


Lecture Notes in Computer Science 4602
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Steve Barker Gail-Joon Ahn (Eds.)

Data and
Applications
Security XXI

21st Annual IFIP WG 11.3 Working Conference on
Data and Applications Security
Redondo Beach, CA, USA, July 8-11, 2007
Proceedings

13



Volume Editors

Steve Barker
King’s College London, Department of Computer Science
Strand, London WC2R 2LS, UK
E-mail: steve.barker@kcl.ac.uk

Gail-Joon Ahn
University of North Carolina at Charlotte
Department of Software and Information Systems
9201 University City Blvd., Charlotte, NC 28223, USA
E-mail: gahn@uncc.edu

Library of Congress Control Number: 2007299928

CR Subject Classification (1998): E.3, D.4.6, C.2, F.2.1, J.1, K.6.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-73533-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73533-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12088249 06/3180 5 4 3 2 1 0



Preface

This volume contains the papers presented at the 21st Annual IFIP WG 11.3
Conference on Data and Applications Security (DBSEC) held July 8–11 in Re-
dondo Beach, California, USA. The purpose of the DBSEC conference is to
disseminate original research results and experience reports in data and appli-
cations security.

In response to the call for papers, 44 submissions were received. Following a
rigorous reviewing process, 18 high-quality papers were accepted for presentation
and publication. In addition, two short papers were selected for poster presen-
tation. The conference program also included one invited talk and one panel
discussion. We believe that the program includes a balanced mix of practical
experiences and theoretical results that consolidate existing work and suggest
emerging areas of interest for researchers in data and applications security.

The continued success of the DBSEC conference is due to the efforts of many
individuals. We would like to thank all of the researchers that submitted pa-
pers to DBSEC for consideration, and the Program Committee members and
additional reviewers for making the review process fair and thorough, and for
providing valuable suggestions on each submission. We are also indebted to the
invited speakers and panelists for their contributions to the success of the con-
ference.

We would also like to thank our General Chair, Sharad Mehrotra, and our
Local Arrangements Chair, Chen Li. Special thanks go to our Publicity Chair,
Paul Douglas, for advertising the conference, to the IFIP WG 11.3 Chair,
Pierangela Samarati, and to Sushil Jajodia for their help and support in
organizing the conference.

July 2007 Steve Barker
Gail-Joon Ahn



Organization

Executive Committee

General Chair Sharad Mehrotra (University of California, Irvine, USA)
Program Chairs Steve Barker (King’s College, London University, UK)

Gail-Joon Ahn (University of North Carolina at
Charlotte, USA)

Publicity Chair Paul Douglas (University of Westminster, UK)
Local Arrangements Chen Li (University of California, Irvine, USA)
IFIP WG 11.3 Chair Pierangela Samarati (Universita degli Studi di Milano,

Italy)

Program Committee

Anne Anderson Sun Microsystems, USA
Vijay Atluri Rutgers University, USA
Sabrina De Capitani di Vimercati Università degli Studi di Milano, Italy
Soon Ae Chun City University of New York, USA
Chris Clifton Purdue University, USA
Jason Crampton Royal Holloway, London University, UK
Steve Demurjian University of Connecticut, USA
Csilla Farkas University of South Carolina, USA
Eduardo Fernandez-Medina University of Castilla-La Mancha, Spain
Qijun Gu Texas State University, USA
Ehud Gudes Ben-Gurion University, Israel
Sushil Jajodia Gearge Mason University, USA
Carl Landwehr University of Maryland, USA
Peng Liu Pennsylvania State University, USA
Patrick McDaniel Pennsylvania State University, USA
Ravi Mukkamala Old Dominion University, USA
Peng Ning North Carolina State University, USA
Sylvia Osborn University of Western Ontario, Canada
Brajendra Panda University of Arkansas, USA
Jaehong Park Eastern Michigan University, USA
Joon Park Syracuse University, USA
Indrakshi Ray Colorado State University, USA
Indrajit Ray Colorado State University, USA
Pierangela Samarati Università degli Studi di Milano, Italy
Ravi Sandhu George Mason University, USA
Andreas Schaad SAP Laboratories, France
Dongwan Shin New Mexico Tech, USA



VIII Organization

Anoop Singhal NIST, USA
David Spooner Rennselaer Polytechnic Institute, USA
Bhavani Thuraisingham University of Texas Dallas, USA
T.C. Ting University of Connecticut, USA
Duminda Wijesekera George Mason University, USA
Meng Yu Monmouth University, USA
Ting Yu North Carolina State University, USA



Table of Contents

Secure Query Evaluation

Confidentiality Policies for Controlled Query Evaluation . . . . . . . . . . . . . . 1
Joachim Biskup and Torben Weibert

Provably-Secure Schemes for Basic Query Support in Outsourced
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill

Authenticated Relational Tables and Authenticated Skip Lists . . . . . . . . . 31
Giuseppe Di Battista and Bernardo Palazzi

Location-Based Security/Mobile Security

Location Privacy Protection Through Obfuscation-Based Techniques . . . 47
C.A. Ardagna, M. Cremonini, E. Damiani,
S. De Capitani di Vimercati, and P. Samarati

Efficient Security Policy Enforcement in a Location Based Service
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Vijayalakshmi Atluri and Heechang Shin

Reliable Delivery of Event Data from Sensors to Actuators in Pervasive
Computing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Sudip Chakraborty, Nayot Poolsappasit, and Indrajit Ray

Short Papers

Privacy-Preserving Schema Matching Using Mutual Information . . . . . . . 93
Isabel F. Cruz, Roberto Tamassia, and Danfeng Yao

The Interval Revocation Scheme for Broadcasting Messages to Stateless
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Anna Zych, Milan Petković, and Willem Jonker

Distributed Security Issues

Measuring the Overall Security of Network Configurations Using
Attack Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Lingyu Wang, Anoop Singhal, and Sushil Jajodia



X Table of Contents

Enforcing Honesty in Assured Information Sharing Within a Distributed
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Ryan Layfield, Murat Kantarcioglu, and Bhavani Thuraisingham

A Privacy-Enhanced Attribute-Based Access Control System . . . . . . . . . . 129
Jan Kolter, Rolf Schillinger, and Günther Pernul

Cryptographic-Based Security

A Scalable and Secure Cryptographic Service . . . . . . . . . . . . . . . . . . . . . . . . 144
Shouhuai Xu and Ravi Sandhu

gVault: A Gmail Based Cryptographic Network File System . . . . . . . . . . . 161
Ravi Chandra Jammalamadaka, Roberto Gamboni, Sharad Mehrotra,
Kent E. Seamons, and Nalini Venkatasubramanian

Design and Analysis of Querying Encrypted Data in Relational
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Mustafa Canim and Murat Kantarcioglu

Temporal Access Control and Usage Control

Dynamic Event-Based Access Control as Term Rewriting . . . . . . . . . . . . . 195
Clara Bertolissi, Maribel Fernández, and Steve Barker

A Spatio-temporal Role-Based Access Control Model . . . . . . . . . . . . . . . . . 211
Indrakshi Ray and Manachai Toahchoodee

Towards a Times-Based Usage Control Model . . . . . . . . . . . . . . . . . . . . . . . 227
Baoxian Zhao, Ravi Sandhu, Xinwen Zhang, and Xiaolin Qin

System Security Issues

New Paradigm of Inference Control with Trusted Computing . . . . . . . . . . 243
Yanjiang Yang, Yingjiu Li, and Robert H. Deng

Security Patterns for Physical Access Control Systems . . . . . . . . . . . . . . . . 259
Eduardo B. Fernandez, Jose Ballesteros,
Ana C. Desouza-Doucet, and Maria M. Larrondo-Petrie

XACML Policies for Exclusive Resource Usage . . . . . . . . . . . . . . . . . . . . . . . 275
Vijayant Dhankhar, Saket Kaushik, and Duminda Wijesekera

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



Confidentiality Policies for
Controlled Query Evaluation

Joachim Biskup and Torben Weibert�

Fachbereich Informatik, Universität Dortmund, 44221 Dortmund, Germany
{biskup,weibert}@ls6.cs.uni-dortmund.de

Abstract. Controlled Query Evaluation (CQE) is an approach to en-
forcing confidentiality in information systems at runtime. At each query,
a censor checks whether the answer to that query would enable the user
to infer any information he is not allowed to know according to some
specified confidentiality policy. If this is the case, the answer is distorted,
either by refusing to answer or by returning a modified answer. In this
paper, we consider incomplete logic databases and investigate the seman-
tic ways of protecting a piece of information. We give a formal definition
of such confidentiality policies, and show how to enforce them by reusing
the existing methods for CQE.

Keywords: Inference control, confidentiality policies, logic databases.

1 Introduction

Security in information systems aims at various goals, one of which is preserva-
tion of confidentiality: Certain information may only be disclosed to a certain
subgroup of users. This is of particular importance when an information system
contains both classified and public data, and is accessed by multiple users at the
same time. Confidentiality can be achieved by various methods, which can be di-
vided into two categories: access control, which us usually implemented by static
access rights, and information flow control, which is often applied dynamically
at query time. The latter addresses the inference problem: A user might combine
multiple pieces of (public) information in order to infer secret information. The
inference problem has been studied in a various contexts, for example statistical
(see [1,2,3] for an introduction and e. g. [4,5,6] for more recent work), multi-level
and relational databases (see e. g. [7,1,8,9,10,11]). See [12] for a comprehensive
review of the respective approaches.

Controlled Query Evaluation (CQE) is a dynamic approach for information
flow control in logic databases, which are either complete (i. e., they can provide
an answer to each query) or incomplete (i. e., part of the information is missing,
and some queries cannot be answered). The administrator defines a confidential-
ity policy, specifying the information to be kept secret. At runtime, before an

� This author is funded by the German Research Foundation (DFG) under Grant
No. BI-311/12-1.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 1–13, 2007.
c© IFIP International Federation for Information Processing 2007



2 J. Biskup and T. Weibert

answer to a query is returned to the user, it is passed to a censor which inves-
tigates possible security risks. In order to identify these risks, a log file of past
queries and answers is maintained. In case the answer would reveal any secret
information (either directly or combined with previous answers), the answer is
distorted, either by lying (giving a “false” answer) or by refusal (returning no
“useful” answer at all). CQE was first proposed by Sicherman et at. [13] and
Bonatti et al. [14]. A unified framework for complete databases was introduced
by Biskup [15] and later exploited by Biskup/Bonatti to investigate CQE un-
der various parameters [16,17,18,19]. Some of these parameters have also been
investigated for incomplete databases [20,21]. This paper extends the work on
incomplete databases, filling some of the gaps.

A database instance db is a consistent set of sentences of some logic (in this
paper, propositional logic); a closed (yes-no) query Φ is a single sentence of that
logic, and its value in a database instance db is either true, false or undef. A
potential secret is a sentence Ψ . In case Ψ is true in db, the user may not infer
this fact; otherwise, if Ψ is either false or undef, this fact may be disclosed. Thus,
a potential secret protects the fact that some information is true.

For complete information systems, another type of confidentiality policies has
been studied: secrecies. A secrecy is a pair of complementary sentences (Ψ,¬Ψ).
CQE will conceal whether Ψ or ¬Ψ holds in the database; as opposed to potential
secrets, the negation is protected as well. As discussed in [18], secrecies can be
protected by discretely designed enforcement methods, or by “naively” reduc-
ing them into a set of potential secrets {Ψ,¬Ψ}, and then reusing the existing
enforcement methods for potential secrets.

In this paper, we investigate whether the concept of secrecies can be adopted
for incomplete information systems as well. As it turns out, incomplete informa-
tion systems offer many different semantic ways of protecting a sentence Ψ . For
example, it is possible to protect the partial information that “Ψ is either true
or false, but not undef ”; or one might want to keep the user from inferring any
information about the actual value of Ψ . We show how these “generalized” confi-
dentiality targets can be formalized, and how they can be operationally enforced
by reduction to existing techniques.

In Section 2, we recall CQE for incomplete databases and potential secrets, as
found in [21]. We also present an example enforcement method which can later
be used for the reduction. Section 3 discusses the various ways of protecting
secret information under incomplete databases, and gives a formal definition of
generalized confidentiality policies. In Section 4, we demonstrate the reduction
to potential secrets, and discuss the requirements for the underlying enforcement
method. We finally conclude in Section 5.

2 Controlled Query Evaluation for Potential Secrets

In this section, we summarize the CQE framework for potential secrets from [21].
Wefirst specify the abstract framework and its declarative notion of confidentiality,
and then present an instantiation thereof, the combined lying and refusal method.



Confidentiality Policies for Controlled Query Evaluation 3

2.1 Declarative Framework

We consider (possibly) incomplete logic databases, based on propositional logic.

Definition 1. A database schema DS is a finite set of propositions. The propo-
sitional language over DS is denoted by PDS. A database instance over the
schema DS is a consistent set db ⊂ PDS of propositional sentences. A query
Φ ∈ PDS is a propositional sentence. The result of a query Φ in a database
instance db is determined by the function

eval(Φ)(db) :=

⎧
⎪⎨

⎪⎩

true if db |=PL Φ

false if db |=PL ¬Φ

undef otherwise
(1)

(where |=PL denotes logical implication in propositional logic). We assume that
the user does not issue a single query but a sequence of queries Q = 〈Φ1, . . . , Φn〉.
(The framework might be extended to a fragment of first-order logic, given that
logical implication is decidable in that fragment; see [16] for a discussion.)

In previous work, CQE for incomplete databases has been studied for potential
secrets.

Definition 2. A confidentiality policy based on potential secrets is a set
pot sec = {Ψ1, . . . , Ψm} of propositional sentences, each of which we call a po-
tential secret. The semantics of the confidentiality policy is as follows: In case
Ψi is true in the actual database instance db, the user is not allowed to infer
this information. On the other hand, if Ψi is either false or undef in db, this
information may be disclosed.

Potential secrets are a suitable formalization for real-life situations where the
circumstance that a certain fact is true must be kept secret, but not the converse.

Example 3. Imagine a person applying for an employment. If that person suffers
from a terminal disease, this fact must be kept secret. On the other hand, if the
applicant is healthy, this information may be disclosed. The sentence “person X
suffers from a terminal disease” can be formalized as a potential secret Ψ .

The confidentiality policy is declared independently from the actual database
instance db, and may contain both potential secrets that are true in db, and
potential secrets that are not true in db. This is important as we assume that
the user knows the set of potential secrets (but of course not their respective
values in db). CQE enforces the confidentiality policy by iteratively examining
each query and the inferences the user could draw from the respective answer.
In case confidentiality is threatened, a modified answer is given, in one of two
possible ways:



4 J. Biskup and T. Weibert

1. Lying: An answer different from the actual query value is returned, for ex-
ample false instead of true.

2. Refusal : Instead of the actual query value, the special answer refuse is re-
turned.

CQE also accounts for any information known or assumed by the user prior to
the first query, for example general knowledge or publicly known semantic con-
straints. These a priori assumptions are formalized as a set prior of propositional
sentences.

All things considered, a CQE method for potential secrets can be formalized as
a function cqe(Q, db, prior, pot sec) := 〈ans1, . . . , ansn〉, where Q = 〈Φ1, ..., Φn〉
is a query sequence, prior are the a priori assumptions, db is a database instance,
and pot sec is a set of potential secrets. The output is a sequence of answers
ansi. Each enforcement method cqe goes along with a function precondition
that defines the admissible arguments (prior, db, pot sec) for that method. In
particular, precondition makes sure that prior does not imply any potential secret
in the first place. The system will reject to start a session unless precondition is
satisfied.

Definition 4. Let cqe be a CQE method for potential secrets, with precondition
defining the admissible arguments. cqe is defined to preserve confidentiality iff

for all finite query sequences Q,
for all confidentiality policies pot sec,
for all potential secrets Ψ ∈ pot sec,
for all a priori assumptions prior,
for all instances db1 so that precondition(db1, prior, pot sec) holds
there exists an instance db2

so that precondition(db2, prior, pot sec) holds and
(a) [db1 and db2 produce the same answers]

cqe(Q, db1, prior, pot sec) = cqe(Q, db2, prior, pot sec)
(b) [Ψ is not true in db2]

eval(Ψ)(db2) ∈ {false, undef}.

Condition (b) ensures that there is an instance db2 in which Ψ is not true.
Condition (a) guarantees that db1 and db2 produce the same answers; the user
cannot distinguish db1 from db2, and thus cannot rule out that Ψ is actually false
or undef. This confidentiality definition is purely declarative. In the following,
we show how to operationally meet these requirements by keeping a log file of
sentences in epistemic logic.

2.2 An Enforcement Method with Lying and Refusal

We outline the combined lying and refusal approach from [21]. In order to account
for the information disclosed by previous answers, the system keeps a log file logi

as a set of sentences in epistemic logic. This logic, also known as S5 modal logic, is
established by introducing the modal operator K which we read as “the database



Confidentiality Policies for Controlled Query Evaluation 5

knows that. . . ”. The resulting language, based on a set DS of propositions, is
denoted by LDS . We use the common Kripke-style semantics, to be found e. g.
in [22]: An MDS-structure is a triple M = (S,K, π), where S is a set of states,
K a binary equivalence relation on S, and π : S × DS → {true, false} assigns a
truth value to each proposition from DS under each state s ∈ S. The semantics
of the K operator is defined by

(M, s) |= KΦ iff (M, s′) |= Φ for all s′ such that (s, s′) ∈ K (2)

(where |= is the ordinary model-of operator). A sentence φ is logically implied
by a set of sentences Σ wrt. MDS (in formulae: Σ |=S5 φ) iff for every MDS-
structure M = (S,K, π) and every state s ∈ S it holds that if (M, s) |= Σ then
(M, s) |= φ.

A propositional sentence φ and a truth value v ∈ {true, false, undef} can be
converted into an appropriate epistemic sentence by the function Δ with

Δ(φ, true) = Kφ,

Δ(φ, false) = K¬φ,

Δ(φ, undef) = ¬Kφ ∧ ¬K¬φ.

Furthermore, we define the function

Δ∗(φ, V ) :=
∨

v∈V

Δ(φ, v)

that converts a sentence φ and a non-empty set of values ∅ 	= V ⊆
{true, false, undef} into an epistemic sentence by disjunctively connecting the
single sentences Δ(φ, v) for each v ∈ V . The set V is also called an inference
set, as it is used to formalize (disjunctive) information about a query value.
For example, V = {true, undef} means “the query value is either true or undef,
but not false”. A unary inference set represents definitive information (exactly
one value appears possible), a binary inference set disjunctive information (two
values appear possible, one does not), and the inference set {true, false, undef}
represents no information (any value appears possible). In particular, note that
Δ∗(φ, {true, false, undef}) = Kφ ∨ K¬φ ∨ ¬Kφ ∧ ¬K¬φ is a tautology.

Prior to the first query, the log file is initialized with the a priori assump-
tions: log0 := prior. Later, after each query Φi, logi is established by translating
the information disclosed by the i-th answer ansi into an epistemic sentence,
and adding it to logi−1. In case of a regular answer ansi ∈ {true, false, undef}
(being a lie or not), the translation Δ∗(Φi, {ansi}) of the definite inference
set {ansi} is added to the log file. In case the answer was refused (ansi =
refuse), it is assumed to provide no information to the user, so the tautology
Δ∗(Φi, {true, false, undef}) is added.

Having formalized the previous knowledge as epistemic sentences, we can em-
ploy logical implication in order to detect confidentiality violations: A poten-
tial secret Ψ ∈ pot sec is considered disclosed if it is logically implied by the



6 J. Biskup and T. Weibert

log file logi. The goal is to prevent these violations throughout the query se-
quence. We formalize the combined lying and refusal approach as a function
cqecombined(Q, db, prior, pot sec) with the precondition

preconditioncombined(db, prior, pot sec) := (∀Ψ ∈ pot sec)[ prior 	|=S5 Ψ ],

which prevents that the a priori assumptions already lead to a violation. Af-
ter each query Φi, the returned answer ansi and the internal log file logi are
generated as follows:

1. Determine the security configuration, i. e., the set of definitive inferences that
would lead to the disclosure of at least one potential secret:

Ci :=
{

V ∈ {{true}, {false}, {undef}} |
(∃Ψ ∈ pot sec) [ logi−1 ∪ {Δ∗(Φi, V )} |=S5 Ψ ]

}
(3)

2. Use a censor function to choose the answer ansi ∈ {true, false, undef, refuse}
to return, according to the security configuration Ci and the actual query
value eval(Φi)(db). The censor function must meet certain requirements; in
particular, it must make sure that {ansi} 	∈ Ci. An example of an appropriate
censor function is given in Table 1. Black cells indicate a modified answer.

Table 1. Censor function for the combined lying and refusal method

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}} refuse refuse refuse
{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

3. Update the log file by adding the answer translated into an epistemic sen-
tence:

logi :=

{
logi−1 ∪ {Δ∗(Φ, {true, false, undef})} if ansi = refuse
logi−1 ∪ {Δ∗(Φ, {ansi})} otherwise

Theorem 5. cqecombined preserves confidentiality according to Definition 4.

The full proof can be found in [21], but we give a short sketch here.
First, it can be shown by induction that logi 	|=S5 Ψ holds for all Ψ ∈ pot sec

and all 1 ≤ i ≤ n, in particular for the final log file logn. Thus, given a potential



Confidentiality Policies for Controlled Query Evaluation 7

secret Ψ ∈ pot sec, there must be an MDS-structure M = (S,K, π) and a state
s ∈ S such that

(M, s) |= logn but (M, s) 	|= Ψ.

An alternative instance db2 can be constructed from (M, s) by

db2 := { α | α is a propositional sentence and (M, s) |= Kα }. (4)

db2 is consistent, so it is a valid database instance, and it is also closed under
logical implication.

As (M, s) 	|= Ψ , we conclude that Ψ cannot be true in db2. Finally, it can
be shown that the same answers are generated under both db2 and the original
instance db1.

3 Generalized Confidentiality Policies

Controlled Query Evaluation for incomplete databases, as summarized in Sec-
tion 2, protects a set of potential secrets; for each potential secret, the user may
not infer that this secret is true in the actual database instance. Example 3
demonstrates that potential secrets have a useful semantics in many situations.
However, there are situations in which a sentence must be protected in a different
semantic way.

Example 6. For the sake of sexual equality, an applicant’s gender may not have
an influence on whether he or she is chosen for a particular job. Hence, a person
querying a database containing applicants’ data may not infer that a given person
is male, and neither that this person is not male.

Example 7. Although being supposed to do housework, Jim secretly goes to
watch his favorite team’s soccer match. Talking to his wife later, Jim must keep
secret whether his team won or or not. Furthermore, his wife must not even
learn that Jim knows whether his team won or not, as this would disclose the
fact that he went to the match.

A confidentiality target consists of two parts: The sentence that is to be pro-
tected, and the set of truth values the user is not allowed to infer. The latter
part can be definite (“the team has won”) or partial (“the team has won or has
not won”1).

Definition 8. A confidentiality target is a pair (ψ, V ), where ψ is a proposi-
tional sentence, and Vi ⊂ {true, false, undef} with ∅ 	= Vi 	= {true, false, undef}
is a non-empty inference set.2 A (generalized) confidentiality policy is a set
policy = {(ψ1, V1), . . . , (ψm, Vm)} of confidentiality targets.
1 This is not a tautology due to the remaining alternative “he does not know whether

the team won”.
2 It is reasonable to prohibit {true, false, undef}, as this is a tautology and can never

be protected. The empty set does not make sense either, as at least one value needs
to be protected.



8 J. Biskup and T. Weibert

Example 9. Given two propositional sentences a and b, the confidentiality policy
given by policy = { (a, {true, undef}), (b, {false}) } declares that (1) the user
may not infer that a is either true or undef, and that (2) the user may not infer
that b is false.

Example 10. Consider the propositional sentence a and the confidentiality pol-
icy given by policy = { (a, {true, false}), (a, {true, undef}), (a, {false, undef}) }.
Obviously, any disjunctive information is considered harmful, so the user may
not learn any information about the value of a at all. This corresponds to the
concept of secrecies investigated in the context of complete databases [15,18],
where the user may not learn the exact value of some sentence.

We can formalize a CQE method for generalized confidentiality policies as a
function

cqe∗(Q, db, prior, policy) := 〈ans1, . . . , ansn〉,

where Q = 〈Φ1, . . . , Φn〉 is the query sequence, prior is the set of a priori assump-
tions, db is the database instance and policy is the confidentiality policy. Each
method goes along with a function precondition∗ that defines the admissible
arguments.

Definition 11. Let cqe∗ be a CQE method for generalized confidentiality policies
with precondition∗ as its associated precondition for admissible arguments. cqe∗

is defined to preserve confidentiality iff

for all finite query sequences Q,
for all generalized confidentiality policies policy,
for all confidentiality targets (ψ, V ) ∈ policy,
for all a priori assumptions prior,
for all instances db1 so that precondition∗(db1, prior, pot sec) holds
there exists an instance db2

so that precondition∗(db2, prior, pot sec) holds and
(a) [db1 and db2 produce the same answers]

cqe∗(Q, db1, prior, policy) = cqe∗(Q, db2, prior, policy)
(b) [ψ has a “permitted” value in db2]

eval(ψ)(db2) 	∈ V .

Again, this definition is purely declarative. In the following section, we will show
how to operationally meet these requirements, reusing existing techniques.

One advantage of the new concept of confidentiality targets is that they have
a very simple syntax, which allows easy declaration of confidentiality policies.
However, we run into problems when we want to design an operational en-
forcement method for this kind of confidentiality policies – there is no logical
implication operator defined for this language, and of course there are no proof
systems available that could be used in an implementation.

In the following section, we will present a solution to this problem: Each
confidentiality target can be converted into a single sentence of modal epistemic



Confidentiality Policies for Controlled Query Evaluation 9

logic. These sentences can then be regarded as (epistemic) potential secrets, and
we can reuse the existing methods for potential secrets in order to enforce the
converted confidentiality policy.

4 Enforcement by Reduction

In the previous section, we gave a declarative definition of confidentiality wrt.
generalized policies. We will now show how to enforce these policies by reusing
the methods established for potential secrets. The idea is to convert the gen-
eralized confidentiality policy into a set of potential secrets. As facts like “the
value is either true or false” or “the value is undef ” need to be protected, it is
necessary to use an epistemic representation of the confidentiality targets.

Definition 12. Let policy = {(ψ1, V1), . . . , (ψn, Vm)} be a (generalized) confi-
dentiality policy. policy can be converted into a set of (epistemic) potential secrets
by the function

pot sec(policy) := {Δ∗(ψ1, V1), . . . , Δ∗(ψm, Vm)} (5)

where Δ∗ is the conversion function defined in Section 2.2.

Remember that, according to Definition 8, the value set Vi of each confiden-
tiality target (ψi, Vi) ∈ policy is either unary or binary. Thus, all sentences in
pot sec(policy) have one of the following six syntactic forms, where ψ is a propo-
sitional sentence:

(1) Kψ,
(2) K¬ψ,
(3) ¬Kψ ∧ ¬K¬ψ,
(4) Kψ ∨ K¬ψ,
(5) Kψ ∨ ¬Kψ ∧ ¬K¬ψ,
(6) K¬ψ ∨ ¬Kψ ∧ ¬K¬ψ.

Example 13. The confidentiality policy given by

policy = { (a, {true, undef}), (b, {false}) }

is converted into

pot sec(policy) = { Ka ∨ ¬Ka ∧ ¬K¬a, K¬b }.

The remaining problem is that the CQE methods for potential secrets, as defined
in Section 2, only allow pot sec to contain propositional sentences. However, as
the epistemic language is a superset of the propositional language, some enforce-
ment methods might also work for epistemic potential secrets. Given a “useful”
behavior, these methods would then be exploitable for the conversion of confi-
dentiality targets. We will first give a formal definition of these two requirements
– suitable for epistemic potential secrets, and “useful” behavior – and then prove
that cqecombined satisfies these properties.



10 J. Biskup and T. Weibert

Definition 14. An enforcement method cqe wrt. potential secrets is adapted for
epistemic potential secrets iff

1. the specific algorithm of cqe accepts a set of epistemic sentences (instead of
propositional sentences) to be passed as the pot sec input parameter, and

2. given a propositional sentence ψ and an epistemic potential secret Ψ associ-
ated with ψ, there exists an alternative database instance db2 as demanded
by Definition 4 that has the following properties wrt. the value of ψ:

epistemic potential secret Ψ value of ψ in db2

Δ∗(ψ, {true}) = Kψ eval(ψ)(db2) ∈ {false, undef}
Δ∗(ψ, {false}) = K¬ψ eval(ψ)(db2) ∈ {true, undef}

Δ∗(ψ, {undef}) = ¬Kψ ∧ ¬K¬ψ eval(ψ)(db2) ∈ {true, false}
Δ∗(ψ, {true, false}) = Kψ ∨ K¬ψ eval(ψ)(db2) = undef

Δ∗(ψ, {true, undef}) = Kψ ∨ ¬Kψ ∧ ¬K¬ψ eval(ψ)(db2) = false
Δ∗(ψ, {false, undef}) = K¬ψ ∨ ¬Kψ ∧ ¬K¬ψ eval(ψ)(db2) = true

The latter condition corresponds to condition (b) of Definition 11: Given a po-
tential secret Ψ = Δ∗(ψ, V ), there exists an indistinguishable instance db2 with
eval(ψ)(db2) 	∈ V .

Lemma 15. The combined lying and refusal method cqecombined presented in
Section 2 is adapted for epistemic potential secrets.

Proof. Condition 1: cqecombined only considers the potential secrets when deter-
mining the security configuration Ci (3). The implication operator |=S5 employed
allows epistemic sentences on its right hand side.

Condition 2: Consider the construction of db2 (4) in the proof sketch of Theo-
rem 5. Let ψ be a propositional sentence. We investigate the six ways to construct
an epistemic potential secret Ψ from ψ, according to Definition 14.

Let M = (S,K, π) an MDS-structure and s ∈ S a state such that (M, s) |=
logn but (M, s) 	|= Ψ .

Case 1 (Ψ = Kψ).
Then we have (M, s) 	|= Kψ and, according to (4), ψ 	∈ db2. As db2 is

closed under logical implication, we conclude that db2 	|=PL ψ and thereby
eval(ψ)(db2) ∈ {false, undef}.

Case 2 (Ψ = K¬ψ).
Similar to Case 1 (consider ψ′ = ¬ψ).
Case 3 (Ψ = ¬Kψ ∧ ¬K¬ψ).
Then we have (M, s) 	|= ¬Kψ∧¬K¬ψ, which means that (M, s) |= Kψ∨K¬ψ

and thus either (M, s) |= Kψ or (M, s) |= K¬ψ. Hence, it holds that either
ψ ∈ db2 or ¬ψ ∈ db2. By the closure of db2 and the definition of the eval
function (1), we then have eval(ψ)(db2) ∈ {true, false}.

Case 4 (Ψ = Kψ ∨ K¬ψ).
Then it holds that (M, s) 	|= Kψ ∨ K¬ψ, which means that (M, s) 	|= Kψ

and (M, s) 	|= K¬ψ. By the results from Case 1 and Case 2, we then have
eval(ψ)(db2) ∈ {false, undef} and eval(ψ)(db2) ∈ {true, undef}, so it must hold
that eval(ψ)(db2) = undef.



Confidentiality Policies for Controlled Query Evaluation 11

Case 5 (Ψ = Kψ ∨ ¬Kψ ∧ K¬ψ).
Accordingly.
Case 6 (Ψ = ¬Kψ ∨ ¬Kψ ∧ K¬ψ).
Accordingly.

Given an enforcement method adapted for epistemic potential secrets, we can
employ the reduction outlined above. The confidentiality targets are converted
into potential secrets and then passed to the underlying enforcement method.
The established enforcement method then satisfies our notion of confidentiality.

Theorem 16. Let cqe be an enforcement method for potential secrets, preserv-
ing confidentiality (Definition 4) and being adapted for epistemic potential se-
crets (Definition 14). Let precondition be the associated precondition. Then the
enforcement method for confidentiality targets given by the function

cqe∗(Q, db, prior, policy) := cqe(Q, db, prior, pot sec(policy))

with the precondition

precondition∗(db, prior, policy) := precondition(db, prior, pot sec(policy))

preserves confidentiality in the sense of Definition 11.

Proof. Let db1 be a database instance, policy a generalized confiden-
tiality policy, prior the a priori assumptions so that the pertinent
precondition(db1, log0, pot sec(policy)) is satisfied, and Q = 〈Φ1, . . . , Φn〉 a query
sequence.

Let (ψ, V ) ∈ policy be a confidentiality target. By the definition of the
pot sec function (5), pot sec(policy) contains the potential secret Ψ = Δ∗(ψ, V ).
By condition (2) of Definition 14, there exists a database instance db2 under
which the same answers and log files are generated as under db1, and with
eval(ψ)(db2) 	∈ V . This satisfies conditions (a) and (b) of Definition 11.

5 Conclusion

In incomplete information systems, a sentence can be protected in various se-
mantic ways. In particular, definite and partial information about a truth value
of some sentence can be protected, or a combination thereof. We specified a
generalized framework for expressing such a confidentiality target as a pair of
a propositional sentence and a set of “forbidden” query values. We then gave
a formal definition of confidentiality which resembles the respective notions for
both potential secrets and secrecies under complete information systems and po-
tential secrets for incomplete information systems. Instead of designing specific
dedicated enforcement methods for each semantic type of confidentiality target,
we picked up the idea of naive reduction [18] and showed how to convert a gener-
alized confidentiality policy into a set of epistemic potential secrets, which can be
used as the input to the existing enforcement methods for potential secrets. As



12 J. Biskup and T. Weibert

these existing methods are originally designed for propositional potential secrets,
we had to prove that the methods are adapted for epistemic potential secrets.

Alternatively, a security administrator may decide to specify the confidential-
ity policy as a set of epistemic potential secrets in the first place, given that these
epistemic sentences have one of the six syntactical forms given in Definition 14.
We however believe that it is favorable to specify the confidentiality policy with
the means of confidentiality targets, for the sake of easier administration.

Although confidentiality targets provide a higher expressiveness than ordinary
(propositional) potential secrets, there are still some limitations, in particular
when you want to protect information about two different propositional sentences
at the same time. For example, the information “a is true and b is (at the
same time) undef ” cannot be formalized as a confidentiality target (as there is
no conjunction operator for confidentiality targets, and also no disjunction or
negation). It is however easy to express this information as an epistemic sentence:
Ka∧¬Kb∧¬K¬b. In order to protect such a sentence, we would need to extend
our framework such that it can handle a wider variety of epistemic sentences
as potential secrets (essentially those in which any propositional sub-formula is
prefixed by K). This will be the topic of future work.

A prototype implementation of the work presented in this paper is available
from [23]. With these results, six of the twelve scenarios for complete informa-
tion systems (resulting from the three parameters: potential secrets/secrecies,
known/unknown policy, lying/refusal/combined lying and refusal) have been
translated to incomplete databases. Current work includes the investigation of
unknown policies, and how to exploit the situation when the user does not know
which sentences are protected. The results for complete databases [19] suggest
that less answers need to be distorted then.

At the moment, our work is limited to closed (yes/no-)queries and proposi-
tional logic. A useful application might be, for example, trust negotiation [24],
a technique to establish trust between two agents by subsequently presenting
credentials to each other. CQE could assist the agents to protect sensitive infor-
mation while exchanging their credentials. This will be covered by future work.
Considerations about open queries and first-order logic can be found in [16]; we
are currently working on an implementation that will act as an interface layer
to the Oracle DBMS. We also plan to investigate how to handle updates to the
database instance, and how to deal with the situation when the log file contains
information that has become obsolete due to a modified instance.

References

1. Castano, S., Fugini, M., Martella, G., Samarati, P.: Database Security. ACM Press,
New York (1995)

2. Denning, D.: Cryptography and Data Security. Addison-Wesley, London, UK
(1982)

3. Leiss, E.L.: Principles of Data Security. Plenum Press, New York (1982)
4. Domingo-Ferrer, J. (ed.): Inference Control in Statistical Databases. In: Domingo-

Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316,
Springer, Heidelberg (2002)



Confidentiality Policies for Controlled Query Evaluation 13

5. Wang, L., Jajodia, S., Wijesekera, D.: Securing OLAP data cubes against privacy
breaches. In: IEEE Symposium on Security and Privacy, pp. 161–178. IEEE Com-
puter Society, Los Alamitos (2004)

6. Wang, L., Li, Y., Wijesekera, D., Jajodia, S.: Precisely answering multi-dimensional
range queries without privacy breaches. In: Snekkenes, E., Gollmann, D. (eds.)
ESORICS 2003. LNCS, vol. 2808, Springer, Heidelberg (2003)

7. Brodsky, A., Farkas, C., Jajodia, S.: Secure databases: Constraints, inference chan-
nels, and monitoring disclosures. IEEE Transactions on Knowledge and Data En-
gineering 12(6), 900–919 (2000)

8. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The seav-
iew security model. IEEE Transactions on Software Engineering 16(6), 593–607
(1990)

9. Qian, X., Lunt, T.F.: A semantic framework of the multilevel secure relational
model. IEEE Transactions on Knowledge and Data Engineering 9(2), 292–301
(1997)

10. Staddon, J.: Dynamic inference control. In: 8th ACM SIGMOD Workshop on Re-
search Issues in Data Mining and Knowledge Discovery, pp. 94–100 (2003)

11. Winslett, M., Smith, K., Qian, X.: Formal query languages for secure relational
databases. ACM Transactions on Database Systems 19(4), 626–662 (1994)

12. Farkas, C., Jajodia, S.: The inference problem: A survey. SIGKDD Explo-
rations 4(2), 6–11 (2002)

13. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without re-
vealing secrets. ACM Transactions on Database Systems 8(1), 41–59 (1983)

14. Bonatti, P.A., Kraus, S., Subrahmanian, V.: Foundations of secure deductive data-
bases. IEEE Transactions on Knowledge and Data Engineering 7(3), 406–422
(1995)

15. Biskup, J.: For unknown secrecies refusal is better than lying. Data & Knowledge
Engineering 33, 1–23 (2000)

16. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 43–62. Springer, Heidelberg (2006)

17. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data &
Knowledge Engineering 38, 199–222 (2001)

18. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. International Journal of Information Security 3,
14–27 (2004)

19. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Annals of Mathematics and Artificial Intelligence 40,
37–62 (2004)

20. Biskup, J., Weibert, T.: Refusal in incomplete databases. In: Research Directions
in Data and Applications Security XVIII, pp. 143–157 Kluwer/Springer (2004)

21. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Submit-
ted, 2007. Extended abstract presented at the LICS’05 Affiliated Workshop
on Foundations of Computer Security (FCS’05), available from http://www.cs.
chalmers.se/ andrei/FCS05/fcs05.pdf(2005)

22. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

23. University of Dortmund, Information Systems and Security: CQE prototype im-
plementation. http://ls6-www.cs.uni-dortmund.de/issi/projects/cqe/

24. Winslett, M.: An introduction to trust negotiation. In: Nixon, P., Terzis, S. (eds.)
iTrust 2003. LNCS, vol. 2692, pp. 275–283. Springer, Heidelberg (2003)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.cs.chalmers.se/~andrei/FCS05/fcs05.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.cs.chalmers.se/~andrei/FCS05/fcs05.pdf
http://ls6-www.cs.uni-dortmund.de/issi/projects/cqe/


Provably-Secure Schemes for Basic Query
Support in Outsourced Databases

Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill

Georgia Institute of Technology, USA
amana@math.gatech.edu, {aboldyre,amoneill}@cc.gatech.edu

Abstract. In this paper, we take a closer look at the security of out-
sourced databases (aka Database-as-the-Service or DAS), a topic of
emerging importance. DAS allows users to store sensitive data on a re-
mote, untrusted server and retrieve desired parts of it on request. At
first we focus on basic, exact-match query functionality, and then extend
our treatment to prefix-matching and, to a more limited extent, range
queries as well. We propose several searchable encryption schemes that
are not only practical enough for use in DAS in terms of query-processing
efficiency but also provably-provide privacy and authenticity of data un-
der new definitions of security that we introduce. The schemes are easy
to implement and are based on standard cryptographic primitives such
as block ciphers, symmetric encryption schemes, and message authenti-
cation codes. As we are some of the first to apply the provable-security
framework of modern cryptography to this context, we believe our work
will help to properly analyze future schemes and facilitate further re-
search on the subject in general.

1 Introduction

Motivation. Outsourcing data to off-site database service providers is becom-
ing an attractive, cost-effective option for many organizations [40]. In this setting
(also known as Database-as-a-Service or DAS), a client stores data on a remote
untrusted database server and queries the server in order to receive required
portions of the data. Usually this data is stored in the form of a relational data-
base, each divided into records (or tuples) with attributes (or fields). The basic
system requirements are (1) query support, (2) computation and communication
efficiency for both client and server, and (3) data security. Note that the latter
requirement is particularly important in DAS, as data often contains sensitive
financial, medical, or intellectual information and the server cannot be trusted.
Indeed, ensuring security in DAS is an important research topic that has been
receiving increasing attention [25,37,27,26,20,21,37,3,28,2,29,31,9], and security
may even be required by law (cf. HIPAA rules [1]).

The problem is that these requirements are in conflict with each other. For ex-
ample, consider encrypting the data with a secure encryption scheme that hides
all information and is always randomized (i.e. same messages yields completely
different ciphertexts). This does not allow the user to even form a query about

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 14–30, 2007.
c© IFIP International Federation for Information Processing 2007



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 15

any set of records smaller than the the whole database. Indeed, it turns out that
even addressing just the basic exact-match (point) queries is a non-trivial task
if one wants to treat security in a systematic, not ad-hoc, way.

Previous Work. Searching on encrypted data has been a topic of multiple rele-
vant works in the cryptographic community, which focus mainly on exact-match
queries but in an unsatisfactory way for our context. In particular, the schemes
of [41,22,24,15,18,19] provide strong security guarantees (typically revealing only
the user access pattern) while allowing a server to answer exact-match queries,
but doing so requires the server to scan the whole database for each query, yield-
ing unacceptably-slow performance for medium-size to very large databases. The
schemes of [19] get around this problem by requiring the (paying) client to know
all keywords and all data beforehand and pre-computing a static index for the
server that does not allow to treat relational databases. A fundamental question
thus becomes what is the best guaranteed security that can be achieved with-
out compromising general efficiency and functionality. The work of [9] recently
raised this problem in the asymmetric (public-key) setting, where users explic-
itly consist of “senders” and “receivers,” and provided new security definitions
and provably-secure solutions for exact-match queries. We consider this problem
entirely in the more-common symmetric-key setting where a client (which may
be a large group of users, e.g. in a business) both stores and queries its own data
on an untrusted server.

Research on this subject done in the database community focuses on the first
two requirements and provides encryption schemes with attractive functional-
ity, namely efficient and optimized indexing and flexible query support e.g. for
numerical range, comparison, or aggregation queries [37,3,25,21,27,28,26,31]. In
contrast, the security of these schemes is far less clear. Many utilize cryptographic
primitives, such as order-preserving hash functions and encryption schemes,
which have not been studied by cryptographers, and without scrutinizing their
security. For example, using a deterministic encryption scheme for point queries
sounds like a reasonable idea, because then forming a point query is feasible
and the server can efficiently index and locate the ciphertexts. But what scheme
should be used? One common suggestion (see e.g. [28,2]) is to use DES or AES.
But these are block ciphers for short plaintexts of at most 128 bits. If a database
field holds larger data, say barcode information, then it is not clear how to en-
crypt longer ones. It would be natural to apply the block cipher block-by-block,
but then the adversary will see when the underlying plaintexts have common
blocks, which is an unnecessary leak of information. Similarly, fixing the ran-
domness in an arbitrary encryption mode (e.g. CBC) will leak more information
than needed.

A noteworthy exception in this body of work is a recent paper by M. Kantar-
cioglu and C. Clifton [29], which calls for a new direction of research that aims for
“efficient encrypted database and query processing with provable security prop-
erties.” Their work provides a first step in this direction. As they observe, unless



16 G. Amanatidis, A. Boldyreva, and A. O’Neill

one lowers the security bar from the previous cryptographic solutions a linear
scan of the database on each query is fundamentally necessary. But the above
discussion suggests we must be careful to not go too far. On the other hand,
the security definition proposed in [29] requires the use of server-side trusted,
tamper-resistant hardware to achieve.

Overview of Contributions. In a broad sense, our goal is to narrow the
gap between query-processing-efficient but ad-hoc schemes with unclear secu-
rity and schemes with strong security guarantees but with unsuitable func-
tionality. We review the provable-security methodology in Section 2. Then to
start with, we consider exact-match queries (i.e. with boolean conditions involv-
ing only equalities). In Section 4, we formulate what algorithms and properties
constitute an efficiently-searchable authenticated encryption or ESAE scheme
that will allow a server to process such queries, when used to separately en-
crypt each searchable field, with, unlike for previous cryptographic-community
schemes, query-processing efficiency comparable to that for unencrypted
databases.

As opposed to previous works in the database community, we go significantly
beyond explaining why some attacks do or do not work in order to develop a
foundation for our understanding of security. Observe that while typically en-
cryption hides all partial information about the data (which is still true for
previous searchable schemes in the cryptographic community, and homomorphic
encryption schemes in a basic model of security), ESAE cannot because some
information needs to be leaked to allow efficient query processing. Hence we
formulate a new definition of security that captures the intuition that no ad-
versary should be able to learn any useful information about the data within
reasonable time, beyond what is unavoidable for the given functionality, namely
when two ciphertexts correpond to equal plaintexts; we argue that permitting
false-positive results cannot help to hide this correlation in practice. Our defin-
ition moreover captures a notion of authenticity that ensures attributes values
are not modified or added over the network or at the server side without the
user noticing.1 Thus in a sense we provide the strongest possible notion of secu-
rity one can reasonably ask for without relying on trusted hardware as in [29].
Note that we do not explicitly model security in the terms of a client-database
interaction but always instead simply derive security in this context from that
of the “ideal” cryptographic object in question. (This step is crucially absent in
[31].) In Section 5 we propose and analyze two exact-match ESAE constructions
meeting our definition.

Then in Section 6 we extend our framework to treat prefix-matching queries
as well and refer to [4], where we investigate a recent approach [31] to handling
range queries and point out some difficulties in achieving a reasonable level of
security with it.

1 The issues of authenticity for the database and the records as a whole, and ensuring
that the server returns all the current, requested data, are outside our scope and can
be dealt with the methods of [32,35,36,30].



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 17

2 The Provable-Security Methodology

Cryptographic protocols were often designed by trial-and-error, where a scheme
is implemented and used until some flaws are found and fixed, if possible, and
the revised scheme is used until new flaws are found, and so forth. A revolu-
tionary and superior “provable-security” approach was originally proposed by
Goldwasser and Micali [23]. The approach requires a formal definition of a secu-
rity goal (e.g., data privacy) for a given cryptographic object (e.g., an encryption
scheme). A security definition comprises a formal description of adversarial ca-
pabilities (what an adversary knows and can do) and of what an adversary must
do to break the scheme. A proof of security then shows by reduction that a given
scheme satisfies the definition under widely accepted assumptions (e.g., that fac-
toring big composite numbers or distinguishing outputs of a block cipher from
random strings is hard). The proof thus shows that the only way to break the
scheme in reasonable time is by breaking the underlying assumption about the
hard problem. See [6] for a detailed overview of the provable-security framework.

3 Preliminaries

Notation. We refer to members of {0, 1}∗ as strings. If X is a string then
|X | denotes its length in bits and if X, Y are strings then X‖Y denotes the
concatenation of X and Y . If S is a set then X

$← S denotes that X is selected
uniformly at random from S. If A is a randomized algorithm then A(x, y, . . . ; R),
or A(x, y, . . .) for short, denotes the result of running A on inputs x, y, . . . and
with coins R, and a

$← A(x, y, . . .) means that we choose R at random and
let a = A(x, y, . . . ; R). Oracle access, when given to algorithms (and denoted
by superscript), is done as a “black-box,” meaning the algorithms see only the
input slots provided to them.

Symmetric encryption and message authentication. We recall the basics
concerning symmetric encryption and, following this, message authentication.

Definition 1. [Symmetric encryption] A symmetric encryption scheme
SE = (K, E, D) with associated message space MsgSp(SE) consists of three al-
gorithms. (1) The randomized key generation algorithm K returns a secret key
sk; we write sk $← K. (2) The (possibly randomized) encryption algorithm E
takes input the secret key sk and a plaintext m to return a ciphertext; we write
C

$← E(sk, m) or C ← E(sk, m; R). If C = E(sk, m, R) for some coins R then
we say C is a valid ciphertext for m under sk. (3) The deterministic decryption
algorithm D takes the secret key sk and a ciphertext C to return the correspond-
ing plaintext or a special symbol ⊥ indicating that the ciphertext was invalid; we
write m ← D(sk, C) (or ⊥ ← D(sk, C).)

Consistency: we require that D(sk, (E(sk, m)) = m for all m ∈ MsgSp(SE).

The idea behind security of encryption is that an adversary against a scheme
should not be able to deduce anything about the underlying message (except



18 G. Amanatidis, A. Boldyreva, and A. O’Neill

its length, which encryption cannot hide), upon seeing the ciphertext, even if it
has some a priori information of its choice about the message. This intuition is
captured via a notion of “indistinguishability” of encryptions [11], which requires
that no efficient adversary should be able to distinguish between encryptions of
two messages, even if the adversary can choose these two messages and request
to see ciphertexts of other different messages of its choice.

Definition 2. [Security of encryption] Let SE = (K, E ,D) be a symmetric
encryption scheme with MsgSp(SE). Let LR (left-or-right) be the “selector” that
on input m0, m1, b returns mb. The scheme SE is said to be secure against
chosen-plaintext attack or ind-cpa if for every efficient adversary B the value
called the advantage of B Advind-cpa

SE,B is sufficiently small, where

Advind-cpa
SE,B = Pr[Expind-cpa-0

SE,B = 0 ] − Pr[Expind-cpa-1
SE,B = 0 ]

and the experiments above are defined for b ∈ {0, 1} and an ind-cpa adversary
B who is required to query messages of equal length and in MsgSp(SE), as:

Experiment Expind-cpa-b
SE,B

sk $← K ; d
$← BE(sk,LR(·,·,b)) ; Return d

We purposely do not mathematically define an “efficient” adversary and how
“small” the advantage should be. This will vary according to the particular
appliation. For example, guaranteeing that all adversaries whose running time is
up to 260 in some fixed RAM model of computation have maximum advantage
2−20 would usually be considered sufficient.

Definition 3. [MAC] A deterministic message authentication code or MAC
scheme MAC = (K,M,V) with associated message space MsgSp(MAC) consists
of three algorithms. (1) The randomized key generation algorithm K returns a
a secret key sk; we write sk $← K. (2) The deterministic mac algorithm M
takes input the secret key sk and a plaintext m to return a “mac” for m; we
write σ ← M(sk, m).(3) The deterministic verification algorithm V takes the
secret key sk, a message m, and a mac σ to return a bit b ∈ {0, 1}; we write
b ← V(sk, m, σ). If b is 1 we say that σ is a valid mac for m under sk.

Consistency: we require that V(sk, m, (M(sk, m)) = 1 for all m ∈ MsgSp
(MAC).

More generally, one can permit M to flip coins as well, but most practical MACs
(e.g., CMAC or HMAC) are deterministic, which is important in our context.
Thus in this paper “MAC” means “deterministic MAC.”

The standard definition of security of MACs, unforgeability under chosen-
message attacks (or uf-cma) requires that no efficient adversary that sees macs
of the messages of its choice can produce a valid mac for a new message.



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 19

Definition 4. [Security of MACs] A MAC scheme MAC = (K,M,V) is said
to be unforgeable against chosen-message attack or uf-cma if for every efficient
adversary B the value Advuf-cma

MAC,B called advantage of B is sufficiently small,
where

Advuf-cma
MAC,B = Pr[Expuf-cma

MAC,B = 1 ] and the experiment is defined as

Experiment Expuf-cma
MAC,B

sk $← K ; (m, σ) $← BM(sk,·),V(sk,·,·) ; Return V(sk, m, σ)

and B is not allowed to query m to its mac oracle.

We will also use an additional property of MACs, namely privacy preservation,
originating recently in [12], which requires the outputs of the MAC to hide
information about the messages similarly to encryption.

Definition 5. [Privacy-preserving MACs] [7,12] A MAC scheme MAC =
(K,M,V) is said to be privacy-preserving if for every efficient adversary B the
value called the advantage of B Advpp-mac

MAC,B is sufficiently small, where

Advpp-mac
MAC,B = Pr[Exppp-mac-0

MAC,B = 0 ] − Pr[Exppp-mac-1
MAC,B = 0 ]

and the experiments above are defined for the adversary B and , b ∈ {0, 1} as

Experiment Exppp-mac-b
MAC,B

sk $← K ; d
$← BM(sk,LR(·,·,b)) ; Return d

Above LR is the oracle that on input m0, m1, b returns mb; and we require that
for any sequence of oracle queries (m1,1, m1,2), . . . , (mq,1, mq,2) that B can make
to its oracle, there does not exist any mi,1 = mj,1 or mi,2 = mj,2 for i 	= j and
moreover |mi,1| = |mi,2| for all i.

4 Efficiently-Searchable Authenticated Encryption

What is ESAE. We now define the syntax of an ESAE (Efficiently-Searchable
Authenticated Encryption) scheme.

Definition 6. [ESAE] Let SE = (K, E ,D) be a symmetric encryption scheme.
We say that ESAE = (K, E ,D,F ,G) an efficiently-searchable authenticated en-
cryption (ESAE) scheme if K, E ,D are the algorithms of a regular encryption
scheme and F ,G, are deterministic efficient algorithms where the former takes
a secret key and message as input and the latter takes a ciphertext and:
(1) Completeness:

Pr
[

sk $← K ; f1 ← F(sk, m1) ; g1 ← G(E(sk, m1)) : f1 = g1

]
= 1 and

(2) Soundness:

Pr
[

sk $← K ; (m0, m1)
$← MSE : F(sk, m0) = G(E(sk, m1))

]
is sufficiently

small



20 G. Amanatidis, A. Boldyreva, and A. O’Neill

for every message m1 ∈ MsgSp(SE) and every efficient randomized algorithm
MSE that outputs distinct messages m0, m1 ∈ MsgSp(SE). We refer to the out-
put of F ,G as the tag of a message m or a corresponding ciphertext C.

The algorithm F is used by the user to form queries, and G is needed by the
server to be able to index the encrypted data a priori, using the standard data
structures (e.g. B-tress), and locate records on request (see below), for which
it is crucial that F ,G are not randomized. Thus the completeness property en-
sures that encrypted data can be efficiently searched, in logarithmic-time in the
database size, meaning this time has not gone up over unencrypted data. The
soundness property ensures that false positives do not occur too often so that
post-processing is efficient. We first focus on the case that the soundness proba-
bility in the definition so small that each ciphertext essentially has a unique tag;
we will address increasing the number false-positive results later.

Note that exact-match functionality can also be used to build various other
useful more-complicated query types. These include equijoin and group-by, the
latter of which is especially useful for example in supporting multi-faceted search
that projects among various dimensions (e.g. features/types of products). More-
over, the server can ipso facto compute counts over the data, which would also
be useful in this context for example to support a product search interface that
shows there are, say, 100 CRT and 200 LCD monitors in the database, and 100
15”, 100 17”, and 100 20” monitors. You click on LCD monitors link and it now
shows 50 15”, 75 17”, and 75 20” such monitors.

Security of ESAE. Efficient “searchability” (ensured by the completeness
property) necessarily violates the standard ind-cpa security for encryption. Thus
we provide a relaxed definition suitable for given functionality. Completeness im-
plies that the server (and the adversary) will always be able to see what cipher-
texts correspond to equal plaintexts, and a security definition should ensure that
this is all the adversary can learn. To this end we design an indistinguishability
experiment (cf. Definition 2) where we disallow the adversary from seeing ci-
phertexts of equal messages such that it can trivially succeed. The adversary can
also mount chosen-ciphertext attacks according to a relaxed chosen-ciphertext-
security definition [5,16] that is suitable for our application. For integrity of the
data, we also want to require that it is hard produce a new ciphertext or change
the existing one without the user noticing, which corresponds to a notion of
ciphertext-integrity for authenticated encryption [13].

Definition 7. [Security of ESAE] Let SE = (K, E ,D,F ,G) be an ESAE
scheme. Let LR (left-or-right) be the selector that on input m0, m1, b returns mb.
Let B be an adversary who is given access to two oracles (called lr-encryption
and the decryption oracles). For b ∈ {0, 1} define the experiment:

Experiment Expind-esae-b
SE,B

sk $← K ; d
$← BE(sk,LR(·,·,b)),D(sk,·)

If m 	= ⊥ was returned from D(sk, ·) at any point then d ← b
Return d



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 21

We call B an esae adversary if for any sequence of queries (m1,1, m1,2), . . . ,
(mq,1, mq,2) that B can make to its lr-encryption oracle, there does not exist any
mi,1 = mj,1 or mk,2 = ml,2 for i 	= j, k 	= l such that mi,2 	= mj,2 or mk,1 	= ml,1,
in addition to the usual requirements that |mi,1| = |mi,2| for all i and if B does
not query the decryption oracle on a ciphertext that has the same tag as any
ciphertext that has been returned by the lr-encryption oracle. The advantage of
an esae adversary B is defined as follows:

Advind-esae
SE,B = Pr[Expind-esae-0

SE,B = 0 ] − Pr[Expind-esae-1
SE,B = 0 ].

The ESAE scheme SE is said to be esae-secure if for every efficient esae adver-
sary B the function Advind-esae

SE,B is sufficiently small.

We note the similarity of ESAE to deterministic authenticated encryption (DAE),
studied in [39] in the context of transporting (encrypted) symmetric keys. How-
ever, the definition of security for DAE in [39] is shown there be equivalent to
that for “pseudorandom injections,” and we will see that an ESAE scheme need
not be pseudorandom nor deterministic.

Discussion. In the context of DAS, the server receives queries with tags for the
data, the former of which it would have computed itself, thus the definition of
security we provide essentially guarantees that the server cannot learn anything
about the data of the user beyond its occurrence profile (or distribution), i.e. how
many times a given attribute value (without knowing anything else about it)
occurs in the database and in which records, even if it is one of only two possible
such values that it can pick itself, and analogously the user access pattern.

As for authenticity (aka. integrity) of ciphertexts, our definition guarantees
integrity in that any modification or substitution (malicious or not) to the en-
crypted data is detected by the user. We note that authenticity is ensured at
the field level, and not on the record level or for the entire database; an adver-
sary can still, for example, switch (encrypted) attribute values stored in different
records. If the data is updated and returned as whole records, then one can sim-
ply authenticate at the record level instead. In many applications, the server can
be trusted to return the correct ciphertexts to its paying customers (even when
it may try to learn and sell their data). Thus one should mainly protect against
non-adversarial transmission or storage errors, and our definition does it.

Increased False-Positives. It seems intuitive that permitting false positive
results (i.e. relaxing the soundness condition in Definition 6) via a “bucketiza-
tion” technique where a fixed number of randomly-chosen plaintexts correspond
to each tag, [34,33,17], though requiring the client to do more work to filter
out these false-positives, would allow a proportional increase in security by pre-
venting the adversary from correlating equal plaintexts. But we claim that this
intuition is not always correct; in practice such information may still be leaked.
To see this, consider the a posteriori probability of a plaintext occurring a cer-
tain number of times given an occurrence distribution on the buckets; the “far-
ther” the latter is from the uniform distribution means a better estimate on the



22 G. Amanatidis, A. Boldyreva, and A. O’Neill

plaintext occurrence profile, and one cannot expect anything close to the uni-
form distribution in practice. One solution would be make the bucket distribu-
tion instead depend on that of the input, but in particular as noted in [34] this
would require impractical communication cost between client and server as this
distrbution changes over time, and it is noted in [31] that such mappings are typi-
cally not efficiently computable, making storing and managing them impractical.

Comparison to the model from [29] . The security definition of [29] guaran-
tees that an adversary (e.g. the server) cannot distinguish between two queries
whose results sets have the same size, whereas ours reveals which records are
accessed by such queries. This hold even with respect to extremely powerful
adversaries who can mount chosen-ciphertext attacks, whereas our definition
applies to somewhat more passive adversaries, which we nevertheless believe is
reasonable for the given application. On the other hand, the definition of [29]
requires server-side trusted hardware to achieve.

5 Proposed Constructions and Their Security Analyses

Mac-and-encrypt. We first present an easy-to-implement, “off the shelf” way
to construct an ESAE scheme from any encryption and MAC schemes and then
analyze its security and comment on implementation.

Definition 8. [Mac-and-encrypt construction] Let SE = (KE , E ,D) be a
symmetric encryption scheme and MAC = (KM ,M,V) be a message authenti-
cation code. Then we define a new symmetric encryption scheme SE∗ = (K∗, E∗,
D∗,F ,G), whose constituent algorithms work as follows:
– K∗ sets skM

$← KM and skE
$← KE, then outputs skM‖skE.

– E∗ on input skM‖skE , m, sets σ ← M(skM , m) and C
$← E(skE , m), then

outputs σ‖C.
– D∗ on input skM‖skE , σ‖C, first sets m ← D(skE , C) and then b ← V(skM ,

m, σ). It outputs m if b = 1 and ⊥ otherwise.
– F and G on inputs skM‖skE , m and σ‖C, respectively, return M(skM , m)

and σ.

We first argue that SE∗ is an ESAE scheme if MAC is uf-cma. Clearly com-
pleteness is satisfied. The soundness condition relies on the uf-cma security of
MAC. Namely, suppose MAC is uf-cma but there is an algorithm MSE that
outputs m0, m1 such that M(skM , m0) = M(skM , m1) with high probability.
This violates uf-cma security as follows. We construct a uf-cma adversary B as
per Definition 4 that first runs MSE to receive its output (m0, m1) then queries
its signing oracle for M(sk, m0) to get back σ, and finally itself returns (m1, σ).
By the forgoing assumption on MSE this adversary has high uf-cma advantage,
a contradiction.

Theorem 1. Let SE = (KE , E ,D) be a symmetric encryption scheme and MAC
= (KM ,M,V) be a deterministic MAC. Then let SE∗ = (K∗, E∗,D∗,F ,G) be the



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 23

mac-and-encrypt ESAE scheme defined according to Definition 8. We have that
SE∗ is esae-secure if SE is ind-cpa and MAC is uf-cma and privacy-preserving.

Due to lack of space the concrete security statement that shows explicit relations
between the advantages of the adversaries and the proof are given in [4].

There are many efficient and standardized provably-secure symmetric encryp-
tion and MAC schemes that can be used to build an ESAE scheme according
to Definition 8. Our recommendations for encryption schemes include CBC and
CTR (aka the counter or XOR) encryption modes based on the AES block
cipher, which are proven to be ind-cpa under the assumption that AES is a
pseudorandom function (PRF) [11]. For MACs, one can use SHA-1 or SHA-256
and AES-based HMAC or CMAC (a variation of CBC-MAC), proven uf-cma as-
suming the underlying hash function is collision-resistant or PRF and the block
cipher is PRF [10,7,14]. Theorem 1 implies that the resulting mac-and-encrypt
ESAE is secure under the respective assumptions.

We remark that in database literature (e.g. [25]), some proposed solutions
for this problem suggest to use a “random one-to-one mapping” whose output
is included with a ciphertext, in order to facilitate “searchability.” Thus one
interesting implication of the above result is that such a map need not be random,
or even pseudorandom, in order to achieve the best-possible notion of security.

Encrypt-with-mac. We now present a construction that is more computation-
efficient on the client side and more communication-efficient over the network.
This can be crucial, for example, when users have a low-bandwidth connection
to the database or are connecting via a battery-constrained device [35]. The
idea is to use the mac of the plaintext “inside” the encryption, namely as the
randomness used in the encryption algorithm of a standard encryption scheme.

Definition 9. [Encrypt-with-mac construction] Let SE = (KE , E ,D) be a
symmetric encryption scheme and MAC = (KM ,M,V) be a deterministic MAC.
Then we define a new symmetric encryption scheme SE∗ = (K∗, E∗,D∗,F ,G),
whose constituent algorithms work as follows:

– K∗ sets skM
$← KM and skE

$← KE, then outputs skM‖skE.
– E∗ on input skM‖skE , m, sets σ ← M(skM , m) and C ← E(skE , m; σ), then

outputs C.
– D∗ on input skM‖skE , C, first sets m ← D(skE , C). It outputs m if C =

E(skE , m;M(skM , m)) and ⊥ otherwise.
– F is same as E∗. G on input C returns C.

To see that SE∗ is an ESAE scheme, we note that the completeness requirement
is clearly satisfied and the probability in the soundness requirement is zero here
due to the consistency requirement in Definition 1.

Ideally, we would like to prove that the above construction is ease-secure as-
suming that MAC is a uf-cma and SE∗ is ind-cpa secure. However, slightly
stronger assumptions turns out to be needed, but they are met by practi-
cal schemes anyway. First, we will need the mac algorithm of MAC to be a



24 G. Amanatidis, A. Boldyreva, and A. O’Neill

pseudorandom function (PRF). Naturally, this requires a mac to “look like ran-
dom bits” without the secret key, a well-studied notion formalized as follows.

Definition 10. A family of functions is a map F : {0, 1}b × {0, 1}c → {0, 1}c,
where we regard {0, 1}b as the keyspace for the function family in that a key
k ∈ {0, 1}b induces a particular function from this family, which we denote by
F (k, ·). The family F is said to be pseudorandom (or a PRF) if for every efficient
adversary B given oracle access to a function, its prf-advantage

Advprf
F,B = Pr

[
BF (k,·) = 0

]
− Pr

[
BQ(·) = 0

]

is sufficiently small, where F (k, ·) is the oracle for a random instance of F
(specified by a randomly chosen key k) and Q(·) is the oracle for a truly ran-
dom function with the domain and range of F (k, ·). Pseudorandom permutations
(PRPs) are defined analogously, and in this case the adversary B above is also
given an inversion oracle.

To define the assumption needed for encryption, let us say that an encryption
scheme SE = (K, E ,D) has a max-collision probability [9] mcSE if we have that:

Pr [E(sk, m, R1) = E(sk, m, R2)] ≤ mcSE ,

for every m ∈ MsgSp(SE), where the probability is taken over the random
choices of the key sk and coins R1, R2 (chosen independently).

All practical encryption schemes satisfy the above property. The proof of the
following is in [4]. It also contains the concrete security statement. .

Theorem 2. Let SE = (KE , E ,D) be a symmetric encryption scheme and MAC
= (KM ,M,V) be a deterministic MAC. Let SE∗ = (K∗, E∗,D∗) be the encrypt-
with-mac ESAE scheme defined via Definition 9. Then SE∗ is esae-secure if
MAC is a PRF and SE is ind-cpa and has sufficiently small max-collision prob-
ability.

The same recommendations for the underlying schemes (CBC, CTR modes, and
HMAC and CMAC) we gave for the mac-and-encrypt construct apply here.
As we mentioned, CBC and CTR are proven to be ind-cpa assuming the base
block cipher is PRF. Randomized CBC and CTR have max-collision probability
2−128 when used with AES and the counter-based CTR has zero max-collision
probability. HMAC was recently proved to be a PRF assuming the underlying
hash function is PRF [7], and CMAC is known to be PRF assuming the base
block cipher is PRF; Theorem 2 implies that the resulting encrypt-with-mac
ESAE scheme is secure under these respective assumptions.

We remark that our construction is similar to the SIV (“synthetic initialization
vector”) construction for deterministic authenticated encryption (DAE) in [39].
Indeed, it is straightforward to check that a secure DAE scheme as defined in
[39] is also secure as an ESAE scheme. However, our construction and analysis is
in fact somewhat more general than the SIV construction, which pertains only
to some “initialization-vector-based” symmetric encryption schemes (including
CBC and CTR) that implicitly guarantee to meet the max-collision requirement
we pinpoint for security.



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 25

6 Prefix-Preserving ESAE

Prefix-Matching Queries. We extend our ESAE framework to encryption
that allows to efficiently process prefix-matching queries, i.e. locating records
whose attribute value starts with a given prefix, for example all phone numbers
starting with area-code 310.

Our treatment builds on the study of “online ciphers” (so-called because they
can be used on streaming data without buffering) in [8], which we view here as
deterministic length-preserving encryption schemes whose input is composed of
fixed-length blocks (which we call “characters” of the prefixes), where the ith
block of the output depends only on the first i blocks of the input. Thus if two
plaintexts agree on their first k characters then so do their ciphertexts. Following
Definition 4, to show this implies efficient prefix-searchability (via appropriate
server-side index structures for the tuples) we make functions F ,G return the
encryption of an l-character prefix and the first l characters of a ciphertext; the
fact that completeness is one and soundness is zero follows from the fact that
the encryption is deterministic.

In our construction, the characters of a prefix will be of the input-length for
an underlying block cipher (e.g. 64 bits or 4 UTF-16 characters using DES-
variants). At the cost of revealing more information to the server for a more
flexible granularity of prefixes in the queries ,a bitwise prefix-preserving scheme
of Xu et al. [42] can similarly be used here (an issue we will return to later),
which makes one block cipher computation per bit of the input. However, that
this may be too inefficient for, say, text files as input. Moreover, as for our
previous schemes our construction also achieves ciphertext-integrity, whereas it
seems hard to somehow modify the former to achieve such a notion.2

Security. The stronger security definition for an online cipher in [8] requires it
to be indistinguishable from an “ideal” object that is a function drawn at random
from a family of all possible such “online” permutations with the correspond-
ing domain, even when given access to the corresponding “inverter” decryption
oracle. Note that for example applying encryption character-by-character is com-
pletely insecure: encryptions of “HAT” and “BAT” should look totally unrelated
in this setting despite sharing a suffix. We also formulate an additional property
of ciphertext-integrity, and thus the encryption algorithm should contain some
redundancy at the end so the ciphertext is verifiable. For our definition, we use
an ideal object that encrypts a message with a random block appended, and
the decryption oracle in the ideal experiment always returns ⊥ to capture the
intuition that the adversary should not be able to create a new valid ciphertext.
The novelty of our definition is its generality: it uses only the ideal object in
question and without any specific redundancy.

Definition 11. [Security of prefix-preserving ESAE] Let SE = (K, E ,D)
be a length- and prefix-preserving symmetric encryption scheme whose message
2 Of course, one can always achieve authenticity using a MAC on top of the encryption

scheme, but the point is that this would be excessive in some applications.



26 G. Amanatidis, A. Boldyreva, and A. O’Neill

space MsgSp(SE) contains messages of multiple of block-length n and let d be the
maximum possible number of blocks (hereafter we denote the set of such strings
by Dd,n). Let OPermd,n denote the family of all length- and prefix-preserving
permutations on Dd,n . Let ⊥(·) denote the oracle that always returns ⊥ and r
denote a random n-bit block (picked fresh each time it is encountered). For an
adversary A with access to two oracles define the experiments:

Experiment Exppp-0
SE,A

sk $← K ; d
$← AE(sk,·),D(sk,·)

Return d

Experiment Exppp-1
SE,A

g
$← OPermd+1,n ; d

$← Ag(·||r),⊥(·)

Return d

We call A a pp-adversary if it never repeats queries, never queries a response
from its first oracle to its second, and all queries to its first oracle belong to Dd,n

and queries to its second belong to Dd+1 ,n . The advantage of a A is defined as

Advpp
SE,A = Pr[Exppp-0

SE,A = 0 ] − Pr[Exppp-1
SE,A = 0 ].

The scheme SE is said to be pp-secure if for every efficient pp-adversary A the
probability Advpp

SE,B is sufficiently small.

Discussion. Analogous to the case of exact-match queries, our security defini-
tion here ensures that the server cannot learn anything about the data except
which attribute values share a same prefix, which is obviously unavoidable in this
context, where the granularity of such prefix-correlation is given by the length
of the block cipher used in our construction below (and on the other hand it
is bit-wise for the less-efficient, no-authenticity scheme of [42]). Here one has to
be wary of frequency-based (in terms how many distinct plaintexts with a given
prefix occur in the database) deduction of some prefixes when using text data,
which may require adding bogus data to balance these frequencies. We stress
that this analysis holds only in the presence of prefix-matching (or exact-match)
queries. In a generalization and refinement of the approach of [31] that we present
in [4], we show that our scheme can in some sense be used to efficiently support
range-queries as well, but the security analysis is more delicate.

Our Construction and Analysis. As in [8], appealing constructions such
as the authenticated encryption scheme OCB [38] with fixed IV can be shown
insecure under Definition 11. We design a prefix-preserving ESAE scheme based
on an interesting modification of the HPCBC cipher [8, Construction 8.1] that
appends an all-zero block to a message to encrypt and uses a different block
cipher on this last block to also achieve ciphertext-integrity, which may also be
of independent interest.3 It is efficient and uses one block cipher and one hash
function operation per block of input.

3 In fact our construction treats HPCPC as a black-box so any on-line cipher that
is OPRP-CCA (see [8] for the definition) can be used, but we suggest HPCBC for
concreteness.



Provably-Secure Schemes for Basic Query Support in Outsourced Databases 27

Definition 12. [HCBC+] Let E: {0, 1}ek × {0, 1}n → {0, 1}n be a block ci-
pher. Let H : {0, 1}hk×{0, 1}2n → {0, 1}n be a family of functions. We associate
to them a prefix-preserving ESAE scheme HPCBC+ = (K, E ,D) defined as fol-
lows. The key generation algorithm chooses randomly a key eK‖eK ′‖hK where
eK , eK ′ are (independent) keys for E and hK is a key for H. The encryption
and decryption algorithms are defined as follows:
Algorithm E(eK‖eK ′‖hK , m)
{ Parse m as m[1] . . . m[l]
C[0] ← 0n ; m[0] ← 0n

For i = 1, . . . , l do
R ← m[i − 1]||C[i − 1]
P [i] ← H(hK, R) ⊕ m[i]
C[i] ← E(eK, P [i]) ⊕ H(hK, R)}

R ← m[l]‖C[l]
P [l + 1] ← H(hK , R) ⊕ 0n

C[l + 1] ← E(eK ′, P [l + 1]) ⊕ H(hK ,R)
Return C[1] . . . C[l + 1]

Algorithm D(eK‖eK ′‖hK , C)
{Parse C as C[1] . . . C[l + 1] with l ≥ 1
C[0] ← 0n ; m[0] ← 0n

For i = 1, . . . , l do
R ← m[i − 1]||C[i − 1]
P [i] ← E−1(eK, C[i] ⊕ H(hK,R))
m[i] ← H(hK,R) ⊕ P [i]}

R ← m[l]‖C[l]
P [l + 1] ← E−1(eK ′, C[l + 1] ⊕ H(hK , R))
m[l + 1] ← H(hK , R) ⊕ P [l + 1]
If m[l + 1] = 0n then return m[1] . . . m[l + 1]
Else return ⊥

We note that the 6 first lines of the algorithms (i.e. the part between braces)
could be expressed more compactly as C[1] . . . C[l] ← HPCBC(eK ‖hK , m) and
m[1] . . .m[l] ← HPCBC−1(eK ‖hK , C). This explicit description of HPCBC is
given here for completeness. To see the benefit of using our construction over
plain HPCBC note that encryption along with a separate MAC (e.g. CMAC)
to additionally achieve integrity would roughly double the computation time,
making two passes over the input, as compared to our construction.

Security of the scheme is based on the security of the underlying block cipher
and the hash function. The corresponding definitions of PRP-CCA security of
a block cipher and of almost-xor-universal hash functions is recalled in [8]. AES
is believed to be PRP-CCA, and [8] provide references for secure hash function
constructions. The proof of the following theorem is in [4]. It also contains the
concrete security statement.

Theorem 3. Let E: {0, 1}ek × {0, 1}n → {0, 1}n be a block cipher that is a
PRP-CCA. and let H : {0, 1}hk × {0, 1}2n → {0, 1}n be an almost-xor-universal
family of hash functions. Then HPCBC+ defined via Definition 12 is a pp-secure
prefix-preserving ESAE scheme.

6.1 On Efficient Range-Query Processing

In [31] it is shown that encrypting data via a bit-wise prefix-preserving scheme
allows efficient (as opposed to scanning the whole database) range queries over
the data by specifying the possible prefixes for a desired range. Introducing our
prefix-preserving ESAE as well provides a generalized approach, where the block
size is not just one bit but a variable parameter. It is shown in [31] that certain
attacks are possible if their scheme is used for range queries. In the full version
of the paper [4], we generalize such attacks and discuss what is the best level of
security prefix-preserving schemes can provide in this context.



28 G. Amanatidis, A. Boldyreva, and A. O’Neill

Acknowledgments

We thank Brian Cooper and Andrey Balmin for useful comments and references.

References

1. The final HIPAA security rule. Federal Register (2003) Available at
http://www.hipaadvisory.com/regs/finalsecurity/index.htm,

2. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed
architecture for secure database services. In: CIDR 2005

3. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: SIGMOD 2004

4. Amanatidis, G., Boldyreva, A., O’Neill, A.: New security mod-
els and provably-secure schemes for basic query support in out-
sourced databases. A full version of this paper (2007) Available at
www-static.cc.gatech.edu/∼aboldyre/publications.html

5. An, J.-H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, Springer, Heidelberg
(2002)

6. Bellare, M.: Practice-oriented provable-security. In: Information Security Work-
shop, ISW (1997)

7. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Hei-
delberg (2006)

8. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and
the Hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
Springer, Heidelberg (2001)

9. Bellare, M., Boldyreva, A., O’Neill, A.: Efficiently-searchable and deterministic
asymmetric encryption. Cryptology ePrint Archive, Report, /186, 2006. (2006),
http://eprint.iacr.org/2006/186/

10. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authenti-
cation. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, Springer, Heidelberg
(1996)

11. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS (1997)

12. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH
authenticated encryption scheme: A case study of the Encode-then-Encrypt-and-
MAC paradigm. In: ACM Transactions on Information and System Security. vol.
7(2) (2004)

13. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, Springer, Heidelberg (2000)

14. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, Springer,
Heidelberg (2000)

15. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, Springer, Heidelberg (2004)

http://www.hipaadvisory.com/regs/finalsecurity/index.htm
www-static.cc.gatech.edu/~aboldyre/publications.html
http://eprint.iacr.org/2006/186/


Provably-Secure Schemes for Basic Query Support in Outsourced Databases 29

16. Canetti, R., Krawczyk, H., Nielsen, J.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, Springer, Heidelberg (2003)

17. Ceselli, A., Damiani, E., De Capitani, d.S., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypted databases. ACM Trans.
Inf. Syst. Secur. 8(1), 119–152 (2005)

18. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, Springer, Heidelberg (2005)

19. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. Cryptology ePrint Archive,
Report 2006/210 (2006)

20. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Computing
range queries on obfuscated data. In: Information Processing and Management of
Uncertainty in Knowledge-Based Systems (2004)

21. Damiani, E., De Capitani Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: CCS
(2003)

22. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003)
http://eprint.iacr.org/2003/216/ .

23. Goldwasser, S., Micali, S.: Probabilistic encryption. In: Journal of Computer and
Systems Sciencies, vol. 28 (1984)

24. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-
crypted data. In: Applied Cryptography and Network Security Conference

25. Hacigümüs, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: SIGMOD (2002)

26. Hacigümüs, H., Iyer, B.R., Mehrotra, S.: Efficient execution of aggregation queries
over encrypted relational databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D.
(eds.) DASFAA 2004. LNCS, vol. 2973, Springer, Heidelberg (2004)

27. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: VLDB (2004)

28. Iyer, B.R., Mehrotra, S., Mykletun, E., Tsudik, G., Wu, Y.: A framework for effi-
cient storage security in RDBMS. In: EDBT (2004)

29. Kantracioglu, M., Clifton, C.: Security issues in querying encrypted data. In: DBSec
(2005)

30. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD, ACM Press, New York (2006)

31. Li, J., Omiecinski, E.: Efficiency and security trade-off in supporting range queries
on encrypted databases. In: DBSec (2005)

32. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: NDSS (2004)

33. Mykletun, E., Tsudik, G.: Incorporating a secure coprocessor in the database-as-
a-service model. In: International Workshop on Innovative Architecture for Future
Generation High Performance Processors and Systems (2005)

34. Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model.
In: DBSEC (2006)

35. Narasimha, M., Tsudik, G.: DSAC: integrity for outsourced databases with signa-
ture aggregation and chaining. In: CIKM (2005)

36. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signature
aggregation and chaining. In: Lee, M.L., Tan, K.-L., Wuwongse, V. (eds.) DASFAA
2006. LNCS, vol. 3882, Springer, Heidelberg (2006)

http://eprint.iacr.org/2003/216/


30 G. Amanatidis, A. Boldyreva, and A. O’Neill

37. Özsoyoglu, G., Singer, D.A., Chung, S.S.: Anti-tamper databases: Querying en-
crypted databases. In: DBSec, pp. 133–146 (2003)

38. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS (2001)

39. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Hei-
delberg (2006)

40. Arsenal Digital Solutions. Top 10 reasons to outsource remote data protection.
http://www.arsenaldigital.com/services/remote data protection.htm

41. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy (2000)

42. Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: Prefix-preserving IP address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme. In: ICNP (2002)

http://www.arsenaldigital.com/services/remote_data_protection.htm


Authenticated Relational Tables and
Authenticated Skip Lists�

Giuseppe Di Battista1 and Bernardo Palazzi1,2,3

1 Roma TRE University, Rome Italy
{gdb,palazzi}@dia.uniroma3.it,

2 ISCOM Italian Ministry of Communication, Rome, Italy
3 Brown University, Department of Computer Science, Providence, RI USA

Abstract. We present a general method, based on the usage of typ-
ical DBMS primitives, for maintaining authenticated relational tables.
The authentication process is managed by an application external to
the DBMS, that stores just one hash information of the authentication
structure. The method exploits techniques to represent hierarchical data
structures into relational tables and queries that allow an efficient selec-
tion of the elements needed for authentication.

Keyword: Authenticated Relational Table, Authenticated Skip List,
Authenticated query.

1 Introduction

We consider the following scenario. A user needs to store data in a relational
database, where the Data Base Management System (DBMS) is shared with
other users. For example, the DBMS is available on-line through the Web, and
anybody in the Internet can store and access data on it. Nowadays, there are
many sites providing services of this type [1,22,25,30] and the literature refers
to such facilities as to outsourced databases [13,19,27].

When the database is accessed, the user wants to be sure on the integrity of
her/his data, and wants to have the proof that nobody altered them.

Of course, accessing the DBMS is subject to authentication restrictions, and
the users must provide credentials to enter. However, the user might not trust
the DBMS manager, or the site that provides the service, or even the DBMS
software. Extending the argument, the same problem can be formulated even in
terms of a traditional database. Also in this case, with the current technologies,
although DBMSes put at disposal logs of the performed transactions and other
security features, for a user it is somehow impossible to be completely sure that
nobody altered the data.

A first attempt for the user to be sure of the authenticity of the data is to
put a signature on each t-uple of each relational table of the database. Unfortu-
nately, this technique does not provide enough security. In fact, adversaries could
� This work was supported in part by grant IIS–0324846 from the National Science

Foundation and a gift from IAM Technology, Inc.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 31–46, 2007.
c© IFIP International Federation for Information Processing 2007



32 G. Di Battista and B. Palazzi

remove some t-uples and the user would not have any evidence of this. Another
straightforward possibility would be to sign each table as a whole. However, this
does not scale-up, and even mid-size tables would be impossible to authenticate.

We propose a method and a prototype for solving the above mentioned prob-
lem. Namely, for each relational table R of the user we propose to store in an
extra relational table S(R) (in the following security table) of the DBMS a spe-
cial version of authenticated data structure that allows to verify the authenticity
of R.

With this approach, if the user wants to have the proof of authenticity of R,
it is sufficient to check the values of a few elements stored in S(R). On the other
hand, if the user updates R, only a few variations on S(R) are needed to preserve
the proof of authenticity. We also propose efficient techniques to manage and to
query S(R) and show the practical feasibility of the approach.

Observe that the proposed approach is completely independent on the specific
adopted DBMS and can be implemented into an extra software layer or either
a plug-in, under the sole responsibility of the user. The authentication process
is managed by an application external to the DBMS that stores just a constant
size (O(1) wrt the size of R) secret. The method does not require trust in the
DB manager or DBMS.

The paper is organized as follows. Section 2 provides basic terminology and
summarizes the state of the art. Section 3 describes the adopted model. Sections 4
and 5 provide technical insights. Section 6 presents experiments that show the
feasibility of the approach. Section 7 concludes the paper analyzing the security
of the approach and proposing future work.

2 Background and State of the Art

Authenticated data structures (ADS) [29] have been devised to be used in a com-
putational model where untrusted responders answer queries on a data structure
on behalf of a trusted source and provide to the user a proof of the validity of
the answer. Early work on ADS was originated by the certificate revocation
problem in PKIs and focused the attention on authenticated dictionaries, on
which membership queries are performed.

The Merkle hash tree MHT scheme [16] can be used to implement a sta-
tic authenticated dictionary. An MHT of a set stores cryptographic hashes of
the value of elements belonging to the set at the leaves of the MHT and an
authentication value at each internal node, which is the result of computing a
cryptographic hash function on the values of its children. The MHT uses linear
space and has O(log n) proof size, query time and verification time.

A dynamic authenticated dictionary that uses a hierarchical hashing tech-
nique over skip lists, a data structure introduced by Pugh [26], is presented
in [8,9]. Such ADS obtains O(log n) proof size, query time, update time and ver-
ification time. Other schemes based on variations of MHT have been proposed
in [2,4,12,20]. A detailed analysis of the efficiency of authenticated dictionary
schemes based on hierarchical cryptographic hashing is conducted in [28], where



Authenticated Relational Tables and Authenticated Skip Lists 33

precise measures of the computational overhead due to the authentication are
introduced. Lower bounds on the authentication cost are given, existing authen-
tication schemes are analyzed, and a new authentication scheme is presented
that achieve performance very close to the theoretical optimal.

The notion of a two parties model in ADS is introduced in [10], where only
the client needs to maintain the proof of validity for his data.

A first step towards the design of more general ADS (beyond dictionaries)
is done in [7,14,21] with a first approach on the authentication of relational
database operations and multidimensional orthogonal range queries.

Buldas, in a more recent paper [3], studies how to extend ADS to perform
more complex queries and uses optimizations on interval queries. In [23,24] the
authors propose a method to authenticate projection queries using different cryp-
tographic techniques for verifying the completeness of relational queries. While
the papers are quite promising in terms of theoretical bounds and analysis, the
practical efficiency is not demonstrated.

In [17], Miklau and Suciu proposed to embed into a relational table an MHT ,
with a model that is similar to the one adopted in this paper. However, the tech-
nique is described only partially and seems to have some drawbacks. Namely,
validating the result of a query seems to require several distinct queries on the
DBMS. This is in contrast with the typical atomicity requirements of concur-
rency. Also, the MHTs require frequent rebalancing for supporting updates and
it is unclear how to match this requirement with the need to have a few up-
dates in the relational table. Further, the time performance illustrated in the
paper are not supported by a clear description of the experimental platform and
show some inconsistency. For example in one of the tests the time requested for
authentication decreases with the growth of the table.

For the purposes of this paper we need to provide a description of the skip
lists. The skip list data structure [26] is an efficient tool for storing an ordered
set of elements. It supports the following operations on a set of elements.

– find(x): Determine whether element x is in the set.
– insert(x): Insert element x into the set.
– delete(x): Remove element x from the set.

A skip list S stores a set of elements in a sequence of linked lists S0, S1, . . . , St

called levels. The members of the lists are called nodes. The base list, S0, stores
in its nodes all the elements of S in order, as well as sentinels associated with the
special elements −∞ and +∞. Each list Si+1 stores a subset of the elements of
Si. The method used to define the subset from one level to the next determines
the type of skip list. The default method is simply to choose the elements of
Si+1 at random among the elements of Si with probability 1

2 . One could also
define a deterministic skip list [18], which uses simple rules to guarantee that
between any two elements in Si there are at least 1 and at most 3 elements of
Si+1. In either case, the sentinel elements −∞ and +∞ are always included in
the next level up, and the top level, is maintained to be O(log n). We therefore
distinguish the node of the top list St storing −∞ as the start node s.



34 G. Di Battista and B. Palazzi

- ∞ 109865 + ∞

S2

S 1

S 0

10

10

+ ∞

+ ∞

96

6

5- ∞

- ∞

Fig. 1. Skip List

An element that is in Si−1 but not in Si is said to be a plateau element of
Si−1. An element that is in both Si−1 and Si is said to be a tower element in
Si−1. Thus, between any two tower elements, there are some plateau elements.
In randomized skip lists, the expected number of plateau elements between two
tower elements is one. The skip list of Fig. 1 has 7 elements (including sentinels).
The element 6 is stored in 3 nodes with different level. The overall number of
nodes is 17.

To perform a search for element x in a skip list, we begin at the start node
s. Let v denote the current node in our search (initially, v = s). The search
proceeds using two actions, hop forward and drop down, which are repeated one
after the other until we terminate the search. See Fig. 2.

– Hopforward: We move right along the current list until we find the node of
the current list with largest element less than or equal to x. That is, while
elem(right(v)) < x, we perform v = right(v).

– Dropdown: If down(v) = null, then we are done with our search: node v
stores the largest element in the skip list less than or equal to x. Otherwise,
we update v = down(v).

In a deterministic skip list, the above searching process is guaranteed to take
O(log n) time. Even in a randomized skip list, it is fairly straightforward to show
(e.g., see [11]) that the above searching process runs in expected O(log n) time,
for, with high probability, the height t of the randomized skip list is O(log n)
and the expected number of nodes visited on any level is 3.

To insert a new element x, we determine which lists should contain the new
element x by a sequence of simulated random coin flips. Starting with i = 0,
while the coin comes up heads, we use the stack A to trace our way back to the
position of list Si+1 where element x should go, add a new node storing x to this
list, and set i = i + 1. We continue this insertion process until the coin comes
up tails. If we reach the top level with this insertion process, we add a new top
level on top of the current one. The time taken by the above insertion method
is O(log n) with high probability. To delete an existing element x, we remove
all the nodes that contain the element x. This takes time is O(log n) with high
probability.



Authenticated Relational Tables and Authenticated Skip Lists 35

- ∞ 109865 + ∞

S2

S 1

S 0

10

10

+ ∞

+ ∞

96

6

5- ∞

- ∞

Fig. 2. A value searching in a Skip List: search for element 9 in the skip list of Figure 1.
The nodes visited and the links traversed are drawn with thick lines and arrows.

To introduce the Authenticated Skip Lists we need to use the commutative
hash technique [9] developed by Gooodrich and Tamassia. A hash function h is
commutative if h(x; y) = h(y; x), for all x and y. Given a cryptographic hash
function h that is collision resistant in the usual sense, we construct a candidate
commutative cryptographic hash function, h0, as follows [9] :

h0(x, y) = h(min(x, y), max(x, y))
It can be shown that h0 is commutatively collision resistant [9].
The authenticated skip list introduced in [9] consists of a skip list where each

node v stores a label computed accumulating the elements of the set with a
commutatively cryptographic hash function h. For completeness, let us review
how hashing occurs. See [9] for details. For each node v we define label f(v)
in terms of the respective values at nodes w = right(v) and u = down(v). If
right(v) = null, then we define f(v) = 0. The definition of f(v) in the general
case depends on whether u exists or not for this node v.

– u = null, i.e., v is on the base level:
• If w is a tower node, then

f(v) = h(elem(v), elem(w))
• If w is a plateau node, then

f(v) = h(elem(v), f(w)).
– u 	= null, i.e., v is not on the base level:

• If w is a tower node, then
f(v) = f(u).

• If w is a plateau node, then
f(v) = h(f(u), f(w)).

We illustrate the flow of the computation of the hash values labeling the nodes
of a skip list in See Fig. 3. Note that the computation flow defines a directed
acyclic graph DAG, not a tree. After performing the update in the skip list,
the hash values must be updated to reflect the change that has occurred. The
additional computational expense needed to update all these values is expected
with high probability to be O(log n). The verification of the answer to a query
is simple, thanks to the use of a commutative hash function. Recall that the
goal is to produce a verification that some element x is or is not contained in



36 G. Di Battista and B. Palazzi

- ∞ 109865 + ∞

S2

S 1

S 0

+ ∞10

10

10

+ ∞

+ ∞

9

9

86

6

6

5

5

- ∞

- ∞

- ∞

Fig. 3. Authenticated Skip List: Flow of the computation of the hash values labeling
the nodes of the skip list of Fig. 2. Nodes where hash functions are computed are
drawn with thick lines. The arrows denote the flow of information, not links in the
data structure.

the skip list. In the case when the answer is ”yes”, we verify the presence of
the element itself. Otherwise, we verify the presence of two elements xa and xb

stored at consecutive nodes on the bottom level S0 such that xa < x < xb. In
either case, the answer authentication information is a single sequence of values,
together with the signed, timestamped, label f(s) of the start node s.

Let P (x) = (v1; ...; vm) be the sequence of nodes that are visited when search-
ing for element x, in reverse order. In the example of Fig. 4, we have P (9) that
needs not only the nodes (9, 6,−∞) with the thick line but also all the siblings
with the stroke dash-dot-dash-dot. Note that by the properties of a skip list, the
size m of sequence P (x) is O(log n) with high probability. We construct from
the node sequence P (x) a sequence Q(x) = (y1; ...; ym) of values such that:

– ym = f(s), the label of the start node;
– ym = h(ym−1; h(ym−2; h(...; y1)...)))

The user verifies the answer for element x by simply hashing the values of the
sequence P (x) in the given order, and comparing the result with the signed value
f(s), where s is the start node of the skip list. If the two values agree, then the
user is assured of the validity of the answer at the time given by the timestamp.

3 The Reference Model

A user stores a relational table R into a DBMS. The user would like to perform
the usual relational operations on R, namely, would like to select a set of t-uples,
to insert elements, and to delete elements. The user wants to verify that a query
result is authentic. The amount of information that the user has to maintain in
a secure environment to be certain of the authenticity of the answer should be
kept small (ideally constant size) with respect to the size of R.

We propose to equip R with an authenticated skip list A to guarantee its
integrity. Of course, there are at least two approaches for implementing A. Either



Authenticated Relational Tables and Authenticated Skip Lists 37

- ∞ 109865 + ∞

S2

S 1

S 0

10

10

+ ∞

+ ∞

96

6

5- ∞

- ∞

Fig. 4. Values needed to authenticate the result of a query

A is stored in main memory within an application controlled by the user, or A is
stored into the same DBMS storing R. We follow the second approach. Namely,
we investigate how to efficiently store A into a further relational table S(R),
called security table, used only for that purpose. Fig. 5 shows a relational table,
an authenticated skip list for its elements, and the implementation of the skip-list
into a second relational table.

hash
A

B

DB ADS

relational table
Record 1
Record 2
Record …
Record N C

B
A

C

authentication table

hash (R1)

hash (Rn)

Fig. 5. A relational table and its security table

There are two options. We call them the coarse-grained and the fine-grained
approach.

What we call coarse-grained approach is probably the most natural way to
represent an authenticated skip list S inside a relational table S(R). Namely,
it consists of storing each element of S inside a specific record of S(R). On the



38 G. Di Battista and B. Palazzi

other hand, the fine-grained approach shifts the attention on a smaller element
of S. It consists of storing each level of an element of S inside a record of S(R).

In order to visualize the coarse-grained approach, it is effective to think at S
in terms of a “quarter clockwise rotation”. As an example, Table 1 is a coarse-
grained representation of the authenticated skip list of Fig. 6.

More precisely, the fields of Table 1 have the following meaning.

– Key: The value of an element of S. It can be any type of value, not only a
number, but on such a type a total ordered must be defined.

– Prv n - Nxt n: Pointers to the previous and to the next element in S, for
each level n.

– Hash n: Information needed to authenticate S, stored at each level n.

Each element of S has a height, that is, the number of nodes with the same
value of key that constitute an element of S, that is randomly determined. This
is the main trade-off of this technique, because on one hand this kind of rep-
resentation has the property to maintain the identity between the number of
records in S(R) and the elements present in S, but on the other hand it has
an overhead in the size of the table, because each record has a number of fields
equal to the highest S in A. This is necessary because we do not know the height
of a new S and then we have to arrange S(R) for worst cases, when an S is at
the highest level. So, we must pad with ”null” values the fields that do not reach
the highest level.

- ∞ 109865 + ∞

S2

S 1

S 0

10

10

+ ∞

+ ∞

96

6

5- ∞

- ∞

Fig. 6. Storing a Skip List inside a Relational Table

Once stated how to represent S inside the security table S(R), we developed
methods to perform in S a set of authenticated relational operations, without
the need to load in main memory the whole S(R). Performing authenticated
operations on R requires the usage of queries that retrieve all the elements that
are needed to compute the authentication path. Such elements are spread on all
S(R). The main requirements in devising such queries are:

– The need to build queries that retrieve only the authentication elements that
are strictly necessary, to reduce, as much as possible, the amount of required
memory.



Authenticated Relational Tables and Authenticated Skip Lists 39

Table 1. A coarse-grain representation of an authenticated skip list into a relational
table. In bold face the elements necessary to authenticate element 9.

Key Hash 0 Prv 0 Nxt 0 Hash 1 Prv 1 Nxt 1 Hash 2 Prv 2 Nxt 2

- ∞ f( −∞, 5) null 5 f( f( −∞), f(5)) null 5 f(f( −∞),f(6)) null 6
5 f(5, 6) −∞ 6 f(f(5), f(6)) −∞ 6 null null null
6 f(6, f(8)) 5 8 f(f(6), f(9)) 5 9 f(f(6), f(10)) 10 −∞
8 f(9,6) 9 6 null null null null null null
9 f(9, 10) 8 10 f(9, 10) 6 10 null null null
10 f(10, f(+∞)) 9 +∞ f(f(10), f(+∞)) 9 +∞ f(f(10), f(+∞)) 6 +∞

– The need of fast queries that allow to authenticate a result with a small time
overhead. In this respect it is meaningful to minimize the number of used
queries.

It is important to perform such queries using only standard SQL. In fact,
our model does not allow any modification of the DBMS engine. Also, think-
ing in terms of SQL allows the identification of a precise interface between an
authentication tool based on our techniques and the DBMS, allowing its imple-
mentation in terms of a plug-in. The main idea here is to use an algorithm that
retrieves the authentication elements, starting from the knowledge of the value
K to authenticate:

1. We perform a query that loads in memory all the records that are not null
at top level and that have a value smaller than K.

2. We select the greatest element in the query result (that is the predecessor
of K at the top level).

3. We perform an interval query on the elements (that are not null) at the
immediately lower level, with the following range: from the element retrieved
in the previous step to the element stored in its field next to the top level.

4. We repeat the steps 2 − 3 until we reach level 0.

In order to understand which elements are loaded in main memory by queries
of the algorithm, it is effective to think at a shape like a ”funnel” that has its
stem on K. See Fig. 7. The loaded elements are those that “touch” the funnel.

- ∞ 109865 + ∞

S2

S 1

S 0

10

10

+ ∞

+ ∞

96

6

5- ∞

- ∞

Fig. 7. Loaded elements in an authentication query



40 G. Di Battista and B. Palazzi

Note that the number of queries that is needed to retrieve the authentication
root path is proportional to the number of levels in S, that is logarithmic in the
number of elements that are currently present in S.

4 A Fine Grained Approach

This approach stores inside each record a node instead of an element of S. A
node is an invariant-size component in S. Hence, it can be stored in a record
with a fixed number of fields, independently on the number of elements stored
in S. More precisely, in this case the fields of S(R) have the following meaning:

– Key: value of an element of S;
– Level: height of an element of S, that is the number of the lists that the

element belongs to;
– prvKey-nxtKey: pointers to the previous and to the next element of S at

the same level;
– parentLvl-parentKey: pointer to the parent element in the path of au-

thentication; it is needed to allow the retrieval of the root path;
– Hash: information needed for the authentication, performed with the

method used in S [9].

The direct storage of S nodes significantly reduces the space overhead, that
it is typical of the coarse grain approach. In fact, in this case there is no need to
store null values.

This approach allows the usage of very efficient techniques to manage S(R) dy-
namically and securely. The method we adopt is based on the nested set method
for storing hierarchical data structures inside adjacency lists, that in turn fit well
into relational tables [5] See Fig. 8 and Tab. 2.

- ∞ 109865 + ∞

S2

S 1

S 0

10

10

+ ∞

+ ∞

96

6

5- ∞

- ∞

Fig. 8. Storing a Skip List inside a Relational Table. A Fine Grained Approach.

5 Exploiting Nested Sets

The problem of storing hierarchical data structures inside relational tables has
been already studied in database theory [6,15]. The solution that we exploit is



Authenticated Relational Tables and Authenticated Skip Lists 41

Table 2. A fine grain representation of an authenticated skip list into a relational
table. In bold the elements necessary to authenticate element 9.

Key Level prvKey nxtKey parentLvl parentKey Hash
−∞ 2 null 6 null null f(f(−∞), f(6))
−∞ 1 null 5 2 −∞ f(f(−∞), f(5))
−∞ 0 null 5 1 −∞ f( −∞, 5)
5 1 −∞ 6 1 −∞ f(5,6)
5 0 −∞ 6 1 5 f(5, 6)
6 2 −∞ 10 2 −∞ f(f(6),f(10))
6 1 5 9 2 6 f(f(6),f(9))
6 0 5 8 1 6 f(6, f(8))
8 0 6 9 0 6 f(8, 10)
9 1 6 10 1 6 f(9, 10)
9 0 8 10 1 9 f(9, 10)
10 2 6 +∞ 2 6 f(10,f(+∞))
10 1 9 +∞ 2 10 f(10,f(+∞))
10 0 9 +∞ 2 10 f(10,f(+∞))

-∞ 109865 +∞

S2S 2

S 1

S 0

1

2

3 4

5

6 7

89

10

11

12 15 13 14

20 16

17 18

19

21

22

23 24

25

262728

Fig. 9. An ADS and its Nested Set. Thick lines show the authentication root path for
element 9.

due to Celko [5], that shows a method to store a tree inside a relational table.
Such a method is based on augmenting the table with two extra fields.

In order to understand what is a nested set, it is effective to think at the
nodes of the tree as circles and to imagine that the circles of the children are
nested inside their parent. The root of the tree is the largest circle and contains
all the other nodes. The leaf nodes are the innermost circles, with nothing else
inside them. The nesting shows the hierarchical relationship.

The two extra fields have the role of left and right boundaries of the circle
and allow to represent the nesting of the hierarchy.

Unfortunately, skip lists are not trees but a directed acyclic graph. Hence,
we have to extend the nested set method to this different setting. Table 3 illus-
trates how the fine-grained approach can be equipped with nested-sets features.
Observe the Left and Right fields that represent the boundaries of the “circles”.



42 G. Di Battista and B. Palazzi

Table 3. A representation of an authenticated skip list into a relational table using
nested set. In bold the key value and the left and right fields. The 2 extra fields added
are needed for fast queries.

Key Level prvKey nxtKey parentLvl parentKey Left Right

−∞ 2 null 6 null null 1 28
−∞ 1 null 5 2 −∞ 2 9
−∞ 0 null 5 1 −∞ 3 4
5 1 −∞ 6 1 −∞ 5 8
5 0 −∞ 6 1 5 6 7
6 2 −∞ 10 2 −∞ 10 27
6 1 5 9 2 6 11 20
6 0 5 8 1 6 12 15
8 0 6 9 0 6 13 14
9 1 6 10 1 6 16 19
9 0 8 10 1 9 17 18
10 2 6 +∞ 2 6 21 26
10 1 9 +∞ 2 10 22 25
10 0 9 +∞ 2 10 23 24

Fig. 9 shows the correspondence between boundaries and nodes of the skip-list.
The figure shows also a root path.

Now we show one of the features of the proposed approach. Namely, we argue
that, in order to authenticate an element of a relational table R, we need just one
query on S(R). Such a query is used to retrieve the complete root-path and all
its sibling elements. Observe that, authenticating an element in an ADS requires
a number of steps that is logarithmic (worst case or average case) in the number
of the elements while this logarithmic dependence does not yield a logarithmic
number of queries in our case but a constant number of queries. We make the
argument using an example. The following query uses directly the value of the
element to authenticate. The example is for the authentication of element 9.

SELECT *
FROM skiplist
WHERE Left <= (SELECT Left

FROM skiplist
WHERE key = 9 AND level = 0)

AND Right >= (
SELECT Right
FROM skiplist
WHERE key = 9 AND level = 0);

The above query retrieves only the authentication root-path starting from 9.
To validate 9 we have to retrieve also all sibling nodes of the root-path. This is
possible by using two subqueries that retrieve all elements that are:



Authenticated Relational Tables and Authenticated Skip Lists 43

– in the fields nxtKey of the root-path;
– on the level below and with the same key of the root-path.

Using this method we built a quick algorithm to get the complete authenti-
cation path needed to validate a table interrogation, using only one query, that
is that all concurrency problems related to selection queries will be managed by
the DBMS. Also, it is possible to modify the query in order to retrieve all the
information needed to authenticate all the t-uples obtained by a Select with just
one query.

6 Experimental Evaluation

This section shows the experimental results obtained using a prototype imple-
mentation of the techniques presented in the previous sections. The Hardware
architecture where tests have been performed consists of quite common laptop
with following features:

– cpu intel c©centrinoTMduo T2300 (1.66 GHz, 667 FSB);
– RAM 1.5 Gb DDR2
– HDD 5,400 rpm Serial ATA

The Software architecture consists of following elements:

– Microsoft c©WindowsTMXP Tablet edition 2005;
– JavaTMversion 1.5
– MySql JDBC Connector Java-bean 5.03
– MySql DBMS version 4.1

The data sets for tests have been chosen with a scale from 10, 000 to 1, 000, 000
of elements. Such elements were sampled at random from a set 10 times larger.
All values presented in this section have been computed as average of the results
of 5 different tests. The elements in each test are a sample, randomly selected,
composed of 1

1000 of the entire set. All times are in milliseconds. All tests show
the clock-wall time.

The first test is about the authentication of a single value inside a relational
table. Table 4 shows the results of the authentication of a single element inside
different size authenticated tables, stressing the differences between coarse grain
and fine grain approaches. Tests are about the following measures:

– RAM: the time to validate a value in main memory;
– DB → RAM: the time to load in main memory from a secondary memory

storage system (e.g., a hard disk), the elements necessary to validation;
– NODES: the numbers of elements loaded from the database in main mem-

ory;
– STEPS: the numbers of elements actually used in the authentication

process, the difference between NODES value and this value shows the over-
head of the elements loaded in main memory.



44 G. Di Battista and B. Palazzi

Table 4. Test results for validation of an element inside different size tables. All the
results are in ms. Times for fine- and coarse-grained approaches.

10, 000 100, 000 1, 000, 000
CHECK Coarse Fine Coarse Fine Coarse Fine

RAM 0 0 0 0 0 0
DB → RAM 36 11 252 42 2680 377

NODES 35 27 44 31 57 43
STEPS 25 27 33 30 39 41

Table 5. Test results for insertion of an element inside a different size tables. Using
coarse grain approach. All results are in ms.

INSERT 10, 000 100, 000 1, 000, 000
RAM 0 0 0

DB → RAM 32 260 2605
RAM → DB 14 26 26
Tot. Time 46 286 2631

The results showed above are very similar to those obtained from the authen-
tication of an element not-present in the table. In fact it is sufficient to check
the previous and the next element of the value that is not present to proof the
element lack.

The second test is about the insertion of a single value inside an authenticated
relational table. The table 5 shows the results of the insertion of a single element
inside different size authenticated tables using only coarse grain approach. Tests
concern the following measures:

– RAM: the time to insert in main memory a value;
– DB → RAM: the time to load in main memory from a secondary memory

storage system (e.g., a hard disk), the elements necessary to insertion;
– RAM → DB: the time to store in secondary memory the elements updated

in main memory;

Methods that allow to delete and modify an element inside an authenticated
table are similar to times showed for insertion operation.

The obtained experimental results put in evidence the feasibility of the ap-
proach. In fact, the time for answering a query is comparable to the one obtained
in a non authenticated setting. The fine-grained approach, based on Celko tech-
niques, shows much better performance wrt the coarse-grained one.

7 Conclusions and Future Work

We have described methods that allow a user to verify the authenticity and
completeness of simple queries results, even if the database system is not trusted.



Authenticated Relational Tables and Authenticated Skip Lists 45

The overhead for the user is limited at storing only a single hash value. Our work
is the first to design and evaluate techniques for authenticated skip list that are
appropriate to a relational database, and the first to prove the feasibility of
authenticated skip list for integrity of databases.

The security of the presented method is based on the reliability of ADSes.
There are many works [3,9,12,16] in the literature that demonstrate that the se-
curity of ADS is based on the difficulty to find useful collisions in a cryptographic
hash function. So all the security relies on the effectiveness of hash functions.
The prototype used for the experiments uses commutative hashing. In [9] it is
demonstrated that commutative hashing does not augment the possibility to
find a collision in the used hash function.

In the future we would like to investigate how to authenticate more complex
queries making use of a larger set of relational operations. Further, we would like
to study models to build integrity verification services in peer to peer systems.

References

1. Web based Database Software Solutions On-Demand. http://www.teamdesk.net
2. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using un-

deniable attestations. In: ACM Conference on Computer and Communications Se-
curity, pp. 9–17 (2000)

3. Buldas, A., Roos, M., Willemson, J.: Undeniable replies for database queries. In:
Proceedings of the Fifth International Baltic Conference on DB and IS, 2002. vol.
2, pp. 215–226 (2002)

4. Carminati, B.:Selective and authentic third-party distribution of xml documents.
IEEE Transactions on Knowledge and Data Engineering. Fellow-Elisa Bertino and
Member-Elena Ferrari and Fellow-Bhavani Thuraisingham and Senior Member-
Amar Gupta. vol.16(10), pp.1263–1278 (2004)

5. Celko, J.: Joe Celko’s Trees and hierarchiesin SQL for smarties. Morgan-Kaufmann,
Seattle, Washington, USA (2004)

6. Date, C.J.: Why is it so difficult to provide a relational interface to ims. In: Rela-
tional Database– Selected Writings, pp. 241–257. Addison-Wesley, London (1986)

7. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic third-party
data publication. In: Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual
Working Conference on Database Security, Deventer, The Netherlands, pp. 101–
112. Kluwer Academic Publishers, Dordrecht (2001)

8. Goodrich, M., Schwerin, A., Tamassia, R.: An efficient dynamic and distributed
cryptographic accumulator. Technical report, Johns Hopkins Information (2000)

9. Goodrich, M., Tamassia, R.: Efficient authenticated dictionaries with skip lists and
commutative hashing. Technical report, Johns Hopkins Information (2000)

10. Goodrich, M.T., Shin, M., Tamassia, R., Winsborough, W.H.: Authenticated dic-
tionaries for fresh attribute credentials. In: Nixon, P., Terzis, S. (eds.) iTrust 2003.
LNCS, vol. 2692, Springer, Heidelberg (2003)

11. Goodrich, M.T., Tamassia, R.: Data Structures and Algorithms in Java. John Wiley
& Sons, Inc, New York, NY, USA (2000)

12. Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC
1998. LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

http://www.teamdesk.net


46 G. Di Battista and B. Palazzi

13. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD ’06. Proceedings of the 2006
ACM SIGMOD international conference on Management of data, New York, NY,
USA, pp. 121–132. ACM Press, New York (2006)

14. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

15. Meier, A., Dippold, R., Mercerat, J., Muriset, A., Untersinger, J., Eckerlin, R.,
Ferrara, F.: Hierarchical to relational database migration. IEEE Softw. 11(3), 21–
27 (1994)

16. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

17. Miklau, G., Suciu, D.: Implementing a tamper-evident database system. In:
ASIAN: 10th Asian Computing Science Conference, pp. 28–48 (2005)

18. Ian Munro, J., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA ’92:
Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, pp. 367–375 (1992)

19. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. Trans. Storage 2(2), 107–138 (2006)

20. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proceedings
7th USENIX Security Symposium (January 1998)

21. Nuckolls, G., Martel, C., Stubblebine, S.: Certifying data from multiple sources.
In: EC ’03. Proceedings of the 4th ACM conference on Electronic commerce, New
York, NY, USA, pp. 210–211. ACM Press, New York (2003)

22. Caspio Bridge online database. http://www.caspio.com
23. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational

query results in data publishing. In: SIGMOD Conference, pp. 407–418 (2005)
24. Pang, H., Tan, K.: Authenticating query results in edge computing. In: ICDE ’04.

Proceedings of the 20th International Conference on Data Engineering, Washing-
ton, DC, USA, p. 560. IEEE Computer Society, Los Alamitos (2004)

25. Livebase project Blog on Web-based db. http://livebase.blog.com/1142527/
26. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. In: Workshop

on Algorithms and Data Structures, pp. 437–449 (1989)
27. Sion, R.: Query execution assurance for outsourced databases. In: VLDB ’05, pp.

601–612. VLDB Endowment (2005)
28. Tamassia, R., Triandopoulos, N.: On the cost of authenticated data structures.

Technical report, Brown University (2003)
29. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)

ESA 2003. LNCS, vol. 2832, Springer, Heidelberg (2003)
30. online database Zoho Creator. http://creator.zoho.com

http://www.caspio.com
http://livebase.blog.com/1142527/
http://creator.zoho.com


Location Privacy Protection Through
Obfuscation-Based Techniques

C.A. Ardagna, M. Cremonini, E. Damiani,
S. De Capitani di Vimercati, and P. Samarati

Dipartimento di Tecnologie dell’Informazione
Università di Milano – 26013 Crema - Italy

{ardagna,cremonini,damiani,decapita,samarati}@dti.unimi.it

Abstract. The widespread adoption of mobile communication devices
combined with technical improvements of location technologies are fos-
tering the development of a new wave of applications that manage phys-
ical positions of individuals to offer location-based services for business,
social or informational purposes. As an effect of such innovative services,
however, privacy concerns are increasing, calling for more sophisticated
solutions for providing users with different and manageable levels of pri-
vacy. In this work, we propose a way to express users privacy preferences
on location information in a straightforward and intuitive way. Then,
based on such location privacy preferences, we discuss a new solution,
based on obfuscation techniques, which permits us to achieve, and quan-
titatively estimate through a metric, different degrees of location privacy.

1 Introduction

Information regarding physical locations of individuals is rapidly becoming easily
available for processing by online and mobile Location-Based Services (LBSs).
Customer-oriented applications, social networks and monitoring services can be
functionally enriched with data reporting where people are, how they are moving
or whether they are close by specific locations. To this end, several commercial
and enterprise-oriented LBSs are already available and have gained popularity
[4]. Key to those new LBSs are modern location technologies that have reached
good precision and reliability at costs that most people (e.g., the cost of mobile
devices) and companies (e.g., the cost of integrating location technologies in
existing telecommunication infrastructures) can economically sustain.

Combined with novel application opportunities, however, threats to personal
privacy are ramping up [4], as witnessed by recent security incidents targeting
privacy of individuals, revealed faulty data management practices, and unautho-
rized trading of users personal information (including ID thefts and unauthorized
profiling). Location information is not immune from such threats and presents
new dangers such as stalking or physical harassment.

In this scenario, a novel contribution of the paper is represented by a com-
prehensive solution aimed at preserving location privacy of individuals through
artificial perturbations of location information collected by sensing technology.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 47–60, 2007.
© IFIP International Federation for Information Processing 2007



48 C.A. Ardagna et al.

In particular, location information of users is managed by a trusted middleware
[5,6,9], which enforces users privacy through obfuscation-based techniques.

Key to this work is the concept of relevance as the adimensional metric for
the location accuracy. A relevance value is always associated with locations and
it quantitatively characterizes the degree of privacy artificially introduced into
a location measurement. Based on relevance, it is possible to strike a balance
between the need of service providers, requiring a certain level of location ac-
curacy, and the need of users, asking to minimize the disclosure of personal
location information. Both needs can be expressed as relevances and either qual-
ity of online services or location privacy can be adjusted, negotiated or specified
as contractual terms.

The remainder of this paper is organized as follow. Section 2 presents related
work. Section 3 discusses our working assumptions. Section 4 illustrates our
approach for defining location privacy preferences and introduces the concept of
relevance. Section 5 presents our obfuscation techniques. Section 6 describes a
first solution to their composition and presents some examples of application.
Section 7 gives our conclusions.

2 Related Work

Location privacy issues are the subject of growing research efforts. The main
branch of current research on LBS privacy focuses on users anonymity or partial
identities [6,7,9]. Beresford and Stajano [6] present mix zones, a method used
to enhance privacy in LBSs managed by trusted middlewares. The solution is
based on preset physical zones where all users are indiscernible from one another.
However, this solution is suitable for services that track users movement rather
than, as in our case, for services requiring a user location at a specific time.
Bettini et. al. [7] propose a framework in charge of evaluating the risk of sensitive
location-based information dissemination, and a technique aimed at supporting
k-anonymity [14]. Gruteser and Grunwald [9] define k-anonymity in the context
of location obfuscation and propose a middleware architecture and an adaptive
algorithm for adjusting location information resolution according to anonymity
requirements.

Other works study the possibility of protecting users privacy through the de-
finition of complex rule-based policies [10,11]. Although policies-based solutions
are suitable for privacy protection, users, often, are not willing to directly man-
age complex policies and, hence, refuse participation in pervasive environments.
By contrast, in this work we have implemented a solution for expressing privacy
preferences that is simple and intuitive.

Finally, the line of research closest to our work consists in the adoption of
obfuscation techniques aimed at location privacy protection. Location obfusca-
tion is complementary to anonymity. In particular, rather than anonymizing
users identities, obfuscation-based solutions assume the identification of users
and introduce perturbations into collected locations to decrease their accuracy.
Duckham and Kulik [8] develop an obfuscation technique for protecting location



Location Privacy Protection Through Obfuscation-Based Techniques 49

privacy by artificially inserting into measurements some fake points with the
same probability as the real user position. The paper proposes a formal frame-
work providing a mechanism for balancing between user needs for high-quality
information services and for location privacy. The work of Bellavista et al. [5] is
based on points of interest with symbolic location granularity (e.g., city, coun-
try). This forces the privacy level to some predefined choices only, resulting in
an excessively rigid solution.

Current obfuscation-based solutions have some shortcomings that our pro-
posal tries to address. First, they do not provide a quantitative estimation of
the actual privacy level, which makes them highly dependent on the application
contexts and difficult to integrate into a full fledged location-based application
scenario [1,3]. Next, just a single obfuscation technique is usually implemented.
By contrast, our work introduces the concept of relevance as an adimensional
metric for location accuracy, defines more obfuscation techniques and demon-
strate the benefits of their composition.

3 Working Assumptions

Our work is based on two working assumptions that simplify our analysis with
no loss of generality. Our first working assumption concerns the shape of a lo-
cation measurement: the area returned by a location measurement is planar and
circular. User location information, in fact, is affected by an intrinsic measure-
ment error introduced by sensing technologies, resulting in spatial areas rather
than geographical points. This assumption represents a particular case of the
general requirement of considering convex areas and a good approximation for
actual shapes resulting from many location technologies (e.g., cellular phones
location). According to this assumption, a location measurement is defined as
follows.

Definition 1 (Location measurement). A location measurement of a user u
is a circular area Area(r, xc, yc), centered on the geographical coordinates (xc, yc)
and with radius r, which includes the real user’s position (xu, yu) with probability
P ((xu, yu) ∈ Area(r, xc, yc)) = 1.

Definition 1 comes from observing that sensing technologies based on cellular
phones usually guarantee that the real user’s position falls within the returned
area.

To discuss the effects of obfuscation techniques, we introduce our second as-
sumption. Consider a random location within a location measurement Area
(r, xc, yc), where a “random location” is a neighborhood of random point (x̂, ŷ) ∈
Area(r, xc, yc). Our second assumption is that the probability that the real user’s
position (xu, yu) belongs to a neighborhood of a random point (x̂, ŷ) is uniformly
distributed over the whole location measurement. Accordingly, the joint proba-
bility density function (pdf) of the real user’s position can be defined as follows.



50 C.A. Ardagna et al.

Definition 2 (Uniform joint pdf). Given a location measurement Area
(r, xc, yc), the joint probability density function (joint pdf) fr(x, y) of real user’s
position (xu, yu) to be in the neighborhood of point (x, y) is:

fr(x, y) =

�
1

πr2 if x, y ∈ Area(r,xc, yc)
0 otherwise.

Same assumption can be found in other works on this topic [12]. In this work,
assuming a uniform distribution simplifies the discussion with no loss of gener-
ality. Considering Gaussian-like distributions, the consequence on our work is
that obfuscating simply by scaling the radius of a location measurement is in-
effective, while stronger obfuscation effects can be still achieved by combining
different techniques.

4 Privacy Preferences and Location Relevance

The ultimate goal of this work is to design a solution able to manage location
privacy as a functional term, required or adjusted by users according to their
preferences and application context, and negotiated as a service attribute by
users and LBSs. To this end, location privacy should be measured and quantified
with regard to the accuracy of a user position, that is, the more accurate the
position, the less privacy. Furthermore, location privacy should be measured
regardless of specific application contexts and should be expressed quantitatively
as a service parameter without sticking to some coarse-grained preset meta-
locations such as “city” or “department”, which represents simplified instances
of privacy preferences that should be supported by a most general and flexible
solution.

Before defining obfuscation techniques and their combination, we discuss some
key aspects: accuracy estimations of available location technologies, the specifi-
cation of users privacy preferences, and the concept of relevance.

4.1 Location Accuracy and Measurement Quality

The accuracy of a location measurement necessarily depends on the specific sens-
ing technology and on the environmental conditions. Several works describe avail-
able sensing technologies discussing their accuracy. In [15], the authors provide
a survey of standard positioning solutions for cellular networks such as, E-OTD
for GSM, OTDOA for Wideband CDMA (WCDMA), and Cell-ID. Specifically,
E-OTD location method is based on the existing observed time difference (OTD)
feature of GSM systems. The accuracy of the E-OTD estimation, in recent stud-
ies, has been found to range from 50m to 125m. Observed Time Difference Of
Arrival (OTDOA), instead, is designed to operate over wideband-code division
multiple access (WCDMA) networks. The positioning process achieves a location
accuracy of 50m at most. Finally, Cell-ID is a simple positioning method based
on cell sector information, where cell size varies from 1-3km in urban areas to
3-20km in suburban/rural areas.



Location Privacy Protection Through Obfuscation-Based Techniques 51

To evaluate the quality of a given location measurement, its accuracy must
be compared with the nominal accuracy that the adopted sensing technology
can reach. To this end, we call rmeas the radius of a measured area and ropt

the radius of the area that would be produced if the best accuracy is reached.
In other words, rmeas represents the actual measurement error, while ropt is
the minimum error. Therefore, the ratio r2

opt/r2
meas is a good estimation of the

quality of each location measurement. For instance, assume that a user position is
located with accuracy rmeas=62.5m using E-OTD method, accuracy rmeas=50m
using OTDOA, and accuracy rmeas=1km using Cell-ID. Optimal accuracy is
ropt=50m. Then, according to r2

opt/r2
meas, the area provided by OTDOA has

a measurement quality of 1, whereas the others have a quality proportionally
reduced to 0.8 for E-OTD, and 0.05 for Cell-ID.

4.2 User Privacy Preferences

Systems that want to let users express their privacy preferences must strike a
balance between the two traditionally conflicting requirements of usability and
expressiveness. Complex policy specifications, fine-grained configurations and
explicit technological details discourage users from fully exploiting the provided
functionalities. Our goal is then to allow users to express privacy preferences
in an intuitive and straightforward way. Our solution is based on users privacy
preferences specified as a minimum distance [8,13]. According to this setting,
for example, a user can define “100 meters” as her privacy preference, which
means that she demands to be located with an accuracy not better than 100
meters. Considering circular areas, the privacy requirement is implemented by
enlarging the radius of the original measurement to 100 meters, at least. However,
privacy preferences expressed as a minimum distance have the drawback of being
meaningful if associated with a technique that enlarge the original measurement
only. Another issue that is often neglected by traditional location obfuscation
solutions is the possibility to compose different obfuscation techniques to increase
their robustness with respect to possible de-obfuscation attempts performed by
adversaries.

Therefore, a major challenge is to design a system able to integrate several ob-
fuscation techniques still relying on the definition of privacy preference in its sim-
plest form, e.g., it would be unrealistic to explicitly ask user to specify a particular
composition of techniques. Our solution transforms a simple preference like a min-
imum distance into a more general functional term with the constraint that the
final obfuscated area produced by different obfuscation techniques must be equiv-
alent, in terms of location privacy, to the area that would be derived by just en-
larging the radius of the original measurement to the specified minimum distance.
This way, we let users specify their preferences in the most intuitive way, whereas
we can adopt obfuscation techniques different and more robust than the simple ra-
dius enlargement. The availability of a single obfuscation technique by enlarging
the radius, in fact, gives to an adversary the possibility of guessing a better user
position by simply reducing the observed area. Our solution, instead, introduces
additional obfuscation techniques, and therefore improves user privacy.



52 C.A. Ardagna et al.

To this end, we first introduce the attribute λ that represents a relative privacy
preference (or, in other terms, a relative degradation of the location accuracy).
λ must be derived from the minimum distance specified by a user, which we call
rmin, and from the radius of the original measurement, the previously introduced
rmeas. Having assumed circular areas, the relative accuracy degradation obtained
by setting rmin is:

λ =
max(rmeas, rmin)2 − r2

meas

r2
meas

=
max(rmeas, rmin)2

r2
meas

− 1 (1)

The term max(rmeas, rmin) represents the special case of a minimum distance
rmin smaller than the original rmeas. This is possible because the user is not
aware of the actual accuracy of sensing technologies and the original measure
could already satisfy the privacy preference by itself. Accordingly, the term λ
is zero when the measurement accuracy (i.e., rmeas) already satisfies the user
requirement (i.e., rmin) and no transformation to the original measurement is
needed to satisfy privacy preferences. Otherwise, when this is not the case (i.e.,
rmin > rmeas), λ corresponds to various degrees of accuracy degradation, e.g.,
λ = 0.2 means 20% of degradation, λ = 1 means 100% of degradation and any
value λ > 1 corresponds to a degradation greater than 100%.

Up to this point, the first benefit achieved by deriving λ from rmin and rmeas

is that we can process a privacy preference as a relative degradation rather
than the strictly dimensional and tightly coupled with the enlargement of the
measured area rmin.

The next step is to introduce other obfuscation techniques and select them,
individually or combined, to produce an obfuscated area that degrades the orig-
inal accuracy as imposed by λ. This way, we can employ an enriched set of
obfuscation techniques still relying on the simple definition of rmin as the user
privacy preference. The drawback, which we consider acceptable, is that we are
changing the meaning of the user preference rmin, which is not necessarily the
radius of the obfuscated area. Instead, it represents a logical constraints that
can be informally expressed as: the location area produced by one or more a pri-
ori undetermined obfuscation techniques must be equivalent, in term of privacy,
to the one produced by enlarging the radius of the original measurement up to
rmin.

4.3 Relevance

Key to our work is the notion of relevance, defined as an adimensional, technology-
independent metric for the accuracy of an obfuscated area. The relevance metric
is a value R ∈ (0, 1] that tends to 0 when location information must be considered
unreliable for application providers; it is equal to 1 when location information
has best accuracy; and a relevance value in (0,1) corresponds to some degrees of
accuracy. Accordingly, the location privacy provided by an obfuscated location
is evaluated by (1-R). The reason for choosing to represent the accuracy of a
location as a primitive concept rather than the privacy is functional. We assume



Location Privacy Protection Through Obfuscation-Based Techniques 53

that LBSs have to manage locations that, on the one side, could be perturbed for
privacy reasons, while on the other side could be required to have an accuracy
not below a threshold to preserve a certain quality of service. In our solution, all
locations have an associated relevance attribute, from an initial location affected
by a measurement error of sensing technologies to all possible subsequent ma-
nipulations to provide privacy. This way, relevance is the general functional term
that qualifies a location with respect to either accuracy or privacy requirements.
Two important relevance values characterize our privacy management solution:

– Initial relevance (RInit). The metric for the accuracy of a user location
measurement as returned by a sensing technology. This is the initial value
of the relevance that only depends on the intrinsic measurement error.

– Final relevance (RFinal). The metric for the accuracy of the final obfuscated
area produced by satisfying a relative privacy preference λ. It is derived,
starting by the initial relevance, through the application of one or more
obfuscation techniques.

A third relevance value is used when the combination of techniques will be
discussed. It represents the intermediate relevance, denoted RInter , derived by
applying the first of two obfuscation techniques.

With regard to RInit, it evaluates the accuracy of the actual area returned by
a specific location measurement. A good metric is the ratio of the area that would
have been returned if the best accuracy was achieved (i.e., the one with radius
ropt) and the actual measured area (i.e., the one with radius rmeas). RFinal

instead, is derived from RInit by considering the relative privacy preference λ.

Definition 3 (RInit and RFinal). Given a location measurement area of radius
rmeas measured by a sensing technology, a radius ropt representing the best accu-
racy of sensing technologies and a relative privacy preference λ, initial relevance
RInit and final relevance RFinal are calculated as:

RInit =
r2

opt

r2
meas

(2)

RF inal =
RInit

λ + 1
(3)

These definitions represent, respectively, our general forms of RInit and RFinal.
By definition of λ (see (1)), the term 1

λ+1 represents the degradation of the initial
RInit that satisfies the user privacy preference. The corresponding obfuscated
area will be qualified by relevance RFinal. In equation (3), substituting the
term RInit with equation (2) and term λ with equation (1), it results that

RFinal = r2
opt

r2
min

, assuming rmin > rmeas in (1). This represents the value of
RFinal that corresponds to degrading the accuracy by λ, as for user’s privacy
preference.



54 C.A. Ardagna et al.

5 Obfuscation Techniques

We now present three basic obfuscation techniques and their operators. Since
there could be one or two obfuscation steps in our solution, we generically call R
the relevance associated with the area to be obfuscated and R′ the relevance of
the obfuscated area. If only one obfuscation step is performed, then R =RInit

and R′ =RFinal. For two obfuscation steps, we have R =RInit and R′ =RInter

for the first one, and R =RInter and R′ =RFinal for the second one.
Furthermore, we employ obfuscation operators as a logical representation of

the physical transformations realized by different obfuscation techniques: i) the
Enlarge operator (E) degrades the accuracy of an initial location area by en-
larging its radius; ii) the Shift operator (S) degrades the accuracy of an initial
location area by shifting its center; and iii) the Reduce operator (R) degrades
the accuracy of an initial location area by reducing its radius.

5.1 Obfuscation by Enlarging the Radius

Obfuscating a location measurement area by increasing its radius (see Fig. 1(a))
is the technique that most current solutions adopt. Obfuscation is a probabilistic
effect provided by the decreasing of the joint probability density function (pdf),
which we can express as ∀r, r′ ∈ IR+, r < r′ : fr(x, y) > fr′(x, y). The relevance
R′ can be derived from R by using the ratio of the associated pdf as the scalar
factor:

R′ =
fr′(x, y)
fr(x, y)

· R =
r2

r′2
· R, with r < r′ (4)

Therefore, given two relevances, R and R′, and the radius r of the initial area,

an obfuscated area calculated with this technique has a final radius: r′ = r
√

R
R′ .

Finally, radius r′ can be expressed as a function of λ: r′ = r
√

λ + 1. This
result is straightforward from equations (3) and (4) and reflects the definition
of λ, which depends from rmin and assumes an obfuscation by enlarging the
radius.

For instance, let the user privacy preference be rmin=1 km. Suppose that
the location measurement of a user u has radius rmeas=0.5 km, and the op-
timal measurement accuracy is ropt=0.4 km. Given this information, relevance
RInit associated with the location measurement, and relative privacy preference
λ are calculated as RInit=

r2
opt

r2
meas

=0.64, and λ = max(rmeas,rmin)2

r2
meas

− 1=3, respec-
tively. Having calculated the relative privacy preference λ, RFinal is derived as
RFinal=(λ+1)−1RInit=0.16. Now, the obfuscation by enlarging the radius is ap-
plied and the obfuscated area is derived by calculating r′ = rmeas

√
λ + 1=1 km.

Note that, since a single obfuscation by enlarging the radius is used, r′ = rmin.
However, this example shows the computations that have to be applied when a
double obfuscation is used (see Section 6).



Location Privacy Protection Through Obfuscation-Based Techniques 55

Fig. 1. Obfuscation by enlarging the radius (a), shifting the center (b), and reducing
the radius (c)

5.2 Obfuscation by Shifting the Center

Shifting the center of a location measurement is another viable obfuscation tech-
nique (see Fig. 1(b)). An obfuscated area is derived from the original area by
calculating the distance d between the two centers [2]. To measure the obfus-
cation effect and define the relation between relevances, two probabilities must
be composed: i) the probability that the real user’s position belongs to the in-
tersection AreaInit∩Final, and ii) the probability that a random point selected
from the whole obfuscated area belongs to the intersection. Then, the relation
between relevances R and R′ is represented by:

R′ = P ((xu, yu) ∈ AreaInit∩F inal) · P ((x, y) ∈ AreaInit∩F inal) =

AreaInit∩F inal

Area(r, xc, yc)
· AreaInit∩F inal

Area(r, xc + Δx, yc + Δy)
=

Area2
Init∩F inal

Area(r,xc, yc)2
· R (5)

Recalling equations (3) and (5), it follows that (λ+1)−1 = Area2
Init∩F inal

Area(r,xc,yc)2
. Then,

given λ, and πr2 as the value of both areas, the overlapping can be expressed
as: AreaInit∩Final = πr2/

√
λ + 1.

Distance d between the centers is the unknown variable to be derived to obtain
the obfuscated area. It can be calculated by expanding the term AreaInit∩Final

as a function of d and by solving the following system of equations, whose vari-
ables are d, σ and γ. Here, σ and γ are the central angles of circular sectors
identified by the two radii connecting the centers of the areas with the intersec-
tion points of original and obfuscated areas.1

����
���

�
σ
2 r2 − r2

2 sin σ
�

+
�

γ
2 R2 − R2

2 sin γ
�

=
√

δπr · R

d = r cos σ
2 + R cos γ

2

r sin σ
2 = R sin γ

2

(6)

1 The system of equation (6) is presented in the most general form, where there are
two areas with different radii (i.e., r and R).



56 C.A. Ardagna et al.

Solutions of this system can be obtained numerically. By our definitions, obfus-
cated areas calculated by shifting the center satisfy a relative privacy preference
λ and thus provides same privacy of an obfuscated area that would have been
calculated with an enlarged radius rmin.

For instance, let the user specifies her privacy preference through rmin=1.42km.
Suppose that the location measurement of a user u has radius rmeas=1 km, and
the optimal measurement accuracy is ropt=0.8 km. Relevance RInit and λ are cal-
culated as RInit=0.64, and λ=1, respectively. Then, RFinal=0.32 is derived and
the obfuscation by shifting the center applied. At this point, distance d=0.464 km
is calculated by solving the system of equation (6). Finally, an angle θ is randomly
selected and the obfuscated area is generated.

5.3 Obfuscation by Reducing the Radius

The third obfuscation technique consists in reducing the radius r of one location
from r to r′, as showed in Fig. 1(c). The obfuscation effect is produced by a
correspondent reduction of the probability to find the real user location within
the returned area, whereas the joint pdf is fixed.

If we call (xu, yu) the unknown real user position coordinates, by assump-
tion the probability that the real user position falls in the area of radius r is
P ((xu, yu) ∈ Area(r, x, y)) = 1. When we obfuscate by reducing the radius,
an area of radius r′ ≤ r is returned, where P ((xu, yu) ∈ Area(r′, x, y)) ≤
P ((xu, yu) ∈ Area(r, x, y)), since a circular ring having pdf greater than zero
has been excluded.

With regard to relevances R and R′, their relation can be defined as:

R′ =
P ((xu, yu) ∈ Area(r′, x, y))
P ((xu, yu) ∈ Area(r,x, y))

· R =
r′2

r2 · R, with r′ < r (7)

From (3) and (7), it follows that (λ + 1)−1 = r′2

r2 . Then, given λ and r, the
area returned when obfuscation by reducing the radius is applied has radius:
r′ = r√

λ+1
. Again, similarly to the previous technique, obfuscated areas cal-

culated in this way by reducing the radius satisfy, according to our semantics,
a relative privacy preference λ and consequently, also the corresponding user
privacy preference rmin.

For instance, let the user privacy preference be rmin=1 km. Suppose that the
location measurement of a user u has radius rmeas=0.5 km, and the optimal mea-
surement accuracy is ropt=0.4 km. Relevance RInit and λ are calculated as
RInit=0.64, and λ=3.RFinal is derived asRFinal=(λ+1)−1RInit=0.16.Now, the
obfuscation by reducing the radius is applied and the obfuscated area, respecting
user privacy preference rmin, is derived by calculating r′ = rmeas√

λ+1
=0.25 km.

6 Double Obfuscation

Given the obfuscation techniques just introduced, users privacy preferences can
be satisfied either by using one technique among the three or by composing two



Location Privacy Protection Through Obfuscation-Based Techniques 57

Fig. 2. Example of E − S obfuscation

techniques. In the last case, an obfuscated area produced by one obfuscation tech-
nique (operator h) is further obfuscated by the application of a second technique
(operator g). Formally, let beA the set of location areas, h : A → A and g : A → A
be two obfuscation operators, where the areas produced by applying the operator
h are the inputs of the second operator g, which finally produces the obfuscated
areas. Recalling that the ultimate goal of an obfuscation process is to reduce the lo-
cation accuracy estimated by an initial relevance RInit to a final relevance RFinal,
in case of double obfuscation, the intermediate term RInter must be introduce to
represent the relevance achieved by the first obfuscation step.

As a special example of obfuscation composition, let us consider an enlargement
of the radius followed by a shift of the center (see Fig. 2). For the first obfuscation,
the radius of area B is calculated by applying operator Enlarge and equationR′ =
r2

r′2 · R, with R =RInit and R′ =RInter . For the second step, operator Shift
is used with an important constraint: the domain of the Shift operator must be
restricted to those areas that have an intersection with the original measured area
(i.e., in our example the intersection between the final obfuscated area C and area
A should not be empty). As a consequence, to calculate the final obfuscated area C,
we need to determinate distance d, which depends on the overlap between area A
and C. The reason is that to respect privacy preference λ, the second operator of a
composition must be always referred to the original measured area A. Accordingly,
equation R′ = (A∩C)2

A·C ·R, has R′ =RFinal and R =RInit, rather than R =RInter

as we would have expected in general.
Finally, we observe that, whereas in theory it is possible to compose operators

E, R, and S in an indeterminate number of steps, there is never any conve-
nience to combine more than two techniques. This follows by a geometric prop-
erty of circles assuring that, given two circles A1 and A2, A2 can be generated
starting from A1 through two geometric operations at most: one center-shifting,
and one between radius enlargement or reduction. Finally, we observe that, as
for most composable functions, the commutative property does not hold for the



58 C.A. Ardagna et al.

Fig. 3. Example of S − E and S − R obfuscation on a large scale

composition of operators Enlarge or Reduce with Shift. Therefore, the avail-
able obfuscation choices are: i) traditional single obfuscations E, R, and S; ii)
double obfuscations E − S, S − E, R − S, and S − R.

6.1 Double Obfuscation Examples

We describe two examples of possible application of double obfuscation. For sake
of clarity, we suppose an user located in Manhattan, around the Empire State
Building. A location measurement is assumed to have radius rmeas=1km (see the
area with filled line in Fig. 3).2 The user has specified her privacy preference as
rmin=2km. Given these information, λ, RInit, and RFinal are calculated before
applying obfuscations.

For the first example, an S−E obfuscation has been applied. The obfuscation
process starts by setting θ = π/4 and RInter=0.4.

Distance d=0.464km is calculated by solving the system of equations (6), and
location measurement area is shifted accordingly generating an obfuscated area
of relevance RInter . Finally, the Enlarge operator is applied to the area with
relevance RInter , and final radius r′=2 km is computed to achieve relevance
2 In these examples, ropt=0.895km. We are aware that this assumption is far from

reality, but it was assumed for simplicity.



Location Privacy Protection Through Obfuscation-Based Techniques 59

RFinal. This way, when the user location is released to a LBS she results posi-
tioned in a bigger area that includes nearly all Central Manhattan (see the area
with dotted line in Fig. 3).

For the second example, suppose a R − S obfuscation. Again, for simplicity
we set RInter=0.4 and θ = 5π/3. Radius r′=0.707 km is computed from (7)
and the first obfuscated area is produced. Then, the system of equations (6) is
solved numerically resulting in d =0.679 km, and the center is shifted. This way,
when the user location is released to a LBS, the user seems located just around
Madison Square (see the area with dashed line showed in Fig. 3).

7 Conclusions and Future Work

We presented privacy-enhanced techniques that protect user privacy based on
spatial obfuscation. Our proposal aims at achieving a solution that both con-
siders the accuracy of location measurements, which is an important feature of
location information, and the need of privacy of users. In addition to several ob-
fuscation techniques for privacy preservation, we also present and define a formal
and intuitive way to express users privacy preferences, and a formal metric for
location accuracy. Issues to be investigated include the analysis of our solution
assuming Gaussian-like distributions, the evaluation of obfuscation techniques
robustness against de-obfuscation attacks, and the possibility to manage differ-
ent privacy preferences expressed by users.

Acknowledgments

This work was partially supported by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591, by the
Italian Ministry of Research Fund for Basic Research (FIRB) under project
RBNE05FKZ2 and by the Italian MIUR under project MAPS. We would like
also to thank the anonymous referees for their helpful comments on the paper.

References

1. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Supporting location-based conditions in access control policies. In: Proc.
of the ACM Symposium on Information, Computer and Communications Security
(ASIACCS’06), Taipei, Taiwan (March 2006)

2. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Managing privacy in LBAC systems. In: Proc. of the Second IEEE In-
ternational Symposium on Pervasive Computing and Ad Hoc Communications
(PCAC-07), Niagara Falls, Canada (May 2007)

3. Atluri, V., Shin, H.: Efficient enforcement of security policies based on tracking of
mobile users. In: Proc. of the 20th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security, pp. 237–251, Sophia Antipolis, France (2006)



60 C.A. Ardagna et al.

4. Barkhuus, L., Dey, A.: Location-based services for mobile telephony: a study of
user’s privacy concerns. In: Proc. of the 9th IFIP TC13 International Confer-
ence on Human-Computer Interaction (INTERACT 2003), pp. 709–712, Zurich,
Switzerland (September 2003)

5. Bellavista, P., Corradi, A., Giannelli, C.: Efficiently managing location information
with privacy requirements in wi-fi networks: a middleware approach. In: Proc. of
the International Symposium on Wireless Communication Systems (ISWCS’05),
pp. 1–8, Siena, Italy (September 2005)

6. Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services.
In: Proc. of the 2nd IEEE Annual Conference on Pervasive Computing and Com-
munications Workshops (PERCOMWO 04) (2004)

7. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based per-
sonal identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674,
Springer, Heidelberg (2005)

8. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location
privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005.
LNCS, vol. 3468, Springer, Heidelberg (2005)

9. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proc. of the 1st International Conference on
Mobile Systems, Applications, and Services (2003)

10. Hauser, C., Kabatnik, M.: Towards Privacy Support in a Global Location Ser-
vice. In: Proc. of the IFIP Workshop on IP and ATM Traffic Management
(WATM/EUNICE 2001), Paris, France (2001)

11. Langheinrich, M.: A privacy awareness system for ubiquitous computing environ-
ments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498,
pp. 237–245. Springer, Heidelberg (2002)

12. Mokbel, M.F., Chow, C-Y., Aref, W.G.: The new casper: Query processing for
location services without compromising privacy. In: Proc. of the 32nd International
Conference on Very Large Data Bases, pp. 763–774, Korea (2006)

13. Openwave. Openwave Location Manager (2006) http://www.openwave.com/
14. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans-

actions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)
15. Sun, G., Chen, J., Guo, W., Ray Liu, K.J.: Signal processing techniques in network-

aided positioning: A survey of state-of-the-art positioning designs. IEEE Signal
Processing Magazine, pp. 12–23, July (2005)

http://www.openwave.com/


Efficient Security Policy Enforcement in a Location
Based Service Environment�

Vijayalakshmi Atluri and Heechang Shin

MSIS Department and CIMIC, Rutgers University, USA
{atluri,hshin}@cimic.rutgers.edu

Abstract. Location based services, one of the promising markets of mobile com-
merce, aims at delivering point of need personalized information. Often, these
services to be delivered are based on the prior knowledge of the profiles of mo-
bile customers and security and privacy policies dictated by them. These policies
may specify revealing the sensitive information of mobile customers (e.g., age,
salary) selectively to specific merchants in return of receiving certain benefits
(e.g., coupons, special discounts, etc.). As a result, the security policies in such
an environment are characterized by spatial and temporal attributes of the mo-
bile customers (location and time), as well as their profile attributes. The focus
of this paper is to efficiently enforce such policies. In this regard, we propose a
unified structure that is capable of indexing mobile customer (mobile object) lo-
cations and their profiles, and the authorizations stating their security and privacy
policies.

1 Introduction

In recent years, mobile phones and wireless PDAs have evolved into wireless terminals
that are Global Positioning System (GPS) enabled. With the expected revenues of mo-
bile commerce to exceed $88 billion by 2009 [12], mobile commerce will soon become
a gigantic market opportunity. The market for location-aware mobile applications, often
known as location-based services (LBS), is very promising. LBS is to request usable,
personalized information delivered at the point of need, which includes information
about new or interesting products and services, promotions, and targeting of customers
based on more advanced knowledge of customer profiles and preferences, automatic up-
dates of travel reservations, etc. For example, a LBS provider can be designed to present
users with targeted content such as clothing items on sale, based on prior knowledge of
their profile, preferences and/or knowledge of their current location, such as proximity
to a shopping mall [13]. Additionally, LBS can provide nearby points of interests based
on the real-time location of the mobile customer, advising of current conditions such as
traffic and weather, deliver personalized, location-aware, and context-sensitive advertis-
ing, again based on the mobile customer profiles and preferences. Whether such LBS is
delivered in a “push” or “pull” fashion, service providers require access to customers’
preference profiles either through a proprietary database or use an arrangement with an
LBS provider, who matches customer profiles to vendor offerings [11].

� This work is supported in part by the National Science Foundation under grant IIS-0242415
and Rutgers Business School.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 61–76, 2007.
c© IFIP International Federation for Information Processing 2007



62 V. Atluri and H. Shin

In order to implement such services, customization and personalization based on the
location information, customer profiles and preferences, and vendor offerings are re-
quired. This is because, to be effective, targeted advertising should not overwhelm the
mobile consumers and must push information only to a certain segment of mobile con-
sumers based on their preferences and profiles, and based on certain marketing criteria.
Obviously, these consumers should be targeted only if they are in the location where the
advertisement is applicable at the time of the offer. It is important to note here that user
profile information may include both sensitive and non-sensitive attributes such as name,
address, linguistic preference, age group, income level, marital status, education level,
etc. Certain segment of mobile consumers are willing to trade-off privacy by sharing
such sensitive data with selective merchants, either to benefit from personalization or to
receive incentives offered by the merchants. Therefore, it is important that the sensitive
profile information is revealed to the respective merchants only on the need-to-know
basis. For example, a security policy may specify that a customer is willing to reveal
his age in order to enjoy a 20% discount coupon offered on sports clothing. But he is
willing to do this only during the evening hours and while close to the store. As a result,
the security policies in such an environment are characterized by spatial and temporal
attributes of the mobile customers (location and time), as well as their profile attributes.

A trusted LBS service provider can ensure that the customer’s security policy is
enforced without revealing the real identity of the customer to the merchant. Thus, an
appropriate access control mechanism must be in place to enforce the authorization
specifications reflecting the above security and privacy needs.

Traditionally, access policies are specified as a set of authorizations, where each au-
thorization states if a given subject possesses privileges to access an object. Considering
the basic authorization specification 〈subject, object, privilege〉, in a mobile environ-
ment, a moving object can be a subject, an object, or both. Access requests in such an
environment can typically be on past, present and future status of the moving objects
[2,3]. Serving an access request requires to search for the desired moving objects that
satisfy the query, as well as enforce the security policies. The focus of this paper is to
address the problem of efficiently enforcing such security policies.

Enforcing security policies often degrades the performance of a system. One way
to alleviate the problem is to efficiently organize the mobile objects as well as autho-
rizations. An index scheme for moving object data and user profiles has been proposed
by Atluri et al. [7], but this does not consider authorizations. Recently, Atluri and Guo
[4] have proposed a unified index structure called STPR-tree in which authorizations
are carefully overlaid on a moving object index structure (TPR-tree) [6], based on their
spatiotemporal parameters. One main limitation of the STPR-tree is that it is not ca-
pable of maintaining past information. As a result, it cannot support queries based on
past location and security policies based on tracking of mobile users. More recently,
Atluri and Shin [5], present an index structure, called SPPF -tree, which maintains past,
present and future positions of the moving objects along with authorizations by em-
ploying the partial persistent storage. An index structure has been proposed to index
authorizations ensuring that the customer profile information be disclosed to the mer-
chants based on the choice of the customers [1]. However, this provides separate index
structures for data and authorizations, and therefore is not a unified index. In essence,



Efficient Security Policy Enforcement in a Location Based Service Environment 63

none of the previously proposed unified indexing schemes support security policy en-
forcement based on the profiles of the mobiles users.

In this paper, we present an index structure, called SSTP -tree, which maintains au-
thorizations along with present and future locations as well as profiles of moving ob-
jects. In particular, we build on the concepts of the TPR-tree [6] and modify the node
structure of the tree to hold profile information. Then, authorizations are overlaid suit-
ably on the nodes of the tree. In order to support the profile information, we propose a
Profile Bounding Vector (PV B) which works similar to Minimum Bounding Rectan-
gle (MBR) in the R-tree family. We demonstrate how the SSTP -tree can be constructed
and maintained, and provide algorithms to process access requests. Our analysis shows
that under normal circumstances, SSTP -tree performs better than utilizing two separate
indexes (one for moving objects and another for profile). More specifically, if the data
size of a PV B is small enough so that the minimum number of the data (or children)
that a leaf node (or non-leaf node) is the same between the SSTP -tree and the separate
index structures, the analysis shows that our tree performs better.

This paper is organized as follows. Section 2 introduces preliminaries such as user
profiles and the TPR-tree. In section 3, moving object authorization model is presented,
and in section 4, we present our approach, called SSTP -tree, and section 5 illustrates our
approach and strategy to evaluate user requests. Also, theoretical analysis is presented.
In section 6, we conclude the paper by providing some insights into our future research
in this area.

2 Preliminaries

In this section, we present the preliminary concepts on building an index structure for
moving objects and profiles.

2.1 Moving Objects

Representation of Moving Objects: Let the set of moving objects be O={o1,o2,. . .,ok}.
In the d-dimensional space, objects are specified as points which move with constant
velocity v̄ = {v1, v2, . . . , vd} and initial location x̄ = {x1, x2, . . . , xd}. The position
x̄(t) of an object at future time t(t ≥ tc) can be computed through the linear function of
time, x̄(t) = x̄(t0)+ v̄(t− t0) where t0 is the initial time, tc the current time and x̄(t0)
the initial position. Considering a two-dimensional space, a moving object oi moving in
〈x, y〉 space can be represented as follows: oi = ((xi, vix), (yi, viy )).

Time Parameterized Bounding Rectangle (tpbr): Given a set of moving objects O
= {o1, . . . , on} in the time interval [t0, t0 + δt] in 〈x, y, t〉 space, the tpbr of O is a
3-dimensional bounding trapezoid which bounds all the moving objects in O during the
entire time interval [t0, t0 + δt] in the following way:

tpbr(O) = {(x
, x�, y
, y�), (v
x , v�x , v
y , v�y )} where ∀ i ∈ {1, 2, . . . , n}



64 V. Atluri and H. Shin

o1

o2

t0 + H

x

y

t0

t

Fig. 1. The Time Parameterized Bounding Rectan-
gle (tpbr)

A

BC

A

B
C

t0+H

x

y

t0

t

Fig. 2. The tpbr Hierarchy

x
 = x
(t0) = mini{xi(t0)} v
x = mini{vix}
x� = x�(t0) = maxi{xi(t0)} v�x = maxi{vix}
y
 = y
(t0) = mini{yi(t0)} v
y = mini{viy}
y� = y�(t0) = maxi{yi(t0)} v�y = maxi{viy}

Then, we can compute the bounding rectangles that tpbr covers with respect to time.
The bounding rectangle’s x-axis interval and y-axis interval at time t are defined as
[x
(t), x�(t)] = [x
(t0) + v
x (t − t0), x�(t0) + v�x (t − t0)] and [y
(t), y�(t)] =
[y
(t0) + v
y (t − t0), y�(t0) + v�y (t − t0)] respectively.

Time Horizon (H): Given a moving object, it is unrealistic to assume that its veloc-
ity remains constant. Therefore, the predicted future location of a object specified as a
linear function of time becomes less and less accurate as time elapses [6]. To address
this issue, a time horizon H is defined, which represents the time interval during which
the velocities of the moving objects assumed to be the same. Figure 1 shows how tpbr
bounds the trajectory of two moving objects o1 and o2 in [t0, t0 + H].

The Tree Structure: Given a set of tpbrs, they can be organized in a hierarchical struc-
ture. In figure 2, tpbr C encloses tpbrs A and B. These three can be organized as a
hierarchical structure with A and B being the children of C, Essentially, at the bottom-
most level of the hierarchy, a set of moving objects could be grouped to form tpbrs.
Each tpbr of the next higher level is the bounding tpbr of the set of tpbrs of all of its
children. The root of the hierarchy is thus the bounding tpbr covering all its lower level
tpbrs in a recursive manner.

2.2 User Profiles

We assume user profile as a set of attributes associated with a mobile customer that
characterizes the user. These attributes may include (1) demographic information (e.g.
country, race, age, gender, etc.), (2) contact information (e.g., name, address, zip code,



Efficient Security Policy Enforcement in a Location Based Service Environment 65

Department

Salary

Home Town

<$ 52,000 ≥ 52,000, <$ 62,000

Newark, NJ Chicago, IL

Human Resource Other Departments

≥ $ 62,000

Fig. 3. Profile Attribute Discretization

telephone number, e-mail, etc.), (3) personal preferences (e.g., hobbies, favorite activi-
ties, favorite magazines, etc.), and (4) behavioral profile (e.g., level of activity, type of
activity, etc.)1

Let the set of profile attributes under consideration be P = {p1, p2, . . . , pn}. We
assume the profile of each user u is {p1 : val1, p2 : val2, . . . , pn : valn}, where vali is
the corresponding value of pi for that user. Since all attributes are not applicable to all
users, some of these attributes may be empty for certain users.

Representation of User Profile: Given a profile attribute pi, we first discretize it if
necessary. We simply use as many bits as the number of all the possible discrete values
for pi. If the attribute is numerical data type, we partition the continuous data space into
disjoint, mutually-exclusive intervals, as shown for attribute age in figure 3. The details
of discretization method can be found in [14].

Definition 1 (Profile Vector). Given a profile of user u = {p1 : val1, p2 : val2, . . . , pn :
valn}, we define a profile vector of u, denoted as pvu as follows: pvu = {v1, v2, . . . vn},
where each vi is a sequence of binary digits such that the number of digits is equal to
the number of discrete values of pi, and the digits is 1 if valj satisfies the corresponding
discrete value, and 0 otherwise.

Table 1. User Profile Information

Name Department Salary Home Town Profile Vector
Doe Human Resource $63,000 Newark, NJ 〈10, 001, 10〉

James Other Departments $45,000 Chicago, IL 〈01, 100, 01〉
Robert Human Resource $53,000 Chicago, IL 〈01, 010, 01〉

Figure 3 presents how each profile attribute can be represented. For example, because all
the possible values of a profile attribute, Department are two (”Human Resource” and

1 The behavioral profile is created by observing activities and habits of a user continuously.
For example, Sony TiVo box records frequently-watched television shows and generates a
behavioral profile based on the past patterns. In order to do so, information such as what kind
of activity has been done by a user at what intensity needs to be captured. In case of TiVo, type
of activity can be ’watching drama’ and level of activity can be ’2 hours.’



66 V. Atluri and H. Shin

”Other Departments”), we use two bits to represent Department: ”Human Resource”
is represented with ’10’ and ”Other Departments” is represented with ’01.’ Also, if
Salary < $52,000, we represent it with ’100’, and ’001’ if Salary ≥ $62,000. Table
1 shows the examples of user profile vectors. For example, profile representation of the
user, Doe, is 〈10, 001, 10〉 because his department ’Human Resource’, is represented as
’10’, salary, $63,000, as 001, and home town, ’Newark, NJ’ as ’10’.

3 Moving Object Authorization Model

In this section, we review the authorization model presented in [4] that is capable of
specifying access control policies based on the spatial and temporal attributes, and suit-
ably extend it to specify policies based on the profile information of mobile users.

Definition 2 (Authorization). An authorization α is a 4 tuple 〈se, ge, m, τ〉, where se
is a subject expression denoting a set of subjects, ge is a object expression denoting a
set of objects, m is a set of privilege modes, and τ is a temporal term. �

The formalism to specify se2, ge and τ has been developed in [8]. Due to space limi-
tations, we do not review these details in this paper. Subject expression se can be used
to specify a set of subjects such that they are associated with (i) a set of spatiotemporal
and/or other traditional credential attributes and/or profile attributes, (ii) a set of sub-
ject identifiers, or (iii) a combination of both. In the same way, object expression ge
can be used to specify a set of objects such that they are associated with (i) a set of
spatiotemporal and/or other types of attributes, (ii) a set of object identifiers, or (iii) a
combination of both.

Note that the set of subjects and objects denoted by se and ge can be moving objects.
Because both a subject and an object can be a moving object, to avoid confusion, from
now on, we denote the objects specified in the authorization as auth-objects (stands for
authorization objects). In a LBS environment, generally subjects are moving objects,
and location-aware information (such as near-by restaurants, route management, and
so on) is provided to subjects based on their location. A policy may state that a (mov-
ing) subject may access an auth-object such as files, printers based on the subject’s
spatiotemporal and profile attributes. Additionally, in a security policy, the (stationary)
subject is allowed to access the profile information associated with a (moving) object.

The privilege mode m3 supports not only read, write, and execute privileges for tradi-
tional auth-objects but also viewing, locating, tracking, send sms message for moving
objects. A temporal term τ can be a time point, a time interval or a set of time intervals.

For a given authorization α = 〈se, ge, m, τ〉, we denote subjects expressed by se
as α.se, objects expressed by ge as α.ge, privileges as α.m, and temporal term α.τ ,
respectively.

There are two types of data associated with a moving object: spatiotemporal data
(such as location) and non-spatiotemporal data (such as the profile information). Profile

2 In [8], ce was used instead of se.
3 Typically, the set of privileges M forms a partial order, where the ordering relationship can be

represented with ≺m.



Efficient Security Policy Enforcement in a Location Based Service Environment 67

information denotes a set of attributes that describes a moving object. For example,
a person with handheld tracking devices can be described by her name, age, salary,
occupation, and so on. Therefore, the security policies must be able to specify under
what conditions, a mobile user wants to reveal her sensitive information. As such, given
an authorization α, a subject expression se and an object expression ge, it is possible
that the attributes involved in both se and ge could either be spatiotemporal in nature
or not. Therefore, we extract the spatiotemporal and non-spatiotemporal part of the
expression in α and denote them as α� and α→, respectively. Note that, not all profile
attributes of a mobile customer are relevant. We consider only those attributes that are
involved in the entire set of policies to be included in the profile vector.

If se includes the specification of spatiotemporal region, it means that the moving
subjects specified in se must be within the region to gain access to the objects spec-
ified in ge. Similarly, only the mobile objects in se that are within the region are al-
lowed to be accessed by the subjects specified in se, if ge includes the specification
of spatiotemporal region. Thus, an authorization embeds a spatiotemporal region for
specifying authorizing conditions for se or ge.

In the following, we present some examples of security policies.

– Policy 1: In order to get a personalized promotion deal, a mobile customer is willing
to reveal her age and salary information to a merchant, provided she is within 10
miles from the shopping mall during evening hours. This policy can be expressed
as follows.
α1 = 〈merchant(i), {customer(j) ∧ location(j)=circle((50,60),10) ∧ [5pm, 9pm] ∧
age(j) ∧ salary(j) }, sms message 〉
Here, only the attributes involved in ge are spatiotemporal in nature, but not those
involved in se. In the above, α�

1 is represented by a circle centered at (50,60) with
radius 10 miles and t-axis interval = [5pm, 9pm]. Also, α→

1 = 〈∗∗, ∗∗∗, ∗∗〉 because
policy 1 does not evaluate the profiles of mobile users.

– Policy 2: When a mobile user enters the Newark Liberty International Airport, taxi
companies are allowed to access her current location information if she is within
the airport during office hours.
α2 = 〈taxi company(i), {customer(j) ∧ location(j)=rectangle(10, 70, 2, 2) ∧ [9am,
5pm] }, locate〉4

Here, only the attributes involved in ge are spatiotemporal in nature. α�
2 is rep-

resented by a three dimensional rectangle with x-axis interval = [10, 12], y-axis
interval = [70, 72], and t-axis interval = [9am, 5pm]. α→

2 = 〈∗∗, ∗ ∗ ∗, 01〉 because
α2 evaluates only the profile attribute ’Home Town’.

– Policy 3: Any employee can send a print job if she is currently located at the office
during the office hours.
α3 = 〈emp(i) ∧ rectangle(i)=(3,5,1,2)∧ [9am, 5pm], printer(j), write 〉
Here, only the attributes involved in se are spatiotemporal in nature, but not those
involved in ge. α�

3 is represented by a three dimensional rectangle with x-axis

4 Services such as the gazetteer service [9] that convert canonical geographic area names into
geo-coordinates are available today. For example, a place name such as “Newark Airport, NJ”
can be converted into the coordinates as shown above.



68 V. Atluri and H. Shin

interval = [3, 4], y-axis interval = [5, 7], and t-axis interval = [9am, 5pm]. Also,
α→

3 = 〈∗∗, ∗∗∗, ∗∗〉 because policy 3 does not evaluate the profiles of mobile users.
– Policy 4: A human resource employee is allowed to access performance records of

employees only during office hours and while he is physically in his office.
α4= 〈 emp(i) ∧ department(i) = ’human resource’ ∧ rectangle(i)=(3,5,1,2)∧ [9am,
5pm] }, {performance record(j)}, read 〉
Only the attributes involved in se are spatiotemporal in nature, but not those in-
volved in ge. α�

4 is represented by a three dimensional rectangle with x-axis inter-
val = [3, 4], y-axis interval = [5, 7], and t-axis interval = [9am, 5pm]. Also, α→

4 =
〈10, ∗ ∗ ∗, ∗∗〉 because α4 evaluates only the profile attribute ’Department’.

One main characteristic of authorization in the mobile environment is that the corre-
sponding subject and object for se and ge are dynamically defined based on their loca-
tion. For example, in a given authorization α, if α.ge specifies a region of Newark, NJ,
α.se is authorized to access all the moving objects that lie within Newark, NJ to perform
the privilege α.m on them. Thus, as time elapses, the list of authorized objects are being
changed depending their movement inwards or outwards to the authorized area.

4 Unified Index Scheme for Moving Objects

In this section, we introduce our novel unified index structure, called the SSTP -tree that
supports efficient enforcement of security policies based on present user locations as
well as profiles. SSTP -tree is a balanced tree. Each node in the SSTP -tree comprises of
the spatiotemporal attributes as well as a profile bounding vector, denoted as PV B (ex-
plained later), in order to support the profile conditions. PV B works similar to MBR
(Minimum Bounding Rectangle) in R-tree. MBR in R-tree works as a coarse spatial
filter that is used as a pre-filter to perform a more computationally expensive overlap-
ping polygon checking [10]. Similarly, the role of profile bounding vector is to filter out
profile conditions that do not satisfy the designated profile query conditions.

Profile Bounding Vector: In the following, we define a bounding vector that covers a
set of profile vectors belonging to a set of users.

Definition 3 (Profile Bounding Vector). Given a set of profile vectorsPV = {pv1, pv2,
. . . pvn}, such that each pvi = {vi1, vi2, . . . vim}. A profile bounding vector of PV ,
denoted as PV B = {{v11∨v21 . . . vn1}, {v12∨v22 . . . vn2}, . . . {v1m∨v2m . . . vnm}}.

Let us consider once again the example in section 3 to explain the concept of PV B .
The set of profile attributes is department, salary, and home town. Consider the three
profile vectors, pvDoe = 〈10, 001, 10〉, pvJames = 〈01, 100, 01〉, and pvRobert = 〈01,
010, 01〉. Then, PV B of two users, Doe and James is 〈11, 101, 11〉, and PV B of all
three users is 〈11, 111, 11〉.

Given a set of PV Bs, hierarchical structure can be formed. Suppose we have three
PV Bs.

PV B
1 = 〈11, 011, 10〉

PV B
2 = 〈10, 010, 10〉

PV B
3 = 〈01, 001, 10〉



Efficient Security Policy Enforcement in a Location Based Service Environment 69

These PV Bs can be organized in a hierarchical structure with PV B
2 and PV B

3 as the
children of PV B

1 . Each PV B bounds PV Bs of all of its children. Therefore, the root
of the hierarchy covers the set of PV Bs of all of its descendants.

Construction of SSTP -Tree: SSTP -tree is constructed similar to that of the tree struc-
ture described in section 2.1, but PV B is updated accordingly during the insertion of
new objects. As discussed in section 2, each moving object is represented with its spa-
tiotemporal and profile attributes. Thus, each node in the SSTP -Tree includes a tpbr and
a PV B for specifying the spatiotemporal and profile conditions, respectively. When a
new moving object is being inserted into SSTP -tree, the first operation is to find a target
leaf node that enlarges the tpbr of the node smallest among all the leaf nodes. After
inserting the object into the target leaf node, we update tpbr and PV B of the target
leaf node if necessary. If tpbr or PV B of the parent node does not enclose all of its
children as a result of inserting a new object into the target leaf node, we update them
accordingly in the parent node. The same operation is applied to its parent node until
the root node is reached recursively.

Relationships Between Authorization and Node: Given an authorization α and a
node N , we are interested in different cases of spatiotemporal and PV B relationships
between α and N .

– Spatiotemporal Relationship
• α� ⊃st N�: spatiotemporal extent of α encloses that of N .
• α� ∩st N�: spatiotemporal extent of α overlaps with that of N .
• α� ⊗st N�: spatiotemporal extent of α is disjoint with that of N .

– Profile Bounding Vector Relationship
• α→ ⊃p N→: α→ encloses N→ if for each non-zero profile attribute vector5 of

α→ and N→, bitwise ’OR’ operation of α→ and N→ results in α→.
• α→∩p N→: α→ overlaps with N→ if for each non-zero profile attribute of α→

and N→, their bitwise ’AND’ operation results in a non-zero profile attribute
vector.

• α→ ⊗p N→: α→ is disjoint with N→ if for each non-zero profile attribute of
α→ and N→, their bitwise ’XOR’ operation results in all “1”s in the resultant
vector.

Because the spatiotemporal relationships are straightforward, here we focus on pro-
file bounding vector relationships between an authorization and a node. First, in case
of ⊃p relationship, observe that for every bit value of ’0’ of α→, the corresponding bit
value of N→ must be ’0’ because there must not exist any profile attribute value that
only N→ includes but α→ does not. Therefore, bitwise ’OR’ operation would gener-
ate the same value with α→. Also, in case of ∩p relationship, we need to see if there
exists any common profile attribute value between α and N→. Therefore, if bitwise
’AND’ operation results in a non-zero profile vector, we know that there exists com-
mon value set. Finally, in case of ⊗p relationship, we know α and N→ should not share

5 A non-zero profile attribute vector refers to a binary vector that includes the value “1” in at
least one bit.



70 V. Atluri and H. Shin

Table 2. Bitwise Operation Results

α→ N→ AND OR XOR Relationship
110 011 010 111 101 α→ ∩p N→

110 010 010 110 100 α→ ∩p N→, α→ ⊃p N→

110 001 000 111 111 α→ ⊗p N→

any profile attribute value that is common to each other. The bitwise ’XOR’ operation
is used for checking this condition, and the result of ’XOR’ must include all ’1’s in the
resultant N→.

Suppose α→ = 〈∗∗, 110, ∗∗〉, which implies that the authorization α is given to
the users with salary < $62,000. Observe that because α evaluates the profile attributes
’Salary’ only, we do not evaluate other profile attributes such as ’Department’ or ’Home
Town’. Therefore, as long as a user’s salary is less than $62,000, she meets the profile con-
ditions of α. Considering the same PV B

1 , PV B
2 , PV B

3 in the previous section, suppose
N→

1 = PV B
1 , N→

2 = PV B
2 , and N→

3 = PV B
3 . We know that N→

1 and N→
2 include a

user within this salary range while N→
3 does not include any user within the specified

salary range. Also, in case of N→
2 , all the value ranges of profile attributes for N→

2 are
also included in α→. Table 2 shows the results of bitwise AND, OR, XOR operations
between α→

1 and N→
1 , N→

2 , and N→
3 with their profile bounding vector relationships.

Authorizations Overlaying: The overlaying strategy traverses the SSTP -tree from the
root node to leaf level by recursively comparing both the spatiotemporal extents and
PV Bs of the overlaying authorization and each node in the traversal path. Let us de-
note the spatiotemporal extent of a node N as N�, and PV B as N→. All the possible
scenarios for this comparison are as follows:

– Case 1: If (α� ⊃st N�) ∧ (α→ ⊃p N→) is true, we stop traversing and overlay α
on N . This overlaying strategy has several benefits. First of all, we overlay the au-
thorizations on the first node encountered on the traversal path that totally encloses
the spatiotemporal region and PV B . As a result, authorizations are overlaid as high
up as possible in the tree [4]. Because user access request evaluates also from the
root node to the leaf level, authorizations that have been issued for the subject of
the access request would be encountered as early as possible. Due to our overlaying
strategy, existence of a relevant authorization in the traversal path for a subject of
the access request means that all the moving objects stored at the subtree rooted at
the node are already authorized. Therefore, we do not need to evaluate authoriza-
tions for the access evaluation process for the subtree. Observe that after overlaying
an authorization on a node, it is not necessary to overlay the same authorization on
any of its descendants.

– Case 2: Else if (α�⊗stN
�) ∨ (α→⊗pN→) is true, we stop the overlaying process.

This is because, if subjects of α do not have a privilege to N� or N→, α is not ap-
plicable to moving objects stored at the subtree rooted at N . Also, because N� and
N→ includes all the spatiotemporal extents and PV Bs of all of N ’s descendants,
there is no reason to traverse further to the leaf level.



Efficient Security Policy Enforcement in a Location Based Service Environment 71

α1 �st

N1

N2
N3

N1 ,N2 ,N3α1

α1 α1V2 V3

V2 V3V1
V2 V3V1 V2 V3V1

V2 V3V1

V2 V3

α1 �p

α1 �p

α1 �p

N1

N2

N3

V2 V3V1

V1 V1

Fig. 4. Authorization Overlaying Process in SSTP -tree

– Case 3: Else if (α� ∩st N�) ∨ (α→ ∩p N→) is true, the overlaying strategy is
different depending on the level of N .
• If N is a non-leaf node, we traverse to each of N ’s children node C, and the

same comparison between α and C is processed. This is because there may
exist a descendent node whose spatiotemporal extent and PV B is enclosed by
that of α.

• If N is a leaf node, we overlay α on N . This is because at least one of the
moving objects stored in N comply with the spatiotemporal and profile speci-
fication of α. Therefore, in order not to discard any relevant authorization, we
need to overlay α on N .

Figure 4 presents the overlaying process in the SSTP -tree. It shows that a node N1

is a root node of the tree, and N2, N3 are the children nodes of N1. Consider an autho-
rization α1 to be overlaid on the SSTP -tree. α1 cannot be overlaid on the node N1 since
α→

1 ∩p N→
1 , which belongs to the case 3 above. Therefore, we need to traverse down to

N1’s children nodes N2 and N3. The first traversal path is to N2, and α1 can actually
be overlaid on N2 because α�

1 ⊃st N�
2 and α→

1 ⊃p N→
2 , which is case 1. Another

traversal path to N3 is stopped because α→
1 ⊗p N→

3 , which belongs to case 2.

5 User Access Request Evaluation

In this section, we present the details of user access request evaluation. Typically, a user
request is of the form of requesting objects in the area of interest that satisfy a certain
profile criteria. For example, a merchant is interested in sending promotion deals to mo-
bile customers who are near a mall and whose salary is greater than $52,000. However,
such promotion deals should be reached to only to the customers who are willing to re-
veal their salary information to that merchant (specified in the authorization) to receive
the promotion deal.

A user request is denoted as U = 〈s, �, V, m〉 where s is the subject requesting
access, � is the spatiotemporal extent that the subject is interested in, V is interested
profile vector, and m the access mode. We denote U.s, U�, U→, and U.m to denote the



72 V. Atluri and H. Shin

subject, the spatiotemporal extent, the profile vector, and the access mode of the user
access request U , respectively. For example, if a merchant A wants to locate mobile
customers who are 10 miles from the shopping mall and whose salary is greater than
$52,000, the user request would be U =〈merchant A, circle((50,60),10),〈011〉, locate〉.

Algorithm 1. UserAccessRequestEvaluation
1: Input: node N , User Access Request U , Boolean authorized
2: Output: a set of authorized moving objects resultSet
3: if U� ⊗{x,y,t} N� OR CheckPV(U→, N→) = disjoint then
4: return NIL
5: end if
6: if There exists overlaid authorizations in N then
7: Λ(N) ← CheckUserIDAuth(U, N )
8: end if
9: resultSet ← NIL

10: if authorized = false AND Λ(N) = ∅ AND N is a non-leaf node then
11: if Λ(N) = NIL AND U� ∩{S,T} N� AND CheckPV(U→, N→) = disjoint then
12: authorized ← true
13: end if
14: else if authorized = false AND Λ(N) = ∅ AND N is a leaf node then
15: for each α in Λ(N) do
16: if N� ∩ U� AND CheckPV(U→, N→) = overlap) then
17: resultSet ← resultSet∪ evaluate(α, U, N )
18: end if
19: end for
20: return resultSet
21: end if
22: if authorized = true AND N is a leaf node then
23: return evaluate(U, N )
24: end if
25: for each child c in N do
26: MUserAccessRequestEvaluation(c, U , authorized)
27: end for

Algorithm 1 discusses the details of user access request processing. The initial func-
tion call is UserAccessRequestEvaluation(R, U, false)where R is a root node of SSTP -
tree. The evaluation process starts with the root node by comparing the spatiotemporal
extents and the profile vectors of the user request and each node N involved in the
top-down traversal. At the same time, the evaluation process searches for the relevant
authorizations.

Given a user request U , we say an authorization α as relevant to U if the set of
subjects evaluated by α.se includes U.s and U.m ≺m α.m for U.s overlaid on the
node N . We denote the relevant authorizations at a node N on the tree as Λ(N) ={α ∈
overlaid authorizations on N | U.s ∈ α.se, U.m ≺m α.m }. The comparison among
U , N and Λ(N) during the traversal results in the following cases.



Efficient Security Policy Enforcement in a Location Based Service Environment 73

Case 1: (U� ⊗st N�) ∨ (U→ ⊗p N→) is true: The disjoint relationship implies that
all the moving objects stored at the subtree rooted at N are not within the spa-
tiotemporal region or do not meet the profile condition for the user request U .
Regardless of the existence of relevant authorizations for U at N , the moving
objects stored at the subtree rooted at N are not within the user’s interests.
Therefore, the traversal stops regardless of the existence of overlaid authoriza-
tions.

Case 2: (Λ(N) 	= ∅) ∧ ((U� ∩st N�) ∨ (U→ ∩p N→)) is true: If N is a non-leaf
node, although all the moving objects stored at the subtree rooted at N are
authorized, the user wants to retrieve a subset of moving objects whose loca-
tions are within U� and whose profiles are enclosed by U→. Therefore, for
the subtree rooted at N , we retrieve moving objects whose location overlaps
with U� and whose profile condition overlaps with U→. We do not need to
evaluate authorizations during the traversal because the subtree rooted at N is
already authorized by Λ(N).

If N is a leaf node, because we overlay authorizations on a leaf-node in
an enclosing case as well as overlapping case, not all of the moving objects
in N are authorized. Thus, for all α ∈ Λ(N), return the moving objects that
are located within α� ∩st U� and whose profiles are overlapped with α→ ∩p

U→.

Case 3: (Λ(N) = ∅) ∧ ((U� ∩st N�) ∨ (U→ ∩p N→)) is true: If N is a non-leaf
node, access control decision cannot be made because there is a possibility
that a relevant authorization may be overlaid on a descendent node of N . Thus,
evaluation process repeats for all the children nodes of N . If N is a leaf node,
we reject the access request because there exists no relevant authorization for
U during the traversal.

Case 4: (Λ(N) 	= ∅) ∧ ((U� ⊃st N�) ∧ (U→ ⊃p N→)) is true: There exists at
least one relevant authorization for U is overlaid on N . If N is a non-leaf
node, because the spatiotemporal extents and profiles stored at the subtree
rooted at N are authorized, all the moving objects stored at leaf nodes of the
subtree rooted at N are allowed to be accessed by U.s. Therefore, there is
no need to evaluate authorizations on the subtree rooted at N . In addition,
spatiotemporal and profile vector comparisons would not be required either
because all the moving objects stored at the subtree rooted at N are within the
user’s interests. If N is a leaf node, some of the moving objects in N may not
meet the conditions set by U . Thus, for all α ∈ Λ(N), the algorithm would
return all the moving objects that are located within α� and whose profiles are
overlapping with those of α→.

Case 5: Λ(N) = ∅ ∧ ((U� ⊃st N�) ∧ (U→ ⊃p N→)) is true: Although all the
moving objects stored at the subtree rooted at non-leaf node N meet the spa-
tiotemporal and profile conditions of U , access control decision cannot be
made because there is a possibility that a relevant authorization may be over-
laid on a descendent node of N . Thus, evaluation process repeats for all the
children nodes of N . If N is a leaf node, we reject the access request because
there exists no relevant authorization for U .



74 V. Atluri and H. Shin

Table 3. Number of Disk Access

SSTP -Tree Separate Index Structures
If m < M − k/s Else Index for moving objects Index for profiles
Ω(logmN ) Ω(logM−k/s N ) Ω(logmN ) Ω(logmN )

Note that, in algorithm 1, the operation CheckUserIDAuth() returns relevant autho-
rizations for U among the overlaid authorizations in the node N . CheckPV(A, B) re-
turns overlap (if A ∪p B), disjoint (if A ⊗p B), and enclose (if A ⊃p B). The
overloading function evaluate() returns the moving objects whose location and profile
conditions meet the user request, and which are stored in the leaf node N .

User Access Request Performance Analysis: We present an informal analysis of the
complexity of user request evaluation by comparing the performance between the pro-
posed SSTP -tree and the where there are two separate index structures (one for moving
objects and another for profile). For the discussion, we do not consider authorizations
because the overlaying procedure does not change the structure of the tree. Overlaying
simply stores the relevant authorizations on the nodes of the tree, which does not incur
any changes on the structure of the tree.

For the analysis, let us suppose the following:

– N is the number of moving objects: That is, there are N number of location infor-
mation and N of profile vectors.

– The number of children (or data) that each non-leaf (or leaf) node includes is be-
tween m and M where 2 ≤ m ≤ M /2: this implies that the height of the tree is
bounded by [logMN , logmN ]

– k is the size of PV B in bytes
– b is the disk page size in bytes
– s is the size of location information and profile vector (in bytes)

If a tree does not store a PV B in a node, M = b/s because M is the maximum
number of children node or data that can be stored in each disk page without considering
the PV B . However, in case of SSTP -Tree, k bytes are reserved to store a PV B for each
node. Thus, the maximum number of data (children) for each disk page is

(b − k)/s = b/s − k/s (1)

= M − k/s (2)

Thus, the height of SSTP -tree is
– If m < M − k/s, the height = [logm N , logM−k/s N ].
– Else, the height = [logM−k/s N , logm N ]

The number of disk accesses for user request is summarized in 3. If m < M − k/s,
it is obvious that the SSTP -tree shows better performance (fewer disk accesses) be-
cause in this case, the proposed tree would generate the exactly same structure of tree as



Efficient Security Policy Enforcement in a Location Based Service Environment 75

that from the separate index for moving objects. Thus, separate indexes would need to
access the number of nodes from the profile index additionally than the SSTP -tree.

6 Conclusions

Recently, unified index structures, sTPR-tree and SPPF -tree, have been proposed to
organize both moving objects and authorizations specified over them. However, both
approaches are not capable of evaluating security policies that include profiles because
the index structure can support only spatiotemporal regions of security policies. In this
paper, we have proposed an index structure, called the SSTP -tree, which enables one to
enforce and evaluate the security policies that include profiles of moving objects. We
provide an informal analysis to show that the proposed structure is more efficient than
maintaining indexes independently for moving objects and authorizations, and profiles.
Currently, we are in the process of implementing the proposed tree to experimentally
validate the gain in performance with respect to the independent cases.

References

1. Youssef, M., Adam, N.R., Atluri, V.: Preserving Mobile Customer Privacy: An Access Con-
trol System for Moving Objects and Customer Information. In: 6th International Conference
on Mobile Data Management. LNCS. Springer, Heidelberg (2005)

2. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: Issues and so-
lutions. In: Rafanelli, M., Jarke, M. (eds.) 10th International Conference on Scientic and
Statistical Database Management, Proceedings, Capri, Italy, July 1-3, 1998, pp. 111–122.
IEEE Computer Society Press, Los Alamitos (1998)

3. Moreira, J., Ribeiro, C., Abdessalem, T.: Query operations for moving objects database sys-
tems. In: Proceedings of the eighth ACM international symposium on Advances in geo-
graphic information systems, pp. 108–114. ACM Press, New York (2000)

4. Atluri, V., Guo, Q.: Unied index for mobile object data and authorizations. In: di Vimercati,
S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 80–97.
Springer, Heidelberg (2005)

5. Atluri, V., Shin, H.: Efficient enforcement of security polices based on the tracking of mobile
users. In: DBSec, pp. 237–251 (2006)

6. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of contin-
uously moving objects. In: SIGMOD Conference, pp. 331–342 (2000)

7. Atluri, V., Adam, N.R., Youssef, M.: Towards a unied index scheme for mobile data and
customer proles in a location-based service environment. In: Workshop on Next Generation
Geospatial Information (NG2I’03) (2003)

8. Atluri, V., Chun, S.A.: An authorization model for geospatial data. IEEE Trans. Dependable
Sec. Comput. 1(4), 238–254 (2004)

9. Gazetteer, U.S.: http://www.census.gov/cgi-bin/gazetteer
10. Oracle corporation data sheet - oracle spatial option and oracle locator: Location features in

oracle database 10g. Technical report, Oracle (2004)http://www.oracle.com/
11. Atluri, V.: Mobile commerce. In: In The Handbook of Computer Networks, Volume III Dis-

tributed Networks, Network Planning, Control, Management and Applications, Part 3: Com-
puter Network Popular Applications, John Wiley & Sons Inc., West Sussex, England (2007)
(page to appear)

http://www.census.gov/cgi-bin/gazetteer
http://www.oracle.com/


76 V. Atluri and H. Shin

12. Mobile Commerce (M-Commerce) & Micropayment Strategies. Technical report, Juniper
Research (2004) http://www.juniperresearch.com/

13. Venkatesh, V., Ramesh, V., Massey, A.P.: Understanding usability in mobile commerce.
Commun. ACM 46(12), 53–56 (2003)

14. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of con-
tinuous features. In: International Conference on Machine Learning, pp. 194–202 (1995)

http://www.juniperresearch.com/


Reliable Delivery of Event Data from Sensors to
Actuators in Pervasive Computing Environments�

Sudip Chakraborty, Nayot Poolsappasit, and Indrajit Ray

Computer Science Department
Colorado State University

Fort Collins, CO 80523, USA
{sudip, nayot, indrajit}@cs.colostate.edu

Abstract. The event-condition-action (ECA) paradigm holds enormous poten-
tial in pervasive computing environments. However, the problem of reliable de-
livery of event data, generated by low capability sensor devices, to more capable
processing points and vice versa, needs to be addressed for the success of the ECA
paradigm in this environment. The problem becomes interesting because strong
cryptographic techniques for achieving integrity impose unacceptable overhead
in many pervasive computing environments. We address this problem by sending
the data over the path from the sensor node to the processing point that provides
the best opportunity of reliable delivery among competing paths. This allows us-
ing much weaker cryptographic techniques for achieving security. The problem
is modeled as a problem of determining the most reliable path – similar to routing
problems in networks. We propose a trust-based metric for measuring reliability
of paths. The higher the trust value of a path the more reliable it is considered.
We propose techniques for estimating the trust levels of paths and propose a new
algorithm for identifying the desired path.

1 Introduction

Pervasive computing technology has the potential to impact numerous applications that
benefit society. Examples of such applications are emergency response, automated mon-
itoring of health data for assisted living, environmental disaster mitigation and supply
chain management. Pervasive computing uses numerous, casually accessible, often in-
visible, computing and sensor devices. These devices are frequently mobile and/or em-
bedded in an environment that is mobile. Most of the time they are inter-connected with
each other, with wireless or wired technology. Being embedded in the environment
and interconnected allow pervasive computing devices to exploit knowledge about the
operating environment in a net-centric manner. This enables pervasive computing ap-
plications to provide a rich new set of services and functionalities that are not otherwise
possible through conventional means. Pervasive computing applications frequently rely

� This work was partially supported by the U.S. Air Force Research Laboratory (AFRL) and the
Federal Aviation Administration (FAA) under contract F30602-03-1-0101 and by the U.S. Air
Force Office of Scientific Research under contract FA9550-07-1-0042. Any opinions, findings,
and conclusions expressed in this publication are solely those of authors and do not necessarily
represent those of the AFRL, the FAA, or the AFOSR.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 77–92, 2007.
c© IFIP International Federation for Information Processing 2007



78 S. Chakraborty, N. Poolsappasit, and I. Ray

Fig. 1. Pervasive computing environment involving remote event detection and action triggering

on event-triggered obligation policies to operate in a dynamic environment. An oblig-
ation policy is associated with events, conditions, subjects, objects and actions. When
the event of interest occurs and the associated conditions evaluate to true, the subjects
perform the specified actions on the objects. Events are typically identified and cap-
tured by embedded sensing devices and actions are actuated by similar embedded de-
vices. Processing of captured event data for evaluation of conditions are, on the other
hand, mostly performed at remote processing nodes or base stations. This is because the
sensing and actuating devices embedded in the environment are frequently of very low
performance capabilities including low computing, low storage and low power. Thus a
major challenge in a pervasive computing environment is to provide a path for propa-
gating sensor data to processing nodes and action data to actuating nodes. Reliability of
the paths is important. The data should be delivered with the minimum possible error
and in as timely a manner as possible.

The reliable transmission path requirement imposes significant challenges in perva-
sive computing environments. A pervasive computing application can seldom assume a
reliable network infrastructure for communication. In a conventional setting, a node that
generates a message forwards it to a neighboring reliable node. The receiving node in
turn forwards the message to another fixed node that is known a priori. This procedure
is followed till the message reaches the destination. Every node in this process knows
at least one other reliable node in the path towards the destination to which the message



Reliable Delivery of Event Data from Sensors to Actuators 79

can be handed over. Frequently a node will know about more than one other node and
thus have a choice of a better node. The nodes are static, that is they do not change their
location and consequently the links between the nodes are stable. This and the proper
use of strong cryptographic techniques, easily facilitate reliable delivery of messages in
conventional settings. In a pervasive computing environments, on the other hand, mobil-
ity of nodes (sensing, processing or actuating) is frequently considered an asset. Figure
1 depicts the scope of the problem. Nodes are not locationally stable; instead they con-
tinuously change their coordinates. Thus, a node that needs a message delivered cannot
rely on another fixed node to forward the message but has to make use of one or more
nodes that happen to be within reachable distance at that particular moment. In addition,
since a majority of these nodes are low capability devices (in the sense of low computa-
tional capabilities, low storage and low power provisions), use of strong cryptographic
techniques needs to be ruled out. Moreover, in hostile environments these nodes get
easily compromised. Under such circumstances it will enormously benefit a pervasive
computing application if the path that provides most opportunity of reliable delivery of
messages is presented to it. Determining an appropriate path within a network is the
problem of routing. In this paper we revisit this problem in the context of pervasive
computing environments.

The problem of routing in mobile ad hoc networks have been addressed before
[1,2,3,4,5,6,7,8,9,10,11]. Among these [1,6,7,10] study cryptographic techniques for
securing the routing protocol. Some use public key cryptography to encrypt the end-
to-end transmission of routing messages. Others use digital signature techniques to au-
thenticate routing messages at the peer-to-peer level connection. However, these cryp-
tographic techniques incur high computation and storage overhead which limit their
use in sensor devices. Use of secret key techniques instead of public keys alleviate this
problem to some extent although at the expense of added complexity. Moreover, key
distribution and management is a big problem in secret key based systems. It is difficult
to establish a key distribution or certification authority in mobile ad hoc environments.
Ensuring the availability of a key distribution center or a certifying authority is almost
impossible given the unstable nature of the network.

The Hermes protocol developed by Zouridaki et al. [11] proposes using trustworthi-
ness of its neighbors for routing. The trust values are computed under the assumption
that they follow the beta probability distribution. The parameters of the beta distribution
come from the empirical observation of the forwarding behavior. Thus, nodes that main-
tain a good and steady forwarding history have more trust and confidence on them. The
route is established for the most trusted path. However, the major problem of this work
is its complete reliance on forwarding history for measuring trust. A malicious node
can easily fake this history thus presenting itself as a trusted node. Other similar works
include [12,13,14]. Among these [13] proposes a signal stability-based adaptive routing
(SSR) where the routes are selected based on signal strength. This work looks promis-
ing; however it does not discuss how to measure this signal strength quantitatively. In
[12] the authors propose an on demand secure routing protocol where the metric is
based on past history. Yi et al. [14] present a security-aware ad hoc routing protocol
(SAR) in which a route is selected on the basis of degree of ‘security guarantee’ that
the route provides. If two routes have same guarantee then the shorter path is chosen.



80 S. Chakraborty, N. Poolsappasit, and I. Ray

The security metric can be specified by standard security properties like timeliness, or-
dering, authenticity etc. However, the paper does not discuss how we can measure these
properties quantitatively.

We propose a trust-based routing protocol for pervasive computing environments.
Our protocol determines the most reliable path under currently determinable properties
of the system to forward a packet from source to destination. A node in the pervasive
computing environment is any entity that is able to forward a packet. It can be a sensor
node, a mobile device like a PDA or a cellular phone, a powerful computing device or
even an actuator like a switch. Reliability of a node is measured in terms of a trust value
for the node. Each node determines its neighbor’s trust based on physical properties of
the neighbor that can be directly observed, the neighboring node’s behavior history (i.e.,
results of past interactions) and recommendation (or rating) about the neighbor from
other neighbors. The resulting trust value is used to generate the ‘cost of forwarding’,
or simply cost. The cost metric is inversely related to the trust metric, that is, higher the
trust (reliability) on the node, lower is the cost. This cost is associated with links in the
network. We next modify the widely used distance vector routing protocol using these
costs between the links to find the path with minimum average cost. The chosen path
then becomes the most ‘reliable’ path.

The rest of the paper is organized as follows. Section 2 gives an overview of our
protocol including a discussion on cost function in subsection 2.1. We introduce our
trust metric in section 3 where the components and the methods to compute them have
been discussed in subsections 3.1, 3.2, and 3.3 followed by the computation of the fi-
nal trust value in subsection 3.4. Subsequent section 4 presents our trust-based routing
protocol. In section 5 we analyze our protocol. We present the security analysis of the
protocol in subsection 5.1. In subsection 5.2 we discuss the complexity of our proto-
col. We start with computation complexity followed by communication complexity and
storage complexity respectively. Finally, we conclude our discussion in section 6 with
a summary for future work.

2 Overview of Trust-Based Routing Protocol

We assume that the pervasive computing environment supporting the application has
a very dynamic topology. Nodes join or depart the environment at random. Each node
in the network maintains a table RT consisting of tuples of the form 〈Dest,Win#,NH,
Costavg,∑Cost2,#Hops〉. In this table the node stores on a per-destination (Dest) basis,
the identity of the next neighbor (NH), to which the message needs to be forwarded.
Together with the next neighbor information, the node also stores the minimum average
cost (Costavg) and the number of hops (#Hops) to reach the particular destination. This
information is generated periodically. Thus each tuple bears a time stamp in the form of
a current time window (Win#). The routing algorithm that we propose is used to update
the next neighbor entry in the RT table for a particular destination.

A source node initiates the routing protocol if it has a packet to be sent to a destina-
tion for which it does not have any next hop (NH) entry. The source node can also ex-
ecute the routing protocol when the path to the destination has expired (when the value
under Win# is less than the current window number). The source sends out a route



Reliable Delivery of Event Data from Sensors to Actuators 81

discovery request. We assume that each node that participates in the pervasive com-
puting environment has a trust relationship with its neighbor (that is a node at 1 hop
distance). A trust-aware node periodically sends a beacon message to its neighbors. The
beacon message is something like an “I am alive” message and carries information nec-
essary to prove the node’s existence. Once in a while a node can also send out a beacon
message on demand. In our protocol, a node may request a recommendation score from
a second node about a neighbor of the second node. In such cases the recommendation
score is carried on a beacon message. Beacon messages are broadcast in nature. They
carry rudimentary checksums to provide weak protection against integrity violations.
The recommendation score is used as one of the parameters for computing trustworthi-
ness of a neighbor. Trust relationships are periodically refreshed locally. At some point
after system initiation we assume that every node in the system will have a trust rela-
tionship with each of its neighboring nodes. We do not assume that trust relationships
are symmetric or transitive.

We adapt the trust model proposed in [15]. We express the trust relationships be-
tween nodes as Nr −→ Ne where Nr is the truster node and Ne is the trustee node. We
represent this trust relationship as a tuple (Nr PNe , Nr RNe , Nr INe). The value Nr PNe rep-
resents an evaluation of the physical properties of Ne by Nr. The value Nr RNe denotes
an evaluation of the recommendation scores of Ne from other nodes and Nr INe evaluates
the interactions that Nr had with Ne. The exact interpretation of these terms are de-
ferred for the time being till the next section (section 3). We associate a numeric value
v(Nr −→ Ne) (from [−1,1]) with the above tuple which we refer to as the trust value
for node Nr on node Ne along the edge (Nr, Ne). We next convert this trust value to
a cost on the link (Nr, Ne). The higher the trust value the lesser is the cost to transfer
messages on the link. The path having the least average cost from the source node to
the destination node is considered the most reliable among the available paths and is
chosen by the source node to forward the data.

Figure 2(a) describes pictorially the main idea of our protocol. We assume that if a
node Nr has a distrust value (that is value less than 0) on another node Ne the cost on that
link is infinite and that next hop is discarded. When a node receives a route discovery
request from a source, it checks its routing table RT . If a route to the destination is
present in RT which has not expired, it sends the ‘#Hops’ and cost related information

(a) The trust rela-
tions in trust-aware
pervasive computing
environment

(b) The forwarding
cost in trust-aware
pervasive computing
environment

(c) Path having least
average cost is most
reliable

Fig. 2. Trust relation between nodes and the corresponding cost on the link



82 S. Chakraborty, N. Poolsappasit, and I. Ray

to the source. The source then evaluates the cost of the link between the neighbor and
itself and using the #Hops it computes the average cost of forwarding the packet to the
destination. The source may get multiple such responses. It then chooses the next hop
for which the average cost over the path is minimum. If the node that receives a route
discovery request from the source, does not itself have the next hop information in its
RT for that destination, it initiates a route discovery process as a source. This process
can go on till the node which is 1 hop behind the destination initiates a route discovery
request.

2.1 Cost Function

Each node tries to find the path to a given destination which has the minimum average
forwarding cost. The cost of forwarding a packet from the node Nr to Ne is a function of
v(Nr −→ Ne). These two are related as follows: higher the trust, lesser is the cost and the
cost increases as the distrust increases (i.e., the trust decreases). Rationale is, the cost
(in terms of integrity violation and other malicious activities) of forwarding a packet
through a more trustworthy node is less than that through a less trustworthy node. The
cost is minimum (not zero though) when Nr has absolute trust (v(Nr −→ Ne) = 1) on
Ne. This minimum cost (Mincost ) is a small positive cost incurred due to forwarding
overhead. It is uniform over the whole pervasive computing environment and set at the
bootstrapping of the system. We assume that the decay in cost with increased trustwor-
thiness is logarithmic with the following conditions: at v(Nr −→ Ne) = 1, cost = Mincost

and at v(Nr −→ Ne) = −1, cost = ∞. The function is defined as,

cost(Nr, Ne) = Mincost − ln(
1 + v(Nr −→ Ne)

2
) (1)

The maximum allowable cost for Nr is incurred when v(Nr −→ Ne) = 0. This cor-
responds to the situation when Nr is neutral about trustworthiness of Ne. This cost,
denoted by MaxAllowedcost(Nr , Ne), is Mincost − ln( 1

2 ), that is, MaxAllowedcost(Nr , Ne) =
Mincost + 0.69.

Computing this cost value has some overhead but is only linear in the number of
nodes in the pervasive computing environment. The cost value is stored in the mobile
device for a predetermined time or until a new beacon message has arrived. The absence
of a beacon message from a particular node in a particular window of time represents a
broken link during that time period. It can happen for various reasons including that the
node is compromised. The node in such a case may either discard the broken link from
the list of current neighbors or mark it as unused. Routing information is advertised
by broadcasting the route setup packets periodically or on demand depending on the
protocol used. These packets indicate which mobile nodes are accessible from which
others and the average cost associated with the path towards a destination. When a node
receives a data packet, it chooses the path which has the lowest average forwarding
cost and forwards the packet to the neighbor on this path to be further forwarded to-
wards the destination. During this process, a node also evaluates the packet forwarding
performance of the neighbor node. By measuring this the node essentially evaluates an
interaction score for the neighbor. The details of this process and other routing processes
is explained in section 4 and section 5.2.



Reliable Delivery of Event Data from Sensors to Actuators 83

3 Trust Metric

As mentioned earlier in section 2 the trust of Nr on Ne depends on three factors – Ne’s
properties, recommendation about Ne (alternatively, Ne’s rating) from another node Nk,
and Nr’s interaction with Ne. We assume that each of these three factors is expressed
in terms of a numeric value in the range [−1,1]. A negative value for the component
is used to indicate the trust-negative type for the component, whereas a positive value
for the component is used to indicate the trust-positive type of the component. A 0
(zero) value for the component indicates trust-neutral. The final trust value, denoted
by v(Nr −→ Ne), is calculated as an average of these component values. Eventually
v(Nr −→ Ne) falls in the range [−1,1]. A trustee node is completely trusted (or dis-
trusted) if the value of the trust relationship is 1 (-1). If the value is in the range (0,1)
the node is semi-trustworthy; if the value is in the range (−1,0) the node is semi-
untrustworthy. The 0 value represents trust neutrality, that is the trustee is equally trust-
worthy as untrustworthy.

3.1 Computing properties

In our approach trust is used as a reliability metric of a neighbor node for proper han-
dling and forwarding the packet to the destination. A node Ni is a neighbor of node Nj

if Ni is within the range of a beacon message from Nj. A node becomes more reliable
when it has relatively more resources (in terms of signal strength, signal stability, less
propensity to corrupt data etc.). Higher values of these attributes show that it is more
capable of handling and forwarding a packet in a reliable manner. This motivates us to
measure the node properties quantitatively and include that measure as a factor to eval-
uate trustworthiness of a node. We focus on two properties of a node – signal strength,
and stability factor. A node maintains a property table, PT = 〈Node id,SSavg,SF〉 for
each neighbor node where the properties of the neighbor is kept along with the corre-
sponding id. The table is updated after each time-window win.

Measuring signal strength. In each time-window win, a node periodically sends a link
layer beacon message to its neighbors. When the neighbor node receives such a beacon
message, the extended device driver interface of the receiving node measures the signal
strength at which the beacon was received. In our approach we use the receive signal
strength indicator (RSSI) unit to measure the signal strength. RSSI is the IEEE 802.11
standard for measuring radio frequency (RF) energy sent by the circuitry on a wireless
network interface card (W-NIC). It is a numeric integer value with an allowable range of
0 to 255. However, for the sake of our model we give a transformation to this recorded
signal strength value by dividing it by 255. This scales the received signal strength
value within the range [0,1]. We require this transformation as the final value of the
component ‘properties’ lies within [−1,1]. At the end of each time-window, we take the
average of these values. This transformed average signal strength value is then stored
under the column SSavg in the table PT corresponding to the neighbor. All these signal
strength values within the time-window win is kept in a separate temporary property
table, PT Node id

tmp = 〈SS,SB〉 where SB is the stability bit explained next.



84 S. Chakraborty, N. Poolsappasit, and I. Ray

Measuring stability factor. The stability factor indicates the stability of a node. Higher
the stability more reliable is the node to forward a packet. We derive the stability factor
using signal strength. The reason is as follows: if a node is locationally unstable, it will
have a varying signal strength. Alternatively, if the average signal strength of a node
is fairly constant over few time-windows, the link with the node can be considered as
stable. Therefore, after storing the strength of received signal, say SScurrent , in PT Node id

tmp ,
it is compared with the value present in SSavg of PT . If SScurrent < SSavg then the SB is
set to 0, otherwise the default value 1 is kept. At the end of time-window, the stability
factor SF is calculated as,

SF =
number of bits set to 1 under SB
Total number of bits under SB

At the beginning of each time window the temporary property table PT Node id
tmp is set to

its default values. The default value for SS is 0 and for SB is 1.

Measuring properties. The properties component of the node Ne is then computed as

Nr PNe = α∗ SSavg +(1−α)∗ SF (2)

where α ∈ (0,1) is a fraction used as the relative importance weight to the signal
strength property.

3.2 Computing recommendation

Each trust-aware node agrees to provide a ‘recommendation’ about its neighbors upon
receiving a recommendation request from a source node. Let Nr request Nk for a recom-
mendation about a node Ne. The source node Nr sends this recommendation request by
sending a special message REC REQ containing the node id of the target node (in this
case Ne). The node Nr can choose this recommender using a threshold trust value Tthr.
That is, if v(Nr −→ Nk) ≥ Tthr then only Nr sends a REC REQ message to Nk. If Nk has
a trust relationship with Ne, then Nk replies by sending a message REC RESPONSE
containing the pair 〈node id,V 〉 where V = v(Nk −→ Ne). The node Nr then scales this
recommendation with the trust value that it has on Nk. Averaging all such recommen-
dation received gives the ‘recommendation’ (or, rating) of Ne. Formally, if Nr receives
m recommendations about Ne, then

Nr RNe =
1
m

m

∑
k=1

{v(Nr −→ Nk)× v(Nk −→ Ne)} (3)

The truster Nr maintains a list, called recommendation list, RL = (node id, list) for
each trustee where structure of each item in the list is (node id, recommendation value).

3.3 Computing interaction

Interaction is modeled as cumulative effect of events encountered by a truster node Nr

regarding Ne. We classify interaction in two categories – packet forwarding interaction
– when the truster considers the behavior of the trustee as a packet forwarder, and rating



Reliable Delivery of Event Data from Sensors to Actuators 85

interaction – when the truster considers the behavior of the trustee as a recommender.
Every event in each of these categories has binary outcome; either the truster Nr has
trust-positive event or a trust-negative event depending whether the event contributes
toward a trust-positive interaction or a trust-negative interaction.

Evaluating packet forwarding interaction. To evaluate packet forwarding interac-
tion, the truster Nr checks the outcome of each packet forwarded to Ne within the
specific time window win. Each packet forwarded correctly towards the destination is
considered as a trust-positive event. Each dropped packet gives rise to a trust-negative
event. The node Nr measures the number of forwarded packet by Ne as follows: Nr

forwards packets to Ne and with every such packet Nr sends an ECHO message with
a time-to-live (TTL) = 2. Each reply received by Nr denotes correct forwarding of
the packet by Ne to the next member Nk in the path. Nr keeps this information in
a table IT = 〈Node id,PFCp,PFCn,RCp,RCn〉 where PFCp denotes the counter for
trust-positive packet forwarding interaction within the window and PFCn counts the
trust-negative packet forwarding interactions. RCp and RCn are rating counters used for
counting the results of rating interactions. All these fields has default value 0. Whenever
a packet is dropped the counter PFCn is increased by 1 and for each received reply the
counter PFCp is increased. Formally, packet forwarding interaction, denoted by Ip f of

Nr about Ne within the window win is defined as the ratio PFCp−PFCn
PFCp+PFCn

.

Evaluating rating interaction. The rating interaction is evaluated in a similar man-
ner. We assume that each node agrees to provide a ‘trust recommendation’ about its
neighbors upon receiving a recommendation request from a source node. We also as-
sume that for each neighbor, the truster keeps a list of node ids of the nodes who have
provided recommendation for that neighbor. Whenever the truster has a ‘packet for-
warding interaction’ with the neighbor node and the result of that interaction matches
with the recommendation, that is the truster has positive (negative) experience and the
recommendation is also positive (negative), it increases the RCp in IT of all such rec-
ommenders by 1. If there is a mismatch between the outcome and the recommendation,
the truster increases the RCn counter by 1 for those recommenders. For example, let
the trustee Ne has provided “positive” recommendations for the nodes Ni,Nj,Nk to the
truster Nr. Therefore, in the recommender list RL, Ne appears in the list against each of
these nodes. Let Nr have trust-positive packet forwarding interaction with Ni, Nj and
trust-negative packet forwarding interaction Nk. Then in the interaction table IT , for the
node Ne, the counter RCp is increased twice and RCn once. At the end of time window

win the rating interaction, denoted by Ir of Nr about Ne is defined as the ratio RCp−RCn
RCp+RCn

.

Evaluating interaction. The interaction component of the node Ne is evaluated as

Nr INe = β∗ Ip f +(1−β)∗ Ir (4)

where β ∈ (0,1) is a fraction used as the relative importance weight to the packet for-
warding interaction.



86 S. Chakraborty, N. Poolsappasit, and I. Ray

3.4 Computation of Final Trust Value

After computing values of the components we evaluate the trust value for the trustee Ne

as the average of the components. Formally,

v(Nr −→ Ne) = Nr PNe +Nr RNe +Nr INe

3
(5)

These information are kept in a trust table, T T = 〈node id, properties, recommendation,
interaction, trust value, cost〉. After each window win this table is updated with new
values which are kept and used in the next time window. All other tables are set to
their corresponding default values. Next section describes the modified distance vector
routing algorithm which finds the path with minimum average cost for forwarding a
packet to the destination.

4 Data Path Discovery

To select the most trustworthy path, each node evaluates and dynamically updates the
trust components between itself and current neighbors. It then calculates the trust value
of the neighbors by the process described in section 3. These values are used to calculate
the forwarding cost between two neighbors, using the equation 1 in section 2.1. The path
with the minimum average forwarding cost is preferred and the adjacent node on this
path is trusted to forward the packets toward the destination.

4.1 Route Discovery

Our algorithm is based on a “rumor” about paths from neighbors. This is incomplete
information. We thus choose to use the average and standard deviation of the running
sum of cost in our route discovery protocol. This formula does not require the complete
path information yet can correctly evaluate the path’s reliability like the one with the
complete path information. The average and standard deviation of running sum are
computed as follows: let, a random variable X take on the values x1, . . . ,xn and x be the
latest value. We use the following equations:

AV G = (x+
n

∑
i=1

xi)/(n+1) (6)

SD =

√

n
n

∑
i=1

x2
i − (

n

∑
i=1

xi)2/n(n−1) (7)

When a node receives a route information message from a neighbor node Nk, it up-
dates the forwarding cost on the path towards node Nj (where node Nk is chosen as
the next hop) by adding the current cost between itself and Nk and calculate the up-
dated average cost using equation 6. It then re-evaluates the path to choose the op-
timal route to the destination. This process compares among all possible candidate
routes and chooses the path that has the minimal average cost. If more than one can-
didate paths have same minimum average cost or have a difference of cost less than
a given threshold η, the routing algorithm selects the path that has the least standard



Reliable Delivery of Event Data from Sensors to Actuators 87

Algorithm 1. Route Discovery in Pervasive Computing
Description: Route Discovery procedure simplifies the modified Distance Vector algo-
rithm.
Input: destination Nj , reachable from node Nk
Output: : The routing table of a given source node S
Initialization:
Initialize cost to all nodes Nj known to S to ∞
Calculate the trust between S and its immediate adjacent node Nk in S’s neighbor list
Add all immediate adjacent nodes to the routing table
for all node Nk in the neighbor list do

compute trust between S and Nk (equation 5)
compute average cost DS(Nk, Nk) (equation 6)
compute running sum DT (S, Nk)
compute running sum of squares DT 2(S, Nk)

end for
Iteration:
Wait until S detects change from its immediate link Nk or receives a routing packet from its
neighbor /* This packet contains the information about the destination node Nj */
if S detects change in its immediate link then

Update the cost and propagate the change to all neighbors
else

if Nj is a destination that S has never seen before then
Compute routing cost to Nj
Compute running sum, running sum of squares, and hop count to Nj

Add Nj and its routing parameters into the routing table
end if
if Nj is already in the routing table then

Compute the routing cost to Nj
Update the routing table if new cost is better than the current cost in the routing table
Announce the new routing table to neighbors

end if
end if

deviation as an optimal path. The standard deviation is calculated using the equa-
tion 7. Algorithm 1 gives the protocol used in generating the routing table. It con-
sists of two phases: table initialization and iteration. The table initialization phase es-
tablishes paths to all immediate neighbors known to the source S. For each neigh-
bor Nk, node S keeps track of hop count, average cost (calculated from equation 5),
running sum of cost (DT (S, Nk)), and running sum of square of cost (DT 2(S, Nk)).
These cost parameters are used for calculating the average cost and standard devia-
tion according to the equation 6 and equation 7. The iteration phase is only triggered
upon receiving the routing packets or upon changing of an immediate link with its
neighbor.

In the first case, if the destination node Nj in the received packet is not known by
node S, it will add Nj to the routing table and compute the routing cost to Nj by adding
its trust between itself and its neighbor node who has sent the routing information of Nj

to S. The routing cost to the destination Nj is computed as:



88 S. Chakraborty, N. Poolsappasit, and I. Ray

DS(Nj, Nk) =
v(S −→ Nk)+ DT(Nk, Nj)

hop cnt(Nk, Nj)+ 1
(8)

where Node Nk is the sender of the routing information and DT (Nk,Nj) is the forward-
ing cost from Nk to Nj. If S already knows the destination node Nj , it recomputes the
routing cost to Nj and compares this value with the existing value. If the new cost is
less or more stable1 than the current cost, the cost to the destination Nj is updated. If
the trust value between node S and its immediate neighbor Nk has changed, S has to
recompute the routing cost to all destinations Nj where Nk is the next hop. The above
equation 8 is used to recomputing the new routing cost. Then S compares the new cost
to the current cost that S has in its routing table. If the new cost is less or more stable
than the current cost, the cost to the destination Nj is updated.

5 Analysis

5.1 Security Analysis

The trust-based approach to routing is intended to minimize the effect of malicious
nodes in the network. We discuss how the proposed scheme can reduce this effect. A
malicious node can subvert the network in two ways:

Dropping packets. A malicious node on a path can deliberately drop the legitimate
packets. Suppose a node Ni is sending a packet to Nj through the neighbor Nm who
is malicious and drops packets arbitrarily. With every drop of packet, Ni increases the
‘trust-negative packet forwarding counter’ PFCn corresponding to the node Nm in the
interaction table. Note, in our scheme Ni cannot differentiate between a deliberate drop
of packet and a packet drop due to valid reasons (like broken link or downtime of a
node). However for a malicious node, number of dropped packets will be high compare
to number of forwarded packets. This will lower the ratio PFCp−PFCn

PFCp+PFCn
and consequently

Ni’s trust on Nm will be low. Even if Nm keeps oscillating packet drop behavior, the
above ratio will be close to zero and does not help Nm to increase its trust. Also note
that Nm cannot fool Ni by dropping the actual data packet but forwarding the ECHO
message to Nj . Because Nj will not reply to the ECHO message unless it receives the
corresponding data packet.

Providing false recommendation. A malicious node Nm can disrupt the proper func-
tioning of the scheme by providing false recommendation about a node. Suppose the
malicious node Nm provides a “positive” rating about nodes Nk, Nl where both of them
are malicious nodes. Every time Ni encounters a trust-negative packet forwarding event
with any of them, Ni increases the ‘trust-negative rating counter’ RCn of Nm which low-
ers the ratio RCp−RCn

RCp+RCn
. Therefore, even if Nm behaves properly in the context of packet

forwarding, it cannot subvert the system by falsely ‘campaigning’ for some other mali-
cious nodes in the network. This also reduces the effect of collusion of malicious nodes

1 This is used in the case when the new cost is equal to the the current cost or has a slight
difference. The path that has less standard deviation is said to be more stable path.



Reliable Delivery of Event Data from Sensors to Actuators 89

to disrupt reliable routing. Similar action prevents the problem of ‘badmouthing’ i.e.,
when Nm provides false ‘negative’ rating about a ‘good’ node. This is possible because
the trust of the benign node is not dependent just on rating provided by Nm, but involves
other parameters on which Nm cannot have any control.

The above discussions show that the proposed trust-based routing scheme can reduce
the effect of malicious nodes – working as individual or as a part of collusion, in attacks
like arbitrary packet drops, false data injection and badmouthing.

5.2 Complexity Analysis

As mentioned earlier, a typical device in a pervasive computing environment has rel-
atively low resources in terms of storage and power. However, it needs to do some
computations to evaluate the trust and cost. It also needs to store some values for a spe-
cific duration. In this section we analyze the computation, communication, and storage
complexity of our protocol.

Computation complexity. In our approach the run-time complexity of the routing al-
gorithm is not affected to a great extent. Our scheme only changes the metric of comput-
ing the administrative distance between nodes in the pervasive computing environment.
It requires two additional computations for the running sum and the standard deviation.
These additional computations do not change the big-O complexity of running time of
the routing protocol as they are proportional to the size of the network. However, our
approach requires additional methods in order to evaluate the trust between nodes. All
these computations are simple arithmetic computations and have linear bounds. Conse-
quently these do not add much to the computation overhead of the proposed protocol.

Communication complexity. A node maintains view of connectivity and trust rela-
tionship by periodically transmitting a beacon packet. This packet carries the node in-
formation including sequence number, hardware address, hardware protocol, and trust
recommendation upon request. According to this scheme, there are 3 types of the bea-
con message – announcement, recommendation request, and recommendation reply.
When a node receives a beacon message, it identifies the sender, measures the strength
of the beacon signal (section 3.1), collects the trust information and recalculates the
trust value of the sender. If the beacon message is a recommendation reply and the
trustee is recognized by the receiver, it recomputes the trust value of the trustee with
this recommendation information about the trustee. If the beacon message is a recom-
mendation request message, and the trustee is recognized by the receiver, it prepares the
trust value of the trustee and sends it to the requester with the next beacon message. We
have estimated that a message 256 bits (32 bytes) long is sufficient to carry the beacon
message. In the following discussion we show that routing tables in our protocol require
only 154 bits for each record. Therefore, for a small network (say, with 50 nodes), the
nodes pass a routing table which is of size less than 1KB.

Storage complexity. In our protocol each node has to maintain a certain number of
tables. In this section we discuss the storage overhead that is required to store these



90 S. Chakraborty, N. Poolsappasit, and I. Ray

tables. For each neighbor, a truster node needs to maintain the following tables and list:
PT (properties table), PT node id

tmp (temporary property table), IT (interaction table), T T
(trust table), and the list RL. In any table the node id field takes 32 bits to store the
address. We express the values of SSavg in PT , SS in PT node id

tmp , and Properties, Rec-
ommendation, Interactions, Trust in TT using 16 bits in which the most significant bit
is the sign bit, the next bit expresses the exponent, and the rest 14 bits expresses the
fraction. We need only 1 bit to express the exponent as all these numbers are within
[−1,1]. Also, we get the precision of 1/214 for trust related values. In the interaction
table IT we use 8 bits to express each counter. The signaling factor is also expressed
using 8 bits. However, we use 32 bits to represent the cost in T T as it is not bounded.
Since the cost is always positive, we use first 16 bits for the exponent and the last 16
bits for the fraction. This gives the precision of 1/216 for the cost value which is ac-
curate enough for the environment. The figure 3(a) shows the structure of the tables
stored for each neighbor. From the figure we see that the tables PT, IT,TT require
56,64 and 128 bits respectively for each record. Each of these tables is maintained for
all the neighbors. If a node has m neighbors, then it requires m×228 bits. To store each
signal and stability information we need 24 bits. If we assume that a node receives s
signals within a window, then for each neighbor it needs 32 + s× 24 bits to store the
signal. Hence for all m neighbors the node requires m.(32 + s.24) bits. For the recom-
mendation list RL each record requires 48 bits and we assume at most k (k ≤ m) rec-
ommenders recommend a neighbor. Therefore for each neighbor it requires 32+k×48
bits and hence for m neighbors m.(32 + k.48) bits. Note, we have not considered the
pointer size here as it depends on the implementation. Hence for each neighbor a node
requires 228+(32+24.s)+(32+k.48)= 292+24.s+48.k bits and for all m neighbors

PFCpNode_id PFCn RC p RC nIT

32 8 8 8 8

Node_id
Reco_val

Node_id

Reco_val

Node_id

Reco_val

Node_id
RL

32
32 32 32

16 1616

Node_id Prop. Recom. Interact. Trust Cost

32 16 16 16 16 32

TT

Node_id SS avg SF

32 16  8

PT PT
Node_id
tmp

Node_id

SS SB

16 8

32

(a) Tables maintained for each neighbor

Destination Win# NH_id Costavg #Hops Sum2

32 8 32 32 8 32

RT

(b) Routing table of the node

Fig. 3. Storage structure of the tables maintained in each node



Reliable Delivery of Event Data from Sensors to Actuators 91

total storage required is m.(292 + 24.s+ 48.k) bits. This storage is not significant if we
assume that each node in the pervasive computing environment interacts with a small
number of neighbors. For example, in a pervasive computing environment topology
where each node interacts with at most 20 neighbors and at most 100 signals are re-
ceived within a time window win, then maximum number of bits required to store the
trust information is (292+24×100+48×20)×20= 3652×20 = 73040 bits ≈ 9KB.

Each node also stores a routing table whose structure is shown in the figure 3(b).
The Win# field keeps the last window number. #Hops stores the number of hops to the
destination. NH id field stores the address of the next hop towards destination. Costavg

and ∑2 fields store the cost metrics which are used in the route selection protocol. We
also need the metric ∑ for route selection. However we do not store this information in
the routing table as it can be derived from Costavg and #Hops. Each record of this table
requires 154 bits and hence size of the routing table for each node in the topology is
O(154n) where n is the number of nodes in the network. In our example if we assume
a small network with 50 nodes then each node require maximum 154×50 bits which is
≈ 0.9KB. Therefore all together a node requires only 10KB storage space to store the
information related to trust-based routing.

The above analyses show that our protocol is light-weight in terms of trust evaluation,
feedback management, message passing, and storage, thereby making it suitable for
pervasive computing environment.

6 Conclusion and Future Work

In this work, we address the problem of reliable delivery of event data in pervasive com-
puting environments to appropriate action points in order to support obligation policies.
The problem is modeled as a routing problem. We present a trust-based approach to
routing. Each node measures trustworthiness of its neighbor based on the neighbor’s
properties like signal strength and signal stability, a neighbor’s behavior in forwarding
packets from the node as well as in recommending other nodes, and a neighbor’s rat-
ing by other neighbors. We represent each link in the network as a trust relationship
with a numeric value between [−1,1]. This trust metric reflects reliability of a node as
a packet forwarder. We have proposed a cost metric, which is inversely related to the
trust metric, for each link in the network. We next adapt the distance vector routing
algorithm for routing in pervasive computing environments. The modified algorithm
uses the cost value assigned to each link to find the minimum average cost path from
source to destination. We have discussed how our protocol can reduce the effect of ma-
licious nodes. We have also shown that the scheme does not enhance the computation,
communication, and storage overhead to any significant extent.

A lot of work still remains to be done. The proposed scheme is generic in nature.
We need to modify specific ad hoc routing protocols using our metrics and compare the
results to evaluate the performance of the proposed scheme. We plan to run simulation
experiments to compare the routing results with existing ad hoc routing protocols. We
are also looking for other node properties like remaining battery power to extend the
‘properties’ parameter of the trust metric.



92 S. Chakraborty, N. Poolsappasit, and I. Ray

References

1. Balfanz, D., Smetters, D., Stewart, P., Wong, H.: Talking to Strangers: Authentication in
Adhoc Wireless Networks. In: Symposium on Network and Distributed Systems Security
(NDSS ’02), San Diego, California, USA (February 2002)

2. Chiang, C.C., Wu, H.K., Liu, W., Gerla, M.: Routing in Clustered Multihop, Mobile Wire-
less Networks with Fading Channel. In: 5th IEEE Singapore International Conference on
Networks (SICON’97), Kent Ridge, Singapore pp. 197–211 (April 1997)

3. Corson, M.S., Ephremides, A.: A Distributed Routing Algorithm for Mobile Wireless Net-
works. Wireless Networks 1(1), 61–82 (1995)

4. Gafni, E., Bertsekas, D.: Distributed Algorithms for Geneerating Loop-free Routes in Net-
work with Frequently Changing Topology. IEEE Transaction and Communication 29(1), 11–
15 (1981)

5. Gerla, M., Tsai, J.T.: Multicluster, Mobile, Multimedia Radio Network. Wireless Net-
works 1(3), 255–265 (1995)

6. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: A Secure On-Demand Routing Protocol for
Ad Hoc Networks. In: Proceedings of the 8th Annual International Conference on Mobile
Computing and Networking (MobiCom’02), Atlanta, Georgia, USA (September 2002)

7. Papadimitratos, P., Haas, Z.: Secure Data Transmission in Mobile Ad Hoc Networks. In:
ACM Workshop on Wireless Security (WiSe’03), San Diego, California, USA (September
2003)

8. Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance Vector
(DSDV) for Mobile Computers. In: Conference on Communication Architectures, Protocols
and Applications (SIGCOMM’94), London, UK, pp. 234–244 (August 1994)

9. Toh, C.K.: A Novel Distributed Routing Protocol To Support Ad hoc Mobile Computing.
In: IEEE 15th Annual International Phoenix Conference on Computers and Communication
(IPCCC’96), Phoenix, AZ, USA, pp. 480–486 (1996)

10. Zhou, L., Haas, Z.J.: Securing Ad Hoc Networks. IEEE Network 13(6), 24–30 (1999)
11. Zouridaki, C., Mark, B.L., Hejmo, M., Thomas, R.K.: A Quantitative Trust Establishment

Framework for Reliable Data Packet Delivery in MANETs. In: Proceedings of the 3rd ACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN’05), Alexandria, VA, USA,
pp. 1–10. ACM Press, NewYork (2005)

12. Awerbuch, B., Holmer, D., Nita-Rotaru, C., Rubens, H.: An On-Demand Secure Routing Pro-
tocol Resilient to Byzantine Failures. In: ACM Workshop on Wireless Security (WiSe’02),
Atlanta, GA, USA, pp. 21–30 (September 2002)

13. Dube, R., Rais, C.D., Wang, K.Y., Tripathi, S.K.: Signal Stability-Based Adaptive Routing
(SSA) for Ad Hoc Mobile Networks. IEEE Personal Communications Magazine 4(1), 36–45
(1997)

14. Yi, S., Naldurg, P., Kravets, R.: Security-Aware Ad Hoc Routing for Wireless Networks. In:
Proceedings of the 2nd ACM Symposium on Mobile Ad Hoc Networking and Computing
(MobiHOC 2001), Long Beach, CA, October 2001, pp. 299–302. ACM Press, New York
(2001)

15. Ray, I., Chakraborty, S.: A Vector Model of Trust for Developing Trustworthy Systems.
In: Samarati, P., Ryan, P.Y. A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 260–275. Springer, Heidelberg (2004)



Privacy-Preserving Schema Matching Using Mutual
Information�

Isabel F. Cruz1, Roberto Tamassia2, and Danfeng Yao2

1 Department of Computer Science
University of Illinois at Chicago

ifc@cs.uic.edu
2 Department of Computer Science

Brown University
{rt,dyao}@cs.brown.edu

The problem of schema or ontology matching is to define mappings among schema
or ontology elements. Such mappings are typically defined between two schemas or
two ontologies at a time. Ideally, using the defined mappings, one would be able to
issue a single query that will be rewritten automatically to all the databases, instead
of manually writing a query to each database. In a centrally mediated architecture a
query is written in terms of a global schema or ontology that integrates all the database
schemas or ontologies, while in a peer-to-peer architecture a query is written in terms
of the schema or of the ontology of any of the peer databases.

Automatic schema matching approaches can use only the schema, only the instances,
or a combination of both. Mappings can take into account not only concept properties
(e.g., string similarity), but also constraints (e.g., relationship cardinality) and schema
structure (e.g., graph similarity) [9].

Security and privacy issues arise in the context of data integration. For example, pre-
vious work looks into secure access to mediated data [2,4]. Other work has defined the
concept of minimal necessary information sharing that applies to querying: in comput-
ing the answer to a query, only the query result should be revealed [1]. Most matching
approaches rely on the fact that both schemas or ontologies are completely visible by
both parties. Clearly, this approach disregards security and privacy considerations. Even
within the same organization, different users have access to different database views.
It is, therefore, only natural to create automatic mechanisms by which mappings can
be established between a pair of schemas or ontologies, without each party needing to
reveal their whole metadata.

Clifton et al. discuss issues and identify research directions in privacy-preserving
data integration, including those that arise in schema matching [3]. More recently, Mitra
et al. look at the specific issue of privacy-preserving ontology matching [7,8]. In their
approach, terms in the ontologies and in the matching rules (which define the mappings)
are encrypted, so that the mediator does not see the actual terms. However, during the
ontology matching process, which is semi-automatic, a human expert has access to both
ontologies in cleartext (using a session key).

We propose an automatic privacy-preserving schema matching protocol. The result
of this protocol is the set of mappings between attributes in the schemas of the two

� This work was supported in part by the National Science Foundation under ITR awards IIS–
0326284, IIS–0324846, and IIS–0513553.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 93–94, 2007.
c© IFIP International Federation for Information Processing 2007



94 I.F. Cruz, R. Tamassia, and D. Yao

intervening parties. Most importantly, from a privacy-preserving viewpoint, we do not
use a third-party mediator and only those schema attributes that are matched are re-
vealed by a party to the other party.

Our approach to privacy-preserving schema matching is based on the instance-based
schema matching approach by Kang and Naughton [6], which considers the depen-
dencies among data instances, as measured by the mutual information among every
pair of attributes in each schema. For each schema, these dependencies are represented
as a weighted graph and matching between the two schemas relies on matching the
corresponding graphs. The mutual information between two attributes is a measure of
the amount of information that each attribute contains about the other attribute. Mu-
tual information can be computed using the entropies of the individual attributes and
the conditional entropies. We consider three types of mappings: one-to-one, onto, and
partial.

We develop an efficient privacy-preserving schema matching protocol using mutual
information of pair-wise attributes. The protocol is executed by two entities, each hav-
ing a private schema. The output of the protocol is a set of mappings between the
matching attributes of the two schemas. We prove that our privacy-preserving schema
matching protocol is secure against malicious adversaries for all mapping types. One
of the building blocks of our protocol is the privacy-preserving set intersection scheme
by Freedman, Nissim, and Pinkas [5]. We show that in the case where all the attribute
entropies in one of the schemas are different from one another, the protocol executes a
linear number of privacy-preserving set intersections.

References

1. Agrawal, R., Evfimievski, A.V., Srikant, R.: Information sharing across private databases. In:
Proc. ACM SIGMOD, pp. 86–97. ACM Press, New York (2003)

2. Candan, K.S., Jajodia, S., Subrahmanian, V.S.: Secure mediated databases. In: Proc. IEEE Int.
Conf. on Data Engineering, pp. 28–37. IEEE Computer Society Press, Los Alamitos (1996)

3. Clifton, C., Kantarcioglu, M., Doan, A., Schadow, G., Vaidya, J., Elmagarmid, A.K., Suciu,
D.: Privacy-preserving data integration and sharing. In: Proc. ACM Workshop on Research
Issues in Data Mining and Knowledge Discovery, pp. 19–26. ACM Press, New York (2004)

4. Dawson, S., Qian, S., Samarati, P.: Providing security and interoperation of heterogeneous
systems. Journal of Distributed and Parallel Databases 8(1), 119–145 (2000)

5. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (2004)

6. Kang, J., Naughton, J.F.: On schema matching with opaque column names and data values.
In: Proc. ACM SIGMOD, pp. 205–216. ACM Press, New York (2003)

7. Mitra, P., Liu, P., Pan, C.-C.: Privacy-preserving ontology mapping. In: Proc. Int. Workshop
on Contexts and Ontologies: Theory, Practice and Applications (2005)

8. Mitra, P., Pan, C.-C., Liu, P., Atluri, V.: Privacy-preserving semantic interoperation and access
control of heterogeneous databases. In: Proc. ACM Conf. on Computer and Communications
Security, pp. 66–77. ACM Press, New York (2006)

9. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)



The Interval Revocation Scheme for Broadcasting
Messages to Stateless Receivers

Anna Zych, Milan Petković, and Willem Jonker

Philips Research, Eindhoven, The Netherlands
anusiek@gmail.com,{milan.petkovic,willem.jonker}@philips.com

The Broadcast Encryption methods, often referred to as revocation schemes, allow data
to be efficiently broadcast to a dynamically changing group of users. A special case
is when the receivers are stateless [2,1]. Naor et al. [2] propose the Complete Subset
Method (CSM) and the Subset Difference Method (SDM). Asano [1] puts forth two
other methods, AM1 and AM2, which use public prime parameters to generate the
decryption keys. The efficiency of broadcast encryption methods is measured by three
parameters: (i) message size - the number of transmitted ciphertexts; (ii) storage at
receiver - the number of private keys each receiver is required to store; and (iii) key
derivation time - the computational overhead needed to access the decryption keys.

Let N = {u0, ..., uN−1} be the set of N receivers and R ⊂ N be a group of r users
whose decryption privileges should be revoked. The aim of a revocation scheme is to
allow a transmission of a message M to all users in such a way, that any user u ∈ N \R
can decrypt the message correctly, while even a coalition consisting of all members of
R can not decrypt it.

We propose a new revocation scheme for transmitting secret messages to stateless
receivers. In comparison to other schemes, our scheme improves private storage to one
key per receiver and the size of the message to the number of revoked receivers r,
while the time needed for deriving a key is of order of a logarithm of the number of
all receivers O(log N). We push the storage requirements to the public space of N2

parameters that are needed to derive the keys. We provide the comparison of CSM,
SDM, AM1 and AM2 methods with our method in Table 1.

Table 1. Performance of methods in [2,1]

CSM [2] SDM [2] AM1 [1] AM2 [1] Our method

Message size r log N
r

2r − 1 r( log N
r

loga
+ 1) r( log N

r
loga

+ 1) r

Storage at rec. log N log2 N
2 1 log N

log a
1

Key der. time - O(log N) O( (2a−1−1) log N
log a

) O(2a−1 − 1) O(log N)

A typical revocation scheme (compliant to the framework provided in [2]) defines a
collection of subsets X = S1, ..., Sw, Sj ⊆ N . Each subset Sj is assigned a long-lived
secret key Kj . Each user u ∈ Sj should be able to deduce Kj from secret information
assigned to her during the initiation phase. Deducing Kj however should be infeasible
for any coalition of users {u1 . . . ut} ⊂ N \ Sj . Given a revoked set R, the remaining

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 95–97, 2007.
c© IFIP International Federation for Information Processing 2007



96 A. Zych, M. Petković, and W. Jonker

Fig. 1. Example of a digraph restricted to intervals of size 1 . . . 4

users N \ R are partitioned into Si1 , . . . , Sim so that N \ R =
⋃m

j=1 Sij and a ses-
sion key K is encrypted m times with (hash values) of Ki1 , . . . Kim . Such header is
broadcasted together with the content encrypted with the session key. In the scheme’s
initiation phase, every receiver u is assigned private information I[u], which allows to
compute Kj for each group Sj such that u ∈ Sj .

Thus, a particular scheme is specified by the collection of subsets X , a method to
assign the keys to each subset of the collection, a method to cover non-revoked receivers
N \ R and a method that allows each user u ∈ Sj to compute her key Kj from I[u].

We propose here the interval revocation scheme. An interval I ⊂ N is a subset of N
containing consecutive elements: I[i, j] = {u(i mod N), u(i+1 mod N), ..., u(j mod N)}
For example for N = 6 interval I[2, 5] = {u2, u3, u4, u5}, but interval I[2, 1] =
{u2, u3, u4, u5, u0, u1}. The size of an interval is |I[i, j]| = j − i + 1 mod N . In-
terval I[i, i + s − 1] of size s can be split uniquely into two intervals of size � s

2� as
follows: I[i, i + s − 1] = I[i, i + � s

2� − 1] ∪ I[i + � s−1
2 �, i + s − 1] (1).

We define collection X as the collection of all intervals on N . Based on (1), each
interval I ∈ X of size s can be uniquely split into Ileft, Iright ∈ X of size � s

2�.
Furthermore, any two intervals never share the same set of children. A digraph rep-
resenting the child relation for N = 8 is presented in Figure 1, restricted to inter-
vals of size 1, 2, 3 and 4. Let R = {ui1 , ui2 , ..., uir} ⊂ N be the set of revoked re-
ceivers. The cover of N \ R consists of all intervals between revoked receivers. We
have: N \ R ⊂ I[ir + 1, i1 − 1] ∪

⋃r−1
j=1,ij+1>ij+1 I[ij + 1, ij+1 − 1], and we define

the cover as the set of intervals from this sum. Thus, the size of the cover is at most
r = |R|.

We apply the Diffie - Hellman (DH) key exchange protocol for key derivation. We
label each interval I ∈ X with its private key SI and its public key PI . The key of
interval I is a shared key obtained by applying the DH protocol on the private and
public keys of its children Ileft and Iright, treating children as the key exchanging
parties. To derive a key of a descendant interval, a receiver needs his own secret key, as
well as the public keys of the “other” children in the path to the target interval. Receiver
ui needs to store only the secret key SI assigned to interval I = I[i, i]. The number of
operations needed to derive one key from another is O(log N).

Given the achieved results, the direction for future research is to find an assignment
of public parameters that can be generated efficiently in on-the-fly manner. This would
allow to release the public space requirement for our scheme.



The Interval Revocation Scheme for Broadcasting Messages 97

References

1. Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (2002)

2. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and tracing schemes for stateless receivers.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)



Measuring the Overall Security of Network
Configurations Using Attack Graphs

Lingyu Wang1, Anoop Singhal2, and Sushil Jajodia3

1 Concordia Institute for Information Systems Engineering
Concordia University

Montreal, QC H3G 1M8, Canada
wang@ciise.concordia.ca

2 Computer Security Division, NIST
Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

3 Center for Secure Information Systems
George Mason University

Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

Abstract. Today’s computer systems face sophisticated intrusions during which
multiple vulnerabilities can be combined for reaching an attack goal. The overall
security of a network system cannot simply be determined based on the num-
ber of vulnerabilities. To quantitatively assess the security of networked systems,
one must first understand which and how vulnerabilities can be combined for an
attack. Such an understanding becomes possible with recent advances in model-
ing the composition of vulnerabilities as attack graphs. Based on our experiences
with attack graph analysis, we explore different concepts and issues on a metric
to quantify potential attacks. To accomplish this, we present an attack resistance
metric for assessing and comparing the security of different network configura-
tions. This paper describes the metric at an abstract level as two composition
operators with features for expressing additional constraints. We consider two
concrete cases. The first case assumes the domain of attack resistance to be real
number and the second case represents resistances as a set of initial security con-
ditions. We show that the proposed metric satisfies desired properties and that it
adheres to common sense. At the same time, it generalizes a previously proposed
metric that is also based on attack graphs. It is our belief that the proposed met-
ric will lead to novel quantitative approaches to vulnerability analysis, network
hardening, and attack responses.

1 Introduction

Today’s networked computer systems constitute the core component of information
technology infrastructures in enterprises and in critical infrastructures, such as power
grids, financial data systems, and emergency communication systems. Protecting such
systems against malicious intrusions is crucial to the economy and to our national se-
curity. Having a standard way for measuring various aspects of network security will
bring together users, vendors, and labs in specifying, implementing, and evaluating the
requirements and features of network security products. However, in spite of various

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 98–112, 2007.
c© IFIP International Federation for Information Processing 2007



Measuring the Overall Security of Network Configurations 99

efforts in standardizing security metric, a widely-accepted metric for network security
is still largely unavailable. This is partly due to the fact that most researchers are still
adopting a qualitative and imprecise view toward the evaluation of network security.
For example, typical issues addressed in current research may ask following questions.
Are all critical resources in a network secure (topological vulnerability analysis)? Can
a network be hardened to secure the given resources (network hardening)? How to stop
an ongoing intrusion from compromising given resources (attack response)?

The qualitative nature of these questions reflect the current focus on the qualita-
tive, rather than quantitative, study of network security. This focus implies the inherent
impreciseness in many research results and also indicates the need for more research
efforts on security metrics. However, the lack of research on quantitative aspects of
network security is natural. Assessing the overall security of a network requires a thor-
ough understanding of the interplay between host vulnerabilities. That is, which and
how vulnerabilities can be combined for an attack. Such an understanding is difficult
to obtain with existing security tools, such as vulnerability scanners and intrusion de-
tection systems. These tools typically focus on identifying individual vulnerabilities or
attacks, and are usually unaware of the relationships among vulnerabilities or attacks.

Recent advances in modeling compositions of vulnerabilities using attack graphs
(a review of related work will be given in the next section) indicate that the research
has progressed to a point where the quantitative study of network security is critical
and, at the same time, possible. Attack graphs supplement vulnerability scanners with
the missing information about relationships among vulnerabilities. Analyzing the cor-
related vulnerabilities thus provides a clear picture about what attacks might happen in
a network and about their consequences. Attack graphs thus allow us to consider po-
tential attacks in a particular context relevant to the given network. The current work is
based on our past experiences with attack graph analysis [12,15,16,21,29,30,31,32] and
a practical tool, the Topological Vulnerability Analysis (TVA) system, with the capa-
bility of modeling more than 37,000 vulnerabilities taken from 24 information sources
including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [12]. The presence of such
a powerful tool demonstrates the practicality of using attack graphs as the basis for
measuring network security.

Instead of measuring individual vulnerabilities and then wondering about their com-
bined effect, this paper measures the overall security of a network using the context
provided by an attack graph. Such a capability will enable us to answer important ques-
tions like (but not limited to): How much effort and time will it take to compromise a
critical resource under each possible network configuration? Answers to such questions
will allow system administrators to choose the optimal configuration that is the most re-
sistant to potential attacks. More specifically, we propose an attack resistance metric for
assessing and comparing the security of different network configurations. The metric is
based on intuitive properties derived from common sense. For example, our metric will
indicate reduced security when more attack paths exist, whereas it indicates increased
security for longer and more difficult paths. To make the metric broadly applicable, we
first describe it at an abstract level as two composition operators with functions that
allow for expressing additional dependency relationship between resistances. We then
consider two concrete cases. The first assumes the domain of attack resistance to be



100 L. Wang, A. Singhal, and S. Jajodia

real number and the second represents resistances as sets of initial security conditions.
For the first case, we propose to use operators that are analogous to the ones used in
computing the resistance of a series and parallel circuit. We study additional issues that
arise due to the unique properties of attack graphs. For the second case, we show that a
previously proposed metric [21] is equivalent to our metric under certain conditions.

The rest of the paper is organized as follows. Section 2 outlines a framework for
defining security metrics using attack graphs. Section 3 presents the attack resistance
metric. Section 4 reviews related work. Finally, Section 5 concludes the paper.

2 A Framework for Defining Security Metrics Using Attack
Graphs

This section first reviews the attack graph model and then discusses intuitions behind
the proposed metric.

2.1 Attack Graph Model

We adopt the attack graph model used in the Topological Vulnerability Analysis
tool [12], which is one of the most advanced utilities for generating and analyzing
attack graphs. This attack graph model is similar in nature to the earlier ones based
on modified model checking [26], but it avoids the potential combinatorial explosion
faced by the latter. More specifically, it makes a monotonicity assumption stating an
attacker never relinquishes an obtained capability [1]. An attack graph can thus record
the dependency relationship between exploits instead of recording all attack paths. The
resulting attack graph has no duplicate vertices and hence has a polynomial size in the
number of vulnerabilities multiplied by the number of connected pairs of hosts.

In our model, an Attack graph is a directed graph representing prior knowledge about
vulnerabilities, their dependencies, and network connectivity. The vertices of an attack
graph are divided into two categories, namely, exploits and security conditions (or sim-
ply conditions when no confusion is possible). First, exploits are actions taken by at-
tackers on one or more hosts in order to take advantage of existing vulnerabilities. We
denote an exploit as a predicate. For example, an exploit involving three hosts can be
denoted using v(hs, hm, hd), which indicates an exploitation of the vulnerability v on
the destination host hd, initiated from the source host hs, through an intermediate host
hm. Similarly, we write v(hs, hd) or v(h), respectively, for exploits involving two hosts
(no intermediate host) or one (local) host.

Second, a security condition is a property of the system or network that is relevant to
some exploits. A condition is relevant to an exploit if it is either required for executing
the exploit or satisfied by executing the exploit. We also use a predicate to represent
a condition involving one or more hosts. For example, c(hs, hd) indicates a security-
related condition c involving the source host hs and the destination host hd. Similarly,
a condition that only involves a single host can be written as c(h). Examples of security
conditions include the existence of a vulnerability, the existence of network connec-
tivity or trust relationship between two hosts. It is worth noting that an attack graph
usually includes exploits and conditions corresponding to normal services or function-
ality. Such services are included because they may help attackers in escalating their



Measuring the Overall Security of Network Configurations 101

privileges when combined with other exploits, although they are not intended for that
purpose. On the other hand, this fact also implies that not all exploits can be removed
in hardening a network, so measuring the relative security of different configurations
becomes important.

Directed edges in an attack graph inter-connect exploits with conditions. No edge
directly goes between two exploits or between two conditions. First, an edge from a
condition to an exploit denotes the require relation, which means the exploit cannot be
executed unless the condition is satisfied. Second, an edge pointing from an exploit to a
condition denotes the imply relation, which means executing the exploit will satisfy the
condition. For example, an exploit typically requires at least two conditions, that is the
existence of the vulnerability (which could be a normal service) on the destination host
and the network connectivity between the two hosts. We formally characterize attack
graphs in Definition 1.

Definition 1. Given a set of exploits E , a set of conditions C, and two relations
require ⊆ C × E and imply ⊆ E × C, an attack graph G is the directed graph
G(E ∪ C, require∪ imply) (E ∪ C is the vertex set and require∪ imply the edge set).

One important semantics of attack graphs is that the require relation is conjunctive,
whereas the imply relation is disjunctive. More precisely, an exploit cannot be realized
until all of its required conditions have been satisfied, whereas a condition is satisfied if
any of the realized exploits implies that condition. Sometimes only exploits in an attack
graph are of interest, we thus remove conditions to obtain an exploit dependency graph.
However, in such a graph, edges between exploits may represent both the conjunctive
and disjunctive relationship. For example, in an attack graph, if two exploits e1 and e2

both imply the same condition c1, which is required by another exploit e3, then e3 can
be executed after executing either e1 or e2 (since c1 will be satisfied by any of them).
On the other hand, if e1 implies c1, e2 implies a different condition c2, and both c1 and
c2 are required by e3, then e3 cannot be executed before both e1 and e2 are. We shall
need this observation later in the paper.

2.2 Motivating Example

To build intuitions about properties that a security metric should satisfy, we consider the
well-known attack scenario as shown on the left hand side of Figure 1 (notice that this
is an overly simplified example for illustration purposes, and our metric and techniques
are intended for more complicated cases where results cannot be obtained through ob-
servations). In this attack graph, exploits are depicted in ovals and conditions in clear
text. The critical condition that needs to be guarded is shown in a shaded oval. The
attack graph basically indicates that an attacker on host 0 can obtain user privilege on
host 1, either using an SSH buffer overflow attack or through the trust relationship es-
tablished by uploading the .rhost file through FTP. The attacker can use the latter trick
to obtain user privilege on host 2, either directly from host 0 or using host 1 as an inter-
mediate stepping stone. The attacking goal, that is the root privilege on host 2, can then
be obtained using a local buffer overflow attack.

The right hand side of Figure 1 shows the exploit dependency graph. It is worth not-
ing that in this specific case only disjunctive dependency relationship exists between



102 L. Wang, A. Singhal, and S. Jajodia

ftp(0,2)

ftp_rhosts(0,2)

ftp(0,1)

ftp_rhosts(0,1)

sshd(0,1)

sshd_bof(0,1)

trust(1,0)

rsh(0,1)

trust(2,0)

rsh(0,2)

user(1)

ftp_rhosts(1,2)

rsh(1,2)

ftp(1,2)

trust(2,1)

ftp(2,1)

ftp_rhosts(2,1)

user(2)

local_bof(2,2) sshd_bof(2,1)

rsh(2,1)

sshd(2,1)

trust(1,2)root(2) root(2)

ftp_rhosts(0,2)

rsh(0,2)

ftp_rhosts(0,1)

rsh(0,1)

local_bof(2,2)

ftp_rhosts(1,2)

sshd_bof(0,1)

rsh(1,2)

Fig. 1. An Example of Attack Graph and Exploit Dependency Graph

exploits. For example, there are two alternative ways to reach the exploit ftp rhosts
(1, 2) and similarly two ways to reach the exploit local bof(2, 2). In general, the de-
pendency relationship between exploits can be both disjunctive and conjunctive, and
the graph notation is thus not sufficient to distinguish between the two. Later we shall
introduce a special notation for this purpose.

We make several observations in Figure 1. First, the two loops via exploit ftp rhosts
(2, 1) and sshd bof(2, 1) are both removed. These loops both allow the attacker to
obtain user privilege on host 1 for the second time, after the privilege has already been
obtained (otherwise the two exploits cannot be executed). An attacker can certainly
make such redundant attacking effort at will, but a security metric should assume the
most efficient attackers and indicate the security of a network in the worst-case scenario.
That is, a metric should never yield a value that is greater than the smallest attacking
effort required for reaching the attack goal.



Measuring the Overall Security of Network Configurations 103

Second, the exploits in Figure 1 clearly have different difficulty in terms of the time
and effort required for their execution. For example, the ftp rhosts and rsh exploits
both take advantage of normal services in a clever way, and they usually do not require
much time or effort if the attacker has the basic knowledge about the attack (between
the two type of exploits, rsh may be slightly easier than ftp rhosts in the sense that
the latter requires crafting the .rhost file). On the other hand, both the sshd bof and the
local bof are buffer overflow attacks, which require significantly more knowledge and
time than the previous two because a buffer overflow attack usually requires brute force
effort to determine proper parameters. This example thus shows different exploits have
different difficulties in terms of effort and time required for their execution.

Third, there are three possible attack paths (that is, sequences of attacks) reaching the
attack goal, as shown on the right hand side of Figure 1, the left path (that is, the one
through ftp rhosts(0, 2) and rsh(0, 2)) requires the smallest amount of effort. The
middle path requires slightly more effort since it involves both host 1 and host 2. The
right path demands the most effort because it requires an additional buffer overflow
attack sshd bof(0, 1). Recall the above argument that security should be measured
as the smallest effort required to reach the goal. It seems that the left path is a good
candidate to be used as the measure of overall security. However, it is important to
notice that when multiple paths coexist in an attack graph, reaching the attack goal
is actually easier than if only one of these paths exists (even if the path requires the
smallest amount of effort). Intuitively, more attack opportunities mean less security,
because attackers will have a better chance to reach the attack goal. In this specific
case, even though the middle and the right paths are more difficult than the left one,
they nevertheless represent possibilities for attacks and thus they do reduce the overall
security of the network. That is, multiple attack paths together are less secure than any
of the paths alone.

Finally, assuming the middle attack path is followed by an attacker, it can be argued
that the exploit ftp rhosts(1, 2) may be slightly easier than its predecessor ftp rhosts
(0, 1). To launch the same type of attack for the second time, the attacker will benefit
from his/her experiences and tools that have been accumulated while launching the at-
tack for the first time. It is, however, not possible to add an edge between these two
exploits in attack graph, because the exploit ftp rhosts(1, 2) does not directly depend
on ftp rhosts(0, 1) (with rsh(0, 1) in the middle). This implies that an additional re-
lation is needed to encode such dependency relationship between exploits, which is
different from the imply or require relations already encoded in attack graphs. In an-
other word, executing an exploit may change the difficulty of executing another exploit,
even if the two do not directly depend on each other in the attack graph.

The above requirements are largely common sense that should be satisfied by a se-
curity metric. The rest of the paper proposes a security metric based on the attack graph
model by taking these requirements into consideration.

3 An Attack Resistance Metric

This section proposes an attack resistance metric based on the attack graph model. We
first discuss the metric in a generic form. We then discuss two concrete cases to illustrate



104 L. Wang, A. Singhal, and S. Jajodia

the metric in more details. We address various issues encountered while computing the
metric from a given attack graph.

3.1 A Generic Framework

We propose to measure the attack resistance of a network configuration as the compo-
sition of measures of individual exploits. Ideally, the resistance of each type of exploits
in terms of effort and time should be represented as a total order, such as using real
numbers (the next section considers how individual resistances can be combined when
attack resistance is represented as a real number). Unfortunately, although clearly de-
sired, the information and resources required by this ideal situation are limited [17]. It
is, however, usually possible to estimate an approximate ordering or a partial ordering
on the domain of attack resistance. We shall also consider another case where the resis-
tance of individual exploit is simply the set of initial conditions (that is, conditions not
implied by other exploits).

Different applications may define the attack resistance of individual exploits in sig-
nificantly different ways. To make our metric broadly applicable, we describe the met-
ric in a generic form while leaving the individual measures uninterpreted. Central to
the model are two types of composition operators, denoted as ⊕ and ⊗. The two op-
erators correspond to the disjunctive and conjunctive dependency relationship between
exploits in an attack graph, respectively. Based on the intuitive properties mentioned in
Section 2.2, the two operators should satisfy that r1 ⊕ r2 is no greater than r1 or r2,
whereas r1⊗r2 is no less than r1 and r2, with respect to a given ordering on the domain
of attack resistance.

In addition to the two composition operators, we introduce a function R() that maps
a set of exploits to another exploit and its resistance value. The function is intended to
capture a special kind of dependency relationship between exploits. That is, executing
some exploits may affect the resistance value of another exploit, even though the latter
cannot be executed yet. In most cases, this effect will be to assign a lower resistance
value to the affected exploit. For example, exploits involving the same vulnerability
should be related together using this function such that successfully exploiting one in-
stance of the vulnerability reduces the resistance of others due to the attacker’s accumu-
lated experiences and tools. We shall also show that this function is useful in handling
the non-tree structure of attack graphs. We summarize the model in Definition 2.

Definition 2. Given an attack graph G(E ∪ C, require ∪ imply) with attack goals
g ⊆ C, the attack resistance metric is composed of

– A total function r() : E → D,
– a total function R() : E → D,
– an operator ⊕ : D ×D → D,
– an operator ⊗ : D ×D → D, and
– a function R() : E → E ×D.

We call the set D the domain of resistance, r(e) the individual resistance (or simply
resistance) of an exploit e, R(e) the cumulative resistance of e.



Measuring the Overall Security of Network Configurations 105

The main tasks in implementing this metric for a specific application is to populate the
individual resistance by defining the function r(), to determine suitable operators ⊕ and
⊗, to capture additional dependency relationships between exploits using the function
R, and finally to decide how the cumulative resistance function R() should be computed
based on these information. The cumulative resistance of each attack goal then provides
a quantitative measure as how likely that attack goal can be achieved, or equivalently,
how vulnerable the corresponding resource is under a given network configuration.

3.2 Attack Resistance as Real Numbers

We now consider a concrete case where the domain of resistance D is the non-negative
real number. Analogous to the resistance of a series and parallel circuit, we define ⊕
as the reciprocal of the sum of the reciprocal of individual resistance values. That is,

1
r1⊕r2

= 1
r1

+ 1
r2

. The operator ⊗ is simply addition. Recall our discussions about
the relative difficulty of different type of exploits in Section 2.2. Suppose we assign
the value 10 to be the resistance of each sshd bof and local bof , the value 2 and 1
to each ftp rhosts and rsh exploit, respectively, as depicted on the left hand side of
Figure 2. The cumulative resistances can then be computed as follows, where r() stands
for the individual resistance and R() the cumulative resistance (we shall not consider
the function R for the time being). The final results are shown in the right hand side of
Figure 2.

– R(rsh(0, 1)) = r(ftp rhosts(0, 1)) + r(rsh(0, 1)) = 2 + 1 = 3
– R(ftp rhosts(1, 2)) = 1/(1/R(rsh(0, 1)) + 1/r(sshd bof(0, 1)))+

r(ftp rhosts(1, 2)) = 1/(1/3 + 1/10) + 2 ≈ 4.3
– R(rsh(1, 2)) = R(ftp rhosts(1, 2)) + r(rsh(1, 2)) ≈ 4.3 + 1 = 5.3
– R(rsh(0, 2)) = r(ftp rhosts(0, 2)) + r(rsh(0, 2)) = 2 + 1 = 3
– R(local bof(2, 2)) = 1/(1/R(rsh(0, 2)) + 1/R(rsh(1, 2)))+

r(local bof(2, 2)) = 1/(1/3 + 1/5.3) + 10 ≈ 11.9

According to our discussions in Section 2.2, the cumulative resistance of the whole
network should be smaller than the cumulative resistance of each possible attack path.
The cumulative resistance for each attack path reaching the goal can be computed by
simply adding (that is, the ⊗ operator) individual resistance values along the path. The
results for the three attack paths in Figure 2 are 13, 16, and 23, from left to right. Clearly,
the accumulative resistance of the whole network, 11.9, is indeed smaller than any of
the three values, satisfying the intuitive requirements given in Section 2.2. We may also
notice that the composition (using the operator ⊕) of these three resistance values is
about 5.5, which is less than the computed resistance 11.9. This reflects the fact that the
three paths are not disjoint. The value 5.4 is computed under the implicit assumption
that the three paths are disjoint, which is not the case here. Intuitively, having common
exploits among different paths may increase the overall attack resistance, because the
attacker must execute these exploits no matter what path they follow. Our metric nat-
urally takes into consideration the overlapping portion of the paths. Above discussions
also indicate that cumulative resistances can be computed in a breadth-first manner,
which takes time O(| E |2).



106 L. Wang, A. Singhal, and S. Jajodia

Individual Resistance Cumulative Resistance

 

ftp_rhosts(0,1) 

rsh(0,1) Sshd_bof(0,1) 

ftp_rhosts(1,2) 

rsh(1,2) 

ftp_rhosts(0,2) 

rsh(0,2) 

local_bof(2,2) 

root(2) 

2 

1 10

2 

1 1 

2 

10 

 

ftp_rhosts(0,1) 

rsh(0,1) Sshd_bof(0,1) 

ftp_rhosts(1,2) 

rsh(1,2) 

ftp_rhosts(0,2) 

rsh(0,2) 

local_bof(2,2) 

root(2) 

3 10 

2 

3 ≈5.3 

≈4.3 

≈11.9 

2 

Fig. 2. An Example of Attack Resistance in Real Number

The function R Next we consider the function R, that is the effect of executed exploits
on the individual resistance of other exploits. The previous example is not sufficient for
this purpose. Instead, we consider the abstract example given in the left hand side of
Figure 3, where the dotted lines represent the following facts. Between exploit 1 and
exploit 2, executing one will change the other’s individual resistance from the original
value x to a new value y. Similar relationships exist between exploit 2 and exploit 3, and
between exploit 1 and exploit 6. Notice the special notation between exploits 2, 5, and
7, which denotes the conjunctive relationship between exploits 2 and 5. That is, exploit
7 cannot be executed unless both exploit 2 and 5 are already executed (this may happen
when exploit 2 and exploit 5 both imply different conditions, and both conditions are
required by the exploit 7).

The left hand side of Figure 3 shows three possibilities in dealing with the function
R. First, the effect of R(6) = (1, y) (that is, executing exploit 6 will change the indi-
vidual resistance of exploit 1 as r(1) = y) can be safely ignored, because exploit 6 can
never be executed before executing exploit 1. On the other hand, the individual resis-
tance r(6) can now simply be changed from x to y, because any execution of exploit
6 implies that exploit 1 has already been executed (which in turn implies a change in
r(6)). Second, there is no naturally induced order between the execution of the exploit
1 and that of exploit 2, so they can be executed in any order. Intuitively, these two ex-
ploits meet at exploit 6 in the sense that we combine these two resistance values in the
same formula when we compute R(6) = 1/(1/(r(1)+ r(4)) +1/r(2)) + r(6). At that
point, the last composition operator used is ⊕ (that is, the exploit 4 and exploit 2 are



Measuring the Overall Security of Network Configurations 107

Dependency Between Individual Resistances Dealing With the Non-Tree Structure
 

1 

4 

2 

6 7 

5 

3 

x x x
y y y y 

x 

y 

y 

a

b 

c 

 

1 

4 

2a 

6 7 

5 

3 

x x x 
0 0 

x 

a

b 

c 

2b 

x 

Fig. 3. Examples of the Function R

disjunctive). We can then conclude that any minimal attack path (that is, an attack path
with no proper subsets being a valid attack path) including exploit 6 will include either
exploit 1 or exploit 2, but not both. The effect of R(1) = (2, y) and R(2) = (1, y) can
thus be ignored.

Third, when exploit 2 and exploit 3 meet at exploit 7 (when we compute R(7) =
r(2) + r(3) + r(5) + r(7)), the last composition operator we use is ⊗. This reflects the
fact that the exploits 2 and 3 must both be executed in order to reach exploit 7, although
the executions can be in any order. If exploit 2 is executed before exploit 3, then we have
r(2) = x and r(3) = y; if exploit 3 is first executed, we have r(3) = x and r(2) = y.
However, we can never have r(2) = r(3) = y because a change only happens after an
execution. In this case, we compute the cumulative resistance of exploit 7 for both cases:
r(2) = x, r(3) = y and r(3) = x, r(2) = y. We then choose the smaller result as the
cumulative resistance of exploit 7. This choice ensures that the computed cumulative
resistance will be no greater than the cumulative resistance computed by following any
attack path leading to exploit 7. The above discussion covers all possible cases, because
when two exploits eventually meet (that is, their resistances are combined), they must
meet either at one of themselves (the case of the exploit 1 and exploit 6), or at a different
exploit.

The Non-Tree Structure of Attack Graphs. Unlike the nice tree structure in the attack
graph in Figure 1, it can be noticed that on the left hand side of Figure 3 both exploit 6
and exploit 7 depend on exploit 2, and the graph is not a tree. This is relevant because the
cumulative resistance of this network should be different from another network where
exploit 6 and exploit 7 depend on two different exploits. This issue, however, can be
easily handled using the function R as follows. We split exploit 2 into two identical
copies, say, exploit 2a and exploit 2b, as shown on the right hand side of Figure 3. We
then need the constraint that the resistance of these two exploits will never be added
in computing a cumulative resistance, because they actually represent a single exploit.
This constraint can be easily modeled as R(2a) = (2b, 0) and R(2b) = (2a, 0). We
can now compute the metric as usual since the exploit dependency graph becomes a
tree.



108 L. Wang, A. Singhal, and S. Jajodia

3.3 Attack Resistance as Sets of Initial Conditions

We consider another concrete case where each exploit’s individual attack resistance is
the set of initial conditions (that is, conditions not implied by any exploit) required by
that exploit. This measure can be easily obtained from the attack graph itself. The attack
resistance in terms of the set of initial conditions has a very different meaning from
the attack resistance discussed in the previous section. Here the resistance indicates
conditions that must be satisfied before an intrusion is possible, instead of the effort
and time spent during the actual intrusion. A weakest-adversary metric was recently
proposed based on the set of initial conditions [21]. Different network configurations
can be ordered based on their relative security, if a subset relationship exists between
the sets of initial conditions required for reaching attack goals in the two attack graphs.
We show that this metric is equivalent to a special case of our metric by using the set of
initial conditions as individual resistance.

 

ftp_rhosts(0,2) 

ftp(0,2) vul_ftp(2) 

sh(0) 

trust(2,0) 

rsh_login(0,2) 

rsh(0,2) 

sh(2) 

local_bof(2) 

root(2) 

 

ftp_rhosts(1,2) 

ftp(1,2) vul_ftp(2) 

sh(1) 

sendmail_bof(0,1) 

sh(0) sendmail(0,1) vul_sendmail(1) 

trust(2,1) 

rsh_login(1,2) 

rsh(1,2) 

sh(2) 

local_bof(2) 

root(2) 

Fig. 4. Two Comparable Network Configurations

Figure 4 shows two network configurations that are comparable based on initial con-
ditions [21]. The left hand side depicts an attack scenario similar to the one in Figure 1
but only involves two hosts. The right hand side shows a different scenario where the
attacker is forced by a firewall to exploit the sendmail buffer overflow vulnerability on a
third host as an intermediate step. It can be observed that in both cases the goal requires
all the exploits to be executed, that is all the dependency relationship is conjunctive.
We use set union as the operator ⊗ (we do not need the ⊕ operator in this case). The
cumulative resistance of the exploit local bof(2) is thus simply the collection of all
initial conditions in both cases. Clearly, the resistance in the first case is a proper subset
of the resistance in the second case, and hence the second case has more resistance to
potential attacks. This result is the same as reported previously [21].

4 Related Work

An overview of various issues relevant to security metric is recently given in the pro-
ceedings of the 2001 Workshop on Information Security System Scoring and Ranking



Measuring the Overall Security of Network Configurations 109

[2]. The efforts by NIST on standardizing security metric are reflected in the Technol-
ogy Assessment: Methods for Measuring the Level of Computer Security [18] and more
recently in the Security Metric Guide for Information Technology Systems [27], which
describes the current state of practice of security metrics, such as that required by the
Federal Information Security Management Act (FISMA). Another overview of many
aspects of network security metric is given in [10].

Closest to our work, Dacier et. al describe intuitive properties derived from common
sense, which should be satisfied by any security metric [7,8,19]. They suggest to assess
the difficulty of attacks in terms of time and effort spent by attackers. They assume an
exponential distribution for an attacker’s success rate over time. Based on this Markov
model, they propose to use the MTTF (Mean Time to Failure) to measure the security
of a network. They discuss simple cases of combining such measures but do not study
the general case. We borrow some of the intuitive properties stated by them, but we use
a different way for combining individual measures into the overall attack resistance and
we consider a more general case represented by attack graphs.

Our approach of using additional functions for modeling the effect of executed ex-
ploits on the resistance value of other exploits is inspired by the work by Balzarotti et.
al [3]. However, their work focuses on computing the minimum effort required for exe-
cuting each exploit, whereas our work computes the overall security of a network with
respect to given critical resources. Also, their work does not take into account the kind
of dependency that we model using additional functions. Such dependency reduces the
difficulty of executing an exploit while not directly enabling it to be exploitable. The
work by Pamula et. al introduces a metric based on attack graph [21], in this paper we
show that their metric is a special case of ours under certain conditions.

A qualitative measurement of the risk of a network is given based on various forms
of the exploitability (that is, whether it is possible to compromise the network) [4].
Another series of work compares software for their relative vulnerabilities to attacks
using a fixed set of dimensions, namely, attack surface [11,20,13]. The work by Mehta
et. al borrows Google’s PageRank methodology to rank exploits in an attack graph [14].
Their technique is especially suitable for threat models of worms or other malicious
software that spread in a random way in a large network. Our metric has a different
threat model, that is attackers have memory and are rational, so in most cases they will
not follow a random model.

Metrics for other perspectives of security, especially trust in distributed systems, are
relevant to our research. For example, Beth et. al proposed a metric for measuring the
trust in an identity established through overlapping chains of certificates [5]. The way
they combine values of trust in each certificate into an overall value of trust proves to be
useful in our study. Similarly, the design principles given by Reiter et. al are intended
for developing metric of trust, but we found these principles applicable to our study as
well [24]. The formal logic language introduced for measuring risks in trust delegation
in the RT framework inspires us to describe our metric using abstract operators [6].

To obtain attack graphs, topological vulnerability analysis evaluates potential multi-
step intrusions based on knowledge about vulnerabilities [7,9,19,22,33,28]. Such analy-
ses can be either forward starting from the initial state [22,28] or backward from the
goal state [25,26]. Model checking was first used to analyze whether a given goal state



110 L. Wang, A. Singhal, and S. Jajodia

is reachable from the initial state [23,25] and later used to enumerate all possible se-
quences of attacks between the two states [26]. To avoid the exponential explosion in
the number of such explicit attack sequences, a more compact representation of attack
graphs was proposed based on the monotonicity assumption saying an attacker never
needs to relinquish any obtained capability [1]. On the attack response front, attack
graphs have been used for the correlation of attacks, the hypotheses of alerts missed by
IDSs, and the prediction of possible future attacks [29,30].

5 Conclusion

Presently, qualitative and imprecise arguments are usually the basis for making deci-
sions in securing a network. These arguments can mislead the decision making and as
a result cause the reconfigured network to be in fact less secure. This paper described a
novel attack graph-based attack resistance metric for measuring the relative security of
network configurations. The main components of our metric are two composition oper-
ators for computing the cumulative attack resistance from given individual resistances.
An additional function allowed the metric to take into consideration the dependency
between individual attack resistances. We demonstrated the metric through two con-
crete cases. First, attack resistance was modeled as a real number, and the case was
analogous to computing the resistance of a series-parallel circuit. We showed that the
proposed metric satisfied intuitive requirements mentioned in the literature. Second,
attack resistance was defined as the set of initial conditions required by each exploit.
We showed that our metric in this case resembled the weakest-adversary metric previ-
ously proposed. It is our belief that the proposed metric will lead to novel quantitative
approaches to vulnerability analysis, network hardening, and attack response.

Acknowledgements. This material is based upon work supported by National Insti-
tute of Standards and Technology Computer Security Division; by Homeland Secu-
rity Advanced Research Projects Agency under the contract FA8750-05-C-0212 ad-
ministered by the Air Force Research Laboratory/Rome; by Air Force Research Lab-
oratory/Rome under the contract FA8750-06-C-0246; by Army Research Office un-
der grant W911NF-05-1-0374; by Federal Aviation Administration under the contract
DTFAWA-04-P-00278/0001; by National Science Foundation under grants
CT-0627493, IIS-0242237, and IIS-0430402; and by Natural Sciences and Engineer-
ing Research Council of Canada under Discovery Grant. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsoring organizations. The authors are
grateful to the anonymous reviewers for their valuable comments.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analy-
sis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS’02), pp. 217–224. ACM Press, New York (2002)

2. Applied Computer Security Associates. In: Workshop on Information Security System Scor-
ing and Ranking (2001)



Measuring the Overall Security of Network Configurations 111

3. Balzarotti, D., Monga, M., Sicari, S.: Assessing the risk of using vulnerable components. In:
Proceedings of the 1st Workshop on Quality of Protection (2005)

4. Balzarotti, P., Monga, M., Sicari, S.: Assessing the risk of using vulnerable components. In:
Proceedings of the 2nd ACM workshop on Quality of protection, ACM Press, New York
(2005)

5. Beth, T., Borcherding, M., Klein, B.: Valuation of trust in open networks. In: Gollmann, D.
(ed.) ESORICS 1994. LNCS, vol. 875. pp. 3–18. Springer, Heidelberg (1994)

6. Chapin, P., Skalka, C., Wang, X.S.: Risk assessment in distributed authorization. In: 3rd
ACM Workshop on Formal Methods in Security Engineering: From Specifications to Code,
ACM Press, New York (2005)

7. Dacier, M.: Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut Na-
tional Polytechnique de Toulouse (1994)

8. Dacier, M., Deswarte, Y., Kaaniche, M.: Quantitative assessment of operational security:
Models and tools. Technical Report 96493 (1996)

9. Farmer, D., Spafford, E.H.: The COPS security checker system. In: USENIX Summer, pp.
165–170 (1990)

10. Hoo, K.S.: Metrics of network security. White Paper (2004)
11. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Workshop on Ad-

vanced Developments in Software and Systems Security (2003)
12. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnerability. In:

Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats: Issues, Approaches
and Challenges, Kluwer Academic Publishers, Dordrecht (2003)

13. Manadhata, K., Wing, J.M., Flynn, M.A., McQueen, M.A.: Measuring the attack surfaces of
two ftp daemons. In: Quality of Protection Workshop (2006)

14. Mehta, V., Bartzis, C., Zhu, H., Clarke, E.M., Wing, J.M.: Ranking attack graphs. In: Recent
Advances in Intrusion Detection (2006)

15. Noel, S., Jajodia, S.: Correlating intrusion events and building attack scenarios through at-
tack graph distance. In: Yew, P.-C., Xue, J. (eds.) ACSAC 2004. LNCS, vol. 3189, Springer,
Heidelberg (2004)

16. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network hardening
via exploit dependency grpahs. In: Omondi, A.R., Sedukhin, S. (eds.) ACSAC 2003. LNCS,
vol. 2823, Springer, Heidelberg (2003)

17. National Institute of Standards and Technology (Computer Security Division) (2007),
http://nvd.nist.gov/

18. National Institute of Standards and Technology. Technology assessment: Methods for mea-
suring the level of computer security. NIST Special Publication, pp. 500-133 (1985)

19. Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evaluation tools for
monitoring operational security. IEEE Trans. Software Eng. 25(5), 633–650 (1999)

20. Wing, J., Manadhata, P.: Measuring a system’s attack surface. Technical Report CMU-CS-
04-102 (2004)

21. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security metric for net-
work configuration security analysis. In: Proceedings of the 2nd ACM workshop on Quality
of protection, pp. 31–38. ACM Press, New York (2006)

22. Phillips, C., Swiler, L.: A graph-based system for network-vulnerability analysis. In: Pro-
ceedings of the New Security Paradigms Workshop (NSPW’98) (1998)

23. Ramakrishnan, C.R., Sekar, R.: Model-based analysis of configuration vulnerabilities. Jour-
nal of Computer Security 10(1/2), 189–209 (2002)

24. Reiter, M.K., Stubblebine, S.G.: Authentication metric analysis and design. ACM Transac-
tions on Information and System Security 2(2), 138–158, 5 (1999)

http://nvd.nist.gov/


112 L. Wang, A. Singhal, and S. Jajodia

25. Ritchey, R., Ammann, P.: Using model checking to analyze network vulnerabilities. In: Pro-
ceedings of the 2000 IEEE Symposium on Research on Security and Privacy (S&P’00), pp.
156–165. IEEE Computer Society Press, Los Alamitos (2000)

26. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analy-
sis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy
(S&P’02), pp. 273–284. IEEE Computer Society Press, Los Alamitos (2002)

27. Swanson, M., Bartol, N., Sabato, J., Hash, J., Graffo, L.: Security metrics guide for informa-
tion technology systems. NIST Special Publication, pp. 800-855 (2003)

28. Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer attack graph generation tool. In:
Proceedings of the DARPA Information Survivability Conference & Exposition II (DIS-
CEX’01) (2001)

29. Wang, L., Liu, A., Jajodia, S.: An efficient and unified approach to correlating, hypothesizing,
and predicting intrusion alerts. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 247–266. Springer, Heidelberg (2005)

30. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing, and pre-
dicting intrusion alerts. Computer Communications 29(15), 2917–2933 (2006)

31. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs. Com-
puter Communications 29(18), 3812–3824, 11 (2006)

32. Wang, L., Yao, C., Singhal, A., Jajodia, S.: Interactive analysis of attack graphs using re-
lational queries. In: Proceedings of 20th IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSec 2006), pp. 119–132 (2006)

33. Zerkle, D., Levitt, K.: Netkuang - a multi-host configuration vulnerability checker. In: Pro-
ceedings of the 6th USENIX Unix Security Symposium (USENIX’96) (1996)



Enforcing Honesty in Assured Information
Sharing Within a Distributed System

Ryan Layfield, Murat Kantarcioglu, and Bhavani Thuraisingham

The University of Texas at Dallas,
PO Box 830688, Richardson, TX 75083-0688

{layfield,muratk,bhavani.thuraisingham}@utdallas.edu
http://www.utdallas.edu/

Abstract. The growing number of distributed information systems such
as the internet has created a need for security in data sharing. When
several autonomous parties attempt to share data, there is not necessarily
any guarantee that the participants will share data truthfully. In fact,
there is often a large incentive to engage in behavior that can sabotage
the effectiveness of such a system. We analyze these situations in light
of game theory, a mathematical model which permits us to consider
behavior and choices for any autonomous party. This paper uses this
theory to create a behavior enforcement method that does not need a
central management system. We use a simple punishment method that
is inherently available in most scenarios. Our approach is applicable to a
variety of assured information sharing applications where the members
of a coalition have to work together to solve a problem.

1 Introduction

We live in an information-driven world where we use data from multiple informa-
tion sources to solve problems. The local traffic report, for example, influences
choices we make to get to work on time. However, there are several situations
where the accuracy of information is crucial to success such as fighting a war
or providing medical treatment. We need innovative ways to ensure that the
accurate and secure data are shared between the parties. For example, the radio
station we get our traffic data from is regulated by the FCC. Creating an honest
environment when no central authority is available to enforce behavior presents
a new set of challenges. Peers in distributed environments must therefore be
sophisticated enough to evaluate the actions of each other and have a consen-
sus of what they should all be doing. The results of these evaluations must be
compared with some agreed upon common goal.

In peer to peer systems, a collection of peers is a number of parties that
have their own data and want to share data amongst themselves. The goal of
this system is to find a way to guarantee everyone ends up with an accurate
corpus that reflects all of the data available. Traditionally, this has been done in
a hybridized environment of peers and centralized management entities.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 113–128, 2007.
c© IFIP International Federation for Information Processing 2007

http://www.utdallas.edu/


114 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

Despite the simplicity of their implementation, centralized systems have a
number of drawbacks. First, this system must be trusted by all peers to be an
impartial judge of activity. Second, such a system by design represents a single
point of failure. They can be broken, attacked, and even compromised, effec-
tively eliminating both the usefulness of the system and the services it offers.
Third, they must be scaled when more peers want to join the system. In general,
centralized management introduces several weaknesses into the data sharing en-
vironment. If we want to eliminate the need for such entities, we must find a
way for the parties to trust each other.

Parties, however, may have only limited influence over each other. They have
entered into this data sharing environment to gather data only because they
can offer data. When parties have sufficient motivation to get more out of the
system than they give up, the effectiveness of such a system must be questioned.
Otherwise, if all parties attempted to cheat the system by sharing bad data in
exchange for good data, none of the parties would gain anything.

1.1 Our Approach

Game theory, the study of competition and cooperation through the use of math-
ematics, offers a solution to this problem. These autonomous parties have no need
to share good data since there is no incentive to do so. However, we can assume
that they are rational and logical entities that are at least partially interested in
collecting good data from the rest of the sources available. We can then assume
proper coercion can illicit desirable behavior.

There are several options available in game theory which are designed to
elicit behavior. One approach is to create a virtual economy in which data can
be bought and sold for a price based on trust. While this is initially a promis-
ing solution, it turns out that balancing such an economy without a centralized
regulatory entity proves unnecessarily complex [9]. Another option is to fight un-
desired behavior with undesired behavior: mimic the last data action performed,
basically punishing a partner by mimicking their own actions. This works pri-
marily when all data has the same value to all participants, a poor assumption
for real-life scenarios. This method is known as Tit-for-Tat, and we discuss it in
section 4.2.

We instead explore another alternative: non-participation. Consider a distrib-
uted sharing environment in which all of these participants are interested in
acquiring each other’s data. To keep information private, everyone establishes a
secure individual connection with everyone else, forming a fully connected net-
work. Information is traded over these connections simultaneously, where any
two parties can exchange pieces of data. In the event that a party believes their
trade partner has cheated during an exchange, the link is severed indefinitely.
Thus, anyone who chooses to deviate from the desired actions will lose any po-
tential gain from trading with that party in the future.

One of the biggest challenges most applications of game theory face in the real
world is the assumption that we know exactly what the other players are doing.
Perfect knowledge allows for robust decision making and more efficient choices.



Enforcing Honesty in Assured Information Sharing 115

For the sake of realism, we assume that knowledge of party actions comes at a
price. Verification is the process of determining what a party has chosen as their
actions, and we assign a cost to this process.

Another type of challenge is Trust Management. In a perfect world, everyone
is trustworthy and never considers cheating the system or breaching security.
The truth is, we deal with distrust due to malicious behavior on a regular basis.
The goal of Trust Management is to decide whom to trust and how far we trust
them. When we can determine this, dealing with sensitive information becomes
much easier. However, as with the issue of perfect knowledge, we rarely know this
beforehand. Therefore, a party that wants to properly maintain security must
constantly evaluate their peers. In turn, when those evaluations indicate a party
is untrustworthy, they must be punished. Punishment allows us to actually force
a rational party into becoming more trustworthy by eliminating the benefit of
being untrustworthy.

We have two objectives in our work. First, we want to determine the condi-
tions in which non-participation punishment is effective. We use game theory to
estimate the existence of these conditions and how they can be made. Secondly,
we want to verify the existence of our results by running simulations using a
model that simulates changes in behavior.

1.2 Motivating Scenario

Consider the international political environment. We have a number of countries,
each with sovereign authority over the affairs of the state and their own set of
interests. To protect those interests, we assume that each one has an intelligence
agency designed to gather information in the interest of national security. Assume
there is some event that, if it is allowed to occur, could threaten the security of
any nation to which it happens. The problem these agencies face is that their
data are limited. They may have field operatives working in other countries, but
in most situations, they deal primarily with the affairs of their own country. If a
threat emerged that spanned multiple international borders, it would be difficult
for any one agency to track.

Given the severity of the threat, these agencies have decided to establish a
mutual agreement: they will share the information they have gathered in ex-
change for information other agencies hold. Reality dictates that even if they
have equal information resources, there is little incentive for agencies to share
their real data or to keep the policies associated with it (i.e. secret classification).
These organizations tend to reflect the relations that their respective countries
have with each other. The agreement makes no provision for requiring any given
policy to be enforced due to the lack of a common governing entity. Thus, there
is no provision to prevent sabotage within the loose alliance; each agency must
invest resources to know what the rest are doing.

Even with a fixed cost of discovering such information, there are a number
of factors to consider. If an agency chooses to verify all of the actions taken
by others, they will waste resources when their fellow agencies are behaving
appropriately. However, if they become too trusting, other agencies can take



116 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

advantage of this situation without the fear of being caught. We assume that
every agency at least has a basic security policy of not sharing bad or corrupted
data. Now, consider the use of some punishment and assume that one of these
agencies has decided to lie to everyone about recent reports on militia activity.
Regardless of the motivation, when that agency is caught, our behavior dictates
that they will be isolated from the rest of the data sharing network due to
negligent and deviant behavior. Since the information of all agencies are roughly
equivalent in value, the loss of this one data source will not affect the ability of
the rest of the network to prevent such a militia from causing further trouble.
However, when a sufficient number of participants ostracize the offending party,
the agency that has been cut off is now left out of what is a valuable group
effort. The isolation also serves as a warning to other agencies that may choose
to deviate from providing quality information.

1.3 Related Work

Much of our work builds on the foundations of Agrawal et. al. [2]. That paper
analyzed the issue of trust management among parties and proposed a solution
that uses a management entity that ’taxes parties which use undesirable strate-
gies. This ’tax’ comes in the form of a discount on the gain in utility within
a game matrix. Our work uses a similar model with two fundamental differ-
ences. First, we use a simple withdrawal strategy that terminates the game if
bad strategies are used. Second, the responsibility of punishment is completely
distributed to all of the parties, eliminating the need for a centralized manager.

In the realm of distributed systems, an area that has garnered considerable
attention is that of peer-to-peer file distribution networks. The work here is
aimed at enforcing trustworthy behavior in protocols such as BitTorrent [3] and
distributed computing. Most of the work we found in this area considers only
a third-party, but the works of [10], [5], and [2] deal explicitly with peer-based
recourse for deviant behavior.

There is no shortage of game theory driven analysis on behavior enforcement.
The work of [1] has inspired our approach to repeated games, but the general
works of [5] and [11] have been notable in our efforts as well. None of this research
to our knowledge, however, deals with the possibility of refusing to participate
within a game. Instead, they suggest choosing a damaging strategy as a form of
punishment for a specific amount of time.

Our current research is actually a refinement on our existing work in this
field, published as a technical report [8]. We originally attempted to construct
a behavior that could govern interaction in a hostile, purely peer-based game
that provided the option of either lying or telling the truth. Trade in this case
happened between two parties by their own choice, instead of all parties si-
multaneously. Punishment occurred when certain trade partners were favored
more than others, leaving parties that chose to lie with less of a chance of being
selected for trade.



Enforcing Honesty in Assured Information Sharing 117

1.4 Organization of This paper

Section 2 presents our approach to the game theory, payoff matrix, role of ver-
ification, and how malicious behavior is punished. Section 3 is a proof of the
sub-optimality of our theory. We discuss how we tested our equilibrium in sec-
tion 4 along with a detailed listing of significant competing behaviors. The results
of our experiments are outlined in 5. Our conclusions, observations, and future
directions are left to section 6.

2 Putting a Price on Consequence

We consider our scenario as an application of 2-person evolutionary game theory.
The intelligence agencies are represented by game theory agents, which have
behaviors and choose a strategy when deciding what to do each round. The
measurement of an agency’s success is determined by the amount of ’good’ data
that has been collected. To simplify the array of policies we can choose to enforce,
we focus on a simple security policy of telling the truth. Thus, the strategies
explicitly available are to Lie, tell the Truth, or Withdraw, but the option of
verification also factors into how an agency can behave.

The value of information varies depending on who receives it and what context
they plan to use it in. Data rarely has a uniform benefit to intelligence agencies
in the real world. The perception some party i holds about the value of data in
a particular round of trade t is Δi

t . This value is assumed to be bounded within
some range, and represents the raw gain to the party receiving it.

Next, we must address the issue of verification. Using the data acquired during
an exchange immediately will obviously cost less than spending resources to
verify as long as the information is valid. Therefore, we associate a fixed cost
with verification that is uniform among all parties for the sake of fairness. The
cost of verification is represented by the constant CV .

Always verifying results would ensure that the other party never succeeded in
deviations such as lying, but it is wasteful with trustworthy parties. Therefore,
the probability pi

t that a single party i will verify the results in a round of
transactions t should be inversely proportional to the probability that any given
party will tell the truth. Note that no verification allows an attacker to build
trust then betray it without consequence.

We assume that agencies have the ability to change their behavior at will. In
most real-life situations, parties will periodically change their behavior if they
believe it will help them. To accomplish this effect, we adopted the use of a
genetic algorithm to allow behavior to ’evolve’ among agencies. We save the
explanation of this for discussion later.

Based on these observations, we have constructed a payoff matrix that reflects
what every rational party should consider. The complete set of actions Γ avail-
able to each agency is [Truth, Lie, Withdraw]. We assume these actions are only
considered on a per-interaction basis; that is, we only consider party strategy
choice in pairs during trade.



118 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

Player 1

Player 2

Truth Lie Withdraw
Δ1

t − p2
V CV Δ1

t − p2
V CV 0

Truth Δ2
t − p1

V CV −p1
V CV 0

−p2
V CV −p2

V CV 0
Lie Δ2

t − p1
V CV −p1

V CV 0
0 0 0

Withdraw 0 0 0

Fig. 1. Payoffs for each pair of strategies during trade

V ariable Meaning

Δi
t The value of information offered by agent i in round t of the simulation

pi
V The probability that agent i will perform verification

CV The cost of performing verification

Fig. 2. The lookup table for variables used in figure 2

The {Truth, T ruth} strategy is trivial. Both parties expect to receive the
utility value of the data from each other, minus the estimated cost of verifica-
tion should they choose to do so. This is calculated by evaluating how often
verification takes place.

Selecting {Truth, Lie} or {Lie, T ruth} is where deviant behavior is intro-
duced. Although we believe equilibrium is virtually impossible to achieve at
these points, they must be evaluated: selection of these actions means an equi-
librium does not exist yet. Consider two parties i and j that, up to round k − 1,
have been telling each other the truth. Both parties do not expect the other
to tell a lie, and as such the probability of verification pi

k−1 is at the minimum
threshold. It becomes possible therefore in round k that i could lie to j with
little chance of being caught. By doing so, i gains the value of j’s shared data
without ever having to give up significant data of their own, giving i an imme-
diate advantage. If this action is performable without being caught over long
periods of time, i can guarantee that they will gain more data and ultimately
decrease the effective amounts of information j can acquire.

However, if the choice is {Lie, Lie}, neither party gains anything. Both par-
ties waste resources for taking the time to interact. Any verification within an
equilibrium of this behavior would only add to the loss. In the real-world, this
would likely mean that the organization would only benefit if they withdraw
from the alliance entirely.

This is the point at which we consider Withdraw as an option. When played,
the party severs their link with another party, eliminating any further trade.
Such an action should be considered a last resort. For example, i has chosen to
withdraw from it’s connection with j, it will from that point on no longer gain
anything from j in future rounds of the game. This would be a tremendous loss,
negating any future gains for either party. Therefore, since any strategy choice



Enforcing Honesty in Assured Information Sharing 119

with Withdraw in it has the same results, {Withdraw, Withdraw} becomes an
automatic (and undesirable) Nash equilibrium.

Verification has become an interesting factor in the success of behavior. Always
choosing to verify would decrease the overall benefit of trade when dealing with
a highly reliable source. Reflecting periodic verification checks in the matrix
would unnecessarily complicate the game theory and would require a much more
complex model.

One of the most interesting characteristics of our application of game theory
is the uncertainty of the other party’s actions. The nature of the information we
consider is not easily verifiable. Most of the research in the area of data sharing
does not address games with imperfect information. We believe that reflecting
such a property in our work makes our research much more practical, especially
when discovering such perfect information comes at a measurable utility cost in
the real world.

3 Equilibrium Emergence

Before analyze the above game, we briefly introduce some of the related game
theoretic notions.

For any vector v=(v1, . . . , vn), we use v−i to represent (v1,. . . ,vi−1, vi+1, . . . vn),
and (vi, v−i) to denote the reconstruction of the v.

Definition 3.1 Nash Equilibrium[1] A strategy profile σ∗ = (σ∗
1 , σ∗

2) is a
Nash equilibrium in a two person game with utility functions ui if the following
inequality hold for each agent i,

ui(σi
∗, σ−i

∗) ≥ ui(ai, σ−i
∗)

where ai belongs to set of possible actions Ai that could be taken by agent i

Intuitively, the above definition states that if all agents predict that a particular
equilibrium will occur then no player has an incentive to deviate from equilibrium
strategy.

Consider a traditional one-shot game. We must pick a strategy in which we
can guarantee our success. Consider Withdraw, Withdraw as a natural Nash
equilibrium. At first glance, this would appear to be a poor choice. Clearly, better
payoffs are found in Truth, T ruth. However, if we choose Truth as our strategy
of choice in this setup, the other player can choose Lie as it increases their
utility. If we choose Lie instead, we can take advantage of another player’s trust.
Should they choose Truth and deviate from the equilibrium, their payoff will
dramatically decrease while ours increases; at Lie, our payoff is as we expected.
Withdraw of course neutralized both results. Thus, a Nash equilibrium exists
at Withdraw,Withdraw.

In practice, not all games are classified as one-shot. Some involve players that
play the same game multiple times. Such games enable players to use past data
to both predict their opponent’s behavior and even affect a particular outcome.



120 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

In our model, the “data sharing” game will be played many many times by the
participating agents. This scenario can be easily modeled by the “repeated game”
ideas from game theory literature [6]. The main observation in repeated games is
that the honest behavior in games like the “data sharing” game can be enforced
if the game continues to be played with probability δ > 0. In other words, if
there are possible future gains, (i.e. if game continues with some probability)
each agent can be motivated to be truthful.

We can define the expected payoff for a player i participating in the repeated
“data sharing” game as the

ui = (1 − δ)
∞∑

t=0

δt · gi(σi
t, σ−i

t)

where σt = (σt
i , σ

t
−i) is the strategy employed at time t, δ is the halting proba-

bility of the game, and gi is the gain achieved at each play of the “data sharing”
game. Let u = (v1, v2) be the payoff vector of the repeated game. Note that if
every period gi(σi

t, σ−i
t) is equal to some u then ui will be equal to u.

To illustrate, consider an instance of the game between two intelligence agen-
cies a1 and a2 at some point in time on round t. From the perspective of a1, σ−i

t

is expected to be Truth for a2 since σ−i
t−1, σ−i

t−2, . . . , σ−i
1 have all been Truth

as well. According to this equation, we should expect the maximum utility of
u for Truth, T ruth. However, a1 could have a behavior that tries to deviate at
round t if a2 has proven trustworthy. In this instance, σi will be Lie, and v will
be greater than Truth, T ruth.

Below we prove that our repeated “data sharing” game can be used to enforce
truthful behavior by refusing the deal with dishonest agents that caught cheating.
Our proof technique is very similar to the one used for proving “Nash Folk”
theorem from the repeated game theory literature [6]. Our main difference as
compared to the generic Nash Folk theorem is that in our case opponents actions
could not be observed unless a party to choose to verify the correctness of the
data. Given the above “data sharing” game, we can prove that truth telling
emerges as a Nash equilibrium as follows:

Theorem 3.1 If telling the truth each round has a gain gi > 0 for both parties
then there exits 0 < δ < 1 such that telling the truth for both parties is a Nash
Equilibrium for “data sharing” game.

Proof. Sketch
We will prove that utility of telling the truth given that the other party tells the
truth is bigger then any other strategy that lies with some probability p. To see
that let us calculate the expected gain of a given party who chooses to lie with
probability p > 0 at each round. Note that in a given round with probability
(1− p) he will gain gT,T (i.e. the gain achieved when both party tells the truth)
and with probability p he will gain gL,T (i.e.the gain achieved when he lies while
the other party is telling the truth). If he cheats and is caught, he will earn zero
for the rest of the game; otherwise, a new round starts. Under these observations,



Enforcing Honesty in Assured Information Sharing 121

we can write the total expected utility of lying with probability p given that the
other party verifies the correctness of the received data with probability q as

ui = (1 − p) · gT,T + p · gL,T + (1 − p · q) · δ · ui (1)

=
(1 − p) · gT,T + p · gL,T

1 − (1 − p · q) · δ (2)

Similarly we can write the utility of always telling the truth (denoted as uT
i

below) if the other party tells the truth as

uT
i = gT,T + δ · uT

i (3)

=
gT,T

1 − δ
(4)

Note that uT
i > ui if we set the δ such that it satisfies the following inequality

δ >

gL,T

gT,T

gL,T

gT,T
− q − 1

Therefore, for the above given δ, telling the truth will be a Nash equilibrium
because each party has no incentive to lie given that the other party is telling
the truth.

4 Simulation Construction

Obviously, if every party used the game theory we proposed as their primary
logic, we would have no issue with reaching an equilibrium immediately. How-
ever, we would instead like to see how our design interacts in a variety of game
environments. A diverse environment will enhance the robustness of our theory.

The gaming environment of our design is straightforward. We have a collection
of N game theory agents representing parties that interact via secure bidirec-
tional communication pipes. Each party ai is initially linked to every other party
in the system, forming a fully connected graph. This pipe can be broken volun-
tarily by the party at either end. We assume this pipe is completely secure from
tampering or eavesdropping for the sake of simplicity. All players act simultane-
ously in each round.

We wanted to analyze the results of our theoretical conclusions in a di-
verse environment of party behaviors. In order to do this, we use three exist-
ing possible approaches to this scenario (Random, T it-For-Tat, Dishonest), our
own behavior Truthful-Punisher along with two variations on our own work
(Liar, SubtleLiar).

4.1 Random Behavior

The Random behaviors simply randomly selects Lie or Truth. This strategy rep-
resents a party which has no desire to spend time on the details of the alliance



122 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

while simultaneously lacking a consistent motivation to adopt proper behav-
ior. In theory, this randomized behavior can succeed when other parties do not
consider the past and there is little effect due to punishment.

4.2 Tit-for-Tat Behavior

Next, we have the famous T it-For-Tat strategy. A party using this strategy starts
by telling the truth. After that, this party mimics whatever action was taken
by their trade partner. Research has proven that, unless other parties conspire
against it in some fashion, this is the most effective behavior possible for games
resembling the Prisoner’s Dilemma, as discovered by Anatol Rapoport [4].

Within our scenario, this behavior operates at a disadvantage. Since perfect
information is not free, the party must verify the results of each and every
trade they make. This could lead to a situation in which it actually gains less
utility against behaviors that are relatively trustworthy but have little regard
for verification.

However, it also has a potentially larger advantage: it does not use the grim
trigger punishment system. The idea behind punishment is that the party takes a
calculated “hit“ to the immediate trade benefits by refusing to deal with parties
that do not tell the truth, in the hopes that they will become more honest.
While this has obvious ramifications for dishonest behavior, unless interacting
with that party has a net loss (i.e. tells a lie more often than it tells the truth),
it is still beneficial to maintain an open communications channel and choose the
less harsh strategy of mimicking their choice. In essence, this behavior should
provide the best competition to our own construction.

4.3 Dishonest

In order to add the appropriate amount of realism to our scenario, we must also
consider parties that have no desire to contribute meaningfully to the group.
Such behaviors are simply classified as Dishonest, and as such they choose to
always lie. They still may reap the benefits of those that choose to tell them the
truth, but they will never bother to verify what they receive nor punish those
that lie as well. Thus, this agent exists in our simulation solely to insure the rest
of the parties cannot make the assumption that all behaviors will ultimately
yield any sort of positive or ’break-even’ net gain. This is in contrast with the
Random behavior, which will arguably still yield a net gain of zero through
prolonged participation.

4.4 Truthful-Punisher Behavior

Before we describe the variations on our ideal behavior, we must first describe
what our game theory analysis has suggested to us. Since there is a clear Nash
Equilibrium at {Truth, T ruth} with our punishment modifications, our behavior
always chooses Truth. The probability of verification is done as a percentage that
is handed off as part of the behavior characteristics. When the simulation is first



Enforcing Honesty in Assured Information Sharing 123

created, each time a party using this behavior type (or a variant) is instantiated,
a random percentage is chosen for its’ verification probability. Essentially, this
party either tells the truth or cuts the other party off.

4.5 Periodic Liar Behavior

The first variant on our behavior is to try and get away with lying a fraction of
the time. This is designed to represent an party that believes they can deviate
from time to time when they have a desire to sabotage their competition. More
importantly, it simply represents a mindset in which the party does not believe
that the original conclusions of always telling the truth is a true equilibrium
within the ’real-world’ environment, making it a close relative of the Random
behavior.

4.6 Subtle Liar Behavior

In theory, any party could choose to deviate only when they know that their
trade partner is going to give them valuable data. They believe they can lie
without worry of significant punishment. We assume that party i will choose
{Lie} during communication with j whenever Δi

t > ΔT during round t, where
ΔT is simply a threshold above a significant majority of all possible piece values.
This is especially handy when dealing with T it-For-Tat, as retaliatory behavior
assumes that by lying to them on the next round will neutralize gains from
deviation. Since piece values vary over a set range, this works to the behavior’s
advantage as long as the data it will not receive due to punishment during the
next round is of lesser value.

5 Experiments

Information is exchanged between our virtual parties every round. During each
round, a party trades with the rest of the parties they are connected to. No
one party has an advantage over the other through knowledge of the move their
partner has made due to the synchronous nature of our setup.

All experiments are run to no more than 20,000 rounds. The game will ter-
minate early if an equilibrium is achieved (i.e. all agencies go to a particular
behavior, leaving no other possible behaviors to choose from). Note that we are
not explicitly using game theory approaches for infinitely repeated games; we
assume that at some point there will no longer be a need for the alliance.

We judge a party’s fitness by the value of accumulated data. Each time a party
is told the truth, the data value is added to the total value of the party. Whenever
a party chooses to verify, the cost of verification is subtracted. Obviously, being
told a lie and choosing to verify the data will result in a net loss. In the spirit of
our scenario, a positive gain in data is much more desirable.

Every L rounds, we pause the game to perform an evaluation of the per-
formance of these parties. This reflects when agencies choose to evaluate their



124 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

performance to maximize efficiency. First, we need to see how each of them has
performed since the last check. Every party’s gain qi is calculated from the in-
crease in their net value. This value is added up to yield a total utility value
over the whole system, qT .

Next, we calculate pi
behavior = qi/gT for each party’s behavior, where pi

behavior

denotes the normalized probability that the behavior held by party i should
be used by parties in the next generation. A behavior embodies both the core
logic mentioned in section 4 along with any attributes. We use this normalized
percentage as a way of measuring how well a particular approach has performed
in contrast with the rest of the system. The higher a party’s relative gain, the
higher their percentage ’score’.

We want our population to reflect the fitness of each behavior proportionally,
according to the basics of genetic algorithms[12]. In our scenario, we assume
that agencies will want to maximize their data trading success by adopting the
behaviors of those that are most successful. Since

∑n
i=0 pi

behavior = 1, we can use
pi

behavior to ensure that the next ’generation’ of agencies adhere to this principle.
We thus reassign the strategies for every agency based on this probability. We
do not consider the very real notion that a successful agency is unlikely to want
to change it’s strategy; we simply need the population to reflect the evolved
characteristics of the system.

We expect a number of properties to emerge based on our analysis. First,
we expect that our equilibrium-based behavior to outperform and ultimately
dominate the overall population given enough generations. Next, we expect that
this behavior will adjust it’s verification rates based on how many parties use
a deviant behavior. Finally, we expect our approach to dominate all possible
variations available.

5.1 Results

The outcome of our experiments confirms our theory is correct. Verification and
punishment appear to be highly effective even in a diverse population, as our sim-
ulation consistently converged to a homogeneous population of our particular be-
havior. There’s a clear correlation between the use of our punishment method and
the success of agents within the system. Since agencies that did not obey the truth
policy were cut-off, agencies which told the truth remained within a somewhat ex-
clusive clique. As long as this clique’s benefits exceeded those that are offered by
those outside of it, the system eventually began to encompass only agencies that
used the adhered to an honest strategy remained after just a few rounds.

As we suspected, T it-For-Tat did not perform well enough to beat our strat-
egy. Despite the fact that the strategy kept links open to several parties which
still offered a net gain, the population eventually became devoid of any dishonest
participants. Once this happened, Truthful-Punisher’s ability to settle for less
than perfect information (via infrequent verifications) gave it a clear advantage, as
fewer resources were wasted verifying information that would never be a lie. It at
times took several generations, but eventually, T it-For-Tat would disappear from
our population, leaving only Truthful-Punisher with complete dominance.



Enforcing Honesty in Assured Information Sharing 125

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

Random

♦
♦ ♦

♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
SubtleLie

+

+

+ + + + + + + + + + + + + + + + + +

+
TitForTat

� � �
� � � � � �

� � � � �
� � � � � �

�
Liar

×

× × × × × × × × × × × × × × × × × × ×

×
TruthPunish

�

�

�

�
�

� � � �
� � � � �

� � � � � �

�
Dishonest

�
�

�
� � � � � � � � � � � � � � � � �

�

Generation

A
ge

nt
C

ou
nt

Fig. 3. Behaviors by population per generation

The rest of the behaviors which choose not to tell the truth consistently did not
perform well enough to pose a threat to our equilibrium. Despite the two variants
which attempted to lie only periodically, those that choose such an approach
were eventually caught and collectively punished. The only time this did not
happen was when we set a very low threshold for the SubtleLiar behavior; when
the probability of lying was less than 10%, the difference made to the agency’s
performance was so low that our experiments converged to SubtleLie with equal
probability. However, since the net gain from such periodic lying was also very
low, we suspect that this has more to do with a small fraction of difference lost
in the varying cost of the pieces. Additionally, the probability that they would
be caught was simply too low to be of significant value. At rates at or above this
threshold, our original behavior prevailed consistently against it.

Convergence to our behavior happened in an average of 20 generations. The
leading competitor often ended up clinging to a small portion of the population
as a handful of agents before eventually succumbing to the agents bearing our
behavior. Typically, this was a small sub-population of no more than 5 parties,
which were usually T it-For-Tat. We believe the reason for this is rooted in the
fact that our own constructed behavior tends to seek a verification probability
based on how honest the population is at a given time. As our behavior propa-
gates, the need to verify decreases, leaving it more vulnerable to future attacks
that never occur.

One of the ways in which we observed system performance is by way of four
metrics: Truces, Fools, Follies, and DeadLinks. Truces represent both parties
choosing to tell the truth. Fools are situations in which one party told the truth



126 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 1 2 3 4 5 6 7

Generation

Truces

♦

♦

♦

♦

♦
♦ ♦ ♦

♦
Fools

+

+

+

+

+
+ +

+

+
Follies

� �
� � � � � �

�
Deadlinks

×

×

×
×

× × × ×

×

Fig. 4. Chosen strategy pairs per generation

while the other lied. Follies represent when both parties choose to lie to each
other, resulting in either no gain or net loss. DeadLinks simply indicated when
trade never happened between two parties. In Figure 4, we see that Truces
exceed the other options in only four generations, indicating that the system is
achieving optimality as early as possible.

The dynamic behavioral choices of any given iteration of our simulation in-
volve the life and death of the various behavioral choices, as seen in Figure
3. Starting from an equal distribution of six different behaviors, we find that
the first variant Liar ’dies’ after only one generation. The next death is of the
SubtleLiar variant in the generation following. Both of these variants are sur-
prisingly beaten by the Random behavior; clearly, even small deviations from
our proposed behavior can prove disastrous. Finally, and least surprisingly, is
the delayed demise of T it-For-Tat, which is the last behavior to go. This is
most likely due to the fact that it will never lie to a trustworthy opponent which
punishes; thus, it is never isolated from the productive members of the group
and only loses due to dependency on perfect information.

6 Conclusions

Overall, we were pleased with the results of our simulations. The populations
converged rather quickly to a {Truth, T ruth} equilibrium, and our behavior
eventually overcame any competition provided there was enough time. Dishonest
behaviors were eliminated rather quickly, even in variants of the experiments we
performed with unfair advantages given to competing behaviors. Although their



Enforcing Honesty in Assured Information Sharing 127

were restrictions in involved on its’ effectiveness, we were overall pleased to say
that our work has fulfilled our objectives.

Despite this success, we were not entirely satisfied with the results. Clearly,
there is no need to continue verifying results once the system converged to a
Truth strategy. We originally asserted that the verification rate would thus go to
our lower bound for verification (10%), as agents using a strategy reflecting little
or no verification should pull ahead. Instead, our system simply approached a
30% rate with significant deviation. The problem we believe lies in the nonde-
terministic nature of our choice of genetic algorithms. Since verification costs
are relatively small compared to the payoff from the information, there is al-
ways a net gain regardless of verifying the information when the truth is always
told. However, even when we doubled the cost of verification and set payoff in
{Truth, T ruth} to be a constant, there was simply never enough of a gain to
converge.

The last question we want to answer is how effective our agent is as a group.
Obviously, a single agency cutting off others is not going to be a significant de-
terrent on their own. Our results show that approximately 40% of the population
must use punishment to significantly deter others from deviating from Truth.
This reflects similar findings found in distributed computing, such as the Byzan-
tine Generals Problem, in which a certain majority of the participants must be
trustworthy in order to properly succeed against deviant strategies [7].

Another pressing issue is the vulnerability of the population to constructed
behaviors which could wait for convergence to a mostly honest population and
then switch to a dishonest policy of strategy choice. Since the characteristics
of our design favors a more vulnerable state when it appears ’safe’ to do so,
we are concerned that future generations would have little defense against a
growing dishonest population. The only way we could combat this is to introduce
mutation rates among our behavioral characteristics.

The most endearing application of our work is how it can apply to the en-
forcement of any desired behavior. The nature of the Folk theorem is that, with
sufficient patience and time, any desirable equilibrium can be achieved. Based
on this work, we can enforce any security policy as long as the actions taken are
verifiable in some capacity. Given the traditional approaches that require a man-
agement party, true distribution of responsibility makes it possible to have much
more robust security that does not rely on any one entity to enforce behavior.

In order to bring more realism to our model, our future work will also address
two major assumptions: imperfect verification and insecure lines of communica-
tion. The former deals with situations in which we cannot guarantee information
will be properly classified as a truth or a lie. The latter raises the possibility
that we have insecure communication channels; a would-be attacker could easily
cause communication disruption through information tampering. Both can be
addressed by assigning a confidence factor in the form of a probability reflecting
the likelihood that data can be trusted while relaxing the grounds on which the
Withdraw option is selected.



128 R. Layfield, M. Kantarcioglu, and B. Thuraisingham

References

1. Agarwal, N.: Equilibrium Game Theory Under the Conditions of Repeatability.
SSRN eLibrary (2002)

2. Agrawal, R., Terzi, E.: On honesty in sovereign information sharing. In: Ioanni-
dis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K.,
Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, Springer,
Heidelberg (2006)

3. Andrade, N., Mowbray, M., Lima, A., Wagner, G., Ripeanu, M.: Influences on
cooperation in bittorrent communities. In: P2PECON ’05. Proceeding of the 2005
ACM SIGCOMM workshop on Economics of peer-to-peer systems, New York, NY,
USA, pp. 111–115. ACM Press (2005)

4. Axelrod, R.: The Evolution of Cooperation. Basic Books (1985)
5. Buragohain, C., Agrawal, D., Suri, S.: A game theoretic framework for incentives

in p2p systems. In: P2P ’03. Proceedings of the 3rd International Conference on
Peer-to-Peer Computing, Washington, DC, USA, p. 48. IEEE Computer Society
(2003)

6. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge, Mass (1991)
7. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4(3), 382–401 (1982)
8. Layfield, R., Kantarcioglu, M., Thuraisingham, B.: Research and simulation of

game theoretical techniques for data sharing among semi-trustworthy partners.
Technical Report UTDCS-46-06, The University of Texas at Dallas (2006)

9. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Experiences applying game
theory to system design. In: PINS ’04. Proceedings of the ACM SIGCOMM work-
shop on Practice and theory of incentives in networked systems, pp. 183–190. ACM
Press, New York, NY, USA (2004)

10. Monderer, D., Tennenholtz, M.: Distributed games: from mechanisms to protocols.
In: AAAI ’99/IAAI ’99. Proceedings of the sixteenth national conference on Arti-
ficial intelligence and the eleventh Innovative applications of artificial intelligence
conference innovative applications of artificial intelligence, Menlo Park, CA, USA,
pp. 32–37. American Association for Artificial Intelligence (1999)

11. Myerson, R.: Game Theory: Analysis of Conflict. Harvard University Press, Cam-
bridge, Mass (1991)

12. Riolo, R., Worzel, B.: Genetic Prgoramming Theory and Practice. Kluwer Acad-
emic, Boston (2003)



A Privacy-Enhanced Attribute-Based
Access Control System

Jan Kolter, Rolf Schillinger, and Günther Pernul

Department of Information Systems, University of Regensburg,
D-93040 Regensburg, Germany

{jan.kolter,rolf.schillinger,guenther.pernul}@wiwi.uni-regensburg.de

Abstract. Service-oriented architectures (SOAs) are increasingly gain-
ing popularity due to their considerable flexibility and scalability in open
IT-environments. Along with their rising acceptance comes the need for
well suited security components. In this respect, access control and pri-
vacy emerged to crucial factors.

Targeting the demands of a SOA, many promising authorization mod-
els have been developed, most notably the attribute-based access con-
trol (ABAC) model. In this paper we take up concepts from the OASIS
XACML and WS-XACML specifications and introduce a dynamic ABAC
system that incorporates privacy preferences of the service requestor in
the access control process. Separating the Policy Decision Point from the
service provider’s premises, our infrastructure enables the deployment of
alternative PDPs the service requestor can choose from. We employ a
PKI to reflect the sufficient trust relation between the service provider
and a potential PDP. Our work is carried out within the European re-
search project Access-eGov that aims at a European-wide e-Government
service platform.

1 Introduction

The trend towards large distributed IT-systems is ongoing and promises many
economical and technical advantages. Especially the service-oriented architecture
(SOA) paradigm [1] emerged to a popular and widely adopted technology, as
SOAs allow the easy wrapping of existing distributed applications into platform
independent web services. Distributed architectures and SOAs in particular bear
large potential for both service providers and service consumers. For service
providers the main incentives of a SOA lie in the low maintenance of large service
infrastructures. Furthermore, SOAs facilitate the bundling of single, physically
divided services. With a flexible SOA a service provider can easily outsource
selected links of its value chain to specialized providers. Service consumers, on the
other hand, profit from easy access to services as well as standardized discovery
and execution of web services.

The distributed and flexible character of SOAs calls for well fitted security
mechanisms in place. Especially access control and privacy are security concerns
that represent decisive factors for the building of a secure and trustworthy service

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 129–143, 2007.
c© IFIP International Federation for Information Processing 2007



130 J. Kolter, R. Schillinger, and G. Pernul

infrastructure. Access control has been addressed frequently in the context of
SOAs. Targeting the flexible and dynamic requirements of SOAs the attribute-
based access control (ABAC) model is considered an appropriate approach for
an access control system [2]. Recent standardization efforts of the OASIS have
created the XACML specification [3], a standard suitable for the implementation
of an ABAC system. The WS-XACML working draft [4] specifies this standard
for the use in a SOA environment.

Apart from flexible access control, privacy increasingly moves to the center of
attention in distributed IT infrastructures. Respective studies show that users
become more and more concerned about the disclosure of private attributes [5].
In the ABAC authorization model, however, the disclosure of personal attributes
(subject attributes) is essential for the access decision. Consequently, privacy
plays a special role in distributed architectures that employ an ABAC system.

In this paper we introduce an ABAC system that incorporates privacy-
preserving components. We enable the service requestor to define individual at-
tribute disclosure rules. These privacy preferences are utilized to select one out of
many alternative Policy Decision Points (PDPs). As we decouple the PDPs from
the service provider’s premises, it becomes more likely that the characteristics
of one PDP match the service requestor’s attribute disclosure rules. Introducing
a PKI in our infrastructure, we address the fact that the service provider must
fully trust the entitled PDPs in their unbiased decision making capabilities.

The content presented in this paper has been developed within the European
research project Access-eGov1. The project’s goal is to develop a European-wide
e-Government platform that facilitates the semantic discovery of individual and
bundled services. A cornerstone of this platform is a powerful security infrastruc-
ture that provides dynamic authorization functionality for public authorities and
protects the citizen’s privacy at the same time.

The remainder of this paper is organized as follows: Section 2 discusses rel-
evant ABAC approaches and selected privacy technologies. In Section 3 we
present the concept and implementation details of our privacy-enhanced ABAC
infrastructure. Section 4 lays out details about the integration into the research
project Access-eGov. After describing related work in Section 5, Section 6 finally
concludes the paper and gives an outlook on planned future work.

2 Fundamentals

In this section we describe basic access control and privacy concepts and tech-
nologies. Based on these inputs we present our privacy-enhanced security archi-
tecture in Section 3.

2.1 Access Control

Access control is generally defined as the prevention of unauthorized use of a
resource, which includes the prevention of use of a resource in an unauthorized
1 European Union, IST Program, Contract No. FP6-2004-27020.



A Privacy-Enhanced Attribute-Based Access Control System 131

manner [6]. As confidentiality is a basic requirement for every interaction, access
control is considered an important security functionality. Over time various au-
thorization models have been developed, most notably the Discretionary Access
Control (DAC) model, the Mandatory Access Control (MAC) model and the
Role-based Access control (RBAC) model [6]. However, all of these approaches
do not meet the requirements of large-scale distributed environments like SOAs
(see Section 1). Here, an access control system is needed, which is flexible enough
to handle the inherent heterogeneity of users.

Addressing the needs of distributed systems, the attribute-based access control
(ABAC) model evolved. Due to its flexibility and its capability to express com-
plex access control semantics ABAC is deemed a suitable authorization model
for SOAs [2]. The ABAC model moves away from the static definition of access
permissions and is based on the comparison of subject and object descriptors,
allowing for dynamically grouping objects and subjects [7]. Unlike an RBAC
approach, this grouping is not done manually by a system administrator but
implicitly by subject and attribute values. A big advantage of ABAC becomes
evident, if one considers an access policy that grants access to a certain resource
depending on the service requestor’s age. As an attribute like the age changes
continually, the access policy needs to be evaluated dynamically.

The XACML specification [3] is an OASIS standard that supports the integra-
tion of subject and object attributes in access policies, a feature that is essential
for ABAC policies. The standard defines a powerful policy language that sup-
ports complex, fine-grained rules. Rules are aggregated to policies that control
the access to a resource. For a detailed review of the XACML policy elements
the reader is referred to [3].

Along with the policy language the XACML standard defines an authoriza-
tion infrastructure that is generic enough to implement the ABAC authorization
model [8]. Fulfilling the needs of distributed architectures, the XACML archi-
tecture logically separates the access control components responsible for policy
definition, policy enforcement and policy evaluation. Specifically, the XACML
architecture specifies the implementation of a Policy Enforcement Point (PEP),
a Policy Administration Point (PAP), a Policy Decision Point (PDP), a Policy
Information Point (PIP), and a Context Handler. Each of these actors is devoted
to one specific task of the access control process: The PEP receives access re-
quests and forwards them to the PDP which is responsible for the evaluation of
attributes and the access decision. The PIP supplies the PDP with subject and
object attributes that are relevant for the access decision. The access policy is
provided by the PAP that stores and maintains the access rules. The XACML
architecture also employs a Context Handler to collect and broker data flows.

The Web Service Profile of XACML (WS-XACML) specification [4] defines
means for the application of XACML in a SOA. While WS-Security [9] intro-
duce security tokens in the context of web services, WS-XACML specifies the
Authorization Token, a format that allows the transfer of the access decision to
a trusted third party. This enables the trusted third party to make an access
decision on behalf of the service provider. Furthermore, WS-XACML defines a



132 J. Kolter, R. Schillinger, and G. Pernul

format for the expression of authorization, access control, and privacy policies
of web services, areas that are not covered by the common W3C standard WS-
Policy [10]. By means of policy assertions, WS-XACML facilitates the definition
of requirements and capabilities with respect to authorization and privacy on
client and service side. Matching semantics regulate that the capabilities of the
service provider must match the requirements of the client, and vice versa. Addi-
tionally, WS-XACML defines the relation of P3P policy preferences and XACML
policy assertions.

2.2 Privacy

User behavior and the way users disclose personal data have changed significantly
over time. A main reason for this development is the growth of the Internet to a
multi-million user platform that is used for various needs and wants. Especially
eCommerce and trends like interactivity of web sites and personalized offers
strongly rely on personal user data.

An increasing number of users, however, perceive this trend as a privacy
threat, as they need to disclose more and more personal information to a grow-
ing number of providers [5]. Addressing these concerns the Platform for Privacy
Preferences (P3P) [11] provides a privacy policy language which enables service
providers to advertise their individual privacy policy. A P3P privacy policy de-
scribes how personal data of users are dealt with, including information about
the purpose and the recipients of the collected data. On client side, privacy
preferences of the user are collected and translated into ”A P3P Preference Ex-
change Language” (APPEL) [12]. A privacy agent then uses this information to
signal if a web site’s privacy policy is in line with the user’s pre-defined privacy
preferences.

3 A Privacy-Enhanced ABAC System

In this section we lay out the conceptual and technical aspects of an ABAC-
based access control infrastructure that incorporates privacy disclosure rules of
the client. The section starts with a brief outline and a description of our goal.

3.1 Outline and Goal

As described in Section 2, the basic idea of an ABAC system is to grant access
to a resource based on static or dynamic attributes of the service requestor (sub-
ject) and the resource itself. The main advantage of ABAC lies in its dynamic
character which makes the access control process flexible and satisfies the needs
of SOAs. However, ABAC strongly relies on the disclosure of privacy-sensitive
subject attributes service requestors are not willing to share in any circum-
stance. Especially users of large-scale IT-infrastructures have a rising interest in
the controlled disclosure of their attributes. Addressing these concerns of users,
we introduce a security infrastructure that enhances the ABAC system specified
by the XACML specification [3] with privacy preserving components.



A Privacy-Enhanced Attribute-Based Access Control System 133

In order to enable the client to control the transfer of privacy-sensitive at-
tributes, we propose to take up common ideas from privacy enhancing tech-
nology (PET) approaches. As a manual approval by the client for each service
access seems obviously unrealistic, clients should define their individual privacy
preferences (attribute disclosure rules) [11,12]. These rules should specify what
attributes a client is willing to disclose under which circumstances. When ac-
cessing a resource protected by an ABAC system, these preferences should be
considered dynamically when the system determines the set of attributes a client
needs to provide (see example in Section 3.2).

With clients defining their individual privacy preferences, it is not unlikely
that attribute disclosure rules forbid the transfer of certain attributes to a par-
ticular service provider. For this reason, we utilize the flexible character of the
XACML architecture (see Section 2) and separate the Policy Decision Point
(PDP) from the service provider’s premises [13]. In this scenario a direct trans-
fer of client attributes to the service provider itself is not necessary, as the out-
sourced PDP is the only actor that collects and evaluates attributes.

The separation of the PDP from the service provider even facilitates the de-
ployment of many different PDPs a client can choose from. Each individual PDP
offers a variety of capabilities. In a dynamic selection process a PDP is chosen
whose capabilities match a client’s privacy preferences. Consequently, the access
decision is made by a PDP the client trusts and is comfortable to share certain
attributes with. This scenario makes it more likely for a client to find a suitable
PDP that does not conflict with personal attribute disclosure rules.

At this point it is noteworthy that a breakup of the PDP from the service
provider’s access control infrastructure is only possible, if the service provider
fully trusts the evaluation and decision making processes of the PDP. The pro-
posed infrastructure acknowledges this aspect and incorporates a Public Key
Infrastructure (PKI) that is used to reflect the service provider’s level of trust
in a PDP. In the following the described infrastructure is presented in detail
starting with a conceptual view of the architecture.

3.2 Architecture

The ABAC system sketched in the last section is built on the XACML archi-
tecture (see Section 2). In the XACML architecture the access control process
is split between several actors, namely a Policy Enforcement Point (PEP), a
Policy Decision Point (PDP), a Policy Administration Point (PAP) and a Policy
Information Point (PIP).

In order to dynamically choose a PDP that matches a client’s individual privacy
preferences, we extend the XACML architecture with elements and actors that
contribute to privacy and trust in the dynamic access control process. Figure 1
depicts our proposed architecture.

Apart from the common access control actors, the figure shows a set of alterna-
tive PDPs that are capable of performing the access decision. The PDP Selector
on client side is responsible for the browsing, matching, and the selection of a
proper PDP.



134 J. Kolter, R. Schillinger, and G. Pernul

Fig. 1. An ABAC system enabling the dynamic selection of a privacy-conform PDP

The fact that the separated PDPs are entitled to make the access decision
outside the influence of the service provider requires a maximum level of trust of
the service provider, as an outsourced PDP is solely responsible for the evaluation
of the required attributes and the processing of the access policy. Employing a
PKI, we introduce the idea of trust certificates being held by each PDP. These
certificates reflect the trust of service providers in the evaluation capabilities
of a PDP. Specifically, they state that a certain PDP is authorized to evaluate
a certain attribute. As not every service provider will trust every Certificate
Authority (CA), each PDP can hold attribute evaluation certificates from several
CAs for a particular attribute.

Focusing on the sequential steps of the access control process, our scenario
starts with a client accessing a protected resource of the service provider (1).
The responsible PEP receives the access request and calls the PAP that holds
the access policy of the resource (2). The PAP then reads the access policy
and determines the subject attribute set required for an access decision, which
is subsequently forwarded to the client (3), e.g. a credit card number and the
date of birth. At this point, the client is also supplied with the CAs the service
provider trusts.

We point out that the required attributes can also include alternative attribute
sets. Increasing the chance to get access to the requested resource, the client
can opt to transfer several alternative attribute sets. However, in the process



A Privacy-Enhanced Attribute-Based Access Control System 135

of finding a proper PDP it is likely that only the transfer of a few alternative
attribute sets will be in accordance with the client’s privacy preferences.

After the required attributes have been transmitted, the client calls the PDP
Selector (4) to browse for potential PDPs (5). In a first step, the PDP Selector
filters all PDPs that do not hold a certificate for the required attributes which
need to be evaluated. Certificates must be issued by a CA the service provider
trusts. The PDP Selector is provided with that information in step (2) and (3).

As mentioned before, a suitable PDP must also meet the privacy preferences
of the client. Such requirements for example limit the disclosure of a credit
card number to financial institutions. They could also define that the date of
birth is only transferred, if a secure connection has been established. For this
reason, each potential PDP advertises a set of capabilities that define service
attributes and technical aspects. After the PDP Selector has looked up and
filtered available PDPs, the capabilities of the remaining PDPs are matched
against the client’s privacy preferences. If for example the credit card number
and the date of birth are required subject attributes, only PDPs under the control
of a financial institution that can establish a secure connection are actors the
client is comfortable to transfer the required attributes to.

Once a suitable PDP has been selected, the PDP is called with the service
request (6) and the required subject attributes from a client side PIP (6a). It also
receives the access policy (6b) and required resource attributes (6c) provided by
the PAP and the PIP of the service provider. Subsequently, the PDP evaluates
all required attributes, processes the access policy and makes an access decision.
In case of a positive access decision (”Permit”), the PDP issues an authorization
token to the client (7). The client in turn uses the authorization token to access
the resource (8). The token is acknowledged by the PEP which grants access to
the resource (9).

Figure 2 shows a sequence diagram of the presented access control process,
which points out the role of each participating actor in the access control ar-
chitecture. The following section focuses on technical aspects and standards we
employed to develop the proposed infrastructure.

3.3 Technical Details

Employing the proper technical means for the dynamic selection of a PDP is
vital to the success of our envisioned infrastructure. Section 2.1 and Section 2.2
already presented specific policy languages capable of describing privacy prefer-
ences. P3P is a notable representative, as its advantage lies in the most important
aspect of privacy descriptions, the user-friendliness. P3P, however, is not suit-
able to describe the actual application of privacy preferences. This task rather
requires policy languages like XACML. For this reason, P3P and XACML are
considered as complimentary technologies [14], with P3P describing the prefer-
ences on a rather high level and XACML allowing an ”instantiation” of a P3P
policy, describing it at a lower level which involves specific attributes and rules.



136 J. Kolter, R. Schillinger, and G. Pernul

Fig. 2. Sequence diagram of the privacy-enhanced ABAC process

As the presented access control system targets the controlled disclosure of indi-
vidual client attributes, the following will assume available privacy information
at a low representation level.

Apart from privacy-related information on client side, the proposed infra-
structure also relies on similar information pieces of the service provider, which
needs to publish obligations regarding the client’s data it commits itself to. This
information represents the counterpart of privacy preferences of the client. As
in our scenario a physically separated PDP is the target of client attributes
and as the presented infrastructure facilitates multiple alternative PDPs, this
information must be advertised by each available PDP.

A suitable candidate for the uniform encoding of privacy preferences of the
client and obligations of the PDPs is XACML, which however is not built for
the dynamic negotiation of policies, as the intersection of policies is not defined
in the XACML standard [15]. The SOA-focused Web Service Profile of XACML
(WS-XACML) directly addresses this shortcoming and offers a solution for the
storing of the above mentioned information pieces. For a proper representation
we utilize the two WS-XACML policy elements Requirements and Capabilities,
which are wrapped into assertions, enabling a suitable matching in a web service
environment.

Considering authorization information, the same WS-XACML elements can
be used to map client attributes and access rules of the service provider. Table 1



A Privacy-Enhanced Attribute-Based Access Control System 137

Table 1. Requirements and capabilities of clients and PDPs

Client PDPs (Service Provider)
ws-xacml:Requirements Privacy preferences, obliga-

tions to the service provider
Access Policy, rules built with
client attributes

ws-xacml:Capabilities Client attributes Committed obligations of the
service provider

categorizes privacy and authorization-related information into WS-XACML Re-
quirements and Capabilities of the client and the PDPs, which in our case rep-
resent the service provider.

Requirements and Capabilities consist of XACML rules and policies expressed
in a certain vocabulary. For our scenario they are wrapped in the following WS-
XACML-specified privacy and authorization assertions, which are derived from
the XACMLAbstractAssertionType:

– XACMLPrivacyAssertion
The Requirements element of this assertion type issued by the client contains
privacy preferences. As the Requirements element has to contain a Vocab-
ulary element and as WS-XACML defines a P3P vocabulary, encoding the
privacy preferences with the P3P vocabulary is a logical choice. The speci-
fication furthermore offers the client the possibility to define a Capabilities
element, containing obligations the client is willing to accept. The privacy
assertion of each PDP, on the other hand, expresses privacy-related obliga-
tions in the Capabilities field and might contain Requirements a client must
meet.

– XACMLAuthzAssertion
The authorization assertion’s Requirements element filled by the PDP de-
fines access rules and uses standard XACML attributes. According to the
specification, every vocabulary is valid; XACML, however, already provides
all needed elements. Like in the privacy assertion, the WS-XACML specifica-
tion allows a Capabilities element to express the PDP’s authorization-related
obligations. Authorization assertions issued by the client contain personal
attributes using the Capabilities field.

WS-XACML also describes an algorithm for matching assertion types. In our
case, on the domain-specific level, matching is done between assertions of the
same element name. The matching evaluates to ”true”, if all Requirements of one
assertion can be fulfilled by Capabilities present in the other assertion. Certain
special cases are also addressed; the interested reader is referred to [4] for detailed
matching rules.

Once a suitable PDP has been selected using the privacy assertions of the
client and those of all potential PDPs, the entitled PDP has to arrive at an access
decision using the authorization assertions. If access to the requested service is
granted, the PDP creates a xacml-saml:XACMLAuthzDecisionStatement token.



138 J. Kolter, R. Schillinger, and G. Pernul

The token is passed to the service requestor which subsequently uses this token
to gain access to the requested resource.

As mentioned earlier, an access control system that provides PDPs outside the
service provider’s premises must also incorporate trust-related security mecha-
nisms. Choosing a malfunctioning PDP could result in the fraudulent or at least
illegitimate access to a service. A malfunction in this context could either occur
accidently in form of software bugs or deliberately through attacking the PDP.
If, on the other hand, the user hands out his personal data to a malfunctioning
PDP, his privacy might be violated or substantial financial losses have to be
sustained, if an attacker manages to acquire some of the user’s credentials.

One way to tackle this problem is to hardwire the system, effectively taking
away every possibility of dynamic extension or reconfiguration. Therefore, we
introduce a PKI scheme which, in practice, resembles the handling of the Trans-
port Layer Security Protocol (TLS) [16]. In our scheme, the CAs attest that
a particular PDP on a certain IP is allowed to evaluate certain attributes, by
filling these information bits in the Distinguished Name field of the certificate
and cryptographically signing it. Given that the service provider trusts that CA,
implied by trusting the CAs root certificate, it can easily check if the digital
certificate is valid and consequently the PDP is trustworthy. Such a PKI based
scheme greatly increases the overall security of the dynamic PDP selections.
Even the client can benefit from this PKI by using the same procedure to verify
the validity of a certain PDP.

We point out that - following the concepts and technical aspects presented
in this section - the whole access control process from request to response can
be handled dynamically at runtime. No hard coding of the relationship between
service provider and PDP is required, enabling the client to choose a privacy-
conform PDP based on individual preferences.

4 Integration into Access-eGov

The European project Access-eGov2 targets the interoperability of e-Govern-
ment services by facilitating the composition of semantically annotated services
to complex process definitions. Particular attention is paid to the fact that many
e-Government services are not available online yet. Even those online services are
rarely semantically annotated web services. For this reason, the whole platform
is geared towards supporting offline and traditional e-services through the use
of the specialized concept of a ”complex goal” and an own process model.

A careful analysis of user requirements and a standard software development
process led to a functional specification of the Access-eGov architecture’s com-
ponents [17,18]. Figure 3 gives an overview of the resulting service-oriented ar-
chitecture. Users, service providers, and the Access-eGov platform are main ac-
tors, supported by management tools and specially crafted service ontologies.
Users are represented by their digital personal assistant, which is responsible for
invoking services and storing the state of execution. Apart from service-related
2 http://www.access-egov.org/



A Privacy-Enhanced Attribute-Based Access Control System 139

Fig. 3. Access-eGov service architecture

functions, the user’s personal assistant maintains a user model containing profile
information in the form of attributes. This profile also contains the user’s privacy
preferences and can be stored in a number of locations inside the Access-eGov
platform or on user side, e.g. on a smartcard.

The dynamic components of Access-eGov operate on a peer-to-peer networked
set of repositories, storing ontologies, annotated services, goals and strategies. A
strategy represents the overall task a user wants to accomplish. The discovery
and matching components split that task into well-defined sub-tasks, so called
goals, which can be orchestrated and finally executed. The figure also shows the
above mentioned option to integrate traditional e-services through the use of a
wrapper. Once the discovery, matching and orchestration have been completed
and a single service has been requested, the access control process introduced in
Section 3 is started.

The personal assistant incorporates general as well as attribute-specific pri-
vacy preferences of the user in the corresponding XACML assertions. Utilizing
the characteristics of a SOA-based peer-to-peer network, the security component
in the platform does the same for the service provider’s privacy obligations and
requested attributes, which are part of a service repository. This enables a PDP
Selector subcomponent to look up potential PDPs, either through brute force or
through recursive use of the Access-eGov platform.

To single out a suitable PDP, the personal assistant tries to call the re-
trieved PDPs one by one. Once a PDP is found, which fulfills all the client’s
and provider’s requirements, the provider checks its corresponding trust certifi-
cate. If the certificate is valid and issued by a CA the service provider trusts, the



140 J. Kolter, R. Schillinger, and G. Pernul

access request can be completed. In case of a successful completion, the personal
assistant may get an Authorization Token, which then can be used by the client
to access the originally requested service.

From an integration point of view, the best approach is to take the Autho-
rization Token concept one step further. Making the government services and
the Access-eGov platform a single-sign-on domain would greatly minimize the
administrative effort and the need for redundant data storage. In the course of
this project, it already showed, however, that single-sign-on solutions are not
feasible with current local laws. The public authorities cannot abandon control
of the authorization process for users of their services.

Targeting a flexible security infrastructure, the components of the Access-
eGov security subsystem are modeled as services themselves. After semantically
annotating them, using a specially crafted security ontology, those services are
stored in the same service repositories as services offered by the public authori-
ties. As the concept of a Goal in Access-eGov is not limited to serve users with
specific tasks, goals can also be used to describe tasks and workflows unrelated
to a specific user, but of a more technical nature. Above mentioned dynamic
components can resolve a ”security strategy” in exactly the same way, allowing
the infrastructure to create new security systems on the fly.

5 Related Work

Focusing on ABAC and privacy aspects, our work builds on several research
initiatives in the respective areas. In [19] the authors introduce a attribute
certificate-based ABAC system using the AKENTI engine within the context
of grid computing. Their approach, however, does not integrate any privacy-
related mechanisms. On a theoretical level [20] describe a uniform framework
that formulates and evaluates logical rules controlling service access and in-
formation release. Defining a powerful policy language, the uniform framework
especially focuses on theoretical definitions of access control and information re-
lease policies and their logical matching. In [8] the authors enrich an ABAC sys-
tem with an inference engine, targeting the semantic interoperability of security
policies.

The definition of privacy preferences (disclosure rules of personal attributes)
has been addressed by several PET initiatives [11,21]. Within the scope of
the PRIME project the definition of data handling policies is proposed [22].
These policies define how personal data of users are dealt with at the receiving
party. In that context, in [23] a privacy obligation management model is intro-
duced, providing means to monitor and enforce privacy rules of end-users. In [24]
XACML-based attribute release policies are utilized in the context of identity
providers. Like our approach the author underscores the suitability of XACML
to model attribute release policies. The author primarily addresses the controlled
attribute release of an identity provider, not an access control infrastructure as
a whole.



A Privacy-Enhanced Attribute-Based Access Control System 141

6 Conclusions

Distributed IT-infrastructures like the service-oriented architecture (SOA) in-
creasingly rely on well fitted security mechanisms that protect both the privacy
of clients and the resources of service providers. An attribute-based access con-
trol (ABAC) authorization system is flexible enough to satisfy the needs of a
SOA. However, the ABAC model heavily relies on the disclosure of personal
attributes, a characteristic that could conflict with privacy preferences of the
client.

In this paper we introduced an ABAC system that provides a set of alter-
native, physically separated Policy Decision Points (PDPs). After the definition
of individual privacy preferences (attribute disclosure rules), our approach fa-
cilitates a client to dynamically select a PDP that is in line with his privacy
preferences. Addressing the necessary trust a physically separated PDP must
provide, we embed a PKI in the access control process. For the process of defin-
ing, advertising and matching privacy preferences and PDP capabilities we take
up concepts from the OASIS WS-XACML specification. Our approach enables
the whole access control process to be handled dynamically at runtime. No static
relations between a PDP and the service provider are necessary. The presented
solution is part of a service-oriented security infrastructure within the research
project Access-eGov.

Future work will involve performance and usability tests in the Access-eGov
system. Furthermore, we are pursuing the notion of dynamically built PDP cas-
cades, which will mitigate the effect of strict privacy and trust preferences of
users and service providers, respectively. Finally, we are checking the potential
of Trusted Computing technologies. With a trusted environment on client side
the PDP could be moved directly to the client, an option that would obviously
suit any privacy disclosure rule.

Acknowledgment

The work reported in this paper was in part funded by the European Union
within the project Access-eGov (Sixth Framework Program, Contract No. FP6-
2004-27020). We thank our project partners for helpful comments and stimulat-
ing discussions.

References

1. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference Model
for Service Oriented Architecture 1.0. OASIS Standard (October 2006)

2. Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for Web Services. In:
Proc. of the IEEE International Conference on Web Services (ICWS’05), Washing-
ton, DC, United States, pp. 561–569. IEEE Computer Society Press, Los Alamitos
(2005)



142 J. Kolter, R. Schillinger, and G. Pernul

3. Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS Standard (February 2005)

4. Anderson, A.: Web Services Profile of XACML (WS-XACML) Version 1.0. OASIS
Working Draft, vol. 8 (December 2006)

5. Earp, J., Baumer, D.: Innovative Web Use to Learn About Consumer Behavior
and Online Privacy. Communications of the ACM 46(4), 81–83 (2003)

6. Lopez, J., Oppliger, R., Pernul, G.: Authentication and Authorization Infrastruc-
tures (AAIs): A Comparative Survey. Computers & Security 23(7), 578–590
(2004)

7. Priebe, T., Dobmeier, W., Muschall, B., Pernul, G.: ABAC - Ein Referenzmodell für
attributbasierte Zugriffskontrolle. In: Proc. of the 2nd Jahrestagung Fachbereich
Sicherheit der Gesellschaft für Informatik (Sicherheit ’05), Regensburg, Germany,
pp. 285–296 (2005)

8. Priebe, T., Dobmeier, W., Kamprath, N.: Supporting Attribute-based Access Con-
trol with Ontologies. In: Proc. of the 1st International Conference on Availability,
Reliability and Security (ARES ’06), Washington, DC, United States, pp. 465–472.
IEEE Computer Society Press, Los Alamitos (2006)

9. Nadalin, A., et al.: Web Services Security: SOAP Message Security 1.1. OASIS
Standard Specification (2006)

10. World Wide Web Consortium: Web Services Policy 1.2 - Framework (WS-Policy).
W3C Member Submission (April 2006)

11. Cranor, L., et al.: The Platform for Privacy Preferences 1.1 (P3P1.1) Specification.
W3C Working Group Note (November 2006)

12. Cranor, L., Langheinrich, M., Marchiori, M.: A P3P Preference Exchange Language
1.0 (APPEL 1.0). World Wide Web Consortium Working Draft (April 2002)

13. Kolter, J., Schillinger, R., Pernul, G.: Building a Distributed Semantic-aware Se-
curity Architecture. In: Proc. of the 22nd International Information Security Con-
ference (SEC2007), Sandton, South Africa, May 2007 (to Appear)

14. Anderson, A.: The Relationship Between XACML and P3P Privacy
Policies (November 2004), http://research.sun.com/projects/xacml/
XACML P3P Relationship.html

15. Andersson, A.: Sun Position Paper. W3C Workshop on Languages for Privacy
Policy Negotiation and Semantics-Driven Enforcement (October 2006)

16. Dierks, T., Rescorla, E.: RFC 4346: The Transport Layer Security (TLS) Protocol
Version 1.1. Internet RFCs (April 2006)

17. Klischewski, R., Ukena, S., Wozniak, D.: User Requirements Analysis & Develop-
ment/Test Recommendation. Access-eGov deliverable D2.2 (July 2006)

18. Tomasek, M., Paralic, M., et al.: Access-eGov Components Functional Descrip-
tions. Access-eGov deliverable D3.2 (November 2006)

19. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K., Essiari,
A.: Certificate-based Access Control for Widely Distributed Resources. In: Proc.
Proc. of the 8th USENIX Security Symposium, Washington, DC, United States
(1999)

20. Bonatti, P., Samarati, P.: A Uniform Framework for Regulating Service Access
and Information Release on the Web. Journal of Computer Security 10(3), 241–
271 (2002)

21. Hansen, M., Krasemann, H.: Privacy and Identity Management for Europe PRIME
White Paper. PRIME deliverable D15.1.d (July 2005)

http://research.sun.com/projects/xacml/XACML_P3P_Relationship.html
http://research.sun.com/projects/xacml/XACML_P3P_Relationship.html


A Privacy-Enhanced Attribute-Based Access Control System 143

22. Ardagna, C., De Capitani di Vimercati, S., Samarati, P.: Enhancing User Privacy
Through Data Handling Policies. In: Proc. of the 20th Annual IFIP WG 11.3
Working Conference on Data and Applications Security (DBSec 2006), Sophia
Antipolis, France (July 2006)

23. Casassa Mont, M.: Towards Scalable Management of Privacy Obligations in En-
terprises. In: Proc. of the Third International Conference on Trust, Privacy, and
Security in Digital Business (TrustBus ’06), Krakow, Poland, pp. 1–10(Septmeber
2006)

24. Hommel, W.: Using XACML for Privacy Control in SAML-Based Identity Feder-
ations. In: Communications and Multimedia Security, pp. 160–169 (2005)



A Scalable and Secure Cryptographic Service

Shouhuai Xu1 and Ravi Sandhu2

1 Department of Computer Science, University of Texas at San Antonio
shxu@cs.utsa.edu

2 Institute for Cyber-Security Research, University of Texas at San Antonio
ravi.sandhu@utsa.edu

Abstract. In this paper we present the design of a scalable and secure
cryptographic service that can be adopted to support large-scale net-
worked systems, which may require strong authentication from a large
population of users. Since the users may not be able to adequately protect
their cryptographic credentials, our service leverages some better pro-
tected servers to help fulfill such authentication needs. Compared with
previous proposals, our service has the following features: (1) it incorpo-
rates a 3-factor authentication mechanism, which facilitates compromise
detection; (2) it supports immediate revocation of a cryptographic func-
tionality in question; (3) the damage due to the compromise of a server
is contained; (4) it is scalable and highly available.

Keywords: cryptographic service, scalability, security, compromise de-
tection, compromise confinement, availability.

1 Introduction

Large-scale networked systems, such as peer-to-peer and grid systems, must be
adequately protected; otherwise they may be abused or exploited to do more
harm than good — Distributed Denial-of-Service (DDoS) attacks are just an
example. An important aspect of secure large-scale networked systems is to en-
force strong authentication, which would require a large population of users to
utilize some cryptosystems such as digital signatures. Due to the very nature
of cryptography, assurance offered by such authentications perhaps cannot be
any better than security (or secrecy) of the corresponding cryptographic keys or
functionalities. This is because compromise of a cryptographic key would allow
the adversary to perfectly impersonate the victim user. The threat is amplified
by the fact that average users often do not have the expertise or skill to secure
their own computers, which may be justified by the fact that there have been
many botnets that consist of many compromised computers.

Our contributions. We present the design of a scalable and secure crypto-
graphic service that can be adopted to support large-scale networked systems,
which require strong authentication from a large population of users. Specifi-
cally, our approach leverages some better protected servers to help protect the

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 144–160, 2007.
c© IFIP International Federation for Information Processing 2007



A Scalable and Secure Cryptographic Service 145

users’ private signing keys and functionalities. Compared with a standard two-
party threshold digital signature system (i.e., a user’s private key is split into
two shares such as one is stored on the user’s machine and the other is stored on
a remote server) and previous proposals for a similar purpose, our service has
the following features:

* It incorporates a 3-factor authentication mechanism so that a signature may
be produced in a certain way when a request: (1) presents a valid password
(i.e., what you know); (2) is initiated from a party having access to the
user’s soft-token (i.e., what you have); (3) presents a valid fresh one-time
secret (i.e., whether you always have access to the soft-token). As a result,
the resulting service provides a compromise detection capability that may
be of independent value.

* It supports a convenient key disabling that can be done using a standard
username/password authentication. This is useful, for instance, when a user’s
device is stolen on a business trip because the user can disable its private
key without having access to a backup of the content on its stolen device.

* The damage due to the compromise of a server is confined to a subset of
the users subscribing to its service. Furthermore, the users associated with
a compromised server do not have to re-initialize their private keys, unless
they suspect that their own machines might have been compromised.

* It is scalable due to its “decentralized” nature (i.e., each server may serve a
subset of users). It is highly available since a single server is enough to help
a user fulfill its task. While we do not explore the details of utilizing the
state machine approach [28] to securely replicate a server, it should not be
difficult to extend our solution to fulfill such replications. In particular, in
a related prior scheme we proposed [29], threshold cryptosystems have been
adopted to fulfill distributed password-based authentication and signing.

Related prior work. The simplest approach to securing cryptographic keys is
to let each user utilize some tamper-resistant hardware device. The industry has
started to provide machines equipped with Trusted Platform Module (TPM) as
specified by the Trusted Computing Group (www.trustedcomputinggroup.com).
However, there are many legacy computers that need be better protected, mean-
ing that alternate solutions are still useful.

One alternate approach to protecting cryptographic keys is to encrypt a key
with a password; this is indeed widely deployed in real-life systems. However, the
resulting security assurance is quite weak because, once a computer is compro-
mised, the adversary can obtain the cryptographic keys without even conducting
an off-line dictionary attack. Another approach is to let a user store its cryp-
tographic key in a remote server, and download the key from the server after
a password-based authentication [24]. This approach still allows the adversary,
who can compromise a user’s computer, to obtain the private key in question.
Moveover, the remote server has to be trusted.

Our scheme follows the paradigm of “cryptography as a service” [13]. (This
paradigm is different from the server-aided protocols [23,2], which were



146 S. Xu and R. Sandhu

motivated to utilize a computationally powerful server to help a computationally
poor device conduct expensive cryptographic computations.) In particular, we
adopt as a starting point the proposal due to MacKenzie and Reiter [22], which
follows [10,16]. The basic idea common to [22,10,16] as well as a similar result
[9] is to split a private key into two shares such that one share (often called
“soft-token”) is stored on the user’s device, and the other is stored on a remote
server. These schemes have no single point of failure.

Finally, we should mention that there are some interesting cryptographic con-
structs that aim to protect private keys. Notable results include forward-security
signatures [1,3,19], key-insulated signatures [15] and intrusion-resilient signatures
[20]. The protections provided by these mechanisms are orthogonal to the pro-
tection provided by our approach. Nevertheless, they may be integrated together
for a better protection.

Outline. In Section 2 we briefly review some necessary cryptographic prelimi-
naries. In Section 3 we introduce the soft-token system model. In Section 4 we
present a building block, which is utilized in Section 5 to construct the full-
fledged service scheme. We conclude the paper in Section 6. Due to space limita-
tion, the proofs of some theorems are deferred to the full version of the present
paper [30].

2 Cryptographic Preliminaries

Let k be the primary security parameter (e.g., k = 160), and λ be a secondary
security parameter for public keys (e.g., λ = 1024 means we use 1024-bit RSA
moduli). A function ε : N → R

+ is negligible if for any c there exists kc such that
∀k > kc we have ε(k) < 1/kc. Let H (with an additional subscript as needed)
be a hash function that, unless otherwise stated, is assumed to behave like a
random oracle [5] with range {0, 1}k.

Pseudorandom functions. A pseudorandom function (PRF) family {fv} pa-
rameterized by a secret value v has the following property [17]: It is computa-
tionally infeasible to distinguish fv, where v is uniformly chosen at random, from
a random function (with the same domain and range).

Message authentication codes. We assume the standard property of message
authentication codes (MACs): If the key a is unknown, then given multiple pairs
〈mi, MACa(mi)〉 where the mi’s may be adaptively chosen, it is computationally
infeasible to compute any pair 〈m, MACa(m)〉 where m 	= mi.

Public key cryptosystems. An public key cryptosystem E is a triple (GEN,
E, D) of polynomial-time algorithms, where the first two are probabilistic. GEN ,
taking as input 1λ, outputs a key pair (pk, sk). E, taking as input a public key
pk and a message m, outputs an encryption c for m. D, taking as input a
ciphertext c and a private key sk, returns a message m when c is valid and



A Scalable and Secure Cryptographic Service 147

⊥ otherwise. We assume an encryption scheme that is secure against adaptive
chosen-ciphertext attack [26]. Basically, an attacker A is given pk and allowed
to query the decryption oracle. At some point A generates two equal length
strings X0 and X1 and sends them to a test oracle, which chooses b ∈R {0, 1}
and returns Y = Epk(Xb). Then A continues querying the decryption oracle,
with the restriction that it cannot query the decryption of Y . Finally, A output
b′. We say A succeeds if b = b′. Practical schemes are available [6,12].

Digital signature schemes. Adigital signature schemeS is a triple (GEN, S, V )
of polynomial-time algorithms, where the first two are probabilistic. GEN , tak-
ing as input 1λ, outputs a key pair (pk, sk). S, taking as input a message m and
a private key sk, outputs a signature σ for m. V , taking as input a message m, a
public key pk, and a candidate signature σ, returns b = 1 if σ is a valid signature
for m and b = 0 otherwise. We assume a signature scheme that is existentially
unforgeable under adaptive chose-message attack [18]: a forger is given pk; it is
allowed to query a signature oracle on messages of its choice; it succeeds if it
outputs a valid signature for m that is not one of the messages signed before.

3 Model and Goals

System model. There are a set of users and a set of semi-trusted servers. As
in a standard Public Key Infrastructure (PKI), a server has a pair of public
and private keys, and so does a user. All the users and servers are probabilistic
polynomial-time algorithms. A user splits its private key into two shares after
a cryptographic transformation such that one share is stored on the user side
(perhaps being encrypted with a password) and the other is stored on a remote
server. A soft-token is a data structure a user stores. A soft-token (containing a
user-side key share) may be stateful, so we may denote by token(i) the soft-token
after the ith transaction in which it is utilized.

A server has two interfaces: one for producing signatures and the other for
disabling private keys. The resulting signatures can be verified using the public
keys of the users, and thus can be used for authenticating the users in higher-
layer applications. In order for a user to produce a signature, the user conducts
an interaction with a server, which collaborates with the claimed user only when
the user successfully authenticates itself to the server (not to the higher-layer
application). In order for a user to disable its private key, the user needs to
succeed in a certain authentication operation. A server maintains a database
for recording relevant information that would allow the service provider to take
actions (e.g., gathering payment when the service is payment-based).

Adversary. We consider an adversary who may have control over the network.
The adversary may compromise certain resources including a user’s soft-token,
a user’s password, and a server’s private key. The adversary may break into a
user’s device when the client software is active; this explains why we consider
an adversary that is strictly more powerful than the adversary considered in



148 S. Xu and R. Sandhu

previous soft-token systems. We assume that the integrity of the server (e.g.,
the database) is guaranteed, even if an adversary can compromise the server’s
private key. This also models the situation where a semi-trusted server may be
honest in performing the protocol, but curious about the users’ private keys.

Goals. Recall that k is the primary security parameter. A cryptographic service
should have the following properties:

* Abuse prevention. Consider a fixed pair of 〈user, server〉, where the user
possesses a soft-token token and a password pwd. Denote by ADV(R) the
type of adversary who succeeds in capturing the resource elements of R ⊆
{token, server, pwd}. When we say that an adversary ADV has access to
token we mean that token is always available to ADV ; when we say that
ADV has access to �token(i) we mean that ADV does not have access to
token(i) but perhaps has access to token(j) for 0 ≤ j < i. Specifically,

1. An adversary of type ADV{server, pwd} can only forge signatures that
are valid with respect to the user’s public key with a negligible proba-
bility in k.

2. An adversary of type ADV{token, server} can forge signatures that are
valid with respect to the user’s public key only when the adversary suc-
ceeds in off-line dictionary guessing the user’s password.

3. An adversary of type ADV{token} can forge signatures that are valid
with respect to the user’s public key with probability negligibly more
than q/|D| after q invocations of the server, where D is the dictionary
from which the user’s password is randomly drawn.

4. An adversary of type ADV{token, pwd} can output — with only a prob-
ability negligible in k — signatures that are valid with respect to the
user’s public key after the user’s private key is disabled.

5. An adversary of type ADV{�token(i), pwd} can output — with only a
probability negligible in k — signatures that are valid with respect to
the user’s public key after the user finishes the ith transaction and before
the user initiates the (i + 1)th transaction.

* Compromise detection. The system itself can detect the compromise that an
adversary has succeeded in impersonating the user for producing signatures.

* Immediate revocation. A user can request a server to disable its private key
by executing a standard username/password authentication.

* Compromise confinement. The impact due to the compromise of a server is
contained to a subset of the users subscribing to its service. Moreover, these
users do not have to re-initialize their private keys.

* Scalability. The system can serve a large population of users.
* High availability. The system is highly available, even if some servers are

under DDoS attacks.

4 Building Block: A Single Server Soft-Token Scheme

In this section we present a building block, which is extended from a scheme pre-
sented in [22] and will be incorporated into our full-fledged scheme in Section 5.



A Scalable and Secure Cryptographic Service 149

Suppose the server’s public data (e.g., public key) are available to the users, and
consider a fixed pair of 〈user, server〉. The user runs the initialization process
to generate a soft-token token(0) using its public and secret data as well as the
server’s public data. In the ith transaction (i = 1, 2, · · ·), the user, who has access
to token(i−1) that is generated in the (i−1)th transaction or in the initialization
process when i = 1, signs a message by interacting with the server. The server
collaborates with the claimed user only when the user presents the password
and the state information ϑ chosen by the server in the last transaction. At the
end of the ith transaction, the user obtains the signature, generates a new token
token(i) using the cryptographic state information ϑ chosen by the server, and
erases token(i−1). The server tracks the changes of the ϑ’s in its database.

Denote a user’s public key by pkuser = 〈e, N〉 and private key by skuser =
〈d, N, φ(N)〉, where ed = 1 mod φ(N), N is the product of two large prime
numbers, and φ is the Euler totient function. In the standard encode-then-sign
paradigm, the signature sig on message m is S〈d,N,φ(N)〉(m) = 〈r, s〉, where r ∈R

{0, 1}lenpad , s = (encode(m, r))d mod N for some encoding function encode. A
signature 〈r, s〉 can be verified by checking if se = encode(m, r) mod N . The
function encode could be either deterministic (e.g., lenpad = 0 in the case of
hash-and-sign [14]) or probabilistic (e.g., PSS [7]), these types of signatures
were proven secure against adaptive chosen-message attacks in the random or-
acle model. The basic idea for splitting the private key d is to let d1 + d2 =
d mod φ(N). The scheme has the following components.

Token initialization. Suppose H1 : {0, 1}∗ −→ {0, 1}k and f : {0, 1}∗ →
{0, 1}λ+k. The inputs are the server’s public encryption key pkserver , the user’s
password pwd, the user’s public key pkuser = 〈e, N〉 and private key skuser =
〈d, N, φ(N)〉. The initialization proceeds as follows.

uid = username

v ∈R {0, 1}k

a ∈R {0, 1}k

b = H1(pwd)
d1 = f(v, pwd)
d2 = d − d1 mod φ(N)
τ = Epkserver (〈a, b, uid, d2, N〉)
ct = 0
st ∈R {0, 1}k

token = (ct, st, v, a, τ, e,N, pkserver)

The user chooses its own uid, a unique and memorizable string such as its
email address. The soft-token is token = (ct, st, v, a, τ, e, N, pkserver), where ct
is an incremental counter indicating the serial number of a transaction (which
is used for simplifying the description), st is the state information that will be
chosen by the server (for the time being of ct = 0, it is just a placeholder). All
the other values, including b, d, d1, d2, φ(N), and pwd, are erased.



150 S. Xu and R. Sandhu

Server database. The server maintains a database of Υ =(τ, uid, count, ϑ, m, r),
where uid is obtained after receiving the first service request, and count is
an incremental counter (with initialized value zero). Each record of the data-
base represents a transaction corresponding to τ = Epkserver (〈a, b, uid, d2, N〉).
The database has two operations: append(τ, uid, count, ϑ, m, r) for appending a
record (τ, uid, count, ϑ, m, r) to the database, and last(τ, uid, count, ϑ, m, r) for
returning either the record (τ, uid, count, ϑ, m, r) corresponding to the last trans-
action corresponding to τ or NULL (meaning that the token corresponding to τ
has never been used before).

Signing protocol. The client software prompts the user to enter the pass-
word pwd, to get the to-be-signed message m as well as the soft-token token =
(ct, st, v, a, τ, e, N, pkserver). The protocol is depicted in Fig. 1.

USER SERVER
token = (ct, st, v, a, τ, e, N, pkserver)
β = H1(pwd), ρ1 ∈R {0, 1}k

ρ2 ∈R {0, 1}λ, ρ3 ∈R {0, 1}k

r ∈R {0, 1}lenpad

γ = Epkserver (〈m, r, β, st, ρ1, ρ2, ρ3〉)
δ = MACa(〈γ, τ〉)

(γ, τ, δ)
→

abort IF τ has been disabled
〈a, b, uid, d2, N〉 = Dskserver (τ)
abort IF MACa(〈γ, τ〉) = δ
Υ = last(τ, uid, count, ϑ′, m′, r′)
〈m, r, β, st, ρ1, ρ2, ρ3〉 = Dskserver (γ)
abort IF β = b
abort IF Υ = NULL ∧ st = ϑ′

σ = (encode(m, r))d2 mod N

ϑ ∈R {0, 1}k, θ = ϑ ⊕ ρ1

η = σ ⊕ ρ2, ϕ = MACρ3(〈θ, η〉)
count = count + 1
append(τ, uid, count, ϑ, m, r)

(θ, η, ϕ)
←

abort IF MACρ3(〈θ, η〉) = ϕ
and σ = η ⊕ ρ2 and d1 = f(v, pwd)

s = σ · (encode(m, r))d1 mod N
abort IF se = encode(m, r)
st = θ ⊕ ρ1, ct = ct + 1
token′ = (ct, st, v, a, τ, e, N, pkserver)
erase β, d1, ρ1, ρ2, ρ3, θ, η, ϕ, ϑ, token

Fig. 1. Building block: a single-server scheme with stateful soft-tokens



A Scalable and Secure Cryptographic Service 151

Let us briefly explain the functions of the protocol elements:

* β is a value showing that the user knows the password pwd.
* ρ1 and ρ2 are two one-time pads chosen by the user, and will be used by

the server to encrypt the state information ϑ and the partial signature σ
(produced using the partial private key d2), respectively.

* ρ3 is a one-time message authentication key that allows the user to detect
compromise of token because the adversary could tamper with θ while keep-
ing η intact.

* r is a lenpad-bit random string used in the encoding function.
* γ is the encryption of m, r, β, st, ρ1, ρ2, and ρ3.
* δ and ϕ are message authentication codes computed using a and ρ3, re-

spectively. (Note that both δ and ϕ are not for preventing abuses, but for
detecting attacks.)

Key disabling protocol. In order to disable its private key, the user authenti-
cates itself to the server by conducting a standard username/password authenti-
cation protocol corresponding to uid/pwd. The server will query its database to
get b = H1(pwd) from 〈a, b, uid, d2, N〉 = Dskserver (τ), where τ corresponds to
uid. Any secure password protocol (e.g., [8,4,11,21]) can be used for this purpose.

4.1 Discussions

On 3-factor authentication. Previous key-split schemes (such as [22]) em-
ploy a 2-factor authentication mechanism based on a password and a soft-token.
Whereas, we employ a 3-factor authentication mechanism so that a signature is
produced when a request (i) presents a valid password (i.e., what you know), (ii)
is initiated from a party having access to the user’s soft-token (i.e., what you
have), and (iii) presents a valid fresh one-time secret (i.e., whether you always
have access to the soft-token). The last factor helps achieve the newly introduced
compromise detection and the enhanced abuse prevention (see Section 4.2).

On atomicity of the transactions. We assumed that atomicity of the trans-
actions is ensured. This may be problematic when, for example, the servers are
under a DDoS attack. This issue is addressed via another layer of assurance for
synchronization in Section 5.

On light-weight key disabling. Allowing a user to disable its private key via a
standard username/password authentication has the advantage that a user does
not have to resort to its soft-token, which may not be available (e.g., when the
user’s device is stolen). Although this convenience seemingly gives an adversary
the chance to impose denial-of-service attack (i.e., the adversary can request the
server to disable the user’s private key), we argue that there are no sever conse-
quences. First, suppose an adversary does not know a user’s token or password.
Then, the adversary can conduct an on-line dictionary attack against the user’s



152 S. Xu and R. Sandhu

password. This is sever if the on-line dictionary attack can be launched auto-
matically by a software program. Fortunately, there exist some effective methods
(e.g., [25]) to force the adversary to conduct a manual on-line dictionary attack,
which may be unlikely. Second, suppose an adversary knows a user’s token but
not password. Then, it is seemingly more attractive for the adversary to manage
to get the user’s password so that it can produce signatures (rather than disable
the user’s private key). Moreover, the user might also have to disable its private
key once the user realized that its soft-token has been compromised. Third, sup-
pose an adversary knows a user’s password but not token. Then, the adversary
can always disable the user’s private key. This may not be seen as a drawback
because the user has to disable its private key once the user realized that its
password has been compromised. Fourth, suppose an adversary knows a user’s
token and password. Then, the adversary is already able to produce signatures
by contacting the server, which is perhaps more attractive than to conduct a
denial-of-service attack by disabling the victim user’s private key.

4.2 Analysis

Our scheme does not incur any significant extra complexity, when compared
with the starting-point scheme in [22]. Specifically, a soft-token keeps some state
information (e.g., 160 bits), and a server keeps some state information linear to
the number of users (which can be easily mitigated by letting the server use a
pseudorandom function). Moreover, no extra exponentiations are imposed on a
user or a server. Below we analyze the security properties.

Proposition 1. The single server scheme implements some of the requirements
specified in Section 3 (the others will be fulfilled in the full-fledged scheme via
another layer of protection).

* Abuse prevention. This is analyzed in Theorems 1-5.
* Compromise detection. Suppose atomicity of the transactions and integrity

of the server are guaranteed. Lack of synchronization means that either an
adversary had succeeded in impersonating the user, or the token had been
tampered with.

* Immediate revocation. This is true since the request for disabling a private
key is authenticated by pwd, whereas uid is also remembered by the user.

In order to prove the abuse prevention, we introduce the following formal security
model. Denote D-RSA[E , D] the real-world single-server signing system based on
an encryption scheme E for the server and dictionary D. An adversary is given
〈e, N〉 where (〈e, N〉, 〈d, N, φ(N)〉) ←− GENRSA(1λ), the public data generated
in the initialization procedure, and certain secret data of the user and/or server
(depending on the type of the adversary). The goal of the adversary is to forge
RSA signatures with respect to 〈e, N〉. The adversary is allowed to have the
following types of oracle queries:

1. start(m) – This results in a user to initiate the protocol. The oracle may
execute according to the protocol, maintain state as appropriate (i.e., there
is an implicit notion of sessions), and return (γ, τ, δ).



A Scalable and Secure Cryptographic Service 153

2. serve(γ, τ, δ) – This represents the receipt of a message ostensively from the
user. The oracle may execute according to the protocol to return (θ, η, ϕ).

3. finish(θ, η, ϕ) – This represents the receipt of a response ostensively from the
server. The oracle may execute according to the protocol to return a valid
signature.

An adversary of type ADV{server, pwd}, ADV{token, server}, or
ADV{token} succeeds in breaking the scheme if it can output a valid sig-
nature 〈r, s〉 on message m and there was no start(m) query. An adversary
of type ADV{token, pwd} succeeds in breaking the scheme if it can output a
valid signature 〈r, s〉 on message m and there was no serve(γ, τ, δ) query, where
〈m, ∗, ∗, ∗, ∗, ∗, ∗〉 = Dskserver (γ). An adversary of type ADV{�token(i), pwd}
succeeds in breaking the scheme if it can output a valid signature 〈r, s〉 on
message m after the user finishes the ith transaction and before the user ini-
tiates the (i + 1)th transaction, and there was no serve(γ, τ, δ) query such that
〈m, ∗, ∗, ∗, ∗, ∗, ∗〉 = Dskserver (γ).

Denote by quser the number of start(·) queries to the user, qserver the number
of serve(·, ·, ·) queries to the server. Let qh and qf be the number of queries to
the random oracles h and f , respectively. Let qo be the number of other oracle
queries not counted above. Let q = (quser , qserver , qh, qf , qo). We also denote by
|q| = quser + qserver + qh + qf + qo as the total number of oracle queries.

We say an adversary (q, ε)-breaks D-RSA if it makes q oracle queries (of the
respective types and to the respective oracles) and succeeds with probability at
least ε. In the following, “≈” means equality within negligible factors.

We say an attacker A (q, ε)-breaks E if the attacker makes q queries to the
decryption oracle and 2 · Pr[A succeeds] − 1 ≥ ε, which implies Pr[A outputs
0|b = 0] − Pr[A outputs 0|b = 1] ≥ ε. Note that if E uses random oracles, the
oracles may be queried by the attacker along with the encryption oracle.

We say a forger (q, ε)-breaks a signature scheme if it makes q queries and
succeeds with probability at least ε. Note that if S uses random oracles, the
oracles may be queried by the forger along with the signature oracle.

Now we present the theorems for the abuse prevention property of the single-
server signing protocol. Theorem 1-4 are extended from [22] and their proofs are
deferred to the full version of the present paper [30] (due to space limitation).

Theorem 1. Suppose {fv} is a pseudorandom function family. If an adversary
F of type ADV{server, pwd} can (q, ε)-break D-RSA[E , D] system, then there
exists a forger F∗ able to (quser , ε

′)-break the underlying RSA signature scheme,
where ε′ ≈ ε.

Theorem 2. Let H1 and f be random oracles. If F of type ADV{token, server}
can (q, ε)-break D-RSA[E , D] system, there exists a forger F∗ able to (quser , ε

′)-
break the underlying RSA signature scheme, where ε′ ≈ ε − qh+qf

|D| .

Theorem 3. Suppose H1 has a negligible probability of collision over D. If an
adversary A of type ADV{token} can (q, ε)-break the D-RSA[E , D] system for
ε = qserver

|D| + ψ, then there exists either a forger F∗ able to (quser , ε
′)-break



154 S. Xu and R. Sandhu

the underlying RSA signature scheme for ε′ ≈ ψ
2 , or an attacker A∗ able to

(2qserver , ε
′′)-break E for ε′′ ≈ ψ

2(1+quser) .

Theorem 4. Suppose the underlying RSA signature scheme is deterministic. If
an adversary A of type ADV{token, pwd} can (q, ε)-break the D-RSA[E , D] sys-
tem, then there exists either a forger F∗ able to (qserver , ε

′)-break the underlying
RSA signature scheme for ε′ ≈ ε

2 , or an attacker A∗ able to (2qserver , ε
′′) -break

E for ε′′ ≈ ε
2(1+quser) .

Theorem 5. Suppose the underlying RSA signature scheme is deterministic. If
an adversary A of type ADV{�token(i), pwd} can (q, ε)-break the D-RSA[E , D]
system, then there exists either a forger F∗ able to (qserver , ε

′)-break the un-
derlying RSA signature scheme for ε′ ≈ ε

2quser
, or an attacker A∗ able to

(2qserver , ε
′′)-break E for ε′′ ≈ ε

4quser
.

Proof. (sketch) Suppose there exists i, 1 ≤ i ≤ quser , such that A outputs a valid
signature for a new message with probability at least ε after the user finishes the
ith transaction and before the user initiates the (i + 1)th transaction. Consider
an algorithm F∗∗ that is the same as F∗ in Theorem 4, except that:

* Let τ be the encryption of 0-string of appropriate length, the first i − 1 γ’s
be the encryptions of normal messages, and the ith γ be the encryption of
0-string of appropriate length.

* A token is sent to A only when it issues a get() query, which is not allowed
for the ith token generated by the user in the ith transaction. Also, A can
maintain the consistency between the user side and the server side by issuing
a coordinate(token) query.

Given the simulation generated by F∗∗, if Pr[A succeeds] ≥ ε
2 , then it is clear

that there exists F∗ able to (qserver , ε
′)-break the underlying RSA signature

scheme, where ε′ ≈ ε
2quser

; otherwise, there exists A∗ able to (2qserver , ε
′′)-

break E , where ε′′ ≈ ε
4quser

.
Consider an algorithm A∗∗ that is given a public key pk′. Now, A∗∗ can

perfectly simulate the real-world system as follows. It generates the pair of public
and private keys on behalf of the user. It need have access to the decryption
oracle, but at most 2qserver times. Note that A is given a newly generated token
only when it issues a get() query, and that no get() query is allowed after the user
finishes the ith transaction and before the user initiates the (i+1)th transaction.
Therefore, A succeeds in forging with probability at least ε.

Now consider the same simulation, except that τ is the encryption of 0-string
of appropriate length, the first i− 1 γ’s are the encryptions of normal messages,
and the ith γ is the encryption of 0-string of appropriate length. This simulation
is equivalent to the simulation of F∗∗. Therefore, Pr[A succeeds] < ε

2 .
A standard hybrid argument shows that A∗∗ can (2qserver ,

ε
4 )-break E , which

means that there exists A∗ able to (2qserver ,
ε

4quser
)-break E . ��



A Scalable and Secure Cryptographic Service 155

5 Full-Fledged Scheme

Now we present the full-fledged scheme, which is built on top of the building-
block discussed in the previous section. The basic idea underlying the scheme
is the following. In order to achieve compromise confinement, we augment b =
H1(pwd) to b = H1(c, pwd), where c is a cryptographic secret used to ensure that
b = H1(c, pwd) itself does not leak any significant information of a password pwd.
A drawback of this approach is that a user cannot disable its private key using a
standard username/password authentication mechanism. Nevertheless, this can
be resolved by letting a user choose two passwords, one for generating signatures
and the other for disabling its key. Specifically, this can be done by further
augmenting τ = Epkserver (〈a, b, uid, d2, N〉) to τ = Epkserver (〈a, b, b∗, uid, d2, N〉)
such that b = H1(c, pwd) and b∗ = H2(π), where password pwd is for generating
signatures, and password π is for disabling the key.

Special care is also taken to address atomicity and availability issues. Sup-
pose a server serveri cannot finish a transaction within a certain time interval.
Then, it is reasonable to allow the user to contact another server. This flexibility
complicates the facilitation of transaction atomicity. We resolve this issue by
incorporating a simple “commit/rollback” mechanism. Moreover, a commit or
rollback request should be authenticated. This can be done by augmenting γ =
Epkserver (〈m, r, β, st, ρ1, ρ2, ρ3〉) to γ = Epkserver (〈m, r, β, st, ρ1, ρ2, ρ3, ρ4, ρ5〉),
where ρ4 = H3(ρ∗4) is used for committing a transaction and ρ5 = H3(ρ∗5) is
used for rollbacking a transaction. The scheme has the following components.

Token initialization. Suppose H1 : {0, 1}∗ −→ {0, 1}k, H2, H3 : {0, 1}k −→
{0, 1}k, and f : {0, 1}∗ → {0, 1}λ+k are appropriate hash and pseudorandom
functions, respectively. A user chooses two passwords – pwd for generating sig-
natures and π for disabling the private key, and a pair of public and private keys
(pkuser = 〈e, N〉; skuser = 〈d, N, φ(N)〉). A user chooses n servers as its service
providers, and each server has a public key pkserver,i, where 1 ≤ i ≤ n. The
initialization process proceeds as follows.

uid = username

vi ∈R {0, 1}k, 1 ≤ i ≤ n
ai ∈R {0, 1}k, 1 ≤ i ≤ n

ci ∈R {0, 1}k, 1 ≤ i ≤ n
bi = H1(ci, pwd), 1 ≤ i ≤ n
b∗ = H2(π)
d1,i = f(vi, pwd), 1 ≤ i ≤ n
d2,i = d − d1,i mod φ(N), 1 ≤ i ≤ n
τi = Epkserver,i(〈ai, bi, b

∗, uid, d2,i, N〉), 1 ≤ i ≤ n
cti = 0, 1 ≤ i ≤ n

sti ∈R {0, 1}k, 1 ≤ i ≤ n
tokeni = (cti, sti, vi, ai, ci, τi, e,N, pkserver,i), 1 ≤ i ≤ n

The user keeps n soft-tokens on its device and erases all the other values.

Server databases. Each server, serveri for 1 ≤ i ≤ n, maintains a database
of Υi = (τ, uid, count, ϑ, m, r), where uid is obtained after receiving the first



156 S. Xu and R. Sandhu

service request, count is an incremental counter (with initialized value zero)
maintained by the server. Each record of the database represents a transac-
tion with respect to τ = Epkserver (〈a, b, b∗, uid, d2, N〉), There are two types of
operations regarding the database. First, append(τ, uid, count, ϑ, m, r) appends
(τ, uid, count, ϑ, m, r) into the database. Second, last(τ, uid, count, ϑ, m, r) re-
turns either (τ, uid, count, ϑ, m, r) corresponding to the last transaction and τ ,
or NULL (meaning that the token corresponding to τ has never been used before).

Signing protocol. The protocol is depicted in Figure 2. The user first sends
a request to a (randomly chosen) server. If the transaction can not be finished
within certain time, the user contacts another server. Note that such a switching
process can be made transparent to the user.

USER SERVER1, . . . , SERVERn

tokenj = (ctj , stj , vj , aj , τj , e, N, pkserver,j), 1 ≤ j ≤ n

trial = φ

REPEAT if a transaction cannot be finished within time Δ
choose i ∈ {1, 2, · · · , n} − trial according to a policy (e.g., random)
trial = trial ∪ {i}
user provides tokeni and γ = Epkserver,i(〈m, ri, βi, sti, ρ1,i, ρ2,i, ρ3,i, ρ4,i, ρ5,i〉)
The server executes as follows:
IF sti matches the last “committed” transaction, run the single server protocol
IF sti matches the last “pending” transaction,

change its status as “committed” and execute as specified;
ELSE reject the request and inform “user compromised.”

UNTIL there is a successful transaction using tokenj

α = MACρ3,j (“commit”, τj , ρ
∗
4,j)

tokenj is updated
(“commit”, τj , ρ

∗
4,j , α) �

jth server commits the transaction
trial = trial − {j}
FOR each i ∈ trial
α = MACρ3,i(“rollback”, τi, ρ

∗
5,i)

(“rollback”, τi, ρ
∗
5,i, α) �

ith server rollbacks the transaction

Fig. 2. The full-fledged scheme

Key disabling protocol. In order to disable its private key, the user authen-
ticates itself to each of the n servers by proving that it knows the password π
corresponding to uid. This process is the same as in the underlying single server
protocol, and can be made automatic via an appropriate software design (for
ease of deployment).



A Scalable and Secure Cryptographic Service 157

5.1 Analysis and Discussion

Since transaction atomicity plays an important role in our system, we must show
that it has no significant security consequence if atomicity is violated.

Proposition 2. Suppose there is no system crash resulting in the loss of sys-
tem state information. Suppose a server keeps a database of state information
(τ, uid, count, ϑ, m, r). Then there is no denial-of-service attack because of an
out-of-synchronization between a user and a server.

Proof. Recall that a server classifies transactions into two categories: “commit-
ted” and “pending”. Note that a successfully rollbacked transaction is treated as
a “committed” one, but corresponding to the last successfully committed trans-
action. This is so because that a rollbacked transaction can be viewed as one
where no actions have been taken whatsoever. So, when a user sends a request
with certain state information ϑ, there are three cases.

* ϑ matches the state information corresponding to a “committed” transaction
T . There are further two cases.
1. T is the last “committed” transaction. The This is the normal case and

the protocol proceeds as specified.
2. T is not the last “committed” transaction. The server simply rejects this

request. In this case, the server could inform the user, perhaps via an
out-of-band channel, that the user side might have been compromised.
This is so because in our design a user updates its state information
before sending a commitment request.

* ϑ matches the state information corresponding to a “pending” transaction
T . There are further two cases.
1. T is the last “pending” transaction. This means that the server did

not commit the transaction yet. Then the server can simply accept the
request and change the “pending” transaction into a “committed” one.

2. T is not the last “committed” transaction. This is impossible, because
our design ensures that whenever a server accepts a request (and sends
new state information to a user), it always treat the last transaction as
committed.

* ϑ matches no state information in the server database at all. The server
simply rejects the request. In this case, the server could inform the user,
perhaps via an out-of-band channel, that the user side might have been
compromised. This is so because in our design we let a server choose the
state information.

��

The above proposition implies that we can treat all transactions as atomic. Now
we are ready to look at the properties of the full-fledged scheme. We claim
that the full-fledged scheme implements all of the goals specified in Section 3.
Informally, we observe the following:

* Abuse prevention. This can be formally analyzed by extending the theorems
in the underlying single server scheme.



158 S. Xu and R. Sandhu

* Compromise detection. Suppose atomicity of the transactions and integrity of
the server are guaranteed. Lack of synchronization means either an adversary
had successfully impersonated the user, or the token had been tampered
with. In either case, the user needs to disable its private key.

* Immediate revocation. This is true since the request for disabling a private
key is authenticated by π, whereas uid is also remembered by the user.

* Compromise confinement. Once it is known that a server has been compro-
mised, only the users who suspects that their tokens have been compromised
need to re-initialize their keys, whereas the others just need to erase their
tokens corresponding to the compromised server (i.e., no need to re-initialize
their private keys). We notice that when a user knows that its password for
disabling its private key, namely π, may have been compromised (e.g., due
to the compromise of a server), the user can, if desired, execute an appro-
priate password-change protocol (e.g., the one associated with the adopted
password authentication scheme) to update π to some π′. Such a process
would be much more light-weight than a process for updating private keys.
Note, however, that the password update process is not necessary from the
perspective of the security of the user’s signature scheme.

* Scalability. The system is scalable because the servers are decentralized,
namely that the servers are operated by possibly many service providers.

* High availability. The system is highly available since a single server is suffi-
cient for the users to generate signatures.

6 Conclusion and Future Work

We presented a scalable and secure cryptographic service, which has the following
features: (1) it incorporates a 3-factor authentication mechanism; (2) it supports
immediate revocation of a cryptographic key or functionality in question; (3) the
damage due to the compromise of a server is contained; (4) it is scalable and
highly available.

Acknowledgement. We thank Philip MacKenzie for valuable feedbacks, and
the anonymous reviewers for their comments.

This work was supported in part by NSF and UTSA.

References

1. Anderson, R.: Invited Talk at ACM CCS’97.
2. Asokan, N., Tsudik, G., Waidner, M.: Server-Supported Signatures. Journal of

Computer Security 5(1) (1997)
3. Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M.J.

(ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)
4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure

against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, Springer, Heidelberg (2000)



A Scalable and Secure Cryptographic Service 159

5. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In: Proc. ACM CCS’93, pp. 62–73.

6. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – How to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, Springer, Hei-
delberg (1995)

7. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
Springer, Heidelberg (1996)

8. Bellovin, S., Merritt, M.: Encrypted Key Exchange: Password-based Protocols Se-
cure against Dictionary Attack. In: Proc. IEEE Security and Privacy, IEEE Com-
puter Society Press, Los Alamitos (1992)

9. Boneh, D., Ding, X., Tsudik, G., Wong, C., Method, A.: for Fast Revocation of
Public Key Certificates and Security Capabilities. In: Proc. Usenix Security Sym-
posium (2001)

10. Boyd, C.: Digital Multisignatures. In: Beker, H.J., Piper, F.C. (eds.) Cryptography
and Coding, pp. 241–246. Clarendon Press (1989)

11. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password Authentication
and Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, Springer, Heidelberg (2000)

12. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, Springer, Heidelberg (1998)

13. Dean, D., Berson, T., Franklin, M., Smetters, D., Spreitzer, M.: Cryptography as
a Network Service.In: Proc. NDSS’01 (2001)

14. Denning, D.E.: Digital Signature with RSA and other Public-Key Cryptosystems.
C. ACM 27(4), 388–392 (1984)

15. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, Springer, Heidelberg (2002)

16. Ganesan, R.,Yaksha: Augmenting Kerberos with Public Key Cryptography. In:
Proc. NDSS’95 (1995)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. J.
ACM 33(4), 210–217 (1986)

18. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)

19. Itkis, G., Reyzin, L.: Forward-Secure Signatures with Optimal Signing and Veri-
fying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, Springer, Heidelberg
(2001)

20. Itkis, G., Reyzin, L.: SiBIR: Signer-Base Intrusion-Resilient Signatures. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, Springer, Heidelberg (2002)

21. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorizable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, Springer, Heidelberg (2001)

22. MacKenzie, P., Reiter, M.: Networked Cryptographic Devices Resilient to Capture.
In: Proc. IEEE Security and Privacy, IEEE Computer Society Press, Los Alamitos
(2001)

23. Matsumoto, T., Kato, K., Imai, H.: Speeding Up Secret Computations with Inse-
cure Auxiliary Devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,
Springer, Heidelberg (1990)

24. Perlman, R., Kaufman, C.: Secure Password-based Protocol for Downloading a
Private Key. In: Proc. NDSS’99 (1999)



160 S. Xu and R. Sandhu

25. Pinkas, B., Sander, T.: Securing Passwords Against Dictionary Attacks. In: Proc.
ACM CCS’02 (2002)

26. Rackoff, C., Simon, D.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, Springer, Heidelberg (1992)

27. Rivest, R.A., Shamir, A., Adleman, L., Method, A.: A Method for Obtaining Dig-
ital Signatures and Public-Key Cryptosystems. C. ACM 21(2), 120–126 (1978)

28. Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Ap-
proach: A Tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

29. Xu, S., Sandhu, R.: Two Efficient and Provably Secure Schemes for Server-Assisted
Threshold Signatures. In: Proc. RSA Con. – Cryptographer’s Track (2003)

30. Xu, S., Sandhu, R.: A Scalable Secure Cryptographic Service. Full version of the
present paper, available at www.cs.utsa.edu/∼shxu

www.cs.utsa.edu/~shxu


gVault: A Gmail Based Cryptographic Network
File System

Ravi Chandra Jammalamadaka1, Roberto Gamboni3, Sharad Mehrotra1,
Kent E. Seamons2, and Nalini Venkatasubramanian1

1 University of California, Irvine
2 Brigham Young University
3 University of Bologna, Italy

{rjammala, sharad, nalini}@ics.uci.edu, seamons@cs.byu.edu,
roberto.gamboni@studio.unibo.it

Abstract. In this paper, we present the design of gVault, a crypto-
graphic network file system that utilizes the data storage provided by
Gmail’s web-based email service. Such a file system effectively provides
users with an easily accessible free network drive on the Internet. gVault
provides numerous benefits to the users, including: a) Secure remote ac-
cess: Users can access their data securely from any machine connected to
the Internet; b) Availability: The data is available 24/7; and c) Storage
capacity: Gmail provides a large amount of storage space to each user.
In this paper, we address the challenges in design and implementation
of gVault. gVault is fundamentally designed keeping an average user in
mind. We introduce a novel encrypted storage model and key manage-
ment techniques that ensure data confidentiality and integrity. An initial
prototype of gVault is implemented to evaluate the feasibility of such a
system. Our experiments indicate that the additional cost of security is
negligible in comparison to the cost of data transfer.

1 Introduction

Network file systems have become quite popular in the past two decades. In such
systems, user data in the form of files is stored at a remote server. The server
is then in charge of providing services such as backup, recovery, storage, access,
etc, thereby absolving the user from it’s responsibility. The user can then mount
the remote file system as a local drive and proceed to perform all the required file
operations on the remote data. The biggest advantages of network file systems
is that they allow users to remote access their data. A nomadic user can connect
to the remote server from any machine connected to the Internet and access his
information.

A related trend is the rise in popularity of web based email service providers
(WESPs). Such services provide the users with the facility to send/receive emails
free of charge. The business model is typically based on advertisements that are
displayed on webpages the user is currently accessing. A big advantage of such
systems, like network file systems, is that they allow the user to access his email

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 161–176, 2007.
c© IFIP International Federation for Information Processing 2007



162 R.C. Jammalamadaka et al.

from any machine connected to the Internet. Typically, WESPs allocate a lot of
storage to the user to store his/her emails, which emphasizes the fact that online
storage has become very cheap.

Imagine a network file system built over the storage offered by the WESPs.
Such a file system has numerous advantages which include: a) Remote access:
The users can access their data from any machine connected to the Internet; b)
Availability: The data is available 24/7; and c) Storage capacity: The WESPs
provide a large amount of storage space to the user. Such file systems already
exist. GMail Drive [1] and RoamDrive [2] are examples of applications that layer
a file system over the storage space provided by Gmail, a prominent WESP on
the Internet. Google’s usage policy [4] does not prevent such file systems to
utilize their system for data storage.

The biggest drawback of the current systems is the inherent trust they place
on the WESPs. The data is stored in plain text at the WESP and is vulnerable
for the following attacks:

– Outsider attacks: There is always a possibility of Internet thieves/hackers
breaking into the WESP’s system and stealing or corrupting the user’s data.

– Insider attacks: Malicious employees of the WESPs can steal the data
themselves and profit from it. There is no guarantee that the confidentiality
and integrity of the user’s data are preserved at the server side. Recent
reports indicate that the majority of the attacks are insider attacks [11].

There also have been instances of WESPs collaborating with repressive
regimes and providing them personal data that belongs to users [5]. Fear of
prosecution is in itself a valid reason not to trust WESP with our personal data.
As such, use of WESPs for storing potentially sensitive information has been
heavily limited.

In this paper, we address the problem of designing a cryptographic network file
system called gVault, that utilizes the storage space provided by the WESP and
addresses the drawbacks of the earlier systems that we previously mentioned.
gVault runs on top of the Gmail’s email service and provides the users a file
system like interface. gVault is fundamentally designed to be used by an average
computer user and does not trust the Gmail storage servers with his/her data.
The reader should note that while we have designed and implemented a system
over Gmail, the techniques that we develop in this paper are applicable to any
Internet based storage provider. We choose Gmail since it is widely popular and
free to use.

There are many challenges that need to be addressed in designing a system of
this kind. The first set of challenges occur due to the requirement of designing
a file system that is easy to use. Therefore, we made a fundamental decision to
control the overall security that is offered by gVault by a master password, a
secret known only to the user. Passwords can be forgotten or stolen, therefore
we need techniques that can defend against such situations. The second set of
challenges occur due to users requiring their data remain confidential. In order
to ensure that no unauthorized recipients obtain a user’s data, data needs to
be encrypted. This further raises many questions: a) What is the granularity of



gVault: A Gmail Based Cryptographic Network File System 163

encryption? b) How is key management done? c) What is the encrypted storage
model at the Gmail side? Such a model should optimize the data storage and
fetching operations at the server. The third set of challenges occur due to the
data integrity requirements at the client side. Techniques/mechanisms should be
in place that detect any data tampering attempts at the server side. The fourth
set of challenges are implementation based. All the client side file operations
need to be translated into HTTP requests that Gmail servers can understand.

Overview of our approach: gVault runs as an application on the user’s ma-
chine. gVault prompts the user to enter his Gmail username, Gmail password
and the master password. Once the users enters the information, gVault opens
a session with the Gmail server and functions as an HTTP client. All the file
operations that the user performs at the client side is mapped to their equivalent
HTTP requests. The responses from the Gmail servers, which are encapsulated
in HTML, are parsed to recover the required user’s data. gVault implements the
necessary cryptographic techniques to ensure the security of user data in the
translation of file operations to HTTP requests. In our model, outside the secu-
rity perimeter of client machine everything else is untrusted. We do not place
any restrictions on the kind of attacks that can be launched.

Paper Organization: The rest of the paper is organized as follows: In section
2, we describe our encrypted storage model that provides data confidentiality. In
section 2.1, we describe the relevant operations in the encrypted storage model.
In section 3, we describe our techniques that allow the user to detect any tam-
pering attempts at the server side. In section 4, we describe the implementation
details of gVault. In section 5 and 6, we present the related work and conclude
with future directions.

2 Encrypted Storage Model (ESM)

This section describes how a user’s file system is represented at the Gmail servers.
Our objective is to design and implement an encrypted storage model that pre-
serves the confidentiality of user’s data. More concretely, we want to design an
encrypted storage model that does not reveal: a) Content of the files ; b) Meta-
data of the file system; and c) Structure of the file system to the server. It is
obvious that the file content must be protected. We believe that mere encryption
of the files is insufficient in itself. Both the metadata and the structure of the
file system also contain a lot of information about user’s data and therefore it
makes sense to hide them as well. Metadata of the file system contains informa-
tion such as file names, directory names, etc., and file system’s structure reveals
information about the number of directories, the number of files underneath a
directory, etc. If the storage model at the server side reveals the file structure an
adversary can launch known plaintext attacks and discover information about
the user’s data.

Current network file systems models do not satisfy our requirements as they
tend to reveal the structure of the file system to the server. For instance, the



164 R.C. Jammalamadaka et al.

Input: User’s File System F
BEGIN
1. Decouple F into a File Structure
FS and SF = { F1, . . . Fn } a set of files.
2. Encrypt the File structure FS and store it
at the server.
3. For every file fi in SF

Generate the object encryption key ki

Encrypt the file fi with ki

and store it at the server.
END

Fig. 1. Encrypted storage Model

File Structure

metadata

Metadata 
belonging to 
cs122
directory

CS122

Report1.pdf Report2.pdf

contents of 
report1.pdf

contents of 
report2.pdf

metadata

Metadata belonging 
to file report2.pdf

metadata

Metadata belonging 
to file report1.pdf

Fig. 2. Example of File Structure

NFS storage model [17] maps every file and directory at the client side to a file
at the server side, thereby revealing the structure of the file system.

The following defines our encrypted storage model:

Definition 1. File System: A user’s file system is represented as a graph
G =< V, E >, where V is a set of nodes that represents both files and direc-
tories. The set E represents the set of edges between the nodes. Let the function
parent(n1) represent the parent node of node n1. If node n is the parent of node
n1, we present the relationship as follows: n ← parent(n1). The edge set E con-
tains all the edges between any two nodes n1 and n2, where n1 ← parent(n2) or
vice versa. For every node n ∈ V , n.metadata represents the metadata that is
associated with the node n and n.content represents the content of the node.

For a file node, its metadata is the name of the file, size of the file and last modi-
fied time. For a directory node, its metadata is the name of the directory, number
of files and directories underneath it, size of the directory and last modified date.
The content of the directory node is set to null.

We could have modeled the file system as a tree. Then such a model does
not take into account the symbolic links that are present in the file system. The
graph structure allows the incorporation of the symbolic links in the file system.

Definition 2. Server Side representation of the user’s file system: Let
the user’s file system F be a graph G =< V, E >. A user’s file system F is
represented as a tuple < FS , SF > at the server , where FS is the file structure
of the file system and SF is a set of file nodes {F1, F2, . . . Fn} that belong to the
file system. The file structure FS is a graph G

′
=< V

′
, E

′
>, where V

′
contains

all the nodes in V and E
′

contains all the edges in E. For all the file nodes
n ∈ V

′
, n.content is a pointer to the relevant file in SF .

Fig 2 shows an example that illustrates the content of a file structure. We have
decoupled the file system into a file structure object and a set of files. We will



gVault: A Gmail Based Cryptographic Network File System 165

store these two data components separately at the server. As the server is un-
trusted, both FS and SF are encrypted before being stored at the server side.
Fig 1 describes our overall mapping strategy to transform the plaintext at the
client side to the ciphertext at the server side. For the rest of the paper, we will
refer to both the file structure and individual files as data objects.

2.1 Operations in the ESM

Key generation: In gVault, the key to encrypt/decrypt the data object is
generated on the fly depending on the metadata that is attached to the object.
Using the metadata, gVault generates an object encryption key (OEK) for every
object that is outsourced to the server.

We use the key derivation function (KDF) of the password based encryption
specification PKCS #5 [8] to generate OEKs. The KDF function calculates keys
from passwords in the following manner:

Key = KDF (Password, Salt, Iteration)

The Salt is a random string to prevent an attacker from simply precalculating
keys for the most common passwords. The KDF function internally utilizes a
hash function that computes the final key. To deter an attacker from launching a
dictionary attack, the hash function is applied repeatedly on the output Iteration
times. This ensures that for every attempt in a dictionary attack, the adversary
has to spend a significant amount of time.

In gVault, the OEK Kfs for the file structure object is calculated as follows:

Kfs = KDF (MasterPassword, Salt, Iteration)

The OEK Ki for each file object is calculated as follows:

Ki = KDF (FileName||MasterPassword, Salt, Iteration)

The password paramater in the KDF function is the concatenation of the
filename and the master password. Salt is a large random string that is generated
the first time the object is created and is stored in plaintext along with the
encrypted object. The filename does not include the full path name to permit
a file objects to be moved between directories without changing its OEK. The
iteration count is set to 10000, the recommended number.

The primary reason that we generate a key for every individual data object is
to prevent cryptanalysis attacks, whose effectiveness increases with the amount
of ciphertext available that is encrypted with the same key. Another approach
is to generate a random key for each object and encrypt the object with that
key. The random key could then be encrypted with the key derived from the
password. We chose to generate the key since the KDF function is inexpensive
compared to retrieving a key along with each object from the server. This reduces
network bandwidth requirements, especially for small objects when the cost of
retrieving the key would dominate.



166 R.C. Jammalamadaka et al.

Updating the file structure: The biggest drawback with our solution of
decoupling of the file structure is that updates are not easy to handle. If the
user makes changes to the file structure, we need to update the file structure
stored at the server side. Updating the complete file structure for every update
will reduce the performance of the system and make the user wait for a relatively
long time.

gVault utilizes a novel approach similar in spirit to the approaches in jour-
naling file systems to combat the above issues. gVault maintain a log of all the
updates that take place in a session. Let L represent the log which is a set of
log entries {L1, . . . Ln}. Each log entry Li represents an update operation on
the file system’s structure. Update operations include cut, copy, paste, create
and rename. For brevity, we will not describe the language used for representing
such update operations. Whenever an update takes place, an appropriate log
entry is added to the log and the file structure is updated locally. Let us assume
that a user by issuing updates represented by the log L, has transformed the
initial file structure F to F

′
. When the user decides to log off, gVault encrypts

F
′
and updates the file structure stored at the server side. After it successfully

updates the file structure, gVault removes the log. If the application running at
the client crashes, due to power failure or a hardware failure, etc., the gVault
upon restart will look at the log L and reconstruct the file structure F

′
from F

the last committed copy.
Notice that we primarily maintain the log for updates on the file structure.

For updates which involve file transfers, we do not actually store the file contents
on the log. Rather, a message is inserted into the log stating that a file transfer
operation on particular file has started. When the file transfer is finished, a log
entry is added to state the same. If due to a system crash, a file transfer is
stopped midway, gVault will look at the log and figure out the failed operation
and alert the user. It is up to the user now to take appropriate action.

Master password management: It is of paramount importance that a user
does not reveal his/her master password to anyone. The loss of a master pass-
word could lead to disastrous effects, since now the adversary can have complete
control over the user’s file system. Passwords are prone to be lost or stolen.
Therefore, there is a requirement to build mechanisms that change and recover
the master password.

Changing the master password: Changing the master password will have
its effect on the generation of keys. Hence, changing the master password could
potentially be a very expensive operation, since it will require all the files/file
structure to be decrypted with the old keys and encrypted again with the new
keys. Fortunately, we can do this expensive operation lazily. gVault keeps track
of both the new master password and the old master password in a configuration
file that is encrypted with a key that is generated by the new master password.
gVault will continue to decrypt the files that are fetched from the server with
the keys generated from the old password. When a update is made to the file,
then gVault will encrypt the updated file with the key that is generated with



gVault: A Gmail Based Cryptographic Network File System 167

the new password. GVault will then set a flag in file structure to indicate that in
future, it needs to use the key generated with the new master password. After
a while, all the files will be encrypted with keys from the new master password.
Lazily changing the master passwords is typically done to periodically update
the master password, a recommended practice.

In a situation where the master password is compromised, the user could
request the change of keys immediately. This is an expensive operation, the user
has no choice but to wait till all the files are fetched, decrypted with the old
key and encrypted with the new key. If the user decides to change the master
password more than once, gVault will again force the change of all the keys.

Recovering the master password: We have designed a novel approach to
recover the master password in case the user forgets it. Unlike traditional pass-
word recovery mechanisms, in our case the master password is also not known
to the server. When the user first utilizes the gVault service, the application
prompts the user to enter a set of question/answer pairs. Let Qa represent such
a set, where an element Qi ∈ Qa, is a tuple < Q,A > where Q represents the
question and A represents the answer. The user can enter any arbitrary number
of questions and answers. In other words, the user can control the cardinality of
set |Qa|. In our implementation, gVault suggests a few questions, but it up to
the user to select some of the questions or come up with his own. After the user
selects the questions, he/she will then proceed to submit the relevant answers
to the questions. The answers to these questions will be kept secret from the
server, while the questions are stored in plaintext. A user needs to be careful
in his/her choice of questions. The answers to these questions should typically
lead to information that only the user knows about. An example of a suitable
question is “what is my social security number”. The user is assumed never to
forget the answers to these questions. We derive an encryption key called the
Recovery key from the answers to these questions. The recovery key is derived
as follows:

Recovery key = KDF (||Qa, Salt, Iteration)

where KDF is the key derivation function discussed earlier. ||Qa represents the
concatenation of all the answers in the set Qa. Salt is a random string that is
stored in plaintext and iteration number is set to 1000. Now using the recovery
key we compute recovery information RI of the master password as follows:

RI = Ek
Recovery Key(MP )

where MP refers to the master password and Ek represents the encryption func-
tion applied iteratively k times. Typically k is set to a value which increases the
encryption time to the order of seconds. This is done to reduce the effectiveness of
the brute force attacks. The adversary now also has to spend considerably more
time per brute force attempt. RI is then stored at the server. When the user
forgets his master password, gVault will fetch QA from the server and present
the user with the questions. Note, we assume the user remembers his Gmail’s



168 R.C. Jammalamadaka et al.

username and password. After the user answers the questions, the Recovery key
is recalculated and master password is recovered as follows:

MP = Dk
Recovery Key(RI)

where Dk is the decryption function applied iteratively k times. Note that if
the user does not provide the right answers, the recovered master password will
not be the same as the original. The user can manually verify if that is the
case, and can repeat the process if necessary. This process has similarities to the
authentication protocols used by current websites, where an answer to a secret
questions allows the user to recover a forgotten password. Therefore, the users
are already familiar with such recovery mechanisms.

The password recovery is a useful feature, but it has the potential to be very
insecure. Since the questions are in plain text, anyone with access to the server
can learn the questions and launch a dictionary attack. This feature is only as
secure as someone is able to make their question set strong against dictionary
attacks. gVault provides a set of reasonable questions, the user would do well to
select enough questions from this set to thwart a dictionary attack.

2.2 Analysis

Security: An adversary at the server side, by looking at the ciphertext stored
at the server can procure some information regarding the file system of the user.
The information includes: a) The number of files and their relative sizes: The
size of the ciphertext dictates the size of the plaintext files; b) The size of the
file structure: File structure is the first data object that is downloaded by the
user upon login. The size of the file structure linearly increases with the number
of nodes inside it. Hence, the adversary can reasonably guess the number of
directories and files the user’s file system contains. But, the adversary cannot
find any information regarding the general hierarchy of the file system.

Another alternative for the encrypted storage model is to create a data object
that subsumes both the file structure and the files. Such an object can then be
downloaded at the beginning of the session. This representation provides more
security, since the adversary does not know if the user has large number of files,
or a large number of internal nodes in the file structure. Downloading the entire
file system at the time of login puts an enormous performance strain on the
system thereby making the system inherently not usable. The current design of
the encrypted storage model strikes an appropriate balance between performance
and security .

Performance: The file structure is fetched at the beginning of every session so
that gVault does not need to contact the server while the user is navigating the file
system. Adopting a storage model similar to the NFS model would force gVault
to retrieve internal nodes on demand by visiting the server every time the user
descends or ascends a level in the file structure. For slow Internet connections,
the system will be less usable due to network latency at each navigation step. An



gVault: A Gmail Based Cryptographic Network File System 169

improvement in the NFS model would be to allow the client to prefetch all of the
internal nodes. Also, when the entire file structure is retrieved, the cost of decrypt-
ing the nodes individually is higher compared to a single bulk decryption of the
complete file structure, since most encryption algorithms have a constant startup
time. Thus, gVault encrypts the entire file structure as a single object.

It is possible that the user could pay a huge startup cost for downloading the
complete file structure. The reader should note that this is a one time cost and
in practice we have noticed that even for huge file systems, the file structure can
be loaded quickly since its size tends to be very small.

Search: Another side benefit of the model is that it allows gVault to answer
certain search queries. Since the complete file structure is cached locally, a client’s
queries on file and directory names can be executed locally without contacting
the server. In order to conduct searches over the file content at the untrusted
server, gVault would need to support searching over encrypted data. This is part
of our future work, and we will explore existing solutions [7,9] and determine
how they can be adapted to gVault.

3 Data Integrity

Another requirement of gVault is that data integrity be preserved. This section
describes how gVault ensures the Soundness and Completeness of a user’s data.

Soundness: To ensure soundness of a data object, gVault needs a mechanism
to detect when tampering occurs. To achieve this, the HMAC1 of an object is
calculated and stored in the file structure along with the object/file node. When
the object is retrieved from the server, its HMAC is also returned. The client
calculates an HMAC again and compares it to the original HMAC. If they are
equivalent, then no tampering has occurred. One way to compute the HMAC of
an object O is as follows:

HMAC(O.Content||O.metadata)

Although the HMAC can be used to determine soundness, it does not guaran-
tee the freshness of the object. That is, the server could return an older version
of the object and the client will fail to detect it. One way to address this is to
include the current version of the object when generating the HMAC. Thus, the
HMAC can be generated as follows:

HMAC(O.id||O.Content||O.metadata||V ersion)

Every time the object is updated, the version number is incremented and the
HMAC recalculated. This is done at the client side and hence there is no loss of
security. In our model, the user is roaming and we do not store any data locally.
1 A keyed-hash message authentication code.



170 R.C. Jammalamadaka et al.

Therefore, the impetus is on the user to validate the version number. Doing
so, for every object he/she accesses will obviously make the system unusable.
Fortunately, we can store the version numbers of all the file and directory nodes
as metadata within the nodes themselves. That is, the version numbers are stored
in the file structure. When the user accesses a file, gVault computes the HMAC
of the file by using the version stored in the file structure and verifies whether it
matches the HMAC stored in the file structure. If it matches, then it confirms
that the user has the right version. While such an approach will work, there is
still the problem of validating the version number of the file structure. In gVault,
the last modified date is used as the version number for the file structure. The
user is now entrusted with verifying the version number of the file structure.
The user needs to do it only once at the beginning of every session and it is
the only version number the user must validate. This is by no means a complete
solution since it requires some manual validation and a human is known to be the
weakest link in security architectures, but it builds some defenses in detecting if
data tampering has taken place at the server.

Another method is to calculate the global signature of the complete file system
using a Merkle tree approach [3] and store the signature locally. Whenever access
to an object is made, the server sends a partial signature over the remaining ob-
jects so that the client can use the partial signature and the object being accessed
to generate a signature to compare to the most recent global signature that is
stored locally. If the signatures match, then no tampering has occurred. We did
not adopt this solution because it requires server-side support, and violates our
goal to use existing WESPs. Also, it requires a mobile user to transfer the global
signature between machines, thereby pushing data management tasks back to
the user, something that we want to avoid. An open problem is to design data
integrity techniques that allows the client application to detect data tampering
attempts at the server, without any user involvement.

Completeness: In gVault completeness is trivially achieved, since a client al-
ways knows the correct number of objects that need to be returned by the server.
For instance, if the user is accessing a file, the server is required to return only
one object.

4 gVault Prototype and Evaluation

This section describes the implementation details of the current gVault proto-
type. gVault is implemented in Java mainly for software protability reasons.
gVault executes totally on the client side. No server side modifications are re-
quired. The current implementation of gVault is an executable jar file and hence
does not require any installation. In the future, we will release gVault as an ap-
plet so that it can run from a web browser. Fig 3 illustrates the overall software
architecture.

Components: The clients interact with gVault through the File System Local
and the File System Remote components. The File System Local component



gVault: A Gmail Based Cryptographic Network File System 171

File System
Local

File System
Remote

Object Model
Translator

HTTP Handler

Cryptographic 
Module

Gmail

Remote 
storage

Client Interface

User

Fig. 3. gVault Software Architecture

provides a GUI interface to the local file system where the application is running.
The File System Remote component provides a GUI interface to the file system
stored at the remote server. The interface (see fig 4) of both these components is
similar to the interfaces that exist to any modern file system. The Object Model
Translator maps the file system the user is outsourcing into data objects. The
Cryptographic Module supports the object model translator in the cryptographic
operations. The HTTP Handler translates file operations into HTTP operations
that Gmail servers support.

User Interface and Functionality: Fig 4 illustrates the screenshot of the
gVault system. Users of gVault must establish a username and password with
the Gmail service prior to using gVault. During login, the user has to submit the
username/password of Gmail and the gVault master password that is used to
control the cryptographic operations. Obviously the master password must be
strong, since the security that gVault provides depends on the master password.
gVault allows the users to maintain multiple accounts thereby realizing multiple
file systems. One of these accounts is designated as the primary account and this
account stores the required information that will allow gVault to open all the
file systems, when the user provides the credentials of the primary account. The
different remote file systems are shown in different tabs and the user can switch
from one file system to another with a simple click.

gVault supports prioritized execution of basic file operations for better inter-
active response times. The HTTP handler maintains two priority queues namely
the Operation Queue and the File Transfer Queue. The HTTP handler utilizes
these two queues to schedule the file operations issued by the user. The oper-
ation queue is primarily used to queue operations to which the user expects
immediate response. Examples of operations include, deleting a file, opening a
relatively small file, etc. The File transfer queue maintains operations which
the user should expect a longer response time such as opening a large file. The
HTTP handler opens two sessions with Gmail simultaneously to schedule the
operations from each of the queues separately.

Another important feature of gVault is its ability to handle large files. Cur-
rently, the atomic unit of storage is a file. The Gmail service has a limit on the



172 R.C. Jammalamadaka et al.

Fig. 4. gVault Screenshot

maximum size of the file that can be outsourced. When a local file exceeds the
limit, gVault transparently breaks a large file into a set of objects that conform
to the Gmail’s limitations. When access to the file is required, gVault fetches all
the required objects and combines them for the user.

gVault supports the standard set of file operations. A user can create/open
files and directories, delete files/directories, etc. We will now explain some of the
implementation details for these operations.

Creating a file: To create a file, gVault first adds a log entry that includes the
name of the file. Then, gVault adds the file to the local file structure. The file
is then encrypted using its encryption key and stored at the server. To achieve
this, gVault first calculates the file id by hashing the filename and the random
salt generated during the key generation. Then, gVault creates an HTTP POST
message that sends an email message to the user’s Gmail account. The subject of
this email contains the file id and the body of this email contains the encrypted
file content.

Opening a file: To open a file, gVault must locate the corresponding email
message containing the file. To accomplish this, gVault first calculates the file



gVault: A Gmail Based Cryptographic Network File System 173

id. Then, gVault uses Gmail’s search interface to retrieve the email according to
the required file id in it’s subject header. This requires that one HTTP POST
request containing the search query (i.e., file id) be sent to the Gmail server.
After gVault identifies the relevant email, it issues another HTTP GET message
to retrieve the email. Once the email is fetched, gVault parses the body of the
email, decrypts the file content and displays it to the user. Note that file creation
requires one HTTP request, while opening a file requires two HTTP requests.
Since gVault does not control how emails are stored at the Gmail server, it must
search for an email message containing the desired file. .

Updating a file: To update a file, the client follows a similar pattern to creating
a file. To create a file, the client needs to add a node to the file structure locally.
To update a file, the corresponding node already exists locally, so gVault encrypts
the content and stores it on the server.

Moving a file: To move a file, gVault first adds the relevant update operation
to the log at the server. In gVault, the combination of a file name and its random
salt is unique. Therefore, the file encryption key does not change when an object
moves. Using the pathname in the key generation process would force gVault to
decrypt the object and encrypt it again with the new key. Under the current
design, all gVault needs to do is to update the file structure.

Deleting a file: To delete a file, gVault first updates the log with the delete
operation. Similar to opening of the file, gVault first identifies the email that
contains the file by using Gmail’s search facility, and then sends an HTTP POST
message that deletes the email from the server. Then, gVault updates the file
structure stored locally at the client.

Other operations: Additional operations such as moving a directory, renaming
a file, deleting a directory, etc. are not described due to space limitations. The
implementation of these operations follows a similar pattern to the operations
described previously.

4.1 Performance

We conducted experiments to measure gVault’s performance in encrypting/
decrypting data objects, calculating data integrity information, prefetching the
file structure, and the network delays for transferring files.

Our experiments were conducted on an Intel Celeron(R) 1.80 Ghz processor
with 768 MB Ram client machine. For the experimental data, we used a local file
system of one of the authors. This data contained a wide assortment of files such
as video files, mp3 files, word documents, excel spread sheets, text files, etc. The
file system was outsourced via the gVault application to Gmail storage servers.

Fig 5 describes the cryptographic costs associated with gVault’s usage. The
cryptographic costs includes the encryption costs, decryption costs, and the in-
tegrity costs. As expected, encryption and decryption costs are nearly the same
and the cost of calculating integrity information is lower than that of the cryp-
tographic costs. Fig 6 shows the network costs. Note that when compared to



174 R.C. Jammalamadaka et al.

Crytographic Operations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 300 500 700 900 2048 4096 6144 8192 10240
File Size (Kb)

T
im

e
 (

m
s

)

Enc (ms)
Dec (ms)
Int (ms)

Fig. 5. Cryptographic operations

Network Delays

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 300 500 700 900 2048 4096 6144 8192 10240
File Size (Kb)

T
im

e
 (

m
s
)

Transfer (ms)
Download (ms)

Fig. 6. Network delays in transferring files

0

2000

4000

6000

8000

10000

12000

5 10 20 30 40 50 60 70 80 90 100
Number of required nodes

Time (ms)

gVault
NFS

Fig. 7. Fetching the required nodes

network costs, cryptographic costs are nearly negligible. For instance, to trans-
fer a 10 MB file to the Gmail server, it takes about 85 secs. The cryptographic
costs for the same file totally amount to 6.5 secs.

We wanted to measure the performance gain due to prefetching the complete
file structure. If we were to follow an NFS based storage model, then every time
the user descends a level in the file system, the server needs to be contacted to
fetch all the child nodes. In Gmail, there is no API available to directly download
the emails that contain the required nodes. Therefore, gVault uses Gmail’s search
interface to find the required emails and individually download them. Fig 7 shows
the comparison of this approach to the NFS approach. gVault does significantly
better since it can fetch all the required nodes locally. In summary, we conclude
that enabling secure storage over web-based data storage providers is feasible
and cost effective.

5 Related Work

Cryptographic file systems [14,15,6] provide file management to users when the
underlying storage is untrusted. This is typically the case when data is stored
at remote untrusted servers. Cryptographic file systems can be classified under



gVault: A Gmail Based Cryptographic Network File System 175

two categories: a) password based; and b) non-password based. Sirius [14] and
Plutus [15] are examples of cryptographic file systems that are non-password
based. Their goal is to provide the user with data confidentiality and integrity
when the data is stored at a remote server. We differ from them in the following
manner: a) these systems were built for sophisticated users. For instance, in
Sirius and Plutus, the users are expected to purchase a public/private key pair
and securely transport it when mobile access is desired. Our architecture is
catered to average computer users and we placed heavy emphasis on making the
system easy to use without sacrificing security.; and b) the encryption storage
model leaked the file structure information which is not the case in gVault.

There are other cryptographic file systems that are password based. Most
notable of them are the cryptographic file system(CFS) for Unix [6] and Trans-
parent cryptographic file system(TCFS) for Unix [18]. CFS is a user level file
system that allows users to encrypt at the directory level and the user is supposed
to remember a pass phrase for every directory he/she intends to protect. TCFS
is in many respects similar to CFS, except for the fact that cryptographic func-
tions are made transparent to the user. To the best of our knowledge, both these
system do not provide mechanisms to recover passwords. Besides the recovery
mechanisms, gVault also differs from these systems in the storage model.

DAS [12,13] architectures allow clients to outsource structured databases to
a service provider. The service provider now provides data management tasks
to the client. The work on DAS architectures mainly concentrated on executing
SQL queries over encrypted data. The clients of DAS architectures are mainly
organizations that require database support. In this paper, our objective is to
come up with a file system like service and hence we fundamentally differ from
DAS related research works, even though we are similar in spirit.

6 Conclusions

This paper presented the design and implementation of gVault, a cryptographic
network file system that provides a free network drive to the storage space offered
by Gmail, a web-based email service. gVault protects the confidentiality and
integrity of a user’s data using cryptographic techniques. gVault provides users
with a file system like interface and allows them to seamlessly access their data
from any computer connected to the Internet.

gVault is designed for an average user. The overall security that gVault pro-
vides depends on the user remembering a master password. A mechanism is
provided to change or recover the master password in case it is forgotten or
stolen. This makes gVault usable for a wide spectrum of users. A beta version
of gVault is available for download at http://gVault.ics.uci.edu.

Acknowledgements

We would like to acknowledge the work done by James Chou, Andrew Grant
and Mark Lem who implemented parts of the gVault application. This research



176 R.C. Jammalamadaka et al.

was supported by funding from the National Science Foundation under grant
no. CCR-0325951 and IIS-0220069, the prime cooperative agreement no. IIS-
0331707, and The Regents of the University of California.

References

1. Gmail Drive, http://www.viksoe.dk/code/gmail.htm
2. http://www.roamdrive.com
3. Merkle, R.: Protocols for public key cryptosystems. In: IEEE security and privacy,

IEEE Computer Society Press, Los Alamitos (2000)
4. Gmail program policies,

http://mail.google.com/mail/help/intl/en/program policies.html
5. Man Jailed after Yahoo Handed Draft Email to China. http://www.ctv.ca/

servlet/ArticleNews/story/CTVNews/20060419/yahoo jail ap 060419/
20060419?hub=World

6. Blaze, M.: A cryptographic file system for UNIX. In: Proceedings of the 1st ACM
conference on Computer and communications security, ACM Press, New York

7. Goh, E.j.: Secure Indexes (in submission)
8. RSA Laboraties. PKCS #5 V2.1: Password Based Cryptography Standard,

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2 1.pdf
9. Song, D., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted

Data. In: 2000 IEEE Symposium on Research in Security and Privacy, IEEE Com-
puter Society Press, Los Alamitos (2000)

10. Britney, A.: The 2001 Information Security Industry Survey 2001 (cited, October
20, 2002), http://www.infosecuritymag.com/archives2001.shtml

11. Dhillon, G., Moores, S.: Computer crimes: theorizing about the enemy within.
Computers & Security 20(8), 715–723

12. Hacigumus, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted Data
in the Database-Service-Provider Model. In: 2002 ACM SIGMOD Conference on
Management of Data (June 2002)

13. Damiani, E., Vimercati, S.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational DBMSs. In: Proceedings of
the 10th ACM conference on Computer and communications security, ACM Press,
New York

14. Goh, E., Shacham, H., Modadugu, N., Boneh, D.: SiRiUS: Securing remote un-
trusted storage. In: Goh, E., Shacham, H., Modadugu, N., Boneh, D. (eds.) Proc.
Network and Distributed Systems Security (NDSS) Symposium (2003)

15. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable
secure file sharing on untrusted storage. In: Proc. 2nd USENIX Conference on File
and Storage Technologies (FAST) (2003)

16. Zadok, E., Badulescu, I., Shender, A.: Cryptfs: A Stackable vnode level encryption
file system. Technical Report, Columbia University (1998), CUCS-021-98

17. Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M.,
Noveck, D.: NFS version 4 protocol. RFC 3530 (April 2003)

18. Cattaneo, A.D.S.G., Catuogno, L., Persiano, P.: Design and implementation of a
transperant cryptographic file system for UNIX. In: FREENIX Track: 2001 Usenix
annual technical conference (June 2001)

http://www.viksoe.dk/code/gmail.htm
http://www.roamdrive.com
http://mail.google.com/mail/help/intl/en/program_policies.html
http://www.ctv.ca/servlet/ArticleNews/story/CTVNews/20060419/yahoo_jail_ap_060419/20060419$?$hub=World
http://www.ctv.ca/servlet/ArticleNews/story/CTVNews/20060419/yahoo_jail_ap_060419/20060419$?$hub=World
http://www.ctv.ca/servlet/ArticleNews/story/CTVNews/20060419/yahoo_jail_ap_060419/20060419$?$hub=World
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf
http://www.infosecuritymag.com/archives2001.shtml


Design and Analysis of Querying Encrypted
Data in Relational Databases

Mustafa Canim and Murat Kantarcioglu

Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083
{mxc054000, muratk}@utdallas.edu

Abstract. Security and privacy concerns as well as legal considerations
force many companies to encrypt the sensitive data in databases. How-
ever, storing the data in an encrypted format entails non-negligible per-
formance penalties while processing queries. In this paper, we address
several design issues related to querying encrypted data in relational
databases. Based on our experiments, we propose new and efficient tech-
niques to reduce the cost of cryptographic operations while processing
different types of queries. Our techniques enable us not only to overlap
the cryptographic operations with the IO latencies but also to reduce the
number of block cipher operations with the help of selective decryption
capabilities.

1 Introduction

Sensitive data ranging from medical records to credit card information are in-
creasingly being stored in databases and data warehouses. At the same time,
there are increasing concerns related to security and the privacy of such stored
data. For example, according to a recent New York Times article [1], records
belonging to more than hundred million individuals have been leaked from data-
bases in the last couple of years. Although currently criminals have not taken
advantage of such disclosures effectively, there is an obvious need for better pro-
tection techniques for sensitive data in databases. Common techniques such as
access controls or fire-walls do not provide enough security against hackers that
use zero-day exploits or protection from insider attacks. Once a hacker gets an
administrator access to a server that stores the critical data, he/she can easily
bypass the database access control system and reach the entire database files.
Although it brings some extra cost, encrypting the sensitive data is considered
as an effective last line of defense, to counter against such attacks [2]. Also
recently, legal considerations [3] and new legislations such as California’s Data-
base Security Breach Notification Act [4] require companies to encrypt sensitive
data. To assist its customers with legislation compliance hurdles, Microsoft re-
cently developed a new SQL server that comes with built in encryption support
[5]. IBM also offers a similar functionality in its DB2 server, in which data is

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 177–194, 2007.
c© IFIP International Federation for Information Processing 2007



178 M. Canim and M. Kantarcioglu

encrypted (and decrypted) using a row-level function [6]. Clearly, if the encryp-
tion keys are not compromised, a hacker (or a malicious employee) that controls
the system will not be able to read all the sensitive data stored on the hard disk.

Cryptographic operations, required to store sensitive data securely, entail sig-
nificant amount of cumbersome arithmetic calculations. Coupled with bad design
choices, expensive cryptographic operations needed for querying and processing
encrypted data could decrease the system performance dramatically. On the
other hand, good design choices may drastically affect the overall performance.
With this in mind, in this paper, we discuss some of the design issues to encrypt
and query the sensitive data that resides in database disks.

To reduce the performance loss that arises from using cryptographic tech-
niques, we analyzed different block cipher modes of operations and compared
their performances under various disk access patterns to see which modes are
suitable for databases and allow us to parallelize the IO latencies with the cryp-
tographic operations. Based on our experiments and analyses, we suggest using
an efficient and provably secure encryption mode of operation that also en-
ables selective decryption of large data blocks. We also propose a new approach
for storing and processing encrypted data and we show that by using suitable
encryption mode, the additional time needed for processing different types of
queries can be significantly reduced. Before describing our approach, we briefly
discuss the threat model assumed in this paper.

1.1 Threat Model

In this paper, we assume a threat model similar to the one considered in [7], where
the database server is trusted and only the disk is vulnerable to compromise.

We consider an adversary that can only see the files stored at the disk but
not the access patterns. In this case, we just need to satisfy the security under
chosen plain text attacks. In other words, we guarantee that (assuming used
blockcipher (e.g. AES) is secure) by looking at the contents of the disk, any
polynomial-time adversary will have negligible probability of learning anything
about the sensitive data.

Specifically, we assume that (See Figure 1):

– The storage system used by the database system is vulnerable to compromise.
Only the files stored in the storage system are accessible to the attacker.

– Query Engine and Authentication Server is trusted. We assume that queries
are executed on a trusted query engine.

– All the privacy-sensitive data will be stored encrypted. From the previous
work related to inference controls, we know that probability distribution
information may create unintended inference channels. Since we do not
know such inference channels in advance, we want our solution not to cre-
ate any inference problem. Therefore, in addition to sensitive data, all the
information that can reveal sensitive data (e.g. log files) will be stored
encrypted.



Design and Analysis of Querying Encrypted Data 179

Hard Disk

Client Application

Plain Query Results

Authentication and 
Query Transformation

Plain Query + 
Authentication information

Transformed Query

Query Engine

Query Results

Disk Access

Trusted  Components

Fig. 1. Information flow and trust model for querying the encrypted data

1.2 Related Work

In [8], Bayer and Metzger explored the idea of using block ciphers and stream
ciphers for encrypting B+ trees and random access files. They suggest generating
different keys for each page based on the page id to break potential correlation
attacks (pages encrypted with the same key and the same data will have the
same cipher text). The disadvantage of this approach is, changing keys for each
page imposes big key initialization costs. Hardjono and Seberry [9] suggested
special combinatoric structures to disguise keys in B+ trees. Unfortunately, their
combinatoric approach has not received the level of scrutiny required to achieve
trust (as have others such as AES).

Querying encrypted data where even the database server is not trusted was
first suggested in [10]. Hacigumus et al. [10] suggested partitioning the client’s
attribute domains into a set of intervals. The correspondence between intervals
and the original values kept at the client site and encrypted tables with inter-
val information are stored in the database. Efficient query of the data is made
possible by mapping original range and equality query values to corresponding
interval values. In subsequent work, Hore et al. [11] analyzed how to create the
optimum intervals for minimum privacy loss and maximum efficiency. In [12],
the potential attacks for interval based approaches were explored and models
were developed to analyze the trade off between the efficiency and the disclosure
risk. This line of work is different from our current problem because we assume
that the database server is trusted and only the disk is untrusted.

In [7], Agrawal et al. suggested a method for order preserving encryption
(OPES) for efficient range query processing on encrypted data. Unfortunately,
OPES only works for numeric data and is not trivial to extend to discrete data.

In [13], Iyer et al. suggested data structures to store and process sensitive and
non-sensitive data efficiently. The basic idea was to group encrypted attributes



180 M. Canim and M. Kantarcioglu

on one mini-page (or one part of the tuple) so that all encrypted attributes of
a given table can be decrypted together. In [14], Elovici et al. also suggested a
different way for tuple level encryption.

Our consideration is different from the ones in [13,14] in many aspects. Unlike
the previous work, we provide:

– Complete analysis of block cipher modes suitable for databases,
– Analysis of the experiments about overlapping the IO latencies with the

cryptographic operations by using multi-threading,
– A new approach for storing encrypted data in database pages by utilizing

selective decryption property of CTR mode.

1.3 Organization of the Paper

In Section 2, we analyze the performance of different encryption modes under
different granularity and disk access patterns. In Section 3, we discuss tuple
level, page level, and mini page level encryption approaches and introduce a new
approach for keeping records encrypted. Finally, we conclude the paper with the
discussion of other related issues in querying encrypted data.

2 Block Cipher Modes Suitable for Databases

To store privacy-sensitive data securely, we need to use encryption methods
secure against chosen plaintext attacks. Also we need general solutions that could
support all kinds of data that needs to be encrypted. For example, the Order
Preserving Encryption (OPES) idea suggested in [7] works for only numeric data.

Securely encrypting any kind of data is well studied in the cryptography
domain. Any kind of long data is encrypted using operation modes based on
secure block ciphers (e.g, AES[15]). All of these encryption modes process the
long data by dividing into fixed size blocks(e.g 16 bytes in AES[15]) that can be
processed by the block cipher. The obvious question is which block cipher mode
is preferable for encrypting sensitive data in databases. To choose the best mode
possible, we need to analyze the effect of these modes under specific database
operation conditions. Specifically we look at:

– Performance of Encryption Modes under Different Granularity:
We need to encrypt and decrypt the data at different granularity. If we are
encrypting at the tuple level, we may need to decrypt small blocks at a time,
if we use page level encryption, we need to decrypt potentially a page long
encrypted data. Ideally, we should have a mode where different granularity
has little effect on the total performance.

– Performance of Encryption Modes under Different Disk Access
Patterns: We need to have an encryption method that enables efficient
decryption under different disk access patterns.



Design and Analysis of Querying Encrypted Data 181

First, in section 2.1, we give an overview of the block cipher modes that are
suggested by the National Institute of Standards and Technology (NIST). Later
on, in section 2.2 and 2.3, we analyze the performance of different block cipher
modes under different encryption granularity and disk access patterns. Finally,
we conclude this section with the discussion of which block cipher mode to choose
for database encryption.

2.1 Overview of Block Cipher Modes

Before we briefly give an overview of different block cipher modes, we discuss the
notations we use through out the paper. Let EK() be the encryption operation
with the key K and DK() be the decryption operation with the key K. Let Pi

be the ith plain text block, Ci be the ith ciphertext block, IV be the initial
random vector and b be the block cipher input size (e.g 128 bits for AES[15]).
Let LSBs(x) be the s least significant bits of x and similarly let MSBs(x) be
the s most significant bits of x. Also below, S[i..j] denotes the ith through jth

bit of string S , || denotes the string concatenation, and ⊕ denotes the bitwise
xor operation. Table 1 summarizes the notations used for describing block cipher
modes.

Table 1. Notations used for describing block cipher modes

EK() Block cipher encryption with the key K
DK() Block cipher decryption with the key K
b Block cipher block length in bits
Ci ith ciphertext block
Pi ith plain text block
LSBs(x) s least significant bits of x
MSBs(x) s most significant bits of x
S[i..j] ith through jth bit of string S
|| String concatenation
⊕ binary xor operation

Also, for the sake of simplicity, we assume that the plaintext P is n blocks long
(i.e. n · b bit long plaintext). Under these assumption, the block cipher modes
of operations suggested by NIST can be summarized as follows:(The details can
be found in FIPS-SP 800-38A [16])

– Electronic Code Book(ECB): In ECB mode, each block of the plaintext
is encrypted independently. Similarly each block of the ciphertext decrypted
independently. Unfortunately, this mode is not secure since it reveals distri-
bution information. (Note that if Pi = Pj then Ci = Cj)

ECB Encryption: ECB Decryption:
Ci = EK(Pi), i = 1..n Pi = DK(Ci), i = 1..n



182 M. Canim and M. Kantarcioglu

– Cipher Block Chaining(CBC): Each block of the ciphertext is created
by encrypting the result of the previous ciphertext block xored with the cur-
rent plaintext block.

CBC Encryption: CBC Decryption
C1 = EK(P1 ⊕ IV ) P1 = DK(C1) ⊕ IV
Ci = EK(Pi ⊕ Ci−1), i = 2..n Pi = DK(Ci) ⊕ Ci−1, i = 2..n

– The Cipher Feedback Mode:(CFB) In this mode, successive segments
(let s be the size of these segments where 1 ≤ s ≤ b and Cs

i , P s
i denote the

s-bit sized segments of ciphertext and plaintext respectively.) of ciphertext
are concatenated to create an input for forward cipher to create blocks that
are xored with plaintext segments.

CFB Encryption: CFB Decryption:
I1 = IV I1 = IV
Ii = LSBb−s(Ii−1)|Cs

i−1, i = 2..n Ii = LSBb−s(Ii−1)|Cs
i−1, i = 2..n

Oi = EK(Ii), i = 1..n Oi = EK(Ii), i = 1..n
Cs

i = P s
i ⊕ MSBs(Oi), i = 1..n P s

i = Cs
i ⊕ MSBs(Oi), i = 1..n

– Output Feedback Mode(OFB): This mode is very similar to CFB with s
taken as b. In this simplified description of OFB, we assume that ciphertext
is n ∗ b bits long.

OFB Encryption: OFB Decryption:
I1 = IV I1 = IV
Ii = Oi−1, i = 2..n Ii = Oi−1, i = 2..n
Oi = EK(Ii), i = 1..n Oi = EK(Ii), i = 1..n
Ci = Pi ⊕ Oi, i = 1..n Pi = Ci ⊕ Oi, i = 1..n

– Counter Mode(CTR): In this mode a counter(ctr) is incremented and the
encrypted counter value is xored with plaintext block to get the ciphertext
block.
CTR Encryption: CTR Decryption:
Ci = Pi ⊕ EK(ctr + i), i = 0..n − 1 Pi = Ci ⊕ EK(ctr + i), i=0..n−1

2.2 Evaluating the Performance of Encryption Modes Under
Different Encryption Granularity

In [13], Iyer et al. states that encrypting the same amount of data using few
encryption operations with large data blocks is more efficient than many oper-
ations with small data blocks. In order to support this claim, they conduct an
experiment using three ciphers: AES[15], DES[17] and Blowfish[18] under differ-
ent data blocks: 100 bytes, 120 bytes, 16 KBytes. Based on the results of this
experiment, they conclude that encrypting data few small units at a time takes
longer than encrypting the same amount of data using larger data blocks.



Design and Analysis of Querying Encrypted Data 183

As they stated in their paper [13], the key initialization costs constitute the
most important cause of the high amount of time spent in encrypting small blocks
of data. We expect to observe less time difference when the data is encrypted
under different granularity if we can use one key per database table. Using one
key per database table is feasible for many practical applications, because we
can encrypt 2128 bits of data securely [19] using CTR mode of encryption with
a given key. To test this view, we conducted some experiments to investigate
the effect of key initialization. These experiments are performed under different
encryption modes to see which mode is more appropriate to use under different
encryption granularity.

In our experiments we used the OpenSSL [20] crypto library’s CBC, CTR,
OFB and CFB implementation of AES[15]. We chose AES because it is the
current standard and supported by various companies. ECB is not used since it
is not regarded as a secure mode of operation. We also implemented a slightly
modified version of CTR (referred as CTR4). Modified CTR implementation
encrypts all the counter values first (i.e. calculates all the EK(ctr + i) first) and
then xors it with the plain text data. Algorithms 1 and 2 describe the details
of the modified CTR implementation. In Algorithm 1, we first create a string
S using the encrypted counter values and then xor the first l bit of S with
plaintext message P to get the ciphertext C. Since encrypted counter values are
xored with the plaintext, we do not need to do any padding if the size of the
plaintext is not the multiple of the block-cipher length b.

Algorithm 1. Modified CTR Encryption (CTR4)
Require: Plain text P with length l, initial counter value ctr, and block-cipher length

b.
Set S = EK(ctr + 0)||EK(ctr + 1)|| . . . ||EK(ctr + � l

b
� − 1)

Set C = P ⊕ S[0..l − 1]
return (ctr,C)

Similarly, in Algorithm 2, we first create a string S using the encrypted counter
values and then xor the first l bit of S with ciphertext C to get the plaintext P

Algorithm 2. Modified CTR Decryption (CTR4)
Require: Ciphertext C with length l, initial counter value ctr, and block-cipher length

b.
Set S = EK(ctr + 0)||EK(ctr + 1)|| . . . ||EK(ctr + � l

b
� − 1)

Return P where P = C ⊕ S[0..l − 1]

Since all of the block cipher operations are done independent of ciphertext
data, CTR4 decryption can be executed in a multi-threaded fashion. One thread
could be used for creating the encrypted counters (i.e., for computing S in Al-
gorithm 2), and other thread could be used to read the encrypted data from



184 M. Canim and M. Kantarcioglu

the disk (i.e. reading C from the disk in Algorithm 2). The original implementa-
tion of CTR mode in OpenSSL crypto library calculates Ci−1 before calculating
EK(ctr + i). Thus it is not suitable for multi-threading.

Experiments: All of our experiments are conducted on a 2.79 GHz Intel Pen-
tium D machine with 2 GB memory on Windows XP platform. We ran each
experiment five times and reported the average results.

In the first experiment, we encrypted a total of one GB data which is cached in
memory 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192 bytes at a time. In
this experiment, the same key is used for encrypting the entire one GB data, and
the key initialization is done only once. In other words, AES set encrypt key()
function is called once. 1 In Table 2, we report the results of experiment 1 in
seconds.

Table 2. Encryption of 1 GB data under different block sizes

Experiment 1 Experiment 2
(With key initialization) (Without key initialization)

Block size CBC CTR OFB CFB CTR4 CBC CTR OFB CFB CTR4
(Byte)
16 24.98 26.19 27.09 25.64 23.02 49.27 50.77 50.50 50.84 47.91
64 24.31 25.75 26.52 25.03 22.81 30.44 32.13 31.41 31.53 29.16
128 23.78 25.56 26.27 25.20 22.31 26.92 28.83 28.27 28.58 25.44
256 23.56 25.50 26.39 25.44 22.11 25.17 27.42 26.61 27.09 23.95
512 23.42 25.50 26.48 25.41 22.17 24.34 26.52 25.89 26.22 23.23
1024 23.38 25.52 26.47 25.39 22.03 24.00 26.23 25.45 25.75 22.78
2048 23.33 25.48 26.55 25.42 22.05 23.78 25.98 25.23 25.66 22.63
4096 23.36 25.53 26.34 25.38 22.28 23.72 25.84 25.25 25.34 22.78
8192 23.25 25.56 26.39 25.41 22.30 23.53 25.84 25.14 25.42 22.75

In the second experiment, we again encrypted one GB of data similar to
experiment 1 but in this experiment, key initialization is done at the beginning
of each data block. Average results of experiment 2 are shown in Table 2 in
seconds.

Experiment 1 indicates that CTR4 mode is the fastest, if the key initialization
done just once at the beginning of the encryption process. Also, if we compare
the results of experiment with or without key initialization for CTR4 (shown in
figure 2), we can observe that encrypting larger blocks requires less amount of
time if the key initialization is performed every time before encrypting each data
block. However, the time required to encrypt the data does not depend on block
size if key initialization is done just once. In other words, if the blocks used are not
too small (i.e. larger or equal to 64 bytes) and one key is used per database table,
the encryption block size does not effect the total decryption times. Actually, it
1 Initialization means generating substitution tables based on the secret key and this

can be a costly operation as reported in [13].



Design and Analysis of Querying Encrypted Data 185

Fig. 2. Effect of key initialization under different granularity

is easy to see this fact from the API of modern crypto packages like the OpenSSL
Library. For example in OpenSSL, to start encrypting with a key (similar for
decryption), the key initialization function (AES set encrypt key()) should be
called first. After the initialization is done, encryption function can be called on
various size blocks.

At the same time, experiment 1 indicates that encrypting small blocks (i.e.
less than 64 bytes) at a time could be a problem. Fortunately, clever usage of
CTR4 mode can solve the small block size problem. (This is not possible with
other modes) Since each block is encrypted independently, we can combine blocks
from different tuples (i.e., combine 4 blocks from 4 different tuples to create a
64 byte block) and decrypt/encrypt them together.

2.3 Performance of Encryption Modes Under Different Disk Access
Patterns

In this part we conducted four experiments to evaluate the performance of en-
cryption modes under random and sequential disk access patterns. In each ex-
periment, data is accessed 4 KB page at a time, since it is the default page size
in many DBMSs such as IBM DB2 [21]. We describe those four experiments
below.

– Experiment 3:
In the first part, one GB of encrypted file cached in memory is read sequen-
tially and decrypted using different encryption modes. In the second part,
the same experiment is repeated with the same file which is accessed from
disk (i.e. file is not cached in memory). The results of the experiment are
shown in Table 3.
The results show that whether the data resides in memory or not, does not
affect the time for reading and decrypting data sequentially. This implies
that during the decryption of the current page disk controller can prefetch
the next page.

– Experiment 4:
In the first part, 512 MB of the 1 GB encrypted file is accessed randomly
4K page at a time from memory and decrypted using different encryption



186 M. Canim and M. Kantarcioglu

Table 3. Results of experiment 3 (reading and decrypting 1 GB file sequentially)

Crypto Mode: CBC CTR OFB CFB CTR4
from memory 29.02 31.17 30.92 30.89 27.89
from disk 28.91 31.94 30.5 31.05 27.31

Table 4. Results of experiment 4 (reading one GB file randomly and decrypting 512
MB)

Crypto Mode: CBC CTR OFB CFB CTR4
from memory 15.7 16.73 16.38 16.52 15.03
from disk 262.63 262 271.94 266.3 267.64

modes. In the second part, the same experiment is repeated with the same
file which is accessed from the disk. The results of the experiment are shown
in Table 4

The results of the experiment 4 indicate that random access to the pages
causes significant delays if the data is not cached in the memory.

– Experiment 5:
Multi-threaded version of CTR4 2 is used to decrypt the 512 MB randomly
accessed data, which took 257.3 seconds in the average. This experiment is
not performed with the other modes since they do not allow multi threading
during decryption.

If the result of experiment 5 is compared with experiment 4, we can
see that multi threaded version of CTR4 reduces the decryption cost sig-
nificantly, by overlapping the IO operations with decryption operations. In
experiment 4, decrypting 512 MB of 1 GB file randomly takes 266.1 seconds
in the average. However, performing the same experiment takes 257.3 sec-
onds in this experiment. Therefore, multi threaded version of CTR4 runs
almost 9 seconds faster than other modes of operations in the average.

In order to support this claim, we have calculated the time to decrypt 512
MB allocated memory space sequentially with CTR4, which took 11.2 sec-
onds to perform. This result indicates that 9 seconds of running experiment
5 is overlapped with IO operations.

This implies that using hardware accelerators, most of the time required
for cryptographic operations can be overlapped with the random access IO
operations.

– Experiment 6:
Multi-threaded CTR4 is used to decrypt the 1 GB file sequentially. The
average of the results indicates that it takes 28.05 seconds to decrypt the
file sequentially. When compared with the results of experiment 3, it can be

2 i.e One thread reads the data, other thread encrypts the counter values. When both
threads are done, their results are xored to get the plain text.



Design and Analysis of Querying Encrypted Data 187

concluded that the time to read and decrypt one GB file sequentially is not
significantly reduced by using the multi threaded version of CTR.

The above results imply that the cost of the cryptographic operations can be
overlapped with the cost of the IO operations using fast hardware based multi-
threaded implementation of CTR mode, which could improve the performance
especially in storage area networks where disk access latency could be higher.

2.4 Which Mode?

We would like to have a block cipher mode that is suitable for efficient process-
ing of encrypted data in databases. Due to reasons stated below, CTR mode
emerges as the best choice among classic and proven to be secure block cipher
modes for efficiently querying encrypted data. The properties of CTR mode that
is useful for database encryption can be given as follows:

– Efficient Implementation: In all of our experiments, modified version of
CTR (CTR4) was the fastest. Since the encryption of each block is indepen-
dent, modern processor architecture’s properties such as aggressive pipelin-
ing, multiple cores, and large number of registers can be utilized for even
more efficient implementation [22]. For example, in [22], optimized version
of CTR mode is four times faster than the optimized version of CBC mode.
Also CTR mode is suitable for parallel processing.

– Selective Decryption: CTR mode could be used to decrypt arbitrary parts
of the plaintext. For example, for each tuple encrypted using CTR mode,
during the selection operation, we may just decrypt the selection field first
and decrypt the rest if the selection criteria is satisfied. To see why we can de-
crypt the arbitrary substring of a given ciphertext, consider the algorithm 3.
In algorithm 3, first the counter values that are used to encrypt the P [u..v]
are calculated. Later on, using the counter values  u

b ! and " v
b #, encrypted

counter values are created. Finally, the appropriate segment of the encrypted
counter values are xored with the required part of the ciphertext (i.e. C[u..v])
to compute P [u..v].

Other block cipher modes such as CBC, CFB, OFB defined for AES[15]
in the FIPS-SP 800-38A[16] standard do not allow for selective decryption
because the encryption of a block depends on the encryption of the previous
block. This implies that we cannot selectively decrypt the required part of the
data. ECB and CTR modes of operation encrypt each block independently.
Unfortunately, ECB mode reveals the underlying distribution of the data.
Therefore, it does not provide the desired level of security.

– Preprocessing: In CTR mode, most costly part of the encryption and de-
cryption (evaluating EK(ctr+i)) can be done without seeing the data. Actu-
ally, we used this property in Experiment 5 and showed that this can reduce
the encryption cost significantly. This is not possible for all the modes except
OFB mode but OFB mode does not allow selective decryption.



188 M. Canim and M. Kantarcioglu

Algorithm 3. Decryption of arbitrary substring of ciphertext in CTR mode
Require: Ciphertext C with length l, initial counter value ctr, block-cipher length b,

decryption start index u and decryption end index v
Set S = EK(ctr + �u

b
�)|| . . . ||EK(ctr + � v

b
� − 1)

return P [u..v] = C[u..v] ⊕ S[(u − �u
b
� · b)..(v − �u

b
� · b)]

3 A New Approach for Storing Encrypted Data in
Database Pages

Granularity of encryption is another important design issue that needs to be con-
sidered for efficient storage of encrypted data. The overall database performance
can potentially be affected by small changes in the design choices regarding the
way of keeping the records in the pages. Tuple level and page level encryption
are the most well known options for this purpose. Alternatively, we can use the
mini-page approach suggested in [13].

In tuple level encryption, each tuple is encrypted or decrypted separately. If
the database needs to retrieve some of the tuples, there is no need to decrypt all
of the tuples in the table.

Page level encryption will correspond to a mechanism where a particular page
is completely decrypted when buffer pool needs to access the page from the disk.
After some modifications, the page is encrypted again and written to disk.

Mini page level for database encryption was first suggested for encrypted data
in [13] based on the work of Ailamaki et.al [23]. In this technique, when a tuple
is inserted into a page, its attributes are partitioned and stored in corresponding
mini pages on the same page.

Deciding to use one of these approaches depends on two factors:

– the cost of the required block cipher operations under different types of
queries

– the amount of modification required to implement these approaches in con-
ventional databases

The mini page level encryption, as discussed in [13], is designed in such a
way that the sensitive attributes of the records are encrypted with AES [15] in
CBC mode and inserted at the beginning of the page. When a page is read from
disk, just the first part of the page is decrypted. Since all the sensitive attributes
of the records are located at the beginning of the page, the decryption process
continues until all sensitive attributes are decrypted.

Although this idea is a neat solution for encrypting sensitive data, there are
two issues that are not addressed. The first issue is that it does not allow selective
decryption since the encryption mode is selected as CBC mode. When a projec-
tion query needs to get specific attributes among the sensitive attributes, all of
the encrypted attributes should be decrypted. This cost will linearly increase if
the length of the sensitive attributes increases proportionally to the total length
of the records.



Design and Analysis of Querying Encrypted Data 189

Secondly, the mini page level encryption requires significant amount of mod-
ification in the page structure of conventional databases. This is because, the
attributes of the records are kept in two different parts of the page rather than
in a consecutive order.

In the page level encryption, the whole of the page is encrypted before writing
into disk and decrypted before loading into buffer pool. If all the data needs
to be kept secret, this level of encryption is appropriate. In addition to that,
implementing such an approach requires less modification in the page structure of
existing databases. However, this is not preferable since it unnecessarily encrypts
nonsensitive data along with sensitive data.

Because of the problems discussed above, we propose a new encryption method
which we refer to as page level CTR. This method basically utilizes the selective
decryption property of CTR4 and combines the useful aspects of page level and
tuple level encryption methods. Unlike the mini page approach, sensitive and
nonsensitive attributes of the records are kept consecutively. The decryption is
performed for each sensitive attribute of the records separately after a page is
read from the disk. Therefore, it resembles to tuple level approach.

In our encryption method, we propose using CTR4 for cryptographic op-
erations. So we need to somehow store the counter values in the page. Since
each counter value requires a 16-byte of location, keeping one counter value for
each record will entail a nonnegligible storage cost. Fortunately, we can use one
counter value per page instead of one record. With respect to storage of counter
values, our page level CTR approach is similar to page level encryption. Also
we modified and optimized the increment function of CTR mode to increment
counter values as much as needed at a time, instead of just one by one.

The page structure of the proposed method is illustrated in figure 3 with an
example, where we assume that a projection query requires to read the encrypted
attributes of two consecutive records. The start index of the attribute of record
1 is α1 = 220 bytes and of record 2 is α2 = 430 bytes, with respect to the
beginning of the page. Before starting the decryption, the counter value of the
page is read from the beginning of the page. Then this value is incremented by
δ1 where δ1 =  α1

β ! =  220
16 ! = 13 with the optimized increment function of page

level CTR approach ( β = 16 since the AES block size is 16 bytes). After finding
the necessary counter value, the CTR4 is used to decrypt the sensitive attribute
of record 1. Then, the same operation is repeated for record 2. After reading
the counter value from the beginning of the page, it is incremented by δ2 where
δ2 =  α2

β ! =  430
16 ! = 26. Using this value, the sensitive attribute of record 2 is

decrypted with CTR4.
Here, we illustrated decrypting the sensitive attributes of two records in a

page. However, this operation will be repeated for all records in every page, if
there is a projection query that needs to read all of the records in a table.

In the next section, the performance of mini page and page level CTR methods
are compared based on our experiment results. In these experiments, we observed
that selective decryption aspect of page level CTR causes significant performance
gain under different query types.



190 M. Canim and M. Kantarcioglu

Fig. 3. Illustration of Page Level CTR approach

3.1 Experiments and Analyses

In order to compare the performance of Mini page and Page level CTR methods,
we conducted some experiments. The first experiment is implemented to analyze
the performance when all incoming queries to database are projection queries. The
second experiment differs from experiment 1 since the queries are selection queries.

In both of these experiments it is assumed that the tuple lengths are 500 bytes
and 70% of the tuples (350 byte/record) are encrypted. In each run, a 512 MB
file is read sequentially from the disk and processed. In each read operation, 4
KB data is read from the disk since it is the default page size in many DBMSs.

The mini page method is implemented as it is discussed in the previous section.
When a page is read from the disk, only the first part of the page is decrypted.
Since all the sensitive attributes of the records are located at the beginning
of the page, the decryption process continues until all sensitive attributes are
decrypted.

On the other hand, page level CTR method is implemented by consecutively
locating each record, which has sensitive and nonsensitive attributes. As it is
discussed before, when a particular sensitive attribute of a record needs to be
read, the counter value of that page is incremented as much as needed. Then
CTR4 is used to decrypt the required sensitive attribute.

Projection Experiments: To observe the selective decryption property of
page level CTR encryption method, we wanted to analyze the performance of
projection queries in this experiment. As it is shown in figure 4, in the page level
CTR method, the time required to decrypt the encrypted projection attribute
is proportional to the length of the attribute. However, it is independent in the
mini page level since this method decrypts all sensitive attributes to read the
projection attributes of tuples. In contrast, page level CTR, decrypts as much
data as needed to be decrypted. Therefore, both of the techniques require almost
the same amount of time when the projection attribute is the only sensitive
attribute in the record.

As a result of this experiment, we observed that, compared to mini page level
encryption, page level CTR has a significant impact on reducing the cost of
projection queries.



Design and Analysis of Querying Encrypted Data 191

Selection Experiments: In projection experiments of page level CTR we were
decrypting a certain amount of data for each record. However, in this experiment,
in addition to selection attribute, we may need to decrypt the rest of the other
sensitive attributes if the selection criterion is satisfied during query processing.
This can be illustrated via an example, in which we have a table T with attributes
A1, A2, and A3, where A1 and A2 are encrypted but A3 is not. In order to process
a query such as ”SELECT * FROM T WHERE A1 = X”, the attribute A1 of
each tuple should be decrypted. If the result of the condition A1 = X is true,
not only A1 but also A2 should be decrypted. So, the performance of page level
CTR depends on the selection condition of each tuples. Because of this reason,
we repeated the experiments for different probability values of selecting a tuple.

The results of the experiments are shown in Figure 5, 6, and 7 where the
probability of selecting a tuple is 30%, 60% and 100% respectively.

Fig. 4. Experiment results for projec-
tion queries

Fig. 5. Experiment results for selection
queries

Fig. 6. Experiment results for selection
queries

Fig. 7. Experiment results for selection
queries

An important point to note is that the time required to decrypt tuples in-
creases gradually when the probability of selecting tuples increases. When the



192 M. Canim and M. Kantarcioglu

probability is 100%, the cost of decrypting tuples becomes independent of the
byte length of selection attribute. In addition, the cost of decrypting tuples in
page level CTR is slightly more than the cost associated with the mini page as
it is seen in Figure 7. The main reason for this is the overhead of extra index
calculations in page level CTR approach.

In the selection experiment, we observed that selective decryption feature of
page level CTR causes significant performance gain if the selection probability
is low.

4 Discussion

We now discuss other encrypted data related issues in database management
systems.

– Key Management: Using careful implementation of CTR mode, we can
encrypt up to 2128 bits of data with a single key. Therefore, for most cases,
we only need one encryption key per table. These encryption keys must be
either stored in tamper-proof hardware or encrypted with a master key. If
the master key option is chosen, during the system start, this master key
can be loaded by the database administrator. If we do not want to trust the
DB administrator with the master key, we can use classic threshold schemes
to store the master key. For example, using a (k, t) secret sharing scheme,
we can distribute this master key to t people and any k or more of them can
come together to construct the master key [24].

For security purposes, in the CTR mode, the same counter value should
not be used for encrypting two different blocks. A simple way to solve this
problem is to maintain a global counter value for each encryption key in use
and update the counter value after each incrementation.

– Insertion, Deletion, and Updates: As mentioned above, counter values
in CTR mode could not be used again. At the same time, we keep one
initial counter value per page and calculate the counter values needed for
selectively decrypting some attributes of the tuples using this initial counter
values. When we need to update a part of the page, we need to encrypt the
entire page with a different initial counter value.

– Transaction Management When there is an insert, delete, or update op-
eration, DBMS will write a log to the log file. Therefore, to protect the
sensitive data, we also need to encrypt the log file pages corresponding to
encrypted tables. Otherwise, sensitive data values could be extracted from
log files.

5 Conclusions

In this paper, we discussed the performance of different block cipher modes,
under different encryption granularity and disk access patterns. Based on our
experiments and analyses, we suggested a CTR based approach for encrypting



Design and Analysis of Querying Encrypted Data 193

data in DBMSs. We showed its potential for processing encrypted data faster by
starting decryption process even before seeing the encrypted data. In addition
to that, we proposed a page level encryption method by utilizing the selective
decryption feature of CTR mode. Based on the results of our experiments, we
compared the performance of the encryption method that we propose with the
performances of other approaches and show its advantages under different query
types. As a future work, we plan to implement our proposed approach using
cryptographic accelerators in a distributed database environment.

Acknowledgments

We wish to thank Chris Clifton, Rakesh Agrawal and Sharad Mehrotra for help-
ful discussions.

References

1. Jr, T.Z.: An ominous milestone: 100 million data leaks. New York Times (December
18,2006)

2. Trinanes, J.A.: Database security in high risk environments.Technical report,
governmentsecurity.org (2005) http://www.governmentsecurity.org/articles/
DatabaseSecurityinHighRiskEn%vironments.php.

3. Standard for privacy of individually identifiable health information. Federal Reg-
ister 67(157), 53181–53273 (2002)

4. California database security breach notification act (September 2002),
http://info.sen.ca.gov/pub/01-02/bill/sen/sb 1351-1400/sb 1386 bill
% 20020926 chaptered.html

5. Microsoft: Security features in microsoft sql server 2005. Technical report, Mi-
crosoft Corporation (2005), http://www.microsoft.com/sql/2005/productinfo/

6. IBM: Ibm data encryption for ims and db2 databases. Technical report, IBM
Corporation (2006), http://www-306.ibm.com/software/data/db2imstools/
db2tools/ibmencrypt.html

7. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, Paris, France, June 13-18, 2004, ACM Press, New York
(2004)

8. Bayer, R., Metzger, J.K.: On the encipherment of search trees and
random access files. ACM Trans. Database Syst. 1(1), 37–52 (1976),
http://doi.acm.org/10.1145/320434.320445

9. Hardjono, T., Seberry, J.: Search key substitution in the encipherment of b-trees.
In: McLeod, D., Sacks-Davis, R., Schek, H.J. (eds.) 16th International Conference
on Very Large Data Bases, Brisbane, Queensland, Australia, Proceedings, August
13-16, 1990, pp. 50–58. Morgan Kaufmann (1990)

10. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over en-
crypted data in the database-service-provider model. In: Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data, Madi-
son, Wisconsin, June 4-6, 2002, pp. 216–227. ACM Press, New York (2002),
http://doi.acm.org/10.1145/564691.564717

http://www.governmentsecurity.org/articles/DatabaseSecurityinHighRiskEn%vironments.php
http://www.governmentsecurity.org/articles/DatabaseSecurityinHighRiskEn%vironments.php
http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_%_20020926_chaptered.html
http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_%_20020926_chaptered.html
http://www.microsoft.com/sql/2005/productinfo/
http://www-306.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html
http://www-306.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html
http://doi.acm.org/10.1145/320434.320445
http://doi.acm.org/10.1145/564691.564717


194 M. Canim and M. Kantarcioglu

11. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proceedings of the 30th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc., San Francisco (2004)

12. Damiani, E., Vimercati, S.D.C., jodia, S.J., Paraboschi, S., Samarati, P.: Balanc-
ing confidentiality and efficiency in untrusted relational dbmss. In: Proceedings of
the 10th ACM conference on Computer and communications security, pp. 93–102.
ACM Press,New York (2003), http://doi.acm.org/10.1145/948109.948124

13. Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G., Wu, Y.: A framework for efficient
storage security in rdbms. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, Springer, Heidelberg (2004)

14. Elovici, Y., Shmueli, E., nberg, R.W., Gudes, E.: A structure preserving database
encryption scheme. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178,
Springer, Heidelberg (2004), http://www.extra.research.philips.com/
sdm-workshop/RonenSDM.pdf

15. NIST: Advanced encryption standard (aes). Technical Report NIST Special
Publication FIPS-197, National Institute of Standards and Technology (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

16. Recommendation for block cipher modes of operation methods and tech-
niques. Technical Report NIST Special Publication 800-38A, National Insti-
tute of Standards and Technology (2001), http://csrc.nist.gov/publications/
nistpubs/800-38a/sp800-38a.pdf

17. Data encryption standard (des). Technical Report FIPS PUB 46-2, National Insti-
tutes of Standards and Technology (1988)

18. Schneier, B.: The blowfish encryption algorithm. Dr. Dobb’s Journal, 38–40 (April
1994)

19. Lipmaa, H., Rogaway, P., Wagner, D.: Ctr-mode encryption. In: NIST,
Computer Security Resource Center, First Modes of Operation Work-
shop (2000), http://csrc.nist.gov/CryptoToolkit/modes/workshop1/papers/
lipmaa-ctr.pdf

20. Cox, M., Engelschall, R., Henson, S., Laurie, B.: The OpenSSL Project,
http://www.openssl.org/

21. IBM: Table Space Design, http://publib.boulder.ibm.com/infocenter/db2luw/
v9/index.jsp?topic=/com%.ibm.db2.udb.admin.doc/doc/c0004935.htm

22. Lipmaa, H.: Idea: A cipher for muldimedia architectures? In: Tavares, S., Meijer,
H. (eds.) Selected Areas in Cryptography ’98, Springer-Verlag,Heidelberg (1998)

23. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving relations for cache
performance. In: Proceedings of the 27th International Conference on Very Large
Data Bases, pp. 169–180. Morgan Kaufmann Publishers Inc.,San Francisco (2001)

24. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

http://doi.acm.org/10.1145/948109.948124
http://www.extra.research.philips.com/sdm-workshop/RonenSDM.pdf
http://www.extra.research.philips.com/sdm-workshop/RonenSDM.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/CryptoToolkit/modes/workshop1/papers/lipmaa-ctr.pdf
http://csrc.nist.gov/CryptoToolkit/modes/workshop1/papers/lipmaa-ctr.pdf
http://www.openssl.org/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com%.ibm.db2.udb.admin.doc/doc/c0004935.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com%.ibm.db2.udb.admin.doc/doc/c0004935.htm


Dynamic Event-Based Access Control
as Term Rewriting�

Clara Bertolissi2, Maribel Fernández1, and Steve Barker1

1 King’s College London, Dept. of Computer Science, London WC2R 2LS, U.K.
2 LIF, Université de Provence, Marseille, France

{Steve.Barker,Clara.Bertolissi,Maribel.Fernandez}@kcl.ac.uk

Abstract. Despite the widespread adoption of Role-based Access Con-
trol (RBAC) models, new access control models are required for new
applications for which RBAC may not be especially well suited and for
which implementations of RBAC do not enable properties of access con-
trol policies to be adequately defined and proven. To address these issues,
we propose a form of access control model that is based upon the key
notion of an event. The access control model that we propose is intended
to permit the representation of access control requirements in a distrib-
uted and changing computing environment, the proving of properties of
access control policies defined in terms of our model, and direct imple-
mentations for access control checking.

1 Introduction

Included amongst the most important problems in access control are the prob-
lems of formally defining richly expressive access control models that enable
security administrators to specify a wide range of policies, using declarative lan-
guages, to prove properties of access control policies (for assurance purposes),
and to evaluate access requests efficiently with respect to a representation of an
access control policy. The increased use of access control policies in distributed
computing environments has increased the need to have formal access control
policies that are declarative (to handle the complexities of policy specification),
to prove properties of policies (for verifiability purposes), and for efficient evalu-
ation (given the computational overheads of potentially accessing large volumes
of data from multiple locations). Moreover, given the complexities and scope in-
volved, distributed applications have increased the requirements for autonomous
changing of access control policies.

In recent years, work on RBAC [28,8] has emerged as the principal type of
access control model in theory and in practice. RBAC is well suited for use with
relatively static, closed, centralized systems where the assignment of a known,
identifiable user to a role is specified by (typically) a centrally organized team of
� Research partially funded by the EU project Implementing access control mech-

anisms using rewriting techniques, Marie Curie Intra European Fellowships
Programme.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 195–210, 2007.
c© IFIP International Federation for Information Processing 2007



196 C. Bertolissi, M. Fernández, and S. Barker

human security administrators that has complete information about user qual-
ifications and responsibilities, and hence user assignments to well-defined job
functions and thus roles. Administrators are also (typically) assumed to have
complete information about the permissions to be assigned to roles. The admin-
istrators of an RBAC policy for a centralized system will revise a policy formu-
lation to take into account any changes to role and permission assignments (as
required to meet organizational demands). These changes do not usually need
to be performed in real-time; in general, RBAC policy specifications for central-
ized systems are relatively static (i.e., user-role, permission-role, and role-role
relationships often persist for long periods of time). The features of RBAC have
been selected to map onto organizational structures, and RBAC policies, in the
centralized case, are mandatory in the sense that a user’s access privileges on
information sources is determined by the job function the user performs within
the organization.

The features of RBAC that make it suitable for use in the centralized case
are not necessarily so relevant in certain distributed computing contexts. In cer-
tain distributed environments, entities that request access to resources may not
be known to enterprises with resources to protect (i.e., users may be stranger
agents), open access policies are natural to adopt [8], as well as closed policies,
decisions on access are more likely to need to be delegated to third-parties (e.g.,
in the case where the information about the identity or attributes of requesters
may be required), the qualifications and responsibilities of requesters do not nec-
essarily have any significance, in terms of access control, and the notion of a job
function may not apply (as requesters for access to an enterprise’s resources may
have no connection with the enterprise). Although the features of RBAC nat-
urally map to organizational structures, for many distributed applications the
concept of an organizational structure may be irrelevant. The size, complexity
and dynamic nature of some distributed systems present particular challenges
that demand that changes to access policies be made frequently (e.g., in response
to sales patterns and volumes) and by autonomous means (rather than by human
security administrators manually modifying policy specifications). In the decen-
tralized case, modifications to access policies for protecting an organization’s
assets may need to be made in response to events in external environments over
which a policy administrator has no control, and about which administrators
may not have complete information. Moreover, the high complexity of access
control policies in the decentralized case demands not only that rich forms of
language be used to represent these requirements but also that effective proof
methods be employed to guarantee satisfaction of properties of policies.

To address the requirements for formal access policy representation for dy-
namic, distributed information systems, we propose an event-based distributed
access control model, we demonstrate how and why access control policies, de-
fined in terms of our model, should be considered as term rewrite systems [16,23,4],
and we introduce distributed term rewriting systems. The model that we propose,
and its representation using term rewriting, contributes to the literature on for-
mal access control models by demonstrating how access control models may be



Dynamic Event-Based Access Control as Term Rewriting 197

defined that enable the autonomous changing of access control policies, the prov-
ing of properties of policies, and the efficient evaluation of access requests when the
sources of access control and user requested information may be widely dispersed.
We call the access control model that we introduce the Dynamic Event-Based Ac-
cess Control (DEBAC) model. The DEBAC model addresses a number of limita-
tions of RBAC when the latter is applied in distributed computational contexts:
that in certain distributed environments, entities that request access to resources
may not be known (so it is not possible to authorize access on the basis of a job
function/role); that user authorizations may change dynamically on the basis of
the occurrence of a wider range of events than the role and permission assignments
used in RBAC; and that the information that is used to decide on granting/denying
a user’s request may be distributed across several sites (rather than being centrally
located). We also demonstrate that the expressiveness of the DEBAC model and
the representation of DEBAC policies, as term rewrite systems, permit a range of
properties to be proven of DEBAC policies; these proofs guarantee that security
goals are satisfied by a policy specification and by the operational methods used
to evaluate access requests. Approaches that provide for provably correct security
have always been and remain of high interest in the security community.

Represented as term rewrite systems, DEBAC policies are specified as a set
of rules and access requests are specified as terms. Access request evaluation
is effected by “reducing” terms to a normal form (see below). Term rewriting
techniques have been successfully applied, and have had deep influence, in the de-
velopment of computational models, programming and specification languages,
theorem provers, and proof assistants. More recently, rewriting techniques have
also been fruitfully exploited in the context of security protocols (see, for in-
stance, [9]), and security policies for controlling information leakage (see, for
example, [18]). As we will see, representing DEBAC policies as term rewrit-
ing systems enables complex and changing access control requirements to be
succinctly specified in a declarative language that is formally well defined. The
formal foundations on which our approach is based make it possible to apply the
extensive theory of rewriting to access control; in particular, standard rewrit-
ing techniques can be used to show that access control policies satisfy essential
properties (such as consistency and completeness) and can be used to study com-
binations of policy specifications. Another important reason to use rewrite-based
languages to specify access control policies is that tools, such as ELAN [14,22]
and MAUDE [15], can be used to test, compare and experiment with access re-
quest evaluation strategies, to automate equational reasoning, and for the rapid
prototyping of access control policies.

The rest of this paper is organized as follows. In Section 2, we give some
details on term rewriting to help to make the paper self-contained. In Section 3,
we describe the DEBAC model and we introduce distributed rewrite systems as
a tool to define DEBAC policies. In Section 4 we show how DEBAC policies can
be specified via rewrite rules and we use this specification for proving essential
properties of these policies. Some extensions of DEBAC policies are investigated



198 C. Bertolissi, M. Fernández, and S. Barker

in Section 5. We discuss related work in Section 6. Finally, we draw conclusions
and make suggestions for further work in Section 7.

2 Preliminaries

In this section we recall some basic notions and notations for term rewriting. We
refer the reader to [4] for additional information.

Term rewriting systems can be seen as programming or specification lan-
guages, or as formulae manipulating systems. They have been used in various
applications (e.g., operational semantics, program optimization, automated the-
orem proving, and recently, computer security). We recall briefly the definition
of first-order terms and term rewriting systems.

A signature F is a finite set of function symbols together with their (fixed)
arity. X denotes a denumerable set of variables X1, X2, . . ., and T (F ,X ) denotes
the set of terms built up from F and X .

Terms are identified with finite labeled trees. The symbol at the root of t is
denoted by root(t). Positions are strings of positive integers. The subterm of t
at position p is denoted by t|p and the result of replacing t|p with u at position
p in t is denoted by t[u]p.

V(t) denotes the set of variables occurring in t. A term is linear if variables
in V(t) occur at most once in t. A term is ground if V(t) = ∅. Substitutions
are written as in {X1 $→ t1, . . . , Xn $→ tn} where ti is assumed to be different
from the variable Xi. We use Greek letters for substitutions and postfix notation
for their application. We say that two terms unify if there is some substitution
that makes them equal. Such a substitution is called a unifier. The most general
unifier (mgu) is the unifier that will yield instances in the most general form.

Definition 1. Given a signature F , a term rewriting system on F is a set of
rewrite rules R = {li → ri}i∈I , where li, ri ∈ T (F ,X ), li 	∈ X , and V(ri) ⊆ V(li).
A term t rewrites to a term u at position p with the rule l → r and the substitution
σ, written t →l→r

p u, or simply t →R u, if t|p = lσ and u = t[rσ]p. Such a term
t is called reducible. Irreducible terms are said to be in normal form.

We denote by →+
R (resp. →∗

R) the transitive (resp. transitive and reflexive) clo-
sure of the rewrite relation →R. The subindex R will be omitted when it is clear
from the context.

Example 1. Consider a signature for lists of natural numbers, with function
symbols:

– z (with arity 0) and s (with arity 1, denoting the successor function) to build
numbers;

– nil (with arity 0, to denote an empty list), cons (with arity 2, to construct
non-empty lists), head and tl (with arity 1, to obtain the head and tail of a
list, resp.), and length (also with arity 1, to compute the length of a list).



Dynamic Event-Based Access Control as Term Rewriting 199

The list containing the numbers 0 and 1 is written: cons(z, cons(s(z), nil)), or
simply [z, s(z)] for short. We can specify the functions head, tl and length with
rewrite rules as follows:

head(cons(X, L)) → X
tl(cons(X, L)) → L

length(nil) → z
length(cons(X, L)) → s(length(L))

Then we have a reduction sequence:

length(cons(z, cons(s(z), nil))) → s(length(cons(s(z), nil)) →
s(s(length(nil))) → s(s(z))

Let l → r and s → t be two rewrite rules (we assume that the variables of
s → t were renamed so that there is no common variable with l → r), p the
position of a non-variable subterm of s, and μ a most general unifier of s|p and
l. Then (tμ, sμ[rμ]p) is a critical pair formed from those rules. Note that s → t
may be a renamed version of l → r. In this case a superposition at the root
position is not considered a critical pair.

A term rewriting system R is:

– confluent if for all terms t, u, v: t →∗ u and t →∗ v implies u →∗ s and
v →∗ s, for some s;

– terminating (or strongly normalizing) if all reduction sequences are finite;
– left-linear if all left-hand sides of rules in R are linear;
– non-overlapping if there are no critical pairs;
– orthogonal if R is left-linear and non-overlapping;
– non-duplicating if for all l → r ∈ R and X ∈ V(l), the number of occurrences

of X in r is less than or equal to the number of occurrences of X in l.

For example, the rewrite system in Example 1 is confluent, terminating, left-
linear and non-overlapping (therefore orthogonal), and non-duplicating.

A hierarchical union of rewrite systems consists of a set of rules defining
some basic functions (this is called the basis of the hierarchy) and a series of
enrichments. Each enrichment defines a new function or functions, using the
ones previously defined. Constructors may be shared between the basis and the
enrichments.

We recall a modularity result for termination of hierarchical unions from [19]
(Theorem 14), which will be useful later:

If in a hierarchical union the basis is non-duplicating and terminating,
and each enrichment satisfies a general scheme of recursion, where each
recursive call in the right-hand side of a rule uses subterms of the left-
hand side, then the hierarchical union is terminating.

3 The DEBAC Model

In this section, we describe the principal components of the DEBAC model and
introduce distributed term rewriting systems.



200 C. Bertolissi, M. Fernández, and S. Barker

3.1 Features of DEBAC Models

We begin by defining some of the key sets of constants in the signature that we
use in the formulation of the DEBAC model and DEBAC policies. Specifically,
we require:

– A countable set R of resources, written r1, r2, . . ..
– A countable set A of named actions a1, a2, . . ..
– A countable set U of user identifiers, written u1, u2, . . ..
– A countable set C of categories c0, c1, . . ..
– A countable set E of event identifiers e1, e2, . . ..
– A countable set S of site identifiers, we use Greek letters μ, ν, . . . as site

identifiers.
– A countable set T of time points.

The fundamental notion on which our DEBAC model is based is that of an
event. In the DEBAC model, events are happenings at an instance of time that
involve users performing actions. We view events as structured and described
via a sequence l of ground terms of the form event(ei, u, a, t) where event is a
data constructor of arity four, ei (i ∈ N) are constants in E (denoting unique
event identifiers), u ∈ U identifies a user, a is an action associated to the event,
and t is the time when the event happened. In the discussion that follows, we
represent times as natural numbers in Y Y Y Y MMDD format, and we assume
that time is bidirectional so that proactive and postactive changes may be made
to represent access policy requirements, and past, present and future times can
be used in our model to make access control decisions.

In the DEBAC model, users may request to perform actions on resources
that are potentially accessible from any site in a distributed system. A user is
assigned to a particular category (e.g., normal users, preferred users, etc) on the
basis of the history of events that relate to the user. Access to resources is then
defined in the following way:

A user u ∈ U is permitted to perform an action a ∈ A on a resource
r ∈ R that is located at site s ∈ S if and only if u is assigned to a
category c ∈ C to which a access on r has been assigned.

In the DEBAC model, assignments of a user u to a category c are based on
the occurrence of events that are recorded in the history of events relating to
u. As we will see later, hierarchies of categories of users may also be naturally
accommodated in the DEBAC model.

We formally specify the notion of permitted access in term rewriting form
below. In a DEBAC specification, there are two kinds of functions, which we call
generic and specific, respectively. Generic functions are common to all DEBAC
specifications, whereas specific functions, as their name suggests, depend on the
specific scenario that we are modeling.

Given an event ei, we will use standard generic functions to extract the com-
ponent information from an event description. For instance, we may define a
function user that returns the user involved in a given event, as follows:

user(event(E, U, A, T )) → U



Dynamic Event-Based Access Control as Term Rewriting 201

We assume that events are atomic, however, our model could be generalized
to permit the representation of events that take place over a period of time and
events that are composed of atomic parts (sub-events).

Also, we have chosen to include the time as an explicit component of an event.
In certain contexts, it is sufficient to know the order of events. In such cases,
the position of the event in a list of events provides enough information and the
time parameter may be omitted.

3.2 Distributed Term Rewriting Systems

An important aspect of the DEBAC model is the capability of representing
systems where resources may be distributed across different sites, and the infor-
mation needed to decide whether a user request is granted or denied may also be
distributed. To address this issue, we will define access control policies as mod-
ular term rewriting systems, where modules may be independently maintained
at different sites, and information sources may be explicitly specified. In other
words, policy designers may directly define the sites (locations) to be used in
access request evaluation.

For the approach to distributed access control that we propose, we introduce
distributed term rewriting systems (DTRSs); DTRSs are term rewriting systems
where rules are partitioned into modules, each associated with a site, and func-
tion symbols are annotated with site identifiers. We assume that each site has a
unique identifier (we use Greek letters μ, ν, . . . to denote site identifiers).

We say that a rule f(t1, . . . , tn) → r defines f . There may be several rules
defining f ; we will assume that they are all at the same site ν. We write fν to
indicate that the definition of the function symbol f is stored in the site ν. If
a symbol is used in a rule without a site annotation, we assume the function is
defined locally.

For example, in a DTRS used in a bank scenario, we may have a local func-
tion account such that account(u) returns u’s bank account number, and rules
computing the average balance of a user’s account, stored in a site ν. Then we
could define the security category of a user u using a rule

category(U) → if averagebalanceν(account(U)) ≥ 10000
then VIP CLIENT
else NORMAL CLIENT

The example above describes one instance of rule specification to illustrate the
use of annotations on function symbols (we redefine categories for users in a more
general context in the next section). Here, to calculate u’s security category as
a client, the average balance of u’s account has to be computed at site ν, but
u’s account number is available locally. We use the notation if b then s else t
as syntactic sugar for the term if-then-else(b, s, t), with the rewrite rules:

if-then-else(true, X, Y ) → X
if-then-else(false, X, Y ) → Y



202 C. Bertolissi, M. Fernández, and S. Barker

The syntax used in this paper to associate sites to function definitions is
just one of many alternative notations (another alternative is to use an object-
oriented inspired syntax, writing ν.averagebalance(u)).

In this paper, we assume that the site where each function is defined is known
and therefore the annotations used in function symbols are just constants. An
interesting generalization consists of allowing the use of variables as annotations
when the site is not known in advance, and considering the dynamic computation
of site identifiers (for instance, a ’linker’ program could dynamically generate the
address of the site where averagebalance is defined).

4 DEBAC Policy Specifications Via Rewrite Rules

In this section, we use an example to illustrate the use of distributed rewriting
systems for specifying DEBAC policies. We do not claim that this is the only
way to formalize a DEBAC policy as a rewrite system. Instead, our goal is to give
an executable1 specification of a DEBAC policy, to show some basic properties,
and to address, using rewriting techniques, the problem of checking that the
specification is consistent, correct, and complete (that is, no access can be both
granted and denied, no unauthorized access is granted and no authorized access
is denied).

4.1 Defining DEBAC Policies

We assume that events are represented as ground terms of the form
event(ei, u, a, t), as discussed above. We specify a DEBAC policy by giving its
generic and specific functions.

The generic functions are category and status, together with auxiliary functions
such as user (see Section 3). We define these functions by the rules:

category(U, L) → F (status(U, L))
status(U, nil) → cons(c0, nil)

status(U, cons(E, L)) → if U = user(E)
then cons(Estatus(E)), status(U, L))
else status(U, L)

where c0 is a default category (we could return the empty list instead), status
looks for events involving a user U in the list L, and uses a specific function
Estatus that associates a category ci to a user according to the particular event
ei in which the user was involved (this, of course, is specific to the application
that we are modeling). The auxiliary function user extracts the user involved in
a given event, as explained above. The function F , which is used in the definition
of category, takes as argument a list of categories associated to a user, according
to the history of events, and returns one specific category. Again, the particular

1 For instance, the language MAUDE [15] can be used to execute rewrite-based
specifications.



Dynamic Event-Based Access Control as Term Rewriting 203

definition of F depends on the application. For example, we can take F to be
the function head that returns the head of the list, or the functions max or min
returning the highest or lowest category in the list, respectively; more elaborate
functions are also possible.

Although we are focusing on first-order rewriting in this paper, the discus-
sion above highlights an advantage of a higher-order rewriting formalism (such
as, e.g., Combinatory Reduction Systems [24]). Indeed, in a higher-order rewrit-
ing system, category and status would be parameterized by F and Estatus, re-
spectively (i.e., they would be variables that can be instantiated with different
functions).

Specific functions, as their name suggests, depend on the specific application
that we are modeling. For example, in a bank scenario, we may define:

Estatus(event(E, U, depositing, T ))
→ if averagebalanceν(account(U)) > 10000 and NotBlacklistedμ(U)
then GOLD-CLIENT else NORMAL-CLIENT

whereas in a university, students may acquire rights (change category) as they
pass their exams:

Estatus(event(E, U, enroll, T )) → REGISTERED-STUDENT

Estatus(event(E, U, pay, T )) → REGULAR

Estatus(event(E, U, exams1styear, T )) → if passν(U, 1styear)
and paidμ(U, fees)
then 2ND-YEAR STUDENT
else IRREGULAR

where passν and paidμ are auxiliary functions returning boolean values.
Consider now the (chronologically ordered) list of events

l = [ event(e2, u, exams1styear, 20060130), event(e1, u, pay, 20060115),
event(e0, u, enroll, 20050901)]

and assume that the function F , that is used in the definition of category, is the
function head returning the head of a list. Then we have

category(u, l) → head(status(u, l)) →∗

head([2ND-YEAR STUDENT, REGULAR, REGISTERED-STUDENT])

which finally leads to category(u, l) →∗ 2ND-YEAR STUDENT.

4.2 Evaluating Access Requests

Access requests from users can be evaluated by using a rewrite system to grant
or deny the request according to the history of events and the user’s category
assignments that are specified in the DEBAC policy. For that, we may use
the following rules, where a user u asks for an action a to be performed on a



204 C. Bertolissi, M. Fernández, and S. Barker

resource r accessible from a site μ. The symbols U, A, R, S, L are variables and
the operator member is the standard membership test operator.

access(A, U, R, S, L) → check(member((A, category(U, L)), privileges(R, S)))
check(true) → grant
check(false) → deny

Here we assume that the function privileges returns a list of pairs (action, category
allowed to perform that action) for a given resource in a given site. For example,
privileges may be defined by rules such as:

privileges(r, s) → [(a11, c11), . . . , (a1n, c1n)]

In the discussion that follows, we will use RDEBAC to refer to the rewrite
system that contains the set of rules that we have defined so far.

4.3 Properties of the DEBAC Policy

In order for a DEBAC policy to be “acceptable”, it is necessary that the policy
satisfies certain acceptability criteria. As an informal example, it may be neces-
sary to ensure that an access policy formulation does not specify that any user
is granted and denied the same access privilege on the same data item (i.e., that
the policy is consistent).

The following properties of RDEBAC are easy to check and will be used to
show that the specification is consistent, correct and complete:

Property 1. The rewrite system RDEBAC is terminating and confluent.

Proof. i) To prove termination, we use a modularity result for hierarchical
unions (see Section 2 and [19]). First, observe that the system RDEBAC is
hierarchical: The auxiliary functions such as user, account, averagebalance,
pass, paid, etc., form the basis of the hierarchy; they are terminating and non-
duplicating. The specific rules defining Estatus, privileges and check form the
first enrichment, and they are clearly terminating (they are not recursive).
The second enrichment consists of the rules defining status and auxiliary
functions, such as member. These are recursive functions, but the recursive
calls are made on strict subterms of the arguments in the left-hand side of the
rule. Finally, the non-recursive rules, defining category and access, complete
the system.
We can therefore conclude that the system is terminating [19].

ii) To prove confluence, first note that there are no critical pairs, therefore the
system is locally confluent. Termination and local confluence imply conflu-
ence, by Newman’s Lemma [27].

Corollary 1. Every term has a unique normal form in RDEBAC.

As a consequence of the unicity of normal forms, our specification of the DEBAC
policy RDEBAC is consistent.



Dynamic Event-Based Access Control as Term Rewriting 205

Property 2 (Consistency). For any list of events l, u ∈ U , a ∈ A, r ∈ R, s ∈ S:
it is not possible to derive, from RDEBAC, both grant and deny for a request
access(a, u, r, s, l).

We can give a characterization of the normal forms:

Property 3. The normal form of a ground term of the form access(a, u, r, s, l)
where u ∈ U , a ∈ A, r ∈ R, s ∈ S and l is a list of events, is either grant or deny.

As a consequence, our specification of the access control policy is total.

Property 4 (Totality). Each access request access(a, u, r, s, l) from a pre-
authenticated user u to perform an action a on the resource r in a site s is
either granted or denied.

Correctness and Completeness are also easy to check:

Property 5 (Correctness and Completeness). For any u ∈ U , a ∈ A, r ∈ R, s ∈ S
and list of events l:

– access(a, u, r, s, l) →∗ grant if and only if u has the access privilege a on r in
s.

– access(a, u, r, s, l) →∗ deny if and only if u does not have the access privilege
a on r in s.

Proof. Since the specification is consistent and total, it is sufficient to show that
access(a, u, r, s, l) →∗ grant if and only if u belongs to a category of users that
is assigned the access privilege a on the resource r in s. This is easy to check in
the examples above, by inspection of the rewrite rules.

It is important to note that the proofs above do not have to be generated by
a security administrator; rather, the proofs demonstrate that a DEBAC policy
RDEBAC satisfies the properties described above. A security administrator can
simply base a DEBAC policy on the term rewrite system that we have defined
and can be sure that the properties of RDEBAC hold.

The rewrite rules provide an executable specification of the policy (the rewrite
rules are both a specification and an implementation of the access control func-
tion). The rules given above can be transformed into a MAUDE program by
adding type declarations for the function symbols and variables used and by
making minor syntactical changes.

5 Extensions of the DEBAC Model

5.1 DEBAC with Ordered Categories

In RBAC models, it is usual to include role hierarchies to allow for the implicit
specification of authorizations. This idea can be incorporated into the DEBAC
model: we can accommodate a notion of a hierarchy of categories for users, where



206 C. Bertolissi, M. Fernández, and S. Barker

a user in category ci will inherit, via a category hierarchy, the privileges of users
in any category cj such that cj < ci with respect to a given partial ordering.

To represent a partial ordering on categories, we can add rules of the form

dpred(ci) → [c1, . . . , cj ]

to specify a function dpred : C → List(C), where dpred(ci) = [c1, . . . , cj ] means
that c1, . . . , cj are direct predecessors of ci in the ordering. Then we redefine
the member function used in the definition of access (see Section 4.2), so that it
takes into account the ordering (i.e., a category will have its privileges plus the
privileges of all the categories that precede it in the ordering).

We use the following definition of member (where we omit the definition of
the standard operations on sets and booleans):

member((A,C), nil) → false
member((A, C), cons((A′, C′), L)) → if A = A′ and (C = C′ or C′ ∈ pred(C))

then true
else member((A,C), L)

pred(C) → dpred(C) ∪ preds(dpred(C))
preds(nil) → nil

preds(cons(C, L)) → pred(C) ∪ preds(L)

Note that we do not need to change the definition of access to accommodate
hierarchies of categories, and we do not need to impose conditions on the form
that a hierarchy takes (apart from an acyclicity condition, which is a natural
requirement for hierarchies).

5.2 DEBAC with Constraints

A number of RBAC models with constraints, such as separation of duties, have
been proposed. Constraints that are similar to separation of duties constraints
can also be specified in a DEBAC model using rewrite rules, as an administrative
check on a DEBAC policy.

Separation of duties is the property that specifies that categories assigned to
a user cannot be mutually exclusive. To ensure that a specification of a DEBAC
policy satisfies the separation of duties property, we will erase conflicting cate-
gories assigned to a user (producing a list of non-mutual-exclusive categories).
This is obtained by evaluation of clean(status(u)) in a rewrite system containing
the rules:

clean(nil) → nil
clean(cons(C, L)) → cons(C, clean(eraseclash(C, L)))
eraseclash(C, nil) → nil

eraseclash(C, cons(C′, L)) → cons(C′, eraseclash(C, L)) (C, C′ do not clash)
eraseclash(C, cons(C′, L)) → eraseclash(L) (C, C′ clash)



Dynamic Event-Based Access Control as Term Rewriting 207

6 Related Work

In this section, we discuss our approach in relation to existing related litera-
ture. We note first that reduction systems have been used to model a variety of
problems in security. For example, the SPI-calculus [1] was developed as an ex-
tension of the π-calculus for proving the correctness of authentication protocols.
The π-calculus itself has been used to reason about a number of basic access
control policies and access mechanisms (see, for example, [3]). Term rewriting
has also been used in the analysis of security protocols [9], for defining policies
for controlling information leakage [18], and for intrusion detection [2].

On the use of rewriting for access control specifications, the work by Koch
et al [25] is related to our proposal. In [25], Koch et al describe a formaliza-
tion of RBAC using a graph-based approach, with graph transformation rules
used for describing the effects of actions as they relate to RBAC notions. More
recently, [7,29] use term rewrite rules to model access control policies. The for-
malization used by Koch et al provides a basis for proving properties of RBAC
specifications, based on the categorical semantics of the graph transformations.
The approach used in [7,29] is operational: access control policies are specified
as sets of rewrite rules and access requests are specified as terms which are eval-
uated using the rewrite rules. Our work addresses similar issues to [7,25,29] but
provides a different formulation of access policies that is suitable for distributed
environments. We also define a new type of access control model, DEBAC, that
we argue generalizes RBAC. On the latter point, RBAC may be viewed as a
special case of DEBAC in which the only necessary events are those involv-
ing security administrators performing the actions of user role assignment and
user role deassignment, and the actions of permission assignment (to a role) and
permission deassignment (from a role). The events of consequence that involve
users are events of activating a role and deactivating a role. These events can
be naturally accommodated in the DEBAC model; however, the DEBAC model
additionally permits any number of other events to be represented.

The work on access control by Jajodia et al [20] and Barker and Stuckey [8]
is also related to ours. In [20] and [8], access control requirements are repre-
sented in (constraint) logic programming languages. In these approaches, the
requirements that must be satisfied in order for requesters to access resources
are specified by using rules expressed in (C)LP languages and access request
evaluation may be viewed as being performed by reducing an access request
to a non-reducible clause (using, for example, SLG-resolution [31] or constraint
solvers [26]). The term rewriting approach is similarly based on the idea of com-
putation by reduction, and has similar attractions to the (C)LP approaches of
Jajodia et al and Barker and Stuckey. However, in contrast to these approaches,
our proposal does not require that the syntactic restriction to access policies
that are locally stratified [6] be adopted (to ensure the existence of a categorical
semantics and thus unambiguous access control policies). Moreover, we describe
a form of access control model, the DEBAC model, that is applicable in the
context of distributed access whereas [20] and [8] formally define access control
models for centralized systems. The DEBAC model that we have described is



208 C. Bertolissi, M. Fernández, and S. Barker

also more expressive than any of the Datalog-based languages that have been
proposed for distributed access control (see [5,21,17,10]); these languages, being
based on a monotonic semantics, are not especially well suited for representing
dynamically changing distributed access request policies of the form that we
have considered in this paper.

Work on temporal RBAC [8,11], is related to our work on DEBAC in the
sense that TRBAC models are concerned with the important notion of change
and events. However, in [8] and [11], the events of interest are restricted to simple
time/clock events. In the DEBAC model, any number of application-specific
events (e.g., enrolling, passing exams, etc.) may be represented, in addition to
clock events. In [12], event expressions are used to trigger the enabling and
disabling of roles. However, the proposal in [12] is based on an RBAC model that
is quite different to the DEBAC model. Moreover, to ensure that a categorical
semantics exists, syntactic restrictions are imposed on the language described
in [12], to treat conflicting (prioritized) event expressions; such restrictions do
not need to be imposed in our approach.

We also note that although our approach is based on rules and events the
framework that we describe has a well defined declarative semantics that is
quite different to the ad hoc operational semantics that are used in, for example,
active rule systems [13]. Active rule systems are also based on the notions of rules
and events but, unless some generally quite restrictive syntactic constraints are
imposed, do not provide an adequate semantic basis for proving properties of
access control policies (unlike term rewrite systems).

7 Conclusions and Further Work

We have described an event-based distributed access control model that we have
developed to address certain shortcomings of RBAC models when the latter are
applied in certain distributed computing contexts. Our DEBAC model takes
the notion of an event as primitive (rather than a role), and has been designed
to include features that specifically facilitate the autonomous changing of access
control policy requirements, the proving of a wide range of properties of DEBAC
policies (which follow directly from the syntax of DEBAC policy specifications),
and the use of correct operational methods for the evaluation of user access
requests with respect to distributed sources of access control and other forms
of information (that do not need to be syntactically restricted in the way that
other access policy specification languages are). For distributed access control,
we introduced distributed term rewriting systems.

We note that the idea of access policy composition [30] is especially important
in distributed environments (where access control information may need to be
shared across multiple sites). Hence, a key matter for future work is to define
appropriate algebras for DEBAC policy composition. A related matter for future
work is to relax our assumption of atomic events and to treat access request
evaluation in terms of sequences, disjunctions and conjunctions of events (for
which an event algebra may be defined). We also intend to investigate the issue



Dynamic Event-Based Access Control as Term Rewriting 209

of evaluating access requests when conflicting information is received about the
same user from different sites in a distributed system.

Acknowledgements

Part of this work was carried out at LIF, while the second author was visiting
the MoVe team, partially supported by the Université de Provence.

References

1. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus.
In: Proc. 4th ACM Conf. on Computer and Communication Security, pp. 36–47.
ACM Press, New York (1997)

2. Abbes, T., Bouhoula, A., Rusinowitch, M.: Protocol analysis in intrusion detection
using decision tree. In: Proc. ITCC’04, pp. 404–408 (2004)

3. Abendroth, J., Jensen, C.: A unified security mechanism for networked applica-
tions. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp.
351–357. Springer, Heidelberg (2004)

4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
Great Britain (1998)

5. Bacon, J., Moody, K., Yao, W.: A model of OASIS RBAC and its support for
active security. TISSEC 5(4), 492–540 (2002)

6. Baral, C., Gelfond, M.: Logic programming and knowledge representation. JLP 20,
73–148 (1994)

7. Barker, S., Fernández, M.: Term rewriting for access control. In: Damiani, E., Liu,
P. (eds.) Data and Applications Security XX. LNCS, vol. 4127, Springer, Heidelberg
(2006)

8. Barker, S., Stuckey, P.: Flexible access control policy specification with constraint
logic programming. ACM Trans. on Information and System Security 6(4), 501–546
(2003)

9. Barthe, G., Dufay, G., Huisman, M., de Sousa, S.M.: Jakarta: a toolset to reason
about the JavaCard platform. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS,
vol. 2140, Springer, Heidelberg (2001)

10. Becker, M., Sewell, P.: Cassandra: Distributed access control policies with tunable
expressiveness. In: POLICY 2004, pp. 159–168 (2004)

11. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An access control model support-
ing periodicity constraints and temporal reasoning. ACM TODS 23(3), 231–285
(1998)

12. Bertino, E., Bonatti, P., Ferrari, E.: TRBAC: A temporal role-based access control
model. In: Proc. 5th ACM Workshop on Role-Based Access Control, pp. 21–30.
ACM Press, New York (2000)

13. Bertino, E., Catania, B., Zarri, G.: Intelligent Database Systems. Addison-Wesley,
Reading (2001)

14. Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P-E.: ELAN from a rewriting
logic point of view. TCS 285, 155–185 (2002)

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)



210 C. Bertolissi, M. Fernández, and S. Barker

16. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science: Formal Methods and Semantics, vol. B,
North-Holland, Amsterdam (1989)

17. De Treville, J.: Binder, a logic-based security language. In: Proc. IEEE Symposium
on Security and Privacy, pp. 105–113. IEEE Computer Society Press, Los Alamitos
(2002)

18. Echahed, R., Prost, F.: Security policy in a declarative style. In: Proc. PPDP’05,
ACM Press, New York (2005)

19. Fernández, M., Jouannaud, J.-P.: Modular termination of term rewriting systems
revisited. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Recent Trends in Data
Type Specification. LNCS, vol. 906, Springer, Heidelberg (1995)

20. Jajodia, S., Samarati, P., Sapino, M., Subrahmaninan, V.S.: Flexible support for
multiple access control policies. ACM TODS 26(2), 214–260 (2001)

21. Jim, T.: SD3: A trust management system with certified evaluation. In: IEEE
Symp. Security and Privacy, pp. 106–115. IEEE Computer Society Press, Los
Alamitos (2001)

22. Kirchner, C., Kirchner, H., Vittek, M.: ELAN user manual. Nancy (France), Tech-
nical Report 95-R-342, CRIN (1995)

23. Klop, J.-W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, Oxford University
Press, Oxford (1992)

24. Klop, J.-W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction sys-
tems, introduction and survey. TCS 121, 279–308 (1993)

25. Koch, M., Mancini, L., Parisi-Presicce, F.: A graph based formalism for rbac. In:
Proc. SACMAT’04, pp. 129–187 (2004)

26. Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT
Press, Cambridge (1998)

27. Newman, M.H.A.: On theories with a combinatorial definition of equivalence. An-
nals of Mathematics 43(2), 223–243 (1942)

28. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els. IEEE Computer 29(2), 38–47 (1996)

29. de Oliveira, A.S.: Rewriting-based access control policies. In: Proc. of SECRET’06.
ENTCS, Elsevier, Amsterdam (2007)

30. Wijesekera, D., Jajodia, S.: Policy algebras for access control the predicate case.
In: ACM Conf. on Computer and Communications Security, pp. 171–180. ACM
Press, New York (2002)

31. The XSB System Version 2.7.1, Programmer’s Manual (2005)



A Spatio-temporal Role-Based Access Control Model

Indrakshi Ray and Manachai Toahchoodee

Department of Computer Science
Colorado State University

{iray,toahchoo}@cs.colostate.edu

Abstract. With the growing advancement of pervasive computing technologies,
we are moving towards an era where spatio-temporal information will be neces-
sary for access control. The use of such information can be used for enhancing
the security of an application, and it can also be exploited to launch attacks. For
critical applications, a formal model for spatio-temporal-based access control is
needed that increases the security of the application and ensures that the loca-
tion information cannot be exploited to cause harm. In this paper, we propose a
spatio-temporal access control model, based on the Role-Based Access Control
(RBAC) model, that is suitable for pervasive computing applications. We show
the association of each component of RBAC with spatio-temporal information.
We formalize the model by enumerating the constraints. This model can be used
for applications where spatial and temporal information of a subject and an object
must be taken into account before granting or denying access.

1 Introduction

With the increase in the growth of wireless networks and sensor and mobile devices,
we are moving towards an era of pervasive computing. The growth of this technology
will spawn applications such as, the Aware Home [5] and CMU’s Aura [7], that will
make life easier for people. Pervasive computing applications introduce new security
issues that cannot be addressed by existing access control models and mechanisms. For
instance, access to a computer should be automatically disabled when a user walks out
of the room. Traditional models, such as Discretionary Access Control (DAC) or Role-
Based Access Control (RBAC) do not take into account such environmental factors in
determining whether access should be allowed or not. Consequently, new access control
models and mechanisms are needed that use environmental factors, such as, time and
location, while determining access.

The use of spatial and temporal information for access can be used for enhancing
the security of other applications as well. For instance, a user should be able to fire a
missile from specific high security locations only. Moreover, the missile can be fired
only when it is in a certain location. For such critical applications, we can include
additional checks, such as the verification of the location of the user and that of the
missile, that must be satisfied before the user is granted access. With the reduction in
the cost of Global Positioning System, this is indeed a viable option.

In this paper, we propose a formal spatio-temporal model that is suitable for com-
mercial applications. Since RBAC is policy-neutral, simplifies access management, and

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 211–226, 2007.
c© IFIP International Federation for Information Processing 2007



212 I. Ray and M. Toahchoodee

used by commercial applications, we decide to base our work on it. We show how
RBAC can be extended to incorporate the notion of time and location. We illustrate
how each component of RBAC is related with time and location. In other words, we
explain how time and location impact each component of RBAC. Finally, we show how
this spatio-temporal information can be used to determine whether an user has access to
a given object. The correct behavior of this model is formulated in terms of constraints
that must be satisfied by any application using this model.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 briefly illustrates how time and location are represented in our model.
Section 4 shows the relationship of each component of Core RBAC with location.
Sections 5, 6 and 7 propose different types of hierarchies and separation of duty con-
straints that we can have in our model. Section 8 discusses a simple example using our
model. Section 9 concludes the paper with some pointers to future directions.

2 Related Work

Recently, some research attempts have been done under the area of context aware ac-
cess control. Yu et al. [15] proposed LTAM a location-temporal authorization model,
which is based on a Discretionary Access Control (DAC) model. The goal of this pa-
per is different than ours; it focuses on controlling access to the different locations. For
example, access rules may have temporal constraints that can specify when a user can
enter or leave a location or how many times a user can enter a location. However, it
does not address the issue of where and when a subject can access a given object. Since
this model is based on DAC, authorization management is a problem.

Role-based access control model [6] is used for addressing the access control needs
of commercial organizations. In RBAC permissions are attached to roles and users must
be assigned to roles to get the permissions. Permissions determine what operations can
be carried out on resources under access control. A user must establish a session to
activate a subset of roles to which the user is assigned. Each user can activate multi-
ple sessions, however, each session is associated with only one user. The operations
that a user can perform in a session depend on the roles activated in that session and
the permissions associated with those roles. RBAC also supports role hierarchies. Role
hierarchies define an inheritance relationship between roles. To prevent conflict of inter-
ests that arise in an organization, RBAC allows the specification of Static and Dynamic
Separation of Duty constraints.

Several work exists that improve RBAC functionality. We discuss only those that
are very closely related to ours. Some of these work focus on how RBAC can be ex-
tended to make it context aware. Sampemane et al. [12] present a new access control
model for active spaces. Active space denotes the computing environment integrating
physical spaces and embedded computing software and hardware entities. The active
space allows interactive exchange of information between the user and the space. Envi-
ronmental aspects are adopted into the access control model for active spaces, and the
space roles are introduced into the implementation of the access control model based



A Spatio-temporal Role-Based Access Control Model 213

on RBAC. The model supports specification of MAC policies in which system admin-
istrator maintains the access matrix and DAC policies in which users create and update
security policies for their devices.

Covington et al. [5] introduce environment roles in a generalized RBAC model (GR-
BAC) to help control access control to private information and resources in ubiquitous
computing applications. The environments roles differ from the subject roles in RBAC
but do have similar properties including role activation, role hierarchy and separation
of duty. In the access control framework enabled by environment roles, each element of
permission assignment is associated with a set of environment roles, and environment
roles are activated according to the changing conditions specified in environmental con-
ditions; in this way, environmental properties like time and location are introduced to
the access control framework. In a subsequent work [4], Covington et al. describes the
Context-Aware Security Architecture (CASA) which is an implementation of the GR-
BAC model. The access control is provided by the security services in the architecture.
In CASA, polices are expressed as roles and managed by the security management ser-
vice, authentication and authorization services are used to verify user credentials and
determine access to the system resources. The environmental role activation services
manage environmental role activation and deactivation according to the environment
variables collected by the context management services.

Other extensions to RBAC include the Temporal Role-Based Access Control Model
(TRBAC) proposed by Bertino et al. [1]. This work adds the time dimension to the
RBAC model. The authors in this paper introduce the concept of role enabling and
disabling. Temporal constraints determine when the roles can be enabled or disabled.
A role can be activated only if it has been enabled. Joshi et al.[8] extend this work by
proposing the Generalized Temporal Role Based Access Control Model (GTRBAC). In
this work the authors introduce the concept of time-based role hierarchy and time-based
separation of duty. These works do not discuss the impact of spatial information.

Researchers have also extended RBAC to incorporate spatial information. The most
important work in this regard is the GEO-RBAC [2]. In this model, role activation is
based on the location of the user. For instance, a user can acquire the role of teacher
only when he is in the school. Outside the school, he can acquire the role of citizen. The
model supports role hierarchies but does not deal with separation of duties. Another
work incorporating spatial information is by Ray et al. [11]. Here again, the authors
propose how each component of RBAC is influenced by location. The authors define
their formal model using the Z specification language. Role hierarchy and separation
of duties are not addressed in this paper. None of these work discuss the impact of
time on location. Location-based access control has been addressed in other works not
pertaining to RBAC [7,9,10].

To the best of our knowledge, the only work which propose incorporating both time
and location in RBAC is by Chandran et al. [3]. The paper combines the main features
of GTRBAC and GEO-RBAC. Here again, role is enabled by time constraints. The user
can activate the role if the role is enabled and the user satisfies the location constraints
associated with role activation. Our current work is closely related to this work. The
similarity is that in both the models role activation occurs when temporal and spatial
constraints are satisfied. However, there are a number of points where we differ. First,



214 I. Ray and M. Toahchoodee

in Chandran’s work, role assignment is not dependent on location or time. A number
of motivating examples indicate that role assignment should be dependent on role and
time. Consequently, we incorporate this feature in our model. Second, in Chandran’s
work, when a role can be activated all the permissions associated with the role can
be invoked. This may not be true in real world. For instance, a system administrator’s
role can be activated from 9:00 a.m. to 9:00 p.m. everyday. However, he can perform
backup only during 8:00 to 9:00 p.m. on Fridays. Chandran’s model cannot express this
situation. We associate a permission with additional location and temporal constraints
that must be satisfied before a permission can be invoked. Third, Chandran’s work does
not discuss the impact of location and time on role hierarchy or separation of duty.
We propose different types of time and location based hierarchy and separation of duty
constraints in our model which will be useful for real-world applications.

3 Representing Location and Time

3.1 Representing Location

In order to perform location-based access control, we need to perform operations on
location information and protect the location information. In this section, we formalize
the concept of location [2,3] and propose the location comparison operators that are
used in our model.

There are two types of locations: physical and logical. All users and objects are
associated with locations that correspond to the physical world. These are referred to
as the physical locations. A physical location is formally defined by a set of points in a
three-dimensional geometric space.

Definition 1. [Physical Location] A physical location PLoci is a non-empty set of
points {pi, p j, . . . , pn} where a point pk is represented by three co-ordinates.

Physical locations are grouped into symbolic representations that will be used by ap-
plications. We refer to these symbolic representations as logical locations. Examples of
logical locations are Fort Collins, Colorado etc.

Definition 2. [Logical Location] A logical location is an abstract notion for one or
more physical locations.

We assume the existence of two translation functions, m and m′, that convert from log-
ical locations to physical locations and vice-versa.

Definition 3. [Mapping Functions m and m′] m is a total function that converts a
physical location into a logical one. m′ is a total function that converts a logical location
into a physical one. Let P be the set of all possible physical locations and L be the set
of all logical locations. The following formalizes the functions.

– m : P → L.
– m′ : L → P
– For any logical location Loci, m(m′(Loci)) = Loci.
– For any physical location PLoc j, m′(m(PLoc j)) = PLoc j.



A Spatio-temporal Role-Based Access Control Model 215

Different kinds of relationships may exist between a pair of locations. We discuss one
such relationship, known as containment, that will be used in this paper. Containment
formalizes the idea whether one location is contained within another. Intuitively, a phys-
ical location ploc j is contained in another physical location plock, if all points in ploc j

also belong to plock. This is formalized as follows.

Definition 4. [Containment Relation] A physical location ploc j is said to be con-
tained in another physical location plock, denoted as, ploc j ⊆ plock, if the following
condition holds: ∀pi ∈ ploc j, pi ∈ plock. The location ploc j is called the contained
location and plock is referred to as the containing or the enclosing location. A log-
ical location llocm is contained in llocn, denoted as, llocm ⊆ llocn, if and only if
the physical location corresponding to llocm is contained within that of llocm, that
is m′(llocm) ⊆ m′(llocn).

Note that, a physical location may be contained in a logical location or vice-versa. In
such cases, we use the mapping functions to convert the logical locations into physical
ones and then test whether one is contained within the other.

We assume the existence of a logical location called universe that contains all other
locations.

In the rest of the paper, we do not discuss physical locations any more. The locations
referred to are logical locations.

3.2 Representing Time

Our model uses two kinds of temporal information. We feel it is necessary to distinguish
between these two kinds of information because they have very different semantics. The
first is known as time instant and the other is time interval. Time can be represented as
a set of discrete points on the time line.

Definition 5. [Time Instant] A time instant is one discrete point on the time line.

The exact granularity of a time instant will be application dependent. For instance, in
some application a time instant may be measured at the nanosecond level and in another
one it may be specified at the millisecond level.

Definition 6. [Time Interval] A time interval is a set of time instances. When the time
instances making up an interval are consecutive, we refer to the interval as a continuous
one. Otherwise, the interval is said to be non-continuous.

Example of a continuous interval is 9:00 a.m. to 3:00 p.m. on 25th December. Example
of a non-continuous interval is 9:00 a.m. to 6:00 p.m. on Mondays to Fridays in the
month of March. Some researchers refer to time intervals as time expressions. We use
the notation ti ∈ d to mean that ti is a time instance in the time interval d.

Two time intervals can be related by any of the following relations: disjoint, equality,
and overlapping. Two time intervals tvi and tv j are disjoint if the intersection of the set
of time instances in tvi with those of tv j results in the null set. Two time intervals tvi and
tv j are equal if the set of time instances in tvi is equal to those of tv j. Two time intervals
tvi and tv j are overlapping if the intersection of the set of time instances in tvi with those



216 I. Ray and M. Toahchoodee

of tv j results in a non-empty set. A special case of overlapping relation is referred to
as containment. A time interval tvi is contained in another interval tv j if the set of time
instances in tvi is a subset of those in tv j. We formally denote this as tvi & tv j.

4 Relationship of Core-RBAC Entities with Time and Location

In this section, we describe how the entities in RBAC are associated with location and
time. The different entities of RBAC are Users, Roles, Sessions, Permissions, Objects
and Operations. We discuss how each of these components are associated with location
and time.

4.1 Users

We assume that each valid user, interested in doing some location-sensitive operation,
carries a locating device which is able to track his location. The location of a user
changes with time. The relation UserLocation(u, t) gives the location of the user at any
given time instant t. Since a user can be associated with only one location at any given
point of time, we have the following constraint:

UserLocation(u,t) = li ∧UserLocation(u,t) = l j ⇔ (li ⊆ l j)∨ (l j ⊆ li)

We define a similar function UserLocations(u,d) that gives the location of the user
during the time interval d. Note that, a single location can be associated with multiple
users at any given point of time.

4.2 Objects

Objects can be physical or logical. Example of a physical object is a computer. Files
are examples of logical objects. Physical objects have devices that transmit their lo-
cation information with the timestamp. Logical objects are stored in physical objects.
The location and timestamp of a logical object corresponds to the location and time of
the physical object containing the logical object. We assume that each object is asso-
ciated with one location at any given instant of time. Each location can be associated
with many objects. The function ObjLocation(o,t) takes as input an object o and a time
instance t and returns the location associated with the object at time t. Similarly, the
function ObjLocations(o,d) takes as input an object o and time interval d and returns
the location associated with the object.

4.3 Roles

We have three types of relations with roles. These are user-role assignment, user-role
activation, and permission-role assignment.

We begin by focusing on user-role assignment. Often times, the assignment of user
to roles is location and time dependent. For instance, a person can be assigned the role
of U.S. citizen only in certain designated locations and at certain times only. To get the
role of conference attendee, a person must register at the conference location during



A Spatio-temporal Role-Based Access Control Model 217

specific time intervals. Thus, for a user to be assigned a role, he must be in designated
locations during specific time intervals. In our model, a user must satisfy spatial and
temporal constraints before roles can be assigned. We capture this with the concept
of role allocation. A role is said to be allocated when it satisfies the temporal and
spatial constraints needed for role assignment. A role can be assigned once it has been
allocated. RoleAllocLoc(r) gives the set of locations where the role can be allocated.
RoleAllocDur(r) gives the time interval where the role can be allocated. Some role s
can be allocated anywhere, in such cases RoleAllocLoc(s) = universe. Similarly, if role
p can be assigned at any time, we specify RoleAllocDur(p) = always.

Some roles can be activated only if the user is in some specific locations. For in-
stance, the role of audience of a theater can be activated only if the user is in the theater
when the show is on. The role of conference attendee can be activated only if the user is
in the conference site while the conference is in session. In short, the user must satisfy
temporal and location constraints before a role can be activated. We borrow the concept
of role-enabling [1,8] to describe this. A role is said to be enabled if it satisfies the
temporal and location constraints needed to activate it. A role can be activated only if
it has been enabled. RoleEnableLoc(r) gives the location where role r can be activated
and RoleEnableDur(r) gives the time interval when the role can be activated.

The predicate UserRoleAssign(u,r,d, l) states that the user u is assigned to role r
during the time interval d and location l. For this predicate to hold, the location of the
user when the role was assigned must be in one of the locations where the role allocation
can take place. Moreover, the time of role assignment must be in the interval when role
allocation can take place.

UserRoleAssign(u,r,d, l) ⇒ (UserLocation(u,d) = l)∧
(l ⊆ RoleAllocLoc(r))∧ (d ⊆ RoleAllocDur(r))

The predicate UserRoleActivate(u,r,d, l) is true if the user u activated role r for the
interval d at location l. This predicate implies that the location of the user during the
role activation must be a subset of the allowable locations for the activated role and all
times instances when the role remains activated must belong to the duration when the
role can be activated and the role can be activated only if it is assigned.

UserRoleActivate(u,r,d, l) ⇒
(l ⊆ RoleEnableLoc(r)) ∧(d ⊆ RoleEnableDur(r)) ∧UserRoleAssign(u,r,d, l)

The additional constraints imposed upon the model necessitates changing the precondi-
tions of the functions AssignRole and ActivateRole.

The permission role assignment is discussed later.

4.4 Sessions

In mobile computing or pervasive computing environments, we have different types
of sessions that can be initiated by the user. Some of these sessions can be location-
dependent, others not. Thus, sessions are classified into different types. Each instance
of a session is associated with some type of a session. The type of session instance s is
given by the function Type(s). The type of the session determines the allowable loca-
tion. The allowable location for a session type st is given by the function SessionLoc(st).



218 I. Ray and M. Toahchoodee

When a user u wants to create a session si, the location of the user for the entire du-
ration of the session must be contained within the location associated with the session.
The predicate SessionUser(u,s,d) indicates that a user u has initiated a session s for
duration d.

SessionUser(u,s,d) ⇒ (UserLocation(u,d)⊆ SessionLoc(Type(s)))

Since sessions are associated with locations, not all roles can be activated within
some session. The predicate SessionRoles(u,r,s,d, l) states that user u initiates a session
s and activates a role for duration d and at location l.

SessionRole(u,r,s,d) ⇒ UserRoleActivate(u,r,d, l)∧ l ⊆ SessionLoc(Type(s)))

4.5 Permissions

The goal of our model is to provide more security than their traditional counterparts.
This happens because the time and location of a user and an object are taken into ac-
count before making the access decisions. Our model also allows us to model real-world
requirements where access decision is contingent upon the time and location associated
with the user and the object. For example, a teller may access the bank confidential
file if and only if he is in the bank and the file location is the bank secure room and
the access is granted only during the working hours. Our model should be capable of
expressing such requirements.

Permissions are associated with roles, objects, and operations. We associate three
additional entities with permission to deal with spatial and temporal constraints: user
location, object location, and time. We define three functions to retrieve the values of
these entities. PermRoleLoc(p,r) specifies the allowable locations that a user playing
the role r must be in for him to get permission p. PermOb jLoc(p,o) specifies the al-
lowable locations that the object o must be in so that the user has permission to operate
on the object o. PermDur(p) specifies the allowable time when the permission can be
invoked.

We define another predicate which we term PermRoleAcquire(p,r,d, l). This pred-
icate is true if role r has permission p for duration d at location l. Note that, for this
predicate to be true, the time interval d must be contained in the duration where the
permission can be invoked and the role can be enabled. Similarly, the location l must be
contained in the places where the permission can be invoked and role can be enabled.

PermRoleAcquire(p,r,d, l)⇒ (l ⊆ (PermRoleLoc(p,r)∩RoleEnableLoc(r)))
∧(d ⊆ (PermDur(p)∩RoleEnableDur(p)))

The predicate PermUserAcquire(u,o, p,d, l) means that user u can acquire the per-
mission p on object o for duration d at location l. This is possible only when the per-
mission p is assigned some role r which can be activated during d and at location l, the
user location and object location match those specified in the permission, the duration
d matches that specified in the permission.

PermRoleAcquire(p,r,d, l)∧UserRoleActivate(u,r,d, l)
∧(Ob jectLocation(o,d) ⊆ PermOb jectLoc(p,o)) ⇒ PermUserAcquire(u,o, p,d, l)



A Spatio-temporal Role-Based Access Control Model 219

5 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of authority can be modeled as an
hierarchy. This organization structure is reflected in RBAC in the form of a role hi-
erarchy [13]. Role hierarchy is a relation among roles. This relation is transitive, and
anti-symmetric. Roles higher up in the hierarchy are referred to as senior roles and those
lower down are junior roles. The major motivation for adding role hierarchy to RBAC
was to simplify role management. Senior roles can inherit the permissions of junior
roles, or a senior role can activate a junior role, or do both depending on the nature of
the hierarchy. This obviates the need for separately assigning the same permissions to
all members belonging to a hierarchy.

Joshi et al. [8] identify two basic types of hierarchy. The first is the permission in-
heritance hierarchy where a senior role x inherits the permission of a junior role y. The
second is the role activation hierarchy where a user assigned to a senior role can activate
a junior role. Each of these hierarchies may be constrained by location and temporal
constraints. Consequently, we have a number of different hierarchical relationships in
our model.

Definition 7. [Unrestricted Permission Inheritance Hierarchy] Let x and y be roles
such that x ≥ y, that is, senior role x has an unrestricted permission-inheritance relation
over junior role y. In such a case, x inherit’s y’s permissions but not the locations and
time associated with it. This is formalized as follows:

∀p,(x ≥ y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d′, l′)

In the above hierarchy, a senior role inherits the junior roles permissions. However, un-
like the junior role, these permissions are not restricted to time and location. Account
auditor role inherits the permissions from the accountant role. He can use the permis-
sions at any time and at any place.

Definition 8. [Unrestricted Activation Hierarchy] Let x and y be roles such that x �
y, that is, senior role x has a role-activation relation over junior role y. Then, a user
assigned to role x can activate role y at any time and at any place. This is formalized as
follows:

∀u,(x � y)∧UserRoleActivate(u,x,d, l) ⇒UserRoleActivate(u,y,d′, l′)

Here again a user who can activate a senior role can also activate a junior role. This
junior role can be activated at any time and place. A project manager can activate the
code developer role at any time and at any place.

Definition 9. [Time Restricted Permission Inheritance Hierarchy] Let x and y be
roles such that x ≥t y, that is, senior role x has a time restricted permission-inheritance
relation over junior role y. In such a case, x inherit’s y’s permissions together with the
temporal constraints associated with the permission. This is formalized as follows:

∀p,(x ≥lt y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d, l′)



220 I. Ray and M. Toahchoodee

In the above hierarchy, a senior role inherits the junior roles permissions. However,
the duration when the permissions are valid are those that are associated with the ju-
nior roles. A contact author can inherit the permissions of the author until the paper is
submitted.

Definition 10. [Time Restricted Activation Hierarchy] Let x and y be roles such that
x �t y, that is, senior role x has a role-activation relation over junior role y. Then, a
user assigned to role x can activate role y only at the time when role y can be enabled.
This is formalized as follows:

∀u, (x �tl y)∧UserRoleActivate(u,x,d, l)∧d ⊆ RoleEnableDur(y)⇒
UserRoleActivate(u,y,d, l′)

Here again a user who can activate a senior role can also activate a junior role. However,
this activation is limited to the time when the junior role can be activated. A program
chair can activate a reviewer role only during the review period.

Definition 11. [Location Restricted Permission Inheritance Hierarchy] Let x and
y be roles such that x ≥l y, that is, senior role x has a location restricted permission-
inheritance relation over junior role y. In such a case, x inherit’s y’s permissions to-
gether with the location constraints associated with the permission. This is formalized
as follows:

∀p,(x ≥lt y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d′, l)

In the above hierarchy, a senior role inherits the junior roles permissions. These permis-
sions are restricted to the locations imposed on the junior roles. A top secret scientist
inherits the permission of top secret citizen only when he is in top secret locations.

Definition 12. [Location Restricted Activation Hierarchy] Let x and y be roles such
that x �l y, that is, senior role x has a role-activation relation over junior role y. Then, a
user assigned to role x can activate role y only at the places when role y can be enabled.
This is formalized as follows:

∀u, (x �tl y)∧UserRoleActivate(u,x,d, l)∧ l ⊆ RoleEnableLoc(y)⇒
UserRoleActivate(u,y,d′, l)

Here again a user who can activate a senior role can also activate a junior role. How-
ever, this activation is limited to the place where the junior role can be activated. A
Department Chair can activate a Staff role only when he is in the Department.

Definition 13. [Time Location Restricted Permission Inheritance Hierarchy] Let
x and y be roles such that x ≥ y, that is, senior role x has a time-location restricted
permission-inheritance relation over junior role y. In such a case, x inherit’s y’s per-
missions together with the temporal and location constraints associated with the per-
mission. This is formalized as follows:

∀p,(x ≥lt y)∧PermRoleAcquire(p,y,d, l)⇒ PermRoleAcquire(p,x,d, l)



A Spatio-temporal Role-Based Access Control Model 221

In the above hierarchy, a senior role inherits the junior roles permissions. These permis-
sions are restricted to time and locations imposed on the junior roles. Daytime doctor
role inherits permission of daytime nurse role only when he is in the hospital during the
daytime.

Definition 14. [Time Location Restricted Activation Hierarchy] Let x and y be roles
such that x �tl y, that is, senior role x has a role-activation relation over junior role y.
Then, a user assigned to role x can activate role y only at the places and during the time
when role y can be enabled. This is formalized as follows:

∀u, (x �tl y)∧UserRoleActivate(u,x,d, l)∧d ⊆ RoleEnableDur(y)
∧l ⊆ RoleEnableLoc(y)⇒ UserRoleActivate(u,y,d, l)

Here again a user who can activate a senior role can also activate a junior role. However,
this activation is limited to the time and place where the junior role can be activated.
User who has a role of mobile user can activate the weekend mobile user role only if
he/she is in the US during the weekend.

It is also possible for a senior role and a junior role to be related with both permission
inheritance and activation hierarchies. In such a case, the application will choose the
type of inheritance hierarchy and activation hierarchy needed.

6 Impact of Time and Location on Static Separation of Duties

Separation of duties (SoD) enables the protection of the fraud that might be caused by
the user [14]. SoD can be either static or dynamic. Static Separation of Duty (SSoD)
comes in two varieties. First one is with respect to user role assignment. The second one
is with respect to permission role assignment. In this case, the SoD is specified as a re-
lation between roles. The idea is that the same user cannot be assigned to the same role.
Due to the presence of temporal and spatial constraints, we can have different flavors
of separation of duties – some that are constrained by temporal and spatial constraints
and others that are not. In the following we describe the different separation of duty
constraints.

Definition 15. [Weak Form of SSoD - User Role Assignment] Let x and y be two
roles such that x 	= y. x,y ∈ SSODw(ROLES) if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ UserRoleAssign(u,y,d, l)

The above definition says that a user u assigned to role x during time d and location
l cannot be assigned to role y at the same time and location if x and y are related by
SSODw. An example where this form is useful is that a user should not be assigned the
audience role and mobile user role at the same time and location.

Definition 16. [Strong Temporal Form of SSoD - User Role Assignment] Let x and
y be two roles such that x 	= y. (x,y) ∈ SSODt(ROLES) if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ (∃d′ ⊆ always•UserRoleAssign(u,y,d′, l))



222 I. Ray and M. Toahchoodee

The above definition says that a user u assigned to role x during time d and location l
cannot be assigned to role y at any time in the same location if x and y are related by
SSODt . The consultant for oil company A will never be assigned the role of consultant
for oil company B in the same country.

Definition 17. [Strong Spatial Form of SSoD - User Role Assignment] Let x and y
be two roles such that x 	= y. (x,y) ∈ SSODl(ROLES) if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ (∃l′ ⊆ universe•UserRoleAssign(u,y,d, l′))

The above definition says that a user u assigned to role x during time d and location l,
he cannot be assigned to role y at the same time at any location if x and y are related by
SSODl. A person cannot be assigned the roles of realtor and instructor at the same time.

Definition 18. [Strong Form of SSoD - User Role Assignment] Let x and y be two
roles such that x 	= y. (x,y) ∈ SSODs(ROLES) if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒ ¬ (∃l′ ⊂ universe,∃d′ ⊆ always•UserRoleAssign(u,y,d′ , l′))

The above definition says that a user u assigned to role x during time d and location l,
he cannot be assigned to role y at any time or at any location if x and y are related by
SSODs. The same employee cannot be assigned the roles of male and female employee
at any given corporation.

We next consider the second form of static separation of duty that deals with per-
mission role assignment. The idea is that the same role should not acquire conflicting
permissions. The same manager should not make a request for funding as well as ap-
prove it.

Definition 19. [Weak Form of SSoD - Permission Role Assignment] Let p and q be
two permissions such that p 	= q. (p,q)∈ SSOD PRAw if the following condition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ PermRoleAcquire(q,x,d, l))

The above definition says that if permissions p and q are related through weak SSoD
Permission Role Assignment and x has permission p at time d and location l, then x
should not be given permission q at the same time and location.

Definition 20. [Strong Temporal Form of SSoD - Permission Role Assignment] Let
p and q be two permissions such that p 	= q. (p,q) ∈ SSOD PRAt if the following con-
dition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ (∃d′ ⊆ always•PermRoleAcquire(q,x,d′, l))

The above definition says that if permissions p and q are related through strong temporal
SSoD Permission Role Assignment and x has permission p at time d and location l, then
x should not get permission q at any time in location l.

Definition 21. [Strong Spatial Form of SSoD - Permission Role Assignment] Let p
and q be two permissions such that p 	= q. (p,q) ∈ SSOD PRAt if the following condi-
tion holds:



A Spatio-temporal Role-Based Access Control Model 223

PermRoleAcquire(p,x,d, l) ⇒ ¬ (∃l′ ⊂ universe•PermRoleAcquire(q,x,d, l′))

The above definition says that if permissions p and q are related through strong spatial
SSoD Permission Role Assignment and x has permission p at time d and location l,
then x should not be given permission q at the same time.

Definition 22. [Strong Form of SSoD - Permission Role Assignment] Let p and q be
two permissions such that p 	= q. (p,q) ∈ SSOD PRAs if the following condition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ (∃l′ ⊂ universe,∃d′ ⊆ always•PermRoleAcquire(q,x,d′ , l′))

The above definition says that if permissions p and q are related through strong SSoD
Permission Role Assignment, then the same role should never be given the two con-
flicting permissions.

7 Impact of Time and Location on Dynamic Separation of Duties

Static separation of duty ensures that a user does not get assigned conflicting roles or a
role is not assigned conflicting permissions. Dynamic separation of duty addresses the
problem that a user is not able to activate conflicting roles during the same session.

Definition 23. [Weak Form of DSoD] Let x and y be two roles such that x 	= y. (x,y)∈
DSODs if the following condition holds:

SessionRole(u,x,s,d, l) ⇒ ¬ SessionRole(u,y,s,d, l))

The above definition says that if roles x and y are related through weak DSoD and if
user u has activated role x in some session s for duration d and location l, then u cannot
activate role y during the same time and in the same location in session s. In the same
session, a user can activate a sales assistant role and a customer role. However, both
these roles should not be activated at the same time in the same location.

Definition 24. [Strong Temporal Form of DSoD] Let x and y be two roles such that
x 	= y. (x,y) ∈ DSODs if the following condition holds:

SessionRole(u,x,s,d, l) ⇒ ¬ (∃d′ ⊂ always,•SessionRole(u,y,s,d′, l))

The above definition says that if roles x and y are related through strong temporal DSoD
and if user u has activated role x in some session s, then u can never activate role y any
time at the same location in the same session. In a teaching session in a classroom, a
user cannot activate the the grader role once he has activated the student role.

Definition 25. [Strong Spatial Form of DSoD] Let x and y be two roles such that
x 	= y. (x,y) ∈ DSODl if the following condition holds:

SessionRole(u,x,s,d, l) ⇒ ¬ (∃l′ ⊆ universe• SessionRole(u,y,s,d, l′))

The above definition says that if roles x and y are related through strong DSoD and if
user u has activated role x in some session s, then u can never activate role y in session
s during the same time in any location. If a user has activated the Graduate Teaching
Assistant role in his office, he cannot activate the Lab Operator role at the same time.



224 I. Ray and M. Toahchoodee

Definition 26. [Strong Form of DSoD] Let x and y be two roles such that x 	= y. (x,y)∈
DSODs if the following condition holds:

SessionRole(u,x,s,d, l) ⇒ ¬ (∃l′ ⊂ universe,∃d′ ⊆ always• SessionRole(u,y,s,d′, l′))

The above definition says that if roles x and y are related through strong DSoD and if
user u has activated role x in some session s, then u can never activate role y in the
same session. A user cannot be both an code developer and a code tester in the same
session.

8 Example Scenario

Example 1. Consider the following access control policy of SECURE bank

1. The organization has five users: Tom, Leena, Diana, Nina and Sam.
2. The organization consists of six roles: teller, loan officer, daytime system operator,

nighttime system operator, system operator manager, auditor
3. The teller can read and write teller files only from the teller booth during working

hours, that is, 9:00AM - 6:00PM, Monday to Friday.
4. The loan officer can read and write loan files only from the loan office during work-

ing hours, that is, 9:00AM - 6:00PM, Monday to Friday.
5. The daytime system operator (DTSO) can backup any file from anywhere in the

SECURE bank building during working hours, that is, 9:00AM - 6:00PM, Monday
to Friday.

6. The nighttime system operator (NTSO) can backup and restore any file from any-
where in the SECURE bank building during nighttime shift, that is, 6:00PM -
9:00AM, Monday to Friday.

7. The system operator manager (SOM) rights consist of all rights from daytime sys-
tem operator and night time system operator.

8. The auditor can audit teller files during the working hours.
9. The same person cannot be the teller and the auditor in the same session.

10. Teller files and loan files can be written during working hours only

We can represent the above access control policy using STRBAC.

1. WorkingHours = {{2,3,4,5,6} .Days+ 10.Hours� 9.Hours}
2. NightTime = {{2,3,4,5,6} .Days+ 19.Hours� 14.Hours}
3. Set of Time Intervals = {WorkingHours,NighTime}
4. Set of locations = {TellerBooth,LoanO f f ice,ComputerRoom,Building}
5. Users = {Tom,Leena,Diana,Nina,Sam}
6. Roles = {Teller,LoanO f f icer,Auditor,DTSO,NTSO,SOM}
7. RoleEnable = {(Teller, WorkingHours, TellerBooth), (Loaner, WorkingHours,

LoanerOffice), (DTSO, WorkingHours, Building), (NTSO, NightTime, Building),
(SOM, AnyTime, Building)}

8. Permissions consists of
– readTellerFile = (Read, TellerFile, AnyTime, TellerBooth, ComputerRoom)



A Spatio-temporal Role-Based Access Control Model 225

– writeTellerFile = (Write, TellerFile, WorkingHours, TellerBooth, Computer-
Room)

– readLoanerFile = (Read, LoanerFile, AnyTime, LoanerOffice, Computer-
Room)

– writeLoanerFile = (Write, LoanerFile, WorkingHours, LoanerOffice, Comput-
erRoom)

– WHBackupFile = (Backup, AllFile, WorkingHours, Anywhere, Computer-
Room)

– NT BackupFile = (Backup, AllFile, NightTime, Anywhere, ComputerRoom)
– NT RestoreFile = (Restore, AllFile, NightTime, Anywhere, ComputerRoom)

9. UserAssignment = {(Tom, Teller), (Leena, Loaner), (Diana, DTSO), (Nina,
NTSO), (Sam, SOM)}

10. PermAssign = {(Teller, readTellerFile), (Teller, writeTellerFile), (Loaner, read-
LoanerFile), (Loaner, writeLoanerFile), (DTSO, WHBackupFile), (NTSO, NTBack-
File), (NTSO, NTRestoreFile)}

11. Role hierarchy RH = (SOM �s,tl DTSO)∧ (SOM �s,tl NT SO)
12. DSODs = (Teller,Auditor)

This is just one possible way to model the requirements. Other models are possible
as well.

9 Conclusion and Future Work

Traditional access control models do not take into account environmental factors before
making access decisions. Such models may not be suitable for pervasive computing ap-
plications. Towards this end, we proposed a spatio-temporal role based access control
model. We identified the entities and relations in RBAC and investigated their depen-
dence on location and time. This dependency necessitates changes in the invariants and
the operations of RBAC. The behavior of the model is formalized using constraints.

A lot of work remains to be done. One is the analysis of the model. We have proposed
many different constraints. We need to understand the interaction of these constraints
and the different types of relationships between them. Specifically, we are interested in
finding conflicts and redundancies among the constraint specification. Such analysis is
needed before our model can be used for real world applications. We plan to investi-
gate how to automate this analysis. We also plan to implement our model. We need to
investigate how to store location and temporal information and how to automatically
detect role allocation and enabling using triggers. Once we have an implementation, we
validate our model using some prototype application.

Acknowledgement

This work was supported in part by AFOSR under contract number FA9550-07-1-0042.



226 I. Ray and M. Toahchoodee

References

1. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a temporal role-based access control model.
In: RBAC ’00: Proceedings of the fifth ACM workshop on Role-based access control, pp.
21–30. ACM Press, New York, NY, USA (2000)

2. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: GEO-RBAC: a spatially aware RBAC.
In: SACMAT ’05: Proceedings of the tenth ACM symposium on Access control models and
technologies, pp. 29–37. ACM Press, New York, NY, USA (2005)

3. Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: A Location and Time-Based RBAC Model. In:
WISE, pp. 361–375 (2005)

4. Covington, M.J., Fogla, P., Zhan, Z., Ahamad, M.: A Context-Aware Security Architecture
for Emerging Applications. In: Proceedings of the Annual Computer Security Applications
Conference, Las Vegas, NV, USA, pp. 249–260 (December 2002)

5. Covington, M.J., Long, W., Srinivasan, S., Dey, A., Ahamad, M., Abowd, G.: Securing
Context-Aware Applications Using Environment Roles. In: Proceedings of the 6th ACM
Symposium on Access Control Models and Technologies, pp. 10–20. Chantilly, VA, USA
(May 2001)

6. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST Stan-
dard for Role-Based Access Control. ACM Transactions on Information and Systems Secu-
rity 4(3) (August 2001)

7. Hengartner, U., Steenkiste, P.: Implementing Access Control to People Location Information.
In: Proceeding of the SACMAT’04 Yorktown Heights, California, USA (June 2004)

8. Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based Access
Control Model. IEEE Transactions on Knowledge and Data Engineering 17(1), 4–23 (2005)

9. Leonhardt, U., Magee, J.: Security Consideration for a Distributed Location Service. Imperial
College of Science, Technology and Medicine, London, UK (1997)

10. Ray, I., Kumar, M.: Towards a Location-Based Mandatory Access Control Model. Computers
& Security 25(1) (February 2006)

11. Ray, I., Kumar, M., Yu, L.: LRBAC: A Location-Aware Role-Based Access Control Model.
In: Proceedings of the 2nd International Conference on Information Systems Security,
Kolkata, India, pp. 147–161 (December 2006)

12. Sampemane, G., Naldurg, P., Campbell, R.H.: Access Control for Active Spaces. In: Pro-
ceedings of the Annual Computer Security Applications Conference, Las Vegas, NV, USA,
pp. 343–352 (December 2002)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 29(2), 38–47 (1996)

14. Simon, R., Zurko, M.E.: Separation of duty in role-based environments. In: CSFW ’97: Pro-
ceedings of the 10th Computer Security Foundations Workshop (CSFW ’97), Washington,
DC, USA, pp. 183–194. IEEE Computer Society Press, Los Alamitos (1997)

15. Yu, H., Lim, E.-P.: LTAM: A Location-Temporal Authorization Model. In: Jonker, W.,
Petković, M. (eds.) SDM 2004. LNCS, vol. 3178, pp. 172–186. Springer, Heidelberg (2004)



Towards a Times-Based Usage Control Model

Baoxian Zhao1, Ravi Sandhu2, Xinwen Zhang3, and Xiaolin Qin4

1 George Mason University, Fairfax VA, USA
bzhao@gmu.edu

2 Institute for Cyber-Security Research, Univ. of Texas at San Antonio, USA
ravi.sandhu@utsa.edu

3 Samsung Information Systems America, San Jose, CA, USA
xinwen.z@samsung.com

4 Nanjing University of Aeronautics and Astronautics, Nanjing, China
qinxcs@nuaa.edu.cn

Abstract. Modern information systems require temporal and privilege-
consuming usage of digital objects. To meet these requirements, we pre-
sent a new access control model–Times-based Usage Control (TUCON).
TUCON extends traditional and temporal access control models with
times-based usage control by defining the maximum times that a privi-
lege can be exercised. When the usage times of a privilege is consumed
to zero or the time interval of the usage is expired, the privilege ex-
ercised on the object is automatically revoked by the system. Formal
definitions of TUCON actions and rules are presented in this paper, and
the implementation of TUCON is discussed.

Keywords: Access Control, Usage Control, Times-based Usage Control,
TUCON, Authorization.

1 Introduction

The rapid development in information technology, especially in electronic com-
merce applications, requires additional features for access control. In recent in-
formation systems, usage of a digital object can be not only time-independent
like read and write, but also temporal and times-consuming, such as payment-
based online reading metered by reading times or chapters, or a downloadable
music file that can only be played 10 times. In these applications, the access to
an object may decrease, expire, or be revoked along with the usage times of the
object.

Traditional and temporal access control models are not suitable for the above
requirements since the authorization decisions in these models are generally
made at the requested time but hardly recognize ongoing controls for times
constrained access or for immediate revocation. In order to meet these require-
ments in modern access control, this paper presents a new access control model,
called Times-based Usage Control (TUCON).

Compared to traditional models, TUCON features with the usage times of
privileges and valid periods for usage of digital objects, which enable the ability

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 227–242, 2007.
c© IFIP International Federation for Information Processing 2007



228 B. Zhao et al.

to express consumed privileges and define their period constraints. The usage
times can be triggered by active tasks in TUCON model. For example, once an
Internet user pays $10 for an on-line music system, he can enjoy 10 times on-line
listening privilege. When a subject is accessing the object in TUCON, the usage
times of this subject is decreased by 1. If the times is consumed to zero or the time
interval of usage is expired, authorization for the subject is revoked. With the
decreasing of usage times, authorizations can be updated during the whole access
process, and transferred among users without the problem of privilege chains
faced by current and traditional access control. Compared to authorizations in
traditional and temporal access control models, authorizations in TUCON are
mutable and flexible.

With usage times constraints in TUCON, system resources and privileges can
be prevented from being abused. It’s known that, through occupying too many
resources, some worms and viruses can attack computer systems, such as Code
Red [20] and Dukes [17]. If reasonable usage times are given for system resources,
such kinds of attacks can be avoided to a great extent [11].

The paper is organized as follows: In Section 2, some related work are dis-
cussed. Section 3 shows a simple motivating example, which traditional and tem-
poral access control models cannot support well. Section 4 presents the temporal
and times-based constraints in the proposed TUCON model. Authorizations and
authorization rules in TUCON are also discussed in this section. In Section 5, we
give the implementation of TUCON in practice. Section 6 concludes this paper
and presents our future work.

2 Related Work

The development of access control models has experienced a long history. There
are two main approaches in this field. One is about traditional access control
models. This approach is the earliest research work for access control and orig-
inates from the research of discretionary access control (DAC) [2,6,12,21]. A
classic paper by Lampson [2] introduced this basic ideas. Because DAC has an
inherent weakness that information can be copied from one object to another, it
is difficult for DAC to enforce a safety policy and protect against some security
attacks. In order to overcome the shortcoming of DAC, mandatory access con-
trol (MAC) was invented to enforce lattice-based confidentiality policies [4,5] in
the face of Trojan Horse attacks. MAC does not consider covert channels, but
covert channels are expensive to eliminate [22]. Sandhu et al presented Role-
based access control (RBAC) [23], which has been considered as a promising
alternative to DAC and MAC. There have been much progress in traditional
access control, but its core has largely remained unchanged and centered around
the access matrix model [2,3].

The other approach is about the research of temporal access control mod-
els, which introduce the temporal attributes into traditional access control with
temporal logic. The approach is based on traditional access control. A temporal
authorization model was first proposed by Bertino et al in [7], which is based



Towards a Times-Based Usage Control Model 229

on temporal intervals of validity for authorization and temporal dependencies
among authorizations. In [8,9], Bertino et al extended the range of temporal
intervals to temporal periods and suggested an access control model support-
ing periodicity constrains and temporal reasoning. Following the RBAC model,
the Temporal-RBAC (TRBAC) model was presented in [10], which supports
temporal dependencies among roles. At the same time, Avigdor et al suggested
another authorization model for temporal data called Temporal Data Autho-
rization Model (TDAM) [1]. TDAM extended the basic authorization model by
facilitating it with the capability to express authorizations based on the tem-
poral attributes associated with data, such as transaction time and valid time.
Recently, TRBAC is extended to the Generalized Temporal RBAC (GTRBAC)
in [13], which enables RBAC to express a wider range of temporal constraints.
All these temporal access control models primary consider authorization deci-
sions constrained by certain time periods.

Although many researchers in the field of access control have made great
contributions to the progress of access control, authorizations in these models
are still static authorization decisions based on subjects’ permissions on target
objects. Once an access to the object is permitted, the subject can access it
repeatedly at the valid time intervals.

Sandhu , Park et al have proposed the Usage Control (UCON) [14,15,24,27,28]
model to solve these problems. The UCON model considers this temporal and
consumed attributes as the mutable attributes of subjects or objects [15]. The
UCON model has unified traditional access control models and temporal access
models with its ABC (Authorizations, oBligations and Conditions) [14] core
models.

Our approach to solve these problems is different from the work of the UCON
model. In TUCON, we focus on periods and usage times of accessing rather than
a single access in UCON. In other words, usage times in TUCON is a sequence
of accesses. Temporal and consumed authorizations are enforced in TUCON,
which make access control simple and easy to be implemented. However, un-
til now, UCON hasn’t been put into the practice because the administration
of authorizations in UCON is potentially complex and difficult to implement.
Therefore, to meet new requirements in the modern access control, TUCON is
suitable for applications in the real world.

3 Motivating Example

In this section, a simple example is given to motivate the new features of TU-
CON. Current and traditional access models have difficulties, or lack flexibility
to specify policies in this application.

Consider a simple application with times constrained usage of digital objects,
where a registered user can enjoy on-line music for 10 times if only he/she has pre-
paid $10. Privileges for using objects can be transferred between two registered
users and their privileges will be revoked in the following two situations:



230 B. Zhao et al.

1. revocation by usage times: the usage times is zero during ongoing usage of
digital objects.

2. revocation by time interval: the time interval of authorizations is expired.

Based on this policy, three different attributes are required to meet these
authorizations:

1. The time interval. It includes the starting time and the end time. An access
is permitted when the usage times for digital objects is more than zero at
the starting time. Otherwise, at the end time, the usage privilege for using
objects is revoked.

2. The valid period. Only during the valid period of usage, an access to an
object can be permitted, otherwise, denied.

3. Usage times. It is the maximum value which restricts a subject accessing the
object. When the usage times of an object is zero, the subject is prohibited to
access this object and the privilege is automatically revoked by the system.

Through the above analysis, we give the state transition of times-based usage
control actions in Figure 1.

    denied         revoke privilege 

transfer privilege 

trigger              access request            permit               endaccess  
Initial Authori

zation

Derived
Authori
zation

EndEnd

Deny Revoke

access request 

Checkin
g

Accessi
ng

Fig. 1. The state transition of times-based usage control actions

The states and actions in Figure 1 are explained below.

1. Initial: the initial state of the system.
2. Triggers: triggering authorization of systems, which are requirements that

must be satisfied for granting access. In this example, triggers are the ac-
tions that a user must register himself in our system and pre-pay $10 before
enjoying this on-line service. Triggers are abstracted into logic expressions
in TUCON.

3. Authorization: granting privileges of service to users if users meet authoriza-
tion requirements of the system.

4. Transfer privilege: one can transfer his privilege of an object to another by
decreasing his usage times.

5. Derived authorization: authorizations are derived from transferring privileges
or exercising privileges.

6. Access request: the user requests to access digital objects. In section 5, the
formalization of an access request is given.



Towards a Times-Based Usage Control Model 231

7. Checking: checking the usage times and the period of the authorization .
8. Permitted and denied: If the usage times is more than zero and the time

interval is not expired during the valid period , an access to digital objects
is permitted, otherwise, denied.

9. Accessing: During this state, subjects are accessing digital objects. During
the state of accessing, the usage times of subjects need to be updated by
decreasing 1.

10. Revoke privilege and endaccess: If the usage times is not zero and the us-
age period is till valid after accessing, no updating is done by the system.
This case is the action of endaccess. Otherwise, the system will revoke some
subjects’ privileges and update some authorizations. This process is the ac-
tion of revoke privilege. The details of revoke privilege are introduced in
Section 5.

11. Deny, Revoke and End: three final states. Deny is the sate of refusing to
access without revoking privileges. Revoke is the finial state after the action
of revoke privileges, while End is the one after the action of endaccess.

From the analysis of states and actions in TUCON, it is obvious that an ac-
cess is not a simple action, which consists of a sequence of actions and active
tasks from a subject and the system. During the whole access process, autho-
rizations need to be updated. These requirements are far out of the scope that
traditional and temporal access models can deal with. In the following, TUCON
is introduced to solve these problems.

4 TUCON Model

TUCON consists of two aspects: times-based authorizations and authorization
rules. Before these aspects are discussed, some preliminaries are given.

4.1 Preliminaries

In order to keep the generality of TUCON and protect information of different
data models, no basic data assumption for TUCON is made here. Therefore it
is easy to apply TUCON to other data models.

Assume that U denotes the set of subjects (users), O set of objects, P set of
privileges for objects, N set of natural numbers, and T set of time intervals with
a total order relation ≤ .

Definition 1 (Periodic Expression [9]). A periodic expression is defined as
Q =

∑n
i=1 Oi .Ci � .Cd, where O1 ∈ 2N ∪ {all}, Oi ∈ 2N, i = 2, . . . , n, Ci and Cd

are calendars for i = 2, . . . , n, Cd ⊆ Cn, and d ∈ N.

Let D present the set of all valid periods, then Q ∈ D. Table 1 illustrates a set
of periodic expressions and their meanings. In order to simplify the following
discussion, all authorization tuples are given with the same privilege on the
same object, having the same time interval, and the same period. Since the
implementation of operations for periodical data [9,16,18] is not the focus of this
paper, any further discussion is not given in this paper.



232 B. Zhao et al.

Definition 2 (Times). Times is a set of natural numbers, formally defined as
{pt ∈ N}.

4.2 Authorizations

TUCON allows us to express times-based authorizations. That is, authorizations
for a user to access an object in specific time intervals are specified by a periodic
expression, as well as determined by times of privilege usage. Moreover, the usage
times of a privilege is a natural number associated with each authorization, and
a time interval is also associated with each authorization, imposing lower and
upper bounds to the potentially infinite set of instants denoted by the periodic
expression. We refer to an authorization together with its usage times as a times
authorization.

Definition 3 (Times Authorization). A times authorization is a 6-tuple (pt,
s, o, priv, pn, g), where pt ∈ N, s, g ∈ S, o ∈ O, priv ∈ P, pn ∈ {+,−}.
Tuple (pt, s, o, priv, pn, g) states that user s has been authorized (if pn = ‘+’)
or denied (if pn = ‘-’) for pt times privilege priv on object o by user g. For
example, the tuple ( 6, Tom, Sun, read, +, Sam) denotes that Sam authorizes
6 times privilege read on the book Sun to Tom.

For convenience, the symbol σ is used to project some appointed area of a
tuple. For example, with the tuple A=(pt1, s1, o1, priv1, pn1, g1), σA(s) = s1
denotes the s area of the times authorization A, and σA(s, g) = (s1, g1) denotes
a 2-tuple consisting of s and g areas.

In TUCON, all authorizations are uniformly authorized by the system. When
transferring privileges, the system can still be regarded as user g, who transfers
privileges to other users, since usage times of this user g are correspondingly
decreased. Consumed times reduces the transferring capability during transfer-
ring privileges. So revoking privileges, we only need to delete the privileges in
our system, which doesn’t have problems caused by transferring privileges in the
current and traditional access control models such as cascading.

Under some conditions, privileges on objects without times constrains are
needed. This kind of authorizations is referred as non-times authorizations.

Definition 4 (Non-Times Authorization). When pt = -1 in a times autho-
rization tuple, we call this times authorization as non-times authorization.

Table 1. Example of periodic expressions

Periodical expression Meaning  

weeks {2,6}.Days Tuesday and Saturday 

15.DaysMonths 15th of every month 

Years    7.Months    2.Months
Summer vacation (July and 
August of every year) 

Weeks {1,...,5}.Days

Weeks {1,...,5}.Days 9.Hours 3.Hours

Workday 

Each working day between 
9.am and 12 a.m 



Towards a Times-Based Usage Control Model 233

Notice that in TUCON, when pn = ‘-’ in an authorization tuple, it states that
this authorization is revoked, even though the usage times may not be zero.

Definition 5 (Times-Based Authorization). A times-based authorization
is a 3-tuple (time, period, auth), where time represents a time interval [ta, tb],
0 ≤ ta ≤ tb ∈ T , period is a periodical expression, and auth is a 6-tuple autho-
rization.

A 3-tuple ([ta, tb] ,d ,(pt, s, o, priv, pn, g)) states that user s has been authorized
(if pn = ‘+’ ) or denied (if pn = ‘-’) for pt times privilege priv on object o by
user g in the time interval [ta, tb] of the period d. When pt= ‘-1’, TUCON can
be reduced to the models discussed in [7,8,9].

For a times-based authorization ([1/12/2001 ,12/24/2005], Weeks+2.days, (6,
Tom, file, read, +, Sam)), it means that, between Jan. 12 , 2001 and Dec. 24,
2005, Tom has 6 times privilege read on object file, but he can operate this
privilege only on Tuesday each week.

4.3 Authorization Rules

In this section, authorization rules, with similar semantic as [27], are introduced
to organize authorizations. We start with the following predicate symbols.

1. A ternary predicate symbol, access, an authorization token. The first area
of access is a time interval time, the second is a periodical expression period,
and the third is a 6-tuple authorization auth. The predicate access represents
authorizations explicitly inserted by the administrator.

2. A ternary predicate symbol, deraccess, with the same semantic meaning
as access. The predicate deraccess represents authorizations derived by the
system using logical rules of inference.

3. A ternary predicate symbol, force access, with the same semantic meaning
as access. The predicate force access represents authorizations that hold for
each subject on each object. It enforces the conflict resolution policy.

4. A symbol Li(0 ≤ i ≤ n). It can represent all the above predicate symbols
and also trigger expressions required by the system.

First, a grant rule is given to express how to grant subjects authorizations.

Definition 6 (Grant Rule). A grant rule is defined as the form of:
access ( time, period, auth) ← L1& . . .&Ln

where Li is a trigger condition expression. This expression can be developed from
specific requirements for the usage of digital objects. These conditions may be
triggers of some active tasks. All these depend on the requirements of the system.

Grant rules are specified to permit accesses to subjects. Whether this rule is
true or not is decided by whether or not the condition expressions are satisfied.
Note that in TUCON, an authorization is only permitted to grant a positive
one (pn = ‘+’), not a negative one (pn = ‘-’).



234 B. Zhao et al.

Example 1. In an application system Business system, if a registered
user Bob pre-pays $1000, he can enjoy a certain super-value service m for 6
times during every Friday since the time 09/12/2006. Let this privilege be
super. This authorization can be expressed by a grant rule as the following:
access( [09/12/2006,+ ∞ ] , Weeks+5.days, (6, Bob , m, super, +, Busi-
ness system)) ← prepay(Bob,1000) & register(Bob)

Here prepay( Bob, 1000) means Bob pre-pays $1000 and register(Bob) Bob
is a registered user. Both of them are trigger condition expressions.

Definition 7 (Derived Rule). A derived rule is defined as the form of:
deraccess ( time, period, auth) ← L1& . . . &Ln

where Li can be access with conditional expressions.
Derived rules can be used to update usage times during ongoing usage control.

When an access is performed, the usage times is decreased by 1. However, derived
rules only update times authorizations rather than non-times authorizations
after accessing, which is discussed in resolution rules,

Derived rules also support transferring times-based authorizations. In TU-
CON, transferring authorizations means consuming the usage times of privileges
on digital objects. When the usage times of a privilege decreases to zero, the
privilege is automatically revoked by the system.

Example 2. Now Bob wants to transfer 3 times for enjoying the service
m to another user Alice. These can be defined with derived rules as the
following:
deraccess( [09/12/2006,+ ∞ ] , Weeks+5.days, (3, Alice , m, super, +, Busi-
ness system)) ←access ( [09/12/2006,+ ∞ ] , Weeks+5.days, (6, Bob , m,
super, +, Business system)) & give(3, Alice, m, super, Bob) & less(3,6)
deraccess( [09/12/2006,+ ∞ ] , Weaks+5.days, (3, Bob , m, super, +, Busi-
ness system)) ←access ( [09/12/2006,+ ∞ ] , Weeks+5.days, (6, Bob , m,
super, +, Business system)) & give(3, Alice, m, super, Bob) & less(3,6)

where give(3, Alice, m, super, Bob) states that Bob transfers 3 times of privilege
super to Alice. less(m,n) states true if m is less than n.

Through above discussion, we can notice that multiple times authorizations can
be given for a subject to access the same object through applying grant and de-
rived rules. After transferring authorizations or accessing, the usage times of this
authorization can be decreased to zero. So we need a rule to resolve these conflicts.
A resolution rule, given below, forces a final unambiguous decision to be made.

Definition 8 (Resolution Rule). A resolution rule is defined as the form of:
force access ( time, period, auth) ← L1& . . .&Ln

where Li can be access or deraccess or condition expressions. A resolution rule
states that a given subject must be allowed/forbidden to perform a privilege
on an object. Compared to grant and derived rules, which may cause autho-
rizations conflicts, resolution rules state which authorizations the system must
consider valid for each subject, on the basis of the existing granted or derived
authorizations.



Towards a Times-Based Usage Control Model 235

Resolution rules can be used to revoke authorizations, combine multiple
times authorizations, update non-times authorizations after accessing and solve
conflicts caused by times and non-times authorizations coexisting for a subject.

Example 3. In example 2, if Alice has 4 times super right on service m,
a resolution rule should be used to solve conflicts after Bob transfers rights to
Alice:
force access( [09/12/2006,+ ∞ ] , Weaks+5.days, (7, Alice , m, super, +,
Business system)) ←access ( [09/12/2006,+ ∞ ] , Weeks+5.days, (4, Alice , m,
super, +, Business system)) & deraccess ( [09/12/2006,+ ∞ ] , Weeks+5.days,
(3, Alice , m, super, +, Business system))

If Alice has non-times right on service m, this resolution rule should be used:
force access( [09/12/2006,+ ∞ ] , Weeks+5.days, (-1, Alice , m, super, +,
Business system)) ←access ( [09/12/2006,+∞ ] , Weeks+5.days, (-1, Alice , m,
super, +, Business system)) & deraccess ( [09/12/2006,+ ∞ ] , Weeks+5.days,
(3, Alice , m, super, +, Business system))

If Bob’s has 0 times right after transferring rights, another resolution rule is
added to revoke Bob’s authorization:
force access( [09/12/2006,+ ∞ ] , Weeks+5.days, (0, Bob , m, super, -,
Business system)) ←deraccess ( [09/12/2006,+ ∞ ] , Weeks+5.days, (0, Bob ,
m, super, +, Business system)) .

Depending on different situations, an administrator of the system can make a
forced authorization decision by this rule. For example, when a security ad-
ministrator notices that a user often sends many access requests without using
services, this administrator may take actions on this user to prevent denial of
service (DoS), such as revoking his authorization. Different applications have
different considerations for administrators. However, as a general model, TU-
CON does not take any specific application into consideration. All these can
be abstracted into condition expressions. Note that the conditions in resolution
rules are factors which violate the security policy of systems, while those in grant
rules are requirements, which must be satisfied for granting privileges.

Based on above given authorization rules, a set of rules are introduced to
enforce the policy in TUCON. In the following, we just write the tuple of auth
instead of the tuple of (time, period , auth), based on the assumption stated in
Section 4.1.

First, some symbols are explained to express rules as follows.

– s, s1, system ∈ S, where system is considered as the administrator and every
user is a legal (registered) one in the system;

– priv ∈ P ;
– o ∈ O ;
– Tri(i ∈ N) is the logic expression of a trigger;
– give(s, s1, o, priv, pt): indicating that user s gives his pt usage times of

privilege priv on object o to user s1 ;
– accessing(s, o, priv): indicating that user s is performing operation privilege

priv on object o;



236 B. Zhao et al.

– expired(current t): indicating that the current time is expired for the valid
time interval, current t ∈ T.

R1 auth(pt, s, o, priv, +, system) ← Tr1& . . .&Trn (0 ≤ i ≤ n)
R2a auth(pt1, s1, o, priv, +, system) ← auth(pt, s, o, priv, +, system) & give(

s, s1, o, priv) & (pt ≥ pt1)
R2b auth(pt-pt1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) &

give(s, s1, o, priv) & (pt ≥ pt1)
R3a auth(pt-1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) & ac-

cessing(s, o, prv)& pt > 0
R3b auth(-1, s, o, priv, +, system) ← auth(-1, s, o, priv, +, system) & accessing

(s, o, prv)
R4 auth(pt+pt1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) &

auth(pt1, s, o, priv, +, system) & (pt ≥ 0) & (pt1 ≥ 0)
R5 auth(-1, s, o, priv, +, system) ← auth(pt, s, o, priv, +, system) & auth(-1,

s, o, priv, +, system)
R6 auth(0, s, o, priv, -, system) ← auth(0, s, o, priv, +, system)
R7 auth(pt, s, o, priv, -, system) ← auth(pt, s, o, priv, +, system) & ex-

pired(current t)

– Rule R1, a grant rule, says that if user satisfies requirements Tri before
allowing access, he/she can get pt times for operating privilege priv on object
o from system.

– Rule R2a, R2b, two derived rules, implement that user can give his pt1 usage
times of privilege to user s1.

– Rule R3a, a derived rule, says that when user s with a times authorization
is accessing object o, his usage times should be decreased by 1. Rule R3b,
also a resolution rule, says that when user s with a non-times authorization
is accessing object o, there is no need to update his authorization.

– Rule R4, a resolution rule, says that when there exist two times-based autho-
rizations with the same user s for the same privilege priv on the same object,
usage times should be added between these authorizations to make the final
authorization decision. This rule is to solve authorizations from grant rules
and derived authorization rules.

– Rule R5, a resolution rule, solves the conflicts between a non-times autho-
rization and a times authorization for the same subject, object and privilege.
When there exists the above case, a non-times authorization to the subject
will be granted.

– Rule R6, a resolution rule, says that if usage times is zero, this authorization
will be revoked.

– Rule R7, a resolution rule, says that if the valid time is expired, this autho-
rization will be revoked.

4.4 Completeness

A set of the above rules can preserve the completeness property of the policy in
TUCON.



Towards a Times-Based Usage Control Model 237

Theorem 1 (Completeness). The policy in TUCON can be specified by a
non-empty set of TUCON rules.

Proof. If we can prove that there is no conflict decision by using these rules and
these rules specify all possible decisions during the usage process in TUCON,
the completeness of the policy in TUCON is guaranteed.

(1) no conflict decisions
By construction of these rules, resolution rules can be used to resolve the

conflictions caused by grant rules and derived rules. After using resolution rules,
there are no conflict access decisions since the resolution rule states that a subject
must be allowed/forbidden to performance a privilege on an object. So we can
safely conclude that there is no conflict decision made by using these rules.

(2) specifying all possible decisions
If the system state transitions in TUCON satisfy these rules, it can conclude

that these rules specifies all possible decisions during the usage process.
Based on Figure 1 in Section 2, the state transitions are constructed with the

following steps and illustrated in Figure 2.

           privilege  
transfer access request

                                                                ongoing 
    trigger           access request           permited       update       endacess 
                                                                    
                                                              

   deny  revoke               revoke 

                           

S0 S8

S2

S3 S7S5S1

S4 S6

Fig. 2. State transitions

1. Initially the system state is S0. In the state S0, the subject s performs some
triggers satisfying with R1. Then s gets a new authorization and the system
state changes to S1.

2. In S1, if the subject s transfers some privilege to another subject, the system
state arrives S2. During changing of states, we can use R2a and R2b to
transfer privileges. When causing some conflict authorizations, R4 or R5
can be used to resolve them.

3. In S2 or S1, when receiving an access request, the system state changes to S3.
4. In S3, access requirements are satisfied, the access is permitted and the new

system state is S5. If usage times is zero, R6 is used to revoke this privilege
and new system state is S6. If the valid time is expired, R7 is used to revoke
this privilege and new system state is S6 ; Otherwise, the access is denied
and the system state changes to S4. Notice that in S4, the privilege is not
revoked by system.



238 B. Zhao et al.

5. In S5, after using R3a and R3b to update authorizations, the system new
state is S7.

6. In S7, if usage times is zero, we revoke the privilege with R6 and arrive at
the state S6. Otherwise, the system state is S8 after ending an access.

With simple model checking, we can verify that all the rules are satisfied
in these state transitions. That is, these rules specify all possible decisions in
TUCON.

Considering the two above factors, the policy in TUCON can be specified by
a non-empty set of the TUCON rules. �

5 Implementation of TUCON

In the above section, TUCON has been discussed in detail. Now, the implemen-
tation of TUCON in practice is given, which includes administration of autho-
rizations and implementation of access control.

5.1 Administration of Authorizations

In the implementation of access control models, the most important thing is
administration of authorizations. All authorizations in TUCON are derived from
grant, derived, and resolution rules. A set of authorizations is called a Times-
based Authorization Base (TAB). A TAB includes authorizations from access,
deraccess, and force access which are not conflict with each other.

In a TAB, operations of authorizations are to grant/revoke times and non-
times authorizations to/from users. In order to support these operations, the
following problems must be solved:

(a) How to deal with a situation when times and non-times authorizations co-
exist for a given object, subject, and privilege?

(b) How to deal with multiple times authorizations for a given object, subject,
and privilege?

We can deal with the above problems easily with the above Rule R4 and Rule
R5.

Next we discuss operations for revoking privileges. It includes two kinds of
manipulations: repeal non-times authorizations and automatically revoke times-
based authorization. First, we check an authorization tuple au = ([ta, tb], d,
(pt, s, o, priv, pn, g)) with respect to the current time. If the current time
current time > tb(current time ∈ T ) then set pn = ‘-’ in the 6-tuple of autho-
rization; If ta ≤ current time ≤ tb, tuple au should be further checked to make
sure whether it is a times-based authorization or not, and then if σau(pt) = 0
set pn = ‘-’ in the 6-tuple authorization au. Finally, we delete the tuples with
pn = ‘-’ in TAB to form the new TAB. Otherwise, TAB will not be changed.



Towards a Times-Based Usage Control Model 239

5.2 Access Control

After a subject is granted with an authorization, an access request is needed to
access the object.

Definition 9 (Access Request). An access request is a 5-tuple (t, p, s, o,
priv) where t ∈ T is the time when the access is requested, p ∈ Q the current
period point, s ∈ S the user who requires the access, o ∈ O the object to be access,
and priv ∈ P a privilege exercised on object o.

As far as an authorization is concerned, the first step is to judge whether this
authorization is valid or not. So every access request is checked against the
current TAB to determine whether the access is authorized, which is checked by
the valid authorization function.

Definition 10 (Valid Authorization Function). The valid authorization
function is used to judge whether the current authorization is valid. It can be
expressed as the following:

G(r) =

⎧
⎨

⎩

au au ∈ TAB ∧ σr(t) ∈ σau(time)
∧σσau(auth)(s, o, piv) = σr(s, o, priv)

∅ others

where r is an access request. G(r) returns an authorization tuple. When it is ∅,
the authorization is illegal, otherwise is a legal authorization.

However, a valid authorization is not enough for an access request. The specific
period of the current request access should also be checked, which is valid or not
according to the period constraint of an authorization. A valid authorized access
request is a request for which an authorization exists in the current TAB, which
is checked by the following valid access function.

In order to express the definition of a valid access function conveniently, a
useful expression is given for the relationship between a period point and the
period. If a specific period point p ∈ Q belongs to the period per ∈ Q, it is
denoted as p =

∏
(per).

Definition 11 (Valid Access Function). The valid access function is used to
judge whether the access request is valid according to the current TAB. It can be
expressed as follows:

F (r) =
{

true ∃G(r)(σr(p) =
∏

(σG(r)(period)))
false others

where r is an access request. If F(r) is true, the access is valid.

After a subject submits an access request r and F(r) is true, this subject is
permitted to access the object. During the following process of accessing, there
are three kinds of situations that should be considered. If a requested autho-
rization tuple is a non-times authorization, the TAB remains unchanged. If it
is a times authorization, when the times is more than zero, the number of the



240 B. Zhao et al.

privilege times is subtracted by 1, and then the TAB by resolution rules is mod-
ified. If the number of times is zero, we delete this tuple from the TAB. The
concrete algorism is briefly described in the following, where the TAB is current
times-based authorization base, and r is an access request.

Access control(TAB, r)
{. . . . . .

au = G(r); // use the valid authorization to return a set function of
// authorization tuple, and then judge whether the
//authorization is valid

if ( au = ∅ )
error(“Illegal Authorization ”);

if (σau(pt) = 0) // judge whether the privilege times is 0, in order
// to decide whether the authorization should be revoked or not.

{ revoke the authorization set pn =‘-’ in the 6-tuple
of authorization, and delete those derived authoriza-
tion tuples by resolution rules with pn =‘-1’, and
form the new TAB;
error (“This authorization does not exist ”);
}

k = F( r ); // use the valid access function to return a
// boolean value, with which to judge

// whether the access is valid.
if ( k = false )

error (“Illegal Access ! ”);
i = σσau

(pt); // the times of privilege.
if ( i > 0)

{ get by subtracting 1 from au’s privilege times,
do some modifications in the TAB and then get
the new TAB

}
. . . . . .

}

6 Conclusion and Future Work

To meet new requirements in recent information systems, this paper presents a
new access control model— the Times-based Usage Control (TUCON) Model,
TUCON supports both consumable and temporal authorizations, and persistent
authorizations with transferring authorizations. The key concept of TUCON is
the usage times of privileges, which makes the implementation of access control
more active and mutable, and protects resources from being abused.

TUCON has a vast range of applications in modern information society and can
effectively solve the problems of consumed privileges in the validity of the period,
especially in the times-metered systems and electronic commerce systems.



Towards a Times-Based Usage Control Model 241

TUCON can be viewed as one of the specific research problems for mutable
attributes [15] in modern access control. In order to clearly express our key point
of this model, we analyze TUCON with different usage times, just assuming that
the same privileges on the same digital objects have the same time interval and
the same period. It is an interesting research topic to consider the different
time intervals and different periods in TUCON. This research work is currently
under our way. Based on the current progress of TUCON, development of the
administration of authorizations in UCON is also future research work.

References

1. Gal, A., Atluri, V.: An Authorization Model for temporal Data. ACM Transactions
on Information and System Security 5(1) (Feburary 2002)

2. Lampson, B.W.: Protection. 5th Princeton Symposium on Information Science and
Systems, 1971. Reprinted in ACM Operating Systems Review, 8(1), 18-24 (1974)

3. Landwehr, C.: Protection (Security) Models and Policy. In: The Computer Science
and Engineering Handbook, pp. 1914–1928. CRC Press, USA (1997)

4. Bell, D.E., Lapadula, L.J.: Secure computer systems: Unified exposition and Mul-
tics interpretation. Technical Report ESD-TR-75-306,The Mitre Corporation, Bed-
ford, MA (March 1975)

5. Denning, D.E.: A lattice Model of secure information flow. Communications of
ACM. 19(5), 236–243 (1976)

6. Downs, D.D., Rub, J.R., Kung, K.C, Jordan, C.S.: Issues in discretionary access
control. In: In the procceding of IEEE Symposium on Research in Security and
Privacy, pp. 208–218. IEEE Press, NJ, New York (April 1985)

7. Bertino, E., Bettini, C., Samarati, P.: A Temporal Authorization Model. CCS ’94,
l/94 Fairfax Va, USA (1994)

8. Bertino, E., Bettini, C., Samarati, P.: A Temporal Access Control Mechanism for
Database Systems. IEEE Transactions on Knowledge and DataEngineering 8(1)
(Feburary 1996)

9. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An Access Control Model Sup-
porting Periodicity Constraints and Temporal Reasoning. ACM Transactionon
Database Systems 23(3) (September 1998)

10. Bertino, E., Bonatti, P.A, Ferrari, E.: TRBAC: A Temporal Role-based Access
Control Model. ACM Transactionon on Information and System Security 4(3),
191–233 (2001)

11. Kargl, F., Maier, J., Weber, M.: Protecting Web Servers from Distributed Denial
of Service Attacks. In: Proceedings of WWW ’10, pp. 514-525 (2001)

12. Graham, G.S., Denning, P.J.: Protection - Principles and Practice. In: Proceedings
of the AFIPS Srping Joint Computer Conference, vol. 40, pp. 417–429. AFIPS
Press (May 16-18, 1972)

13. James, B.D., Joshi, E., Bertino, U., Latif, A., Ghafoo, A.: A Generalized Temporal
Role-Based Access Control Model. IACM Transactionon on Knoledge and Data
Engineering 17(1), 4–23 (2005)

14. Park, J., Zhang, X., Sandhu, R.: The Usage Control Model. In: ACM Transactions
on Information and Systems Security, ACM Press, New York (Feburary 2004)

15. Park, J., Zhang, X., Sandhu, R.: Attribute Mutability in Usage Control. IFIP WG
11.3 (November 2004)



242 B. Zhao et al.

16. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
ACM 26 (November 1983)

17. Lo, J.: Denial of Service or ”Nuke” Attacks (March 12, 2005), http://www.
irchelp.org/irchelp/nuke/

18. Doerr, M., Yiortsou, A.: Implementing a Temporal Datatype. Technical Report
ICS-FORTH/TR-236 (November 1998)

19. Kudo, M., Hada, S.: XML Document Security based on Provisional Authorization.
In: CCS’00, Athens, Greece, ACM Press, New York (2000)

20. Weaver, N.: Warhol Worms: The Potential for Very Fast Internet Plagues,
http://www.cs.berkeley.edu/nweaver/warhol.html

21. Griffiths, G.S., Wade, B.W.: An authorization mechanism for a relational database
system. ACM Transactions On Database Systems 1(3), 242–255 (1976)

22. Sandhu, R.: Access Control: The Neglected Frontier (Keynote Lecture). In: Aus-
tralasian Conference on Information Security and Privacy (1996)

23. Sandhu, R.: Role Hierarchies and Constraints for Lattice-Based Access Controls.
In: European Symposium on Research in Security and Privacy (1996)

24. Sandhu, R., Park, J.: Usage Control: A Vision for Next Generation Access Con-
trol. In: Models and Architectures for Computer Networks Security. The Second
International Workshopon Mathematical Methods (2003)

25. Siewe, F., Cau, A., Zedan, H.: A Compositional Framework for Access Control
Policies Enforcement. In: Proceeding of the ACM Workshop on Formal Methods
in Security Engineering, ACM Press, New York (2003)

26. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A Logical Language for Express-
ing Authorizations. In: IEEE Symposium On Research in Security and Privacy,
Oakland, California (1997)

27. Zhang, X., Park, J., Parisi-Presicce, F., Sandhu, R.: A Logical Specification for Us-
age Control. In: 9th ACM Symposium on Access Control Models and Technologies
(SACMAT), ACM Press, New York (June 2-4, 2004)

28. Zhang, X., Parisi-Presicce, F., Park, J., Sandhu, R.: Formal Model and Policy
Specification of Usage Control. ACM Transactions on Information and System
Security (TISSEC) 8(4), 351–387 (2005)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.irchelp.org/irchelp/nuke/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.irchelp.org/irchelp/nuke/
http://www.cs.berkeley.edu/ nweaver/warhol.html


New Paradigm of Inference Control with Trusted
Computing

Yanjiang Yang, Yingjiu Li, and Robert H. Deng

School of Information Systems, Singapore Management University
80 Stamford Road, Singapore 178902

{yjyang,yjli,robertdeng}@smu.edu.sg

Abstract. The database server is a crucial bottleneck in traditional inference con-
trol architecture, as it enforces highly computation-intensive auditing for all users
who query the protected database. As a result, most auditing methods, though rig-
orously studied, can never be implemented in practice for protecting largescale
real-world database systems. To shift this paradigm, we propose a new infer-
ence control architecture that will entrust inference control to each users plat-
form, provided that the platform is equipped with trusted computing technology.
The trusted computing technology is designed to attest the state of a users plat-
form to the database server, so as to assure the server that inference control could
be enforced as expected. A generic protocol is proposed to formalize the inter-
actions between the users platform and database server. Any existing inference
control technique can work with our protocol, for which the security properties
are formally proven. Since each user’s platform enforces inference control for its
own queries, our solution avoids the bottleneck.

Keywords: Inference control, trusted computing, auditing, security protocol.

1 Introduction

Inference problem. The inference problem has been a long standing issue in data-
base security that was first studied in statistical databases [13, 2] and then extended to
multilevel databases and general-purpose databases [21]. The inference problem can
be referred to as the concern that one can infer (sensitive) information beyond one’s
privileges from the data to which one is granted access. The inference problem cannot
be solved by traditional access control, as the disclosure of sensitive information is not
derived from unauthorized accesses but from authorized ones. The existence of various
inference vulnerabilities is due to the inevitable interconnections between sensitive data
that are protected from and non-sensitive data that are provided in users’ accesses.

Figure 1 shows a simple example that helps to illustrate the inference problem. The
employee table contains age and salary information for a group of employees. To protect
individuals’ salary information, the following access rule is enforced: while the data-
base server can answer queries about sums of salaries over multiple employees, any
query about a single employee’s salary is illegitimate, and thus should be denied. With
this access control enforced, however, employee A’s salary can still be easily derived

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 243–258, 2007.
c© IFIP International Federation for Information Processing 2007



244 Y. Yang, Y. Li, and R. Deng

NAME AGE SALARY

A 28 2800
B 29 3100
C 30 3200
D 31 3600
E 32 3000
F 33 3200

Fig. 1. Employee table

from the following legitimate queries q1 and q2 provided that A is the only employee
whose age is 28:

q1 : select sum(SALARY) from EMPLOYEE where AGE ≥ 28 and AGE ≤ 32
q2 : select sum(SALARY) from EMPLOYEE where AGE ≥ 29 and AGE ≤ 32

Inference control. Inference poses a serious threat to the confidentiality of database
systems. Extensive research has been conducted on inference control to mitigate the
threat. Inference control techniques can be classified into four categories [2]: conceptual-
modeling, data perturbation, output perturbation, and query restriction. The conceptual-
modeling approach (e.g., [8,15,17]) investigates the inference problem from a high level
perspective, presenting frameworks for inference control. The proposed frameworks are
sometimes too general for practical implementation. The data perturbation approach
(e.g., [23, 32, 29, 38, 53, 56, 57]) typically replicates the original database and generates
a perturbed database with noise for users to access. This approach suffers from a severe
bias problem due to the noise that is added into data; therefore, it is not suitable for
dynamic databases. In contrast, the output perturbation approach (e.g., [1,3,14,22] does
not add noise, but performs certain manipulations over database queries such as rounding
the query replies up or down. Though the output-perturbation based approach is immune
to the bias problem, it may suffer from having null query sets, in which case useful
information is disclosed. The last category is the query restriction approach, which can
be further classified into five sub-categories: query-set-size control (e.g., [16,44]), query-
set-overlap control (e.g., [18]), auditing (e.g., [6,9,24]), partitioning (e.g., [7,60,45]), and
cell suppression (e.g., [10,36,41]). A comparison of these methods is given in [2] from
various aspects including degree of security, query processing overhead, and suitability
for dynamic databases.

Auditing. Auditing is an important query restriction-based approach. Traditional audit-
ing works on the server side. The server keeps a log of all users’ queries and, whenever
a new query arrives on the server side, checks for possible inference vulnerabilities
against the new query as well as the past queries asked by the same user. Since the con-
trol decision is made based upon a user’s whole access history, auditing has the potential
to achieve better security. Furthermore, auditing provides users with unperturbed query
results as long as no inference vulnerability is detected. Due to these features, auditing
has triggered intensive research in database security from the 1970s [43,24] through the
1980s [9, 6, 5, 4] and 1990s [11, 34, 58] to the 21st century [59, 27, 55, 31, 33, 54, 30].

Unfortunately, auditing faces enormous difficulty in practical deployment, mainly
due to the excessive computational overhead it requires to check for inference



New Paradigm of Inference Control with Trusted Computing 245

vulnerabilities from the accumulated query log. Audit Expert1 [9] is a typical example.
It was shown that it takes Audit Expert O(n2) time to process a new SUM query [9],
where n is the number of database entities or records, and O(mn2) time to process a set
of m queries. While this workload could be improved to some extent in certain specific
situations (e.g., for range queries [6]), the auditing complexity is significantly higher in
more general cases. Noting that Audit Expert protects only real-valued attributes from
being inferred exactly, Kleinberg et al. [27] studied the auditing of boolean attributes
and proved intractable results. Li et al. [31] concluded that the problem of protecting
bounded real or integer attributes from being inferred within accurate-enough intervals
has much higher complexities than that of Audit Expert.

The high complexity in auditing results in low system scalability. The database server
can only afford a small number of users querying simultaneously. For this reason, au-
diting is not deemed to be a practical inference control method for real world database
systems [2].

Inference control with trusted computing. To resolve the impracticality problem, we
propose a new architecture for inference control (especially auditing) with trusted com-
puting. The new architecture entrusts the enforcement of inference control to individual
users’ computer platforms. In this new architecture, the database server is responsible
for the enforcement of traditional access control, while each user’s platform is em-
powered to handle inference control based on their own query logs in a decentralized
manner. Since the computation-intensive task of auditing is amortized to all users, the
database server is no longer a bottleneck. As a result, our architecture can potentially
be used for protecting large-scale database systems.

Since the inference control is enforced on the user side, it is crucial to ensure that
the enforcement is conducted exactly as expected by the database server, without any
interference or manipulation. This requires that each user’s platform is in a trusted state
when the inference control is enforced. A typical solution to attain this is to equip
each user’s machine with a TCG-compliant trusted platform module (TPM) [52] that
establishes a hardware-based chain of trust from booting to OS loading to application
execution. In our architecture, TPM is used to protect the execution environment of in-
ference control and attest the trusted state of a user’s platform to the remote database
server when inference control is enforced. A generic protocol is proposed to formalize
the interactions between the user’s platform and the database server. Any existing in-
ference control technique can work with our protocol, for which the security properties
are formally proven.

Paper organization. The rest of this paper is organized as follows. In Section 2, we
propose a new architecture for shifting the inference control paradigm. In Section 3, we
present a protocol to enable inference control to be executed on the users’ side using
standard TPM commands. In Section 4, we discuss some extensions to our solution.
Finally, Section 5 concludes this paper.

1 Audit Expert is a classic auditing method. It maintains a binary matrix whose columns repre-
sent specific linear combinations of database entities (records) and whose rows represent user
queries that have already been answered. Audit Expert transforms the matrix by elementary
row operations to a standard form and concludes that exact inference exists if at least one row
contains all zeros except in one column.



246 Y. Yang, Y. Li, and R. Deng

2 Architecture

Traditional architecture. The traditional architecture for inference control is illus-
trated in Figure 2(a), where both access control and inference control are enforced at
the database server side. In this architecture, the access control module (ACM) imple-
ments access control functionality, while the inference control module (ICM) executes
a designated inference control algorithm (e.g., Audit Expert) and acts as an extra line
of defense in protecting the database. Upon receiving a new query from a user, ACM
first decides whether the user is a legitimate user with respect to the queried data. This
can be done by checking an access control database (AC database), which contains ac-
cess control rules and policy. If the user is legitimate, the database server further checks
with ICM to determine whether the query will lead to any information disclosure. ICM
assesses the query against the inference control (IC) policy as well as the user’s past
queries (collected in the query log) by executing the designated inference control algo-
rithm. The response to the query is returned to the user only if ACM decides that the
user has the proper access right and if ICM concludes that no information disclosure
would occur under the inference control policy. In this architecture, the IC policy is an
essential component that stipulates what is necessary for the execution of the inference
control algorithm, e.g., protection attributes, objectives, and constraints. The query log
is maintained by the server, which accumulates all queries asked by each user.

New architecture. Since the enforcement of inference control is computationally in-
tensive, it may bottleneck the database server in the traditional architecture. To solve
this problem, we propose a new architecture, shown in Figure 2(b), for inference con-
trol. The basic idea is to offload the inference control function to individual users. More
specifically, ICM resides at the user side instead of on the server side. ICM maintains
a query log by accumulating the queries issued by the user. To query the database, the
user contacts ICM by issuing a query, then ICM checks with ACM at the server side
to see whether the user has the right to access the data. ACM checks the user’s request
against the access rules and policy. If the user is granted access, ACM returns the query
response, together with the IC policy2, to ICM. Then, ICM executes the inference con-
trol algorithm by checking the query against its query log and IC policy. ICM releases
the response to the user only if the query would lead to no information disclosure un-
der the IC policy. In this architecture, ICM on the user side acts as an extension of the
database server in inference control.

Role of trusted computing. A challenging issue in our new architecture is that the
database server may lose its control over ICM, and that the user may compromise ICM
so as to bypass inference control. To address this issue, certain kind of assurance must
be given to the database server that ICM will be executed as expected, free of user’s
interference and manipulation. This kind of assurance is achieved by virtue of trusted
computing. In Figure 3, a user’s machine is equipped with a TCG-compliant TPM [52]
and possibly other trusted hardware. A trusted platform can be built based on TPM at
the hardware layer, as well as a secure kernel in the OS kernel space and ICM in the
application space.

2 The IC policy can be delivered to the user each time it is modified by the server; otherwise, it
can be kept at the user’s platform safely (protected by TPM).



New Paradigm of Inference Control with Trusted Computing 247

(a) Traditional inference control architecture

(b) New inference control architecture

Fig. 2. Inference control architectures

The hardware, underpinning and cooperating with the secure kernel, provides nec-
essary security functions to ICM, from basic cryptographic functions to sealed storage,
platform attestation, and a protected running environment. TPM protects the integrity
of the components in the platform, including the secure kernel and ICM, through its
integrity measuring, storing, and reporting mechanisms. More importantly, the running
state of the protected platform can be conveyed to the remote database server by virtue
of the platform attestation mechanism of TPM, so that the server can decide whether
the protected platform runs in a sufficiently trusted state. The protected platform run-
ning in a trusted state ensures that ICM performs inference control as expected, free of
user’s interference or manipulation. This platform architecture can be considered as an
open system in the sense that the host accommodates both protected applications and
unprotected applications.

The involvement of TPM in inference control can be considered yet another appli-
cation of trusted computing [35]. Other security applications that have been rigorously
studied in recent years include digital rights management [20], remote access control
enforcement [39, 42], server-side user privacy protection [26], server privacy protec-
tion [48], secure auction [37], and integrity measurement [40], to name a few. The
objective of these applications is to enable a server to extend its control over data dis-
tributed to client sides, or protect users’ privacy on the server side, while our major
concern is to securely decentralize the enforcement of inference control so as to resolve
the efficiency and scalability problems inherent in inference control. For simplicity



248 Y. Yang, Y. Li, and R. Deng

Fig. 3. TPM-enabled user host

reasons, we assume prior knowledge about TPM. Interested readers are referred to [35]
for a brief review of TPM.

Interactions between ACM and ICM. In our new architecture, ACM enforces the
access control mechanism over the database, and it represents the database server by
interacting with all users. On the other hand, ICM is responsible for enforcing inference
control according to the IC policy specified by the database server, and it also acts as
an interface of the user side interacting with the database server. ICM is an application
protected by TPM, which is inextricably bound to the user host.

Fig. 4. Interactions between ACM and ICM

The interactions between ICM (having access to TPM) and ACM are illustrated in
Figure 4. It is assumed that the user has certain identification information (e.g., user
password) to identify itself to ACM. When ICM sends the user’s identification infor-
mation together with a user query to ACM (database server), ACM enforces access con-
trol and formulates a response to the user’s query if the user query is authorized. Before
ACM delivers the query’s response, it first sends an attestation challenge to ICM. Based
on the attestation response from ICM, ACM can decide whether the user’s platform is
in a trusted state. If so, it releases the query’s response as well as the IC policy to ICM
for the enforcement of inference control. A detailed protocol is given in the next section
to formalize the interactions between ACM and ICM.

3 Protocol

In this section, we present a protocol for the interactions between ACM and ICM. The
protocol enables ICM at the user side to enforce the inference control prescribed by
the database server. The designing of the protocol assumes the use of version 1.2 TPM
command set [51] and data structure [50].



New Paradigm of Inference Control with Trusted Computing 249

3.1 Overview

Shifting inference control from the database server to users’ hosts incurs new security
threats that do not exist in the traditional architecture. We enumerate the new security
threats and explain the basic ideas to mitigate these threats. The fundamental assump-
tion is that the TPM is perfectly secure in the sense that the functions of TPM cannot be
compromised. We note that there may exist some attacks that modify or crash the pro-
tected applications at user side after they have been attested by server. Attacks of these
kinds are not specific to our system, but generic to all applications of trusted computing
technology. A simple solution suggested by [39] is that the server frequently challenges
the user’s platform so as to detect and thwart these types of attacks.

Integrity of ICM. Since ICM resides in the user’s host, a malicious user clearly has a
motivation to alter the designated function of the protected platform, especially ICM,
so as to bypass the inference control. Since TPM is inextricably bound to the user’s
host, we can use its integrity measuring, storage, and reporting mechanisms to detect
any compromise of the integrity of the user’s platform, including ICM.

Integrity of query log. Since the enforcement of inference control depends on the query
log (which is maintained by ICM in the user’s host), any unauthorized modification in-
cluding deletion of the query log would render inference control baseless. To thwart
this threat, a straightforward solution is to let ICM hold a secret key for either MAC-
ing or signing the query log, with the secret key stored in the sealed storage of TPM.
However, this introduces an extra key for ICM to manage. We instead use a different
method by associating the integrity digest of the query log with the key for protecting
the confidentiality of query responses.

Authenticity of IC policy. The IC policy regulates how inference control is enforced.
While in transit or in storage, the IC policy is subject to malicious alteration. It is
extremely important to ensure that the IC policy enforced by ICM in the user’s host
is indeed dispatched by the database server and has not been tampered with. This is
achieved by assuming that ACM holds a digital signature key pair (pkACM , skACM ).
Before disseminating the IC policy to the user, ACM signs the IC policy so that ICM
can check whether the policy has been compromised either in transit or in storage. This
also enables ICM to verify the source of the IC policy.

Confidentiality of secrets maintained by ICM. In some cases, ICM needs to maintain
some secret keys so as to protect the database server’s data on the user side. To prevent
malicious users from reading the secrets, ICM needs help from TPM to store these
secrets in the sealed storage provided by TPM.

Confidentiality of query responses. Before ICM determines whether it is safe to re-
lease query responses, the user should be kept from reading the responses, whether
they are in transit or in store. While in store, the query responses can be protected us-
ing secret keys maintained by ICM (as described above). To achieve the confidentiality
of query responses in transit, a secure channel between ICM and ACM is established.
More specifically, ICM asks TPM to generate an ephemeral asymmetric encryption key
pair, where the public key is certified by TPM and the private key is stored in its pro-
tected storage. The public key can be used by ACM to encrypt the query responses,
which will be sent to ICM. Upon receiving the encrypted message, ICM asks TPM for



250 Y. Yang, Y. Li, and R. Deng

decryption operation in a secure software environment. Note that in this solution, TPM
acts as a certifying party; there is no need to resort to external certification mechanisms.

As stated earlier, we novelly integrate the integrity protection of a query log into
the confidentiality protection of query responses. This is explained as follows. When
requesting that TPM perform the decryption operation, the invoking entity (i.e., ICM)
is required to provide a piece of authorization data, which is normally derived from a
password that is provided by the user who invokes ICM. In our solution, however, the
piece of authorization data is derived by ICM not only from the user’s password but
also from a content digest of the query log. As a result, if the integrity of the query log
is compromised, the authorization data will be refuted by TPM so that the private key
cannot be accessed for the decryption operation. We must point out that this content
digest is not intended to enhance the secrecy of the authorization data, which depends
totally on the strength of the user’s password.

Protected execution environment. A protected execution environment is needed for
the running of ICM; otherwise, the OS kernel or other applications running in parallel
on the user’s host may access the code and data within the ICM application domain.
Though a TPM-enabled platform can be configured as a restricted system (in which
only a small set of protected applications such as ICM can run) or an open system
but with all applications being protected by TPM, neither of the systems is practical.
While the impracticality of the restricted system is obvious, it is challenging for TPM
to perform platform attestation in an open system. The reason is that the attestation
would involve a large set of application integrity metrics and that the database server
must know in advance all the applications that run on each user’s platform.

A more practical solution is that the user host remains open, but it is partitioned into
a protected domain and an unprotected domain. The protected domain consists of a
restricted set of protected applications such as ICM, while the unprotected domain in-
cludes other application softwares that do not need to be protected. Although the current
TPM functionalities specified by the Trusted Computing Group (TCG) do not suffice
to support this solution, more efforts have been made to establish the protected envi-
ronment as desired. For example, the Intel’s LaGrande Technology (LT) [28] incorpo-
rates an additional set of hardware and software components around the TCG-compliant
TPM, which provides a protected execution environment that is sufficient for our solu-
tion. Without further complicating our presentation, it is reasonable to assume in our
protocol that TPM (possibly together with other trusted hardware) enables ICM to run
in isolation, free from interference by other applications running in parallel. Moreover,
the application data that ICM uses in its execution domain will be automatically erased
as long as ICM exits its execution.

3.2 Steps

We present our protocol in five steps, where the first four steps correspond to the four
stages of interactions shown in Figure 4, and the last step represents the enforcement
of inference control over the query response and the IC policy that ICM receives from
ACM in the last stage of interaction. The following notation will be used in our presen-
tation. Let Epk(.) and Dsk(.) denote the encryption operation with public key pk and
the decryption operation with private key sk, respectively. Let enc(k, .) and dec(k, .)



New Paradigm of Inference Control with Trusted Computing 251

denote encryption and decryption with symmetric key k, respectively. Let Ssk(.) denote
a message-aware digital signature scheme with private key sk. Let SHA1(.) denote
SHA-1 hash function. Let A → B : m represent A sending message m to B.

Step 1. ICM → ACM: idU , q
To issue query q, the user invokes ICM to send user identification information idU

together with q to ACM on the database server side. Without specifying the composition
of the identification information, we simply assume that idU suffices to enable ACM to
identify the user and enforce access control.
Step 2. Upon receiving a query request from the user, ACM checks whether the user
has the requested right to access the data in the query; if so, ACM challenges the user’s
platform for remote attestation. This step consists of three sub-steps.

Step 2.1. ACM: identify(idU)
ACM identifies the user by executing identify(idU), the deployed identification

function.
Step 2.2. ACM: ac(idU )
ACM executes the access control algorithm ac(idU ) to determine whether the user

has the permission to access the data in the query. If the user is not authorized, ACM
aborts the protocol; otherwise, it continues with step 2.3.

Step 2.3. ACM → ICM: nACM

ACM generates a random nonce nACM and sends it to ICM. The nonce is used to
thwart replay attacks in the following platform attestation.
Step 3. The platform attestation is performed in this step. Before the start of this step,
ICM has in possession a public key pkICM generated by TPM in the last query session.
This will be clear shortly (in steps 5.7 and 5.8)3.

Step 3.1. ICM → TPM: TPM CertifyKey
ICM first invokes a standard TPM command TPM CertifyKey for TPM to certify

pkICM . The TPM CertifyKey command instructs TPM to generate a signature on a
public key using its attestation identity key (AIK). The operation of key certification
can be bound to a specific state of the underlying platform. The input parameters of
TPM CertifyKey include the key to be certified, externally supplied data of 20 bytes,
and the Platform Configuration Registers (PCRs), whose contents are bound to the cer-
tification operation. The externally supplied data is calculated from SHA1(nACM ),
and the PCRs contain the integrity measurement metrics for the protected platform in-
cluding the booting procedure, the OS, and ICM.

Step 3.2. TPM → ICM: TPM Certify Info, σTPM = SskT PM (SHA1(pkICM )
||SHA1(nACM )||im)

In response, TPM outputs a TPM Certify Info data structure, as well as a signa-
ture signed on the public key pkICM , the nonce nACM , and the integrity measurement
metrics im of the platform. Here TPM Certify Info contains information regarding the
usage of the public key pkICM , the PCRs involved in signing, and a digest of the public
key. Note that skTPM (resp. pkTPM ) denotes the private (resp. public) AIK of TPM.

3 In the case that the user queries the database server for the first time, there will be two extra
sub-steps prior to step 3.1 that enable ICM to generate pkICM . The two extra sub-steps are
the same as steps 5.7 and 5.8, with the only exception that the user’s query log is empty at this
point.



252 Y. Yang, Y. Li, and R. Deng

For the sake of simplicity, an atomic quantity im is used to represent the integrity mea-
surement metrics of the protected platform. It is interesting to note that σTPM serves
as not only certification of pkICM , but also platform integrity reporting of im.

Step 3.3 ICM → ACM: TPM Key, TPM Certify Info, σTPM , TPM.AIK credential
In response to the attestation challenge, ICM sends TPM Key, TPM Certify Info,

σTPM , and the relevant TPM AIK credential to ACM on the server side. Here TPM Key
is a data structure that is generated in the last query session; it contains the public key
pkICM and other related information, as will be explained in step 5.8.
Step 4. ACM verifies the attestation response and sends a query response as well as
the IC policy to ICM for the enforcement of inference control.

Step 4.1. ACM: verify(σTPM )
Upon receiving the attestation response, ACM first verifies the signature σTPM using

public key pkTPM and the corresponding certificate information.
Step 4.2. ACM: validate(im)
Then, ACM verifies whether im (contained in TPM Certify Info) represents a

trusted state of the user’s platform as expected. In particular, it verifies whether ICM
is running as expected. We use an atomic function validate(.) to denote this process.

Step 4.3. ACM → ICM: ε1 = EpkICM (k), ε2 = enck(d), σACM = SskACM (ε1||ε2||
IC policy ||q||pkICM ), pkACM

If step 4.1 or 4.2 fails, the protocol aborts. Otherwise, ACM generates a secret key k
for symmetric key encryption. It encrypts k using the public key pkICM , yielding ε1.
Then, it encrypts the query response d using k, yielding ε2. After formulating the IC
policy that is to be enforced by the user, ACM signs the IC policy, ε1, ε2, query q, and
pkICM using its private key, yielding digital signature σACM . Finally, ACM sends ε1,
ε2, σACM , and pkACM (including this public key’s certificate) to ICM.
Step 5. ICM enforces inference control over the query response and IC policy in a
protected execution environment supported by TPM.

Step 5.1. ICM: verify(σACM )
Upon receiving the query response, ICM verifies the signature σACM . If the signa-

ture is genuine, it proceeds to the next step.
Step 5.2. ICM → TPM: TPM LoadKey2
ICM issues TPM command TPM LoadKey2 to TPM so as to load the private key

skICM to TPM. The input parameters taken by TPM LoadKey2 include a TPM KEY
structure and authorization data. The TPM KEY structure specifies the clear public key
pkICM and the wrapped private key skICM (which can be unwrapped by TPM), as well
as information on PCR values bound to the key pair. The authorization data is computed
from the user’s password and the digest of the query log: SHA1(password||digest-of-
query-log). Please refer to steps 5.7 and 5.8 for the exact composition of TPM KEY,
why the authorization data is computed in such way, and how digest-of-query-log is
obtained.

Step 5.3. TPM → ICM: k = DskICM (ε1)
Once TPM decides that the protected user platform is in a trusted state, and that the

authorization data matches that specified when the ICM key pair was generated (see
step 5.7), TPM unwraps skICM , uses it to decrypt ε1, and returns k to ICM.



New Paradigm of Inference Control with Trusted Computing 253

Step 5.4. ICM: d = deck(ε2)
ICM decrypts ε2 using key k to get the query response d.
Step 5.5. ICM: infcon(qd, Q, IC policy)
ICM enforces inference control based on qd, Q and the IC policy, where qd denotes

the current query q as well as its response d, and Q denotes the set of past queries as well
as their responses (obtained from the query log). For reasons of generality, we assume
that the query responses are used in inference control, though they are not absolutely
necessary for data independent algorithms such as Audit Expert. ICM reveals d to the
user if infcon(.) arbitrates that q is safe, leading to no information disclosure through
inference; otherwise, ICM refuses to release d and proceeds to step 5.7.

Step 5.6. ICM: Q = Q ∪ {qd}
ICM updates the query log Q by adding qd. Note that Q remains unchanged if qd

causes inference.
Step 5.7. ICM → TPM: TPM CreatWrapKey
In this step, ICM invokes TPM command TPM CreatWrapKey to instruct TPM to

generate an asymmetric key pair (pkICM , skICM ) and to wrap the private key skICM .
The input parameters of this command include (i) the handle of a wrapping key that can
perform key wrapping, (ii) the authorization data necessary to access the wrapping key,
(iii) a set of PCRs whose contents are bound to the wrapping operation, and (iv) the
information about the key to be generated (e.g., key length, key algorithm, key usage).

The piece of authorization data is a SHA-1 hash value (20 bytes) that is required
for unwrapping the wrapped data. In our scenario, the piece of authorization data is
derived from the user’s password and the content digest of the user’s query log; that is,
SHA1(password||digest-of-query-log), where digest-of-query-log is obtained by ap-
plying a one way function to the whole set of the user’s queries accumulated in the
user’s query log. If the user’s query log Q is maliciously modified later, the authoriza-
tion data calculated for unwrapping operation in the next query session will be refuted
by TPM and, as a result, skICM cannot be accessed by ICM.

The key pair generated by TPM CreatWrapKey is bound to a state of the platform.
The binding is achieved by specifying a set of PCRs whose contents are bound to the
wrapping operation. In our case, the PCRs record the integrity measurement metrics of
the protected platform. This binding ensures that (skICM ) cannot be unwrapped unless
the user’s platform is in a trusted state.

Step 5.8. TPM → ICM: TPM Key
Finally, TPM returns to ICM a TPM Key data structure, which contains public key

pkICM , and the corresponding private key skICM encrypted by a wrapping key.
TPM Key also contains a field TPM Auth Data Usage, which can take one of the fol-
lowing three values:

(i) TPM Auth Never, (ii) TPM Auth Always, and (iii) TPM Auth Priv Use Only

The first case allows the invoking party to load the private key without submission of
any authorization data, while the second and third cases associate authorization data
with the public/private key pair and the private key only, respectively. In our case, it
suffices to indicate TPM to set TPM Auth Data Usage to TPM Auth Priv Use Only.



254 Y. Yang, Y. Li, and R. Deng

3.3 Security

Given that the security services provided by TPM, the protected execution environment
on top of TPM, and the cryptographic primitives we employed are secure (in a sense that
these services are not compromised), it does not seem difficult to verify that our protocol
meets the security requirements as posed by the security threats listed in Section 3.1.
While mitigating these threats is a focus in our protocol design, the security of our
protocol demands a formal analysis.

Under the assumption that the underlying TPM is perfect, our protocol can essen-
tially be considered as an authentication protocol between ICM and ACM, aiming to
satisfy the requirement that ACM validates the security state of ICM before sending out
any query response. The security of our protocol can be formally proven using the rank
function [46], a specialized theorem-proving method for establishing the correctness
of authentication protocols based on communicating sequential processes (CSP) [47].
This will eliminate typical attacks such as replay attacks and masquerade attacks that
are targeted at our authentication protocol.

To perform the proof, the rank function approach requires modeling the following
three components: (1) the protocol, (2) the environment (attacker), and (3) the secu-
rity requirements on the protocol. In particular, first, the protocol is captured as a CSP
process in terms of the behavior of each system party; second, the environment is also
described as a CSP process. It is considered to be an unreliable medium that can lose,
reorder, and duplicate messages. The particular behavior captured within the medium
is precisely the behavior that the protocol is designed to overcome; third, the secu-
rity requirements on the protocol are expressed as sat specifications on the observable
behaviors of the overall system. When these components are modeled, one can use
well-established proof techniques to verify whether the protocol satisfies its security
requirements. For limit of space, we omit the detailed proof.

4 Extensions

Defending against collusion attack. A typical attack against inference control sys-
tems is collusion attack. A collusion attack involves several users forming a collusion
group and combining their query logs so as to infer some sensitive information that
cannot be derived from any individual query log. The collusion attack is inherently
difficult to mitigate, and presents as a serious inhibitor in the practical use of infer-
ence control [2]. We must point out that there seems no technique can prevent a user
from purposely recording his/her queries (as well as query responses) and using them
in collusion with other users. What we can achieve is to restrict malevolent users from
directly using the query logs that are maintained by ICMs for collusion. This requires
the confidentiality of query log to be maintained against any programs other than ICM.
To attain this requirement, the query log can be encrypted by ICM using a secret key,
which can be stored in and retrieved from the sealed storage of TPM by ICM only (using
TPM Seal and TPM Unseal commands). Note that in this case, the authorization data
for unwrapping operations must be changed to SHA1(password||digest of encrypted
query log) in our protocol.



New Paradigm of Inference Control with Trusted Computing 255

In certain cases, the database server may be able to “blacklist” some collusion groups
of suspicious users who may collude using certain out-of-band information (e.g., the
users from the same network domain). To further mitigate the collusion attack, inference
control should be enforced based on queries from all users in a collusion group rather
than from each individual user. While such control can be easily enforced with a central
query log in the traditional architecture, it is not as easy to combine many users’ query
logs in our new architecture. A possible solution is to extend the new architecture such
that the database server manages a central query log as in the traditional architecture.
When any user in a collusion group issues a query, the server sends to the user’s ICM
the queries from all other users in the same collusion group. ICM can then enforce
inference control based on the combination of its own queries and the queries it receives.
To maintain the confidentiality of the query log, the queries should be sent from ACM
to ICM in an encrypted form, which can be as easily done in our protocol as encrypting
the query responses. Upon receiving them, ICM may keep these queries in its execution
domain and delete them after use. Alternatively, ICM can add these queries to its query
log such that the query log contains queries from a collusion group instead of from an
individual user (this would substantially decrease the number of queries sent each time
by the database server).

User using multiple hosts. Our protocol is essentially designed for the scenario in
which a user is bound to a single host. This can be seen that each user’s query log is
maintained at the user’s host and the user’s host accumulates the queries issued from
that particular host. If a user is allowed to use multiple hosts to query the database, the
query logs maintained at different hosts may not be readily available to the current host
where inference control is enforced. A convenient solution is to let the database server
maintain a central query log that collects user queries at the discretion of user identity
in conjunction with host identity4. When a user issues some queries from a host, the
queries previously issued by the user from all other hosts are passed by ACM to the
current user host for the enforcement of inference control.

Database update. Database update (e.g., deletion of some records) may necessitate
updating the user’s query log on the user’s side. To facilitate updating, the database
server may manage a central query log as discussed above. In case of database update,
the database server can determine the set of queries that are affected by the update
process. When a user queries the database, the database server first checks for the af-
fected queries that belong to the user; it then informs the user to update its query log so
that the inference control will be enforced upon the latest query log.

5 Conclusions

This paper proposed a new inference control architecture and an inference control pro-
tocol upon it. While traditional inference control is enforced by a database server for
all its users, our solution entrusts each user’s host to enforce inference control for itself,
provided that the user’s host is equipped with trusted computing technology. By decen-
tralizing the highly computation-intensive task of inference control, our solution enjoys

4 The TPM bound to a user’s host can be used to unambiguously identify the host.



256 Y. Yang, Y. Li, and R. Deng

much better system scalability, and is thus suitable for supporting a large number of
users in real world database systems. In comparison, the traditional inference control
configuration can only support a small number of users due to the bottleneck of enforc-
ing inference control for all users on the server side. In this sense, our solution removes
the crucial impediment in traditional inference control configuration and identifies a
new paradigm for the practical implementation of inference control.

Our solution relies on the adoption of widely available trusted computing technology,
which is envisioned to be ubiquitous in several years. This trusted computing technol-
ogy is utilized by the database server to attest users’ platforms so that the inference
control can be enforced on the user side as expected by the database server. The secu-
rity properties of our solution are formally proven with the rank function approach. Our
solution can work with any existing inference control technique; even a hybrid system
of mixing our solution (for some users whose platforms are TPM equipped) with tra-
ditional inference control (for those users who may not implement trusted computing)
can be easily set up. An interesting future direction is to implement our solution with
various existing inference control techniques in some real world settings.

References

1. Achugbue, J.O., Chin, F.Y.: The Effectiveness of Output Modification by Rounding for Pro-
tection of Statistical Databases. INFOR 17(3), 209–218 (1979)

2. Adam, N.R., Wortmann, J.C.: Security-Control Methods for Statistical Databases: A Com-
parative Study. ACM Computing Surveys 21(4), 516–556 (1989)

3. Beck, L.L.: A Security Mechanism for Statistical Databases. ACM Trans. Database Sys-
tems 5(3), 316–338 (1980)

4. Chen, M., McNamee, L., Melkanoff, M.A.: A Model of Summary Data and Its Applications
to Statistical Databases. In: Rafanelli, M., Svensson, P., Klensin, J.C. (eds.) Statistical and
Scientific Database Management. LNCS, vol. 339, pp. 354–372. Springer, Heidelberg (1989)

5. Chin, F.Y.: Security Problems on Inference Control for SUM, MAX, and MIN queries. J.
ACM 33, 451–464 (1986)

6. Chin, F.Y., Kossowski, P., Loh, S.C.: Efficient Inference Control for Range Sum Queries.
Theor. Comput. Sci. 32, 77–86 (1984)

7. Chin, F.Y., Özsoyoglu, G.: Security in Partitioned Dynamic Statistical Databases. In: Proc.
IEEE COMPSAC, pp. 594–601. IEEE Computer Society Press, Los Alamitos (1979)

8. Chin, F.Y., Özsoyoglu, G.: Statistical Database Design. ACM Trans. Dababase Systems 6(1),
113–139 (1981)

9. Chin, F.Y., Özsoyoglu, G.: Auditing and Inference Control in Statistical Databases. IEEE
Trans. Softw. Eng. 6, 574–582 (1982)

10. Cox, L.H.: Suppression Methodology and Statistical Disclosure Control. J. Am. Stat. As-
soc. 75(370), 377–385 (1980)

11. Cox, L.H., Zayatz, L.V.: An Agenda for Research on Statistical Disclosure Limitation. J.
Official Statistics 75, 205–220 (1995)

12. Delicata, R.: An Analysis of Two Protocols for Conditional Access in Mobile Systems, Tech-
nical Report CS-04-13, Department of Computing, University of Surrey (2005)

13. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
14. Denning, D.E.: Secure Statistical Databases with Random Sample Queries. ACM Trans.

Database Systems 5(3), 88–102 (1980)



New Paradigm of Inference Control with Trusted Computing 257

15. Denning, D.E.: A Security Model for the Statistical Database Problem. In: Proc. 2nd Inter-
national Workshop on Management, pp. 1–16 (1983)

16. Denning, D.E., Denning, P.J., Schwartz, M.D.: The Tracker: A threat to Statistical Database
Security. ACM Trans. Database Systems 4(1), 76–96 (1979)

17. Denning, D.E., Schlörer, J.: Inference Control for Statistical Databases. Computer 16(7),
69–82 (1983)

18. Dobkin, D., Jones, A.K., Lipton, R.J.: Secure Databases: Protection Against User Influence.
ACM Trans. Database Systems 4(1), 97–106 (1979)

19. Dolve, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions on Infor-
mation Technology 29(2), 198–208 (1983)

20. Erickson, J.S.: Fair use, DRM, and trusted computing. Communications of ACM 46(4), 34–
39 (2003)

21. Farkas, C., Jajodia, S.: The Inference Problem: A Survey. SIGKDD Explorations 4(2), 6–11
(2002)

22. Fellegi, I.P., Phillips, J.L.: Statistical Confidentiality: Some Theory and Applications to Data
Dissemination. Ann. Ec. Soc. Meas. 3(2), 399–409 (1974)

23. Greenberg, B.G., Abernathy, J.R., Horvitz, D.G.: Application of Randomized Response
Technique in Obtaining Quantitative Data. In: Proc. Social Statistics Section, America, Sta-
tistical Association, pp. 40-43 (1969)

24. Hoffman, L.J.: Modern Methods for Computer Security and Privacy. Prentice-Hall, Engle-
wood Cliffs (1977)

25. Hui, M.L., Lowe, G.: Safe Simplifying Transformations for Security Protocols. In: Proc. 12th
Computer Security Foundations Workshop, pp. 32–43 (1999)

26. Iliev, A., Smith, S.W.: Protecting User Privacy via Trusted Computing at the Server. IEEE
Security and Privacy 3(2), 20–28 (2005)

27. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing Boolean Attributes. In: Proc. 9th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 86–
91. ACM Press, New York (2000)

28. LaGrande technology architecture: Intel Developer Forum (2003)
29. Lefons, D., Silvestri, A., Tangorra, F.: An Analytic Approach to Statistical Databases. In:

Proc. 9th Very Large Databases, pp. 260–273 (1983)
30. Li, Y., Lu, H., Deng, R.H.: Practical Inference Control for Data. In: Proc. IEEE Symposium

on Security and Privacy, pp. 115–120. IEEE Computer Society Press, Los Alamitos (2006)
31. Li, Y., Wang, L., Wang, X.S., Jajodia, S.: Auditing Interval-based Inference. In: Proc. 14th

Conference on Advanced Information Systems Engineering, pp. 553–567 (2002)
32. Liew, C.K., Choi, W.J., Liew, C.J.: A Data Distortion by Probability Distribution. ACM

Trans. Database Systems 10(3), 395–411 (1985)
33. Malvestuto, F.M., Mezzini, M.: Auditing Sum-Queries. In: Proc. International Conference

on Database Theory, pp. 504–509 (2003)
34. Malvestuto, F.M., Moscarini, M.: An Audit Expert for Large Statistical Databases, Statistical

Data Protection, EUROSTAT, pp. 29-43 (1999)
35. Mitchell, C.: Trusted Computing, The Institution of Electrical Engineers, London, UK (2005)
36. Özsoyoglu, G., Chung, J.: Information Loss in the Lattice Model of Summary Tables Due To

Suppression. In: Proc. IEEE Symposium on Security and Privacy, pp. 75–83. IEEE Computer
Society Press, Los Alamitos (1986)

37. Perrig, A., Smith, S.W., Song, D., Tygar, J.D.: SAM: A Flexible and Secure Auction Archi-
tecture using Tusted Hardware. eJETA.org: The Electronic Journal for E-Commerce Tools
and Applications 1(1) (2002)

38. Reiss, J.P.: Practical Data Swapping: The First Step. In: Proc. IEEE Symposium on Security
and Privacy, pp. 36–44. IEEE Computer Society Press, Los Alamitos (1980)



258 Y. Yang, Y. Li, and R. Deng

39. Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-Based Policy Enforcement for
Remote Access. In: Proc. ACM Conference on Computer and Communications Security, pp.
308–317. ACM Press, New York (2004)

40. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-based
Integrity Measurement Architecture. In: USENIX. USENIX Security Symposium, pp. 223–
238 (2004)

41. Sande, G.: Automated Cell Supperssion to Reserve Confidentiality of Business Statistics. In:
Proc. 2nd Workshop on Statistical Database Management, pp. 346–353 (1983)

42. Sandhu, R., Zhang, X.: Peer-to-Peer Access Control Architecture Using Trusted Computing
Technology. In: Proc. ACM Symposium on Access Control Models and Technologies, pp.
147–158. ACM Press, New York (2005)

43. Schlörer, J.: Confidentiality of Statistical Records: A Threat Monitoring Scheme of On-line
Dialogue. Methods Inform. Med. 15(1), 36–42 (1976)

44. Schlörer, J.: Disclosure from Statistical Databases: Quantitative Aspects of Trackers. ACM
Trans. Database Systems 5(4), 467–492 (1980)

45. Schlörer, J.: Information Loss in Partitioned Statistical Databases. Comput. J. 26(3), 218–223
(1983)

46. Schneider, S.: Verifying Authentication Protocols with CSP. In: Proc. 10th Computer Secu-
rity Foundation Workshop, pp. 3–17 (1997)

47. Schneider, S.: Concurrent and Real-time Systems: the CSP Approach. Addison-Wesley,
Reading (1999)

48. Smith, S.W., Safford, D.: Practical Server Privacy Using Secure Coprocessors. IBM Systems
Journal (special issue on End-to-End Security) 40, 683–695 (2001)

49. TCG. TPM Main: Part 1 Design Principles, TCG Specification Ver. 1.2, Revision 62 (2003),
http://www.trustedcomputinggroup.org

50. TCG. TPM Main: Part 2 TPM Data Structure, TCG Specification Ver. 1.2, Revision 62
(2003), http://www.trustedcomputinggroup.org

51. TCG. TPM Main: Part 3 Commands, TCG Specification Ver. 1.2, Revision 62 (2003),
http://www.trustedcomputinggroup.org

52. Trusted Computing Group (2006), http://www.trustedcomputinggroup.org
53. Traub, J.F., Yemini, Y., Wozniakowski, H.: The Statistical Security of A Statistical Database.

ACM Trans. Database Systems 9(4), 672–679 (1984)
54. Wang, L., Li, Y., Wijesekera, D., Jajodia, S.: Precisely Answering Multi-dimensional Range

Queries without Privacy Breaches. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 100–115. Springer, Heidelberg (2003)

55. Wang, L., Wijesekera, D., Jajodia, S.: Cardinality-based Inference Control in Sum-only Data
Cubes. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502,
pp. 55–71. Springer, Heidelberg (2002)

56. Warner, S.L.: Randomized Response: A Survey Technique for Eliminating Evasive Answer
Bias. J. Am. Stat. Asso. 60(309), 63–69 (1965)

57. Warner, S.L.: The Linear Randomized Response Model. J. Am. Stat. Asso. 66(336), 884–888
(1971)

58. Willenborg, L., Waal, T.: Statistical Discolure Control in Practice. Lecture Notes in Statistics,
vol. 111. Springer, Heidelberg (1996)

59. Willenborg, L., Waal, T.: Elements of Statistical Discolure. Lecture Notes in Statistics,
vol. 155. Springer, Heidelberg (2000)

60. Yu, C.T., Chin, F.Y.: A Study on the Protection of Statistical Databases. In: Proc. ACM
SIGMOD, pp. 169–181. ACM Press, New York (1977)

http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org


Security Patterns for Physical Access Control
Systems

Eduardo B. Fernandez, Jose Ballesteros, Ana C. Desouza-Doucet,
and Maria M. Larrondo-Petrie

Department of Computer Science and Engineering
Florida Atlantic University

Boca Raton, Florida 33431, USA
ed@cse.fau.edu, jballes2@fau.edu, adoucet@bluefrogsolutions.com,

maria@cse.fau.edu

Abstract. Physical security has received increased attention after 9/11.
However, access control to physical units has not been explored much.
On the other hand, there is a rich literature on access control to informa-
tion. These two areas appear converging as seen by recent products and
studies. However, use of different notations and implementation details
make this convergence harder. We need to try to take this convergence
at a more abstract level first. Although introduced about 10 years ago,
security patterns have recently become accepted by industry and two
books on this topic have appeared recently. Security patterns for infor-
mation access control have appeared but now we extend this concept
to access for physical units. The unification of information and physical
access control is just beginning but the strong requirements of infrastruc-
ture protection will make this convergence to happen rapidly. Examining
existing systems, industry standards and government regulations, we de-
scribe, in the form of patterns, the core set of features a physical access
control system should have. The paper illustrates the structure and use
of these patterns.

Keywords: access control, intelligent buildings, physical access control,
security, software patterns.

1 Introduction

Homeland security has brought an added interest in control of access to buildings
and other physical structures. The need to protect assets in buildings and to con-
trol access to restricted areas such as airports, naval ports, government agencies,
and nuclear plants to name a few, created a great business opportunity for the
physical access control industry and a good amount of interest in the research
community. One of the results of this interest was the recognition that access
control to information and access control to physical locations have many com-
mon aspects. The most basic model of access control uses a tuple (s,o,t), subject,
object, access type. If we interpret s as a person (instead of an acting executing

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 259–274, 2007.
c© IFIP International Federation for Information Processing 2007



260 E.B. Fernandez et al.

entity), o as a physical structure (instead of a computational resource), and t
as a physical access type (instead of resource access), we can make an analogy
where we can apply known results or approaches from information access control.
The unification of information and physical access control is just beginning but
the strong requirements for infrastructure protection will make this convergence
to happen rapidly. Another issue is the fact that there are standard network
protocols for building automation, e.g. BACnet [1], which are totally different
of the protocols used for manufacturing automation, e.g. DNP3 [2]. Both types
of protocols define security standards, which means that a building intended for
manufacturing would have two sets of incompatible security standards. We need
some way to abstract the security requirements of the complete system without
regard to specific standard details.

One way to achieve this unification is using a conceptual abstraction for the
definition of security requirements; we consider here the use of analysis and
security patterns for this purpose. A pattern is an encapsulated solution to a
recurrent problem in a given context [3][4]. In particular, a security pattern
defines a solution to a security problem [5]. In general, the use of patterns has
been increasing in industry because of their potential to improve software quality.
Although introduced about 10 years ago, security patterns have only recently
become accepted by industry and Microsoft, IBM, and Sun have web pages on
this topic. Also, two books have appeared recently [5][6]. We have presented
several security patterns for access control to information, e.g. [7][8], and now
we extend this concept to the access of physical units. Standards and products
that deal with physical units use a set of common concepts that may appear
different due to a different notation; patterns make this commonality apparent.
Examining existing systems, industry standards, and government regulations,
we describe, in the form of patterns, the relationship and definition of a core set
of features a physical access control system should have. From these patterns, it
is possible to define more specific patterns that can be used to build systems in a
given protocol or to define new protocols. These patterns can also be combined
to make up complex systems.

We present here patterns for access control in physical units. While we cannot
be complete, we show three of them to illustrate their structure and possibilities:

– Alarm Monitoring. Defines a way to raise events in the system that might
require special attention, like the tampering of a door.

– Relays. Defines the interactions with electronically controlled switches.
– Access Control to Physical Structures. Applies authentication and autho-

rization (RBAC) to the control of access to physical units including alarm
monitoring, relays, and time schedules that can control when things will
happen.

The pattern diagram of Figure 1 shows how these patterns relate to each
other and to related existing patterns. The patterns not explicitly described
here include:



Security Patterns for Physical Access Control Systems 261

Fig. 1. Pattern diagram of physical access control patterns

– Physical Structure [9]. Defines the structure and use of physical sites such as
buildings, parking lots, and similar, as well as their divisions and compart-
ments.

– Scheduler. Provides timing information to control access.
– Role-Based Access Control [7]. Describes the standard RBAC model used

here to describe authorization to access a physical unit.
– Reference Monitor [5]. Enforces authorizations when a process requests ac-

cess to an object.
– Authenticator [10]. Verifies that a subject is who it says it is.

Alarm Monitoring, Relays, Scheduler, and Physical Structure are composed to
form the Access Control to Physical Structures pattern. RBAC defines the type
of authorization rules used in the system, while the reference monitor indicates
an abstract pattern representing enforcement mechanisms. Authenticator is an
abstract pattern defining the requirements for authentication. We present these
patterns following the POSA template [3]. This template intends to provide
enough detail to be a guideline for a designer building a system that requires
this pattern. The set of patterns can also be used to define precise requirements
and to evaluate existing systems. The solutions are described by UML diagrams,
which although not strictly formal, are precise and unambiguous (UML has a
well-defined syntactic metamodel). Because each pattern must be reusable on
its own, there is some amount of redundancy between patterns. Each pattern is
relatively simple but it can be combined with others to build complex systems.

Section 2 describes some background. Section 3 presents first two patterns
that complement physical access (Alarm Monitoring and Relays). These pat-
terns are then combined with other patterns to define a composite pattern that



262 E.B. Fernandez et al.

describes the necessary elements of a physical access control system. Section 4
includes a short discussion and comparison to other approaches. We end with
some conclusions.

2 Background

Physical access control systems are widely used today and they can be imple-
mented with a wide range of technologies. The basic idea is that something
controls access to someplace; it could as simple as a key lock and as complex as
a face recognition device. Moreover, there are ways to detect and inform when
someone violates the access rules or tries to force the system. This simple defi-
nition leaves room for a great number of features and combinations in software
and hardware that vary from product to product. To understand access control,
we must understand the language of the industry. Terms like the ones discussed
in the patterns presented here are commonly used when discussing access control
systems. Other terms include:

– Access control panels. Serves as an interface to the readers and door locks.
Wiring in a network interconnects most of these panels.

– Electric door locks. Keep the doors locked and secure, and release the door
when a valid credential is used.

– Shunting of alarm devices. Means to bypass or ignore an alarm for a specified
period of time.

– Anti-pass back. Used to prevent tailgating (when one user enters with a valid
credential, and several people enter without using theirs).

As indicated earlier, a pattern describes a solution to a specific problem in
a given context. Patterns are abstractions of real systems, emphasizing best
practices and fundamental features, we found these patterns by analyzing real
systems or standards. A security pattern describes an abstraction of a security
mechanism able to avoid or mitigate some threats [5][6]. In addition to the two
mentioned books about security patterns, a variety of security patterns have
appeared in the literature [11]. It is common practice to describe the solution
encapsulated in a pattern using UML (Unified Modeling Language) diagrams.
UML is a standard for software development and its models are graphic and
intuitive and can be conveniently converted into code. In addition, as indicated
earlier, UML is a semi-formal language that provides a good amount of precision.
There have been attempts to further formalize patterns but their importance
comes not from an ability to prove security properties of the system but be-
cause of the fact that they are known to be good practices, based on experience.
In addition, since each pattern is rather simple, they can be used by practi-
tioners; many software developers know UML but are not able to use formal
methods.

Patterns are described using some type of template, consisting of a specific set
of sections with predefined meanings. We use here the so-called POSA template
[Bus96] which includes the following sections:



Security Patterns for Physical Access Control Systems 263

– A Name, that should be unique and precise.
– A thumbnail summary of the pattern (what problem does it solve?)
– An example of a situation where a solution is needed.
– The context where the pattern is valid or applicable.
– The general problem solved by the pattern.
– A solution section, describing the idea of the solution. This includes two

subsections, a Structure section describing a class diagram of the solution,
and a Dynamics section describing some typical use case sequences.

– The Implementation section provides hints in using the pattern. The exam-
ple resolved shows how the pattern can solve the problem of the example
presented earlier.

– The Known Uses section indicates some real uses of the pattern.
– The consequences indicate the advantages and disadvantages of using this

solution.
– The section on related patterns enumerate patterns which solve similar prob-

lems or are complementary to this pattern.

3 Patterns

3.1 Alarm Monitoring

Defines a way to raise events in the system that might require special attention,
such as someone tampering with a door.

Example. Building management wants to raise alarm events when someone
opens a door without using the right credentials or when someone tries to use a
card that was reported as lost.

Context. Physical environment with an access control system where we want
to be able to raise filtered alarm events and we want to differentiate between
alarms that are generated because of a physical violation of the system and
alarms generated because of a system rule violation.

Problem. In an Access control system, there are two types of alarms, physical
and logical. Many times we might want inform more than one subsystem that
a change of state happened in order to generate different types of configurable
actions that can vary. Physical alarm inputs are used to monitor various devices.
These alarms can be shunted. Logical alarms are used to monitor various system
rules. For example, a system may generate an alarm after three invalid tries to
get access with the same credentials.

The following forces will affect any solution:

– There are two types of alarms, physical and logical.
– Alarms can be ignored.
– Logical alarms have two possible states, reset and alarm.



264 E.B. Fernandez et al.

– Physical alarms have four possible states: reset, alarm, cut or short. The last
two states are known as trouble states, caused by faulty wiring or tampering.

– We may need to know what alarms have been set and when they were reset.
– We need a way to inform interested parties about a change of a state of an

alarm.

Solution. Have an alarm entity that describes the general concepts of an alarm
and use generalization to separate logical alarms from physical alarms and their
particular characteristics. Add information about the time the alarm occurred.
Use the Observer Pattern [4] to advise any interested party of a change of state
in an Alarm.

Fig. 2. Class Diagram for Alarm Monitoring

Structure Figure 2 shows a UML class diagram for the Alarm Monitoring pat-
tern. Abstract class Alarm indicates a general class for any type of alarm. The
PhysicalAlarm class and the LogicalAlarm class inherit the Alarm class. These
classes allow for alarms to be controlled and monitored. By implementing the
AlarmObserver interface any class (not shown here) interested on this alarm can
be added to the list of observers for the alarm and will be advised when a change
of state happens. Moreover, we log every alarm activity with a time stamp.

Dynamics. Figure 3 shows the main success scenario for the use case “activate
an alarm”. The request to set the alarm active is sent by an external actor that
detected the need to raise the alarm. The change of state is logged and only if the



Security Patterns for Physical Access Control Systems 265

Fig. 3. Sequence Diagram for Activating an Alarm

alarm is being monitored interested parties are advised of the change, otherwise
the alarm is ignored.

Implementation. There are many ways to create alarms in a physical access
control system. For example, when a card reader is installed on a door, an
alarm contact is usually installed as well. The alarm point is used to monitor
whether the door was forced or held for too long after a valid access was granted.
Logical Alarms can be generated for maximum tries with invalid credential,
invalid credential and communication errors. The call to change the state of
an alarm could in turn generate other actions when observers are notified, like
displaying a message, activating a siren, etc.

Example Resolved. Every time someone opens a door without proper per-
mission an alarm can be created and if a person uses a lost badge the system
can generate a logical alarm.

Known Uses. Many commercial Access Control systems have the concept
of logical and physical alarms that generate some actions when the states are
changed.

Consequences. Advantages include: We can only pay attention to the alarms
we are interested in.

– Every alarm change of state is logged, and interested parties are advised.
– This model provides the basic structure for supporting alarms in an access

control system.
– We make a distinction between logical and physical alarms, which supports

the creation of any alarm independently of the existing hardware.

A disadvantage is: The pattern may create overhead for systems that only care
about logging the alarm.



266 E.B. Fernandez et al.

Related Patterns. This pattern is based on the Observer Pattern [4]. The
Access Control for Physical Structures [9] complements this pattern by adding
the concept of Zones that control Alarms.

3.2 Relays

This pattern defines the interactions with electronically controlled switches.

Example. Building management wants to be able to open the main gate for
visitors that do not have credentials. Moreover, doors should be opened when
someone presents valid credentials.

Context. Physical environment with an access control system where we want
to be able turn on/off devices; and lock/unlock doors.

Fig. 4. Class Diagram for Relays

Problem. A relay is an electronically controlled switch. Similar to a light switch
on the wall being used to turn on or off a light, a relay can be used to turn on
or off other devices. Relays are used to activate the electric door lock, or to
activate a variety of other items such as: bells, sirens, turn lights on and off, trip
a digital dialer and many other uses. Typically, one relay is used to control the
electric strike of doors. The others, usually called auxiliary relays, can be used
as needed. When a relay is activated or deactivated, the device wired to it is
turned on or off.

The following forces will affect the solution:

– We need to distinguish between door relays and auxiliary relays.
– Relays can be activated and deactivated.



Security Patterns for Physical Access Control Systems 267

– Relays can be activated indefinitely or for a defined period of time.
– Relays have two possible states: on and off.

Solution. Have a relay entity that describes the general concepts of a relay
and use generalization to separate door relays from auxiliary relays and their
particular characteristics.

Structure. Figure 4 shows a UML class diagram for the Relays pattern. Abstract
class Relay indicates a general class for any type of relay. The DoorRelay class
and the AuxRelay class inherit the Relay class. These classes allow for relays to
be controlled.

Dynamics. The sequence diagram is trivial. The request to set the relay active
is sent by an external actor. The relay is activated for the previously defined
“on time.” If the relay was already active the timer is restarted. Once the timer
expires the relay is turned off.

Implementation Relays could be activated or deactivated by a variety of
events. An alarm input, a valid credential, an egress button being pushed, or
a time event, can all activate a relay.

Example Resolved. Doors that have relays defined can be opened when a
valid credential is presented. Also the main gate can be assigned an auxiliary
relay that can be activated at will.

Known Uses. Many commercial Access Control systems have the concept of
relay management and distinction between door and aux relays.

Consequences. Advantages include:

– We can distinguish between auxiliary and door relays.
– We can activate relays for a predefined amount of time.
– This model provides the basic structure for supporting relays in an access

control system.

A disadvantage is:

– We might want the same kind of functionality for devices that are not exactly
door or aux relays.

Related Patterns. The Access Control for Physical Structures [9] complements
this pattern by adding the concept of Zones that control Relays.

3.3 Access Control to Physical Structures

Applies authentication and authorization to the control of access to physical
units including alarm monitoring, relays, and time schedules that can control
when things will happen.



268 E.B. Fernandez et al.

Fig. 5. Class Diagram for Access Control to Physical Structures

Example. Building management wants to put in place an access control system
to control access to certain zones and to control who can access the zones. They
need to deny all access to certain zones after 5pm. They want to generate alarms
when someone tries to access a zone for which they do not have permission and
start monitoring alarms for all the exterior doors at 8pm. Moreover, they want
to turn on the main door light at 7pm.

Context. Physical environment with access control system where we need to
control access and turn on/off devices based on time constrains.



Security Patterns for Physical Access Control Systems 269

Problem. We need a way to enforce business rules in an access control system
that take effect at a given time and day of the week. For example, a user may
have different access needs on different days, as in the following example: 08:30
- 17:00 Mon Wed Fri Standard Hours 08:30 - 19:00 Tue Thur Stays Late 2 Days
a Week 08:00 - 12:00 half a day on Saturday

The following forces affect the solution:

– We need a way to automatically cancel access for everyone to some areas of
a building at given time and day of the week. Some users might have access
to some areas only during a time range of the day.

– We need to provide a way to automatically activate devices based on the
time and day of the week.

– We need a way to represent a day of the week and time.
– This pattern expands the Access Control to Physical Structures Pattern [9].

Therefore all the forces presented in that pattern are present in this pattern
as well.

– We need to restrict access to some users depending on the identity or other
characteristics of the visitor.

– The boundaries of the unit of access must be clearly defined.
– There is a variety of users such as employees, contractors, repairpersons, etc.,

that require access to different parts of a building.
– Since some units will be normally closed, it is necessary to create policies

and plans in case of an emergency, such as earthquake or fire.
– We may need to keep track of who entered each unit and when.

Solution. Define the structure of an access control system using an RBAC pat-
tern [7]. Integrate the Alarms Monitoring and Relays patterns and introduce the
concept of a time schedule to control when things can/must happen. Time Sched-
ules have two uses; one is to control access times and the other is to configure
automatic actions.

Structure. Figure 5 shows a UML class diagram for the Access Control to Phys-
ical Structures pattern. We can see how the Alarms Monitoring pattern can be
integrated so that Zones can control Alarms. We also use the Relays pattern
so that each door has its own Door Relay and the Aux Relays can be used
to turn on/off devices. Zones can control Relays.

We introduce a TimeSchedule class that consists of a few time intervals. A
Time Interval consists of a start time, a stop time, and selected day of the
week. When the system clock activates a Time Schedule, it can automatically
perform some actions. Relays can be turned on and off, alarm zones can be
activated or deactivated, and doors can be unlocked. To control access times,
roles are combined with Time Schedule to determine both where and when a
user can gain access to zones and we also need to be able to assign a Time
Schedule for the entire zone that applies to all users.



270 E.B. Fernandez et al.

Fig. 6. Sequence Diagram for Entering a Zone

Dynamics. Figure 6 shows a main success scenario for the use case “enter a
zone”. When the control is passed to the zone, the Zone and the Role will
consider their Time Schedules before authorizing a person. Also when the Zone
opens or closes a door, the Door calls its Relay to perform the action. Other use
cases include: “zone access denied by zone time schedule”, “role access denied by
time schedule”, and “activate alarm by role access denied”; they are not shown
for conciseness.

Implementation. Access control systems use centralized processing, distributed
processing, or hybrid arrangement. The system architecture should be taken
into consideration when designing an access control system, since it can have a
significant effect upon operation during a catastrophic system failure.

Centralized Processing. In computer dependent processing systems, all events
are gathered by the field panels, and are then sent to the computer for processing.
For example if a credential is presented at a door, the door sends the credentials
to the central computer or processor. The computer checks the credential against
its programming and determines if it is allowed through that door at that time.
If valid the computer sends a command back to the panel to release the door.
In these systems if the computer goes down, or if communications between the
panel and computer is lost, the system can no longer function, to verify proper
access, and to process alarms.

Distributed Processing. In distributed processing systems the database is
loaded to the field panel. All decisions are made at the field panel and are passed



Security Patterns for Physical Access Control Systems 271

to the computer or logging printer for storage. In these systems if communica-
tions is lost, access control continues uninhibited. Furthermore, the events can
sometimes be stored in the panels, and can be sent up to the computer once
communications is restored. Due to their architecture, systems which employ
distributed processing generally offer better reliability, and faster response than
systems that rely on central computers for all decision making.

Example Resolved. Building management can configure time schedules and
assign them to Zones and Roles, that a way a Zone could have a time schedule
from 8-5pm. Moreover, time schedules can be assigned to Relays and Alarms so
that they can be activated and monitored respectively when the system clock
activates these time schedules.

Known Uses. Many commercial or institutional buildings control access to
restricted units using the concepts presented here. This model corresponds to an
architecture that is seen in commercial products, such as: Secure Perfect, Picture
Perfect and Diamond II. BACnet is a standard that includes access control to
buildings and incorporates RBAC, zones, and schedules [12].

Consequences. They are a combination of the previous patterns.

Related Patterns. This pattern is a combination of the RBAC (or another
suitable authorization model [7]), the Physical Structures pattern, the Access
Control for Physical Structures pattern, the Alarm Monitoring pattern, and the
Relays pattern.

4 Related Work and Discussion

There is a considerable amount of work on the security of SCADA (Supervisory
Control and Data Acquisition) networks, e.g. [13][2]. However, that type of se-
curity is not applicable to physical protection, SCADA security applies only to
the information functions of these networks. Building security appears as a ne-
glected area, the only analysis of this problem come from industry white papers,
e.g. [14], which emphasizes the need for the convergence of physical and logical
security. Some documents about BACnet discuss its rationale, which has some
close aspects to our work, they use RBAC and try to derive conceptual models
of their protocols but they are tied to some implementation details. R.Martin’s
book [15] has a detailed building security system used as an example of applying
object-oriented methods, but he does not use patterns.

Some work attempts to find ways to control location information of people, e.g.
[16]. A model of that type can be made more precise by specifying more closely
the location information, as we can do with our patterns. [17] proposes a formal
model for the release of information about user location in a smart building while
respecting privacy constraints. Our approach can be used to define location of



272 E.B. Fernandez et al.

sensors and for interpreting information about user location. By defining more
closely the location of a user, her privacy can be protected more precisely. Our
finer location definition comes from the fact that we use the Composite pattern
[4], a recursive structure that can have any levels of containment. This approach
can also be combined with approaches that use geometric models of location [18]
by providing an anchor or context for the location information.

There is also much work on context-dependent security, e.g. [19][20], where
access to services or resources depends on the location of the user. It is clear
that our model can make contexts more specific by defining them in relation to
zones or access points (gates). Context models are usually applied in wireless
environments, a user could prove wirelessly that he is in front of a gate and that
gate could be opened remotely. In the literature, the rights considered are about
information, e.g. to a list of nearby restaurants, our approach can unify both
types of accesses.

Emergency situations are very important for physical access, in the case of
fire all doors should be opened, in the case of an attack as the recent one at
Virginia Tech, all doors could be closed. Our model handles these cases very
well, all the doors are just instances of a class Door and we can have operations
such as ’open all doors’ or ’close all doors’, that apply to all the objects of that
class.

As indicated earlier, the presented model is semi-formal. It can be made more
formal by adding Object Constraint Language (OCL) constraints [21]. OCL can
be used to add formal annotations to a UML model. Another possibility is the
use of the template notation of [22]. In that way, we can at least define more
precise requirements and maybe prove properties of some sections of the system.

5 Conclusions

We have described using patterns the basic features and concepts that any mod-
ern Physical Access Control system must have. As indicated, these patterns
can guide the design of physical access control systems or they can be used to
evaluate current products of this type. Other possibilities include the dynamic
restriction of the locations where a suspicious user could go or reconfiguration of
exits in case of emergencies. They can also be used in conjunction with privacy-
oriented models. Another next step is a pattern that could be more event-driven
in a way that any subsystem that generates events could be hooked dynamically.
Our Access Control system could be one of the subsystems as well as a video
system, a metal detector, a drug detector, and so forth.

The contributions of this paper include a constructive semi-formal model of
access control to physical structures and a set of patterns, which can be used
on their own to build other models. This model also illustrates composition of
features by composing patterns. Our future work will include combining this
model with identity management patterns [23], with context-based models, and
with traditional RBAC models (users could have their access to information
and to physical locations defined by the same model). Further formalization is



Security Patterns for Physical Access Control Systems 273

another aspect we are considering. Finally, physical accesses may involve not just
entering a zone but may include physical removal of specific objects identified
by RFID devices.

References

1. SSPC135/LSS-WG: Physical access control with BACnet (October 2006),
http://www.bacnet.org/bibliography/bac-10-06.pdf

2. Majdalawieh, M., Parisi-Presicce, F., Wijesekera, D.: Dnpsec: A security framework
for dnp3 in SCADA systems. In: Internat. Joint Conf. on Computer Information
and Systems Sciences and Engineering, Bridgeport, CT (December 10-20, 2005)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, vol. 1. Wiley, Chichester
(1996)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, Mass (1994)

5. Schumacher, M., Fernandez, E.B., Hybertson, D., Buschmann, F., Sommerlad, P.:
Security Patterns: Integrating security and systems engineering. J. Wiley & Sons,
Chichester (2006)

6. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Strategies for J2EE,
Web Services, and Identity Management. Prentice Hall, Upper Saddle River, New
Jersey (2005)

7. Fernandez, E.B., Pan, R.: A pattern language for security models. In: Procs,
of PLoP (2001), http://hillside.net/plop/plop2001/accepted submissions/
accepted-papers.html

8. Priebe, T., Fernandez, E.B., Mehlau, J.I., Pernul, G.: A pattern system for access
control. In: Procs. of the 18th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, Sitges, Spain, pp. 235–249 (July 2004)

9. Desouza-Doucet, A.: Controlling access to physical locations, M.S. Thesis, dept. of
computer science and eng., Florida Atlantic University (April 2006)

10. Fernandez, E.B., Sinibaldi, J.C.: More patterns for operating system access control.
In: Proc. of the 8th European conference on Pattern Languages of Programs, pp.
381–398 (2003), http://hillside.net/europlop

11. Fernandez, E.B.: Security patterns (keynote talk and paper). In: Procs. of the Eigth
International Symposium on System and Information Security - SSI2006, Sao Jose
dos Campos, Brazil (November 08-10, 2006)

12. Ritter, D., Isler, B., Mundt, H., Treado, S.: Access control in bacnet. BACnet today
(supplement to ASHRAE Journal) B26–B32 (November 2006)

13. Chandia, R., Gonzalez, J., Kilpatrick, T., Papa, M., Shenoi, S.: Security strate-
gies for SCADA networks. In: Procs. First Annual IFIP WG 11.10 International
Conference on Critical Infrastructure Protection,

14. Bridging the great divide: The convergence of physical and logical security (August
2006), Imprivata(http://www.imprivata.com)

15. Martin, R.: In Designing Object-Oriented C++ Applications Using the Booch
Method (Chapter 6). Prentice-Hall, Englewood Cliffs (1995)

16. Hengartner, U., Steenkiste, P.: Implementing access control to people location in-
formation. In: Procs. of the ACM Symposium on Access Control Models and Tech-
nologies (SACMAT’04), ACM Press, New York (2004)

http://www.bacnet.org/bibliography/bac-10-06.pdf
http://hillside.net/plop/plop2001/accepted_submissions/accepted-papers.html
http://hillside.net/plop/plop2001/accepted_submissions/accepted-papers.html
http://hillside.net/europlop
http://www.imprivata.com


274 E.B. Fernandez et al.

17. Boyer, J., Tan, K., Gunter, C.: Privacy-sensitive location information systems in
smart buildings. In: Procs. of the 3rd Int. Conf. on Security for Pervasive Comput-
ing, York, England (April 2006)

18. Atluri, V., Shin, H.: Efficient enforcement of security policies based on tracking
of mobile users. In: 20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (July 2006)

19. Corradi, A., Montanari, R., Tibaldi, D.: Context-based access control manage-
ment in ubiquitous environments. In: Proceedings of the Third IEEE International
Symposium on Network Computing and Applications (NCA’04), IEEE Computer
Society Press, Boston, MA (August 30 - September 01, 2004)

20. Huldenbosch, R., Salden, A., Bargh, M.S., Ebben, P.W.G., Reitsma, J.: Context-
sensitive access control. In: Procs. of SACMAT (2005) 111–119 (2005)

21. Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Addison-
Wesley, Reading (2003)

22. Ray, I., Li, N., Kim, D., France, R.: Using parameterized UML to specify and
compose access control models. In: Proceedings of the Sixth IFIP WG 11.5 Con-
ference on Integrity and Control in Information Systems. Lausanne, Switzerland
(November 2003)

23. Delessy, N., Fernandez, E.B., Larrondo-Petrie, M.: A pattern language for identity
management. In: Delessy, N. (ed.) Accepted for the 2nd IARIA Int. Multiconference
on Computing in the Global Information Technology (ICCGI 2007), Guadeloupe,
French Caribbean (March 4-9, 2007)



XACML Policies for Exclusive Resource Usage

Vijayant Dhankhar, Saket Kaushik, and Duminda Wijesekera

Department of Information & Software Engineering
George Mason University
Fairfax, VA 22030, U.S.A

{vdhankha,skaushik,dwijesek}@gmu.edu

Abstract. The extensible access control markup language (XACML) is the stan-
dard access control policy specification language of the World Wide Web. XACML
does not provide exclusive accesses to globally resources. We do so by enhancing
the policy execution framework with locks.

1 Introduction

The extensible access control markup language (XACML) [18] is the standard language
to specify accesses to resources available on the world wide web. However, the XACML
normative specifications lack necessary syntax to specify exclusive access to resources,
and furthermore, publicly available XACML policy enforcement frameworks do not
enforce them. Given that web orchestrations are composed from existing ones using
languages such as BPEL [16] may pose concurrent request for exclusively usable re-
sources (such as updating an XML schema), we enhance XACML syntax and enforce-
ment mechanisms to do so.

Perils of not using a synchronization mechanism (such as the dirty read [21] in dis-
tributed systems) in exclusive accesses are well known. Consequently, we advocate to
make a distinction in granting exclusive access and non-exclusive accesses by access
controllers. Thus, we add appropriate syntax to XACML and an enforcement mecha-
nism using locks. Consequently, if and when granted, the access control policy is aware
that such permissions are granted in exclusion. This enrichment to XACML has no
relationship to application level concurrency control, but not surprisingly, due to the
enforced semantic distinction between exclusive and non exclusive acccesses, aids in
enforcing separation of duty principles [12,8,9,20].

To enforce enhanced XACML policies, we add a lock manager to the policy enforce-
ment module and require that all globally accessible resources register with a unique
lock manager. In order to ensure starvation avoidance, we assume that resource re-
questers give up such resource after their usage - although this latter aspect is being
driven by policy in our ongoing work.

The rest of the paper is organized as follows. Section 2 has related work. Section 3
presents sample Use Cases and Misuse Cases of exclusive access and our design to
realize the former. Syntactic extensions to XACML appear in Section 4 and Section 5
describes the architectural enhancements used to enforce locking. Section 6 describes
our implementation and Section 7 informally argues that our locking ensures safety and
liveliness. Finally, Section 8 concludes the paper.

S. Barker, G.-J. Ahn (Eds.): Data and Applications Security 2007, LNCS 4602, pp. 275–290, 2007.
c© IFIP International Federation for Information Processing 2007



276 V. Dhankhar, S. Kaushik, and D. Wijesekera

2 Related Work

Motivated by a desire to to introduce trust-based, context-aware access control frame-
work for Web Service invocations, including support for RBAC sessions, Bhatti et
al., [4,6,5,7] define X-RBAC and X-GTRBAC models for access control frameworks
for Web Services, respectively based on RBAC [12] and GTRBAC [14] models of ac-
cess control. However, they do not provide mechanisms to enforce dynamic separation
of duty (DSoD) policies, as is the case with current XACML RBAC profile [17]. Cardea
by Lepro et al. [15] offers a dynamic access control system for the Web, where the dy-
namism means that the request is not bound to local identities at runtime, but instead
uses a remote requester’s context instead. However, Cardea does not explicitly address
concurrent access to exclusively used resources nor dynamic separation of duty policies.

3 Use Cases, Misuse Cases and Requirements

Although some existing work on Web Services orchestration argues the need to lock
shared resources [3,13], to the best of our knowledge they only reserving syntax for
locks [3]. Following Use Cases show the need.

confirm/deny

Client

Vacation Packages

Airlines

Hotel

search

query RESULTS

SEARCH

select Result

Vacation Planning Service

bank Confirmation
resultprocess

payment

Fig. 1. Vacation Planning Service

3.1 Use Case 1: Exclusive Access

Consider an example, vacation planning service (VPlanner) that reserves hotel rooms
and air tickets for its clients, whose work-flow is given in figure 1 [23]. As seen, this in-
teractive service is used to first searches for available rooms and air tickets for specified
dates and destinations and presents various alternatives to its clients, from which the
latter chooses alternative for reservations. The service then initiates a monetary trans-
fer request to the credit granting agency. On success, the room(s) and air tickets are
reserved and aborted otherwise. An efficient implementation should invoke airline and
hotel room searches concurrently, while, work-flow dependencies require that monetary
transfer request should wait till other parts of the procedure are complete.

Now, suppose two clients are searching for reservations from the VPlanner and are
shown the same tickets and hotel rooms. This is potentially dangerous because both
can choose the same room or ticket, where simultaneous requests can deadlock two
BPEL server processes. One way of avoiding this situation is to not offer a second



XACML Policies for Exclusive Resource Usage 277

client the choices while a precedent client s in the process of reserving a package - thus
requiring the VPlanner to lock rooms and tickets during ongoing reservations, referred
to as tentative locking of resources in the Web Services literature [3].

3.2 Use Case 2: Enforcing Dynamic Constraints

Example 1 (DSoD [8]). Consider a DSoD constraint an employee cannot invoke role 1 in a
session if another role, role 2, is already invoked in some other session. Assuming a data structure
maintained by the system ‘sessions’ with following XML schema:

<user id="ID">
<sessions>
<session id="123123">

<role name="role1"/>
<role name="role3"/>

</session> ...
</sessions>

</user>

An abbreviated DSoD XACML policy as follows:

1<Rule RuleId="DSoD:role1-role2:requirements" Effect="Deny">
2 <!-- SoD Rule for Example 1 (begin) -->
3 <Target>
4 <Subjects>
5 <AnySubject/>
6 </Subjects>
7 <Resources>
8 <AnyResource/>
9 </Resources>

10 <Actions>
11 <Action>
12 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
13 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">activate-role</AttributeValue>
14 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:

tc:xacml:1.0:action:action-id"/>
15 </ActionMatch>
16 </Action>
17 </Actions>
18 </Target>
19 <!-- SOD check -->
20 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:seperationOfDutyCheck">
21 <!-- sessions -->
22 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
23 <!-- subject-id -->
24 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="http://

www.w3.org/2001/XMLSchema#string"/>
25 </Apply>
26 <!-- role-id -->
27 <AttributeSelector RequestContextPath="//Request/Resource/Attribute[2]/AttributeValue/text()" DataType="http://

www.w3.org/2001/XMLSchema#string"/>
28 <!-- comma delimited set of conflicting roles -->
29 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">role1,role2</AttributeValue>
30 </Condition>
31</Rule>

Policy 1. DSoD policy

Example 1 above is a DSoD policy expressed in terms of the XACML RBAC pro-
file [17], where as stated in lines 20-30, role 1 and role 2 cannot be co-activated. How-
ever, this policy is not currently enforceable because XACML enforcement does not
consider concurrent requests. To be fair, the XACML RBAC profile outsources the
process of enabling roles to the Role Enablement Authority module.

Our design enables the follwing Use cases:

Secure registration of resources: A resource may register itself to a unique lock
manager.

Secure deregistration of resources: Only a resource is able to securely deregister it-
self from the lock manager.



278 V. Dhankhar, S. Kaushik, and D. Wijesekera

PIP

9a. Resource

Manager
Lock 

Key
Bold: additions

requester 2.Access request

PAP

PEP

1. Policy

3. Request

6. atrb query

8. Attributes

4.Request

11.decision
10.Response

12. Response

13. Obligations
Access

Resource

Subjects Environment

Obligations
service

Context
handlerPDP

7a sub. atrbs
7b. env. atrbs

7c. resource atrbs

9b. Update
5a,5b,5c Request

9c.acquireLock

Fig. 2. Extended XACML data flow diagram

Exclusive access /relinquish resources: Exclusive use of a resource must be granted
to a unique requester at any given time.

3.3 Preventing Misuse Cases

Our design prevents following Misuse Cases:

Registering a resource with multiple lock managers: An exclusively usable resource
being registered with multiple lock managers, referred to as singular registration.

Spoofing a resource: Others (de)registering an exclusively accessible resource.
Preventing simultaneous exclusive access: Multiple requesters simultaneous access-

ing an exclusively usable resource.
Starvation: Refusing exclusive access to resources when not in use.

4 Enhancing the XACML Syntax

Because our solution use locks, we add them to XACML syntax. Each of the following
elements are specified within <Rule/>, <Policy/> and <PolicySet/> elements
of XACML.

– <PreAction /> specifies a set of locks to be acquired before rule evaluation.
<AcquireLocks /> specifies a set of locks to be acquired and is a sub element of

<PreAction/> element, where the <AcquireLock> sub element specifies an in-
dividual lock.



XACML Policies for Exclusive Resource Usage 279

– <PostAction /> identifies a set of actions to be performed after (a) rule evaluation leads
to a permitted request, (b) rule evaluation leads to a denied request. The set of actions may in-
clude releasing locks or updating system resources. For different evaluation results multiple
<PostAction /> elements may be defined.

Effect attribute indicate the effect of a post action, as discussed above.
<Updates /> specifies updates to be performed in a <PostAction/>. <Update>

sub element specifies an individual change.
<ReleaseLocks /> specifies a set of locks to release and is a sub element of

<PostAction/> element. <ReleaseLock> sub element specifies an individual
lock.

Introduced elements specify lock acquisition prerequisite for evaluating a rule and
post evaluation steps to be taken. The following example policy extends policy 1 with
proposed syntactic enhancements.

1<Rule RuleId="DSoD:role1-role2:requirements" Effect="Deny">
2 <PreAction>
3 <AquireLocks>
4 <AquireLock>
5 <!-- sessions -->
6 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
7 <!-- subject-id -->
8 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="http

://www.w3.org/2001/XMLSchema#string"/>
9 </Apply>

10 </AquireLock>
11 .
12 .
13 .
14 </AquireLocks>
15 </PreAction>
16 .
17 . <!-- DSoD Rule in Example 1 -->
18 .
19 <PostAction Effect="Permit">
20 <Updates>
21 <Update>
22 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:addRoleToSession">
23 <!-- role-id -->
24 <AttributeSelector RequestContextPath="//Request/Resource/Attribute[2]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
25 <!-- session-id -->
26 <AttributeSelector RequestContextPath="//Request/Resource/Attribute[3]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
27 <!-- sessions -->
28 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
29 <!-- subject-id -->
30 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
31 </Apply>
32 </Apply>
33 </Update>
34 .
35 .
36 .
37 </Updates>
38 <ReleaseLocks>
39 <ReleaseLock>
40 <!-- sessions -->
41 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
42 <!-- subject-id -->
43 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="http

://www.w3.org/2001/XMLSchema#string"/>
44 </Apply>
45 </ReleaseLock>
46 .
47 .
48 .
49 </ReleaseLocks>
50 </PostAction>
51</Rule>

Policy 3. Enhancements to DSoD policy

The PreAction element in lines (2–15) of policy 3 above states that before evalu-
ating a rule in the DSoD policy, the user session must be locked (lines 5-10). Similarly,



280 V. Dhankhar, S. Kaushik, and D. Wijesekera

PostAction element in lines (19-50) requires that after the policy has been evaluated,
the locks acquired earlier be released for future concurrency-free changes to user ses-
sions. We assume here that resources are not created during XACML evaluation (they
already exist and are registered with a lock manager), however their usage status, i.e.,
open for read/write, etc., may be modified during a policy evaluation. For example, an
XACML evaluation can modify a log file, etc.

4.1 Implemented Semantics of Syntactic Extensions

Postaction elements are evaluated in the following manner.

– Post action only updates resources for locks obtained at the corresponding level or
those obtained at the level of the container.

– If two rules within a policy require same lock then they must be acquired and re-
leased at Policy level. Such locks are visible within all embedded rules. Similarly,
if a lock is acquired at the PolicySet level then it is visible to all embedded
policies.

– If a resource must be updated in multiple rules, then corresponding lock must be
acquired at their container level, i.e., Policy.

– Rule evaluation within a Policy element is evaluated by a single thread of execu-
tion.

– If locks are required at only the rule level, they must be released at the rule level
<PostAction/>, otherwise, they must be released at the <Policy/> level
<PostAction/>

4.2 XACML Functions

Extensions to policy syntax is achieved with the help of following functions:

function:getSubjectSessions($subject-id as string). Accepts a subject-id as an input
and returns a bag of session objects used by this subject. If the subject’s sessions
have been acquired by PDP through exclusive access, i.e., locked, then the sessions
are cached till the lock to the sessions is released.

function:addRoleToSession($role-id as string, $session-id as string, $sessions as bag).
Accepts role-id, session-id and a bag of sessions as input and it adds the passed
role to the particular session. Sessions data structure contains all the sessions and
session-id is used to locate the relevant session in the current implementation, al-
though more efficient implementations are possible.

5 Architectureral Enhancements Needed for Locks

Figure 2 shows the existing XACML execution model with data flow for policy control
[18]. The data flow begins with the Policy Administration Point (PAP) that authors the
policies evaluated by the XACML framework, shown in Flow 1. Next, access requests
(Flow 2), initiated by resource requesters, are intercepted by the Policy Enforcement
Point (PEP). PEP forwards them, Flow 3, to the Context Handler (CH) with optional
requester attributes and environmental conditions required for processing. Context han-
dler has following three functions:



XACML Policies for Exclusive Resource Usage 281

Flow 4: Translate access requests into a format understood by the Policy Decision
Point (PDP).

Flow 10: In response to Flow 5, generate the evaluation context by gathering resource,
requester attributes and current system state of from the policy information point
(PIP) (i.e. from, Flows 6,7,8 and 9), and pass them to the PDP.

Flow 12: Receive policy decisions from the PDP and translate them back to the PEP.

PDP evaluates an XACML policy applicable to the access request and accompany-
ing context. If fails, the access is denied and granted otherwise. This decision is made
available to the context handler of Flow 11 and is relayed to the PEP for enforcement.

Figure 2 shows the extended XACML data flow diagram that introduces a lock man-
ager (LM) to augment XACML access control decisions. The Lock Manager grants and
revokes locks for accessing resources registered with itself, requiring extra data flows
as follows:

Flow 5b - Update System Request (USR): May be initiated by the PDP to update
system resources for setting up an access. For example, enabling a role may re-
quire that the user session (a system resource) be updated.

Flow 5c - Create Lock Request (CRL): Is initiated by the PDP on behalf of the re-
questing process, in response for exclusive access to an available resource. This is
finally refined to the acquireLock operation (9c.), where the lock is owned by
the requesting process.

Flow 10 - Response to PDP queries (overloaded): We reuse the response sent by the
context handler to the PDP queries for sending USR and CRL responses in addition
to resource query response.

Flow 9b - Resource update, 9b: Upon enforcing the access control decision, the PEP
updates an internal log of accesses. This data flow enables enforcing history based
resource usage.

Flow 9c - AcquireLock, 9c: Instructs the LM to invoke a lock on behalf of a requester.
Based on the availability of a resource, this operation may succeed or fail.

As in the normative XACML specification, we assume that all attributes have been
authenticated (using attribute certificate authenticity) prior to policy evaluation. We dis-
cuss the additional complexity due to these addition later in section 5.2. First, we de-
scribe the Lock Manager design.

5.1 Lock Manager (LM)

The Lock Manager (see figure 2) is a privileged process that, at any given time, has only
a single instance running. The Lock Manager maintains and creates locks for resources
it manages. The functionality of the Lock Manager that provides and maintains locks
are as follows:

Lock Acquisition. Lock acquisition is an atomic operation acquireLock, imple-
mented using an atomic operation, akin to the unix test&set operation [22], with
two associated strings - requesterId and resourceId with the acquireLock.
These strings can be qualified names or URIs of network entities. The actual call is
made by the lock manager within a critical section, as shown in section 6.



282 V. Dhankhar, S. Kaushik, and D. Wijesekera

Key:
Bold font: additions

PDP Handler

Request Handler

Attribute Request

 

3. Incoming Request 12. Response

PDP

PEP

5a. Attribute Query

4.Request Notice

10. Query response

11. Response Context

3. Receive request

12. Prepare response

i. Preliminary lock(s) on
system resource(s)

4. Request Notice
5a. Attribute Query

10. Attribute, Lock
5c. Create Lock request

11. Response

8. PIP Response
6. PIP attribute query

Resources

PIP

9a. Resource content
9b. Resource update

9c. AcquireLock

6. Attribute Query

8. Attribute

9a. Resource content

ii. Release system locks
iii Update other resources
iv Communicate response

5b. Update System

5c. CreateLock 
9b. Resource update

9c. AcquireLock

Update System 

Lock Request

PostProcessor

Preprocessor

5b. Update System request

Context Handler

Fig. 3. Context Handler

Releasing a Lock. Lock release is an atomic process implemented as the method re-
leaseLock, implemented atomically.

Verifying a Lock. The verifyLock operation verifies the validity of a lock. The
execution model states that for every resource update must be preceded by a call to
verifyLock, and is invoked by the resource manager for verifying the validity of a lock.

The execution model is that a requester gets the lock and at the time of resource
usage and presents the locking permission to the resource manager that in turn verifies
the validity of the presenter’s claim with the lock manager and or PDP.

Registering with a Single LM. Registering a resource with a single lock manager
is a basic design requirement enforced by requiring an attribute certificate where each
resource is bound to a single lock manager (by a local certificate authority) using an
X.509 attribute certificate [11].

5.2 Enhancing the Context Handler

We enhance the context handler with resource pool bootstrapping, termination and
maintenance, (i.e., performing singular registration, deregistration, etc.) and extending
the business logic for additional functionality.



XACML Policies for Exclusive Resource Usage 283

Resource Pool Maintenance. We extend the context handler to support the lock man-
ager bootstrapping and maintenance of the resource pool. Algorithms in this section are
written in pseudo code, with ‘–>’ symbol indicating a call to a sub-module within the
context handler.

Securely Registering Resources. To prevent multiple concurrent registration requests
being invoked by a resource, we introduce the secure registration of resource procedure.
Secure registration begins with a registration request by a resource, accompanied with a
verifiable attribute certificate containing the resource and the lock manager. This request
is serviced by Algorithm 1 below, as shown in figure 3.

1 register(R,C,LM)
2 Inputs: R(resource), C(certificate), LM(lock manager)
3 Output: Lock information, Exception
4
5 Translate request to XML document
6 Pass translated XML to PDP Handler
7 -->Invoke PDP to verify R,C and LM
8 if (decision == accept)
9 Lock Request for lock to global.lock

10 -->Acquire lock to global.lock
11 Update System Request for variable
12 -->Create variable lock.R
13 if (lock.R NOT IN global.lock)//
14 Assign lock.R.subjectID = ""
15 Insert lock.R in global.lock
16 Assign message = lock.R
17 Hand request to PostProcessor
18 -->Lock Request for release lock
19 -->Release lock
20 Return request+message to Request Handler
21 else
22 Assign exception = Already Registered
23 Hand Request to PostProcessor
24 -->Lock Request for release lock
25 -->Release lock
26 Return request+exception to Request Handler
27 else
28 Assign exception = Invalid Request
29 Hand the request to PostProcessor
30 -->Return request+exception to Request Handler

Algorithm 1. Secure Registration

The register method accepts three inputs – R, the registering resource; C, its
attribute certificate, and LM, the Lock Manager. This request is handed to the ‘Request
handler’ module of CH by the PEP (line 5). The request handler translates the request
into XML and hands it to PDP handler for further processing (line 6). The PDP handler
invokes the PDP and processes the response (lines 7,8). If the decision is accept, a lock
is acquired (lines 9,10) and an update request is fired (line 11). Based on the success
of this call, lock is release and the relevant message is returned to the request handler
(lines 18-26). If PDP denies the register request, an appropriate response is constructed
as well (line 27-30).

Securely Deregistering a Resource. Similar to registration, deregistration requires
locking support because in order to prevent being deregistered while in use. The process
flow is as follows:



284 V. Dhankhar, S. Kaushik, and D. Wijesekera

1 deregister(R,C,LM)
2 Inputs: R(resource), C(certificate), LM(lock manager)
3 Output: boolean, Exception
4
5 Translate request to XML document
6 Pass translated XML to PDP Handler
7 -->Invoke PDP to verify R,C and LM
8 if (decision == accept)
9 Lock Request for lock to global.lock

10 -->Acquire lock to global.lock
11 if (acquirelock()== false)
12 Assign exception = In use // no waiting!!
13 Hand request to PostProcessor
14 -->Send request+exception to Request Handler
15 else
16 if(lock.R IN global.lock && lock.R.subjectId="")
17 Update System Request
18 -->Assign global.lock = global.lock -lock.R
19 Assign message = true
20 Hand request to PostProcessor
21 -->Lock Request for release lock
22 -->Release Lock // will succeed
23 Return request+message to Request Handler
24 else
25 Assign exception = Does not exist/In use
26 Hand Request to PostProcessor
27 -->Lock Request for release lock
28 -->Release lock
29 Return request+exception to Request Handler
30 else
31 Assign exception = Invalid Request
32 Hand the request to PostProcessor
33 -->Return request+exception to Request Handler

Algorithm 2. Secure Deregistration

Similar to the register method deregister accepts the same three inputs and
securely removes the resource from LM. The difference here is that the update request
removes the lock from a global lock data structure in a critical section (line 18).

Extending the Business Logic

Gaining Exclusive Access to Resources. Once a resource is registered, exclusive ac-
cess to it can be guaranteed by a process very similar to the above processes, as follows:

1 exclusiveAccess(R,S)
2 Input: R (resource), S (Subject)
3 Output: boolean, Exception
4
5 Translate request to XML document
6 Pass translated XML to Pre processor
7 -->Lock Request for lock to global.lock
8 -->Acquire lock to global.lock
9 if (acquireLock() == false)

10 Assign exception = In use // no wait
11 Hand Request to PostProcessor
12 -->Send Request+exception to Request Handler
13 else
14 Hand request to PDP Handler
15 -->Invoke PDP for authorizing S to R
16 -->Attribute Query for lock.R
17 -->Read lock.R
18 if(lock.R IN global.lock)
19 send lock.R to PDP
20 else
21 exception = resource unknown
22 Hand request to PostProcessor
23 -->Return Request+exception // to RH
24 if (decision == accept)
25 Update System Request
26 -->Assign lock.R.subjectId = S
27 Assign message = true //
28 Hand request to PostProcessor
29 -->Lock Request for release lock
30 -->Release Lock
31 Return request+message to Request Handler
32 else
33 Assign exception = Invalid Request
34 Hand the request to PostProcessor
35 -->Return request+exception to Request Handler

Algorithm 3. Exclusive access



XACML Policies for Exclusive Resource Usage 285

The exclusiveAccess method invokes a similar CH work-flow for granting ac-
cess to externally usable resources. The main difference here is a call to the pre proces-
sor module that acquires locks before beginning any PDP evaluation (lines 7-12). In
addition, the PDP may query for lock attributes (lines 16-23). Finally, if the request is
granted, the lock manager updates lock.R to indicate the new owner (line 26).

Using Resource. Exercising exclusive access, once a requester has gained such an
access to a resource, is a call to the resource (through the PEP). It is the resource’s
responsibility to ensure that the requester owns a valid lock to it, done by a verifyLock
call to the lock manager (details are omitted due to lack of space).

Guaranteeing Dynamic/ History-Based Access Constraints. Steps for enforcing dy-
namic constraints are as follows:

1 accessResource(R,S)
2 Inputs: R (resource), S (Subject)
3 Output: boolean, Exception
4
5 Translate request to XML document
6 Pass translated XML to Pre processor
7 -->Locate internal resources for the request
8 Lock Request for locks to all internal resources
9 -->while(more resources)

10 { Acquire lock } // locking phase
11 if (all locks acquired == false)
12 Assign exception = Cannot process // no wait
13 Hand Request to PostProcessor
14 -->Send Request+exception to Request Handler
15 else
16 Invoke PDP for authorizing S to R
17 Attribute Queries (optionally)
18 -->Read attribute
19 if(attribute present)
20 send attribute to PDP
21 else
22 exception = resource unknown
23 Hand request to PostProcessor
24 -->Send Request+exception to Request Handler
25 if (decision == accept)
26 Update System Request
27 -->while(more resources need updation)
28 { update ith resource }
29 Assign message = true //
30 Hand request to PostProcessor
31 -->Lock Request for releasing all locks
32 -->Release Lock
33 Return request+message to Request Handler
34 else
35 Assign exception = Invalid Request
36 Hand the request to PostProcessor
37 -->Return request+exception to Request Handler

Algorithm 4. Dynamic constraints

Releasing Resource. A resource requester holding a lock can release the resource. A
simple modification to the algorithms presented above does this, where the details are
omitted due to lack of space.

6 Implementing the Enhanced Design

In this section presents the salient features of our LM implementation. We begin our
discussion with data structures to implement locks, followed by a sample Java snippet
and WSDL interaction to acquire locks.



286 V. Dhankhar, S. Kaushik, and D. Wijesekera

1 <xs:element name="Lock"
2 type="xacml-context:LockType"/>
3 <xs:complexType name="LockType">
4 <xs:sequence>
5 <xs:element name="resourceId" type="xs:string"
6 minOccurs="1" maxOccurs="1"/>
7 <xs:element name="ownerId" type="xs:string"
8 minOccurs="0" maxOccurs="1"/>
9 </xs:sequence>

10 </xs:complexType>

Listing 1. The Lock Data Structure

Listing 1 shows the LockType XML Schema (lines 3-10) that represents a lock for a
single shared resource. The data structure identifies the lock through a resourceID
and an ownerId. An available lock has an ownerId as an empty string, while a
locked resource has a non-empty ownerId. Several such locks (one for each shared
resource) are stored in a global LM-data structure called the GlobalLock.

1 <xs:element name="GlobalLock"
2 type="xacml-context:GlobalLockType"/>
3<xs:complexType name="GlobalLockType">
4 <xs:sequence>
5 <xs:element ref="xacml-context:GlobalLockEntryType"
6 maxOccurs="unbounded"/>
7 </xs:sequence>
8</xs:complexType>

Listing 2. The Global Lock Data Structure

1 <xs:complexType name="GlobalLockEntryType">
2 <xs:sequence>
3 <xs:element name="resource" type="xacml-context:Resource"
4 minOccurs="1" maxOccurs="1"/>
5 <xs:element name="lock" type="xacml-context:Lock"
6 minOccurs="0" maxOccurs="1"/>
7 </xs:sequence>
8</xs:complexType>

Listing 3. The Global Lock Entry Type

The Global Lock Entry Type data structure stores (key,value) pairs including resource
and its locks.

1 <wsdl:message name="aquireLockRequest">
2 <wsdl:part name="correlationSet" element=
3 "xacml-context:CorrelationSet" />
4 <wsdl:part name="lock" element=
5 "xacml-context:Lock" />
6 </wsdl:message>
7
8 <wsdl:message name="lockResult">
9 <wsdl:part name="correlationSet" element=

10 "xacml-context:CorrelationSet" />
11 <wsdl:part name="result" element=
12 "xacml-context:LockResult" />
13 </wsdl:message>

Listing 4. Lock acquisition/response message

Listing 3 shows WSDL message definitions for the acquireLock request and the
result response.



XACML Policies for Exclusive Resource Usage 287

1public class LockManager {
2
3// list of all the resources and locks
4public static Map GlobalLock = new HashMap();
5
6/**
7* Aquire a lock
8*/
9public static LockResult aquireLock (AquireLockRequest request) {

10
11 Lock lock = null;
12 boolean aquireSuccess = false;
13
14 // aquire global lock
15 synchronized (GlobalLock) {
16
17 // if lock already acquired or not registered then fail
18 if (GlobalLock.containsKey(request.getResourceId())) {
19 lock = GlobalLock.get(request.getResourceId());
20 if (lock==null) {
21 // if no locks exist on the resource
22 // then create a new resource
23 lock = new Lock();
24 lock.setOwnerId(request.getActorId());
25 lock.setResourceId(request.getResourceId());
26 GlobalLock.put(request.getResourceId(), lock);
27 aquireSuccess = true;
28 }
29 }
30
31 } // release the global lock
32
33 LockResult result = new LockResult();
34 if (!aquireSuccess) {
35 // couldnt aquire lock
36 result.setStatus("fail");
37 } else {
38 // lock aquired
39 result.setStatus("pass");
40 result.setLock(lock);
41 }
42 return result;
43}

Listing 5. AcquireLock method

Listing 5 shows a Java implementation of the AcquireLock method for acquir-
ing a lock to an existing resource. Java allows synchronization through exclusive access
to objects that we leverage upon in this implementation (line 17). In Line 16 we aquire
exclusive access to the GlobalLock data structure till Line 33. In line 19 we check if the
resource is registered with the Lock Manager. Line 21: We check if the lock has already
been granted, if not then we create a new Lock with the owner and resource specified in
request and add it to GlobalLock (Line 24-27). Finally after updating the GlobalLock
we remove our exclusive access to it (Line 33) Line 35: we create a result data structure.
Line 36-43: we construct the result for the request accordingly and return it in line 44.

7 Safety and Liveliness Properties

Because we allow concurrent requests and use locks to serialize access to critical sec-
tions of the security monitor, we ensure liveliness and safety properties. In this section,
we informally argue for them.

Lemma 1. Given a resource pool R and a set of lock managers L, a resource Ri ∈ R
can only be registered with a single lock manager Lj ∈ L

Proof Sketch: See [10] for proof.



288 V. Dhankhar, S. Kaushik, and D. Wijesekera

Lemma 2. Given a resource Ri and a lock manager LK to which Ri can register itself,
register method ensures that Ri can be registered only once with LK .

Proof Sketch: See [10] for proof.

Lemma 3. Given a resource Ri and a lock manager LK to which Ri is registered,
deregister method ensures that only Ri can be deregister itself from LK .

Proof Sketch: See [10] for proof.

Theorem 1 (Safety of the exclusive access:). Given an XACML policy P for exclusive
access to an available resource R and multiple concurrent access requests from subjects
Si, i ∈ [1, n] (i.e., exclusiveAccess(R, Si)), only one request from the above set
is authorized by P.

Proof: See [10] for proof.

Theorem 2 (Safety of dynamic constraints:). Given an XACML policy P for dy-
namic constraint for access to a resource and multiple conflicting access requests
(accessResource(R, Si)), then P authorizes only one request.

Proof: Similar to that of Theorem 1.

Theorem 3 (Liveliness1:). Given a resource R and an exclusive use access request by
subject S exclusiveAccess(R,S)), then policy evaluation will release locks to
all internal resources irrespective of the access control decision.

Proof Sketch: See [10] for proof.

Theorem 4 (Liveliness2:). Given resources x, y and an exclusive use
access requests by subject S exclusiveAccess(x,S) followed by
exclusiveAccess(y,S)) and concurrent exclusive use access requests by
subject T exclusiveAccess(y,T) followed by exclusiveAccess(x,T)),
then at-least one of the exclusive access requests is denied by policy evaluation and all
locks acquired for that policy evaluation are released.

Proof Sketch: See [10] for proof.

8 Conclusions

XACML is the default access control specification language for the World Wide
Web [1,2,19]. But XACML does not currently support three types of access control
Use Cases, viz., ensuring exclusive access to globally available resources, preventing
access to a resource given a concurrent conflicting use of another resource (DSoD con-
straints), and preventing access to a resource given a history of conflicting access (such
as in Chinese Wall constraints). We extend XACML syntax for supporting the above-
mentioned use cases, by enhancing the XACML policy enforcement framework with a
lock manager, to realize the additional Use Cases, and informally argue that safety and
liveliness properties are ensured by our implementation.



XACML Policies for Exclusive Resource Usage 289

References

1. Entrust: http://www.entrust.com/
2. Vordel: http://www.vordel.com/
3. Benatallah, B., Casasti, F., Toumani, F., Hamadi, R.: Conceptual modeling of web ser-

vice conversations. Technical Report HPL-2003-60, HP Laboratories Palo Alto (March
2003)

4. Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control model for
web services. In: 2nd IEEE International Conference on Web Services (ICWS), July 2004,
IEEE Computer Society Press, Los Alamitos (2004)

5. Bhatti, R., Joshi, J.B.D., Bertino, E., Ghafoor, A.: Access Control in Dynamic XML-Based
Web Services using X-RBAC. In: First International Conference on Web Services ( ICWS)
(June 2003)

6. Bhatti, R., Joshi, J.B.D., Bertino, E., Ghafoor, A.: X-GTRBAC Admin: A Decentralized
Administration Model for Enterprise-Wide Access Control. In: 9th ACM Symposium on
Access Control Models and Technologies (SACMAT), June 2005, ACM Press, New York
(2005)

7. Bhatti, R., Joshi, J.B.D., Bertino, E., Ghafoor, A.: X-GTRBAC:An XML-Based Policy Spec-
ification Framework and Architecture for Enterprise-Wide Access Control. ACM Transac-
tions on Information and System Security (TISSEC) 8(2) (2005)

8. Clark, D., Wilson, D.: A comparison of commercial and military computer security policies.
In: IEEE Symposium on Security and Privacy, Oakland, April 1987, pp. 184–194. IEEE
Computer Society Press, Los Alamitos (1987)

9. Clark, D., Wilson, D.: Evolution of a model for computer integrity. In: Eleventh National
Computer Security Conference, Baltimore (October 1988)

10. Dhankhar, V., Kaushik, S., Wijesekera, D.: XACML policies for exclusive resource usage.
Technical Report ISE-TR-07-03, ISE Department, George Mason University, Fairfax (April
2007)

11. Farrell, S., Housley, R.: RFC 3281- an internet attribute certificate (April 2002)
12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed nist stan-

dard for role-based access control. ACM Transactions on Information and System Secu-
rity 4(3), 224–274 (2001)

13. Haddad, S., Moreaux, P., Rampacek, S.: Client synthesis for Web Services by way of a timed
semantics (ICEIS 06). In: 8th International Conference on Enterprise Information Systems
(May 2006)

14. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based access
control model. IEEE Transaction on Knowledge and Data Engineering 17(1) (Janurary 2005)

15. Lepro, R.: Cardea: Dynamic access control in distributed systems. Technical Report NAS-
03-020, NASA Advanced Supercomputing (NAS) Division, NASA Ames Research Center,
Moffet Field, CA (November 2003)

16. OASIS: Business process execution language for web services (May 2003)
17. OASIS: Core and hierarchical role based access control (rbac) profile of xacml v2.0 (Febu-

rary 2005), http://docs.oasis-open.org/xacml/2.0/access control-
xacml-2.0-rbac-profile1-specos.pdf

18. OASIS: Extensible access control markup language (Feburary 2005)
19. RFC 2753: A framework for policy-based admission control
20. Sandhu, R.S.: A lattice interpretation of the chinese wall policy. In: Proc. 15th NIST-NCSC

National Computer Security Conference, pp. 329–339 (1992)

http://www.entrust.com/
http://www.vordel.com/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-specos.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-specos.pdf


290 V. Dhankhar, S. Kaushik, and D. Wijesekera

21. Tanenbaum, A.S., Steen, M.v.: Distributed Systems: Principles and Paradigms. Prentice-Hall,
Englewood Cliffs (2002)

22. Tannenbaum, A.S.: Modern operating systems. Prentice-Hall Inc., Englewood Cliffs, NJ
(1992)

23. Tartanoglu, F., Issarny, V., Levy, N., Romanovsky, A.: Dependability in the web service archi-
tecture. In: ICSE Workshop on Architecting Dependable Systems, Orlando, FL (May 2002)



Author Index

Amanatidis, Georgios 14
Ardagna, C.A. 47
Atluri, Vijayalakshmi 61

Ballesteros, Jose 259
Barker, Steve 195
Bertolissi, Clara 195
Biskup, Joachim 1
Boldyreva, Alexandra 14

Canim, Mustafa 177
Chakraborty, Sudip 77
Cremonini, M. 47
Cruz, Isabel F. 93

Damiani, E. 47
De Capitani di Vimercati, S. 47
Deng, Robert H. 243
Desouza-Doucet, Ana C. 259
Dhankhar, Vijayant 275
Di Battista, Giuseppe 31

Fernandez, Eduardo B. 259
Fernández, Maribel 195

Gamboni, Roberto 161

Jajodia, Sushil 98
Jammalamadaka, Ravi Chandra 161
Jonker, Willem 95

Kantarcioglu, Murat 113, 177
Kaushik, Saket 275
Kolter, Jan 129

Larrondo-Petrie, Maria M. 259
Layfield, Ryan 113
Li, Yingjiu 243

Mehrotra, Sharad 161

O’Neill, Adam 14

Palazzi, Bernardo 31
Pernul, Günther 129
Petković, Milan 95
Poolsappasit, Nayot 77

Qin, Xiaolin 227

Ray, Indrajit 77
Ray, Indrakshi 211

Samarati, P. 47
Sandhu, Ravi 144, 227
Schillinger, Rolf 129
Seamons, Kent E. 161
Shin, Heechang 61
Singhal, Anoop 98

Tamassia, Roberto 93
Thuraisingham, Bhavani 113
Toahchoodee, Manachai 211

Venkatasubramanian, Nalini 161

Wang, Lingyu 98
Weibert, Torben 1
Wijesekera, Duminda 275

Xu, Shouhuai 144

Yang, Yanjiang 243
Yao, Danfeng 93

Zhang, Xinwen 227
Zhao, Baoxian 227
Zych, Anna 95


	Title
	Preface
	Organization
	Table of Contents
	Confidentiality Policies for Controlled Query Evaluation
	Introduction
	Controlled Query Evaluation for Potential Secrets
	2.1 Declarative Framework
	2.2 An Enforcement Method with Lying and Refusal

	Generalized Confidentiality Policies
	Enforcement by Reduction
	Conclusion
	References

	Provably-Secure Schemes for Basic Query Support in Outsourced Databases
	Introduction
	The Provable-Security Methodology
	Preliminaries
	Efficiently-Searchable Authenticated Encryption
	Proposed Constructions and Their Security Analyses
	Prefix-Preserving ESAE
	On Efficient Range-Query Processing

	References

	Authenticated Relational Tables and Authenticated Skip Lists
	Introduction
	Background and State of the Art
	The Reference Model
	A Fine Grained Approach
	Exploiting Nested Sets
	Experimental Evaluation
	Conclusions and Future Work
	References

	Location Privacy Protection Through Obfuscation-Based Techniques
	Introduction
	Related Work
	Working Assumptions
	Privacy Preferences and Location Relevance
	Location Accuracy and Measurement Quality
	User Privacy Preferences
	Relevance

	Obfuscation Techniques
	Obfuscation by Enlarging the Radius
	Obfuscation by Shifting the Center
	Obfuscation by Reducing the Radius

	Double Obfuscation
	Double Obfuscation Examples
	Conclusions and Future Work
	References

	Efficient Security Policy Enforcement in a Location Based Service Environment
	Introduction
	Preliminaries
	Moving Objects
	User Profiles

	Moving Object Authorization Model
	Unified Index Scheme for Moving Objects
	User Access Request Evaluation
	Conclusions
	References

	Reliable Delivery of Event Data from Sensors to Actuators in Pervasive Computing Environments
	Introduction
	Overview of Trust-Based Routing Protocol
	Cost Function

	TrustMetric
	Computing {\em properties}
	Computing {\em recommendation}
	Computing {\em interaction}
	Computation of Final Trust Value

	Data Path Discovery
	Route Discovery

	Analysis
	Security Analysis
	Complexity Analysis

	Conclusion and Future Work
	References

	Privacy-Preserving Schema Matching Using Mutual Information
	References

	The Interval Revocation Scheme for Broadcasting Messages to Stateless Receivers
	References

	Measuring the Overall Security of Network Configurations Using Attack Graphs
	Introduction
	A Framework for Defining Security Metrics Using Attack Graphs
	Attack Graph Model
	Motivating Example

	An Attack Resistance Metric
	A Generic Framework
	Attack Resistance as Real Numbers
	Attack Resistance as Sets of Initial Conditions

	Related Work
	Conclusion
	References

	Enforcing Honesty in Assured Information Sharing Within a Distributed System
	Introduction
	Our Approach
	Motivating Scenario
	Related Work
	Organization of This paper

	Putting a Price on Consequence
	Equilibrium Emergence
	Simulation Construction
	Random Behavior
	Tit-for-Tat Behavior
	Dishonest
	Truthful-Punisher Behavior
	Periodic Liar Behavior
	Subtle Liar Behavior

	Experiments
	Results

	Conclusions
	References

	A Privacy-Enhanced Attribute-Based Access Control System
	Introduction
	Fundamentals
	Access Control
	Privacy

	A Privacy-Enhanced ABAC System
	Outline and Goal
	Architecture
	Technical Details

	Integration into Access-eGov
	Related Work
	Conclusions
	References

	A Scalable and Secure Cryptographic Service
	Introduction
	Cryptographic Preliminaries
	ModelandGoals
	Building Block: A Single Server Soft-Token Scheme
	Discussions
	Analysis

	Full-Fledged Scheme
	Analysis and Discussion

	Conclusion and Future Work
	References

	gVault: A Gmail Based Cryptographic Network File System
	Introduction
	Encrypted Storage Model (ESM)
	Operations in the ESM
	Analysis

	DataIntegrity
	gVault Prototype and Evaluation
	Performance

	Related Work
	Conclusions
	References

	Design and Analysis of Querying Encrypted Data in Relational Databases
	Introduction
	Threat Model
	Related Work
	Organization of the Paper

	Block Cipher Modes Suitable for Databases
	Overview of Block Cipher Modes
	Evaluating the Performance of Encryption Modes Under Different Encryption Granularity
	Performance of Encryption Modes Under Different Disk Access Patterns
	Which Mode?

	A New Approach for Storing Encrypted Data in Database Pages
	Experiments and Analyses

	Discussion
	Conclusions
	References

	Dynamic Event-Based Access Control as Term Rewriting
	 Introduction
	Preliminaries
	The \emph{DEBAC} Model
	Features of \emph{DEBAC} Models
	Distributed Term Rewriting Systems

	\emph{DEBAC} Policy Specifications Via Rewrite Rules
	Defining \emph{DEBAC} Policies
	Evaluating Access Requests
	Properties of the \emph{DEBAC} Policy

	Extensions of the \emph{DEBAC} Model
	\emph{DEBAC} with Ordered Categories
	\emph{DEBAC} with Constraints

	Related Work
	Conclusions and Further Work
	References

	A Spatio-temporal Role-Based Access Control Model
	Introduction
	Related Work
	Representing Location and Time
	Representing Location
	Representing Time

	Relationship of Core-RBAC Entities with Time and Location
	Users
	Objects
	Roles
	Sessions
	Permissions

	Impact of Time and Location on Role-Hierarchy
	Impact of Time and Location on Static Separation of Duties
	Impact of Time and Location on Dynamic Separation of Duties
	Example Scenario
	Conclusion and Future Work
	References

	Towards a Times-Based Usage Control Model
	Introduction
	Related Work
	Motivating Example
	TUCONModel
	Preliminaries
	Authorizations
	Authorization Rules
	Completeness

	Implementation of TUCON
	Administration of Authorizations
	Access Control

	Conclusion and Future Work
	References

	New Paradigm of Inference Control with Trusted Computing
	Introduction
	Architecture
	Protocol
	Overview
	Steps
	Security

	Extensions
	Conclusions
	References

	Security Patterns for Physical Access Control Systems
	Introduction
	Background
	Patterns
	Alarm Monitoring
	Relays
	Access Control to Physical Structures

	Related Work and Discussion
	Conclusions
	References

	XACML Policies for Exclusive Resource Usage
	Introduction
	Related Work
	Use Cases, Misuse Cases and Requirements
	Use Case 1: Exclusive Access
	Use Case 2: Enforcing Dynamic Constraints
	Preventing Misuse Cases

	Enhancing the XACML Syntax
	Implemented Semantics of Syntactic Extensions
	XACML Functions

	Architectureral Enhancements Needed for Locks
	Lock Manager (LM)
	Enhancing the Context Handler

	Implementing the Enhanced Design
	Safety and Liveliness Properties
	Conclusions
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




