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Preface

This book basically gathers the material of the 28th Grenoble International
Summer School on Control, dedicated to ”Nonlinear observers and applica-
tions”, organized within the Control Systems Department (former Laboratoire
d’Automatique de Grenoble) of the newly formed GIPSA-lab research center, and
hosted by the ”Maison Jean Kuntzmann” of the IMAG Institute, in September
2007.

The motivation for this school and the present book is twofold: on the one
hand, the observer problem is undoubtedly crucial in control systems, and on
the other hand there are not so many comprehensive documents on this topic.
The present one does not claim to be exhaustive, but can give a good idea on the
problem, on the possible tools to get solutions, and on various applications. Its
spirit basically follows from the pioneering studies which took place in particular
in Grenoble in the early eighties, and the subsequent developments, owing a
lot to Guy Bornard and his coworkers. In particular, a general overview on
observer tools for nonlinear systems is here proposed, focuses on high gain and
adaptive gain techniques are given, as well as immersion and optimization-based
approaches. Some applications in control and fault or parameter estimation are
finally discussed.

I am grateful to all the contributors for their participation in this project.
Dr A. Voda, associate professor in the GIPSA-lab research center, and who

has been in charge of the annual organization of high-level summer schools in
Grenoble for quite a few years now, is to be sincerely thanked for her help and
suggestions in the organization of this 28th event. The school and the book
edition are also supported by the French research center C.N.R.S, research min-
istry M.E.N.R.T., and polytechnical institute I.N.P. Grenoble, while the school
practical organization strongly relies on the administrative staff of the GIPSA-
lab control systems department. In particular, my warm thanks go here to Mrs
Marie-Thérèse Descotes-Genon and Mrs Marie-Rose Alfara.

June 4th 2007 Saint-Martin d’Hères,
Gildas Besançon
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Gildas Besançon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.1 Introduction and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2 Fault Diagnosis and Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 212

7.2.1 Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.2.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.3 Adaptive Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.3.1 Adaptive State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.3.2 Joint State and Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 218

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



List of Contributors

M. Alamir
Département d’Automatique,
GIPSA-lab, ENSIEG, BP 46,
38402 Saint-Martin d’Hères, France.
Mazen.Alamir@gipsa-lab.inpg.fr

G. Besançon
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1

An Overview on Observer Tools for Nonlinear
Systems

Gildas Besançon

Control Systems Department (former Laboratoire d’Automatique de Grenoble),
GIPSA-lab. ENSIEG BP 46, 38402 Saint-Martin d’Hères, France
Gildas.Besancon@inpg.fr

1.1 Introduction and Problem Statement

1.1.1 Context and Motivations

The problem of observer design naturally arises in a system approach, as soon
as one needs some internal information from external (directly available) mea-
surements. In general indeed, it is clear that one cannot use as many sensors as
signals of interest characterizing the system behavior (for cost reasons, techno-
logical constraints, etc.), especially since such signals can come in a quite large
number, and they can be of various types: they typically include time-varying
signals characterizing the system (state variables), constant ones (parameters),
and unmeasured external ones (disturbances).

This need for internal information can be motivated by various purposes:
modeling (identification), monitoring (fault detection), or driving (control) the
system. All those purposes are actually jointly required when aiming at keeping
a system under control, as summarized by figure 1.1 hereafter. This makes the
reconstruction - or observer - problem the heart of a general control problem.

The purpose here will thus be to give an overview on some possible tools for
observer design (the related problems of control, fault detection or parameter
identification being considered in subsequent chapters): in short, an observer
relies on a model, with on-line adaptation based on available measurements, and
aiming at information reconstruction, i.e. it can be characterized as a model-
based, measurement-based, closed-loop, information reconstructor.

Usually the model is a state-space representation, and it will be assumed here
that all pieces of information to be reconstructed are born by state variables.
In front of this, one can try to design an explicit dynamical system whose state
should give an estimate of the actual state of the considered model, or just settle
the problem as an optimization one. The present chapter will focus on the first
case, the second one being considered in a subsequent one.

About the considered model, it can in general be either continuous-time or
discrete-time, deterministic or stochastic, finite-dimensional or infinite-dimensi-
onal, smooth or ”with singularities”. But in order to give a quite consistent
presentation, the present chapter will be restricted to the case of smooth,

G. Besançon (Ed.): Nonlinear Observers and Applications, LNCIS 363, pp. 1–33, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 G. Besançon

Model
State x

Parameter p
Disturbance/fault d

Identification 
p

Monitoring 
d

Control
x

OBSERVER

Known inputs Measured outputs 

System

Actions

Fig. 1.1. Observer as the heart of control systems

finite-dimensional, deterministic, continuous-time state-space descriptions (even
though some elements of observer design can be found for other cases in the
literature).

In this framework, the subsequent subsection specifies the problem formula-
tion, while section 1.2 presents the main related observability notions. Section
1.3 then discusses some possible techniques for observer design from a viewpoint
which can be summarized by figure 1.2 below:

System 

= Observer form

= Observer form 
    interconnection 

 can be turned into 

   observer form  
( interconnection ) 

Observer

Other
(optimization, 
approximation,…) 

Fig. 1.2. A methodology for observer design

In short, the idea is to rely on specific structures for which observers are avail-
able (observer forms, in the figure), and try to bring the system under consid-
eration to such cases. Hence, some basic structures for observer design are first
presented, classified in two categories: those with a constant (input-independent)
correction gain, and those with a time-varying (possibly input-dependent) correc-
tion gain. Then, methods for possible extensions of those designs to more general
classes of systems are proposed, either by means of interconnections, or by trans-
formations. Some conclusions and further remarks are finally given in section 1.4.
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Notice that the material here presented roughly updates [7], summarizing
some own research and viewpoint on the problem (in the continuity of [6] for
instance) as well as various results borrowed from the quite large available ones
(including overviews of [15] or [26] for instance).

In all the subsequent sections, the following notations/terminology will be
used:

• Standard notations x, u, y and t respectively for state vector, input vector,
output vector, and time variable (which might be omitted as an argument
when not indispensable),

• I for the identity matrix of appropriate dimensions,
• vi for the ith component of a vector v,
• M = MT > 0 for a symmetric positive definite matrix M ,
• Stable matrix for a matrix with all eigenvalues having strictly negative real

parts.

while the abbreviation ’w.r.t.’ will stand as usual for ’with respect to’.

1.1.2 Observer Problem Statement

Model Under Consideration

All over the chapter, the system under consideration will be considered to be
described by a state-space representation generally of the following form:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t)) (1.1)

where x denotes the state vector, taking values in X a connected manifold of
dimension n, u denotes the vector of known external inputs, taking values in
some open subset U of IRm, and y denotes the vector of measured outputs
taking values in some open subset Y of IRp.

Functions f and h will in general be assumed to be C∞ w.r.t. their arguments,
and input functions u(.) to be locally essentially bounded and measurable func-
tions in a set U .

The system will be assumed to be forward complete.
More generally, the dynamics might explicitly depend on time via f(x(t),

u(t), t), while y might further directly depend on u and even t, via h(x(t), u(t), t).
Such an explicitly time-dependent system is usually called ’time-varying’ and
generalizes (1.1) into:

ẋ(t) = f(x(t), u(t), t)
y(t) = h(x(t), u(t), t) (1.2)

However, the observer techniques discussed in this chapter are based on more
specific forms of state-space representations, among which the following ones can
be mentioned:

• Control-affine systems:

f(x, u) = f0(x) + g(x)u
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• State-affine systems1:

f(x, u) = A(u)x + B(u), h(x) = Cx (or C(u)x + D(u))

• Linear Time-Varying (LTV) systems:

f(x, u, t) = A(t)x + B(t)u, h(x, u, t) = C(t)x + D(t)u

• Linear Time-Invariant (LTI) systems:

f(x, u) = Ax + Bu, h(x, u) = Cx + Du

Finally, the system will be said to be ’uncontrolled’ whenever f and h do not
depend on u.

In general, χu(t, xt0 ) will denote the solution of the state equation in (1.1)
under the application of input u on [t0, t] and satisfying χu(t0, xt0) = xt0 , while
u will be omitted for uncontrolled cases.

Observer Problem

Given a model (1.1), the purpose of acting on the system, or monitoring it, will
in general need to know x(t), while in practice one has only access to u and y.
The observation problem can then be formulated as follows:

Given a system described by a representation (1.1), find an estimate x̂(t)
for x(t) from the knowledge of u(τ), y(τ) for 0 ≤ τ ≤ t.

Clearly this problem makes sense when one cannot invert h w.r.t. x at any time.
In front of this, one can look for a solution in terms of optimization, by looking

for the best estimate x̂(0) of x(0) which can explain the evolution y(τ) over [0, t],
and from this, get an estimate x̂(t) by integrating (1.1) from x̂(0) and under u(τ).
In order to cope with disturbances, one should rather optimize the estimate of
some initial state over a moving horizon, namely minimize some criterion of the
form: ∫ t

t−T

‖h(χu(τ, zt−T )) − y(τ)‖2dτ

w.r.t. zt−T for any t > T , and y(τ) corresponding to the measured output over
[t − T, t] under the effect of the considered input u.

This is a general formulation for a solution to the problem, relying on available
optimization tools and results for practical use and guarantees (see e.g. [1, 43,
47]): so it takes advantage of its systematic formulation, but suffers from usual
drawbacks of nonlinear optimization (computational burden, local minima...).

Alternatively, one can use the idea of an explicit ”feedback” in estimating x(t),
as this is done for control purposes: more precisely, noting that if one knows the
initial value x(0), one can get an estimate for x(t) by simply integrating (1.1)
from x(0), the feedback-based idea is that if x(0) is unknown, one can try to
1 Including bilinear systems as a particular case, for which A, B, C, D are linear

w.r.t. u.
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correct on-line the integration x̂(t) of (1.1) from some erroneous x̂(0), according
to the measurable error h(x̂(t)) − y(t), namely to look for an estimate x̂ of x as
the solution of a system:

˙̂x(t) = f(x̂(t), u(t)) + k(t, h(x̂(t)) − y(t)), with k(t, 0) = 0. (1.3)

Such an auxiliary system is what will be defined as an observer, and the above
equation is the most common form of an observer for a system (1.1) (as in the
case of linear systems [36, 42]).

More generally, an observer can be defined as follows:

Definition 1. Observer
Considering a system (1.1), an observer is given by an auxiliary system:

Ẋ(t) = F (X(t), u(t), y(t), t)
x̂(t) = H(X(t), u(t), y(t), t)

(1.4)

such that:

(i) x̂(0) = x(0) ⇒ x̂(t) = x(t), ∀t ≥ 0;
(ii) ‖x̂(t) − x(t)‖ → 0 as t → ∞;

If (ii) holds for any x(0), x̂(0), the observer is global.
If (ii) holds with exponential convergence, the observer is exponential.
If (ii) holds with a convergence rate which can be tuned, the observer is tunable.

Notice that the overview on observer design presented in the sequel will mainly
be dedicated to global exponential tunable observers.

Notice also that with notations of (1.1) and (1.4), the difference x̂ − x will be
called observer error.

Notice finally that with the above point of view, the observation problem
turns to be a problem of observer design.

1.2 Nonlinear Observability

The purpose of this section is to discuss some conditions required on the system
for possible solutions to the above mentioned observer problem. Such conditions
above all correspond to what are usually called observability conditions. In short,
they must express that there indeed is a possibility that the purpose of the
observer can be achieved, namely that it might be possible to recover x(t) from
the only knowledge of u and y up to time t: at a first glance, this will be possible
only if y(t) bears the information on the full state vector when considered over
some time interval: this roughly corresponds to the notion of ”observability”.

However, when restricting the definition of an observer strictly to items (i)-
(ii), one can find observers yielding solutions to the observation problem even in
cases when y does not bear the full information on the state vector:

Consider for instance the simple system:

ẋ = −x + u, y = 0
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Clearly one cannot get any information on x from y, and yet the system:

˙̂x = −x̂ + u

satisfies (i)-(ii) and yields an estimate of x, since:

˙︷ ︸︸ ︷
x̂ − x= −(x̂ − x).

This corresponds to a notion of ”detectability”. Notice that in that case, however,
the rate of convergence cannot be tuned. Additional remarks in that respect can
be found e.g. in [6].

If we restrict ourselves to the case of observers in the sense of tunable ob-
servers, then observability becomes a necessary condition. Such a condition can
be specified in a geometric way as shown hereafter, while analytical additional
conditions are discussed afterwards.

1.2.1 Geometric Conditions of Observability

For a possible design of a (tunable) observer, one must be able to recover the
information on the state via the output measured from the initial time, and more
particularly to recover the corresponding initial value of the state. This means
that observability is characterized by the fact that from an output measurement,
one must be able to distinguish between various initial states, or equivalently,
one cannot admit indistinguishable states (following [33]):

Definition 2. Indistinguishability
A paire (x0, x

′
0) ∈ IRn × IRn is indistinguishable for a system (1.1) if:

∀u ∈ U , ∀t ≥ 0, h(χu(t, x0)) = h(χu(t, x′
0)).

A state x is indistinguishable from x0 if the pair (x, x0) is indistinguishable.

From this, observability can be defined:

Definition 3. Observability [resp. at x0]
A system (1.1) is observable [resp. at x0] if it does not admit any indistinguish-
able paire [resp. any state indistinguishable from x0].

This definition is quite general (global), and even too general for practical use,
since one might be mainly interested in distinguishing states from their neigh-
bors:

Consider for instance the case of the following system:

ẋ = u, y = sin(x). (1.5)

Clearly, y cannot help distinguishing between x0 and x0 + 2kπ, and thus the
system is not observable. It is yet clear that y allows to distinguish states of
] − π

2 , π
2 [.
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This brings to consider a weaker notion of observability:

Definition 4. Weak observability [resp. at x0]
A system (1.1) is weakly observable [resp. at x0] if there exists a neighborhood U
of any x [resp. of x0] such that there is no indistinguishable state from x [resp.
x0] in U .

Notice that this does not prevent from cases where the trajectories have to go
far from U before one can distinguish between two states of U .
Consider for instance the case of a system:

ẋ = u; y = h(x)

with h a C∞ function as in figure 1.3 below: clearly the system is weakly observable
sinceanystate isdistinguishable fromanyotheronebyapplying somenonzero input
u, but distinguishing two points of [−1, 1] needs to wait for y to move away from 0.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

h(x)

x

Fig. 1.3. Output function of a weakly but not locally observable system

Hence, to prevent from this situation, an even more local definition of observ-
ability can be given:

Definition 5. Local weak observability [resp. at x0]
A system (1.1) is locally weakly observable [resp. at x0] if there exists a neigh-
borhood U of any x [resp. of x0] such that for any neighborhood V of x [resp. x0]
contained in U , there is no indistinguishable state from x [resp. x0] in V when
considering time intervals for which trajectories remain in V .

This roughly means that one can distinguish every state from its neighbors
without ”going too far”. This notion is of more interest in practice, and also
presents the advantage of admitting some ’rank condition’ characterization.

Such a condition relies on the notion of observation space roughly correspond-
ing to the space of all observable states:



8 G. Besançon

Definition 6. Observation space
The observation space for a system (1.1) is defined as the smallest real vector
space (denoted by O(h)) of C∞ functions containing the components of h and
closed under Lie derivation along fu := f(., u) for any constant u ∈ IRm (namely
such that for any ϕ ∈ O(h), Lfuϕ ∈ O(h), where Lfuϕ(x) = ∂ϕ

∂x f(x, u)).

Definition 7. Observability rank condition [resp. at x0]
A system (1.1) is said to satisfy the observability rank condition [resp. at x0] if:

∀x, dimdO(h) |x= n [resp. dimdO(h) |x0= n]

where dO(h) |x is the set of dϕ(x) with ϕ ∈ O(h).

From this we have [33]:

Theorem 1. A system (1.1) satisfying the observability rank condition at x0 is
locally weakly observable at x0.

More generally a system (1.1) satisfying the observability rank condition is
locally weakly observable.

Conversely, a system (1.1) locally weakly observable satisfies the observability
rank condition in an open dense subset of X.

In short this follows from the facts that:

(i) the observability rank condition at some x0 means the existence of n elements
of the observation space defining a diffeomorphism around x0;
(ii) for any indistinguishable pair (x0, x

′
0) and any element ϕ ∈ O(h), ϕ(x0) =

ϕ(x′
0).

As an example of application, consider again system (1.5): for this system one
clearly has dO(h) = span{cos(x)dx, sin(x)dx} and thus dimdO(h) |x0= 1 for
any x0, namely the system satisfies the observability rank condition.
As a second example, consider a system of the following form:

ẋ = Ax
y = Cx with x ∈ IRn.

(1.6)

For this system, the observability rank condition is equivalent to local weak
observability (which is itself equivalent to observability) and is characterized by
the so-called Kalman rank condition:

Theorem 2. For a system of the form (1.6)

• The observability rank condition is equivalent to rankOm = n with Om the

so-called observability matrix defined by Om =

⎛
⎜⎜⎜⎜⎜⎝

C
CA
CA2

...
CAn−1

⎞
⎟⎟⎟⎟⎟⎠

the ;

• The observability rank condition is equivalent to the observability of the sys-
tem.
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The first point results from straightforward computations (e.g. as in [34]) since
here the kth Lie derivation Lk

fh(x) = CAkx, while the second one results from
the definition of observability (see e.g. [40]).

Notice that if system (1.6) satisfies the above observability rank condition,
the pair (A, C) is usually called observable.

Notice also that the above result also holds for controlled systems with ẋ =
Ax + Bu.

Notice finally that the above observability rank condition is also sufficient for
a possible observer design for (1.6) (even necessary and sufficient for a tunable
observer design - see later).

However, in general, the observability rank condition is not enough for a
possible observer design: this is due to the fact that in general, observability
depends on the inputs, namely it does not prevent from the existence of inputs
for which observability vanishes.

As a simple example, consider the following system:

ẋ =
(

0 u
0 0

)
x

y =
(
1 0

)
x

(1.7)

it is clearly observable for any constant input u 
= 0, but not observable for
u = 0.

This means that the purpose of observer design requires a look at the inputs.

1.2.2 Analytic Conditions for Observability

In view of example (1.7) additional conditions to those previously presented
might be required for possible observer designs, related to inputs. The purpose
here is to discuss such conditions, while effective designs will be proposed later
on.

More precisely, notions of universal inputs and uniform observability for sys-
tems (1.1) are first introduced (as in [15] for instance), and the stronger notions
of persistency and regularity more usually defined for state affine systems [15]
are then presented for the more general case of systems (1.1).

Definition 8. Universal inputs [resp. on [0, t]]
An input u is universal (resp. on [0, t]) for system (1.1) if ∀x0 
= x′

0, ∃τ ≥ 0
(resp. ∃τ ∈ [0, t]) s.t. h(χu(τ, x0)) 
= h(χu(τ, x′

0)).
An input u is a singular input if it is not universal.

As an example, for system (1.7), u(t) = 0 is a singular input.
It can be underlined here that for Cw systems, universal Cw inputs are dense

in the set of Cw functions for the topology induced by C∞ [46].
But one has to also notice that in general characterizing singular inputs is not

easy. Things are easier for systems which do not admit such singular inputs:

Definition 9. Uniformly observable systems (resp. locally)
A system is uniformly observable (UO) if every input is universal (resp. on [0, t]).
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Example 1. The system (1.8) below is uniformly observable [23]:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
. . . . . .

0
... 1
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

x +

⎛
⎜⎜⎜⎜⎜⎝

ϕ1(x1)
ϕ2(x1, x2)

...
ϕn(x1, . . . , xn−1)
ϕn−1(x1, . . . , xn)

⎞
⎟⎟⎟⎟⎟⎠

u

y = x1; x = (x1 ..., xn)T

(1.8)

This can be checked by considering any pair of distinct states x 
= x′: assuming
indeed that their respective components xk and x′

k coincide up to order i and
that xi+1 = x′

i+1, then it is clear from (1.8) that ẋi−1 − ẋ′
i−1 
= 0 and thus there

exists t0 such that xi(t) 
= x′
i(t) for 0 < t < t0. By induction, we easily end

up with the existence of some time for which x1(t) 
= x′
1(t), which is true for

any u.
This property actually means that observability is independent of the inputs

and thus can allow an observer design also independent of the inputs, as in the
case of LTI systems (see later).

For systems which are not uniformly observable, in general possible observers
will depend on the inputs, and not all inputs will be admissible. Restricting the
set of inputs to universal ones, as in the case of uniformly observable systems -
for which all inputs are universal, is actually not enough:

Consider for instance the following system:

ẋ =
(

0 u
−u 0

)
x; y = (1 0)x

For this system, the input defined by u(t) = 1 for t < t1 and u(t) = 0 for t ≥ t1
is clearly universal, but if a disturbance appears after t1, it is also clear that x
cannot be correctly reconstructed.

This shows that universality must be guaranteed over the time, namely must
be persistent. In order to characterize this persistency, notice first that we have
the following property:

Proposition 1. An input u is a universal input on [0, t] for system (1.1) if and
only if

∫ t

0 ||h(χu(τ, x0)) − h(χu(τ, x′
0))||2dτ > 0 for all x0 
= x′

0.

This can be easily checked from definition 8.
Then one can define persistency as follows:

Definition 10. Persistent inputs
An input u is a persistent input for a system (1.1) if

∃t0, T : ∀t ≥ t0, ∀xt 
= x′
t,

∫ t+T

t

||h(χu(τ, xt)) − h(χu(τ, x′
t))||2dτ > 0
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Equivalently, this can be expressed as:
∫ t

t−T

||h(χu(τ, xt−T )) − h(χu(τ, x′
t−T ))||2dτ > 0, ∀xt−T 
= x′

t−T (1.9)

which might be more suitable thinking of t as a current time and the inequality
as a property on the past measurements.

This basically guarantees observability over a given time interval.
However this does not prevent observability from possibly vanishing as time

goes to infinity. If this happens, effective observers would in general have to
compensate this by a correction gain going to infinity:

Consider for instance the system defined by:

ẋ1 = x2
ẋ2 = x2 + u

y =
( x1

1+x2
2

x2

)
=

(
y1
y2

)

For this system any (bounded) input can be checked to be persistent in the
sense of definition 10, since whenever xt−T and x′

t−T differ from one another
in their second component, (1.9) clearly holds, while if they only differ in their
first component, it can be shown that the left-hand side roughly behaves as
(e−4(t−T ) − e−4t) which is indeed positive. But from this it is also clear that the
system is less and less observable as t → ∞.

It can be noticed that the state variables x1, x2 could here be reconstructed
by an auxiliary system of the form (1.3), for instance given as follows:

˙̂x1 = y2 − k1(t)( x̂1
1+y2

2
− y1)

˙̂x2 = x̂2 + u − k2(x̂2 − y2)

for any k2 > 0 and some k1 growing as y2 (namely of the form κ1(1 + y2
2)

for κ1 > 0). This system indeed clearly guarantees that x̂2 − x2 → 0 (since
d
dt(x̂2 − x2) = −k2(x̂2 − x2)), and also that x̂1 − x1 → 0 (from d

dt (x̂1 − x1) =
−κ1(x̂1 − x1)), but with a correction gain k1(t) growing to infinity.

In order to avoid this, one needs a guarantee of observability, namely some
regular persistency:

Definition 11. Regularly persistent inputs
An input u is a regularly persistent input for a system (1.1) if:

∃t0, T : ∀xt−T , x′
t−T , ∀t ≥ t0,∫ t

t−T

||h(χu(τ, xt−T )) − h(χu(τ, x′
t−T ))||2dτ ≥ β(‖xt−T − x′

t−T ‖)

for some class K function β.

From the above proposed definitions of persistency and regular persistency, we
recover the usual definitions already available for state affine systems (of [15] for
instance):
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Proposition 2. For state affine systems, regularly persistent inputs are inputs
u such that:

∃t0, T, α :
∫ t

t−T

ΦT
u (τ, t − T )CT CΦu(τ, t − T )dτ ≥ αI > 0 ∀t ≥ t0, (1.10)

with Φu(τ, t) the transition matrix classically defined by:

dΦu(τ, t)
dτ

= A(u(τ))Φu(τ, t), Φu(t, t) = I.

This is a straight consequence of the application of definition 11 to the case of
state affine systems, with β(‖z‖) = α‖z‖2.

The left-hand side quantity in (1.10) corresponds to the so-called observability
Grammian, classically defined for LTV systems, for any t1 < t2 ∈ IR, as:

Γ (t1, t2) =
∫ t2

t1

ΦT (τ, t1)CT (τ)C(τ)Φ(τ, t1)dτ (1.11)

where Φ as above denotes the transition matrix for the autonomous part of the
system.

Remark 1

• Regularly persistent inputs for state affine systems are those making the sys-
tem an LTV system Uniformly Completely Observable in the sense of Kalman
[36] (since uniform complete observability for LTV systems is typically de-
fined by (1.10);

• For general nonlinear systems, the definition is not of easy use, while for state
affine or LTV systems, it is independent of initial states.

As an example of input properties, consider the following system:

ẋ =
(

0 u
0 0

)
x; y = (1 0)x

For this system, the input for instance defined by:

u(t) = 1 on t ∈ [2kT, (2k + 1)T [, k ≥ 0
u(t) = 0 on t ∈ [(2k + 1)T, (2k + 2)T [, k ≥ 0

2T 4TT 3T
is regularly persistent, while that defined by:

u(t) = 1 on t ∈ [2kT, (2k + 1
k+1 )T [, k ≥ 0

u(t) = 0 on t ∈ [(2k + 1
k+1 )T, (2k + 2)T [, k ≥ 0

2T 4TT 3T

is not [15].
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Notice that for the reasons previously mentioned, regular persistency appears
to be the property actually needed for effective state reconstruction.

However, it can be noticed that it depends on some time T roughly required to
get enough information. If one is interested by an estimation ’in short time’, he
will need some kind of stronger observability property, corresponding to the ap-
plication of what was originally called locally regular inputs on the basis of state
affine systems [15]. In a more general context, this property can be formulated
as follows:

Definition 12. Locally regular inputs
An input u is a locally regular input for a system (1.1) if:

∃T0, α : ∀xt−T , x′
t−T , ∀T ≤ T0, ∀t ≥ T,∫ t

t−T

||h(χu(τ, xt−T )) − h(χu(τ, x′
t−T ))||2dτ ≥ β(‖xt−T − x′

t−T ‖,
1
T

)

for some class KL function β.

This property characterizes in some sense observability for arbitrarily short
times. Obviously when T decays to zero, the observability cannot be kept guar-
anteed, which explains the decaying characteristic of β. When again considering
state affine systems, we can roughly recover the definition previously used in
[15, 4, 11] for instance, by considering some appropriate β(‖xt − x′

t‖, 1
T ):

Proposition 3. For state affine systems, locally regular inputs are inputs u such
that:

∃T0, α : ∀T ≤ T0, ∀t ≥ T,

∫ t

t−T

ΦT
u (τ, t − T )CT CΦu(τ, t − T )dτ ≥ α

1
T

⎛
⎜⎜⎜⎝

T 0
T

. . .
0 T n

⎞
⎟⎟⎟⎠

2

(1.12)

with Φu(τ, t) the transition matrix as in proposition 2.

Here β is given by the right-hand side multiplied by ‖xt−T − x′
t−T ‖: this is

in particular motivated by the form of the Grammian for the linear part of a
uniformly observable system (1.8) [15]:

Γ (t − T, t) = T

⎛
⎜⎜⎜⎜⎝

1 T
2

T 2

6 . . .
T
2

T 2

3
T 3

8 . . .
T 2

6
T 3

8
T 4

20
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

which can indeed be lower bounded as in (1.12) for α small enough.
Obviously for a linear observable system, every input is locally regular.
Notice that the characterization (1.12) actually slightly differs from that pre-

viously considered in [15, 4, 11] (Φu(τ, t) was considered instead of Φu(τ, t − T )
in the inequality), but they become equivalent whenever Φu (i.e. A) is bounded.
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All this will tell us on some possible observer designs for classes of systems,
as discusses in next section. Notice that more specific notions of observability,
which have been introduced in connection with more specific designs not pre-
sented in details here will be omitted (such as ’infinitesimal observability’ or
’differential observability’, related to ’high gain techniques’ as in [26], or ’generic
observability’ used in algebraic approaches as in [19] for instance). Additionally,
some final remarks can be given as follows:

Remark 2

• If a system, e.g. control affine, is not observable in the sense of rank condition,
it can be decomposed into observable and non observable subsystems as
follows [34]:

ζ̇1 = f1(ζ1, ζ2) + g1(ζ1, ζ2)u
ζ̇2 = f2(ζ2) + g2(ζ2)u
y = h2(ζ2)

where the subsystem in ζ2 satisfies the observability rank condition. In that
case one has to work on ζ2.

• If the considered system is not observable, but satisfies the following:
∀u such that x0 andx′

0 are indistinguishable by u :

χu(t, x0) − χu(t, x′
0) → 0 as t → ∞

it satisfies a property of detectability, and in that case one may have the
opportunity to design an observer in the sense of (i) and (ii).

• The analytic observability conditions which have here been presented (persis-
tency, regular persistency, local regularity of definitions 10, 11 or 12 respec-
tively) have been defined in terms of inputs, for controlled nonlinear systems
of the form (1.1). But those definitions clearly still hold for time-varying
systems (1.2). They can even be considered for uncontrolled systems (time-
varying or not) since they are basically defined by output evolutions w.r.t.
initial conditions. In other words, those notions could have been defined as
various observability properties, parameterized by the input in the controlled
case.

1.3 Nonlinear Observer Design

In view of the previously presented notions of observability, and in particular
the problem of inputs which has been highlighted, it can easily be understood
that observer designs will in general depend on the inputs of the system (or the
analytic observability conditions previously highlighted).

However, in some cases, the observer design might be independent of the input,
as in the case of uniformly observable systems for instance. Hence, following the
viewpoint of [6], observer designs can be classified into ’uniform observers’ and
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’non uniform observers’ w.r.t. inputs (or time), and we can roughly consider the
following cases:

• For uniformly observable systems, one might design uniform observers;
• For non-uniformly observable systems, one might design non uniform ob-

servers.

The first ones correspond to the so-called Luenberger observer for LTI systems
[42], while the second ones typically correspond to the case of Kalman observers
for LTV systems [36]. Those observers will be first recalled in the next subsec-
tion, and then extended to nonlinear systems as Luenberger-like and Kalman-like
designs. Subsection 1.3.2 will then discuss possible extensions of such ’basic de-
signs’.

Notice that one might also design non uniform observers for uniformly ob-
servable systems (for instance using a Kalman approach), while in some cases
uniform designs might be achieved for non uniformly observable systems (when
the system satisfies some detectability property for instance, as discussed in [12]).

1.3.1 Basic Structures

Some observers are presented here for particular structures of systems. In the
whole section, an observer is to be understood as a global, exponential, tunable
observer.

Remember that the observer approach we consider is that of designing an
auxiliary system intended to give an estimate x̂ of the actual state vector x in
the sense that x̂(t) − x(t) → 0 as t → ∞. Hence the main problem turns to
be an observer design so as to make the origin asymptotically stable for the
corresponding observer error system. In all the presented results hereafter, this
can be mostly studied by classical Lyapunov tools, as they are recalled in the
appendix section 1.5.

Observer Designs for Linear Structures

The cases of LTI and LTV systems are here first considered.

Luenberger observer (for LTI systems)

Let us consider here LTI systems of the following form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (1.13)

For those systems we have the following classical (Luenberger) result [42]:

Theorem 3. If system (1.13) satisfies the observability rank condition then there
exists an observer of the form:

˙̂x(t) = Ax̂(t) + Bu(t) − K(Cx̂(t) − y(t))

with K such that A − KC is stable.
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Remark 3. The rate of convergence can be arbitrarily chosen by appropriate
design of K.

This can be established by showing that observability guarantees the existence
of a transformation into a so-called observability canonical form, for which the
design of an appropriate observer gain is straightforward (see e.g. [40]).

Kalman observer (for LTV systems)

Let us consider here LTV systems of the following form:

ẋ(t) = A(t)x(t) + Bu(t)
y(t) = C(t)x(t) (1.14)

with A(t), C(t) uniformly bounded.
For those systems we have the following (Kalman-related) result [36, 16, 32,

10, 26]:

Theorem 4. If system (1.14) is uniformly completely observable, then there ex-
ists an observer of the form:

˙̂x(t) = A(t)x̂(t) + B(t)u(t) − K(t)(C(t)x̂(t) − y(t))

with K(t) given by:

Ṁ(t) = A(t)M(t) + M(t)AT (t) − M(t)CT (t)W−1C(t)M(t) + V + δM(t)
M(0) = M0 = MT

0 > 0, W = WT > 0
K(t) = M(t)CT (t)W−1

(1.15)
with either δ > 2‖A(t)‖ for all t, or V = V T > 0.

Remark 4

• The rate of convergence can be tuned by δ or V .
• For δ = 0, we get the classical Kalman observer, the usual related condition

for convergence being that (A, V ) be uniformly completely controllable (dual
of uniform complete observability).

• For δ = 0, the observer is optimal in the sense of minimizing w.r.t. z:
∫ t

0
[(C(τ)z(τ) − y(τ))T W−1(C(τ)z(τ) − y(τ)) + vT (τ)V −1v(τ)]dτ

+(z0 − x̂0)T M−1
0 (z0 − x̂0)

under ż(t) = A(t)z(t) + v(t) y(t) = C(t)z(t).
Namely, it provides an explicit solution to the optimization-based approach

mentioned in the introduction.
It is also optimal in the sense of minimizing the mean of the square es-

timation error for a system affected by state white noises and measurement
white noises, uncorrelated to each other, with V and W as respective variance
matrices [40].
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• The observer gain can also be computed as K(t) = S−1(t)CT W−1 where S
is the solution of:

Ṡ(t) = −AT (t)S(t) − S(t)A(t) + CT (t)W−1C(t) − δS(t) − S(t)V S(t)
S(0) = ST (0) > 0

which makes it a linear equation in S whenever V is chosen equal to 0.
This is also true for all subsequent Kalman-like designs, even if they will be
expressed in terms of (1.15).

The result of theorem 4 can be established by showing that:

(i) ∃α1, α2, t0 such that ∀t ≥ t0 : 0 < α1I ≤ M−1(t) ≤ α2I basically from the
condition of uniform complete observability;

(ii)V (e, t) = eT (t)M−1(t)e(t) where e := x̂ − x is a Lyapunov function for the
observer error equation, which is exponentially decaying with a rate of decay
tunable via δ or the minimal eigenvalue of V .

This can be shown either when V = 0 and δ > 2‖A(t)‖ [10, 32], or when
V = V T > 0 and δ = 0 [26].

On the basis of theorem 4, an extension can be intuitively derived for nonlinear
systems relying on its first order approximation along the estimated trajectories,
and known as Extended Kalman Filter (see e.g. [27]):

Definition 13. Extended Kalman Filter (EKF)
Given a nonlinear system of the form:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

the corresponding Extended Kalman Filter is given by:

˙̂x(t) = f(x̂(t), u(t)) − K(t)(h(x̂(t)) − y(t))

where K(t) is given as in the Kalman observer (1.15) with:

A(t) :=
∂f

∂x
(x̂(t), u(t)), C(t) :=

∂h

∂x
(x̂(t))

This yields a candidate for a systematic observer design in front of a nonlinear
system, but in general the convergence is not guaranteed, except under specific
structure conditions (or domain of validity). This motivates the inspection of
more specific nonlinear structures.

Observer Designs for Nonlinear Structures

Some observer designs are here presented for specific structures of nonlinear
systems, extending the Luenberger and Kalman observers above recalled for
linear systems.
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Luenberger-like design (for UO systems)

Let us first consider classes of systems for which observability does not depend
on the input, namely Uniformly Observable systems.

The idea is basically to rely on a linear time-invariant part in order to design
a gain as in Luenberger observers, and either compensate exactly all nonlinear
elements when possible (by output injection for instance), or dominate them via
the linear part.

Additive output nonlinearity
Consider here a system of the form:

ẋ = Ax + ϕ(Cx, u)
y = Cx

(1.16)

Here the nonlinearity can be constructed from direct measurements and thus com-
pensated in the observer design (as originally proposed in [38, 39] for instance):

Theorem 5. If (A, C) is observable, system (1.16) admits an observer of the
form:

˙̂x = Ax̂ + ϕ(y, u) − K(Cx̂ − y)

with K such that A − KC is stable.

Remark 5
Clearly here, the observer error is exactly linear, and thus the convergence rate
can be arbitrarily tuned by appropriate choice of K as in the case of linear
systems.

Additive triangular nonlinearity
Consider here a system of the form:

ẋ = A0x + ϕ(x, u)
y = C0x

with A0 =

⎛
⎜⎜⎜⎝

0 1 0
. . .

1
0 0

⎞
⎟⎟⎟⎠ , C0 = (1 0 · · · 0).

(1.17)

Here the idea will be to use the uniform observability, and thus a structure as
in (1.8), to weight a gain based on the linear part, so as to make the linear
dynamics of the observer error to dominate the nonlinear one [24, 15, 26]:

Theorem 6. If ϕ is globally Lipschitz w.r.t. x, uniformly w.r.t. u and such that:

∂ϕi

∂xj
(x, u) = 0 for j ≥ i + 1, 1 ≤ i, j ≤ n,

system (1.17) admits an observer of the form:



An Overview on Observer Tools for Nonlinear Systems 19

˙̂x = A0x̂ + ϕ(x̂, u) −

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠ K0(C0x̂ − y)

with K0 such that A0 − K0C0 is stable, and λ large enough.

Remark 6

• This design is known as high gain observer since it relies on the choice of
some sufficiently large tuning parameter λ;

• The larger λ is, the faster the convergence is.
• Output injection can also be used as in theorem 6.
• This design can be extended to systems of the following form [20, 25, 26]:

ẋ(t) = f(x(t), u(t)), y(t) = C0x(t)

where ∂fi

∂xj
= 0 for j > i + 1 and ∂fi

∂xi+1
≥ αi > 0 for all x, u;

• The design can also be extended to multi-output uniformly observable sys-
tems [17, 18];

• This design has been shown to be very useful for observer-based control.

The result of theorem 6 can be established by showing that V (e) = eT P (λ)e is a
Lyapunov function for the observer error equation, exponentially decaying with
a rate of decay being tunable via λ, where:

e = x̂ − x and P (λ) =

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1

P0

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1

,

with P0 such that:

P0(A0 − K0C0) + (A0 − K0C0)T = −I.

Kalman-like design (for non-UO systems)

In the case when observability depends on the inputs (systems which are not
uniformly observable), the design will be restricted to some appropriate classes
of inputs. Then the two possible cases of compensable or non compensable non-
linearities can again be considered.

State affine systems
Consider here a system of the form:

ẋ(t) = A(u(t))x(t) + B(u(t))
y(t) = Cx(t) (1.18)

with A(u(t)) uniformly bounded.
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Here the idea is that imposing the input function yields a linear time-varying
system. Hence the following Kalman-like result holds [32, 15, 10]:

Theorem 7. If u is regularly persistent for (1.18), then the system admits an
observer of the form:

˙̂x(t) = A(u(t))x̂(t) + B(u(t)) − K(t)(Cx̂(t) − y(t))

with K(t) given by:

Ṁ(t) = M(t)AT (u(t)) + A(u(t))M(t) − M(t)CT W−1CM(t) + V + δM(t)
M(0) = MT (0) > 0, W = WT > 0
K(t) = M(t)CT W−1

with δ > 2‖A(u(t))‖ or V = V T > 0 as in LTV systems.

Remark 7
The convergence rate can be tuned by appropriate choice of δ or V .

This design can clearly be extended to systems which are affine in the unmea-
sured states, up to additive output nonlinearity, of the following form [29, 10]:

ẋ(t) = A(u(t), Cx(t))x(t) + B(u(t), Cx(t))
y(t) = Cx(t) (1.19)

with A(u(t), Cχu(t, x0)) bounded for any x0.

Theorem 8. If u is regularly persistent for (1.19), in the sense that it makes

v(t) :=
(

u(t)
Cχu(t, x0)

)
regularly persistent for ẋ(t) = A(v(t))x(t), y(t) = Cx(t)

for any x0, then the system admits an observer of the form:

˙̂x(t) = A(u(t), y(t))x̂(t) + B(u(t), y(t)) − K(t)(Cx̂(t) − y(t))

with K(t) given by:

Ṁ(t) = M(t)AT (u(t), y(t)) + A(u(t), y(t))M(t) − M(t)CT W−1CM(t)
+V + δM(t)

M(0) = MT (0) > 0, W = WT > 0
K(t) = M(t)CT W−1

with δ > 2‖A(u(t), y(t))‖ or V = V T > 0.

State affine systems and additive triangular nonlinearity
Combining structure of system (1.18) or more generally (1.19) with that of sys-
tem (1.17) leads to consider systems of the following form:
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ẋ = A0(u, y)x + ϕ(x, u)
y = C0x with

A0(u, y) =

⎛
⎜⎜⎜⎝

0 a12(u, y) 0
. . .

an−1n(u, y)
0 0

⎞
⎟⎟⎟⎠ bounded, C0 = (1 0 · · · 0),

(1.20)

and with ϕ as in theorem 6.
This means that the observer will need to rely on high gain, but for a non

uniformly observable system. As a consequence, the observability property cor-
responding to observability for short times of proposition 3 will be here required,
but parameterized by y as above:

Theorem 9. If ϕ is globally Lipschitz w.r.t. x, uniformly w.r.t. u and such that:

∂ϕi

∂xj
(x, u) = 0 for j ≥ i + 1, 1 ≤ i, j ≤ n,

and u is locally regular for (1.17), in the sense that it makes v(t) :=
(

u(t)
Cχu(t, x0)

)

locally regular for ẋ(t) = A(v(t))x(t), y(t) = Cx(t) for any x0, then the system
admits an observer of the form:

˙̂x = A0(u, y)x̂ + ϕ(x̂, u) −

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠ K0(t)(C0x̂ − y)

with K0(t) given by:

Ṁ(t) = λ(M(t)AT (u(t), y(t)) + A(u(t), y(t))M(t) − M(t)CT W−1CM(t) + δM(t))
M(0) = MT (0) > 0, W = WT > 0
K(t) = M(t)CT W−1

δ > 2‖A(u, y)‖ and λ = 1
T large enough.

This can be established by showing that [4]:

(i) From local regularity assumption:

∃λ > 0, ∀λ ≥ λ0, ∀t ≥ 1
λ

, 0 < α1I ≤ M−1(t) ≤ α2I

for α1, α2 independent of λ.
(ii)V (e, t) = eT P (λ, t)e is a Lyapunov function for the observer error equation,

exponentially decaying, with a rate of decay tunable by λ, where e = x̂ − x
and

P (λ, t) =

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1

M−1(t)

⎛
⎜⎝

λ 0
. . .

0 λn

⎞
⎟⎠

−1
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Notice that this kind of design also holds for systems of the form (1.20) where
the aii+1’s in A0 are matrices instead of scalars [11].

Finally, notice again that we have presented observer designs in terms of
UO systems (for which observers with constant gains have been given) and non
UO systems (for which observers with varying gains have been presented). But
obviously one could design an observer with a varying gain for UO systems, since
in that case any input will satisfy the appropriate condition for the observer to
work. Conversely, in some cases one can design an observer with a constant gain
even if the system is not UO: this can be done provided the system satisfies some
detectability property as mentioned before [12].

1.3.2 Advanced Designs

The presentation of possible observer designs in previous section has been re-
stricted to very specific structures of systems. In this section are presented some
ways to deal with nonlinear systems which do not a priori satisfy the structures
previously presented.

Interconnection-Based Design

The first way to extend the class of systems for which an observer can be designed
is to interconnect observers in order to design an observer for some intercon-
nected system, when possible. If indeed a system is not under a form for which
an observer is already available, but can be seen as an interconnection between
several subsystems each of which would admit an observer if the states of the
other subsystems were known, then a candidate observer for the interconnection
of these subsystems is given by interconnecting available sub-observers (e.g. as
in [13]). This is sketched by figure 1.4 below for the case of two subsystems.

As a simple example, consider the following system:

ẋ1 = x2
ẋ2 = u1
ẋ3 = x4 + ϕ(x2)
ẋ4 = u2

y =
(

x1
x3

) (1.21)

Clearly here one can consider the system as the interconnection of the following
two subsystems:

(Σ1)

⎧⎨
⎩

ẋ1 = x2
ẋ2 = u1
y1 = x1

and (Σ2)

⎧⎨
⎩

ẋ3 = x4 + ϕ(v)
ẋ4 = u2
y = x3

where v = x2 defines the interconnection.
It is also clear that (Σ1) being linear and observable, it admits an observer

(say O1), as well as (Σ2) whenever v is considered as a known input for (Σ2)
(let (say O2(v)) denote the corresponding observer).
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Fig. 1.4. Interconnection-based observer design

The idea is then to get an observer for the whole system from the intercon-
nection (O1)+(O2(x̂2)) where x̂2 is provided by (O1).

It can here be checked that for instance if ϕ is globally Lipschitz, (O1)+
(O2(x̂2)) can indeed yield an observer.

Now if (Σ2) is replaced by:

(Σ′
2)

⎧⎨
⎩

ẋ3 = ϕ(x2)x4
ẋ4 = u2
y2 = x3

it also results from previous section that an observer can be designed for (Σ′
2)

if x2 is considered to be a known input, provided that this input is regularly
persistent for (Σ′

2). If ϕ is globally Lipschitz, it can again be checked that this
is enough for making it possible to get an observer for the whole system by
interconnecting sub-observers (e.g. as in [10]).

This shows that under appropriate conditions separate possible designs can
indeed yield some overall observer. But it does not go that well in any case.
Consider for instance the following system:

ẋ1 = − 1
2(t + 1)

x1; y1 = 0 (1.22)

ẋ2 = − 1
4(t + 1)

x2 + x1; y2 = 0 (1.23)

This system can be seen as an interconnection via x1 between two subsystems re-
spectively defined by (1.22) and (1.23). Clearly each of them admits an observer
(here not tunable) as follows, as long as x1 is assumed to be known for the second
one:
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˙̂x1 = − 1
2(t + 1)

x̂1; y1 = 0 (1.24)

˙̂x2 = − 1
4(t + 1)

x̂2 + x1; y2 = 0 (1.25)

But if we inject x̂1 given by (1.24) into (1.25), one can check that the error
equation is not stable.

This just illustrates the fact that in general, the stability of the interconnected
observer is not guaranteed by that of each sub-observer, in the same way as
separate designs of observer and controller do not in general result in some
stable observer-based controller for nonlinear systems (no separation principle).

This means that the stability of interconnection of sub-observers requires a
specific attention. Conditions can indeed be derived so as to guarantee a possible
design by interconnection of separate subdesigns, either in the case of cascade in-
terconnection as in the above examples, or even in the case of full interconnection
[13].

Full interconnection

Let us first consider the general case of full interconnection, via the example of
systems made of two subsystems for the sake of illustration, and described by
the following representation:

(Σ)

⎧⎨
⎩

ẋ1 = f1(x1, x2, u), u ⊂ U ⊂ IRm; fi C∞ function, i = 1, 2;
ẋ2 = f2(x2, x1, u), xi ∈ Xi ⊂ IRni , i = 1, 2;
y = (h1(x1), h2(x2))T = (y1, y2)T , yi ∈ IRηi , i = 1, 2.

(1.26)

Assume also that u(.) ∈ U ⊂ L∞(IR+, U), and set Xi := AC(IR+, IRni) the space
of absolutely continuous function from IR+ into IRni . Finally, when i ∈ {1, 2},
let ı̄ denote its complementary index in {1, 2}.

The idea here is that system (1.26) can be seen as the interconnection of two
subsystems (Σi) for i = 1, 2 given by:

(Σi) ẋi = fi(xi, vı̄, u), yi = hi(xi), (vı̄, u) ∈ Xı̄ × U . (1.27)

Assume that for each system (Σi), one can design an observer (Oi) of the fol-
lowing form:

(Oi) żi = fi(zi, vı̄, u) + ki(gi, zi)(hi(zi) − yi), ġi = Gi(zi, vı̄, u, gi), (1.28)

for smooth ki, Gi and (zi, gi) ∈ (IRni × IGi), IGi positively invariant by (1.28).
The point is to look for an observer for (1.26) under the form of the following

interconnection:

(O)
{ ˙̂xi = fi(x̂i, x̂ı̄, u) + ki(ĝi, x̂i)(hi(x̂i) − yi); i = 1, 2;

˙̂gi = Gi(x̂i, x̂ı̄, u, ĝi); i = 1, 2
(1.29)

Set ei := zi −xi, and for any u ∈ U , vı̄ ∈ Xi consider the following system (where
kvı̄

i (t) denotes gain ki(gi, zi) defined in (1.28)) :
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E(u,vı̄)
i

⎧⎨
⎩

ėi = fi(zi, vı̄, u) − fi(zi − ei, vı̄, u) + kvı̄

i (t)(hi(zi) − hi(zi − ei))
żi = fi(zi, vı̄, u) + kvı̄

i (t)(hi(zi) − hi(zi − ei))
ġi = Gi(zi, vı̄, u, gi).

Then sufficient conditions for (1.29) to be an observer for (1.26) have been ex-
pressed in [13] as follows:

Theorem 10. [13] If for i = 1, 2, any signal u ∈ U , vı̄ ∈ AC(IR+, IRnı̄), and
any initial value (z0

i , g0
i ) ∈ IRni × IGi, ∃Vi(t, ei), Wi(ei) positive definite functions

such that:

(i) ∀xi ∈ Xi; ∀ei ∈ IRni ; ∀t ≥ 0,

∂Vi

∂t
(t, ei) +

∂Vi

∂ei
(t, ei)[fi(xi + ei, vı̄(t), u(t)) − fi(xi, vı̄(t), u(t))

+kvı̄

i (t)(hi(xi + ei) − hi(xi))] ≤ −Wi(ei)

(ii) ∃αi > 0; ∀xi ∈ Xi; ∀xı̄ ∈ IRnı̄ ; ∀ei ∈ IRni ; ∀eı̄ ∈ IRnı̄ ; ∀t ≥ 0,
∥∥∥∥∂Vi

∂ei
(t, ei)[fi(xi, xı̄ + eı̄, u(t)) − fi(xi, xı̄, u(t))]

∥∥∥∥ ≤ αi

√
Wi(ei)

√
Wı̄(eı̄),

(iii) α1 + α2 < 2,

then (1.29) is an asymptotic observer for (1.26).
•

This can be established on the basis of Lyapunov arguments by appropriately
combining V1 and V2. The result can be extended to more than two subsystems
by using Lyapunov stability analysis of interconnected systems for instance as
in [37].

As an example, this approach can yield observers for systems of the form:

ẋ1 = A1x1 + f1(x1, x2, u)
ẋ2 = A2x2 + f2(x1, x2, u)

y =
(

C1x1
C2x2

)

relying on high gain separate designs for x1 and x2 for instance, or even Kalman
separate designs (in particular if Ai = Ai(u) for some i ∈ {1, 2} for instance)
[6, 13].

Cascade interconnection

In the weaker case of cascade interconnection, namely when f1(x1, x2, u) =
f1(x1, u) in (1.26), various results have been proposed for the stability of the
interconnected system. Let us report here the weakened assumptions proposed
in [13] in this context of observer design:
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Theorem 11. Assume that:

I. System ẋ1 = f1(x1, u); y1 = h1(x1) admits an observer (O1) as in (1.28)
(without v2), s.t. ∀u ∈ U and ∀x1(t) admissible trajectory of the system
associated to u:

lim
t→∞ e1(t) = 0 and

∫ +∞

0
‖e1(t)‖dt < +∞ (with e1 := z1 − x1); (1.30)

II. ∃c > 0; ∀u ∈ U ; ∀x2 ∈ X2, ‖f2(x2, x1, u) − f2(x2, x
′
1, u)‖ ≤ c‖x1 − x′

1‖;

III.∀u ∈ U , ∀v1 ∈ AC(IR+, IRn1), ∀z0
2 , g0

2, ∃v(t, e2), w(e2) positive definite func-
tions s.t for every trajectory of E(u,v1)

2 with z2(0) = z0
2 , g2(0) = g0

2:
(i) ∀x2 ∈ X2, e2 ∈ IRn2 , t ≥ 0,

∂v

∂t
(t, e2) +

∂v

∂e2
(t, e2)[f2(x2 + e2, v1(t), u(t)) − f2(x2, v1(t), u(t))

+kv1
2 (t)(h2(x2 + e2) − h2(x2))] ≤ −w(e2)

(ii) ∀e2 ∈ IRn2 , t ≥ 0; v(t, e2) ≥ w̄(e2)

(iii) ∀e2 ∈ IRn2\B(0, r), t ≥ 0;
∥∥∥∥ ∂v

∂e2
(t, e2(t))

∥∥∥∥ ≤ λ(1 + v(t, e2(t))) for some

constants λ, r > 0 and B(0, r) := {e2 : ‖e2‖ ≤ r}.

Then:
˙̂x1 = f1(x̂1, u) + k1(ĝ1, x̂1)(h1(x̂1) − h1(x1))
˙̂x2 = f2(x̂1, x̂2, u) + k2(ĝ2, x̂2)(h2(x̂1) − h2(x1))
˙̂g1 = G1(x̂1, u, ĝ1);
˙̂g2 = G2(x̂2, x̂1, u, ĝ2).

(1.31)

is an observer for (1.26) where f1(x1, x2, u) = f1(x1, u).
•

Once again this result can be established by Lyapunov analysis.
Notice that the here above proposed conditions might be modified by using

more specific stability results for cascade systems.
A typical example of cascade observer design can be found in [10], where the

Kalman-like design was extended to systems of the following form:

ẋ1 = A1(u, y)x1 + B1(u, y)
ẋ2 = A2(u, y, x1)x2 + B2(u, y, x1)

y =
(

C1x1
C2x2

)

Those examples show how using available observers for systems in some partic-
ular forms, one might be able to design observers for further nonlinear systems.
Next section proposes another way to do so.
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Transformation-Based Design

Principle

The observer designs presented till now are still all based on particular structures
of the system (either isolated or interconnected). The subsequent idea is that
these designs can also give state observers for systems which can be turned into
one of these forms by an appropriate transformation. The most commonapproach
in that respect is to consider changes of state coordinates. Such a relationship
defines some system equivalence:

Definition 14. System equivalence [resp. at x0]
A system described by:{

ẋ = f(x, u) = fu(x)x ∈ IRn, u ∈ IRm

y = h(x) ∈ IRp (1.32)

will be said to be equivalent [resp. at x0] to the system:{
ż = F (z, u) = Fu(z)
y = H(z) (1.33)

if there exists a diffeomorphism z = Φ(x) defined on IRn [resp. some neighbour-
hood of x0] such that:

∀u ∈ IRm,
∂Φ

∂x
fu(x) |x=Φ−1(z)= Fu(z) and h ◦ Φ−1 = H.

Systems (1.32) and (1.33) are then said to be equivalent by z = Φ(x).

The interest of such a property for observer design can then be illustrated by
the following proposition (e.g. as in [6]):

Proposition 4. Given two systems (Σ1) and (Σ2) respectively defined by:

(Σ1)
{

ẋ = X(x, u)
y = h(x) and (Σ2)

{
ż = Z(z, u)
y = H(z)

and equivalent by z = Φ(x),
If:

(O2)
{ ˙̂z = Z(ẑ, u) + k(w, H(ẑ) − y))

ẇ = F (w, u, y)

is an observer for (Σ2),
Then:

(O2)

⎧⎪⎨
⎪⎩

˙̂x = X(x̂, u) +
(

∂Φ

∂x

)−1

|x̂
k(w, h(x̂) − y)

ẇ = F (w, u, y)

is an observer for (Σ1).

From this indeed, if a system is not of an appropriate structure for an observer
design in view of previous sections, but is equivalent to some other system which
does have some appropriate structure, then the observer problem can be solved
for the original system.
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Examples

The idea of proposition 4 has motivated various works on characterizing systems
which can be turned into some appropriate structures for observer design, from
the linear one up to output injection [38, 14, 39] to several forms of cascade block
state affine systems up to nonlinear injections from block to block as in (1.34)
below for instance [30, 45, 10, 31, 8, 9, ...].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = A1(u, y1)z1 + ϕ1(u, y1)
ż2 = A2(u, y2, z1)z2 + ϕ2(u, y2, z1)

...
żq = Aq(u, yq, z1, . . . zq−1)zq + ϕq(u, yq, . . . zq−1)

y =

⎛
⎜⎝

C1z1
...

Cqzq

⎞
⎟⎠ =

⎛
⎜⎝

y1

...
yq

⎞
⎟⎠

u ∈ IRm, zi ∈ IRni , yi ∈ IRνi ,

(1.34)

As a simple illustrative example, let us consider here the problem of turning a
nonlinear system:

ẋ = f(x)
y = h(x), x ∈ IRn

into a linear observable form up to output injection as follows:

ẋ = Ax + ϕ(Cx)
y = Cx

Necessary and sufficient conditions for this problem to be solvable have been
given in terms of differential geometry in [38].

A constructive algorithm to simultaneously check the possibility of the trans-
formation and construct ϕ can alternatively be given in the spirit of [28] as
follows:

1. Get the representation:

y(n) = Φ(y, ẏ, . . . y(n−1))

and set z1 := y.

2. For i ≥ 1, define ϕi by: ∂ϕi

∂y = ∂z
(n−i+1)
i

∂y(n−i) ;
If ϕi is not only a function of y, the transformation fails and the procedure
ends. Else, set: zi+1 := żi − ϕi

3. Continue until i = n or the procedure aborts.

The procedure is clearly sufficient, and it can be checked that it is indeed nec-
essary.

As a second simple example, turning some n−dimensional nonlinear control
affine system into the appropriate structure for high gain observer design, if
possible, is obtained by the following transformation [23, 24]:
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z =

⎛
⎜⎜⎜⎝

h(x)
Lfh(x)

...
Ln−1

f h(x)

⎞
⎟⎟⎟⎠

Finally, it can be underlined that some enlargement of the class of systems admit-
ting an observer on the basis of the particular structures highlighted in the above
presentation can also be obtained by further considering output transformations
(e.g. as in [39, 28, 5]), or state extension ( e.g. using immersion [22, 41, 35, 11]),
for instance.

In particular, it has been shown in [5] that any control-affine system satisfying
the observability rank condition can be turned into a form (1.20) for appropriate
dimensions of the aii+1’s.

1.4 Conclusion

The purpose in this chapter was to give some overview on techniques of observer
design for nonlinear systems. Clearly this presentation follows a particular view-
point on the problem, and does not claim to be exhaustive. In particular the most
important notions of observability (from this viewpoint) have been reviewed, and
some observers have been presented according to two types of designs in that
respect: uniform and non uniform ones w.r.t. input (or time). Those designs are
in particular driven by specific structures of systems, and admit smooth explicit
gains. Extensions of such designs to more general structures by interconnec-
tions and transformations have also been discussed. More details on some of the
mentioned techniques can be found in the subsequent chapters - such as high
gain designs, immersion-based results or optimization-based approaches. On the
other hand, further comments on detectability and related designs have for in-
stance been omitted, as well as various other technical approaches where the
design is not necessarily smooth (as in sliding modes [21, 3, ...]), explicit (as in
LMI-based designs [2, 44, ...]) or exact (as in many approximate approaches).

1.5 Appendix: Lyapunov Tools

The purpose of observers being asymptotic state reconstruction, an observer for
a given system is to be an auxiliary system such that the error between the
observer state and the system state asymptotically decays to zero, namely 0 is
to be an asymptotically stable equilibrium for the error system.

From this, Lyapunov tools for stability analysis are instrumental in designing
observers, and the purpose here is thus to recall the main results in that respect
(as they can be found for instance in [37]).

In general the considered stability will be that of some nonautonomous system,
namely a system of the form:

ẋ(t) = f(x(t), t) (1.35)
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such that f(0, t) = 0 for any t ≥ 0, and where f is regular enough (at least
piecewise continuous in t and locally Lipschitz in x on D × [0, ∞) where D is
some state domain of IRn containing 0).

For such a system one can consider the following:

Definition 15. Stability
The equilibrium x = 0 of (1.35) will be said to be uniformly stable if:

∀ε > 0, ∃δ > 0, independent of t0 : ‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0.

The equilibrium is uniformly asymptotically stable if it is uniformly stable and:

∃c > 0 independent of t0 : ∀‖x(t0)‖ < c, limt→∞‖x(t)‖ = 0, uniformly in t0,

namely:
‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c

for a constant c > 0 independent of t0, and a continuous function β(r, s) van-
ishing at 0 and strictly increasing w.r.t. its first argument, and decreasing w.r.t.
its second argument even going to zero at infinity (class KL function).

The equilibrium is globally uniformly asymptotically stable if it satisfies the
above inequality for any initial state x(t0).

The equilibrium is exponentially stable if it satisfies the above inequality with
β(r, s) = kre−γs, k, γ > 0, and globally exponentially stable if this condition
holds for any initial state.

Then we can recall the following:

Theorem 12. Let V : D × [0, ∞) → IR be a C1 function such that:

1. W1(x) ≤ V (x, t) ≤ W2(x)

2.
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x)

for t ≥ 0, x ∈ D and W1, W2, W3 are continuous positive definite functions on
D. Then the equilibrium x = 0 is uniformly asymptotically stable.

If the above conditions hold globally and in addition W1 is radially unbounded
(W1(x) → ∞ if ‖x‖ → ∞), then x = 0 is globally uniformly asymptotically
stable.

If in fact:
Wi(x) ≥ ki‖x‖c for i = 1, 3, W2(x) ≤ k2‖x‖c

for k1, k2, k3, c > 0, in the above conditions, then then x = 0 is exponentially
stable.

If those conditions hold globally, then then x = 0 is globally exponentially
stable.

Notice that a function V satisfying the first inequality of item 1 above is called
proper, and it is called decrescent if the second inequality holds.



An Overview on Observer Tools for Nonlinear Systems 31

References

[1] M. Alamir. Optimization-based nonlinear observers revisited. Int. Journal of
Control, 72(13):1204–1217, 1999.
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[7] G. Besançon. Observer design for nonlinear systems. In Advanced topics in control
systems theory - Lecture Notes in Control and Info. Sciences 328, pages 61–89.
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Uniform Observability and Observer Synthesis

Hassan Hammouri
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2.1 Introduction

The single input observability is the practical observability notion that can be
used for the state and parameter estimation. A system is single input observ-
able if there exists an input which distinguishes any different initial states (see
chapter 1). Such inputs are called universal inputs. For analytic systems the ob-
servability is equivalent to the single input observability (see [19]). For nonlinear
systems, even if the system is single input observable, it may admit an input
which renders it unobservable. However, for stationary linear systems, the sin-
gle observability doesn’t depend on the input and can be characterized using a
Brunowsky canonical form [21]. The property that the single input observability
doesn’t depend on the input will be called the uniform observability. As for sta-
tionary linear systems, canonical forms can be designed in order to characterize
some class of uniformly observable nonlinear systems.

In the observation context, a natural extension of stationary linear systems
consists in considering linear systems up to output injection:

{
ẋ = Ax + ϕ((u, y))
y = Cx

(2.1)

where the state x ∈ IRn, the known input u ∈ IRm and the measured output
y ∈ IRp.

Clearly, the observability of (C, A) is equivalent to the fact that system (2.1)
is observable independently on the input.

Assume indeed that (C, A) is observable. Let u be any borelian input on some
[0, T ] and x0, x0 be two initial states. Assume now that the associated outputs
y(t) = y(x0, u, t), y(t) = y(x0, u, t) are identically equal on [0, T ] and let us show
that these initial states are the same.

Denote by x(t), x(t) the associated trajectories and differentiating y, y, we
obtain CAx(t) = CAx(t), for every t ∈ [0, T ] (since y(t) = y(t). Differen-
tiating CAx(t) and CAx(t) and using the fact that y(t) = y(t), we deduce
that CA2x(t) = CA2x(t). Repeating this argument until obtaining CAkx(t) =
CA

k
x(t), for 0 ≤ k ≤ n−1 and using the observability of (C, A), we deduce that

x0 = x0. The same argument can be used to prove the converse.

G. Besançon (Ed.): Nonlinear Observers and Applications, LNCIS 363, pp. 35–70, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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An observer for systems (2.1) is a simple extension of the Luenberger observer:

˙̂x = Ax̂ + ϕ((u, y)) + K(Cx̂ − y) (2.2)

where K is any constant n × p constant matrix such that A + KC is stable.
Based on this nice observability property and the fact that the observability

is an intrinsic property (it doesn’t depend on the system of coordinates), one
can ask how we can transform a nonlinear system by a change of coordinates to
systems of the form (2.1). This problem has been initiated by H. Krener and A.
Isidori in [17] and extended to the multi-output systems in [18], [22]).

In what follows, we recall the result of [17].
Consider the single output non controlled nonlinear system:

{
ẋ = f(x)
y = h(x) (2.3)

The state x(t) ∈ IRn, the known input u(t) ∈ IRm and the measured output
y(t) ∈ IRp.

In the single output case (p=1), we will recall the necessary and sufficient
condition that systems (2.3) must satisfy in order to be transformed into the
canonical form: {

ẋ = Ax + ϕ(y)
y = Cx

(2.4)

where, A =

⎛
⎜⎜⎜⎝

0 0 0
1 0 0
...

. . .
...

0 . . . 1 0

⎞
⎟⎟⎟⎠ and C = (0, . . . , 0, 1)

To do so, consider the family of vector fields X1, . . . , Xn defined by:
⎧⎨
⎩

LX1(Lk
f (h)) = 0, for k = 0, . . . , n − 1

LX1(L
n−1
f (h)) = 1

Xi = [Xi−1, f ], for i = 2, . . . , n

(2.5)

where LX1 denotes the Lie derivative along the vector field X1 and [, ] denotes
the symbol of the Lie bracket operation.

Now, define the following transformation Φ = (Φ1, . . . , Φn) by:
LXi(Φj)(x) = δj

i , where δj
i is the symbol of Kronecker.

Theorem 2.1.1 [17]
Assuming that the system (2.3) is observable in the rank sense at some x0 ∈ IRn.
A necessary and sufficient condition for which z = Φ(x) becomes a local system
of coordinates around x0 in which system (2.3) becomes of the form (2.4) is that
the vector fields X1, . . . , Xn commute. Namely, [Xi, Xj ] = 0, for every, i, j.

Proof 1. Assuming that X1, . . . , Xn commute, then one can check that: f =∑n−1
i=1 Φi(x)Xi+1. Hence, system (2.3) becomes of the form (2.4).
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Since the relation (2.5) doesn’t depend on the system of coordinates, to prove
the converse, it suffices to check the commutation of vector fields X1, . . . , Xn

obtained from f = Ax + ϕ(y).

In [18], [22]), the authors gave an extension of this result to the multi-output
systems which can be transformed into the Brunowsky canonical form:{

ẋ = Ax + ϕ(y)
y = Cx

(2.6)

where, A =

⎛
⎜⎜⎜⎝

0 0 0
A1 0 0
...

. . .
...

0 . . . Ap 0

⎞
⎟⎟⎟⎠, Ak =

⎛
⎜⎜⎜⎝

0 0 0
1 0 0
...

. . .
...

0 . . . 1 0

⎞
⎟⎟⎟⎠ is nk × nk matrix with

n1 + . . . + np = n, and C =

⎛
⎜⎝

C1 0 0
...

. . .
...

0 . . . Cp

⎞
⎟⎠, with Ck = (0, . . . , 1) a nk vector.

The fact that we are only interested to nonlinear systems which can be trans-
formed to a Brunowsky canonical form up to output injection is that every observ-
able linear system up to output injection can be transformed by a linear change of
coordinates to a Brunowsky canonical form. Clearly the class of these systems is
very restricted. This is why, many authors try to obtain others classes of systems
for which an observer can be designed. An extension of the above result consists
to classify nonlinear systems which can be transformed to controlled state affine
systems up to output injection. An important property of these systems is that a
Kalman like observer can designed [10], [11] (see chapter 1). Contrarily to the ex-
tended Luenberger for linear systems up to output injection, the Kalman like ob-
server for state affine systems converges only for inputs which render sufficiently
observable the system. This comes from the fact that general observable state affine
systems may admit inputs which render them unobservable. An important prob-
lem consists in asking if a nonlinear system observable for every input (uniformly
observable system) admits an observer which converges for every bounded input.
This problem is completely solved in the single output case (see [3], [4], [5], [6]) and
many partial solutions have been obtained in the literature for the multi-output
case (see for instance [1], [12]). In the following chapters, we will give these classes
of canonical forms and the associated high gain observer construction.

2.2 Canonical Form and High Gain Observer : A Single
Output Case

Consider nonlinear systems of the form:{
ẋ = f(x, u)
y = h(x) (2.7)

where the state x(t) ∈ IRn, the known input u(t) ∈ IRm and the measured output
y(t) ∈ IRp.
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Recall that system (2.7) is uniformly observable (or observable independently
on the iput), if for every input u ∈ L∞([0, T ], IRm), where T > 0 is fixed, u
is universal input. Namely, for every initial states x0, x0, the associated out-
puts y(xO, u, t), y(xO, u, t) are not identically equal on [0, T (, x0, x0, u)[, where
T (, x0, x0, u) ≤ T is largest time such that the trajectories x(t) and x(t) are will
defined for every t ∈ [0, T (, x0, x0, u)[.

Notice that if the linear part of systems (2.4), (2.6) is observable then system
(2.4) is uniformly observable. Moreover an observer takes the form (2.5), (2.7) .
This observer exponentially converges whenever the unknown trajectory x(t) is
defined for all t ≥ 0. A sufficient condition which guarantees the completeness of
the system (ie. the trajectories are defined on the whole IR+) is that ϕ is a global
Lipschitz function. Notice that the completeness is necessary for the existence
of an observer which converges as t → ∞.

In the following subsection, we will show that uniformly observable systems
can be transformed into a canonical form. This canonical form extends the
Brunowsky canonical form (2.4).

2.2.1 Observability Canonical Form for Uniformly Observable
Systems

For the sake of simplicity, we consider the control affine nonlinear system:
{

ẋ = f0(x) + u1f1 + . . . + umfm(x)
y = h(x) (2.8)

where the state x(t) ∈ IRn, the known input u(t) ∈ IRm and the measured output
y(t) ∈ IR. The fi’s are assumed to be of class C∞.

Given a function ϕ from IRn into IR of class Cn, the the Lie derivatives of ϕ
along the vector f0 are:

Lf0(ϕ) =
∑n

i=1 f0i
∂ϕ

∂xk
. For k=1, . . . , n, Lk

f0
(ϕ)=Lf0 (L

k−1
f0

(ϕ)), with L0
f0

(ϕ)=ϕ.

Denote by Φ(x) =

⎛
⎜⎝

Φ1(x)
...

Φn(x)

⎞
⎟⎠ the transformation defined by:

Φk(x) = Lk−1
f0

(h)(x), for k = 1, . . . , n.
Then the following theorem initially stated in [3] and reformulated in [4] with

a simple new proof can be given:

Theorem 2.2.1. If system (2.8) is uniformly observable, then there exists an open
dense subset M of IRn such that for every x0 ∈ M, there exists a neighborhood V ,
such that the map Φ becomes a diffeomorphism from V into its range. Moreover,
it transforms system (2.8) restricted to V into the following canonical form:

⎧⎪⎨
⎪⎩

ż = Az + ψ0(z) +
m∑

i=1

ψi(z)ui

y = Cz

(2.9)
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A =

⎛
⎜⎜⎜⎝

0 1 0
...

. . .
1

0 . . . 0

⎞
⎟⎟⎟⎠, ψ0(z) =

⎛
⎜⎝

0
...

ψn(z)

⎞
⎟⎠, ψk(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψk1(z1)
...

ψkj(z1, . . . , zj)
...

ψkn(z)

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =

(1, 0, . . . , 0);

Conversely, if a system (2.8) can be transformed into the above canonical
form using any diffeomorphism, then the system is uniformly observable on the
domain of definition of the diffeomorphism.

Proof 2. Assuming that system (2.8) is uniformly observable, then in particular
u = 0 renders the system observable. Clearly, the property that φ is a local
diffeomorphism is an open property. Namely the set of points of IRn for which
∂Φ

∂x
is of rank n is an open subset of IRn. To show that this set is also a dense

subset of IRn, we will use the fact that the input u = 0 renders system (2.8)
observable. Assume indeed that this set is not a dense one. Then there exists an
open subset W of IRn such that for every ξ ∈ W , the rank of

∂Φ

∂x
(ξ) is lower than

or equal to n−1. In particular there exists k ≤ n−1 and differentiable functions
α1, . . . , αk, such that dLj

f0
(h)(ξ) =

∑k
i=1 αi(ξ)dLi−1

f0
(h)(ξ), for 1 ≤ j ≤ n. Now

taking any different initial states ξ0, ξ
0

such that dLj
f0

(h)(ξ0) = dLj
f0

(h)(ξ
0
), for

0 ≤ j ≤ k−1 and consider the associated trajectories ξ(t), ξ(t) of the non forced
system (u = 0), it follows that h(ξ(t)) = h(ξ(t)). Hence u = 0 renders system
(2.8) unobservable. This contradicts the fact that the system is observable for
every inputs.

Now, let show that Φ transforms system (2.8) into the canonical form system
(2.9).

Since the system is observable for every input u1, . . . , um, then in particu-
lar, it is so for inputs of the form (0, . . . , ui, . . . , 0). Hence, it is enough to give
the canonical form for the single input-single output uniformly observable
system:

{
ẋ = f0(x) + uf1(x)
y = h(x) (2.10)

Let x0 ∈ IRn such that Φ becomes a diffeomorphism from an open neighborhood
of this point.

Set z = Φ(x), namely, zi = Li−1
f0

(h)(x), 1 ≤ i ≤ n. In this new system of
coordinates, system (2.10) takes the form:

{
ż = Az + ψ0(z) + uψ1(z)
y = Cz

(2.11)
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where A is the shift matrix defined above, ψ0(z)=

⎛
⎜⎝

0
...

ψn(z)

⎞
⎟⎠, ψ1(z)=

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ11(z)
...

ψ1j(z)
...

ψ1n(z)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C = (1, 0, . . . , 0).
Indeed, for 1 ≤ i ≤ n − 1,
⎧⎪⎪⎨
⎪⎪⎩

żi(t) =
dLi−1

f0
(h)

dt
(x(t)) = Li

f0
(h)(x(t)) + u(t)Lf1(L

i−1
f0

(h))(x(t))
= zi+1(t) + u(t)ψ1i(z(t))
where, ψ1i(z) = Lf1(L

i−1
f0

(h))(Φ−1(z))

(2.12)

For i = n,
⎧⎪⎪⎨
⎪⎪⎩

żn(t) =
dLn−1

f0
(h)

dt
(x(t) = Ln

f0
(h)(x(t)) + u(t)Lf1(L

n−1
f0

(h))(x(t))

= ψ0n(z(t)) + u(t)ψ1n(z(t))
where, ψ0n(z) = Ln

f0
(Φ−1(z)) and ψ1n(z) = Lf1(L

n−1
f0

(h))(Φ−1(z))

(2.13)

By construction, z1(t) = h(x(t)). Thus C = (1, 0, . . . , 0).
Now, let us show that ψ1i(z) = ψ1i(z1, . . . , zi), for 1 ≤ i ≤ n:

Assume that this is not the case, and let i0 be the smallest integer i0 ≤ n − 1

for which there exists j ≥ i0 + 1 and that
∂ψ1i0

∂xj
�= 0. In what follows, we will

construct an input u0(t) which renders system (2.11) unobservable, and from the
fact that the observability doesn’t depend on the system of coordinates, we can
conclude that u0 renders system (2.8) unobservable.

To do so, set v(z, z) =
zi0+1 − zi0+1

ψ1i(z) − ψ1i(z)
. From above, there exists z0, z0, with

z0
i = z0

i , for 1 ≤ i ≤ n; i �= j and z0
j �= z0

j such that ψ1i(z0) − ψ1i(z0) �= 0.
Thus there exist neighborhoods V0 and V 0 of z0 and z0 respectively, such that
for every (z, z) ∈ V0×V 0, ψ1i(z)−ψ1i(z) �= 0 (in particular v(z, z) is will defined
on Ω = V0 × V 0).

The candidate input u0 which renders system (2.11) unobservable will be con-
structed as follows.

Consider the following system defined on Ω by:
{

ż = Az + ψ0(z) + v(z, z)ψ1(z)
ż = Az + ψ0(z) + v(z, z)ψ1(z) (2.14)

(z0, z0) is as above, denote by (z0(t), z0(t)) the solution of system (2.14) which
issued from (z0, z0) at t = 0. Then on some interval (maybe small) [0, T ],
(z0(t), z0(t)) is will defined, the same is true for u0(t) = v(z0(t), z0(t)). In what
follows, we will show that the outputs z0

1(t), z0
1(t) associated to initial conditions

z0 and z0 are the same on [0, T ], which contradicts the fact that the system is
uniformly observable.
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Set e(t) = z(t) − z(t), system (2.14) becomes equivalent to:{
ż = Az + ψ0(z) + v(z, z)ψ1(z)
ė = Ae + (ψ0(z) − ψ0(e − z) + v(z, e − z)(ψ1(z) − ψ1(e − z)) (2.15)

Using the definition of v, one can remark that e(0) = z0 − z0 is an equilibrium
point of the time varying linear system:

ė(t) = Ae(t) + (ψ0(z0(t)) − ψ0(e(t) − z0(t))
+v(z0(t), e(t) − z0(t))(ψ1(z0(t)) − ψ1(e(t) − z0(t))) (2.16)

Thus, for e(0) = z0 − z0, we have e1(t) = 0 on [0, T ], hence the outputs z0
1(t),

z0
1(t) are the same on [0, T ]. Consequently, u0 doesn’t distinguish the different

initial states z0, z0. This is in contradiction with the fact that every input renders
the system observable. Thus Φ transforms system (2.8) into the canonical form
(2.9).

The converse is obvious. Indeed, since the observability doesn’t depend the
system of coordinates, it is enough to show that system (2.9) is uniformly ob-
servable.

The proof is straightforward. To do so, take any different initial state z0, z0

and any u ∈ L∞([0, T ], IRm)) such that the associated trajectories z0(t), z0(t)
are well defined on [0, T ] and that the outputs z0

1(t), z0
1(t) are identically equal

on this interval, and let us show that z0 = z0.
Differentiating these outputs yields that z0

2(t) = z0
2(t) and by repeating this

processus, we get z0
k(t) = z0

k(t), for every k.

Let us illustrate this theorem by a simple academic example:

Example 1. Consider the system⎧⎨
⎩

ẋ1 = x1 + u
ẋ2 = −x2 + ux1
y = x1 + x2

(2.17)

The transformation Φ is given by:

Φ =
(

x1 + x2
x1 − x2

)
. and then system (2.17) takes the form:

⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2 + u(1 +
u

2
(z1 + z2))

ż2 = z1 + u(1 − u

2
(z1 + z2))

y = z1

(2.18)

Consequently system (2.17) cannot be put into the canonical form. Hence it is
not observable for every input u ∈ L∞([0, T ], IR).

One can also verify that the constant input u = −2 renders the system unob-
servable.

Based on the above canonical forms, an observer will be given in the following
subsection. This observer possesses the property that its gain doesn’t depend
on the frequency of the signal, but only on the upper bound of the signal. This
observer is called a high gain observer.
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2.2.2 High Gain Observer Design

Consider a gain the observable canonical canonical form:⎧⎨
⎩

ż = Az + ϕ(u, z)
y = Cz
z ∈ IRn; u ∈ IRm

(2.19)

A =

⎛
⎜⎜⎜⎝

0 1 0
...

. . .
1

0 . . . 0

⎞
⎟⎟⎟⎠ ; C = (1, 0, . . . , 0) (2.20)

ϕ(u, z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕ1(z1, u)
...

ϕk(z1, . . . , zj , u)
...

ϕn(z, u)

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.21)

This canonical form extends this given in theorem 2.2.1 for systems (2.9)
(here, ϕ(u, x) is not necessary affine with respect to u).

In order to design our high gain observer, the following hypothesis will be
required:

H) The above nonlinear function ϕ is a global Lipschitz function :
For all bounded subset of IRm; ∃c > 0, ∀z, z′ ∈ IRn, we have ‖ϕ(z, u)−ϕ(z′, u)‖ ≤
c‖z − z′‖, where ‖.‖ denotes the euclidian norm of IRn.

Remark 2.2.1. i) This hypothesis guarantees the completeness of the system
( for every admissible control, all trajectories of the system are defined on
the wall IR+).

ii) If the concerned trajectories of the system lie into a bounded subset Ω of IRn,
then we can prolong the nonlinear term ϕ to a global Lipschitz function ϕ̃
outside B, so that trajectories of the new system coincide with those of the
initial system (see the application of mechanical systems, at the end of this
section).

Now, let θ > 0 a parameter and set:

Δθ =

⎛
⎜⎝

θ 0 0
...

. . .
0 . . . θn

⎞
⎟⎠ and K =

⎛
⎜⎝

k1
...

kn

⎞
⎟⎠,

such that A + KC =

⎛
⎜⎜⎜⎝

k1 1 0
...

. . .
kn−1 0 1
kn 0 . . . . . . 0

⎞
⎟⎟⎟⎠ becomes a Hurwiz matrix.
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Our candidate observer takes the following form:
˙̂z = Aẑ + ϕ(u, ẑ) + ΔθK(Cẑ − y) (2.22)

where y(t) is the measured output associated to the unknown state of system
(2.19).

Theorem 2.2.2. Under the hypothesis H), system (2.22) forms an exponential
observer for system (2.19). More precisely, we have:

Let U a compact subset of IRm, then there exists a constant θ0 > 0 such that
∀θ > θ0; ∃α > 0; ∃β > 0; ∀ẑ(0), we have ‖ẑ(t) − z(t)‖ ≤ αe−βt‖ẑ(0) − z(0)‖,
where z(t) is the unknown trajectory to be estimated.

Remark 2.2.2. The convergence of the above observer can be arbitrary chosen.
More precisely, β depends on the parameter θ and limβ(θ) = +∞.

Proof 3 (of theorem 2.2.2)
Set e(t) = Δ−1

θ (ẑ(t) − z(t)), to prove the theorem, we will show that ‖e(t)| ≤
λe−γt‖e(0)‖ for some constant λ and γ which depend on θ.

Using the equation (2.19) and (2.22) and the definition of Δθ and e, we de-
duce:

ė = θ(A + KC)e + Δ−1
θ (ϕ(u, ẑ) − ϕ(u, z)) (2.23)

Set δϕ = Δ−1
θ (ϕ(u, ẑ)−ϕ(u, z)) and denote by δϕi its ith component, we obtain:

|δϕi| = | 1
θi

(ϕi(u, ẑ) − ϕi(u, z))| ≤ c
1
θi

√
θ2e2

1 + . . . + θ2ie2
i (2.24)

where c is the Lipschitz constant (given by the above hypothesis H). This constant
depends only on the upper bound of ‖u(t)‖ .

Now taking θ ≥ 1, it follows that

|δϕi| ≤ c‖e‖ (2.25)

Since A + KC is Hurwiz, there exists a symmetric positive definite matrix P
such that:

(A + KC)TP + P (A + KC) = −I (2.26)

where I is the identity matrix.
Set V (e) = eT Pe, and using (2.23)-(2.26), a simple calculation gives:

d(V (e(t)))
dt

= −θ‖e(t)‖2 + 2eT (t)Pδϕ (2.27)

Now from (2.25), it follows that:

d(V (e(t)))
dt

≤ −(θ + 2c‖P‖)‖e(t)‖2 (2.28)

Taking θ0 > 2c‖P‖ = β, then for every θ > θ0, it follows that V (e(t)) ≤
e−(θ−β)tV (e(0)), which exponentially converges to 0. This ends the proof of the
theorem.

Remark 2.2.3. Notice that the triangular form given in (2.21) together with the
Lipschitz condition play a capital role in the proof of the theorem.
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2.2.3 An Extension to a Simple Multi-output Canonical Form

In this subsection, we will give an extension of the above single output canon-
ical form to a multi-output case. The considered class contains the model of
mechanical systems in the case when the positions are measured.

{
ż = Az + ϕ(u, z)
y = Cz

(2.29)

where z =

⎡
⎢⎢⎣

z1
z2
. . .
zq

⎤
⎥⎥⎦ ∈ Rn; zk =∈ Rp with qp = n, u ∈ Rm, y = z1, it means that

C = (Ip, . . . , 0) is p × n matrix, where Ip is p × p identity matrix.

A =

⎛
⎜⎜⎜⎝

0 Ip 0
...

. . .
Ip

0 . . . 0

⎞
⎟⎟⎟⎠ is a n × n matrix, and ϕ =

⎡
⎢⎢⎣

ϕ1
ϕ2
. . .
ϕq

⎤
⎥⎥⎦; ϕk(u, z) ∈ IRp.

ϕk(u, z) = ϕk(u, z1, . . . , zk) (2.30)

System (2.29) can be rewritten:
⎧⎪⎪⎨
⎪⎪⎩

for 1 ≤ k ≤ q − 1,
żk = zk+1 + ϕk(u, z1, . . . , zk)
for k = 1,
żq = ϕq(u, z)

(2.31)

Set Δθ =

⎛
⎜⎝

θIp 0 0
...

. . .
0 . . . θpIp

⎞
⎟⎠

Using similar argument as for the single output case, an candidate observer
for system (2.29) takes the form:

˙̂z = Aẑ + ϕ(u, ẑ) + ΔθK(Cẑ − y) (2.32)

More precisely, we can state a similar theorem as theorem 2.2.2 above.
An application of this theorem can for instance be given by mechanical

systems:
Many mechanical system have a mathematical model of the form:

Γ (ξ)
d2ξ

dt2
+ γ(ξ, ξ̇) + Bu = 0 (2.33)

where ξ ∈ IRp is the position vector and ξ̇ is the velocity vector of the system.
Γ (ξ) is the inertial matrix which is in general symmetric positive definite. γ(ξ, ξ̇)
is a vector which contains the Coriolis forces.
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Set z1 = ξ and ξ̇ = z2, if the position vector is measured, system (2.33) takes
the form:

⎧⎨
⎩

ż1 = z2
ż2 = ϕ(u, z)
y = z1

(2.34)

where, ϕ(u, z) = −Γ−1(ξ)(γ(ξ, ξ̇) + Bu).
Assuming that the state of the system belongs to a bounded set Ω. Let χ be

a C∞ which takes 1 on Ω and vanishes outside a bounded set containing this
set. Then trajectories of system (2.35) coincide with the following:

⎧⎨
⎩

ż1 = z2
ż2 = ϕ̃(u, z)
y = z1

(2.35)

where, ϕ̃(u, z) = χ(z)ϕ(u, z).
This construction permits to render the nonlinearity a global Lipschitz one.

Hence, one can estimate the state of the system by using the observer:

˙̂z = Aẑ + ϕ̃(u, ẑ) + ΔθK(Cẑ − y) (2.36)

where A =
(

0 Ip

0 0

)
, C = (Ip 0), K =

(
K1
K2

)
, A + KC =

(
K1 Ip

K2 0

)
is Hurwiz.

In [5] the authors have extended the above canonical form (2.9) to single
output uniformly observable systems which are not necessarily control affine:

{
ẋ = f(u, x)
y = h(u, x) (2.37)

where x ∈ M , u ∈ U both M and U are analytic manifolds. f and h are analytic
with respect (x, u). The extension to the multi-output case is stated in [1] and
[12], see the following section.

2.3 High Gain Observer for a Multi-output Canonical
Form

2.3.1 The Considered Class of Systems

We consider nonlinear systems which are equivalent by diffeomorphism to sys-
tems of the form:

{
ż = Az + ϕ(u, z)
y = Cz

(2.38)
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where z =

⎡
⎢⎢⎣

z1
z2
. . .
zp

⎤
⎥⎥⎦ ∈ Rn; zk =

⎡
⎢⎢⎣

zk1
zk2
. . .

zknk

⎤
⎥⎥⎦ ∈ Rnk with

p∑
i=1

ni = n, u ∈ Rm,

y =

⎡
⎢⎢⎣

y1
y2
. . .
yp

⎤
⎥⎥⎦ ∈ Rp. Moreover:

A =

⎡
⎢⎣

A1
. . .

Ap

⎤
⎥⎦ , Ak =

⎡
⎢⎢⎢⎣

0 1 0
...

. . .
0 . . . 0 1
0 . . . 0 0

⎤
⎥⎥⎥⎦ ,

C =

⎡
⎢⎣

C1
. . .

Cp

⎤
⎥⎦ , Ck = [1, 0, . . . , 0] and ϕ =

⎡
⎢⎢⎣

ϕ1
ϕ2
. . .
ϕp

⎤
⎥⎥⎦; ϕk =

⎡
⎢⎢⎣

ϕk1
ϕk2
. . .

ϕknk

⎤
⎥⎥⎦.

We assume the following :

A1) there exist two sets of integers {σ1 . . . σp}, {δ1, ..., δp}, with δk > 0, k =
1, . . . , p, such that:

for k, l = 1, . . . , p; i = 1, . . . , nk and j = 2, . . . , nl we have :

If
∂ϕki

∂zlj
(u, z) �≡ 0 for some j ≥ 2 then σk

i +
δk

2
> σl

j − δl

2
(2.39)

where σk
i = σk + (i − 1)δk. In particular, assumption A1) implies that :

∂ϕki

∂zkj
(u, z) ≡ 0 for j ≥ i + 1 and 1 ≤ i ≤ nk − 1.

A2) the function ϕ is global Lipschitz with respect to z locally uniformly in u.

Before stating our main theorem, let us analyse the meaning of the condition
given by assumption A1) more closely.

Set:

I =
{
(i, k) ; 1 ≤ i ≤ nk , 1 ≤ k ≤ p for which there exist

(l, j), 1 ≤ l ≤ p, 2 ≤ j ≤ nl, such that
∂ϕki

∂zlj
(u, z) �≡ 0

}
(2.40)

Let (i, k) ∈ I and set also:

I(i, k) =
{

l; 1 ≤ l ≤ p for which ∃j, 2 ≤ j ≤ nl such that
∂ϕki

∂zlj
(u, z) �≡ 0

}

(2.41)
Notice that I and I(i, k) may be empty.
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Now, let (i, k) ∈ I, l ∈ I(i, k) and set:

j(i, l, k) = max

{
j, 2 ≤ j ≤ nl such that

∂ϕki

∂zlj
(u, z) �≡ 0

}

The above condition is equivalent to :

∀(i, k) ∈ I; ∀l ∈ I(i, k), σk
i +

δk

2
> σl

j(i,l,k) − δl

2
(2.42)

or equivalently,

σk − σl +
(2i − 1)

2
δk − (2j(i, l, k) − 3)

2
δl > 0. (2.43)

Hence, assumption A1) holds if the linear problem:

MX > 0 (2.44)

has a solution in N2p where X =
[

σ
δ

]
, σ = (σ1, . . . , σp)T , δ = (δ1, . . . , δp)T and

M is a constant matrix derived from (2.39).
Note that the linear problem (2.44) admits a solution in N2p, if and only if,

it admits a solution in (R∗
+)2p. Indeed, if (2.39) is satisfied for some positive real

numbers σ1, .., σp; δ1, .., δp, then for every integer N > 0, we have:

Nσk − Nσl +
(2i − 1)

2
Nδk − (2j(i, l, k) − 3)

2
Nδl > 0

Now, taking N sufficiently large, the set of integer parts ([Nσ1], · · · , [Nσp];
[Nδ1], · · · , [Nδp]) forms a solution for linear program (2.44).

Consequently, a solution of the linear problem (2.44) can obtained in two
stages: First, we calculate a solution of (2.44) in (R∗

+)2p by using a linear pro-
gramming technic (see for instance the simplex algorithm). Next, we consider
an integer N such that the set of integers ([Nσ1], · · · , [Nσp]; [Nδ1], · · · , [Nδp]),
becomes a solution of (2.44).

Example: consider the following system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙z11 = z12 + ϕ11(u, z11, z21, z22)
˙z12 = z13 + ϕ12(u, z11, z12, z21, z22)
˙z13 = ϕ13(u, z11, z12, z13, z21, z22)
˙z21 = z22 + ϕ21(u, z11, z21)
˙z22 = z23 + ϕ22(u, z11, z12, z21, z22)
˙z23 = ϕ23(u, z11, z12, z13, z21, z22, z23)

y =
[

z11
z21

]
(2.45)

For this system, one can chose σ1 = σ2 = 1 and δ1 = 3, δ2 = 2.
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2.3.2 A High Gain Observer

Consider the dynamical system :

˙̂z = Aẑ + ϕ(u, ẑ) − S−1
Θ CT (Cẑ − y) (2.46)

with :
i)

ẑk1 = yk for k = 1, . . . , p (output injection)
ẑki = ẑki, for i �= 1

ii) u and y are the known output and input of the system (2.38) respectively

iii) SΘ =

⎡
⎢⎣

Sθδ1

. . .
Sθδp

⎤
⎥⎦ is a block diagonal matrix with Sθδk , k = 1, . . . , p,

the unique solution of :

θδkSθδk + AT
k Sθδk + Sθδk Ak = CT

k Ck. (2.47)

We then state the following :

Theorem 2.3.1. Assume that system (2.38) satisfies assumptions A1)-A2),
then: ∀M > 0; ∃θ0 > 0; ∀θ ≥ θ0; ∃λθ > 0; ∃μθ > 0 such that ‖ẑ(t) − z(t)‖2 ≤
λθe

−μθt‖ẑ(0) − z(0)‖2 for every admissible control u s.t. ‖u(t)‖ ≤ M , ∀t ≥ 0.
Moreover, lim

θ→+∞
μθ = +∞. This means that system (11) is an exponential ob-

server for system (2.38) which works for bounded inputs.

Proof 4. First of all, it can be shown that the explicit solution of equation (12)
is given by :

Sθδk (i, j) =
(−1)i+jCj−1

i+j−2

θδk(i+j−1) for 1 ≤ i, j ≤ nk where Cp
n =

n!
(n − p)!p!

.

Moreover, Sθδk is symmetric positive definite for every θ > 0 (see [4]).
A simple algebraic computation also gives :

Sθδk =
1

θδk
Δk(θ)S1kΔk(θ) (2.48)

where S1k = Sθδk |θ=1 and

Δk(θ) =

⎡
⎢⎢⎢⎢⎢⎣

1
1

θδk

. . .
1

θδk(nk−1)

⎤
⎥⎥⎥⎥⎥⎦

, k = 1, . . . p.
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Set e(t) = ẑ(t) − z(t). Then the error equation is given by :

ė =
(
A − S−1

Θ CT C
)
e + ϕ(u, ẑ) − ϕ(u, z).

where u is an admissible control such that ‖u‖∞ ≤ M , M > 0 is a given constant.
In particular for the k’th subsystem, we have:

ėk =
(
Ak − S−1

θδk
CT

k Ck

)
ek + ϕk(u, ẑ) − ϕk(u, z).

Now set Λk(θ) =

⎡
⎢⎢⎢⎢⎣

1
θσk

1

. . .
1

θσk
nk

⎤
⎥⎥⎥⎥⎦ for k = 1, . . . p where σk

i are the integers

defined in A1).

Then, the following equalities hold :
• Λk(θ)AkΛ−1

k (θ) = θδkAk

• Λk(θ)Δ−1
k (θ) = θ−σk

1 Ik (Ik is the nk × nk identity matrix)
• CkΛ−1

k (θ) = θσk
1 Ck

• CkΔ−1
k (θ) = Ck

Set ēk = Λk(θ)ek for k = 1, . . . , p. Using the above equalities, we get :

˙̄ek = Λk(θ)
(
Ak − S−1

θδk
CT

k Ck

)
Λ−1

k (θ)ēk + Λk(θ) (ϕk(u, ẑ) − ϕk(u, z))

= θδk
(
Ak − S−1

1k CT
k Ck

)
ēk + Λk(θ) (ϕk(u, ẑ) − ϕk(u, z))

Consider the function V (ē) = ēT Sē =
p∑

i=1

Vi(ēi) where Vi(ēi) = ēT
i S1iēi and S =

diag (S11, . . . , S1p).
We have :

V̇k = ˙̄eT
k S1kēk + ēT

k S1k ˙̄ek

= 2θδk ēT
k S1k

(
Ak − S−1

1k CT
k Ck

)
ēk + 2ēT

k S1kΛk(θ) (ϕk(u, ẑ) − ϕk(u, z))

= −θδk
(
ēT

k S1kēk + ēT
k CT

k Ck ēk

)
+ 2ēT

k S1kΛk(θ) (ϕk(u, ẑ) − ϕk(u, z))

Therefore,

V̇k ≤ −θδkVk + 2ēT
k S1kΛk(θ) (ϕk(u, ẑ) − ϕk(u, z))

≤ −θδkVk + 2‖S1kē‖‖Λk(θ) (ϕk(u, ẑ) − ϕk(u, z)) ‖

≤ −θδkVk + 2
√

λk
max

√
Vk

nk∑
i=1

1
θσk

i

|ϕki(u, ẑ) − ϕki(u, z)|

where λk
max is the maximum eigenvalue of S1k.
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Now,

V̇k ≤ −θδkVk + 2ρk

√
λk

max

√
Vk

nk∑
i=1

p∑
l=1

nl∑
j=1

χi,jθ
σl

j−σk
i |ēlj |

where ρk =sup
{

∂ϕki

∂z
(u, z); z ∈ Rn and ‖u‖∞ ≤ M

}
and χi,j =0 if

∂ϕki

∂zlj
(u, z)≡

0, χi,j = 1 otherwise.
Therefore,

V̇k ≤ −θδkVk + 2ρk

√
λk

max

√
Vk

nk∑
i=1

p∑
l=1

nl∑
j=1

χi,jθ
σl

j−σk
i ‖ēl‖

≤ −θδkVk + 2ρk

√
λk

max

√
Vk

nk∑
i=1

p∑
l=1

nl∑
j=1

χi,jθ
σl

j−σk
i

√
Vl√

λl
min

where λl
min is the minimum eigenvalue of S1l.

Thus,

V̇k ≤ −
(√

θδkVk

)2
+ 2ρkμS

√
θδkVk

nk∑
i=1

p∑
l=1

nl∑
j=1

χi,jθ
σl

j−σk
i −δk/2−δl/2

√
θδlVl

where μS is the conditioning number of S (i.e. the square root of the ratio of the
maximum and the minimum eigenvalue of S).

Now, according to A1) there exists εk > 0 such that :

σl
j − σk

i − δk

2
− δl

2
≤ −εk.

Then, assuming θ ≥ 1, we have θσl
j−σk

i −δk/2−δl/2 ≤ 1.
Therefore,

V̇k ≤ −
(√

θδkVk

)2
+ 2ρkμS

√
θδkVk

nk∑
i=1

p∑
l=1

nl∑
j=1

θ−εk

√
θδlVl

≤ −
(√

θδkVk

)2
+ 2nkρkμSθ−ε

√
θδkVk

p∑
l=1

nl∑
j=1

√
θδlVl

where ε is the minimum of the εk’s.

Now set V 	
k =θδkVk for k = 1, . . . , p and V 	 =

p∑
k=1

V 	
k . Notice that θδminV ≤

V 	 ≤ θδmaxV , where δmax, δmin is the maximum respectively the minimum of
the δk’s.

Then,

V̇k ≤ −V 	
k + 2nkρkμSθ−ε

√
V 	

k

p∑
l=1

nl∑
j=1

√
V 	

l

≤ −V 	
k + 2nknρkμSθ−ε

√
V 	

k

√
V 	

≤ −V 	
k + 2nknρkμSθ−εV 	
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Hence,

V̇ ≤ −V 	 + 2n2ρμSθ−εV 	

≤ −
(
1 − 2n2ρμSθ−ε

)
V 	

where ρ = max{ρk, 1 ≤ k ≤ p}.
Finally,

V̇ ≤ −θδmin
(
1 − 2n2ρμSθ−ε

)
V

Now, choosing θ0 such that 1 − 2n2ρμSθ−ε
0 > 0, we obtain :

∀θ ≥ θ0; ē(t)T Sē(t) ≤ exp(−μθt)ē(0)T Sē(0)

where μθ = θδmin
(
1 − 2n2ρμSθ−ε

)
.

Otherwise,
‖ē(t)‖2 ≤ μ2

S exp(−μθt)‖ē(0)‖2 and consequently ‖e(t)‖2 ≤ λθ exp(−μθt)‖e(0)‖2

where λθ = μ2
S

c2
1(θ)

c2
0(θ)

with c1(θ) = max
{

1
θσk

, 1 ≤ k ≤ p

}

and c2 = min
{

1

θσk
nk

, 1 ≤ k ≤ p

}
. This ends the proof of Theorem 2.3.1.

We have discussed observers for multi-output nonlinear systems which are ob-
servable for every input. Under adequate structure conditions, it is possible
to deal with arbitrary nonlinearities. The lack of canonical observability forms
for multi-output systems is a difficulty, and the condition given is coordinate-
dependent. Another difficulty is due to the computation of the coordinate
changes that are required first, before applying the results presented. The ob-
server structure presented in this section extends those given in the above section.
Nevertheless, the canonical form discussed in this section doesn’t cover all the
uniformly observable system. In the following section, we will give another struc-
ture which allows to broaden the class of uniformly observable systems proposed
above.

2.4 Uniformly Observable Structure and Observer
Synthesis

2.4.1 Some Observability Concepts and Related Results

Different notions of observability have been presented in [13]. More recent con-
cepts of observability can be found in [6]. The purpose of this section is to
establish the definitions of some classical as well as relatively new concepts of
observability. We therefore recall some theoretical results and implications asso-
ciated to these concepts.

Consider the MIMO nonlinear system:
{

ẋ = f(u, x)
y = h(x) (2.49)
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x(t) ∈ M , a n-dimensional manifold; u(t) ∈ U , a borelian set of IRm; u and y
are the known input and output of (2.49) respectively.

In this section, system (2.49) is assumed to be smooth. This means that there
exists an open set Ũ containing U such that:

f : Ũ × M −→ TM and h : M −→ IRp

are of class C∞.

For every fixed u ∈ U , fu : M −→ TM denotes the vector field defined by
fu(x) = f(u, x) and the map h = (h1, . . . , hp) is an almost everywhere local

submersion. It means that, Rank(
∂h

∂x
(x)) = p for almost every x.

• Some well-known observability notions

Let u ∈ L∞([0, T ], U), x ∈ M an initial state and xu(·) the trajectory associated
to the initial state x and to the input u. This trajectory is well-defined on the
maximal interval [0, T (x, u)[⊂ [0, T ]. When T (u, x) < T , T (u, x) is called the
positive escape time. In such a case, T (u, x) has the following property: for
every sequence (tn)n≥0 s.t. lim

n→+∞ tn = T (u, x), the set {xu(tn), n ≥ 0} has no

accumulation point.
System (2.49) is said to be observable if for every pair of different initial

states x, x̄, there exists an input u ∈ L∞([0, T ], U) s.t. h(xu(·)) is not identi-
cally equal to h(x̄u(·)) on [0, T (x, x̄, u)[ where T (x, x̄, u) = min{T (u, x), T (u, x̄)}.
We say that such an input distinguishes the considered initial states x, x̄ on
[0, T ].

An input which distinguishes every pair of different initial states on [0, T ] is
called a universal input on [0, T ]. A non universal input is called a singular
input on [0, T ]. Notice that unlike linear systems, observable nonlinear systems
may admit singular inputs. Obviously, a system which admits a universal input
is observable. The converse is also true in the analytical case (it means U, M, f
and h are analytic). The proof of this result is given in [19].

Now, denote by O the smallest vector space containing h1, . . . , hp and closed
under the Lie derivatives Lfu , u ∈ U (i.e. ∀u ∈ U ; ∀τ ∈ O, Lfu(τ) ∈ O). This
vector space is the classical observation space. Let Õ be the co-distribution
spanned by {dτ, τ ∈ O}, system (1) is said to be rank observable at x ∈ M if
dimÕ(x) = n. It is said to be rank observable if ∀x ∈ M, dimÕ(x) = n. This
rank observability condition is related to the concept of local weak observability
notion (see for instance [13] for more details and precise definitions).

• Uniform observability concepts

The following definitions and results are useful for the characterization of sys-
tems of the form (2.49) which are observable independently on the input.
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Definition 2.4.1. Let E be any borelian subset of U , system (2.49) is said to
be:

(i) E-uniformly observable iff for every T > 0 and every u ∈ L∞([0, T ], E),
u is a universal input on [0, T ].

(ii) locally E-uniformly observable iff every x ∈ M admits an open neigh-
borhood Vx s.t. system (2.49) restricted to Vx is E-uniformly observable.

(iii) locally E-uniformly observable almost everywhere iff there exists an
open dense subset M ′ of M s.t. the restriction of system (2.49) to M ′ is
locally E-uniformly observable.

For single output control affine systems if the system is locally IRm-uniformly
observable, then locally almost everywhere it can be steered by the local change
of coordinates to a canonical form (2.9) (see theorem 2.2.1 of subsection 2.2.1 of
section 2.2.

In the single output case, this canonical form as well as its associated high
gain observer have been extended in [5] to single output analytic systems of the
form: {

ẋ = f(u, x)
y = h(u, x) (2.50)

To do so, the authors used the uniform infinitesimal observability concept:
Consider the tangent map Tfu : TM −→ T (TM) associated to fu : M −→

TM , for every u ∈ U . The family of vector fields (Tfu)u∈U , defines, in a unique
sense, a lifted system on TM :

ξ̇ = TMfu(ξ)

Finally the lifted system associated to system (2.50) is given by:

{
ξ̇ = TMfu(ξ)
ỹ = dMh(ξ, u)

(2.51)

where dMh(·, u) is the classical differential map from TM −→ IR.
When M = IRn,TM can be identified with IRn × IRn and ξ = (x, z). Thus

system (2.51) takes the form:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = f(u, x)

ż =
∂f

∂x
(u, x).z

ỹ =
∂h

∂x
(u, x).z

(2.52)

Definition 2.4.2 [5]. Let u ∈ L∞([0, T ], U) and x ∈ M

i) System (2.50) is said to be infinitesimally observable at (u, x) if the linear
map:
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TxM −→ L∞ ([0, T (u, x)[, IR) (ξ −→ dMh (u(·), ξu(·)))
is one to one.

ii) System (2.50) is called uniformly infinitesimally observable iff for every
T > 0; for every (u, x) ∈ L∞([0, T ], U) × M , system (2.50) is infinitesimally
observable at (u, x).

The following result is stated in [5] (Theorem 3.1):

Theorem 2.4.1 [5]. Assume that the single output system (2.50) is analytic
and uniformly infinitesimally observable and that either one of the following
conditions holds:

(i) U is a compact connected analytic manifold.
(ii) U = IRm and f, h are polynomial in u.

Then, there exists a subanalytic (resp. semi-analytic in the case of (ii)) subset
M ′ of codimension 1 in M such that system (2.50) is locally everywhere diffeo-
morphic to the triangular canonical form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = F 1(u, z1, z2)
ż2 = F 2(u, z1, z2, z3)

...
żi = F i(u, z1, . . . , zi+1)

...
żn = Fn(u, z1, . . . , zn)
y = H(u, z1)

(2.53)

with

∂H

∂z1 (u, z) �= 0 and
∂F i

∂zi+1 (u, z) �= 0; ∀(u, z) ∈ U×V, and i = 1, . . . , n−1 (2.54)

where V is the domain in which the local transformation takes its values.

As in subsection 2.2 an observer for single output systems (2.53) can be obtained.
The structure of the observer takes the following form:

˙̂z = F (u, ẑ) + K(Cẑ − y) (2.55)

In the following subsections 2.4.3 and 2.4.4, we will extend the above observer
design (2.55) to a class of MIMO nonlinear systems which generalizes systems
(2.53). The class of nonlinear systems which can be steered by a change of
coordinates to such a canonical form will be characterized in subsection 2.4.5.

2.4.2 Preliminary

The canonical form that we consider has the following triangular structure:
{

ż = F (u, z)
y = Cz

(2.56)
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where F (u, z) =

⎛
⎜⎝

F 1(u, z)
...

F q(u, z)

⎞
⎟⎠, z =

⎛
⎜⎝

z1

...
zq

⎞
⎟⎠; u ∈ U a compact submanifold of

IRm; zi ∈ IRni ; n1 ≥ n2 ≥ . . . ≥ nq; n1 + . . . + nq = n. Each function F i(u, z),
i = 1, . . . , q − 1 satisfies the following structure:

F i(u, z) = F i(u, z1, . . . , zi+1), zi ∈ IRni (2.57)

with the following rank condition:

Rank(
∂F i

∂zi+1 (u, z)) = ni+1 ∀z ∈ IRn; ∀u ∈ U (2.58)

In section 4, we will show that condition (2.58) characterizes a subclass of locally
U -uniformly observable systems.

Definition 2.4.3. A constant gain exponential observer for system (2.56) is a
dynamical system of the form:

˙̂z = F (u, ẑ) + K(Cẑ − y) (2.59)

where K is a constant matrix such that:

‖ẑ(t) − z(t)‖ ≤ λe−μt‖ẑ(0) − z(0)‖

where λ > 0 and μ > 0 are constants which do not depend on the input u ∈
L∞(IR+, U) nor on ẑ(0), z(0).

In the following subsections, we will give two observer constructions. First, we
give a sufficient condition allowing to design a constant gain exponential observer
for system (2.56). Next, we propose an observer construction for general systems
of the form (2.56)-(2.57)-(2.58).

2.4.3 Constant Gain Exponential Observer

Consider again system (2.56) where the inputs u(t) take their values in some
Borelian and bounded subset of IRm. As in many works related to high gain
observer synthesis, we need the following assumption :

H1) Global Lipschitz condition:

∃c > 0; ∀u ∈ U ; ∀z, z′ ∈ IRn, ‖F (u, z) − F (u, z′)‖ ≤ c‖z − z′‖.

Notice that such assumption can be omitted in the case where the state of
the system lies into a bounded set (this remark is formulated in many papers
concerning the high gain observers, see for instance [4]).
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Now, let p1 ≥ p2 be two positive integers and denote by M(p1, p2; IR) the
space of p1 × p2 real matrices. Let N ∈ M(p1, p2; IR) with rank(N) = p2
and consider the convex cone of M(p1, p2; IR) given by C(p1, p2; α; N) = {M ∈
M(p1, p2; IR); s.t. MT N +NT M < αIp2} where α is a constant real number and
Ip2 is the p2 × p2 identity matrix.

Theorem 2.4.2. Assume that assumption H1) holds. Then, a sufficient condi-
tion for the existence of a constant gain exponential observer for system (2.56)-
(2.57)-(2.58) is:

⎧⎨
⎩

For every k, 1 ≤ k ≤ q − 1, there exists a nk × nk+1 constant matrix Sk,k+1

such that:
∂F k

∂zk+1 (u, z) ∈ C(nk, nk+1; −1; Sk,k+1); for every (u, z) ∈ U × IRn

(2.60)
n1 ≥ n2 ≥ . . . ≥ nq, ni is the dimension of zi-space.

Remark 2.4.1. In the single output case, condition (2.54) is equivalent to con-
dition (2.60) of Theorem 2.4.2.

The proof of the theorem requires the following proposition:

Proposition 2.4.1. Assume that H1) and (2.60) hold. Then, there exists a n×n
S.P.D. matrix P satisfying the following condition:

There exist ρ > 0; η > 0 such that for every (u, z) ∈ U × IRn, we have :

PA(u, z) + AT (u, z)P − ρCT C ≤ −ηI (2.61)

where A(u, z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1(u, z) 0 . . . 0
... 0 A2(u, z) 0 . . .

...
... . . .

. . .
. . .

. . .
...

... . . . . . .
. . . . . . 0

... . . . . . .
. . . . . . Aq−1(u, z)

0 . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Ak(u, z) =

∂F k

∂zk+1 (u, z)

Proof of Proposition 2.4.1. Set Γk = { ∂F k

∂zk+1 (u, z); (u, z) ∈ U × IRn}. From

condition (2.60), we can choose matrices Sk,k+1,1 ≤ k ≤ q − 1, such that:

∀Mk ∈ Γk, ST
k,k+1Mk + MT

k Sk,k+1 < −Ink+1
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Now consider the following symmetric bloc tridiagonal matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P11 P12 0 . . . . . . 0
PT

12 P22 P23 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 PT

q−2,q−1 Pq−1,q−1 Pq−1,q

0 . . . 0 0 PT
q−1,q Pq,q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.62)

where Pk,k+1 = ρk+1Sk,k+1 and Pkk is a nk × nk S.D.P. matrix, ρk+1 and Pkk

will be specified below.
In the sequel, if M is a k × l matrix, we denote by ‖M‖ the subordinate

‖ ‖2-norm: ‖M‖ = sup
‖ξ‖=1

‖Mξ‖, where ‖ξ‖ and ‖Mξ‖ are the L2-norms.

Let σk = λmax(Pkk) and σ̂k = λmin(Pkk) be the respective largest and small-
est eigenvalues of Pkk. From hypothesis H1), we know that Γk is a bounded
subset of M(nk, nk+1, IR). Set mk = sup{‖Mk‖; Mk ∈ Γk} and choose P such
that:

(i) 4ρ2
k+1‖Sk,k+1‖2 < σ̂kσ̂k+1, for 1 ≤ k ≤ q − 1

(ii) 4σ2
km2

k < ρkρk+1, for 1 ≤ k ≤ q − 1
(iii) 4ρ2

k+1m
2
k+1‖Sk,k+1‖2 < ρkρk+2, for 1 ≤ k ≤ q − 2

To obtain such a matrix, it is enough to choose Pkk = σkIk (σk = σ̂k), and
numbers ρk such that ρk << σk << ρk+1 << σk+1, where the notation
a << b means that

a

b
is sufficiently small.

Before proving inequality (2.61) of Proposition 2.4.1, let us show that P is a
S.D.P. matrix. Indeed, let x ∈ IRn, x �= 0, a simple calculation shows that:

xT Px =
q∑
1

(xkT
Pkkxk) + 2

q−1∑
1

(xkT
Pk,k+1x

k+1)

=
1
2
x1T

P11x
1 +

1
2
xqT Pqqx

q+

1
2

q−1∑
1

(xkT
Pkkxk + 4xkT

PT
k,k+1x

k+1 + xk+1T
Pk+1,k+1x

k+1)

≥ σ̂1

2
‖x1‖2 +

σ̂q

2
‖xq‖2+

1
2

q−1∑
1

(σ̂k‖xk‖2 − 4ρk+1‖Sk,k+1‖‖xk‖‖xk+1‖ + σ̂k+1‖xk+1‖2)

Using condition (i) above, we get xT Px > 0.
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Now let us show inequality (2.61) of Proposition 2.4.1. Set A(u, z) = A, a
simple computation gives:

xT (PA + AT P − ρ1C
T C)x

= −ρ1‖x1‖2 + 2x1T
P11A1x

2 + 2x1T
P12A2x

3

+ x2T (PT
12A1 + AT

1 P12)x2 + 2x2T
P22A2x

3 + 2x2T
P23A3x

4

+ . . .

+ xq−2T (PT
q−3,q−2Aq−3 + AT

q−3Pq−3,q−2)xq−2

+ 2xq−2T
Pq−2,q−2Aq−2x

q−1 + 2xq−2T
Pq−2,q−1Aq−1x

q

+ xq−1T (PT
q−2,q−1Aq−2 + AT

q−2Pq−2,q−1)xq−1

+ 2xq−1T
Pq−1,q−1Aq−1x

q + xqT (PT
q−1,qAq−1 + AT

q−1Pq−1,q)xq

=
1
2

{
−ρ1‖x1‖2 + 4x1T

P11A1x
2 + x2T

(PT
12A1 + AT

1 P12)x2
}

+
1
2

{
−ρ1‖x1‖2 + 4x1T

P12A2x
3 + x3T

(P23T A2 + AT
2 P23)x3

}

+
1
2

{
x2T

(PT
12A1 + AT

1 P12)x2 + 4x2T
P22A2x

3 + x3T
(PT

23A2 + AT
2 P23)x3

}
+ . . .

(2.63)

+ . . .

+
1
2

{
xq−2T

(PT
q−3,q−2Aq−3 + AT

q−3Pq−3,q−2)xq−2 + 4xq−2T
Pq−2,q−2Aq−2x

q−1

+ xq−1T
(PT

q−2,q−1Aq−2 + AT
q−2Pq−2,q−1)xq−1

}

+
1
2

{
xq−2T

(PT
q−3,q−2Aq−3 + AT

q−3Pq−3,q−2)xq−2

+ 4xq−2T
Pq−2,q−1Aq−1x

q + xqT (PT
q−1,qAq−1 + AT

q−1Pq−1,q)xq
}

+
1
2

{
xq−1T

(PT
q−2,q−1Aq−2 + AT

q−2Pq−2,q−1)xq−1

+ 4xq−1T
Pq−1,q−1Aq−1x

q + xqT (PT
q−1,qAq−1 + AT

q−1Pq−1,q)xq
}

≤ 1
2

q−1∑
1

{
−ρk‖xk‖2 + 4‖xk‖‖xk+1‖σkmk − ρk+1‖xk+1‖2}

+
1
2

q−2∑
1

{
−ρk‖xk‖2 + 4‖xk‖‖xk+2‖ρk+1mk+1‖Sk,k+1‖ − ρk+2‖xk+2‖2}

(2.64)
Using conditions (ii) and (iii) above, we obtain:

xT (PA + AT P − ρ1C
T C)x ≤ −ηI, where η > 0 is a constant.

This ends the proof of the proposition.

Proof of Theorem 2.4.2. We assume that hypothesis H1) and condition (2.60)
of Theorem 2.4.2 hold, and we will construct a constant matrix K, such that the
following system:
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˙̂z = F (u, ẑ) − ΔθK(Cẑ − y) (2.65)

is a constant gain exponential observer, where Δθ =

⎛
⎜⎜⎜⎜⎝

θIn1 0 . . . 0

0 θ2In2 0
...

...
. . . 0

0 . . . 0 θqInq

⎞
⎟⎟⎟⎟⎠,

Ink
is the nk × nk identity matrix, k = 1, . . . , q and θ > 0 is a constant real

number.
Let P be the S.D.P. matrix given by (2.62) and set K = P−1CT . We will

show that for θ sufficiently large, ẑ(t) − z(t) exponentially converges to 0.
As in [4, 5] and many other references related to high gain observer synthesis,

consider the change of coordinates ẑ = Δ−1
θ ẑ, z = Δ−1

θ z, and set ε = ẑ − z. Let
us show that ε(t) exponentially converges to 0, for θ sufficiently large.

Set δF =

⎛
⎜⎝

δF 1

...
δF q

⎞
⎟⎠, where

δF i = F i(u, ẑ1, . . . , ẑi−1, zi+1) − F i(u, z1, . . . , zi−1, zi+1) for 1 ≤ i ≤ q − 1
and δF q = F q(u, ẑ) − F q(u, z).

A simple calculation gives :

ε̇(t) = θ
(
A(t) − ρP−1CT C

)
ε + Δ−1

θ δF (2.66)

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∂F 1

∂z2 (u, ẑ1, ξ2) 0 . . . 0
... 0

∂F 2

∂z3 (u, ẑ1, ẑ2, ξ3) 0 . . .
...

... . . .
. . .

. . .
. . .

...
... . . . . . .

. . . 0
... . . . . . .

. . . ∂F q−1

∂zq
(u, ẑ1, . . . , ẑq−1, ξq)

0 . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ξi = ẑi+1 + ωi(ẑi+1 − zi+1) and ωi is a diagonal matrix whose elements are
in [0, 1].

To show the exponential convergence to zero of ε(t), it is enough to show:

d

dt
(εT (t)Pε(t)) ≤ −αεT (t)Pε(t) (2.67)

for some constant α > 0.
Set V (t) = εT (t)Pε(t), we obtain:

V̇ (t) = −θεT (t)(AT (t)P − PA(t) − ρCT C)ε(t) + 2ε(t)PΔ−1
θ δF (2.68)
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Using the Lipschitz condition (assumption H1)) and the triangular structure
(2.57), it is not difficult to see that there exists a constant β > 0, such that for
every θ ≥ 1, we have:

‖Δ−1
θ δF‖ ≤ β‖ε‖ (2.69)

where β is a constant which only depends on the Lipschitz constant of F .
Combining (2.61), (2.68) and (2.69), we deduce:

V̇ (t) ≤ (−θη + 2β‖P‖)‖ε(t)‖2

≤ 1
λmin(P )

(−θη + 2β‖P‖)V (t) (2.70)

To end the proof of the theorem, it is enough to take θ > max(1, 2
β

η
‖P‖).

In this subsection, we have shown that the design of a constant high gain
observer requires condition (2.60). However, this condition is not always satisfied
by general systems of the form (2.56), (2.57), (2.58).

Consider indeed the following system:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1 = u1z
3

ż2 = u2z
3

ż3 = 0

y = Cz =
(

z1

z2

) (2.71)

where u = (u1, u2) belongs to the unit circle U = {u s.t. ‖u‖ = 1}.
It is obvious to see that system (2.71) is of the form (2.56), (2.57), (2.58) and

satisfies hypothesis H1).
Now , assume that system (2.71) admits a constant gain exponential observer:

˙̂z = A(u)ẑ + K(Cẑ − y) (2.72)

where, A(u) =

⎛
⎝ 0 0 u1

0 0 u2
0 0 0

⎞
⎠, K =

⎛
⎝k11 k12

k21 k22
k31 k32

⎞
⎠ is a constant matrix and C =

(
1 0 0
0 1 0

)
.

Thus, for every u ∈ L∞(R+, U), the error equation:

ė = (A(u) + KC)e (2.73)

is exponentially stable at the origin.
In particular, the error equations associated to inputs u(t) = (1, 0) and u(t) =

(−1, 0) are exponentially stable. This implies that:⎛
⎝ k11 k12 1

k21 k22 0
k31 k32 0

⎞
⎠ and

⎛
⎝k11 k12 −1

k21 k22 0
k31 k32 0

⎞
⎠ are both Hurwitz matrices.
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A simple calculation shows that this yields to the following contradiction:
k21k32 − k31k22 < 0 and k21k32 − k31k22 > 0.

The next section gives a method allowing to design an exponential observer
for systems of the form (2.56), (2.57), (2.58).

2.4.4 Extension to a More General Structure

Consider again systems of the form (2.56), (2.57), (2.58). We know that for
every (u, z1, . . . , , zk) and for 1 ≤ k ≤ q − 1, the functions zk+1 �→
F k(u, z1, . . . , , zk, zk+1) are locally one to one. In the sequel, we will assume
the following:

H2) For 1 ≤ k ≤ q−1, F k(u, z1, . . . , , zk, .) is one to one from IRnk+1 into IRnk

Notice that in the single output case, condition (i) (resp. (ii)) with condition
(2.54) of Theorem 2.4.1 imply H2).

Before giving our candidate observer, we need some notations and assump-
tions.

Consider the following functions:

Φ1(u, z1) = z1

Φk(u, z1, . . . , zk) =
∂Φk−1

∂zk−1 (u, z1, . . . , zk−1)F k−1(u, z1, . . . , zk); 2 ≤ k ≤ q

(2.74)
From the triangular structure (2.57), it is easy to see that

Φk(u, z1, . . . , zk) =
∂F 1

∂z2 (u, z1, z2) . . .
∂F k−2

∂zk−1 (u, z1, .., zk−1)F k−1(u, z1, .., zk)

Using assumption H2) and the rank condition (2.58), it easy to show that :

• for every (u, z1, . . . , zk−1), Φk(u, z1, . . . , zk−1, .) is one to one from IRnk into
IRnk−1

• for every (u, z1, . . . , zk−1), ζk = Φk(u, z1, . . . , zk−1, zk) implies that zk =
ϕk(u, z1, .., zk−1, ζk) where ϕk(u, z1, .., zk−1, ζk) is a function which smoothly
depends on (u, z1, . . . , zk−1).

In the sequel, we will assume that ϕk admits a smooth extension ϕ̃k i.e.:

- ϕ̃k is a smooth function w.r.t. (u, ζ1, . . . , ζk−1, ζk)
- moreover, if ζi = Φi(u, z1, .., zi) for 1 ≤ i ≤ k, then zk = ϕ̃k(u, z1, .., zk−1, ζk).

Our candidate observer for system (2.56), (2.57), (2.58) takes the following form:

˙̂z = F (u, ẑ) − Λ(u, ẑ)ΔθK̃(Cẑ − y) (2.75)
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where F is given in (2.56); Λ(u, ẑ) =

[(
∂Φ

∂z
(u, ẑ)

)T
∂Φ

∂z
(u, ẑ)

]−1(
∂Φ

∂z
(u, ẑ)

)T

with

Φ =

⎛
⎜⎜⎜⎝

Φ1

Φ2

...
Φq

⎞
⎟⎟⎟⎠, Δθ =

⎛
⎜⎜⎜⎜⎝

θIn1 0 . . . 0

0 θ2In1 0
...

...
. . . 0

0 . . . 0 θqIn1

⎞
⎟⎟⎟⎟⎠, In1 is the n1 × n1 identity matrix.

K̃ is a qn1 × n1 constant matrix such that Ã − K̃C̃ is Hurwitz, where Ã and C̃
are respectively qn1 × qn1 and n1 × qn1 matrices defined by:

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 In1 0 . . . 0
... 0 In1 0 . . .

...
... . . .

. . . . . . . . .
...

... . . . . . .
. . . . . . 0

... . . . . . . . . .
. . . In1

0 . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.76)

C̃ =
(
In1 0 . . . 0

)
(2.77)

In order to prove the convergence of the above observer, we need some notations
and assumptions.

Consider the following functions defined on U × IRm × IRn:

G1(u, v, ζ) = G1(ζ1) = 0
Gk(u, v, ζ)=Gk(u, v, ζ1, . . . , ζk) (2.78)

=
∂Φk

∂u
(u, ζ1, ϕ̃2(u, ζ1, ζ2), . . . , ϕ̃k(u, ζ1, , . . . , ζk))v (2.79)

+
k−1∑

1

∂Φk

∂zi

(
u, ζ1, ϕ̃2(u, ζ1, ζ2), . . . , ϕ̃k(u, ζ1, . . . , ζk)

)
ζi+1; 2 ≤ k ≤ q

As in the previous section, let us assume the following:

H3) (i) ∃α > 0; ∀u ∈ U ; ∀z, z′, ‖Φk(u, z1, . . . , zk) − Φk(u, z′1, . . . , z′k)‖ ≥
α‖z − z′‖, for 1 ≤ k ≤ q

(ii) ∀ρ > 0; ∃β > 0; ∀u ∈ U ; ∀v ∈ IRm, ‖v‖ ≤ ρ; ∀ζ, ζ′; ‖Gk(u, v, ζ) −
Gk(u, v, ζ′)‖ ≤ β‖ζ − ζ′‖, for 1 ≤ k ≤ q

Notice that condition (i) of (H3) implies that for every u ∈ U , the embedding
map z �→ Φ(u, z) preserves the uniform topology.
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In the sequel, we denote by U the set of bounded absolutely continuous functions
u(.) from IR+ into U , with bounded derivatives (ie. u̇ ∈ L+∞(IR+)).

Now, we can state our main results:

Theorem 2.4.3. Assume that system (2.56)-(2.57)-(2.58) satisfies hypotheses
H2) and H3), then:

For every u ∈ U , ∃θ0 > 0; ∀θ > θ0; ∃λ > 0, ∃σ > 0,

‖z(t) − ẑ(t)‖ ≤ λe−σt‖z(0) − ẑ(0)‖, for every t ≥ 0.

Moreover, σ may be chosen large by taking θ sufficiently large.

If we omit hypothesis H3), then we can state:

Corollary 2.4.1. Consider system (2.56)-(2.57)-(2.58), and assume that H2)
is satisfied. Let u ∈ U such that every trajectory associated to u and issued from
a given compact subset K1, lies into a compact subset K2. Then, an exponential
observer of the form (2.75) can be designed in order to estimate such bounded
trajectories.

Proof of Theorem 2.4.3. Let u ∈ U and consider the following systems:
{

ζ̇ = Ãζ + G(u, u̇, ζ)
y = C̃ζ

(2.80)

˙̂
ζ = Ãζ̂ + G(u, u̇, ζ̂) − ΔθK̃(C̃ζ̂ − y) (2.81)

where, G =

⎛
⎜⎜⎜⎝

G1

G2

...
Gq

⎞
⎟⎟⎟⎠; the Gk’s are defined in (2.79) and Ã, C̃ are given by (2.76)

and (2.77), and K̃ is such that Ã − K̃C̃ is Hurwitz.
We can easily check that if z(t) (resp. ẑ(t)) is a trajectory of system (2.56)

(resp. of system (2.75)) associated to an input u ∈ U , then Φ(u(t), z(t)) (resp.
Φ(u(t), ẑ(t))) is also a trajectory of system (2.80) (resp. of system (2.81)). Ac-
cording to hypothesis H3-(i), if ‖ζ̂(t) − ζ(t)‖ exponentially converges to zero,
then so does ‖ẑ(t) − z(t)‖. Hence, it is enough to show that system (2.81) is an
exponential observer for (2.80).

To do so, we shall proceed as in [4] and [5]. Set ε(t) = Δ−1
θ (ζ̂(t) − ζ(t)), we

obtain:

ε̇ = θ(Ã − K̃C̃)ε + Δ−1
θ δG (2.82)

where δG = G(u, u̇, ζ̂) − G(u, u̇, ζ).
Since Ã − K̃C̃ is Hurwitz, there exists a S.P.D. matrix P such that P (Ã −

K̃C̃) + (Ã − K̃C̃)T P = −I
where I is the identity matrix. To end the proof of the exponential convergence,
it suffices to show the following:
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d(εT Pε)
dt

(t) ≤ −μ‖ε(t)‖2 (2.83)

for θ sufficiently large and for some constant μ > 0.
A simple calculation yields:

d(εT Pε)
dt

(t) = −θ‖ε‖2 + 2εT PΔ−1
θ δG (2.84)

As in the proof of Theorem 2.4.2, using the triangular structure of G(u, u̇, ζ)
w.r.t. ζ and hypothesis H3)-(ii), and taking θ ≥ 1, it follows that

‖Δ−1
θ δG‖ ≤ β̃‖ε‖ (2.85)

where β̃ is a constant which does not depend on θ. Combining (2.84) and (2.85),
we obtain:

d(εT Pε)
dt

(t) ≤ (−θ + 2β̃)‖ε‖2

Now, let us choose θ0 > max{2β̃, 1}, it follows that for θ > θ0, we have:

‖ε(t)‖ ≤ λ1e
−λ2t‖ε(0)‖ (2.86)

where λ1 > 0, λ2 > 0 are constants, and λ2 = λ2(θ) → +∞ as θ → +∞.

Proof of Corollary 2.4.1
Let u ∈ U and consider the functions Φk defined in (2.74). Let Ωk be a compact
set containing all {(Φ1(u(t), z(t)), . . . , Φk(u(t), z(t)))}, where z(t) is any trajec-
tory of system (2.56), associated to the input u and issued from K1. Let Ξk be
any C1-function which takes value 1 on Ωk and vanishes outside a bounded open
set containing Ωk. By construction of the system of coordinates (ζ1, . . . , ζq) (see
above), Ξk is a function only of (ζ1, . . . , ζk) and having a compact support.

Now set G̃(u, u̇, ζ) =

⎛
⎜⎝

Ξ1.G1(u, u̇, ζ)
...

Ξq.Gq(u, u̇, ζ)

⎞
⎟⎠ (the Gk(u, u̇, ζ)’s are given by (2.79)),

then for every trajectory z(t) of system (2.56) associated to u and issued from
K1, Φ(u(t)(t), z(t)) is also a trajectory of the following system:

{
ζ̇ = Ãζ + G̃(u, u̇, ζ)
y = C̃ζ

(2.87)

Thus, it is enough to construct an exponential observer for system (2.87).
Now since G̃ has a triangular structure similar to that of G and since it is a

global Lipschitz function w.r.t. ζ, we can proceed in a similar way as above to
show that the following system:

˙̂
ζ = Ãζ̂ + G̃(u, u̇, ζ̂) − Δ−1

θ K̃(C̃ζ − y) (2.88)

forms an exponential observer for system (2.87).
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2.4.5 Uniform Observability Structure

Many observability concepts are stated in section 2. In this section, we will
characterize systems (1) which can be steered by a change of coordinates into
the form (2.56)-(2.57)-(2.58).

Consider nonlinear systems of the form (2.49). Notice that, in general, observ-
ability (resp. rank observability) of system (2.49) does not imply observability
(resp. rank observability) of the associated autonomous system :

(Σu)
{

ẋ = fu(x)
y = h(x) (2.89)

where u is a fixed constant control and fu(x) = f(u, x).
The uniform observability structure that we will define in particular possesses

the property that if system (2.49) is rank observable, then for every fixed u ∈ U ,
(Σu) defined by (2.89) is also rank observable.

To do so, let u ∈ U and consider the following codistributions :

• Eu
1 is spanned by {dh1, ..., dhp} (notice that Eu

1 does not depend on u since
hi = hi(x)).

• For k ≥ 1, let Eu
k+1 be the codistribution spanned by Eu

k and
{
dLk

fu
(h1), . . . ,

dLk
fu

(hp)
}

Clearly, we have Eu
1 ⊂ . . . ⊂ Eu

n−1 ⊂ Eu
n ⊂ . . .

Definition 2.4.4. System (2.49) is said to have a U-uniform observable
structure (U-u.o.s) if and only if:

(i) ∀u, u′ ∈ U ; ∀x ∈ M , Eu
k (x) = Eu′

k (x).
(ii)For each i, the codistribution Eu

i is of constant dimension νu
i (dim Eu

i (x) =
νu

i , ∀x ∈ M ; ∀u ∈ U).

In a similar way, let (Ei)i≥1 be the family of codistributions defined by:

• E1 = span{dh1, ..., dhp}
• Ei+1 = Ei + span

{
dLfui

. . . Lfu1
(hj); u1, . . . , ui ∈ U, j = 1, . . . , p

}
.

Remark 2.4.2
a) From (i), we can deduce that for every u ∈ U and every i ≥ 1, Ei = Eu

i .
b) From (ii), if system (2.49) is rank observable at some x and has a U -u.o.s.,
then it is rank observable at each point of M .

Taking account of Remark 2.4.2, we shall denote indifferently Eu
k by Ek, νu

k by
νk and we shall denote by q the smallest integer s.t. Eq = Eq+1.

In what follows, we assume that U is such that every compact subset of U is
also a compact subset of IRm. This property holds in particular if U is a closed
or an open subset of IRm. For the sake of simplicity, we will also assume that h
is a local submersion.
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We now state the main result of this section :

Theorem 2.4.4. Assume that system (1) is rank observable at some point of
M and has a U -u.o.s. Then, for every compact subset U ′ of U ; system (2.49) is
locally U ′-uniformly observable (see Definition 2.4.4).

Remark 2.4.3. Notice that if we omit the compactness hypothesis of U ′, the
theorem is no longer true.

Indeed, consider the following example:⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = cos(1 + u2)x3
ẋ2 = sin(1 + u2)x3
ẋ3 = 0
y = (x1, x2)

(2.90)

with U = IR and M = IR3. Clearly, Eu
1 and Eu

2 are respectively spanned by
{dx1, dx2} and {dx1, dx2, dx3}. Thus (2.90) is rank observable and it has a IR-u.o.s.

Now, taking any x0 = (x0
1, x

0
2, x

0
3) ∈ IR3 and any neighborhood

V ε
x0 =]x0

1−ε, x0
1+ε[×]x0

2−ε, x0
2+ε[×]x0

3−ε, x0
3+ε[. Consider any constant control

u such that
2kπ

1 + u2 < ε and take two initial states x, x̄ with x1 = x̄1, x2 = x̄2

and x3 − x̄3 =
2kπ

1 + u2 . Let x(·), x̄(·) be the trajectories corresponding to u and

respectively issued from x and x̄. Obviously, x1(t) = x̄1(t) and x2(t) = x̄2(t) for
every t ≥ 0. Thus, such u is not universal on any [0, T ], T > 0. Hence system
(2.90) restricted to V ε

x0 is not locally U ′-uniformly observable for any unbounded
interval of U ′ of IR.

The proof of Theorem 2.4.4 requires the following lemma:

Lemma 2.4.1. Assume that system (2.49) is rank observable at some point and
has a U -u.o.s. Then :

i) for every x ∈ M , there exist a neighbourhood V and a diffeomorphim:

Φ : V −→W which transforms system (2.49) restricted to V into the following form:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1 = F 1(u, z1, z2)
ż2 = F 2(u, z1, z2, z3)

...
żq = F q(u, z)
y = z1

(2.91)

where

zi ∈ IRni , z =

⎡
⎢⎣

z1

...
zq

⎤
⎥⎦ ∈ W, u ∈ U

Moreover, we have
p = n1 ≥ n2 ≥ . . . ≥ nq (2.92)



Uniform Observability and Observer Synthesis 67

ii) ∀u ∈ U ; ∀z ∈ W ; ∀i, 1 ≤ i ≤ q − 1, we have:

rank
(

∂F i

∂zi+1 (u, z)
)

= ni+1 (2.93)

where ni+1 = dim Ei+1 − dim Ei

Proof of Lemma 2.4.1. since system (2.49) has a U -u.o.s., we have:
∀u ∈ U, Eu

1 = E1 ⊂ Eu
2 = E2 ⊂ . . . ⊂ Eu

q = Eq and for i ≥ q + 1, Eu
i = Ei = Eu

q .

Now, let u◦ be a fixed element of U ; from the definition of the Eu◦

i ’s, we know
that (dh1, . . . , dhp) forms a basis of E1 = Eu◦

1 (since h : M −→ IRp is assumed to
be an almost everywhere local submersion). For i = 2, . . . , q, and after reordering
adequately (h1, . . . , hp), a basis of Ei = Eu◦

i is given by

Bi =
(
dh1, .., dhp, dLfu◦ (h1), .., dLfu◦ (hn2), .., dLi−1

fu◦ (h1), .., dLi−1
fu◦ (hni−1)

)

Set n1 = p and ni = dimEi − dimEi−1, and using the construction of the Bi, we
obtain n1 ≥ n2 ≥ . . . ≥ nq.

Now, using the fact that system (2.49) is rank observable at some point, from
Remark (2.4.2), it becomes rank observable at any point of M and hence, the
dimension of Eq = Eu◦

q is equal to n. Moreover, from Definition 2.4.4-(ii), it

follows that Φ =
(
h1, . . . , hn1 , . . . , L

nq−1
fu◦ (h1), . . . , dL

nq−1
fu◦ (hnq )

)
becomes a lo-

cal diffeomorphism around each point of M . Now, a simple calculation shows
that for every x ∈ M ; there exists a neighbourhood V of x such that sys-
tem (2.49) restricted to V can be transformed by Φ into a system of the form
(2.91). Indeed, since Ek = Eu◦

k , ∀u, we have that Lfu(Li−1
fu◦ (hj)) depends only on

h1, . . . , hn1 , . . . , Lfu◦ (h1), . . . , Li
fu◦ (hni+1).

To end the proof of the lemma, it remains to prove (2.93).
Denote by Ẽi, Ẽu

i the codistributions associated to system (2.91) defined in a
similar manner as the Ei’s and Eu

i ’s. Notice that Ei (resp. Eu
i ) is the pull-back of

Ẽi (resp. Ẽu
i )
(
Ei = Φ	Ẽi (resp. Eu

i = Φ	Ẽu
i )
)
. Since Φ is a diffeomorphism, the

properties (i) and (ii) of Definition 2.4.4 are then preserved for the Ẽu
i ’s. But Ẽu

i

is spanned by

(
dz1

1 , . . . , dz1
n1

, . . . ,
∂F i−1

1

∂zi
dzi, . . . ,

∂F i−1
ni−1

∂zi
dzi

)
, where

∂F i−1
j

∂zi
=

(
∂F i−1

j

∂zi
1

, . . . ,
∂F i−1

j

∂zi
ni

)
and dzi =

⎛
⎜⎝

dzi
1

...
dzi

ni

⎞
⎟⎠

Since Ẽu
i is of a constant dimension

i∑
j=1

nj , it follows that :

rank
∂F i−1

∂zi
(u, z) = ni, ∀(u, z) ∈ U × W where W = Φ(V )

We can now prove Theorem 2.4.4.
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Proof of Theorem 2.4.4. let U ′ be a compact subset of U . Let us show that
for every x ∈ M ; there exists a neighborhood Vx of x such that the restriction
of system (1) to Vx is U ′-uniformly observable. Using Lemma 2.4.1 and the fact
that the observability is an intrinsic property (it does not depend on the system
of coordinates), it is enough to show that the restriction of system (2.91) to
W = Φ(Vx) is U ′ uniformly observable.

To do so, we need the following notations:
Set νi = n1 + . . . + ni the dimension of Ei, and denote by πi (resp. πi) the

canonical projection from IRνi to IRni defined by (z1, . . . , zi) �→ zi (resp. from
IRνi+1 to IRνi : (z1, . . . , zi+1) �→ (z1, . . . , zi)).

Set Wi = πi(W ), W i = πi(W ), zi = (z1, . . . , zi) and denote by Fu,zi the map
from Wi+1 into IRni defined by Fu,zi(zi+1) = F i(u, zi, zi+1), where the F i’s are
defined in (2.91).

To prove Theorem 2.4.4, one just have to show that there exists a neighbor-
hood W = Φ(Vx) of Φ(x) (maybe small) such that for 1 ≤ i ≤ q − 1; for every
u ∈ U ′ and for every zi ∈ W i, F i

u,zi is one to one. Assume indeed that the F i
u,zi ’s

are one to one and let us show that system (2.91) restricted to W is U ′-uniformly
observable.

Let u◦(·) ∈ L∞([0, T ], U ′) be any admissible input, we will show that u◦(·) is
a universal input on [0, T ]. Otherwise said, let z, z̄ be two initial states such that
the corresponding outputs z1(t), z̄1(t) are identically equal on [0, T ] and let us
show that z = z̄.

Since z1(t) = z̄1(t), ∀t ∈ [0, T ], differentiating this equality, we get:

F 1(u◦(t), z1(t), z2(t)) = F 1(u◦(t), z̄1(t), z̄2(t))
= F 1(u◦(t), z1(t), z̄2(t))

thus,

F 1
u◦(t),z1(t)(z

2(t)) = F 1
u◦(t),z̄1(t)(z̄

2(t))

hence,
z2(t) = z̄2(t) (since F 1

u,z1 is one to one).

Differentiating this equality and proceeding in a similar way, we get z3(t) = z̄3(t).
Repeating this procedure and using the same arguments for i = 3, . . ., we get
z = z̄.

Now, let us show the injectivity of the F i
u,zi ’s. Assume that for every neigh-

bourhood W of Φ(x), there exist i, 1 ≤ i ≤ q − 1; u ∈ U ′and zi ∈ W i

such that the restriction of F i
u,zi is not injective. Thus, one can find se-

quences (εk)k≥0

(
εk > 0, lim

k→+∞
εk = 0

)
, (uk)k≥0, uk ∈ U ′ and (zεk

)k≥0 ∈

B(Φ(x), εk) = {z/ ‖ z − Φ(x) ‖< εk} such that F i0

uk,z
i0
εk

is not one to one for some
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fixed i0 ∈ {1, . . . , q − 1}. It means that, ∀k; ∃zi0+1
εk

, z̄i0+1
εk

∈ πk (B(Φ(x), εk)),
zi0+1

εk
�= z̄i0+1

εk
and such that F i0

uk,z
i0
εk

(zi0+1
εk

) = F i0

uk,z
i0
εk

(z̄i0+1
εk

).

Applying the Mean Value Theorem, we get:
[

∂F i0

∂zi+1

(
zi0+1

εk+1
+ Θi0(z

i0+1
εk

− z̄i0+1
εk

)
)]

.(zi0+1
εk

− z̄i0+1
εk

) = 0

where Θi0 is the ni0+1 × ni0+1 diagonal matrix diag(θ1, . . . , θni0+1) for some
θj ∈ [0, 1], 1 ≤ j ≤ ni0+1.

Since zi0+1
εk

�= z̄i0+1
εk

, set ζi0+1
εk

=
zi0+1

εk
− z̄i0+1

εk

‖ zi0+1
εk − z̄i0+1

εk ‖
, we obtain :

[
∂F i0

∂zi+1

(
zi0+1

εk+1
+ Θi(zi0+1

εk+1
− z̄i0+1

εk+1
)
)]

.ζi0+1
εk

= 0 and ‖ ζi0+1
εk

‖= 1.

Since (uk)k≥1, (ζi0+1
εk

)k≥1 are bounded sequences, then one can extract subse-
quences (ukl

)l≥1, (ζi0+1
εkl

)l≥1 such that lim
kl→+∞

ukl
= u and lim

kl→+∞
ζi0+1
εkl

= ζi0+1

with u ∈ U ′ and ‖ζi0+1‖ = 1.

Now, using the continuity of the map :
(
u, z1, .., zi0+1)→ ∂F i0

∂zi+1

(
u, z1, .., zi0+1)

and the fact that
lim

k→+∞

(
zi0+1

εkl
+ Θi0 (z

i0+1
εkl

− z̄i0+1
εkl

)
)

= zi0+1 and lim
k→+∞

zi0
εkl

= zi0 we obtain :

∂F i0

∂zi+1

(
u, z1, . . . , zi0+1) ζi0+1 = 0 with ‖ζi0+1‖ = 1 (2.94)

But, from Lemma 2.4.1, the ni0 × ni0+1 matrix
∂F i0

∂zi+1 (u, z) is of rank ni0+1 and

ni0 ≥ ni0+1, thus ker
∂F i0

∂zi+1 (u, z) = {0}. This is in contradiction with (2.94).
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3.1 Introduction

We distinguish two kinds of observers for nonlinear systems which are used by
scientists and engineers: empirical observers and converging observers.

The first class of observers are based on some approximation of the nonlinear
system or approximation of a theoretical best estimation. The most common
example is of course the extended Kalman filter. Although, for linear systems,
the Kalman filter is a converging observer and an optimal observer for some
quadratic cost function, the nonlinear version is based on a linearization of
the nonlinear system in a neighborhood of its estimation. Hence, the extended
Kalman filter is a good – almost optimal – local observer but it is not a globally
converging observer. Intuitively, if the a priori estimation is far from the actual
state value, the linearization around the estimate has no sense (Section 3.2.2).

There is a lot of empirical observers, based on neural networks, genetic algo-
rithms, fuzzy logic, and so on. These observers are also based on an approxima-
tion of the process.

Another type of observers are based on the approximation of the exact solu-
tion. Setting indeed the problem as a stochastic problem, the optimal solution
is given by the Duncan-Mortensen-Zakäı (DMZ) equation. The solution of this
nonlinear stochastic partial differential equation is the law of the state knowing
observations. Hence, the conditional expectation of the state knowing observa-
tions can be expressed using the solution of the DMZ equation. However, this
PDE equation is very complicated. There exist some algorithms in order to cal-
culate an approximation of the solution, and therefore to obtain an approximate
observer. For instance, some Monte-Carlo methods can be used in order to cal-
culate the conditional density of probability of the conditional law. In this case,
these methods are called particle filtering methods. They consist in the simula-
tion (by Monte-Carlo methods) of several processes, which allows the calculation
of the law of the state. The observation appears in the DMZ equation as a killing
process. Although this approach has some theoretical justifications (it converges
when a finite parameter – the number of particles – goes to infinity), observers
based on this approach are always approximate observers.

G. Besançon (Ed.): Nonlinear Observers and Applications, LNCIS 363, pp. 71–11 , 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Although these empirical observers are not proved to converge, they are used
by many engineers for many processes, including some critical processes. During
normal operation, these observers are often very reliable and give very good
practical results.

The second class of observers are theoretically converging observers. In the
present chapter, we mainly discuss about high-gain observers. Nevertheless, there
exist also some other classes of converging observers. Most of them only deal with
a small class of nonlinear systems. Most of them also have some bad performances
in the presence of noise.

Here, we will not speak about sliding observers, algebraic observers, or finite
dimensional filters, but we will focus on high-gain observers, and their perfor-
mances compared to extended Kalman filter.

Our purpose is to present a uniform framework where nonlinear filtering,
empirical observers and exponentially converging observers are compared. We
mainly discuss about their similarities, and we propose an observer based on
empirical observers (as those used by engineers), which is an exponentially con-
verging observer.

Despite the lack of theoretical justification, the extended Kalman filter (EKF)
is one of the most famous algorithm used to estimate unknown state variables
from measurements in dynamical nonlinear systems. It is also used to estimate
unknown constant or slowly varying parameters in linear systems and sometimes
to perform failure detection. In this last case, it is necessary to quantify the
efficiency of the EKF with time. This task is usually based on the innovation
process, which is the integrated difference between actual measurements and
predicted measurements. The innovation process can be monitored, and a large
value of the innovation can be used to send an alarm or to switch from an old
model to a new one. It can also be used to estimate the noise entering into the
process or to estimate the measurement noise.

The empirical EKF is even used for critical processes. Therefore, in order
to increase the performance and the reliability of the EKF several engineers
and researchers already tried to develop an adaptive version. Using innovation
and state estimation, it seems possible to estimate parameters that characterize
the state of the process. These parameters can then be used to adapt the gain
matrix by online automatic tuning of some of the covariance matrices used in
the computation of the gain matrix. These kinds of adaptive EKF are empirical
but seem to have nice behavior compared to the EKF.

Because of the difficulty to ensure robustness when adaptive quantity is con-
tinuously updated, some authors used an adaptive algorithm based on switching
between several models. For instance, in [33], authors have developed an ap-
plication on a highly critical process (from a robustness point of view). They
proposed to switch between two covariances matrix Q1 and Q2 depending on
the state of the process.

There exist many papers dealing with adaptive observers and adaptive ex-
tended Kalman filtering especially in the GPS and DGPS community, see
[22, 12, 26]. In [12] for instance, authors present an adaptive extended Kalman
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filter using innovation in order to adapt Q and R matrices, exactly in the same
spirit as in the present chapter, except that they do not give any theoretical
proof. Nevertheless, the need for this kind of observer is clearly established.

In those papers, adaptation of the filter is done using empirical rules (genetic
algorithms [35], neural networks [44], statistics [33]...), and no proof is given. But
in all cases, efficiency of the adaptive observer is highlighted. Let us remark that
for neural networks based extended Kalman filters (N-EKF), the system is split
into a linear part and a nonlinear part, and the extended Kalman filter is applied
to the nonlinear part, which is approximated by neurons. The weights of neurons
can be calculated using EKF, making the algorithm adaptive. In this case, some
proofs can be established, but only if the neural network can approximate the
system.

An intuitive theoretical justification of adaptive gain is based on the high gain
observer theory. It has been shown from a long time ([17]) that high gain ob-
servers have very nice theoretical properties. The first one is that they required
to study the observability property of the model. This study prevents from devel-
oping an observer for a non-observable system. But high gain observers are also
exponential observers: one can prove the convergence of the high gain observer.
In our opinion, the convergence property is a minimum requirement for an ob-
server which is used on some critical processes, and sometimes as a diagnostic
tool. Therefore, it is a good idea to adapt the gain of observers in the following
way:

• use an EKF when the estimation is close to the true state, because EKF is a
good (optimal) local observer (as already stated) and

• use a high-gain observer when large perturbations occur, because these ob-
servers are nonlinear converging observers.

In [14, 15, 20], the high-gain extended Kalman filter (HG-EKF) has been
introduced. Compared with the Luenberger observer, HG-EKF is also an ex-
ponentially converging observer, but with the property that it is more efficient
in the presence of noise. Indeed, the high sensitivity of high-gain observers is a
well known drawback: the high gain ensures convergence but also increases noise
effects. In [8], a new algorithm, based on classical and high-gain EKF, has been
developed. This algorithm is based on a theoretical result, which states that a
time-dependent HG-EKF, which is asymptotically equivalent to a classical EKF,
may be an exponentially converging observer, if the transition from HG-EKF to
EKF is slow enough. But this result is based on a time-dependent observer and,
in order to make its convergence property persistent, it is necessary to use sev-
eral observers and to switch from one to another, depending on the innovation
process. Although it is an efficient observer, as shown in the reference above,
but also in [9, 10], it is rather complicated and CPU intensive. Moreover, even if
the final algorithm can be considered as an adaptive high-gain extended Kalman
filter (AG–EKF), its implementation is far from classical observers as used by
engineers.

In this chapter, we will present a time-independent adaptive-gain extended
Kalman filter. The adaptation of θ will depend on the innovation process.
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As usual for the HG-EKF, the parameter θ appears in the Riccati equation
of the Kalman filter, and more precisely in the matrix Q, denoted by Qθ. But in
this new case, the high-gain parameter appears also in the matrix R (denoted
by Rθ), as in [12] (for a practical application). It is the first difference with the
result of [8]. The second difference is that θ may increase if the innovation is
high and decrease if the innovation is low. This idea is the basis of practical
applications: it is also the cornerstone of the proof of the theorem.

Before considering extended Kalman filtering, we will present in the next sec-
tion some results concerning nonlinear filtering. A nonlinear filter is similar to
a nonlinear observer, in the sense that it is supposed to estimate the state of a
system given some measurements. But nonlinear filtering deals with stochastic
equations. In the deterministic case, one has in mind that the model approx-
imates the system, that some un-modeled and unmeasured perturbations can
enter continuously into the system, and that measurements are corrupted by
noise. Therefore, an observer should be robust to these perturbations. In the
filtering problem, these perturbations are taken into account in the synthesis
of the algorithm. Hence, the stochastic approach seems to be more adapted to
the problem, which is better defined (and the stochastic problem is completely
solved by the DMZ equation).

As we will see however, both approaches yields similar tools. In fact, the main
difference between the two theories is the observability property:

• In the stochastic case, the system has not to be observable. A nonlinear
filter can be developed even for unobservable systems since it gives only the
conditional law of the state knowing observations. Typically, an observable
system gives rise to a unimodal law.

• In the deterministic case, an observer has no sense for a non observable system
(except perhaps if the system is globally asymptotically stable in which case
the model itself is a – slow – observer).

The ”nonlinear filtering” section may be read even by a reader which is not
specialist in probability. It can also be omitted by a reader which is not interested
by the filtering/observation comparison.

3.2 Nonlinear Filtering

3.2.1 Duncan-Mortensen-Zakäı Equation

We study the observer problem in a stochastic setting. Let us consider the fol-
lowing stochastic system

{
dX (t) = f (X (t) , u)dt + Q

1
2 dW (t)

dY (t) = h (X (t) , u)dt + R
1
2 dV (t)

(3.1)

where

• X (t) ∈ R
n, X (0) being a random variable, Y (t) ∈ R

p, and u is a R
d–valued

measurable function,
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• W (t) and V (t) are two independent Wiener processes (also independent
from X (0)).

In this chapter, we will omit to specify the time variable whenever no confusion
is possible, writing X instead of X (t).

Therefore,

E

[(
Q

1
2 W (t)

)(
Q

1
2 W (t)

)′]
= Q.t

(where M ′ denotes the transpose of a matrix M) so Q is the covariance matrix
of the state noise, and R is the covariance matrix of the measurement noise (the
notation Q

1
2 represents the Cholesky decomposition of Q, also called square root

of Q).
In this section, we denote by X (t) a process or random variable and x (t) its

realization, that is x (t) = X (t) (ω).
X (0) is supposed to be an L2 (Rn) random variable independent from W and

V . For simplicity, we will assume that this random variable admits a density
function, denoted by p (0, x) = dP ({X(0)≤x})

dx .
Considering equations in the Ito sense, if f is a Lipschitz function w.r.t. x

with a Lipschitz constant independent of u, then system (3.1) admits a unique
solution.

In this stochastic context, the observer problem is an estimation problem: we
want to calculate the best estimation of X (t) knowing measurements Y from 0
to t, denoted by the σ–algebra FY

t . Hence, we want to calculate the conditional
expectation E

[
X (t) | FY

t

]
, or more generally E

[
φ(X (t)) | FY

t

]
for any test

function φ. Finally, this is equivalent to calculate the conditional law of X (t)
knowing FY

t .
We assume that this law admits a density denoted by p (t, x), i.e. the condi-

tional law is absolutely continuous with respect to Lebesgue measure (this re-
strictive assumption is not necessary but it simplifies some formulas, especially
the DMZ equation). Then, p (t, x) is the solution of the well known Duncan–
Mortensen–Zakäı (DMZ) equation. We will not explain this equation here: it is
a stochastic partial differential equation, which has to be regularized before to
be used, and which is difficult to use for practical problems, especially if n is
large (see [37] for a clear statement of the DMZ equation).

The DMZ equation has been used in several ways:

• First, this equation may be simplified in some very special cases. One of them
is the linear case, where the solution of the DMZ equation is the Kalman
filtering equation. There also exist some nonlinear cases where the DMZ
equation gives a computable solution, for instance for systems which are
linearizable up to a change of coordinates, or an immersion. In these cases,
it is of course a very good approach to build an optimal observer.

• Second, despite its complexity, the (regularized version) of the DMZ equation
can be approximately solved, for instance using Monte-Carlo methods. In this
context, Monte–Carlo methods are called particle methods. The main idea is
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to approximate the initial law of X (0), given by its density p (0, x), by a set
of ”particles”, i.e. a set of independent random variables Xi (0) such that

p (0, x) �
N∑

i=1

δXi(0)

where δx denotes the Dirac measure at x. The notation � will be precisely
defined in Theorem 2.

The principle of a particle method is then to approach the probability law
of X (t) knowing FY

t by a (weighted) sum of Dirac measures at points Xi (t).
When applied to filtering, this just consists in approaching the law of the current
state knowing observations by means of a particular weighted sum of Dirac
distributions. This kind of method is well adapted to the case in which the
dimension of the state is large, because in this case one usually uses the Monte-
Carlo method to compute the conditional expectation

E
[
φ(X (t)) | FY

t

]
=

∫
φ(x)p(t, x)dx

and this method requires a sample of the law p (t, x) which is given by Xi (t),
i = 1, . . . , N .

To characterize a particle method, it is sufficient to give some rules such as

• how to calculate weights of particles (e.g. Dirac measures)
• how to move particles Xi (t) in the state space

Let us give an example of a particle filtering. As we will see in next section,
this algorithm have some similarities with the observer construction (Section
3.3.3), although it has been obtained by a totally different way.

We will study the nonlinear filtering problem with linear discrete-time obser-
vation, that is to say, the second equation in (3.1) is replaced by

Yk = CX (tk) + R
1
2 V (k) (3.2)

where (tk)k∈N
is the sample time and (V (k))k∈N is an independent (w.r.t. W

and X (0)) Gaussian white noise. The limitation to a linear observation func-
tion is not necessary but is a simplification when one wants to implement this
algorithm. The choice of discrete-time observation simplifies the mathemati-
cal background necessary to define the DMZ equation. Indeed, in this case,
the conditional density p (t, x) is given by the discrete version of the DMZ
equation:

p(tk, x) =
1

fY k−1=yk−1

Yk
(yk)

f
X(t)=x
Yk

(yk)
∫

X

f
X(tk−1)=ξ
X(tk) (x)p(tk−1, ξ)dξ (3.3)

with the following notations
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• f
X(t)=x
Yk

(yk) represents the conditional density of Yk knowing X (t) = x;

• f
X(s)=ξ
X(t) (x) represents the conditional density of X (t) knowing X (s) = ξ;

• fY k−1=yk−1

Yk
(yk) represents the conditional density of Yk knowing Y between

time 0 and time tk−1 is equal to (y0, . . . , yk−1) so that for instance,

p(t, x) = fY k=yk

X(t) (x)

Equation (3.3) is nothing else than the Bayes formula applied to the problem.

Remark 1. We point out that the DMZ equation (3.3) gives an exhaustive infor-
mation on X (t) knowing all informations available at time t. Hence it gives the
best possible estimate and, if the system is observable (Definition 1), it is a very
good observer.

As usual with equations describing evolution of a density of probability, the
un–normalized version of the DMZ is more tractable: (3.3) is equivalent to

q(tk, x) = f
X(t)=x
Yk

(yk)
∫

X

f
X(tk−1)=ξ
X(tk) (x)q(tk−1 , ξ)dξ (3.4)

with

p(tk, x) =
q(tk, x)∫

X q(tk, ξ)dξ

There are several ways to solve the un–normalized DMZ equation using par-
ticle methods. The first way is to recognize the composition/rejection theorem
in this formula ([27]), and therefore to consider this equation as a simulation
formula, which is the basis of a Monte-Carlo method. The algorithm consists in
simulating the process (by ”particles” Zi) and killing some of them thanks to
measurements (the ”bad” particles). At a time tk < t ≤ tk+1, the number of
particles which are still alive is a random variable N (k). If this random number
is large enough, the conditional density is approximated by

p (t, x) �
N(k)∑
i=1

δZi(t) (x)

This approach can not be applied exactly as explained here, since N (k) is
a decreasing integer which goes almost surely to 0 (each measurement kill par-
ticles). In order to obtain a more efficient algorithm, one usually consider a
weighted sum of Dirac measures.

Let us introduce coefficients ai (t) ∈ [0, 1]. These numbers represent the degree
of confidence in each particle, and replace binary coefficients 1 (the particle is
alive) or 0 (the particle is dead). As for the DMZ equation itself, we consider an
un–normalized set of coefficients bi (t) ∈ R

+ such that

ai (t) =
bi (t)∑N

j=1 bi (t)
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We consider an algorithm P which describes the trajectory of particles zi (t)
and weight coefficients bi (t). The law truncated at n particles given by P is
denoted by Pn (t) (dPn (t) = pn (t, x) dx) and defined by

Pn (t) =
∑n

i=1 bi (t) δzi(t)∑n
i=1 bi (t)

=
n∑

i=1

ai (t) δzi(t)

Algorithm 1. Initialization
zi (0) is the realization of a random variable with respect to the initial law

p (0);
bi (0) = 1;

Loop
zi (tk) is a Gaussian variable with respect tof

X(tk−1)=zi(tk−1),Yk=yk

X(tk) ;
bi (tk) is defined by

bi (tk) = bi (tk−1) f
X(tk−1)=zi(tk−1)
Yk

(yk)

Let us remark that this algorithm is easy to implement on a computer, in par-
ticular on a parallel computer.

Theorem 2. Let us consider the system
{

dX = f (X, u)dt + Q
1
2 dw (t)

Yk = CX (tk) + R
1
2 V (k)

and P (t) being the conditional law of X (t) knowing FY
t . If Pn (t) represents the

law given by the algorithm P with n particles, then we have

Pn (t) → P (t) as n → ∞ weakly almost surely

Remark 2. This theorem is true at t fixed. It is never true for any t. In order to
obtain an asymptotic result (as in observer theory), it is necessary to add some
correlations between particles. This is particularly simple here (see [39]).

In order to illustrate this theorem, we consider a continuous stirred tank reactor
(CSTR). The dimensionless form of the model is:

dX1 =
(

−X1 + DA(1 − X1) exp{ X2

1 + X2/γ
}
)

dt + dW1

dX2 =
(

−X2(1 + β) + HaDa(1 − X1) exp{ X2

1 + X2/γ
} + βu

)
dt + dW2

where W1 and W2 are two independent Wiener processes. X1 is the reactant
concentration and X2 is the temperature into the tank. We suppose that X2
is measured in discrete time and that we want to control X1 using the control
variable u. The system can also be written in the following generic form
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X (tk+1) = X (tk) +
∫ tk+1

tk

f(X (s))ds +
∫ tk+1

tk

BdW (s)

Yk = CX (tk) + Vk

with C =
(
0 1

)
. We suppose that W is a two-dimensional Wiener process and

that Vk is a Gaussian process independent of W and with covariance R. We
propose the following discretization scheme for the continuous-time equation

X (tk+1) = Φ(tk, tk+1, X (tk)) +
∂Φ(tk, tk+1, X (tk))

∂x
B

√
tk+1 − tkWk

where Φ(s, t, x) is the solution of
{

dx(t)
dt = f (x (t))

x (s) = x

at time t.
The right-hand part of this scheme is the first order development of

Φ(tk, tk+1, X (tk) +
∫ tk+1

tk

BdW (s))

which naturally comes from the diffusion equation. A classical theorem of prob-
ability, see for instance [21], shows that this scheme converges in law to the
solution of the diffusion equation when the step of the discretization goes to
zero.

Our main goal is to estimate the reactant concentration X1 and its confidence
intervals, in order to control as well as possible the CSTR.

If we solve the equations, we can see that for each particle z (t) at time t and
for each weight b (t), we have, thanks to the algorithm of the theorem

• Correction at time tk
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z (tk) = z
(
t−k

)
+ P

(
t−k

)
CT (CP

(
t−k

)
CT + R)−1(yk − Cz

(
t−k

)
)

+
(
P

(
t−k

)
− P

(
t−k

)
CT (CP

(
t−k

)
CT + R)−1CP

(
t−k

))
w̄k

P (tk) = BBT (tk+1 − tk)

b (tk) = b (tk−1)
exp
�
− 1

2 (yk−Cz(t−
k ))T (CP

t
−
k

CT +R)−1(yk−Cz(t−
k ))
�

�
2π.det(CP(t−

k )CT +R)

(3.5)
where w̄k is a Gaussian white noise.

• prediction between tk and tk+1

⎧⎨
⎩

dz
dt = f(z (t))

dP
dt = f∗(ξ (t))P (t) + P (t) f∗(ξ (t))′
db
dt = 0

(3.6)



80 N. Boizot and E. Busvelle

3.2.2 Extended Kalman filter

The previous algorithm is CPU-time consuming and rather complicated to im-
plement, especially in the linear case. Indeed, for a linear system, there exist a
very simple and famous solution. Let us consider the following linear system:

{
dX = (A (t)X + B (t)u) dt + Q

1
2 dW (t)

dY = C (t)Xdt + R
1
2 dV (t)

(3.7)

with X (0) a random variable with Gaussian law N (m0, P0), the DMZ equation
reduces itself to the well-known Kalman filter. More precisely, solving the DMZ
equation yields the following result: the conditional law of X (t) knowing y (s)
from 0 to t (FY

t ) is the Gaussian law N (z (t) , P (t)) where, for an output tra-
jectory y (t), z (t) and P (t) are the solutions of the finite-dimensional system of
ordinary differential equations:

{
dz = (A (t) z + B (t)u) dt + PC (t)′ R−1(dy − C (t) z dt)
dP
dt = A (t)P + PA (t)′ + Q − PC (t)′ R−1C (t)P

(3.8)

with z (0) = m0 and P (0) = P0. Therefore, z (t) = E
[
X (t) | FY

t

]
(ω) is the

best estimation of X (t) knowing measurements up to time t. When applied to
a deterministic observable linear system, Q and R being considered as tuning
parameters, the Kalman filter is called the Kalman observer. The observable
property is not crucial in the stochastic case since the conditional law is defined
even for non observable systems. But the observability property implies that
the covariance matrix of the conditional expectation of X (t) knowing Y (s),
0 ≤ s ≤ t is bounded.

In the deterministic case, this property is crucial. Recall also that, for linear
systems, observability does not depends on inputs.

The Kalman filter/observer algorithm has been used for a long time by en-
gineers for linear systems. For nonlinear systems, engineers introduced and suc-
cessfully used the extended Kalman filter (EKF), either in its stochastic or its
deterministic form. The EKF is just the standard Kalman filter for linear time-
dependent systems, applied to the linearized system along the estimate trajec-
tory. The EKF is the heart of our approach.

Let us consider a nonlinear system
{

dX = f (X, u) dt + Q
1
2 dW (t)

dY = h (X)dt + R
1
2 dV (t)

(3.9)

where f and h are smooth Lipschitz functions, the linear Kalman filter does
not apply anymore, and the exact solution should be obtained by solving the
DMZ equation. But if one wants an approximate solution, it is very common to
consider the first order approximation of the previous system. The right way to
do this is to consider an a priori solution x̂ (t) of the deterministic system asso-
ciated to (3.9) and to use the Kalman filter to estimate the first order difference
δx (t) = x (t) − x̂ (t) between the a priori solution and the estimated solution.
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This approach yields the following first order Kalman filter, for a given output
trajectory:

⎧⎨
⎩

d(δx)
dt = f∗(x̂, u)δx + Ph∗ (x̂, u)′ R−1(y(t) − h (x̂, u))
dP
dt = f∗ (x̂, u)P + Pf∗ (x̂, u)′ + Q

−Ph∗ (x̂, u)′ R−1h∗ (x̂, u)P

(3.10)

where f∗ and h∗ are the Jacobian of f and h w.r.t. x respectively. But this
approach has a major weakness: the choice of the a priori solution x̂ (t) is not
obvious if there is no precise a priori information on the initial state. This
is usually the case, especially in the deterministic case, since the only missing
information on the system is precisely the initial state. Moreover, if one makes
a bad choice of x̂ (t), the first order equation has no significant meaning since
the actual state is far from the initial guess. At the opposite, if δx (0) is small
(that is the a priori solution is close to the actual solution, at least at time 0),
then x̂ (t) + δx will be a good approximation of the optimal filter, when state
and measurement noises are small ([38]).

To overcome this difficulty, engineers have an attractive idea: to replace the a
priori solution by the estimated solution at current time. The main advantage
of this approach is that the estimated solution is supposed to be close to the
actual solution, hence the first order approximation should be small and hence
the linear approximation should be a good approximation. This remark yields
the extended Kalman filter:

⎧⎨
⎩

dz
dt = f(z, u) + Ph∗ (x̂, u)′ R−1(y(t) − h (z, u))
dP
dt = f∗ (z, u)P + Pf∗ (z, u)′ + Q

−Ph∗ (z, u)′ R−1h∗ (z, u)P

(3.11)

where z is the estimated state. Here again, if P0, Q and R are small, this filter
is close to the optimal filter (see all works of Picard, [38] for instance).

In a deterministic context, the extended Kalman filter is a converging local
observer (see [4, 8]), that is if z (0) � x (0) then z (t) − x (t) −→ 0 as t −→
+∞ (exponentially). Nevertheless, the extended Kalman filter has no global
converging properties. Indeed, it is well known that, if the initial guess z (0)
is far from x (0), the extended Kalman filter may not converge. Moreover, the
mathematical study of (3.11) is difficult because it has no clear mathematical
meaning: it is not a first order approximation of a nonlinear object around a given
trajectory. In other words, the behavior of (3.11) is not intrinsic and depends on
a choice of coordinates. Hopefully, this mathematical difficulty will give us a way
to chose a good system of coordinates and to prove some convergence results,
thanks to this crucial choice of coordinates.

To conclude, the EKF is very efficient in a lot of practical problems. It is
used as a filter or as an observer in many various systems. From a theoretical
point of view, it is not an optimal filter (it differs from the DMZ equation).
Nevertheless, when the system has some observability properties, it has very
nice local properties: in the stochastic case, it is a good filter when noises are
small (see [38]) and in the deterministic case, it is a local observer ([4, 8]).
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3.2.3 Continuous-Discrete Stochastic Systems

Before considering deterministic systems and observers, let us recall a result
concerning discrete measurements. Continuous-discrete time are very common
in practise: the nonlinear differential equation describes a mechanical, physical or
chemical process. Therefore, it is a continuous time system. But measurements
are usually sampled at times tk. Therefore, the system can be written

{
dX (t) = f(X (t) , u (t))dt + dW (t)

yk = h (X (tk)) + V (k) (3.12)

where h is a differentiable function from the state space to R
p.

For this system, the EKF has two set of equations: the correction step which
is applied at each measurement time and the prediction step which is used to
predict the system according to the model.

Correction step
⎧⎨
⎩

Z
(
t+k

)
= Z (tk) + G (k) (yk − h (Z (tk)))

G (k) = P (tk)h∗ (Z (tk))′
(
h∗ (Z (tk))P (tk)h∗ (Z (tk))′ + R

)−1

P
(
t+k

)
= (I − G (k)h∗ (Z (tk)))P (tk)

(3.13)

Prediction step
{

dZ
dt = f(Z, u)
dP
dt = f∗ (Z, u)P + Pf∗ (Z, u)′ + Q

(3.14)

These equations present some similarities with equations (3.5,3.6). As we
will see in the end of Section 3.3.4, if the system is observable, then equations
(3.13,3.14) may give an observer. In the non observable case, one should use
(3.5,3.6).

Although this kind of model is closer to the practical case, it is less used than
continuous-time systems. The main reason is a practical one: the sampled time
is usually chosen small enough w.r.t. time constants of the process. Therefore,
the continuous EKF can be applied. Sometimes (for very fast processes or for
slow measurement devices), the sampled time is a constraint and can not be
neglected. In this case, continuous-discrete EKF should be applied.

3.3 Nonlinear Observers

3.3.1 Canonical Form of Observability

From now on, we study deterministic nonlinear systems of the general form

Σ

{
dx
dt = f(x, u)
y = h(x, u)

(3.15)

on a smooth n–dimensional manifold X , y ∈ R
p, u ∈ U, subset of R

d. We want
to develop an observer. Our approach is closely related to observation theory, as
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explained in the book from Gauthier and Kupka [20], which is itself a summary
of papers [16, 17, 18, 19, 32].

This theory leads to the consideration of systems under the normal form
(3.21), or similar multi-output normal forms. Here, by ”observability”, we mean
”observability for every fixed input function u(t)”. For details, see [20].

In this introduction part, we summarize the main observability results of the
observation theory developed in [20].

First of all, the state–output mapping PXΣ,u is the function x (0) −→
(y (t))t≥0. In this definition (and the following ones), we do not speak about
explosion times, in order to simplify the notations.

Definition 1. The system (3.15) is said uniformly observable, or just ob-
servable, w.r.t. a certain class C of inputs (L∞(U) in most cases) if, for each
u(.) ∈ C, the state output mapping PXΣ,u is injective.

This first definition is the natural definition of observability. Nevertheless, injec-
tivity is not a very tractable property, since it is not stable (even for standard
mappings between finite dimensional spaces -example: x → x3, R → R). There-
fore, in order to state results, we need a few other definitions. The uniform
infinitesimal observability makes the observable property stable.

Let us define the lift of Σ on TX , also called the first variation of Σ. Let
us consider TXf : TX × U −→ TTX(the tangent bundle of TX) the tangent
mapping of f : X × U −→ TX and dXh : TX × U −→ R

p the Jacobian of
h : X × U −→ R

p. Then

TΣ

{
dξ
dt = TXf(ξ, u) = TXfu(ξ)
η = dXh(ξ, u) = dXhu(ξ)

(3.16)

The state–output mapping of TΣ is denoted by PTXΣ,u. It is also the first
order approximation of PXΣ,u denoted by TPXΣ,u.

Definition 2. System Σ is said uniformly infinitesimally observable if, for each
u(.) ∈ L∞(U), each x0 ∈ X, all the tangent mappings TPXΣ,u|x0 are injective.

Remark 3. This definition of observability is stable in the sense of discretization:
if a system is uniformly infinitesimally observable, its continuous–discrete version
(3.12) remains uniformly infinitesimally observable for a sampling time small
enough. It is not the case for a system which is only observable (see [2]).

The two following definitions are another way to define observability in a stable
way. Note that these definitions are important for practical purpose, since they
give a way to prove observability for nonlinear systems.

Definition 3. System Σ is said differentially observable (of order k) if for all
jkû, the extension to k-jets mapping 1 Φk : x0 → jkŷ; X → R

km is injective.
1 k-jets jku, of smooth functions u at t = 0 are defined as

jku = (u(0), u′(0), ..., u(k−1)(0)).

Then, for a smooth function u and for each x0 ∈ X, the k-jet jky =
(y(0), y′(0), ..., y(k−1)(0)) is well define: this is the k-jets state-output mapping Φk.
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Definition 4. System Σ is said strongly differentially observable (of order k) if
for all jku, the extension to k-jets mapping Φk,jku : x0 → jky; X → R

km is an
injective immersion2

Clearly, strong differential observability implies differential observability, which
implies observability for the C∞ class, (and L∞-observability).

It is also a consequence of the theory that for analytic systems, uniform in-
finitesimal observability implies observability of the restrictions of (3.15) to small
open subsets of X, the union of which is dense in X .

The main result concerning observability of systems 3.15 is that, depending on
the number of outputs w.r.t. the number of inputs, the property may be generic
or not generic. More precisely, we distinguish two cases:

1. More measurements than control inputs (p > d): in that case, observability
is a generic property, and generically, a system can be put globally under a
normal form similar to (3.21), but the dimension of the state in the normal
form is bigger than the dimension of the state of the original system: it is
at most double plus one. Also, the control in the normal form contains a
certain number of derivatives of the control of the initial system. But this is
more or less unimportant for observation problems, where the control, and
hence its derivatives, are known.

Hence, if p > d, and for sufficiently smooth inputs, generic systems are
very good from the point of view of observability.

2. Less or same number of measurements than control inputs (p ≤ d): in that
case observability is a non generic property. It is even a property of infinite
codimension. This high degeneracy leads to the fact that, in the case of
control affine systems, all observable systems can be put locally under normal
forms similar to (3.21) (with ai = 1, i = 1, ..., n).

In the analytic case p = 1, d ≥ 1, we can be more precise. If (3.15) is
uniformly infinitesimally observable, then locally almost everywhere on X ,
the system (3.15) can be put in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y = h(x1, u)
dx1
dt = f1(x1, x2, u)

dx2
dt = f2(x1, x2, x3, u)

...
dxn−1

dt = fn−1(x1, x2, .., xn, u)
dxn

dt = fn(x1, x2, ..., xn, u)

(3.17)

where
∂h

∂x1
and

∂fi

∂xi+1
, i = 1, .., n − 1 (3.18)

do not vanishe on Vx × U .
2 Immersion means that all the tangent mappings Tx0Φk,jk û to this map, have full

rank n at each point.
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In the control affine case, where (3.15) can be written:

ẋ = f(x) +
d∑

i=1

gi(x)ui (3.19)

y = h(x)

then the canonical form of observability is
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y = x1
dx1
dt = x2 +

∑p
i=1 g1,i(x1)ui

dx2
dt = x3 +

∑p
i=1 g2,i(x1, x2)ui

...
dxn−1

dt = xn +
∑p

i=1 gn−1,i(x1, x2, .., xn−1)ui
dxn

dt = ψ(x) +
∑p

i=1 gn,i(x1, x2, .., xn−1, xn)ui

(3.20)

These two results are very important since they allow us to restrict our study
to systems of the form (3.17) and (3.20) (and also because of course, these results
are based on a constructive diffeomorphism).

3.3.2 High-Gain Extended Kalman Filter

We describe observers for nonlinear systems in canonical form of observability
(3.20 and 3.21 below), on R

n. The control space Uadm, is supposed to be a
closed subset of R

d. In this section, the observation is assumed to be single-
valued: it is a u–dependent linear form on R

n. This hypothesis is not necessary
and our observers constructions also applies for multi–output systems. From an
observability point of view, the multi–output case is a little bit more complicated
since canonical forms of observability are less natural. But from the observer
point of view, except in section 3.3.4, the problem is exactly the same, since we
simply apply some kind of EKF.

We consider systems of the form
{

dx
dt = A(u)x + b(x, u)
y = C(u)x (3.21)

where A(u) , C(u) are matrices:

A(u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a2 (u) 0 · · · 0

a3 (u)
. . .

...
...

. . . . . . 0
an (u)

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.22)

C(u) = (a1(u), 0, ...., 0) (3.23)
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and where ai(.), i = 1, ..., n, are positive smooth functions, bounded from above
and below:

0 < am ≤ ai(u) ≤ aM

Also, b(x, u) is a smooth, u−dependent vector field, depending triangularly
on x and compactly supported:

b (x, u) =

⎛
⎜⎜⎜⎝

b (x1, u)
b (x1, x2, u)

...
b (x1, . . . , xn, u)

⎞
⎟⎟⎟⎠ (3.24)

These assumptions look very strong, but as we have already seen, under either
genericity hypotheses or observability hypotheses, for the purpose of synthesis of
observers, it is sufficient to restrict to these systems, under the normal form (3.21)
(or similar multi-output normal forms), and meeting these assumptions. In fact,
this form generalizes the canonical form of observability (3.20) for control affine
systems. We call (3.21) (together with (3.22–3.23)) the generalized canonical
form of observability. There are several reasons to study (3.21) rather than (3.20):

• It is sometimes easier to put the system into this form, using intuitive trans-
formations, rather than a more restrictive normal form, the last transfor-
mation being based on Lie derivatives. This point will be illustrated in the
application sections;

• Since we want to apply an EKF which uses the model to filter noises, and
a high–gain approach to kill the nonlinear part of the system, it is better to
leave the largest part of the nonlinear system in A rather to put it in b. This
technical point will be developed later;

• Last but not least, our observer construction still work for these systems.

However, this form does not include the canonical form of observability for
systems (3.15) when the control is not affine. For those systems, there exist a
change of coordinates that put the equivalent system (3.17) into a system of the
generalized canonical form of observability (3.21) [10, 23]. For this, we just need
to suppose that u admits a time derivative almost everywhere.

Consider a system (3.17) on R
n, and set:

z = Φu(x) = (h(x, u), Lfh(x, u), ..., Ln−1
f h(x, u)). (3.25)

Let K ⊂ R
n be any fixed open relatively compact subset. We deal with semi-

trajectories of Σ that remain in K, only. It follows from (3.18) that, for all
u ∈ U, Φu is an injective immersion (this is easily checked by induction on the
components of Φu). Therefore, Φu is a u–dependent diffeomorphism from K onto
its image. Consider the image of the system (3.17) restricted to K by the time
dependent diffeomorphism Φu. It is of the form:

{
dξ
dt = Aξ + g(ξ, u, du

dt )
y = ξ1

(3.26)
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where A is the antishift matrix, and where g is smooth and depends in a trian-
gular way of ξ.

Even if some technical difficulties remains in the general theoretical case (see
[10] for a precise result), it is clear that the new system is of the form (3.21)
except that we use explicitly du

dt , considered as a new input.
Thanks to this result, our observers (Sections 3.3.2, 3.3.3 and 3.3.4) applies

to general uniformly infinitesimally observable systems.
Let us come back to the system (3.21) and its properties. The assumption

0 < am ≤ ai(u) ≤ aM is not more restrictive than ai(u) 	= 03 It just implies
observability of systems in the normal form (3.21), by the following reasoning:

1. If the output y(t) is known, the input being also known, the fact that a1(u)
is nonzero implies that we can compute x1(t) from y(t),

2. The fact that a2(u) 	= 0 implies that we can compute x2(t) from the knowl-
edge of x1(t),

3. By induction, we can reconstruct the whole state x(t) from the knowledge
of y(t).

The compact support of b can be trivially achieved, by multiplying by a cut-off
function, compactly supported, leaving the original vector field b unchanged on
an arbitrarily large compact subset of Rn. Let us mention that this restriction to
compact sets (unavoidable in a general observation theory), has not so important
consequences: for instance, the high gain observers can be used in general for
global dynamic output stabilization (again, see [20]).

The following results have been proved in [13, 14, 20].
We consider the equations of the extended Kalman filter (3.11), in which the

covariance matrix Q depends on a real parameter θ, θ ≥ 1, in the following way:

Qθ = θΔ−1QΔ−1

where

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1
θ 0

...

0 0 1
θ2

. . .
...

...
. . . . . . 0

0 · · · · · · 0 1
θn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The EKF becomes the high-gain extended Kalman filter (HG-EKF):
⎧⎨
⎩

dz
dt = A(u)z + b(z, u) + PC′R−1(y (t) − Cz)
dP
dt = (A(u) + b∗(z, u))P + P (A (u) + b∗ (z, u))′

+Qθ − PC′R−1CP
(3.27)

3 Modulo a trivial change of variables, and the fact that the ai being smooth, restrict-
ing to a compact subset of the set of values of control implies that we can find the
am and aM .
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If θ = 1, the HG-EKF is equivalent to the EKF. If θ is large, Qθ is a large
symmetric definite positive (s.d.p.) matrix and since it appears in the Riccati
equation in a positive way, P will become large (in the s.d.p. sense). Therefore,
the gain of the observer, namely PC′R−1, will be large. This is why the observer
(3.27) is called high-gain extended Kalman filter.

This observer has some very nice properties. From a practical point of view,
since it is based on extended Kalman filtering approach, it is well designed for
filtering noise using the model. Moreover, the HG-EKF is applied to a system
written in the canonical form of observability. As a matter of fact, it clearly
improves the convergence of the observer, both in simulation and in practical
situations. Moreover, the parameter θ has a clear meaning and can be used to
tune efficiently the observer: if the observer is too slow, θ should be increased,
and if the noise is not enough filtered, θ should be decreased.

This last point has also been validated from a theoretical point of view: the
estimation error has arbitrarily large exponential decay, depending on θ. This
holds whatever the initial error is, (that is, this is a global result). The theorem
is the following:

Theorem 3. For θ large enough and for all T > 0, the HG-EKF (3.27) satisfies
for t > T

θ

‖z (t) − x (t)‖ ≤ θn−1k (T )
∥∥∥∥z

(
T

θ

)
− x

(
T

θ

)∥∥∥∥ e−(θω(T )−μ(T ))(t−T
θ )

for some positive continuous functions k (T ), ω (T ) and μ (T ).

Remark 4. In a stochastic setting, the HG-EKG is a nonlinear filter with bounded
variance ([13]).

3.3.3 High-Gain and Non High-Gain Extended Kalman Filter

The EKF is a local converging observer, and has very good properties w.r.t.
noise. It is close to the Kalman filter, which is an optimal solution to estimate
the unknown state.

The HG-EKF is a globally converging observer. Moreover, it converges expo-
nentially as fast as wanted, depending on the choice of the parameter θ.

The EKF cannot be used to estimate the state from a poor a priori estimation,
or when large unmodelized perturbations occurs. The HG-EKF is designed to
do this. This is the basis of the observer construction proposed in this section.
More precisely, let us recall that:

1. if one sets θ to 1 in system (3.27) then one obtains the classical extended
Kalman filter, which is a local optimal observer (in the sense explained above)

2. if θ is large enough then one obtains a high-gain observer, which is a global
exponential observer.

The first application of this remark was presented in [8]: we just added the
equation
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dθ

dt
= λ (1 − θ) (3.28)

to the system (3.27). If θ (0) = θ0 is large enough (and the parameter λ small
enough) then we obtain an observer which is a high-gain observer for small time
and which converges asymptotically to a classical extended Kalman filter. Hence
we can expect its convergence since the observer should converge exponentially
to the state (high-gain observer property) and then stays in a neighborhood of
the state (since extended Kalman filter is a local observer). Indeed this result
has been proved in [8]. More precisely, the observer can be written (where Qθ

has be defined in the previous section):
⎧⎪⎪⎨
⎪⎪⎩

dz
dt = A(u)z + b(z, u) + PC′R−1(y (t) − Cz)
dP
dt = (A(u) + b(z, u))P + P (A (u) + b∗ (z, u))′

+Qθ − PC′R−1CP
dθ
dτ = λ(1 − θ)

(3.29)

and the theorem says that the asymptotic behavior of the observer is the one of
the extended Kalman filter, the ”short term behavior” is the one of the HG-EKF.
More precisely, let us denote by ε (t) = z (t) − x (t):

Theorem 4. For all 0 ≤ λ ≤ λ0, (λ0 small enough), for all θ (0) = θ0 large
enough, depending on λ, for all S (0) = S0 ≥ c Id, for all K ⊂ R

n, K a compact
subset, for all z0 such that ε (0) = z0 −x (0) ∈ K, the following estimation holds,
for all τ ≥ 0 :

||ε(τ)||2 ≤ R (λ, c) e−a τ ||ε0||2Λ(θ0, τ, λ), (3.30)

Λ(θ0, τ, λ), = θ0
2(n−1)+ a

λ e−
a
λ θ0(1−e−λτ ),

Moreover the short term estimate

||ε(τ)||2 ≤ θ(τ)2(n−1)R (λ0, c) e−(a1θ(T )−a2)τ ||ε(0)||2. (3.31)

holds for all 0 ≤ τ ≤ T and for all θ0 large enough. R (λ, c) is a decreasing
function of c, and a, a1 and a2 are three positive constants.

Remark 5. (3.31) means that, provided that λ is smaller than a certain constant
λ0, and θ0 is large in front of λ, the estimation error goes exponentially to zero,
and can be made arbitrarily small in arbitrary short time. Moreover, in (3.30),
the function Λ(θ0, τ, λ) being a decreasing function of τ, for all τ > 0, λ > 0,
Λ(θ0, τ, λ) can be made arbitrarily small, increasing θ0, hence the observer is
an exponential observer. Therefore, the observer is an exponential observer but
the asymptotic rate of convergence does not depend on θ(t) (because θ (t) � 1),
hence this observer does not converge as fast as we want after a given time τ .

The main drawback of this observer, as presented here, is that it converges expo-
nentially for any initial condition only in the beginning, in order to estimate the
initial state of the system: if a large perturbation occurs after time τ , this observer
will have the same behavior as an EKF (since θ (t) � 1 for t larger that τ).
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In order to construct a persistent observer, we should take into account this
property and construct a time-dependent observer. The simplest way is to use
several observers of the form (3.29), each one initialized at different times, and
using some delays between each initialization. Thus we obtain several estimations
of the state, given by each one of the observers: the final estimation is the one
corresponding to the observer that minimizes the innovation process. The whole
construction is clearly explained in [8, 9] and we will recall the algorithm:

We consider a one parameter family {Oτ , τ ≥ 0} of observers of type (3.29),
indexed by the time, each of them starting from S0, θ0, at the current time τ.
In fact, in practice, it will be sufficient to consider, at time τ, a slipping window
of time, [τ − T, τ [, and a finite set of observers {Oti , τ − T ≤ ti ≤ τ}, with
ti = τ − i T

N , i = 1, ..., N.
As usual, we call the term I(τ) = ŷ(τ) − y(τ), (the difference at time τ

between the estimate output and the real output), the ”innovation”. Here, for
each observer Oti ,we have an innovation Iti(τ).

Our suggestion is to take as the estimate of the state, the estimation given by
the observer Oti that minimizes the absolute value of the innovation.

This is a very natural choice, according to probability theory (Section 3.2).
The innovation process will also have an important role in Section 3.3.4, but we
will consider its integral over small past time, which is another possible choice
here.

Let us analyze what will be the effect of this procedure in a deterministic
setting: after the transient part and if no un-modeled perturbation occurs, the
best estimation is given by the oldest observer. Indeed, the oldest observer has
converged and moreover, it is close to a classical EKF and therefore, it is more
robust to measurement noise. But if a large perturbation occurs, making a jump
on the state, the oldest (EKF) observer will no more converge. The youngest
observer, which is a HG-EKF, will converge since it is in transient time (it’s life
time is less than τ). After an (arbitrary) short transient, the youngest observer
will then give the best estimate and hence the smallest innovation.

This analysis is validated by our experience and we can even use these remarks
to detect jumps, which correspond to abnormal operations or sensor failures.

Another remark is that this approach may be compared to a particle filtering
method where the a posteriori estimation of the state is the maximum likeli-
hood one. There exist several differences between these two algorithms and in
fact, their use depends as usual on the observability study. If the system is not
observable, a filtering approach should be used. If the system is observable, an
observer can be used.

3.3.4 Adaptive Gain Extended Kalman Filter

Here, we present a much simple observer. Instead of equation (3.28), we introduce
the equation

dθ

dt
= F (θ, I) (3.32)

where
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I =
∫ t

t−T

‖y(s) − ȳt−T (s)‖2
ds = ‖y − ȳt−T ‖2

L2(t−T,t) (3.33)

is the innovation from time t − T to current time t. More precisely, in (3.33), y
represents the output, but ȳt−T represents the prediction of the output from the
state estimation at time t − T (given by the observer, z (t − T )). Hence ȳt−T (s)
is the solution at time s of⎧⎨

⎩
dξ
dτ = A(u)ξ (τ) + b(ξ (τ) , u)

ξ (t − T ) = Z (t − T )
ȳt−T (τ) = C (u) ξ (τ)

T is a tuning parameter, representing the length of the window used to cal-
culate the innovation. In the following theorem, the function F will be chosen
in the form

F (θ, I) = λ (1 − θ) + K (θmax − θ) I (3.34)

In fact, F can be chosen in a more general form. We will give a version of F that
is better adapted in the presence of noise in the application part of this chapter
(Section 3.5). Intuitively, the role of the function F is:

• to let θ decrease if the innovation is small, because in this case the observer
has already converged and a Kalman-like observer will be sufficient to cor-
rectly estimate the state

• to let θ increase if the innovation is too large, because in this case, the
observer gives a bad estimation of the state and θ has to be large enough in
order to ensure convergence, thanks to the exponential property of high-gain
observers.

Finally, the adaptive-gain extended Kalman filter can be written
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dZ

dt
= A(u)Z + b(Z, u) + S−1C′R−1

θ (CZ − y(t))
dS

dt
= −(A(u) + b(Z, u))′S − S(A (u) + b∗ (Z, u))

+C′R−1
θ C − SQθS

dθ

dt
= λ (1 − θ) + K (θmax − θ) I

(3.35)

We define Qθ and Rθ from Q and R thanks to the matrix

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1
θ 0

...

0 0 1
θ2

. . .
...

...
. . . . . . 0

0 · · · · · · 0 1
θn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

by Qθ = θΔ−1QΔ−1 and Rθ = θ−1R. Let us remark that this change of coor-
dinates is different from the previous one (high-gain extended Kalman filters of
Section 3.3.2 and Section 3.3.3).
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Our main result is the following:

Theorem 5. Let us consider a system in the canonical form of observability.
We consider the adaptive-gain extended Kalman filter (3.35). Let us suppose
that λ, K and θmax (in (3.34)) are three constant parameters such that λ is
small enough, K is large enough, and θ0 is large enough. Then, (3.35) is an
exponentially converging observer.

The proof is based on the following crucial lemma:

Lemma 1. Let x0
1, x0

2 ∈ R
n. Let us consider the outputs y1 (t) and y2 (t) with

initial conditions respectively x0
1 and x0

2. The following condition (called persis-
tant observability) holds:

∀T > 0 ∀u ∈ L1
b (Uadm) ∃λT > 0

∥∥x0
1 − x0

2

∥∥ ≤ 1
λT

∫ T

0
‖y1 (τ) − y2 (τ)‖ dτ

The main difference between the previous observer is the fact that now, the
matrix R depends on θ, which was not necessary when θ was only a decreas-
ing parameter. The behavior of this adaptive–gain extended Kalman filter is
illustrated on a DC–motor, in Section 3.5.

We point out that this AG-EKF is a very promising tool: it is a small modifi-
cation of already existing adaptive–gain EKF proposed by engineers to improve
the performance of EKF during abnormal operations. We propose the same ap-
proach in a theoretical framework, ensuring the exponential convergence of the
algorithm.

3.3.5 Observer for Continuous–Discrete Systems

As already explain in Section 3.2.2, practical problems may often be written
in continuous-discrete form (3.12). There also exist some observability results
concerning these systems. Let us suppose, for simplicity, that the sampling time
is constant, i.e. tk = k Δt.

A generalized canonical form of observability for these systems is the natural
extension of the generalized canonical form of observability (3.21)

{
dx
dt = A(u)x + b(x, u)
yk = C (u)x (tk)

(3.36)

were A, b and C are defined as in (3.22), (3.24) and (3.23) and satisfies the
same hypothesis. In the affine control case (3.20), with a discrete observation,
the change of coordinates is the same as in the continuous case. In fact, (3.21)
and (3.36) are exactly equivalent with yk = y (tk).
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The HG–EKF for continuous–discrete systems has the (not surprising) form:

Correction step
⎧⎨
⎩

z
(
t+k

)
= z (tk) + G (k) (yk − C (u) z (tk))

G (k) = P (tk)C (u)′
(
C (u)P (tk)C (u)′ + 1

ΔtR
)−1

P
(
t+k

)
= (I − G (k)C (u))P (tk)

(3.37)

Prediction step
{

dz
dt = A(u)x + b(x, u)

dP
dt = (A(u) + b∗(z, u))P + P (A (u) + b∗ (z, u))′ + Qθ

(3.38)

Then we have:

Theorem 6. ([14]) Under same assumptions as in continuous case and for Δt
small enough, there is an interval [θ0, θ1] such that for any θ ∈ [θ0, θ1], the
continuous–discrete high–gain extended Kalman filter (3.37–3.38) is an expo-
nential observer.

Genericity and observability have also been studied for continuous–discrete sys-
tems. One can expect that same results hold when sampling time is small enough.
Roughly speaking, it is more or less true. There exist continuous–discrete ver-
sions of theorems from Section 3.3.1 in the continuous–discrete case ([1, 2]).

3.3.6 A ”weak” Separation Principle

In this section, we just want to give an important application concerning high-
gain observers and particularly the high-gain extended Kalman filter.

Usually, observers are used in order to control nonlinear systems with a state-
feedback control law. This control law u (x) is calculated in order to achieve a
good performance and, at least, to ensure the stability of the closed loop system.
An observer is developed in order to estimate the state (which is not completely
measured, in most applications) and the control law applied to the process is
u (z) (where z is the estimation of x given by the observer)4.

Therefore, the closed loop system consist in a control law and an observer,
and both are developed independently.

In the linear-quadratic case, the ”separation principle” stated that, if an op-
timal state-feedback control law is applied with an optimal observer, the result
is optimal. It is a very strong ”superposition” result which is false for nonlinear
systems.

Nevertheless, we can expect to prove a weaker version of the linear separation
principle.

Let us consider again our system 3.21. Let us suppose that there exist a
positively invariant compact subset of R

n for any control law u (t).
4 If a filter has been developped, then one should apply the more accurate con-

trol law u (t) = E
�
u (X (t)) | FY

t

�
which is usually different from u (z) where

z = E
�
X (t) | FY

t

�
.
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Theorem 7. If u (x) is a state feedback which make the system 3.21 globally
asymptotically stable, then the system

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = A (u (z))x + b (x, u (z))
dz
dτ = A(u)z + b(z, u) − S(t)−1C′R−1(Cz − y(t))
dS
dτ = −(A(u) + b∗(z, u))′S − S(A(u) + b∗(z, u))

+C′R−1C − SQθS

is globally asymptotically stable for θ large enough.

Hence, this theorem show that the state-feedback control law can be replaced
by an observer based control law and that the stability is preserved.

Remark 6. It has to be pointed out that this result is not true for the adaptive-
gain extended Kalman filter (with these hypothesis) because it is necessary to
have an exponentially converging observer with an arbitrary fast convergence.

3.4 Identifiability and Identification

3.4.1 Definitions

The problem of identification is a generalization of the observation problem:
very often, practical control systems depend on some functions, (with physical
meaning), that are not well known, and that have to be determined on the basis
of experiments. Systems under consideration have the following form

{
dx
dt = f (x, u, ϕ (x, u))
y = h (x, u, ϕ (x, u)) (3.39)

If x denotes the state of the system, if ϕ(x, u) is the unknown function, and y(t)
is the observed data, the identification problem is the problem of reconstructing
the piece of the graph of ϕ(.),visited during the experiment. That is, for an experi-
ment of durationT, we want to determine the trajectories (x(t), u (t) , ϕ(x(t), u(t)),
for all t ∈ [0, T ], using only the observed data {y(t), t ∈ [0, T ]}. We say that a sys-
tem is identifiable if this is possible, whatever the experiment.

An identifier is a device performing this task. We will be interested with ”on-
line identifiers” only, i.e. identifiers that estimate the graph of ϕ simultaneously
to the experiment.

The two problems, of observation and identification, are of course strongly
connected for two reasons:

1. we do not suppose that x (0) is known. Hence, the identification problem
include an observation problem: we want to estimate both x (t) and ϕ(.). It
is the main difference with the right-inversion problem, also known as the
input identification problem.

2. identification requires an identifiability study, and this study is closely re-
lated to observability study. Moreover, our main tools to perform identifica-
tion are based on (high–gain) observers.
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Let us explain the second point, in the uncontrolled case. We consider smooth
(Cω or C∞, depending on the context) systems of the form Σ

Σ

{
dx
dt = f (x, ϕ (x))
y = h (x, ϕ (x)) (3.40)

where the state x = x (t) lies in a n–dimensional analytic manifold5 X , x (0) = x0,
the observation y is R

p–valued, and f , h are respectively a smooth (parametrized)
vector field and a smooth function. The function ϕ is an unknown function of the
state. Each trajectory is supposed to be defined on some interval [0, Tx0,ϕ].

• If the number of outputs is three or more, then, identifiability is a generic
property,

• If there is only one or two outputs, then, identifiability is a nongeneric prop-
erty, so strong that it can be characterized by four very rigid normal forms.

Our goal is to estimate both state variable x and unknown function ϕ : X −→
I, I being a compact interval of R (the theory, developed in [10], clearly has
extensions to higher dimension). More precisely, we want to reconstruct the
piece of the graph of ϕ visited during experiment.

Let us recall some definitions and results from this last paper. For this intro-
duction, we will only consider uncontrolled systems such as (3.40). Some results
can be extended to controlled systems.

Let Ω = X × L∞ [I], where

L∞ [I] = {ϕ̂ : [0, Tϕ̂] 
→ I, ϕ̂ measurable}

Then we can define the input/output mapping

PΣ : Ω −→ L∞ [
R

dy
]

(x0, ϕ̂ (·)) −→ y (·)

Definition 5. Σ is said to be identifiable if PΣ is injective.

As for observability, we define an infinitesimal version of identifiability. Let us
consider the first variation of the system (3.40) (where ϕ̂ (t) = ϕ ◦ x (t)):

TΣx0,ϕ̂,ξ0,η

⎧⎨
⎩

dx
dt = f (x, ϕ̂)
dξ
dt = Txf (x, ϕ̂) ξ + dϕf (x, ϕ̂) η
ŷ = dxh (x, ϕ̂) ξ + dϕh (x, ϕ̂) η

and the input/output mapping of TΣ

PTΣ,x0,ϕ̂ : Tx0X × L∞ [R] −→ L∞ [
R

dy
]

(ξ0, η (·)) −→ ŷ (·)

Definition 6. Σ is said to be infinitesimally identifiable if PTΣ,,x0,ϕ̂ is injective
for any (x0, ϕ̂ (·)) ∈ Ω i.e. ker (PTΣ,x0,ϕ̂) = {0} for any (x0, ϕ̂ (·)).
5 Analytic manifold stands for analytic connected paracompact Hausdorf manifold.
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Both identifiability and infinitesimal identifiability mean injectivity of some map-
ping. Clearly injectivity depends on the domain. Therefore, it seems that these
notions are not well defined. In fact these notions do not depend on the domain.
Indeed, if an analytic system Σ is not (infinitesimally) identifiable because there
exists a L∞ function which makes the system not (infinitesimally) identifiable,
then there exists an analytic function which makes the system not (infinitesi-
mally) identifiable.

We consider again a system Σ of the form (3.40). In [10], we have shown that
identifiability is a generic property if and only if the number of observation p is
greater or equal to 3. On the contrary, if p is equal to 1 or 2, identifiability is a very
restrictive hypothesis (infinite codimension) and we have completely classified
infinitesimally identifiable systems by giving certain geometric properties that
are equivalent to the normal forms presented in Theorems 8 and 9 [10] below.

These theorems are the basis of our identifier construction: since every identifi-
able systems may be put, up to a change of coordinates, in one of these canonical
form of identifiability, then it is sufficient to develop an identifier for these forms
(exactly as observers for observable systems).

Theorem 8. (p = 1) If Σ is uniformly infinitesimally identifiable, then, there is
a subanalytic closed subset Z of X, of codimension 1 at least, such that for any
x0 ∈ X\Z, there is a coordinate neighborhood (x1, . . . , xn, Vx0), Vx0 ⊂ X\Z in
which Σ (restricted to Vx0) can be written:

Σ1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2
...

ẋn−1 = xn

ẋn = ψ(x, ϕ)
y = x1

and
∂

∂ϕ
ψ(x, ϕ) 	= 0 (3.41)

Theorem 9. (p = 2) IfΣ is uniformly infinitesimally identifiable, then, there is an
open-dense semi-analytic subset Ũ of X ×I, such that each point (x0, ϕ0) of Ũ , has a
neighborhood Vx0 × Iϕ0 , and coordinates x on Vx0 such that the system Σ restricted
to Vx0 × Iϕ0 , denoted by Σ|Vx0×Iϕ0

, has one of the three following normal forms:

• type 1 normal form

Σ2,1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = x1 y2 = x2
ẋ1 = x3 ẋ2 = x4

...
...

ẋ2k−3 = x2k−1 ẋ2k−2 = x2k

ẋ2k−1 = f2k−1(x1, ..., x2k+1)
ẋ2k = x2k+1

...
ẋn−1 = xn

ẋn = fn(x, ϕ)

(3.42)

with ∂fn

∂ϕ 	= 0.
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• type 2 normal form

Σ2,2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = x1 y2 = x2
ẋ1 = x3 ẋ2 = x4

...
...

ẋ2r−3 = x2r−1 ẋ2r−2 = x2r

ẋ2r−1 = ψ(x, ϕ) ẋ2r = F2r(x1, . . . ,
x2r+1, ψ(x, ϕ))

ẋ2r+1 = F2r+1(x1, . . . ,
x2r+2, ψ(x, ϕ))

...
ẋn−1 = Fn−1(x, ψ(x, ϕ))
ẋn = Fn(x, ϕ)

(3.43)

with ∂ψ
∂ϕ 	= 0, ∂F2r

∂x2r+1
	= 0, ...., ∂Fn−1

∂xn
	= 0

• type 3 normal form

Σ2,3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y1 = x1
ẋ1 = x3

...
ẋn−3 = xn−1
ẋn−1 = fn−1(x, ϕ)

y2 = x2
ẋ2 = x4

...
ẋn−2 = xn

ẋn = fn(x, ϕ)

(3.44)

with ∂
∂ϕ(fn−1, fn) 	= 0.

Theorem 10. (p ≥ 3) If Σ is an infinitesimally identifiable generic system,
then there is a connected open dense subset Z of X such that for any x0 ∈
X\Z, there exist a smooth C∞–function F and a

(
y̌, y̌′, . . . , y̌(2n)

)
–dependent

embedding Φy̌,...,y̌(2n) (x) such that outside Z, trajectories of Σx0,ϕ are mapped
via Φy̌,...,y̌(2n) into trajectories of the following system

Σ3+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dz1
dt = z2
dz2
dt = z3

...
dz2n

dt = z2n+1
dz2n+1

dt = F
(
z1, . . . , z2n+1, y̌, . . . , y̌(2n+1)

)
ȳ = z1

where zi, i = 1, . . . , 2n + 1 has dimension p − 1, and with
{

x = Φ−1
y̌,...,y̌(2n) (z)

ϕ = Ψ (x, y̌)
(3.45)

(y̌ is a selected output).
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3.4.2 Identifiers

As explained before, we have to build an identifier for each canonical form of
identifiability. The basic idea is the same for all these forms, and leads to the use
of the nonlinear observers developed previously: we assume, along the trajecto-
ries visited, a local model for ϕ. For instance, a simple local model is: ϕ(k) = 0.

This does not mean, at the end, that we will identify ϕ as a polynomial in
t: the question is not that this polynomial models the function ϕ globally as a
function of t, but only locally, on reasonable time intervals (reasonable w.r.t. the
performances of the observer that we will use).

This idea is just an extension of the classical way to identify constant or
slowly varying parameters m. In this case, one uses to add the parameter in the
state variables and to add the equation dm

dt = 0. Therefore, the local model is a
constant polynomial. In our case, such local model is too constrained (since ϕ is
not supposed to vary slowly), so we add a polynomial local model.

Let us consider a system Σ in the identifiability normal form 3.41. Adding
the local model for ϕ, we get the system:

y = x1, (3.46)
ẋ1 = x2, ..., ẋn−1 = xn,

ẋn = Ψ(x, ϕ1), ϕ̇1 = ϕ2, ..., ϕ̇k−1 = ϕk, ϕ̇k = 0,

∂Ψ

∂ϕ1
	= 0 (never vanishes). (3.47)

This is a system on R
n+k, which is not controlled (however, for the consider-

ations that follow, Ψ could depend on a control u), and this system is under the
normal form (3.17, 3.18).

Therefore, we may apply high gain Luenberger observer, or we may apply the
trick in Section 3.3.2. Then, for instance, the observer of Sections 3.3.2, 3.3.3 and
3.3.4 may be applied to this system. It will provide estimations of x(t), ϕ(t), that
is, just an estimation of the piece of the graph of ϕ visited during the experiment.

The cases of normal forms (3.42), (3.43), (3.44), corresponding to Type 1 to 3
systems can be treated in a similar way to the single-output case, with some more
or less easy adaptations of the methods of the previous sections. This exercise is
left to the reader.

An application of this technique in a difficult case (the local polynomial model
does not apply) is presented in Section 3.6. Some important remarks and prac-
tical considerations are discussed in this section.

3.5 Series-Connected DC Motor

In this first application we present (in simulation) the design of the adaptive-
gain extended Kalman filter (AG–EKF, see Section 3.3.4) for a single input single
output (SISO) system, namely a series-connected DC motor.

Basically, an electric motor converts electrical energy into mechanical energy.
In a DC motor, the stator (also called field) is composed of an electromagnet, or
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a permanent magnet, that immerses the rotor in a magnetic field. The rotor (also
called armature) is made of an electromagnet that once supplied with current cre-
ates a second magnetic field. The motion is then caused by the attraction/repelling
behavior of magnets. As far as the magnetic field created by the stator remains
fixed the rotor windings are connected to a commutator. The direction of the cur-
rent flowing through the armature coils is then switched during the rotation and
the polarity of the armature magnetic field is reversed. Successive commutations
then maintain the rotating motion of the machine. A DC motor whose field circuit
and armature circuit are connected in series, and therefore fed by the same power
supply, is referred to as a series-connected DC motor [34].

3.5.1 Mathematical Model

The model of the series-connected DC motor is obtained from the equivalent
circuit representation shown in Figure 3.1. We denote by If the current flowing
through the field part of the circuit (between points A and C) and Ia the current
through the armature circuit (between points C and B). When the shaft of the

Fig. 3.1. Series-connected DC motor equivalent circuit representation

motor is turned by an external force, the motor acts as a generator and produces
an electromotive force. In the case of the DC motor, this force will act against
the current applied to the circuit and is then called back or counter electromotive
force (BEMF or CEMF). The electrical balance leads to

Lf İf + RfIf = VAC

for the field circuit, and to

Laİa + RaIa = VCB − E

where Lf and Rf are the inductance and the resistance of the field circuit, La

and Ra are the inductance and the resistance of the armature circuit, and E
denotes the Back EMF. Kirchoff’s laws give us the relations
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{
I = Ia = If

V = VAC + VCB

which gives for the total electrical balance

Lİ + RI = V − E

where L = Lf + La and R = Rf + Ra. Now denoting by Φ the field flux, we
have Φ = f(If ) = f(I), and E = KmΦωr where Km is a constant and ωr is the
rotational speed of the shaft.

The second equation of the model is given by the mechanical balance of the
shaft of the motor using the well known Newton’s law. We consider that the
only forces applied to the shaft are the electromechanical torque Te, the viscous
friction torque and the load torque Ta leading to

Jω̇r = Te − Bωr − Ta

where J denotes the rotor inertia, and B the viscous friction coefficient. The
electromechanical torque is given by Te = KeΦI with Ke denoting a constant
parameter. We consider that the motor is operated below saturation: the field
flux can be expressed by the linear expression Φ = LafI where Laf denotes
the mutual inductance between the field and the rotating armature coils. To
conclude with the modeling of the DC motor we suppose the ideal hypothesis of
100% efficiency in the energy conversion expressed by K = Km = Ke, and for
notation simplicity we write Laf instead of KLaf . The voltage is the input of
the system u(t) and the current I is the measured output. We finally obtain the
following SISO model for the series-connected DC motor(

Lİ
˙Jωr

)
=

(
u − RI − LafωrI
LafI2 − Bωr − Ta

)

y = I

(3.48)

This model will be used to simulate the DC motor by means of a Mat-
lab/Simulink S-function.

3.5.2 Observability Canonical Form

Before implementing the observer in order to reconstruct the state vector of this
system we test (quite easily) its observability property. We use the differentiation
approach that is we verify the differential observability (Definition 3) which
implies observability.

• I(t) is known with time, then İ = (1/L)(u − R.I − LafωrI) is known and as
far as u(t), R, and Laf are known then ωr can be computed

• now that ωr(t) is known, ω̇r = (1/J)(LafI2−Bωr−Ta) can be computed and
because of the knowledge we have of I(t), Laf , B,and J , Ta can be estimated

We deduce from this that a third variable may be added to the state vector
in order to reconstruct both the state of the system and the load torque applied
to the shaft of the motor. We assume that the load torque is constant over time.
Sudden changes of the load torque will then be considered as unmodeled per-
turbations. The observer we use is the adaptive-gain Kalman filter as described in
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Section 3.3.4 because it has the classical EKF structure when no perturbations
occur and the structure of a HG–EKF when the system faces a perturbation.
Estimation of the load torque is made possible by the addition of the equation
Ṫa = 0 to (3.48) (see remarks in Section 3.4.2). We now need to find the coordi-
nate transformation that puts this systems into the observability canonical form.

From the equation y = I, we choose z1 = I and then

ż1 =
1
L

(u(t) − RI − LafIωr)

which by setting z2 = Iωr becomes

ż1 = −Laf

L
z2 +

1
L

(u(t) − Rz1) = α2(u)z2 + b1(z1, u) (3.49)

we now compute the time derivative of z2

ż2 = İωr + Iω̇r = − 1
J

TaI − B

J
Iωr +

Laf

J
I3 − Laf

L
ω2

rI +
u(t)
L

ωr − R

L
ωrI

when I > 0 and consequently z1 > 0 which sounds as a reasonable assumption
as far as I is the current of the circuit which is equal to zero only when there
is no power supplied to the engine (and therefore nothing to observe), we set
ωr = z2

z1
, and by setting z3 = TaI this equation becomes

ż2 = − 1
J

z3 − B

J
z2 +

Laf

J
z3
1 − Laf

L

z2
2

z1
+

u(t)
L

z2

z1
− R

L
z2 = α3(u)z3 + b2(z1, z2, u)

(3.50)
and identical remark as above lead us to the expression Ta = z3

z1
and recalling

that Ṫa = 0 we obtain

ż3 = −Laf

L

z2z3

z1
+

u(t)
L

z3

z1
− R

L
z3 = b3(z1, z2, z3, u) (3.51)

Thus the application from R
∗+ × R × R → R

∗+ × R × R defined by
(I, ωr, Ta) → (I, Iωr, ITa) with (z1, z2, z3) →

(
z1,

z2
z1

, z3
z1

)
as its inverse, is a

change of coordinates that puts the system (3.48) into the observer canonical
form defined by (3.49), (3.50) and (3.51). It is necessary to compute the coeffi-
cients of the matrix b

∗
.

3.5.3 Observer Implementation

We now recall the equations of the AG–EKF
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dZ

dt
= A(u)Z + b(Z, u) + PC′R−1

θ (CZ − y(t))
dS

dt
= P (A(u) + b∗(Z, u))′ + (A (u) + b∗ (Z, u))

−PC′R−1
θ CP + Qθ

dθ

dt
= λ(1 − s(I)).(1 − θ) + K.s(I).(θmax − θ)

(3.52)
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where Rθ = θ−1R and Qθ = θΔQΔ with Δθ = diag
(
θ, θ2, . . . , θn

)
, s(I) =[

1 + e−β(I−m)
]−1

and

I =
∫ t

t−T

‖y(s) − ȳt−T (s)‖2 ds = ‖y − ȳt−T ‖2
L2(t−T,t) (3.53)

In fact, these equations are a slight modification of (3.34): the function F
has been modified in order to take into account noise effects, as we will explain
below.

The simulation of the DC motor is straightforward, we then only comment the
implementation of the observer. A Matlab/Simulink block diagram representing
the DC machine and the observer is shown in Figure 3.2 (this figure is incom-
plete as far as one would surely want to plot errors between real and estimated
states). As it may be seen from the simulink block diagram shown in Figure 3.3
the observer is decomposed into three parts: two level 1 S-functions and a trans-
port delay block. As written on the diagram, the rightmost S-function is dedi-
cated to the computation of the three main equations of the observer which are
equations (3.52). This block has three type of inputs: the measured output of
the observed system, the input delivered to the observed system and the innova-
tion. The innovation is computed using a distinct S-function because unlike the
main equations that may be processed continuously (or quasi-continuously), a

Fig. 3.2. Simulation and observation of the DC motor

Fig. 3.3. Observer subsystem
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discrete S-function is needed to compute the innovation. This choice was made
because:

• the computation of the integral is made by means of a fixed step trapezoidal
method

• we have to keep memory of the input and the output trajectories over a time
interval [0;T ] where T is the delay of (3.53) which is easily done with a fixed
step process.

The codes to implement those different functions may be downloaded from
http://www.u-bourgogne.fr/monge/e.busvelle/springer/ or obtained from the au-
thors if the link happens to be disabled.

3.5.4 Simulation Parameters and Observer Tuning

The parameters used to simulate the DC engine, motivated by measures made on
a real system, are L = 1.22 H , Res = 5.4183 Ω, Laf = 0.0683 N.m.Wb−1.A

−1
,

J = 0.0044 kg.m2, and B = 0.0026 N.m.s−1.rad−1.
We now need to set the observer parameters d, Dt, R, Q, θmax, λ, K, β, and

m. Before explaining how those parameters may be tuned, we want to stress
that the last four ones do not need to be reset for each new observer. Those
parameters appear in the last equation in (3.52) and drive the evolution of the
parameter θ. The values λ = K = 500, β = 2000, and m = m1 + m2 where
m1 = 0.005 (m2 will be specific to each new process) may be kept each time a
new observer is implemented. The procedure used to tune the parameters R, Q,
θmax is inspired by the one proposed in [9, part. 5.2.2].

1. As a first step, we determine the (symmetric positive definite) matrices
R and Q by using an EKF. This observer can be obtained from the AG–EKF
when the parameters of the adaptation function are set to 0 and θ(0) = 1. Large
perturbations are not considered and the observer is initialized to the proper (or
previously estimated) values of the state vector.

2. As a second step, we set the R and Q matrices to the values previously
found and use a HG-EKF in order to tune θ. As above the observer needed is
obtained from the AG–EKF when the parameters of the adaptation function are
set to 0. Then θ(0) is the value that is tuned. Here we will try to find a value
for the high-gain parameter that allows fast and reasonable convergence (with
respect to noise amplification) when large unmodeled perturbations are applied
to the system. θmax is then taken equal to the value estimated at this step.

3. As a last step we now set the parameters of the adaptation function. We
remark that when m = 0 then s(0) = 0.5. Thus we need to shift the sigmoid
function to the right if we want s(0) to be close to zero. Choosing y1 as small as
we want and solving the equation s(0) = y1 allows to obtain the parameter m.
This solution is easily computed provided that the parameter β is known. As
the sigmoid function is centered on (0, 0.5) when m = 0, the computation of β
is made by setting a length l for the transition part and solving the nonlinear
equation (with m = 0): s(l/2) − s(−l/2) = (1 − y1) − y1. Of course, another



104 N. Boizot and E. Busvelle

Fig. 3.4. Estimation of β and m1 by trial and error

approach is to graphically define β and m from trial and error. Figure 3.4 shows a
simple Matlab GUI implemented to ease this latter method (the result displayed
is for the values of β and m1 given above). The code of this GUI is also available
from http://www.u-bourgogne.fr/monge/e.busvelle/springer/.

Now that the transition part is small, we want the gain to increase and de-
crease quickly. If we suppose that θ(t) = 1 and that we want it to reach θmax

within a time τ then the equation θ̇ = θmax−1
τ = K.(θmax −1) allows the compu-

tation of K. As far as the equation used to compute K is only an approximation,
a bigger value (e.g. twice the computed value) may be used. Finally, a reasonable
choice for the last parameter remaining is λ = K.

The parameter T , the length of the window on which innovation is computed,
is related to the rise time of the system when it is facing perturbations: it has
to be sufficiently big so as to give an account of perturbations that occur on the
system. The sample time Dt of the discrete S-function should ideally be chosen
as small as possible, leading to a significant increase of the amount of time and of
the memory needed to compute the innovation (we need to keep track of T

Dt + 1
system outputs and T

Dt system inputs). Dt = T/3 or Dt = T/4 seems to be
reasonable, fewer values will of course give more flexibility to the system.

Because of measurement noise the innovation will never be equal to zero and
therefore the observer will stay in a high-gain mode. To avoid this problem, the
parameter m is rewritten m = m1 + m2 where m1 is the previously computed
quantity and m2 will represent the influence of the noise on the system. As a
result, when I ≤ m2 we will have s(I) ≤ y1 and θ won’t increase. We denote
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Fig. 3.5. Estimation of the standard deviation

by σ the standard deviation of the output noise, which can be estimated from
output measurements, and then m2 = T.σ2 where T is the delay used in the
definition of the innovation. Figure 3.5 shows the output of the simulated DC
motor (with addition of noise) and that σ = 0.7 is a reasonable value for the
standard deviation.

Finally all those steps allow us to set the parameters to R = 1, Q =
[1, 0, 0; 0, 5, 0; 0, 0, 5], θmax = 3, λ = K = 500, β = 2000, T = 0.1, Dt = 0.01,
and m = 0.005 + 0.049.

3.5.5 Simulation Results

Figures 3.6 and 3.7 shows the performance of the designed observer, all the ob-
servers identify the values taken by the load torque but with different behaviors.
The EKF rejects noise but converges slowly when the system faces unmodeled
perturbations. We may add that in order to speed up a little bit the EKF the Q
matrix was set to [25, 0, 0; 0, 25, 0; 0, 0, 50] in this special case, it was kept to the
value given in the previous chapter for all the other simulations.

The HG–EKF is on the contrary very sensitive to measurement noise but is
very fast regarding convergence when a perturbation arises.

The AG–EKF presents both the advantages of the two previous filters, namely
noise rejection and speed of convergence under perturbations. We observe that
the adaptive-gain observer is a little bit slower than the fixed high-gain one.
This is due to the delay induced by the computation of innovation, in fact the
value chosen for Dt will have an impact on this delay as far as the behavior
of θ (increasing towards θmax or decreasing towards 1) will only change with
the innovation. In all the parameters tuned for this last observer one will have
a major impact, this is m2. If indeed it is set to a too big value, then θ won’t
increase every time it is needed, which does not constitute a major drawback
because the EKF rejects noise (this is true provided that m2 is not such as big
that it totally prevent θ from increasing). On the contrary, if m2 is too small
then θ will increase when it is not needed (only because of the noise) having the
only effect to amplify noise. However as it can be seen from Figure 3.5, σ and
therefore m2 is not difficult to estimate from output measurements. To illustrate
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Fig. 3.6. EKF VS AEKF
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Fig. 3.7. HGEKF VS AEKF

this comment Figure 3.8 shows the evolution of θ for two different values of m2
(the value 0.049 corresponds to the simulations which results are shown above).

3.6 Electronical Neuron Circuit

With this second application we illustrate how observers can assist system mod-
eling and, in the case considered here, prototype assessment (as in Section 3.4).
Identifiability study of this model has been presented in [5].

The modelization of neurons is extensively studied in neuroscience research.
A large quantity of models of isolated neuron cells or of neuron cells networks
are available in the literature each one of them presenting variable degrees in
their accuracy. The model we use here, a modification of the model proposed by
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Fitzhugh, Nagumo & al. in the early 1960’s, is a simplification of the one of a
single isolated biological neuron proposed by Hodgkin and Huxley [24]. Historical
informations on the development of this model can be found in [28].

3.6.1 The Modified Fitzhugh-Nagumo Model (MFHN)

From the biological point of view this model is composed of two variables, V
representing the membrane voltage and W that represents the recovery variable

{
V̇ = V − V :3

3 − W

Ẇ = ε (g(V ) − W − η)
(3.54)

where ε and η are constant parameters and g is the piecewise linear function

g(V ) =
{

βV if V > 0
αV if V ≤ 0

where α and β are constant parameters.
This model was implemented as an analogue circuit at LE2I laboratory (uni-

versity of Burgundy), the exact description of this circuit is given in [6]. The
analysis of this physical system is made by means of an observer based approach,
real data being available.

3.6.2 Identifiability and Observability

From the analogue circuit point of view, V corresponds to a voltage and W
to a current therefore both of them can be measured. Although in the case of
a real biological system it will only be possible to measure V , the membrane
voltage. Thus we will consider that only V is actually measured. The objective
of this study is the identification of the function g (i.e. the part of its graph
visited during the experiment) and the study of the identifiability property of
the system constitutes a first step. In Section 3.4, we described an identifiability
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normal form for single output uncontrolled systems (normal forms for systems
with more than one output are also given)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2
...

˙xn−1 = xn

ẋn = ψ(x, g)
y = x1

(3.55)

We now want to find a change of coordinates that allow the MFHN equations
to match this normal form. This coordinate transformation is easily found: set
x1 = V and x2 = V̇ .

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = V̇
= x2

ẋ2 = V̇ − V̇ V 2 − Ẇ

= (1 − x2
1)x2 − ε

(
g(x1) − x1 + x3

1
3 + x2 − η

)
= ψ(x, g)

(3.56)

Since ε 	= 0, the system is clearly identifiable. We see that if the parameter
η is unknown we have the possibility to redefine the unknown function g as
g(x1) = g(x1) − η with no change in the normal form.

In order to identify the function g, we extend the state vector by making g
a state variable. As it is clear that g is not constant over time we model it as a
local polynomial of time

g(V (t)) = g(t) = a0 + a1t + ... + antn

which implies that dn+1g(t)
dtn+1 = 0. The model is completed by the addition of n

new state variables corresponding to the n first derivatives of g with respect to
time (for a total of n+1 new variables). It appears that when the system defined
by (3.56) is extended in that manner it is in the observability canonical form.
However there exists a much more simpler way to obtain the canonical form that
is not to do any change of variables. This latter form is the one we will consider
so as to avoid change of variables while implementing the observer

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V
W
h0
h1
...

hn−1
hn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 ... 0 0
0 0 ε 0 ... 0 0
0 0 0 1 ... 0 0
0 0 0 0 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V
W
h0
h1
...

hn−1
hn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V − V 3

3
−ε(W − η)

0
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where hi = d
i
g(t)

dti for i = 0, ..., n and with d0g
dt = g.



Adaptive-Gain Observers and Applications 109

Fig. 3.9. Identification from real data

One could think that the choice of a local representation for the function
g (here a polynomial of time) and the transformation of the model into the
canonical observability form is enough to prove identifiability. It is in fact not
the case. This subtle difference has been well illustrated in [9, part 6] where the
authors exhibit the example

{
ẋ = ϕ(x)
y = x + ϕ(x) x ∈ R

indeed, keeping the notations used above for the function g and setting n = 1,
then the change of coordinates (x, h0, h1) → (z1, z2, z3) = (x + h0, h0 + h1, h1)
leads to an observability canonical form. However the authors showed that this
system is not identifiable !

3.6.3 Implementation

The high-gain extended Kalman filter is adapted to the problem of identification
of the unknown function g. The implementation of this observer is much more
easy to carry on than the previous one: only one S-function is needed. Even if our
objective is to use real data obtained from the analogue circuit mentioned above
we use a continuous S-function. This is motivated by the fact that our data’s
sample time is smaller than the average time step used by the software to com-
pute the continuous solutions (but a continuous–discrete observer (3.37)–(3.38)
can be another possible choice). The corresponding Matlab/Simulink diagram is
shown Figure 3.9.

Codes may be downloaded (together with a set of data) from http://www.u-
bourgogne.fr/monge/e.busvelle/springer/.

3.6.4 Results

A first series of simulations of the MFHN model are done in order to tune the
three parameters n, Q, and θ. The parameters for the MFHN model are set to
α = 0.5, β = 1.96, ε = 0.2966, η = 0.20531 V (0) = 1.0656, and W (0) = 2.6903.
Since we are using an observer that only has a high-gain behavior, Q is set to
the identity matrix Id(3+n)×(3+n). The high-gain parameter θ is then chosen
to ensure an accurate identification of the function. Several simulations show
that θ = 1 (corresponding to an extended Kalman filter) does not lead to the
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Fig. 3.10. Identification of g from simulations (without noise addition)
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Fig. 3.11. Circuit voltage V

identification of the function. The identification is made possible when θ ∈ [5; 10],
and is very accurate when θ > 10. Figure 3.10 shows identification results for
four different values of the high-gain parameter when the data fed to the observer
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Fig. 3.12. Decomposed identification of the function g

are simulated. No noise has been added during those simulations and then even
if θ = 15 gives the best result, the trade-off between speed of convergence and
sensibility to noise leads us to choose a smaller value.

The values for V got from the analogue circuit are shown Figure 3.11 and the
result of the identification (with θ = 10 and n = 1) is shown Figure 3.12(a). We
see that the unknown function is identified as a loop and from the shape of the
data used, we expect four of them.

We isolated the first values given by the observer in order to obtain the
clearer graphic Figure 3.12(b) in which we highlighted the overshoot due to
the inaccurate initialization of the observer. After this overshoot the observer
converges to the values taken by the unknown function and while V < 0
the estimation is quite good. When V becomes positive the estimation is not
that accurate anymore. Two reasons can be pointed out to explain this phe-
nomenon: the real data do not correspond exactly to the output the theoretic
model would give for the same set of parameters (which is analogous to mod-
eling errors) and the fact that the function we want to identify is not differ-
entiable in 0, a very specific property that is not reflected by our polynomial
approximation.

We rewrite the model used to perform the identification so as to take this into
consideration

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2 ẋ2 = ψ̄(x, α̂, β̂)
˙̂α = α1

˙̂
β = β1

α̇1 = α2 β̇1 = β2

α̇2 = α3 β̇2 = β3

α̇3 = 0 β̇3 = 0

(3.57)

The results of this new identification are shown Figure 3.13(a-b). This new
estimation is very accurate after a few cycles. Small errors both for the positive
and negative values of V are still visible, they can also be spotted when we trace
the values taken by α̂ and β̂ against time as in Figure 3.14. Those errors are due
to the fact that real data differ from the ideal mathematical model.
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Fig. 3.13. Estimation of g
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[32] Jouan P., J.P. Gauthier J.P., (1996) Finite singularities of nonlinear systems. Out-
put stabilization, observability and observers. Journal of Dynamical and Control
Systems, vol. 2, N◦ 2, 255–288.

[33] Kent K. C. Yu, N. R. Watson, J. Arrillaga, (2005) An adaptive Kalman filter for
dynamic harmonic state estimation and harmonic injection tracking, IEEE Trans.
on power delivery, Vol. 20, No 2

[34] Krause P C, Wasunczuk O, Sudhoff S D (2002) Analysis of Electric Machinery and
Drive Systems, 2nd edition. Wiley-interscience, IEEE series on power engineering.

[35] La Moyne L., Porter L. L., Passino K. M. , (1995) Genetic adaptive observers,
Engng Applic. Artif. Intell. Vol. 8, No 3, 261–269

[36] Mehta S,Chiasson J (1998) Nonlinear Control of a Series DC Motor: Theory and
Experiment. IEEE transactions on industrial electronics 45, 1.

[37] E. Pardoux (1991) Filtrage non linéaire et équations aux dérivées partielles
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Thèse de l’université de Rouen
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Alexandru Ţiclea1 and Gildas Besançon2
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4.1 Introduction

In this chapter we present immersion transformations of nonlinear systems for
observer synthesis. A transformation through immersion is a generalization of an
equivalence transformation to the extent that the dimension of the state space
is not necessarily preserved. The immersion of a system for estimation purposes
involves in fact the immersion (in the differential geometry sense) of the state
space into a space of larger dimension, leading to a dynamical extension of the
system.

The idea of dynamical extension is actually quite natural when solving esti-
mation problems. For a simple illustration, consider the linear system

ẋ = −x + u

y = x + v

where v is an unknown measurement bias, assumed constant. The usual approach
for the estimation of the state in this case is to extend the state vector to include
the bias, which leads to an immersion into a second order system:

ẋ1 = −x1 + u

ẋ2 = 0
y = x1 + x2.

As for a common example in a nonlinear setting, dynamical extension is fre-
quently performed with the intention of estimating the parameters of a system
through a state observation technique.

The immersion transformations discussed in this chapter go beyond the ex-
tension of the state vector with variables that can be assimilated with constants
inasmuch as the objective is to transform nonlinear systems—possibly obtained
through preliminary dynamical extension—into systems that suit the design of
observers, through (further) dynamical extension. To that aim, we present pre-
cise immersion conditions with respect to several structures that are particularly

G. Besançon (Ed.): Nonlinear Observers and Applications, LNCIS 363, pp. 115–138, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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interesting from the observer design viewpoint, with an emphasis on the condi-
tions that can be easily translated into immersion algorithms.

Section 4.2 recalls some standard definitions for the basic concepts used
throughout this chapter without aiming at a rigorous treatment but rather at
setting out the notation. Section 4.3 presents results concerning the immersion
into state-affine structures, while section 4.4 presents results for immersion into
linear structures. Finally, section 4.5 presents an observer design based on im-
mersion into a nonlinear system satisfying some specific structural constraints.

4.2 Notation and Definitions

4.2.1 Nonlinear Systems

The general description of nonlinear systems used in this chapter assumes that
the state space is a C∞ manifold of dimension n, denoted by M , the input space,
denoted by E is a subset of IRm, and the output space, denoted by S is a subset
of IRp. As far as the inputs as functions of time u : [0, tu) → E are concerned, we
assume that they are elements of the set of measurable and bounded functions
defined on IR+ with values in E.

We consider that the dynamics of the system are characterized by a family
of vector fields parameterized by the input u, fu = {fc | c ∈ E}, such that the
application M × E → TM (tangent structure of M), (x, c) �→ f(x, c), is C∞.
We also consider that the output of the system is given by a C∞ output map
h : M → S.

For convenience, we assume that M admits a global system of coordinates,
which leads to a global representation of the system,

ẋ = fu(x) = f(x, u)
y = h(x),

(4.1)

and very often we consider that M = IRn.
We denote by xx◦,u the internal trajectory of the system under the action of

the input u starting from x◦, and by yx◦,u the corresponding output trajectory.
We assume that yx◦,u : [0, tx◦,u) → S is a measurable function.

4.2.2 Observability

The only observability-related concept that will be needed in this chapter is the
observability rank condition relative to the observation space of the system. In
that respect, let us recall the following:

Definition 1 (Observation space). Given a system (4.1), we denote by O(h)
and we call the observation space of the system the smallest vector space over
IR of functions defined on M with values in IR that contains the set {h1, . . . , hp}
and is invariant under the action (through Lie derivation) of the vector fields
in fu.
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We denote by dO(h) the space of the differentials of the elements of O(h) and by
dO(h)(x) the (finite dimensional) vector space over IR obtained through evalu-
ation at x of the elements of dO(h). The system satisfies the observability rank
condition at a point x◦ if

dim dO(h)(x◦) = n.

We note that the observability rank condition characterizes the local weak
observability of the system [18].

4.2.3 Immersion

This section gives the precise mathematical characterization of the notion of
subsystem towards the situations in which the input-output behavior of a system
is reproduced in the input-behavior of another system. As suggested by the term,
a system has lower order than the system of which it is subsystem. We usually
refer to subsystems as immersed systems. Conversely, if a system admits one or
several subsystems, then it can be submersed into such system.

Let us first recall the definition of the immersion as concept in differential
geometry.

Definition 2 (Immersion and submersion of manifolds [6]). An applica-
tion τ : M → M ′ is an immersion ( submersion) if its rank is n = dimM
(n′ = dimM ′) everywhere. If τ is an injective immersion, then it establishes a
one-to-one correspondence of M and the subset M ′′ = τ(M) of M ′.

We also recall the concept of embedding.

Definition 3 (Embedding [6]). An embedding is a one-to-one immersion
τ : M → M ′, which is a homeomorphism of M into M ′, that is, τ is a homeo-
morphism of M onto its image, M ′′ = τ(M), with its topology as a subspace of
M ′. Every one-to-one immersion is locally an embedding.

Since the rank of τ is less than min(n, n′) at every point, if τ is an immersion
then n ≤ n′, while if τ is a submersion, n ≥ n′. As far as the observer design is
concerned, we are mainly concerned with immersions.

Definition 4 (Immersion of dynamical systems). Consider two C∞ sys-
tems S = (M, fu, h) and S′ = (M ′, f ′

u, h′) such that every input that is admissi-
ble for one of them is also admissible for the other. The system S is immersible
into system S′ if there exists a C∞ map τ : M → M ′ such that

(i) For every pair (x◦, x•) ∈ M × M , h(x◦) �= h(x•) implies h′(τ(x◦)) �=
h′(τ(x•)),

(ii) For every pair (x, u), the domain of definition of y′
τ(x),u includes the domain

of definition of yx,u and on the intersection of their domains, yx,u and y′
τ(x),u

coincide.

In this situation, τ is an immersion of dynamical systems and S can be repre-
sented as subsystem of S′.
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It turns out that an immersion of dynamical systems for observer design pur-
poses has to be at least an immersion of manifolds. This guarantees that the
internal trajectories of the two systems initialized respectively at x◦ and τ(x◦)
are (at least locally) in one-to-one correspondence, making possible the inverse
transformation of estimated trajectories in order to recover the original variables,
and ensuring that the systems share (locally) the same observability properties.
Moreover, when the immersion is an embedding, S is subsystem of a uniquely
determined C∞ system of order n′ defined on M ′ and their internal trajectories
are in one-to-one correspondence.

Sometimes, the system we are dealing with does not possess the required
observability properties. In some cases it is possible to perform a submersion
through the canonical map obtained by factoring the state space by the relation
of indistinguishability [18] and obtain a system which possesses a certain observ-
ability property. We shall see in Section 4.5.3 an example of such a submersion.

4.3 Immersion in a State-Affine Structure

One important difficulty when designing observers for nonlinear systems arises
from the fact that in general the observability properties of such systems depend
on the applied input. The main advantage of state affine systems is that they lend
themselves to the characterization of the quality of the applied input through the
observability grammian specific to linear time varying systems. The observation
of state-affine system can be then easily performed through Kalman [21], or
Kalman-like [16] observers (as recalled in chapter).

4.3.1 Immersion Without Output Injection

The first result on the immersion of continuous-time nonlinear systems into a
state-affine structure

ż = A(u)z + ϕ(u)
y = Cz

has been presented by Fliess [11] for input-affine analytic systems as an applica-
tion to the theory of nonlinear causal functionals he had previously introduced
in [10].

The immersion transformation leads in this case to a bilinear representation
and the necessary and sufficient condition for immersion is that the observation
space of the system to be immersed has a finite dimension. The proof uses on the
one hand the fact that the output of an analytic system is a causal functional
of the input u, generated by a power series with coefficients in the observation
space of the system, and on the other hand the fact that the observation space
of any bilinear system has a finite dimension.

It turns out that the finiteness condition with respect to the observation space
also applies to general C∞ systems.
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Theorem 1 (Immersion into a state-affine system [12])

(i) If the observation space of a system (4.1) has a finite dimension, then the
system can be immersed into a state-affine system.

(ii) If in addition the system is originally control-affine, then the immersion leads
to a bilinear system.

(iii) If the class of admissible inputs contains the piecewise-constant inputs, then
the immersion condition is also necessary.

The main characteristic of the immersion performed under the conditions of
this theorem is that the order of the system obtained after immersion coincides
with the dimension of the observation space of the original system. Some proof
elements for the ”if” part of the theorem turn out to be useful for the construction
of the immersion.

First, the finiteness of O(h) implies that every element of this space can be
expressed as IR-linear combination of basis elements. Let L(fu) denote the Lie
algebra generated by the vector fields of the family fu. The observation space
is invariant under the action (through the Lie derivative) of the elements of
L(fu), so this action can be given an IR-linear representation through a map
θ : L(fu) → End(O(h)).

On the other hand, every linear endomorphism of O(h) determines a unique
linear endomorphism of the dual space O(h)�. This means that there is a ”nat-
ural” action of L(fu) on O(h)� with IR-linear representation given by a map
ρ : L(fu) → End(O(h)�) such that, if f ∈ L(fu), then ρ(f) is the dual map of
θ(f), defined as follows: if l ∈ O(h) and λ ∈ O(h)�, then

(ρ(f)λ)[l] = λ(θ(f)l).

In this equality, l can also be seen as an element of the double dual O(h)�� ≡
O(h), so the endomorphism ρ(f) defines a linear vector field on O(h)�. It is then
possible to define a dynamical system on O(h)� with dynamics given by the
family of vector fields ρ(fu) and output map h′ defined as follows: if λ ∈ O(h),
then h′(λ) =

[
λ(h1) · · · λ(hp)

]T .
The original system is subsystem of the above defined system, with immersion

map τ : M → O(h)� defined as follows: if x ∈ M and l ∈ O(h), then τ(x)[l] =
l(x). According to this definition, the components of τ(x) in the dual basis are
the basis elements of O(h) evaluated in x, so knowledge of a basis of O(h) is
sufficient to construct the immersion. Next, given a vector field f of the family
fu, in order to compute ρ(f) (which is also the image of f through the tangent
map τ� [6]), it is enough to compute the directional derivative of the components
of τ in the direction of f .

Example 1 (Immersion of an input-affine system [11, 12]). Consider the follow-
ing SISO system defined on IR \ {0}:

ẋ = f0(x) + f1(x)u = ax − bxα + xu

y = h(x) =
1

xα−1 ,
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with a, b ∈ IR, α ∈ IN and α ≥ 2. A basis of O(h) is {1, 1
xα−1 }, which defines the

immersion map τ : IR \ {0} → IR2 as

x �→
[

1
1

xα−1

]
.

In order to compute the projections of the vector fields f0 and f1 through the
immersion τ , we proceed as indicated above:

[
Lf01

Lf0
1

xα−1

]
=

[
0

b(α − 1) + a(1−α)
xα−1

]
=

[
0 0

b(α − 1) a(1 − α)

] [
1
1

xα−1

]
,

[
Lf11

Lf1
1

xα−1

]
=

[
0

1−α
xα−1

]
=

[
0 0
0 1 − α

] [
1
1

xα−1

]
.

The original system is therefore subsystem of the bilinear system

ż =
[

0 0
b(α − 1) a(1 − α)

]
z + u

[
0 0
0 1 − α

]
z

y =
[
0 1

]
z.

4.3.2 Immersion with Output Injection

The finiteness condition with respect to the observation space is fairly strong
and seldom satisfied in practice, even for apparently ”simple” systems, like the
one in the following example.

Example 2. It can be easily verified, through successive differentiation of the
output application along the direction of the vector field that describes the dy-
namics, that the observation space of system

ẋ1 = x2

ẋ2 = x1x2

y = x1

(4.2)

has infinite dimension.

In some situations, it is however possible to immerse a system with infinite
dimensional observation space into a state-affine system, by resorting to output
injection.

We shall first present an approach by Hammouri and Celle [15], which uses an
idea that does not differ much from the idea in the previous section as the im-
mersion condition is still a finiteness condition related to the observation space.
In concrete terms, the system to immerse is an autonomous, single-output, an-
alytical system defined on IRn:

ẋ = f(x)
y = h(x),

(4.3)
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and the immersion condition is that the elements of the observation space are
linear combinations in a finite basis with coefficients in the space of the functions
of h, more precisely in R(h)—the ring of the functions of the type l ◦ h, where
l ∈ Cω(S) (the set of analytic functions defined on the output space of the
system with values on the real axis). The system is then immersed in a system
of the form

ż =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . 1 0

0 · · · · · · 0 1
a1(y) · · · aN (y)

⎤
⎥⎥⎥⎥⎥⎥⎦

z +

⎡
⎢⎢⎢⎢⎢⎣

0
...
0
0

ϕN (y)

⎤
⎥⎥⎥⎥⎥⎦

y = z1

(4.4)

with N ≥ n. However, there is no a priori information towards the value, nor
the existence of N . In fact, the available result can be stated as follows:

Theorem 2 (Immersion into a state-affine system [15]). If a system (4.3)
satisfies the conditions:

(i) There is an integer N such that h, Lfh, . . . , LN−1
f h are R(h)-linearly inde-

pendent;
(ii) LN

f h is element of the R(h)-module generated by the IR-vector space IR ⊕
span(h, Lfh, . . . , LN−1

f h),

then it can be immersed into a system (4.4). Conversely, if N is the smallest
integer for which a given system (4.3) can be immersed in a system (4.4), then
(i) and (ii) hold for that system.

Example 3. For the system (4.2), we have

h = x1, Lfh = x2, L2
fh = h(x)x2,

so in this particular case we obtain an equivalence with the state-affine system

ż =
[
0 1
0 y

]
z

y = z1.

Remark 1. Since the construction of the immersion resembles to a certain extent
the construction performed when the observation space has finite dimension, the
result can be easily extended to non-autonomous and multiple-output systems.

Again, just like in the case of the immersion without output injection, there are
systems to which the above result does not apply, but that can still be immersed
into a state-affine structure.
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Example 4. It can be easily verified that the observation space of the system
ẋ1 = x1 + x1x2

ẋ2 = x1

y = x1

is not finite-dimensional, nor can it be given the structure of a module over R(h).
Nevertheless, if the dependence on y is made explicit in the nonlinearity x1x2,
then the system can be written as

ẋ =
[
1 y
1 0

]
x

y = x1.

However, the conditions for immersion into a state-affine structure through such
”general” output injection are very difficult to characterize. This fact is equally
true for diffeomorphism transformations into systems of the form

ż = A(u, y)z + ϕ(u, y)
y = Cz,

(4.5)

a problem which is treated for instance in [17], where generic transformation con-
ditions are given, which are very difficult to check in practice and do not offer any
guidelines for constructing the transformation. Specific cases have been considered
in [4]. The difficulties originate in the fact that in general there are multiple ways
to parameterize the vector fields that describe the dynamics of the system by the
measured output y. A more detailed discussion on this subject is available in [27].

Here, we shall present an idea to immerse a nonlinear system into a state affine
structure by means of output injection which is more along the lines of the idea
in Section 4.3.1. More precisely, the idea consists in fixing an explicit dependence
on y of the dynamics in the original description of the system and then try to
immerse the system using the finiteness condition towards the observation space
by considering the extended input

[
u
y

]
. We summarize this result in the following

proposition, which provides a sufficient condition for immersion.

Proposition 1. Given a system (4.1), if the family of vector fields f(x, u) can
be parameterized by the output y such that the observation space is finite dimen-
sional when considering the extended input

[
u
y

]
, then the system can be immersed

in a state-affine structure (4.5).

Remark 2. In general, there is no link between the observation space described in
the above proposition and the real observation space of the system. In the above
proposition, this object is created only for immersion construction and should
not be used for other purposes, such as testing the observability rank condition.

Example 5. Consider the system

ẋ1 = x1 + x1x
2
2

ẋ2 = x1

y = x1
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and write the dynamics as

ẋ = f0(x) + yf1(x) =
[
x1
0

]
+ y

[
x2

2
1

]
.

Then,

Lf0h = x1 = h, Lf1h = x2
2, L2

f1
h = 2x2, L3

f1
h = 1,

so the system is immersible into a state affine structure through the immersion
map

x �→

⎡
⎢⎢⎣

x1
x2

2
2x2
1

⎤
⎥⎥⎦ .

The new representation is obtained by proceeding as in Example 1:

ż =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ z + y

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 2
0 0 0 0

⎤
⎥⎥⎦ z.

Example of application

For a more practical example of application of Proposition 1, consider the model
of an induction motor with state variables

isα, isβ – the components of the stator current phasor
φsα, φsβ – the components of the stator flux phasor

ωr – the mechanical speed
and inputs the components of the stator voltage phasor usα, usβ:

d
dt is = [−( Rr

σLr
+ Rs

σLs
)I + pωrJ ]is + [ Rr

σLsLr
I − p 1

σLs
ωrJ ]φs + 1

σLs
us

d
dtφs = −Rsis + us

d
dtωr = − fv

Jm
ωr + p 1

Jm
(isβφsα − isαφsβ) − 1

Jm
τl

y =
[

is

ωr

]
.

In the electrical part, L stands for inductance, R stands for resistance, σ =
1 − M2

LsLr
with M the maximum mutual inductance between one stator and one

rotor winding, the indexes s and r refer respectively to the stator and the rotor,
and

I =
[
1 0
0 1

]
, J =

[
0 −1
1 0

]
.

As far as the mechanical part is concerned, τl denotes the load torque, Jm the
total inertia momentum (rotor plus load) and fv the viscous friction coefficient.
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Finally, in both electrical and mechanical parts, p represents the number of pairs
of poles.

For such a system, the control problems generated by uncertainties in the
electrical parameters as well as by the absence of flux, torque and sometimes
even speed transducers are well-known and have motivated a lot of work. As
a result, it can be shown that the above model extended with the unknown
electrical parameters and load torque can be immersed into a form (4.5) for any
considered set of such unknown parameters, even when the speed is not measured
[28, 29]. Notice however that in these works the immersion is performed through
a heuristic approach in which a suitable parametrization of the dynamics by the
measured output is chosen at each step of the construction with the objective of
obtaining an affine structure. Here, we shall show that it is possible to achieve
the same result—at least towards the simultaneous estimation of the electrical
parameters, load torque and state variables when the speed is measured—by
using the approach of Proposition 1.

First, a preliminary dynamical extension is performed such that the electrical
parameters Rr

σLr
, Rs

σLs
, Rr

σLsLr
, 1

σLs
, Rs and the load torque τl are included in the

state vector, denoted from now on by x. Resistances usually vary with temper-
ature, but the dynamics are in general unknown and this is true for the load
torque as well. For this reason, it is assumed that these dynamics are slow com-
pared to the dynamics of the employed observer and the corresponding variables
are assimilated with constants.

Let us now define the following vector fields:

f0(x) =
[

Rr

σLsLr
φsα

Rr

σLsLr
φsβ 0 0 −( fv

Jm
ωr + 1

Jm
τl) 0 · · · 0

]T

f1(x) =
[
−( Rr

σLr
+ Rs

σLs
) 0 −Rs 0 −p 1

Jm
φsβ 0 · · · 0

]T

f2(x) =
[
0 −( Rr

σLr
+ Rs

σLs
) 0 −Rs p 1

Jm
φsα 0 · · · 0

]T

f3(x) =
[
−p(isβ − 1

σLs
φsβ) p(isα − 1

σLs
φsα) 0 0 0 0 · · · 0

]T

f4(x) =
[ 1

σLs
0 1 0 0 0 · · · 0

]T

f5(x) =
[
0 1

σLs
0 1 0 0 · · · 0

]T

and the output map

h(x) =
[
isα isβ ωr

]T
.

Then the original system can be represented as

ẋ = f0(x) + y(1)f1(x) + y(2)f2(x) + y(3)f3(x) + u(1)f4(x) + u(2)f5(x)
y = h(x)

and one can compute:
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Lf0h1 = Rr

σLsLr
φsα

Lf0h2 = Rr

σLsLr
φsβ

Lf1Lf0h1 = Lf2Lf0h2 = − RsRr

σLsLr

Lf4Lf0h1 = Lf5Lf0h2 = Rr

σLsLr

Lf1h1 = Lf2h2 = − Rr

σLr
− Rs

σLs

Lf3h1 = −p(isβ − 1
σLs

φsβ)

Lf3h2 = p(isα − 1
σLs

φsα)

Lf1Lf3h1 = −Lf2Lf3h2 = −pLf1h1 − Rs

σLs

Lf4h1 = Lf5h2 = 1
σLs

Lf0h3 = −( fv

Jm
ωr + 1

Jm
τl)

Lf1h3 = −p 1
Jm

φsβ

Lf2h3 = p 1
Jm

φsα

Lf2Lf1h3 = −Lf1Lf2h3 = p 1
Jm

Rs

Lf5Lf1h3 = −Lf4Lf2h3 = −p 1
Jm

,

from where a basis of the ”observation space” is obtained: isα, isβ , ωr, Rr

σLsLr
φsα,

Rr

σLsLr
φsβ , RsRr

σLsLr
, Rr

σLsLr
, Rr

σLr
, Rs

σLs
, 1

σLs
φsα, 1

σLs
φsβ , 1

σLs
, τl, φsα, φsβ , Rs and 1,

so the system can be immersed into a state affine structure with output injection
and an exponential forgetting factor observer (Kalman-like) can be employed for
estimation.

We shall illustrate the effectiveness of this method through some estimation
results obtained for a real data set collected from a 7.5 kW induction motor avail-
able at the control systems department of GIPSA-lab. The set contains terminal
voltage, terminal current and mechanical speed measurements corresponding to
the response of the system to a change in the speed set-point from 0 to 75 rad/s.

The evolution of the speed, both real and estimated is presented in fig. 4.1.
Since flux measurements were unavailable, the performances towards the esti-
mation of these variable are illustrated through the norm of the flux phasor,
plotted against the reference imposed to the flux controller in fig. 4.2. Finally,
the evolution of the parameter estimates is presented in fig. 4.3 where it can be
seen that the obtained steady-state values are very realistic. They actually are in
a good accordance with the a priori available information on those parameters.

4.4 Immersion into a Linear Structure

Linear structures are obviously very appealing for observer synthesis, which
in this case is trivial; in particular, linear systems can be observed through
Luenberger-like observers [26] (the errors dynamics are linear, with freely as-
signable spectrum under the observability condition).
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4.4.1 Extensions of the Immersion into a State-Affine Structure

The first approach to the immersion into a linear structure represents a natural
extension of the result in Section 4.3.1 on the immersion into a state-affine
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structure, in the particular case of input-affine systems [9, 25]. More precisely,
if we relate to Example 1, the way the vector fields are defined in the new
representation shows that for an input-affine system

ẋ = f0(x) +
m∑

i=1

fi(x)ui

y = h(x),

(4.6)

if, besides the finiteness of the observation space, the Lie derivatives of the basis
elements of this space along the vector fields f1, . . . , fm are constant, then the
system obtained through immersion is linear.

Just as in the case of the immersion into a state-affine structure, it is possible
to weaken the immersion condition by resorting to output injection. This idea
is considered for instance in [8], where the objective is to immerse a state-affine
system (4.6) into a linear (up to output injection) structure:

ż = Az + ϕ(u, y)
y = Cz.

(4.7)

Theorem 3 (Immersion into a linear system [8]). The necessary conditions
for a system (4.6) to be locally immersed around a point x◦ in a system (4.7)
are

(i) dimO(h) < ∞,
(ii) ∀λ ∈ O(h), dLfi ∧ dh1 ∧ · · · ∧ dhp = 0, i = 1, . . . , m.

Conversely, if dh1 ∧ · · · ∧ dhp

∣∣
x◦ �= 0, these conditions are also sufficient.

Remark 3. Condition (ii) of the theorem translates the requirement that the Lie
derivatives of the basis elements of O(h) along the vector fields f1, . . . , fm can
be written as functions of the type l ◦ h, with l ∈ Cω(S) (see also Lemma 1).

4.4.2 Observer Linearization Approach

This second approach to the immersion into a linear structure is more recent and
has stemmed from the works on the transformations that allow the synthesis of
observers with linear error dynamics, initiated by Krener and Isidori [23] (a
detailed exposition of these results is also available in [19]). The considered
problem in [23] is the transformation of an autonomous, single-output system of
the form (4.4) into a linear (up to output injection) structure

ż = Az + ϕ(y)
y = Cz

(4.8)

which is also observable, or, without loss of generality, in the observability canon-
ical form:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
. . . . . .

...
...

. . . . . . 0
1

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =
[
1 0 · · · 0

]
. (4.9)

The integrability of a certain distribution is a necessary condition for the ex-
istence of the transformation, which is then obtained as solution of a first-order
partial differential equation. An extension to multiple-output and non au-
tonomous systems under the assumption that the input functions are piecewise
constant is available in [24], where the transformation of the state space can also
be combined with a diffeomorphism of the output space.

An alternative approach to the construction of the transformation is based
on the expression of the nth derivative of the output of a system of the form
(4.8–4.9). The characteristic equation is then obtained [22], which, in the general
case where a diffeomorphism ψ is considered in the output space, can be written
as

Ln
f h̃ − Ln−1

f (ϕ1 ◦ h̃) − Ln−2
f (ϕ2 ◦ h̃) − . . . − Lf (ϕn−1 ◦ h̃) − ϕn ◦ h̃ = 0,

where h̃ = ψ◦h. Under the assumption that ψ is known, this a partial differential
equation of order n − 1 in n unknowns (the components of ϕ).

There are however situations where the characteristic equation has no solu-
tion. The idea to use immersion transformations in such situations appears in
the independent works of Jouan [20] and Back and Seo [1], which explore the
possibility to solve the characteristic equation when its order is N − 1, with
N > n. Both references are, however, mainly concerned with the computational
aspects of the problem, as it is still very difficult to check the existence of a
finite N and even more difficult to find the value of N such that the immersion
can be performed. Basically, the only solution is to try applying the immersion
algorithm for successive values of N , starting with N = n + 1.

Besides the solution of the characteristic equation, supplementary immersion
conditions are specified in the non autonomous case, the latter restricted, in
addition, to input-affine systems.

Theorem 4 (Immersion into a linear system [20]). A input-affine system
(4.6) can be immersed into a system (4.7) if and only if the following conditions
hold:

(i) The autonomous part of the system is immersible in a system (4.8);
(ii) If τ is the immersion of the autonomous part, eventually combined with a

diffeomorphism ψ of the output space, then there exist some functions γi,j,
i = 1, . . . , m, j = 1, . . . , N , such that

Lfiτj = γi,j ◦ (ψ ◦ h).

Moreover, around regular points of the codistribution dh, condition (ii) is equiv-
alent to
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dLfiτj ∧ dh = 0.

Note that the conditions of Theorem 4 are weaker than those of Theorem 3 to
the extent that in the latter the non autonomous part must be immersible into
a linear structure without output injection.

4.5 Immersion into a Constrained Nonlinear Structure

In this section we discuss the immersion of a nonlinear system into another
nonlinear system that satisfies particular structural constraints. Our interest
towards this structure is justified on the one hand by the fact that it is suited,
under appropriate excitation conditions, to observer design and on the other
hand by the fact that it can be obtained through immersion—as far as input-
affine systems are concerned—under quite mild conditions. The observer features
are first given (extending a basic case presented in chapter), and then is discussed
the immersion procedure.

4.5.1 A Triangular Structure for Observer Design

We shall first discuss the synthesis of an observer for nonlinear, single-output
systems of the form

ż = A(u, y)z + ϕ(u, z)
y = C(u)z + η(u)

(4.10)

where the involved matrices have particular structures

A(u, y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 A1,2(u, y) 0 · · · 0
. . . . . .

...
...

. . . . . . 0
Aq−1,q(u, y)

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

ϕ(u, z) =

⎡
⎢⎢⎢⎢⎣

ϕ1(u, z1)
ϕ2(u, z1, z2)

· · ·
ϕq−1(u, z1, . . . , zq−1)

ϕq(u, z)

⎤
⎥⎥⎥⎥⎦

C(u) =
[
C1(u) 0 · · · 0

]
,

(4.11)

with z = col(z1, . . . , zq) ∈ IRN , zi ∈ IRNi for i = 1, . . . , q, Ai−1,i ∈ IRNi−1×Ni for
i = 2, . . . , q and C1(u) ∈ IR1×N1 .

Note that particular cases of this structure have already been considered for
observer design. When the Ai−1,i’s are scalars different from zero we get the
structure for classical high gain design from [14] when the scalars are also inde-
pendent of u and y, or from [13] when the dependence is allowed. Some high-gain-
based observer for the case when Ai−1,i(u, y) = Ai−1,i(u) ∈ IR was proposed in
[7], the same problem being reconsidered in [5].
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Finally, notice that when ϕ(u, z) = ϕ(u, y) we get the so-called state affine
structure for which a Kalman-like observer can be designed under appropriate
excitation conditions [16, 3]. All these suggest that an observer for a system
(4.10–4.11) should combine ingredients required for both high gain design and
Kalman-like design.

In particular, as it is often the case with nonlinear systems, the observability
of a system (4.10–4.11) typically depends on the inputs. When further aiming at
a high gain observer design, one needs a guarantee of observability at arbitrarily
short times. This can be characterized as follows:

Definition 5 (Locally regular inputs [7, 5]). An input function u is said
to be locally regular for a system (4.10–4.11) if for any initialization z◦ of the
system there exist α > 0, λ0 > 0 such that

∫ t

t− 1
λ

Φu,y(τ, t)T CT (u)C(u)Φu,y(τ, t)dτ ≥ αλΛ−2(λ) (4.12)

for all λ ≥ λ0 and t ≥ 1
λ , where

Λ(λ) =

⎡
⎢⎢⎢⎣

λIN1 0
λ2IN2

. . .
0 λqINq

⎤
⎥⎥⎥⎦

and Φu,y(τ, t) satisfies

dΦu,y(τ, t)
dτ

= A(u(τ), y(τ))Φu,y(τ, t), Φ(t, t) = IN .

With such an excitation, and under the usual technical (Lipschitz) assumption
for high gain observer design, one can obtain asymptotic estimation of the state:

Theorem 5. If a system (4.10–4.11) is such that the following hold:

(i) The input u is bounded, locally regular and making A(u, y) bounded,
(ii) The nonlinearity ϕ is Lipschitz globally in z and uniformly in u,

then for every σ > 0 there exist λ, γ > 0 such that the system:

˙̂z = A(u, y)ẑ + ϕ(u, ẑ) − Λ(λ)S−1C(u)T [C(u)ẑ + η(u) − y]
Ṡ = λ(−γS − A(u, y)T S − SA(u, y) + CT C)

with any initial condition ẑ(0) ∈ IRN and S(0) ≥ 0, ensures for all t ≥ 1
λ

‖z(t) − ẑ(t)‖ ≤ μe−σt

with μ > 0.
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Proof. The idea of this observer originates in the work of Besançon [5], where
the introduction of the two tuning parameters λ and γ helps to accomplish two
objectives:

(i) It can be shown that, regardless of the choice of λ ≥ λ0 > 0, if the input
is locally regular, then there exist γ > 0 and α1, α2 > 0 such that α1IN ≤
S(t) ≤ α2IN for all t ≥ 1

λ ;
(ii) Using the fact that S(t) has finite, positive bounds, it can be checked through

typical high-gain arguments (such as in [14] for instance) that for sufficiently
large λ, if ε := ẑ − z the candidate Lyapunov function

V (t) := ε(t)T Λ−1
λ S(t)Λ−1

λ ε(t)

satisfies V̇ ≤ −β(λ)V ≤ 0 along the trajectories of ε(t), where β(λ) is a
strictly positive increasing function.

Details for establishing these two points can be found in [27] or in [2]. The
conclusion clearly follows from standard Lyapunov arguments. ��

4.5.2 Immersion of Rank-Observable Systems

Once an observer is designed for systems of the form (4.10–4.11), we would
obviously like to know to what extent an arbitrary nonlinear system can be
put in that form. We will show that every input-affine, single-output system
of order n that satisfies the observability rank condition at a point x◦ can be
immersed around this point into a system (4.10–4.11) of order N , with N ≥ n
and A(u, y) = A(u). This result can be easily extended:

• to include the dependence on y,
• to systems that do not satisfy the observability rank condition,
• to systems that are not input-affine.

Formally, we consider control-affine systems of the general form:

ẋ = f0(x) +
m∑

i=1

fi(x)ui

y = h0(x) +
m∑

i=1

hi(x)ui,

but for convenience we shall use the condensed representation:

ẋ =
m∑

i=0

fi(x)ui = f(x)u

y =
m∑

i=0

hi(x)ui = h(x)u

(4.13)

where u0 := 1, and:
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f(x) =
[
f0(x) f1(x) · · · fm(x)

]
,

h(x) =
[
h0(x) h1(x) · · · hm(x)

]
,

u =
[
u0 u1 · · · um

]T
.

Given the structure (4.13), we will be interested in immersions into systems
(4.10–4.11) with a control-affine structure, but also with the temporary restric-
tion that A(u, y) = A(u), namely systems of the following form:

ż =
m∑

i=0

uiAiz +
m∑

i=0

bi(z)ui = A(u)z + B(z)u

y =
m∑

i=0

uiCiz +
m∑

i=1

diui = C(u)z + Du

(4.14)

where A(u), C(u) and the vectors bi(z) are like in (4.11) (the structure of each
bi is identical to the structure of ϕ with respect to z).

Theorem 6. A system (4.13) that satisfies the observability rank condition at
some x◦ can be immersed around such point into a system (4.14) with structure
(4.11).

The proof of the theorem relies on a straightforward result from the theory of
exterior differential forms, which will be stated here without proof.

Lemma 1. Let dφ1,. . . ,dφk be independent, exact 1-forms on an open set U ⊂
IRn. If dψ is an exact 1-form such that

dφ1 ∧ · · · ∧ dφk ∧ dψ = 0

on U , then ψ = ψ(φ1, . . . , φk) on U .

Proof (of Theorem 6). We will show that

(i) under the condition of the theorem the immersion procedure given hereafter
applied to the system (4.13) yields a system (4.14) with structure (4.11),

(ii) the corresponding transformation is an immersion in the sense of Definition 4.

Immersion procedure

1. At the first step, build the vector z1(x) of all hi, 0 ≤ i ≤ m, that depend on
x,

2. At step k + 1, assume that the vectors z1, . . . , zk were constructed in the
previous steps and choose among the differentials of their components the
maximum number of independent differentials that generate a regular codis-
tribution around x◦. Let {dφ1, . . . , dφνk

} denote the set of these differentials.
• If νk = n, end the procedure,
• If not, assume that zk = col(z1

k, . . . , zNk

k ) and construct the vector zk+1
of all functions Lfiz

k
k , i = 0, . . . , m, j = 1, . . . , Nk that do not satisfy

dφ1 ∧ · · · ∧ dφνk
∧ dLfiz

j
k = 0

around x◦.
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(i) Notice that by construction, the components of the vectors z1, z2, . . . belong
to the observation space of the system, O(h), which means that their differentials
are elements of dO(h). Therefore, the construction will continue until a basis of
dO(h) is obtained.

In order to see that the construction cannot stop unless νk = n, we note
that νk = n if and only if the vector zk+1 is empty. To prove this affirmation,
suppose that νk < n and the resulting zk+1 is empty. This means that each
covector Lfiz

j
k, 0 ≤ i ≤ m, 1 ≤ j ≤ Nk can be written as linear combina-

tion of dφ1, . . . , dφνk
in a neighborhood of x◦. Combined with the manner in

which the vectors z1, . . . , zk have been defined, this means that the codistribu-
tion span(dφ1, . . . , dφνk

), which contains the codistribution span(dh0, . . . , dhm),
is invariant under the Lie derivative along the vector fields f0, . . . , fm. This codis-
tribution has dimension less than n around x◦, which contradicts the assumption
dim dO(h)(x◦) = n.

The assumption dim dO(h)(x◦) = n also guarantees that the construction
ends in a finite number of steps, since a situation in which νk → n when k → ∞
would obviously lead to a contradiction.

Suppose now that νq = n. We claim that the dynamical system having the
components of z = col(z1, . . . , zq) as state variables can be put into the form
(4.14) with structure given by (4.11). Since indeed for an arbitrary element zj

k,
1 ≤ j ≤ Nk,

żj
k(x) =

m∑
i=0

Lfiz
j
k(x)ui,

from the condition used for the construction of zk+1 and using Lemma 1, if
k < q, one can write:

żk = Ak,k+1(u)zk+1 + Bk(z1, . . . , zk)u.

When k = q, the map φ = col(φ1, . . . , φn) is a diffeomorphism of a neighborhood
V ◦ of x◦. Therefore, all functions of x, which include the iterated Lie derivatives
of the functions h0(x), . . . , hm(x) along vector fields in the set {f0, . . . , fm}, can
be expressed on this neighborhood as functions of n elements of z. Thus,

żq = Bq(z)u.

(ii) For the proof of this part, it is enough to note that the map z(x) can
stand for the immersion map τ(x). In this case, if we express the system (4.14)
in the form

ż =
m∑

i=0

f̃i(z)ui

y =
m∑

i=0

h̃i(z)ui

then, by construction,
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∂τ

∂x
fi(x) = f̃i(τ(x)) (4.15)

hi(x) = h̃i(τ(x)), (4.16)

with i = 0 . . .m, for all x ∈ V ◦. Equation (4.15) translates the fact that the
flows Φfi

t (x) and Φf̃i

t (z) of the vector fields fi and f̃i satisfy

τ(Φfi

t (x)) = Φf̃i

t (τ(x))

for all x ∈ V ◦ and all t ≥ 0 such that Φfi

t (x) ∈ V ◦, which implies that

τ(xx•,u(t)) = zτ(x•),u(t)

for all x ∈ V ◦ and all t > 0 such that xx•,u([0, t)) ⊂ V ◦. Combined with (4.16),
this shows that the two systems have the same input-output map when initialized
respectively at x• and τ(x•) for all x• ∈ V ◦. ��

Remark 4. Note that this transformation is indeed of interest for observer design
since an estimation of z can be obtained through the observer in Theorem 5 and
then a (unique) estimation of x can be computed by inverting the diffeomor-
phism φ.

An example of application of the immersion procedure and subsequent use of
the observer in Theorem 5 can be found in [2].

4.5.3 Extensions

Non-rank-observable systems

The immersion procedure described in the proof of Theorem 6 can also be ap-
plied to certain input-affine systems that do not satisfy the observability rank
condition, but whose dynamics can be decomposed in two parts such as the out-
put is related to only one of these parts, which is also locally weakly observable.
In such a situation, under the assumption that x◦ is a regular point of dO(h),
if dim dO(h) = d < n, the immersion procedure ends when d independent cov-
ectors exist among the differentials of the elements of z.

Recall first that if there exists a codistribution Ω with the properties that

a) it is spanned around a regular point x◦ by d′ exact covector fields;
b) it contains the codistribution span(dh0, . . . , dhm);
c) it is invariant under the vector fields f0, . . . , fm;

then a coordinates transformation z̃ = φ̃(x) such that

span(dφ̃n−d′+1, . . . , dφ̃n} = Ω,
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puts the system (4.6) in the following form around x◦:

ξ̇1 = f10(ξ1, ξ2) +
m∑

i=1

f1i(ξ1, ξ2)ui

ξ̇2 = f20(ξ2) +
m∑

i=1

f2i(ξ2)ui

y = h0(ξ2) +
m∑

i=1

hi(ξ2)ui

where ξ1 = col(z̃1, . . . , z̃n−d′) and ξ2 = col(z̃n−d′+1, . . . , z̃n) [19]. In this rep-
resentation, the output is only related to the last d′ components of the state
vector, which correspond to the components of the coordinates transformation
whose differentials span dO(h). It is obvious that x �→ ξ2(x) is a submersion of
the considered neighborhood of x◦, since the rank of this application is d′

around x◦.
Notice now that the codistribution dO(h) with a basis of exact covector fields

generated around a regular point x◦ by the immersion procedure meets the re-
quired properties for such a decomposition of the system. Moreover, dO(h) is the
minimal codistribution with these properties, i.e. there is no other distribution
with the same properties and dimension d′ < d such that in the resulting de-
composition the output be affected by d′ elements of the state vector. Therefore,
the estimation of ξ2 by means of a state observer is the maximum that can be
obtained around x◦ from the input-output map of the considered system.

The immersion can be performed directly on the original system (4.13), which
is the same as first decomposing the system and then immersing the observable
part (which now satisfies the observability rank condition around ξ2(x◦)). How-
ever, in contrast with the immersion performed under the conditions of Theo-
rem 6, there no longer exists a one to one correspondence between the internal
trajectories of the two systems.

The A(u, y) case

One important effect of the immersion procedure is a (sometimes significant)
increase of the order of the system. This effect could be reduced by output
injection combined with a slightly different construction strategy. Nevertheless,
the presence of y makes the immersion procedure to no longer be systematic.
We obtain a heuristic procedure, with no guarantees as to its effectiveness.

More precisely, instead of considering as state variables the iterated Lie deriva-
tives of the functions h0, . . . , hm along vector fields in the set {f0, . . . , fm}, one
could proceed as follows: starting with the same set of variables as in the original
immersion procedure, write at each step of the construction the Lie derivatives
of the functions considered as state variables at the previous step as sums, by
conveniently isolating the terms that can be expressed around x◦ through al-
ready defined state variables and separating the ones that are to become new
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state variables. The construction ends when there exist n independent covectors
fields among the differentials of the functions considered as state variables. This
necessarily happens at some point, as it can be easily seen that the codistribution
spanned by these covectors around x◦ coincides with dO(h).

Sometimes it may happen that for a term that has to be considered as a new
state variable, say ζ, the explicit dependence on y leads to a representation ζ =
ζ̄(y)ζ̃(x). In this case, the new state variable could be chosen to be ζ̃(x), making
the matrix A dependent on y through ζ̄(y). In this way, a simpler expression
may be obtained for the derivatives of the new state variables, which may also
lead in the end to a system of lower order.

Non-input-affine systems

A similar approach to the one in the preceding discussion may yield results
in some non control-affine cases. More precisely, one can handle situations in
which the output map can be suitably written as a sum of terms in the form
η̄(u)η̃(x). The immersion procedure is then initialized with the terms generically
denoted by η̃(x). Then, constraints have to be put on the expressions of their
time derivatives in order to carry on the construction and it goes the same for
all subsequently created state variables. More precisely, just like for the output
map, a suitable arrangement of these expressions as sums has to exist such that
the terms that cannot be expressed around x◦ as functions of already defined
state variables (and eventually u) are in the form η̄(u)η̃(x), with the exception
that the dependence η̄(u, y) is also allowed.

Example 6. Consider the system

ẋ1 = uα(x2) + β(x1)x2

ẋ2 = γ(x1, x2, u)
y = x1.

If for instance u∂α(x2)
∂x2

+β(x1) ≥ a > 0 for all x1, x2, one could design a high gain
observer as in [13]. But when this condition is not fulfilled, one can yet immerse
the system into the form studied in this section.

First, set z1
1 = x1. By making the dependence on y explicit in the time deriva-

tive of this first state variable,

ż1
1 = uα(x2) + β(y)x2,

new state variables are obtained: z1
2 = α(x2) and z2

2 = x2. Their differential
equations are

ż1
2 =

∂α(x2)
∂x2

γ(x1, x2, u) = δ(z2
2)γ(z1

1 , z
2
2 , u)

ż2
2 = γ(x1, x2, u) = γ(z1

1 , z2
2 , u)

which shows that the construction has ended.
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4.6 Conclusion

In this chapter, some results directly based on the idea of increasing the dimen-
sion of the state for a given representation, so as to obtain a new representation
with a form well suited to observer design, have been reviewed. It can here be
emphasized how such an approach has been shown to provide an estimation tool
for the widely studied problem of simultaneous state and parameter estimation
in induction motors. It has also been shown in this chapter how such a method
can be thought of for a wide class of nonlinear systems.
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138 A. Ţiclea and G. Besançon
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5.1 Definitions and Notation

In this chapter, the concept of Moving-Horizon Observer (MHO) is recalled and
some related topics are discussed and illustrated through dedicated examples.
Throughout this chapter, interest is focused on nonlinear systems that may be
described by the following equations:

x(t) = X(t, t0, x0), (5.1)
y(t) = h(t, x(t)), (5.2)

where X : R+ × R+ × R
n → R

n is a map that gives the state x(t) of the system
at instant t based on the knowledge of the state x(t0) = x0 at some instant t0.
The map X(·, ·, ·) may be obtained by using an appropriate system model (Ordi-
nary Differential Equations (ODE’s), Differential Algebraic Equations (DAE’s)
or even a quite sophisticated hybrid simulator). Some of the results presented
hereafter may need a particular system model. This is indicated when needed.
y(t) ∈ R

ny denotes the measured output at instant t. Using similar notations as
for the state, the output trajectory is denoted hereafter by:

Y (·, t0, x0)
.= h(X(·, t0, x0)) (5.3)

Note also that in (5.1)-(5.2), dependency w.r.t measured variables such as control
input, time varying parameters with known time evolution is implicitly handled
through the argument t of the map X . When unmeasured disturbances w ∈ R

nw

and measurement noise v ∈ R
ny are to be considered, equations (5.1)-(5.2) are

replaced by the following ones:

x(t) = X(t, t0, x0, w
t
t0), (5.4)

y(t) = h(t, x(t)) + v(t), (5.5)

where wt
t0 denotes the disturbance profile {w(τ)}τ∈[t0,t]. Note that these distur-

bances may also represent model discrepancies. The same notation vt
t0 are used

to denote measurement noise profiles.
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In the present chapter, it is assumed that some knowledge is available on the
admissible sets of states, disturbances and measurement noise. Namely, there are
known compact sets maps X(·), W(·) and V(·) such that the following inclusions
hold at each instant t:

x(t) ∈ X(t) ⊂ R
n ; w(t) ∈ W(t) ⊂ R

nw ; v(t) ∈ V(t) ⊂ R
ny . (5.6)

These constraints enable the following definition to be stated:

Definition 1 (Measurements-compatible configurations)
Consider some time interval [t − T, t] and a corresponding measurement profile
yt

t−T . A pair (ξ,w) ∈ X(t − T ) × [Rnw ][t−T,T ] is said to be (yt
t−T )-compatible if

the following conditions hold for all σ ∈ [t − T, t]:

1. w(σ) ∈ W(σ),
2. X(σ, t − T, ξ,w) ∈ X(σ),
3. yt

t−T (σ) − Y (σ, t − T, ξ,w) ∈ V(σ).

When these conditions hold, the following short notation is used:

(ξ,w) ∈ C(t, yt
t−T ) (5.7)

to denote the set of (yt
t−T )-compatible pairs. ♥

Roughly speaking, a (yt
t−T )-compatible pair (ξ,w) is a pair of initial state (at

instant t − T ) and a disturbance profile w defined on [t − T, t] such that the
resulting trajectory obtained by (5.4) meets the constraints (5.6) over [t − T, t].

5.1.1 Technical Definitions

In this section, some technical definitions that are needed in the remainder of
this chapter are successively given:

� A function α : R+ → R+ is a K-function if it is positive definite, continu-
ous, strictly monotonic increasing and proper (limx→∞ α(x) = ∞).

� Given some closed subset S of an Euclidian space E, the projection map PS

is defined as follows:

PS : E → S : PS(e) = min
σ∈S

d(e − σ) (5.8)

where d is some distance that is to be understood from the context.
� For all matrix A, σ(A) denotes the smallest singular value of A.
� Given a piece-wise continuous function g(·) defined over some time interval

I and some integer i, the following notations are used:

‖g(·)‖Li =
∫

I

‖g(τ)‖idτ ; ‖g(·)‖∞ = sup
τ∈I

‖g(τ)‖

� Given a multi-variable function f(x1, x2, . . . ), the partial derivative of G w.r.t
xi is shortly denoted by fxi(x1, x2, . . . ).
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5.2 The Constrained Observation Problem

Based on the above definitions, the observation problem can be stated as follows:

Definition 2 (The finite horizon observation problem)
The finite horizon observation problem amounts to choose some observation hori-
zon length T > 0 and to use at each instant t, the available information, namely:

1. the system equations (5.4)-(5.5)
2. the past measurements yt

t−T ,
3. the constraints (5.6) and
4. some additional exogenous knowledge.

in order to produce an estimation x̂(t) of the current state x(t). ♥

The need for some additional Knowledge comes from the fact that the first three
available information (system equations, measurements and constraints) are of
no help to choose between all the candidate states that belong to the following
subset:

Ωt =
{

X(t, t − T, ξ,w) | (ξ,w) ∈ C(t, yt
t−T )

}
. (5.9)

Indeed, all states in Ωt belong to trajectories that respect the constraints and the
noise level and are therefore equally valuable candidates to explain the output
measurements. Therefore, there is indeterminism unless one of the following
conditions holds:

� Ωt = {x(t)} or
� some additional criteria is considered.

The first case Ωt = {x(t)} occurs in particular when no disturbances nor mea-
surement noises are present (W = {0} and V = {0}) provided that the system
is observable in the following trivial sense:

Definition 3 (Uniform Observability of nominal systems)
The system (5.1)-(5.2) is uniformly observable if there is some T > 0 and a
K-function α such that the following inequality holds:

∫ t

t−T

‖Y (σ, t − T, x(1)) − Y (σ, t − T, x(2))‖2dσ ≥ α(‖x(1) − x(2)‖) (5.10)

for all t ≥ 0 and all (x(1), x(2)) ∈ X(t − T ) × X(t − T ). ♥

Indeed, under disturbance and noise free assumption and for uniformly observ-
able nominal systems, if X(t, t − T, ξ) belongs to Ωt for some ξ [see (5.9)],
then one has according to condition 3 of definition 1: yt

t−T (σ) = Y (σ, t −
T, x(t − T )) = Y (σ, t − T, ξ) for all σ ∈ [t − T, t] and this implies according
to (5.10) that α(‖x(t − T )− ξ‖) = 0 which simply means by definition of α that
ξ = x(t − T ). Consequently, under the above assumptions, the only element in
Ωt is X(t, t − T, x(t − T )) = x(t).
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It is important to underline that definition 3 involves state constraints since
inequality (5.10) has to be satisfied only on the set X(t−T )×X(t−T ) of admis-
sible pairs. The following example shows a system that is uniformly observable
on some restricted region of admissible states but not in the whole state space.

Example 1. Consider the nominal nonlinear system given by:

ẋ1 = −x1 + x2 ; ẋ2 = 0 ; y = x1x2

This system is observable on the subset X = {x ∈ R
2 | x2 > 0} but not on

R
2. This is because any pair of states (x(1), x(2)) such that x(1) = −x(2) leads to

identically the same output profile. This would contradict (5.10) if global uniform
observability is checked. ♦

In the general uncertain and noisy situations, Ωt may not be a singleton and
one needs to add some additional requirement in order to make the best choice
between all the pairs (ξ,w) ∈ C(t, yt

t−T ). Once such a criterion is defined, the
best choice denoted by (ξ̂(t), ŵ(t)) is used to compute the best state estimate
x̂(t) according to:

x̂(t) = X(t, t − T, ξ̂(t), ŵ(t)) (5.11)

Typically, one way to define a choice criterion is to look for (ξ,w) ∈ C, (t, yt
t−T )

that minimizes some functional:

J(t, ξ,w) := Γ (t, ξ − ξ∗(t)) +
∫ t

t−T

L
(
w(σ), εy(σ)

)
where (5.12)

εy(σ) = yt
t−T (σ) − Y (σ, t − T, ξ,w). (5.13)

More precisely, the best choice (ξ̂(t), ŵ(t)) is obtained by solving the following
optimization problem:

P (t) : min
(ξ,w)∈Ωt

J(t, ξ,w) (5.14)

Note that the definition of the performance index J introduces an additional
knowledge through the relative weights on the disturbance term w and the output
prediction error term εy. The resulting trade-off recalls the one introduced in
the Kalman filter by using penalties equal to the inverses of the corresponding
covariance matrices, namely:

L(w, εy) = wT Q−1w + εT
y R−1εy

Moreover, the weighting term Γ (·, ·) in (5.12) enables to penalize the distance
between ξ and some particular value ξ∗(t) that may condense the past knowledge
on the most likely value of the state at instant t−T . The value of ξ∗(t) is generally
induced by the past estimation.
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Remark 1. The formulation given above can be viewed as the generalization of
the Kalman filter equations that hold only for linear unconstrained systems with
particular statistical properties of the uncertainty (w) and the measurement
noise v (white Gaussian signals). In this case, the penalty term writes Γ (t, η) =
ηP (t)η and ξ∗(t) is induced by the past estimation giving rise to the Kalman
filter updating rules in the discrete or in the continuous case (see [3] for more
details).

5.2.1 About Temporal Parametrization of Uncertainties

In this section, attention is focused on the need for temporal parametrization
of uncertainties when using (5.11)-(5.14) to design a nonlinear observer. Indeed,
the decision variable (ξ,w) involved in the optimization problem P (t) is infinite
dimensional as w is the uncertainty profile over the time interval [t − T, t].
Consequently, any concrete implementation of the above scheme needs a finite
dimensional approximation of candidate profiles w.

In many academic texts (see for instance [3]), a discrete time version of the
system model is used and a piece-wise constant structure is implicitly used with
the unknowns

pw := {w(kτ)}k0+N−1
k=k0

∈ W(k0) × · · · × W(k0 + N − 1) ⊂ R
nw·N ,

where W(k) is a short writing of W(kτ) and where the observation horizon length
is T = Nτ . This leads to a decision variable (ξ, pw) of dimension n + N · nw.

This choice although apparently natural shows the following major drawbacks:

1. First, the piece-wise constant structure is very often too rich when com-
pared to realistic uncertainties that are often due to badly identified rather
constant parameters, slowly drifting variables or even periodic disturbances.
This excess of spectral content enlarges the size of the set Ωt of candidate
paires [see (5.9)] and hence lead to noisy estimation even in presence of small
physical measurement noise.

2. In addition to the drawback mentioned above, the piecewise constant struc-
ture leads to a high dimensional decision variable (n+N ·nw) with a generally
badly conditioned optimization problem. This is because the high spectral
content of the resulting w leads to too many possible interpretations of the
past measurements.

3. In case of continuously varying uncertain signals, the piecewise constant
parametrization implies a small sampling time leading again to even higher
dimensional problem for the same observation horizon (buffer length).

One way to overcome these drawbacks is to choose a parametrization of w that
reflects in a more realistic way what would be the time evolution of this uncer-
tainty vector. This can be denoted generically by:

w(t) = W(t, pw) ; pw ∈ P.
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Note that here, the dimension of the unknown disturbance parameter pw is no
more directly related to the dimension of the disturbance vector w nor to the
length of the observation horizon. The cost function to be minimized can then
be rewritten as a function of the new decision variable (ξ, pw):

J(t, ξ, pw) = J(t, ξ, W(·, pw)). (5.15)

Example 2. A typical example of reduced dimensional parametrization of an un-
certainty vector that evolves smoothly in time is to use time polynomial approx-
imations:

Wi

(
t, (p(1)

w , . . . , p(nw)
w︸ ︷︷ ︸

pw

)
)

= PW(t)

[
(1, t, . . . , tn

(i)
w ) · p(i)

w

]
; p(i)

w ∈ R
n(i)

w .(5.16)

where PW(t)(·) is the projection map on the admissible set W(t).
The order of the polynomial development for the i-th component of pw, namely

n
(i)
w is to be chosen according to what could be a realistic evolution of this

component during the observation horizon [t − T, t]. The resulting optimization
problem shows a decision variable (ξ, pw) of dimension

np := n +
nw∑
i=1

n(i)
w .

It goes without saying that other time parameterizations can be used in order
to be closer to any available information about the uncertainty evolution. ♦
When such parametrization is used, the following straightforward notation is
adopted to denote the corresponding state trajectory:

X(t, t0, x0, pw) = X
(
t, t0, x0, W(·, pw)

)
.

The best estimate of the state is then given by

x̂(t) = X(t, t − T, ξ̂(t), p̂w(t))

where the pair (ξ̂(t), p̂w(t)) minimizes the cost function J(t, ξ, pw) defined by
(5.15).

Note that by using the extended state:

x̄ =
(
xT pT

w

)T ∈ R
n × R

np , (5.17)

together with the trivial dynamic ṗw = 0 on the additional state vector, the
uncertain observation problem is put in a deterministic uncertainty free con-
text with a higher dimensional extended system. Note however that for the
new extended uncertainty-free system, the admissible set Ωt is generally not
reduced to {x(t)} and the result is still dependent on the additional knowl-
edge that are introduced through the weighting parameters of the cost function
J(t, ξ, pw).
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Heuristic approaches can also be used to avoid time structured model of the
uncertainties evolution that are not discussed here. See [13] for more details.

5.2.2 Optimization Based vs Analytic Observers

Recall that the Kalman filter equations are originally derived based on opti-
mal design considerations (maximum likelihood under white Gaussian signals
assumption). One nice feature of the observer equations is that in the absence
of disturbances and measurement noise, the estimation error:

e := x − x̂

shows a comprehensively asymptotically stable dynamic behavior with a stable
closed loop matrix. The generalization of the optimization based formulation
that underlines the Kalman filter to general nonlinear systems leads to generally
non convex and hard to solve optimization problems.

This fact together with the relatively limited computational facilities in the
80’s motivated researches on nonlinear observers that are based on the study of
the resulting estimation error’s dynamic and that can be expressed in analytic
form without the use of on-line computations. However, the possibility to derive
observer equations such that the induced dynamics on the estimation error is
provably asymptotically stable is quite limited. Indeed, given a general nonlinear
system expressed in ODE’s form

ẋ = f(x) ; y = h(x), (5.18)

and a candidate consistent observer equation:

˙̂x = f(x̂) + K(x̂, y)

the explicit observer design problem amounts to find a function K(·, ·) of the ob-
server’s internal state and the measured output such that the induced estimation
error equation that is involved in the extended resulting ODE’s:

ẋ = f(x)
ė = f(x) − f(x − e) − K(h(x), x − e)

can be proved to be asymptotically stable. This is clearly a hard task as long as
a high level of genericity is required.

To overcome this difficulty, researchers imagined conditions on the maps f
and h involved in the system and measurement equations (5.18) in order for a
correction map K(·, ·) to be found. High gain observers [20, 2] and sliding mode
observers [4, 10, 23] resulted from this approach.

Almost twenty years of this state estimation error (SEE)-based observer de-
sign enforced the idea according to which, the very basic notion of observability
expressed in definition 3 is largely insufficient to derive a concrete state esti-
mation scheme. Additional (generally structural) properties are still needed in
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order for a state observer to exist. Moreover, these additional conditions are
constructive in the sense that they are needed not only to guarantee the con-
vergence of the estimation error but they are needed for the observer design
itself.

It goes without saying that, faced with these difficulties even in the nominal
case, studies on nonlinear observers were essentially directed towards nominal
state estimation problems (without uncertainty nor measurement noises). The
robustness issues are generally viewed as a by-side product or tackled through an
even more restrictive structural properties that are expressed for some extended
systems in the spirit of what is presented in section 5.2.1.

Contrary to analytic observers that use the explicit study of the state estima-
tion error in order to design the observer correction term, optimization based
observers use the very definition of observability in order to derive the state
estimation algorithm. The idea is to use the fact that as long as the nominal
system is considered, estimating the state of an observable system is equivalent
to minimizing J(t, ξ): the integral of the squared output prediction error over
some observation horizon (see definition 3).

Consequently, if an algorithm can guarantee that this quantity converges
asymptotically to 0, then there is no need for additional proof of convergence.
The convergence of the state estimation error is a direct consequence of the con-
vergence of the cost function J(t, ξ(t)) since this proves that ξ(t) converges to
x(t − T ) and that x̂(t) = X(t, t − T, ξ(t)) converges to x(t).

Unfortunately, there is no such algorithms with guaranteed convergence prop-
erties for general non convex optimization problems. The keywords Global con-
vergence that is widely used in scientific papers refer to global convergence to
some local minimum. Convergence results still need dedicated sufficient condi-
tions. However, these sufficient conditions are not constructive unlike the ones
used in analytic observers design. These conditions are not needed in the con-
struction of optimization based state estimation algorithms. More clearly, even if
one cannot guarantee the convergence of the resulting state estimation scheme,
one can always investigate the performance of an optimization based observer
on his own system. It is likely that the resulting scheme works quite correctly
even so there is no convergence proof.

Another difficulty arises when using optimization based nonlinear observer.
This concerns the real-time implementability issue. Indeed, the number of itera-
tions that would be needed for a solver to find the optimal solution of P (t) may
exceed the available computation time that would be compatible with the neces-
sary updating rate. This difficulty is made worst by the fact that each evaluation
of the cost function needs the evolution of the system to be simulated during
the observation horizon which may be heavy to perform.

In a word, optimization based nonlinear observers offer several advantages
such as constraints handling and independence w.r.t the mathematical model of
the system. However, there are still several bottlenecks in their implementation
and reliability. Despite these difficulties, these observers are very often the only
available choice. Consequently, investigating implementation issues that enable
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to (at least partially) overcome the above mentioned difficulties is certainly a
profitable investment. This is the aim of this chapter.

Typically, two main issues are to be considered when implementing moving-
horizon observers:


 The first one is related to the presence of local valleys that may attract the
optimization process leading to bad estimation of the state. As long as generic
observer design is concerned, this problem is unavoidable in constrained non
convex optimization. However, one can use a very particular feature of the
state estimation induced optimization problem to derive singularities avoid-
ance heuristic scheme. This is depicted in section 5.3 with an experimental
validation on a terpolymerization processes.


 The second implementation issue is related to the computation time the iter-
ative process would need to achieve the optimization task. This time may be
prohibitive when compared to the necessary updating rate. In this chapter,
two different approaches to address this problem are discussed:

� In the first, a differential formulation of moving horizon observer is pro-
posed. In this formulation, the observer equations take a rather standard
form (the observer equations is obtained by copying the system equation
and adding a correction term). The only difference is that the correction
term uses an integral norm of the output prediction error rather than
a point-wise output prediction error. This formulation and the related
techniques enabling to reduce the computational burden are discussed in
section 5.4.

� In the second approach to address the real-time implementation issue, the
optimization process is distributed over the system life-time. A concrete
derivative-free iterative scheme is proposed that may address discontin-
uous (hybrid) behavior of the dynamic system. This scheme is presented
in section 5.5

As it is discussed in section 5.2.2, in the forthcoming developments, the robust-
ness issue is addressed indirectly by extending the state vector or by a posteriori
validating tests.

5.3 Singularities Avoidance Heuristic Scheme

In this section, we consider a nominal system given by (5.1)-(5.2). The observer
design is developed on the nominal system under the uniform observaility as-
sumption (see definition 3). The robustness of the state estimation algorithm is
then checked under modeling errors and measurement noise as well as experi-
mentally on a real terpolymerization reactor1.
1 The experimental part of this section is a result of a joint work with Nida Sheibat-

Othman and Sami Othman for the Laboratoire d’Automatique et du Génie des
Procédés (LAGEP, Lyon, France). See [17].
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5.3.1 Expression of the Moving Horizon Observer

Using the notations of section 5.2 in the nominal context, consider a sampled
receding-horizon observer with observation horizon T = Nτs that updates the
estimated state at instants tk = kτs according to:

x̂(tk) = X(tk, tk−N , ξ̂(tk)) (5.19)

ξ̂(tk) = arg min
ξ∈X(tk−N )

[
J(tk, ξ)

]
:=

k∑
i=k−N

‖y(ti) − Y (ti, tk−N , ξ)‖2
Qi(k)(5.20)

where for all i ∈ {1, . . . , N}, Qi(k) ∈ R
ny×ny is a positive definite weighting

matrix. Note here that there is no more integrals used to define the cost function
as the measurements are assumed to be acquired with the sampling period τs.

Reference to uniform observability is therefore implicitly based on a slight
adaptation of definition 3 to the case of sampled measurement acquisition. This
would lead to what could be referred to as uniform observability under τs-
sampling. The corresponding definition is identical to definition 3 with the l.h.s
of (5.10) being replaced by the r.h.s of (5.20)

Recall that under the uniform observability assumption, the optimization
problem (5.20) admits a unique global minimum ξ̂(tk) = x(tk−N ). Moreover,
this global minimum correspond to à 0 optimal cost value.

The solution of the constrained generally non convex optimization problem
(5.20) is ideally obtained as the asymptotic output of some iterative subroutine
S (see figure 5.1), namely:

Fig. 5.1. Ideal computation scheme to solve the optimization problem (5.20). The
iterative process S is initialized at ξ(0) that is obtained using the past estimated value
ξ̂(tk−1). Then, the iterations ideally lead asymptotically to the solution ξ̂(tk). Integrat-
ing the system equations enables the computation of the current estimation x̂(tk).
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ξ̂(tk) ← lim
i→∞

ξ(i) (5.21)

ξ(i+1) = S(ξ(i), tk, ytk
tk−N

) ; ξ(0) = X(tk−N , tk−N−1, ξ̂(tk−1)) (5.22)

More precisely, an initial guess ξ(0) for the iterative process is computed based
on the past estimation ξ̂(tk−1) by integrating the system equations one sampling
period ahead. The iterations defined by (5.22) can then be performed to yield
ξ̂(tk) after some iterations and the estimation x̂(tk) is obtained according to
(5.19).

Note that the initialization of the iterative process by ξ(0) that is based on the
past estimation represents in some way an exogenous knowledge that is injected
in addition to the past measurements. Note also that this can be used explicitly
in the definition of the cost function to play the role of ξ∗ invoked in section 5.2.
More precisely, one can replace the cost function used in (5.20) by:

J∗(tk, ξ) := ‖ξ − ξ(0)‖Q0 +
k∑

i=k−N

‖y(ti) − Y (ti, tk−N , ξ)‖2
Qi(k) (5.23)

where ξ(0) is given by (5.22).
It goes without saying that in practice, the number of iterations of the process

S that can be performed within a sampling period τs is necessarily limited and
the assignment in (5.21) must be replaced by:

ξ̂(tk) = ξ(Nmax) = SNmax(ξ(0), tk, ytk
tk−N

) (5.24)

where Sj(·) denotes the results of j successive applications of the map S starting
from the initial guess ξ(0). More precisely, the number of iterations depends on
the required precision ε > 0 used in the solver and Nmax is just an upper bound
on this number. Consequently, the number of effective iterations Neff (tk, ε) ≤
Nmax varies in time with the parameters x(tk), ytk

tk−N that contribute to the
definition of the optimization problem and its related complexity for a given
required precision ε. It results that using an a priori given bound Nmax, the
required precision is no more guaranteed even regardless the problem of local
minima.

Now, regardless the iterative process S used to perform the optimization task,
local minima may exist that potentially prevent the iterate ξ(i) from converging
to the global minimum x(tk−N ). This is afforded by using multiple initial guesses
unless some other characterization of the global minimum is available.

Fortunately, when dealing with the nominal state estimation problem for uni-
formly observable systems, the global minimum x(tk−N ) one looks for when
trying to solve the optimization problem (5.20) can be strongly characterized by
the following property:

x(tk−N ) is the unique global minimum of all the optimization problems
(5.20) that may be obtained by changing the positive definite weighting
matrices Qi(k).
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This makes the state estimation problem a very particular optimization problem
since the global minimum one is looking for is the global minimum of an infinite
number of known functons. A subset of this set of functions sharing x(tk−N ) as
global minimum can be generated by choosing the following family of weighting
matrices:

Qi(k) = γk−i · qi · Iny s.t qi > 0 and
∑

i

qi = 1 (5.25)

where γ ∈ [0, 1] is some forgetting factor while Iny is the identity matrix in
R

ny×ny . Note that since the vector of weights:

q̄ =
(
q1 q2 . . . qny

)T (5.26)

is involved in the definition of the cost function (5.20), the iterative process
(5.24) can be worth rewritten in the following form:

ξ̂(tk) = SNmax
q̄ (ξ(0), tk, ytk

tk−N
) (5.27)

The idea is then to notice that a local minimum for (5.20) in which some weight-
ing vector q̄(1) is used may probably not remain a local minimum for another
randomly chosen value of the weighting vector q̄(2) since it seems reasonable to
admit that only the true global minimum x(tk−N ) is a singular point for all
possible values of the weighting vector q̄. Following this intuition, the one trials
updating rules (5.27) is replaced by the following multiple trials updating rule:

q̄ ← 1
ny

(
1 1 . . . 1

)
; ξ̂(tk) =← X(tk−N , tk−N−1, ξ̂(tk−1))

for (i = 1 : Ntrials)

ξ̂(tk) ← SNmax
q̄ (ξ̂(tk), tk, ytk

tk−N
)

Generate randomly new q̄ satisfying (5.26)
end
x̂(tk) ← X(tk, tk−N , ξ̂(tk))

Note that when Ntrials = 1, the multiple trials updating rule defined above gives
the classical one trial updating rule (5.27) in which the initial guess ξ0 is given
by (5.22).

Note that in the algorithm described above, the quantities tk, ytk
tk−N

and
ξ̂(tk−1) are inputs while the resulting estimated values x̂(tk) and x̂(tk) are out-
puts while Ntrials ∈ N is a parameter. This can be shortly written as follows:

ξ̂(tk) = ANtrials

(
ξ̂(tk−1), tk, ytk

tk−N

)
(5.28)

x̂(tk) = X(tk, tk−N , ξ̂(tk)) (5.29)

which clearly defines a dynamic observer with internal state ξ̂ that delivers the
estimated state x̂(tk) as output.
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It is worth noting that according to the definition of ANtrials(·), one need to
perform Ntrials × Nmax iteration of the process S. Denoting by τiter the time
needed to perform a single iteration, the following constraint has to be satisfied:

Ntrial × Nmax × τiter ≤ τs (5.30)

in order for the above moving horizon observer to be real time implementable
with τs as updating period.

It is worth noting that in the real-time implementability constraint (5.30), a
trade-off is clearly to be found that is probably problem dependent. Examples
may be found in which it is worth increasing Ntrials and reducing Nmax and
vice-versa. On the other hand, the updating period τs may be quite larger than
the acquisition rate in order to leave time for convergence.

5.3.2 Application to a Terpolymerization Batch Process

In this section2, the moving horizon state observer defined in the preceding
section is applied to the state estimation of a terpolymerization batch process.

Multimonomer systems are usually used to produce polymeric materials with
suitable final properties. Terpolymerization systems usually allow producing high
performance materials. In order to control the final polymer properties, such
as the polymer composition, it is of high importance to model and monitor
such processes. In particular, monitoring the number of each one of the three
monomers is a key issue in controlling the final product quality.

In this section, we will be interested in estimating the polymer composition
in emulsion terpolymerization. A complete description of the state estimation
results presented in this section can be obtained in [17]. Here, only a sketch of
the result are given to illustrate the estimation process described above.

While several estimators have been proposed for polymerization processes (see
for instance [22, 21, 7] and the references therein), as long as emulsion terpoly-
merization is concerned, only two applications could be found in the literature.
In [12], an open loop observer is designed to estimate the polymer composition
using calorimetric measurements combined to the process model. In [19], a closed
loop high gain observer is proposed to estimate the polymer composition and it
has been shown by simulation and experimentally that the system can be ob-
servable if the total amounts of monomers are measured. However, because of
the model complexity (see below), the design of such a high gain observer and
the tuning of its gain in order to cope with the system constraints remains a
quite involved task and the high gain observer has been obtained at the price
of tremendous simplification of the dynamic model that lead to rather poor
estimation performance.

In the remainder of this section, the process model is first described, then
simulations as well as experimental validations are discussed.
2 The process description given in this section is basically borrowed from [17] and is

due to Nida Sheibat-Othman to whom I am deeply indebted for our fruitful and
exciting collaborations.
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Process Model

Assuming that monomers are not soluble in the aqueous phase and that the
reaction takes place mainly in the polymer particles, the material balances of
monomers are given by:

Ṅi = Qi − RPi i = 1, 2, 3 (5.31)

The reaction rate in the polymer particles RPi is proportional to the concentra-
tion of monomer in the polymer particles ([MP

i ]) and the number of moles of
radicals in the polymer particles (μ):

RPi = μ[MP
i ](kp1iP

P
1 + kp2iP

P
2 + kp3iP

P
3 ) (5.32)

The time averaged probabilities (PP
i ) that an active chain be of ultimate unit

of type i are defined by:

PP
1 =

α

α + β + γ
; PP

2 =
β

α + β + γ
; PP

3 = 1 − PP
1 − PP

2 (5.33)

where

α = [MP
1 ](kp21kp31[MP

1 ] + kp21kp32[MP
2 ] + kp31kp23[MP

3 ])
β = [MP

2 ](kp12kp31[MP
1 ] + kp12kp32[MP

2 ] + kp13kp32[MP
3 ])

γ = [MP
3 ](kp13kp21[MP

1 ] + kp21kp23[MP
2 ] + kp13kp23[MP

3 ])

In emulsion polymerization, it is well known that the reaction can be divided into
three intervals. In interval I, the polymer particles are produced. Modelling of this
interval allows the calculation of the particle size distribution and the average
number of radicals per particle which allows to calculate the total number of
moles of radicals in the polymer particles (μ) in (5.32). This part of the model
will not be considered since it adds a lot of complexity to the process model
besides the fact that it remains very sensitive to impurities. μ will therefore
be considered as a parameter in the process model to be estimated without
modelling. It is important to outline that μ can undergo important changes
during the reaction since it is affected by the gel effect phenomena.

In interval II, the particle number is supposed to be constant. Polymer par-
ticles are saturated with monomer and the excess of monomer is stored in the
monomer droplets. During interval III, monomer droplets disappear and all the
residual monomer is supposed to be in the polymer particles. Therefore, the
concentration of monomer in the polymer particles can be calculated by the
following system:

[MP
i ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − φp
p)Ni

∑
j

NjMWj

ρj

, (Phase II)

Ni

∑
j MWj(

NT
j − Nj

ρj,h
+

Nj

ρj
)

(Phase III)
(5.34)
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Table 5.1. Parameter values of the terpolymerization of BuA/MMA/VAc (used in the
experimental validation)

Parameter Value Unit

φp
p 0.4

MW1 128.2 (g/mol)
MW2 100.12 (g/mol)
MW3 86.09 (g/mol)

ρ1 0.89 (g/cm3)
ρ2 0.94 (g/cm3)
ρ3 0.93 (g/cm3)

ρ1,h 1.08 (g/cm3)
ρ2,h 1.15 (g/cm3)
ρ3,h 1.17 (g/cm3)
kp11 4.5 × 105 (cm3/mol/s)
kp22 1.28 × 106 (cm3/mol/s)
kp33 4.26 × 106 (cm3/mol/s)
r12 0.355
r21 1.98
r13 6.635
r31 0.037
r23 22.21
r32 0.07

The condition for the existence of monomer droplets and therefore for deter-
mining if the reaction is in interval II, is governed by the following equation:

N1δ1 + N2δ2 + N3δ3 −
(1 − φp

p)
φp

p
σ > 0 (5.35)

where

δi = MWi(
1
ρi

+
(1 − φp

p)
ρi,hφp

p
) , i = 1, 2, 3 (5.36)

and

σ =
3∑

j=1

MWjN
T
j

ρj , h
(5.37)

The overall monomer conversion that can be measured easily online by calorime-
try is defined by:

y =
∑3

i=1 MWi(NT
i − Ni)∑3

j=1 MWjNT
j

(5.38)

Parameters used for the experimental validation of the model are given in table
5.1 where kpij = kpii/rij . The recipe used for the experimental validation of the
observer is given by table 5.2 [19].
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Table 5.2. Recipe of the terpolymerization of BuA/MMA/VAc

Component Charge (g)

Butyl acrylate 300
Methyl methacrylate 300

Vinyl acetate 60
Sodium dioctyl sulfosuccinate 3

Potassium persulfate 2
Water 2380

Simulation-based Validation of the Moving-Horizon Observer

In order to apply the moving-horizon estimation scheme proposed in the pre-
ceding section to reconstruct the value of N := (N1, N2, N3) and μ, a constant
evolution of μ is assumed (over the prediction horizon) and the general state
equation is built up with the state vector being defined by :

x :=
(
N1 N2 N3 μ

)
∈ R

4
+ ; μ̇ = 0

Recall however that despite this constant behavior during the prediction horizon,
the resulted closed-loop estimation of μ may show dynamic behavior thanks to
the moving horizon technique (see figures 5.6 and 5.7).

Note that this is a concrete example of how dynamically unmodelled uncertain
parameters can be tackled by the state extension technique that is described in
section 5.2.1 [see equation (5.17)].

Considering global relative uncertainties d1, d2 and d3, the following model is
obtained to be used by the observer:

Ṅ =

⎛
⎝1 + d1 0 0

0 1 + d2 0
0 0 1 + d3

⎞
⎠ · f(x, u) (5.39)

μ̇ = 0 (5.40)
y = (1 + ν) · h(x) (5.41)

Namely, relative uncertainties are introduced directly on the r.h.s of the system
ODE’s through the variables di’s. This can gather all sources of model discrep-
ancy. On the other hand measurement noises are introduced through the variable
ν used in the measurement equation (5.41). More precisely, the following defini-
tions of d and μ are used in the simulations:

di(k) = dmax · ri(k) (5.42)
ν(k) = νmax · rν(k) (5.43)

where the ri(k)’s and ν(k) are chosen randomly in [−1, 1].
The results are shown on figures 5.2 and 5.3 (respectively without and in the

presence of measurement noises) where up to 10% relative errors are introduced
on the r.h.s of the system’s model.
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Fig. 5.2. Observer behavior under model uncertainty given by (5.39)-(5.43) with
dmax = 10% and no measurement noise (νmax = 0). The observation horizon is N = 10
and the number of trials for the singularity crossing scheme is Ntrials = 4. Initial state
of the observer is x̂(0) = diag(0.8, 1.3, 1.3) · x(0) and μobs(0) = 0.8μmodel.
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Fig. 5.3. Observer behavior under model uncertainty given by (5.39)-(5.43) with
dmax = 10% and in the presence of measurement noise (νmax = 0.01). The ob-
servation horizon is N = 15 and the number of trials for the singularity crossing
scheme is Ntrials = 4. Initial state of the observer is x̂(0) = diag(0.8, 1.3, 1.3) · x(0)
and μobs(0) = 0.8μmodel. Note that concerning the output, only the true output and
the estimated one are shown, measurement noise is not presented. This scenario uses
a tolerance ε = 10−8 for the optimization subroutine.

In order to show the benefit from the singularity crossing mechanism intro-
duced in section 5.3, simulations with Ntrials = 1 and Ntrials = 4 are compared.
The results are shown on Figure 5.4. The scenario being used is the same as the
one depicted on figure 5.3.

Finally, to end this simulation based validation section, let us check the
real time implementability of the moving-horizon observer. The computation
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times that lead to the results of figure 5.3 are given on Figure 5.5. Note that
an explicit upper bound is imposed on the number of function evaluations.
More precisely, the internal loop of the optimizer stops as soon as the com-
putation time exceeds the sampling period (30 seconds). Note that all the re-
sults shown above use a tolerance threshold ε = 10−8 for the optimization
subroutine. It is shown in the following section illustrating the experimen-
tal validation results that this precision is unnecessarily high and quite sim-
ilar results can be obtained using a lower precision (for instance ε = 10−3)
while reducing dramatically the computation time (see figures 5.6 and 5.7 here-
after). This is especially true under the multiple trials technique proposed
above.
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Fig. 5.4. Comparison between the observer behavior when Ntrials = 1 and Ntrials = 4
under the scenario depicted on figure 5.3. Note how the singularity cross mechanism
enables to avoid drops in the estimation quality when the observer encounters a singular
situation. This scenario uses a tolerance ε = 10−8 for the optimization subroutine.

Experimental Validation of the Moving-Horizon Observer

In this section, the ability of the proposed state observer to reconstruct the
individual values of N1, N2 and N3 as well as the unmeasured and dynami-
cally unmodeled variable μ is shown. Note that in order to experimentally mea-
sure the values of the Ni’s, Samples are withdrawn during the reaction and
an inhibitor is added to stop the reaction. The latex is then diluted in a sol-
vent and injected in a gas chromatograph to measure the residual amount of
monomer. By doing so, the true values of the Ni can be obtained. This has been
done only during the 80 first minutes of the Batch where only 9 samples have
been analyzed. The dots (*) on figures 5.6 and 5.7 indicate the corresponding
measurements.
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Fig. 5.5. Computation times needed to achieve the state estimation depicted on figure
5.3. Note that an explicit upper bound has been imposed in the internal loop of the
optimizer in order to deliver the best estimation that can be obtained within the
available computation time defined by the sampling period (30 seconds). This scenario
uses a tolerance ε = 10−8 for the optimization subroutine.

These figures clearly show the efficiency of the proposed pair (model,observer)
in retrieving with an astonishing precision the values of the Ni’s despite the un-
modelled dynamic of μ. The rather short computation times (less than 5 seconds
compared to the computation times obtained under high precision tolerance)
underlines how real-time implementability depends on such parameters that are
difficult to set a priori. Finally, it is worth underlying that the times needed to
perform Ntrials = 10 (figure 5.6) is much less than 10 times the mean computa-
tion time for Ntrials = 1. This strengthens that the proposed singularity cross
technique is different from the multiple initial guess technique in the sense that
each trials starts from the best result achieved from the previous trial, only the
weighting parameter vector q̄ is randomly modified.

Figure 5.6 clearly shows an interesting (though expected) feature according
to which the closed-loop dynamic of the additional state μ is much more rich
than the dynamic used in the prediction algorithm. Indeed, while the supposed
dynamic is μ̇ = 0, the estimated evolution of μ shows realistic dynamic that is
typical for this variable as it can be attested by polymerization experts. This
asserts the efficiency of the extended state technique invoked in section 5.2.1 in
handling the uncertainties using nominal uncertainty free framework even for
uncertainties showing important dynamics.

5.4 Differential Form of Moving Horizon Observers

Throughout this section, the system model is assumed to be given in the following
ODE form:

ẋ(t) = f(t, x(t)) (5.44)
y(t) = h(t, x(t)) (5.45)
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Fig. 5.6. Experimental validation with Ntrials = 10 and tolerance threshold ε = 10−3

for the optimization subroutine. Note how the dynamic behavior of μ is recovered
despite the constant behavior assumption used in the receding horizon observer model.
The dashed lines show what would be obtained if an open-loop simulator is used to
obtain an on-line estimation of the Ni’s. Note the excellent matching between the
experimentally measured values of the Ni’s and those recovered by the observer. The
same scenario is depicted on figure 5.7 where Ntrials = 1 is used. Note also the quite
rich estimated dynamic for μ despite the over simplified (constant) dynamic used in
the definition of the extended state. This asserts the efficiency of using the extended
state formalism in handling uncertainties using nominal uncertainty free framework.

This is because the differential form of the moving-horizon observer needs the
time evolution of the system to be continuously differentiable. Consequently,
under this assumption, there is no clear advantage from using the general form
adopted in the preceding sections. The state and the output trajectories re-
lated notations, namely X(t, t0, x0) and Y (t, t0, x0) are however maintained un-
changed.

Throughout this section, it is assumed that the cost function J(t, ξ(t)) used
in the receding-horizon estimation scheme is given by:

J(t, ξ) =
∫ t

t−T

‖Y (τ, t − T, ξ) − y(τ)‖2dτ (5.46)

In addition to the continuous differentiability of the r.h.s of (5.44), the following
technical assumption is needed for the convergence result of the present section:

Assumption 1 (Uniform global regularity)
There is a K-function Υ : R+ → R+ such that the following inequality holds:

‖Jξ(t, ξ)‖2 ≥ Υ (J(t, ξ)) (5.47)

for all (t, ξ) ♥
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Fig. 5.7. Results under the same experimental validation scenario as figure 5.6 with
Ntrials = 1 and tolerance threshold ε = 10−3. Note the slight drop in the estima-
tion quality (particularly on N2) compared to figure 5.6 where the singularity cross
technique is used.

This assumption simply means that regardless the state x(t − T ) that holds at
instant t−T , the corresponding cost function J(t, ·) has a unique singular point
which is precisely the unique global minimum ξ = x(t − T ). This is clearly a
strong assumption that may not be necessary for the success of the estimation
task in practical situations but that is mandatory to obtain a provably conver-
gent state estimation scheme in the large (regardless the initial state estimation
error). Locally, this property is clearly satisfied for systems (5.44)-(5.45) hav-
ing an observable linearization (see [15] for more details). Further discussion
on how to tackle the case where this assumption is not rigorously satisfied can
be found in [13]. In this general survey on moving-horizon nonlinear observers,
we restrict the presentation to the original basic framework. Another (although
quite closely related) viewpoint leading to differential form of moving-horizon
observer is based on continuation approach and can br found in [24].

The moving-horizon observer described in section 5.3 follows the standard
scheme of the early formulation of [11] except that a singularities avoidance
heuristic has been introduced. In particular, this formulation leaves aside the
detailed description of the optimization process S used in (5.22) to perform the
optimization task.

Regardless the particular choice of the optimizer S, the classical scheme leads
to a dynamic process on the observer’s internal state ξ(t) that is precisely given
by (5.28) which is reproduced here for clarity:

ξ(tk) = ANtrials

(
ξ(tk−1), tk, ytk

tk−N

)

x̂(tk) = X(tk, tk−N , ξ(tk))
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But there is clearly a more direct way to induce a dynamic on the internal state
ξ = x̂(t−T ) that is oriented towards the decrease of the cost function J(t, ξ(t)).
Indeed, taking the time derivative of J , one may write3:

J̇(t, ξ(t)) = Jt(t, ξ(t)) +
[
Jξ(t, ξ(t))

]
ξ̇ (5.48)

Note that the cost function J(t, ξ(t)) implicitly depends on the value of the state
x(t − T ) at the past instant t − T . It is worth emphasizing however that this
dependence involves only the past measurements yt

t−T over the time interval
[t − T, t].

The evolution of ξ has to satisfy two conditions:

1. It must lead to a consistent observer in the absence of modeling errors and
measurement noise. This means that if ξ(t0) = x(t0 − T ) at some instant t0,
then ξ(t) = x(t − T ) for all t ≥ t0. This implies the following structure for ξ̇:

ξ̇(t) = f(t − T, ξ(t)) + c(t, ξ(t))︸ ︷︷ ︸
correction term

. (5.49)

Note that the first term in the r.h.s of (5.49) is the nominal time derivative
of ξ(t) (i.e. when ξ(t) = x(t − T )) while c(·, ·) is a correction function that
is such that: {

J(t, ξ(t)) = 0
}

⇒
{

c(t, ξ(t)) = 0
}
.

This enables to recover the nominal behavior as soon as J(t, ξ(t)) = 0, or
equivalently as soon as ξ(t) = x(t − T ) under the observability condition in
the sense of definition 3.

2. The correction term must be oriented towards the decrease of the cost func-
tion J .

Note that by injecting (5.49) in (5.48), the dynamic of J becomes:

J̇ = Jt(t, ξ(t)) +
[
Jξ(t, ξ(t))

]
·
[
f(t − T, ξ(t)) + c

(
t, ξ(t)

)]
(5.50)

To go further, the following two lemmas are needed:

Lemma 1. The correction-free time derivative of J satisfies:

dJ

dt
|c(·,·)≡0 ≤ |εy(t, ξ(t)) − εy(t − T, ξ(t))| +

[
φ(t, ξ(t))

]
·
√

J

where

εy(τ, ξ(t)) = Y (τ, t − T, ξ(t)) − y(τ) ∀τ ∈ [t − T, t]

♥

3 Assuming that the necessary regularity conditions are satisfied.
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Proof. Taking the time derivative of (5.46) when no correction is used gives:

dJ

dt
|c(·,·)≡0 = εy(t, ξ(t)) − εy(t − T, ξ(t)) + (5.51)

∫ t

t−T

[
Y (τ, t − T, ξ(t)) − y(τ)

]T [
φ̃(τ, ξ(t))

]
dτ (5.52)

where φ̃(t, ξ(t)) is given by:

φ̃(τ, ξ(t)) :=
dY

dt

∣∣∣
c≡0

(τ, t − T, ξ(t)) − ẏ(τ) (5.53)

Using appropriate upper-bounding inequalities, equation (5.52) gives:

dJ

dt
|c(·,·)≡0 ≤ |εy(t, ξ(t)) − εy(t − T, ξ(t))| + (5.54)

sup
τ∈[t−T,t]

∣∣∣φ̃(τ, ξ(t))
∣∣∣

︸ ︷︷ ︸
=:φ(t,ξ(t))

·
∫ t

t−T

‖Y (τ, t − T, ξ(t)) − y(τ)‖ dτ

︸ ︷︷ ︸
≤√

J

(5.55)

which clearly gives the result. �

Note that lemma 1 states that a function φ exists. The following lemma gives
the conditions under which an upper bound i=of this function can be obtained
to be used in the definition of the observer dynamic.

Lemma 2. If it is possible to estimate an upper bound ρ(t) satisfying:

∀τ ∈ [t − T, t] ; ‖ẏ(τ)‖ ≤ ρ(t) (5.56)

then there is a known computable function φ̄ρ(t, ξ(t)) satisfying:

0 ≤ φ(t, ξ(t)) ≤ φ̄ρ(t, ξ(t)) (5.57)

Proof. This is a direct consequence of (5.53) from which it can be inferred that:

φ(t, ξ(t)) ≤ sup
τ∈[t−T,t]

[
‖dY

dt

∣∣∣
c≡0

(τ, t − T, ξ(t))‖ + ρ(t)
]

But for given τ , the time derivative of Y (τ, t − T, ξ(t)) is given by:

Ẏ (τ, t − T, ξ(t)) = Yt2(τ, t − T, ξ(t)) + Yξ(τ, t − T, ξ(t))f(t − T, ξ(t))

where Yt2(·) is the partial derivative of Y w.r.t its second argument. The fact
that the partial derivative terms Yt2 and Yξ can be computed by classical sensi-
tivity related ODE’s ends the proof of the lemma. �
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Based on lemmas 1 and 2, equation (5.50) leads to:

J̇ ≤
∣∣Δt

t−T (εy(·, ξ(t)))
∣∣ +

[
φρ(t, ξ(t))

]
·
√

J + Jξ(t, ξ(t)) · c(t, ξ(t))

where the following short notation has been used:

Δt
t−T (εy(t, ξ(t))) = εy(t, ξ(t)) − εy(t − T, ξ(t))

This suggests the following expression for the correction term c(t, ξ):

c(t, ξ(t)) := γ
[JT

ξ (t, ξ(t))
‖Jξ‖2 + ε

][
−
∣∣Δt

t−T (εy(·, ξ(t)))
∣∣ −

[
1 + φ̄ρ(t, ξ(t))

]√
J
]
(5.58)

since when injecting this expression in (5.58), one obtains:

J̇(t) ≤ −
[ γ‖Jξ‖2

‖Jξ‖2 + ε
− 1

]
·
[∣∣Δt

t−T (εy(·, ξ(t)))
∣∣ +

[
1 + φ̄ρ(t, ξ(t))

]√
J
]
(5.59)

This means that as long as:

‖Jξ(t, ξ(t))‖2 >
ε

γ − 1
(5.60)

the cost function J strictly decreases. Now using the inequality (5.47) with the
above fact enables the following implication to be written:

{
Υ (J(t, ξ(t)) >

ε

γ − 1

}
⇒

{
J̇(t, ξ(t)) < 0

}
. (5.61)

This clearly shows that under the correction law (5.58), the set defined by:

AJ :=
{
(t, ξ) | J(t, ξ) ≤ Υ−1

( ε

γ − 1

)}
(5.62)

is an invariant and globally attractive set. But by the very definition of uniform
observability (see definition 3), it can be inferred from (5.62) that the state
estimation error e = ξ(t) − x(t − T ) satisfies the following asymptotic property:

lim
t→∞ ‖ξ(t) − x(t − T )‖ ≤ α−1 ◦ Υ−1

( ε

γ − 1

)
(5.63)

and by continuity of the system trajectories w.r.t the initial state, property (5.63)
clearly implies:

lim
(ε/γ)→0

[
lim

t→∞ ‖x̂(t) − x(t)‖
]

= 0. (5.64)

The above discussion clearly proves the following result:
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Proposition 1. If the following conditions hold for the system (5.44)-(5.45):

1. The map f is continuously differentiable
2. The system is uniformly observable in the sense of definition 3
3. The uniform regularity assumption 1 is satisfied
4. It is possible to correctly estimate upper bounds of y(·) over past time inter-

vals (see lemma 2)

then for any a priori fixed desired precision η > 0 on the state estimation error,
there is a sufficiently high ratio γ/ε such that the dynamic system given by:

ξ̇(t) = f(t − T, ξ(t)) + c
(
t, ξ(t)

)
(5.65)

x̂(t) = X(t, t − T, ξ(t)) (5.66)

where the correction term c(t, ξ) is given by:

c(t, J) := γ
[JT

ξ (t, ξ(t))
‖Jξ‖2 + ε

][
−
∣∣Δt

t−T (εy(·, ξ(t)))
∣∣ −

[
1 + φ̄ρ(t, ξ(t))

]√
J
]

(5.67)

leads to a state estimation error that asymptotically reaches the required precision
η. ♥

It is worth noting that proposition 1 gives a receding-horizon observer that takes
a rather classical form (differential equation built up with a correction term that
is added to a copy of the system dynamic). There are two major differences
however between this observer and classical analytic observers:

1. The first difference lies in the use of an integral norm J of the output pre-
diction error in the correction term [see equation (5.67)] rather than its
instantaneous value.

2. The second difference is the way the convergence is proved. While classi-
cal analytic observers investigate the evolution of the state estimation error
which leads to the need for structural properties, here, the convergence proof
is based on the convergence of J and this with the very definition of observ-
ability implicitly leads to the convergence of the state estimation error.

When compared to the classical moving-horizon observer scheme of section 5.3,
the moving-horizon observer of proposition 1 contains apparently no optimiza-
tion phase. Indeed, the optimization process is embedded in the dynamic of the
internal state ξ. This dynamic

1. explicitly implements a gradient-based optimization process and
2. distribute the corresponding iterations over the system real life-time.

It is important to underline that the problem of local minima remains a common
feature regardless the way the moving-horizon observer is implemented. In the
context of proposition 1, this problem is hidden by the uniform global regularity
assumption 1 (condition 3. of proposition 1). Note however that this assumption
is not a constructive assumption in the sense that it is only needed for the
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convergence proof. The expression (5.67) of the observer dynamic is perfectly
well defined even if this assumption is violated.

The real-time implementation of the observer equation (5.67) may face serious
difficulties. This is because the computation of the gradient Jξ(t, ξ(t)) is a quite
involved task since it amounts to integrate a differential system of dimension
n(n + 1) where n is the dimension of the state vector. This means that the time
needed to perform the computation of the r.h.s of the observer equation, say τc

can no more be neglected. This computation time represents naturally an upper
bound on the sampling period τs(≥ τc) that can be used to update the estimate
of the state vector.

In the following section, a technical solution that is referred to as the post-
stabilization technique is proposed in order to increase the sampling period while
maintaining a good precision.

5.4.1 The Post Stabilization Technique

In order to simplify the expressions, in this section, the observer equations (5.65)-
(5.66) are shortly re-written in the following compact form:

ξ̇(t) = fc(t, ξ(t), Jξ(t)) (5.68)
x̂(t) = X(t, t − T, ξ(t)) (5.69)

Proposition 1 states that observing the state of the system amounts to integrate
the differential system (5.68). According to the discussion of the end of the preced-
ing section, this integration has to be done using relatively high sampling period
τs. In order to efficiently integrate the differential system (5.68) despite this fact,
it is important to note that this system satisfies the following nice property:

property

The sub-manifold J(t, ξ(t)) = 0 is invariant under the combined dynamic
of the system and the observer equations (5.18) and (5.68).

In [18], an efficient integration scheme has been proposed that is dedicated to
differential systems having invariant sub-manifolds. This technique is roughly
depicted on figure 5.8. Namely, given the observer state x(tk) at instant tk = kτs,
in order to obtain the next state ξ(tk+1) at instant tk+1 = (k+1)τs, the following
steps are executed:

� First, the following differential system is integrated over [tk, tk+1] starting
from the initial condition (tk, ξ(tk)):

ξ̇(t) = fc(t, ξ(t), Jξ(tk)) ; t ∈ [tk, tk+1] (5.70)

The corresponding solution at instant tk+1 is denoted by ξ̃(tk+1) (see figure
5.8). Note that during the integration over [tk, tk+1], the gradient Jξ(tk) is
kept equal to its initial value at instant tk. Consequently, ξ̃(tk+1) is a rough
approximation of the exact integration of the observer equation.
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Fig. 5.8. The post-stabilization technique. To obtain the next observer state ξ(tk+1),
the observer equation is first integrated using constant gradient term Jξ(tk, ξ(tk)), then
the result ξ̃(tk+1) is projected on the sub-manifold J(tk+1, ξ) = 0.

� The second step in the post stabilization technique is to correct the rough
approximation ξ̃(tk+1) by projecting it on the manifold J(tk+1, ξ) = 0. This
is written as follows:

ξ(tk+1) = ξ̃(tk+1) − Jξ(tk+1, ξ̃(tk+1))
‖Jξ(tk+1, ξ̃(tk+1))‖2 + ν

· J
(
tk+1, ξ̃(tk+1)

)
(5.71)

where ν > 0 is a regularization constant that is used to avoid numerical
singularities close to the surface.

A detailed investigation on the consequence of the above mentioned post-
stabilization technique is presented in [15]. In particular, it has been shown that
when time invariant systems are considered the following asymptotic property
holds:

lim
k→∞

J(ξ(tk)) = O(τ4
s )

and this, regardless the order (≥ 1) of the integration scheme used to compute
ξ̃(tk+1).

5.4.2 Examples

In this section, two examples are given to illustrate the differential form of the
moving-horizon observer presented in the preceding section. The first one (sec-
tion 5.4.3) reports a successful industrial patented application [5] of this observer
to the problem of the simultaneous estimation of the train velocity as well as the
train position on a railways line. The second example (section 5.4.5) is a rather
academic one that clearly shows the benefit from using the post-stabilization
technique proposed in section 5.4.1 above. Another successful application of
the differential moving-horizon observer can be found in [6] where this observa-
tion scheme has been applied to activated sludge processes used for waste-water
treatment.
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Fig. 5.9. Schematic view of a tilting train. The additional control-induced inclinaison
of the compartment allows for a higher speed on existing rails while keeping the same
comfort level (by maintaining the resulting felt acceleration normal to the compartment
floor).

5.4.3 Nonlinear Observer for Tilting Trains

In this section, an industrial patented application [5] of the differential form
of moving-horizon observer presented in this section is proposed4. The problem
is first stated in the context of the control of tilting trains, then the need for
an observer is explained and the performance of the proposed moving-horizon
observer is shown.

Tilting Trains: The Control Problem

The problem of controlling tilting trains is schematically depicted on figure 5.9.
Typically, when the train goes into a bend of curvature ρ(r) at some curvilinear
abscissa r on the rails, a passenger feels a centrifugal acceleration V 2ρ(r). This
acceleration when combined with the gravity gives a resulting acceleration that
is not perpendicular to the compartment floor unless the rails present a by-
construction inclinaison δ(r).

Consequently, the rails are inclined in accordance with some nominal optimal
velocity Vnom by an angle δ̄(r) satisfying:

δ̄(r) = tan−1
(1

g
· V 2

nom · ρ(r)
)

(5.72)

4 This work has been achieved in a partnership context with the company Alstom-

Transport (Villeurbanne, France). This partnership aimed to develop control al-
gorithms for tilting trains. The work presented is described in details in the related
patent [5].
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Obviously, the curvature ρ(·) and the rails inclinaison δ(·) become constant char-
acteristics (profiles) of the rails. Now if the train follows these rails with a velocity
that is significantly higher than the nominal velocity Vnom that has been used in
the computation and the construction of the rails inclinaison profiles δ(·), pas-
senger would feel uncomfortable. The aim of the tilting train control is therefore
to compensate for the lack of rails inclinaison by tilting the compartment using
the dedicated jacks (see figure 5.9). Ideally, the additional inclinaison angle αd

is clearly given at instant t by:

αd(V (t), r(t)) := tan−1
(1

g
· V 2(t) · ρ(r(t))

)
− δ̄(r(t)) (5.73)

Therefore, from a control point of view, the problem is to track a reference
trajectory that depends on:

• The train’s velocity V (t)
• The curvilinear abscissa of the train on the rails r(t)
• The geometric characteristics of the rails ρ(·) and δ̄(·)
Remember that the origin of the control problem is related to the high velocities
one aims to use that are higher than the nominal velocity Vnom. But the higher
the velocity V is, the faster the set-point αd changes since:

α̇d =
∂αd

∂V
V̇ +

∂αd

∂r
V ≈ ∂αd

∂r
(V, r)V (5.74)

since the velocity of the train change slowly with time. This makes the tilting
train control a very challenging problem that needs the use of advanced predic-
tive control schemes enabling anticipating actions to be used. Indeed, a slight
delay in the tracking may even give the inverse desired effect on the comfort
level.

The Estimation Problem

Based on the above control problem description, it comes that anticipating the
evolution of the desired set-point αd(V (t), r(t)) is a crucial issue. This means
that the localization of the train on its rail is a key task in the overall control
scheme. Note also that the estimation of a train velocity is a classical problem
due to the need for a decentralized measurements for security reasons and due to
the presence of slipping at the wheels level (see the patent [14] for more details
on this critical issue).

Consequently, the estimation problem amounts to recover the evolution of
both the curvilinear abscissa r and the error on the current estimation of the
train velocity. To do this, the yaw angular velocity is available using a dedicated
gyrometer that is fixed at the wheels level. Therefore, the dynamical system to
be observed can be given as follows:

ẋ1 = (1 + x2) · Vm(t) (5.75)
ẋ2 = 0 (5.76)

y(t) = (1 + x2(t))Vm(t) · ρ(x1(t)) (5.77)
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Fig. 5.10. Evolution of the curvature map ρ(·) on a portion of the Paris-Toulouse line.
This map is used in the validating scenarios.

where x1 = r stands for the curvilinear abscissa of the train on the rail. x2 is
the relative error on the velocity, namely, the true velocity V (t) is given by:

V (t) = (1 + x2(t)) · Vm(t)

The map ρ(·) is supposed to be available using dedicated series of measurements
obtained during careful crossing of the line under consideration. The correspond-
ing evolution of the curvature ρ as a function of the curvilinear abscissa is given
on figure 5.10. This curve corresponds to the data characterizing a portion of
the Paris-Toulouse line.

Note that in the above system model, the velocity measurement Vm(·) is sup-
posed to be delivered by a dedicated velocity estimator or direct measurements.
From the observation viewpoint, this signal is viewed as a known time vary-
ing signal over past intervals and can be handled using the estimation scheme
through the time-varying character of the system model.

Based on the system model (5.75)-(5.77), the gradient Jξ(t, ξ) can be com-
puted using the sensitivity matrix of the trajectory of the following system w.r.t
initial conditions:

ż1 = (1 + z2)V
ż2 = 0

ż3 =
[
(1 + z2)V ρ(z1) − y

]2

More precisely, one clearly has:

Jξ(t, ξ) :=
(
A31(t) A32(t)

)
(5.78)
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where the matrix A(t) ∈ R
3×3 is the solution at instant t of the following differ-

ential system:

ż1 = (1 + z2)V (5.79)

ż2 = 0 z(t − T ) =
(
ξT 0

)T (5.80)

ż3 =
[
(1 + z2)V ρ(z1) − y(t)

]2
(5.81)

Ȧ(τ) =

⎛
⎝ 0 V (τ) 0

0 0 0
X1(τ) X2(τ) 0

⎞
⎠A ; A(t − T ) = I3×3 (5.82)

where the terms X1 and X2 are given by :

X1 = 2
[
(1 + z2)V · ρ(z1) − y

]
(1 + z2)V

∂ρ

∂z1
(z1)

X2 = 2
[
(1 + z2)V · ρ(z1) − y

]
· V · ρ(z1)

Note that by integrating the differential system (5.79)-(5.82) over [t − T, t] one
obtains simultaneously Jξ(t, ξ(t)) by (5.78) but also J(t, ξ(t)) by:
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Fig. 5.11. Simulation of the differential moving-horizon observer when used to estimate
the velocity and the position of a tilting train crossing a portion of the Paris-Toulouse
line. Initial error on the position is equation de 20 m. The relative error on the velocity
measurement varies form 0 to −15% during the first 20 seconds before it is settled
to −10%. remember that the moving-horizon observer uses a constant evolution for
this error when computing the cost function at each updating instant.
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J(t, ξ(t)) = z3(t).

Therefore, all that one needs to implement the differential moving horizon ob-
server of proposition 1 can be obtained. It is worth noting that for this specific
example, there is no need to integrate the 9th order differential system (5.79)-
(5.82) since the structure of the system enables significant simplifications (see
[5] for more details).

5.4.4 Simulations

Simulations are conducted using the portion of the Paris-Toulouse line (see the
corresponding curvature on figure 5.10) with the following parameters:

T = 5 sec ; τs = 0.4 sec ; γ = 0.2

Two simulations are proposed to illustrate the benefit from using the proposed
observer. In the first (figure 5.11), an initial error on the position is intro-
duced as well as a time varying relative error on the velocity measurement.
In the second scenario, a different profil on the velocity measurement error is
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Fig. 5.12. Simulation of the differential moving-horizon observer when used to estimate
the velocity and the position of a tilting train crossing a portion of the Paris-Toulouse
line. Although there is no initial error on the position the bottom figure shows what
would be the position error if no correction is made. The relative error on the velocity
measurement varies form 0 to +5% and then to −10%. remember that the moving-
horizon observer uses a constant evolution for this error when computing the cost
function at each updating instant.
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Fig. 5.13. Comparison between moving-horizon observer with (black dot-dashed line)
and without (dotted) post-stabilization step. Here, the updating period is τs = 0.1 s.
This si sufficiently small to make the moving-horizon observer stabilizing even without
the post stabilization step. Even in this case, note how the post stabilization step
improves the quality of the estimation.

used without initial error on the train position. Despite the absence of initial
error, figure 5.12 shows what would be the error on the estimated position if the
velocity measurement were integrated without correction. The consequence of
using such erroneous position on the overall tilting control loop would be clearly
dramatic.

5.4.5 Illustrating the Benefit from Using the Post-stabilization Step

The aim of this section is to illustrate how the post-stabilization step proposed
in section 5.4.1 enables the updating period to be increased leaving more time
for computations. This is done using the following academic example:

ẋ1 = x2

ẋ2 = − sin(x1) − 0.2x1 cos(x1x2)
y = x1 + x2

Figures 5.13 and 5.14 show the behavior of the differential form of moving-
horizon observer under two different updating periods τs = 0.1 sec and τs =
0.4 sec.

When τs = 0.1 sec, the updating rate is sufficiently small for the observer
to converge quite well even without the post stabilization step (see figure 5.13).
However, when the updating period increases, the sampled observer fails to con-
verge without the post stabilization step (see figure 5.14).
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Fig. 5.14. Comparison between moving-horizon observer with (black dot-dashed line)
and without (dotted) post-stabilization step. Here, the updating period is τs = 0.4 s.
Note how the post stabilization step enables the updating period to be increased while
maintaining good precision.

It is worth noting that in both cases, it is the sampled version (5.70) of the
differential moving-horizon observer that is implemented. This is precisely the
reason for which a high updating period may destabilize the observer.

5.5 Moving Horizon Observers with Distributed
Optimization

The differential form of the moving-horizon observer presented in section 5.4 tries
to solve the optimization problem that underlines the state estimation problem
using a gradient-based descent approach. Moreover, the iterations associated to
this descent approach are distributed over the system life-time. The implementa-
tion of this approach needs however some regularity assumptions that guarantee
the existence of all the partial derivatives of the cost function (the output pre-
diction error).

In the present section, a more general viewpoint on the distributed-in-time
optimization is adopted in order to get deeper insight on the resulting closed-
loop behavior. The ideas developed here are closely connected to those in the
air when real-time implementation of Model Predictive Control is addressed (see
for instance [16, 1, 9, 8]). The main message of this section is that even when
efficient and globally convergent optimizers are used, there is some optimal up-
dating rate of the internal state of the observer. This optimal sampling rate
corresponds to some optimal number of iterations of the optimizer between two
successive updates. It goes without saying that the quantitative translation of
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this general result heavily depends on the system, the optimizer and the com-
putational facilities and should be approached using a somehow experimental
way.

In this section, the general simulator form (5.1) of the dynamic system is
considered, namely:

x(t) = X(t, t0, x0),
y(t) = h(t, x(t)),

The measurement is assumed to be required with a sampling period τa. Note
that τa defines the maximal frequency with which additional new knowledge is
injected to any state estimation scheme. The acquisition period τa may be too
small to be used as updating period5 for the estimation. The updating period
is considered here (without loss of generality) as a multiple of τa, namely, the
updating period τu is defined by:

τu = Nu · τa where Nu ∈ N

The resulting updating instants are therefore denoted by:

tk = k · τu = k · Nu · τa

The observation horizon T invoked in the above sections is here taken to be
equal to an integer number N of acquisition periods, namely:

T := N · τa

that is, the observation horizon involves N past measurements. This enables the
following cost function J(tk, ξ) to be defined at each updating instant tk:

J(tk, ξ) =
N∑

j=1

∥∥∥Y (tk − jτa, tk − T, ξ) − y(tk − jτa)
∥∥∥2

Recall that minimizing J(tk, ξ) in the decision variable ξ amounts to look for
the best estimate of the past state x(tk − T ).

Following the same notations than those used in section 5.3, we assume that
some iterative process S has been chosen to minimize J(t, ξ) in the decision
variable ξ, namely:

ξ(i+1) = S
(
t, ξ(i), yt

t−T

)

The result of n successive application of S for given t is denoted by:

ξ(i+n) = S(n)
(
t, ξ(i), yt

t−T

)

Let us consider the following assumption about the efficiency of the iterative
process S:
5 The precise meaning of an updating period is made clear later on.
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Fig. 5.15. Schematic view of the distributed-in-time optimization based observer. Note
that the convergence of the overall estimation scheme is the result of a competition
between a decreasing effect due to the optimizer and the increasing effect due to the
natural divergence of open-loop state estimation.

Assumption 2 [Efficiency of the optimizer]
Iterative process S is efficient in the sense that there exists some efficiency map
αeff : N → [0, 1[ such that for all t and ξ, one has:

J
(
t, S(n)(t, ξ, yt

t−T )
)

≤ αeff (n) · J(t, ξ) (5.83)

where α(·) is a decreasing function such that α(0) = 1. ♥

The state estimation algorithm studied in this section is defined by the following
rules (see figure 5.15):

(1) Initial conditions. Given that the estimation is based on past measure-
ments over some prediction horizon T = N · τa. The estimation begins as
soon as N measurements have been acquired. Consider some integer k = k0
such that k0 · Nu > N . Assume that the current estimation of ξ is ξ(tk).

(2) Updating ξ. The computation of ξ(tk+1) is done in two steps:

1. First n successive iterations are performed using the optimization process
S to decrease the value of the cost function J(tk, ξ). This is written as
follows

ξ̃(tk) = Sn(tk, ξ(tk), ytk

tk−T ) (5.84)

Note that according to the assumption (5.83) on the optimizer’s efficiency,
one can write the following inequality:

J(tk, ξ̃(tk)) ≤ αeff (n) · J(tk, ξ(tk)) (5.85)
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2. Then the estimated value of ξ(tk+1) is derived from ξ̃(tk) by integrating
the system model:

ξ(tk+1) = X(tk+1 − T, tk − T, ξ̃(tk)) (5.86)

Note that when performing this open-loop updating over a time period of Nuτa =
tk+1 − tk, some increase in the cost function have to be expected in general, this
is stated by the following assumption:

Assumption 3 [open-loop behavior of the cost function]
When using open-loop prediction, the only inequality one can guarantee is given
by:

J(t + τ, X(t + τ − T, t − T, ξ)) ≤
[
J(t, ξ)

]
· ϑ(τ) (5.87)

♥

using the inequality (5.87) with the following correspondances:

ξ = ξ̃(tk) ; t = tk ; τ = Nu · τa

together with (5.86) enables to infer that when using the above estimation
scheme, the inequality one can be sure of is the following:

J(tk+1, ξ(tk+1)) ≤
[
J(tk, ξ̃(tk))

]
· ϑ(Nuτa) (5.88)

This with (5.85) enables the following inequality to be derived:

J(tk+1, ξ(tk+1)) ≤
[
αeff (n) · ϑ(Nuτa)

]
· J(tk, ξ(tk)) (5.89)

Note that the number of iterations n that may be performed during Nuτs time
units is given by

n = E
(Nu · τa

τiter

)

where τiter is the time needed for a single iteration.
Based on the above discussion, the following proposition can be derived:

Proposition 2 [Convergence of the distributed in time optimization
based observers]
Under assumptions 2 and 3, the convergence of the distributed in time optimiza-
tion based observer is guaranteed provided that the following inequality holds:

�(Nu) := αeff

(
E(

Nuτa

τiter
)
)

· ϑ(Nuτa) < 1 (5.90)

where
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� τa is the measurement acquisition period
� Nuτa is the updating period
� τiter is the time necessary to perform one iteration of the process S
� αeff (·) is the optimizer efficiency map (see assumption 2)
� ϑ(·) is the map characterizing the worst-case divergence rate of the open-loop

prediction (see assumption 3) ♠

Note that while condition (5.90) guarantees the convergence of the state estima-
tion error. The corresponding convergence time (defined as the time needed for
J to reach a value that is equal to 5% of its initial value) is still dependent on
the value of Nu according to:

tr(Nu) ≈
[ 3Nu

| log
(
�(Nu)

)
|

]
· τa (5.91)

It goes without saying that the exact expressions of the auxiliary functions
αeff (·) and ϑ(·) heavily depend on the system and the optimizer involved in
the estimation scheme. however, in order to have concrete example showing
the implication of the context on the best implementation parameters of the
distributed-in-time optimization based state observers, let us consider the fol-
lowing structures for αeff (·) and ϑ(·):

αeff (n) =
D

nd + D
; ϑ(τ) = exp(β · τ) (5.92)

Figures 5.16 and 5.17 give the evolution of the stability indicator � and the
settling time tr as functions of the number of iterations Nu used to perform
the observer internal state updating for two different sets of parameters used
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Fig. 5.16. Evolutions of the stability indicator �(Nu) and the settling time tr(Nu)
vs the number of iterations Nu used to update the state estimation. The expressions
(5.92) are used with the parameters D = 3, d = 1, β · τa = 0.3 and τa/τiter = 5. Under
these conditions, stability cannot be guaranteed when more that 9 iterations are used.
The optimal choice (in term of settling time) is the one where only one iteration is
used to perform the updating.
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Fig. 5.17. Evolutions of the stability indicator �(Nu) and the settling time tr(Nu)
vs the number of iterations Nu used to update the state estimation. The expressions
(5.92) are used with the parameters D = 50, d = 2, β · τa = 0.05 and τa/τiter = 5.
Under these conditions, while stability of the state estimation error seems guaranteed
regardless the number of iterations used to perform the updating, the use of 3 iterations
gives the best choice in term of settling time.

in (5.92). In the first case (figure 5.16), the instability rate of the open-loop
estimation is high (β · τa = 0.3) leading to a maximum number of 9 iterations
beyond which stability cannot be guaranteed. Moreover, the optimal choice in
term of settling time is to use one single iteration before updating.

In the second case (figure 5.17), the instability rate is lower (β · τa = 0.05)
and the efficiency of the iterations is higher (d = 2 rather than 1 in the first
case). This leads to the stability being guaranteed for all number of iterations
but with the optimal settling time corresponding to the use of 3 iterations.

5.6 Conclusion

The use of moving-horizon observers is intimately linked to the progress of non-
linear constrained optimization. However, the state estimation problem is not
only an optimization problem. The way an optimization process can be used to
result in a dynamic state estimator is to be carefully studied following (at least
partially) some of the guidelines given in this chapter.

Another likely to be promising direction is to combine the partial use of ana-
lytic observer (on a part of the estimation problem) with the use of optimization
process. This enables optimization to concentrate on those parts of the problem
where no particular structural properties are available.
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Summary. The purpose of these notes is to summarize a number on recent develop-
ments in the theory of output regulation for nonlinear systems. Cornerstones of these
developments are the asymptotic analysis leading to a precise notion of steady state
response for nonlinear systems and a number of concepts arising in the theory of non-
linear observers. The steady state analysis is the tool of choice for the identification
of necessary conditions, which make it possible to express in simple terms a new non-
linear enhancement of the classical internal model principle. The theory of nonlinear
observers, on the other hand, provides the appropriate ideas for the design of regulators
for a fairly general class of nonlinear systems that satisfy a suitable minimum-phase
assumption. The ideas in question are instrumental in the design of “asymptotic inter-
nal models”, objects that serve the dual purpose of inducing a steady state in which
the regulated variable vanishes and to make this steady state attractive.

6.1 Introduction

A central problem in control theory is the design of feedback controllers so as to
have certain outputs of a given plant to track prescribed reference trajectories.
In any realistic scenario, this control goal has to be achieved in spite of a good
number of phenomena which would cause the system to behave differently than
expected. These phenomena could be endogenous, for instance parameter vari-
ations, or exogenous, such as additional undesired inputs affecting the behavior
of the plant.

In what follows, we address tracking problems that can be cast in the following
terms. Consider a finite-dimensional, time-invariant, nonlinear system modelled
by equations of the form

ẋ = f(w, x, u)
e = h(w, x)
y = k(w, x) ,

(6.1)

in which x ∈ R
n is a vector of state variables, u ∈ R

m is a vector of inputs used
for control purposes, w ∈ R

s is a vector of inputs which cannot be controlled and
include exogenous commands, exogenous disturbances and model uncertainties,
e ∈ R

p is a vector of regulated outputs which include tracking errors and any
other variable that needs to be steered to 0, y ∈ R

q is a vector of outputs that

G. Besançon (Ed.): Nonlinear Observers and Applications, LNCIS 363, pp. 181–210, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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are available for measurement and hence used to feed the device that supplies
the control action. The problem is to design a controller, which receives y(t)
as input and produces u(t) as output, able to guarantee that, in the resulting
closed-loop system, x(t) remains bounded and

lim
t→∞ e(t) = 0 , (6.2)

regardless of what the exogenous input w(t) actually is.
The ability to successfully address this problem very much depends on how

much the controller is allowed to know about the exogenous disturbance w(t).
In the ideal situation in which w(t) is available to the controller in real-time, the
design problem indeed looks much simpler. This is, though, only an extremely
optimistic situation which does not represent, in any circumstance, a realistic
scenario. The other extreme situation is the one in which nothing is known
about w(t). In this, pessimistic, scenario the best result one could hope for is
the fulfillment of some prescribed ultimate bound for |e(t)|, but certainly not a
sharp goal such as (6.2). A more comfortable, intermediate, situation is the one
in which w(t) is only known to belong to a fixed family of functions of time, for
instance the family of all solutions obtained from a fixed ordinary differential
equation of the form

ẇ = s(w) (6.3)

as the corresponding initial condition w(0) is allowed to vary on a prescribed set.
This situation is in fact sufficiently distant from the ideal but unrealistic case of
perfect knowledge of w(t) and from the realistic but conservative case of totally
unknown w(t). But, above all, this way of thinking at the exogenous inputs covers
a number of cases of major practical relevance. There is, in fact, abundance of
design problems in which parameter uncertainties, reference commands and/or
exogenous disturbances can be modelled as functions of time that satisfy an
ordinary differential equation.

The control law is to be provided by a system modelled by equations of the
form

ξ̇ = ϕ(ξ, y)
u = γ(ξ, y)

(6.4)

with state ξ ∈ R
ν . The initial conditions x(0) of the plant (6.1), w(0) of the

exosystem (6.3) and ξ(0) of the controller (6.4) are allowed to range over a
fixed compact sets X ⊂ R

n, W ⊂ R
s and, respectively Ξ ⊂ R

ν . All maps
characterizing the of the controlled plant, of the exosystem and of the controller
are assumed to be sufficiently differentiable.

The problem which will be studied, known as the problem of output regulation
(or generalized tracking problem or also as generalized servomechanism problem)
is to design a feedback controller of the form (6.4) so as to obtain a closed
loop system in which all trajectories are bounded and the regulated output e(t)
asymptotically decays to 0 as t → ∞. More precisely, it is required that the
composition of (6.1), (6.3) and (6.4), that is the autonomous system
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ẇ = s(w)
ẋ = f(w, x, γ(ξ, k(w, x)))
ξ̇ = ϕ(ξ, k(w, x))

(6.5)

with output
e = h(w, x) ,

be such that:

• the positive orbit of W × X × Ξ is bounded,1

• limt→∞ e(t) = 0, uniformly in the initial condition.2

6.2 The Steady-State Response of a Nonlinear System

6.2.1 Background

The problem described in the previous section can be seen as the problem of
forcing in the plant, by means of an appropriate control input u(t), a response
x(t) that asymptotically compensates the effect, on the regulated variable e(t),
of the exogenous input w(t). The classical way in which the problem is addressed
for linear, time-invariant systems, when the exosystem is a neutrally stable linear
system, is to seek a controller forcing in the associated closed-loop system (6.5)
a (stable) “steady state” response entirely contained in the kernel of the map
defining the tracking error e. Thus, it is natural to expect that a similar tool
should also be effective in the more general setting considered here. It appears,
though, that a rigorous investigation of the concept of “steady state”, beyond
the classical domain of linear system theory, had never been fully pursued. Thus,
it seems natural, in a systematic analysis of the design problem outlined in the
previous section, to begin with an attempt to offer a rigorous definition of the
concept of “steady state” for a general nonlinear system.3

Thinking of a linear system, Gardner and Barnes [13], define the concept
in question as follows: “A dynamical system is said to be in the steady state
when the variables describing its behavior are either invariant with time, or are
(sections of) periodic functions of time. A dynamical system is said to be in the
transient (or unsteady) state when it is not in steady state.”

One appealing feature of this definition is that no predetermined separation
between inputs and outputs is sought, but the system is only analyzed in terms of
how the variables that describe its behavior depend on time. Thus, the viewpoint
applies to general dynamical systems and not necessarily to control systems with
specified input and output; it is a precursor (at least as long as the notion of
1 That is, the exists a bounded subset S of R

s×R
n×R

ν such that, for any (w0, x0, ξ0) ∈
W × X × Ξ, the integral curve (w(t), x(t), ξ(t)) of (6.5) passing through (w0, x0, ξ0)
at time t = 0 remains in S for all t ≥ 0.

2 That is, for every ε > 0 there exists a time t̄, depending only on ε and not on
(w0, x0, ξ0) such that the integral curve (w(t), x(t), ξ(t)) of (6.5) passing through
(w0, x0, ξ0) at time t = 0 yields ‖e(t)‖ ≤ ε for all t ≥ t̄.

3 The content of this section is a summary of results presented in [7].
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steady state is concerned) of the modern behavioral viewpoint proposed by J.C.
Willems [30]. The main restriction, though, is that this definition only applies to
cases in which all relevant variables which describe the behavior of a dynamical
systems are periodic (constant in particular) functions of time. This definition
does not even cover the simple case in which the variables describing the behavior
of a system are linear combinations of sinusoidal functions (of time) with at
least two irrationally related angular frequencies, let alone the case in which the
variables in question are “almost periodic”.

Motivated by this classical idea of a steady state (extended to cover the case
almost periodic functions of time) and by the fact that, in a stable linear sys-
tem, any transient state asymptotically approaches a steady state, it is a common
practice to regard a steady state as a kind of limit behavior. From this view-
point, the steady state can be looked at either as the limit behavior which is
approached when the actual time t tends to +∞ or, respectively, as the limit
behavior which is approached when the initial time t0 tends to −∞. The two
alternatives are equivalent for a stable linear system. Adopting the first view-
point, James, Nichols and Phillips [21] say that “the transient response of [a
linear] filter is the difference between the actual output of the filter for t > t0
and the asymptotic form that it approaches” and that “only when a filter is
stable it is possible to speak with full generality of its response to an input that
starts indefinitely far in the past.” Adopting the other viewpoint, Zadeh and
Desoer [31] define a “ground state of [the system], if it exists, [as] the limiting
terminal state of [the system] when the zero input is applied, . . . provided the
limiting state γ is the same for all initial states” and afterward define “the steady
state response of [the system] to an input u(t0,t] [as] the limit, if it exists, of the
ground-state response of [the system] to u as t0 → −∞.” 4

6.2.2 Limit Sets

While the viewpoint of considering a system in steady state when its variables
are almost periodic functions of time would suffice for a linear system, in a
more general context it is inevitable to seek a definition which characterizes the
steady state as a limiting behavior asymptotically approached as time increases
(or decreases). Fundamental, in this respect, are certain concepts found in the
classical 1927 essay by G.D.Birkhoff, in which he demonstrates that “with an
arbitrary dynamical system . . . there is associated always a closed set of ‘central
motions’ which do possess this property of regional recurrence, towards which
all other motions of the system in general tend asymptotically.” [3, page 190]

The first, fundamental, ingredient in the process of characterizing the motions
(of a dynamical system) which are asymptotically approached as time increases
(or decreases), is the concept of ω-limit set of a given point. This concept is pre-
cisely defined as follows. Consider an autonomous ordinary differential equation

4 Furthermore they observe, though, that “usually [the system] and u are such that,
in [the expression of the response], γ can be replaced by an arbitrary initial state α
without affecting the limiting value of the response as t0 → −∞.”



Asymptotic Analysis and Observer Design 185

ẋ = f(x) (6.6)

with x ∈ R
n, t ∈ R. It is well known that, if f : R

n → R
n is locally Lipschitz,

for any x0 ∈ R
n, the solution of (6.6) with initial condition x(0) = x0, denoted

by x(t, x0), exists on some open interval of the point t = 0 and is unique.
Assume, in particular, that x(t, x0) is defined for all t ≥ 0. A point x is said

to be an ω-limit point of the motion x(t, x0) if there exists a sequence of times
{tk}, with limk→∞ tk = ∞, such that

lim
k→∞

x(tk, x0) = x .

The ω-limit set of a point x0, denoted ω(x0), is the union of all ω-limit points of
the motion x(t, x0).

It is obvious from this definition that an ω-limit point is not necessarily a
limit of x(t, x0) as t → ∞, as the solution in question may not admit any limit
as t → ∞. It happens though, that if the motion x(t, x0) is bounded, then x(t, x0)
asymptotically approaches the set ω(x0). This property is precisely described in
what follows [3, page 198].

Lemma 1. Suppose there is a number M such that ‖x(t, x0)‖ ≤ M for all
t ≥ 0. Then, ω(x0) is a nonempty compact connected set, invariant under (6.6).
Moreover, the distance of x(t, x0) from ω(x0) tends to 0 as t → ∞.

One of the remarkable features of ω(x0), as indicated in this Lemma, is the fact
that this set is invariant for (6.6). Invariance means that for any initial condition
x̄0 ∈ ω(x0) the solution x(t, x̄0) of (6.6) exists for all t ∈ (−∞, +∞) and that
x(t, x̄0) ∈ ω(x0) for all such t. Put in different terms, the set ω(x0) is filled by
motions of (6.6) which are bounded backward and forward in time. The other
remarkable feature is that x(t, x0) approaches ω(x0) as t → ∞, in the sense that
the distance of the point x(t, x0) (the value at time t of the solution of (6.6)
starting in x0 at time t = 0) from the set ω(x0) tends to 0 as t → ∞.

Since any motion x(t, x0) which is bounded in positive time asymptotically
approaches the ω-limit set ω(x0) as t → ∞, one may be tempted to look, for a
system (6.6) in which all motions are bounded in positive time, at the union of
the limit sets of all points x0, i.e. at the set

Ω =
⋃

x0∈Rn

ω(x0)

and to say that the system is in steady state if its state x(t) evolves in the
(invariant) set Ω. There is a major drawback, though, in taking this as a point
of departure for the definition of “steady state” behavior of a nonlinear system:
the convergence of x(t, x0) to Ω is not guaranteed to be uniform in x0, even if
the latter ranges over a compact set (see, e.g. [7]).

One of the main motivations for looking into the concept of steady state is the
aim to shape the steady state response of a system to a given (or to a given fam-
ily of) forcing inputs. But this motivation looses much of its meaning if the time
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needed to get within an ε-distance from the steady state may grow unbounded
as the initial state changes (even when the latter is picked within a fixed bounded
set). In other words, uniform convergence to the steady state (which is automat-
ically guaranteed in the case of linear systems) is an indispensable feature to be
required in a nonlinear version of this notion. The set Ω, the union of all ω-limit
points of all points in the state space does not have this property of uniform
convergence, but there is a larger set which does have this property. This larger
set, known as the ω limit set of a set, is precisely defined as follows.

Consider again system (6.6), let B be a subset of R
n and suppose x(t, x0) is

defined for all t ≥ 0 and all x0 ∈ B. The ω-limit set of B, denoted ω(B), is the
set of all points x for which there exists a sequence of pairs {xk, tk}, with xk ∈ B
and limk→∞ tk = ∞ such that

lim
k→∞

x(tk, xk) = x .

It is clear from the definition that if B consists of only one single point x0, all xk’s
in the definition above are necessarily equal to x0 and the definition in question
reduces to the definition of ω-limit set of a point, given earlier. It is also clear
form this definition that, if for some x0 ∈ B the set ω(x0) is nonempty, all points
of ω(x0) are points of ω(B). In fact, all such points have the property indicated
in the definition, if all the xk’s are taken equal to x0. Thus, in particular, if all
motions with x0 ∈ B are bounded in positive time,

⋃
x0∈B

ω(x0) ⊂ ω(B) .

However, the converse inclusion is not true in general.
The relevant properties of the ω-limit set of a set, which extend those pre-

sented earlier in Lemma 1, can be summarized as follows [16, page 8].

Lemma 2. Let B be a nonempty bounded subset of R
n and suppose there is a

number M such that ‖x(t, x0)‖ ≤ M for all t ≥ 0 and all x0 ∈ B. Then ω(B) is a
nonempty compact set, invariant under (6.6). Moreover, the distance of x(t, x0)
from ω(B) tends to 0 as t → ∞, uniformly in x0 ∈ B. If B is connected, so is
ω(B).

Thus, as it is the case for the ω-limit set of a point, we see that the ω-limit set of
a bounded set, being compact and invariant, is filled with motions which exist
for all t ∈ (−∞, +∞) and are bounded backward and forward in time.5 But,
above all, we see that the set in question is uniformly approached by motions
with initial state x0 ∈ B, a property that the set Ω does not have.

The set ω(B), as shown in the previous Lemma, asymptotically attracts, as
t → ∞, all motions that start in B. Since the convergence to ω(B) is uniform in
x0, it is also true that, whenever ω(B) is contained in the interior of B, the set
ω(B) is asymptotically stable, in the sense of Lyapunov.

5 The set of all such trajectories is a “behavior”, in the sense of J.C. Willems [30].
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In order to make this claim precise, recall that, for motions converging to
a closed invariant set A, the notion of asymptotic stability, a straightforward
extension of the notion of asymptotic stability of an equilibrium, is defined as
follows. Let A ⊂ R

n be a closed invariant set for (6.6). The set A is asymptoti-
cally stable if the following hold:

(i) for every ε > 0, there exists δ > 0 such that,

dist(x0, A) ≤ δ implies dist(x(t, x0), A) ≤ ε for all t ≥ 0.

(ii) there exists a number d > 0 such that

dist(x0, A) ≤ d implies lim
t→∞dist(x(t, x0), A) = 0 .

As in the case of equilibria, for a closed invariant set A which is asymptotically
stable for (6.6), the domain of attraction is the set of all x0 for which x(t, x0) is
defined for all t ≥ 0 and dist(x(t, x0), A) → 0 as t → ∞.

With these definitions in mind, from the result of Lemma 2 it is possible to
deduce the following important property.

Lemma 3. Let B be a nonempty bounded subset of R
n and suppose there is

a number M such that ‖x(t, x0)‖ ≤ M for all t ≥ 0 and all x0 ∈ B. Then
ω(B) is a nonempty compact set, invariant under (6.6). Suppose also that ω(B)
is contained in the interior of B. Then, ω(B) is asymptotically stable, with a
domain of attraction that contains B.

Finally, we conclude with another property, which is a straightforward conse-
quence of the definitions.

Lemma 4. Let B be a nonempty compact set, invariant under (6.6). Then
ω(B) = B.

6.2.3 The Steady State Behavior of a Nonlinear System

Consider now again system (6.6), with initial conditions in a closed subset X ⊂
R

n. Suppose the set X is a positively invariant set, which means that for any
initial condition x0 ∈ X , the solution x(t, x0) exists for all t ≥ 0 and x(t, x0) ∈ X
for all t ≥ 0. The motions of this system are said to be ultimately bounded if
there is a bounded subset B with the property that, for every compact subset
X0 of X , there is a time T > 0 such that ‖x(t, x0)‖ ∈ B for all t ≥ T and all
x0 ∈ X0. In other words, if the motions of the system are ultimately bounded,
every motion eventually enters and remains in the bounded set B.

Remark 1. Note that, since by hypothesis X is positively invariant, there is no
loss of generality in assuming B ⊂ X in the definition above. Note also that
there exists a number M such that ‖x(t, x0)‖ ≤ M for all t ≥ 0 and all x0 ∈ B.
In fact, let Cl(B) denote the closure of B, which is a compact subset of X , and
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let M1 the denote the maximum of ‖x‖ as x ∈ Cl(B). By definition of ultimate
boundedness, there is a time T such that ‖x(t, x0)‖ ≤ M1, for all t ≥ T and
all x0 ∈ Cl(B). Moreover, since x(t, x0) depends continuously on (t, x0), there
exists a number M2 such that ‖x(t, x0)‖ ≤ M2 for all 0 ≤ t ≤ T and all x0
in Cl(B). Thus, the property in question is fulfilled with M = max{M1, M2}.
By virtue of this property, one can conclude from Lemma 2 that the set ω(B)
is nonempty and has all the properties indicated in the Lemma itself. Finally,
note that, for a system whose motions are ultimately bounded, the set ω(B) is a
unique well-defined set, regardless of how B is taken. In fact, let B′ be any other
bounded subset of X with the property indicated in the definition of ultimate
boundedness. Then, it is not difficult to prove, 6 using the various definitions,
that ω(B′) ⊂ ω(B). Reversing the role of the two sets shows that ω(B) ⊂ ω(B′),
i.e. that the two sets in question are identical. 


For systems whose motions are ultimately bounded, the notion of steady state
can be defined as follows.

Definition 1. Suppose the motions of system (6.6), with initial conditions in
a closed and positively invariant set X, are ultimately bounded. A steady state
motion is any motion with initial condition in x(0) ∈ ω(B). The set ω(B) is
the steady state locus of (6.6) and the restriction of (6.6) to ω(B) is the steady
state behavior of (6.6). 


The notion thus introduced recaptures the classical notion of steady state for
linear systems and provides a new powerful tool to deal with similar issues in
the case of nonlinear systems.

Example 1. In order to see how this notion includes the classical viewpoint, con-
sider an n-dimensional, single-input, asymptotically stable linear system

ẋ = Fx + Gu (6.7)

forced by the harmonic input u(t) = u0 sin(ωt + φ0). A simple method to deter-
mine the periodic motion of (6.7) consists in viewing the forcing input u(t) as
provided by an autonomous “signal generator” of the form

(
ẇ1
ẇ2

)
=

(
0 ω

−ω 0

) (
w1
w2

)

u = w1

and in analyzing the state state behavior of the associated “augmented” system
6 Let x̄ be a point of B′. By hypothesis, there exists a sequence {x̄k, t̄k}, with x̄k ∈ B′

and limk→∞ t̄k = ∞ such that x(t̄k, x̄k) converges to x̄ as k → ∞. As all such x̄k’s
are in a compact subset of X, by definition of B there exist a time T > 0 such that
all points xk = x(T, x̄k) are points of B. Set tk = t̄k − T and consider the sequence
{xk, tk}. Trivially x(tk, xk), being equal to x(t̄k, x̄k), converges to x̄ as k → ∞. Thus,
x̄ is a point of B also.
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ẇ =
(

0 ω
−ω 0

)
w

ẋ = Fx + G
(
1 0

)
w .

(6.8)

As a matter of fact, let Π be the unique solution of the Sylvester equation and
observe that the graph of the linear map

π : R
2 → R

n

w 	→ Πw

is an invariant subspace for the system (6.8). Since all trajectories of (6.8) ap-
proach this subspace as t → ∞, the steady state behavior of (6.8) is determined
by the restriction of its motion to this invariant subspace.

Revisiting this analysis from the viewpoint of the more general notion of
steady state introduce above, let W ⊂ R

2 be a set of the form

W = {w ∈ R
2 : ‖w‖ ≤ c} (6.9)

in which c is a fixed number, and suppose the set of initial conditions for (6.8)
is W × R

n. This is in fact the case when the problem of evaluating the periodic
response of (6.7) to harmonic inputs whose amplitude does not exceed a fixed
number c is addressed. The set W is compact and invariant for the upper sub-
system of (6.8). Therefore, by Lemma 4, the ω-limit set of W under the motion
of the upper subsystem of (6.8) is the subset W itself.

The set W × R
n is closed and positively invariant for the full system (6.8)

and, moreover, since the lower subsystem of (6.8) is a linear asymptotically stable
system driven by a bounded input, it is immediate to check that the motions of
system (6.8), with initial conditions taken in W × R

n, are ultimately bounded.
As a matter of fact, any bounded set B of the form

B = {(w, x) ∈ R
2 × R

n : w ∈ W, ‖x − Πw‖ ≤ d}

in which d is any positive number, has the property indicated in the definition
of ultimate boundedness. Note also that any of such B satisfies B ⊂ W × R

n. It
is easy to check that

ω(B) = {(w, x) ∈ R
2 × R

n : w ∈ W, x = Πw} ,

i.e. ω(B) is the graph of the restriction of the map π to the set W . Note that
ω(B) is independent of the choice of B (so long as B is a set with having the
properties indicated in the definition of ultimate boundedness). The restriction
of (6.8) to the invariant set ω(B) characterizes the steady state behavior of
(6.7) under the family of all harmonic inputs of fixed angular frequency ω, and
amplitude not exceeding c. 


Example 2. A similar result, namely the fact that the steady state locus is the
graph of a map, can be reached if the “signal generator” is any nonlinear system,
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with initial conditions chosen in a compact invariant set W . More precisely,
consider an augmented system of the form 7

ẇ = s(w)
ẋ = Fx + Gq(w) ,

(6.10)

in which w ∈ W ⊂ R
r, x ∈ R

n, and assume that: (i) all eigenvalues of F have
negative real part, (ii) the set W is a compact set, invariant for the the upper
subsystem of (6.10).

As in the previous example, the ω-limit set of W under the motion of the upper
subsystem of (6.10) is the subset W itself. Moreover, since the lower subsystem
of (6.10) is a linear asymptotically stable system driven by the bounded input
u(t) = q(w(t, w0)), it is easy to check that the motions of system (6.10), with
initial conditions taken in W × R

n, are ultimately bounded. As a matter of fact,
so long as w(0) ∈ W , the input q(w(t, w0)) to the lower subsystem of (6.10) is
bounded by some fixed number U and standard arguments can be invoked to
show that

‖x(t)‖ ≤ Ke−λt‖x(0)‖ + LU

for all t ≥ 0, in which K, λ and L are appropriate positive numbers. Thus, any
bounded set B of the form

B = {(w, x) ∈ R
r × R

n : w ∈ W, ‖x‖ ≤ 2LU}

has the property indicated in the definition of ultimate boundedness.
Moreover, it is possible to show that, regardless of how B is taken, ω(B) is

the graph of the map
π : W → R

n

w 	→ π(w) ,

defined by

π(w) = lim
T→∞

∫ 0

−T

e−FτGq(w(τ, w))dτ . (6.11)

The explanation of this fact reposes on the following arguments. First of all,
observe that – since q(w(t, w)) is by hypothesis a bounded function of t and all
eigenvalues of F have negative real part – the limit on the right-hand side of
(6.11) exists and is finite. Then, a simple calculation shows that the graph of
the map π is invariant for (6.10). To see why this is the case, pick any initial
condition (w0, x0) on the graph of π and compute the solution x(t) of the lower
equation of (6.10) by means of the classical variation of constants formula, to
obtain

x(t) = eFtx0 +
∫ t

0
eF (t−τ)Gq(w(τ, w0))dτ

7 We retain, throughout, the assumption that both s(w) and q(w) are locally Lipschitz
functions.
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Since by hypothesis x0 = π(w0), using (6.11) we obtain

x(t) = eFt

∫ 0

−∞
e−FτGq(w(τ, w0))dτ +

∫ t

0
eF (t−τ)Gq(w(τ, w0))dτ

=
∫ t

−∞
eF (t−τ)Gq(w(τ, w0))dτ =

∫ 0

−∞
e−FθGq(w(θ + t, w0))dθ

=
∫ 0

−∞
e−FθGq(w(θ, w(t, w0)))dθ = π(w(t, w0)) = π(w(t))

and this proves the invariance of the graph of π for (6.10). From this property, it
is immediately concluded that any point of the graph of π is necessarily a point
of ω(B). To complete the proof of the claim it remains to show that no other
point of W × R

n can be a point of ω(B). But this is a direct consequence of
the fact that F has eigenvalues with negative real part. In fact, this assumption
implies that all motions of (6.10) whose initial condition is not on the graph of
π are unbounded in backward time and therefore cannot be contained in ω(B),
which is know to be a bounded set. 


There are various ways in which the result discussed in the previous example
can be generalized. For instance, it can be extended to describe the steady state
response of a nonlinear system

ẋ = f(x, u) (6.12)

in the neighborhood of a locally exponentially stable equilibrium point. To this
end, suppose that f(0, 0) = 0 and that the matrix

F =
[∂f

∂x

]
(0, 0)

has all eigenvalues with negative real part. Then, it is well known (see e.g. [15,
page 275]) that it is always possible to find a compact subset X ⊂ R

n, which
contains x = 0 in its interior and a number σ > 0 such that, if ‖x0‖ ∈ X and
‖u(t)‖ ≤ σ for all t ≥ 0, the solution of (6.12) with initial condition x(0) = x0
satisfies ‖x(t)‖ ∈ X for all t ≥ 0. Suppose that the input u to (6.12) is produced,
as before, by a signal generator of the form

ẇ = s(w)
u = q(w) (6.13)

with initial conditions chosen in a compact invariant set W and, moreover, sup-
pose that, ‖q(w)‖ ≤ σ for all w ∈ W . If this is the case, the set X × W is
positively invariant for

ẇ = s(w)
ẋ = f(x, q(w)) ,

(6.14)

and the motions of the latter are ultimately bounded, with B = X × W . The
set ω(B) may have a complicated structure but it is possible to show, by means
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arguments similar to those which are used in the proof of the Center Manifold
theorem, that if X and B are small enough the set in question can still be
expressed as the graph of a map x = π(w). In particular, the graph in question
is precisely the center manifold of (6.14) at (0, 0) if s(0) = 0 and the matrix

S =
[ ∂s

∂w

]
(0)

has all eigenvalues on the imaginary axis.
A common feature of the examples discussed above is the fact that the set

ω(B) can be expressed as the graph of a map x = π(w). This means that, so long
as this is the case, a system of the form (6.12) has a unique well defined steady
state response to the input u(t) = q(w(t)). As a matter of fact, the response in
question is precisely x(t) = π(w(t)). Of course, in general, this may not be the
case and multiple steady state responses to a given input may occur. In general,
the following property holds.

Lemma 5. Let W be a compact set, invariant under the flow of (6.13). Let X
be a closed set and suppose that the motions of (6.14) with initial conditions in
W ×X are ultimately bounded. Then, the steady state locus of (6.14) is the graph
of a set-valued map defined on the whole of W .

Proof. By hypothesis, see Lemma 4, ω(W ) = W . As a consequence, for all
w̄ ∈ W there is a sequence {wk, tk} with wk in W for all k such that w̄ =
limk→∞ w(tk, wk) . Set p = col(w, x) and let φ(t, p0) denote the integral curve
of (6.14) passing through p0 at time t = 0. Pick any point x0 ∈ X and let
pk = col(wk, x0). If the motions of (6.14) are ultimately bounded, there is a
bounded set B and a time T > 0 such that φ(t, pk) ∈ B for all t ≥ T and all
k > 0. Pick any integer h such that th ≥ T , set p̄k = φ(th, pk) and t̄k = tk − th,
for k ≥ h, and observe that, by construction, φ(tk, pk) = φ(t̄k, p̄k). The sequence
{φ(t̄k, p̄k)} is bounded. Hence, there exists a subsequence {φ(t̂k, p̂k)} converging
to a point p̂ = col(ŵ, x̂), which is a point of ω(B) because all p̄k’s are in B. Since
system (6.14) is upper triangular, necessarily ŵ = w̄. This shows that, for any
point w̄ ∈ W , there is a point x̂ ∈ X such that (w̄, x̂) ∈ ω(B), as claimed. 


6.3 Necessary Conditions for Output Regulation

Taking advantage of the notions introduced in the previous section, we are now
in a position to highlight some general properties that any controller that solves
a problem of output regulation must necessarily have. Recall that, as defined
in section 6.1, the problem of output regulation is solved if, in the composite
system (6.5):

• the positive orbit of W × X × Ξ is bounded,
• limt→∞ e(t) = 0, uniformly in the initial condition.

The notions introduced in the previous section are instrumental to prove the
following, elementary – but fundamental – result, which is a nonlinear enhance-
ment of a Lemma of [11] on which all the theory of output regulation for linear
systems is based.
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Lemma 6. Suppose the positive orbit of W × X × Ξ is bounded. Then

lim
t→∞ e(t) = 0

if and only if
ω(W × X × Ξ) ⊂ {(w, x, ξ) : h(w, x) = 0}. (6.15)

Proof. Set, for convenience, B = W × X × Ξ. Set p = col(w, x, ξ) and let
φ(t, p0) denote the integral curve of (6.5) passing through p0 at time t = 0. By
Lemma 2,

lim
t→∞dist(φ(t, p0), ω(B)) = 0 ,

uniformly in p0. Thus, condition (6.15) is sufficient.
To prove the converse, set K = {(w, x, ξ) : h(w, x) = 0}. Since h(w, x)

is continuous and the positive orbit of W × X × Ξ is bounded, to say that
limt→0 e(t) = 0, uniformly in p0, is equivalent to say that, for any ε > 0, there
exists t̄ such that, for any p0 ∈ B,

dist(φ(t, p0), K) ≤ ε, for all t ≥ t̄.

Pick any point p ∈ ω(B). Then, there exist a sequence of pairs (pk, tk), with
pk ∈ B and tk → ∞ as k → ∞ with the following property: for any ε > 0, there
exists k̄ such that

dist(φ(tk, pk), p) ≤ ε, for all k ≥ k̄.

Without loss of generality, we can pick k̄ such that tk̄ ≥ t̄. Thus, for every ε > 0,
dist(p, K) ≤ 2ε , i.e. dist(p, K) = 0. Since K is closed, p ∈ K and (6.15) follows. 


It is seen from this simple result that the problem of output regulation, as defined
in section 6.1, can be simply cast as the problem of shaping the steady state locus
of the closed loop system, in such a way that property (6.15) holds.

To proceed with the analysis in a more concrete fashion, we consider from now
on the special case in which the controlled plant (6.4) is modelled by equations
in normal form

ż = f0(w, z) + f1(w, z, e1)e1
ė1 = e2

...
ėr−1 = er

ėr = q(w, z, e1, . . . , er) + b(w, z, e1, . . . , er)u
e = e1
y = col(e1, . . . , er) ,

(6.16)

with state (z, e1, . . . , er) ∈ R
n−r × R

r, control input u ∈ R, regulated output
e ∈ R, measured output y ∈ R

r. The functions f0(·), f1(·), q(·), b(·), s(·) in (6.16)
and (6.3) are assumed to be at least continuously differentiable. It is also assumed
that
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b(w, z, e1, . . . , er) 
= 0 ∀(w, z, e1, . . . , er) .

The initial conditions of (6.16) range on a set Z × E, in which Z is a fixed
compact subset of R

n−r and E = {(e1, . . . , er) ∈ R
r : |ei| ≤ c}, with c a fixed

number.
Suppose that a controller of the form (6.4) solves the problem of output regu-

lation. Then Lemma 2 applies and, since e = e1, we deduce that the steady state
locus of the closed loop system (6.5) is necessarily a subset of the set of all states
in which e1 = 0. This being the case, it is seen from the form of the equations
(6.16) that, when the closed loop system (6.5) is in steady state, necessarily also

e2 = e3 = · · · = er = 0 .

As a consequence, the following conclusions hold:

• The steady state locus ω(W ×Z ×E×Ξ) of the closed-loop system is a subset
of the set W × R

n−r × {0} × R
ν .

• The restriction of the closed-loop system to its steady state locus ω(W × Z ×
E × Ξ) reduces to

ẇ = s(w)
ż = f0(w, z)
ξ̇ = ϕ(ξ, 0) .

(6.17)

• For each (w, z, 0, . . . , 0, ξ) ∈ ω(W × Z × E × Ξ)

0 = q(w, z, 0, . . . , 0) + b(w, z, 0, . . . , 0)γ(ξ, 0) . (6.18)

The prior analysis implicitly assumes that the positive orbit of W under the
flow of exosystem is bounded, i.e. that the motions of the exosystem asymptot-
ically approach the its own steady state locus ω(W ). In principle, ω(W ) may
differ from W but there is no loss of generality in assuming from the very begin-
ning that the two sets coincide. After all, the problem in question is a problem
concerning how the closed-loop system behaves in steady state and there is no
special interest in considering exosystems that are not “in steady state”. We
make this assumption precise as follows (see Lemma 4).

Assumption (i) : the compact set W is invariant for (6.3). 


With this in mind we observe that, by Lemma 5, if the positive orbit of W ×
Z × E × Ξ under the flow of (6.5) is bounded, then ω(W × Z × E × Ξ) is the
graph of a (possibly set-valued) map defined on the whole of W . Consider now
the set

Ass = {(w, z) : (w, z, 0, . . . , 0, ξ) ∈ ω(W × Z × E × Ξ), for some ξ ∈ R
ν}

and define the map

uss : Ass → R

(w, z) 	→ − q(w, z, 0, . . . , 0)
b(w, z, 0, . . . , 0)

.
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By construction, the set Ass is the graph of a (possibly set-valued) map defined
on the whole of W , which is invariant for the dynamics of

ẇ = s(w)
ż = f0(w, z) ,

(6.19)

that are precisely the zero dynamics of the “augmented system” (6.3) – (6.16),
while the map uss(·) is the control that forces the motion of (6.3) – (6.16) to
evolve on Ass.

With this in mind, the conclusions reached above can be rephrased in the
following terms. Suppose that a controller of the form (6.4) solves the problem of
output regulation for (6.16) with exosystem (6.3). Then, there exists a (possibly
set-valued) map defined on the whole of W whose graph Ass is invariant for the
autonomous system (6.19). Moreover, for each (w0, z0) ∈ Ass there is a point
ξ0 ∈ R

ν such that the integral curve of (6.19) issued from (w0, z0) and the
integral curve of

ξ̇ = ϕ(ξ, 0)

issued from ξ0 satisfy

uss(w(t), z(t)) = γ(ξ(t)) , ∀t ∈ R .

This is a nonlinear version of the celebrated internal model principle of [12].

6.4 Sufficient Conditions for Output Regulation

6.4.1 The Control Structure

On the basis of the ideas presented in the previous section we proceed now with
the construction of a controller that solves the problem of output regulation.
The “steady state” features of this controller are those identified at the end of
the section, namely this controller has to be able to “generate” all controls of
the form uss(w(t), z(t)) for any “steady state” trajectory w(t), z(t) of (6.19). The
controller should incorporate a device that generates all such trajectories (the
internal model), thus making sure that the “appropriate” state-state behavior
takes place, and a device guaranteeing that convergence to this specific steady
state behavior occurs. It is here that additional assumptions are needed.

Note that, since W is invariant for ẇ = s(w), the closed cylinder

C := W × R
n−r

is locally invariant for (6.19). Hence, it is natural regard (6.19) as a system
defined on C and endow the latter with the subset topology.

Assumption (ii) : there exists a bounded subset B of C which contains the positive
orbit of the set W × Z under the flow of (6.19) and the resulting omega-limit
set ω(W × Z) satisfies
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(w, z) ∈ C , |(w, z)|ω(W×Z) ≤ d0 ⇒ z ∈ Z (6.20)

where d0 is a positive number. 


While in the analysis of the necessity we have only identified the existence of
a compact set (actually, the graph of a map defined on W ) which is invariant
for (6.19), the new assumption (ii) implies, in its first part, the existence of a
compact set (still the graph of a map defined on W )

A := ω(W × Z)

which is not only invariant but also uniformly attractive of all trajectories of
(6.19) issued from points of W ×Z. The second part of the assumption, in turn,
guarantees that this set is also stable in the sense of Lyapunov (see Lemma
3). In the next assumption we strengthen this property by also requiring the
set A is locally exponentially stable (this assumption is useful to straighten the
subsequent analysis, but is not essential).

Assumption (iii) : there exist M ≥ 1, λ > 0 such that

(w0, z0) ∈ C , |(w0, z0)|A ≤ d0 ⇒ |(w(t), z(t))|A ≤ Me−λt|(w0, z0)|A

in which (w(t), z(t)) denotes the solution of (6.19) passing through (w0, z0) at
time t = 0. 


System (6.16) being affine in the control input u, it seems natural to look for a
controller having a similar structure, namely a controller of the form

ξ̇ = ϕ(ξ) + ψ(ξ)v
u = γ(ξ) + v

(6.21)

with state ξ ∈ R
ν , in which v is a residual control input, to be eventually chosen

as a function of the measured output y. Here ϕ(·), ψ(·) and γ(·) are functions to
be determined.

As a matter of fact, it will be possible to show that, if the triplet {ϕ(ξ), ψ(ξ),
γ(ξ)} possesses what we will define as asymptotic internal model property, the
choice of the residual control v in (6.21) as

v = ky

solves the problem of output regulation, provided that the gain coefficient k is
appropriately chosen.

6.4.2 The Asymptotic Internal Model Property

To simplify the exposition, we address first the special case in which the con-
trolled system (6.16) has relative degree 1, i.e. is modelled by equations of the
form
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ż = f0(w, z) + f1(w, z, e)e
ė = q(w, z, e) + b(w, z, e)u
y = e .

(6.22)

As a matter of fact, as sketched at the end of the section, the case of higher
relative degree can easily be reduced to this one.

We begin by rewriting the zero dynamics of the augmented system (6.3) –
(6.22), given by

ẇ = s(w)
ż = f0(w, z) ,

(6.23)

in the more compact form
ż = f0(z) (6.24)

where z := col(w, z). Moreover, consistently with this notation, we rewrite the
term q(w, z, e) + b(w, z, e)u in (6.22) as

q(w, z, e) + b(w, z, e)u = q0(z)b0(z) + q1(z, e)e + [b0(z) + b1(z, e)e]u

in which

b0(z) = b(w, z, 0) , q0(z) =
q(w, z, 0)
b(w, z, 0)

,

and we denote by Z := W ×Z the compact set where the initial condition z(0) is
supposed to range. Observe also that, by assumption, b0(z) is nowhere zero and
thus it has a well defined sign. In view of this, the overall system (6.3)– (6.22)
is rewritten as

ż = f0(z) + f1(z, e)e
ė = b0(z)[q0(z) + u] + [q1(z, e) + b1(z, e)u]e (6.25)

where f1(z, e) = col(0, f1(w, z, e)) and the initial conditions (z(0), e(0)) range in
the set Z × E.

Controlling this system by means of (6.21) yields a closed-loop system

ż = f0(z) + f1(z, e)e
ė = b0(z)[q0(z) + γ(ξ) + v] + [q1(z, e) + b1(z, e)(γ(ξ) + v)]e
ξ̇ = ϕ(ξ) + ψ(ξ)v

which, regarded as a system with input v and output e, has relative degree 1
and zero dynamics given by

ż = f0(z)
ξ̇ = ϕ(ξ) − ψ(ξ)[γ(ξ) + q0(z)] .

(6.26)

Thus, in view of well-known results, it is reasonable to expect that if the
latter possesses a compact invariant set which attracts all trajectories with initial
conditions in Z × Ξ, a high-gain control (on e) be able to steer this variable to
arbitrary small values. Note that system (6.26) can be viewed as system (6.24),
which by assumption already possesses an invariant set which attracts all initial
conditions in Z, driving a system of the form
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ξ̇ = ϕ(ξ) − ψ(ξ)[γ(ξ) + q0(z)] . (6.27)

Thus, the important thing needed, to guarantee that system (6.26) possesses
a compact invariant set which attracts all trajectories with initial conditions in
Z×Ξ, is to secure that system (6.27) possesses a bounded response to the input
z provided by (6.24). It is here, again, that the notion of steady state turns out
to be useful.

Definition 2. The triplet {ϕ(ξ), ψ(ξ), γ(ξ)} has the asymptotic internal model
property if there exists a C1 map τ : W × R

n−r → R
d such that:

(i) the vector fields f0|A and ϕ are τ-related, namely

∂τ(z)
∂z

f0(z) = ϕ(τ(z)) ∀ z ∈ A , (6.28)

and
q0(z) + γ ◦ τ(z) = 0 ∀ z ∈ A ; (6.29)

(ii)in the composite system

ż = f0(z)
ξ̇ = ϕ(ξ) − ψ(ξ)[γ(ξ) + q0(z)]

(6.30)

the set
graph(τ |A) = {(z, ξ) : z ∈ A, ξ = τ(z)}

uniformly and locally exponentially attracts Z × Ξ.

Remark 2. Note that conditions (6.28) and (6.29) simply express the property
that the restriction to A of the autonomous system with output

ż = f0(z), y = −q0(z) (6.31)

is immersed into the system (see [18, page 406])

ξ̇ = ϕ(ξ), y = γ(ξ) . 
 (6.32)

The conditions indicated in (i) imply the invariance of the compact set graph(τ |A)
under the flow of (6.30). If condition (ii) also holds, the set in question can be
identified with ω(Z×Ξ), the limit set of Z×Ξ under the flow of (6.30), as shown
below in the proof of Theorem 1. In other words, if conditions (i) and (ii) hold,
the set graph(τ |A) is the steady state locus of the composite system (6.26).

We defer to the next section the description of relevant cases in which a
controller which possesses the asymptotic internal model property can be con-
structively designed. Now, we continue the main argument, that is we show why
assumptions (i), (ii), (iii) and the asymptotic internal model property suffice
solve the problem output regulation by means of a controller of the form (6.21).
This is formally stated and proved in the next theorem (see [25]).
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Theorem 1. Pick compact sets Z, E and Ξ for the initial conditions of the
closed-loop system (6.3), (6.22), (6.21). Assume that (i)-(ii)-(iii) hold and that
the triplet {ϕ, ψ, γ} has the asymptotic internal model property. Assume, in ad-
dition, that the vector field ψ(ξ) is complete. Then there exists k� > 0 such that
for all k ≥ k� the controller (6.21) with v = −sign(b0)ke solves the problem of
output regulation.

Proof. The first crucial step to prove the lemma is to show that the trajectories of
(6.26) originating from Z×Ξ are bounded and the resulting ω-limit set ω(Z×Ξ)
is precisely graph(τ |A). To this end note that boundedness of the trajectories
is a consequence of requirement (ii) in the definition of the asymptotic internal
model property. To show that ω(Z×Ξ) = graph(τ |A) note that, by the triangular
structure of (6.26), it turns out that

ω(Z × Ξ) ⊂ C .

Furthermore, by requirement (i) in definition 1, it follows that graph(τ |A) is
an invariant set for (6.26) and thus graph(τ |A) ⊂ ω(Z × Ξ). To prove that
graph(τ |A) ≡ ω(Z × Ξ) we proceed by contradiction. For, suppose that there
exists (z′0, ξ

′
0) ∈ ω(Z × Ξ) such that

|(z′0, ξ′0)|graph(τ |A) = c > 0 (6.33)

and denote by (z′(t), ξ′(t)) the solution of (6.26) at time t passing through (z′0, ξ
′
0)

at time t = 0. As ω(Z × Ξ) is (backward) invariant and compact there exists a
number K1 > 0 such that

|(z′(t), ξ′(t))|graph(τ |A) ≤ K1 for all t ≤ 0 . (6.34)

Now note that by uniform attractiveness in requirement (ii) of definition 1, it
turns out that for all positive K2 ≤ K1 there exists T > 0 such that for all
(z0, ξ0) ∈ Z × Ξ satisfying

|(z0, ξ0)|graph( τ |A) ≤ K1 (6.35)

the trajectory (z(t), ξ(t)) of (6.30) passing through (z0, ξ0) at time t = 0 is such
that

|(z(T ), ξ(T ))|graph( τ |A) ≤ K2 . (6.36)

Moreover local exponential stability in the second requirement of the previous
definition implies the existence of positive d, M , λ such that for all (z0, ξ0)
satisfying

|(z0, ξ0)|graph( τ |A) ≤ d

the trajectory is such that

|(z(t), ξ(t))|graph(τ |A) ≤ Me−λt |(z0, ξ0)|graph( τ |A) .
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Combining the previous two properties with K2 chosen so that K2 ≤ d and T
consequently, it is possible to check that

|(z(0), ξ(0))|graph( τ |A) ≤ K1 ⇒

|(z(t), ξ(t))|graph( τ |A) ≤ M̄e−λt |(z(0), ξ(0))|graph( τ |A)

where M̄ := max{M, K1/e−λT }. From this, choosing T ′ such that M̄e−λT ′
K1 ≤

0.5c and using (6.34), it turns out that

|(z′0, ξ′0)|graph(τ |A) ≤ M̄e−λT ′ |(z′(−T ′), ξ′(−T ′))|graph(τ |A)

≤ M̄e−λT ′
K1 ≤ 0.5c

which contradicts (6.33). This proves that graph(τ |A) ≡ ω(Z × Ξ).
Since the vector field ψ(ξ) is complete, it is possible to replace the set of

coordinates ξ by a set of new coordinates η = F (z, e, ξ), with F (z, e, ξ) such
that

∂F

∂e
[b0(z) + b1(z, e)e] +

∂F

∂ξ
ψ(ξ) = 0 .

Implementing this change of coordinates and setting p := col(z, η), one can
rewrite the resulting system in simplified form as

ṗ = f(p) + �(p, e)
ė = q(p) + r(p, e) + b(p, e)v (6.37)

in which

f(p) =
(

f0(z)
ϕ(η) − ψ(η)[γ(η) + q0(z)]

)

q(p) = b0(z)[γ(η) + q0(z)] b(p, e) = b0(z) + b1(z, e)e

and �(p, e), r(p, e) are suitably defined smooth functions of their arguments such
that �(p, 0) = r(p, 0) = 0 for all p. In particular, from the first part of the proof,
it turns out that the zero dynamics ṗ = f(p) of (6.37) posses an uniformly at-
tractive (locally exponentially) compact invariant set on which q(p) is identically
zero. From this and the choice v = −sign(b0)ke the claim of the Theorem follows
by high-gain arguments such as the ones used in [24] (see Theorems 2 and 3 in
the quoted reference). 


Remark 3. For completeness, we sketch how the case of higher relative degree is
handled. Consider again system (6.16) and replace the variable er by

ẽ := er + gr−1a0e1 + gr−2a1e2 + . . . + gar−2er−1 (6.38)

where g is a positive parameter (to be determined later) and a0, a1, . . . , ar−2 is
any fixed set of coefficients chosen in such a way that the polynomial

λr−1 + ar−2λ
r−2 + . . . + a1λ + a0 = 0
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is Hurwitz. This change of variable transforms system (6.16) into a system of
the form

˙̃z = f̃0(w, z̃) + f̃1(w, z̃, ẽ)ẽ
˙̃e = q̃(w, z̃, ẽ) + b̃(w, z̃, ẽ)u ,

(6.39)

in which z̃ ∈ R
n−1 is defined as

z̃ = col(z, e1, . . . , er−1) ,

and where

f̃0(w, z̃) + f̃1(w, z̃, ẽ)ẽ =

⎛
⎜⎜⎜⎜⎝

f(w, z, e1)
e2
· · ·

er−1
−gr−1a0e1 − gr−2a1e2 − . . . − gar−2er−1 + ẽ

⎞
⎟⎟⎟⎟⎠

and

q̃(w, z̃, ẽ) = q(w, z, e1, . . . , er−1, −gr−1a0e1 − . . . − gar−2er−1 + ẽ)
− gr−1a0e2 − · · · − g2ar−3er−1 − gar−2[−gr−1a0e1 − . . . − gar−2er−1 + ẽ ] .

System (6.39) is in all identical to system (6.22). Standard arguments (see e.g.
[4]) can be invoked to show that, if g is sufficiently large, assumptions (ii) and
(iii) hold. Thus, the problem of output regulation can be solved by means of a
controller of the form (6.21) with v = −sign(b)kẽ. Since ẽ is a linear combination
of the components of the measured output y of (6.16), the result follows. 


Remark 4. If assumption (iii) does not hold, the proposed controller can still
solve the problem of output regulation, but in this case a nonlinear control
v = κ(e) may be needed, where κ(e) is a function which is not necessarily
Lipschitz at the origin (see [24]). 


6.5 Achieving the Asymptotic Internal Model Property

Goal of this section is to present relevant cases, taken from existing literature,
in which a controller satisfying the asymptotic internal model property can be
constructed. Looking at the definition, the property in question is easily seen to
be related to the capability of reproducing, by means of the output γ(ξ) of the
system ξ̇ = ϕ(ξ) − ψ(ξ)(γ(ξ) + q0(z)), the asymptotic behavior of the output
q0(z) of the system ż = f0(z). This, in particular, shows up through the two re-
quirements detailed in the definition: the first which asks for the existence of the
invariant compact set graph(τ |A) for the two systems on which the two outputs
coincide, and the second in which this set is required to be (locally exponen-
tially) attractive for the composite system (6.30). The importance of the first
requirement in the design of regulators was highlighted, in the literature, as early
as in [8] (see also [18, page 406]). If this requirement is met, the regulator is able
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to generate the appropriate steady state control. It is the second requirement,
though, that makes it possible to render that particular steady state attractive.

The problem in question is closely related to the problem of designing nonlin-
ear observers. As a matter of fact it is seen from item (i) of the definition that,
for each z0 ∈ A, the function of time

ξ̂(t) = τ(z(t, z0))

which is defined (and bounded) for all t ∈ R satisfies

dξ̂(t)
dt

= ϕ(ξ̂(t)) (6.40)

and, moreover
γ(ξ̂(t)) = −q0(z(t, z0)) .

In view of the latter, system (6.27) can be rewritten in the form

ξ̇ = ϕ(ξ) + ψ(ξ)[γ(ξ̂) − γ(ξ)] (6.41)

and interpreted as a copy of the dynamics (6.40) of ξ̂ corrected by an “innova-
tion term” [γ(ξ̂)− γ(ξ)] weighted by an “output injection gain” ψ(ξ). This is the
classical structure on an observer and the requirement in item (ii) of the defini-
tion precisely says that the difference ξ(t)− ξ̂(t) (the “observation error”, in our
interpretation) should asymptotically decay to zero (with ultimate exponential
decay).

This interpretation is at the basis of a number of major recent advances in the
design of regulators. In fact, in a number of recent papers, this interpretation has
been pursued and, taking into consideration various approaches to the design of
nonlinear observers, has lead to effective design methods. In the remaining part
of this section, we summarize these results. More specifically, in the next two
subsections we show how the theory of nonlinear high gain observers (see [14])
and, respectively, nonlinear adaptive observers (see [2], [26]) can be successfully
employed in the construction of the triplet {ϕ, ψ, γ}. In doing this we follow
design procedures which have been proposed respectively in [6] and [10]. The
constructions in question rely upon the special technical assumption that the set
of functions of time obtained by letting z0 vary over A in q0(z(t, z0)) is a subset
of the set of solution of a fixed (nonlinear) ordinary differential equation. This
assumption has been weakened in [24], where the theory nonlinear developed
in [1] is used to arrive at a characterization of a triplet {ϕ, ψ, γ} under milder
conditions, as described in the last part of the section.

6.5.1 Gauthier-Kupka’s Internal Model (see [6])

Assume the existence of an integer d > 0, of a locally Lipschitz function f :
R

d → R such that, for any z ∈ A, the solution z(t) of passing through z at time
t = 0 is such that the function ρ(t) := q0(z(t)) satisfies
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ρ(d)(t) = f(ρ(t), ρ(1)(t), . . . , ρ(d−1)(t))

for all t ∈ R.
Let τ ′ : B → R

d be the map defined as

τ ′(z) := col(q0(z), Lf0q0(z), . . . , Ld−1
f0 q0(z)) (6.42)

and let fc : R
d → R be a function with compact support which agrees with f(·)

on τ ′(A), namely

fc|τ ′(A) = f |τ ′(A) and |fc(s)| ≤ K < ∞ for all s ∈ R
d .

Then, it easy to check that the properties indicated in item (i) of the definition
are fulfilled by choosing

ϕ(ξ) =

⎛
⎜⎜⎜⎝

ξ2
...
ξd

fc(ξ1, ξ2, . . . , ξd)

⎞
⎟⎟⎟⎠ , γ(ξ) = ξ1, (6.43)

with τ(z) = τ ′(z). Comparing this construction with the remark after Definition
2 we observe, in particular, that system (6.31) is immersed into a system which
is uniformly observable, in the sense of [14] (even though system (6.31) might not
have had such a property). It is precisely this that makes it possible to choose
ψ(ξ) in such a way that also the property indicated in item (ii) of the definition
can be achieved.

As a matter of fact, the property in question is achieved by choosing

ψ(ξ) = Dk

⎛
⎜⎝

c0
...

cd−1

⎞
⎟⎠

where Dk = diag(k, k2, · · · , kd), k is a design parameter, and the ci’s are such
that the polynomial λd + c0λ

d−1 + · · · + cd−1 = 0 is Hurwitz, as formally proved
in Lemmas 1 and 2 of [6] to which the interested reader is referred for details.

It is worth noting that the assumption in question clearly covers the interesting
(and widely addressed in the recent past literature, see [17]) case in which the
function f(·) is linear, namely the case in which (6.31) is immersed into a linear
observable system. In this case, although the choice indicated above is clearly
still valid, a more direct way of designing the regulator is to use f(·) instead of
fc(·) in the definition of ϕ(ξ), to set ψ(ξ) = G and simply choose G in such a
way that ξ̇ = ϕ(ξ) − Gγ(ξ) is a stable linear system.

6.5.2 Bastin-Gevers’s Internal Model (see [10])

Implicit in the setup of the problem of output regulation is the possibility that
the vector w of exogenous inputs includes a set of uncertain constant parameters.
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The latter can be uncertain parameters in the model of the controlled plant (6.16)
but also uncertain parameters affecting the dynamics of some other exogenous
inputs. In this case, in fact, one can still consider a set (w1, w2) of exogenous
inputs obeying

ẇ1 = s1(w1, w2)
ẇ2 = 0

in which s1(w1, w2) explicitly depends on w2. If this is the case, it is unlikely that
an assumption such as the one introduced at the beginning of the earlier section
is going to be fulfilled, and different scenarios have to be considered. A an obvious
option would be to assume the existence of a function f : R

d × R
q → R and of a

map θ : A → R
q such that, for any z ∈ A, the solution z(t) of passing through

z at time t = 0 is such that the functions ρ(t) := q0(z(t)) and θ(t) := θ(z(t))
satisfy

ρ(d)(t) = f(ρ(t), ρ(1)(t), . . . , ρ(d−1)(t), θ(t)) and θ(1)(t) = 0

for all t ∈ R. In this case, though, while the immersion property (i) is easily
fulfilled (exactly as in the previous case), it becomes quite hard to have property
(ii) fulfilled. In order to make this possible, some extra (stringent) assumptions,
on the function f , must be imposed.

Note that, if the hypothesis indicated above holds, system (6.31) is immersed
into the (d + q) – dimensional system

η̇ =

⎛
⎜⎜⎜⎝

η2
...

ηd

f(η1, η2, . . . , ηd, θ)

⎞
⎟⎟⎟⎠ , y = η1 (6.44)

θ̇ = 0 (6.45)

via the pair of maps
η = τ ′(z), θ = θ(z) ,

in which τ ′(z) is the map defined in (6.42). The assumption that we make now
is that there is a globally defined diffeomorphism η̃ = Φ(η) that changes system
(6.44) into a system in adaptive observability form, in the sense of [26], namely
a system of the form

˙̃η = Aη̃ + φ(Cη̃) + Ω(Cη̃)θ, y = Cη̃ (6.46)

in which A, C is an observable pair, and φ : R → R
d and Ω : R → R

d×q are
smooth functions. Conditions under which this is possible are well-known and
can be found, for instance, in [26]. Note that, if this assumption holds, the map
τ̃ (z) := Φ(τ ′(z)) satisfies

∂τ̃

∂z
f0(z) = Aτ̃ (z) + φ(Cτ̃ (z)) + Ω(Cτ̃ (z))θ(z) , q0(z) = Cτ̃ (z) . (6.47)
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This being said, we define now the triplet {ϕ(ξ), ψ(ξ), γ(ξ)} as follows (see
[10])

ξ = col(ξ1, ξ2, ξ3) with ξ1 ∈ R
d, ξ2 ∈ R

q, ξ3 ∈ R
d−1 × R

q,

ϕ(ξ) =

⎛
⎝Aξ1 + φc(Cξ1) + Ωc(Cξ1)ξ2 − M(ξ3)dzv�(ξ2)

−dzv�(ξ2)
Fξ3 + GΩc(Cξ1)

⎞
⎠ ,

ψ(ξ) =

⎛
⎝H(ξ3, ξ1)

β(ξ3, ξ1)
0

⎞
⎠ , γ(ξ) = Cξ1

(6.48)

in which φc(·) and Ωc(·) denote functions with compact support which agree
with φ(·) and Ω(·) on Cτ̃ (A), F ∈ R

d−1×d−1 and G ∈ R
d−1×d are chosen as

F =

⎛
⎜⎜⎝

−b2 1 · · · 0 0
· · · · · · ·

−bd−1 0 · · · 0 1
−bd 0 · · · 0 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

−b2 1 · · · 0 0 0
· · · · · · · ·

−bd−1 0 · · · 0 1 0
−bd 0 · · · 0 0 1

⎞
⎟⎟⎠ (6.49)

and M(·), β(·, ·), H(·, ·) as

M(ξ3) =
(

0
ξ3

)
,

βT(ξ3, ξ1) = CAM(ξ3) + CΩc(Cξ1) ,

H(ξ3, ξ1) = M(ξ3)β(ξ3, ξ1) + K ,

where the bi’s, i = 2, · · · , d, and K are design parameters. Finally, dzv�(·) is the
vector-valued dead-zone function defined as

dzv�(col(s1, . . . , sd)) = col(dz�(s1), . . . , dz�(sd)) (6.50)

in which dz�(·) is any continuously differentiable function satisfying

dz�(x) =
{

0 if |x| ≤ �
x if |x| ≥ � + 1 .

Lengthy, but not difficult, computations can be used to check that if the
coefficients bi’s are chosen so that the matrix F is Hurwitz and � so that � ≥
maxz∈A |θ(z)|, then the map

τ(z) = col(τ̃ (z), θ(z), σ(z)) where σ(z) =
∫ 0

−∞
e−FsGΩ(Cτ̃ (z(s, z)))ds

(6.51)
is such that graph(τ |A) is invariant for ξ̇ = ϕ(ξ) and q0|A = γ ◦ τ |A and
thus the first requirement in the Definition 2 is fulfilled. Furthermore it can
be proved that, if K is appropriately chosen, graph(τ |A) also uniformly (and
locally exponentially) attracts Z × Ξ under the flow of (6.30), namely that the
triplet (6.48) also fulfills the second requirement of Definition 2. The result in
question is presented in the next proposition, whose proof – which relies upon a
persistence of excitation condition – can be found in [10] .
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Proposition 1. Fix (ϕ(ξ), γ(ξ), ψ(ξ)) as in (6.48) and τ(z) as in (6.51). Set
b = col(1, b2, . . . , bq1) and choose

K = Ab + λb

with λ a design parameter. If for all z0 ∈ A the following implication is true
(persistence of excitation condition)

ςTβ (σ (z(t, z0)) , τ̃ (z(t, z0)) ) = 0 ∀ t ≥ 0 ⇒ ς ≡ 0 ,

then there exists λ� > 0 such that for all λ ≥ λ� the set graph(τ |A) uniformly
(locally exponentially) attracts Z × Ξ under the flow of (6.30).

It is interesting to note that the analysis discussed above covers also the particu-
lar case in which the exosystem state z includes a vector � of constant uncertain
parameters ranging in a compact set P ⊂ R

p and there exists a differentiable
map τ ′ : B → R

d such that8

∂τ ′(z)
∂z

f0(z) = S(�)τ ′(z)
q0(z) = Γ (�)τ ′(z)

(6.52)

in which (S(�), Γ (�)) ∈ R
d×d × R

1×d is an observable pair for all � ∈ P . In fact,
note that, since the pair (S(�), Γ (�)) is observable for all �, standard arguments
can be used to show that there exist a nonsingular matrix M(�) ∈ R

d×d, a
column vector L(�) ∈ R

d×1, and an observable (parameter independent) pair
(A, C) ∈ R

d×d × R
1×d such that

M(�)S(�)M(�)−1 = A + L(�)C
Γ (ρ)M(�)−1 = C .

From this, it turns out that relation (6.47) holds with q = d, φ(s) = 0, Ω(s) =
sId, τ(z) = M(�)τ ′(z) and θ(z) = L(�). This, in particular, shows that general
design procedure leading to chioce of the triplet (ϕ(ξ), γ(ξ), ψ(ξ)) in (6.48) can
be successfully adopted. It is interesting to note, however, that in this particular
case the general procedure detailed above can be simplified to obtain the triplet
fulfilling the asymptotic internal model property in a more direct and effective
way. How this is possible is explained in the following (see [10] for details).

Let (F, G) ⊂ R
d×d × R

1×d be an arbitrary controllable pair with F Hurwitz
and let T (�) denote the unique nonsingular solution of the Sylvester equation

FT (�) − T (�)S(�) = −GΓ (�)

and Ψ(�) the row vector Ψ(�) = Γ (�)T−1(�). By bearing in mind the definition
(6.50), set ξ = col(ξ1, ξ2) with ξ1 ∈ R

d and ξ2 ∈ R
d, and choose the triplet as

8 This scenario is representative of the important case in which q0(z(t)) is the sum of
a finite number of periodic signals of uncertain amplitude, phase and frequency (see
[28]).
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ϕ(ξ) =
(

(F + GξT
2 )ξ1

−dzv� (ξ2)

)
, γ(ξ) = ξT

2 ξ1 , ψ(ξ) =
(

G
ξ1

)
. (6.53)

Simple, though lengthy, algebra can be used to show that if � is chosen so that

� ≥ max
	∈P

|ΨT(�)|

then the first requirement of Definition 1 is satisfied by the triplet (6.53) through
the map

τ(z) =

(
T (�) τ ′(z)

ΨT(�)

)
, (6.54)

in which, as also stressed above, the constant parameters � can be though as
trivial components of z. Moreover also the second requirement of Definition 1
can be shown to be satisfied provided that a persistence of excitation condition,
detailed in the next proposition, is fulfilled. For the proof of this proposition the
interested reader is referred to [10].

Proposition 2. Fix (ϕ(ξ), γ(ξ), ψ(ξ)) as in (6.53) and τ(z) as in (6.54). If there
exist positive T and K such that

∫ t+T

t

τ ′(z(s, z0)) τ ′T(z(s, z0)) ds ≥ KI

for all t ≥ 0 and for all z0 ∈ A, then the set graph(τ |A) uniformly (locally
exponentially) attracts Z × Ξ under the flow of (6.30).

6.5.3 Andrieu-Praly’s Internal Model (see [24])

In this section we follow the theory presented in [24] to show that, in order
to achieve the asymptotic internal model property, assumptions such as those
considered in the previous two subsections, namely the existence of an ordinary
differential equation to be fulfilled by any of the functions ρ(t), are not needed.
As opposite to the frameworks discussed in the previous two subsections, though,
this kind theory only guarantees the existence of a triplet having the internal
model property, while its actual construction may be difficult.

Let (F, G) ∈ R
d×d × R

d×1 be a controllable pair and set

ϕ(ξ) = Fξ + Gγ(ξ), ψ(ξ) = G

with γ : R
d → R a continuous function to be chosen in such a way that the

proposed triplet has the required properties.
With this choice it turns out that the composite system (6.30) assumes the

form
ż = f0(z)
ξ̇ = Fξ − Gq0(z) .

(6.55)

The first step in proving that the triplet in question can be made to satisfy
the asymptotic internal model property is presented in the following proposition
whose only requirement is that the matrix F is Hurwitz.
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Proposition 3. Consider system (6.55) under the assumption (i)-(ii)-(iii) in
Section 6.2. There exists an � > 0 such that if the eigenvalues of F have real
parts lower than −�, then the map

τ(z) =
∫ 0

−∞
e−FsGq0(z(s, z))ds (6.56)

is differentiable, satisfies

∂τ

∂z
f0(z) = Fτ(z) − Gq0(z) ∀ z ∈ A , (6.57)

and it is such that the set graph(τ |A) is locally exponentially stable for (6.55)
with a domain of attraction containing Z × Ξ.

The proof that, if � is large enough, the map (6.56) is differentiable can be found
in [24]. The proof of the other properties is a straightforward consequence of the
arguments presented in remark 2. It is worth stressing that the requirement of
choosing � sufficiently large is only a technical assumption needed to guarantee
differentiability of the function τ (see the proof of Proposition 2 in [24]). In this
sense the assumption in question must be not confused with any “high gain”
requirement on the choice of F . Note, moreover, that the function γ and the
dimension d of the pair (F, G) do not play any role in establishing this result.

As such, the previous result only guarantees the fulfillment of the require-
ment (ii) in definition 1, namely the existence of the exponentially stable set
graph(τ |A) for system (6.30) but it says nothing regarding requirement (i). In
this respect it is easy to realize that also requirement (i) is fulfilled if a function
γ can be found that renders (6.29) satisfied. As a matter of fact, bearing in mind
that ϕ(ξ) = Fξ + Gγ(ξ), (6.28) reads as

∂τ

∂z
f0(z) = Fz − Gγ ◦ τ(z) ∀ z ∈ A

which, if (6.29) holds, reduces to (6.57). This, together with Proposition 3, shows
that a triplet having the asymptotic internal model property can be found if a
function γ(·) exists which satisfies (6.29). It is here that the dimension d of the
pair (F, G) plays a role, as formalized in the next proposition whose proof can
be found in [24].

Proposition 4. Suppose

d ≥ 2(s + n − r) + 2 .

Then for almost all 9 choices of a controllable pair (F, G), with F satisfying the
condition indicated in Proposition 3, the map (6.56) satisfies

τ(z1) = τ(z2) ⇒ q0(z1) = q0(z2) .

As a consequence there exist a continuous map γ : τ(A) → R fulfilling (6.29).
9 See [24] for details.
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Remark 5. The map τ(·) in (6.56) is defined only on A, but is not difficult to
extend it to a C1 map defined on the whole set W ×R

n−r, as shown in [24]. Also
the map γ(·) that makes (6.29) true can be extended to the whole R

d, but this
extension is only known to be continuous. The problem of determining when a
C1 extension exists is under current investigation. 
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7.1 Introduction and Problem Statement

Modeling and monitoring processes are clearly part of an overall control problem,
as well as they can be considered by themselves, and each of them can be seen
from an observer viewpoint: for the first one indeed, whenever the model struc-
ture is given, the problem amounts to that of estimating the model parameters.
Even if this problem has been widely studied in the framework of identification
[15, 13, ...], it can be recast in an observer formulation, by simply considering un-
known parameters as constant state variables. For the second one, it has clearly
also been very widely studied, in the community of fault detection and diagno-
sis [20, 7, ...]. But one can also use an observer to detect possible faults, for
instance by comparing an observer output to the corresponding measured one.
When taking into account possible faults through parameter changes in a model,
fault detection (and isolation) can even be solved via parameter estimation.

For those reasons, the present chapter is dedicated to the observer problem in
the presence of unknown parameters. In front of this one can clearly extend the
state vector by including the unknown parameters in it, and thus be brought to
an observer problem for an extended system. For such an approach the reader
is referred to the other chapters of the present book discussing various possible
observer techniques (see for instance the overview of chapter 1). An alternative
approach is to rely on some possible observer design for the system assuming
known parameters, and try to find some appropriate adaptation law for the
unknown parameters so as to keep the observer convergence in the presence of
those unknown parameters: this makes the observer a so-called adaptive observer.
When the state vector can be estimated in this way, this actually corresponds to
some robust design (w.r.t. parameter uncertainties) - but will be called adaptive
state observer in the sequel (following the adaptive terminology), while when
the parameter can be further estimated or the state vector can be reconstructed
only together with the parameters, we actually solve a joint parameter and state
estimation problem.

The present chapter will discuss some results on such adaptive observers for
nonlinear systems. Section 7.2 will first briefly restate problems of parameter
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estimation or fault detection, while section 7.3 will present appropriate forms
for adaptive observers together with some possible corresponding designs.

Notice that the results here reported follow various previous works on this
topic and with various co-workers (see [3, 26, 6, 4, 1] for instance).

7.2 Fault Diagnosis and Parameter Estimation

7.2.1 Fault Diagnosis

In this section, the problem of fault diagnosis is very briefly recalled, focusing
on observer-based approaches, on the basis of [11]. This means that we here rely
on some analytical model.

In a quite general approach, one can assume in that respect that the process
to be monitored can be described by a state-space representation of the following
form:

ẋ(t) = f(x(t), u(t), d(t), f(t))
y(t) = h(x(t), u(t), d(t), f(t)) (7.1)

where x ∈ IRn is the state vector, y ∈ IRp is the measurement vector, u ∈ IRm is
the known input vector, while d ∈ IRν denotes a vector of unknown disturbance
inputs, and f ∈ IRq the vector of possible faults.

The problem of fault diagnosis is then that of detecting and isolating faults
affecting the process, from the knowledge of model (7.1) together with input u,
and the measurements of y.

Various approaches have been studied in this context, considering more or less
specific functions f and h, and which can roughly be divided into ’parity space’
methods on the one hand, and ’observer-based’ methods on the other hand. Here
we will just recall some features of the second ones (some relationships between
both can actually be found [9]).

In such an approach, the basic idea is to use the output error between the mea-
sured output and the observer output as a detector for fault occurrences: after
the transient due to initial conditions indeed, such a quantity should vanish in
the absence of any fault, while it might be driven away from zero in the presence
of some fault. Such an indicator is called a ’residual’, and thus the fault detection
problem amounts to a problem of residual generator (Fundamental Problem of
Residual Generation FPRG [19]). In the case of multi-outputs systems or various
fault models, one can use benches of observers to detect and isolate faults, by
trying to design observers structurally insensitive to some faults and sensitive to
other ones.

Notice that such an approach usually requires an additional stage for an actual
decision, aiming at determining whether a residual significantly differs from zero
and where the faults are most likely located, which will not be discussed here.

About the FPRG, it can be stated in a general form as follows:
For each fault f , find an auxiliary system :

ż = ϕ(z, y, u)
r = ψ(z, y, u)
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such that r in short is affected by f , not affected by d, and asymptotically decays
to zero when f is identically zero.

If one can find a transformation of the original system so as to get a subsystem
which is only affected by f , the FPRG amounts to an observer problem for this
new representation.

A weaker formulation of the FPRG is that r must be more affected by f
than by d, and some ’observer-based’ residual generator can be obtained in some
cases that attenuates the effect of disturbances and not that of faults (see e.g.
[21, 22, 2]).

In a case of a subsystem not affected by disturbances (or when ignoring distur-
bances) the possible faults can also be detected by direct estimation: considering
some a priori given fault models, this boils down to a problem of parameter es-
timation. Few words are added in that respect in next subsection.

7.2.2 Parameter Estimation

A possible approach to fault detection is to rely on parameter estimation al-
gorithms, which is possible whenever faults can be modeled through parameter
changes.

The problem here can be described on the basis of a state-space representation
of the following form:

ẋ(t) = f(θ, x(t), u(t), t)
y(t) = h(x(t)) (7.2)

with x(t) ∈ IRn the state vector, y(t) ∈ IRp, the measurement vector, u(t) ∈ IRm,
the known input vector, and θ ∈ IRq a vector of unknown variables as-
sumed to be constant (which can stand for unknown model parameters or fault
parameters).

Beyond all the methodologies developed within the identification community,
a direct observer approach can be described as follows:

Consider the extended state vector X :=
(

x
θ

)
and the resulting extended

representation:
Ẋ(t)=F (X(t), u(t), t)
y(t)=H(X(t))

(7.3)

with θ̇ = 0.
Then try to design an observer for this system relying on available techniques

for nonlinear systems.
Notice that this approach does not specifically take advantage of θ being

constant. Moreover, it might ’destroy’ some appropriate structure of the original
system (7.2) for observer design: for instance in the simple case of a linear time-
invariant system including unknown parameters in its state space representation,
the system is turned into a nonlinear one when following the above procedure.

An adaptive approach instead is based on a possible design for the original
system, modified by an appropriate adaptation law.
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As an example, consider the system of the following form:

ẋ1(t) = x2(t) + θu(t)
ẋ2(t) = 2θu(t)
y(t) = x1(t)

(7.4)

This system is of the (linear) form: ẋ(t) = Ax(t) + Bθu(t), y(t) = Cx(t) and it
is clearly observable whenever θ is known.

From this, if θ was known, an observer could be classically designed as: ˙̂x(t) =
Ax̂(t) + Bθu(t) − K(Cx̂(t) − y(t)).

When θ is unknown, we have to use an estimate θ̂ and find an adaptation law
for this estimate so that the observer still works.

With K = (3 2)T and ˙̂
θ = −ku(Cx̂− y), k > 0 it can here be shown that for

bounded inputs, ‖x̂(t) − x(t)‖ → 0. Moreover, one can further characterize u(t)
so that we also have |θ̂(t) − θ| → 0 (see definition 2 and proposition 2 below).

This example yields the following remarks:

• The resulting adaptive scheme is indeed an observer achieving state estima-
tion. A specificity is that under additional conditions on the input, it can
further achieve parameter estimation;

• The extended system here is also of a specific form (state affine) for which
an observer could have been designed, with on-line computation of a time-
varying gain (Kalman-like design);

• The gain (KT , ku)T in the above ’adaptive’ design is explicitly obtained
off-line;

• System (7.4) actually admits a particular (passivity) property between input
θ and output y (see definition 1 below).

Hence this example shows how in some cases, appropriate properties allow to
get an observer for state and parameter estimation. This is further discussed in
next section.

7.3 Adaptive Observers

Let us consider here again systems described by a state-space representation of
the form (7.2).

The observer problem which can be then discussed is that of obtaining an
estimate of x(t) from known y(t), u(t), f, h in spite of unknown θ, or estimating
both x(t) and θ from known y(t), u(t), f, h.

Although this can be seen as a problem of robust observer design, it is usually
referred to as an adaptive observer problem.

In order to be more precise w.r.t. the two possible ’versions’ of the problem
previously mentioned, we can use here two terminologies: adaptive state observer
for the first one, and joint state and parameter observer for the second one.

As already highlighted in example (7.4), it will be seen that adaptive state
estimation is possible under some ’passivity-like’ condition w.r.t. parameters as
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inputs - as this commonly happens in adaptive systems [12, 14, 23], while pa-
rameter estimation additionally requires some ’persistent excitation’ condition,
as usual in identification problems.

Let us thus here recall the formal statement of those notions:

Definition 1 (Passivity). [10]
A system ξ̇ = f(ξ, u), y = h(ξ, u) is strictly state passive [10] in short if there ex-
ists a storage function (positive semi-definite) V together with a positive definite
function γ such that:

uT y ≥ ∂V

∂x
f(x, u) + γ(x).

Definition 2 (Persistent Excitation). [23]
A signal g : IR+ → IRr (or even IRr×ρ) satisfies the property of persistent
excitation if there exist T, k1, k2 > 0 such that for all t ≥ 0:

k1Ir ≥
∫ t+T

t

g(τ)gT (τ)dτ ≥ k2Ir (7.5)

Notice that when considering bounded signals g, the upper bound in (7.5) can
be omitted.

Notice also that this corresponds to the fact that system:

θ̇ = 0
y = gT (t)θ

satisfies a uniform complete observability property (see chapter 1).
When considering simultaneous state and parameter estimation, the persistent

excitation condition comes at first, together with an appropriate structure for a
possible observer design.

Obviously adaptive state observers can be recast in a framework of joint state
and parameter estimation problem, but in order to emphasize possible cases
when state and parameter estimation problems can be somehow decoupled, we
will first focus on adaptive state observers and then on observers for joint state
and parameter estimation.

7.3.1 Adaptive State Estimation

Most of available adaptive observers, in the sense of state observers have been
proposed for systems which are linear in the unknown parameter vector θ. Let
us thus consider systems of the following form:

ẋ(t) = f(y(t), z(t), v(t)) + g(y(t), z(t), v(t))θ
y(t) =

(
Ip 0

)
x(t) with (7.6)

with x(t)=
(

y(t)
z(t)

)
∈IRn, y(t)∈IRp, v(t)∈IRm, θ∈IRq.
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In the adaptive observer approach the idea is to rely on some possible observer
design when all parameters are known: so let us assume that there exists an
observer giving an estimate x̂θ for x when θ is known, together with a Lyapunov
function V for the dynamics of the observation error in x̂θ −x (see e.g. appendix
of chapter 1 for a brief recall on Lyapunov results).

Then most of the available results on adaptive observers can be summarized
by the following formulation [1]:

Proposition 1. Consider a system (7.6) with an observer giving an estimate x̂θ

for x when θ is known, together with a Lyapunov function V for x̂θ − x. Then
we have:

(I) If:
∂V

∂e
g(y, σ, v) = ϕ([Ip 0]e, y, σ, v)

for some function ϕ,
with g globally bounded and f, g globally Lipschitz w.r.t. z, uniformly w.r.t.
(u, y, t)

then limt→∞‖x̂θ̂(t) − x(t)‖ = 0 when ˙̂
θ = −ΛϕT (ŷ − y, y, ẑ, v), Λ > 0.

(II) If moreover g is persistently exciting and ġ is bounded then we also have
limt→∞‖θ̂(t) − θ‖ = 0.

This can be established by considering a modified Lyapunov function V +εT Λ−1ε
with ε := θ̂ − θ together with a convergence property resulting from persistent
excitation condition (II) [1].

Notice that such conditions are typically satisfied in results of [16, 17, 8]:
in those works indeed, f(y, z, v) = Ax + B(y, v) or even Ax + B(y, z, v), while
g(y, z, v) = Gψ(y, v) or even Gψ(y, z, v), with in both cases appropriate condi-
tions for the existence of a Lyapunov function for the observation error e of the
form V (e) = eT Pe such that PG = CT , which indeed guarantees condition (I).
This is what happens for system (7.4) as well.

Notice also that condition (I) can be interpreted as a passivity-like condition
as follows:

In view of definition 1, condition (I) can be replaced by the condition that the
error system obtained with the observer and disturbed by a parameter error is
strictly state passive for this parameter error as an input and some appropriate
output function only depending on the measured output error and measured
further signals (y, ẑ, u, t ).

On the other hand, condition (II) stands for some classical condition of ’per-
sistent excitation’.

As a re-interpretation of proposition 1, it can be added that systems for which
an adaptive state observer can be designed can actually be written under a
specific form underlining this possible design. This specific form can be expressed
as follows [1]:

Definition 3. A system of the form:

ẏ = α(y, ζ, v) + β(y, ζ, v)θ;
ζ̇ = Z(y, ζ, v)

(7.7)
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with y ∈ IRp, ζ ∈ IRr, u ∈ IRm, θ ∈ IRq

is said to be in nonlinear adaptive observer form if:

1. y is the measured output;

2. There exists a proper decresent positive-definite C1 function V (t, e), such
that for any initial condition for system (7.7), any admissible input u, any
corresponding output solution of (7.7) y(t), any z, e ∈ IRr, and any t ≥ 0,
one has:

∂V

∂t
(t, e) +

∂V

∂e
(Z(y(t), e + z, v(t)) − Z(y(t), z, v(t))) ≤ −κ(e),

for some κ positive-definite;
3. For the same conditions as in the above item, and with x(t) denoting the

corresponding state solution of (7.7), one has:

(i) ‖α(y(t), e + z, v(t)) − α(y(t), z, v(t))‖ ≤ γα

√
κ(e); γα > 0

‖β(y(t), e + z, v(t)) − β(y(t), z, v(t))‖ ≤ γβ

√
κ(e); γβ > 0

(ii) ‖β(y(t), ζ(t), v(t))‖ ≤ b; b > 0.

The terminology of ’adaptive observer form’ is borrowed from [18], and is here
motivated by the fact that structure (7.7) clearly guarantees a possible adaptive
state observer design. Adding a condition of ’persistent excitation’ further yields
asymptotic estimation of θ. This is summarized as follows [1]:

Proposition 2. Given a system (7.7), then

˙̂y = α(y, ζ̂, v) + β(y, ζ̂, v)θ̂ − ky(ŷ − y); ky > 0
˙̂
ζ = Z(y, ζ̂, v)
˙̂
θ = −kθβ

T (y, ζ̂, v)(ŷ − y)T ; kθ > 0

is an adaptive state observer in the sense that ‖ŷ(t) − y(t)‖, ‖ζ̂(t) − ζ(t)‖ go to
zero as t goes to infinity.

Furthermore if β is persistently exciting and β̇ is bounded

then ‖θ̂(t) − θ‖ also decays to zero.

Structure (7.7) is also some kind of a canonical form for adaptive observer design,
since it can be checked that systems of proposition 1 with a quadratic Lyapunov
function for the observer error system can be turned into (7.7) by a simple change
of coordinates [1].

In the simple example of system (7.4), it can easily be checked that z1 =
x1, z2 = x2 − 2x1 turn the system into the form (7.7): in this case, β = u and
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thus the additional condition so as to get parameter estimation is that u should
be bounded, as well as u̇, and satisfy the persistent excitation condition.

More generally, it is clear now that for systems which can be turned into
the form (7.7) by change of coordinates, the state can be estimated in spite of
unknown parameters. It is also clear how those parameters can further be esti-
mated too under appropriate excitation condition, yielding simultaneous state
and parameter estimation. This can be recast in a more general way including
recent results on adaptive observers for linear time-varying systems of [24] and
subsequent developments.

7.3.2 Joint State and Parameter Estimation

In the previous subsection a specific form allowing adaptive observer design has
been pointed out, and as long as this form can be obtained by change of state
coordinates, it allows for adaptive state estimation.

Now by further considering changes of variables also possibly depending on
unknown parameters, one can end up with a more general form allowing for
adaptive observer design simultaneously estimating state and parameter vectors
(which is actually required so as to be able to get estimates for the original state
variables). Generalizing the approach sketched in [25], this can be expressed as
follows:

Proposition 3. Considering a system of the form (7.6), if it can be turned by a
change of coordinates possibly depending on time and parameters z = Φ(x, θ, t) -
with x = Ψ(z, θ, t) bounded w.r.t. t - into the following form:

ż = Z(z, y, u, t)
y = H(z, u, t) + D(z, u, t)θ, y ∈ IRp, z ∈ IRn, u ∈ IRm, θ ∈ IRq (7.8)

such that:
[i] There exists a proper decrescent positive-definite C1 function V (t, e), such that
for any initial condition for system (7.8), any admissible input u, any z, e ∈ IRn,
y ∈ IRp, and any t ≥ 0, one has:

∂V

∂t
(t, e) +

∂V

∂e
[Z(e + z, y, u(t), t) − Z(z, y, u(t), t)] ≤ −γ(e) (7.9)

[ii] For any admissible input u and corresponding trajectories z(t), D is per-
sistently exciting, and uniformly bounded by some d, with ‖D(e + z, u(t), t) −
D(z, u(t), t)‖ ≤ γD

√
γ(e) and ‖H(e + z, u(t), t) − H(z, u(t), t)‖ ≤ γH

√
γ(e) for

any e, z and some γD, γH > 0, then an adaptive observer for simultaneous esti-
mation of state x and parameter θ can be designed as:

˙̂z = Z(ẑ, y, u, t)
˙̂
θ = −λDT (ẑ, u, t)(D(ẑ, u, t)θ̂ + H(ẑ, u, t) − y), λ > 0
x̂ = Ψ(ẑ, θ̂, t)

(7.10)



Parameter/Fault Estimation in Nonlinear Systems 219

This clearly follows from the structure of the error equations ez := ẑ − z, eθ =
θ̂ − θ:

ėz = Z(ez + z, y, u, t) − Z(z, y, u, t)
ėθ = −λDT (ẑ, u, t)D(ẑ, u, t)eθ + Δ(z, ẑ, u, t)

where Δ depends on errors D(ẑ, u, t)−D(z, u, t) and H(ẑ, u, t)−H(z, u, t). From
this indeed, ez vanishes, and thus so does Δ, while 0 is a globally exponentially
stable equilibrium of the undisturbed equation in eθ (obtained for Δ = 0) from
persistency of D(ẑ, u, t) (which results from that of D(z, u, t), since D(ẑ, u, t) −
D(z, u, t) is clearly L2).

The proof can be formally established by considering P such that:

Ṗ + PDT (ẑ, u, t)D(ẑ, u, t) + DT (ẑ, u, t)D(ẑ, u, t)P = −I,

and V (t, ez) + εeT
θ Peθ as a Lyapunov function for the overall error equation,

with ε small enough.
Notice that the previously considered adaptive observer form (7.7) can clearly

be turned into (7.8) by a simple transformation: z1 := y − Γθ with Γ such that
Γ̇ = −kΓ + β(y, ζ, v) for any k > 0. Clearly indeed, this yields:

ż1 = −kz1 + α + ky

while the equation in ζ remains unchanged, and y = z1 + Γθ.
It can also easily be checked that conditions allowing an adaptive observer

design for linear systems proposed in [24] ensure at the same time a possible
transformation into a form (7.8) (such a transformation being actually instru-
mental in the proof). Those conditions indeed can be summarized as follows:
considering a system described by

ẋ(t) = A(t)x(t) + B(t)u(t) + Ψ(t)θ
y(t) = C(t)x(t)

one basically needs the existence of a matrix K(t) such that:

(a) ξ = 0 is an exponentially stable equilibrium of ξ̇(t) = [A(t) − K(t)C(t)]ξ(t);
(b)The solution of: Γ̇ (t) = [A(t) − K(t)C(t)]Γ (t) + Ψ(t) is such that CΓ (t)

satisfies the condition of persistent excitation.

From this, the simple change of coordinates z = x − Γθ yields:

ż(t) = [A(t) − K(t)C(t)]z(t) + K(t)y(t); y(t) = C(t)z(t) + C(t)Γ (t)θ

which satisfies conditions of proposition 3.
Notice finally that a specificity of structure (7.8) is that only y depends on θ

and in a linear way.
However, by following the same idea of parameter/time-dependent change of

coordinates, adaptive observers have also been obtained for classes of nonlinear
systems whose nominal structures (with known parameters) admit an observer,
but for which the parameter-linear form (7.8) cannot be obtained. This is for
instance the case of systems admitting high gain observer designs [5]:
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Proposition 4. Let us consider a system of the form:

ẋ(t) = A0x(t) + ϕ(x(t), u(t)) + ψ(x(t), u(t))θ
y(t) = C0x(t) (7.11)

with x ∈ IRn, u ∈ IRm, y ∈ IR, θ ∈ IRq.
Let us assume that:
[A1] A0, C0, ϕ, ψ satisfy:

A0 =

⎛
⎜⎜⎜⎝

0 1 0
. . .

1
0 0

⎞
⎟⎟⎟⎠ ,

C0 =
(
1 0 · · · 0

)
and

ϕ(x, u) =

⎛
⎜⎜⎜⎝

ϕ1(x1, u)
ϕ2(x1, x2, u)

...
ϕn(x, u)

⎞
⎟⎟⎟⎠ ; ψ(x, u) =

⎛
⎜⎜⎜⎝

0 · · · 0
...

...
0 · · · 0

ψn1(x, u) · · · ψnq(x, u)

⎞
⎟⎟⎟⎠

[A2] ϕ, ψ are smooth functions w.r.t. their arguments, and u is bounded gener-
ating bounded states ‖x(t)‖ ≤ X while ‖θ‖ ≤ Θ.

[A3] Given K0 such that A0 − K0C0 is stable, inputs u are such that the state
vector satisfies the following property:

for any x(0), and any Γ (0) ∈ IRn×q, the solution Γ (t) of:

Γ̇ (t) = λ(A0 − K0C0)Γ (t) + λψ(x(t), u(t)) (7.12)

is such that for some t0 ≥ 0:

∃α, T independent of λ : ∀t ≥ t0,
and for λ large enough,∫ t+T

t Γ (τ)T CT
0 C0Γ (τ)dτ ≥ αI

(7.13)

Then for λ large enough, the system below is an asymptotic observer for (7.11),
in the sense that for any initial condition x(0) and any θ̂(0), x̂(0) respectively
bounded by Θ and X, ‖x̂(t) − x(t)‖ and ‖θ̂(t) − θ‖ exponentially go to zero:

˙̂
Γ (t) =λ(A0 − K0C0)Γ̂ (t) + λψ(x̃(t), u(t))
˙̂x(t) =A0x̂(t) + ϕ(x̃(t), u(t)) + ψ(x̃(t), u(t))θ̃(t)

+Λ(λ)−1[λK0 + Γ̂ (t)Γ̂ T (t)CT
0 ][y(t) − C0x̂(t)]

˙̂
θ(t) =λnΓ̂ (t)T CT

0 [y(t) − C0x̂(t)]
x̃ = x̂ if ‖x̂‖ ≤ X, x̂

‖x̂‖X otherwise,

θ̃ = θ̂ if ‖θ̂‖ ≤ Θ, θ̂

‖θ̂‖Θ otherwise.

(7.14)
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where Λ(λ) is a diagonal matrix whose entry i is given by λi−1 (as in high gain
observers).

Typically here, assumptions A1 and A2 mean that the nominal system admits a
possible high gain observer design, while assumption A3 is roughly met whenever
ψ(x(t), u(t)) satisfies the persistent excitation condition.

7.4 Conclusions

In this chapter, a brief overview on possible adaptive observer designs has been
given. Such designs are obviously of interest for state estimation in spite of
unknown parameters, but also for parameter identification in continuous-time,
process monitoring (and fault detection), as well as adaptive control for instance.
They allow to take advantage of some appropriate structure for observer design
of the ’nominal system’. But it can happen that the adaptive approach yields
very similar result to that of ’state extension’, as this has been shown for the
case of state affine systems [3]. On the other hand, considering that adaptive
designs anyway correspond in the end to observers for extended systems (with
an extended state vector including unknown parameters) can be of interest for
new nonlinear observer designs, for instance as proposed in [4].
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naert from the ’Université Libre de Bruxelles’ for his overview on nonlinear
observer-based fault detection, as well as Dr Q. Zhang from INRIA-IRISA for
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