated x, a
possible position of the unknown true object. We can see from the diagram the proba-
bility density with which x belongs to O (approximately 0.12), to Q (0.18) and to both
of them (0.12 · 0.18 ! 0.02). Since all x ∈ R are possible, the overall probability of O
and Q to belong to the same object corresponds to the integral of GQ(x) ·GO(x) where
x = −∞.. +∞ (i.e., the shaded area in Figure 4). We call this probability density
p(Q|O) with

p(Q|O) =
∫∫ +∞

−∞
GO(x) ·GQ(x)dx. (4)

Querying Objects Modeled by Arbitrary Probability Distributions 301

The theorem of Bayes can again be used to determine the result probability of every
database object O like in the case of single-valued query objects (cf. Equation 3.2):

P (O|Q) =
p(Q|O)∑

P∈DB p(P |O)
. (5)

We follow the convention to use the abbreviation
∫∫ +∞

−∞ f(x)dx for the so-called

volume integral
∫ +∞
−∞ . . .

∫ +∞
−∞ f(x)dx1 . . . dxd. Note that, although only two integral

signs are written, they actually stand for a d-fold integral. In the following, we show
how the overall probability density p(Q|O) defined in Formula 4 can be computed
analytically:

p(Q|O) =
∫∫ +∞

−∞
GO(x) ·GQ(x)dx

=
∫∫ +∞

−∞

⎛
⎝ ∑

1≤i≤kO

WO,iNO,i(x)

⎞
⎠
⎛
⎝ ∑

1≤j≤kQ

WQ,jNQ,j(x)

⎞
⎠ dx

=
∑

1≤i≤kO

∑
1≤j≤kQ

WO,i ·WQ,j ·
∫∫ +∞

−∞
NO,i(x) ·NQ,j(x)dx.

The volume integral can be solved by the following re-arrangement of terms:
∫∫ +∞

−∞
NO,i(x) ·NQ,j(x)dx = =

∫∫ +∞

−∞

∏
1≤l≤d

NμO,i,l,σO,i,l
(x) ·NμQ,j,l,σQ,j,l

(x)dx

because of attribute independence

=
∏

1≤l≤d

∫ +∞

−∞

e
−(xl−μO,i,l)

2

2σ2
O,i,l · e

−(xl−μQ,j,l)
2

2σ2
Q,j,l

2πσO,i,lσQ,j,l
dxl

=
∏

1≤l≤d

1√
2π(σ2

O,i,l + σ2
Q,j,l)

· e
−(μQ,j,l−μO,i,l)

2

2(σ2
O,i,l

+σ2
Q,j,l

)

·
∫ +∞

−∞
NμO,i,lσ2

Q,i,l
+μQ,i,lσ2

O,i,l

σ2
Q,i,l

+σ2
O,i,l

,
σ2

O,i,l
σ2

Q,i,l

σ2
O,i,l

+σ2
Q,i,l

(xl)dxl

=
∏

1≤l≤d

1√
2π(σ2

O,i,l + σ2
Q,j,l)

· e
−(μQ,j,l−μO,i,l)

2

2(σ2
O,i,l

+σ2
Q,j,l

)
· 1

=
∏

1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l).

Therefore, the overall probability density p(Q|O) corresponds to

p(Q|O) =
∑

1 ≤ i ≤ kO

1 ≤ j ≤ kQ

WO,iWQ,j

∏
1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l).

302 C. Böhm et al.

3.3 Handling Unknown Objects

In many applications, we have to consider the case that the query object is not necessar-
ily stored in the database. Thus, an algorithm should allow that the result of the query is
empty (i.e., it is most likely that the given query does not fit to any of the database ob-
jects). In other words, no object can be considered as similar at all. Our solution to this
problem is to introduce an additional probability distribution modeling the likelihood
of an unknown data object.

When applying the Bayes theorem (cf. the Equation 5), we make the implicit as-
sumption that the object which is searched for is always stored in the database, and that
all stored database objects have the same a priori probability of being the result of the
search. Therefore, the sum of all result probabilities of all database objects equals 1 for
every query. If a query object is at a position of extremely low density , then some of
the database objects (particularly those with high overall variance) still may obtain high
result probabilities, which contradicts the intuition. In terms of the Bayesian probability
model, the conditional probability might become rather large if the total probability in
the denominator is very small. Since a conditional probability is normalized by the total
density, a small probability density might lead to a large probability if the total density
is very small.

This problem can be solved by modeling a placeholder for those objects which are
not stored in the database. This placeholder should have a high variance to cover the
complete data space and a prior probability PPH corresponding to the expected rate of
unsuccessful searches. For example, if 3 out of 4 search operations are not successful
(the intended object is not found in the database), then PPH = 0.75, and the remaining
prior probability (0.25) is shared by the database objects. The value of PPH can be set
at the begin of database usage to a default value. The value of PPH should be adapted
when collecting exact statistics about unsuccessful queries during database deployment.

The probability distribution of the placeholder can e.g. be selected to be uniformly
or normally distributed. Assuming that the data distribution of the unknown objects
follows that of the known objects, we can use the mean and the variance of the object set.
Let us not that these should not be confused with the intra-object variance describing
the uncertainty of the feature value of a single object:

μPH,l =
1
|DB|

∑
O∈DB

∑
1≤i≤kO

WO,i · μO,i,l

σ2
PH,l =

1
|DB| − 1

∑
O∈DB

∑
1≤i≤kO

WO,i · (μO,i,l − μPH,l)2.

To consider the placeholder, we have to extend our formula for calculating P (O|Q)
in the following way:

P (O|Q) =
1−PP H

|DB| · p(Q|O)

PPH · P (Q|PH) +
∑

P∈DB
1−PPH

|DB| · p(P |O)
. (6)

Querying Objects Modeled by Arbitrary Probability Distributions 303

3.4 Probabilistic Ranking Query on GMMs

A method for deciding containment in the query result is to retrieve the k most likely
results. An example for this type of query is: Retrieve the 5 objects from the database
having the highest probability for corresponding to the query object. We will call this
type of query probabilistic ranking query (PRQ). In the following we will formalize
PRQs:

Definition 2 (Probabilistic Ranking Query). Let DB be a database of GMMs M ,
let Q be a query GMM and let k ∈ N be a natural number. Then, the answer to a
probabilistic ranking query (PRQ) on DB is defined as the smallest set RQk(Q) ⊆ DB
with at least k elements fulfilling the following condition:

∀Ma ∈ RQk(Q), ∀Mdb ∈ DB \RQk(Q) : P (Ma|Q) > P (Mdb|Q)

4 Indexing Mixtures of Gaussians

4.1 General Idea

Our method is based on the idea of decomposing each GMM into its components (i.e.,
the single Gaussians, and index the components separately). For instance, in order to
store a univariate GMM with W1 = 0.3, W2 = 0.7, μ1 = 0, μ2 = 1, σ1 = 2, σ2 = 3,
we decompose the GMM in two components g1 and g2. The first component g1 is
described by W1 = 0.3, μ1 = 0, σ1 = 2. The second component g2 is described
by W2 = 0.7, μ2 = 1, σ2 = 3. After decomposition, we can store two components
(i.e., g1 and g2) separately in an index that is appropriate for single pdfs. During query
processing, the complete GMMs can be processed componentwise and thus, we can
start excluding objects from the result set, even without retrieving the complete GMM.

To index the components of the stored GMMs, our method can employ any hierar-
chically organized index structure Δ that is capable to store single pdfs (e.g., [3,5,6]
that are based on the R-Tree [29] principle). Since Δ is designed to handle single pdf,
we have to extend it to additionally store the weights for each component. Thus, an
entry which corresponds to a GMM component Oi, consists of the parameters of the
underlying Gaussian μO,l and σ2

O,l (1 ≤ l ≤ d) and the weight of the component
WO,i. This way, it is possible to reconstruct the complete GMM after retrieving all of
its components from the index structure Δ. In addition to extending the entries in the
leaf nodes, we have to extend the node descriptions by the maximum weight W p

max of
any Gaussian being stored in the corresponding subtree.

The key idea of our proposed query algorithms is that it is possible to calculate the
probability P (O|Q) componentwise. Thus, if we can calculate a conservative approxi-
mation of the components of P (O|Q),

comp(O, i, Q, j) = WO,iWQ,j

∏
1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l)

it is possible to calculate conservative approximations for completely and partially re-
trieved GMMs during query processing.

304 C. Böhm et al.

Sketch of Formula for NLB(P,Q, j)Idea of Approximation
(P - Directory Node)

Index
Structure

Gauss-tree

U-tree

Approach of
[R. Cheng,
Y. Xia,
S. Prabhakar
et al.]

I2I1 In……

h2
h1

hn: Q n

k

I

I
kjQLB

k

k

dxhxNjQPN
1

,

1

))((),,(

Q
y(x)=a*x-b

.....))()((),,(,

c

b

b

a
jQLB dxxyxNjQPN

a b c d

Q
)(ˆ

,,, xN

dxxNxNjQPN jQLB))(ˆ)((),,(,,,,

Fig. 5. Idea of the approximation and sketch of the conservative approximation calculation
(NLB(P, Q, j)) for different index structures that handle single pdfs

Therefore, we define a conservative approximation for any component Qi and a
given page P in the index structure Δ which maximizes comp(O, i, Q, j) over all Oi

that are stored in the subtree corresponding to P :

compP
max(Q, j) = WP

maxWQ,j

∏
1≤l≤d

NLB(P, Q, j)

≥ max
O,i∈P

WO,iWQ,j

∏
1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l)

where NLB(P, Q, j) is lower bound or maximum of probability density that can be
achieved in a node or subtree of the underlying index structure and WP

max is the maxi-
mum of the weights of all components stored in P . In particular, NLB(P, Q, j) can be
calculated by:

– evaluation of one or several entries in so-called ratio table w.r.t. x-bounds if em-
ploying the indexing technique described in [3],

– using the so-called U-Catalog and the function e.MBR(.) that allows pruning sub-
trees if employing the U-tree [5],

– using the density of the hull function N̂... if employing the Gauss-tree [6].

Figure 5 depicts the general idea of the computation of the conservative approximation
NLB(P, Q, j) for the above mentioned index structures.

Furthermore, we define compP
max(Q) approximating the probability for the com-

plete query GMM Q and an arbitrary component stored in P as:

compP
max(Q) = |Q| · max

1≤j≤|Q|
compP

max(Q, j)

Thus, we have found a way to estimate the maximum influence of any GMM com-
ponent stored in page P on the probability P (O|Q) for any object O in the database

Querying Objects Modeled by Arbitrary Probability Distributions 305

Object ID
Step 1: initialize candidate table (empty)

)2,1,1,0,7.0,3.0(212121
AAAAAA WW

Store GMMs A, B, C in an index structure IS.

A =
Objects (modeled by GMMs).

)4,3,2,1,6.0,4.0(212121
BBBBBB WWB =

)6,5,6,5,8.0,2.0(212121
CCCCCC WWC =

insert components of A into IS
)1,0,3.0(111

AAAWinsert 1st component A1:

:

insert 2nd component A2:)2,1,7.0(222
AAAW

Q – query: query processing

insert components of B into IS

||1 ||1
),,,(

Qj Ri
jQiOcomp

||1
,

Ri
iOw

Step 2: after index traversing, we get B1

0.4……B

Object ID
||1 ||1

),,,(
Qj Ri

jQiOcomp
||1

,
Ri

iOw

Step 3: we get A2

0.4……B

0.7……A

Object ID

Step 4: we get A1 (object A is complete)

0.4……B

Object ID

||1
,

Ri
iOw

||1 ||1
),,,(

Qj Ri
jQiOcomp

||1
,

Ri
iOw

||1 ||1
),,,(

Qj Ri
jQiOcomp

Fig. 6. General idea of the candidate table used in our query algorithms on GMMs

that has not yet been retrieved completely. For query processing, compP
max(Q) is use-

ful for several tasks. First of all, we can use compP
max(Q) to estimate the maximum

probability P (O′|Q) for the GMM O′ which is stored in P and there is no component
of O′ that has been retrieved during query processing yet.

P (O′|Q) = kmax · compP
max(Q)

where kmax denotes the maximum number of components in any GMM in the database.
Furthermore, we can approximate the maximal probability of a partially retrieved GMM
O to match Q. This is important for pruning candidate GMMs as early as possible:

P (O|Q) =
∑

1≤j≤|Q|

∑
1≤i≤|R|

comp(O, i, Q, j) + (1.0−
∑

1≤i≤|R|
WO,i) · compP

max(Q)

where R is the set of already retrieved components of O and P is the page having the
maximum value of compP

max(Q). Note, that the use of 1.0 −
∑

1≤i≤|R| wO,i for all
remaining weights is justified by Formula 2. The estimation of the sum of all densi-
ties is necessary to apply Formula 6. We can sum up the densities or their conservative
approximations as described above during query processing. Thus, it is possible to de-
termine a conservative approximation of the complete density of a candidate GMM at
all times.

Before we explain our probabilistic query processing on GMMs in detail, we take
a closer look at the data structure which manages the result candidates. This candidate
table can either be located in main memory or on secondary storage, depending on the
size of a particular dataset. Every component of a GMM which is fetched from the
underlying index structure is stored in this table. An object is removed from the table
under two conditions. Either all components of a particular object are in the candidate
table (cf. Figure 5) or the object is pruned based on the conservative approximation of
the object probability.

306 C. Böhm et al.

ALGORITHM PRQ(Query Q, integer k)
BEGIN

hits := new PriorityQueue(ascending)
drops := new List()
candidates := new List()
APL := new PriorityQueue(descending)
APL.insert(root,1 − PP H)
REPEAT

currNode := APL.removeFirst()
IF currNode.isDirectoryNode() = ’TRUE’ THEN

FOR EACH node ∈ currNode DO
APL.insert(node, compnode

max (Q))
END FOR

IF currNode.isDataNode() = ’TRUE’ THEN
FOR EACH c ∈ currNode DO

IF drops.contains(c.ObjectID) = ’TRUE’ THEN
CONTINUE

END IF
candidates.update(c.ObjectID, c, Q)
entry := candidates.get(c.ObjectID)
IF entry.isComplete() = ’TRUE’ THEN
prob := entry.probability(Q)

IF prob ≥ hits.topProbability THEN
IF hits.Size() = k THEN

hits.removeFirst()
END IF
hits.add(c.ObjectID, prob)

END IF
candidates.delete(c.ObjectID)

ELSE
IF entry.approximation(Q) ≤

hits.topProbability THEN
drops.add(c.ObjectID)
candidates.delete(c.ObjectID)

END IF
END IF

END FOR
END IF

UNTIL((candidates.Size() > 0
or APL.topProbability > hits.topProbability)
and APL.Size() > 0)

report hits;
END

Fig. 7. Pseudo code: Probabilistic Ranking Query on GMMs

In the following we will introduce our algorithm for processing PRQs. For this type
of query, the minimum probability for a result depends on the object having the k-
highest probability for corresponding to the query GMM Q. Therefore, we employ
two priority queues: The first priority queue is used for traversing the probabilistic in-
dex structure storing the components of the GMMs. We will refer to this queue as the
traversal queue. The second priority keeps those k GMMs which currently have the
largest probabilities for corresponding to Q. We will sort this second priority queue in
ascending order and refer to it as the result queue. The pseudo code for the algorithm is
displayed in Figure 7. We start by ordering the descendant nodes of the root page w.r.t.
compp

max(Q). Afterwards we enter the main loop of the algorithm and remove the top
element of the traversal queue. If this element is a node, we load its child nodes. If these
child nodes are nodes themselves, we determine compp

max(Q) and update the traversal
queue. If the child nodes are components of GMMs, we check the candidate table for

Querying Objects Modeled by Arbitrary Probability Distributions 307

a corresponding GMM M and insert a new descriptor, in the case that there is not al-
ready a descriptor for M . Afterwards, we can update the candidate table as mentioned
before. If a GMM M has been read completely, we can delete it from the candidate
table and compare its probability P (M |Q) to the probability of the top element of the
result queue (i.e., the GMM encountered so far having the k highest probabilities). If
the probability of M is higher than that of the top element, we need to add M to the
queue. However, to make sure that we do not retrieve more than k elements, we have to
check the size of the result queue. If there are already k elements, we have to remove
the previous top element before inserting M . In the case, that the entry in the candidate
table does not contain the complete information about M yet, we still can calculate a
probability estimation and compare it to the top element of the result queue. If P (M |Q)
is smaller than the k highest probability in the result queue, we can guarantee that M is
not a potential result. Thus, M is deleted from the candidate table and stored in our list
for excluded GMMs. The algorithm terminates if the top of the traversal queue provides
a lower value than the top of the result queue and the candidate table is empty. Please
note that it is not necessary to calculate any complex integral functions during query
processing. As shown in Section 3.2 it is sufficient to compute a weighted product of
probability densities during query execution.

5 Experimental Evaluation

To demonstrate the effectiveness and efficiency of our new approach, we implemented
the proposed methods in Java 1.5. All experiments were performed on a workstation
equipped with a 2.2 GHz Opteron CPU and 8GB RAM. In order to store components
of GMMs, we implemented an X-Tree [30] variant that uses split and insert methods
as proposed in [6], and the technique for calculation of conservative approximations on
Gaussians (i.e., for calculation of NLB in Formula 7 of Section 4) as described in [6].

Testbed. In order to demonstrate, that our new uncertainty model yields an competitive
solution for content-based object retrieval in multimedia databases, we tested our un-
certainty model based on GMMs on a dataset of 1,050 music video clips. The average
length of a video is 4 minutes 14 seconds. To transform the videos into GMMs, we first
of all extracted the set of all frames contained in a video and transformed each frame
into a color histogram. Thus, each video was represented by a set of 3,000 up to 10,000
single images. To model these set of images as a GMM, we applied Expectation Max-
imization clustering. Afterwards each video was represented by a GMM consisting of
100 Gaussians. Let us note that some of the videos are described by a smaller number
of Gaussians because the clustering generated empty clusters without any weight in the
GMM. Thus, the testbed consists of about 100,000 16-dimensional Gaussians which
correspond to approximately 150 GB of video data. To demonstrate that our new un-
certainty model is competitive to other methods for content-based video retrieval, we
additionally generated a database representing each video as a set of color histograms.
However, since using thousands of feature vectors for representing a video clip of 3
to 5 minutes is not feasible, we had to reduce the number of employed feature vectors
considerably. Thus, each video is described by selecting every 50th frame in chronolog-
ical order. To query a database describing a video as set of feature vectors, we employ

308 C. Böhm et al.

0

0.2

0.4

0.6

0.8

1

1 2 3 4
k

Pr
ec

is
io

n
GMMs
One Gaussian
SMD
HD

(a) Precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4
k

R
ec

al
l

GMMs
One Gaussian
SMD
HD

(b) Recall.

Fig. 8. Precision and recall for PRQ on GMMs and comparison partners

well known distance functions for set-valued objects like the sum of minimum dis-
tances (SMD) and the Hausdorff distance (HD) [31]. Furthermore, we generated a third
database representing each data object as a single Gaussian, instead of a GMM.

Effectiveness. We compare the results of our new method to the mentioned compari-
son partners for video retrieval w.r.t. precision and recall. Therefore, we posed ranking
queries, subsequently retrieving the 4 objects in the database that most likely match the
query object. The queries consist of 40 videos for which there exist multiple versions
in the database corresponding to different versions or having a different recording qual-
ity. Thus, we can measure precision and recall for these query videos. For each size
of the result set (k = 1, . . . , 4), we measured precision and recall. Figure 8 displays
the precision and the recall achieved by all 4 compared methods. Our new approach for
modeling uncertain objects as GMMs outperformed all other methods w.r.t. precision as
well as recall. For example, the GMM based model displayed a more than 20 % better
precision for k = 1 than the best of its comparison partners. Thus, we can state that
modeling a video as a GMM instead of a single Gaussian significantly increased the
quality of object representation and therefore, the precision and the recall of the result
sets improved as well. Furthermore, the result indicates that modeling videos as GMMs
is superior to modeling videos as sets of feature vectors.

We additionally tested the capability, of our new method to cope with query objects
that are not stored in the database. The result indicates a probability for unsuccessful
queries that is less than 6%. Since such a small probability value is not observed for any
result of a successful search, we assume an unsuccessful search for result probabilities
of less then 10 %.

Efficiency. After demonstrating the usefulness of our new approach for uncertain ob-
jects, we now examine the efficiency of our new method to index GMMs. To the best
of our knowledge, the method proposed in this paper is the first approach for efficiently
managing large sets of GMMs. Thus, we compare our method to the basic approach
that no index is available and the result set has to be determined by a sequential scan
over the database. Since measuring real disc accesses is often not significant due to
the existence of disc caches, we measure the IO performance in this section by count-
ing IO operations and afterwards add up the cost for the counted disk accesses based

Querying Objects Modeled by Arbitrary Probability Distributions 309

0

2

4

6

8

10

12

14

10000 20000 60000 100000

DB size

C
PU

 T
im

e
[s

ec
]

Decomposition

Seq. Scan

(a) CPU-time.

0

2

4

6

8

10

12

14

10000 20000 60000 100000

DB size

C
PU

+I
/O

 T
im

e
[s

ec
] Decomposition

Seq. Scan

(b) CPU+IO time

Fig. 9. Efficiency for PRQ (k=3) on synthetic data for varying database size

0

5

10

15

20

25

30

1 2 3 4

k

C
PU

+I
/O

 T
im

e
[s

ec
] Decomposition Seq. Scan

Fig. 10. CPU+IO time for PRQ on the video dataset

on a transfer rate of 50 MB/s and an access time of 6 ms. We evaluated the effi-
ciency of our new approach on the real world video data set. The result is displayed in
Figure 10. For all query parameters our new PRQ method was capable to speed up
query processing to a factor of approximately 2. Furthermore, the query time was com-
parably stable for the given query parameters, e.g. the query time did not significantly
increase for larger values of k. Since the video data set is rather small, we generated an
artificial data set of up to 100,000 GMMs to examine the scalability of our approach.
These GMMs consisted of up to 10 Gaussians over an 2D data space. The results are
displayed in Figure 9. In this figure, we distinguish between the CPU query time (cf.
Figure 9(a)) and the complete query time (cf. Figure 9(b)). The speedup of our new
approach increased with the size of the database. Thus, using our approach is more
beneficial for larger data sets.

6 Conclusion

In this paper, a new uncertainty model is proposed which represents uncertain objects
by Gaussian mixture models (GMM). A GMM can approximate arbitrary multivariate
probability distribution and thus, GMMs are applicable in a wide variety of new applica-
tions like multimedia retrieval, sensor networks, medicine, geology. To use GMMs for

310 C. Böhm et al.

query processing, we demonstrate that the probability that a query GMM corresponds
to a database GMM can be calculated analytically. Furthermore, our model is capable of
handling unsuccessful queries (i.e., if the database does not contain a similar data object
the results will have a very low result probability). Thus, we can recognize that there is
most likely no corresponding object in the database. After introducing the uncertainty
model, we examine probabilistic ranking queries as an important query type. To speed
up these queries, we propose a new indexing technique which is based on object de-
composition. The key idea of this method is to store each component of each GMM
separately in an index structure for single pdfs like [3,5,6]. During query processing,
we can prune certain GMMs based on their already retrieved components. Addition-
ally, the result GMMs are reconstructed while searching the database. Thus, our new
method is capable of efficiently retrieving the GMMs in the database that resemble a
query GMM with maximum likelihood. In our experimental evaluation, we demonstrate
the effectiveness of our new approach for content-based multimedia retrieval on a data
set of 1,050 video clips. Additionally, we show that the new query algorithm employ-
ing object decomposition yields a significant speed up compared to sequential query
processing on a synthetic data set and the named data set of video clips.

References

1. Faradjian, A., Gehrke, J., Bonnet, P.: GADT: A Probability Space ADT For Representing and
Querying the Physical World. In: Proc. 18th Int. Conf. on Data Engineering (ICDE’02),San
Jose, CA, USA p. 201 (2002)

2. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over Impre-
cise Data. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’03), San
Diego, CA, USA pp. 551–562 (2003)

3. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient Indexing Methods for Prob-
abilistic Threshold Queries over Uncertain Data. In: Proc. 30th Int. Conf. on Very Large Data
Bases (VLDB’04), Toronto, Cananda pp. 876–887 (2004)

4. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data ac-
quisition in sensor networks. In: Proc. 30th Int. Conf. on Very Large Data Bases (VLDB’04),
Toronto, Cananda (2004)

5. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing Multi-
Dimensional Uncertain Data with Arbitrary Probability Density Functions. In: Proc. 30th
Int. Conf. on Very Large Data Bases (VLDB’05), Trondheim, Norway, pp. 922–933. (2005)

6. Böhm, C., Pryakhin, A., Schubert, M.: The Gauss-Tree: Efficient Object Identification of
Probabilistic Feature Vectors. In: Proc. 22nd Int. Conf. on Data Engineering (ICDE’06),
Atlanta,GA,US, p. 9 (2006)

7. Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical analysis of finite mixture distri-
bution. Wiley, new york (1985)

8. Lindsay, B.G.: Mixture models: Theory, geometry, and applications (1995)
9. Greenspan, H., Goldberger, J., Mayer, A.: A probabilistic framework for spatio-temporal

video representation & indexing. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.)
ECCV 2002. LNCS, vol. 2350, pp. 461–475. Springer, Heidelberg (2002)

10. Yang, M., Ahuja, N.: Gaussian mixture model for human skin color and its application in
image and video databases. In: Proc. of the Conf. on Storage and Retrieval for Image and
Video Databases (SPIE 99), vol. 3656, pp. 458–466. Springer, Heidelberg (1999)

Querying Objects Modeled by Arbitrary Probability Distributions 311

11. Chen, S.-C., Kashyap, R.L., Ghafoor, A.: Semantic Models for Multimedia Database Search-
ing and Browsing. Kluwer Academic Publishers, Dordrecht (2002)

12. Srinivasan, U., Nepal, N.: Managing Multimedia Semantics. IRM Press (2005)
13. Deb, S.: Video Data Management and Information Retrieval. Idea Group Publishing (2005)
14. Gavin, D.G., Hu, F.S.: Bioclimatic modelling using gaussian mixture distributions and mul-

tiscale segmentation. Global Ecology and Biogeography 14, 491 (2005)
15. Lim, P., Quek, S., Peh, K.: Application of the gaussian mixture model to drug dissolution

profiles prediction. Neural Comput. Appl. 14(4), 345–352 (2005)
16. Zajdel, W., Kröse, B.: Gaussian mixture model for multi-sensor tracking. In: Proc. of the

15th Dutch-Belgian Artificial Intelligence Conference (BNAIC’03), pp. 371–378 (2003)
17. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mix-

ture models. Digital Signal Processing 10(1), 19–41 (2000)
18. Yoo, S-H.: Application of a mixture model to approximate bottled water consumption distri-

bution. Applied Economics Letters 10(3), 181–184 (2003)
19. Deshpande, A., Guestrin, C., Madden, S.R.: Using Probabilistic Models for Data Manage-

ment in Acquisitional Environments. In: Proc. CIDR (2005)
20. Böhm, C., Pryakhin, A., Schubert, M.: Probabilistic Ranking Queries on Gaussians. In: Proc.

of the 18th Int. Conf. on Scientific and Statistical Database Management (SSDBM’06), pp.
169–178 (2006)

21. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluation of Probabilistic Queries over Impre-
cise Data in Constantly-Evolving Environments 32(1), 104–130 (2007)

22. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic Spatial Queries on Exis-
tentially Uncertain Data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)

23. Ljosa, V., Singh, A.K.: APLA: Indexing arbitrary probability distributions. In: Proc. of the
23rd Int. Conf. on Data Engineering (ICDE 2007) (2007)

24. Chang, H.S., Sull, S., Lee, S.U.: Efficient Video Indexing Scheme for Content-Based Re-
trieval. In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, pp.
1269–1279. IEEE Computer Society Press, Los Alamitos (1999)

25. Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S.: Adaptive key frame extraction using unsu-
pervised clustering. In: ICIP (1), pp. 866–870 (1998)

26. Cheung, S.S., Zakhor, A.: Efficient video similarity measurement with video signature. In:
IEEE International Conference on Image Processing (ICIP 02), vol. 1, pp. 621–624. IEEE
Computer Society Press, Los Alamitos (2002)

27. Han, J., M., K.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco
(2006)

28. Witten, I.H., E., F.: Data Mining. Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco (2005)

29. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 47–57. ACM Press, New York (1984)

30. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: An Index Structure for High-
Dimensional Data. In: Proc. 22nd Int. Conf. on Very Large Data Bases (VLDB’96), Bombay,
India, pp. 28–39 (1996)

31. Eiter, T., Mannila, H.: Distance measures for point sets and their computation. Acta Infor-
matica 34(2), 103–133 (1997)

Invisible Graffiti on Your Buildings: Blind and
Squaring-Proof Watermarking of Geographical

Databases�

Julien Lafaye1, Jean Béguec1,3, David Gross-Amblard1,2, and Anne Ruas3

1 Laboratoire CEDRIC, Spécialité Informatique – CC 432, Conservatoire national
des arts & métiers, 292 rue Saint Martin, 75141 PARIS Cedex 3, France

2 Laboratoire LE2I, Université de Bourgogne, Faculté des Sciences Mirande, Aile de
l’ingénieur, BP 47870 21078 DIJON Cedex, France

3 Laboratoire COGIT, Institut Géographique National (IGN), 2/4 Avenue Pasteur 94
165 SAINT MANDE Cedex, France

Abstract. Due to the ease of digital copy, watermarking is crucial to
protect the intellectual property of rights owners. We propose an ef-
fective watermarking method for vectorial geographical databases, with
the focus on the buildings layer. Embedded watermarks survive common
geographical filters, including the essential squaring and simplification
transformations, as well as deliberate removal attempts, e.g. by noise
addition, cropping or over-watermarking. Robustness against the squar-
ing transformation is not adressed by existing approaches. The impact
on the quality of the datasets, defined as a composition of point ac-
curacy and angular quality, is assessed through an extensive series of
experiments. Our method is based on a quantization of the distance be-
tween the centroid of the building and its extremal vertex according to
its orientation.

1 Introduction

Geographical Information Systems (GIS) have existed for more than 40 years but
their application domain is much wider nowadays, ranging from environmental
surveillance by country agencies to localization-aware services for individual mo-
bile users. This phenomenon is stressed for the general public by the increasing
availability of GPS devices (e.g. car navigation) and the recent development
of Google Earth and GeoPortail [1]. Most geographical applications rely on an
underlying vectorial spatial database (points, polylines and polygons).

Gathering such accurate information is an onerous task for the data owner.
Hence, huge and detailed vectorial databases carry a high scientific and/or eco-
nomical value. Due to the ease of reproduction of digital media, unauthorized
copy and use threaten geographical data providers. Protecting the intellectual
property (IP) of rights owner is a requirement.

� Work supported by the ACI Sécurité & Informatique TADORNE grant (2004-2007).

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 312–329, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Invisible Graffiti on Your Buildings 313

On the legal side, data providers restrict the way buyers are allowed to use
their data. On the technical side, robust watermarking is a known technique
for IP protection. It consists of hiding a copyright mark within the dataset.
Embedded marks must be robust against removal attempts to be useful. In this
paper, we propose a robust watermarking method for polygonal datasets.

To embed the watermark, the data has to be altered. What might sounds as
a drawback is common to most watermarking methods [10]. There is a trade-
off between watermark robustness and data alteration: the more alterations are
allowed, the more robust the embedded watermark is. So, defining precisely what
makes the value of a dataset is a prerequisite for watermarking.

Some applications do not rely only on spatial accuracy (i.e. the distance be-
tween a point in the real world and this point in the dataset). For example,
spatial accuracy is not crucial for tourist city maps designers who apply strong
transformations to road polylines and building polygons in order to increase leg-
ibility. Some others focus on objects like forests, cliffs and shallows for which
precise borders can be difficult to define. But most applications rely on accurate
data for automatic operations (e.g. service proximity search, GPS navigation,
spatial analysis of risks, etc.). Accuracy can even be mandatory, e.g. for reefs
locations on IHO/SHOM boat maps [22]. Finally, accurate datasets must con-
form with some standard reference system for interoperability purposes (e.g. the
World Geodetic System – WGS84, which is the GPS reference system). So any
watermarking method must respect data accuracy.

Beside accuracy, real world requirements entail specific constraints within
the dataset. For example, it turns out that most of the vectorial content of
geographical databases consists of building polygons (80% on the professional
dataset used in the experiments). Building polygons are under the scope of the
squaring constraint: data is systematically corrected so that buildings with right
angles are mapped to polygons with right angles in the dataset. This squaring
operation, available in any GIS, is systematically performed by data owners
and data users, and increases the angular quality of the dataset. It is also very
invasive since potentially each point of the dataset is moved. Experiments show
that it also tends to increase data accuracy. But surprisingly, its impact has
never been taken into account by existing watermarking proposals, e.g. [18,21]:

– On the owner side, watermarking is likely to turn squared shapes into skewed
ones, reducing the data quality;

– On the user side, squaring is likely to wipe the watermark of the owner,
lowering its security. This natural transformation, along with other common
filters, can be interpreted as an attack on the watermark.

To take these effects into account, we model the quality of a dataset by means
of (1) its accuracy and also (2) its angular quality. This choice is motivated
likewise by a recently published survey [16], where it is deeply discussed that
quality encompasses accuracy and must take into account shapes and topology.

In this paper, we propose an effective method for building watermarking that
is robust against geographical transformations (including squaring and simpli-
fication) and attacks by malicious users. As far as we know, this is the first

314 J. Lafaye et al.

method which takes into account the essential squaring transformation. It pro-
vides a high level of security while controlling the impact on the quality of the
dataset (point accuracy and angular quality) and not introducing topological
errors (overlapping polygons). An extended version of our method can even re-
sists the MBR attack, that replaces each building by its minimum bounding
rectangle. The scheme is blind: the original dataset is not required for detection,
definitely an important feature for huge datasets.

A classical skeleton [2] of databases watermarking algorithms is to create a
secret dependency between (1) a robust identifier of the data and (2) one of its
characteristics, e.g. between the primary key of a tuple and one of its numeri-
cal attributes. Revealing this dependency acts as a proof of ownership. In our
approach, we get rid of the primary key by constructing a robust identifier for
each building using a well chosen portion of the highest significant bits of the
coordinates of its centroid. Then, we rely on the observation that buildings have
an intrinsic orientation and that most of their edges are parallel or perpendicu-
lar to this orientation. To hide a watermark bit, we expand or shrink buildings
along their orientation. The expansion ratio is deterministically chosen among
a set of quantized values according to the robust identifier of the polygon, the
secret key of the owner and the bit to be embedded. By embedding the water-
mark within the shapes of a building rather that within the coordinates of its
vertices, we achieve robustness of watermarks against squaring. Our scheme is
also robust against other transformations we present later in the paper. Any
malicious attacker has to tremendously reduce accuracy and/or angular quality
of the dataset to erase the watermark.

Outline. After a description of watermarking basics, a simple model for build-
ings databases and a definition for data quality are presented in Section 2. Our
watermarking procedure is described in Section 3. Correction, efficiency and ro-
bustness of the method are assessed in Section 4, through an extensive series of
experiments. Related work is exposed in Section 5 and Section 6 concludes.

2 Preliminaries

2.1 Quality of Geographical Data

A point p = (x, y) is defined by its 2-dimension coordinates (x, y) in some ref-
erence system R0. A simple polygon P = (p1, . . . , pn, pn+1 = p1) is described
by the list of its points. Two polygons taken from a real dataset are shown on
Fig. 1(a). A geographical database instance is defined by (R, DB) where R is a
reference system and DB = {Pi}, i ∈ {1, . . . , N} is a set of N polygons. It is al-
ways provided with some reference system otherwise it is of no use for automatic
operations.

We do not rely on the order of polygons within the dataset, nor on the order
of points within a polygon. Furthermore, there is no primary key identifying
these polygons. Polygons are supposed non-overlapping as in many geographical
applications.

Invisible Graffiti on Your Buildings 315

�

�
10m

A

B

(a) Raw data

�

�

A

B

(b) Squared data

�

�

A

B

(c) Orientation

�

�

�

�p

u
OA

xm
a
x

�

A

B

(d) Expansion

Fig. 1. Buildings polygons

The (economical) value of a dataset (R, DB) is correlated with its mean ac-
curacy, its maximum accuracy and its angular quality. The mean accuracy is the
mean value of the distance between a point of a building and its corresponding
point in the dataset; the maximum accuracy is the maximum value of the dis-
tance between a point of a building and its corresponding point in the dataset.
The angular quality [3] is defined as the opposite of its angular energy. The
energy of an angle is a continuous piecewise quadratic function whose minima
are reached for multiples of π/4. The angular energy of a polygon is the sum
of the energies of its angles. The intuition is that angles of real-world buildings
are mostly right, or at least multiples of π/4. So, regular buildings have lower
energy levels.

2.2 Watermarking

A watermarking procedure is defined as a pair of algorithms (W ,D), where W
is the watermarking algorithm, and D is the detection algorithm. Algorithm W
takes as inputs a dataset (R, DB) , a secret key K and some tuning parameters,
and produces a watermarked dataset (R, DBK). The aim of the detector is, given
a suspect dataset (R′, DB′) and the secret key K, to decide whether this dataset
holds a watermark or not. A watermarking procedure is said to be blind if the
original dataset is not needed by the detector D. It is said to be robust if it
detects marks in altered watermarked datasets.

It is well known that any robust watermarking method must alter the data.
Hence, there is a trade-off between the allowed alteration, i.e. the allowed impact
on the quality, and the robustness of the algorithm.

2.3 Geographical Filters and Attacks

Geographical datasets are likely to undergo transformations by legitimate or
malicious users. A broad collection of such transformations is presented below.
They can be divided into correction filters (SQ, DP), legibility improvements
(ETR, MBR, CE) and malicious attacks (GN, OW, CA). Nevertheless, this
taxonomy is not fixed as a malicious user might apply correction filters and a
legitimate one might crop a large dataset to keep only the part useful to him. A
robust enough watermarking algorithm should resist all of them:

316 J. Lafaye et al.

Squaring (SQ). For each polygon, its vertices are moved so that its angular
energy is lowered. The strength of the squaring is controlled by the maximum
allowed alteration d on coordinates.

Douglas-Peucker simplification (DP). The Douglas-Peucker simplification
algorithm [4] is a polyline simplification algorithm. It works by removing the
vertices of polygons that draw small artifacts on the edges of this polygon.
Its strength is controlled by a threshold distance d. The higher d, the larger
the removed artifacts are.

Cropping (CA). Polygons not contained within a given rectangularly shaped
region of the dataset are discarded.

Gaussian noise (GN). A random noise is added to each point of the database.
The distribution of the noise has mean 0 and a variable deviation d.

Over-watermarking (OW). Applying the watermarking algorithm with a
different key on an already marked dataset.

Enlarge to rectangle (ETR). This filter replaces buildings by their bounding
rectangle. Two modes are available. The first one replaces each building
with a rectangle having the same surface. The second one takes as input a
target scale and replaces the buildings that are too small (for a legally fixed
threshold value) to be legible on a map at that scale.

Change elongation (CE). Applies a fixed ratio elongation along their orien-
tation on all buildings of the dataset.

Minimum bounding rectangle (MBR). Replaces each building by its min-
imal bounding rectangle.

3 Building Watermarking

3.1 Outline of the Algorithm

We build a robust identifier idi for each polygon Pi by using the highest signifi-
cant bits of the coordinates of its centroid, expressed in the predefined reference
system R0. This identifier is robust since it is invariant through the modifica-
tions of vertex coordinates, involving only least significant bits. High amplitude
modifications are likely to break the identifiers but also to lead to visible shapes
alterations and/or polygon overlappings. Furthermore, if the coordinates of the
polygon of the centroid are expressed in a reference system R′, different from
R0, it is easy to convert them back into R0. Indeed, no geographical data comes
without a reference system.

In order to hide a bit of information in polygon Pi, we expand or shrink it
along its orientation. This orientation is computed relatively to the centroid (see
Fig. 1(c)), and represents the majority weighted angle among edges directions.
We present its computation in Section 3.3. For a rectangular shape, this orien-
tation is parallel to the longest edge. Choosing to expand along this orientation
offers several advantages. First, we observed that most edges of a polygon are
parallel or perpendicular to this orientation. For example, there are 3 directions
in polygon A (Fig. 1(b)): SW-NE, SE-NW and W-E. The main direction, i.e. the
orientation is clearly SW-NE since the longest edges are heading this direction.

Invisible Graffiti on Your Buildings 317

Other directions are perpendicular or make a π/4 angle with the orientation.
When a polygon is expanded along its orientation, geometrical relations be-
tween directions do not change. Second, an expansion along the orientation can
still be detected if the polygon is rotated.

It remains to compute the expansion factor to apply, and to choose which
polygons are going to be altered. These operations must be done so that any at-
tacker, aware of the watermarking method, is unable to guess on which polygons
they were actually applied. A classical method to achieve this [2] is the follow-
ing: use the concatenation of the given identifier idi of a polygon and the secret
key K of the owner to seed a pseudo-random number generator (PRNG). Use
pseudo-random drawings from the generator to determine whether the current
polygon is modified and, eventually, with which expansion factor. The sequence
of numbers produced by the generator is predictable if and only if idi.K is known.
It appears purely random to anyone who does not possess this seed (an attacker
may easily compute idi, but K remains unknown).

In the following, we detail the three consecutive steps of our algorithm: (1)
computation of polygon identifiers and orientations, (2) computation of expan-
sion factors and (3) watermarking by expansion.

Example 1. An example of our watermarking method applied on polygons A
and B is shown on Fig. 1(d). Original shapes are shown in black and water-
marked ones in gray. First, we compute the centroid of A and B, obtaining
OA = (293, 155) and OB = (171, 447). To form unique identifiers idA and idB,
we concatenate the two highest significant digits of each coordinate, obtaining
idA = 2915 and idB = 1744. Choosing these two digits is correct under the hy-
pothesis that any reasonable alteration is below 10 meters and that the typical
distance between any two buildings is more than 10 meters (this example con-
siders decimal base while our algorithm considers binary base). Second, based
on the pseudo-random choices of a generator seeded with idA and the secret key
K, we decide that A must be watermarked with a mark bit 0. We compute the
main orientation u of A and find the vertex p such that u.Op is maximal. Let
xmax denote this value. Finally, we expand the building along its main orienta-
tion so that xmax becomes a predefined value x0

max, encoding bit 0. Polygon B
is processed identically. Remark that A has been expanded whereas polygon B
has been shrinked, and that most angles are invariant under this transformation.

3.2 Computing Robust Identifiers

As a robust identifier, we use the highest significant bits of the centroid of the
polygon following existing works on relational databases, e.g. [2]. The centroid is
the center of mass of the polygon and is easily computed. Centroids of polygons
A and B are represented as black dots on Fig. 1(a) and 1(b).

We need to ensure that the chosen highest significant bits are significant
enough. Suppose that the h-th bit is the least highest significant bit. On the
one hand, h must be high enough to that small modifications of the polygon do
not change the identifier. On the other hand, h must be small enough so that two
adjacent polygons do not share the same identifier. For space reasons, we omit

318 J. Lafaye et al.

the discussion on a proper choice of h. It is carried on in an extended technical
report [12].

The identifier of a polygon P is computed by pruning in the binary represen-
tations of its x and y coordinates the bits that represent powers of two at most
h− 1 and concatenating them. We denote by hsb(O, h) this operation.

id = hsb(O, h) = concat(hsb(xO, h), hsb(yO, h)).

3.3 Computing Polygon Orientation

We define the main orientation u of a polygon as the maximum weighted orien-
tation of its edges. For instance, if only e1 and e2 have orientation α, then the
weight of angle α is the sum of the lengths of e1 and e2. The problem is that
parallel walls in the real world are not necessarily mapped to parallel edges in
the dataset. So, we need to sum the lengths of edges that are almost parallel.
We define ε the tolerance angle, that is e1 and e2 are considered as having the
same orientation if their orientations α1 and α2 are such that |α1 − α2| < ε.
To efficiently compute the orientation, we defined a bucket-based classifying al-
gorithm based on the observation that there is often only a small number of
different orientations per polygon. The algorithm consists of the following three
steps. First, we create a set of k empty buckets, provided we choose k such that
π/k < ε. In bucket i, we put all edges having an orientation between (i− 1).π

k
and i.π

k . Hence, in buckets i and i + 1 we have all edges that are almost equal
to i.π/k. Then, we aggregate these small buckets into bigger ones by merging
two buckets if there is no empty bucket between them. The main orientation of
a building is computed as the mean value of the bucket having the highest cost
(the cost of a bucket being defined as the sum of the lengths of the edges in that
bucket). It can happen that three or more buckets need to be aggregated, leading
to consider orientations as equal when their difference is greater than angle tol-
erance. This is very unlikely. Indeed, we observed that on buildings, there is only
a few directions per polygon (2, 3 in most cases) which are clearly separated. A
similar approach was followed in [5] with the main difference that the method
proposed in [5] requires to compute the weight of all π/k orientations and select
the one with the highest weight. Our method is more efficient but may be less
accurate in a restricted number of situations.

Example 2. We illustrate the orientation computation algorithm on polygon A of
Fig. 1(b). The number of classes is set up to 10. We got the following repartition
of edges: {b1 : 3, b4 : 8, b9 : 6} and the corresponding weights: {b1 : 9.02, b4 :
62.4, b9 : 45.2}. The highest cost bucket is bucket 4, i.e. the orientation is between
3π/10 and 4π/10 = 2π/5. The computation of the weighted mean angle of bucket
4 gives 0.96 rad.

3.4 Expansion as a Bit Embedding Method

In this subsection we show how to embed a single watermark bit b into a polygon
P . To ensure that the watermark is robust enough, we alter the longest distance

Invisible Graffiti on Your Buildings 319

xmax (see Fig. 1(d)) along the orientation u from the centroid O to a vertex p
(for a rectangular polygon, this length is half the length of the longest edge).
We name main length this longest distance and quantize it so that it becomes
a multiple of a secret d coding a bit 0 or 1. But only altering the coordinates
of p is not sufficient because it may lower angular quality (right angles may be
flattened by this transformation). Hence, we choose to alter all lengths along
the orientation u so that most angles are preserved. Defining by v the unary
vector such that (0, u, v) is a direct orthonormal basis, watermarking is done as
follows:

– compute the x coordinate xi of each point pi of the polygon in (0, u, v);
– compute the main length xmax = maxi{|xi|};
– expand all points coordinates along direction u so that xmax is quantized to

one of the values {x0
max, x1

max} coding a watermark bit 0 or 1. Quantization
is detailed below.

Given a quantization step d, we define 0-quantizers (resp. 1-quantizers) as qk
0 =

k.d (resp. qk
1 = k.d + d/2), k ∈ Z. Intuitively, 0-quantizers (resp. 1-quantizers)

are used to code a bit 0 (resp. a bit 1). To quantize the value xmax using the
i-quantizers (i ∈ {0, 1}), we look for k0 such that |qi

k0
− xmax| is minimal. More

precisely, this is achieved with the following steps (quantization on 0-quantizers
is presented): compute kr = xmax/d; round kr to the closest integer k0 and define
the quantized version of xmax as x′

max = k0.d. To use 1-quantizers, one should
choose kr = xmax/d− 1/2 and x′

max = k0.d + d/2. The quantization process is
illustrated on Fig. 2.

k.d

0

k.d + d
2

1

(k + 1)d

0

�

xmax

10

Fig. 2. Encoding 0 or 1 into the main length xmax using quantization

The expansion coefficient of the polygon is defined as σ = x′
max/xmax. We

transform each point p = x.u + y.v in the original polygon into a point p′ =
σ.x.u + y.v in the watermarked polygon.

The expansion is such that the maximum distortion on a vertex of a polygon
is at most d/2. Remark that this distortion can be reached only for the vertices
that are the farthest to the centroid along u. On the average, and for these
points, the actual distortion is d/4.

3.5 Watermarking Algorithm

Watermarking. The complete algorithm is presented in Alg. 1. Let 1/γ be the
target ratio of watermarked polygons. It is a parameter of the algorithm. For
each polygon of the dataset, we compute its robust identifier id. Then, we seed

320 J. Lafaye et al.

a pseudo-random number generator G (PRNG) with K.id. If the first integer
produced by G modulo γ is 0, we embed a bit in the polygon. The bit is chosen
according to the next binary value produced by G and embedded using the
previously described expansion method.

Variable Step Quantization. We do not use a single quantization step d but a
quantization interval [dmin, dmax]. Indeed, if d is the same for the whole dataset,
main lengths of all watermarked polygons will be multiples of d. This could be
easily detected and used by an attacker to alter the watermark [12].

Discussion. Using this method, the watermark is spread almost uniformly over
the dataset. This process being controlled by a secret key, it is impossible to
find the exact locations of expanded polygons, assuming the PRNG is secure.
To alter the watermark, an attacker has to alter much more polygons than
the watermarking process did if he wants to be sure to affect all watermarked
polygons. The choice of watermarking parameters γ, dmin and dmax depends
on the specific usage of the dataset. They cannot be fixed arbitrarily for all
applications but the following rules are always valid:

– there is an unavoidable trade-off between quality alteration (γ ↑, dmin ↓
, dmax ↓) and robustness of the watermark (γ ↓, dmin ↑, dmax ↑). Experiments
presented in Section 4 give indications on how to choose optimal values;

– if the accuracy (maximum distance between a point in the dataset and in
the real world) of the unwatermarked database is β1, then the accuracy of
the watermarked one is β1 + dmax/2. If the watermarked dataset is sold
under the agreement of an accuracy β2, then dmax must be chosen so that
dmax < 2(β2 − β1);

– the allowed alteration on the building, i.e. dmax must be higher than the
typing accuracy of the dataset. Below this value, alterations can be consid-
ered as noise and rounded by a malicious user without altering the quality
of the dataset at all. For instance, a 1 millimeter alteration is meaningless
in a dataset of accuracy 1 meter.

3.6 Handling Data Constraints

The bit embedding method using expansion does not take into account topolog-
ical relationships between buildings. We voluntarily chose to ignore them during
bit embedding and to detect errors and cancel modifications when needed (func-
tion testCollisions). Such a strategy is valid as soon as few errors occur. By
choosing dmax = 4 meters, the alteration on each point of a polygon is at most 2
meters. Usually, even in urban areas, polygons are spaced by a distance superior
to 2 meters. Indeed, with this value, we got only one case of overlapping, even in
the worst setting, i.e. when γ = 1. This validates the detect-and-cancel strategy.
Such a post-watermarking filtering enables to handle any kind of errors which
can occur sparsely during the watermarking process.

Invisible Graffiti on Your Buildings 321

Algorithm 1: Watermarking algorithm
Input: secret key K, watermarking ratio 1/γ, h, quantization step interval

D = [dmin, dmax]
Data: (R0, DB): original dataset
Output: (R0, DBK): watermarked dataset
foreach building P in DB do

O ← centroid(P);
id ← hsb(O, h); /* robust identifier id */
seed(G, K · id); /* seed the PRNG G with K · id */
if nextInteger(G) mod γ = 0 then

// Watermark this building
u ← orientation(P); /* orientation */
xmax ← max{p ∈ P |Op · u}; /* main length */
d ← dmin + nextFloat(G). (dmax − dmin); /* quantization step */
b ← nextInteger(G) mod 2; /* watermark bit b */
x′

max ← quantize (xmax,d,b); /* quantize xmax */
σ ← x′

max/xmax; /* expansion ratio */
expand(P, O, u, σ);
if testCollision () then

rollback () ;

3.7 Detection

Outline. Given a suspect dataset (R′, DB′), we translate it into the original ref-
erence system R0, obtaining (R0, DB′). Then, we perform the actual detection
which is very similar to the watermarking algorithm, with the essential difference
that no alteration is performed. It consists of two steps: computing the ratio of
matching polygons and comparing this ratio to a predefined threshold value α.
The values of dmin, dmax, h, γ and K used for detection must be the same as the
ones used for watermarking. So they must be kept as part of the secret. For each
of the polygon we seed a random generator with K concatenated with its iden-
tifier. If the polygon satisfies the watermarking condition (i.e. nextInteger(G)
mod γ = 0), we compute the expected bit value b as nextInteger(G) mod 2.
We also compute the quantization step d between dmin and dmax. Then, we de-
code the bit b′ embedded in the main length xmax of the polygon and compare
it with b.

Decoding. To decode a bit from a quantized value x, we simply check whether
it is one of the 1-quantizers or one of the 0-quantizers. If x is none of the i-
quantizers, we compute the closest quantized value x′

1 in 1-quantizers and the
closest quantized value x′

0 in 0-quantizers. We compare the distance d0 = |x′
0−x|

and d1 = |x′
1 − x|. If d0 < d1, we decode a bit 0; if d0 > d1, we decode a bit 1.

If d0 = d1 no bit can be decoded. Note that a quantized value, with step d, can
be altered up to d/4 without leading to a decoding error. Quantization has been
chosen because it enables to optimize the trade-off between average distortion
(here, d/2) and the minimum alteration leading to a decoding error (here, d/4).

322 J. Lafaye et al.

If the expected bit b and the decoded bit b′ are the same, we say that the
polygon matches. We maintain two counters, m (match) and t (total). The first
one is incremented each time a polygon satisfying the watermarking condition
is found. The second one is incremented each time this polygon matches. Hence,
the detection ratio m/t is the ratio of matching polygons.

It is easy to see that on a third party dataset, the probability that each
polygon matches is 1/2. Therefore, the ratio m/t is compared to its expected
value 1/2 to decide whether the mark of the owner is present in the document
or not. Practically, a detection threshold α must be set to bound the detection
area. We detect a mark when |m/t − 1/2| ≥ α. The relevance of the detection
process highly relies on the value of α. From [13], setting α = − log(δ/2)/2t
achieves a false positive occurrence probability fp ≤ δ. We use this formula in
our experiments to keep false positives occurrence probability under δ0 = 10−4.

Proposition 1. (direct application of [6]) Let p the number of polygons satisfy-
ing the watermarking conditions. If each polygon has a probability 1/2 to match,
the probability P = Pr (m/t− 1/2 ≥ α) is such that P ≤ e−2αt2 .

Then, the false positive occurrence probability defined as f =P (|m/t− 1/2|≥α)
is such that f ≤ 2e−2αt2 . Choosing α = − log(δ/2)/2t as the detection threshold
permits to keep f under δ. We use this formula in our experiments to keep false
positives occurrence probability under δ0 = 10−4.

4 Experiments

4.1 Framework

Data. All experiments presented in this paper were realized on buildings from the
French city of Pamiers. The data is part of the BD TOPO R©[8], a topological
database product from the French National Mapping Agency (IGN), the major
maps provider on the French market. The product consists of several coherent
layers (hydrographic network, roads, buildings...) from which we extracted only
the buildings layer. This layer is composed of 4 278 polygons (35 565 vertices),
representing dense build areas as well as sparse ones. It has a contractual accu-
racy of 1 meter. The core watermarking method is distributed under the GPL
license [11].

Filter/Attacks. We performed an extensive series of experiments to validate the
robustness of our method. All the filters/attacks presented in Section 2.3 were
tested. We do not present here all the results but only a summary; the interested
reader may refer to an extended technical report [12] for more details.

Protocol. We consider that an attack is successful if it destroys the watermark
with high probability while inducing a quality loss comparable to the one in-
troduced by the watermarking process. In a same manner, we consider that a
watermarking algorithm A is better than an algorithm B against a specific at-
tack if it is as robust as B while inducing a quality loss significantly smaller

Invisible Graffiti on Your Buildings 323

Algorithm 2: Detection algorithm
Input: secret key K, watermarking ratio 1/γ, h, quantization step interval

D = [dmin, dmax], max. false positive occurrence probability fp

Data: (R′, DB′), a suspect dataset
Output: MARK or NO MARK
foreach building P in DB do

O ← centroid(P);
id ← hsb(O, h);
seed(G, K · id);
if nextInteger(G) mod γ = 0 then

t++; /* increment total count */
u ← orientation(P);
xmax ← max{p ∈ P |Op · u};
d ← dmin + nextFloat(G). (dmax − dmin);
b ← nextInteger(G) mod 2; /* expected bit b */ ;
x′

0 ← quantize(xmax, d, 0); /* closest 0-quantizer */
x′

1 ← quantize(xmax, d, 1); /* closest 1-quantizer */
if |xmax − x′

0| > |xmax − x′
1| then

b′ ← 1; /* found bit is b′ = 1 */
else

b′ ← 0; /* found bit is b′ = 0 */

if b = b′ then m + +; /* increment match count */

α ← threshold(fp, t);
if |m/t − 1/2| > α then return MARK; else return NO MARK;

than B. To emphasize the benefits of watermarking by expansion, we put side
by side a random noise based method and ours and compare them in terms of
robustness/distortion trade-offs. So, we begin by quantifying the quality losses
of both schemes.

4.2 Impact of Watermarking on Quality

To evaluate the impact of our watermarking algorithm on the Pamiers dataset,
we applied it with different watermarking ratios 1/γ, with γ ∈ {10, 15, . . . , 100},
and different quantization ranges [dmin, dmax] ∈ {[1, 2], [3, 4], [5, 6]}. These ranges
start from data accuracy (1 meter) to the maximum reasonable alteration
(6 meters).

Average Accuracy Alteration. The impact on the accuracy is displayed on
Fig. 3(a). Alteration increases when quantization steps increase and when γ
decreases. We observe that the average alteration of accuracy is proportional to
(dmin +dmax)/γ. For instance, when [dmin, dmax] = [3, 4], a good approximation
of the average alteration of accuracy is 0.07.(dmin+dmax)/γ. The ratio 1/γ is not
surprising since on the average, 1/γ polygons are watermarked. Furthermore, the
expected alteration for the farthest vertex from the centroid is (dmin + dmax)/4.

324 J. Lafaye et al.

The alteration of all the points from a watermarked polygon are proportional
to the alteration of this particular vertex. These dependencies can be used by
the watermarker to choose the parameters of the marking algorithm: if dmax is
obtained as the maximum allowed alteration, and if the target alteration is fixed,
one can easily compute γ.

10 20 30 40 50 60 70 80 90 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Quality Benchmark : Distance

Gamma

M
ea

n
di

st
an

ce
 a

lte
ra

tio
n

(m
)

D=[1.0,2.0]

D=[3.0,4.0]

D=[5.0,6.0]

(a) Average accuracy alteration

10 20 30 40 50 60 70 80 90 100
−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Quality Benchmark : Angles

Gamma

A
ve

ra
ge

 a
ng

ul
ar

 e
ne

rg
y

ch
an

ge

D=[1.0,2.0]

D=[3.0,4.0]

D=[5.0,6.0]

(b) Average angular energy alteration

Fig. 3. Impact of watermarking

Angular Quality. We verify that the variation of angular quality introduced by
our method is negligible on Fig. 3(b). Even for the highest quantization steps,
[dmin, dmax] = [5, 6], the highest angular energy variation is at most +0.08. As
a comparison, a weak gaussian noise (deviation d = 0.2m) increases the angular
energy by +6.19.

4.3 Random-Noise Based Watermarking

The random noise scheme is based on the insertion of a pseudo-random noise
within the data. Even if it is not a scheme found in the literature, it supersedes
existing ones and mimic the behavior of others. It is similar, in most cases,
to the schemes that introduce perturbation in the dataset without taking into
account the shapes of the polygons [16]. The point is that if shapes are expected
to be regular, a watermarking algorithm working by altering these shapes is
suboptimal in terms of robustness/distortion trade-off. Indeed, most users will
correct the shapes so that the regularity aspect is brought back. This operation
is very likely to remove the watermark.

The algorithm consists of looping over all the vertices of the dataset. The
x and y coordinates of the vertices are watermarked independently. For each
coordinate, a PRNG is seeded with its highest significant bits. Only the least
significant bits are altered. Their positions and values are determined accord-
ing to the drawings of the PRNG. This method can be seen as a straightfor-
ward extension of the existing AKH [2] scheme in which most significant bits of
the coordinates are used as primary keys and least significant bits as alterable
attributes.

Invisible Graffiti on Your Buildings 325

The quality loss introduced by such a random noise scheme is controlled by
three parameters: the watermarking ratio 1/γ, the least highest significant bit
lspow2 and the number ξ = 2 of alterable powers of two. For instance, if lspow2 =
2 and ξ = 2, the maximum distortion on a coordinate is 2lspow2−1 = 2 and the
minimum distortion is 2lspow2−ξ = 1. Using higher values of ξ enables for extra
embedding bandwidth but lead to distortions that are removed by any rounding
of the coordinates. In what follows, we compare our scheme (with dmin = 3
and dmax = 4) with two random noise schemes parameterized with two sets of
parameters. For the first one, RNW1, lspow2 = −1, ξ = 1; for the second one,
RNW2, lspow2 = 2, ξ = 2. These values were chosen for the following reasons:
RNW1 achieves an average accuracy alteration (compare Fig. 3(a) and Fig. 4(a)
- both curves decrease as 1/γ and have a mean accuracy alteration of 0.025 for
γ = 10) very close to the one observed using our method whereas RWN2 has a
maximum alteration on each vertex equals to ours.

10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

Quality Benchmark : Distance

Gamma

M
ea

n
di

st
an

ce
 a

lte
ra

tio
n

(m
)

xi=1,lspow2=−1

xi=2,lspow2=2

(a) Average accuracy alteration

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Quality Benchmark : Angles

Gamma

A
ve

ra
ge

 a
ng

ul
ar

 e
ne

rg
y

ch
an

ge

xi=1,lspow2=−1

xi=2,lspow2=2

(b) Average angular energy alteration

Fig. 4. Impact of random noise watermarking

4.4 Discussion

Table 1 sums up robustness experiments realized against geographical filters
presented in Section 2.3. Robustness results for our method are presented in
the WM column. Whether a method achieves robustness is indicated with the
appropriate Yes/No answer. When a method is robust as far as enough polygons
are watermarked, the threshold watermarking ratio under which the method has
been experimentally proved robust is also indicated. Remark that robustness
might also be achieved for higher values of γ. In the second and third columns
are shown the average quality loss introduced by the attacks. These must be put
into balance with the distortion introduced by watermarking algorithms (see
Section 4.2 and 4.3).

As we expected, our method resist all kinds of squaring, including the most
destructive ones. On the contrary, watermarks embedded using random-noise

326 J. Lafaye et al.

based algorithms are washed out. Our method shows also robustness against
the majority of attacks. The fact that GN(d=1m) and DP(d=5m) erase the
watermark must be put into balance with the quality losses these attacks in-
troduce. They tremendously reduce the quality of the dataset. Furthermore, it
behaves well against change elongation filters since the length of polygons must
be increased or decreased by more than 10% to ensure watermark removal. But
this remains the weak point of our method since the embedding area is directly
affected.

Compared to random-based schemes, our algorithm performs better in the
majority of cases. Whereas RWN1 and RWN2 are more robust against the change
elongation filter, they have a significantly higher impact on quality compared to
our method. In that sense, we are confident to say that our algorithm for building
watermarking achieves a very good distortion/robustness trade-off.

In the last column of the table, we combined our scheme and RNW2 into
an expand-and-translate scheme. In a first time, we apply our scheme and then
apply RNW2 on the centroid of the polygon (left invariant by the first step). We
obtain a modification of the coordinates of the centroid which is used to translate
the polygon. Obviously, this combined scheme introduces a larger quality loss
but it achieves robustness for all the filters/attacks used in the paper. We think
that this combined scheme is a relevant practical scheme which adds an extra
robustness wall to RNW2 used alone by altering the shapes of the polygons.

Table 1. Robustness of watermarking

Filter Precision alt. Angular energy WM RNW1 RNW2 Combined
SQ (d=1m) 0.19 -14.1 Yes No Yes Yes
SQ (d=1.5m) 0.23 -16.2 Yes No γ < 90 Yes
SQ (d=2m) 0.27 -17.2 Yes No γ < 80 Yes
DP (d=1m) N/A - 1.3 Yes Yes Yes Yes
DP (d=2m) N/A - 0.3 Yes Yes Yes Yes
DP (d=5m) N/A 68.1 γ < 70 Yes Yes γ < 100
CA 0 0 Yes Yes Yes Yes
GN (d=0.2m) 0.18 6.19 Yes γ < 30 Yes Yes
GN (d=0.6m) 0.53 40.00 Yes No γ < 75 Yes
GN (d=1m) 0.89 78.52 γ < 65 No γ < 30 γ < 75
OW - - Yes Yes Yes Yes
ETR N/A -6.53 γ < 40 No γ < 25 γ < 50
ETR(scale=25000) N/A -6.06 No No No γ < 40
ETR(scale=250000) N/A -0.03 Yes Yes Yes Yes
CE(scale=0.90) 1.06 0.16 No No γ < 45 Yes
CE(scale=0.95) 0.53 0.02 γ < 95 No Yes Yes
CE(scale=1.0) 0 0 Yes Yes Yes Yes
CE(scale=1.05) 0.53 0.09 γ < 95 Yes Yes Yes
CE(scale=1.10) 1.06 0.27 No No γ < 50 Yes
MBR N/A -6.6 γ < 75 γ < 35 γ < 50 γ < 75

Invisible Graffiti on Your Buildings 327

5 Related Work

Despite that state-of-the art is very rich on watermarking still images which
can be directly applied to image maps, fewer works were carried on on water-
marking vector maps. A complete study of vector maps watermarking [16] has
been recently published which divides this field into three categories: spatial do-
main watermarking, transform domain (DCT,DWT,. . .) watermarking and 3D
meshes adapted algorithms. Spatial domain watermarking consists of modifying
directly the coordinates of the vertices of the dataset. Patch-based techniques
[9,17,20,24] are based on a decomposition of the dataset into patches in which
bits are embedded by vertices translation [17] and/or data distribution within a
patch [9,20,24]. Such schemes are sensitive to patch decomposition that can vary
when the dataset is cropped. Schemes of [9,20] create detectable nodes aggre-
gations; [17] is not blind and [24] does not respect the shape of smooth objects
(including squared buildings).

Vertices addition based [7,15,19] techniques are the best from a quality view-
point. They consist of interpolating the existing edges of the dataset with fake
points. In the context of buildings where the shapes are regular, such inter-
polations are easily detected and removed by simplification algorithms. In our
context, these schemes are not robust enough. The least-significant bit water-
marking method presented in [23] preserves accuracy but is very sensitive to
vertices addition, which destroys synchronization.

In [21], a high watermarking capacity algorithm for vector maps is introduced.
It is based on a previous work on 3D meshes watermarking by the same authors.
It is robust against common geographical filters like Douglas-Peucker simplifi-
cation algorithm. It is based on a decomposition of the database into patches
and by moving points of a common patch into a subpatch to embed the water-
mark. Nevertheless, efficient attacks erasing the watermark without destroying
the quality of the dataset can be easily planned, as the method requires known
synchronization points.

Our method shares a common skeleton with the popular AHK algorithm [2].
But it differs on several aspects: it does not require primary keys, and do not
use high significant bits to replace them in a straightforward manner (instead
the centroid is used); the bit embedding operation is not a least significant bit
embedding, which is very fragile against rounding, but a quantization method.

6 Conclusion

In this paper we presented a blind watermarking algorithm for polygon datasets.
It is well suited to building layers of geographical datasets since watermarks are
invariant through aggressive geographical filters applied by data users, including
squaring and boxing. We experimentally showed that it is difficult for an at-
tacker to erase the watermark without paying an extra quality fee, compared to
watermarking. The algorithm has been implemented into an open database wa-
termarking framework [14] and is available online [11]. We are currently working

328 J. Lafaye et al.

on designing algorithms for other layers of geographical datasets. A real chal-
lenge we are faced with is to deal with the interactions between the different
layers. Indeed, watermarking algorithms must be adapted to the data; there is
no unique solution. Even if we know how to perform watermarking and detection
on a single layer, it is challenging to orchestrate several algorithms on several
layers so that resulting watermarked datasets remain consistent.

Acknowledgements. We would like to thank Eric Grosso from IGN for his tech-
nical support and helpful discussions.

References

1. GéoPortail (visited 03/20/2007). http://www.geoportail.fr.
2. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework,

algorithms and analysis. VLDB J. 12(2), 157–169 (2003)
3. Airault, S.: De la base de données à la carte: une approche globale pour

l’équarrissage de bâtiments (in french). Revue Internationale de Géomatique
6(2-3), 203–217 (1996)

4. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points re-
quired for represent a digitized line or its caricature. Canadian Cartographer 10(2),
112–122 (1973)

5. Duchêne, C., Bard, S., Barillot, X., Ruas, A., Trevisan, J., Holzapfel, F.: Quan-
titative and qualitative description of building orientation. In: Fifth workshop on
progress in automated map generalisation, ICA, commission on map generalisation
(April 2003)

6. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

7. Huber, W.A.: Gis and stegranography - part 3: Vector stegranography (April 2002)
http://www.directionsmag.com/article.php?article id=195

8. Institut Géographique National. BD TOPO - descriptif technique (in french)
(December 2002), http://www.ign.fr/telechargement/MPro/produit/BD TOPO/
JT Agglo/DT BDTOPOPays 1 2.pdf

9. Kang, H.I., Kim, K.I., Cho, J.U.: A vector watermarking using the generalized
square mask. In: Information Technology: Coding and Computing, pp. 234–236
(April 2001)

10. Katzenbeisser, S., Petitcolas, F.A.P.: Information hiding, techniques for steganog-
raphy and digital watermarking. Artech house (2000)

11. Lafaye, J.: Watermarking plugin for openjump (2007), http://cedric.cnam.fr/
~lafaye j/index.php?n=Main.WaterGoatOpenJumpPlugin

12. Lafaye, J., Béguec, J., Gross-Amblard, D., Ruas, A.: Blind watermark-
ing of geographical databases by polygon expansion. In: Technical Re-
port hal-00137956, CNRS-CCSD HAL (March 2007), Available online
http://hal.archives-ouvertes.fr/hal-00137956

13. Lafaye, J., Gross-Amblard, D.: Xml streams watermarking. In: 20th Annual IFIP
WG 11.3 Working Conference on Data and Applications Security (DBSEC 2006)
(2006)

14. Lafaye, J., Gross-Amblard, D., Guerrouani, M., Constantin, C.: Watermill: an
optimized fingerprinting system for databases under constraints. submitted to
TKDE (2007)

http://www.geoportail.fr
http://www.directionsmag.com/article.php?article_id=195
http://www.ign.fr/telechargement/MPro/produit/BD_TOPO/JT_Agglo/DT_BDTOPOPays_1_2.pdf
http://www.ign.fr/telechargement/MPro/produit/BD_TOPO/JT_Agglo/DT_BDTOPOPays_1_2.pdf
http://cedric.cnam.fr/~lafaye_j/index.php?n=Main.WaterGoatOpenJumpPlugin
http://cedric.cnam.fr/~lafaye_j/index.php?n=Main.WaterGoatOpenJumpPlugin
http://hal.archives-ouvertes.fr/hal-00137956

Invisible Graffiti on Your Buildings 329

15. Lopez Vazquez, C.M.: Method of inserting hidden data into digital archives com-
prising polygons and detection methods, US Patent no. 20030208679 (November
2003)

16. Niu, X., Shao, C., Wang, X.: A survey of digital vector map watermarking. Interna-
tional Journal of Innovative Computing, Information and Control, 2(6) (December
2006)

17. Ohbuchi, R., Ueda, R., Endoh, S.: Robust watermarking of vector digital maps.
In: Multimedia and Expo, 2002. ICME ’02, vol. 1, pp. 577–580 (2002)

18. Ohbuchi, R., Ueda, H., Endoh, S.: Watermarking 2D vector maps in the mesh-
spectral domain. In: Shape Modeling International, pp. 216–228. IEEE Computer
Society Press, Los Alamitos (2003)

19. Park, K.T., Kim, K.I., Kang, H.I., Han, S.-S.: Digital geographical map water-
marking using polyline interpolation. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T.
(eds.) PCM 2002. LNCS, vol. 2532, pp. 58–65. Springer, Heidelberg (2002)

20. Sakamoto, M., Matsuura, Y., Takashima, Y.: A scheme of digital watermarking for
geographical map data. In: Symposium on cryptography and information security,
Okinawa, Japan (January 2000)

21. Schulz, G., Voigt, M.: A high capacity watermarking system for digital maps.
In: MM&Sec ’04: Proceedings of the 2004 workshop on Multimedia and security,
Magdeburg, Germany, pp. 180–186. ACM Press, New York, NY, USA (2004)

22. The International Hydrographic Organization (IHO). Specifications for Chart Con-
tent and Display Aspects of ECDIS. IHO, 5th edn. (December 2001)

23. Voigt, M., Busch, C.: Watermarking 2d-vector data for geographical information
systems. In: SPIE, Security and Watermarking of Multimedia Content, vol. 4675,
pp. 621–628 (2002)

24. Voigt, M., Busch, C.: Feature-based watermarking of 2d vector data. In: SPIE,
Security and Watermarking of Multimedia Content, vol. 5020, pp. 359–366 (June
2003)

Transformation of Continuous Aggregation Join
Queries over Data Streams

Tri Minh Tran and Byung Suk Lee

Department of Computer Science, University of Vermont, Burlington VT 05405, USA
{ttran,bslee}@cems.uvm.edu

Abstract. We address continuously processing an aggregation join query over
data streams. Queries of this type involve both join and aggregation operations,
with windows specified on join input streams. To our knowledge, the existing re-
searches address join query optimization and aggregation query optimization as
separate problems. Our observation, however, is that by putting them within the
same scope of query optimization we can generate more efficient query execution
plans. This is through more versatile query transformations, the key idea of which
is to perform aggregation before join so join execution time may be reduced. This
idea itself is not new (already proposed in the database area), but developing the
query transformation rules faces a completely new set of challenges. In this paper,
we first propose a query processing model of an aggregation join query with two
key stream operators: (1) aggregation set update, which produces an aggregation
set of tuples (one tuple per group) and updates it incrementally as new tuples
arrive, and (2) aggregation set join, i.e., join between a stream and an aggrega-
tion set of tuples. Then, we introduce the concrete query transformation rules
specialized to work with streams. The rules are far more compact and yet more
general than the rules proposed in the database area. Then, we present a query
processing algorithm generic to all alternative query execution plans that can be
generated through the transformations, and study the performances of alternative
query execution plans through extensive experiments.

1 Introduction

In this paper, we consider the problem of processing continuous aggregation join
queries over data streams. These queries involve both join and aggregation operations.
(The aggregation may be a grouped aggregation.) Many aggregation join queries are
window-based because joins are blocking operators (i.e., needing a finite set of tuples).
A window, which restricts the number of tuples processed, is a common technique pro-
posed in many existing researches [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Window-based aggregation join queries (called simply “aggregation join queries”
in this paper) are needed in various data stream applications. For example, in a tele-
phone call tracking application [11], a telephony company may want to keep track of the
monthly total calling time on international calls made from each telephone number (i.e.,
subscriber) within a specific area code [11]. As another example, in a network traffic
management application [10], a network administrator may want to monitor packet data
flow through links between different networks [10]. For another example, in an online

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 330–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Transformation of Continuous Aggregation Join Queries over Data Streams 331

auction system which has continuous streams of auction items registered, members (i.e.,
account holders) signing in and bids made may be monitored to build some statistics of
auction activities. Below, let us take a look at an example query for this application.

Example 1. In an online auction application, we may have a continuous query running
on two data streams Bid(ts, auctionID, bidderID, bidPrice) and Auction(ts, auctionID,
sellerID, startPrice)1 and one relation Person(personID, name, state). Users may want
to know, for each auction created up to now by a seller from Vermont, the total number
of bids made in the last one hour. In this case, the query involves a three-way join
(involving two stream windows and one relation) and a grouped aggregation, grouped
by auctionID. The query can be expressed as an aggregation join query as follows.

SELECT A.auctionID, COUNT(B.*)
FROM Auction AS A [WINDOW UNTIL NOW],

Bid AS B [WINDOW 1 HOUR],
Person AS P

WHERE A.auctionID = B.auctionID
AND A.sellerID = P.personID
AND P.state= “VT”

GROUP BY P.auctionID; �

Naturally, efficient processing of these aggregation join queries is very important. One
premise in this paper is that, the queries can be processed more efficiently if the op-
timizations of join and aggregation are handled as one problem. Most of the existing
researches address them as separate problems: for example, joins in [3, 2, 1, 13, 14] and
aggregations in [15, 11, 16, 17, 18]. Two other existing researches [19, 15] address the
problem of efficiently processing aggregation join queries as one, but not as an op-
timization problem per se. Furthermore, their methods can only provide approximate
answers using sketching techniques [15] and discrete cosine transform [19], respec-
tively; thus, they cannot be applied to our problem since they are not window-based
and cannot handle grouped aggregations.

The premise mentioned above opens a door to generating a heuristically more effi-
cient query execution plan (QEP) through query transformations, and this is the focus
of this paper. In the initial QEP of an aggregation join query, joins are performed first
and then aggregation follows. The key idea of query transformation in this paper is to
perform an aggregation before join – in other words, push aggregation down to a join
input in a query execution tree. This transformation generally reduces the join input car-
dinality and results in a more efficient QEP, although this may not be always guaranteed.
In this paper we call the initial QEP a late aggregation plan (LAP) and the transformed
QEP an early aggregation plan (EAP), and call the pushed-down aggregation operator
an early aggregation operator.

Similar query transformation mechanism has been proposed in [20] and [21]. Their
mechanism, however, is for database aggregation join queries. Due to the streaming
nature of data, stream queries are fundamentally different from database queries. First,
tuples arrive continuously and hence the query output must be updated continuously as

1 Based on the schema used by Babu et al. [12].

332 T.M. Tran and B.S. Lee

well. Second, in many cases arriving tuples must be processed on-line and this requires
that the query must be processed incrementally as soon as tuples arrive. These differ-
ences make the transformation rules for database aggregation join queries inapplicable
to stream aggregation join queries.

In order to handle this problem, we introduce two key stream operators for query
processing: an aggregation set update (AS update) and an aggregation set join (AS
join). An AS update operator is used to update aggregate values incrementally as new
tuples arrive on the input. This operator works the same way as the group-by operator
mentioned in [9]. An AS join operator is used to perform a join between a new tuple
arriving at one stream and the output of an early aggregation operator (called an ag-
gregation set) at another stream. Note its distinction from a window join which uses a
window of tuples instead of an aggregation set. To our knowledge, the AS join operator
is a new operator introduced the first time through this paper. An AS update is preceded
by a window join in an LAP, whereas preceded by an AS join in an EAP.

There is a side effect of using the AS join operator. As mentioned earlier, we consider
a window-based join in this paper. A window join is processed as multiple one-way
window joins – that is, each new tuple arriving in one stream is matched with tuples in
the windows of the other streams. By performing early aggregations in an EAP, one or
more of these one-way window joins in an LAP is replaced by one-way AS joins in an
EAP. This results in different join output schemas depending on which window joins
are replaced, because the join output schema of a one-way AS join is different from
that of a window join or another one-way AS join. This side effect can be easily treated
by retaining a late aggregation operator on the query output even after placing an early
aggregation before joins. As a coincidental side benefit, this approach does not require
any constraint between streams, unlike the database case in which either a foreign key
join [20] or a functional dependency [21] is required.

In this paper we first formalize the notions of the aggregation set (AS) and the two
associated operators, AS update and AS join. Then, we propose compact query trans-
formation rules based on the approaches mentioned above, that is, supporting AS up-
date and AS join operators and retaining a late aggregation operator. Additionally, we
present a generic algorithm for executing all alternative QEPs (i.e., LAP and EAPs).
Note that the algorithm works just as well for a stream-relation join as a stream-stream
join, since a relation can be viewed as a window with no update of tuples. (We have also
algebraically proven the equivalence of the generated QEPs, but we omit the details in
this paper due to space limit. Interested readers are referred to [22].) Then, through
experiments we study the efficiencies of alternative QEPs for varying key parameters
(e.g., window size, stream rate, number of groups, join selectivity factor).

To our knowledge, this is the first work addressing query transformation on aggrega-
tion join query over data streams. Main contributions include a formal query processing
model that are suitable for an aggregation join query and transformation rules that are
compact and yet general enough not to assume any constraint among input streams.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 discusses some preliminary concepts. Section 4 describes the query process-
ing model and the key operators. Section 5 proposes the query transformation rules and

Transformation of Continuous Aggregation Join Queries over Data Streams 333

presents the generic query processing algorithm. Section 6 presents the experiments and
the results. Section 7 concludes the paper.

2 Related Work

We discuss related work in two areas: (1) processing join queries and aggregation
queries in data streams and (2) handling early aggregations in the database.

Processing Join and Aggregation in Data Streams

As far as we know, all of the existing data stream query processing systems – such
as Aurora [23], STREAM [24], TelegraphCQ [25], NiagaraCQ [26], Stream Mill [27],
Nile [28], Tribeca [29] and GigaScope [30] – process aggregation join queries by han-
dling join and aggregation separately. Specifically, in all these systems an aggregation
join query is always processed by first processing the join and then passing the out-
put of the join onto the aggregation operator. In Aurora [23] and STREAM [24], query
optimizers use query transformations by reordering filter operators (i.e., selection) and
join operators in a QEP to generate equivalent QEPs. Their reordering, however, is not
applicable between a join operator and an aggregation operator. In the other systems
query optimizers do not even use query transformation at all. Thus, to our knowledge,
our work is the first to allow reordering the join and aggregation operators.

Aside from these comprehensive data stream management systems, join process-
ing and aggregation processing have been researched quite extensively. A large num-
ber of them focus on window join processing [1, 2, 13, 14, 3, 31, 8, 32]. In [1], Kang
et al. propose sliding window two-way join algorithms and develop a unit-time cost
model that estimates the execution time of the join algorithms. Golab et al. [2] ex-
tend Kang et al.’s work to multi-way window join algorithms and propose join ordering
heuristics to reduce the cost. Viglas et al. [13] propose a pipelined multi-way window
join called MJoin. An MJoin assigns a join order for each input stream and generates
join output without maintaining intermediate results. In contrast to MJoin, an XJoin
proposed in [14] is a multi-way join executed in a tree of two-way joins and main-
tains a fully-materialized join results for each intermediate two-way join. Some other
researches [3, 31, 33] address approximate window join processing in the case of lim-
ited system resources. None of these window join researches considers an aggregation
following a join operator.

For window aggregation processing, Li et al. [4] propose a generic window concept
and present an efficient window aggregation technique which computes the aggregate
values in one pass. The key idea is to assign to each tuple a range of the identifiers of
windows to which it belongs. Zhang et al. [34] address the problem of processing multi-
ple aggregation queries that differ only in grouping attributes. Some other researches ad-
dress computing approximate answers to an aggregation query using sampling [35,36],
wavelets [18, 16], histograms [11, 17], and sketching [15, 37].

As mentioned in Introduction, two researches [19, 15] address the problem of pro-
cessing the same type of query as ours. Their approaches, however, are to use approx-
imation techniques using sketching [15] and discrete cosine transform [19]. Moreover,
they do not consider window-based and grouped aggregations in their problems.

334 T.M. Tran and B.S. Lee

Handling Early Aggregation in the Database

The early aggregation idea stems from the idea proposed for database queries [20, 38,
21]. The key idea of performing an early aggregation is to reduce the number of tu-
ples participating in subsequent joins. In [20] the authors present query transformation
rules for three cases depending on which relation the grouping, aggregation, and join
attributes belong to. The authors also introduce a new operator called aggregate join
that performs a join between one relation and the output of an early aggregation on
the other relation. Yan et al. [38, 21] consider more general transformation cases in
which the grouping attributes and the aggregation attributes may belong to more than
one relation. In addition, instead of introducing a new operator as in [20], they use a
“query rewriting” technique which involves reordering the join and aggregation oper-
ators and inserting an additional projection operator to compute the aggregate value
of the reordered operators. As already mentioned, our work is fundamentally different
from their works, as we deal with unbounded continuous data streams, not bounded
finite set of tuples (i.e., relations).

3 Preliminaries

In this section, we present some key concepts needed to understand the rest of the paper.

Data Streams. We consider a data stream S, of an ordered sequence of tuples. Each
tuple in the stream has the schema S(TS, X1, X2, . . . , Xd), where TS is a timestamp
attribute and X1, X2, . . . , Xd are non-timestamp attributes. We denote a tuple of the
above schema as s(ts, x1, x2, . . . , xd), where ts is the value of TS and xi is the value
of Xi for each i = 1, 2, . . . , d. (We use an upper-case letter to denote an attribute and a
lower-case letter to denote the value of an attribute.) We assume that the tuples arrive in
the order of timestamp; handling out-of-order tuples is beyond the scope of this paper.

Windows. Three types of window are considered in our processing model. They are
classified as in [4] depending on how the tuples in the window are updated: sliding
window, tumbling window, and landmark window. A sliding window partitions an in-
coming stream into overlapping blocks, and a tumbling window does that into disjoint
consecutive blocks. A landmark window accumulates all tuples that have arrived since
the start of the query.

Definition 1 (Window). A window WS of size T on stream S at time t is defined
as a set of tuples whose timestamps are in the range of [t − T, t]. That is, WS(t) =
{si | t− T ≤ si.ts < t}. �
Definition 2 (Window increments and decrements). Given a window WS(t1) at time
t1, a window increment, denoted as W+

S (t1, t2), is the set of tuples added to the window
during a time interval [t1, t2], and a window decrement, W−

S (t1, t2), is the set of tuples
removed from the window during the same time interval. �
Given a window WS(t1) at time t1, and a window increment W+

S (t1, t2) and decrement
W−

S (t1, t2) between t1 and t2, the window WS(t2) at time t2 is computed as:

WS(t2) = WS(t1) ∪W+
S (t1, t2)−W−

S (t1, t2)

Transformation of Continuous Aggregation Join Queries over Data Streams 335

Given the above definitions of window increments and decrements, the tumbling
window and the landmark window can be considered as special cases of the sliding
window. Figure 1 illustrates the three window types with their corresponding incre-
ments and decrements.

tt1 t2 tt1 t2 tt2

WS(t1)

WS(t2)

t1

WS(t1)
WS(t2) WS(t2)WS(t1)

(a) Sliding window (b) Tumbling window (c) Landmark window, WS
-(t1, t2) = Ø

WS
-(t1, t2)

WS
+(t1, t2)

WS
+(t1, t2)

WS
-(t1, t2) WS

+(t1, t2)

tt1 t2 tt1 t2 tt2

WS(t1)

WS(t2)

t1

WS(t1)
WS(t2) WS(t2)WS(t1)

(a) Sliding window (b) Tumbling window (c) Landmark window, WS
-(t1, t2) = Ø

WS
-(t1, t2)

WS
+(t1, t2)

WS
+(t1, t2)

WS
-(t1, t2) WS

+(t1, t2)

Fig. 1. Windows of different types (t1 < t2)

Window Joins. A two-way window join [1] between two streams S1 and S2 with win-
dows WS1 and WS2 , respectively, is computed as follows. For each new tuple s1 in a
window increment of S1, s1 is inserted into WS1 and any expired tuples are removed
from WS1 . Then, WS2 is probed for matching tuples of s1 and matching tuples are ap-
pended to the join output stream. The computation is symmetric for each new tuple s2 in
a window increment of S2. Generalized from this, in a multi-way join among m (m > 2)
streams, for each new tuple sk in a window increment of Sk, matching tuples are found
from the other m− 1 windows and then appended to the output stream. We assume that
the join computation is fast enough to finish before the other m−1 windows are updated.

4 Query Processing Model

In this section we present a model for continuous and incremental processing of aggre-
gation join queries. Key components of the model are the aggregation set, aggregation
set update (AS update) operator and the aggregation set join (AS join) operator. This
model provides a basis for the query transformation rules and the query processing
algorithm presented in Section 5.

The concepts of aggregation set and AS update operator are the same as the con-
cepts of window aggregate and group-by operator mentioned in [9]. These concepts
are refined and presented formally in this paper using the notions of window increment
and window decrement. The AS join is a combination of the window join defined in
Section 3 and the “aggregate join” proposed for database aggregation join queries in [20].

Aggregation Sets
Aggregation of the tuples in a window produces a set of tuples, one tuple for each group.
We call this set of tuples an aggregation set (AS).

Definition 3 (Aggregation set). Consider a set of tuples in a window at time t, denoted
as WS(t). Additionally, consider an aggregation operator, denoted as GAF (A)(WS(t))
where G ≡ (G1, . . . , Gp) is a list of grouping attributes, A is an aggregation attribute,
and F is an aggregation function on A. Then, an aggregation set is defined as a set of
tuples {(g1, . . . , gp, v)} where gi is a value of Gi (i = 1, 2, . . . , p) and v is an aggre-
gate value computed as F (A) for the group (g1, . . . , gp) over WS(t). We denote the

336 T.M. Tran and B.S. Lee

schema of an aggregation set as AS(G, F (A)); here, F (A) denotes an attribute whose
value is v. �

Aggregation Set Update

An aggregation set update operator is used to update the AS as the window content
changes. This is done incrementally without re-evaluating the whole window content.

Definition 4 (Aggregation set update). Consider an aggregation set AS ≡ GAF (A)

(WS(t1)) at time t1, a window increment W+
S (t1, t2) and a window decrement

W−
S (t1, t2) at time t2 (> t1). Then, an AS update operation, denoted by GUF (A)(AS,

W+
S (t1, t2), W−

S (t1, t2)), returns an updated aggregation set AS′ resulting from the
following updates on AS:

– For each tuple s in W+
S (t1, t2), if there exists a tuple l in AS such that l.G = s.G

(i.e., s belongs to a group in AS) then update the aggregate value l.F (A) as follows:
if F is COUNT then increase l.F (A) by one; if F is SUM then increase l.F (A)
by s.A; if F is MIN and s.A < l.F (A) or F is MAX and s.A > l.F (A) then
set l.F (A) to s.A, otherwise no change; (if F is AVG then compute l.F (A) by
maintaining both COUNT and SUM). If there does not exist such a tuple l in AS,
then insert a new tuple l′ with l′.G set to s.G and l′.F (A) set to 1 if F is COUNT
or to s.A if F is in {SUM, AVG, MIN, MAX}.

– For each tuple r in W−
S (t1, t2), find a tuple l in AS such that l.G = r.G (i.e., r

belongs to a group in AS), and then update the aggregate value l.F (A) as follows:
if F is COUNT then decrease l.F (A) by one; if F is SUM then decrease l.F (A)
by s.A; if F is MIN or MAX and r.A = l.F (A) then recompute l.F (A) from the
set WS(t1)− {r}, otherwise no change. �

As we see from the above definition, updating an aggregate value l.F (A) for each tuple
r ∈W−

S (t1, t2) requires re-evaluating the whole window only if F is MIN or MAX and
r.A = l.F (A). Note that even this situation happens only with a sliding window and
not with a tumbling or a landmark window. In the case of a tumbling window, a window
decrement is discarded and a new aggregation set is generated using the new window
increment only. In the case of a landmark window, there is no window decrement.

Aggregation Set Joins

We first present the coalescing property [20] of an aggregation function; this property
will be used to define the aggregation set join in Definition 6.

Definition 5 (Coalescing property). Consider an aggregation function F on an at-
tribute A. The aggregate of c tuples that have the same value, a, of A is computed using
the following function f(c, a) depending on the type of F .

f(c, a) =

⎧⎨
⎩

a ∗ c if F ≡ SUM
c if F ≡ COUNT
a if F ∈ {AVG, MAX, MIN} �

Transformation of Continuous Aggregation Join Queries over Data Streams 337

An AS join handles a join between a stream S and an aggregation set AS and computes
the aggregate value of a join output tuple using the coalescing property.

Definition 6 (One-way aggregation set join). Consider two streams S1 and S2 with
their window WS1(t1) and WS2(t1), respectively, at time t1. Additionally, consider the
window increment W+

S1
(t1, t2) and decrement W−

S1
(t1, t2) of S1 at time t2 (> t1). Now,

given an aggregation F (A) specified in the query, let the aggregation set AS2(t1) on
stream S2 be computed as follows depending on whether A is in the schema of S2 or not.

AS2(t1) =
{

GAF (A)(WS2(t1)) if A belongs to S2. (See Definition 3.)
GACOUNT (A)(WS2(t1)) otherwise

Then, a one-way AS join from S1 to AS2 via join attributes S1.J1 and AS2.J2, denoted

as S1

F (A)
�� J1=J2 AS2, is computed as follows.

For each tuple s1 in W+
S1

(t1, t2) and for each tuple r1 in W−
S1

(t1, t2),

1. Find matching tuples from AS2(t1). (Denote each tuple as l.)
2. Return a sequence of tuples where for each tuple (u) the value of F (A) is

set as follows.

u.F (A) =
{

l.F (A) if A belongs to S2

f(c, a) otherwise

where a is the value of s1.A (or r1.A), c is the number of tuples aggre-
gated to l in AS2, and f is the function in the definition of the coalescing
property (Definition 5). �

An extension to a multi-way AS join is straightforward. That is, one-way AS join is
repeated from each stream (Sk, (k ∈ {1, 2, · · · , m}) to the aggregation sets ASi on the
other streams Si, i 	= k.

{(ts, A.auctionID,…)}WA {(ts, B.auctionID,…)}

{(A.auctionID, c)} ASout(A.auctionID, COUNT(B.*))

Auction(ts, auctionID,…) A Bib(ts, auctionID,…) B

WB

{(B.auctionID, c)} AS2 (B.auctionID, COUNT(B.*))

(ts,A.auctionID,B.auctionID,c)

COUNT(B.*)

{(ts, A.auctionID,…)}WA {(ts, B.auctionID,…)}

{(A.auctionID, c)} ASout(A.auctionID, COUNT(B.*))

Auction(ts, auctionID,…) A Bib(ts, auctionID,…) B

WB

{(B.auctionID, c)} AS2 (B.auctionID, COUNT(B.*))

(ts,A.auctionID,B.auctionID,c)

COUNT(B.*)

Fig. 2. An example one-way AS join

338 T.M. Tran and B.S. Lee

Example 2. Given the query in Example 1, a one-way AS join between the stream
Auction A and the aggregation set AS2 on Bid B shown in Figure 2:

A
COUNT (∗)

�� A.auctionID=B.auctionID B

where AS2 ≡ B.auctionIDACOUNT (B.∗)(WB(t)). AS2 is then a set of tuples,
{(B.auctionID, c)}. For each tuple (ts, A.auctionID, ...) in W+

A , the one-way AS
join from A to AS2 produces a sequence of output tuples u(ts, A.auctionID,
B.auctionID, c) where A.auctionID = B.auctionID and the aggregate value
equals c (= f(c, a) in Definition 5). Similar steps are taken for each tuple in W−

A . �

5 Query Transformations

In this section, we first propose transformation rules for generating EAPs. We then
present a generic algorithm for executing a query execution plan (QEP), i.e., a late
aggregation plan (LAP) or an early aggregation plan (EAP).

5.1 Transformation Rules

In this section, we propose query transformation rules developed for aggregation join
queries on data streams. As mentioned in the Introduction, there are two technical prob-
lems in order to make query transformation rules work on data streams. First, the ag-
gregation sets in a QEP should be updated incrementally and continuously, both before
and after the transformation. Second, the transformation should cope with the different
schemas of one-way join outputs in an EAP, as the join output schema of one-way AS
join in an EAP differs according to the schema of the aggregation set generated by an
early aggregation operator. Since a join output is a union of multiple one-way (AS or
window) join outputs but join output schema of a one-way AS join is different from
that of a one-way window- or another AS join, the different schemas of one-way join
outputs hinder the union.

To handle the first problem, we use the AS update and AS join operators introduced
in Section 4. Precisely, only the AS update operator is needed in an LAP and both
operators are needed in an EAP. To handle the second problem, in the transformed
plan we always keep a late aggregation (LA) operator in its original position. This LA
operator guarantees that the schema of the aggregation join query output is the same
even though the schemas of one-way join outputs are different. This guarantee is due to
the fact that two different tuples with the same grouping attribute value are put into the
same group.

In an EAP, early aggregation (EA) operators may be placed on any of the input
streams. Once placed on a certain input stream, the operator generates an AS and, thus,
allows for using an AS join to the AS instead of the window join to the input stream
window. Determining the input streams to place EA operators on is based on the re-
sulting EAPs’ execution times as estimated using cost models2. For those EA operators
inserted, their grouping attributes and aggregation functions are determined using the
following EA operator construction rules.

2 In this paper, we focus on query transformations only, cost models are presented in [22].

Transformation of Continuous Aggregation Join Queries over Data Streams 339

Rule 1 (Grouping attribute in an EA operator)
If the EA operator is placed on a stream that has some or all of the grouping attributes
in the query, then use these and the join attributes as the grouping attributes of the EA
operator. Otherwise, use only the join attributes as the grouping attributes of the EA
operator. �

Rule 2 (Aggregation function in an EA operator)
If the EA operator is placed on a stream which has all the aggregation attributes in the
query, then use the aggregation function in the query as the aggregation function of the
EA operator. If the stream has only some (not all) aggregation attributes in the query,
then use both the aggregation function in the query and COUNT(*) as the aggregation
function of the EA operator. Otherwise, use only COUNT(*) as the aggregation function
of the EA operator. �

Note that these transformation rules are far more compact and yet more general than
the transformation rules presented in the database case [20, 21]. For instance, our rules
are applied to each stream without regard to other streams, whereas the database rules
are applicable only if certain constraints hold among relations, such as a referential
integrity [20] or a functional dependency [21]. Moreover, our rules do not depend on
which streams the grouping attributes, join attributes and aggregation attributes belong
to. This thus covers all the cases considered in [21].

Figure 3 illustrates transformations of an aggregation join query considering the most
general case of a two-way join, i.e., both streams have grouping attributes and aggre-
gation attributes. (This case can be reduced to special cases as considered in [20], in
which only one stream has grouping (or aggregation) attributes, by setting one of the
grouping (or aggregation) attributes empty.) The figure shows all four possible QEPs.
The reader is asked to verify that these illustrated transformations conform to the rule
for constructing an EA operator.

With the window join and AS join in place, the four QEPs in Figure 3 are equiv-
alent. (See [22] for a proof of the equivalence.) The following example illustrates the
equivalence of two QEPs shown in Figures 3a and 3c.

Example 3 (LAP vs. EAP). Consider the QEPs shown in Figures 3a and 3c, and as-
sume that both aggregation function F1 and F2 are SUM. Then, the query output ASout

is updated in each QEP as follows. In LAP (Figure 3a), a window join is performed
from S1 to WS2 . Assume that, for each tuple s1(x1, g1, j1, a1) ∈ W+

S1
, the tuple

matches c tuples, {s2(x2i , g2i , j2, a2), i = 1, 2, ..., c} where s2.j2 = s1.j1, in WS2 .
Then, the window join generates c output tuples, {u(x1, g1, j1, a1, x2i , g2i , j2, a2i)|i =
1, 2, ..., c, j2 = j1}. Further assume that, among these c output tuples, cg tuples have
the same value, g2, for g2i , and hence the same value, (g1, g2), for (g1, g2i). Then,
for a tuple in AS(G1, G2, SUM(A1), SUM(A2)) whose value of (G1, G2) equals
(g1, g2), the value of SUM(A1) is increased by a1 ∗ cg and the value of SUM(A2) is
increased by v2 =

∑
a2i , i = 1, 2, ..., cg. In the second QEP (EAP in Figure 3c), an

AS join is performed from S1 to AS2. Assume that, for each tuple s1(x1, g1, j1, a1),
it matches one tuple, l2(g2, j2, v2, cg) where j2 = j1 and

∑
a2i , i = 1, 2, ..., cg, in

AS2(G2, J2, SUM(A2), COUNT (∗)). Then, the AS join generates an output tuple
u(x1, g1, j1, a1 ∗ cg, g2, j1, v2, cg) (see Definition 5 for the coalesced value a1 ∗ cg).

340 T.M. Tran and B.S. Lee

(d) Early aggregation plan (EAP11)

(a) Late aggregation plan (LAP)

(c) Early aggregation plan (EAP01)

(b) Early aggregation plan (EAP10)

Ws1

Ws2
G1,J1UF1(A1), COUNT(*)

J1= J2

AS1

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

Two-way AS join

J1= J2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2) S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1)

G1, G2AF1(A1), F2(A2)

Ws1

Ws2

G2, J2AF2(A2), COUNT(*)

J1= J2

AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F2(A2)

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

G1,J1AF1(A1), COUNT(*)
G2, J2AF2(A2), COUNT(*)

J1= J2

AS1 AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1), F2(A2)

G1, G2AF1(A1), F2(A2)

ASout

ASout

ASoutASout

(EA)

(EA) (EA) (EA)

(d) Early aggregation plan (EAP11)

(a) Late aggregation plan (LAP)

(c) Early aggregation plan (EAP01)

(b) Early aggregation plan (EAP10)

Ws1

Ws2
G1,J1UF1(A1), COUNT(*)

J1= J2

AS1

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

Two-way AS join

J1= J2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2) S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1)

G1, G2AF1(A1), F2(A2)

Ws1

Ws2

G2, J2AF2(A2), COUNT(*)

J1= J2

AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F2(A2)

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

G1,J1AF1(A1), COUNT(*)
G2, J2AF2(A2), COUNT(*)

J1= J2

AS1 AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1), F2(A2)

G1, G2AF1(A1), F2(A2)

ASout

ASout

ASoutASout

(EA)

(EA) (EA) (EA)

Gi: grouping attributes; Ji: join attributes; Ai: aggregation attributes; Xi: the other attributes;
ASout, AS1, AS2: aggregation sets.

An arrow from an input stream to the window of another stream denotes a window join (see
Section 3) and an arrow from an input stream to the aggregation set of the window on another
stream denotes an AS join (Definition 6).

Fig. 3. Transformations of aggregation (two-way) join QEPs on data streams

Transformation of Continuous Aggregation Join Queries over Data Streams 341

Algorithm: QEP Execution
Inputs:

– WS1 , WS2 , · · · , WSm : join windows.
– ASi1 , ASi2 , · · · , ASip : EA output aggregation sets (p ≤ m).
– W +

Sk
: window increment on Sk.

– W −
Sk

: window decrement on Sk.
– ASout: query output aggregation set.

Output:

– ASout: updated query output aggregation set.
Procedure:
Begin

For each tuple sk in W +
Sk

{
1. If there exists an EA operator on Sk, then with sk find its group in ASk and update

the aggregate value. (AS update on EA output)
2. Add sk to WSk . (Window update)
3. With sk, find matching tuples in either ASj or WSj for each j = 1, 2, ..., k − 1, k +

1, ..., m, depending on whether an EA operator is placed on Sk (then ASj) or not
(then WSj). (Window join or AS join)

4. For each tuple produced in step 3, find its group in ASout and update the aggregate
value. (AS update on query output)

}
For each tuple rk in W −

Sk
{

5. If there exists an EA operator on Sk, then with rk find its group in ASk and update
the aggregate value. (AS update on EA output)

6. Remove rk from WSk . (Window update)
7. With rk, find matching tuples in either WSj or ASj for each j = 1, 2, ..., k − 1, k +

1, ..., m, depending on whether an EA operator is placed on Sk (then ASj) or not
(then WSk). (Window join or AS join)

8. For each tuple produced in step 7, find its group in ASearly and update the aggregate
value. (AS update on query output)

}
End

Fig. 4. A generic QEP-execution algorithm

This tuple is input to the AS update operator, which then makes the same update (i.e.,
a1 ∗ cg and v2) on the aggregation set AS. �

5.2 Generic Algorithm for Query Executions

Figure 4 outlines a high level algorithm for processing tuples with a multi-way join
among m (m ≥ 2) streams S1, S2, . . . , Sm.3 The algorithm is generic enough to cover
any of the possible QEPs. It updates the output aggregation set ASout for each tuple sk

in the window increment W+
Sk

and each tuple rk in the window decrement W−
Sk

. The
algorithm performs (1) AS updates on the output of an EA operator in steps 1 and 5 if
there exists an EA operator on Sk, (2) window updates in steps 2 and 6, (3) either AS

3 This algorithm processes tuples in pipelined fashion, but it may be queue-based as well. The
query transformation works well with both types of algorithms.

342 T.M. Tran and B.S. Lee

joins or window joins in steps 3 and 7 depending on whether an EA operator is placed
on Sk, and (4) AS updates on the query output ASout in steps 4 and 8.

6 Performance Study

In this section, we study the performance of the proposed query transformations, with a
focus on the QEP efficiencies. There are two objectives of the experiments: (1) examine
the performance trends of the alternative QEPs for varying key parameter values; (2)
show the cases of each alternative QEP being the most efficient one in relation to the
parameter values. Section 6.1 describes the experimental setup, and Section 6.2 present
the experiments conducted and their results.

6.1 Experimental Setup

We have built an operational prototype that implements the QEP execution algorithm
(see Figure 4). The prototype has been written in Java 2 SDK 1.4.2, and runs on a
Linux PC with Pentium IV 1.6GHz processor and 512MB RAM. For a join method,
it supports hash join and nested loop join and for an aggregation method, it supports
hash-based grouping. Additionally, it executes a join using sliding windows, of which
tumbling and landmark windows are only special types (see Section 3).

Inputs to the prototype are data streams generated using a data generator4 (described
below), the join arity (i.e., number of data streams) (m), the size of each join window (w1,
w2), and the QEP case number (0 for LAP, 1, 2, 3, ...2m−1 for EAPs). It then processes
the input stream data according to the specified QEP and reports the execution time.

The data generator generates stream data sets as a sequence of tuples. Inputs to the
data generator are the number of tuples in the data set, the number of attributes in the
stream schema, the stream rate (i.e., number of tuples per second), the number of groups
in the stream, and the number of distinct values of the join attribute. (A join selectivity
factor equals the reciprocal of the number of distinct values of the join attribute.) Each
tuple has a timestamp attribute, whose value is determined based on the stream rate.
It also has other attributes such as join attribute, grouping attribute and aggregation
attribute. Values of each of these attributes are assigned randomly with the uniform
distribution. We use the string data type for grouping and join attributes and the integer
data type for aggregation attribute.

6.2 Experiments and Results

In this section, we first investigate the efficiencies of alternative QEPs by varying
streams statistics (i.e. stream rates, join selectivities, number of groups and window
sizes). Then, we build showcases of different alternative QEPs being the most efficient
ones. In all the experiments, the execution time of a QEP is reported per time-unit (sec-
ond). For this, we measure the execution time for tuples arriving in 1000 milliseconds.
We run each experiment three times, for one time-unit at each run, and compute the
average execution time (in seconds).
4 The data generator allows us to vary the input stream statistics so that we can evaluate the

efficiencies of alternative QEPs with different input parameters.

Transformation of Continuous Aggregation Join Queries over Data Streams 343

 2

 4

 6

 8

 10

 1000 2000 3000 4000 5000

E
xe

cu
tio

n
tim

e
(s

ec
)

Window size (tuples)

LAP
EAP10
EAP01
EAP11

 0

 2

 4

 6

 8

 10

 12

 14

 16

3 32 33 34 35 36 37 38 39

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of groups

LAP
EAP10
EAP01
EAP11

(a) Varying window size w1 , w2 = 2000. (b) Varying number of groups g1 , g2 = 1.

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800 900

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.0005 0.005 0.05 0.5

E
xe

cu
tio

n
tim

e
(s

ec
)

Join selectivity factor

LAP
EAP10
EAP01
EAP11

(c) Varying input stream rate λ1 , λ2 = 500. (d) Varying join selectivity factor σ1 = σ2 .
EAP01: an EA operator on S2 only, EAP10: an EA operator on S1 only, EAP11: EA operators on both S1 and S2

Default setting: λ1 = 300, λ2 = 300, w1 = 5000, w2 = 5000, g1 = 150, g2 = 1, σ1 = 0.1, σ2 = 0.1

Fig. 5. Execution times of QEPs (using two-way nested loop join)

Experiment 1: Query Execution Costs for Varying Stream Statistics
In each set of experiments, we measure the execution time of QEPs by varying one of
the four pairs of parameters: (1) window size (w1, w2), (2) number of groups (g1, g2),
(3) stream rate (λ1, λ2), and (4) join selectivity factor (σ1, σ2). Furthermore, for each
pair of parameters we vary only the parameters of stream S1 (i.e., w1, g1, λ1 and σ1),
since the QEPs are symmetric.

Figure 5 shows the results from the four sets of experiments. The curves in each
graph represents the execution times of four alternative QEPs (i.e., LAP, EAP01, EAP10,
EAP11). Due to space limit, we present the results for two-way nested-loop joins only;
the results from using hash joins and three-way joins show the same trends. Interested
readers are referred to [22] for the results of more comprehensive experiments.

Let us now examine the results of each set of experiments for varying each of the four
parameters (i.e., window size, number of groups, stream rate, join selectivity factor). In
the following discussion, we use the name of a QEP (i.e., LAP, EAP01, EAP10, EAP11)
to refer to the cost of executing the QEP.

In Figure 5a, as window size w1 increases, LAP and EAP01 increase linearly. In
contrast, EAP10 and EAP11 initially increase linearly but then stay constant as w1

exceeds 2000. The reason for this is as follows. In LAP and EAP01, there is no EA
operator placed on S1 and, therefore, the execution time depends on w1 only. Unlike

344 T.M. Tran and B.S. Lee

this, in EAP10 and EAP11 which have an EA operator placed on S1, the cost stops
depending on w1 but starts depending on aggregation set size (i.e., |AS1|) (which is
fixed) when w1 is greater than 2000. Additionally, EAPs are always better than LAP
because in the experiment, aggregation set sizes |AS1| and |AS2| are set smaller than
window size w1 and w2.

Figure 5b shows the results of varying the number of groups on stream S1 by a
factor of 3. In this experiment, there is no grouping attribute in stream S2 and, thus,
g2 equals 1. In the figures, as the number of groups g1 increases, EAP10 increases and
approaches LAP and, likewise, EAP11 increases and approaches EAP01. The initial
increase of EAP10 and EAP11 is caused by the increase of the aggregation set size
(|AS1|). But, as g1 becomes large enough (g1 = 38), |AS1| stops depending on g1 and
starts depending on |W1|. As a result, EAP10 and EAP11 lose the advantage of placing
an EA operator on S1.

Figure 5c shows the results of varying stream rate of S1 while fixing the stream
rate of S2. In the figures, as λ1 increases, the costs of all four QEPs increase linearly
but LAP and EAP10 increase faster than EAP01 and EAP11. The reason is that the

 0

 0.5

 1

 1.5

 2

 2.5

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

g1 = 1500, g2 = 1500, g1 = 1, g2 = 1500,

σ1 = 0.01, σ2 = 0.01, w1 = 500, w2 = 500 σ1 = 0.01, σ2 = 0.01, w1 = 500, w2 = 500

(a) LAP is the best. (b) EAP10 is the best.

 0

 0.5

 1

 1.5

 2

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

 0

 5

 10

 15

 20

 25

 30

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

g1 = 1500, g2 = 1, g1 = 150, g2 = 150,

σ1 = 0.01, σ2 = 0.01, w1 = 500, w2 = 500 σ1 = 0.1, σ2 = 0.1, w1 = w2 = 2000

(c) EAP01 is the best. (d) EAP11 is the best.
EAP01: an EA operator on S2, EAP10: an EA operator on S1, EAP11: EA operators on both S1 and S2.

Default setting: 100 ≤ λ1 ≤ 500, λ2 = 500

Fig. 6. Showcases of different best QEPs (using two-way nested loop join)

Transformation of Continuous Aggregation Join Queries over Data Streams 345

per-tuple processing time for each tuple from S1 in EAP01 and EAP11 is shorter than
that in LAP and EAP10, as it takes shorter to find matching tuples in an aggregation set
AS2 instead of W2.

The results in Figure 5d is for the case of varying join selectivity factors σ1 and σ2

(σ1 = σ2). As the join selectivity factors increase, the costs of all QEPs increase except
for EAP11. The reason is that the cost of window joins in LAP, EAP01 and EAP10
depends on the join selectivity factors but this is not the case for the aggregation set join
in EAP11. Moreover, as the join selectivity factors increase, |AS1| and |AS2| decrease,
thus the cost of EAP11 decreases.

Experiment 2: Showcases of Different Best QEPs
Intuitively, the advantage of an early aggregation is more highlighted when the number
of groups (gi) is smaller or the join selectivity factor (σi) is larger or the window size
(wi) is larger. Specifically, a decrease in the number of groups leads to a decrease of an
EA output aggregation set size in an EAP, thus enhancing the benefit of join reduction
due to early aggregation; on the other hand, an increase in the join selectivity factor or
an increase in the window size leads to an increase of join output tuples in an LAP, thus
increasing the penalty of late aggregation.

Figure 6 shows the cases different QEPs are chosen as the most efficient one. The
result confirms the intuition. That is, EAP11 is the best when both g1 and g2 are low,
EAP10 is the best when g1 is low and g2 is high, EAP01 is the best when g1 is high and
g2 is low, and LAP (or, “EAP00”) is the best when both g1 and g2 are high. In Figure 6d
the scale of the graph is larger than those in the other figures (Figure 6a, b and c). This
is because the execution times are much longer due to the higher join selectivity factors
and larger window sizes used to generate the showcase.

7 Conclusion

In this paper, we focused on the problem of continuously processing an aggregation
join queries on data streams using query transformations. We proposed an incremental
query processing model with two key stream operators: aggregation set update and
aggregation set join. Based on the processing model, we presented query transformation
rules to generate an early aggregation plan equivalent to a late aggregation plan. We then
developed an algorithm for executing the query execution plans. Finally, we conducted
a set of experiments to study the performances of alternative QEPs.

Query transformation has been studied extensively in databases but not in data
streams. To our knowledge, this is the first work addressing query transformation on
aggregation join queries. Our query transformation is compact and yet generic to be
applicable to each stream separately. The results of our experiments indicate that the
query transformation indeed generates alternative QEPs of which the efficiencies are
distinct enough to influence a stream query optimizer.

Query transformation is one step in query optimization. Thus, the future work in-
cludes to develop a comprehensive framework that integrates other components such as
cost models for alternative QEPs and efficient search algorithms for finding an optimal
QEP. The optimizer can run adaptively to switch to a more efficient QEP when input
statistics (e.g., stream rates, number of groups, join selectivity) change significantly.

346 T.M. Tran and B.S. Lee

References

1. Kang, J., Naughton, J.F., Viglas, S.D.: Evaluating window joins over unbounded streams.
In: Proceedings of ICDE, Bangalore, India, pp. 341–352. IEEE Computer Society Press,
Los Alamitos (2003)

2. Golab, L., Ozsu, M.T.: Processing sliding window multi-joins in continuous queries over
data streams. In: Proceedings of VLDB, pp. 500–511. ACM Press, New York (2003)

3. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams. In:
Proceedings of ACM SIGMOD, San Diego, California, pp. 40–51. ACM Press, New York
(2003)

4. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and evaluation tech-
niques for window aggregates in data streams. In: Proceedings of SIGMOD, pp. 311–322.
ACM Press, New York (2005)

5. Ayad, A., Naughton, J.F.: Static optimization of conjunctive queries with sliding windows
over infinite streams. In: Proceedings of ACM SIGMOD, pp. 419–430. ACM Press, New
York (2004)

6. Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates. In: Pro-
ceedings of VLDB, pp. 336–347. Morgan Kaufmann, San Francisco (2004)

7. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows. In: Pro-
ceedings of PODS, pp. 286–296. ACM Press, New York (2004)

8. Ding, L., Rundensteiner, E.A.: Evaluating window joins over punctuated streams. In: Pro-
ceedings of CIKM, pp. 98–107. ACM Press, New York (2004)

9. Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.: Incremental
evaluation of sliding-window queries over data streams. IEEE TKDE 19(1), 57–72 (2007)

10. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: Proceedings of ACM SIGMOD, Madison, Wisconsin, pp. 1–16. ACM Press,
New York (2002), doi:10.1145/543613.543615

11. Gehrke, J., Korn, F., Srivastava, D.: On computing correlated aggregates over continual data
streams. SIGMOD Record 30(2), 13–24 (2001), doi:10.1145/376284.375665

12. Babu, S., Arasu, A., Widom, J.: CQL: A language for continuous queries over streams and
relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921, pp. 1–19. Springer,
Heidelberg (2004)

13. Viglas, S., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-way join queries
over streaming information sources. In: Proceedings of VLDB, pp. 285–296 (2003)

14. Urhan, T., Franklin, M.J.: Xjoin: A reactively-scheduled pipelined join operator. In: IEEE
Data Enginerring Bullentin, pp. 27–33. IEEE Computer Society Press, Los Alamitos (2000)

15. Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing complex aggregate queries
over data streams. In: Proceedings of ACM SIGMOD, Madison, Wisconsin, pp. 61–72.
ACM Press, New York (2002)

16. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on streams:
One-pass summaries for approximate aggregate queries. In: Proceedings of VLDB, pp. 79–
88. Morgan Kaufmann, San Francisco (2001)

17. Guha, S., Koudas, N.: Approximating a data stream for querying and estimation: Algo-
rithms and performance evaluation. In: Proceedings of ICDE, pp. 567–579 (2002)

18. Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates of sparse
data using wavelets. In: Proceedings of ACM SIGMOD, pp. 193–204. ACM Press, New
York (1999)

19. Jiang, Z., Luo, C., Hou, W.-C., Yan, F., Zhu, Q.: Estimating aggregate join queries over data
streams using discrete cosine transform. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA
2006. LNCS, vol. 4080, pp. 182–192. Springer, Heidelberg (2006)

Transformation of Continuous Aggregation Join Queries over Data Streams 347

20. Chaudhuri, S., Shim, K.: Including group-by in query optimization. In: Proceedings of
VLDB, pp. 354–366. Morgan Kaufmann, San Francisco (1994)

21. Yan, W.P., Larson, P.-Å.: Eager aggregation and lazy aggregation. In: Proceedings of
VLDB, pp. 345–357. Morgan Kaufmann, San Francisco (1995)

22. Tran, T.M., Lee, B.S.: Transformation of continuous aggregation join queries over data
streams. Technical Report CS-07-02, Department of Computer Science, University of Ver-
mont (2007)

23. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,
M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream manage-
ment. The VLDB Journal 12(2), 120–139 (2003)

24. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston,
C., Rosenstein, J., Varma, R.: Query processing, approximation, and resource management
in a data stream management system. In: Proceedings of CIDR, pp. 22–34 (2003)

25. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,
Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow
processing. In: Proceedings of ACM SIGMOD, San Diego, California, pp. 668–668. ACM
Press, New York (2003)

26. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous query system
for internet databases. In: Proceedings of ACM SIGMOD, Dallas, Texas, United States, pp.
379–390. ACM Press, New York (2000)

27. Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C.: A data stream language and system
designed for power and extensibility. In: Proceedings of CIKM, pp. 337–346 (2006)

28. Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref, W.G., Catlin, A.C., Elmagarmid, A.K.,
Eltabakh, M., Elfeky, M.G., Ghanem, T.M., Gwadera, R., Ilyas, I.F., Marzouk, M.S., Xiong,
X.: Nile: A query processing engine for data streams. In: Proceedings of ICDE, pp. 851–
863. IEEE Computer Society Press, Los Alamitos (2004)

29. Sullivan, M.: Tribeca: A stream database manager for network traffic analysis. In: Proceed-
ings of VLDB, pp. 594–606. Morgan Kaufmann, San Francisco (1996)

30. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream database for
network applications. In: Proceedings of ACM SIGMOD, San Diego, California, pp. 647–
651. ACM Press, New York (2003)

31. Srivastava, U., Widom, J.: Memory-limited execution of windowed stream joins. In: Pro-
ceedings of VLDB, pp. 324–335. Morgan Kaufmann, San Francisco (2004)

32. Hammad, M.A., Aref, W.G., Elmagarmid, A.K.: Stream window join: Tracking moving
objects in sensor-network databases. In: Proceedings of SSDBM, pp. 75–84 (2003)

33. Ojewole, A., Zhu, Q., Hou, W.-C.: Window join approximation over data streams with
importance semantics. In: Proceedings of CIKM, pp. 112–121 (2006)

34. Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D.: Multiple aggregations over data streams.
In: Proceedings of ACM SIGMOD, pp. 299–310. ACM Press, New York (2005)

35. Tatbul, N., Zdonik, S.B.: Window-aware load shedding for aggregation queries over data
streams. In: Proceedings of VLDB, pp. 799–810 (2006)

36. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over data
streams. In: Proceedings of ICDE, p. 350. IEEE Computer Society Press, Los Alamitos
(2004)

37. Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate aggregation techniques for sen-
sor databases. In: Proceedings of ICDE, pp. 449–460. IEEE Computer Society Press, Los
Alamitos (2004)

38. Yan, W.P., Larson, P.-Å.: Performing group-by before join. In: Proceedings of ICDE, pp.
89–100. IEEE Computer Society Press, Los Alamitos (1994)

Continuous Constraint Query Evaluation for
Spatiotemporal Streams

Marios Hadjieleftheriou1, Nikos Mamoulis2,�, and Yufei Tao3,��

1 AT&T Labs Inc., 180 Park Avenue, Florham Park, NJ 07932
marioh@research.att.com

2 Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
nikos@cs.hku.hk

3 Department of Computer Science and Engineering, Chinese University of Hong Kong,
Sha Tin, New Territories, Hong Kong

taoyf@cse.cuhk.edu.hk

Abstract. In this paper we study the evaluation of continuous constraint queries
(CCQs) for spatiotemporal streams. A CCQ triggers an alert whenever a config-
uration of constraints between streaming events in space and time are satisfied.
Consider, for instance, a server that receives updates from GPS-enabled agents
that report their positions and other measurements (e.g., environmental readings).
An example of CCQ is: “Alert whenever at least 5 readings closer than 5km to
each other and within a time difference of 5 minutes report high pressures and low
temperatures”. We model CCQs as Constraint Satisfaction Problems (CSPs) and
develop solutions for their continuous evaluation. Our techniques (1) consider the
fast arrival rate of incoming events, and (2) minimize the memory requirements,
without using predefined window constraints, but by utilizing the structure of the
queries. In order to show the merits of the proposed techniques, we implement a
system prototype and evaluate it with real data.

1 Introduction

The recent advances in telecommunications have made it possible to collect unbounded
streams of spatiotemporal information from various sources (GPS devices, sensors,
etc.). Consider, for instance, a server which receives updates from GPS-enabled agents
that continuously report their positions and other measurements (e.g., environmental
readings). A real example of such a system is the Global Drifter Center [2] where a
large number of buoys have been deployed in oceans all around the world. The buoys
report various measurements at regular time-intervals in a streaming fashion while drift-
ing in the water according to sea currents.

The large size and fast arrival rates of streaming data renders storage and off-line
analysis infeasible. In addition, users are often interested in answering queries in an on-
line, dynamic manner, as streaming data arrive. In this paper, we study the processing of
continuous constraint queries (CCQs), which trigger an alert whenever a configuration

� Nikos Mamoulis was supported by grant HKU 7160/05E from Hong Kong RGC.
�� Yufei Tao was supported by grant CUHK 1202/06 from Hong Kong RGC.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 348–365, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Continuous Constraint Query Evaluation for Spatiotemporal Streams 349

of constraints between streaming events in space and time are satisfied. For instance,
consider the following query: “Alert whenever at least 5 readings closer than 5 km to
each other and within a time difference of 5 minutes report high pressures and low
temperatures”. CCQs facilitate the automatic and continuous monitoring of interesting
combinations of spatiotemporal events.

There is an abundance of interesting and useful queries that can be formulated as a
combination of diverse types of constraints. The constraints may capture both spatial
(e.g., proximity, intersection, and containment) and temporal (e.g., during, before, and
after) relationships between a large number of events, as well as to other event charac-
teristics (e.g., measurements like velocity and temperature).

CCQs are similar to traditional triggers in database systems, in that they should be
evaluated every time a new event arrives. A CCQ states that if the new event forms a
specific spatiotemporal configuration (e.g., a number of abnormal thermal indications in
space and time) with past events, an alert should be triggered. The important difference
to traditional triggers is that the constraints are spatiotemporal. First, the methods for
evaluating them are related to spatial and spatiotemporal query processing. Second,
typically, there is no need to keep the whole history of events in memory, since the
spatiotemporal constraints define the essential intervals in time and space, for which
information needs to be maintained. For instance, for a CCQ asking for a number of
abnormal thermal indications within 10 minutes in time, we need not keep events in
memory older than 10 minutes, since they could not form query results with current or
future data.

In this paper we present a system with the following characteristics: (1) a stream of
events arrives on a central server at fast rates; (2) events are associated with spatiotem-
poral properties, and other, alphanumeric measurements; (3) users register CCQs, and
(4) the system triggers alerts whenever a newly arriving event together with past events
form a result of a CCQ.

Our main focus is on critical applications where it is essential not to dismiss any
query alerts and, in addition, not to produce any false alarms. Hence, we propose tech-
niques that produce exact query results, raising alerts if and only if a combination of
events satisfies all constraints for a given query. This is accomplished by guaranteeing
that all useful events (the ones that can contribute to a query answer) are stored in main
memory during processing. Since storing the complete event stream is not feasible for
most practical applications, we introduce algorithms for determining event expiration
times — computed by inspecting all query constraints related to a specific event — and
establishing a time-instant after which the event will not possibly satisfy any constraints
and can be deleted. We introduce a simple expiration time computation algorithm, as
well as a tighter technique that guarantees that every event is kept in main memory for
a very short amount of time. With this approach we minimize the peak amount of main
memory that is consumed by the system. Finally, to show the merits of our architecture,
we implement and evaluate a prototype for the proposed system.

2 Problem Formulation and Definitions

This section introduces a formal problem statement and some necessary definitions to
simplify our analysis. As already discussed, a stream of events arrives on a central server

350 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

where each event carries a timestamp (or a time interval), spatial (i.e., geometric) prop-
erties, and other properties of a simple type (e.g., alphanumeric). Users register queries
that pose various constraints between properties of a possibly large number of events.
The goal is to find in real-time tuples of event instances that have already appeared on
the stream and satisfy all query constraints, in which case an alert is triggered. First, we
formally define an event instance. Then, we present a formal way of expressing generic
constraint queries between events. Finally, we discuss algorithms for evaluating such
queries continuously, as new events arrive on the stream.

A spatiotemporal stream is a never ending sequence of events S=〈e1 e2 · · · en · · · 〉
where:

Definition 1. An event e is a tuple {t, r, p}, e.t are the temporal properties of the event
(e.g., a time-interval or the arrival time), e.r the geometric properties (e.g., e.r ∈ Rd

for a d-dimensional point), and e.p a set of application dependent properties (e.g., tem-
perature, velocity, other measurements).

Table 1. Notation used throughout the paper

Symbol Meaning

e Streaming event
t Time-instant or time-interval
r Geometric properties
p Generic properties
� Spatial predicate

V, V Variable, set of variables
D Variable domain

C, C Constraint, set of constraints
G = (V, C) Constraint graph

{ei, ej} ∝ C Tuple {ei, ej} satisfies constraint C

We can naturally express queries with arbitrary constraints between a large number of
events as Constraint Satisfaction Problems (CSP) [33,3,14,16]. Constraint satisfaction
is a paradigm that can capture a wide variety of applications from AI, engineering,
databases, and other disciplines. A CSP is defined by a set of variables, each of which
has a finite set of potential values, and a set of constraints between these variables.
CSPs that contain constraints between at most two variables are called binary. A bi-
nary CSP is usually represented by a Constraint Graph (CG) where nodes correspond
to variables and edges correspond to constraints. The basic goal in a CSP is to find
one or all assignments of values to variables so that all constraints are satisfied. In our
setting, the potential values of a given variable are event instances that have appeared
on the stream, and the binary constraints are the spatial, temporal, and other possible
constraints between events. More formally:

Definition 2. A binary Constraint Satisfaction Problem is:

1. A set of variables V = {V1, . . . , Vm}.
2. For each Vi, a finite domain Di = {ei

1, . . . , e
i
ki
} of ki possible values.

Continuous Constraint Query Evaluation for Spatiotemporal Streams 351

V1 V2

V3

dist(V2.r, V3.r) < 1

dist(V1.r, V2.r) < 1

p11

2

3

1 2 3

p2

p3

V1.p = A V2.p = B

dist(V2.r, V 3.r) < 1

dist(V1.r, V 2.r) < 1

a1[2]1
2
3

1 2 3

V2.t – V1.t [0,5]

V3.t – V2.t [1,5]

dist(V1.r, V 3.r) < 2
V3.t – V1.t [1,10]

V3.p = C

b1[7]

c1[9]

(a) (b)

Fig. 1. Examples of Constraint Graphs

3. A set of binary constraints. A constraint Ci,j is a relation of permitted values for
the pair of variables {Vi, Vj}.

We say that an assignment of values {Vi = ei
l, Vj = ej

k} satisfies constraint Ci,j if
{ei

l, e
j
k} is in the relation Ci,j . A solution to a CSP is an assignment {V1 = e1

s1
, . . . , Vm

= em
sm

, } such that for all 1 ≤ i, j ≤ m, constraint Ci,j is satisfied.

Figure 1a illustrates a CG corresponding to a simple CSP with the domain of each
variable being a collection of events (whose spatial properties are 2D point locations)
and constraints between variables being ‘distance within 1 space unit’. Note that the
constraints in this graph are not expressed explicitly by allowed pairs of values, but
implicitly with the use of spatial predicates. A solution to this CSP is the triplet {V1 =
p1, V2 = p2, V3 = p3} of points shown next to the figure.

In our setting, the domain of each variable (e.g., the set of events that correspond
to variable Vi) can be implicitly defined by unary constraints, which correspond to se-
lections in database languages. For example “events with measured temperature greater
than 30◦C”. Selection predicates can range from simple relational operators (e.g., ≤
, <,≥, >, =) to more advanced selection conditions (e.g., “select events with property
A”) or metric spatiotemporal constraints (i.e., relating e.r and e.t to fixed coordinates
of space and time). In the rest, we use notation ei

l ∝ Ci to denote that event ei
l satisfies

unary constraint Ci of variable Vi.
As in our spatial CSP example, we can implicitly define binary constraints by spatial,

temporal, and/or any other predicates between event properties e.p. Thus, in our setting,
we can specialize the definition of constraints as follows:

Definition 3. A binary constraint Ci,j between variables {Vi, Vj} is a tuple {t,&, p},
where t is a temporal predicate (e.g., a time-interval), & is any binary spatial predi-
cate (for example intersection or proximity), and p any non spatiotemporal constraint
between properties e.p.

A binary constraint Ci,j is satisfied only when the assignment {Vi = ei
l , Vj = ej

k}
satisfies all Ci,j .t, Ci,j .&, and Ci,j .p. Notice that the temporal predicate semantics are
application specific. In the simplest case, e.t can be a time-instant and Ci,j .t can be a
time-interval containment (e.g., ei

l.t, e
j
k.t ∈ R and Ci,j .t = {ej

k.t − ei
l.t ∈ [tlb, tub]})

352 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

but more general semantics can also be considered. Without loss of generality, we re-
strict our analysis to time-interval temporal constraints only. Also, for convenience, in
the rest we use notation {ei

l, e
j
k} ∝ Ci,j to denote that assignment {ei

l, e
j
k} satisfies bi-

nary constraint Ci,j . In addition, we allow negative temporal values as well, which can
express chronological precedence between events — negative values refer to the past,
while positive refer to the future. For example, time-interval [−3, 4] on edge (Vi, Vj)
means that {ei

l, e
j
k} satisfies the temporal constraint if ej

k arrives 0–4 time-instants af-
ter or 0–3 time-instants before ei

l . This generalization is useful since it helps express
inferred constraints between events: Constraint [t1, t2] on edge (Vi, Vj) implies an in-
verse constraint [−t2,−t1] between (Vj , Vi).

Constraint inference facilitates the derivation of complete constraint graphs where
all possible constraints Ci,j are specified (i.e., cliques). In general, user queries may
not provide such complete information (e.g., the graph of Figure 1a). Nevertheless, any
partial query graph can be converted into a complete graph using spatial and tempo-
ral inference rules like inversion, composition and intersection [7,22,19]. For instance,
dist(V1.r, V2.r) < 1 and dist(V2.r, V3.r) < 1 imply that dist(V1.r, V3.r) < 2, assum-
ing that the geometric properties e.r are points. Such CG transformations are useful
for several reasons: (1) for identifying if a query is unsatisfiable by discovering nega-
tive cycles; such queries can be ignored, (2) in order to tighten existing constraints and
make them more selective, and (3) to simplify the proposed algorithms and in some
cases improve query evaluation performance (as will become clear in later sections).
The interested reader can refer to [7,22,19] for more details on temporal and spatial
inference, which are beyond the scope of this paper.

Figure 1b shows a complete CG with spatiotemporal constraints (inverse edges are
omitted for clarity). Nodes are annotated with unary constraints, which are selections on
the non-spatial properties for simplicity. In practice V1.p= A could be V1.temperature
> 30◦C. We denote events for which e.p = A by a1, a2, etc. Thus event a1 on the right
of Figure 1b has a1.p = A, event b1 has b1.p = B, etc. The continuous constraint query
(CCQ) that corresponds to the CG triggers an alert if any event ai is close to an event bj

which arrives at most 5 time-instants after ai (i.e., C1,2.t = [0, 5]), and bj is close to an
event ck, which arrives at least 1 and at most 5 time-instants after bj (i.e., C2,3.t = [1, 5],
and, equivalently, the inverse constraint C3,2.t = [−5,−1] means that event bj arrived
at least 1 and at most 5 time-instants before ck). These two constraints also infer that
ck must arrive at least 1 and at most 10 time-instants after ai, illustrated by the inferred
temporal constraint between variables V1 and V3.

An extended SQL can be used to express CCQs. For instance, our example can be
expressed in pseudo-SQL with spatial and temporal predicates, as follows:

CREATE TRIGGER collision
FOR E as V1, E as V2, E as V3
WHEN V1.p = A AND V2.p = B AND V3.p = C
AND DISTANCE(V1.r, V2.r)<1 AND V2.t-V1.t IN [0, 5]
AND DISTANCE(V2.r, V3.r)<1 AND V3.t-V2.t IN [1, 5]

Continuous Constraint Query Evaluation for Spatiotemporal Streams 353

The continuous constraint query evaluation problem can be formulated as follows:

Problem Statement: Given a number of constraint queries, continuously evaluate their
satisfiability as new events appear on the stream, and trigger alerts whenever a combi-
nation of events constitutes a solution.

Previous methods on processing complex spatiotemporal queries with multiple se-
lections and joins employ spatiotemporal indexes in combination with constraint sat-
isfaction algorithms [24,21]. Our problem is different in that data arrive continuously
(instead of being stored in a database first) and that the queries should be evaluated
continuously. In other words, the variable domains of the CSPs are not static but dy-
namically change over time. Therefore, CCQs fall into the class of queries described
in [6], requiring special evaluation methods. In addition, our problem is different than
handling traditional triggers in a DBMS [13], since CCQs need not be evaluated over
the whole, past time horizon; As a result, we do not need to maintain the complete
event history but, instead, we can apply rules that minimize the required space (to be
discussed shortly). In the next section we describe our system prototype for registering
and evaluating CCQs over continuous data streams.

3 System Architecture

The problem formulation presented in the previous section raises a number of interest-
ing questions. We need to develop suitable data structures and algorithms for evaluating
CSPs in real-time. In addition, we need to evaluate queries incrementally every time a
new event appears on the stream by restricting the domain of each variable in the given
CGs, to speed up execution. Finally, we must continuously identify and delete from the
system events that cannot possibly belong to future solutions, in order to minimize main
memory requirements.

For simplicity and clarity we make the following assumptions: First, we consider
only transitory events — the information associated with each event is valid only for
a specific time-instant or time-interval and the properties e.p (i.e., the associated mea-
surements) of an event remain static throughout its interval. In addition, we restrict
our analysis only to streams of events with measurements that appear in chronological
order. In other words, the events arrive in the same order as their temporal properties
define. If this is not the case, then a large enough buffer could be used in order to rank
events according to their arrival time-instants first. The size of the buffer can be deter-
mined according to the maximum expected delay of an arrival, which in most cases is a
system characteristic. Finally, we assume that all registered query CGs have been trans-
formed into complete constraint graphs. A variation of the Floyd-Warshall algorithm as
it appears in [22] can be used for temporal constraints. The same algorithm can also be
applied for spatial constraints, using the inference rules of [19].

3.1 CCQ Evaluation

We first discuss the basic algorithm used to continuously evaluate constraint queries, in
order to identify the operations that must be supported by our system. When a new event
e arrives it might qualify for a variable domain in a registered CCQ, and therefore it can

354 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

be part of a potential solution. Thus, initially we need to evaluate the unary constraints
of all variables of all registered queries, in order to identify CGs related with e. Let Vi

be such a variable in a query corresponding to CG G (i.e., e ∝ Ci in G). Vi is related
through binary constraints to all other variables in G and these constraints refer to the
future, the past, or both temporal directions. For example, V2 in the CCQ of Figure 1b is
connected to a past variable V1 (since C2,1.t = [−5, 0]) and a future variable V3 (since
C2,3.t = [1, 5]).

Let V−
i and V+

i , be the sets of past and future variables to Vi. Note that a variable
can be in both V−

i and V+
i . If the subgraph G′ containing Vi = e and V−

i is satisfiable,
e is interesting for two reasons. First, e triggers an alert if Vi ∪ V−

i = V (i.e., G′ =
G). For example, variable V3 in the graph of Figure 1b has past variables only (i.e.,
V3 ∪ V−

3 = V). Thus, an event e with e.p = C may trigger an alert if there exist
past events consistent to e and the subgraph G′, containing V1, V2 and their constraints.
Second, if V+

i 	= ∅, it is possible for e to participate in an alert in the future when
variables in V+

i get values from events that are consistent with G′. For example, variable
V2 in the graph of Figure 1b has a future variable (V3). Thus, an event e with e.p = B,
which makes the subgraph containing V1 and V2 satisfiable, can participate in an alert
with some future event that instantiates V3.

Thus, if G′ is satisfiable and V+
i 	= ∅, we say that e is useful and we keep it in

the system for potential future inclusion in an alert. The question now is how long is
it essential to keep e for, until we decide that it cannot be part of a future solution?
We assign e an expiration time e.X , after which e becomes obsolete and should be
deleted. Intuitively, the expiration time cannot be longer than the longest interval length
of temporal constraints that use e. This is a worst case upper bound, and we will see
later on that it can be substantially improved.

Algorithm 1 summarizes the procedure for handling a new event e that arrives in
the system. Initially, the expiration time is set to its time-instant e.t; if the event is
not found useful by the algorithm, it will be immediately deleted. All relevant CG and
variables to e are then retrieved. A variable Vi in a CG G is relevant if e ∝ Ci, as
already discussed. For each such variable, we find the set V−

i of past only variables
and compute their domains Di according to the past events stored in the system. The
domain of a variable Vj ∈ V−

i is determined such that (1) its values are consistent with
the assignment Vi = e (for this, constraint Ci,j is used), and (2) they are consistent with
Cj , i.e., the unary constraint of Vj . If a domain of a variable is empty, we know that the
assignment Vi = e for query G is inconsistent. Otherwise, we solve the CSP for graph
G only if all variables in G are consistent with e (and thus if Vi is chronologically last).
If a solution is found (line 12), the algorithm generates an alert. Finally, the expiration
time of e is updated accordingly, if Vi has any future variables (V+

i 	= ∅) and if the past
only variables are consistent with Vi. Otherwise, the event can be deleted, since these
variables can never be satisfied. Algorithm 1 sets the expiration time as the maximum
required by outgoing edges to future variables (i.e., the maximum upper bound of the
temporal constraints linking the current variable with future variables). If there are many
queries or variables that may use e in the future, the expiration time is the maximum
timestamp determined by all of them. Later, we will discuss alternative policies that
result in tighter expiration times and reduce the memory requirements. In addition, we

Continuous Constraint Query Evaluation for Spatiotemporal Streams 355

a1

b1

b2
c1

c2

time

x

y

alert!

1 2 3 4 5 6 7

1

2

3

4

1

2

3

4

Fig. 2. A continuous query evaluation example

will discuss the details for storing and indexing events, computing variable domains,
solving constraint graphs, and managing event expirations.

Algorithm 1. HandleNewEvent(e: event,Q: queries)
1: e.X := e.t;
2: Get all (Vi, G) pairs such that G ∈ Q, Vi ∈ G, e ∝ Ci;
3: for each (Vi, G) do
4: Vi.sat := true;
5: for each Vj ∈ V−

i do
6: use Vi = e, Ci,j , and Cj to compute Dj ;
7: if Dj = ∅ then
8: Vi.sat := false;
9: break; � break Vj for-loop

10: if Vi.sat and V−
i ∪ Vi = G.V then

11: Solve G
12: if G is satisfiable then alert solution
13: if V+

i �= ∅ and ∀Vj ∈ V−
i /V+

i : Dj �= ∅ then
14: e.X := max{e.X, e.t + max∀Vj ∈V+

i
(Ci,j .tub)};

15: if e.X > e.t then Store(e); � event is useful

3.2 An example

In this section we present a simple example that clarifies the rational behind
Algorithm 1. Let us assume that only the CCQ shown in Figure 1b has been registered
with the system. Suppose that the arrivals on the stream follow the sequence shown in
Figure 2. Event a1 (for which a1.p = A) arrives at time-instant 1 and a1 ∝ C1. The
event should be stored as a future candidate (i.e., it satisfies the unary constraint of
query variable V1). An expiration time of 11 (due to C1,3.t = [0, 10]) is assigned to a1,
after which a1 will be deleted from main memory in order to save space.

Next, event b1 appears at time-instant 2, which is clearly related with variable V2.
Since V1 is the only past variable related with V2 we need to evaluate constraint C2,1.
Since a1 is the only stored event that satisfies C1 and dist(a1, b1) > 1, C2,1.& is vi-
olated, and hence b1 can never participate in a query alert and can be deleted. At the
next time-instant, events b2 and c1 arrive simultaneously. This time dist(a1, b2) < 1 and

356 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

dist(b2, c1) < 1, however, c1 violates the temporal constraint C3,2.t = [−5,−1] and
it can be deleted. Nevertheless, b2 can potentially belong to a future solution, hence, it
needs to be retained and its expiration time becomes 8, given the current time 3 and the
temporal constraint C2,3.t = [1, 5].

Finally, at time-instant 6 event c2 arrives, and since dist(c2, b2) < 1 and a1, b2 have
not expired yet, an alert is triggered with solution tuple {a1, b2, c2}. Since V3 has no
future variables, c2 is deleted. On the other hand, events a1 and b2 need to be retained
until their expiration times, since more events satisfying C3 might appear in the stream
triggering additional alerts. After that time both events can be deleted.

3.3 A Detailed Analysis of the Proposed Framework

We now describe in detail the components of our system prototype that manages incom-
ing events and evaluates CCQs based on Algorithm 1. Our system prototype consists of
five basic components, shown schematically in Figure 3.

Queries are stored in memory-based constraint graph representations. Given a new
event e on the stream, the Query Index retrieves all queries that contain at least one
variable with an associated unary constraint that is satisfied by e. An important compo-
nent is the Spatiotemporal Index, which is used for storing useful past event instances.
Given a new event e and the spatiotemporal constraints associated with some related
variable, the index is probed and all past events e′ that qualify for these constraints
given e, are retrieved. This will help populate all CG variable domains fast, with only
a few candidates, instantly pruning a large number of unrelated events. An Expiration
Time Array indexes events according to the time they should be deleted from the sys-
tem and enables efficient deletion from the Spatiotemporal Index. Finally, a CSP Solver
solves CGs given appropriate variable domains.

Time Array
Expiration

CQE

Spatio−temporal

1Q

4Q 2Q
2QA: 1Q,C:

Q3,D: Q2

1 2

43

CG Representations

CG CG

CGCG
e

Index

Query Index

B:
2Q

e.t
e.r

CSP
Solver

Fig. 3. A system prototype

Constraint Graph Representation. Given query Q with a complete directed graph G =
(V , C), |V| = m, we represent the graph using a 2-dimensional matrix M such that
M [i, j] = Ci,j , 1 ≤ i, j ≤ m.

Query Index. Queries contain a number of unary variable predicates, corresponding
to multiple properties. Given a large number of queries we must locate efficiently the
ones that contain unary constraints satisfied by newly arriving events; these are the only
queries that have to be considered for further processing (see line 2 of Algorithm 1).

Continuous Constraint Query Evaluation for Spatiotemporal Streams 357

Many predicate indices have appeared in the literature [20,15,34,13,30]. Here we opt
for a simpler approach with small memory requirements. In order to efficiently identify
all variables Vi related to an incoming event e, we maintain a hash-table indexed by
all known properties appearing in the unary predicates of registered queries. The data
entries of the hash-table are pointers to the queries that have at least one variable with
a unary constraint that is related to a specific property. Using the hash-table, we can
locate fast all queries Q that contain a variable related to e. Then, by retrieving the unary
constraint associated with that variable we can evaluate if e satisfies the constraint.

Spatiotemporal Index. The basic functionality of the Spatiotemporal Index is to store
all useful past events that might contribute to a CG solution (i.e., an alert) in the future
(see line 15 of Algorithm 1). The index acts as a filtering step that facilitates efficient
evaluation of a query by substantially limiting variable domains before evaluation (lines
5–6 of Algorithm 1). A naive algorithm would consider all events indiscreetly as possi-
ble domain values. Instead, the Spatiotemporal index, given a new event e, returns only
those stored events that satisfy the spatiotemporal predicates of the binary constraints
associated with the past variables that are related to e. Any data or space partitioning
structures can be used for that purpose, like the R-tree [10] and the Multi-Layer Grid
File [28], both extended with a temporal dimension. For illustration purposes in the
following discussion we assume that a 3D R-tree is used to index useful past events.

When an event e arrives, the domains of past variables that are related to Vi = e are
computed (lines 5–6 of Algorithm 1), as follows. For each Vj ∈ V−

i , the spatiotemporal
index is probed using the spatial e.r and temporal e.t properties of e in combination
with predicates Cj,i.& and Cj,i.t. For instance, when event b2 arrives at time instant
b2.t = 2 in the example of Figure 2, for constraint C2,1 a spatiotemporal range query
with temporal extent [−3, 2] (since we are looking for events at least 0 and at most 5
instants before b2.t) and spatial extent a circle with radius 1 around the location of b2

is evaluated using the index. Since no events are contained in this range, D1 = ∅ and
b2 will be found not useful and deleted from the system. The results produced by the
spatiotemporal search are also filtered using the unary constraint of the variable whose
domain Dj is being populated. This guarantees that the domains of all past variables
become consistent with the assignment Vi = e, before solving the CSP on graph G.

Expiration Time Array. While new events arrive on the stream, older events that have
been stored in the index become obsolete. A structure is required that can index events
in increasing expiration time, for easy deletion from the system. In Section 4.1 we will
propose a technique that assigns tight expiration times to events. This technique calls
for efficient operations for updating the expiration time of an event to a new value. We
term this structure the Expiration Time Array.

In order to satisfy these requirements we use the following architecture (shown in
Figure 4). We store all useful events in main memory and associate them with unique
identifiers. In addition, we build a hash-table on the unique ids. The spatiotemporal
index stores direct pointers to the events in the hash table. The Expiration Time Array
is another hash-table with key being the expiration time t of the events, and data entries
being arrays that contain pointers to events that have expiration time equal to t.

358 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

ETA

. . .

E
xp

. t
im

e
ha

sh
ta

bl
e

e1 e2 e3

Spatiotemporal index

Event hashtable

2

5

1

. . .

Fig. 4. The Expiration Time Array

Assume that a new event arrives on the stream and is inserted in the index. After the
completion of the insertion operation the event is inserted in the Expiration Time Array
according to the computed expiration time t. The appropriate hash table entry is located
(or a new one is created if needed) and a pointer to the entry is inserted. The cost of this
operation is dominated by the cost of an insertion to the index.

The Expiration Time Array contains possibly one array of pointers per future time-
instant. Notice that the hash-table does not need to store empty arrays for time-instants
that have no expiring events. So, we expect the structure to be fairly small in size. On
the other hand, all arrays combined contain as many pointers as the total number of
stored events.

Removing expiring events is straightforward. For every time-instant we locate the
corresponding expiration array and remove all events contained therein from the spatial
index and the event hash table. The deletions can happen in bulk and in a bottom-up
fashion for efficiency [18]. This operation is very efficient since the main cost of this
process is the update cost of the spatiotemporal index.

CSP Solver. The CSP Solver takes as input the constraint graph G (line 11 of Algorithm
1) and finds a solution or deduces that the graph is insoluble. The general class of CSPs
is NP-complete. However, a number of algorithms have been proposed in the literature
that try to efficiently evaluate CSPs [4,8,14,3]. The size of all possible value that can
be solutions is the Cartesian product of the variable domains. The most popular search
method uses backtracking; variables are instantiated sequentially and as soon as all
variables relevant to a constraint have assumed a value, the satisfiability of the constraint
is tested. If a partial instantiation violates any constraint, backtracking is performed to
the most recently instantiated variable that still has alternatives available. The algorithm
can prune a whole subtree of the Cartesian product every time a constraint is violated.

In this work we use a variant of the backtracking algorithm, called Forward Checking
(FC) [14]. This algorithm has been shown to be very efficient for a wide variety of CSP
settings. In addition, it is very simple to implement and, most importantly, the state that
needs to be kept during evaluation has small size. The basic idea behind FC is that every
time a variable is instantiated, the new value is checked for consistency with all available
values of the domains of outstanding variables. Inconsistent values are immediately
removed. The characteristic data structure used by FC is one array per variable domain,
with length equal to the size of the domain. Each element of the array is the id of the
variable that made the corresponding domain value inconsistent. For few variables and

Continuous Constraint Query Evaluation for Spatiotemporal Streams 359

small variable domains this collection of arrays will be very small in size (each element
can be one byte or less). Since we make sure that before the CSP Solver is called the
variable domains have been restricted as much as possible, FC is expected to be very
robust for spatial and spatiotemporal CSPs, as demonstrated in [24]. An alternative way
is to evaluate the CSP as a multiway spatiotemporal join of the variable domains using
their binary constraints as join predicates. Nevertheless, secondary memory techniques
for multiway joins [21] are not expected to perform better than CSP algorithms for
main-memory problems of small domains.

4 Alternative Query Evaluation Techniques

In this Section, we propose some variants of the basic algorithm, trading memory re-
quirements for computational performance.

4.1 Computing and Updating Tight Expiration Times

Algorithm 1 may compute very loose expiration times for newly arriving events, which
affect negatively the memory requirements of the system. Consider again the example
query of Figure 1b and the stream of Figure 2. When a1 arrives, Algorithm 1 sets its
expiration time to 11, i.e., a1.t = 1 plus the maximum tub of an outgoing edge (C1.3.t
in this example). Nevertheless observe that unless an event with property B arrives be-
fore time 6, a1 should be deleted, because C1,2.t may never be satisfied. Thus a tight
expiration time for a1 is 6. When an event of type B arrives at or before time-instant 6,
which satisfies C1,2 with a1, then the expiration time of a1 is renewed. Indeed, event b2

satisfies C1,2 with a1, thus a1 remains in the system until time-instant 8 (the expiration
time of b2). This simple example shows that we could minimize the memory require-
ments of CCQ evaluation at the expense of computing and maintaining the expiration
times of active events.

Let e be a new-coming event and Vi a variable in a query G, such that e ∝ Ci.
Assume that e is useful with respect to Vi, i.e., the graph G′ containing V−

i is soluble.
For setting a tight expiration time for e, with respect to Vi, we separate the following
two cases:

1. V−
i ∪ Vi = G.V . In this case, e triggers an alert, however, newly arriving events for

variables Vj ∈ V+
i may keep triggering alerts for as long as the temporal constraint

Ci,j .t is active (given that the events satisfy the spatial constraints as well). This is
true, since for all other j, the constraints are already satisfied. Intuitively, this can
keep happening for as long as the longest lived temporal constraint Ci,j .t. Thus
e.X should be updated to max{e.X, e.t + max∀Vj∈V+

i
(Ci,j .tub)}, exactly like in

the original algorithm.
2. V−

i ∪ Vi 	= G.V . In this case, there are future variables to Vi not in V−
i . If there

are many such variables, we should set the expiration time for e as the minimum
Ci,j .tub of all future variables Vj .

Since e is independently important for all (Vi,G) pairs, its expiration time is eventu-
ally set as the maximum of all expiration times due to each Vi. Algorithm 2 summarizes
the changes to Algorithm 1 for computing tight expiration times.

360 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

Algorithm 2. HandleEventTight(e: event,Q: queries)
....... lines 1–11 of Algorithm 1
if G is satisfiable then

alert solution;
e.X := max{e.X, e.t + max∀Vj ∈V+

i
(Ci,j.tub)};

else e.X := max{e.X, e.t + min∀Vj ∈V+
i

(Ci,j.tub)}; � case 2

....... the rest of Algorithm 1

Defining tight expiration times requires their correct maintenance as new events ar-
rive. In our example, recall that the expiration time 6 for a1 was updated to 8, after the
arrival of b2. Let e be a new event, handled by Algorithm 2. When solving graph G′, for
all variables Vj ∈ V−

i and for each consistent assignment Vj = e′, the expiration time
of e′ is updated to max{e′.X, e.X}. In other words, e′ should remain in the database at
least as long as e is useful, if there are events future to e that may generate alerts with e
and e′. Embedding expiration time updates in Algorithm 2 is straightforward.

4.2 Explicit Maintenance of Variable Domains

Algorithm 1 and its extension (Algorithm 2) employs the spatiotemporal index for each
incoming event to define variable domains on the fly and then solve the CSP on the
domains restricted by binary and unary constraints. Observe that in this way the unary
constraint Cj of a given variable Vj may be validated on the same event e multiple
times (i.e., the first time e arrives and every time it satisfies the binary spatiotempo-
ral constraints with a newly arriving event). An alternative method is to apply Cj only
once per event e and then store e explicitly in the domain of Vj , until e expires. In other
words, the domains of past variables Vj are not computed by probing the spatiotempo-
ral index, but are stored explicitly, making the index obsolete. The space requirements
of this approach increase since events may be stored in multiple domains (and hence
duplication may occur). Nevertheless, the benefit is that we do not need to maintain a
spatiotemporal index, which has a high processing cost. Which approach is better de-
pends on the relative performance of the spatiotemporal structure used and the average
cost for CSP evaluation, which in turn depends on the types of registered queries and
the data distribution in the stream.

5 System Prototype Evaluation

This section presents a system prototype evaluation that will illustrate the applicability
of the proposed techniques using real datasets. The performance of a CCQ evaluation
engine depends mainly on two major operations, populating the variable domains and
solving the CSPs. Therefore, we compare multiple variants of the CCQ prototype to
quantify the effects of different evaluation strategies.

5.1 Testbed and Methodology

We use off-the-shelf tools to implement our system. More specifically, an R-tree in-
dex from [11] and a CSP solver based on the FC algorithm [14]. The system can be
downloaded from [1]. All experiments are run on an Intel(R) Xeon(TM) CPU 3.2GHz.

Continuous Constraint Query Evaluation for Spatiotemporal Streams 361

We use real datasets from the Tropical Atmosphere Ocean Project [26], where a large
number of buoys have been deployed around the pacific ocean to collect oceanic and
atmospheric data several times a day. An archive of the measurements of the past 25
years is available from [26]. For our purposes we used a total of 900,000 measure-
ments, interpreted as a stream of data arriving at a central server for processing. These
measurements include the location of the buoy at the time of the measurement, sea sur-
face temperature, pressure, dynamic height, salinity, relative humidity, wind speed, and
wind direction.

We generate synthetic queries by varying the number and type of variables, the tem-
poral constraints, and the spatial predicates. We generate a large number of query work-
loads based on query verbosity. Verbosity is defined as the total number of query results
(alerts) produced by the query over the total number of streaming events, and can be
adjusted by appropriately tuning unary and binary constraints, making event selections
tighter or looser. The dataset and the queries can be downloaded from [1].

To test various aspects of the system prototype we used two performance measures:
(1) the maximum sustainable processing rate that can be achieved; and (2) the maxi-
mum memory utilization. The first measure is computed as the number of streaming
events that can be processed per second, and the second as the peak number of events
that need to be stored in main memory to achieve the corresponding processing rate. We
measure the system’s performance according to the following measures: (1) query ver-
bosity; (2) scalability; (3) temporal constraint length, number of variables and number
of constraints per query. We compare three CCQ evaluation methods: (1) Algorithm 1
(Loose); (2) Algorithm 2 (Tight); (3) The alternative proposed in Section 4.2 (NoIndex).

Query Verbosity. We measured the performance of our system as a function of query
verbosity (i.e., number of alerts produced over the total number of events processed).
We run all variants using five registered queries of known verbosity.

Results are shown in Figure 5. The trend of the graph shows that for all variants, per-
formance deteriorates as verbosity increases since a growing number of events qualify
for the variable domains of the query as more alerts are being produced, meaning that
CSP evaluation becomes more expensive. Notice that the Loose variant (the only one
that does not utilize tight expiration times) has somewhat worse performance than the
rest of the techniques, attributed to the larger variable domain sizes. The NoIndex ap-
proach offers the highest processing rates since it does not have to maintain and query
an index.

Figure 5b plots the memory utilization for each variant. The numbers on the graph
correspond to the peak number of events that need to be stored as a percentage of the
total number of events. This measure illustrates the pruning ability of our system with
respect to a brute force approach that would retain all measurements. Clearly, all tech-
niques save substantial amount of main memory, especially for higher query verbosity.
The NoIndex approach has larger memory requirements due to event replication (see
Section 4.2).

Scalability. Next, we evaluate system performance as a function of the number of reg-
istered queries. We keep the verbosity fixed to 1% and vary from 5 up to 100 registered
queries. The NoIndex approach can sustain up to 15,000 events per second even for 100

362 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Avg. query verbosity (%)

noindex
loose
tight

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 2 4 6 8 10 12 14 16

P
ea

k
U

sa
ge

 (
%

)

Avg. query selectivity

noindex
loose
tight

Fig. 5. Query Verbosity

registered queries. The other two approaches suffer as the number of queries increases,
but have viable processing rates for most application scenarios even for up to 25 queries
(we should stress the fact here that the algorithms produce exact query results). In terms
of memory utilization, the NoIndex approach introduces substantial event duplication,
making it a less favorable approach for tight memory constraints. Nevertheless, the
memory requirements of all algorithms are still extremely small.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Number of queries

noindex
loose
tight

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 10 20 30 40 50 60 70 80 90 100

P
ea

k
U

sa
ge

 (
%

)

Number of queries

noindex
loose
tight

Fig. 6. Number of Queries

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Max. temporal length

noindex
loose
tight

 0.00025
 0.0003

 0.00035
 0.0004

 0.00045
 0.0005

 0.00055
 0.0006

 0.00065
 0.0007

 0.00075

 4 6 8 10 12 14 16 18 20

P
ea

k
U

sa
ge

 (
%

)

Max. temporal length

noindex
loose
tight

Fig. 7. Temporal Constraint Length

Temporal Constraint Length. Finally, we tested the system using queries with vary-
ing temporal constraint lengths. We use five registered queries and fix the verbosity
to 1%. The larger the temporal extents the bigger the event expiration times, so it is
expected that the memory requirements will increase as the temporal extents increase.
On the other hand, throughput should remain unaffected since the verbosity is fixed.
The results in Figure 7 attest to that observation. We conducted similar experiments for
varying number of variables per query and number of constraints. The results were the
same. Throughput is only affected by query verbosity and the total number of queries
registered in the system.

Continuous Constraint Query Evaluation for Spatiotemporal Streams 363

To conclude, the NoIndex approach exhibits very good scalability in terms of reg-
istered queries and query verbosity, but higher memory requirements than the other
approaches. The Loose and Tight algorithms can sustain a smaller number of queries at
streaming rates due to the index lookups. All approaches prune a very large percentage
of events, compared to the naive alternative.

6 Related Work

There is a lot of research on data streams in general but little work in the realm of spa-
tiotemporal streams. Moreover, most work has concentrated on the special case of mov-
ing object applications. Finally, current work addresses only traditional spatial queries
like range searches and nearest-neighbors. In contrast, here we deal with any type of
spatiotemporal stream as well as complex queries with numerous problem variables
and general spatiotemporal predicates between them (i.e., not only selections but also
joins between events).

SINA [23] is a recently proposed framework for incremental evaluation of continu-
ous range queries on data streams. It uses the shared execution paradigm to incremen-
tally evaluate a large number of concurrent queries. SINA indexes the queries along with
the data in order to be able to compute answers incrementally. Previous work with the
same characteristics include [27,5,9]. In [27] the authors use incremental query eval-
uation, reversing the role of queries and data, and exploiting the relative locations of
objects and queries to provide answers efficiently. They also propose an index method
that exploits the maximum permissible velocity of the objects to delay expensive up-
dating operations of the index. Finally, the authors of [5] and [9] assume that clients
can process and store information, so that they can share query processing with the
server in a distributed fashion. All these works are suited only for moving object ap-
plications and continuous range queries with absolute spatial coordinates that do not
involve constraints in-between the objects. Similar work, concerning nearest neighbor
queries, includes [17,29,31].

Related to our work is research concerning pattern mining with constraints in stream-
ing databases. In [32] the authors address the issue of extracting frequent temporal pat-
terns from the stream. They use a regression based algorithm to scan online transaction
flows and generate candidate frequent patterns in real time. Similarly, a mining per-
spective is also adopted in [25], where the authors introduce techniques for answering
queries with a wide range of constraints related to the length of the patterns, the items
they contain, their duration, etc. However, these works do not consider transactions with
spatial characteristics and concentrate on mining patterns that exceed a user specified
threshold instead of identifying tuples that satisfy spatiotemporal or other constraints in
real-time.

In [6] a system is proposed that can answer continuous queries over streaming data.
The system registers a number of queries and a number of streams and applies new
queries to old data, and old queries to new data on the streams. Nevertheless, this system
does not consider spatial or temporal constraints between streaming data; it only con-
siders predicates that resemble what we term unary variable constraints. Finally, it does
not introduce the concept of expiration times to evict older data from main memory,

364 M. Hadjieleftheriou, N. Mamoulis, and Y. Tao

but rather indexes all incoming data according to user specified window sizes. Hammad
et al. [12] studied continuous multiway join queries over data streams, where the join
predicates are temporal. This problem can be viewed as a special case of the problem
we study here. In addition, their work does not handle real-time alert triggering, since
buffering techniques are employed before processing the registered queries. Thus, alerts
may be triggered only with some delay.

7 Conclusion

We have presented a system prototype for evaluating Continuous Constraint Queries on
spatiotemporal streams. The proposed system represents queries as Constraint Graphs
that are incrementally evaluated as Constraint Satisfaction Problems every time a new
event arrives on the stream. We introduce special algorithms for computing event expi-
ration times in order to limit the number of events that need be maintained for providing
exact answers. Finally, we present a concise experimental evaluation of a system pro-
totype implementation. As future work we plan to extend the system for dynamic event
properties (that change over time) and also investigate robust approximation policies
for limiting main memory consumption even further.

References

1. CCQ system prototype, http://www.cs.ucr.edu/∼marioh/ccq
2. AOML. Global Drifter Center,

http://www.aoml.noaa.gov/phod/dac/gdc.html
3. Bessière, C.: J.C. Régin. Refining the basic constraint propagation algorithm. In: Proc. of the

International Joint Conference on Artificial Intelligence (IJCAI), pp. 309–315 (2001)
4. Bitner, J.R., Reingold, E.: Backtracking programming techniques. Communications of the

ACM (CACM) 18(11), 651–656 (1975)
5. Cai, Y., Hua, K.A., Cao, G.: Processing range-monitoring queries on heterogeneous mobile

objects. In: Proc. of the International Conference on Mobile Data Management (MDM), pp.
27–38 (2004)

6. Chandrasekaran, S., Franklin, M.J.: Streaming queries over streaming data. In: Proc. of Very
Large Data Bases (VLDB) (2002)

7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Journal of Artificial Intelli-
gence 49(1-3), 61–95 (1991)

8. Gaschnig, J.: Experimental case studies of backtrack vs. waltz-type vs. new algorithms for
satisficing assignment problems. In: Proc. of the Canadian Artificial Intelligence Conference,
pp. 268–277 (1978)

9. Gedik, B., Liu, L.: MobiEyes: Distributed processing of continuously moving queries on
moving objects in a mobile system. In: Proc. of Extending Database Technology (EDBT),
pp. 67–87 (2004)

10. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. of ACM
Management of Data (SIGMOD), pp. 47–57. ACM Press, New York (1984)

11. Hadjieleftheriou, M., Hoel, E., Tsotras, V.J.: Sail: A library for efficient application integra-
tion of spatial indices. In: Proc. of Scientific and Statistical Database Management (SSDBM)
(2004)

http://www.cs.ucr.edu/~marioh/ccq
http://www.aoml.noaa.gov/phod/dac/gdc.html

Continuous Constraint Query Evaluation for Spatiotemporal Streams 365

12. Hammad, M.A., Aref, W.G., Elmagarmid, A.K.: Stream window join: Tracking moving ob-
jects in sensor-network databases. In: Proc. of Scientific and Statistical Database Manage-
ment (SSDBM), pp. 75–84 (2003)

13. Hanson, E., Carnes, C., Huang, L., Konyala, M., Noronha, L., Parthasarathy, S., Park, J.,
Vernon, A.: Scalable trigger processing. In: Proc. of International Conference on Data Engi-
neering (ICDE), pp. 266–275 (1999)

14. Haralick, M., Elliot, J.: Increasing tree-search efficiency for constraint satisfaction problems.
Journal of Artificial Intelligence 14(3), 263–313 (1980)

15. Keidl, M., Kreutz, A., Kemper, A., Kossmann, D.: A publish & subscribe architecture for
distributed metadata management. In: Proc. of International Conference on Data Engineering
(ICDE), pp. 309–320 (2002)

16. Kumar, V.: Algorithms for constraints satisfaction problems: A survey. The AI Maga-
zine 13(1), 32–44 (1992)

17. Lazaridis, I., Porkaew, K., Mehrotra, S.: Dynamic queries over mobile objects. In: Proc. of
Extending Database Technology (EDBT) (2002)

18. Lee, M.-L., Hsu, W., Jensen, C.S., Teo, K.L.: Supporting frequent updates in R-Trees: A
bottom-up approach. In: Proc. of Very Large Data Bases (VLDB) (2003)

19. Papadimitriou, C., Grigni, M., Papadias, D.: Topological inference. In: Proc. of the Interna-
tional Joint Conference of Artificial Intelligence (IJCAI) (1995)

20. Madden, S., Shah, M., Hellerstein, J., Raman, V.: Continuously adaptive continuous queries
over streams. In: Proc. of ACM Management of Data (SIGMOD), ACM Press, New York
(2002)

21. Mamoulis, N., Papadias, D.: Multiway spatial joins. ACM Transactions on Database Systems
(TODS) 26(4), 424–475 (2001)

22. Mamoulis, N., Yiu, M.L.: Non-contiguous sequence pattern queries. In: Proc. of Extending
Database Technology (EDBT), pp. 783–800 (2004)

23. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous
queries in spatiotemporal databases. In: Proc. of ACM Management of Data (SIGMOD),
ACM Press, New York (2004)

24. Papadias, D., Mamoulis, N., Delis, V.: Algorithms for querying by spatial structure. In: Proc.
of Very Large Data Bases (VLDB), pp. 546–557 (1998)

25. Pei, J., Han, J., Wang, W.: Mining sequential patterns with constraints in large databases. In:
Proc. of Conference on Information and Knowledge Management (CIKM) (2002)

26. PMEL. Tropical Atmosphere Ocean Project, http://www.pmel.noaa.gov/tao
27. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W.G., Hambrusch, S.E.: Query indexing and

velocity constraint indexing: Scalable techniques for continuous queries on moving objects.
IEEE Transactions on Computers 51(10), 1–17 (2002)

28. Six, H., Widmayer, P.: Spatial searching in geometric databases. In: Proc. of International
Conference on Data Engineering (ICDE), pp. 496–503 (1988)

29. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Proc. of
Symposium on Advances in Spatial and Temporal Databases (SSTD), pp. 79–96 (2001)

30. Stonebraker, M., Sellis, T.K., Hanson, E.N.: An analysis of rule indexing implementations in
data base systems. In: Expert Database Conference, pp. 465–476 (1986)

31. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Proc. of Very Large
Data Bases (VLDB), pp. 287–298 (2002)

32. Teng, W.-G., Chen, M.-S., Yu, P.S.: A regression-based temporal pattern mining scheme for
data s treams. In: Proc. of Very Large Data Bases (VLDB) (2003)

33. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London and San
Diego (1993)

34. Yan, T.W., Garcia-Molina, H.: The sift information dissemination system. In: ACM Transac-
tions on Database Systems (TODS), pp. 529–565. ACM Press, New York (1999)

http://www.pmel.noaa.gov/tao

Collaborative Spatial Data Sharing Among Mobile
Lightweight Devices

Zhiyong Huang1,3, Christian S. Jensen2, Hua Lu1,2, and Beng Chin Ooi1

1 School of Computing, National University of Singapore, Singapore
2 Department of Computer Science, Aalborg University, Denmark

3 Institute for Infocomm Research, Singapore

Abstract. Mobile devices are increasingly being equipped with wireless peer-
to-peer (P2P) networking interfaces, rendering the sharing of data among mobile
devices feasible and beneficial. In comparison to the traditional client/server wire-
less channel, the P2P channels have considerably higher bandwidth. Motivated by
these observations, we propose a collaborative spatial data sharing scheme that
exploits the P2P capabilities of mobile devices. Using carefully maintained rout-
ing tables, this scheme enables mobile devices not only to use their local storage
for query processing, but also to collaborate with nearby mobile peers to exploit
their data. This scheme is capable of reducing the cost of the communication be-
tween mobile clients and the server as well as the query response time. The paper
details the design of the data sharing scheme, including its routing table mainte-
nance, query processing and update handling. An analytical cost model sensitive
to user mobility is proposed to guide the storage content replacement and routing
table maintenance. The results of extensive simulation studies based on an imple-
mentation of the scheme demonstrate that the scheme is efficient in processing
location dependent queries and is robust to data updates.

1 Introduction

In step with the continued advances in computing electronics and wireless networking
technologies, the mobile computing is gaining in prominence. In mobile computing,
users equipped with portable devices such as mobile phones and PDAs, termed mobile
clients, may issue local queries to learn about their geographic surroundings. For ex-
ample, mobile services may enable tourists to learn about near-by attractions and may
inform shoppers about near-by sales. Traditionally, the data provided by such services
are stored in a central database. By means of a point-to-point wireless communication
channel, the mobile clients may communicate with an application server that accesses
the data and is responsible for the processing of queries.

To reduce the client/server (C/S) communication cost, techniques have been pro-
posed that use client storage to cache results of previous queries and then use these
data for answering new queries either fully or, more often, partially [3,11,19]. These
techniques almost completely rely on the C/S architecture, with little or no direct com-
munication and collaboration among the mobile devices.

This sole reliance on the C/S architecture fails to take advantage of the new wireless
peer-to-peer (P2P) communication capabilities of modern mobile devices. The wireless

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 366–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 367

P2P channels have considerably more bandwidth than do traditional wireless C/S chan-
nels [16]. Moreover, as adjacent mobile devices are likely to issue queries whose results
overlap, it is becoming possible, and potentially attractive, for mobile devices to share
data in P2P fashion.

In Figure 1, for example, mobile devices M1 and M2 have issued queries and have
already stored locally data that correspond to the rectangles they belong to. Then a third

M1

M3

M2

P1

P2P3

P5

P4

Fig. 1. Use Peer Storage to Answer Query

device M3 issues a query for data corresponding to its rectangle, i.e., data corresponding
to P1 to P5. Only the data pertaining to P1 and P2 are in M3’s local storage.

Using traditional techniques, M3 must access the remote wireless server to obtain
data for P3, P4, and P5. In contrast, with P2P wireless communication M3 can obtain
data for P4 and P5 from M1, and data for P3 from M2. This reduces the query response
time significantly because the P2P bandwidth is much higher than the C/S bandwidth.

With the objective of exploiting the much faster wireless P2P channels, we propose
a new collaborative data sharing scheme. An underlying grid-based structure is used
for managing the data stored on the server and those portions of the data distributed
among the mobile devices. The entire data space is partitioned by the grid, with each
cell being a basic unit of data storage. The grid information is organized as a string,
each bit of which indicates whether the corresponding grid cell contains any data or
not. By broadcasting this space-saving string, the server is able to give clients global
knowledge of its data, and to efficiently notify them of updates.

To facilitate the retrieval of peer data, each mobile device maintains a routing table.
A routing entry captures which neighbor peer to contact for data pertaining to a specific
grid cell, and how many hops to reach that peer. With routing tables, search among
peers becomes directed, which contrasts to the blind flooding. This not only speeds
up data search but also reduces communication messages. The routing table on each
device is dynamically updated when its neighboring peers’ storage contents change.
Such changes are broadcast locally.

To answer a location-based spatial query with collaborative data sharing, a mobile
device first checks its own storage, identifying those grid cells overlapping the query
for which data is not available locally. Then it checks each cell of this kind in its routing

368 Z. Huang et al.

table. If a relevant routing entry is found, a data request is sent to the corresponding peer
via the fast P2P channel. Only the data not obtained this way is subsequently requested
from the server via the C/S channel. Upon receiving data as needed, a mobile device
conducts a refinement to reach the exact query result, and places the data in its storage.

To best utilize the limited device storage, a probability-based predictive cost model
is proposed for storage replacement and routing table maintenance. Taking into consid-
eration the predicted movement of each device, this model gives priority to the data in
grid cells that have the highest probabilities of being reused in the future. By retaining
relevant data in device storage, this model reduces the communication between devices
and the remote wireless server.

To efficiently handle data updates, the server notifies clients of updates using a com-
pact data format. Upon receiving a notification, a client can easily identify and evict
invalidated data.

This paper makes the following contributions: First, it recognizes the discrepancy
between previous techniques and current mobile environments, and accordingly pro-
poses a collaborative data sharing framework for location-based spatial queries in such
environments. Second, it proposes a probability-based predictive cost model that guides
both storage replacement and routing table maintenance. Third, it proposes query pro-
cessing strategies for mobile devices within the framework. Fourth, it discusses how to
accommodate data updates within the framework. Fifth, it conducts extensive experi-
ments to confirm that the paper’s proposals are efficient and robust.

One might advocate a wireless C/S architecture based on technologies such as an
IEEE 802.11 network, as an alternative to our assumed setting. However, such alter-
native technologies are not widely deployed, but are limited to very short ranges. In
contrast, cellular networks are widely available and have very large numbers of users;
these thus provide a huge space for our assumed setting [16].

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents the system framework. Section 4 details the collaborative data shar-
ing scheme and the cost model. Section 5 describes the relevant query and update pro-
cessing techniques. Section 6 reports the experimental study results. Finally, Section 7
concludes.

2 Related Work

To reduce the communication between client and server via low-band wireless chan-
nels and shorten the query response time, caching techniques have been proposed for
mobile environments [3]. Most such techniques are based on semantic caching [9],
where semantic descriptions of previous queries as well as their corresponding results
are cached. Subsequent queries are fully or partially answered using the cached results
by matching the semantic descriptions. Semantic-based clustering [19] and Voronoi di-
agrams [24] are employed to organize semantic contents cached on mobile devices.
However, these semantic caching schemes only support homogeneous queries. To rem-
edy this, Hu et al. [11] propose a proactive technique that stores on the mobile clients
both query results and the R-tree index nodes accessed during query processing. This
technique may result in substantial device-side space use and processing costs. Later,

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 369

Lee et al. [14] propose to cache both concrete data objects of interest and comple-
mentary regions at a coarse granularity. Inter-device collaboration is not addressed
in any of the above works. Deviating from the previously dominant C/S architecture,
Liu et al. [15] propose to cluster mobile devices via wide-band wireless links. In each
cluster, one mobile device acts as a gateway that is connected to the Internet via a
narrow-band link and forwards queries/results from/to its cluster. This work does not
address device-side cache organization, and data are not passed directly among mobile
devices, but via the gateways.

Assuming a wireless broadcast environment, Hara [10] proposes several caching
strategies that enable clients to cooperate on selecting broadcast items to cache. By
utilizing multi-hop routing in an ad hoc network, Yin and Cao [23] propose that a de-
vice caches either the requested data or the path needed to get the data when it forwards
a query result. Our work differs from these works. First, we consider a hybrid system
architecture (see Section 3.1 for details), instead of assuming a traditional wireless C/S
environment or a pure ad hoc network. Second, we are specifically interested in loca-
tion dependent queries that require spatial data. Third, we take advantage of a client’s
movements for the cache management on devices by using a specific model.

Ku et al. [13] propose a technique for supporting location-based kNN queries in
mobile environments that utilizes objects cached by peers. The core of the technique
is specific to kNN queries and is not applicable to other query types including range
query. Recently, Chow et al. [8] consider cooperative caching in a mobile setting that is
similar to ours. Their focus is on the grouping of mobile devices with similar mobility
patterns in order to improve cache performance.

Next, data management in mobile ad hoc networking (MANETs) [4] or mobile
P2P environments has attracted significant research interest. Kortuem et al. [12] dis-
cuss scenarios where encountering mobile devices may exchange information, together
with challenges faced by mobile ad hoc information systems. At a conceptual level,
Xu et al. [22] discuss extensive data management topics in mobile P2P networks, in-
cluding data modeling and data dissemination specific to mobile peers. Within a hier-
archical mobile P2P environment with wireless cells at the bottom and fixed networks
at the top, Budiarto et al. [7] discuss mobile data replication strategies in the fixed net-
work. To avoid message flooding and to improve search hit rates, Lindemann et al. [17]
propose a distributed document search service that helps access results cached in peer
devices by locally broadcasting queries and response messages.

3 System Framework

3.1 System Architecture

In a traditional, mobile C/S environment, one or more wireless application servers store
data and process queries from mobile clients within their corresponding coverage. This
setting is being shifted as mobile devices are increasingly being equipped with wireless
ad-hoc networking capabilities such as infrared, Bluetooth, or even Wi-Fi. The ad-hoc
networking channel usually has much higher bandwidth (1-11Mbps for IEEE 802.11b,
and up to 54Mbps for IEEE 802.11a and 802.11g) than the traditional C/S channel
(38.6 Kbps to 2.4 Mbps) [16]. This makes it possible and potentially attractive for the

370 Z. Huang et al.

Wireless Service Server

Mobile Devices

Wireless P2P Channel
Wireless C/S Channel

Fig. 2. Hybrid Mobile System Architecture

mobile devices to share their local data with their peers. The architecture with both
C/S and P2P communication, as shown in Figure 2, we call a hybrid architecture. In
this paper, we limit our problem to the extent of a single wireless application server’s
coverage.

For this as well as the traditional C/S architecture, a key objective is to reduce the
communication between client and server, as the bandwidth of the wireless C/S channel
is low. In the traditional C/S architecture, local storage is the only resource that a mobile
device can attempt to exploit. In the hybrid architecture, the high bandwidth channels
among mobile devices are an important resource that can be utilized. By allowing mo-
bile devices to share their data via the P2P wireless channels, the communication be-
tween a mobile device and the server is expected to be reduced. We proceed to discuss
how to achieve this reduction by using an appropriate data sharing scheme.

3.2 Collaborative Data Indexing Requirements

The spatial data on the server are usually indexed by some spatial indexes in order
to facilitate efficient spatial-query processing. For the server alone, which has ample
storage space and computing power, different spatial indexes are applicable, and their
performance differences are not expected to be significant in comparison to as the con-
siderable wireless communication cost.

The situation becomes complex when we intend to store and reuse data from the
server on resource-constrained mobile devices. If a spatial query cannot be fully an-
swered by reusing data stored locally, its unanswered portion will be sent to other mo-
bile peers or to the server. This query portion can be processed in a direct way, without
any transformation or adjustment, if the organizations of data on the mobile devices
and on the server share some basic characteristics. Therefore, it will be beneficial if the
index used on server also can be used on the mobile devices.

Since mobile devices usually have limited storage space and computing power, we
must be careful to choose an appropriate spatial index that can be shared among the
devices and the server. The limited storage makes a spatial index with little storage

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 371

overhead attractive. The limited computing power renders it important that the opera-
tions to be performed on the spatial index are simple yet efficient.

3.3 Collaborative Indexing

Because the R-tree and its variants involve comparatively complex operations and con-
sume extra space for internal nodes, we do not use them on the resource-constrained
mobile devices. Rather, we use the simple yet effective grid file [18] as the spatial index
in our system. A grid file allows economically storing on each mobile device a sum-
mary of the data indexed on the sever, enabling the devices to maintain knowledge of
the server data. The entire data space is partitioned by a H (rows) by W (columns)
uniform grid, yielding a total of H · W grid cells. The server holds a grid directory,
which contains the extent (left , right , top, bottom) of the data space and a linear array
representing all grid cells in row major order. Each cell has a pointer to the disk page
storing those data points.

The summary of the server data indexed by a grid is organized in a compact format
and broadcast to all mobile devices within the server’s coverage. For each grid cell, one
bit is used to indicate if it contains any data points: 0 for an empty cell and 1 otherwise.
This way, a total of '(H ·W)/8(bytes are needed to represent all cells in row major or-
der starting from the top left. In addition, the values of H , W , and the extent coordinates
are necessary for a mobile device to perform basic grid indexing operations.

For H and W , we use a byte to represent either of them and thus can accommodate
up to 64K grid cells, which usually is enough. For the extent coordinates we use floats,
which need 4 bytes each. Therefore, every mobile device needs '(H ·W)/8(+18 bytes
to hold the global grid summary. That information is organized into a byte string called
a grid string, which sequentially contains left , right , top, bottom, H , W and bytes for
all grid cells. The ending bits in the last byte are not used if the number of grid cells is
fewer than 8.

An example is shown in Figure 3. In the upper part of this example, the region of
interest is partitioned into 2 rows and 4 column, i.e., 8 cells. In the lower part, the grid
string is shown with 19 bytes totally. The bits in the last byte are used to indicate the
validity of each grid cell, starting from the top-left one sequentially in row major order.

1.034103.011 103.013 1.035 2 4

(103.011, 1.034)

(103.013, 1.035)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 1 1 0 1 0 1

Fig. 3. Example Grid String

372 Z. Huang et al.

4 Collaborative Data Sharing Scheme

4.1 Storage Scheme for Mobile Devices

Every mobile device receives the grid string from the data server when it enters the
coverage area of the server. This string is kept locally and used when processing spatial
queries. For a given spatial query, the values of H , W , and the extent coordinates are
used to determine which grid cells the query concerns. Then, the relevant bits in the grid
string are used to identify the cells that actually contain data points. Only those cells
are considered subsequently.

Without loss of generality, we suppose that every point has n attributes, in addition to
the spatial coordinates of float type, and that these attributes occupy An bytes in total.
Out of its total storage space, a mobile device Mi is allowed to use Si bytes for data
points. This portion is divided into Ni equal-sized contiguous slots, each of which can
contain si points. In other words, Si = Ni · si · (8 + An).

Two data structures are used for this storage portion. The first, StoredCells , is a list
of records of the format 〈index , count , slot IDs〉, where index is the index of a cell
stored, count is the count of points in that cell, and slot IDs holds the IDs of the slots
that contain the cell’s points. To facilitate search for grid cells, StoredCells is main-
tained in ascending order of index . The second, FreeSlots, is a list of the IDs of unused
storage slots. Initially FreeSlots contains all storage slots and StoredCells is empty.

As the grid parameters H and W each occupy a byte, a 2-byte short integer is enough
for index . Assume a grid cell contains at most Gm points. Then 'Gm/256(bytes are
needed for count . A slot ID needs 'Ni/256(bytes, while a grid cell needs at most
'Gm/si(storage slots. As a result, a stored cell needs at most 2+ 'Gm/256(+ '(Gm ·
Ni)/(256 · si)(bytes.

When a new grid cell is to be stored locally, the first step is to determine how many
slots are needed. Then we need to search the FreeSlots to see if enough free slots are
available. If so, free slots are selected to store the cell. FreeSlots is modified, and new cell
information is created in StoredCells accordingly. If not enough free slots exist, some
stored grid cells must be evicted to make room for the new one. We discuss this issue in
Section 4.3. Next, we address how to share storage contents among mobile devices.

4.2 Sharing Data Via Routing Table

A naive approach for a mobile device to retrieve data from peers is to send a message
to all its neighbors, each of which then either returns the requested data if it has, or
forwards the request to its own neighbors. This approach leads to blind flooding rather
and incurs a large number of messages, which may yield long response time.

To facilitate the retrieval of data from peers, we maintain a routing table on each mo-
bile device. A routing table entry on a device Mi is in the format of 〈cell id, nb, hops〉.
It tells that a neighbor peer nb of Mi has data for cell cell id in its local storage or rout-
ing table. And hops is the count of hops from Mi to the peer, via intermediate peers,
that actually stores the data for the cell.

When Mi stores a new cell or evicts a cell, it notifies its neighbors by sending out
corresponding messages. Upon receiving a message from Mi invoked by storing cell j ,

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 373

a mobile device Mk takes one of the following three actions: (1) ignores it because
cell j is in local storage; (2) creates a new routing entry for it because cell j is in neither
its storage nor routing table; (3) compares the length of the new route with the that for
cell j currently in the routing table, changing the current one if the new route involves
fewer hops. Device Mk can also forward the new route to its own neighbors, if (2)
happens. Similar actions are to be taken by subsequent neighbors. Upon receiving a
message from Mi invoked by evicting cell j , a mobile device Mk removes the relevant
entry from its routing table if it exists. If a removal occurs, Mk sends similar messages
to its own neighbors who will take similar actions.

A maximum hops value is used as a system parameter to further limit the forwarding
of maintenance messages in the last two situations described above. A message for
either a new route or for an eviction will not be forwarded any further when it has
traveled the maximum number of hops.

When a mobile device Mi detects a new neighbor Mk through wireless signaling, Mi

organizes the contents of both its storage and routing table into routing entries and sends
them to Mk. Device Mk then updates its own routing table by checking the incoming
entries against its storage and routing table.

4.3 Management of Limited Device Storage

For storage constrained devices, we need to replace both storage contents and routing
table entries when necessary. We propose a cost model to guide the replacement.

Cost Model. In our storage scheme, two factors need to be considered when choosing
one or more victims for replacement. One is that after selecting victim(s), there should
be enough free space for the new grid cell. For a stored grid cell Cj , the count of data
points it covers can be found in the StoredList , i.e., count . The other is that we should
attempt to avoid eliminating grid cells that will be accessed in the (near) future. This
can be achieved by taking into account a mobile device’s predicted movement.

We use prob(Mi, Cj , Δt) to denote the probability that a device Mi will access cell
Cj in the time period [tc, tc + Δt], where tc is the current time. We thus look Δt time
units into the future and predict how likely it is that Mi will need Cj in that time period.
In Section 5.4, we discuss how to choose an appropriate value for Δt.

Probability prob also depends on the movement of Mi and the queries it will issue.
Although it is difficult to predict the query pattern of a mobile device, we expect a
significant spatial locality for the queries issued by a mobile device. Therefore, the
distance between a device Mi and a grid cell Cj is of importance. At any single time
point, we consider the Manhattan distance between Mi’s current position and the center
of Cj . Following Tao et al. [21] and Brilingaitė and Jensen [5], we assume that each
device is aware of its own motion pattern. In contrast to Dar et al. [9], we use an integral
to represent the distance between Mi and Cj for the period [tc, tc + Δt], as shown
in Formula 1. An integral along time has been proven to be effective in dealing with
changes covering a future time period [20].

iDistM (Mi ,Cj ,Δt) =
∫ tc+Δt

tc
distM (Mi .pos(t),Cj)dt (1)

374 Z. Huang et al.

tc

ck

k -th d imen s io n

lk

t f t ime

v k > 0

tx

h k

Fig. 4. Integral of Distance over Time

Suppose in an n-dimensional space, ck is the middle point of a grid cell on the k-th
dimension, and pk(t) is the time-parameterized position of a mobile device on that
dimension. Formula 1 can be developed as follows.

∫ tc+Δt

tc

n∑
k=1

|pk(t)− ck|dt =
n∑

k=1

∫ tc+Δt

tc

|pk(t)− ck|dt (2)

This indicates that we can compute the integral on each individual dimension and
then sum up all those integrals to obtain the desired distance. For example, in Figure 4,
the mobile device has a positive linear velocity (it moves upwards) on the kth dimen-
sion, where the cell Cj’s range is [lk, hk]. And tf is assumed to be a future time point
far enough from tc, while tx is the moment pk(t) passes ck. Then the integral on that
dimension can be expressed as a sum of two parts:

∫ tx

tc

(ck−pk(t))dt+
∫ tf

tx

(pk(t)− ck)dt =
1
2
·vk · (tx− tc)2 +

1
2
·vk · (tf − tx)2 (3)

Taking into account negative speeds, the appropriate integral value is:

1
2
· |vk| · ((tx − tc)2 + (tf − tx)2) (4)

Depending on the concrete values of tc and Δt, integrating on an individual dimension
can involve one or two integral parts with corresponding ranges. Non-linear movements
may involves additional integral parts because the mobile device may pass the middle
point for more than once.

Intuitively, the closer a mobile device Mi gets to a grid cell Cj , the higher the prob-
ability that Mi will be interested in Cj is. This means prob is inversely proportional to
iDistM for the period of consideration. Therefore, we give priority to those cells with
large iDistM values when choosing victims. These are the least likely to be reused in
the future because they are relatively far away from the mobile device Mi. When a
victim is chosen, the storage slots it occupies is released and recorded in the FreeSlots
list. The selection of a victim is repeated until FreeSlots has enough free slots for the
new cell.

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 375

Routing Table Size Control. Based on its own resource availability, a mobile device
can determine how much local storage to use for its routing table. To avoid a possible
overflow caused by routing table size growth, a mobile device can choose to ignore new
route entries coming from peers, or remove existing ones from its own routing table.
The decision can be made based on the proposed cost model, by computing the access
possibilities of those grid cells in a routing table.

5 Query and Update Processing

Our scheme supports heterogenous queries. We consider the two arguably most popular
query types: range queries and kNN queries. Overall, query processing proceeds as
follows. After a location-based spatial query Q is issued on a mobile device Morg ,
termed originator of Q, the local storage contents are used to answer the query. If the
query cannot be answered fully this way, the originator asks its neighbors for possible
data with the help of its routing table. For those data portions that are unavailable in the
routing table, requests are sent to the server. For a range query, a local refinement step
is required to handle those grid cells that the query only covers partially. For a kNN
query, the search bound is adjusted dynamically during the search to reduce the number
of grid cells involved.

5.1 Range Queries

A range query Qr issued on mobile device Morg is represented by 〈pos, d〉, where pos
is Morg ’s current position and the range is the circle centered at pos with radius of d.

When a range query Qr is issued, the grid string is first used to identify the non-
empty grid cells that intersect the range specified in the query. We use C(Qr) to rep-
resent the set of indexes of all these non-empty grid cells. Then, the local storage is
checked to see if any of those involved cells are available locally. We use Cl(Qr) to
represent the set of indexes of cells stored locally. If all cells are in local storage, i.e.,
Cl(Qr) = C(Qr), the query is answered locally in full. Otherwise, the unavailable
cells are retrieved from elsewhere. We let Cp(Qr) represent the set of indexes of grid
cells that appear in Morg ’s routing table, and Cu(Qr) represents the remaining grid cell
indexes.

For the cells in Cp(Qr), requests are sent to peers according to the routing entries.
Each such request is forwarded along a routing path until the peer holding the data is
reached. This peer then sends the data to Morg . Due to the dynamic nature of wireless
mobile ad hoc networking, it is possible that a mobile device along the routing path
receives a request, but fails to find the relevant routing entry or grid cell data locally.
Or, a mobile device may get a failure message from the lower protocol level when con-
tacting a peer. When a device faces such situations, it returns a routing failure message
to Morg along the reversed path. Each mobile device on the path back removes the
relevant routing entry from its own routing table, till Morg places that cell in Cu(Qr).
Finally, a request for the cells in Cu(Qr) is sent to the server, which in turn sends back
the data to Morg .

376 Z. Huang et al.

Algorithm kNNSearch(pos)
Input: pos is the query originator’s current position
Output: k nearest neighbors
1. dbnd = max ;
2. decide the grid cell Corg within which pos lies;
3. if (Corg is not an empty cell)
4. if (Corg in storage)
5. search Corg and adjust dbnd;
6. else
7. if (Corg in routing table)
8. send request for Corg to peer;
9. else
10. send request for Corg to server;
11. search Corg and adjust dbnd upon receiving;
12. while (TRUE)
13. decide the next cellssrd w.r.t pos and dbnd;
14. if (cellssrd == Ø) break;
15. for each cell cell i in cellssrd

16. if (cell i in storage)
17. search cell i and adjust dbnd;
18. remove cell i from cellssrd;
19. if (cellssrd �= Ø)
20. cellsrt = cells in cellssrd and routing table;
21. send requests for cells in cellsrt to peers;
22. send request for cells in cellssrd \ cellsrt to server;
23. search cellssrd and adjust dbnd upon receipt;

Fig. 5. kNN Search Framework

5.2 kNN Queries

A kNN query Qk issued on mobile device Morg is represented by 〈pos, k〉, where pos
is Mi’s current location and k is the number of nearest neighbors required.

Processing a kNN query Qk is relatively complicated compared to a range query, as
we cannot directly determine C(Qk), the set of grid cells intersected by Qk. We conduct
the kNN search by starting from the cell Corg where Morg is, then spiral through all
surrounding cells from inner to outer. A search bound dbnd is maintained during the
procedure, which is the distance between the pos and the k-th nearest neighbor or max
if less than k neighbors have been found thus far. At each step, we first decide the set
of cells cellssrd on a surrounding circle that need to be searched. Two kinds of cells
are excluded from cellssrd: empty cells indicated by the grid string and those cells
outside the search bound. For cellssrd, we first search the cells in local storage; then,
for those ones not stored, we send requests to peers if they appear in the routing table, or
otherwise to the server. The cells are searched as they are received. The loop terminates
when we obtain nothing for the next cellssrd. The framework of kNN search on the
query originator side is shown in Figure 5.

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 377

5.3 Updates

Updates to the data on the server can affect the grid cells in three different ways. First, an
empty cell may become non-empty due to one or more data points being inserted. Second,
a non-empty grid cell may become empty because all of its points are deleted. Third, the
number of data points in a non-empty cell increases or decreases but remains non-zero,
or point attributes change. This is the most likely scenario of the three in real life.

We use a two-tuple 〈idx ,flag〉 to represent an update, where idx refers to the grid cell
of the object being updated, and flag indicates which of the above three types of updates
it is (numbered I, II, and III, respectively). The server (or its administrator) is respon-
sible for modify the server-side data and index when an update happens. After that, the
server notifies the clients of the update by simply broadcasting the two-tuples to them.

Each client Mi processes an incoming update as detailed in Figure 6. If Mi has
an ongoing query q whose result so far is invalidated by the update, the query q is
discontinued. If the update is of type I or II, Mi needs to invert the corresponding bit in
the grid string. If the grid cell Cidx involved in the update resides in storage, Mi evicts
it from the storage. Otherwise, if the cell Cidx has a routing entry in the routing table,
it is removed from the table.

Algorithm update(idx ,flag)
Input: idx is the index of the grid cell updated

flag is the update type
1. if (query q is ongoing and q’s result so far covers Cidx)
2. abandon query q;
3. if (flag is I or II)
4. invert Cidx ’s bit in the local grid string;
5. if (Cidx in storage)
6. evict Cidx from storage;
7. else if (Cidx in routing table)
8. remove Cidx ’s entry from routing table;

Fig. 6. Update Processing on A Device

Our proposal is able to efficiently handle updates because the compact yet infor-
mative collaborative indexing scheme works successfully between the server and the
clients.

In the experimental evaluation (see Section 6), we assume that updates happen at
random across both space and time. We vary the update ratio, the ratio of the number
of point updates during the experiment period to the total number of points used in the
experiment, to see its impact on the performance of our proposal.

5.4 Effects of Grid Configuration and Δt

As a grid cell is the basic unit in our storage and sharing scheme, its size has important
impact on system performance. If a cell is too large, which indicates it probably contains

378 Z. Huang et al.

M1 M2

(a) 6 × 6 grid

M1 M2

(b) 3 × 3 grid

Fig. 7. Effects of Grid Cell Size and Δt

more data points, it will require too much storage space while actually most of data
points within may not be used by the mobile device storing it. In contrast, if a cell is too
small, new requests may become frequent, and query performance will deteriorate. The
cell size also affects the probability estimation in Section 4.3 because the Manhattan
distance in Formula 1 is relevant to the size of cell Cj .

See the example in Figure 7. The whole region of interest is partitioned using two
different grids, a 6 × 6 grid and a 3× 3 grid. Assume the existence of two devices M1

and M2, whose current positions are represented as dots. The vector attached to each
device indicates its movement, and its length indicates how far the device moves during
Δt. Thus, M1 moves faster than M2 here. In the 6× 6 grid, M1 will need 3 cells within
Δt, all of which are shaded in the figure. Though in the 3 × 3 grid, M1 will only need
two cells, the number of data points to be stored is considerably increased unless many
empty cells are involved. This contrasts the situation of M2 who does not need to store
new cells in the 3× 3 grid, at the cost of storing a large cell already.

Next, parameter Δt determines how far we will look into the future when estimat-
ing the probabilities for a cell to be reused. It also affects how many grid cells will be
involved. Refer to Figure 7(a) and let M1 and M2 have the same velocity, but M1 have
a larger Δt than M2 (note now a vector length indicates the Δt value). Consequently,
M1 needs to consider three cells while M2 can do with two. Because different mo-
bile devices can have different resources, computing capacities, and even movements,
each mobile device should hold its own Δt when it computes the probabilities during
storage replacement. Furthermore, a mobile device can use different Δt’s to estimate
probabilities at different times.

6 Experimental Evaluation

6.1 Experimental Settings

We implement our proposals using JiST-SWANS [1], a Java-based MANET simulator.
We use a dataset named NE [2] of 123,593 points in float that represent metropolitan
area postal addresses. We transform the dataset into the data space of [1000 × 1000].
For each point we generate at random four attribute values in integer. We consider four
main performance aspects: (1) the overall response time; (2) the local/peer storage hit
rate; (3) the local/peer storage use rate; (4) the number of messages used to forward

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 379

routes/queries between mobile devices. We investigate how these aspects are affected
by different storage sizes, grid configurations, mobile network scales, update ratios,
and Δt settings. The simulation experiments are conducted on an IBM x255 server
running Linux with four Intel Xeon MP 3.0GHz/400MHz processors and 18G DDR
main memory.

Table 1 lists the parameters used in the simulation. The settings in bold are the de-
faults, used when their corresponding parameters are not varied. Initially, all data are
stored in the simulated server, and no device stores any data in local storage. For a
two-hour simulation period, every mobile device issues 10 to 100 queries whose type,
range or kNN, are determined randomly. For a range query, the ratio of its radius to
a grid cell’s side length is randomly picked among 0.1, 0.2, . . . , 1. For a kNN query,
k is chosen at random from 1 to 5. We vary the number of mobile devices from 50 to
100, which yields a moderate-scale MANET [4]. All devices move within the spatial
domain according to the random waypoint mobility model [6]. We set the maximum
hops to forward a routing message to 3. This value, which was chosen experimentally,
yields good cache effects, but does not incur high additional costs.

Table 1. Parameters Used in Simulation

Parameter Setting

Grid configuration 50×50, 60×60, . . ., 100×100
Number of mobile devices 50, 60, . . . , 100
Storage slot size 32 (data points)
Storage slot count 50, 60, . . . , 100
Δt 50s, 100s, . . . , 300s

Data update ratio (%) 0, 10, . . . , 60
Speed range 0.1unit/s–1unit/s
Max hops to forward routes 3
Holding time 60s
Wireless routing protocol AODV

6.2 Response Time

The response time is defined as the elapsed simulation time from the moment that a
query is issued at a mobile device Morg to the moment that Morg gets all answers. In the
simulation, we set the mobile P2P channel bandwidth to 11Mbps (IEEE 802.11b), and
the wireless C/S channel bandwidth to 384Kbps, which is what 3G wireless networks
are expected to offer for mobility at pedestrian speed [4]. We compare three different
strategies: no local storage, local storage only, and collaborative sharing. The average
simulation results are shown in Figure 8. If no device storage is used at all, the response
time is the longest. We also see that collaborative data sharing shortens the response
significantly. This is because collaborative data sharing uses the faster wireless P2P
channels rather than the slow wireless C/S channel.

Figure 8(a) shows that an increase in storage space favors collaborative sharing over
the local storage strategy. This is because the extra space retains more data requested

380 Z. Huang et al.

1000

800

600

400

200

1009080706050

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Storage slot count

No local storage
Local storage only

Collaborative sharing

(a) Storage size

600

500

400

300

200

100

100x10090x9080x8070x7060x6050x50

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Grid configuration

No local storage
Local storage only

Collaborative sharing

(b) Grid cell size

1000

800

600

400

200

1009080706050

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Mobile device number

No local storage
Local storage only

Collaborative sharing

(c) Mobile scale

6000

5000

4000

3000

2000

1000

605040302010

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Update ratio (%)

No local storage
Local storage only

Collaborative sharing

(d) Update ratio

Fig. 8. Response Time in MANET Simulation

100

80

60

40

20

1009080706050

H
it

ra
te

 (
%

)

Storage slot count

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU

Local hit rate - LRU

(a) Storage size

100

80

60

40

20

100x10090x9080x8070x7060x6050x50

H
it

ra
te

 (
%

)

Grid configuration

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(b) Grid cell size

100

80

60

40

20

1009080706050

H
it

ra
te

 (
%

)

Mobile device number

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(c) Mobile scale

100

80

60

40

20

605040302010

H
it

ra
te

 (
%

)

Update ratio (%)

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(d) Update ratio

Fig. 9. Storage Hit Rate in MANET Simulation

by peers via collaborative sharing. All strategies benefit from small grid cells, as shown
in Figure 8(b), because in our cell-based scheme, a smaller cell contains less data and
needs less time for transmission between devices or between devices and the server. As
the number of devices increases, the response time of the collaborative sharing strategy
decreases slightly, as shown in Figure 8(c). Increased mobility provides a higher col-
laborative sharing capacity, which, however, is countered by additional costs, including
query and result forwarding via multiple hops. Compared to the aforementioned re-
sults, all strategies degrade in the presence of updates, as shown in Figure 8(d). This is
so because updates may delay, if not invalidate, ongoing queries and evict data in local
storage. Nevertheless our collaborative sharing strategy still performs the best, since
inter-device sharing remains effective.

6.3 Storage Hit Ratios

A storage hit occurs when a desired grid cell is found without it having to be retrieved
from the server. We distinguish between two types of storage hits: hits in the local
storage of a device and hits in the storage of peers. For each device, we use the local
hit ratio to represent the percentage of requested grid cells found in its local storage,
and we use the peer hit ratio for the percentage found in peer storage. In the simula-
tion, we compare our probability-based storage replacement policy with the traditional
LRU policy. Our policy outperforms the LRU policy for almost all settings used in the
experiments, as shown by the results reported in Figure 9. Our proposal predicts the
near-future movement of a device and uses this for computing probabilities when it
makes replacement decisions. In contrast, the LRU policy treats all grid cells from a
static point of view.

Referring to Figure 9(a), it is as expected that increased storage yields a higher hit
ratio, as more data can be stored on the devices. Figure 9(b) shows that a coarser grid

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 381

100

80

60

40

20

1009080706050

U
se

 r
at

e
(%

)

Storage slot count

Local use rate
Peer use rate

(a) Storage size

100

80

60

40

20

100x10090x9080x8070x7060x6050x50

U
se

 r
at

e
(%

)

Grid cell size

Local use rate
Peer use rate

(b) Grid cell size

100

80

60

40

20

1009080706050

U
se

 r
at

e
(%

)

Mobile device number

Local use rate
Peer use rate

(c) Mobile scale

100

80

60

40

20

605040302010

U
se

 r
at

e
(%

)

Update ratio (%)

Local use rate
Peer use rate

(d) Update ratio

Fig. 10. Storage Use Rate in MANET Simulation

400

300

200

100

1009080706050

M
es

sa
ge

 c
ou

nt

Storage slot count

Routing message
Query message

(a) Storage size

400

300

200

100

100x10090x9080x8070x7060x6050x50

M
es

sa
ge

 c
ou

nt

Grid configuration

Routing message
Query message

(b) Grid cell size

600

500

400

300

200

100

1009080706050

M
es

sa
ge

 c
ou

nt

Mobile device number

Routing message
Query message

(c) Mobile scale

200

100

605040302010

M
es

sa
ge

 c
ou

nt

Update ratio (%)

Routing message
Query message

(d) Update ratio

Fig. 11. Message Count in MANET Simulation

incurs a higher local hit ratio, but a lower peer hit ratio. Larger grid cells means that
a bigger spatial region is stored on a device; hence, the device’s future queries can
find more data points locally, as queries on the same device exhibit locality. On the
other hand, as adjacent devices are more likely to issue overlapping spatial queries than
identical ones, they do not benefit from the larger grid cells and bigger spatial regions
stored on the peers.

Nevertheless, larger grid cells imply the transfer of more data and may lead to longer
response times, which is shown in Figure 8(b). According to the experiment covered by
Figure 9(c), the peer hit ratio roughly grows proportionally with the number of device—
with more devices, there is more storage for collaborative sharing, and hence more data
can be obtained from peers instead of from the server. Referring to Figure 9(d), when
updates are allowed both policies achieve lower hit ratios, but our proposal remains best
for almost all cases. Updates tend to invalidate data in local storage, thus reducing the
hit ratios. Our collaborative data sharing scheme is able to offset this effect to some
degree.

We also consider the effect on the storage hit ratio by parameter Δt used in the
probability-based replacement. The experimental results reported in Figure 12(a) indi-
cate that Δt should be neither too short nor too long to ensure a high storage hit ratio.

6.4 Storage Use Ratios

It is also of interest to know how much of a device’s data is actually used in query pro-
cessing. As for the hit ratios, we distinguish between the local use ratio, the percentage
of the stored grid cells used by local queries, and the peer use ratio, the percentage
used by peer queries. Simulation results are reported in Figure 10. In addition, we study
the effect of parameter Δt used in our probability based replacement policy on the
storage use ratio, as reported in Figure 12(b). Most results here are in line with their

382 Z. Huang et al.

100

80

60

40

20

30025020015010050

H
it

ra
te

 (
%

)

Δt

Peer hit rate
Local hit rate

(a) HR vs. Δt

100

80

60

40

20

30025020015010050

U
se

 r
at

e
(%

)

Δt

Local use rate
Peer use rate

(b) UR vs. Δt

Fig. 12. Effect of Δt

15

10

5

605040302010

T
hr

ou
gh

pu
t (

/s
ec

)

Update ratio (%)

Without updates
With updates

(a) Throughput

20

15

10

5

605040302010

A
cc

ur
ac

y
lo

ss
 r

at
io

 (
%

)

Update ratio (%)

(b) Accuracy loss

Fig. 13. Query Throughput and Accuracy

counterparts as reported in Section 6.3 on the storage hit ratios. Similar reasons as for
the previous batch apply to these findings.

6.5 Message Counts

We also explore the wireless P2P message consumption of our method, distinguishing
between two kinds of messages: routing messages and query messages. The former
are used to disseminate routing table entries between peers, while the latter are used
when forwarding queries and relevant grid cell data in the MANET. Average simulation
results are reported in Figure 11. For the four sets of experiments covered, the query
message cost is consistently very small compared to the routing message cost. However,
the two are related: it is the extra routing messages that bring about the small number
of query messages and fast retrieval of data for any device issuing queries. The extra
routing messages pay off as they are utilized and amortized across the queries issued
by multiple mobile devices. This study indicates that our query processing based on
collaborative data sharing is efficient and robust.

From Figure 11(a), we see that the routing message cost of our proposal is insensitive
to storage size variations. In contrast, the routing message cost exhibits an increasing
trend as the grid becomes finer, as shown in Figure 11(b). Our storage and sharing
mechanism uses grid cells as the basic units, the number of which increases as the grid
granularity becomes finer. As a result, the increased numbers of grid cells involved in
the storage and sharing produce more routing messages between the mobile devices.
Figure 11(c) shows that the routing message cost increases almost linearly with the
number of mobile devices, which demonstrates the scalability of our method. As shown
in Figure 11(d), the message cost decreases as the update ratio increases. As updates
tend to cause less data to be shared among peers, and as evictions due to updates do not
invoke routing messages (all peers remove the relevant routing entries), the numbers
of routing messages decrease. As less data are retrieved from peers, inter-device query
messages decrease, too.

6.6 Throughput and Accuracy Under Updates

In this batch, we do not limit the number of queries each mobile device can issue and
stick to range queries only because their search ranges can be exactly determined for
accuracy concerns. We then examine the impact of updates on the system wide query
throughput, the number of queries successfully answered per second in the simulation,
and the accuracy loss ratio, the ratio of cells invalidated by co-occurring updates for an

Collaborative Spatial Data Sharing Among Mobile Lightweight Devices 383

abandoned query. Figure 13(a) shows that the presence of updates reduces the through-
put compared to the cases without updates. This is so, as updates not only invalidate
queries, but also consume resources that otherwise could be used by queries. As seen in
Figure 13(b), the accuracy loss ratio increases as more updates occur, but stays below
15%. These results indicate that our proposal is robust and reliable under updates.

7 Conclusion

Assuming a hybrid mobile environment within which mobile devices can communicate
wirelessly with not only an application server via a slow channel, but also with peer
devices via fast P2P channels, this paper proposes a collaborative and predictive data
sharing scheme that exploits the P2P capabilities of mobile devices.

Based on a uniform grid, we maintain a simple yet efficient collaborative indexing
structure on the server and each mobile device within the server’s coverage. Each de-
vice is able to issue spatial queries, and the devices request, store, and share data in
units of grid cells. In contrast to the traditional C/S mobile computing, this collabora-
tive sharing scheme exploits the high P2P bandwidth, thus shortening query response
time significantly. Special routing tables are used to direct request forwarding among
peers. A predictive cost model is proposed for storage replacement and routing table
maintenance on resource-limited devices. This model takes into account the predicted
movement of each device when assigning to its grid cells probabilities that they are to
be reused by future queries. Extensive experiments conducted on a MANET simulator,
elicit design properties of our proposals, indicating that they are efficient in answering
queries and robust to data updates.

Acknowledgments

The work of Zhiyong Huang, Hua Lu and Beng Chin Ooi was in part funded by
A*STAR under grant no. 032 101 0026. Christian S. Jensen is also an adjunct profes-
sor at Agder University College, Norway. His work was funded in part by the Danish
Research Agency’s Programme Commission on Nanoscience, Biotechnology, and IT.

References

1. JiST/SWANS, http://jist.ece.cornell.edu
2. The R-tree Portal, http://www.rtreeportal.org
3. Barbará, D., Imielinski, T.: Sleepers and workaholics: Caching strategies in mobile environ-

ments. In: Proc. SIGMOD, pp. 1–12 (1994)
4. Basagni, S., Conti, M., Giordano, S., Stojmenovic, I (eds.): Mobile Ad Hoc Networking.

Wiley-IEEE Press, New Jersey (2004)
5. Brilingaitė, A., Jensen, C.S.: Enabling routes of road network constrained movements as

mobile service context. GeoInformatica 11(1), 55–102 (2007)
6. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.-C., Jetcheva, J.: A performance comparison

of multi-hop wireless ad hoc network routing protocols. In: Proc. MOBICOM, pp. 85–97
(1998)

http://jist.ece.cornell.edu
http://www.rtreeportal.org

384 Z. Huang et al.

7. Budiarto, S.N., Tsukamoto, M.: Data management issues in mobile and peer-to-peer envi-
ronments. Data Knowl. Eng. 41(2-3), 183–204 (2002)

8. Chow, C.-Y., Leong, H.V., Chan, A.T.S.: GroCoca: Group-based peer-to-peer cooperative
caching in mobile environment. IEEE Journal on Selected Areas in Communications 25(1),
179–191 (2007)

9. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic data caching and
replacement. In: Proc. VLDB, pp. 330–341 (1996)

10. Hara, T.: Cooperative caching by mobile clients in push-based information systems. In: Proc.
CIKM, pp. 186–193 (2002)

11. Hu, H., Wong, W.S., Lee, D.L., Zheng, B., Xu, J.: Proactive caching for spatial queries in
mobile environments. In: Proc. ICDE, pp. 403–414 (2005)

12. Kortuem, G., Schneider, J., Preuitt, D., Thompson, T.G.C., Fickas, S., Segall, Z.: When peer-
to-peer comes face-to-face: Collaborative peer-to-peer computing in mobile ad hoc networks.
In: Proc. P2P Computing, pp. 75–91 (2001)

13. Ku, W.-S., Zimmermann, R., Wan, C.-N.: Location-based spatial queries with data sharing in
mobile environments. In: Report, USC-CS-TR05-843, Univ. of Southern California (2005)

14. Lee, K., Lee, W.-C., Zheng, B., Xu, J.: Caching Complementary Space for Location-Based
Services. In: Proc. EDBT, pp. 1020–1038 (2006)

15. Liu, B., Lee, W.-C., Lee, D.L.: Distributed caching of multi-dimensional data in mobile en-
vironments. In: Proc. MDM, pp. 229–233 (2005)

16. Luo, H., Ramjee, R., Sinha, P., Li, L.E., Lu, S.: UCAN: A unified cellular and ad-hoc net-
work architecture. In: Proc. MOBICOM, pp. 353–367 (2003)

17. Lindemann, C., Waldhorst, O.P.: A distributed search service for peer-to-peer file sharing in
mobile applications. In: Proc. P2P Computing, pp. 73–80 (2002)

18. Nievergelt, J., Hinterberger, H.: The grid file: an adaptable, symmetric multikey file structure.
ACM TODS 9(1), 38–71 (1984)

19. Ren, Q., Dunham, M.H.: Using clustering for effective management of a semantic cache in
mobile computing. In: Proc. MobiDE, pp. 94–101 (1999)

20. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of contin-
uously moving objects. In: Proc. SIGMOD, pp. 331–342 (2000)

21. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with
unknown motion patterns. In: Proc. SIGMOD, pp. 611–622 (2004)

22. Xu, B., Wolfson, O.: Data management in mobile peer-to-peer networks. In: Proc. DBISP2P,
pp. 1–15 (2004)

23. Yin, L., Cao, G.: Supporting cooperative caching in ad hoc networks. In: Proc. INFOCOM
(2004)

24. Zheng, B., Lee, D.L.: Semantic caching in location-dependent query processing. In: Jensen,
C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp.
97–116. Springer, Heidelberg (2001)

A Study for the Parameters of a Distributed Framework
That Handles Spatial Areas�

Verena Kantere and Timos Sellis

School of Electr. and Comp. Engineering, National Technical University of Athens
{vkante,timos}@dbnet.ece.ntua.gr

Abstract. In this work we study the construction of a framework for autonomous
sites that are bound to spatial information and that form an overlay network; we
investigate the parameters of such a distributed system in order to perform search
guided by locality and directionality in space. We present the main parameters
of the framework and propose appropriate values for them. A theoretical study
discusses the overall search efficiency limits for two approaches concerning the
main framework parameter, i.e. the distance metric. Furthermore, the behavior
of the rest of the framework parameters is examined based on an experimental
study.

1 Introduction

In this work we are interested in creating a framework that is inherently distributed
and operates in space or handles spatial data. Our basic assumption is that there are
autonomous sites that each is ’bound’ to a specific spatial area. This can be interpreted
in two ways:

– each site handles the information for a specific spatial area
– each site resides on a specific spatial area

We assume that the autonomous sites form an overlay network by having links among
each other. Thus, each site, hereafter node, of the overlay can route search processes
targeting other nodes that either reside on a specific area, or handle information about
a specific area. In that sense we consider a distributed system related to spatial infor-
mation that operates based on the features of spatial areas. Accordingly, these spatial
areas ‘exist’ in the system either by being handled or by being the reference point of a
network node. In the following we will address the described distributed system with-
out specializing to any of the two interpretations. Therefore, we will talk about spatial
areas that exist in the system, without determining if they exist as reference points or
handled information of network nodes.

� This work has been funded by the project PENED 2003. The project is cofinanced 75% of
public expenditure through EC - European Social Fund, 25% of public expenditure through
Ministry of Development - General Secretariat of Research and Technology and through pri-
vate sector, under measure 8.3 of OPERATIONAL PROGRAMME “COMPETITIVENESS”
in the 3rd Community Support Programme.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 385–402, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 V. Kantere and T. Sellis

The considered space on which such a system can operate can be either continu-
ous or discrete. For the second case, we assume that space is represented using a 2-
dimensional grid. For simplicity, in this work we assume that each spatial area is iden-
tified by the x, y coordinates of the center of it. Thus, we do not consider any influence
of the size or the shape of the area - this is future work. In the following, again for sim-
plicity we consider rectangular areas of the same size, that in case of a grid-partitioned
space, coincide with the grid cells.

In such a distributed system our major interest is the performance of search opera-
tions for spatial areas. We assume that the only information available is the area ids,
(i.e. coordinates). Thus, search for an area has to be performed guided by locality and
directionality. A search process for a specific area has to be routed towards this area
following a network path. In order to reach the target area the search process has to be
propagated to areas that are close (locality) to the target area, and of course, towards the
same direction (directionality) to the taget area. We define two major requirements:

– a search operation for any spatial area originating from any spatial area can be
performed: this means that a search routing path for target area T will eventually
reach T , if this exists in the system, no matter which is the source area S on which
the search process originates.

– any search operation must be guaranteed to be performed efficiently: this means
that any search routing path has to be very short (in terms of number of routing
hops) compared to the total number of existing areas in the system. Later on we
will make this requirement more specific.

Given the above assumptions and requirements, our goal is to investigate the parame-
ters that constitute a framework that can realize the described system. It is obvious that,
the search guarantees that we require, rely inherently in the way that spatial areas in the
system are connected, i.e. in the links that each spatial area maintains to other areas.

Such a framework may have various real applications. One such application can be
a distributed system of nodes following the peer-to-peer paradigm, that handles spatial
information. Another representative application may be a distributed network of sensors
that reside in space, or ad hoc networks that aim to peer-to-peer cooperation. Finally,
the considered framework is applicable to stable wireless or even adaptable to mobile
networks.

In Section 2 the necessary links between spatial areas are defined based on a dis-
cussion about locality and proximity of areas. In Section 3 we discuss the performance
of search using the necessary area links. In Section 4 we discuss the addition of more
area links that can expedite the search process and we perform an experimental study.
Finally, Section 5 discusses related work and Section 6 concludes the paper.

2 Linking Spatial Areas

In order to be able to perform searches for any area from any other area, each area
should be linked with one or more other areas. As discussed in Section 1, we assume
that search is routed according to locality and directionality. This means that search is
propagated to the area that is closer to and towards the same direction with the sought

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 387

area, choosing from the available areas that are linked to the one on which the search is
currently operating. Thus, it is very important for the framework to provide area links
to each area, that guarantee the correct routing of any search operation.

Since we consider the 2-dimensional space, there are at most 4 vertical to each other
directions towards which a search can be routed, and, thus, towards which an area
should have links to other areas. Let us assume that space is addressed with the or-
thonormal set of axes O = {x′x, y′y}. Then, with reference to a specific area O, there
are four semi-axes that determine four vertical directions DO = {Ox′, Ox, Oy′, Oy}.
Of course we can rotate the orthonormal axes and produce new equivalent sets of verti-
cal directions. It is straightforward that, for the continuous space, rotating the orthonor-
mal axes, does not make any difference. Yet, for a grid-partitioned space the rotation of
the axes may influence the search process. It is out of the scope of this work to examine
the behavior of search for rotated sets of axes with respect to a grid-based partitioning
of space.

TheO set of axes with reference to area O, produces four quadrants that originate at
O. As proved in [7], each area O should have exactly four links (if these are available),
one inside each one of the set of four quadrants that are defined with respect toO. These
four links are called successors of O and are necessary in order for O to perform search
for any other area in the system, according to locality and directionality1.

2.1 Defining Locality of Areas

Up until this point we have talked about locality of areas without specifying how the
closeness of areas is defined. Yet, this definition is of vital importance since the essence
of the framework is concentrated on the notion of locality. Locality has to be defined
based on a metric that determines the distance between two areas. It is straightforward
to consider the Euclidean distance metric, hereafter E, as our first option, since it mea-
sures the real spatial distance between two points. The E distance between two areas
A1(x1, y1), A2(x2, y2) is defined as:

E(A1, A2) =
√

(x1 − x2)2 + (y1 − y2)2 (1)

Furthermore we consider the D distance between two areas A1(x1, y1), A2(x2, y2) that
is defined as:

D(A1, A2) = (d1(A1, A2), d2(A1, A2)) (2)

where:

d1 = max{|x1 − x2|, |y1 − y2|} (3)

d2 = min{|x1 − x2|, |y1 − y2|} (4)

In the above definition we add that d1 has priority over d2; thus, the D distance is
a metric (see [7]). The reason we consider D is because it defines square equidistant

1 Note, that even though two links per area are necessary in order to keep the overlay connected,
these are not enough in order to perform search by locality and directionality. Intuitively, since
there are four vertical directions with respect to O, there is a need for one link in each direction,
in order to propagate a search process towards any other area in space.

388 V. Kantere and T. Sellis

frontiers instead of circular. The effect of D is to consider that areas are equally distant
from an area of reference if we have to access the same minimum number of areas
in order to reach them. This is more apparent if we consider a grid-partitioned space:
Actually, the D(A1, A2) represents the notion of how many areas apart are the two areas
A1, A2 if we travel on a straight line, combined with a weight related to their real spatial
distance. This is very useful in the discussed framework since it considers traveling (i.e.
searching) ‘hopping’ from area to area based on locality and directionality.

The D distance encapsulates both the Euclidean and the Manhattan distance. If E
and Mn denote the Euclidean and the Manhattan distance of A1 and A2 respectively,
we have E =

√
d2
1(A1, A2) + d2

2(A1, A2) and Mn = d1(A1, A2) + d2(A1, A2).
A distance metric should have properties that enable or amend application-specific

operations. Concerning a distributed environment related to spatial information in the
two ways described in Section 1, a good property of a distance metric used to define
locality is to be representative of the search path lengths. Specifically, the following
proposition holds:

Proposition 1 (Desired Distance Property). It is desirable that for a distance metric
M the distance value M(A1, A2) for two areas A1 and A2 that exist in the overlay is
representative of the search path length between A1 and A2.

The above property is useful in many situations that can occur in the investigated frame-
work. First of all, in case of networks that consist of autonomous nodes this property
allows them to take correct decisions about the area they prefer to reside or to han-
dle (depending on the application, see Section 1). For example, if a joining node is
interested in an area A that covers several areas A = {A′ ⊂ A} on which it can re-
side/handle, then this node can pick an area A′ ∈ A and be sure that it is close enough,
(using the employed distance metric), to the rest of the areas A − {A′}. Moreover, a
network node that is interested in areas that are far from the area that it handles/resides
in, can keep links to remote nodes that are close to these areas (for more details on re-
mote links see Section 4). If the distance metric does not indicate the search path length,
then the node may keep links to nodes that do not serve its needs well. Finally, links to
specific remote nodes may expedite searches for specific areas.

2.2 Defining Proximity of Areas

Locality is the basic notion of our framework, since it is necessary in order to do the
following: (a) define the successors of the areas, (b) search for an area. However lo-
cality is not enough: since space is symmetric2, the equidistant frontiers determined by
the distance metrics E and D define more than one equidistant areas with respect to an
area of reference. Thus, the distance metric defines a partial ordering of all the areas
with respect to the reference area. Yet, it is necessary to refine this partial ordering into
a total one, in order to be able to determine successors and search routing hops in all
cases. Therefore we define the notion of proximity of areas, that is an ordered list of
criteria that produce a total ordering of areas with respect to a reference area.

2 Obviously, continuous space is symmetric along infinite axes and a grid-partitioned space is
symmetric along the axes of O and the diagonals of the quadrants that the latter define.

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 389

Definition 1. Assume a reference area A and another area A′. There are four quad-
rants that are determined by the set of axes O. The proximity of A′ to A is determined
according to the following criteria, in the specified order:

– P1 the distance of A, A′ measured with some distance metric, for example, E or
D.

– P2 priority of quadrants (see below)
– P3 priority of coordinate values:
• P3a priority of x values
• P3b priority of y values

The above definition ensures that whatever distance metric is used, the partial orderings
introduced by the distance metric can be sorted out with the rest of the criteria. The
priority of quadrants is determined according to a pre-specified global priority order of
quadrants, (for example 1st < 2nd < 3rd < 4th where the quadrants are numbered in
a clockwise order). In each quadrant there may be many areas that are equally distant
from the reference area A. Thus, it is necessary to distinguish among them using the P3
criterion, which orders equidistant areas according to the x and y values3 (for example
areas for areas A1, A2 with the same x coordinate A1 has priority over A2 if A1.y <
A2.y). Note that not all the criteria are or have to be applicable for any distance metric
that can be defined/used in the framework. Yet, the above is a complete set of criteria
that can solve and partial ordering ambiguities in any case.

3 Search by Proximity

The definition of proximity on top of locality in the previous section enables linking and
search of areas in the framework. Focusing on the search process, if we perform search
by proximity in the addressed space, the search will eventually converge to the target
area. However, it is very important to note, that this is guaranteed only if the proximity
criteria are fulfilled in the pre-defined order. This means that in order for search to
decide about the next routing hop based on a specific proximity criterion, there has to
be a tie for all the criteria ahead in the defined hierarchy. For example, suppose that
search about a target area T is routed to area A′ instead of A according to priority of y
values (criterion P3b). Then, this means that there is a tie for criteria P1, P2, P3a for
areas A and A′ with respect to the area T . We say that a proximity criterion is fulfilled
if there is a tie for it.

Proposition 2. If the proximity criteria are fulfilled in the specified global order of
definition 1, then a search process for any target area originating on any source area
will eventually converge to the target area.

Therefore it is important to examine if the priority criteria are always fulfilled in the
specified order for the considered distance metrics, E and D. Furthermore, in order for

3 Of course, it is possible to switch the order of criteria P3a and P3b. Moreover, even though
the proposed definition of proximity is artificial, it can be shown that the proposed criteria and
their respective hierarchy leads to an even linkage of areas in the overlay.

390 V. Kantere and T. Sellis

search by proximity to guarantee the convergence to the target area, it is necessary to
be propagated always to an area that is closer or equally close to the target in terms of
locality than the previous one. If this is not possible then the search path may diverge,
in terms of locality, from the target area. Let us examine the case on this matter for
the considered distance metrics, E and D. For this purpose, we consider an example.
Assume that the search about area A0 is iterated on area An, n > 2. Then An has to
propagate the search process to the successor of it that is equally close or closest than it-
self to area A0. It is straightforward that the successors which can be considered for the
propagation are the two successors that are on the same semi-plane as A0 with reference
to An. However, is this always possible? If not, can this search path converge to A0?

3.1 Search by Proximity Using the E Distance Metric

Figure 1 shows the situation of the example where distance E is used for the definition
of locality. It is obvious that both the successors of An that are on the same side as A0

can be farther away from A0 than An itself. Since there is no equality with respect to the
E values of the two successors, we cannot proceed based on the rest of the proximity
criteria. Yet, since search is guided by locality first of all, it is rational to choose to
propagate the search process to the successor that is closest to A0 from the two of them.
Assume that the closer successor is An−1. Now An−1 has to repeat the procedure and
propagate the search process to its own successor that is closest to A0. Assume that this
is An−2. It is obvious that An−2 can be farther away than An−1 from A0. Therefore,
this situation may occur on several consecutive nodes of the search path when locality
is defined using E. Thus, the proximity search may be driven away instead of closer to
the target area.

Yet, will the search process converge eventually to the target area, or is it possible
to diverge forever? First, note that each node Ai on which the search is propagated
has to be closer vertically or horizontally (depending on which part of space, with re-
spect to Ai, A0 resides). More formally, the distance of areas Ai, A0 on the x′x axis is
decreasing (in the specific example) as the search is executed recursively. Additionally,
the line that passes through the points of intersection of the circles around Ai, A0 with
radiuses EAi = E0 = |AiA0| constantly diverges from the y′y axis, as it is shown in
Figure 2. This happens because Ai has to have a bigger value on the coordinate that is
vertical to d1 as i increases, since Ai has to reside out of the Ai−1c arc. Thus, the space
abc of circle (Ai, EAi) in which Ai should have a successor (in order for search to
diverge from A0) decreases as i increases (i.e. at each hop of the search process). More-
over, the space abc decreases even faster as i increases because the circles (Ai, EAi),
(A0, EA0) enlarge, meaning that eventually the points a,b and c ’fall’ onto each other.
Hence, we can conclude that the search process can diverge to nodes far from the target
area but up to a point with respect to their distance from the latter.

It is easy to see that the bigger the difference of distances E(Ai, A0) and
E(Ai−1, A0), the fewer the nodes Ai of divergence are, meaning the smaller i is. It is
obvious that, if the considered areas are defined on continuous space, lim(E(Ai−1, A0)
− E(Ai, A0))→ 0⇒ i→∞.

Beyond the convergence of search to the target area, we would like to investigate if
the good metric property 1 holds for E. It can be proved that:

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 391

An
A0

An-1

An-2

EAn

EAn-1>EAn

EAn-2>
EAn-1

d1n

d1n-1<d1n

d1n-2<d1n-1

Fig. 1. A search process targeting area A0 and
iterated on area Ai can diverge to areas that are
farther away than Ai, if there is space where it
can have successors that are farther away than
itself from A0

Ai

A0

Li0

a b

c

d

EAi

EA0

Fig. 2. Using the E metric may result in propa-
gation of the search process for area A0 to area
An−1 for which E(A0, An−1 > E(A0, An)
and so on

Theorem 1. The distance value E(An, A0) does not give any bound for the search
path length between areas An and A0.

The proof of the above theorem is based on the fact that it is possible for search to have
to diverge in terms of locality from the target area (see [7]). The combination of the
above discussion and theorem make apparent that the E metric does not have the good
property described in Section 2.1: The distance value E(An, A0) is not representative
of the search path length between areas An and A0. Thus, the following proposition
summarizes these conclusions:

Proposition 3. Using the E distance metric may lead a search process to diverge from
the target area. However, this divergence can be extended in a limited space. Thus,
if the framework is defined on continuous space it is possible for a search process to
diverge infinitely and not reach the target. However, if space is grid-partitioned, then
even though search may diverge, it will eventually converge to the target area. Finally,
E values do not represent the search path length for any pair of areas in the overlay.

3.2 Search by Proximity Using the D Distance Metric

Figure 3 shows a situation of search of target area A0 iterating on area An. It is obvious
that if the D distance is used instead of E, there is no such area as abc in Figure 1 in
which area An could have a successor An−1 that is farther away from area A0 than
itself. The reason is that the equidistant frontiers defined by D are parallel/vertical to
the set of axes O that define the quadrants where the successors reside; therefore, the
frontier of D(An, A0) centered on An and the same frontier centered on A0 intersect
each other in a way that there is no space of the first or the second left uncovered by the
second or the first, respectively. This is obvious in Figure 3: the frontiers D(An, A0)

392 V. Kantere and T. Sellis

d1(An,A1)
d2(An,A1)

A0

d2(An,An-1)
<

d2(An,A1)

d1(An-1,An)=
d1(An,A1)

An-1

An

Fig. 3. The use of distance D instead of E
leaves no space in which area An could have a
successor An−1 that is farther away from area
A0 than itself

d1(An,A1)

d2(An,A1)<
d1(An,A1)

d2(An,An-1)=0

d1(An-1,An)=
d1(An,A1)

An-1

d1(An-1,A1)

A0

An

Fig. 4. Areas An and An−1 can reside in dif-
ferent (yet contiguous) quadrants of A0; or
An−1, and A0 can either be on the same hori-
zontal or vertical axis (not shown here)

centered on An and on A0 cover each other totally in the quadrant of An where A0

resides (and the opposite, of course). The D distance is composed of two metrics, a
basic one, d1 that defines the (coarse) equidistant d1 frontier, and a second one, d2 that
refines the distance values on the same frontier, in order to avoid too many equally dis-
tant areas on the same d1 frontier. Therefore, the successor of An in the quadrant that
A0 resides will be either closer to An (in terms of d1) or equally distant from it. Let
us suppose that the successor of An in the quadrant that A0 resides is An−1. Then,
if d1(An, An−1) < d1(An, A0), An−1 resides inside the intersection of the frontiers
D(An, A0) centered on An and A0. Hence, unlike E the distance D is totally suitable,
both for continuous and non-continuous space, for search based on locality (and there-
fore proximity) because it guarantees a tie in the primary metric d1 if the choice of
locality is decided based on d2. Further on, if the d2 distance value between An and A0

is the minimum: d2(An, A0) = 0, which means that A0 resides on a semi-axis originat-
ing on An, then it is not possible to have a An−1 successor in the same quadrant that
A0 resides, such that d1(An, An−1) = d1(An, A0).

Let us suppose that d1(An, An−1) = d1(An, A0), as in Figure 3. We would like to
know what is the maximum number of search hops that can iterate on areas Ai with
the same value d1(An, Ai). It is straightforward that in such case, the successor of An

on which the search process is propagated, An−1, and A0 can either be on the same
horizontal or vertical axis, or An and An−1 can reside in different (yet contiguous)
quadrants of A0, as shown in Figure 4 . This means that An−1 can have as a successor
the target area A0, if there are no areas Ak with d1(Ak, A0) < d1(An, A0). Therefore,
search is actually guided almost solely by locality. The following theorem holds:

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 393

Theorem 2. The distance value D(An, A0) gives an upper bound for the search path
length between areas An and A0.

The proof of the above theorem is based on the fact that the D distance guarantees
continuous convergence of any search towards the target area (see [7]). The following
proposition summarizes these conclusions:

Proposition 4. The D metric enables search that is always guided by proximity. Search
not only converges to areas that are closer to the target, but it is guided only by the
metric d1, since there can be up to two hops with the same d1 value. Finally, the D
distance values represent the search path length for any pair of areas in the overlay.

4 Additional Links That Expedite Search

Until this point we have assumed that each area in the system has links only to the
closest areas and we have named these links the successors of the area. However, in
the considered framework areas may be provided with knowledge about areas that are
farther away than their successors. These links, that we call indexed areas, can make
search paths much shorter than if employing only the successors. As it is very common
in Distributed Hash Table techniques (for example Chord [14], CAN [11], etc.), the ef-
ficiency of the search process in such a distributed environment is derived by providing
each overlay node with knowledge of other nodes that are far away, based on a distance
metric, and the density with respect to the (data and node)id space of the known nodes
fades out with their distance from the reference node. The most widely-known DHT
techniques, augment the distance of the known nodes from the reference node with log-
arithmic steps; thus, they guarantee search paths that are O(log n) long, for an overlay
with n nodes. Inspired by these techniques, and since we intend to construct a frame-
work that is applicable in similar environments that handle spatial data, we would like to
provide the framework with a similar indexing technique, based on the locality of areas
in the system. Therefore, each area should have links to other areas, beyond its succes-
sors, that are pre-specified and that will guarantee a search path with limited length.

Towards this end we have to study the directions with reference to an area along
which indexing should be applied, as well as the influence of the distance metric to the
indexing operation.

As we have discussed earlier, searching for a target area T in our framework is per-
formed based on the proximity criteria, following the appropriate successor link on each
area on which the search process is iterated. It is straightforward that, in order to expe-
dite the search process by allowing the propagation of it to areas that are farther away
than successors, there is a necessity for index links towards each direction of each of
the four successors of an area. This means that each area should index other areas in
all the four quadrants that are defined by the set of axes used to address the space. We
remind that we have addressed space with the the pair of orthonormal axes that, in case
of a grid, are parallel to the columns and rows. We have named this set of axesO.

Indexing areas in the quadrants with reference to a specific area, can be achieved by
indexing the closest areas towards specific directions. Actually, one-dimensional DHTs
(e.g. Chord [14]) index nodes in the exact same way, except that in their case there is a

394 V. Kantere and T. Sellis

sole dimension to index. The most straightforward way to apply this requirement to a
2-dimensional space is to index the orthonormal axes that address the space. Similarly
to the DHT methods we can index with logarithmic steps the four semi-axes of O.
This means that each area A will index the areas that are the closest to points bi · λ on
each one of the four orthonormal semi-axes that originate on A. The parameter b is the
logarithmic base; following the steps of DHT techniques, we can choose b = 2. Also,
i is the parameter that augments the index step and is an integer, i.e. i = 0, 1, 2,
Finally, if we consider continuous space, we have to define a measurement unit, λ.
However, if we consider a grid-partitioned space it is natural to use the grid cell as the
measurement unit: λ = 1. For convenience we will continue this discussion assuming
that space is grid-partitioned; all results can be applied in a straightforward manner to
continuous space. Note that we use the words ‘cell’ and ‘area’ interchangeably.

Let us assume a n × n basic grid and that indexing is guided by logarithmic steps
defined as above. For simplicity we focus on the area S at the lower left corner of
the grid and the index on the horizontal right semi-axis (see Figure 5). We want to
investigate the influence of the indexing to the complexity of the search path length
towards any direction in space. Therefore we have to study which, how many and the
density of the indexed areas of area S.

It is straightforward that if the areas on the horizontal axis exist, then the ones that
should be indexed, will be indexed themselves. Specifically, S will index areas Ai =
(2i, 0), i.e. i ≤ log2 n. Figure 5 shows this situation for n = 32. Node S is the lowest
leftmost area and the (should-be-indexed but also) indexed areas are the light gray areas
on the same row. Thus, S indexes i ≤ log 32 = 5 areas. Obviously, each i− 1 indexed
area divides the total length (in terms of grid cells, but also the real length) from S to Ai

into half. It is very important to observe that due to this fact S can find any area along
the horizontal axis in log n hops, which is the actual goal of the indexing process.

Yet, what happens if the areas on the horizontal axis do not exist? S should index
other cells based on their proximity to absent areas that should be indexed. Thus, the
way that locality is defined influences in a pretty direct manner the final indexing of
areas and the result of the indexing algorithm. Let us assume that only the cells residing
on the diagonal that starts on S exist in the system. Figure 5 shows that if S uses the
distance E to define locality, it ends up indexing log 32 = 5 but very close (to each
other and to S) areas. The reason is that the equidistant frontiers defined by E indicate
that the closest existing areas are far closer to S in terms of grid cells than the areas
that should be indexed. Specifically, each area Ai = (2i, 0) that should be indexed is
closest to the area A′

i = (2i/2, 2i/2), meaning that S ends up indexing areas that have
double density in space than they were supposed to. Most importantly, the knowledge
of S about the overlay reaches a quarter of the total distance, since its most remote
indexed area is A′

log n = (2�log n/2�, 2�log n/2�) instead of Alog n = (2log n, 2log n). In

Figure 5 for n = 32, the knowledge of S about the overlay reaches up to 2�5/2� = 8
areas, whereas there are areas up to 31 grid cells away. If S uses the D metric instead of
E, the result would be the same. Both distance metrics indicate the same area residing
on the diagonal for each area of the horizontal axis that should be indexed.

The above situation leads to bad indexing of space: even though the intention of the
indexing algorithm is to guarantee to each node knowledge of other areas depending

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 395

Fig. 5. The lower left area S of a 32 × 32 grid initiates a search for the upper right area and the
overlay stores only the areas residing on the diagonal. If the E distance is used, the search process
needs two hops instead of one to be propagated to an area that is half-way to the searched area.
Thus, the total number of hops is 9 instead of 5.

on the log n value, the distribution of areas stored in the system influences the indexed
areas and cause deviation of the initial goal of the indexing algorithm. The result is that
in the worst case the search path length may be up to double the length that is intended
by the indexing algorithm. Figure 5 shows such a situation: in a 32× 32 grid the lowest
leftmost area initiates a search for the upper rightmost area and the overlay stores only
the areas residing on the diagonal. The search process needs two hops instead of one to
be propagated to an area that is half-way to the searched area. Thus, the total number
of hops is 9 instead of 5. In general, in the worst case, the total number of search hops
is 2 ∗ (log n− 1) + 1, instead of log n.

As we have seen, both the distance metrics E and D have a similar behavior in this
matter for the diagonal of the grid. Yet the two distances differentiate their behavior for
other area distributions. The angle of the diagonal with respect to the horizontal axis
is 45o; as the angle of the area distribution diminishes towards the horizontal axis, the
E distance metric behaves better than D, since it indicates as closest (to the areas that
should be indexed) areas that are closer to the 2i,i = 0, .., n− 1, columns. Oppositely,
for area distributions that follow a line with angle greater than 45o, the E metric is
worse than D in that it indexes areas farther away from the columns of the respective
areas that should be indexed.

396 V. Kantere and T. Sellis

S 1 2 4

8

1
2

4

1
2

124

Fig. 6. The indexing of the quadrant diagonals
may result in missing areas that should be in-
dexed. In the example shown there are two ar-
eas that should be indexed but do not ‘corre-
spond’ to any area on the respective quadrant
diagonals.

S

Fig. 7. The diagonals and the diameters of an
area get closer as the position of the area gets
closer to the center of the grid

4.1 Indexing Various Semi-axes

The length of each semi-axis of the area of reference is not always indicative of the
diameter of the overlay. The diameter of the overlay in each quadrant, let us call it the
quadrant diameter, is actually the line that originates on the area of reference and ends
at the outer corner of the quadrant. The diameter of the quadrant is different than the
diagonal of the quadrant, that is actually the line that originates on the area of refer-
ence and has angle 45o. As it is shown in Figure 7 the diagonals and the diameters of
an area get closer as the position of the area gets closer to the center of the grid. The
quadrant diameters are longer than the quadrant diagonal or the respective orthonormal
semi-axes. the quadrant diagonal or the respective orthonormal semi-axes, the quadrant
diameter intersects more cells than the other two semi-axes. If we choose to index the
diameters instead of the semi-axes of the quadrants, then we may achieve a better index-
ing of space, since we aim at knowledge of areas that are towards the longest straight
line in each quadrant. Note that it is not wise to index the diagonals of the quadrants
since they can actually be much shorter (in number of areas that they intersect) than the
respective semi-axis. Figure 6 shows that if we index the quadrant diagonals we may
miss areas that could be indexed.

4.2 Indexing More That Four Semi-axes

In the previous discussion we have acknowledged the importance of the logarithmic
indexing of space evenly towards any direction on the grid and we have investigated
ways to achieve this goal by best exploiting the potential of the distance metrics and by
changing the setting of indexing directions. In this section we will discuss the ’brute’

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 397

S4

4

22

2

4

4

2

1
1

1
1

Fig. 8. Indexing 4 semi-axes

S4

44 4

44 4

41
1

1
1

11

1 1

Fig. 9. Indexing 8 semi-axes

solution of this problem simply by adding more indexing semi-axes other than the hor-
izontal and vertical ones of the basic framework. Of course it is straightforward that
the more indexing semi-axes are added for each area, the bigger the index of this area
will be. Thus, the interesting part of this solution is to examine the trade-off between
the index size and the evenness of the distribution of the indexed areas taking into con-
sideration the logarithmic scale. This means that, ideally, we would like to keep the
index size constant as we increase the indexing directions. Therefore, since the index-
ing semi-axes are increased, we have to reduce the indexing areas on each one of them.
Specifically, the index size can remain the same if for every semi-axis that we intro-
duce in a part of the space we reduce by half the indexing areas on the semi-axis that
is responsible for the indexing of this part of space. Figure 8, 9 show an example of
indexing using 4 semi-axes and an example of indexing using 8, respectively. Suppose
that we use the d1 frontiers to define the position of the indexed areas; then fewer and
sparser areas will be indexed on each semi-axes in Figure 9 than in Figure 8.

However, the direct consequence of this solution is that fewer areas close to the area
of reference are indexed as new indexing semi-axes are added. This means that even
though we even the indexing towards remote areas, we deprive close areas from good
indexing. In more detail, areas close to the area of reference may have to be reached with
hops from successor to successor because the search process cannot hop long distances
using indexed areas. Taking into account that the basic framework indexes the four
semi-axes (one corresponding to each quadrant) using the logarithmic base 2 = 21, we
can infer that, assuming that there are k indexing semi-axes in a quadrant, they should
all use the logarithmic base 2k.

Considering that the indexing of close areas is really important in order for our
framework to guarantee that close areas can be found within very few hops, we pro-
pose the employment of 8 indexing semi-axes in total (i.e. 2 in each quadrant): the
four horizontal/vertical semi-axes that define the quadrants as well as the diagonals of
the quadrants. The 8 indexing semi-axes have to be indexed using the logarithmic base

398 V. Kantere and T. Sellis

22 = 4. Figures 8, 9 show the indexing of the 4 and 8 semi-axes according to the pro-
posed solution. We reckon that using more indexing semi-axes can severely hurt the
efficiency of search of close areas, since each semi-axis is very sparsely indexed.

4.3 Experimental Study About the Indexing Directions

In the previous discussion of this section we have proposed that the spatial areas should
index other remote areas in order to expedite the search process. We have concluded
that the search efficiency can be influenced by:

– the type of indexing semi-axes
– the number of indexing semi-axes

However, it is not possible to prove theoretically which indexing combination is more
efficient with respect to search and under which overlay circumstances this can be true.
Thus, we conducted experiments in order to study the behavior of the framework for
combinations of the following:

– indexing (a) the orthonormal semi-axes or (b) the quadrant diameters
– indexing (a) four or (b) eight semi-axes evenly distributed in space

Without loss of generality we have chosen to experiment on an application of the first
of two types discussed in Section 1. Specifically, our experimental setup is a peer-to-
peer overlay in which nodes handle spatial information. We call this framework SPA-
TIALP2P (see [8]) and due to lack of space we do not elaborate on framework details.
For our experimental setup we have chosen SPATIALP2P to handle a grid-partitioned
space. In the experiments we range the size of the n× n grid from n = 32 to n = 128
and we examine sparse to very dense overlays, meaning for a total number of nodes N
ranging from N = 1000 to N = 10000. We used random data distribution. All the ex-
periments measure the efficiency of the search process in number of search path hops.
Additionally, we present the average size of the index lists of nodes. Overall, the search
path lengths for the specific experiments were competitive for the D and the E distance
metrics. Thus, we present the average of the results for the two metrics.

Table 1 summarizes the experimental results for random queries from any source
to any target area. The experiments are performed for a total number of nodes N =
1000, 4000, 10000 that form overlays of various densities depending on the size n of
the square grid. A general outcome based on the results of Table 1 is that indexing the
4 orthonormal semi-axes is much more efficient than if indexing the 4 quadrant diame-
ters. In Section 4.1 we proposed the indexing of the quadrant diameters since these are
the longer directions in a quadrant and offer the possibility for indexing numerous and
more distant areas. Table 2 shows that actually this goal is achieved: the average index
size is greater in all cases if indexing is performed on the quadrant diameters than on
the orthonormal semi-axes. Surprisingly, the bigger indices do not diminish the average
search path length. Moreover, the average search path length is shorter if indexing the
orthonormal semi-axes than the quadrant diameters. The reason is not so obvious and
we can track it in the following cases of search: assume that a search for a target area
T is on an area S, and S and T are on almost the same column/row; since areas index

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 399

Table 1. Results for the search path length in number of hops for random distance values of
source and target search areas

Metric & 1000 1000 1000 4000 4000 10000
Setting 32 64 128 64 128 128

4axes 2,867 3,668 3,823 3,548 4,424 4,496
4diameters 2,917 3,744 3,840 4,016 4,770 5,445
8axes 2,863 3,775 3,521 3,850 4,099 4,258

Table 2. Results for the index size

Metric & Setting
1000 1000 1000 4000 4000 10000
32 64 128 64 128 128

4axes 17,580 18,585 18,765 22,320 23,235 24,830
4diameters 18,259 20,253 20,738 22,755 23,560 25,420
8axes 17,330 16,662 18,810 20,367 22,736 24,985

the diameters, there is high possibility that S will send the search process to an area Ai

that is farther away from T than itself in terms of columns/rows. Area Ai is closer to T
in terms of rows/columns than S, meaning that the diameters that it indexes are farther
away from T than the diameters indexed by S. This results in search hops on areas that
are on rows/columns that are higher and lower in the grid interchangeably; this means
that, even though S and T are actually close in terms of rows/columns the search re-
ciprocates along these areas and results in long paths. Figure 10 shows an example of
this deficiency of indexing the quadrant diameter. As it is apparent from the results in
Table 1, these situations occur more often for large grids, since search may target very
distant areas. Nevertheless, the indexing of the quadrant diameters performs better for
sparse overlays, where it achieves even indexing along any direction in a quadrant.
In this case, it can even outperform indexing of the orthonormal semi-axes, as the re-
sults show for the employment of the D metric on 64 × 64 and 128 × 128 grids and
N = 1000 areas.

In the study we have also considered indexing 8 semi-axes, namely, the orthonormal
semi-axes and the quadrant diagonals. The results are better for the setting with 8 index-
ing semi-axes than in the normal setting almost in all cases. Specifically, the indexing
of 8 semi-axes achieves a better performance for big and dense overlays (for example
N = 4000 for a 64× 64 grid as well as N = 10000 for a 128× 128 grid. In these cases
indexing 8 semi-axes instead of 4 results in more even indexing towards any direction
in space. Furthermore, the results show that the setting with 8 indexing semi-axes has
a better performance for sparse or medium dense than very dense overlays. Obviously,
as the overlay becomes denser, indexing 4 semi-axes becomes more even and the pos-
sibility for a search process to be propagated on the indexing axis of the target area
of search increases; thus, even though the setting with 8 indexing semi-axes provides
larger indices they are not so useful.

400 V. Kantere and T. Sellis

S

1

2

3

T

Fig. 10. The search from S to T can hop on areas that are on rows/columns that are higher and
lower in the grid interchangeably; this means that, even though S and T are actually close in
terms of rows/columns the search reciprocates along these areas and results in long paths

Furthermore, we compared the setting of indexing 4 or 8 semi-axes for searches
between areas that are close in terms of rows/columns. Actually, we have ranged the
distance metric d1 between source and target search areas in values 1 − 17 for a very
dense (N = 1000) 32 × 32 grid. Thus, the maximum vertical distance of the source
and target areas is ranged from the distance of adjacent cells to half the size of the grid.
Table 3 shows the results of these experiments. It is apparent that the setting of indexing
8 semi-axes achieves shorter search paths than that of indexing 4 semi-axes for very
close areas. The reason is that very close areas have more links among each other in
the first than in the second case (for example for d1 = 1, all areas are successors in
the first case). However, the setting with 4 indexing semi-axes performs better for close
enough but not to close areas. The reason is that in these situations search is benefited
by dense indexing on fewer axes than sparse indexing on more axes. The indexing of
8 semi-axes increases its performance for quite distant source and target search areas,
thus for d1 > 1.

Table 3. Results for the index size and the search path length in number of hops for limited
distance values of source and target search areas

Metric & Setting
N = 1024 for a 32× 32 grid

d1 = 1 d1 = 2 d1 = 3 d1 = 5 d1 = 7

4axes 0,344 0,791 1,256 1,495 1,884
8axes 0 0,567 0,983 1,318 1,715

d1 = 9 d1 = 11 d1 = 13 d1 = 15 d1 = 17 avg index size
4axes 1,887 2,151 2,349 2,453 2,439 17,6
8axes 2,024 2,227 2,389 2,442 2,345 18,45

A Study for the Parameters of a Distributed Framework That Handles Spatial Areas 401

5 Related Work

As discussed in Section 1 one application of the proposed framework is the handling of
spatial data in a peer-to-peer environments. There are some attempts in this field that
propose algorithms for the distribution of multidimensional content data in general.
The works such as SCRAP [4], MAAN [2], CISS [9], SQUID [13] and SkipIndex [15],
propose partitioning the data using a space-filling curve and indexing them using a one-
dimensional DHT method. Based on SCRAP MURK [4] and furthermore ProBE [12]
are proposed. The latter is a system that supports range queries on multidimensional
data, focusing on load balancing: virtual peers that are used to transfer content from
one neighbor to another. The whole setting is fundamentally static, so that not much
can be done for dynamic content reallocation.

Another approach to the problem is to construct distributed indices for multidimen-
sional data. Existing works towards this direction try to distribute traditional multidi-
mensional indices in P2P networks. The first noticeable such work is [5] that proposes
the distribution of a centralized Quad-tree index to the peers; however the root bot-
tleneck problem is statically solved. Recently, in [6] space is partitioned and indexed
using a tree-like centralized index, such as R-tree, M-tree. Then, tree nodes (both inner
nodes and leaves) are distributed in overlay peers. Peers are linked such that ancestors
are neighbors with their descendants. Beyond vertical indexing, indexing is also per-
formed horizontally in the tree. Yet, locality of data and locality-driven search are not
considered in this work.

Beyond, peer-to-peer applications our framework can be applied to spatial overlays
where search and linking can be performed based solely on nodes location. Related
works to this aspect of the framework are those that consider positioned-based rout-
ing [10, 3]. However, in this field the interest of the solutions is how to perform routing
in arbitrary formed networks, often focusing on mobility or power-save for sensor net-
works. Finally, the work in [1] discusses geographical routing but assumes an overlay
network linked based on triangulation.

6 Conclusions and Future Work

In this work we study the construction of a framework that can handle in a totally dis-
tributed manner spatial information. Specifically, we consider autonomous sites that are
bound to spatial areas and that form an overlay network; we investigate the parameters
of such a distributed system in order to perform search guided by locality and direction-
ality. We have presented the main parameters of the framework and we have proposed
appropriate values for them. One of the main parameters is the distance metric that is
used in order to define locality in space. The theoretical discussion proves that a met-
ric that defines square equidistant frontiers is more appropriate than one than defines
circular frontiers. Also we have considered the indexing of remote areas and we have
proposed solutions for this issue that were tested experimentally. Our next goal is to
perform a thorough experimental study in order to confirm the theoretical results about
the distance metrics. Furthermore, we will to extend the considered framework for areas
of different sizes.

402 V. Kantere and T. Sellis

References

1. Araujo, F., Rodrigues, L.: Geopeer: A location-aware peer-to-peer system (2004)
2. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multiattribute addressable network for

grid information services. In: Proc. of Grid (2003)
3. Contla, P.A., Stojmenovic, M.: Estimating hop counts in position based routing schemes for

ad hoc networks. Telecommunication Systems 22(1-4), 109–110 (2003)
4. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: Multi-dimensional

queries in p2p systems. In: Proc.of WebDB (2004)
5. Harwood, A., Tanin, E.: Hashing spatial content over peer-to-peer networks. In: Proc.of

ATNAC (2003)
6. Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: VBI-tree: A peer-to-peer frame-

work for supporting multi-dimensional indexing schemes. In: Proc. of ICDE (2005)
7. Kantere, V.: Query management in P2P overlays. PhD thesis, National Technical University

of Athens, School of Electrical and Computer Engineering, Forthcoming work
8. Kantere, V., Sellis, T., Skiadopoulos, S.: Storing and indexing spatial data in p2p systems

(Submitted for publication)
http://www.dblab.ece.ntua.gr/∼verena/spatialp2p.pdf

9. Lee, J., Lee, H., Kang, S., Choe, S., Song, J.: CISS: An efficient object clustering framework
for DHT-based peer-to-peer applications. In: Proc.of DBISP2P (2004)

10. Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in mobile ad-hoc
networks. IEEE Network Magazine, pp. 30–39 (November 2001)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable
network. In: Proc. of SIGCOMM (2001)

12. Sahin, O.D., Antony, S., Agrawal, D., Abbadi, A.E.: PRoBe: Multi-dimensional range
queries in p2p networks. In: Proc. of WiSe (2005)

13. Schmidt, C., Parashar, M.: Flexible information discovery in decentralized distributed sys-
tems. In: Proc. of HPDC (2003)

14. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-
peer lookup service for internet applications. In: Proc. of SIGCOMM (2001)

15. Zhang, C., Krishnamurthy, A., Wang, R.Y.: Skipindex: Towards a scalable peer-to-peer index
service for high dimensional data. Technical Report (TR-703-04) (2004)

http://www.dblab.ece.ntua.gr/~verena/spatialp2p.pdf

Distributed, Concurrent Range Monitoring of
Spatial-Network Constrained Mobile Objects

Hua Lu1,2, Zhiyong Huang1,3, Christian S. Jensen2, and Linhao Xu1

1 School of Computing, National University of Singapore, Singapore
2 Department of Computer Science, Aalborg University, Denmark

3 Institute for Infocomm Research, Singapore

Abstract. The ability to continuously monitor the positions of mobile objects is
important in many applications. While most past work has been set in Euclidean
spaces, the mobile objects relevant in many applications are constrained to spa-
tial networks. This paper addresses the problem of range monitoring of mobile
objects in this setting, in which network distance is concerned. An architecture
is proposed where the mobile clients and a central server share computation, the
objective being to obtain scalability by utilizing the capabilities of the clients.
The clients issue location reports to the server, which is in charge of data storing
and query processing. The server associates each range monitoring query with the
network-edge portions it covers. This enables incremental maintenance of each
query, and it also enables shared maintenance of concurrent queries by identify-
ing the overlaps among such queries. The mobile clients contribute to the query
processing by encapsulating their host edge portion identifiers in their reports to
the server. Extensive empirical studies indicate that the paper’s proposal is effi-
cient and scalable, in terms of both query load and moving-object load.

1 Introduction

In the management of moving objects, continuous monitoring queries have recently
gained attention, as they provide the fundamental support to different mobile services,
including services that monitor traffic at intersections, services that monitor fleets of
vehicles such as buses or police cars, and a variety of services that monitor sensitive re-
gions. Existing work on continuous monitoring queries has predominantly assumed that
the moving objects are embedded into two-dimensional Euclidean space, and has relied
on Euclidean distance as the relevant notion of distance. However, in many application
scenarios, including the ones mentioned above, the moving objects are constrained to a
spatial network, typically a road network. In this setting, Euclidean distance is not the
relevant notion of distance—rather, network distance is.

In a spatial network setting, the ability to efficiently monitor the part of a network
within a certain network distance of a query point for moving objects constitutes fun-
damental functionality for many mobile services. This paper proposes efficient tech-
niques for such continuous range monitoring queries in spatial networks, which we
term CRMQN queries. Figure 1 exemplifies a CRMQN query. In the partial road net-
work displayed in the figure, a CRMQN query q is issued with the position represented
by a small square and with a 5 km distance of interest. The dashed circle identifies the

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 403–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

404 H. Lu et al.

range determined by the Euclidean distance, while the arrows with short bars identify
the sub-network within network distance 5 km of the query point. Therefore, for the
time point captured in the figure, moving objects A, B, C, and D belong to the re-
sult; object E does not, as the network path from query point q to E exceeds the query
range. Note that a moving object’s membership in the query result generally changes as
time elapses due to the object’s movements. The range monitoring query continuously
maintains the correct query result as time elapses.

5km
q

A
B

D
E C

Fig. 1. CRMQN query example

node1
node2

node3

node4

node5

node6link1

link2

link4

link5

link6

link3

link7

link8

Fig. 2. Road network example Fig. 3. System framework

We assume a client/server system architecture, in which the moving objects (clients)
report their location information to the central server that is responsible for storing the
locations of the moving objects and for processing the range monitoring queries. As
the moving objects continually send their location reports to the server, the server must
update the results of the active queries to maintain the query results. We also assume
that query processing occurs in main memory, as do most online monitoring systems.

For each query, we initially use a network-expansion-based algorithm for identifying
those network links that are either fully or partially covered by the query. Then in the
subsequent query processing, all other ones are ignored as they have no impact on the
query result. A network link (formally defined in Section 2.1) is a maximum part of a
spatial network for which no exchange of traffic is possible .

For each link fully covered by the query, we report every object moving on it in the
query result; for each link partially covered by the query, additional refinement based on
the network distance is performed to discard non-qualifying objects. This identification

Distributed, Concurrent Range Monitoring 405

of different link types enables us to reduce query processing cost by expending different
amounts of effort on different types.

The identification of the links covered by each range monitoring query also discloses
the overlaps among concurrent queries. In other words, different queries may cover the
same link(s), although they have different query points and ranges. By exploiting such
overlaps, we develop a shared maintenance mechanism for concurrent queries. This
mechanism comprises particular data structures and relevant algorithms to efficiently
update the results of concurrent queries.

In addition, we employ a novel client design that enables the mobile terminals to
contribute their computing capabilities to the continuous query maintenance, thus re-
ducing the server side computation. In particular, the host links of a moving object (the
road link on which it is moving) is easily determined on client side, and its identifer is
then encapsulated in the location report sent to the server, which uses this to facilitate
the shared maintenance of concurrent queries.

The paper’s key contributions are fourfold. First, we identify all links relevant to a
range monitoring query, differentiating between those links that are fully covered ver-
sus partially covered by the query. This minimizes the subsequent query maintenance
costs, and it also reveals the overlaps among concurrent queries, thus enabling a shared
maintenance of these queries. Second, as realistic scenarios entail large numbers of con-
current queries, it is essential to be able to maintain multiple query results correctly and
efficiently. We achieve this by means of shared maintenance based on the identification
of relevant links. We propose hash-based structures with efficient processing algorithms
for this purpose. Third, in link based query processing, the host links on which the mo-
bile objects reside must be identified. To offload the server, we delegate the host link
identification to the moving objects. This is enabled via a novel client design that adapts
the terminal’s navigation software module to determine the host link. Fourth, we report
on extensive empirical studies that characterize the efficiency and scalability of our
proposal.

In Section 2, we proceed to present some preliminaries. Section 3 describes the spe-
cific data management on the mobile terminals. Section 4 details the server-side design
for concurrent continuous range monitoring queries of network constrained mobile ob-
jects. Section 5 experimentally evaluates the paper’s proposals. Section 6 briefly reviews
related work, and Section 7 concludes this paper.

2 Preliminaries

2.1 Data Model

Similarly to other proposals (e.g., [3]), we model a road network as a particular kind
of spatial network that captures both the graph aspect of a road network and also cap-
tures the embedding of a road network into geographical space. Thus, a spatial network
SN = (N ,L) consists of a set of nodes N = {n1, n2, . . . , nN} and a set of links
L = {l1, l2, . . . , lL}. A link consists of a pair of elements fromN , and a total function
weight : L → R+ assigns a weight to each link.

The embedding into geographical space is accomplished with two total functions.
First, posN : N → R2 maps each node to a position in two-dimensional Euclidean

406 H. Lu et al.

space. Second, posL : L → {(posn(ns), p1, ..., pk, posn(ne)) | ns, ne ∈ N ∧ p1, . . . ,
pk ∈ R2 ∧ k ≥ 0} maps each link to a polyline. A link l = (ns, ne) is then mapped
to a polyline with the positions of ns and ne as its delimiting positions. The k positions
in-between these two are termed intermediate points. Consequently, a link is modeled
by a polyline consisting of k + 1 line segments.

We will assume that the weight of a link is the length of the associated polyline.
Next we assume a function dN that takes any two positions on polylines of a spatial
network as arguments and returns the (shortest) network distance between these. Such
a function can be defined in straightforward fashion. We will also assume that links
model bidirectional roads.

An example of road network is shown in Figure 2. Nodes are given by big dots and
intermediate points by small dots. The road network encompasses 8 links, one of which
does not contain any intermediate points (i.e., k = 0). Link 7 has the largest number of
intermediate points (k = 5).

We assume a setM of moving objects that are constrained to the spatial network.
Thus, a moving object at any point in time resides on a link in the network, and its
position intersects with the polyline that represents the link. Function posM maps an
object to its current position as known by the server.

2.2 Problem Statement

We assume a spatial network SN , a set of moving objectsM constrained to this net-
work, and a network distance function dN . Moving objects continually issue updates to
the server, thus updating function posM.

A continuous network-distance-based range monitoring query R takesM as argu-
ment and accepts two parameters: (p, r), where p is the (stationary) query point and r
is the network query range. Such a query, termed CRMQN , is activated at some time
ts, the start time of the query, and it is terminated at some later time te, the end time of
the query. The query result is maintained from time ts to time te.

∀t ∈ [ts; te] (o ∈ R[p, r](M)⇔ o ∈M∧ dN (posM(o), p) ≤ r)

The problem addressed in this paper is that of providing a complete set of techniques
that enable the correct and efficient maintenance of multiple such range monitoring
queries.

2.3 Distributed System Architecture

Our proposal is based on a client/server architecture, in which the clients are moving
objects equipped with mobile terminals and a central data server is in charge of the
query processing. The clients communicate with the server via some form of wireless
network, e.g., a 2.5 or 3G cellular network. The system framework is shown in Figure 3.

At the highest level of abstraction, a mobile terminal consists of three modules. A
navigation module is responsible for retrieving spatial data that represents the object’s
current location; this is obtained from positioning hardware such as a GPS receiver. A
visualization module is responsible for displaying the object’s location and results of
queries on a background map on the terminal’s screen; and it is responsible for passing

Distributed, Concurrent Range Monitoring 407

user input as query parameters to the moving object module. A moving object mod-
ule issues update and query requests to the server, and passes query results back to the
visualization module. The spatial network is organized in files and indexed by a com-
posite structure that includes a compact R-tree and sequential indexes. The spatial data
in use is maintained in a pool that is shared between the different modules. The data
management on the clients is detailed in Section 3.

The important modules on the server are the storage and query modules. The former
receives location reports from the moving objects and is responsible for storing this
moving object information. The query module is responsible for processing queries
issued by either the server itself or a moving object. Both modules access the moving
objects via a network-link-based index, which also refers to road network data. The
server-side data management is covered in Section 4.

3 Client-Side Data Management

Without loss of generality, we assume a client setting that resembles a GPS-enabled
smartphone, e.g., a pocket PC. These have relatively limited flash storage and no disk,
and they are currently being sold with navigation software. As they may obtain power
from the vehicles in which they are installed, we do not consider power issues.

This section first describes the compact client-side data structures used for spatial
networks, and then presents the client-side functionality that utilizes these structures.

3.1 Client-Side Index Structure

size(=j)

size(=m)

…

idi1, idi2, ..., idijflag(=1)MBR(l, r, t, b)

…

offset1, offset2, ..., offsetmflag(=0)MBR(l, r, t, b)

size(=j)

size(=m)

…

idi1, idi2, ..., idijflag(=1)MBR(l, r, t, b)

…

offset1, offset2, ..., offsetmflag(=0)MBR(l, r, t, b)

Compact R-tree file

Root

Inter.
nodes

Leaf
nodes

eL

e2

e1

kL

k2

k1

sL

s2

s1

pt1, pt2, … , ptkL

…

pt1, pt2, … , ptk2

pt1, pt2, … , ptk1

eL

e2

e1

kL

k2

k1

sL

s2

s1

pt1, pt2, … , ptkL

…

pt1, pt2, … , ptk2

pt1, pt2, … , ptk1

lengthLoffsetL

…

length2offset2

length1offset1

lengthLoffsetL

…

length2offset2

length1offset1

Link data file Link index file

xN, yN

…

x2, y2

x1, y1

xN, yN

…

x2, y2

x1, y1

Node data file

Fig. 4. Index structure on device

We store the nodes and links of a
spatial network in two separate se-
quential data files. Due to the rela-
tively limited storage available on a
mobile terminal, it is not feasible to
maintain all records from these files
in main memory. For navigation pur-
poses, we need to efficiently retrieve
the data from the two files that re-
late to a region of interest. To en-
able this, we need a proper index
structure. In particular, to support the
range queries required for naviga-
tion and data display, we adapt the
R-tree [10] into a compact structure
suitable for a mobile environment.

The client-side index structure, comprising the compact R-tree and the two sequential
files, and an additional index file are illustrated in Figure 4 and explained next.

The sequential file of nodes stores the positions of the nodes, which are ordered
according to their identifiers. Similarly, the sequential file of links stores for each link
the two delimiting points of its polyline, as pointers to the node file; it stores the number
of intermediate points; and it stores the coordinates of the intermediate points.

408 H. Lu et al.

An R-tree is created on the set of polylines representing all the links in the spatial
network. Each polyline is a unit to index. All non-leaf nodes are organized as in a
standard R-tree. Each leaf node holds the identifiers of all the network links it covers,
rather than pointers to the real link records in the link file. As link records are not
of equal length, a dense sequential index file on the link file is used. To access the
record of the link with identifier li, the ith record in the sequential index is retrieved.
This record contains the offset and content length of the link record in the link file. By
using a separate sequential index file, we retain the road link identifiers. This facilitates
potential identifier-based random data access on the client side.

The R-tree is mapped to a sequential file in a specific way. All nodes are stored in a
breadth-first order. Each non-leaf node is stored according to the format 〈MBR,flag,
size, offsets〉, where MBR is the minimum bounding rectangle of a network link, flag
indicates whether the node is a leaf node, size contains the number of child nodes, and
offsets are offsets into the file that point to the child nodes. The leaf-node format is
similar, except that the field offsets is replaced by a field ids that stores the integer
identifiers of the network links covered by the leaf node; these identifiers correspond
to row numbers in the sequential index on the link file. To conserve storage space, we
allocate bits to the node fields in a compact way according to the ranges of parameters
such as R-tree fanout, R-tree height, and the number of links in the road network.

3.2 Client-Side Navigation and Visualization

The navigation module receives so-called NMEA sentences with location data from the
GPS receiver, retrieves pertinent link records via the data structures detailed in the pre-
vious section, and places the link records in a link pool that is used by the visualization
module for display of part of the map containing the object’s current location.

Initially, given the current location (xc, yc) of the object, the data within rectangle
(xc − w, yc + h, xc + w, yc − h) (left, top, right, bottom coordinates, as for bounding
rectangles) is to be displayed on the terminal’s screen, where w and h are configurable
parameters. This rectangle is called the active window, and a window query against the
data structure is used for retrieving the relevant data. Every link in the pool is of format
〈id ,MBR, points〉, where id is the link’s identifier, MBR is its minimum bounding
rectangle, and points is the sequence of coordinates defining the link polyline.

When receiving a new position from the GPS receiver, the navigation module first
checks whether the current location remains in the active window. If so, no new data
retrieval is needed. Otherwise, a new active window winnew is computed, those cur-
rently pooled links that are outside winnew are discarded, and those links that intersect
winnew , but are not in the pool, are retrieved via the data structure. This retrieval is
achieved by a modified window query that uses two windows winnew and winold . It
returns the links that intersect with winnew , but do not intersect with winold . Standard
depth-first or best-first R-tree traversals can be adapted to process such modified win-
dow queries. Upon the retrieval, the active window is set to winnew . During the data
retrieval, the network link and line segment on which the current location (xc, yc) re-
sides are determined on the fly. We call this link (segment) the handset client’s host link
(host segment) with respect to its current location. If no new data is to be retrieved, the
host link and segment are determined by the moving object module, covered next.

Distributed, Concurrent Range Monitoring 409

3.3 The Moving Object Module

The moving object module is responsible for ensuring that the server has up-to-date
location information for the object. It continually receives location data from the nav-
igation module, and maintains a record of the form 〈locc, velc, tc〉 that captures the
current location, velocity and the time of those for the object. It also maintains a record
of the form 〈lnkh, segh〉 that captures the host link and segment that correspond to the
current location.

If the navigation module has not performed data retrieval for the most recent loca-
tion, an update without a known host link and segment is sent to the moving object
module. The relevant algorithm is shown in Figure 5. First, it is checked whether the
new location is still on the currently recorded host segment. If so and if the velocity has
changed markedly, an update message UPT is issued to the server and the records are
updated (lines 2–4). A pre-specified threshold Δv of velocity change is used to judge
whether an update to the server is necessary (line 2). For such an update involving the
same host link, the UPT message includes the location, host link identifier and time.
The server will use the host link identifier to efficiently locate the record corresponding
to the moving object. If the object is not on the recorded host segment, the adjacent
segments on the recorded host link are checked. The check is carried out sequentially in
two directions one after the other: first from the segment after segh to the last one; then
from the one before segh to the first one (line 6). When a new host segment is found for
the location, an update message is sent to the server, the records are updated, and the
algorithm terminates (lines 8–10). If the object is no longer on the recorded link, a new
host link and segment are found by searching the link pool (lines 11–13). An update
message is sent, the records are updated, and the algorithm stops (lines 14–16).

Algorithm updateWithoutHosts(locn , veln , tn)
Input: locn is the new location; veln is the new velocity; tn is the report time

// Determine the host link and segment for locn

1. if (locn is still on segh)
2. if (|veln − velc | > Δv) // Marked velocity change
3. Send UPT(oid , locn , lnkh , tn) to the server;
4. locc = locn ; velc = veln ; tc = tn;
5. else
6. for each segment segi after/before segh of link lnkh

7. if (locn is on segi)
8. Send UPT(oid, locn , lnkh , tn) to the server;
9. locc = locn ; velc = veln ; segh = segi ; tc = tn;
10. return;
11. for each link lnki �= lnkh in pool
12. for each segment segi of link lnki

13. if (locn is on segi) // Moved to another link
14. Send UPT(oid , locn , lnkh , lnki , tn) to the server;
15. locc = locn ; velc = veln ; lnkh = lnki ; segh = segi ; tc = tn;
16. return;

Fig. 5. Update without known hosts

410 H. Lu et al.

If the navigation module has just invoked a data retrieval for the new location, an
update attached with the new host link and segment identifiers is sent to the moving ob-
ject module. If the update is the first positioning report received, a registration message
REG is sent to the server and the report is recorded. Otherwise, the process is similar to
that of the previous algorithm, by distinguishing among three cases.

4 Server-Side Data Management

We first present how mobile objects are organized on the server side in accordance with
the client design presented in Section 3. Then, we describe how concurrent continuous
range monitoring queries are processed on the server side.

4.1 Server-Side Mobile Object Management

Link-Based Moving Object Indexing. On the server side, a hashing mechanism is
used for indexing the moving objects according to their current network locations. The
composite index structure is shown in Figure 6 and is explained next.

Recall that the L links in the spatial network are assigned integer identifiers from 1
to L. The top-level index is simply a sequential file with one entry for each link. With
the same link index file as on the client side, a link record can be easily fetched given
its identifier. Each link entry contains a pointer to a moving-object bucket, which keeps
all objects currently moving on that link. The identifier of a link is also used to locate
the polyline associated with the link and the link’s topology information. All links in
polylines are organized in a sequential link file, as on the client side. Via a link index file,
the link record is easy to fetch. Node topology information is organized in a separate file.
Each node topology entry in this file contains the count of its incoming links, the count
of its outgoing links, and the identifers of these two types of links sequentially. Link
records and node topology information are associated via a node index file, which for
each node stores its offset into the topology file. To speed up spatial operations needed
in query processing, all network links are indexed by an R-tree, and so are all network
nodes. These R-trees are not illustrated in Figure 6. Unlike previous indexes for disk-
resident network constrained moving objects, our indexing solution does not employ
R-trees in a hierarchical fashion [8,16] or index the trajectories of moving objects [2].

Each element of an object bucket has the format 〈oid , loc, time〉, where oid is an
object identifier, loc is the most recently reported location, and time is the time of
the most recent report. To simplify the processing, we allocate oid ’s starting at 1. The
hashing of a moving object works as follows. Given a moving object oid , its host link
lnk is determined by its location loc. Identifier lnk is used to obtain the bucket pointer
bucket ptr in the corresponding link index entry. The object oid ’s record is kept in the
object bucket pointed by bucket ptr . The hashing for an object is created or updated
when the server receives an update report from that object, explained next.

Insertion. An insertion occurs when a moving object issues a REG(oid , loc, lnk , time)
message to the server. An insertion is quite straightforward. The field lnk is first used
together with the index structure to locate the bucket into which the moving object
should be inserted; then an object entry is created and inserted into that bucket.

Distributed, Concurrent Range Monitoring 411

LinkL…Linki…Link2Link1 LinkL…Linki…Link2Link1 Link index

Object buckets

time

…

locoid time

…

locoid

…

time

…

locoid time

…

locoid

eL

e2

e1

kL

k2

k1

sL

s2

s1

pt1, … , ptkL

…

pt1, … , ptk2

pt1, … , ptk1

eL

e2

e1

kL

k2

k1

sL

s2

s1

pt1, … , ptkL

…

pt1, … , ptk2

pt1, … , ptk1

offsetN

…

offset2

offset1

offsetN

…

offset2

offset1

Link data file

Node index file

…

…

li1, …, liI, lo1, … loO

…

…

cnti(=I), cnto(=O)

nN

…

n2

n1

…

…

li1, …, liI, lo1, … loO

…

…

cnti(=I), cnto(=O)

nN

…

n2

n1

Node topology file

Link index file
bucket_ptr

…

Fig. 6. Server-side index structure

id LQptrbkt id rpos Lf Lp R

MO Updates Query Request

Link Hash (Hlq) Query Hash (Hq)

<li, dN(pos, li.s)>*

Fig. 7. Data structures and query execution

Deletion. An object may delete itself from the system. This can occur when a mobile
terminal is switched off, e.g., the user’s vehicle is parked. In this case, the terminal is-
sues a delete message prior to powering down. A deletion is performed on the server
when a DEL(oid , lnk) message is received from an object. Upon receiving this mes-
sage, the server removes the relevant object from the database. Field lnk is used to
locate the moving object bucket via the index structure, and then the bucket is scanned
to remove the element in the bucket with identifier oid . As an option, by periodically
checking object buckets we are able to identify objects that have been inactive for a
long time, and delete them from the database.

Update. Updates occur when the server received an UPT message from an object. As
mentioned in Section 3.3, there are two types of UPT messages. For an
UPT(oid , loc, lnk , time) message, which indicates that the object remains on the
recorded host link, the object’s entry is found, and the relevant record fields loc and
time are updated. In case of an UPT(oid , loc, lnk , lnkn, time) message, which indi-
cates that the object has moved out of the recorded host link, a deletion and an insertion
are performed. Field lnk is used to locate the current bucket for the deletion, while lnkn
is used to find the new bucket for the insertion.

After each index operation is finished, the query maintenance function will be in-
voked to correctly adjust query results accordingly. This is discussed in Section 4.4.

Discussion. The server-side index structure has several important properties. First, its
overall performance is balanced. If a network link contains few moving objects, in-
dex maintenance is inexpensive. If the number of moving objects on a link is large,
the query processing is less expensive. This balance between index maintenance and
query processing costs is hard to achieve in moving object indexes [15]. Second, the
index structure supports easy and high concurrency as it separates moving objects on
different network links. Within each link, concurrency control on a hash table is much
easier compared to that on any tree index. Third, the index structure efficiently sup-
ports queries based on network distance, which has not been addressed well in most
previous work on the indexing of moving objects. We do not organize all moving ob-
jects in a global hash table, because a single large hash table is much more difficult

412 H. Lu et al.

to manage in terms of scalability and conflict rate, and it does not facilitate our query
processing.

4.2 Solution Overview and Data Structures for Concurrent Queries

In a scenario with monitoring queries, multiple such queries will typically be active
at a given point in time. We thus proceed to employ the shared execution [13,18]
philosophy to process concurrent queries. As the movements of all objects in M are
constrained to the spatial network, only specific network links are relevant for each
CRMQN query. Further, the relevant links of different, concurrent CRMQN queries
may intersect. These observations provide the foundation for our shared query process-
ing solution for CRMQN queries.

Our solution identifies network links that are covered by multiple queries, organizes
the relevant information together with the query results in two hash tables, and updates
the hash table contents, including the query results, accordingly upon receiving moving
object updates. The data structures and query execution are illustrated in Figure 7.

Given a query, those links that are relevant for the query, termed its sensitive links, are
identified and classified into two categories: those completely within the query region,
termed fully sensitive, and those that merely intersect with the query region, termed
partially sensitive. The former links are kept in a list Lf , and the latter links are kept in
a list in Lp. Then the sensitive links are searched for moving objects within the query
region. For each fully sensitive link, the search simply retrieves all objects in its bucket.
For each partially sensitive link, its moving-object bucket is searched to retrieve those
objects whose network distance to the query point is within the query range.

We use a link-to-query hash table named Hlq that maps link identifiers to lists of
queries for which the link is a sensitive link: for a link li the list LQi thus contains the
queries for which li is sensitive. The query identifiers start from 1. For each query that
has li as a fully sensitive link, its identifier is simply stored in list LQi. For each query
that has li as a partially sensitive link, its identifier is stored in LQi with a negative sign.
Additionally, a pointer to the bucket of all objects currently moving on li is stored in
each element of Hlq .

All queries are stored in a hash table Hq that maps a query identifier qi to an entry
consisting of five relevant elements: the query point pos , the network query range r, the
fully sensitive links Lf , the partially sensitive links Lp, and the current query result R.
For each partially sensitive link li, Lp maintains a mapping of li to the network distance
from the query point pos to the link’s start or end node. If the link is partially covered
by the query from its end node, the distance is attached with a negative sign. Otherwise
the original distance value is used. This facilitates the network distance computation
during query processing.

For continuous maintenance, the link identifiers enclosed in the update messages
from the moving objects are used for accessing hash table Hlq . This way, the identifiers
of all relevant queries, whose results may be affected by the update, are found. These
identifiers are in turn used to explore hash table Hq , making it possible to update the
results of multiple queries in a shared fashion. To uninstall a query q, the identifiers
of its sensitive links, as stored in Lf and Lp in hash table Hq, are retrieved. These are

Distributed, Concurrent Range Monitoring 413

Algorithm monitorInit(pos , r, id)
Input: pos is the query point; r is the network query range; id is the query identifier
Output: the initial result
1. R = Ø; Q = Ø;

// Determine starting links
2. if (isNode(pos))
3. Q.enqueue(〈node(pos), 0〉)
4. else
5. lq = find host(pos);
6. if (dN(pos, lq.s) < r) Q.enqueue(〈lq.s, dN (pos, lq .s)〉);
7. if (dN(pos, lq.e) < r) Q.enqueue(〈lq.e, dN (pos, lq.e)〉);
8. if ((dN(pos, lq.s) ≤ r) and (dN(pos, lq.e) ≤ r))
9. R = R ∪ lq’s bucket; Add id to Hlq(lq).LQ; Add lq to Hq(id).Lf ;
10. else
11. R = R ∪ search(lq); Add −id to Hlq(lq).LQ; Add 〈lq, +/ − dN 〉 to Hq(id).Lp;

// Expansion, search for sensitive links
12. while (Q is not empty)
13. (n, dN) = Q.pop();
14. foreach unvisited link li connected to n
15. if (dN + li.len > r) // A partially sensitive link
16. R = R ∪ search(li); Add −id to Hlq(li).LQ;

Add 〈lq, +/ − (dN + li.len)〉 to Hq(id).Lp;
17. else // A fully sensitive link
18. R = R ∪ li’s bucket; Add id to Hlq(li).LQ; Add lq to Hq(id).Lf ;
19. if (dN + li.len < r) Q.enqueue(〈li.n �= n, li.len〉);
20. return R;

Fig. 8. Initialization of a CRMQN query

then used for accessing hash table Hlq from where the query identifier stored in relevant
link’s query list LQ is removed.

4.3 Query Initialization

The initialization of a single range monitoring query identifies all its sensitive links via
incremental network expansion [17], and it searches these (mainly the partially sensitive
ones) to determine the initial result. The algorithm, shown in Figure 8, does a network
expansion from the query point pos and places all nodes within the network query
range r in a priority queue Q. This Q gives priority to those nodes with shorter network
distances to pos , and supports network expansion to identify all sensitive links. If the
query point pos coincides with the position of a node, as determined by the function
isNode(pos) that searches the R-tree of all nodes, the node with a distance of 0 is
pushed into queue Q (lines 2–3). If pos is not a node, its host link lq is determined
(line 5) by calling find host(pos), which is implemented by searching the network link
R-tree. Then lq’s two nodes are checked to determine whether they are within distance r
of pos (lines 6–7). If both of them are within r, lq is searched as a fully sensitive link and
added to Hlq and Hq(id).Lf (lines 8–9). Otherwise, lq is searched as a partially sensitive

414 H. Lu et al.

Algorithm sharedMaintain(oid , loc, locn , lnk , lnkn)
Input: oid is the client object’s identifier

loc is the client object’s old position; locn is the client object’s new position
lnk is the client object’s old host link; lnkn is the client object’s new host link

1. if (oid < 0) // Object deletion
2. foreach query identifier i ∈ Hlq(lnk)
3. if ((i > 0) or (oid ∈ Hq(−i)’s result)
4. Remove oid from Hq(|i|)’s result;
5. else if (locn == null) // First report
6. foreach query identifier i ∈ Hlq(lnk)
7. if ((i > 0) or (dN(Hq(−i).pos, loc) ≤ Hq(−i).r))
8. Add oid to Hq(|i|)’s result;
9. else if (lnkn == null) // Still on the old link
10. foreach query identifier i ∈ Hlq(lnk)
11. if (i > 0) continue;
12. if (oid ∈ Hq(−i)’s result)
13. if (dN(Hq(−i).pos, locn) > Hq(−i).r)
14. Remove oid from Hq(−i)’s result;
15. else if (dN (Hq(−i).pos, locn) ≤ Hq(−i).r)
16. Add oid to Hq(−i)’s result;
17. else // Link change
18. foreach query identifier i ∈ Hlq(lnk)
19. if ((i > 0) or (oid ∈ Hq(−i)’s result)
20. Remove oid from Hq(|i|)’s result;
21. foreach query identifier i ∈ Hlq(lnkn)
22. if (i > 0) // A fully sensitive link
23. Add oid to Hq(i)’s result;
24. else if (dN (Hq(−i).pos, locn) ≤ Hq(−i).r)
25. Add oid to Hq(−i)’s result;

Fig. 9. Shared maintenance of concurrent queries

link and is added to Hlq (line 11). In the link-to-query hash table Hlq , fully sensitive and
partially sensitive links are distinguished by the sign attached to their query identifiers.
A partially sensitive link lq is also added to Hq(id).Lp with a corresponding distance
value (line 11). The distance value’s sign is determined based on whether lq’s start node
or end node is met.

Next, network expansion is repeated to identify all sensitive links until all unvisited
nodes are too far away from pos (lines 12–19). For each fully sensitive link, all objects
on it enter the initial result (line 18). Each partially sensitive link needs to be searched
for the objects that are really covered by the query range (line 16). Similar to the case
for lq above (lines 8–11), relevant operations are carried out on hash tables Hlq and Hq .

4.4 Shared Concurrent-Query Maintenance

Shared maintenance of concurrent range monitoring queries occurs when the server re-
ceives a registration, deletion or update message from an object. The pseudo code for
the shared maintenance mechanism is shown in Figure 9. The maintenance mechanism

Distributed, Concurrent Range Monitoring 415

Algorithm queryUpdate(id, pos,L′
f , L′

p)
Input: id is the query identifier; pos is the new location of query point

L′
f is the updated fully sensitive link list; L′

p is the updated partially sensitive link list
Output: the updated result
1. foreach link li ∈ Hq(id).Lf

2. if (li �∈ L′
f)

3. Remove li from Hq(id).Lf ; Remove li’s objects from Hq(id).R;
4. else Remove li from L′

f ;
5. foreach link li ∈ L′

f

6. Add li to Hq(id).Lf ; Retrieve li’s objects to Hq(id).R;
7. foreach link li ∈ Hq(id).Lp

8. if (li �∈ L′
p)

9. Remove li from Hq(id).Lp; Remove li’s objects from Hq(id).R;
10. foreach link li ∈ L′

p

11. Add li to Hq(id).Lp; Search li and add resultant objects to Hq(id).R;
12. return R;

Fig. 10. Support for moving queries

identifies all the relevant queries from Hlq by hashing given link identifiers. If the mes-
sage from an object is a deletion (indicated by a negative oid in line 1), the object is
removed from the results of all relevant queries by means of the link-to-query hash ta-
ble (line 2). Upon receiving a first-time report, if link lnk is a fully sensitive link of
some query (i > 0 in line 7) or the object is within the query range of pos on a par-
tially sensitive link, the object is reported (line 8). For an update on the same link, any
query having link lnk as a fully sensitive link is skipped (line 11) as no result change
occurs, while any query having lnk as a partially sensitive link needs further checking
(lines 12–16). For an update involving a link change, the object is removed from the re-
sults of current relevant queries if necessary (lines 18–20), and it is added to the results
of new relevant queries if necessary (lines 21–25).

4.5 Support for Moving Queries

A monitoring query may change its position, e.g., because it is attached to a moving
object. We term this a moving query. Naturally, such queries can be supported by ter-
minating the old query and initiating the new query when such an update in the position
of a query happens. This approach is already supported by the proposals presented thus
far. However, we can do better. With our hash-based data structures available, we do
not need to re-evaluate the new, or updated, query from scratch.

We apply a simplified variation of algorithm monitorInit (Figure 8). This algorithm
uses network expansion to identify the updated fully (partially) sensitive link list L′

f

(L′
p) with respect to the query’s new query point without searching them. Then the up-

date procedure shown in Figure 10 is invoked. Each expired fully sensitive link, together
with those objects on it, is removed (lines 2–3); for any new fully sensitive link, objects
on it are included in the result (lines 5–6). Each expired partially sensitive link, together
with the objects on it, is removed (line 8–9). Each remaining/new partially sensitive
link is searched, and the qualifying objects are included in the result (lines 10–11).

416 H. Lu et al.

To support moving queries efficiently as detailed above, a minor change to the result
(R) data structure in needed. It must consist of a hash table that maps link identifiers to
the lists of objects on the links. This facilitates the necessary link-based objects removal
in the algorithm above.

5 Empirical Performance Study

We first study the server-side design and then consider the client side.

5.1 Server Side Experiments

Settings. To obtain good server-side performance, we have proposed two strategies:
that of shifting part of the server load to the clients by letting them report host links; and
that of processing concurrent queries in a shared manner. These two strategies are or-
thogonal. Therefore, by varying each of them, we obtain four different system schemes,
as listed in Table 1. In the horizontal dimension, clients report either their locations
(XY) or their host links (ID). In the vertical dimension, the server processes concurrent
queries either one by one in an isolated way (I) or in a shared manner (S). Conse-
quently, IXY, IID, SXY, and SID represent four possible system schemes. In the *XY
schemes, upon receiving a client report, the server invokes an additional procedure that
identifies the host link via the link R-tree and link index before further processing. In
the I* schemes, the link hashing table (Hlq) does not contain the list LQ that contains
the queries on a link. In the experiments, we compare these four system schemes to
investigate the performance gains of the proposed strategies.

We used Brinkhoff’s generator and the road network of Oldenburg [4], to generate
network-based moving object workloads of 1K to 10K moving objects. Each workload
is active for 1000 time stamps. At each time stamp, new objects come to be active,
existing objects report to the server, and/or existing objects stop being active. The max-
imum object velocity is varied from 10 to 100 map units per time stamp. We generated
static query sets of 1K to 10K queries. Each static query is produced as follows. First,
a road network link is selected at random from all links. Then a position on that link is
chosen at random as the query point (by choosing a line segment of that link at random
and interpolating with a random ratio along that segment). Finally, the query range is
decided as a multiple (randomly picked from 1, 2 to 5) of the length of the host link just
selected. For the mobile query sets, we made the moving objects as query issuers, and
determined the query ranges in the same way as for static queries. The parameters used
in the experiments are listed in Table 2. The values in bold are the default settings used
when their corresponding parameters are fixed. We implemented all system schemes in
Java (JDK 1.4), and conducted all experiments on a Pentium IV desktop PC running
MS Windows XP with a 3.00GHz CPU and 1GB RAM.

Experimental Results on Static Query Sets. We consider two performance metrics:
(1) the amortized CPU time spent on query processing per time stamp and (2) the av-
erage main memory consumption per time stamp. Each experiment ran for 1000 time
stamps, with all queries active from start to finish.

Distributed, Concurrent Range Monitoring 417

Table 1. Different system schemes

Client report

Query execution Object Location Host Link ID

Isolated IXY IID
Shared SXY SID

Table 2. Parameters used in experiments

Parameter Setting

Total time stamps 1000
Moving object card. 1K, 2K, . . . , 10K
Max object vel. 10, 20, . . . , 50, . . . , 100
Query sets card. 1K, 2K, . . . , 10K
Query range multiple 1, 2, . . . , 5

To understand the effect of object cardinality on CPU time, we varied the cardinality
from 1K to 10K. The results are reported in Figure 11(a). SID always performs signifi-
cantly better than other schemes, while IXY is always the worst. SID saves considerable
CPU time in the processing of network distance based queries by not only executing rel-
evant concurrent queries in a shared fashion, but also exploiting the clients’ capabilities
to determine host links. For object cardinalities up to 6K, SXY outperforms IID; the
opposite is seen when the cardinality exceeds 6K. For small object sets, the shared ex-
ecution of concurrent queries has the largest effect. However, for large object sets, the
host link ID reporting strategy becomes crucial, because the server needs to process
much more frequent update reports from the clients; thus, host link IDs in the reports
save significant CPU time. As object cardinality increases the CPU time cost of SID
grow slowly, which certainly demonstrates that it is scalable.

The results reported in Figure 11(b) show the effect on CPU time of the maximum
object velocity, which we varied from 10 to 100 map units per time stamp. Not sur-
prisingly, SID remains the best and most scalable scheme because it uses both efficient
strategies. The relative performance for SXY and IID is alike to that for the previous ex-
periment. As the objects move faster, their updates to the server become more frequent,
which finally renders the host link ID reporting strategy crucial.

To see the effect of query cardinality on CPU time, we varied it from 1K to 10K. The
results are reported in Figure 11(c). Due to the lack of shared execution, IXY and IID
degrade badly as more and more concurrent monitoring queries exist in the system. In
contrast, SXY and SID both perform steadily because of the shared execution strategy.
The slight improvements from 9K to 10K are due to more overlaps of sensitive links
among different queries caused by the larger number of concurrent queries.

The results reported in Figure 11(d) show the effect on CPU time of the query range
multiple, which we varied from 1 to 5. A larger query range means that more links are
covered by queries. Shared execution helps alleviate the burden caused by additional
sensitive links, as indicated by the better performance of SXY and SID. Nevertheless,
SXY degrades much more than SID because the latter benefits substantially from host
link ID reporting when many links are involved.

The experiments above also observed memory consumption, as shown in Figure 12.
For memory cost, we only consider the data structures used to process the queries. As
SXY (IXY) and SID (IID) use the same data structure on server side, we only compared
the costs of the “Shared” and “Isolated” schemes. We see that the shared scheme con-
sumes moderately more memory than the isolated scheme. This additional cost is due

418 H. Lu et al.

10

9

8

7

6

5

4

3

2

1

0
10K9K8K7K6K5K4K3K2K1K

C
P

U
 c

os
t p

er
 ti

m
es

ta
m

p
(s

)

Object cardinality

IXY
IID

SXY
SID

(a) Object cardinality

10

9

8

7

6

5

4

3

2

1

0
100908070605040302010

C
P

U
 c

os
t p

er
 ti

m
es

ta
m

p
(s

)

Object maximum velocity

IXY
IID

SXY
SID

(b) Object velocity

10

9

8

7

6

5

4

3

2

1

0
10K9K8K7K6K5K4K3K2K1K

C
P

U
 c

os
t p

er
 ti

m
es

ta
m

p
(s

)

Query cardinality

IXY
IID

SXY
SID

(c) Query cardinality

4

3

2

1

0
54321

C
P

U
 c

os
t p

er
 ti

m
es

ta
m

p
(s

)

Query range multiple

IXY
IID

SXY
SID

(d) Query range

Fig. 11. CPU times on static query sets

2

1.5

1

0.5

0
10K9K8K7K6K5K4K3K2K1K

M
em

or
y

co
st

 p
er

 ti
m

es
ta

m
p

(M
B

)

Object cardinality

Shared
Isolated

(a) Object cardinality

2

1.5

1

0.5

0
100908070605040302010

M
em

or
y

co
st

 p
er

 ti
m

es
ta

m
p

(M
B

)

Object maximum velocity

Shared
Isolated

(b) Object velocity

6

5

4

3

2

1

0
10K9K8K7K6K5K4K3K2K1K

M
em

or
y

co
st

 p
er

 ti
m

es
ta

m
p

(M
B

)

Query cardinality

Shared
Isolated

(c) Query cardinality

4

3

2

1

0
54321

M
em

or
y

co
st

 p
er

 ti
m

es
ta

m
p

(M
B

)

Query range multiple

Shared
Isolated

(d) Query range

Fig. 12. Memory costs on static query sets

150

100

50

0
10K9K8K7K6K5K4K3K2K1K

C
P

U
 c

os
t p

er
 ti

m
es

ta
m

p
(s

)

Mobile query cardinality

SID

(a) CPU vs cardinality

8

7

6

5

4

3

2

1

0
10K9K8K7K6K5K4K3K2K1K

M
em

or
y

co
st

 p
er

 ti
m

es
ta

m
p

(M
B

)

Mobile query cardinality

SID

(b) Mem. vs cardinality

60

50

40

30

20

10

0
100908070605040302010

C
P

U
 c

os
t p

er
 ti

m
es

ta
m

p
(s

)

Mobile query maximum velocity

SID

(c) CPU vs velocity

6

5

4

3

2

1

0
100908070605040302010

M
em

or
y

co
st

 p
er

 ti
m

es
ta

m
p

(M
B

)

Mobile query maximum velocity

SID

(d) Mem. vs velocity

Fig. 13. Results on mobile query sets

to the link-to-query mapping in Hlq . As the query cardinality increases, more entries
are maintained in the query hash table (Hq). This leads to the memory cost increase in
both schemes, as shown in Figure 12(c). As the query range increases, more links are
maintained in the sensitive-link lists. This explains the observation in Figure 12(d) that
the memory costs grow as query range increases. The (almost) linear growing patterns,
together with the fact that neither object cardinality nor velocity impact the memory
consumption, indicate that our techniques are scalable.

Experimental Results on Mobile Query Sets. For this set of experiments, we let all
moving objects send continuous range monitoring queries to the server with the query
points being their current positions. Each moving object issues a continuous query when
it sends a REG message to the server, and the query is updated when update reports are
received by the server. When a DEL message is received, the object’s mobile query is
terminated. As SID is shown to be the most efficient scheme in Section 5.1, we only
consider SID for the mobile query sets. Each experiment also ran for 1000 time stamps.

Distributed, Concurrent Range Monitoring 419

We first varied the mobile query cardinality, i.e., the number of moving objects, from
1K to 10K. The CPU costs are shown in Figure 13(a). As expected, the CPU cost is
much higher compared to those obtained for static query sets—mobile queries invoke
extra updates. Figure 13(b) shows that as the mobile query cardinality increases, the
memory cost grows at a rate close to what is seen for static queries (Figure 12(c)). This
is because mobile queries use the same query hash as do static queries, and almost need
no extra memory space except the special mappings facilitating result removal.

Next we fixed the mobile query cardinality at 2K and varied the query velocity from
10 to 100. Results are reported in Figure 13(c) and 13(d). Faster mobile queries lead to
more frequent server-side computations, updating both the objects position information
and the query results. This trend is consistent with the results shown in Figure 13(c).
As seen in Figure 13(d), the memory cost does not change much as the query velocity
changes; the memory cost is affected mainly by the query cardinality. We also varied the
mobile query range multiple from 1 to 5 to observe its effect on the SID performance.
Both CPU time and memory cost exhibit slight variation as the query range changes,
and they are very close to their counterparts on the 2K mobile query set covered in
Figure 13(a) and 13(b). Due to the space limitation we omit the graphs here.

5.2 Client Side Experiments

We implemented our client design using SuperWaba [1], a Java-based open-source plat-
form for mobile terminal applications development. We conducted a set of experiments
on an HP iPAQ h6365 pocket PC, running MS Windows Mobile 2003 with a 200MHz
processor and 55MB user accessible SDRAM.

Our main concern is to determine how much extra CPU time is spent on our spe-
cial client design that involves the reporting of host links, compared to a usual mobile
handset client that only reports coordinate locations to the server. We used the moving-
object workloads generated in Section 5.1. For each data set, our client program on the
pocket PC processes all location updates for each network-constrained moving object.
For each object, the extra CPU time is accumulated and finally amortized across all time
stamps. We then report the average of all objects’ amortized extra CPU time costs.

The results reported in Figure 14(a) are those gained for moving objects of 1K to
10K. It is seen that at each time stamp, the client’s extra CPU time cost is close to
6 milliseconds, which is negligible compared to the gain we achieved by shifting the
server load to the clients, according to the results reported in Figure 11(a). This demon-

 0

 2

 4

 6

 8

 10

10K9K8K7K6K5K4K3K2K1K

E
xt

ra
 C

P
U

 c
os

t p
er

 ti
m

es
ta

m
p

(m
s)

Object cardinality

A single client

(a) CPU vs object cardinality

 0

 2

 4

 6

 8

 10

 12

 14

100908070605040302010

E
xt

ra
 C

P
U

 c
os

t p
er

 ti
m

es
ta

m
p

(m
s)

Object maximum velocity

A single client

(b) CPU vs object velocity

Fig. 14. Additional CPU times on client side

420 H. Lu et al.

strates the benefit of our shifting strategy again. We also investigated the effect of the
maximum object velocity on the client side CPU time. The results are reported in Fig-
ure 14(b). During a fixed active period, as an object moves faster, it produces more
location updates and tends to invoke more data retrieval because it moves out of the
current display window. Consequently, the extra CPU time costs due to host link identi-
fication decreases as the navigation module in our design contributes more by triggering
a simple update procedure with known hosts, described in Section 3.3. Therefore, the
amortized cost over time stamps decreases in spite of more updates occurring. The ob-
servations provide evidence that our client design is effective in taking advantage of the
navigation module, whose own costs increase as the object moves faster independently
of whether our specific additional design is present or not.

6 Related Work

Several research results have recently been reported that concern spatial-network con-
strained moving objects. Shahabi et al. [19] employ an embedding technique to trans-
form a road network to a higher dimensional space, where shortest paths between orig-
inal network points are computed and used to help pruning in kNN search based on
network distance. Jensen et al. [12] formalize the data model and problem definition for
nearest neighbor queries in road networks, and they adapt Dijkstra’s algorithm [7] to
compute the nearest neighbors for a mobile query point on the fly. Cho and Chung [6]
consider continuous kNN queries aiming at static points of interest in a road network,
whereas we query against mobile objects in this paper. Mouratidis et al. [14] address
continuous kNN monitoring for spatial network constrained moving objects. They em-
ploy specific tree structures to support the shared execution of multiple kNN monitor-
ing queries. In contrast, we use simple yet efficient hashing tables for concurrent range
monitoring queries. All these works [6,12,14,19] assume that a central data server is
solely responsible for the query processing. Our work differs in that we exploit the
computing capabilities of the mobile terminals to aid the server in the query processing.

The idea of shifting work from the server to the clients has been addressed in the con-
text of monitoring free-moving objects. Gedik and Liu [9] propose a distributed mobile
system architecture, in which relevant monitoring query information is installed on mo-
bile clients, enabling them to delay update reports to the server and process queries
locally. Cai et al. [5] identify a resident domain for each mobile client, which in turn
reports to the server only when it enters/leaves a resident domain so that queries can be
updated correctly. Hu et al. [11] propose to use safe regions for the send mobile clients,
within which continuous spatial monitoring results do not change. These techniques,
however, are not applicable to our problem concerning network-constrained moving
objects and network distance-based queries.

7 Conclusion

In this paper, we have proposed a full-fledged, novel solution to the continuous range
monitoring of moving objects in a road network setting. The proposal takes advantage
of the computing capabilities of mobile terminals to off-load computation from the

Distributed, Concurrent Range Monitoring 421

server-side to the moving objects, and the server groups relevant concurrent queries
together and then processes the queries in each group in a shared fashion. Extensive
experiments with the prototype implementation capture the performance characteristics
of the proposal, and suggest that the proposal is efficient and applicable in practice.

Acknowledgments

The work of Hua Lu, Zhiyong Huang and Linhao Xu was in part funded by A*STAR
under grant no. 032 101 0026. Christian S. Jensen is also an adjunct professor at Agder
University College, Norway. His work was funded in part by the Danish Research
Agency’s Programme Commission on Nanoscience, Biotechnology, and IT.

References

1. Superwaba (2006), http://www.superwaba.com
2. de Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in networks.

Geoinformatica 9(1), 33–60 (2005)
3. de Almeida, V.T., Güting, R.H.: Using Dijkstra’s algorithm to incrementally find the k-

nearest neighbors in spatial network databases. In: Proc. ACM SAC, pp. 58–62. ACM Press,
New York (2006)

4. Brinkhoff, T.: A framework for generating network-based moving objects. Geoinformat-
ica 6(2), 153–180 (2002)

5. Cai, Y., Hua, K.A., Cao, G.: Processing range-monitoring queries on heterogeneous mobile
objects. In: Proc. MDM, pp. 27–38 (2004)

6. Cho, H.-J., Chung, C.-W.: An efficient and scalable approach to CNN queries in a road
network. In: Proc. VLDB, pp. 865–876 (2005)

7. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

8. Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T., Manolopou-
los, Y., Roddick, J.F., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 289–305.
Springer, Heidelberg (2003)

9. Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries on
moving objects in a mobile system. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y.,
Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 67–87. Springer, Heidelberg (2004)

10. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM SIG-
MOD, pp. 47–57. ACM Press, New York (1984)

11. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries
over moving objects. In: Proc. ACM SIGMOD, pp. 479–490. ACM Press, New York (2005)

12. Jensen, C.S., Kolár, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks.
In: Proc. ACM GIS, pp. 1–8. ACM Press, New York (2003)

13. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous
queries in spatio-temporal databases. In: Proc. ACM SIGMOD, pp. 623–634. ACM Press,
New York (2004)

14. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor moni-
toring in road networks. In: Proc. VLDB, pp. 43–54 (2006)

15. Ooi, B.C., Tan, K.-L., Yu, C.: Frequent update and efficient retrieval: an oxymoron on moving
object indexes? In: Proc. WISE Workshops, pp. 3–12 (2002)

http://www.superwaba.com

422 H. Lu et al.

16. Pfoser, D., Jensen, C.S.: Indexing of network constrained moving objects. In: Proc. ACM
GIS, pp. 25–32. ACM Press, New York (2003)

17. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: Proc. VLDB, pp. 802–813 (2003)

18. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing and
velocity constrained indexing: Scalable techniques for continuous queries on moving objects.
IEEE Trans. Computers 51(10), 1124–1140 (2002)

19. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for
k-nearest neighbor search in moving object databases. In: Proc. ACM GIS, pp. 94–100. ACM
Press, New York (2002)

Compression of Digital Road Networks�

Jonghyun Suh1, Sungwon Jung1, Martin Pfeifle2,
Khoa T. Vo3, Marcus Oswald3, and Gerhard Reinelt3

1 Department of Computer Science, Sogang University, Seoul, Korea
{joe77,jungsung}@sogang.ac.kr

2 Siemens VDO Automotive, Regensburg, Germany
martin.pfeifle.ext@siemensvdo.com

3 Department of Computer Science, University of Heidelberg, Germany
{khoa.vo,marcus.oswald,gerhard.reinelt}@informatik.uni.heidelberg.de

Abstract. In the consumer market, there has been an increasing inter-
est in portable navigation systems in the last few years. These systems
usually work on digital map databases stored on SD cards. As the price
for these SD cards heavily depends on their capacity and as digital map
databases are rather space-consuming, relatively high hardware costs go
along with digital map databases covering large areas like Europe or the
USA. In this paper, we propose new techniques for the compact stor-
age of the most important part of these databases, i.e., the road network
data. Our solution applies appropriate techniques from combinatorial op-
timization, e.g., adapted solutions for the minimum bandwidth problem,
and from data mining, e.g., clustering based on suitable distance mea-
sures. In a detailed experimental evaluation based on real-world data, we
demonstrate the characteristics and benefits of our new approaches.

1 Introduction

In the last few years, the demand for portable navigation systems has steadily in-
creased. In Germany, for instance, in 2006 more than four times as many systems
were bought than in the previous year. Obviously, the higher the data coverage,
the higher the benefit for the end user. Unfortunately, high data coverage goes
along with high hardware cost. The compressed storage of digital map databases
is beneficial not only for SD cards but also for traditionally used DVDs, since it
leads to an enormous reduction of time-critical I/O operations. Thus, one of the
ultimate goals for the database providers is to store digital map databases in an
extremely size-effective way.

In a very complex process, which often takes several days, digital map data-
bases are transformed from a rather space-consuming raw data format, e.g., in
some GDF-flavour, into a compressed format useful for navigational applica-
tions. The time required for generating such compressed digital map databases
is not very critical as it is done “off-line.” On the other hand, decompressing
� This work was supported in part by KOSEF grant No. R01-2006-000-10536-0(2007)

and in part by the Brain Korea 21 Project in 2007.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 423–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

424 J. Suh et al.

junction nodes

- at tile borders additional junction nodes are created

- junction nodes of original and compressed database are identical

shape points describing the shape of link segments

- original road segment and compressed one

have always the same amount of shape points

- shape points of the compressed segments have a certain

maximum error to the respective shape points of the

uncompressed segment

- maximum error between original segment (n6, n7)

and compressed one.

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8n

10

n
9

original link segments

compressed link segments

one tile containing 10 nodes n1 to n10 and 10 edges

junction nodes

- at tile borders additional junction nodes are created

- junction nodes of original and compressed database are identical

shape points describing the shape of link segments

- original road segment and compressed one

have always the same amount of shape points

- shape points of the compressed segments have a certain

maximum error to the respective shape points of the

uncompressed segment

- maximum error between original segment (n6, n7)

and compressed one.

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8n

10

n
9

original link segments

compressed link segments

one tile containing 10 nodes n1 to n10 and 10 edges

Fig. 1. Road network within one tile

the database needs to be as efficient as possible because it is done repeatedly
“on-line” during the navigation process.

A central part of a digital map database is the routing building block which
contains information on the topological road network along with some addi-
tional geometric information on the positions of nodes and the shapes of links.
The topological road network is used for route calculation. The additional ge-
ometric information is used, for instance, for positioning, route guidance, and
map display. For route guidance, it is important that the exact positions of the
nodes, i.e., the junctions, are accurate in order to inform the driver in due time
to turn right or left. On the other hand, small deviations on the shapes of the
links are acceptable (cf. Figure 1).

In order to have handy loading units, most database providers partition the
road network into small cells, sometimes also called tiles or parcels. The cells can
either be created by strict Quadtree tiling of the data space or by some more
data oriented techniques like the creation of a KD-tree on the node data. In any
of the two partitioning cases there is a subgraph of the complete road network
stored in one tile (cf. Figure 1).

In this paper, we introduce techniques which reduce the size of the roadnetwork.
For the lossless compression of the topological information, an adaptation of the
most suitable solution for the minimum bandwidth problem is applied. Basically,
our algorithmorders the nodes of the roadnetwork in such a way that each edge can
be described by a small and limited number of bits. The lossless compression of the
geometrical information is done by finding for each node a suitable reference node
for encoding the positional differences. In this paper, we propose several different
solutions among which the use of minimal spanning trees on the road network is
the most promising one. Finally, for compressing the shapes of links, we exploit
the fact that there exist a lot of similar shapes in digital map databases. We cluster
all shapes based on a non-symmetric distance measure, and then extract suitable
representatives from the resulting clusters. Each shape in the digital map database
is represented by a reference to a pattern shape, if the thereby introduced error does
not exceed a maximum user-defined value.

The remainder of this paper is organized as follows: In Section 2, we survey
related work in the area of compressing digital road networks. In Section 3,

Compression of Digital Road Networks 425

we describe the topological compression of the road network, and in Section 4
the geometrical compression. Section 5 presents our experimental evaluation,
which is based on real-world data. We close this paper in Section 6 with a short
summary and a few remarks on future work.

2 Related Work

Traditionally, the road network data is stored in one big file and the data of
a certain tile is consecutively stored as one data chunk. Such a data chunk is
usually further divided into data describing the topology and data describing
the geometry.

2.1 Topology

Because road networks can be regarded as rather sparse graphs, the topology
of digital map databases is usually stored in some variant of an adjacency list.
Typically, the graph is assumed to be undirected. Directional along with other
information such as speed limit is stored separately for each link.

Assuming we are given an (arbitrary) node ordering (cf. Figure 1), we store
the graph as follows: First, we store the number of nodes n and the maximum
node degree dmax. Next, we store for each node the number of adjacent nodes.
For this we need at most 'log2 (dmax + 1)(bits. Next, the list of adjacent nodes
according to the node ordering follows. For each entry 'log2 (n + 1)(bits are
required. Note that we do not store edges twice. We only store them at the node
with the smaller node id. For the example of Figure 1, we would store the values
shown in Table 1.

Table 1. Storage of the topological information

Data Values (no. of bits) Remarks

n 10(16) 2 bytes for the no. of nodes per tile
dmax 4(8) 1 byte for the maximum node degree
node 1 1(3) 2(4) one edge: (n1, n2)
node 2 3(3) 3(4)4(4)10(4) three edges: (n2, n3), (n2, n4), (n2, n10)
node 3 0(3) zero edges
node 4 2(3) 5(4)6(4) two edges: (n4, n5), (n4, n6)
..

A small improvement of the approach outlined above would be to store only
the delta information of the node numbers rather than the absolute node values
when encoding edge information. Delta encoding is used in various applications,
e.g., HTTP, video codecs, image processing, and so on. Note that big differences
between the node numbers are still possible, even for those nodes connected by
an edge (cf. (n2, n10) in Figure 1 where the difference is still 8).

Basically, in the approach introduced in Section 3, we try to minimize the
maximum delta between node numbers for nodes connected to each other. For

426 J. Suh et al.

instance, if in Figure 1, we exchange the node numbers of node n10 and n7,
the maximum delta between two connected nodes decreases from 8 to 5, which
would allow encoding each edge using only 3 bits instead of 4 bits.

2.2 Geometry

Node Encoding. Based on an already existing node ordering, the longitude
and latitude values can be stored using delta encoding. Thereby, the longitude
and latitude values of the first node are stored absolutely, whereas for each
subsequent node only the positional difference to its predecessor node is stored.
A commonly used way to encode (absolute and delta) integer values is to use a
UTF-8 like notation, where the first bit indicates whether there is another byte
available belonging to this integer value. In [1] this approach is called variable-
byte approach. Although only 7 bits remain for encoding the (delta) integer
values, it is possible to encode a lot of small integer values by only one or
2 bytes instead of 4. Other useful techniques, in particular for encoding small
integer values, can also be found in [1], e.g., Elias Gamma and Delta compression,
or Golomb compression. Note that any kind of delta encoding fails to produce
good results if the reference node is far away, e.g., in Figure 1 the positions of
n8 and n9 differ greatly.

Since delta encoding has already been extensively discussed in the literatur,
we concentrate in this paper on the finding of suitable reference nodes (cf.
Section 4.1).

Shape Point Encoding. For reducing the size of the shape information the
Douglas-Peucker Algorithm [2] is often used (cf. Figure 2). Basically, the algo-
rithm removes shape points as long as the thereby introduced error is smaller
than a user-defined threshold ε. In Section 4.2, we propose a completely different
and new approach exploiting similarities between shapes rather than trying to
compress shapes individually.

3 Topological Compression

In Section 2.1, we showed that traditional approaches require 'log2 (n + 1)(bits
for encoding a single edge within a tile containing n nodes. The basic idea of this

– Find nf, farthest point from (ni, nj) at distance d
– If d < , include (ni, nj) in the simplified line
– Otherwise split at nf and evaluate recursively

ni

nj

nf

d

ni

nj

nf

Original polygon

Approximated polygon

Original polygon

Approximated polygon

approximation step
(compression)

Fig. 2. Douglas-Peucker algorithm

Compression of Digital Road Networks 427

section is to order the nodes in such a way that we need a much smaller number
of bits for encoding each single edge. To achieve this goal, we adapt solutions for
the bandwidth minimization problem which allows us to store a single edge with
only 'log2 (UBbdw + 1)(bits where UBbdw reflects an approximated upper-bound
solution of the problem.

3.1 Bandwidth Minimization Problem

The bandwidth minimization problem is a classical combinatorial optimization
problem that has been studied since around 1960. It is formulated as follows. Let
G = (V, E) be an undirected graph with node set V , where |V | = n, and edge
set E, where |E| = m. The task is to find a labeling l of the nodes with numbers
1 through n such that the maximum difference |l(u) − l(v)|, for (u, v) ∈ E, is
minimized. The name itself originates from an equivalent matrix problem. Given
an (n, n)-matrix M , the bandwidth problem consists of finding a simultaneous
permutation of the rows and columns of M such that the distance of nonzero
elements to the main diagonal is as small as possible, i.e., to obtain a permuted
matrix of minimum bandwidth. Figure 3 shows an example with the original
matrix on the left and the permuted matrix with reduced bandwidth on the right.
The equivalence between the two formulations can be observed when forming
the adjacency matrix of the graph. Then the minimum bandwidth of this matrix
corresponds to an optimal node ordering. Thereby, optimality means that the
maximum distance in the node ordering between two arbitrary nodes, which are
connected to each other in the graph, is as small as possible.

The problem is NP-hard [3], even for binary trees [4]. Due to this difficulty,
algorithms computing optimum solutions are very time consuming in general
and therefore heuristics are used for finding good approximate solutions. To
assess the quality of solutions it is important to compute lower bounds for the
optimum value. The distance between lower and upper bound is called solution
gap. Currently, the best exact method is the branch-and-bound algorithm BB
developed by Caprara and Salazar [5]. They also introduce two formulae for

Fig. 3. Matrix bandwidth minimization

428 J. Suh et al.

computing lower bounds efficiently. The best heuristic approach is the algorithm
SS TS (Scatter search with Tabu search) by Campos, Piñana, and Mart́ı [6].
However, the solution gap stays very large. For example, BB takes 36 minutes
for a rather sparse graph of 200 nodes, and results in a lower bound of 54 and
an upper bound of 84. SS TS takes 100 seconds for this graph yielding the lower
bound 57 and the upper bound 67.

For our application, we do not necessarily need to find the optimal bandwidth
of a graph. Since we use binary encoding, a bandwidth of 8 yields the same
compression ratio as a bandwidth of 15, and the bandwidth 63 is as good as the
bandwidth 32. In other words, if we find a solution gap that is contained in an
interval [2k−1, 2k − 1] for some k, then we know that the optimal solution for
encoding the edges requires k bits. Note that the computation of the upper bound
value UBbdw should also yield a concrete node ordering. This node ordering can
then be used for storing the topology of the road network as described in Section
2.1 by using only 'log2(UBbdw +1)(bits instead of 'log2(n+1)(bits for encoding
an edge.

Since a road network database is huge, containing up to a hundred thousand
tiles each containing around 250 nodes, faster heuristics than existing ones are
required.

Definitions and Notations. Let G = (V, E) be a connected graph. The degree
of a node v is the number of nodes adjacent to v. Given two nodes u, v ∈ V ,
d(u, v) denotes the distance between u an v, i.e., the number of edges lying on
the shortest path from u to v. d(u, V) denotes the maximum distance between
u to nodes in V .

For a subset S ⊆ V we define its diameter d(S) = max{d(u, v) : u, v ∈ S},
which is the maximum distance between two nodes of S.

A level structure is a partition of V into sets L1, L2, . . . , Lk called levels. If
node u ∈ Li is adjacent to node v ∈ Lj, then |i− j| ≤ 1.

The width of a level is the number of nodes contained in it. The width of a
level structure is the maximum width among its levels. A level structure Lv(G)
rooted at v satisfies L1 = {v}, and for every i > 1, Li is the set of all nodes
adjacent to nodes in Li−1 that have not yet been assigned to any level. (In other
words, nodes in level Li are at distance i − 1 from v.) Obviously, Lv(G) can
easily be obtained with breadth-first-search started at v.

3.2 Lower Bound Computation

In [5], Caprara and Salazar gave the following two lower bounds on the minimum
bandwidth of a graph:

γ(G) = minv∈V max
{⌈

|Nk(v)|−1
k

⌉ ∣∣∣∣ k = 1, . . . , d(v, V)
}

α(G) = maxv∈V max
{⌈

|Nk(v)|−1
2k

⌉ ∣∣∣∣ k = 1, . . . , d(v, V)
}

where Nk(v) is the set of nodes with distance at most k from v.

Compression of Digital Road Networks 429

These two lower bounds γ(G) and α(G) can be computed in O(nm) time
because, for every v ∈ V , it takes linear time O(m) to compute the breadth-
first-search tree rooted at v.

3.3 Upper Bound Computation

As the computation of the upper bound mentioned in section 3.1 has to be
applied to hundred thousand tiles in a couple of days, each one is limited only to
a few seconds. Therefore neither the best exact method [5] nor the best heuristic
[6] are appropriate for our application. Instead, we improve the fast heuristic
proposed by Gibbs, Poole, and Stockmeyer [7]. It can be described as follows.

(1) Find endpoints of a pseudo diameter
An attempt is made to find two nodes with nearly maximal distance. The
procedure selects nodes v of minimal degree and generates level structures
rooted at v. Then it chooses a node u in the last level of the level structure
of smallest width and returns u and v.

(2) Minimize level width
As level structures of smaller width result in a smaller bandwidth, this step
generates two level structures rooted at u and v, then combines these two
level structures into one, which usually has smaller width.

(3) Node numbering
Labels to nodes in the combined level structure are assigned consecutively
from 1 to n level by level, labeling nodes with smaller degree first.

Our improvement uses the fact that the set Nk(v), or a level structure rooted
at v, has to be computed for each node v to compute the lower bound. In ad-
dition, because the numbering step is consecutive, the algorithm result depends
largely on the way nodes are arranged in each level. The improvement is as
follows:

(1) Find nodes generating level structures of minimal width
From the lower bound computations we obtain, find level structures with
exact minimal width, instead of nearly minimal width as in the original
algorithm.

(2) Generate and test
Given the list of nodes of the previous step, we apply steps (2) and (3) of
the original algorithm, and select the labeling with smallest bandwidth.

The worst case complexity is O(nm) for finding the list, and O(n2 log(n)) for
assigning and getting the best bandwidth, so the overall complexity is O(nm +
n2 log(n)).

4 Geometrical Compression

In this section, we examine the geometrical compression of a road network. The
position of node and shape points is usually given by two 4-byte integer values

430 J. Suh et al.

d) clustering,

e.g. CLARANS

e) minimum

spanning trees

(complete graph)

x
x

x

road network

of one tile

a) bandwidth ordering b) bandwidth ordering

(reference out of UB
bdw

many predecessors)

f) minimum

spanning trees

(road network graph)

x

x

c) space filling curve

e.g. z-curve

xx
1

2

4

9

6

7

10

8

5

3

1

2

4

9

7

10

8

5

3

x

6

road links

delta information

x absolute information

node positions

legend

Fig. 4. Compression of node positions

representing longitude and latitude values. As already mentioned, for application
areas like guidance, it is critial that we have a lossless compression of the nodes,
i.e., junctions. On the other hand, a slight positional deviation for shape points
is acceptable (cf. Figure 1).

4.1 Node Compression

In order to keep from spending 8 bytes every time a position is encoded, delta
encoding is usually applied (cf. Section 2.2). For delta encoding, it is necessary
to encode the position of a point by referring to a nearby point. For encoding
deltas, an appropriate function, e.g., one of the approaches explained in [1], can
be used. In this subsection, we discuss several approaches to finding appropriate
reference points (cf. Figure 4).

Bandwidth Ordering (Fixed Reference Node). In Section 3, we introduced
a node ordering that allows storing the edges, i.e., the topological information,
very compactly. Obviously, we can use the same ordering for encoding the node
positions (cf. Figure 4(a)). The positions of the first nodes are stored with ab-
solute values whereas the positions of the following nodes are stored relative to
the position of their preceding node. The advantage of this approach is that we
do not need additional references from the list of node positions to the topolog-
ical node ordering since they are identical. The disadvantage is that rather big
deltas between consecutive nodes are still possible, e.g., the position of nodes 3
and 4 differ considerably in Figure 4(a), thus requiring many bits for encoding
the deltas.

Bandwidth Ordering (Variable Reference Node). The idea behind the
approach in Figure 4(b) is to not always use the direct predecessor node from
the bandwidth ordering as the reference node, but rather the best one out of
the UBbdw many predecessors. Note that if there is an edge between ni and nj

Compression of Digital Road Networks 431

where i < j, we can encode the position of nj by using ni as reference because
the distance in the bandwidth ordering between ni and nj is smaller than or
equal to UBbdw. Figure 4(b) shows that the resulting deltas, e.g., the ones for
node 4 or 6, are much smaller than in Figure 4(a), and can therefore be stored
in a more compact way. On the other hand, besides the delta information, we
have to store 'log2 (UBbdw + 1)(bits for each node for describing the reference
node. Note that we choose as reference node not necessarily the one with the
smallest distance to the current node, but the one where we need the smallest
number of bits for encoding the delta values.

Space Filling Curves. The idea of the approach in Figure 4(c) is to order
the nodes according to a space-filling curve, e.g. Z-curve [8], or Hilbert-curve
[9]. The disadvantage of this approach is that the node ordering is not related
to the topological ordering. Thus, we have to store at each node a reference to
the corresponding node in the topological ordering, consuming n×'log2 (n + 1)(
additional bits.

Clustering. Based on clustering, we can find central points within our point sets
that can be used as reference points (cf. Figure 4(d)). A suitable algorithm for our
needs is CLARANS [10]. Based on a certain distance measure, CLARANS deter-
mines a user-defined number k of representative objects. Each database object is
assigned to exactly one representative. Based on an efficient heuristic CLARANS
tries to minimze the sum of all distances from the database objects to their rep-
resentatives. Although we could use some Lp distance measure, it is more appro-
priate to use the number of bits which are necessary for encoding the deltas. The
k representative objects are stored absolutely whereas for the remaining (n− k)
objects deltas can be stored. Similar to the approaches in Figure 4(c) and (e),
we need n× 'log2 (n + 1)(bits for references to the topological information.

Minimum Spanning Trees (Complete Graph). The idea of the approach
in Figure 4(e) is to compute the minimum spanning tree for the set of nodes.
If we label the nodes of the graph with their topological unique numbers, we
can store the minimum spanning trees as a Pruefer-tree [11]. The overhead for
connecting the minimum spanning tree to the topological road network is also
n × 'log2 (n + 1)(bits. Figure 4 indicates that in this approach the deltas are
smaller than in the other approaches.

Minimum Spanning Trees (Road Network Topology). The idea in this
approach is to restrict the minimum spanning tree to the current road network
(cf. Figure 4(f)). The motivation behind this approach is that we need many
fewer bits for connecting the geometrical data to the topological data than the
approach above. On the other hand, the quality of the resulting minimum span-
ning trees is expected to be almost as good as on the complete graph. For
instance, in Figure 4 the two approaches differ only in one edge. In areas where
we have many physical dividers like rivers or mountains, the two spanning trees
might differ more. But in the majority of real world road networks, especially
in cities, the two minimium spanning trees are likely to be similar. A minimum

432 J. Suh et al.

spanning tree on top of the road network can be stored efficiently by using a
bit vector for the edges. Note that in Section 2.1, we defined not only a node
ordering but also an ordering of the edges, i.e., first all the edges following node
n1, then the edges following node n2, etc.. In the edge bit vector, we set a bit
if the corresponding edge is part of the minimum spanning tree. Thus, we can
connect the geometrical node positions to the topological ordering by m = |E|
additional bits. Note that for a typical sparse road graph consisting of 100 to
1000 nodes m n× 'log2 (n + 1)(holds.

4.2 Compression of Shapes

In this section, we describe the compression of the road shapes. The shapes are
usually represented by a sequence of shape points which are piecewise linearly
connected. Each point consists of a pair of integer values representing its longi-
tude and latitude. As the node positions are fixed (cf. Section 4.1), the remaining
question is how to store the n additional shape points of a segment. In the fol-
lowing, we first describe the general idea of our new lossy compression technique,
followed by technical details regarding the distance measure and the clustering
algorithm used.

General Idea. The new idea behind our approach is that we do not compress
shapes individually but rather try to compress shapes by exploiting similarities
between them. A shape consists of two endpoints and n additional 2-dimensional
points. Formally, it is defined as follows:

Definition 1. A shape s =< s0, s1, ..., sn, sn+1 > is defined as a sequence of
n + 2 2-dimensional points for which sstart = s0 	= send = sn+1 and sstart.x ≤
send.x holds. The norm |s| of a shape is defined as |s| = |send − sstart| and the
angle αs is defined as αs = arctan send.y − sstart.y

send.x− sstart.x
.

n1

n2 n5

n3

n4

pattern table (2 shape points)

…

…
ID shape

4711

p0= pstart

p1

p2

p3
p4= pend

one road network tile

pattern table (1 shape point)

…
ID shape

pattern table (3 shape points)

…
ID shape

…

p

|p|

p

Fig. 5. General idea of lossy shape compression

Besides the above defined values s, αs, and |s|, Figure 5 shows the general idea
of our approach. Basically our approach works in the following steps:

– Group segments together according to their number of shape points. This
grouping is based on the complete database and is not restricted to individual
tiles.

Compression of Digital Road Networks 433

– For each group find suitable representative shapes and store them normalized
in a global pattern table.

– Replace shapes in the database by references to pattern elements if thereby a
maximum allowed error is not exceeded, e.g., in Figure 5 shape p represents
(n2, n5) and (n4, n1).

– Translate, rotate, and scale a referenced pattern shape in such a way that
the end points of the transformed pattern are identical to the end points of
the original shape. This step is done during decompression, e.g., in the run of
a navigation system. Note that the positions of the start and end nodes are
given exactly by the approach described in Section 4.1. These node positions
can be used for computing the translation, rotation, and scaling factors on-
line, i.e., they do not have to be stored along with the pattern reference.

The grouping of elements according to the number of their shape points is a
very simple step compared to finding suitable representatives for each group of
shapes. This second step is based on a suitable distance measure which forms the
foundation of the clustering of the shapes and the extraction of meaningful rep-
resentatives. In the following two subsections, we will introduce a non-symmetric
distance measure and an appropriate clustering algorithm.

An Appropriate Distance Measure. For the purpose of compressing shapes
by referring to appropriate reference shapes, we now motivate the use of a non-
symmetric distance measure. Although the resulting distance measure is not
metric, we can use it for clustering. Before defining the distance measure and
describing its properties, we define the normalization p⇀s of a shape p with
respect to (w.r.t.) a shape s. The start and end points of p⇀s and s are identical
(cf. Figure 6).

Definition 2. Let s =< s0, s1, ..., sn, sn+1 > and p =< p0, p1, ..., pn, pn+1 >
be two shapes. Then, the normalization p⇀s =< p⇀s

0 , p⇀s
1 , ..., p⇀s

n , p⇀s
n+1 > of p

w.r.t. s is defined by

p⇀s
i =

|s|
|p|

(
cos(αs − αp) −sin(αs − αp)
sin(αs − αp) cos(αs − αp)

)
· (pi − p0) + s0,

for all i = 0 . . . n + 1. The error d(s, p⇀s) between s and p⇀s is given by the
maximum distance of two shape points of si and p⇀s

i ,

derr(s, p⇀s) = max{L2(si, p
⇀s
i)|i = 1. . .n}.

Figure 6 shows that the introduced error differs if we normalize p w.r.t. s or if
we normalize s w.r.t. p, i.e., derr(s, p⇀s) 	= derr(p, s⇀p). Basically, the following
property holds:

Lemma 1. derr(s, p⇀s) = |s|
|p| · derr(p, s⇀p)

Proof. If we translate, rotate, and scale p and s⇀p by (s0 − p0), (αs − αp),
and |s|

|p| , then p is transformed into p⇀s and s⇀p into s. Furthermore, for all
i = 0, . . . , n+1 the vectors (pi−s⇀p

i) are transformed into the vectors (p⇀s
i −si).

434 J. Suh et al.

s

s0

s3

s2s1

p0

p3

p2

p1

1. p

1. translation of p by (s0-p0) 2. rotation of p by (s- p)

s

p

3. scaling of p by (|s|/|p|)

2.

3.

|s|

|p|

p s

s

derr (s, p s)

error derr(s,p s)
between s and p s.

s

s0

s3

s2s1

p0

p3

p2

p1

1. p

1. translation of s by (p0-s0) 2. rotation of s by (p- s)

s

p

3. scaling of s by (|p|/|s|)

2.

|p|
|s|

3.

derr (s p, p)

p
s p

error derr (s p,p)
between s p and p.

Fig. 6. The normalization p⇀s of p w.r.t. s (above) and the normalization s⇀p of s
w.r.t. p (below)

Note that rotation and translation do not change the length of these vectors.
Due to the theorems on intersecting lines, the length of the transformed vectors
(p⇀s

i − si) is |s|
|p| times the length of the original ones, proving the lemma.

Lemma 1 shows that the error is much bigger when normalizing a shape s to a
large shape p than to a small one. Based on Definition 2, we can now introduce
our non-symmetric distance measure dsim.

Definition 3. Let s and p be two shapes. Then the distance dsim(s, p) between
s and p is defined by dsim(s, p) = derr(s, p⇀s).

We now cluster the shapes based on this distance measure. For each distance
computation during the run of the clustering algorithm, we have to carry out one
translation, rotation, and scaling operation. Typically, the number of distance
operations during clustering is much greater than the number of shape objects
in the database. In order to reduce the overhead induced by the transforma-
tion steps, we normalize each element w.r.t. a fixed but arbitrary shape o. This
requires only one normalization step for each shape. Based on the normalized
shapes p⇀o and s⇀o, we can compute the values dsim(s, p) = derr(s, p⇀s) and
dsim(p, s) = derr(p, s⇀p).

Lemma 2. Let s, p, o be three shapes with the same number of shape points.
Then, derr(s, p⇀s) = |s|

|o| · derr(s⇀o, p⇀o) and derr(p, s⇀p) = |p|
|o| · derr(s⇀o, p⇀o).

Proof. The start and end points of the shapes s⇀o and p⇀o are identical. In
order to transform these shapes to the shapes s and p⇀s we have to carry out

Compression of Digital Road Networks 435

d
err

(s o, p o)

x

x

x

x*

x

x
x

x*

pattern p

x x*

objects assigned to

pattern p during the

CLARANS clustering

algorithm

user-defined maximum

allowed error threshold

x
objects that can be

compressed by p

x*x` objects that cannot be

compressed by p

x`

x`

x` objects assigned to other

representatives/medoids

d
err

(s,p s) = |s|/|o| · d
err

(s o
,p

o) <

d
err

(s,p s) = |s|/|o| · d
err

(s o
,p

o) >

 |s|/|o|

Fig. 7. Shapes of one cluster represented by pattern p

a translation, rotation, and scaling by (s0 − o0), (αs − αo), and |s|
|o| . Therefore,

similar to the proof of Lemma 1, derr(s, p⇀s) = |s|
|o| · derr(s⇀o, p⇀o) holds. Based

on Lemma 1, derr(p, s⇀p) = |p|
|o| ·derr(s⇀o, p⇀o) can be derived from derr(p, s⇀p) =

|p|
|s| · derr(s, p⇀s).

An Appropriate Clustering Algorithm. In [12] an interesting approach is
introduced which generates meaningful representatives based on the clustering
algorithm OPTICS [13]. Because OPTICS, like many other approaches, requires
metric distance functions, the approach in [12] is not useable. The idea of our
approach is based on CLARANS [10]. CLARANS tries to group objects into
a user-defined number of k clusters by maximizing a certain quality criterion.
Usually this criterion is related to the sum of all distances of the objects to
their representatives. In our case, we simply count the objects which can be
represented by the k patterns. CLARANS stops if after a certain number of
iterations, this quality criterion, i.e., the number of representable shapes, does
not increase any more. The higher the resulting quality is, the higher is the
compression ratio. Figure 7 demonstrates that not all objects within a cluster
represented by a certain shape p can be compressed by this shape. Only those
shapes s can be compressed which are either very similar to p or which are
very small. If |s| is very small, s can be represented by p, even if they are not
intuitively similar. Thus, small patterns can more easily be compressed than
large ones (cf. Lemma 1). Note that the overall compression ratio also depends
heavily on the user-defined error-threshold ε. If this value is large, i.e., the user
allows rather big errors, the compression ratio will be higher than for very small
values.

5 Experimental Evaluation

In this section, we present the experimental evaluation demonstrating the char-
acteristics and benefits of our approach. The evaluation is based on real-world

436 J. Suh et al.

European road network data. We used two different data sets. DB 1 consists of
10,000 arbitrarily chosen tiles containing between 163 and 296 nodes each. DB
2 is always equal to a set of shapes all having the same number of shape points.
Unless otherwise mentioned, the number of shapes in DB 2 is 100,000, and each
shape consists of 4 shape points. The experiments were carried out on a 3 GHz
PC having 2 GB RAM running Linux. The algorithms were coded in C/C++.

5.1 Topological Compression

Table 2 depicts the results of the topological compression for some arbitrar-
ily chosen, individual tiles of DB 1. LBbdw is the lower bound and UBbdw is
the upper bound of the minimum bandwidth minbdw. Original = 3 × 8 + n ×
'log2 (dmax + 1)(+ m × 'log2 (n + 1)(denotes the number of bits needed for
storing the graph according to Table 1 (n = |V | and m = |E|). In our new
approach, we have to spend one additional byte for encoding the value UBbdw

so that we know how many bits are required for the encoding of an edge. There-
fore, the reduced number of bits for our topological compression approach is
given by Reduced = 4 × 8 + n × 'log2 (dmax + 1)(+ m × 'log2 (UBbdw + 1)(.
Finally, Original−Reduced

Original indicates the compression ratio.

Table 2. Evaluation of the topological compression approach

Nodes Edges max. degree LBbdw UBbdw Time Original Reduced Ratio
n m dmax [sec.] [Bit] [Bit] [%]

163 212 6 7 11 0.05 2209 1369 38.03
221 301 7 9 15 0.10 3095 1899 38.64
296 397 7 12 21 0.19 4485 2905 35.23

Table 2 shows that we can achieve a noteworthy compression ratio when using
the node ordering corresponding to the value UBbdw instead of an arbitrary node
ordering. In most of our tests, UBbdw was beneath 16, which allows us to encode
an edge with only 4 bits instead of 8 or more bits. For the 10,000 tiles, we
achieved an average compression ratio of 37.98%.

Although the runtime for computing a small enough upper bound value UBbdw

for each graph increases super linear with the number of nodes, our approach
is still applicable since usually only a very limited number of nodes are within
one tile. Note that the compilation of a complete North America or Western
Europe database typically takes several days on much faster computers. The
additional computational overhead for the UBbdw-ordering stays far beyond 1%
of the overall compilation time. Compared to an arbitrary node ordering, no
additional time is required for decompression on the target system.

To sum up, our proposed algorithm for efficiently computing a small upper-
bound value UBbdw along with its node ordering is well suited to compress the
topology of a sparse road network graph.

Compression of Digital Road Networks 437

5.2 Geometrical Compression

Node Compression. In this section, we present the results of the geometri-
cal compression of the node positions. All tests were carried out on DB 1. In
all approaches introduced in Section 4.1, we encode a few positions absolutely
using 2 × 4 bytes and the remaining node positions are encoded by deltas to
reference nodes. Note that in this paper, we focus on the finding of suitable ref-
erence nodes rather than on suitable delta encoding techniques. For encoding the
deltas, in all our tests the variable-byte integer encoding of [1] was used. In Table
3 the number of bytes for each approach is given. Ratio reflects the normalized
number of bytes w.r.t. the number of bytes required for the approach depicted
in Figure 4(a). Compression times are not reported, since in all approaches,
they stay considerably beneath the time required for the topological compres-
sion. In all presented approaches decompression is a straight-forward and simple
task. The resulting decompression times are very similar and are therefore not
reported.

Table 3 clearly shows that the overall best approach is based on minimum
spanning trees computed on the graphs given by the road network. This approach
requires considerably fewer bytes for referring to the topological information than
the approach of the minimum spanning tree on the complete graph which leads
to the overall smallest delta values. Table 3 shows that it is important to not
spend 'log2 (n + 1)(bits for each node for referencing purposes. Interestingly, the
approach that uses one out of UBbdw predecessors as reference point (cf. Figure
4(b)) is also well suited. As already argued in Section 4.1, it is likely that a
suitable representative for each node will be found among its UBbdw predecessor
nodes. Note that this approach also needs only n × 'log2 (UBbdw + 1)(bits for
connecting the topological and geographical information. Approaches based on
traditional spatial databases techniques, like space-filling curves or clustering,
are far less effective.

To sum up, the minimum spanning tree based on the road network is the best
way to compress the geometry of the nodes.

Shape Compression. In this subsection, we discuss the characteristics of our
new shape compression approach that exploits similarities between shapes.

Figure 8 depcits two sample clusters from a clustering of DB 2 resulting
in 1024 clusters. Sample cluster 1 contains 99 shapes from which 77 can be
substituted by a reference to the medoid of the cluster (cf. bold line). Sample

Table 3. Evaluation of node compression approaches

Bandwidth Clustering Space Filling Curve Min. Span. Tree
1 UBbdw k = 5 k = 20 k = 50 z − curve hilbert full roads

Absoulte [Byte] 8 8 50 160 400 8 8 8 8
Delta [Byte] 1431 895 1487 823 653 1037 1012 824 855
Reference [Byte] 0 132 248 248 248 248 248 248 39
All [Byte] 1439 1035 1785 1231 1301 1293 1268 1080 902
Ratio [%] 0 28.1 -24 14.5 9.6 10.1 11.9 24.9 37.3

438 J. Suh et al.

0.0

0.5

1.0

0.0 0.5 1.0

pattern

0.0

0.5

1.0

0.0 0.5 1.0

pattern

(a) Sample Cluster 1

0.0

0.5

1.0

0.0 0.5 1.0

pattern

0.0

0.5

1.0

0.0 0.5 1.0

pattern

(b) Sample Cluster 2

Fig. 8. The content of two sample clusters. All database shapes are normalized w.r.t.
a shape o with ostart = (0, 0) and oend = (1, 0). Parameter: |DB 2| = 100.000, nsp = 4,
ε = 10, nrep = 1024.

cluster 2 contains 95 shapes from which 58 can be substituted by a reference.
Note that even if derr(p⇀o, s⇀o) is very high (cf. dashed line in Figure 8(b)), it
is still possible that shape s can be compressed by pattern p, as long as |s| is
very small.

Figure 9 compares the compression ratio achieved with our new technique
to the traditional Douglas-Peucker (DP) approach. The picture shows that es-
pecially for small ε-values, i.e., high precision maps, our approach clearly out-
performs DP . This holds even if the number of representatives nrep used is
very small, e.g., 128. The higher the number of representatives, the better the
compression ratio. For nrep equal to 1024, i.e., 1% of the database are used
as representatives, and for 150,000 database objects (cf. Figure 9(b)), our new
approach leads to a 39% higher compression ratio than DP .

Because it is required to keep the pattern tables in main memory, nrep should
be as small as possible. Note that 90% of all shapes contain ten or fewer shape
points (cf. Figure 5.2(a)). If only these shapes are compressed, only 10 pat-
tern tables are needed. Assuming there are 1024 representatives in each of these

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 4e+006

 5 10 15 20 25 30

by
te

s

epsilon

Original
Douglas-Peucker

CLARANS(nrep=128)
CLARANS(nrep=256)
CLARANS(nrep=512)

CLARANS(nrep=1024)
CLARANS(nrep=2048)
CLARANS(nrep=4096)
CLARANS(nrep=8192)

(a) Varying ε

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 4e+006

 4.5e+006

 5e+006

 0 20000 40000 60000 80000 100000 120000 140000 160000

by
te

s

number of data

Original
Douglas-Peucker

CLARANS(nrep=128)
CLARANS(nrep=256)
CLARANS(nrep=512)

CLARANS(nrep=1024)
CLARANS(nrep=2048)

(b) Varying database size

Fig. 9. Compression dependent on ε and the database size. (a) Parameter: |DB 2 | =
100.000, nsp = 4, (b) Parameter: ε = 10, nsp = 4.

Compression of Digital Road Networks 439

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 1.4e+007

 1.6e+007

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

nu
m

be
r

of
 s

ha
pe

s

nsp

(a) Distribution of shapes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

co
m

pr
es

se
d

si
ze

/o
rig

in
al

 s
iz

e(
%

)

nsp

Original
Douglas-Peucker

CLARANS(nrep=256)
CLARANS(nrep=1024)
CLARANS(nrep=2048)
CLARANS(nrep=4096)
CLARANS(nrep=8192)

(b) Compression results

Fig. 10. Varying number of shape points (nsp)

tables, then the main memory footprint would be 10× 1+10
2 × 8 Byte ×1024 =

440 KByte, which is still acceptable even for embedded systems. Figure 5.2(b)
shows that especially for small nsp values our approach outperforms DP con-
siderably. If the number nsp of shape points gets very high, e.g., 8, it is getting
difficult to find suitable representatives due to the complexity and variety of the
shapes.

To sum up, our new similarity based compression algorithm is well suited for
the lossy compression of shapes, especially if the number of shape points is small.

6 Summary

In this paper, we presented new approaches for the compression of digital road
networks consisting of both topological and geometrical information. For the
compression of the topological information, we adapted existing solutions for
the minimum bandwidth problem. The proposed approach allows encoding each
edge with a small and constant number of bits. Besides this lossless compression
of topological information, we also presented a lossless compression of the posi-
tions of nodes. The presented solution is based on minimum spanning trees that
are computed on sparse road network graphs. Finally, for the lossy compression
of road shapes, we exploited similarities between all shapes in the database.
Based on a suitable non-symmetric distance measure, the clustering algorithm
CLARANS groups shapes together trying to minimize a new compression related
quality criterion. Our experimental evaluation on real-world European road net-
work data demonstrates that the presented techniques lead to an overall size
reduction of more than 30% compared to state of the art approaches currently
used in digital map databases.

In our future work, we plan to apply our lossy geometrical shape compression
to arbitrary polygons stored in digital map databases like lakes, parks, and build-
up areas.

440 J. Suh et al.

References

1. Williams, H.E., Zobel, J.: Compressing integers for fast file access. The Computer
Journal 42(3), 193–201 (1999)

2. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Canadian Cartog-
rapher 10(2), 112–122 (1973)

3. Papadimitriou, C.H.: The np-completeness of the bandwidth minimization prob-
lem. Computing 16, 263–270 (1976)

4. Garey, M., Graham, R., Johnson, D., Knuth, D.: Complexity results for bandwidth
minimization. SIAM Journal of Applied Mathematics 34(3), 477–495 (1978)

5. Caprara, A., Salazar-Gonzalez, J.-J.: Laying out sparse graphs with provably min-
imum bandwidth. Informs Journal on Computing 17(3), 356–373 (2005)

6. Campos, V. Piñana, E., Mart́ı, R.: Adaptive memory programming for matrix
bandwidth minimization. Technical Report, University of Valencia, Spain (2006)

7. Gibbs, N., Poole, W., Stockmeyer, P.: An algorithm for reducing the bandwidth
and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 235–251 (1976)

8. Orenstein, J.: A comparison of spatial query processing techniques for native and
parameter spaces. In: SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD in-
ternational conference on Management of data, Atlantic City, New Jersey, United
States, pp. 343–352. ACM Press, New York, NY, USA (1990)

9. Jagadish, H.V.: Linear clustering of objects with multiple attributes. In: SIGMOD
’90: Proceedings of the 1990 ACM SIGMOD international conference on Manage-
ment of data, pp. 332–342. ACM Press, New York, NY, USA (1990)

10. Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data mining.
IEEE Transactions on Knowledge and Data Engineering 14(5), 1003–1016 (2002)

11. Pruefer, H.: Neuer beweis eines satzes uber permutationen. Archiv fur Mathematik
und Physik 27, 142–144 (1918)

12. Brecheisen, S., Kriegel, H.P., Kroger, P., Pfeifle, M.: Visually mining through clus-
ter hierarchies. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178,
pp. 400–412. Springer, Heidelberg (2004)

13. Ankerst, M., Breunig, M., Kriegel, H.-P., Sander, J.: Optics: ordering points to
identify the clustering structure. In: SIGMOD ’99: Proceedings of the 1999 ACM
SIGMOD international conference on Management of data, pp. 49–60. ACM Press,
New York, NY, USA (1999)

Traffic Density-Based Discovery of Hot Routes
in Road Networks�

Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract. Finding hot routes (traffic flow patterns) in a road network
is an important problem. They are beneficial to city planners, police
departments, real estate developers, and many others. Knowing the hot
routes allows the city to better direct traffic or analyze congestion causes.
In the past, this problem has largely been addressed with domain knowl-
edge of city. But in recent years, detailed information about vehicles
in the road network have become available. With the development and
adoption of RFID and other location sensors, an enormous amount of
moving object trajectories are being collected and can be used towards
finding hot routes.

This is a challenging problem due to the complex nature of the data. If
objects traveled in organized clusters, it would be straightforward to use a
clustering algorithm to find the hot routes. But, in the real world, objects
move in unpredictable ways. Variations in speed, time, route, and other
factors cause them to travel in rather fleeting “clusters.” These properties
make the problem difficult for a naive approach. To this end, we propose
a new density-based algorithm named FlowScan. Instead of clustering
the moving objects, road segments are clustered based on the density
of common traffic they share. We implemented FlowScan and tested it
under various conditions. Our experiments show that the system is both
efficient and effective at discovering hot routes.

1 Introduction

In recent years, analysis of moving object data [7] has emerged as a hot topic
both academically and practically. In particular, the tracking of moving objects
in road networks is becoming quite popular. GPS devices embedded in vehicles
or RFID sensors on the streets can track a vehicle as it moves throughout the city
traffic grid. There are many useful applications with such data. For instance, the
OnStar system in General Motors vehicles notifies police of the vehicle’s GPS
location when a crash is detected. E-ZPass sensors (using RFID technology)
automatically pay tolls so traffic is not disturbed. GPS navigation systems offer
driving directions in real-time. On a more aggregate level, average speeds or
� The work was supported in part by Boeing company and the U.S. National Science

Foundation NSF IIS-05-13678/06-42771, and NSF BDI-05-15813. Any opinions, find-
ings, and conclusions or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the funding agencies.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 441–459, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

442 X. Li et al.

traffic density is used to update driving time estimates in real-time or warn
police of potential problem areas.

In this work, we address the problem of discovering hot routes in a road net-
work. Informally, a hot route is a general traffic flow pattern. For example, “Many
people in Oakland travel westbound on the Bay Bridge to reach downtown San
Francisco at 7:30am.” The set of hot routes offers direct insight into the city’s
traffic patterns. City officials can use them to improve traffic flow. Store owners
and advertisers can use them to better position their properties. Police officials
can use them to maximize patrol coverage.

Example 1. Figure 1(a) shows live traffic data1 in the San Francisco Bay Area
on a weekday at approximately 7:30am local time. Different colors show differ-
ent levels of congestion (e.g., red/dark is heavy congestion). 511.org in the Bay
Area gathers such data in real-time from RFID transponders located inside ve-
hicles2. A likely hot route in Figure 1(a) is A→ B (i.e., highway CA-101). A is
near the San Francisco International Airport. B is near the San Mateo Bridge.
Figure 1(b) shows a closeup view of location B. Three additional locations x,
y, and z are shown. Without actually observing the flow of traffic, it is unclear
whether y → x is a hot route, or y → z, or x → z. FlowScan aims to solve this
problem.

(a) (b)

Fig. 1. Snapshot of San Francisco Bay Area traffic

At first glance, this may seem like an easy problem. A quick look at
Figure 1(a) shows the high traffic roads in red. With some domain knowledge,
we know that San Francisco, Oakland, and other densely populated regions are
likely to be sources and destinations of traffic since many people live and work
there. However, such domain knowledge is not always available. Additionally,
1 http://maps.google.com
2 http://www.bayareafastrak.org

Traffic Density-Based Discovery of Hot Routes in Road Networks 443

real world traffic is a very complex data source. Objects do not travel in orga-
nized clusters. Two objects traveling from the same place to another place may
take just slightly different routes at slightly different speeds and times. Random
traffic conditions, such as a traffic accident or a traffic light, can cause even
more deviations. Furthermore, hot routes do not have to be disjoint. Highways
or major roads are popular pathways and several hot routes can share them.
As a result, the mining algorithm must be robust to the variations within a hot
route and amongst a set of hot routes.

We now state our problem as follows: Given a set of moving object trajectories
in a road network, find the set of hot routes. A road network is represented by
a graph G(V, E). E is the set of directed edges, where each one represents the
smallest unit of road segment. V is the set of vertices, where each one represents
either a street intersection or important landmark. T is the set of trajectories,
and each trajectory consists of an ID (tid) and a sequence of edges that it traveled
through: (tid, 〈e1, . . . , ek〉), where ei ∈ E. Objects can only move on E and must
travel the entirety of an edge. T is assumed to be collected from a similar time
window; otherwise, different time windows might blur meaningful hot routes.

Informally, a hot route is a general path in the road network which contains
heavy traffic. It represents a general flow of the objects in the network. Formally,
it is a sequence of edges in G. The edges need not to be adjacent in G, but they
should be near each other. Further, a sequence of edges in a hot route should
share a high amount of traffic between them.

The rest of the paper is organized as follows. Section 2 gives an overview
of the proposed solution and also alternative approaches. Section 3 lists some
typical traffic behaviors and how they can confuse the näıve approaches. Section
4 describes the algorithm. Section 5 shows experiment results. Related work is
discussed in Section 6. And finally, we conclude the study in Section 7.

2 Solution Overview

FlowScan extracts hot routes using the density of traffic on edges and sequences
of edges. Intuitively, an edge with heavy traffic is potentially a part of a hot
route. Edges with little or no traffic can be ignored. Also, two near-by edges
that share a high amount of traffic between them are likely to be a part of the
same hot route. This implies that the objects traveled from one edge to the other
in a sequence. And lastly, a chain of such edges is likely to be a hot route.

We also list some possible alternative methods from related fields.

Alternative Method 1: Moving object clustering [6] discovers groups of ob-
jects that move together. The trajectory of each cluster can be marked as a hot
route. We call this class of approaches AltMoving.

Alternative Method 2: Simple graph linkage is another possible approach.
One could gather all the edges in G with heavy traffic and connect them via
their graph connectivity. Then, each connected component is marked as a hot
route. We call this class of approaches AltGraph.

444 X. Li et al.

Alternative Method 3: Trajectory clustering [10] discovers groups of similar
sub-trajectories from the whole trajectories of moving objects. Each resultant
cluster is marked as a hot route. We call this class of approaches AltTrajectory.

FlowScan and the three alternative methods offer very different approaches to
the same data. One could view them in a spectrum. At one end of the spectrum
are AltMoving and AltTrajectory where attention is paid to the individual objects.
This is helpful in problems where the goal is to identify behaviors of individu-
als. At the other end of the spectrum is AltGraph where attention is paid to
the aggregate. That is, objects’ trajectories are aggregated into summaries and
analysis is performed on the summary. This is helpful in problems where the goal
is to learn very general information about the data. FlowScan can be viewed as
an intermediate between these two extremes. The behaviors of the individuals
(specifically, the common traffic between sequences of edges) are retained and
affect high-level analysis about aggregate behavior.

Aggregate
Analysis

Individual
Analysis

FlowScanAltMoving/AltTrajectory AltGraph

Fig. 2. Spectrum view of FlowScan and alternative methods

3 Traffic Behavior in Road Networks

In this section, we list some common real world traffic behaviors and examine
how FlowScan and the alternative approaches can handle them.

3.1 Traffic Complexity

A major characteristic of real world traffic is the amount of complexity. Instead
of neat clusters, objects travel with different speeds and times even when they are
on the same route. For example, in a residential neighborhood, many people leave
for work in the morning and travel to the business district using approximately
the same route. However, it is very unlikely that a group will leave at the same
time and also travel together all the way to their destination. Various events
(e.g., traffic light) can easily split them up.

Algorithms in the AltMoving class will not work very well with such complex
data. Clusters in the technical sense only last for a short period of time or short
distance. The same is true for AltTrajectory if speed/time is encoded into the
trajectories. These algorithms lack aggregate analysis and as a result, they are
likely to find too many short clusters and miss the overall flow. FlowScan connects
road segments by the amount of traffic they share. So even if the objects change
slightly or if the objects do not travel in compact groups, the amount of common
traffic between consecutive edges in a hot route will still be high.

Traffic Density-Based Discovery of Hot Routes in Road Networks 445

3.2 Splitting/Joining Hot Routes

Figure 3 shows a sample city traffic grid. The shade on each road segment in-
dicates the amount of traffic on it; the darker the shade, the heavier the traffic.
Suppose the two correct hot routes are A → B → C and A → B → D. Figure
3 shows a splitting of traffic at node B: some objects which moved from A to
B go to C while others go to D. There are also other objects which move from
C to D and vice-versa. This situation is very common in real world traffic. B
could be the location in Chicago where I-90/94 splits into I-90 and I-94.

A B

C

D

Fig. 3. Splitting hot routes: A → B → C and A → B → D

With AltGraph, since all edges from A to C and D are connected, they would be
incorrectly identified as a single big hot route. Notice that there is no individual
analysis in AltGraph. With AltTrajectory, A→ B and B → C will not be joined
together because the physical similarity between them is low (i.e., hard left turn).
Likewise for A → B → D. This flaw exists for the joining of traffic as well. In
other words, if the arrows in Figure 3 were reversed, it would illustrate the
problem of two hot routes joining at B.

In FlowScan, edges B → C and B → D will not be connected directly because
they do not share any traffic. This is because physically, objects have to choose
between the two edges and cannot travel on both. Further, A → B will be
connected to both B → C and B → D because it shares traffic with both.

3.3 Overlapping Hot Routes

In addition to splits or joins, two hot routes may overlap each other. Figure 4
shows an example with two distinct hot routes: A→ B and B → C. Situations
like this are common. Suppose B is a parking garage used by nearby residents
during the night and incoming workers during the day. In the morning, residents
drive out of the parking garage (B → C) and other people arrive from various
locations to park (A→ B).

Consider how AltGraph will handle this situation. Since A→ B and B → C are
connected in G at node B, the two hot routes will be joined together incorrectly.
This is due to the lack of individual analysis on the edges during linking. The
same happens with AltTrajectory, though for a different reason. A → B and

446 X. Li et al.

A B C

Fig. 4. Overlapping hot routes: A → B and B → C

B → C’s shapes are similar and will be clustered together. With FlowScan,
consecutive edges within a hot route must share a minimum number of common
objects. If such edges were parts of different hot routes, this condition will not
be satisfied, and thus, a single erroneous hot route will not be formed.

3.4 Slack Within Hot Routes

Figure 5 shows a hot route with some slight slack. A hot route exists from A
to B in the grid. At the intermediate locations, objects are faced with different
choices in order to reach B. Suppose the choices are essentially equivalent in
terms of distance and speed and that traffic is split equally between them.

B

A

Fig. 5. Slack within a hot route: A → B

Consider how AltMoving will handle this deviation. Suppose the distance be-
tween the equivalent paths is larger than the maximum intra-cluster distance.
This will cause the cluster at A to break into several smaller clusters when it
reaches B. Next, consider AltGraph. Suppose the partitioning of traffic reduced
the density on the intermediate edges to be below the “heavy” threshold. This
would break the graph connectivity condition and miss the hot route from A
to B. A similar error could occur with AltTrajectory if the traffic becomes too
diluted between A and B or if the shapes become too dissimilar. With FlowScan,
edge connectivity in G is not a required condition. Edges are connected in the
hot route if they share common traffic and if they are near each other. Here, as
long as A is within a given distance from B, the hot route will remain intact.

4 Density-Based Hot Route Extraction

In this section, we will give formal definitions of FlowScan, which uses traffic
density information in road networks to discover hot routes.

Traffic Density-Based Discovery of Hot Routes in Road Networks 447

4.1 Traffic-Density Reachability

Definition 1 (Edge Start/End). Given a directed edge r, let the start(r) be
the starting vertex of the edge and end(r) be the ending vertex.

Definition 2 (ForwardNumHops). Given edges r and s, the number of for-
ward hops between r and s is the minimum number of edges between end(r) and
end(s) in G. It is denoted as ForwardNumHops(r, s).

Recall that G is directed. This implies that an edge that is incident to start(r)
in G will not have a ForwardNumHops value of 0 unless it is also incident to
end(r).

Definition 3 (Eps-neighborhood). The Eps-neighborhood of an edge r, de-
noted by NEps(r), is defined by NEps(r) = {s ∈ E |ForwardNumHops(r, s) ≤
Eps} where Eps ≥ 0.

The Eps-neighborhood of r contains all edges that are within Eps hops away
from r, in the direction of r. Semantically, this captures the flow of traffic and
represents where objects are within Eps hops after they exit r. Figure 6 shows
the 1-neighborhood of edge r.

Note that having the forward direction in the Eps-neighborhood makes the
relation non-symmetric. In Figure 6 for example, the two edges in the circle are
in the 1-neighborhood of r, but r is not in the 1-neighborhood of either of them.
In fact, the only time when the Eps-neighborhood relation is symmetric is when
two edges form a cycle within themselves. This is usually rare in road networks
with one exception, and that is when one considers two sides of the same street.
Figure 7 shows an example. In it, r0 is in the 1-neighborhood of r1 and vice-
versa, because they form a cycle. This will happen for all two-way streets in the
network. Though typically, an object will not travel on both sides of the same
street within a trajectory. It could only happen with U-turns or if one end of the
street is a dead end.

rr

Fig. 6. 1-neighborhood of r

r
r

1

0

Fig. 7. Two sides of the same street

We did not choose a spatial distance function (e.g., Euclidean distance), be-
cause the number of hops better captures the notion of “nearness” in a trans-
portation network. Consider a single road segment in the transportation network.
If it were a highway, it might be a few kilometers long. But if it were a city block
in downtown, it might be just a hundred meters. However, since an object has to
travel the entirety of that edge, the two adjacent edges are the same “distance”
apart no matter how long physically that intermediate edge is.

448 X. Li et al.

Definition 4 (Traffic). Let traffic(r) return the set of trajectories that contains
edge r. Recall trajectories are identified by unique IDs.

Definition 5 (Directly traffic density-reachable). An edge s is directly
traffic density-reachable from an edge r wrt two parameters, (1) Eps and (2)
MinTraffic, if all of the following hold true.

1. s ∈ NEps(r)
2. |traffic(r) ∩ traffic(s)| ≥ MinTraffic

Intuitively, the above criteria state that in order for an edge s to be directly traffic
density-reachable from r, s must be near r, and traffic(s) and traffic(r) must
share some non-trivial common traffic. The “nearness” between the two edges is
controlled by the size of the Eps-neighborhood. This directly addresses the slack
issues in Section 3.4. As long as the slack is not larger than Eps, two edges will
stay directly connected via this definition.

The second condition of two edges sharing traffic is intuitive. It is also at the
core of FlowScan. The flaw of methods in the AltGraph class is that aggregation
on the edges has erased the identities of the objects. As a result, two edges
with high traffic on them and near each other will look the same regardless if
they actually share common traffic. By having the second condition rely on the
common traffic, one can get a better idea of how objects actually move in the
road network.

Directly traffic density-reachable is not symmetric for pairs of edges because
the Eps-neighborhood is not symmetric. Though, for the same reasons that
two edges might be in the Eps-neighborhood of each other, two edges could
be directly traffic density-reachable from each other.

Definition 6 (Route traffic density-reachable). An edge s is route traffic
density-reachable from an edge r wrt parameters Eps and MinTraffic if:

1. There is a chain of edges r1, r2, . . ., rn, r1 = r, rn = s, and ri is directly
traffic density-reachable from ri−1.

2. For every Eps consecutive edges (i.e., ri, ri+1, . . ., ri+Eps) in the chain,
|traffic(ri) ∩ traffic(ri+1) ∩ . . . ∩ traffic(ri+Eps)| ≥ MinTraffic.

Definition 6 is an extension of Definition 5. It states that two edges are route
reachable if there is a chain of directly reachable edges in between and that if
one were to slide a window across this chain, edges inside every window share
common traffic. The sliding window directly address the overlapping behavior
as described in Section 3.3. At the boundaries of two overlapping hot routes, the
second condition will break down and thus break the overlapping hot routes into
two. The Eps parameter is being reused here to control the width of a sliding
window through the chain. The reuse is justified because their semantics are
similar, but one could just as well use a separate parameter.

The reason for using a sliding window is based on our observation that a
trajectory can contribute to only a portion of a hot route. This better matches
real world hot route behavior. For example, a hot route exists from the suburb

Traffic Density-Based Discovery of Hot Routes in Road Networks 449

to downtown in the morning. Figure 8 shows an illustration. However, most
people do not travel the entirety of the hot route. More often, they live and
work somewhere in between the suburb and downtown. But in the aggregate, a
hot route exists between the two locations.

Su
bu

rb
s

D
ow

nt
ow

n

Fig. 8. Route traffic density-reachable

4.2 Discovering Hot Routes

The hot route discovery process follows naturally from Definition 6. It is an
iterative process. Roughly, one starts with a random edge, expands it to a hot
route, and repeats until no more edges are left. The question is then with which
edge(s) should each iteration begin. To this end, we introduce the concept of a
hot route start, which is the first edge in a hot route. Intuitively, an edge is a
hot route start if none of its preceding directly traffic density-reachable neighbors
are part of hot routes.

Definition 7 (Hot Route Start). An edge r is a hot route start wrt MinTraf-
fic if the following condition is satisfied.

∣∣∣ traffic(r) \
⋃ {

traffic(x)
} ∣∣∣ ≥ MinTraffic

where {x | end(x) = start(r) ∧ |traffic(x)| ≥ MinTraffic}.

The question is whether all hot routes begin from a hot route start. The following
lemma addresses this.

Lemma 1 (Hot Route Start). Hot routes must begin from a hot route start.

Proof: There are two ways for a hot route to begin on an edge r. The first way is
when MinTraffic or more objects start their trajectory at r. In this case, none of
these objects will appear in start(r)’s adjacent edges because they simply did not
exist then. As a result, the set difference will return at least MinTraffic objects
and thus marking r as a hot route start. The second way is when MinTraffic or
more objects converge at r from other edges. The source of traffic on r is exactly
the set of edges adjacent to start(r). Suppose one of these edges, x, contains
more than MinTraffic objects on it. In this case, x is part of another hot route,
and the objects that moved from x to r should not contribute to r. However, if it
does not contain more than MinTraffic objects, it cannot be in a hot route and
its objects are counted towards r. If more than MinTraffic objects are counted
towards r, then it is the start of a hot route.

450 X. Li et al.

4.3 Algorithm

Definitions 6 and 7 form the foundation of the hot route discovery process.
A simple approach could be to initialize a hot route to a hot route start and
iteratively add all route traffic density-reachable edges to it. By repeating this
process for all hot route starts in the data, one can extract all the hot routes.
The question is then how to efficiently find all route traffic density-reachable
edges given an existing hot route. If new edges are added in no particular order,
then one would have to search through all existing edges in the hot route at
every iteration. This is very inefficient. Further, if the hot route splits, it could
become tricky if it is in the middle.

To alleviate this problem, we restrict the growth of a hot route to be only
at the last edge. A hot route is a sequence of edges so the last edge is always
defined. By growing the hot route at the end one edge at a time, only the Eps-
neighborhood of the last edge needs to be extracted. This is much more efficient
than extracting the Eps-neighborhoods of all edges in the hot route. This is still a
complete search because all possible reachable edges are examined but just with
some order. It is essentially a breadth-first search of the road network. Then for
each neighboring edge, the route traffic density-reachability condition is checked
against the last few edges of the hot route (i.e., window). If the condition is
satisfied, the edge is appended to the hot route; otherwise, the edge is ignored.

Sometimes, the number of directly traffic density-reachable edges from the
last edge in the hot route is larger than one. There are two causes for this. The
first cause is multiple edges within one hot route. This can happen when Eps is
larger than 0, and multiple edges of the hot route are in the Eps-neighborhood.
This can be detected by checking to see if the start()’s and end()’s match across
edges. In this case, only the nearest edge is appended to the hot route. The other
edges will just be handled in the next iteration. The second cause is when a hot
route splits. In this case, the current hot route is duplicated, and a different hot
route is created for each split. The difference between these two cases can be
detected by checking the directly traffic density-reachability condition between
edges in the Eps-neighborhood.

The overall algorithm proceeds as follows. First, all hot route starts are ex-
tracted from the data. This is done by checking Definition 7 for every edge in G.
This step has linear complexity because only individual edges with their Eps-
neighborhoods are checked. Then, for every hot route start, the associated hot
routes are extracted. Algorithm 1 shows a pseudo-code description.

One point of concern is efficiency. Suppose the adjacency matrix or list of
the road network fits inside main memory. Then, searching the graph is quite
efficient. Retrieving the list of TID’s at each edge will require disk I/O but
traversing the graph will not. However, suppose the adjacency matrix is too big
to fit inside main memory. In this case, we introduce two additional indexing
structures to help the search process. Figure 9 shows an illustration.

All vertices of the road network are stored in a 2D index, e.g., R-tree (Vertex
Index Tree). All edges are stored on disk (Edge Table). Each edge record con-
sists of the edge ID and its starting and ending vertices (each vertex is an (x,

Traffic Density-Based Discovery of Hot Routes in Road Networks 451

Algorithm 1. FlowScan
Input: Road network G, object trajectory data T , Eps, MinTraffic.
Output: Hot routes R

1: Initialize R to {}
2: Let H be the set of hot route starts in G according to T
3: for every hot route start h in H do
4: r = new Hot Route initialized to 〈h〉
5: Add Extend Hot Routes(r) to R
6: end for
7: Return R

Procedure Extend Hot Routes(hot route r)
1: Let p be the last edge in r
2: Let Q be the set of directly traffic density-reachable neighbors of p
3: if Q is non-empty then
4: for every split in Q do
5: if route traffic density-reachable condition is satisfied then
6: Let r′ be a copy of r
7: Append split’s edges to r′

8: Extend Hot Routes(r′)
9: end if

10: end for
11: else
12: Return r
13: end if

Edge Table

ID End VertexStart Vertex ID TID List

TID List TableVertex Index Tree

Fig. 9. Indexing structures of FlowScan

y) tuple). Using these two data structures, one can retrieve adjacent neighbors
of an edge by querying the R-tree on the appropriate vertex and then retrieving
the corresponding edges in the Edge Table. The R-tree is quite useful for find-
ing adjacent neighbors of a specific edge since the coordinates of the adjacent
neighbors tend to be close to that of the edge.

We note that the Edge Table may be accessed repeatedly to retrieve adjacent
neighbors. This operation can be done more efficiently by exploiting locality.
Specifically, if the physical locality of edges in the road network is preserved
in the Edge Table, one can reduce the amount of disk I/Os. To this end, we
create a clustering index on the Starting Vertex attribute of the Edge Table.

452 X. Li et al.

Assuming that each value is 4 bytes, each edge record is then 20 bytes. Then, if
a page is 4K, it will contain approximately 200 edges. The intuition is that these
200 edges will be physically close to each other in the road network. Because
FlowScan traverses through Eps-neighborhoods, it is highly likely that an edge
and its neighbors will be stored on the same page in the Edge Table. In this
case, disk I/O will be reduced because the page has already been fetched.

Lemma 2 (Completeness). The set of hot routes discovered by FlowScan is
complete and unique wrt. Eps and MinTraffic.

Proof: The above assertion is easy to see because the construction algorithm
uses the definition word-for-word, specifically Definition 6, to build the hot
routes. Thus, given a hot route start, the set of hot routes extending from it
is guaranteed to be found. The question is more about if the set of hot route
starts found is complete. Because every edge in a hot route must satisfy the
MinTraffic condition, there must be a “first” in a sequence. The set of hot route
starts is simply these “firsts.” Lastly, ordering is not a factor in FlowScan, be-
cause no marking or removal is done to G. Thus, it does not matter in which
order H is processed.

4.4 Determining Parameters

There are two input parameters to the FlowScan algorithm: Eps and MinTraffic.
The first parameter, Eps, controls how lax FlowScan can be between directly
reachable edges. A value of 0 is too strict since it enforces strict spatial connec-
tivity. A small value in the range of 2–5 is usually reasonable. In a metropolitan
area, this corresponds to 2–5 city blocks; and in a rural area, this corresponds
to 2–5 highway exists.

As for MinTraffic, this is often application or traffic dependent. “Dense” traffic
in a city of 50,000 people is very different from “dense” traffic in a city of
5,000,000 people. In cases where domain knowledge dictates a threshold, that
value can be used. If no domain knowledge is available, one can rely on statistical
data to set MinTraffic. It has been shown that traffic density (and many other
behaviors in nature) usually obeys the power law. That is, the vast majority
of road segments have a small amount of traffic, and a relative small number
have extremely high density. One can plot a frequency histogram of the edges
and either visually pick a frequency as MinTraffic or use the parameters of the
exponential equation to set MinTraffic.

5 Experiments

To show the effectiveness and efficiency of FlowScan, we test it against various
datasets. FlowScan was implemented in C++ and all tests were performed on a
Intel Core Duo 2 E6600 machine running Linux.

Traffic Density-Based Discovery of Hot Routes in Road Networks 453

5.1 Data Generation

Due to the lack of real-world data, we used a network-based data generator
provided by [1]3. It uses a real-world city road network as the road network and
generates moving objects on it. Objects are affected by the maximum speed on
the road, the maximum capacity of the road, other objects on the road, routes,
and other external factors.

The default generator provided generates essentially random traffic: an ob-
ject’s starting and end locations are randomly chosen within the network. In
order to generate some interesting patterns, we modified how the generator
chooses starting and end locations. Within a city network, “neighborhoods” are
generated. Each neighborhood is generated by picking a random node and then
expanding by a preset radius (3–5 edges). Moving objects are then restricted to
start and end in neighborhoods.

Hot routes form naturally because of the moving object’s preference for the
quickest path. As a result, bigger roads (e.g., highways) are more likely to be
chosen by the moving objects. However, if too many objects take a highway or
a road, it will reach capacity and actually slow down. In such cases, objects will
choose to re-route and possibly create secondary hot routes.

5.2 Extraction Quality

General Results. To check the effectiveness of FlowScan, we test it against a
variety of settings. First, we present the results for two general cases. Figure 10
shows several routes extracted from 10,000 objects moving in the San Francisco
bay area. 10 neighborhoods of radius 3 each were placed randomly in the map.
Eps and MinTraffic were set to 2 and 300, respectively. Each hot route is drawn
in black with an arrow indicating the start and a dot indicating the end. The
gray lines in the figures indicate all traffic observed in the input data (not the
entire city map).

Even though the neighborhoods were completely random, we get realistic hot
routes in this experiment. The hot routes in Figure 10(a) and 10(b) are CA-101
connecting San Francisco and San Jose, a major highway in the area. Figures
10(c) and 10(d) correspond to the Golden Gate Bridge connecting the city of
San Francisco to the north. One of the random neighborhoods must have been
across the bridge so objects had no choice but to use the bridge. Figure 10(e)
shows a hot route connecting Oakland to that same neighborhood across the
Richmond-San Rafael Bridge. Lastly, Figure 10(f) corresponds to a hot route
connecting approximately Hayward to San Jose via I-880.

Next, Figures 11 shows three hot routes extracted from 5,000 objects moving
in the San Joaquin network. Three neighborhoods were picked in this network,
each with radius of 3. Eps and MinTraffic were set to 2 and 400, respectively.
In Figures 11(a) and 11(b), the horizontal portions of the hot routes correspond
to I-205. In Figure 11(b), the vertical portion corresponds to I-5. Both these
roads are major interstate highways. The roads in Figure 11(c) are W. Linne Rd
3 http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/

454 X. Li et al.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Hot routes in San Francisco data map

(a) (b) (c)

Fig. 11. Hot routes in San Joaquin data map

and Kason Rd. By looking at the city map, we observe that they make up the
quickest route between the two neighborhoods.

Splitting Hot Route Behavior. We also tested FlowScan with some specific
traffic behaviors. First, we test the case of a hot route splitting into two. This
data set is generated by setting the number of neighborhoods in a road network
to three and fixing the start node to be in one of the three. Because start and

Traffic Density-Based Discovery of Hot Routes in Road Networks 455

destination neighborhoods cannot be the same, this forces the objects (1000
of them) to travel to one of two destinations. And because the objects like to
travel on big roads (due to speed preference), they will usually leave the starting
neighborhood using the same route regardless of the final destination and split
sometime later.

Figures 12(a) and 12(b) shows the two hot routes extracted from the data.
Both hot routes start at the green arrow at the lower right, move to the middle,
and the split according to their final destinations. In Figure 12(c), the result from
an AltGraph algorithm is shown. All edges that exceed the MinTraffic threshold
(100) are connected if they are adjacent in the road network. Obviously, the
two hot routes are connected together because the underlying objects are not
considered. Figure 12(d) shows the result from a AltTrajectory algorithm [10].
In it, 14 clusters were found. Because shape is a major factor in trajectory
clustering, the routes were broken into different clusters. The split is “detected”
simply due to the hard left-turn shape, but the routes are not intact. One could
post-process the results and merge near-by clusters, but this could run into the
same problems as AltGraph since individual trajectories are ignored.

(a) FlowScan: A → B (b) FlowScan: A → C

(c) AltGraph (d) AltTrajectory

Fig. 12. Splitting hot routes

Overlapping Hot Route Behavior. Next, we test the case of two hot routes
overlapping. That is, one starts at the same place as where the other one ends.
To generate this data set, we also set the number of neighborhoods to three. Let

456 X. Li et al.

them be known as A, B, and C. Then, for half of the objects, their paths are
A → B; and for the other half, their paths are B → C. We set the radius of
neighborhood B to 0 to ensure that the two hot routes overlap.

Figure 13 shows the results of this test. As the graphs show, two hot routes
were extracted. Figure 13(c) shows a result with an AltGraph algorithm. Although
B → C (not shown) is correctly extracted in that algorithm, A → B is not. It
is incorrectly linked together with B → C and erroneously forms A → B → C.
This is because individual identities are not considered in the algorithm. Figure
13(d) shows the result of AltTrajectory. 13 clusters were discovered. Again, the
routes are not intact. But more seriously, the trajectories near B are clustered
into a single cluster because their shapes are similar.

(a) B → C (b) A → B (c) AltGraph (d) AltTrajectory

Fig. 13. Overlapping hot routes

5.3 Efficiency

Finally, we test the efficiency of FlowScan with respect to the number of ob-
jects. Figure 14 shows the running time as the number of objects increases from
2,000 to 10,000 with MinTraffic set to 10%. All objects were stored in mem-
ory, and time to read the input data is excluded. As the curve shows, running

 0

 5

 10

 15

 20

 25

 2000 4000 6000 8000 10000

R
un

ni
ng

 T
im

e
(s

)

Number of Objects

Fig. 14. Efficiency with respect to num-
ber of objects

 500

 600

 700

 800

 2000 4000 6000 8000 10000

P
er

ce
nt

 Im
pr

ov
em

en
t

Number of Objects

Fig. 15. Disk I/O improvement of clus-
tered index on Edge Table

Traffic Density-Based Discovery of Hot Routes in Road Networks 457

time increases linearly with respect to the number of objects. Next, we test the
difference in disk I/O using a clustered Edge Table vs. an unclustered Edge Ta-
ble. Figure 15 shows the result. Pages were set to 4K each and a buffer of 10
pages was used. We excluded the I/Os of the Vertex Index Tree and the TID
List Table since they are the same in both cases. The figure shows the percent
improvement of the clustered Edge Table. It is a significant improvement rang-
ing from 588% to over 800%. This value is relatively stable because the percent
improvement depends more on the structure of the network than the number of
objects.

6 Related Work

Work in moving object clustering is closely related to FlowScan. Some examples
include [6,2,8]. In [8], objects are grouped using a traditional clustering algo-
rithm at each time snapshot and then linked together over time to form moving
clusters. The assumption is that clusters will be stable across short time periods.
In real world traffic, one can see how a traffic light or a incoming traffic from a
highway on-ramp can easily breakup clusters between consecutive snapshots. As
a result, [8] and similar approaches will likely find too many short clusters and
miss the overall flow.

Work in the AltTrajectory class is also related. They include trajectory clus-
tering [18,10] and trajectory modeling [11,9]. In both types, the focus is on in-
dividual objects, not aggregate. Further, most algorithms deal with free-moving
objects and consider the shape in clustering. This is irrelevant in road net-
works. Also, the common traffic between sub-trajectories is ignored in the anal-
ysis. This could cause problems when hot routes merge or split or make drastic
turns.

Data mining in spatiotemporal data is also related to our work. One class of
problems mines sequential patterns of events (e.g., temperature) at spatial loca-
tions [15]. Another problem is co-location mining [14,17,19]. A co-location rule
states a set of locations that often occur together with respect to a neighborhood
function. These work have a similar spirit of discovering frequent patterns, but
they are different in that the input is not trajectory data. General data mining
in sequential pattern mining [12] is another related area. Hot routes are similar
to sequential patterns in trajectories. However, spatial information and traffic
information are not considered in traditional data mining.

General moving object database research has work related to indexing [13,5,7]
and similarity search [16,3]. But the focus of such work is on the raw edges,
shapes, locations, etc. FlowScan focuses on a higher level problem.

Our definitions of density is similar in spirit to density-based clustering (DB-
SCAN [4]), also used in [10]. But the nature of the data is very different. A
typical clustering algorithm is concerned with discovering clusters of points
in spatial data, while FlowScan is concerned with discovering hot routes in
traffic.

458 X. Li et al.

7 Conclusion and Future Work

In this study, we have examined the problem of discovering hot routes in road
networks. Due to the complexity of the data, this is a problem not easily solved
by existing algorithms in related areas. We show several typical traffic behaviors
that are tricky to handle. To this end, we propose a new algorithm, FlowScan,
which uses the density of traffic in sequences of road segments to discover hot
routes. It is a robust algorithm that can handle the complexities in the data
and we verify through extensive experiments. By comparing against other ap-
proaches, we see the advantages of this approach.

One important aspect of the trajectory data we did not utilize in FlowScan is
the non-spatiotemporal information about the the trajectories. The type of the
vehicle is one such example. The hot routes of sedans are sure to be different
from the hot routes of transport trucks. Other attributes on the data facilitates
a multi-dimensional approach to this problem. By knowing the correlations be-
tween hot routes and other attributes, one can enhance the usefulness of the
discovered information.

References

1. Brinkhoff, T.: A framework for generating network-based moving objects. In:
GeoInformatica’02 (2002)

2. Cadez, I.V., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering
individuals and objects. In: KDD’00 (2000)

3. Chen, L., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: SIGMOD’05 (2005)

4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases. In: KDD’96 (1996)

5. Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T.,
Manolopoulos, Y., Roddick, J.F., Theodoridis, Y. (eds.) SSTD 2003. LNCS,
vol. 2750, Springer, Heidelberg (2003)

6. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: KDD’99 (1999)

7. Güting, G.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San
Francisco (2005)

8. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, Springer, Heidelberg (2005)

9. Kostov, V., Ozawa, J., Yoshioka, M., Kudoh, T.: Travel destination prediction
using frequent crossing pattern from driving history. In: ITSC’05 (2005)

10. Lee, J., Han, J., Whang, K.: Trajectory clustering: A partition-and-group frame-
work. In: SIGMOD’07 (2007)

11. Liao, L., Fox, D., Kautz, H.: Learning and inferring transportation routines. In:
AAAI’04 (2004)

12. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.-C.: Mining sequential patterns by pattern-growth: The prefixspan approach.
TKDE’04 (2004)

Traffic Density-Based Discovery of Hot Routes in Road Networks 459

13. Pfoser, D., Jensen, C.S.: Indexing of network constrained moving objects. In:
GIS’03 (2003)

14. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, Springer, Heidelberg (2001)

15. Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, Springer, Heidelberg (2001)

16. Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering similar
multidimensional trajectories. In: ICDE’02

17. Yoo, J.S., Shekhar, S.: A partial join approach to mining co-location patterns. In:
GIS’04 (2004)

18. Zen, H., Tokuda, K., Kitamura, T.: A viterbi algorithm for a trajectory model
derived from hmm with explicit relationship between static and dynamic features.
In: ICASSP ’04 (2004)

19. Zhang, X., Mamoulis, N., Cheung, D.W., Shou, Y.: Fast mining of spatial colloca-
tions. In: KDD’04 (2004)

Spatio-temporal Network Databases and
Routing Algorithms: A Summary of Results

Betsy George�, Sangho Kim, and Shashi Shekhar

Department of Computer Science and Engineering, University of Minnesota
200 Union St SE, Minneapolis, MN 55455, USA

{bgeorge,sangho,shekhar}@cs.umn.edu
http://www.spatial.cs.umn.edu/

Abstract. Spatio-temporal networks are spatial networks whose topol-
ogy and parameters change with time. These networks are important due
to many critical applications such as emergency traffic planning and route
finding services and there is an immediate need for models that support
the design of efficient algorithms for computing the frequent queries on
such networks. This problem is challenging due to potentially conflicting
requirements of model simplicity and support for efficient algorithms.
Time expanded networks which have been used to model dynamic net-
works employ replication of the network across time instants, resulting
in high storage overhead and algorithms that are computationally ex-
pensive. In contrast, proposed time-aggregated graphs do not replicate
nodes and edges across time; rather they allow the properties of edges and
nodes to be modeled as a time series. Since the model does not replicate
the entire graph for every instant of time, it uses less memory and the
algorithms for common operations (e.g. connectivity, shortest path) are
computationally more efficient than those for time expanded networks.
One important query on spatio-temporal networks is the computation of
shortest paths. Shortest paths can be computed either for a given start
time or to find the start time and the path that leads to least travel
time journeys (best start time journeys). Developing efficient algorithms
for computing shortest paths in a time varying spatial network is chal-
lenging because these journeys do not always display greedy property
or optimal substructure, making techniques like dynamic programming
inapplicable. In this paper, we propose algorithms for shortest path com-
putations in both contexts. We present the analytical cost models for the
algorithms and provide an experimental comparison of performance with
existing algorithms.

Keywords: time-aggregated graphs, shortest paths, spatio-temporal
data bases.

1 Introduction

The underlying data of interest for many significant applications such as trans-
portation networks is structured as a spatio-temporal network, which consists
� Corresponding author.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 460–477, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Spatio-temporal Network Databases and Routing Algorithms 461

of a finite collection of points (i.e. nodes) with location information, the line-
segments (i.e. edges) connecting the points, and the time-varying attributes at-
tached to the elements. For example, a spatio-temporal network database for a
traveler’s trip planning may store the intersections as nodes, the road segments
as edges, and time dependent travel time attached to the road segments. In the
case of evacuation planning, time dependent capacity may be added to the road
segments as another important attribute.

Related work in the field of databases falls into three broad categories (1)Spa-
tial network databases, (2) Graph Databases, and (3) Spatio-temporal databases.
The recent release of Oracle (version 10g) includes a network data model to
store and maintain the connectivity of link-node networks and supports basic
features such as shortest path [14]. The Network Analyst extension of ArcMap
from ESRI supports a network geodatabase and provides basic algorithms (e.g.,
shortest path, service area, closest facility, etc.) [7]. However, these products do
not address the time variance of spatial networks, which is crucial in applications
such as route computations and emergency planning.

Graph databases [5,6,7,19,22,24] also primarily deal with spatial networks
that do not vary with time. Research in graph databases that accounts for tem-
poral variations perform computations over a snapshot of the network [4,9,18],
and does not consider the interplay between the edge travel times and the ex-
istence of edges. For example, Ding [4] proposed a model that addresses the
time-dependency by associating a temporal attribute to every edge and node of
the network so that its state at any instant of time can be retrieved. This model
performs path computations over a snapshot of the network. Since the network
can change over the time taken to traverse these paths, this computation might
not give realistic solutions. The model does not propose an algorithm for the
least travel time paths.

Although the need for live traffic information is increasing, there has been lit-
tle work on the modeling and algorithms for spatio-temporal network databases.
Chorochronos [12], studied various aspects of spatio-temporal databases includ-
ing ontology, modeling, and implementation. However, the researchers have yet
to study spatio-temporal networks in this framework.

Research in Operations Research is based on the time expanded network
[10,11,13,15,17,21]. This model duplicates the original network for each discrete
time unit t = 0, 1, . . . , T where T represents the extent of the time horizon. The
expanded network has edges connecting a node and its copy at the next instant
in addition to the edges in the original network, replicated for every time in-
stant. This significantly increases the network size and is very expensive with
respect to memory. Because of the increased problem size due to replication of
the network, the computations become expensive.

As the first step towards the study of spatio-temporal network databases,
we previously proposed a spatio-temporal network model named the time ag-
gregated graph [8]. In this paper, we introduce a case study of this model using
routing algorithms. The proposed algorithms (SP-TAG and BEST) compute the
shortest path in the given network for a given start time at the source node and

462 B. George, S. Kim, and S. Shekhar

the least travel time route over the entire time period. The proposed model
and algorithms are evaluated with a real world static graph appended with a
synthetically generated travel time series.

1.1 An Illustrative Application Domain

Transportation networks are the kernel framework of many advanced transporta-
tion systems such as the Advanced Traveler Information System and Intelligent
Vehicle Highway Systems. Transportation networks are spatio-temporal in na-
ture and require significant database support to handle the storage of their large
amounts of multi-dimensional data. Many important applications based on trans-
portation networks, including travelers’ trip planning, consumer business logis-
tics, and evacuation planning need to be built upon spatio-temporal network
databases. For example, commuters try to find a suitable time to start their
commute so that they spend the least time in traffic. Figure 1 illustrates traffic
sensor networks on urban highways which measure congestion levels at two dif-
ferent times (e.g. 5:07pm and 9:37pm) illustrating possible changes in shortest
route travel times at different times of the day. With the increasing use of sensor
networks to monitor traffic data on spatial networks and the subsequent avail-
ability of time-varying traffic data, it becomes important to incorporate this data
in the models and algorithms related to transportation networks. However, exist-
ing spatio-temporal databases do not offer adequate support for spatio-temporal
networks.

Fig. 1. Sensor networks periodically report time-variant traffic volumes on Twin Cities
highways (Best viewed in color, Source: Mn/DOT)

The problem of finding best start time has similar applications in freight
delivery services, one of whose main concerns is to reduce logistic costs such as
fuel consumption. Another important application is in emergency traffic manage-
ment. Emergencies caused by natural or manmade disasters can result in atypical

Spatio-temporal Network Databases and Routing Algorithms 463

demands on a transportation network, resulting in severe congestion. Emergency
managers may be interested in using spatio-temporal network databases to un-
derstand non-equilibrium traffic dynamics and to make informed decisions about
evacuation route planning.

1.2 Broad Challenges

A time-variant graph is a graph whose edge and node properties and topological
structure are time dependent. For example, traffic volume on urban highways
varies over the time of day, which leads to a variation in travel time. In addi-
tion to network parameter values, the network topology can also change with
time due to the unavailability of certain road segments during some periods of
time due to repair or natural calamities. Conventional graph algorithms cannot
easily be applied to the snapshot graphs at discrete time instants to evaluate
frequent queries without accounting for relationships among snapshots. How-
ever, time-variant graphs raise many challenges for database research. Due to
their potentially large and evergrowing sizes, a storage-efficient representation
is critical to reduce and possibly eliminate redundant information across differ-
ent time-points. Second, new data model concepts need to be investigated to
represent and classify potentially new alternative semantics for common graph
operations such as shortest-path and connectivity. For example, a shortest path
between a given pair of nodes may have at least two interpretations, one for a
given start time-point and the other for the shortest travel-time for any start
time in a given time interval. A third challenge is the design of efficient and
correct query processing strategies and algorithms since some of the commonly
assumed graph-properties may not hold for spatio-temporal graphs. For exam-
ple, consider the optimal substructure (required in dynamic programming, [2])
for shortest paths in a graph. While each prefix path (path from a source node to
an intermediate node in an optimal path) is optimal in a static graph, it may not
be optimal in a spatio-temporal graph due to a potential wait at an intermediate
node.

Our Contribution: The paper describes a model for spatio-temporal networks
called the time aggregated graph, that uses a time series to represent time-
varying attributes. We propose algorithms to compute shortest paths for a fixed
start time and the best start time (Best Start Time Algorithm) and consequently
the least commute time paths. These problems are challenging since common al-
gorithm design techniques like greedy design cannot always be applied. The Best
Start Time algorithm uses a node cost time series instead of a scalar node cost.
The entries in the time series are updated when a path of smaller cost is found.
The algorithm iterates until every entry reaches a minimum value and hence
does not depend on the greedy choice property. This removes the FIFO restric-
tion from the edge travel times. We also present the experimental analysis of
the best start time algorithm and the shortest path algorithm for a given start
time [8].

464 B. George, S. Kim, and S. Shekhar

1.3 Scope and Outline of the Paper

The paper presents a case study of time aggregated graphs using routing algo-
rithms to compute shortest paths in two different contexts. Shortest paths can
be computed from a given source node for a fixed start time and at the best
start time which minimizes the travel time over the entire time horizon.

The rest of the paper is organized as follows. For the sake of completeness,
Section 2 provides a brief description of the time aggregated graph model that
is used to represent spatio-temporal networks. This section also describes the
shortest path algorithm for a given start time. Section 3 describes the proposed
algorithm to compute the best start time at a given source node for any destina-
tion node. In Section 4, we present the experimental design and the performance
analysis. In Section 5 we conclude and describe the direction of future work.

2 Basic Concepts

Spatial networks that show time-dependence serve as the underlying networks
for many applications such as routing in transportation networks. Traditionally
graphs have been extensively used to model spatial networks (e.g. road net-
works) [19]; weights assigned to nodes and edges are used to encode additional
information. In a real world scenario, it is not uncommon for these network
parameters to be time-dependent. It is important to be able to formulate com-
putationally efficient and correct algorithms for the shortest path computation
that take into account the dynamic nature of the networks. Models of these net-
works need to capture the possible changes in topology and values of network
parameters with time and provide the basis for the formulation of computation-
ally efficient and correct algorithms for the frequent computations like shortest
paths.

Given a set of frequent queries posed by an application on a spatial network
and the pattern of variations of the spatial network with time, we need to find
a model that supports efficient and correct algorithms for computing the query
results, while trying to minimize the storage and cost of computation. In this
section we discuss the basics of the model used to represent time dependent spa-
tial networks called “Time Aggregated Networks” [8]. The algorithms presented
in this paper are formulated based on this model. Time aggregated graphs can
not only capture the time-dependence of network parameters, but also account
for the possibility of edges and nodes being absent during certain instants of
time.

2.1 The Conceptual Model

A graph G = (N, E) consists of a finite set of nodes N and edges E between
the nodes in N . If the pair of nodes that determines the edge is ordered, the
graph is directed; if it is not, the graph is undirected. In most cases, additional
information is attached to the nodes and edges. In this section, we discuss how

Spatio-temporal Network Databases and Routing Algorithms 465

3

(c) t=3

2

2

4

21
3

N1 N2

N3 N4

LEGEND

(a) t=1

Snapshots of the Network

Node

Edge

(Travel Time Series) [Edge Time Series]

1
N1 N2

N3 N4
1

222

1

1

[2,2,2]
(2,3)(1,3)

(1,2)

(1,2)

[−,−,3]

[−,1,1][2,−,2]

[1,5,−]

[1,1,−]

N4N3

N2N1

(d) Time Aggregated Graph

(1,2,3)

5

1

(b) t=2

2

2 21

N4N3

N2N1

(3)

[1,−,4](1,3)

[−,2,2](2,3)

[2,2,3]
(1,2,3)

Fig. 2. Network at Various Time Instants and the Time Aggregated Graph

the time dependence of these edge/node parameters are handled in the proposed
time-aggregated graph model.

We define the time-aggregated graph as follows.

taG = (N, E, TF, f1 . . . fk, g1 . . . gl, w1 . . . wp|fi : N → RTF ; gi : E → RTF ; wi :
E → RTF)

where N is the set of nodes, E is the set of edges, TF is the length of the entire
time interval, f1 . . . fk are the mappings from nodes to the time-series associated
with the nodes, g1 . . . gl are mappings from edges to the time series associated
with the edges, and w1 . . . wp indicate the time dependent weights (eg. travel
times) on the edges.

Each edge has an attribute, called an edge time series that represents the time
instants for which the edge is present. This enables the time aggregated graph
to model the topological changes of the network with time. We assume that each
edge travel time has a positive minimum and the presence of an edge at time
instant t is valid for the closed interval [t, t + σ].

Figure 2(a,b,c) shows a network at three time instants. The network topology
and parameters change over time. For example, the edge N2-N1 is present at
time instants t = 1, 2, and disappears at t = 3, and its weight changes from 1 at
t = 1 to 5 at t = 2. The time aggregated graph that represents this dynamic net-
work is shown in Figure 2(d). In this figure, edge N2-N1 has two attributes, each
being a series. The attribute (1, 2) represents the time instants at which the edge
is present and [1, 1,−] is the weight time series, indicating the weights at vari-
ous instants of time. Though this model can include spatial properties at nodes
and edges, these properties are not incorporated in the algorithms presented
in this paper. Figure 3(a) shows the time aggregated graph (corresponding to
Figure 2(a),(b),(c)) and a time expanded graph that represent the same

466 B. George, S. Kim, and S. Shekhar

(a) Time−aggregated Graph

N3N3

N1 N1 N1 N1

N4 N4 N4 N4

 t=1 t=2 t=3 t=4 t=5 t=6 t=7

N3

(b) Time Expanded Graph

N1

N2

N3

N4 N4

N3

N2

N1 N1

N2N2 N2 N2 N2

N3

N4

N3

[2,−,2] [−,1,1]

[−,−,3]

[2,2,3]

(1,2)

(1,2)

(1,3) (2,3)
[2,2,2]
(1,2,3) (1,2,3)

(3)

[1,−,4](1,3)

[−,2,2](2,3)

[1,5,−]
N1 N2

N3 N4

[1,1,−]

Fig. 3. Time-aggregated Graph vs. Time Expanded Graph

scenario. Edge weights in a time expanded graph are not explicitly shown as
edge attributes; instead they are represented by edges that connect the copies
of the nodes at various time instants. For example, the weight 1 of edge N2-N1
at t = 1 is represented by connecting the copy of node N2 at t = 1 to the copy
of node N1 at time t = 2. The time expansion for the example network needs to
go through 7 steps since the latest edge traversal in the network ends at t = 7.
The traversal of the edge N3-N4 that starts at t = 3 ends at t = 7, the travel
time of the edge being 4 units. The number of nodes is larger by a factor of T ,
where T is the number of time instants and the number of edges is also larger in
number compared to the time-aggregated graph. If the value of T is very large in
a spatial network, it would result in enormously large time expanded networks
and consequently slow computations.

Comparison of Storage Costs with Time Expanded Networks: Accord-
ing to the analysis in [20], the memory requirement for a time expanded network
is O(nT)+O(n+mT), where n is the number of nodes, m is the number of edges
in the original graph, and T is the length of the travel time series. The memory
requirement for the time-aggregated graphs would be O(n + m)T , assuming an
adjacency list representation of the graph. Each edge has a travel time series
associated with it, instead of a scalar cost as in the case of a static graph.

This comparison shows that the memory usage of time-aggregated graphs is
less than that of time expanded graphs by a factor of O(nT).

2.2 Shortest Path Computation for Time Aggregated Graphs
(SP-TAG Algorithm)

In time dependent networks, the shortest path and its traversal time are depen-
dent on the start time at the source node. Here we give an outline of the algorithm
that computes the shortest path for a given start time in a time-dependent net-
work. The algorithm uses the time aggregated graph to represent the network.
The application of a greedy strategy in the shortest path computation (which
is a popular choice in most optimization problems) in a time-aggregated graph

Spatio-temporal Network Databases and Routing Algorithms 467

N3

N4 N5

1

2 2
1

1

[1,2,5,8]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

Edge

Node

LegendN2

Travel Time

Edge Time Series

N1

Fig. 4. Optimal Sub-structure of Shortest Paths

faces a challenge. Not all shortest paths display the optimal sub-structure, as
illustrated by Figure 4. For the sake of simplicity, the travel times are constant
in this example. It can be seen that a shortest path (N1-N3-N4-N5) from N1 to
N5 for the start time t = 1, which takes 5 time units, does not display optimal
substructure. The path from N1 to N4 following the above path is not optimal
(shortest path being N1-N2-N4). Although such paths that do not display opti-
mal sub-structure could exist, it can be proved that there is at least one optimal
path which satisfies the optimal sub-structure property [8]. This result enables
us to use a greedy approach to compute the shortest path. The algorithm, called
the SP-TAG algorithm, uses greedy strategy to find the shortest path for a fixed
start time. Every node has a cost associated with it which represents the travel
time to reach the node from the source node. The algorithm picks the node with
the least cost and updates the costs of its adjacent nodes. While finding the
adjacent nodes, each edge is selected at its earliest available time instant (min t
operation in the algorithm description). A trace of the algorithm is given in
Table 1. The table entries are the costs associated with each node (representing
the arrival times at the node) at each iteration. The node marked as “closed”
is the node with the minimum cost selected for expansion. The travel times are
assumed to follow the FIFO property.

Lemma 1: The SP-TAG algorithm is correct.

Proof: As Figure 4 illustrates, the shortest path fails to have optimal struc-
ture due to a potential wait at the intermediate node (u), after reaching this
node traversing the optimal path from s to u. Consider the optimal path from
s to u. Append this path to the path u − d (allowing a wait at the intermedi-
ate node u) from the optimal path. This would be still the shortest path from
s to d. Otherwise, it would contradict the optimality of the original shortest path.

Lemma 2: The time complexity of the SP-TAG algorithm is O(m(log T +logn))
where T is the number of time instants, n is the number of nodes and m is the
number of edges in the time aggregated graph.

468 B. George, S. Kim, and S. Shekhar

Algorithm 1. Shortest Path (SP-TAG) Algorithm
Input:

1) G(N, E): a graph G with a set of nodes N and a set of edges E;
Each node n ∈ N has a property:

Node Presence Time Series : series of positive integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;
4) tstart: Start Time;

Output: Shortest Route from s to d for tstart

Method:
c[s] = tstart; ∀v �= s, c[v] = ∞;
// c[u] is the cost at the node u.
Insert s in priority queue Q.
while Q is not empty do {

u = extract min(Q);
for each node v adjacent to u do {

t = min t((u, v), c[u]);
if t + σu,v(t) < c[v] {

c[v] = t + σu,v(t); parent[v] = u;
if v is not in Q, insert v in Q;

}
update Q;

}
}

}
Output the route from s to d.

Proof: The cost model analysis assumes an adjacency list representation of the
graph with two significant modifications. The edge time series is stored in the
sorted order. Attached to every adjacent node in the linked list are the edge time
series and the travel time series.

For every node extracted from the priority queue Q, there is one edge time
series look up and a priority queue update for each of its adjacent nodes. The
time complexity of this step is O(log T + log n). The asymptotic complexity of
the algorithm would be

O(Σv∈N [degree(v).(log T + log n]) = O(m(log T + log n)).

The time complexity of the SP-TAG shortest path algorithm based on a time
expanded network is O(nT log T + mT) [3]. It can be seen that the algorithm
based on a time-aggregated graph is faster if log n < T log T .

Spatio-temporal Network Databases and Routing Algorithms 469

Table 1. Trace of the SP-TAG Algorithm for the Network shown in Figure 4

Iteration N1 N2 N3 N4 N5

1 1 (closed) ∞ ∞ ∞ ∞
2 1 2 (closed) 3 ∞ ∞
3 1 2 3 (closed) 3 ∞
4 1 2 3 3 (closed) 6
5 1 2 3 3 6 (closed)

3 Case Study: Best Start Time Shortest Paths

The time dependency of network parameters affects the connectivity and the
shortest paths between nodes in a spatial network. As illustrated in Figure 5,
the travel time from node N1 to node N3 changes with the start time. If the
travel starts at t = 1, the commute time would be 6 units. A journey that starts
at t = 1 reaches N2 at t = 2 and waits at N2 until edge N2-N3 becomes available
at t = 5, thus taking a total travel time of 6 units to reach node N3. The
travel on the same route would take 4 units if the start time is moved to t = 4.
This shows that the shortest paths in a time-dependent network vary with time,
which adds an interesting dimension to shortest path computation. A path that
takes the smallest travel time for a source-destination traversal over the entire
time horizon (called ’Best Start Time shortest Path’) can be computed. This is
significant since it suggests that it is possible to reduce the travel time for the
same source-destination pair if the travel starts at the “right” time instant.

The formulation of algorithms to compute the paths that take the least com-
mute time becomes non-trivial since most of the techniques that are used in
static networks might not be applicable in dynamic scenarios. Since the network
changes in its parameter values and the topology, meeting the requirements of
efficiency and correctness can pose challenges. The potential waits at intermedi-
ate nodes can increase the total journey time even if an initial part of the path
turns out to be optimal. Figure 5 shows a spatial network that changes with
time. The figure shows the snapshots of the network at various instants of time,
and the edges are marked with the travel times. It is significant to note that the
prefix journeys of the best start time shortest path journey are not always opti-
mal since some optimal prefix journeys can lead to longer waits at intermediate
nodes. The best start time for a journey from node N1 to Node N3 is t = 4,
which takes 4 time units. The optimal path from N1 to N3 that starts at t = 4

N1 N3N2

N1 N3N2 N1 N3N2

N1 N3 N1 N3

N1 N3

1 2 2

2 2 2

2

2 2

N2 N2

N2

t=1 t=3

t=4 t=5 t=6

t=2

Node

Edge

Legend

Travel time

Fig. 5. Network at various instants

470 B. George, S. Kim, and S. Shekhar

is not optimal for the intermediate node N2. The best start time for a path from
N1 to N2 is t = 1, which proves to be sub-optimal for a journey from N1 to N3.
The lack of an optimal substructure in the best start time shortest paths rules
out the possibility of using a greedy strategy in the algorithm design.

We propose an algorithm that computes the best start time based on a node-
cost time series. The proposed algorithm uses the time aggregated network model
to represent a time dependent spatial network.

3.1 BEst Start Time Shortest Path (BEST) Algorithm

While computing the best start time, each node needs to keep track of the travel
times to the destination for every start time instant. The proposed algorithm
attributes each node with a time series, with ith entry representing the current,
least travel time to the destination node for the start time ti. Due to the lack
of optimality of prefix paths and lack of ordering of nodes based on the costs
(ie. travel times), nodes cannot be selected and “closed” based on a minimum
scalar cost. The algorithm uses an iterative, label correcting approach [1] and
each entry in a node time series is modified according to the following condition.

Cu[t] = minimum{Cu[t], σuv(t) + Cv[t + σuv(t)]} where, uv ∈ E (1)

Cu[t] - Travel time from u ∈ N to the destination for the start time t.
σuv(t) - Travel time of the edge uv at time t.

The algorithm maintains a list of all nodes that change its cost according to the
condition and terminates when there is no further improvement indicated by an
empty list. Though the list can be implemented using several data structures,
studies on static networks [25,1] have shown that the Two Q implementation [16]
of label correcting algorithms performs the best on road networks.

The search starts at the destination node and proceeds to update the remain-
ing nodes, finally finding the best start time shortest paths from all nodes to the
destination. Figure 6 illustrates the trace of the algorithm on a small network.
In this example, the destination node is the node N4. The node cost series C4

is initalized to [0, 0, 0, 0, 0] and the cost series Ci, i = 1, 2, 3 are initialized to
[∞,∞,∞,∞,∞]. The nodes that have N4 in their adjacency lists (that is, all
nodes Ni such that NiN4 ∈ E), N2 and N3 are relaxed according to condition
(1). These nodes are added to the queue since there is a change in their cost
series. The steps continue until the queue is empty, indicating that there is no
further cost improvement at any of the nodes. At every iteration, the node that
contributes to a cost improvement is stored in a descendant array to facilitate
the trace of the shortest paths when the algorithm terminates. At the termina-
tion, the cost time series has the travel times for every start time t = 1, 2 · · ·T .
For example, the cost time series of node N1 shows that the travel times from
N1 to N4 for start times t = 1 is 4 time units, while the best start time at this
node is t = 4, which results in a travel time of 2 time units and a best start time
shortest path N1-N2-N4. N1-N2 takes 1 time unit at t = 4, reaches N2 at t = 5
and continues on N2-N4 at t = 5, reaching N4 at t = 6, taking a total travel
time of 2 time units. A more detailed trace is shown in Table 2.

Spatio-temporal Network Databases and Routing Algorithms 471

Algorithm 2. BEST Algorithm
Input:

G(N, E): a graph G with a set of nodes N and a set of edges E;
Each node n ∈ N has a property:

Node Presence Time Series : series of positive integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
Output:

Best Start Time shortest route from s to d;
Intialize;
While Queue not Empty

v = Dequeue();
For every node u such that uv ∈ E

For every entry in the cost series Cu of u
if Cu(t) > σuv(t) + Cv(t + σuv(t))

Update Cu(t);
Enqueue(u);
Update the descendant array of u.

Find the minimum entry in the node time series.
Return the BestStartTime and the ShortestRoute;

Table 2. Trace of the BEST Algorithm for the Network shown in Figure 6

Iteration N1 N2 N3 N4 Queue

1 ∞ · · · ∞ ∞· · · ∞ ∞ · · · ∞ [0, 0, 0, 0, 0] N1
2 ∞ · · · ∞ [1, 1, 2, 2, 1] [4, 4, 2, 4, 3] [0, 0, 0, 0, 0] N2, N3
3 ∞ · · · ∞ [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N3
4 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N1
5 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] –

Lemma 3: The algorithm terminates and computes the best start time paths
from every node to the destination.

Proof: The algorithm terminates because there is a positive minimum for the
travel time over every path, for every pair of nodes in the network since the
edge weights (travel times) are positive and each such path has a finite number
of edges. The updates on the costs according to condition(1) will generate the
optimal travel times from a node to the destination at the termination of the
algorithm. This can be proved by induction on the number of edges on the path.
The base condition would be for paths with two edges, say from any node u
to the destination node d. Every path with two edges from u to d will transit
to some node v and then traverse the edge to d which takes the least time. If
we assume the inductive hypotheses is true for every path with k edges, the

472 B. George, S. Kim, and S. Shekhar

4 4 4 4 4
1 1 2 2 1[]

2 2 4 4 4
2 3 2 4 3[]

2 2 2 2 2
5 5 3 2 3[]

3 3 2 2 2
4 3 3 2 3[]

0 0 0 0 0[]− − − −−

0 0 0 0 0[]
1

− −−

0 0 0 0 0[]− − − −−

(Result)
Best Start Time: 4
Route: 1 − 2 − 4

1

3

4 4 4 4 4
1 1 2 2 1[]

2 2 4 4 4
2 3 2 4 3[]

−

4

(Input Network)

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Legend)

Parent Pointer List[]Distance List from Destination

4

4

2

3

Expansion Node

Best Start Time

− − −−

2

#

−

ooo oooo[]− − − − −

2

1 4

3

o
2

1 4

3 oooooo oooo[]− − − − −

oo

(4,4,1,1,2)

]− − − − −

oooooo oooo[]− − − − −

0 0 0 0 0[]−[

(1,1,2,2,1)

(1,1,2,2,3) (4,4,2,4,3)

(1,1,1,3,2)

2

1

3

4 4 4 4 4
1 1 2 2 1[]

oooooooo oo

][4 4 2 4 3
4 4 4 4 4

Fig. 6. Trace of the BEST Algorithm

minimality must hold for a path from u with (k + 1) edges since we can reach
node u that with a minimal k−edge path and append uv with travel time σuv(t).

Lemma 4: The computational complexity of the BEST algorithm is O(n2mT),
where n is the number of nodes, m is the number of edges and T is the length
of the time series.

Proof: The worst case computational complexity of the label correcting algo-
rithm based on Two-Q data structure is O(n2m) when the node costs and edge
weights are scalar quantities [1]. In the BEST algorithm, the relaxation step
operates on a time series (node cost and edge weight) of length T . Hence the
computational complexity of the algorithm is O(n2mT).

4 Experimental Analysis

In this section, the experimental analysis of the BEST algorithm and the SP-
TAG algorithm are provided. The purpose of the performance evaluation of the
algorithm is to compare the run-times with algorithms based on a time-expanded
graph.

Experiment Design. Figure 7 illustrates the experiment design to compare
the performance of the proposed algorithm and the algorithm based on a time
expanded network. Time expanded graphs make copies of the original network

Spatio-temporal Network Databases and Routing Algorithms 473

Analysis
Add Time
Dimension

Generate
Time Series

Read Data
without Time Series

Best Start Time
Shortest Path Algorithm

Algorithm based on
Time Expanded Graph

Length of Time Series

Fig. 7. Experiment Design

for every time instant under consideration. The model used for the proposed
algorithm is time-aggregated graphs. In our experiments the following were se-
lected as the independent parameters: 1) network size represented by number of
nodes; and 2) the length of the time interval in terms of number of time instants.
The data sets have two main components: (1) the network data that consists of
the graph structure and (2) the travel time series. The networks chosen are road
maps from the Minneapolis downtown area with radii of .5 mile, 1 mile, 2 miles
and 3miles. This is appended with travel time series of various lengths. The
travel time series were synthetically generated. This data was fed to both a time
expanded graph generator, which generates the expanded graph encoding the
travel time information. An algorithm for for computing the shortest path for a
given start time was run on this graph. The SP-TAG algorithm was run on the
same dataset and the results were compared. The time expanded graph was then
used to find the start time that results in the least travel time and the results
were compared to the results from the BEST algorithm.

The experiments were conducted on a SUN Solaris workstation with 1.77GHz
CPU, 1GB RAM and UNIX operating system. Each experimental result reported
in the following sections is the average over 5 experiment runs with networks
generated using the same input parameters, but with different destination nodes.

4.1 Experimental Results and Anlaysis

We wanted to answer three questions: (1) How does the network size (number
of nodes, number of edges) affect the performance of the algorithms? (2) How
does the length of the time series affect the performance of the algorithms? (3)
How do the the two representations, time expanded graph and time aggregated
graph, compare with respect to algorithm performance?

Experiment 1: How does the network size affect the performance of the algo-
rithms?
The purpose of the first experiment was to evaluate how the network size in
terms of the number of nodes affects the performance of the algorithms. We
fixed the length of the travel time series, and varied the network size to observe

474 B. George, S. Kim, and S. Shekhar

Table 3. Description of Datasets

Dataset Radius No: of Nodes No: of Edges

1 0.5 mile 111 287
2 1 mile 277 674
3 2 miles 562 1443
4 3 miles 786 2106

111

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

277 562 786

1000

100

10

1

0.1

Number of Nodes

SP−TAG Algorithm

Fig. 8. SP-TAG Algorithm: Run-
time With Respect to Network Size

111

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

BEST Algorithm

277 562 786

Number of Nodes

1

10

100

1000

10000

Fig. 9. BEST Algorithm: Run-time
With Respect to Network Size

the run times of both the fixed start time(SP-TAG) and best start time(BEST)
algorithms and time-expanded graph based algorithms.

The experiment was done with four datasets that represent the road maps
from the Minneapolis downtown area of .5 mile, 1 mile, 2 mile and 3mile radius.
The length of the time series was fixed at 240. The number of nodes and edges in
these datasets are provided in Table 3. Figure 8 shows the run-time of the fixed
start time algorithm based on the time aggregated graph and the performance of
the algorithm based on the time expanded graph. The SP-TAG algorithm runs
faster than the time-expanded graph based algorithm in all cases; further, its
run-time seens to increase at a slower rate. Figure 9 shows the performance of
the BEST algorithm and that of the time expanded graph algorithm. The run
time of the BEST algorithm is much lower than that of the time expanded graph
algorithm.

Experiment 2: How does the length of the time series affect the performnace of
the algorithms?
In the second experiment, we evaluated how the number of time instants affects
the performance of the algorithms. We fixed the network size, and varied the
length of the time series to observe the run-time. The number of time instants
was varied from 120 to 480 and the network size parameters were fixed at 562
nodes and 1443 edges. As seen in Figure 10, the SP-TAG algorithm performs

Spatio-temporal Network Databases and Routing Algorithms 475

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

SP−TAG Algorithm

Fig. 10. SP-TAG Algorithm: Run-time
With Respect to Length of Time series

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
u

n
 t

im
e

in
 s

ec
on

d
s

(l
og

 s
ca

le
)

Time Expanded Graph

BEST Algorithm

Fig. 11. BEST Algorithm: Run-time With
Respect to Length of Time series

better. Figure 11 shows the performance of the BEST algorithm and that of the
time expanded graph algorithm. As the length of the time series increases, the
number of copies of the entire network required in the case of the time expanded
graph increases, resulting in a considerable increase in the size of the entire
network, leading to almost exponential increases in run time.

3: How do the the two representations, time expanded graph and time aggregated
graph, compare with respect to algorithm performance?
Based on the results of Experiments (1) and (2), it can be seen that algorithms
based on the time aggregated graph perform better than those based on the time
expanded graph.

5 Conclusions and Future Work

Spatio-temporal networks form a key part of critical applications such as emer-
gency planning and there is a great need for database support in this area. The
paper describes a model to represent a spatio-temporal network and proposes two
algorithms for shortest path computations. The formulation of these algorithms
is based on a model for spatio-temporal networks called time-aggregated graphs.
In addition to the algorithm that computes the shortest path for a given start
time, we also addressed the time-dependence of shortest paths in networks by
formulating an algorithm that computes shortest paths which result in the least
travel time over the entire time period. We also present an experimental analysis
of the best start time (BEST) algorithm and the fixed start time algorithm (SP-
TAG) (which was proposed in [8]). Experiments show that the algorithms based
on time aggregated graphs significantly reduce the computational cost compared
to similar algorithms based on time expanded networks.

We plan to evaluate the performance of the algorithms using real-traffic
datasets shortly. We recently acquired a dataset for interstate highway I-66.

476 B. George, S. Kim, and S. Shekhar

This data contains time-stamped occupancy, speed and volume collected from a
number of stations on I-66 on November 6, 2006 using the Advanced Interactive
Traffic Visualization System [23]. We anticipate that this evaluation will give
new insights into the average case run time of the algorithms, which we expect
to be significantly better than the worst case complexity, especially in the case
of the BEST algorithm based on a label correcting approach. We are also plan-
ning to extend our experiments with Google traffic data and traffic archive data
collected by the Traffic Management Center at the University of Minnesota.

The time aggregated graphs can accomodate the time-varying capacities of
the road networks. The proposed algorithms need to be extended to give opti-
mal solutions subject to the constraints of time-varying capacities. This would
extend the use of the algorithms to domains such as evacuation planning in
emergency management, where capacity constraints in the network pose signif-
icant challenges. We plan to include spatial attributes at nodes and edges and
incorporate necessary changes in the algorithms. We plan to incorporate the al-
gorithms as building blocks that find the shortest paths in the CCRP evacuation
planner [13]. We will also explore other graph problems in the context of time
aggregated graphs.

Acknowledgments

We are particularly grateful to the members of the Spatial Database Research
Group at the University of Minnesota for their helpful comments and valuable
suggestions. We would also like to express our thanks to Kim Koffolt for improv-
ing the readability of this paper.

This work was supported by the NSF SEI grant and Minnesota Department
of Transportation. The content does not necessarily reflect the position or the
policy of the government and no official endorsement should be inferred.

References

1. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest Paths Algorithms: Theory
and Experimental Evaluation . Mathematical Programming 73, 129–174 (1996)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(Chapter 26, Flow Networks). MIT Press, Cambridge, MA, USA (2002)

3. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks. net-
works 44(1), 41–46 (2004)

4. Ding, Z., Guting, R.H.: Modeling temporally variable transportation networks.
Proc. 16th Intl. Conf. on Database Systems for Advanced Applications , 154–168
(2004)

5. Erwig, M.: Graphs in Spatial Databases. PhD thesis, Fern Universität Hagen (1994)
6. Erwig, M., Guting, R.H.: Explicit graphs in a functional model for spatial

databases. IEEE Transactions on Knowledge and Data Engineering 6(5), 787–804
(1994)

7. ESRI. ArcGIS Network Analyst (2006),
http://www.esri.com/software/arcgis/extensions/

http://www.esri.com/software/arcgis/extensions/

Spatio-temporal Network Databases and Routing Algorithms 477

8. George, B., Shekhar, S.: Time-aggregated Graphs for Modeling Spatio-Temporal
Networks - An Extended Abst ract . Proceedings of Workshops at International
Conference on Conceptual Modeling (2006)

9. Hamre, T.: Development of Semantic Spatio-temporal Data Models for Integration
of Remote Sensing and in situ Data in Marine Information System. PhD thesis,
University of Bergen, Norway (1995)

10. Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for intelli-
gent vehicle highway systems applications. IVHS Journal 1(1), 1–11 (1993)

11. Kohler, E., Langtau, K., Skutella, M.: Time-expanded graphs for flow-dependent
transit times. In: Proc. 10th Annual European Symposium on Algorithms, pp.
599–611 (2002)

12. Sellis, T., Koubarakis, M., Frank, A., Grumbach, S., Güting, R.H., Jensen,
C., Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Theodoulidis,
B., Tryfona, N., Schek, H.-J., Scholl, M.O.: Spatio-Temporal Databases: The
CHOROCHRONOS Approach. In: Sellis, T., Koubarakis, M., Frank, A., Grum-
bach, S., Güting, R.H., Jensen, C., Lorentzos, N.A., Manolopoulos, Y., Nardelli,
E., Pernici, B., Theodoulidis, B., Tryfona, N., Schek, H.-J., Scholl, M.O. (eds.)
Spatio-Temporal Databases. LNCS, vol. 2520, Springer, Heidelberg (2003)

13. Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for
Evacuation Planning: A Summary of Resu lts. In: Bauzer Medeiros, C., Egenhofer,
M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, Springer, Heidelberg (2005)

14. Oracle. Oracle Spatial 10g, An Oracle White Paper. August (2005),
http://www.oracle.com/technology/products/spatial/

15. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. net-
works 21, 295–319 (1991)

16. Pallottino, S.: Shortest-Path Methods: Complexity, Interrelations and New Propo-
sitions. Networks 14, 257–267 (1984)

17. Pallottino, S., Scuttella, M.G.: Shortest path algorithms in tranportation models:
Classical and innovative aspects. Equilibrium and Advanced transportation Mod-
elling , 245–281 (1998)

18. Rasinmäki, J.: Modelling spatio-temporal environmental data. In: 5th AGILE Con-
ference on Geographic Information Science, Palma, Balearic Islands, Spain (April
2002)

19. Shekhar, S., Chawla, S.: Spatial Databases: Tour. Prentice-Hall, Englewood Cliffs
(2003)

20. Sawitzki, D.: Implicit Maximization of Flows over Time. Technical report, Univer-
sity of Dortmund (2004)

21. Dreyfus, S.E.: An appraisal of some shortest path algorithms. Operations Re-
search 17, 395–412 (1969)

22. Shekhar, S., Liu, D.: CCAM: A Connectivity-Clustered Access Method for Net-
works and Networks Computations. IEEE Transactions on Knowledge and Data
Engineering, 9 (January 1997)

23. Spatial Data Management Lab, Virginia Polytechnic Institute and State Uni-
versity. AITVS: Advanced Interactive Traffic Visualization System (2007),
http://spatial.nvc.cs.vt.edu/traffic zhh/

24. Stephens, S., Rung, J., Lopez, X.: Graph data representation in oracle databese
10g: Case studies in life sciences. IEEE Data Engineering Bulletin 27(4), 61–66
(2004)

25. Zhan, F.B., Noon, C.E.: Shortest Paths Algorithms: An Evaluation Using Real
Road Networks. Transportation Science 32, 65–73 (1998)

http://www.oracle.com/technology/products/spatial/
http://spatial.nvc.cs.vt.edu/traffic_zhh/

Author Index

Béguec, Jean 312
Böhm, Christian 294
Brochhaus, Christoph 57

Castano, Silvana 185
Chen, Arbee L.P. 20
Chow, Chi-Yin 258

Dolev, Nir 276
Doytsher, Yerach 276

Ester, Martin 112

Frank, Richard 112

George, Betsy 460
Ghinita, Gabriel 221
Gonzalez, Hector 441
Gross-Amblard, David 312

Hadjieleftheriou, Marios 348
Han, Jiawei 441
Harrington, Brian 130
Hess, Guillermo Nudelman 185
Huang, Xuegang 93
Huang, Yan 130
Huang, Zhiyong 366, 403

Iochpe, Cirano 185

Jensen, Christian S. 93, 366, 403
Jin, Wen 112
Jung, Sungwon 423

Kalnis, Panos 221
Kantere, Verena 385
Kanza, Yaron 276
Khoshgozaran, Ali 239
Kim, Sangho 460
Kriegel, Hans-Peter 75
Kröger, Peer 75
Kunath, Peter 75, 294

Lafaye, Julien 312
Lee, Byung Suk 330
Lee, Chia-Chen 20
Lee, Jae-Gil 441
Li, Xiaolei 441
Lu, Hua 93, 366, 403

Mamoulis, Nikos 1, 348
McKenney, Mark 167, 203
Mokbel, Mohamed F. 258
Mouratidis, Kyriakos 38

Ooi, Beng Chin 366
Oswald, Marcus 423

Papadopoulos, Stavros 38
Patroumpas, Kostas 148
Pauly, Alejandro 203
Pfeifle, Martin 423
Potamias, Michalis 148
Praing, Reasey 203
Pryakhin, Alexey 294

Reinelt, Gerhard 423
Renz, Matthias 75
Ruas, Anne 312

Sacharidis, Dimitris 38
Safra, Eliyahu 276
Sagiv, Yehoshua 276
Šaltenis, Simonas 93
Schneider, Markus 167, 203
Schubert, Matthias 294
Seidl, Thomas 57
Sellis, Timos 148, 385
Shahabi, Cyrus 239
Shekhar, Shashi 460
Skiadopoulos, Spiros 221
Suh, Jonghyun 423

Tao, Yufei 348
Tran, Tri Minh 330

U, Leong Hou 1

Vo, Khoa T. 423

Wu, Yi-Hung 20

Xu, Linhao 403

Yiu, Man Lung 1

	Title
	Preface
	Organization
	Table of Contents
	Continuous Monitoring of Exclusive Closest Pairs
	Introduction
	Background and RelatedWork
	Closest Pairs Queries in Spatial Databases
	Continuous Monitoring of Spatial Queries
	The Stable Marriage Problem

	The Static kECP Query
	Continuous Monitoring of ECP Pairs
	Distance-Bounded Search
	Partitioning in CPM Cells

	Experimental Evaluation
	ECP Computation
	Maintenance of ECP Results

	Conclusion
	References

	Continuous Evaluation of Fastest Path Queries on Road Networks
	Introduction
	Travel Time Network
	Problem Definition
	Basic Storage

	Ellipse Bounding Method
	Affecting Area
	Query Processing

	Grid-Based Index for Efficient Query Reevaluation
	Index Construction and Utilization
	Index Maintenance

	Experiment
	Experiment Settings
	Experiment Results

	Conclusion and Future Works
	Reference

	Continuous Medoid Queries over Moving Objects
	Introduction
	Related Work
	Medoid Queries
	Continuous Spatial Queries

	Centralized Medoid Monitoring
	The HBM Algorithm
	The GBM Algorithm

	Distributed Medoid Monitoring
	Experimental Evaluation
	Conclusion
	References

	Efficient Index Support for View-Dependent Queries on CFD Data
	Introduction
	Related Work
	Human Vision Oriented Distance Functions
	Traditional Distance Functions
	View Direction Oriented Heuristics
	Human Vision Oriented Distance Function

	Static Query Scenarios
	Dynamic Query Adaptation
	Queue Rearrangement Strategies
	Query Update Frequency

	Index Support for View-Oriented CFD Post-Processing
	Experiments
	Conclusion and Future Work
	References

	Generalizing the Optimality of Multi-step k-Nearest Neighbor Query Processing
	Introduction
	Multi-step kNN Query Processing
	Generalizing the Definition of Optimality
	$R_{I_{lu}}$-Optimal Multi-step kNN Search
	Experimental Evaluation
	Setup
	$R_{I_{lu}}$-Optimality vs. R_{I_l}-Optimality
	Size of the Priority Queue of the Ranking Query
	Early Output of Result Tuples

	Conclusion
	References

	S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks
	Introduction
	Related Work
	The S-GRID Approach
	Grid Partitioning and Pre-computation
	KNN Query Processing
	Extensions

	Empirical Evaluation
	Settings
	Experiments on KNN Query Performance
	Experiments with Pre-computation and Update

	Summary and Future Work
	References

	Efficiently Mining Regional Outliers in Spatial Data
	Introduction
	Related Work
	Mining Regional Outliers in Spatial Data
	Problem Definition
	Naïve Algorithm
	Greedy Global Neighbourhood Algorithm
	Greedy Local Neighbourhood Algorithm
	Rectangle Caching

	Experimental Evaluation
	Synthetic Datasets
	Real Dataset
	Optimality

	Conclusion
	References

	A Two Round Reporting Approach to Energy Efficient Interpolation of Sensor Fields
	Introduction
	Related Work
	E2K Framework
	The Two Round Reporting Framework
	E2K: Choosing Interpolation Method

	Evaluation
	Performance on Asia Temperature Dataset
	Performance on Lab Dataset

	Extensions and Conclusion
	References

	Online Amnesic Summarization of Streaming Locations
	Introduction
	Aging Stream Features at Multiple Time Granularities
	The Amnesic Tree
	Structure and Properties
	Streaming Operation
	Multiple Concurrent AmTrees

	Amnesic Trajectory Synopses
	Linear Representation of Trajectories
	Updating Trajectory Synopses
	Reconstructing Trajectories from Synopses
	Multi-resolution Trajectory Approximation

	Computing Aggregates over Moving Objects
	5.1 Overview of Flajolet-Martin (FM) Sketches
	5.2 Applying 3-Tier Compression
	5.3 Estimating Count of Distinct Objects

	Experimental Evaluation
	Quality of Trajectory Approximation
	Quality of Distinct Count Estimates
	Related Work
	Conclusion
	References

	Spatial Partition Graphs: A Graph Theoretic Model of Maps
	Introduction
	Related Work
	The Spatial Partition Model
	Description of Spatial Partitions
	Notation
	The Definition of Spatial Partitions

	A Discrete Model of Maps
	Definitions from Graph Theory
	Representing Spatial Partitions as Graphs
	Properties of Spatial Partition Graphs

	Conclusions and Future Work
	References

	Geographic Ontology Matching with \sc iG-Match
	Introduction
	Motivating Example

	Definition of a Reference Model
	A Clarification of Geographic Information Heterogeneities
	Concept-Level Heterogeneities
	Instance-Level Heterogeneities

	The {\sc iG-Match} Matchmaker
	{\sc iG-Match} Architecture
	Concept Matching
	Instance Matching

	Related Works
	Conclusions and Future Directions
	References

	Local Topological Relationships for Complex Regions
	Introduction
	Related Work
	Topological Predicates Between Components of Complex Regions
	Locality of Models for Topological Relationships
	Views of Topological Predicates
	The Dominance Problem
	The Composition Problem
	Deriving a Hybrid Model for Topological Predicates

	A Model for Preserving Local Interactions
	Characterization of Localized Topological Predicates
	Identifying the Valid Characterizations
	Comparing the Models

	Maintaining Global Information
	Hybrid Characterization of Topological Predicates
	Ensuring Expressive Power

	Querying with Local Information
	Constructing Locality Aware Topological Predicates
	Local Topological Queries

	Conclusion
	References

	{\sc MobiHide}: A Mobilea Peer-to-Peer System forAnonymous Location-Based Queries
	Introduction
	Overview of MobiHide
	Background and Related Work
	The MobiHide Spatial Anonymization Algorithm
	The Correlation Attack

	Implementation of MobiHide
	Fault-Tolerance and Load Balancing

	Experimental Evaluation
	Conclusion
	References

	Blind Evaluation of Nearest Neighbor Queries Using Space Transformation to Preserve Location Privacy
	Introduction
	Related Work
	Preliminaries
	Formal Problem Definition
	Space Encoding
	Space Filling Curves

	2-Phase Query Processing
	Offline Space Encryption
	Online Query Processing

	Dual Curve Query Resolution
	Offline Space Encryption for \textit{DCQR}
	Online Query Processing for \textit{DCQR}

	 Proposed End-to-End Architecture
	End-to-End Query Processing

	Experimental Evaluation
	The Curve Order N
	The Single Curve Approach vs. \emph{DCQR}
	\emph{DCQR}'s Vulnerability to Attacks

	Conclusion and Future Work
	References

	Enabling Private Continuous Queries for Revealed User Locations
	Introduction
	Related Work
	System Architecture
	Mobile Users
	Spatial Cloaking Techniques
	Database Server

	Privacy Leakage in Spatial Cloaking Techniques
	Query Sampling Attacks
	Query Tracking Attacks

	Privacy-Preserving Properties
	Robust Spatial Cloaking Algorithm
	Dynamic Group Concept
	Algorithm
	Correctness

	Experimental Result
	Scalability
	Effect of Query Privacy Requirement

	Conclusion
	References

	Computing a k-Route over Uncertain Geographical Data
	Introduction
	Framework
	Algorithms
	The Greedy Algorithm
	The Adjacency-Aware Greedy Algorithm
	The k-Expectancy Grouping Algorithm

	Experiments
	Tests on Synthetic Data
	Tests on Real-World Data
	Running Times

	Related Work
	Conclusion
	References

	Querying Objects Modeled by Arbitrary Probability Distributions
	Introduction
	Related Work
	Probabilistic Similarity Search Using a Mixture of Gaussians
	Gaussian Mixture Model (GMM)
	Similarity of Objects Described by GMMs
	Handling Unknown Objects
	Probabilistic Ranking Query on GMMs

	Indexing Mixtures of Gaussians
	General Idea

	Experimental Evaluation
	Conclusion
	References

	Invisible Graffiti on Your Buildings: Blind and Squaring-Proof Watermarking of Geographical Databases
	Introduction
	Preliminaries
	Quality of Geographical Data
	Watermarking
	Geographical Filters and Attacks

	Building Watermarking
	Outline of the Algorithm
	Computing Robust Identifiers
	Computing Polygon Orientation
	Expansion as a Bit Embedding Method
	Watermarking Algorithm
	Handling Data Constraints
	Detection

	Experiments
	Framework
	Impact of Watermarking on Quality
	Random-Noise Based Watermarking
	Discussion

	Related Work
	Conclusion
	References

	Transformation of Continuous Aggregation Join Queries over Data Streams
	Introduction
	Related Work
	Preliminaries
	Query Processing Model
	Query Transformations
	Transformation Rules
	Generic Algorithm for Query Executions

	Performance Study
	Experimental Setup
	Experiments and Results

	Conclusion
	References

	Continuous Constraint Query Evaluation for Spatiotemporal Streams
	Introduction
	Problem Formulation and Definitions
	System Architecture
	CCQ Evaluation
	An example
	A Detailed Analysis of the Proposed Framework

	Alternative Query Evaluation Techniques
	Computing and Updating Tight Expiration Times
	Explicit Maintenance of Variable Domains

	System Prototype Evaluation
	Testbed and Methodology

	Related Work
	Conclusion
	References

	Collaborative Spatial Data Sharing Among Mobile Lightweight Devices
	Introduction
	Related Work
	System Framework
	System Architecture
	Collaborative Data Indexing Requirements
	Collaborative Indexing

	Collaborative Data Sharing Scheme
	Storage Scheme for Mobile Devices
	Sharing Data Via Routing Table
	Management of Limited Device Storage

	Query and Update Processing
	Range Queries
	kNN Queries
	Updates
	Effects of Grid Configuration and 5.4 Effects of Grid Configuration and Δtt

	Experimental Evaluation
	Experimental Settings
	Response Time
	Storage Hit Ratios
	Storage Use Ratios
	Message Counts
	Throughput and Accuracy Under Updates

	Conclusion
	References

	A Study for the Parameters of a Distributed Framework That Handles Spatial Areas
	Introduction
	Linking Spatial Areas
	Defining Locality of Areas
	Defining Proximity of Areas

	Search by Proximity
	Search by Proximity Using the E Distance Metric
	Search by Proximity Using the D Distance Metric

	Additional Links That Expedite Search
	Indexing Various Semi-axes
	Indexing More That Four Semi-axes
	Experimental Study About the Indexing Directions

	Related Work
	Conclusions and Future Work
	References

	Distributed, Concurrent Range Monitoring of Spatial-Network Constrained Mobile Objects
	Introduction
	Preliminaries
	DataModel
	Problem Statement
	Distributed System Architecture

	Client-Side Data Management
	Client-Side Index Structure
	Client-Side Navigation and Visualization
	The Moving Object Module

	Server-Side Data Management
	Server-Side Mobile Object Management
	Solution Overview and Data Structures for Concurrent Queries
	Query Initialization
	Shared Concurrent-QueryMaintenance
	Support for Moving Queries

	Empirical Performance Study
	Server Side Experiments
	Client Side Experiments

	Related Work
	Conclusion
	References

	Compression of Digital Road Networks
	Introduction
	Related Work
	Topology
	Geometry

	Topological Compression
	Bandwidth Minimization Problem
	Lower Bound Computation
	Upper Bound Computation

	Geometrical Compression
	Node Compression
	Compression of Shapes

	Experimental Evaluation
	Topological Compression
	Geometrical Compression

	Summary
	References

	Traffic Density-Based Discovery of Hot Routes in Road Networks
	Introduction
	Solution Overview
	Traffic Behavior in Road Networks
	Traffic Complexity
	Splitting/Joining Hot Routes
	Overlapping Hot Routes
	Slack Within Hot Routes

	Density-Based Hot Route Extraction
	Traffic-Density Reachability
	Discovering Hot Routes
	Algorithm
	Determining Parameters

	Experiments
	Data Generation
	Extraction Quality
	Efficiency

	Related Work
	Conclusion and Future Work
	References

	Spatio-temporal Network Databases and Routing Algorithms: A Summary of Results
	Introduction
	An Illustrative Application Domain
	Broad Challenges
	Scope and Outline of the Paper

	BasicConcepts
	The Conceptual Model
	Shortest Path Computation for Time Aggregated Graphs (SP-TAG Algorithm)

	Case Study: Best Start Time Shortest Paths
	BEst Start Time Shortest Path (BEST) Algorithm

	Experimental Analysis
	Experimental Results and Anlaysis

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

