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1.1 Introduction and Problem Statement

1.1.1 Context and Motivations

The problem of observer design naturally arises in a system approach, as soon
as one needs some internal information from external (directly available) mea-
surements. In general indeed, it is clear that one cannot use as many sensors as
signals of interest characterizing the system behavior (for cost reasons, techno-
logical constraints, etc.), especially since such signals can come in a quite large
number, and they can be of various types: they typically include time-varying
signals characterizing the system (state variables), constant ones (parameters),
and unmeasured external ones (disturbances).

This need for internal information can be motivated by various purposes:
modeling (identification), monitoring (fault detection), or driving (control) the
system. All those purposes are actually jointly required when aiming at keeping
a system under control, as summarized by figure 1.1 hereafter. This makes the
reconstruction - or observer - problem the heart of a general control problem.

The purpose here will thus be to give an overview on some possible tools for
observer design (the related problems of control, fault detection or parameter
identification being considered in subsequent chapters): in short, an observer
relies on a model, with on-line adaptation based on available measurements, and
aiming at information reconstruction, i.e. it can be characterized as a model-
based, measurement-based, closed-loop, information reconstructor.

Usually the model is a state-space representation, and it will be assumed here
that all pieces of information to be reconstructed are born by state variables.
In front of this, one can try to design an explicit dynamical system whose state
should give an estimate of the actual state of the considered model, or just settle
the problem as an optimization one. The present chapter will focus on the first
case, the second one being considered in a subsequent one.

About the considered model, it can in general be either continuous-time or
discrete-time, deterministic or stochastic, finite-dimensional or infinite-dimensi-
onal, smooth or ”with singularities”. But in order to give a quite consistent
presentation, the present chapter will be restricted to the case of smooth,
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Fig. 1.1. Observer as the heart of control systems

finite-dimensional, deterministic, continuous-time state-space descriptions (even
though some elements of observer design can be found for other cases in the
literature).

In this framework, the subsequent subsection specifies the problem formula-
tion, while section 1.2 presents the main related observability notions. Section
1.3 then discusses some possible techniques for observer design from a viewpoint
which can be summarized by figure 1.2 below:

System 

= Observer form

= Observer form 
    interconnection 

 can be turned into 

   observer form  
( interconnection ) 

Observer

Other
(optimization, 
approximation,…) 

Fig. 1.2. A methodology for observer design

In short, the idea is to rely on specific structures for which observers are avail-
able (observer forms, in the figure), and try to bring the system under consid-
eration to such cases. Hence, some basic structures for observer design are first
presented, classified in two categories: those with a constant (input-independent)
correction gain, and those with a time-varying (possibly input-dependent) correc-
tion gain. Then, methods for possible extensions of those designs to more general
classes of systems are proposed, either by means of interconnections, or by trans-
formations. Some conclusions and further remarks are finally given in section 1.4.
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Notice that the material here presented roughly updates [7], summarizing
some own research and viewpoint on the problem (in the continuity of [6] for
instance) as well as various results borrowed from the quite large available ones
(including overviews of [15] or [26] for instance).

In all the subsequent sections, the following notations/terminology will be
used:

• Standard notations x, u, y and t respectively for state vector, input vector,
output vector, and time variable (which might be omitted as an argument
when not indispensable),

• I for the identity matrix of appropriate dimensions,
• vi for the ith component of a vector v,
• M = MT > 0 for a symmetric positive definite matrix M ,
• Stable matrix for a matrix with all eigenvalues having strictly negative real

parts.

while the abbreviation ’w.r.t.’ will stand as usual for ’with respect to’.

1.1.2 Observer Problem Statement

Model Under Consideration

All over the chapter, the system under consideration will be considered to be
described by a state-space representation generally of the following form:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t)) (1.1)

where x denotes the state vector, taking values in X a connected manifold of
dimension n, u denotes the vector of known external inputs, taking values in
some open subset U of IRm, and y denotes the vector of measured outputs
taking values in some open subset Y of IRp.

Functions f and h will in general be assumed to be C∞ w.r.t. their arguments,
and input functions u(.) to be locally essentially bounded and measurable func-
tions in a set U .

The system will be assumed to be forward complete.
More generally, the dynamics might explicitly depend on time via f(x(t),

u(t), t), while y might further directly depend on u and even t, via h(x(t), u(t), t).
Such an explicitly time-dependent system is usually called ’time-varying’ and
generalizes (1.1) into:

ẋ(t) = f(x(t), u(t), t)
y(t) = h(x(t), u(t), t) (1.2)

However, the observer techniques discussed in this chapter are based on more
specific forms of state-space representations, among which the following ones can
be mentioned:

• Control-affine systems:

f(x, u) = f0(x) + g(x)u
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• State-affine systems1:

f(x, u) = A(u)x + B(u), h(x) = Cx (or C(u)x + D(u))

• Linear Time-Varying (LTV) systems:

f(x, u, t) = A(t)x + B(t)u, h(x, u, t) = C(t)x + D(t)u

• Linear Time-Invariant (LTI) systems:

f(x, u) = Ax + Bu, h(x, u) = Cx + Du

Finally, the system will be said to be ’uncontrolled’ whenever f and h do not
depend on u.

In general, χu(t, xt0 ) will denote the solution of the state equation in (1.1)
under the application of input u on [t0, t] and satisfying χu(t0, xt0) = xt0 , while
u will be omitted for uncontrolled cases.

Observer Problem

Given a model (1.1), the purpose of acting on the system, or monitoring it, will
in general need to know x(t), while in practice one has only access to u and y.
The observation problem can then be formulated as follows:

Given a system described by a representation (1.1), find an estimate x̂(t)
for x(t) from the knowledge of u(τ), y(τ) for 0 ≤ τ ≤ t.

Clearly this problem makes sense when one cannot invert h w.r.t. x at any time.
In front of this, one can look for a solution in terms of optimization, by looking

for the best estimate x̂(0) of x(0) which can explain the evolution y(τ) over [0, t],
and from this, get an estimate x̂(t) by integrating (1.1) from x̂(0) and under u(τ).
In order to cope with disturbances, one should rather optimize the estimate of
some initial state over a moving horizon, namely minimize some criterion of the
form: ∫ t

t−T

‖h(χu(τ, zt−T )) − y(τ)‖2dτ

w.r.t. zt−T for any t > T , and y(τ) corresponding to the measured output over
[t − T, t] under the effect of the considered input u.

This is a general formulation for a solution to the problem, relying on available
optimization tools and results for practical use and guarantees (see e.g. [1, 43,
47]): so it takes advantage of its systematic formulation, but suffers from usual
drawbacks of nonlinear optimization (computational burden, local minima...).

Alternatively, one can use the idea of an explicit ”feedback” in estimating x(t),
as this is done for control purposes: more precisely, noting that if one knows the
initial value x(0), one can get an estimate for x(t) by simply integrating (1.1)
from x(0), the feedback-based idea is that if x(0) is unknown, one can try to
1 Including bilinear systems as a particular case, for which A, B, C, D are linear

w.r.t. u.
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correct on-line the integration x̂(t) of (1.1) from some erroneous x̂(0), according
to the measurable error h(x̂(t)) − y(t), namely to look for an estimate x̂ of x as
the solution of a system:

˙̂x(t) = f(x̂(t), u(t)) + k(t, h(x̂(t)) − y(t)), with k(t, 0) = 0. (1.3)

Such an auxiliary system is what will be defined as an observer, and the above
equation is the most common form of an observer for a system (1.1) (as in the
case of linear systems [36, 42]).

More generally, an observer can be defined as follows:

Definition 1. Observer
Considering a system (1.1), an observer is given by an auxiliary system:

Ẋ(t) = F (X(t), u(t), y(t), t)
x̂(t) = H(X(t), u(t), y(t), t)

(1.4)

such that:

(i) x̂(0) = x(0) ⇒ x̂(t) = x(t), ∀t ≥ 0;
(ii) ‖x̂(t) − x(t)‖ → 0 as t → ∞;

If (ii) holds for any x(0), x̂(0), the observer is global.
If (ii) holds with exponential convergence, the observer is exponential.
If (ii) holds with a convergence rate which can be tuned, the observer is tunable.

Notice that the overview on observer design presented in the sequel will mainly
be dedicated to global exponential tunable observers.

Notice also that with notations of (1.1) and (1.4), the difference x̂ − x will be
called observer error.

Notice finally that with the above point of view, the observation problem
turns to be a problem of observer design.

1.2 Nonlinear Observability

The purpose of this section is to discuss some conditions required on the system
for possible solutions to the above mentioned observer problem. Such conditions
above all correspond to what are usually called observability conditions. In short,
they must express that there indeed is a possibility that the purpose of the
observer can be achieved, namely that it might be possible to recover x(t) from
the only knowledge of u and y up to time t: at a first glance, this will be possible
only if y(t) bears the information on the full state vector when considered over
some time interval: this roughly corresponds to the notion of ”observability”.

However, when restricting the definition of an observer strictly to items (i)-
(ii), one can find observers yielding solutions to the observation problem even in
cases when y does not bear the full information on the state vector:

Consider for instance the simple system:

ẋ = −x + u, y = 0
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Clearly one cannot get any information on x from y, and yet the system:

˙̂x = −x̂ + u

satisfies (i)-(ii) and yields an estimate of x, since:

˙︷ ︸︸ ︷
x̂ − x= −(x̂ − x).

This corresponds to a notion of ”detectability”. Notice that in that case, however,
the rate of convergence cannot be tuned. Additional remarks in that respect can
be found e.g. in [6].

If we restrict ourselves to the case of observers in the sense of tunable ob-
servers, then observability becomes a necessary condition. Such a condition can
be specified in a geometric way as shown hereafter, while analytical additional
conditions are discussed afterwards.

1.2.1 Geometric Conditions of Observability

For a possible design of a (tunable) observer, one must be able to recover the
information on the state via the output measured from the initial time, and more
particularly to recover the corresponding initial value of the state. This means
that observability is characterized by the fact that from an output measurement,
one must be able to distinguish between various initial states, or equivalently,
one cannot admit indistinguishable states (following [33]):

Definition 2. Indistinguishability
A paire (x0, x

′
0) ∈ IRn × IRn is indistinguishable for a system (1.1) if:

∀u ∈ U , ∀t ≥ 0, h(χu(t, x0)) = h(χu(t, x′
0)).

A state x is indistinguishable from x0 if the pair (x, x0) is indistinguishable.

From this, observability can be defined:

Definition 3. Observability [resp. at x0]
A system (1.1) is observable [resp. at x0] if it does not admit any indistinguish-
able paire [resp. any state indistinguishable from x0].

This definition is quite general (global), and even too general for practical use,
since one might be mainly interested in distinguishing states from their neigh-
bors:

Consider for instance the case of the following system:

ẋ = u, y = sin(x). (1.5)

Clearly, y cannot help distinguishing between x0 and x0 + 2kπ, and thus the
system is not observable. It is yet clear that y allows to distinguish states of
] − π

2 , π
2 [.
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This brings to consider a weaker notion of observability:

Definition 4. Weak observability [resp. at x0]
A system (1.1) is weakly observable [resp. at x0] if there exists a neighborhood U
of any x [resp. of x0] such that there is no indistinguishable state from x [resp.
x0] in U .

Notice that this does not prevent from cases where the trajectories have to go
far from U before one can distinguish between two states of U .
Consider for instance the case of a system:

ẋ = u; y = h(x)

with h a C∞ function as in figure 1.3 below: clearly the system is weakly observable
sinceanystate isdistinguishable fromanyotheronebyapplying somenonzero input
u, but distinguishing two points of [−1, 1] needs to wait for y to move away from 0.
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−0.8
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−0.4
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0.2

0.4
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h(x)
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Fig. 1.3. Output function of a weakly but not locally observable system

Hence, to prevent from this situation, an even more local definition of observ-
ability can be given:

Definition 5. Local weak observability [resp. at x0]
A system (1.1) is locally weakly observable [resp. at x0] if there exists a neigh-
borhood U of any x [resp. of x0] such that for any neighborhood V of x [resp. x0]
contained in U , there is no indistinguishable state from x [resp. x0] in V when
considering time intervals for which trajectories remain in V .

This roughly means that one can distinguish every state from its neighbors
without ”going too far”. This notion is of more interest in practice, and also
presents the advantage of admitting some ’rank condition’ characterization.

Such a condition relies on the notion of observation space roughly correspond-
ing to the space of all observable states:
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Definition 6. Observation space
The observation space for a system (1.1) is defined as the smallest real vector
space (denoted by O(h)) of C∞ functions containing the components of h and
closed under Lie derivation along fu := f(., u) for any constant u ∈ IRm (namely
such that for any ϕ ∈ O(h), Lfuϕ ∈ O(h), where Lfuϕ(x) = ∂ϕ

∂x f(x, u)).

Definition 7. Observability rank condition [resp. at x0]
A system (1.1) is said to satisfy the observability rank condition [resp. at x0] if:

∀x, dimdO(h) |x= n [resp. dimdO(h) |x0= n]

where dO(h) |x is the set of dϕ(x) with ϕ ∈ O(h).

From this we have [33]:

Theorem 1. A system (1.1) satisfying the observability rank condition at x0 is
locally weakly observable at x0.

More generally a system (1.1) satisfying the observability rank condition is
locally weakly observable.

Conversely, a system (1.1) locally weakly observable satisfies the observability
rank condition in an open dense subset of X.

In short this follows from the facts that:

(i) the observability rank condition at some x0 means the existence of n elements
of the observation space defining a diffeomorphism around x0;
(ii) for any indistinguishable pair (x0, x

′
0) and any element ϕ ∈ O(h), ϕ(x0) =

ϕ(x′
0).

As an example of application, consider again system (1.5): for this system one
clearly has dO(h) = span{cos(x)dx, sin(x)dx} and thus dimdO(h) |x0= 1 for
any x0, namely the system satisfies the observability rank condition.
As a second example, consider a system of the following form:

ẋ = Ax
y = Cx with x ∈ IRn.

(1.6)

For this system, the observability rank condition is equivalent to local weak
observability (which is itself equivalent to observability) and is characterized by
the so-called Kalman rank condition:

Theorem 2. For a system of the form (1.6)

• The observability rank condition is equivalent to rankOm = n with Om the

so-called observability matrix defined by Om =

⎛
⎜⎜⎜⎜⎜⎝

C
CA
CA2

...
CAn−1

⎞
⎟⎟⎟⎟⎟⎠

the ;

• The observability rank condition is equivalent to the observability of the sys-
tem.
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The first point results from straightforward computations (e.g. as in [34]) since
here the kth Lie derivation Lk

fh(x) = CAkx, while the second one results from
the definition of observability (see e.g. [40]).

Notice that if system (1.6) satisfies the above observability rank condition,
the pair (A, C) is usually called observable.

Notice also that the above result also holds for controlled systems with ẋ =
Ax + Bu.

Notice finally that the above observability rank condition is also sufficient for
a possible observer design for (1.6) (even necessary and sufficient for a tunable
observer design - see later).

However, in general, the observability rank condition is not enough for a
possible observer design: this is due to the fact that in general, observability
depends on the inputs, namely it does not prevent from the existence of inputs
for which observability vanishes.

As a simple example, consider the following system:

ẋ =
(

0 u
0 0

)
x

y =
(
1 0

)
x

(1.7)

it is clearly observable for any constant input u 
= 0, but not observable for
u = 0.

This means that the purpose of observer design requires a look at the inputs.

1.2.2 Analytic Conditions for Observability

In view of example (1.7) additional conditions to those previously presented
might be required for possible observer designs, related to inputs. The purpose
here is to discuss such conditions, while effective designs will be proposed later
on.

More precisely, notions of universal inputs and uniform observability for sys-
tems (1.1) are first introduced (as in [15] for instance), and the stronger notions
of persistency and regularity more usually defined for state affine systems [15]
are then presented for the more general case of systems (1.1).

Definition 8. Universal inputs [resp. on [0, t]]
An input u is universal (resp. on [0, t]) for system (1.1) if ∀x0 
= x′

0, ∃τ ≥ 0
(resp. ∃τ ∈ [0, t]) s.t. h(χu(τ, x0)) 
= h(χu(τ, x′

0)).
An input u is a singular input if it is not universal.

As an example, for system (1.7), u(t) = 0 is a singular input.
It can be underlined here that for Cw systems, universal Cw inputs are dense

in the set of Cw functions for the topology induced by C∞ [46].
But one has to also notice that in general characterizing singular inputs is not

easy. Things are easier for systems which do not admit such singular inputs:

Definition 9. Uniformly observable systems (resp. locally)
A system is uniformly observable (UO) if every input is universal (resp. on [0, t]).
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Example 1. The system (1.8) below is uniformly observable [23]:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
. . . . . .

0
... 1
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

x +

⎛
⎜⎜⎜⎜⎜⎝

ϕ1(x1)
ϕ2(x1, x2)

...
ϕn(x1, . . . , xn−1)
ϕn−1(x1, . . . , xn)

⎞
⎟⎟⎟⎟⎟⎠

u

y = x1; x = (x1 ..., xn)T

(1.8)

This can be checked by considering any pair of distinct states x 
= x′: assuming
indeed that their respective components xk and x′

k coincide up to order i and
that xi+1 = x′

i+1, then it is clear from (1.8) that ẋi−1 − ẋ′
i−1 
= 0 and thus there

exists t0 such that xi(t) 
= x′
i(t) for 0 < t < t0. By induction, we easily end

up with the existence of some time for which x1(t) 
= x′
1(t), which is true for

any u.
This property actually means that observability is independent of the inputs

and thus can allow an observer design also independent of the inputs, as in the
case of LTI systems (see later).

For systems which are not uniformly observable, in general possible observers
will depend on the inputs, and not all inputs will be admissible. Restricting the
set of inputs to universal ones, as in the case of uniformly observable systems -
for which all inputs are universal, is actually not enough:

Consider for instance the following system:

ẋ =
(

0 u
−u 0

)
x; y = (1 0)x

For this system, the input defined by u(t) = 1 for t < t1 and u(t) = 0 for t ≥ t1
is clearly universal, but if a disturbance appears after t1, it is also clear that x
cannot be correctly reconstructed.

This shows that universality must be guaranteed over the time, namely must
be persistent. In order to characterize this persistency, notice first that we have
the following property:

Proposition 1. An input u is a universal input on [0, t] for system (1.1) if and
only if

∫ t

0 ||h(χu(τ, x0)) − h(χu(τ, x′
0))||2dτ > 0 for all x0 
= x′

0.

This can be easily checked from definition 8.
Then one can define persistency as follows:

Definition 10. Persistent inputs
An input u is a persistent input for a system (1.1) if

∃t0, T : ∀t ≥ t0, ∀xt 
= x′
t,

∫ t+T

t

||h(χu(τ, xt)) − h(χu(τ, x′
t))||2dτ > 0
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Equivalently, this can be expressed as:
∫ t

t−T

||h(χu(τ, xt−T )) − h(χu(τ, x′
t−T ))||2dτ > 0, ∀xt−T 
= x′

t−T (1.9)

which might be more suitable thinking of t as a current time and the inequality
as a property on the past measurements.

This basically guarantees observability over a given time interval.
However this does not prevent observability from possibly vanishing as time

goes to infinity. If this happens, effective observers would in general have to
compensate this by a correction gain going to infinity:

Consider for instance the system defined by:

ẋ1 = x2
ẋ2 = x2 + u

y =
( x1

1+x2
2

x2

)
=

(
y1
y2

)

For this system any (bounded) input can be checked to be persistent in the
sense of definition 10, since whenever xt−T and x′

t−T differ from one another
in their second component, (1.9) clearly holds, while if they only differ in their
first component, it can be shown that the left-hand side roughly behaves as
(e−4(t−T ) − e−4t) which is indeed positive. But from this it is also clear that the
system is less and less observable as t → ∞.

It can be noticed that the state variables x1, x2 could here be reconstructed
by an auxiliary system of the form (1.3), for instance given as follows:

˙̂x1 = y2 − k1(t)( x̂1
1+y2

2
− y1)

˙̂x2 = x̂2 + u − k2(x̂2 − y2)

for any k2 > 0 and some k1 growing as y2 (namely of the form κ1(1 + y2
2)

for κ1 > 0). This system indeed clearly guarantees that x̂2 − x2 → 0 (since
d
dt(x̂2 − x2) = −k2(x̂2 − x2)), and also that x̂1 − x1 → 0 (from d

dt (x̂1 − x1) =
−κ1(x̂1 − x1)), but with a correction gain k1(t) growing to infinity.

In order to avoid this, one needs a guarantee of observability, namely some
regular persistency:

Definition 11. Regularly persistent inputs
An input u is a regularly persistent input for a system (1.1) if:

∃t0, T : ∀xt−T , x′
t−T , ∀t ≥ t0,∫ t

t−T

||h(χu(τ, xt−T )) − h(χu(τ, x′
t−T ))||2dτ ≥ β(‖xt−T − x′

t−T ‖)

for some class K function β.

From the above proposed definitions of persistency and regular persistency, we
recover the usual definitions already available for state affine systems (of [15] for
instance):
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Proposition 2. For state affine systems, regularly persistent inputs are inputs
u such that:

∃t0, T, α :
∫ t

t−T

ΦT
u (τ, t − T )CT CΦu(τ, t − T )dτ ≥ αI > 0 ∀t ≥ t0, (1.10)

with Φu(τ, t) the transition matrix classically defined by:

dΦu(τ, t)
dτ

= A(u(τ))Φu(τ, t), Φu(t, t) = I.

This is a straight consequence of the application of definition 11 to the case of
state affine systems, with β(‖z‖) = α‖z‖2.

The left-hand side quantity in (1.10) corresponds to the so-called observability
Grammian, classically defined for LTV systems, for any t1 < t2 ∈ IR, as:

Γ (t1, t2) =
∫ t2

t1

ΦT (τ, t1)CT (τ)C(τ)Φ(τ, t1)dτ (1.11)

where Φ as above denotes the transition matrix for the autonomous part of the
system.

Remark 1

• Regularly persistent inputs for state affine systems are those making the sys-
tem an LTV system Uniformly Completely Observable in the sense of Kalman
[36] (since uniform complete observability for LTV systems is typically de-
fined by (1.10);

• For general nonlinear systems, the definition is not of easy use, while for state
affine or LTV systems, it is independent of initial states.

As an example of input properties, consider the following system:

ẋ =
(

0 u
0 0

)
x; y = (1 0)x

For this system, the input for instance defined by:

u(t) = 1 on t ∈ [2kT, (2k + 1)T [, k ≥ 0
u(t) = 0 on t ∈ [(2k + 1)T, (2k + 2)T [, k ≥ 0

2T 4TT 3T
is regularly persistent, while that defined by:

u(t) = 1 on t ∈ [2kT, (2k + 1
k+1 )T [, k ≥ 0

u(t) = 0 on t ∈ [(2k + 1
k+1 )T, (2k + 2)T [, k ≥ 0

2T 4TT 3T

is not [15].
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Notice that for the reasons previously mentioned, regular persistency appears
to be the property actually needed for effective state reconstruction.

However, it can be noticed that it depends on some time T roughly required to
get enough information. If one is interested by an estimation ’in short time’, he
will need some kind of stronger observability property, corresponding to the ap-
plication of what was originally called locally regular inputs on the basis of state
affine systems [15]. In a more general context, this property can be formulated
as follows:

Definition 12. Locally regular inputs
An input u is a locally regular input for a system (1.1) if:

∃T0, α : ∀xt−T , x′
t−T , ∀T ≤ T0, ∀t ≥ T,∫ t

t−T

||h(χu(τ, xt−T )) − h(χu(τ, x′
t−T ))||2dτ ≥ β(‖xt−T − x′

t−T ‖,
1
T

)

for some class KL function β.

This property characterizes in some sense observability for arbitrarily short
times. Obviously when T decays to zero, the observability cannot be kept guar-
anteed, which explains the decaying characteristic of β. When again considering
state affine systems, we can roughly recover the definition previously used in
[15, 4, 11] for instance, by considering some appropriate β(‖xt − x′

t‖, 1
T ):

Proposition 3. For state affine systems, locally regular inputs are inputs u such
that:

∃T0, α : ∀T ≤ T0, ∀t ≥ T,

∫ t

t−T

ΦT
u (τ, t − T )CT CΦu(τ, t − T )dτ ≥ α

1
T

⎛
⎜⎜⎜⎝

T 0
T

. . .
0 T n

⎞
⎟⎟⎟⎠

2

(1.12)

with Φu(τ, t) the transition matrix as in proposition 2.

Here β is given by the right-hand side multiplied by ‖xt−T − x′
t−T ‖: this is

in particular motivated by the form of the Grammian for the linear part of a
uniformly observable system (1.8) [15]:

Γ (t − T, t) = T

⎛
⎜⎜⎜⎜⎝

1 T
2

T 2

6 . . .
T
2

T 2

3
T 3

8 . . .
T 2

6
T 3

8
T 4

20
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

which can indeed be lower bounded as in (1.12) for α small enough.
Obviously for a linear observable system, every input is locally regular.
Notice that the characterization (1.12) actually slightly differs from that pre-

viously considered in [15, 4, 11] (Φu(τ, t) was considered instead of Φu(τ, t − T )
in the inequality), but they become equivalent whenever Φu (i.e. A) is bounded.
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All this will tell us on some possible observer designs for classes of systems,
as discusses in next section. Notice that more specific notions of observability,
which have been introduced in connection with more specific designs not pre-
sented in details here will be omitted (such as ’infinitesimal observability’ or
’differential observability’, related to ’high gain techniques’ as in [26], or ’generic
observability’ used in algebraic approaches as in [19] for instance). Additionally,
some final remarks can be given as follows:

Remark 2

• If a system, e.g. control affine, is not observable in the sense of rank condition,
it can be decomposed into observable and non observable subsystems as
follows [34]:

ζ̇1 = f1(ζ1, ζ2) + g1(ζ1, ζ2)u
ζ̇2 = f2(ζ2) + g2(ζ2)u
y = h2(ζ2)

where the subsystem in ζ2 satisfies the observability rank condition. In that
case one has to work on ζ2.

• If the considered system is not observable, but satisfies the following:
∀u such that x0 andx′

0 are indistinguishable by u :

χu(t, x0) − χu(t, x′
0) → 0 as t → ∞

it satisfies a property of detectability, and in that case one may have the
opportunity to design an observer in the sense of (i) and (ii).

• The analytic observability conditions which have here been presented (persis-
tency, regular persistency, local regularity of definitions 10, 11 or 12 respec-
tively) have been defined in terms of inputs, for controlled nonlinear systems
of the form (1.1). But those definitions clearly still hold for time-varying
systems (1.2). They can even be considered for uncontrolled systems (time-
varying or not) since they are basically defined by output evolutions w.r.t.
initial conditions. In other words, those notions could have been defined as
various observability properties, parameterized by the input in the controlled
case.

1.3 Nonlinear Observer Design

In view of the previously presented notions of observability, and in particular
the problem of inputs which has been highlighted, it can easily be understood
that observer designs will in general depend on the inputs of the system (or the
analytic observability conditions previously highlighted).

However, in some cases, the observer design might be independent of the input,
as in the case of uniformly observable systems for instance. Hence, following the
viewpoint of [6], observer designs can be classified into ’uniform observers’ and
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’non uniform observers’ w.r.t. inputs (or time), and we can roughly consider the
following cases:

• For uniformly observable systems, one might design uniform observers;
• For non-uniformly observable systems, one might design non uniform ob-

servers.

The first ones correspond to the so-called Luenberger observer for LTI systems
[42], while the second ones typically correspond to the case of Kalman observers
for LTV systems [36]. Those observers will be first recalled in the next subsec-
tion, and then extended to nonlinear systems as Luenberger-like and Kalman-like
designs. Subsection 1.3.2 will then discuss possible extensions of such ’basic de-
signs’.

Notice that one might also design non uniform observers for uniformly ob-
servable systems (for instance using a Kalman approach), while in some cases
uniform designs might be achieved for non uniformly observable systems (when
the system satisfies some detectability property for instance, as discussed in [12]).

1.3.1 Basic Structures

Some observers are presented here for particular structures of systems. In the
whole section, an observer is to be understood as a global, exponential, tunable
observer.

Remember that the observer approach we consider is that of designing an
auxiliary system intended to give an estimate x̂ of the actual state vector x in
the sense that x̂(t) − x(t) → 0 as t → ∞. Hence the main problem turns to
be an observer design so as to make the origin asymptotically stable for the
corresponding observer error system. In all the presented results hereafter, this
can be mostly studied by classical Lyapunov tools, as they are recalled in the
appendix section 1.5.

Observer Designs for Linear Structures

The cases of LTI and LTV systems are here first considered.

Luenberger observer (for LTI systems)

Let us consider here LTI systems of the following form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (1.13)

For those systems we have the following classical (Luenberger) result [42]:

Theorem 3. If system (1.13) satisfies the observability rank condition then there
exists an observer of the form:

˙̂x(t) = Ax̂(t) + Bu(t) − K(Cx̂(t) − y(t))

with K such that A − KC is stable.



16 G. Besançon

Remark 3. The rate of convergence can be arbitrarily chosen by appropriate
design of K.

This can be established by showing that observability guarantees the existence
of a transformation into a so-called observability canonical form, for which the
design of an appropriate observer gain is straightforward (see e.g. [40]).

Kalman observer (for LTV systems)

Let us consider here LTV systems of the following form:

ẋ(t) = A(t)x(t) + Bu(t)
y(t) = C(t)x(t) (1.14)

with A(t), C(t) uniformly bounded.
For those systems we have the following (Kalman-related) result [36, 16, 32,

10, 26]:

Theorem 4. If system (1.14) is uniformly completely observable, then there ex-
ists an observer of the form:

˙̂x(t) = A(t)x̂(t) + B(t)u(t) − K(t)(C(t)x̂(t) − y(t))

with K(t) given by:

Ṁ(t) = A(t)M(t) + M(t)AT (t) − M(t)CT (t)W−1C(t)M(t) + V + δM(t)
M(0) = M0 = MT

0 > 0, W = WT > 0
K(t) = M(t)CT (t)W−1

(1.15)
with either δ > 2‖A(t)‖ for all t, or V = V T > 0.

Remark 4

• The rate of convergence can be tuned by δ or V .
• For δ = 0, we get the classical Kalman observer, the usual related condition

for convergence being that (A, V ) be uniformly completely controllable (dual
of uniform complete observability).

• For δ = 0, the observer is optimal in the sense of minimizing w.r.t. z:
∫ t

0
[(C(τ)z(τ) − y(τ))T W−1(C(τ)z(τ) − y(τ)) + vT (τ)V −1v(τ)]dτ

+(z0 − x̂0)T M−1
0 (z0 − x̂0)

under ż(t) = A(t)z(t) + v(t) y(t) = C(t)z(t).
Namely, it provides an explicit solution to the optimization-based approach

mentioned in the introduction.
It is also optimal in the sense of minimizing the mean of the square es-

timation error for a system affected by state white noises and measurement
white noises, uncorrelated to each other, with V and W as respective variance
matrices [40].
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• The observer gain can also be computed as K(t) = S−1(t)CT W−1 where S
is the solution of:

Ṡ(t) = −AT (t)S(t) − S(t)A(t) + CT (t)W−1C(t) − δS(t) − S(t)V S(t)
S(0) = ST (0) > 0

which makes it a linear equation in S whenever V is chosen equal to 0.
This is also true for all subsequent Kalman-like designs, even if they will be
expressed in terms of (1.15).

The result of theorem 4 can be established by showing that:

(i) ∃α1, α2, t0 such that ∀t ≥ t0 : 0 < α1I ≤ M−1(t) ≤ α2I basically from the
condition of uniform complete observability;

(ii)V (e, t) = eT (t)M−1(t)e(t) where e := x̂ − x is a Lyapunov function for the
observer error equation, which is exponentially decaying with a rate of decay
tunable via δ or the minimal eigenvalue of V .

This can be shown either when V = 0 and δ > 2‖A(t)‖ [10, 32], or when
V = V T > 0 and δ = 0 [26].

On the basis of theorem 4, an extension can be intuitively derived for nonlinear
systems relying on its first order approximation along the estimated trajectories,
and known as Extended Kalman Filter (see e.g. [27]):

Definition 13. Extended Kalman Filter (EKF)
Given a nonlinear system of the form:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

the corresponding Extended Kalman Filter is given by:

˙̂x(t) = f(x̂(t), u(t)) − K(t)(h(x̂(t)) − y(t))

where K(t) is given as in the Kalman observer (1.15) with:

A(t) :=
∂f

∂x
(x̂(t), u(t)), C(t) :=

∂h

∂x
(x̂(t))

This yields a candidate for a systematic observer design in front of a nonlinear
system, but in general the convergence is not guaranteed, except under specific
structure conditions (or domain of validity). This motivates the inspection of
more specific nonlinear structures.

Observer Designs for Nonlinear Structures

Some observer designs are here presented for specific structures of nonlinear
systems, extending the Luenberger and Kalman observers above recalled for
linear systems.
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Luenberger-like design (for UO systems)

Let us first consider classes of systems for which observability does not depend
on the input, namely Uniformly Observable systems.

The idea is basically to rely on a linear time-invariant part in order to design
a gain as in Luenberger observers, and either compensate exactly all nonlinear
elements when possible (by output injection for instance), or dominate them via
the linear part.

Additive output nonlinearity
Consider here a system of the form:

ẋ = Ax + ϕ(Cx, u)
y = Cx

(1.16)

Here the nonlinearity can be constructed from direct measurements and thus com-
pensated in the observer design (as originally proposed in [38, 39] for instance):

Theorem 5. If (A, C) is observable, system (1.16) admits an observer of the
form:

˙̂x = Ax̂ + ϕ(y, u) − K(Cx̂ − y)

with K such that A − KC is stable.

Remark 5
Clearly here, the observer error is exactly linear, and thus the convergence rate
can be arbitrarily tuned by appropriate choice of K as in the case of linear
systems.

Additive triangular nonlinearity
Consider here a system of the form:

ẋ = A0x + ϕ(x, u)
y = C0x

with A0 =

⎛
⎜⎜⎜⎝

0 1 0
. . .

1
0 0

⎞
⎟⎟⎟⎠ , C0 = (1 0 · · · 0).

(1.17)

Here the idea will be to use the uniform observability, and thus a structure as
in (1.8), to weight a gain based on the linear part, so as to make the linear
dynamics of the observer error to dominate the nonlinear one [24, 15, 26]:

Theorem 6. If ϕ is globally Lipschitz w.r.t. x, uniformly w.r.t. u and such that:

∂ϕi

∂xj
(x, u) = 0 for j ≥ i + 1, 1 ≤ i, j ≤ n,

system (1.17) admits an observer of the form:
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˙̂x = A0x̂ + ϕ(x̂, u) −

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠ K0(C0x̂ − y)

with K0 such that A0 − K0C0 is stable, and λ large enough.

Remark 6

• This design is known as high gain observer since it relies on the choice of
some sufficiently large tuning parameter λ;

• The larger λ is, the faster the convergence is.
• Output injection can also be used as in theorem 6.
• This design can be extended to systems of the following form [20, 25, 26]:

ẋ(t) = f(x(t), u(t)), y(t) = C0x(t)

where ∂fi

∂xj
= 0 for j > i + 1 and ∂fi

∂xi+1
≥ αi > 0 for all x, u;

• The design can also be extended to multi-output uniformly observable sys-
tems [17, 18];

• This design has been shown to be very useful for observer-based control.

The result of theorem 6 can be established by showing that V (e) = eT P (λ)e is a
Lyapunov function for the observer error equation, exponentially decaying with
a rate of decay being tunable via λ, where:

e = x̂ − x and P (λ) =

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1

P0

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1

,

with P0 such that:

P0(A0 − K0C0) + (A0 − K0C0)T = −I.

Kalman-like design (for non-UO systems)

In the case when observability depends on the inputs (systems which are not
uniformly observable), the design will be restricted to some appropriate classes
of inputs. Then the two possible cases of compensable or non compensable non-
linearities can again be considered.

State affine systems
Consider here a system of the form:

ẋ(t) = A(u(t))x(t) + B(u(t))
y(t) = Cx(t) (1.18)

with A(u(t)) uniformly bounded.
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Here the idea is that imposing the input function yields a linear time-varying
system. Hence the following Kalman-like result holds [32, 15, 10]:

Theorem 7. If u is regularly persistent for (1.18), then the system admits an
observer of the form:

˙̂x(t) = A(u(t))x̂(t) + B(u(t)) − K(t)(Cx̂(t) − y(t))

with K(t) given by:

Ṁ(t) = M(t)AT (u(t)) + A(u(t))M(t) − M(t)CT W−1CM(t) + V + δM(t)
M(0) = MT (0) > 0, W = WT > 0
K(t) = M(t)CT W−1

with δ > 2‖A(u(t))‖ or V = V T > 0 as in LTV systems.

Remark 7
The convergence rate can be tuned by appropriate choice of δ or V .

This design can clearly be extended to systems which are affine in the unmea-
sured states, up to additive output nonlinearity, of the following form [29, 10]:

ẋ(t) = A(u(t), Cx(t))x(t) + B(u(t), Cx(t))
y(t) = Cx(t) (1.19)

with A(u(t), Cχu(t, x0)) bounded for any x0.

Theorem 8. If u is regularly persistent for (1.19), in the sense that it makes

v(t) :=
(

u(t)
Cχu(t, x0)

)
regularly persistent for ẋ(t) = A(v(t))x(t), y(t) = Cx(t)

for any x0, then the system admits an observer of the form:

˙̂x(t) = A(u(t), y(t))x̂(t) + B(u(t), y(t)) − K(t)(Cx̂(t) − y(t))

with K(t) given by:

Ṁ(t) = M(t)AT (u(t), y(t)) + A(u(t), y(t))M(t) − M(t)CT W−1CM(t)
+V + δM(t)

M(0) = MT (0) > 0, W = WT > 0
K(t) = M(t)CT W−1

with δ > 2‖A(u(t), y(t))‖ or V = V T > 0.

State affine systems and additive triangular nonlinearity
Combining structure of system (1.18) or more generally (1.19) with that of sys-
tem (1.17) leads to consider systems of the following form:
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ẋ = A0(u, y)x + ϕ(x, u)
y = C0x with

A0(u, y) =

⎛
⎜⎜⎜⎝

0 a12(u, y) 0
. . .

an−1n(u, y)
0 0

⎞
⎟⎟⎟⎠ bounded, C0 = (1 0 · · · 0),

(1.20)

and with ϕ as in theorem 6.
This means that the observer will need to rely on high gain, but for a non

uniformly observable system. As a consequence, the observability property cor-
responding to observability for short times of proposition 3 will be here required,
but parameterized by y as above:

Theorem 9. If ϕ is globally Lipschitz w.r.t. x, uniformly w.r.t. u and such that:

∂ϕi

∂xj
(x, u) = 0 for j ≥ i + 1, 1 ≤ i, j ≤ n,

and u is locally regular for (1.17), in the sense that it makes v(t) :=
(

u(t)
Cχu(t, x0)

)

locally regular for ẋ(t) = A(v(t))x(t), y(t) = Cx(t) for any x0, then the system
admits an observer of the form:

˙̂x = A0(u, y)x̂ + ϕ(x̂, u) −

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠ K0(t)(C0x̂ − y)

with K0(t) given by:

Ṁ(t) = λ(M(t)AT (u(t), y(t)) + A(u(t), y(t))M(t) − M(t)CT W−1CM(t) + δM(t))
M(0) = MT (0) > 0, W = WT > 0
K(t) = M(t)CT W−1

δ > 2‖A(u, y)‖ and λ = 1
T large enough.

This can be established by showing that [4]:

(i) From local regularity assumption:

∃λ > 0, ∀λ ≥ λ0, ∀t ≥ 1
λ

, 0 < α1I ≤ M−1(t) ≤ α2I

for α1, α2 independent of λ.
(ii)V (e, t) = eT P (λ, t)e is a Lyapunov function for the observer error equation,

exponentially decaying, with a rate of decay tunable by λ, where e = x̂ − x
and

P (λ, t) =

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1

M−1(t)

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1
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Notice that this kind of design also holds for systems of the form (1.20) where
the aii+1’s in A0 are matrices instead of scalars [11].

Finally, notice again that we have presented observer designs in terms of
UO systems (for which observers with constant gains have been given) and non
UO systems (for which observers with varying gains have been presented). But
obviously one could design an observer with a varying gain for UO systems, since
in that case any input will satisfy the appropriate condition for the observer to
work. Conversely, in some cases one can design an observer with a constant gain
even if the system is not UO: this can be done provided the system satisfies some
detectability property as mentioned before [12].

1.3.2 Advanced Designs

The presentation of possible observer designs in previous section has been re-
stricted to very specific structures of systems. In this section are presented some
ways to deal with nonlinear systems which do not a priori satisfy the structures
previously presented.

Interconnection-Based Design

The first way to extend the class of systems for which an observer can be designed
is to interconnect observers in order to design an observer for some intercon-
nected system, when possible. If indeed a system is not under a form for which
an observer is already available, but can be seen as an interconnection between
several subsystems each of which would admit an observer if the states of the
other subsystems were known, then a candidate observer for the interconnection
of these subsystems is given by interconnecting available sub-observers (e.g. as
in [13]). This is sketched by figure 1.4 below for the case of two subsystems.

As a simple example, consider the following system:

ẋ1 = x2
ẋ2 = u1
ẋ3 = x4 + ϕ(x2)
ẋ4 = u2

y =
(

x1
x3

) (1.21)

Clearly here one can consider the system as the interconnection of the following
two subsystems:

(Σ1)

⎧⎨
⎩

ẋ1 = x2
ẋ2 = u1
y1 = x1

and (Σ2)

⎧⎨
⎩

ẋ3 = x4 + ϕ(v)
ẋ4 = u2
y = x3

where v = x2 defines the interconnection.
It is also clear that (Σ1) being linear and observable, it admits an observer

(say O1), as well as (Σ2) whenever v is considered as a known input for (Σ2)
(let (say O2(v)) denote the corresponding observer).
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Fig. 1.4. Interconnection-based observer design

The idea is then to get an observer for the whole system from the intercon-
nection (O1)+(O2(x̂2)) where x̂2 is provided by (O1).

It can here be checked that for instance if ϕ is globally Lipschitz, (O1)+
(O2(x̂2)) can indeed yield an observer.

Now if (Σ2) is replaced by:

(Σ′
2)

⎧⎨
⎩

ẋ3 = ϕ(x2)x4
ẋ4 = u2
y2 = x3

it also results from previous section that an observer can be designed for (Σ′
2)

if x2 is considered to be a known input, provided that this input is regularly
persistent for (Σ′

2). If ϕ is globally Lipschitz, it can again be checked that this
is enough for making it possible to get an observer for the whole system by
interconnecting sub-observers (e.g. as in [10]).

This shows that under appropriate conditions separate possible designs can
indeed yield some overall observer. But it does not go that well in any case.
Consider for instance the following system:

ẋ1 = − 1
2(t + 1)

x1; y1 = 0 (1.22)

ẋ2 = − 1
4(t + 1)

x2 + x1; y2 = 0 (1.23)

This system can be seen as an interconnection via x1 between two subsystems re-
spectively defined by (1.22) and (1.23). Clearly each of them admits an observer
(here not tunable) as follows, as long as x1 is assumed to be known for the second
one:
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˙̂x1 = − 1
2(t + 1)

x̂1; y1 = 0 (1.24)

˙̂x2 = − 1
4(t + 1)

x̂2 + x1; y2 = 0 (1.25)

But if we inject x̂1 given by (1.24) into (1.25), one can check that the error
equation is not stable.

This just illustrates the fact that in general, the stability of the interconnected
observer is not guaranteed by that of each sub-observer, in the same way as
separate designs of observer and controller do not in general result in some
stable observer-based controller for nonlinear systems (no separation principle).

This means that the stability of interconnection of sub-observers requires a
specific attention. Conditions can indeed be derived so as to guarantee a possible
design by interconnection of separate subdesigns, either in the case of cascade in-
terconnection as in the above examples, or even in the case of full interconnection
[13].

Full interconnection

Let us first consider the general case of full interconnection, via the example of
systems made of two subsystems for the sake of illustration, and described by
the following representation:

(Σ)

⎧⎨
⎩

ẋ1 = f1(x1, x2, u), u ⊂ U ⊂ IRm; fi C∞ function, i = 1, 2;
ẋ2 = f2(x2, x1, u), xi ∈ Xi ⊂ IRni , i = 1, 2;
y = (h1(x1), h2(x2))T = (y1, y2)T , yi ∈ IRηi , i = 1, 2.

(1.26)

Assume also that u(.) ∈ U ⊂ L∞(IR+, U), and set Xi := AC(IR+, IRni) the space
of absolutely continuous function from IR+ into IRni . Finally, when i ∈ {1, 2},
let ı̄ denote its complementary index in {1, 2}.

The idea here is that system (1.26) can be seen as the interconnection of two
subsystems (Σi) for i = 1, 2 given by:

(Σi) ẋi = fi(xi, vı̄, u), yi = hi(xi), (vı̄, u) ∈ Xı̄ × U . (1.27)

Assume that for each system (Σi), one can design an observer (Oi) of the fol-
lowing form:

(Oi) żi = fi(zi, vı̄, u) + ki(gi, zi)(hi(zi) − yi), ġi = Gi(zi, vı̄, u, gi), (1.28)

for smooth ki, Gi and (zi, gi) ∈ (IRni × IGi), IGi positively invariant by (1.28).
The point is to look for an observer for (1.26) under the form of the following

interconnection:

(O)
{ ˙̂xi = fi(x̂i, x̂ı̄, u) + ki(ĝi, x̂i)(hi(x̂i) − yi); i = 1, 2;

˙̂gi = Gi(x̂i, x̂ı̄, u, ĝi); i = 1, 2
(1.29)

Set ei := zi −xi, and for any u ∈ U , vı̄ ∈ Xi consider the following system (where
kvı̄

i (t) denotes gain ki(gi, zi) defined in (1.28)) :
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E(u,vı̄)
i

⎧⎨
⎩

ėi = fi(zi, vı̄, u) − fi(zi − ei, vı̄, u) + kvı̄

i (t)(hi(zi) − hi(zi − ei))
żi = fi(zi, vı̄, u) + kvı̄

i (t)(hi(zi) − hi(zi − ei))
ġi = Gi(zi, vı̄, u, gi).

Then sufficient conditions for (1.29) to be an observer for (1.26) have been ex-
pressed in [13] as follows:

Theorem 10. [13] If for i = 1, 2, any signal u ∈ U , vı̄ ∈ AC(IR+, IRnı̄), and
any initial value (z0

i , g0
i ) ∈ IRni × IGi, ∃Vi(t, ei), Wi(ei) positive definite functions

such that:

(i) ∀xi ∈ Xi; ∀ei ∈ IRni ; ∀t ≥ 0,

∂Vi

∂t
(t, ei) +

∂Vi

∂ei
(t, ei)[fi(xi + ei, vı̄(t), u(t)) − fi(xi, vı̄(t), u(t))

+kvı̄

i (t)(hi(xi + ei) − hi(xi))] ≤ −Wi(ei)

(ii) ∃αi > 0; ∀xi ∈ Xi; ∀xı̄ ∈ IRnı̄ ; ∀ei ∈ IRni ; ∀eı̄ ∈ IRnı̄ ; ∀t ≥ 0,
∥∥∥∥∂Vi

∂ei
(t, ei)[fi(xi, xı̄ + eı̄, u(t)) − fi(xi, xı̄, u(t))]

∥∥∥∥ ≤ αi

√
Wi(ei)

√
Wı̄(eı̄),

(iii) α1 + α2 < 2,

then (1.29) is an asymptotic observer for (1.26).
•

This can be established on the basis of Lyapunov arguments by appropriately
combining V1 and V2. The result can be extended to more than two subsystems
by using Lyapunov stability analysis of interconnected systems for instance as
in [37].

As an example, this approach can yield observers for systems of the form:

ẋ1 = A1x1 + f1(x1, x2, u)
ẋ2 = A2x2 + f2(x1, x2, u)

y =
(

C1x1
C2x2

)

relying on high gain separate designs for x1 and x2 for instance, or even Kalman
separate designs (in particular if Ai = Ai(u) for some i ∈ {1, 2} for instance)
[6, 13].

Cascade interconnection

In the weaker case of cascade interconnection, namely when f1(x1, x2, u) =
f1(x1, u) in (1.26), various results have been proposed for the stability of the
interconnected system. Let us report here the weakened assumptions proposed
in [13] in this context of observer design:
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Theorem 11. Assume that:

I. System ẋ1 = f1(x1, u); y1 = h1(x1) admits an observer (O1) as in (1.28)
(without v2), s.t. ∀u ∈ U and ∀x1(t) admissible trajectory of the system
associated to u:

lim
t→∞ e1(t) = 0 and

∫ +∞

0
‖e1(t)‖dt < +∞ (with e1 := z1 − x1); (1.30)

II. ∃c > 0; ∀u ∈ U ; ∀x2 ∈ X2, ‖f2(x2, x1, u) − f2(x2, x
′
1, u)‖ ≤ c‖x1 − x′

1‖;

III.∀u ∈ U , ∀v1 ∈ AC(IR+, IRn1), ∀z0
2 , g0

2, ∃v(t, e2), w(e2) positive definite func-
tions s.t for every trajectory of E(u,v1)

2 with z2(0) = z0
2 , g2(0) = g0

2:
(i) ∀x2 ∈ X2, e2 ∈ IRn2 , t ≥ 0,

∂v

∂t
(t, e2) +

∂v

∂e2
(t, e2)[f2(x2 + e2, v1(t), u(t)) − f2(x2, v1(t), u(t))

+kv1
2 (t)(h2(x2 + e2) − h2(x2))] ≤ −w(e2)

(ii) ∀e2 ∈ IRn2 , t ≥ 0; v(t, e2) ≥ w̄(e2)

(iii) ∀e2 ∈ IRn2\B(0, r), t ≥ 0;
∥∥∥∥ ∂v

∂e2
(t, e2(t))

∥∥∥∥ ≤ λ(1 + v(t, e2(t))) for some

constants λ, r > 0 and B(0, r) := {e2 : ‖e2‖ ≤ r}.

Then:
˙̂x1 = f1(x̂1, u) + k1(ĝ1, x̂1)(h1(x̂1) − h1(x1))
˙̂x2 = f2(x̂1, x̂2, u) + k2(ĝ2, x̂2)(h2(x̂1) − h2(x1))
˙̂g1 = G1(x̂1, u, ĝ1);
˙̂g2 = G2(x̂2, x̂1, u, ĝ2).

(1.31)

is an observer for (1.26) where f1(x1, x2, u) = f1(x1, u).
•

Once again this result can be established by Lyapunov analysis.
Notice that the here above proposed conditions might be modified by using

more specific stability results for cascade systems.
A typical example of cascade observer design can be found in [10], where the

Kalman-like design was extended to systems of the following form:

ẋ1 = A1(u, y)x1 + B1(u, y)
ẋ2 = A2(u, y, x1)x2 + B2(u, y, x1)

y =
(

C1x1
C2x2

)

Those examples show how using available observers for systems in some partic-
ular forms, one might be able to design observers for further nonlinear systems.
Next section proposes another way to do so.
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Transformation-Based Design

Principle

The observer designs presented till now are still all based on particular structures
of the system (either isolated or interconnected). The subsequent idea is that
these designs can also give state observers for systems which can be turned into
one of these forms by an appropriate transformation. The most commonapproach
in that respect is to consider changes of state coordinates. Such a relationship
defines some system equivalence:

Definition 14. System equivalence [resp. at x0]
A system described by:{

ẋ = f(x, u) = fu(x)x ∈ IRn, u ∈ IRm

y = h(x) ∈ IRp (1.32)

will be said to be equivalent [resp. at x0] to the system:{
ż = F (z, u) = Fu(z)
y = H(z) (1.33)

if there exists a diffeomorphism z = Φ(x) defined on IRn [resp. some neighbour-
hood of x0] such that:

∀u ∈ IRm,
∂Φ

∂x
fu(x) |x=Φ−1(z)= Fu(z) and h ◦ Φ−1 = H.

Systems (1.32) and (1.33) are then said to be equivalent by z = Φ(x).

The interest of such a property for observer design can then be illustrated by
the following proposition (e.g. as in [6]):

Proposition 4. Given two systems (Σ1) and (Σ2) respectively defined by:

(Σ1)
{

ẋ = X(x, u)
y = h(x) and (Σ2)

{
ż = Z(z, u)
y = H(z)

and equivalent by z = Φ(x),
If:

(O2)
{ ˙̂z = Z(ẑ, u) + k(w, H(ẑ) − y))

ẇ = F (w, u, y)

is an observer for (Σ2),
Then:

(O2)

⎧⎪⎨
⎪⎩

˙̂x = X(x̂, u) +
(

∂Φ

∂x

)−1

|x̂
k(w, h(x̂) − y)

ẇ = F (w, u, y)

is an observer for (Σ1).

From this indeed, if a system is not of an appropriate structure for an observer
design in view of previous sections, but is equivalent to some other system which
does have some appropriate structure, then the observer problem can be solved
for the original system.
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Examples

The idea of proposition 4 has motivated various works on characterizing systems
which can be turned into some appropriate structures for observer design, from
the linear one up to output injection [38, 14, 39] to several forms of cascade block
state affine systems up to nonlinear injections from block to block as in (1.34)
below for instance [30, 45, 10, 31, 8, 9, ...].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = A1(u, y1)z1 + ϕ1(u, y1)
ż2 = A2(u, y2, z1)z2 + ϕ2(u, y2, z1)

...
żq = Aq(u, yq, z1, . . . zq−1)zq + ϕq(u, yq, . . . zq−1)

y =

⎛
⎜⎝

C1z1
...

Cqzq

⎞
⎟⎠ =

⎛
⎜⎝

y1

...
yq

⎞
⎟⎠

u ∈ IRm, zi ∈ IRni , yi ∈ IRνi ,

(1.34)

As a simple illustrative example, let us consider here the problem of turning a
nonlinear system:

ẋ = f(x)
y = h(x), x ∈ IRn

into a linear observable form up to output injection as follows:

ẋ = Ax + ϕ(Cx)
y = Cx

Necessary and sufficient conditions for this problem to be solvable have been
given in terms of differential geometry in [38].

A constructive algorithm to simultaneously check the possibility of the trans-
formation and construct ϕ can alternatively be given in the spirit of [28] as
follows:

1. Get the representation:

y(n) = Φ(y, ẏ, . . . y(n−1))

and set z1 := y.

2. For i ≥ 1, define ϕi by: ∂ϕi

∂y = ∂z
(n−i+1)
i

∂y(n−i) ;
If ϕi is not only a function of y, the transformation fails and the procedure
ends. Else, set: zi+1 := żi − ϕi

3. Continue until i = n or the procedure aborts.

The procedure is clearly sufficient, and it can be checked that it is indeed nec-
essary.

As a second simple example, turning some n−dimensional nonlinear control
affine system into the appropriate structure for high gain observer design, if
possible, is obtained by the following transformation [23, 24]:
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z =

⎛
⎜⎜⎜⎝

h(x)
Lfh(x)

...
Ln−1

f h(x)

⎞
⎟⎟⎟⎠

Finally, it can be underlined that some enlargement of the class of systems admit-
ting an observer on the basis of the particular structures highlighted in the above
presentation can also be obtained by further considering output transformations
(e.g. as in [39, 28, 5]), or state extension ( e.g. using immersion [22, 41, 35, 11]),
for instance.

In particular, it has been shown in [5] that any control-affine system satisfying
the observability rank condition can be turned into a form (1.20) for appropriate
dimensions of the aii+1’s.

1.4 Conclusion

The purpose in this chapter was to give some overview on techniques of observer
design for nonlinear systems. Clearly this presentation follows a particular view-
point on the problem, and does not claim to be exhaustive. In particular the most
important notions of observability (from this viewpoint) have been reviewed, and
some observers have been presented according to two types of designs in that
respect: uniform and non uniform ones w.r.t. input (or time). Those designs are
in particular driven by specific structures of systems, and admit smooth explicit
gains. Extensions of such designs to more general structures by interconnec-
tions and transformations have also been discussed. More details on some of the
mentioned techniques can be found in the subsequent chapters - such as high
gain designs, immersion-based results or optimization-based approaches. On the
other hand, further comments on detectability and related designs have for in-
stance been omitted, as well as various other technical approaches where the
design is not necessarily smooth (as in sliding modes [21, 3, ...]), explicit (as in
LMI-based designs [2, 44, ...]) or exact (as in many approximate approaches).

1.5 Appendix: Lyapunov Tools

The purpose of observers being asymptotic state reconstruction, an observer for
a given system is to be an auxiliary system such that the error between the
observer state and the system state asymptotically decays to zero, namely 0 is
to be an asymptotically stable equilibrium for the error system.

From this, Lyapunov tools for stability analysis are instrumental in designing
observers, and the purpose here is thus to recall the main results in that respect
(as they can be found for instance in [37]).

In general the considered stability will be that of some nonautonomous system,
namely a system of the form:

ẋ(t) = f(x(t), t) (1.35)
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such that f(0, t) = 0 for any t ≥ 0, and where f is regular enough (at least
piecewise continuous in t and locally Lipschitz in x on D × [0, ∞) where D is
some state domain of IRn containing 0).

For such a system one can consider the following:

Definition 15. Stability
The equilibrium x = 0 of (1.35) will be said to be uniformly stable if:

∀ε > 0, ∃δ > 0, independent of t0 : ‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0.

The equilibrium is uniformly asymptotically stable if it is uniformly stable and:

∃c > 0 independent of t0 : ∀‖x(t0)‖ < c, limt→∞‖x(t)‖ = 0, uniformly in t0,

namely:
‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c

for a constant c > 0 independent of t0, and a continuous function β(r, s) van-
ishing at 0 and strictly increasing w.r.t. its first argument, and decreasing w.r.t.
its second argument even going to zero at infinity (class KL function).

The equilibrium is globally uniformly asymptotically stable if it satisfies the
above inequality for any initial state x(t0).

The equilibrium is exponentially stable if it satisfies the above inequality with
β(r, s) = kre−γs, k, γ > 0, and globally exponentially stable if this condition
holds for any initial state.

Then we can recall the following:

Theorem 12. Let V : D × [0, ∞) → IR be a C1 function such that:

1. W1(x) ≤ V (x, t) ≤ W2(x)

2.
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x)

for t ≥ 0, x ∈ D and W1, W2, W3 are continuous positive definite functions on
D. Then the equilibrium x = 0 is uniformly asymptotically stable.

If the above conditions hold globally and in addition W1 is radially unbounded
(W1(x) → ∞ if ‖x‖ → ∞), then x = 0 is globally uniformly asymptotically
stable.

If in fact:
Wi(x) ≥ ki‖x‖c for i = 1, 3, W2(x) ≤ k2‖x‖c

for k1, k2, k3, c > 0, in the above conditions, then then x = 0 is exponentially
stable.

If those conditions hold globally, then then x = 0 is globally exponentially
stable.

Notice that a function V satisfying the first inequality of item 1 above is called
proper, and it is called decrescent if the second inequality holds.
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