
P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 91–103, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Incremental Fuzzy Decision Tree Classification
Method for Mining Data Streams∗

Tao Wang1, Zhoujun Li2, Yuejin Yan1, and Huowang Chen1

1 Computer School, National University of Defense Technology, Changsha, 410073, China
2 School of Computer Science & Engineering, Beihang University, Beijing, 100083, China

InsistStar@nudt.edu.cn

Abstract. One of most important algorithms for mining data streams is VFDT. It
uses Hoeffding inequality to achieve a probabilistic bound on the accuracy of the
tree constructed. Gama et al. have extended VFDT in two directions. Their
system VFDTc can deal with continuous data and use more powerful
classification techniques at tree leaves. In this paper, we revisit this problem and
implemented a system fVFDT on top of VFDT and VFDTc. We make the
following four contributions: 1) we present a threaded binary search trees
(TBST) approach for efficiently handling continuous attributes. It builds a
threaded binary search tree, and its processing time for values inserting is
O(nlogn), while VFDT`s processing time is O(n2). When a new example arrives,
VFDTc need update O(logn) attribute tree nodes, but fVFDT just need update
one necessary node.2) we improve the method of getting the best split-test point
of a given continuous attribute. Comparing to the method used in VFDTc, it
improves from O(nlogn) to O (n) in processing time. 3) Comparing to VFDTc,
fVFDT`s candidate split-test number decrease from O(n) to O(logn).4)Improve
the soft discretization method to be used in data streams mining, it overcomes the
problem of noise data and improve the classification accuracy.

Keywords: Data Streams, Incremental, Fuzzy, Continuous Attribute, Threaded
Binary Search Tree.

1 Introduction

Decision trees are one of the most used classification techniques for data mining. Tree
models have high degree of interpretability. Global and complex decisions can be
approximated by a series of simpler and local decisions. Algorithms that construct
decision trees from data usually use a divide and conquer strategy. A complex problem
is divided into simpler problems and recursively the same strategy is applied to the
sub-problems. The solutions of sub-problems are combined in the form of a tree to
yield the solution of the complex problem [3, 20, 22].

∗ This work was supported by the National Science Foundation of China under Grants No.

60573057, 60473057 and 90604007.

92 T. Wang et al.

More recently, the data mining community has focused on a new model of data
processing, in which data arrives in the form of continuous streams [1, 3, 9, 11, 12,
16, 28, 29]. The key issue in mining on data streams is that only one pass is allowed
over the entire data. Moreover, there is a real-time constraint, i.e. the processing time is
limited by the rate of arrival of instances in the data stream, and the memory and disk
available to store any summary information may be bounded. For most data mining
problems, a one-pass algorithm cannot be very accurate. The existing algorithms
typically achieve either a deterministic bound on the accuracy or a probabilistic bound
[21, 23].

Domingos and Hulten [2, 6] have addressed the problem of decision tree
construction on data streams. Their algorithm guarantees a probabilistic bound on the
accuracy of the decision tree that is constructed. Gama et al. [5] have extended VFDT
in two directions: the ability to deal with continuous data and the use of more powerful
classification techniques at tree leaves.

Peng et al.[30]propose the soft discretization method in traditional data mining
field,it solve the problem of noise data and improve the classification accuracy.

The rest of the paper is organized as follows. Section 2 describes the related works
that is the basis for this paper. Section 3 presents the technical details of fVFDT. The
system has been implemented and evaluated, and experimental evaluation is done in
Section 4. Last section concludes the paper, resuming the main contributions of this
work.

2 Related Work

In this section we analyze the related works that our fVFDT bases on.
Decision trees support continuous attributes by allowing internal nodes to contain

tests of the form Ai≤ T (the value of attribute i is less than threshold T). Traditional
induction algorithms learn decision trees with such tests in the following manner. For
each continuous attribute, they construct a set of candidate tests by sorting the values of
that attribute in the training set and using a threshold midway between each adjacent
pair of values that come from training examples with different class labels to get the
best split-test point.

There are several reasons why this standard method is not appropriate when learning
from data streams. The most serious of these is that it requires that the entire training set
be available ahead of time so that split thresholds can be determined.

2.1 VFDT

VFDT(Very Fast Decision Tree) system[2], which is able to learn from abundant data
within practical time and memory constraints. In VFDT a decision tree is learned by
recursively replacing leaves with decision nodes. Each leaf stores the sufficient
statistics about attribute-values. The sufficient statistics are those needed by a heuristic
evaluation function that evaluates the merit of split-tests based on attribute-values.
When an example is available, it traverses the tree from the root to a leaf, evaluating the

 An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams 93

appropriate attribute at each node, and following the branch corresponding to the
attribute's value in the example. When the example reaches a leaf, the sufficient
statistics are updated. Then, each possible condition based on attribute-values is
evaluated. If there is enough statistical support in favor of one test over the others, the
leaf is changed to a decision node. The new decision node will have as many
descendant leaves as the number of possible values for the chosen attribute (therefore
this tree is not necessarily binary). The decision nodes only maintain the information
about the split-test installed in this node. The initial state of the tree consists of a single
leaf: the root of the tree. The heuristic evaluation function is the Information Gain
(denoted by G(﹒). The sufficient statistics for estimating the merit of a discrete
attribute are the counts nijk, representing the number of examples of class k that reach
the leaf, where the attribute j takes the value i. The Information Gain measures the
amount of information that is necessary to classify an example that reach the node:
G(Aj)=info(examples)-info(Aj). The information of the attribute j is given by:

inf () (log())j i ik iki k
o A P P P= −∑ ∑

where ik ijk ajka
P n n= ∑ , is the probability of observing the value of the attribute i

given class k and i ija ajba a b
P n n=∑ ∑ ∑ is the probabilities of observing the

value of attribute i.

As mentioned in Catlett and others [23], that it may be sufficient to use a small
sample of the available examples when choosing the split attribute at any given node.
To determine the number of examples needed for each decision, VFDT uses a statistical
result known as Hoeffding bounds or additive Chernoff bounds. After n independent
observations of a real-valued random variable r with range R, the Hoeffding bound
ensures that, with confidence 1-δ, the true mean of r is at least r ε− , where r is the

observed mean of samples and
2 ln (1 /)

2

R

n

δε = . This is true irrespective of the

probability distribution that generated the observations.

Let G(﹒) be the evaluation function of an attribute. For the information gain, the
range R, of G(﹒) is log2 #classes. Let xa be the attribute with the highest G(﹒), xb the
attribute with second-highest G(﹒) and () ()a bG G x G xΔ = − , the difference
between the two better attributes. Then if G εΔ > with n examples observed in the
leaf, the Hoeffding bound states with probability 1-δ that xa is really the attribute with
highest value in the evaluation function. In this case the leaf must be transformed into a
decision node that splits on xa.

For continuous attribute, whenever VFDT starts a new leaf, it collects up to M
distinct values for each continuous attribute from the first examples that arrive at it.
These are maintained in sorted order as they arrive, and a candidate test threshold is
maintained midway between adjacent values with different classes, as in the traditional
method. Once VFDT has M values for an attribute, it stops adding new candidate

94 T. Wang et al.

thresholds and uses additional data only to evaluate the existing ones. Every leaf uses a
different value of M, based on its level in the tree and the amount of RAM available
when it is started. For example, M can be very large when choosing the split for the root
of the tree, but must be very small once there is a large partially induced tree, and many
leaves are competing for limited memory resources. Notice that even when M is very
large (and especially when it is small) VFDT may miss the locally optimal split point.
This is not a serious problem here for two reasons. First, if data is an independent,
identically distributed sample, VFDT should end up with a value near (or an empirical
gain close to) the correct one simply by chance. And second, VFDT will be learning
very large trees from massive data streams and can correct early mistakes later in the
learning process by adding additional splits to the tree.

Thinking of each continuous attribute, we will find that the processing time for the
insertion of new examples is O (n2), where n represents the number of distinct
values for the attribute seen so far.

2.2 VFDTc

VFDTc is implemented on top of VFDT, and it extends VFDT in two directions: the
ability to deal with continuous attributes and the use of more powerful classification
techniques at tree leaves. Here, we just focus on the handling of continuous attributes.

In VFDTc a decision node that contains a split-test based on a continuous attribute
has two descendant branches. The split-test is a condition of the form attribj≤ T. The
two descendant branches correspond to the values TRUE and FALSE for the split-test.
The cut point is chosen from all the possible observed values for that attribute. In order
to evaluate the goodness of a split, it needs to compute the class distribution of the
examples at which the attribute-value is less than or greater than the cut point. The
counts nijk are fundamental for computing all necessary statistics. They are kept with
the use of the following data structure: In each leaf of the decision tree it maintains a
vector of the classes’ distribution of the examples that reach this leaf. For each
continuous attribute j, the system maintains a binary attribute tree structure. A node in
the binary tree is identified with a value i(that is the value of the attribute j seen in an
example), and two vectors (of dimension k) used to count the values that go through
that node. Two vectors, VE and VH contain the counts of values respectively

i≤ and i> for the examples labeled with class k. When an example reaches leaf, all
the binary trees are updated. In [5], an algorithm of inserting a value in the binary tree is
presented. Insertion of a new value in this structure is O(nlogn) where n represents the
number of distinct values for the attribute seen so far.

To obtain the Information Gain of a given attribute, VFDTc uses an exhaustive
method to evaluate the merit of all possible cut points. Here, any value observed in the
examples seen so far can be used as cut point. For each possible cut point, the
information of the two partitions is computed using equation 1.

inf (()) () * (()) () * (()) j j j j jo A i P A i iLow A i P A i i High A i= ≤ + > (1)

 An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams 95

Where i is the cut point, iLow(Aj(i)) the information of Aj≤ i (equation 2) and
iHigh(Aj(i)) the information of Aj> i (equation 3).

j
K

(()) (|) * log(P(K=k|A i)) j jiLow A i P K k A i= − = ≤ ≤∑ (2)

j
K

(()) (|) * log(P(K=k|A >i)) j jiHigh A i P K k A i= − = >∑ (3)

VFDTc only considers a possible cut_point if and only if the number of examples in
each of subsets is higher than Pmin (a user defined constant) percentage of the total
number of examples seen in the node. [5] Presents the algorithm to compute #(Aj≤ i)
for a given attribute j and class k. The algorithm’s processing time is O(logn), so the
best split-test point calculating time is O(nlogn). Here, n represents the number of
distinct values for the attribute seen so far at that leaf.

2.3 Soft Discretization

Soft discretization could be viewed as an extension of hard discretization, and the
classical information measures defined in the probability domain have been extended to
new definitions in the possibility domain based on fuzzy set theory [13]. A crisp set cA
is expressed with a sharp characterization function () : {0,1}:cA a aΩ → ∈Ω ,
alternatively a fuzzy set A is characterized with a membership function

() : [0,1] :A a aΩ → ∈Ω . The membership ()A a is called the possibility of A to
take a value a ∈Ω [14]. The probability of fuzzy set A is defined, according to Zadeh

[15], by () ()FP A A a dP
Ω

= ∫ , where dP is a probability measure on Ω , and the

subscript F is used to denote the associated fuzzy terms. Specially, if A is defined on

discrete domain 1{ ,..., ,..., }i ma a aΩ = , and the probability of ()i iP a p= then its

probability is
1

() ()
m

F i i
i

P A A a p
=

=∑ .

Let 1{ ,..., }kQ A A= be a family of fuzzy sets on Ω . Q is called a fuzzy partition

of Ω [16] when
1

() 1,
k

r
r

A a a
=

= ∀ ∈Ω∑ .

A hard discretization is defined with a threshold T, which generates the boundary
between two crisp sets. Alternatively, a soft discretization is defined by a fuzzy set pair
which forms a fuzzy partition. In contrast to the classical method of non-overlapping
partitioning, the soft discretization is overlapped. The soft discretization is defined with
three parameters/functions, one is the cross point T, the other two are the membership
functions of the fuzzy set pair A1 and A2: A1(a)+A2(a)=1. The cross point T, i.e. the
localization of soft discretization, is determined based on whether it can maximize the

96 T. Wang et al.

information gain in classification, and the membership functions of the fuzzy set pair
are determined according to the characteristics of attribute data, such as the uncertainty
of the associated attribute.

3 Technique Details

Improving soft discretizaiont method, we implement a system named fVFDT on top of
VFDT and VFDTc. It handles continuous attributes based on threaded binary search
trees, and uses a more efficient best split-test point calculating method.

For discrete attributes, they are processed using the algorithm mentioned in VFDT
[2]. Our fVFDT specially focus on continuous attribute handling.

3.1 Threaded Binary Search Tree Structure for Continuous Attributes

fVFDT maintains a threaded binary search tree for each continuous attribute. The
threaded binary search tree data structure will benefit the procedure of inserting new
example and calculating best split-test point.

For each continuous attribute i, the system maintains a threaded binary search tree
structure. A node in the threaded binary search tree is identified with a value keyValue
(that is the value of the attribute i seen in the example)，and a vector(of dimension k)
used to count the values that go through that node. This vector classTotals[k] contains
the counts of examples which value is keyValue and class labeled with k. A node
manages left and right pointers for its left and right child, where its left child
corresponds to ≤keyValue, while its right child corresponds to >keyValue. For the
goodness of calculating the best split-test point, a node contains prev and next pointers
for the previous and next node. At most, three nodes` prev and next pointers will be
updated while new example arrives.

fVFDT maintains a head pointer for each continuous attribute to traverse all the
threaded binary trees.

3.2 Updates the Threaded Search Binary Tree While New Examples Arrives

One of the key problems in decision tree construction on streaming data is that the
memory and computational cost of storing and processing the information required to
obtain the best split-test point can be very high. For discrete attributes, the number of
distinct values is typically small, and therefore, the class histogram does not require
much memory. Similarly, searching for the best split predicate is not expensive if
number of candidate split conditions is relatively small.

However, for continuous attributes with a large number of distinct values, both
memory and computational costs can be very high. Many of the existing approaches are
scalable, but they are multi-pass. Decision tree construction requires a preprocessing
phase in which attribute value lists for continuous attributes are sorted [20].
Preprocessing of data, in comparison, is not an option with streaming data, and sorting
during execution can be very expensive. Domingos and Hulten have described and

 An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams 97

evaluated their one-pass algorithm focusing only on discrete attributes [2], and in later
version they uses sorted array to handle continuous attribute. This implies a very high
memory and computational overhead for inserting new examples and determining the
best split point for a continuous attribute.

In fVFDT a Hoeffding tree node manages a threaded binary search tree for each
continuous attribute before it becomes a decision node.

Procedure InsertValueTBSTree(x, k, TBSTree)
Begin
while (TBSTree ->right != NULL || TBSTree ->left != NULL)

 if (TBSTree ->keyValue = = x) then break;
 Elseif (TBSTree ->keyValue > x) then TBSTree = TBSTree ->lef
 else TBSTree = TBSTree ->right;

Creates a new node curr based on x and k;
If (TBSTree.keyValue = = x) then TBSTree.classTotals[k]++;

 Elesif (TBSTree.keyValue > x) then TBSTree.left = curr;
 else TBSTree.right = curr;
 Threads the tree ;(The details of threading is in figure2)

End

t;

Fig. 1. Algorithm to insert value x of an example labeled with class k into a threaded binary
search tree corresponding to the continuous attribute i

In the induction of decision trees from continuous-valued data, a suitable threshold
T, which discretizes the continuous attribute i into two intervals: atrri≤ T and atrr i > T,
is determined based on the classification information gain generated by the
corresponding discretization. Given a threshold, the test atrri ≤ T is assigned to the left
branch of the decision node while atrr i > T is assigned to the right branch. As a new
example (x,k) arrives, the threaded binary search tree corresponding to the continuous
attribute i is update as Figure 1.

In [5], when a new example arrives, O(logn) binary search tree nodes need be
updated, but fVFDT just need update a necessary node here. VFDT will cost O(n2), and
our system fVFDT will just cost O (nlogn) (as presented in Figure 1) in execution time
for values inserting, where n represents the number of distinct values for the given
attribute seen so far.

3.3 Threads the Binary Tree While New Example Arrives

fVFDT need thread the binary search trees while new example arrives. If the new
example’s value is equal to an existing node`s value, the threaded binary tree doesn’t
need be threaded. Otherwise, the threaded binary tree need be threaded as Figure 2.

At most, three relevant nodes need be updated here. This threading procedure
mentioned in Figure 2 can be embedded in the procedure presented in Figure 1, and the
inserting procedure’s processing time is still O(nlogn).

98 T. Wang et al.

Procedure TBSTthreads()
Begin
if (new node curr is left child of ptr)

 curr->next = ptr;
 curr->nextValue = ptr->keyValue;
 curr->prev = ptr->prev;

ptr->prev->next = curr;
 prevPtr->nextValue = value;

ptr->prev = curr;
if (new node curr is right child of ptr)

 curr->next = ptr->next;
 curr->nextValue = ptr->nextValue;
 curr->prev = ptr;

ptr->next->prev = curr;
 ptr->nextValue = value;

ptr->next = curr;
End

Fig. 2. Algorithm to thread the binary search tree while new example arrives

3.4 Soft Discretization of Continuous Attributes

Taking advantage of threaded binary search tree, we use a more efficient method to
obtain the fuzzy information gain of a given attribute.

Assuming we are to select an attribute for a node having a set S of N examples
arrived, these examples are managed by a threaded binary tree according to the values
of the continuous attribute i ; and an ordered sequence of distinct values a1, a2 … an is
formed. Every pair of adjacent data points suggests a potential threshold T= (ai+ai+1)/2
to create a cut point and generate a corresponding partition of attribute i. In order to
calculate the goodness of a split, we need to compute the class distribution of the
examples at which the attribute value is less than or greater than threshold T. The counts
TBSTree.classTotals[k] are fundamental for computing all necessary statistics.

To take the advantage of threaded binary search tree, we record the head pointer of
each attribute’s threaded binary search tree. As presented in Figure 3, traversing from
the head pointer to the tail pointer, we can easily compute the fuzzy information of all
the potential thresholds. fVFDT implies soft discretization by managing Max/Min
value and example numbers.

Procedure BSTInorderAttributeSplit(TBSTtreePtr ptr,int *belowPrev[])
Begin

if (ptr->next == NULL) then break;
for (k = 0 ; k < count ; k++)

*belowPrev[k] += ptr->classTotals[k];
Calculates the information gain using *belowPrev[];

BSTInorderAttributeSplit(ptr->next,int *belowPrev[]);
End

Fig. 3. Algorithm to compute the information gain of a continuous attribute

 An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams 99

Here, VFDTc will cost O(nlogn) , and our system fVFDT will just cost O(n) in
processing time, where n represents the number of distinct values for the given
continuous attribute seen so far.

3.5 Classify a New Example

The classification for a given unknown object is obtained from the matching degrees of
the object to each node from root to leaf. The possibility of an object belonging to class
Ci is calculated by a fuzzy product operation ⊗ . In the same way, the possibility of the

object belonging to each class can be calculated, 1...{ }i i k=Π . If more than one leaf are

associated with a same class Ci, say, the value of ()i jΠ = ⊕ Π will be considered as

the possibility of the corresponding class, where the maximum operation is used as the
fuzzy sum operation ⊕ In the end, if one possibility value, such as kΠ , is much higher
than others, that is ...k i kΠ >> Π , then the class will be assigned as the class of the
object, otherwise the decision tree predicts a distribution over all the classes.

4 Evaluation

In this section we empirically evaluate fVFDT. The main goal of this section is to
provide evidence that the use of threaded binary search tree decreases the processing
time of VFDT, while keeps the same error rate and tree size. The algorithms`
processing time is listed in Table 1.

Table 1. Algorithm’s processing time

Algorithm Name Inserting time Best split-test point calculating time
VFDT 2()O n ()O n

VFDTc (log)O n n (log)O n n

fVFDT (log)O n n ()O n

We first describe the data streams used for our experiments. We use a tool named
treeData mentioned in [2] to create synthetic data .It creates a synthetic data set by
sampling from a randomly generated decision tree. They were created by randomly
generating decision trees and then using these trees to assign classes to randomly generated
examples. It produced the random decision trees as follows. Starting from a tree with a
single leaf node (the root) it repeatedly replaced leaf nodes with nodes that tested a
randomly selected attribute which had not yet been tested on the path from the root of the
tree to that selected leaf. After the first three levels of the tree each selected leaf had
a probability of f of being pre-pruned instead of replaced by a split (and thus of remaining a
leaf in the final tree). Additionally, any branch that reached a depth of 18 was pruned at that
depth. Whenever a leaf was pruned it was randomly (with uniform probability) assigned a
class label. A tree was completed as soon as all of its leaves were pruned.

100 T. Wang et al.

VFDTc`s goal is to show that using stronger classification strategies at tree leaves
will improve classifier’s performance. With respect to the processing time, the use of
naïve Bayes classifier will introduce an overhead [5], VFDTc is slower than VFDT. In
order to compare the VFDTc and fVFDT , we implement the continuous attributes
solving part of VFDTc ourselves.

We ran our experiments on a Pentium IV/2GH machine with 512MB of RAM,
which running Linux RedHat 9.0.

Table 2 shows the processing (excluding I/O) time of learners as a function of the
number of training examples averaged over nine runs. VFDT and fVFDT run with

parameters 7
min10 , 5%, 300, 100000n example number Kδ τ−= = = = , no

leaf reactivation, and no rescan. Averagely, comparing to VFDT, fVFDT`s average

reduction of processing time is 16.66%, and comparing to VFDTc, fVFDT`s average

reduction is 6.25%.

Table 2. The comparing result of processing time

 time(seconds)

example numbers
VFDT VFDTc fVFDT

10000 4.66 4.21 3.75

20736 9.96 8.83 8.12

42996 22.88 20.59 18.57

89156 48.51 43.57 40.87

184872 103.61 93.25 87.12

383349 215.83 187.77 175.23

794911 522.69 475.65 441.61

1648326 1123.51 1022.39 939.35

3417968 2090.31 1839.45 1758.89

7087498 3392.94 3053.65 2882.23

14696636 5209.47 4688.53 4389.35

30474845 8203.05 7382.75 6850.12

43883922 13431.02 11953.61 11068.23

90997707 17593.46 15834.12 15020.46

100000000 18902.06 16822.86 15986.23

In this work, we measure the size of tree models as the number of decision nodes
plus the number of leaves. As for dynamic data stream with 100 million examples, we

 An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams 101

notice that the two learners similarly have the same tree size. We have done another
experiment using 1 million examples generated on disk, and the result shows that they
have same tree size.

Fig. 4. Error rate as a function of the examples numbers

Figure 4 shows the error rate curves of VFDT and fVFDT. Both algorithms have
10% noise data, VFDT`s error rate trends to 12.5%, while the fVFDT`s error rate trends
to 8%. Experiment results show that fVFDT get better accuracy by using soft
discretization, and it overcomes the problem of noise.

5 Conclusions and Future Work

On top of VFDT and VFDTc, improve the soft discretization method, we propose a
system fVFDT. Focusing on continuous attribute, we have developed and evaluated a
new technique named TBST to insert new example and calculate best split-test point
efficiently. It builds threaded binary search trees, and its processing time for values
insertion is O(nlogn). Comparing to the method used in VFDTc, it improves from
O(nlogn) to O(n) in processing time for best split-test point calculating. As for noise
data, we improve the soft discretization method in traditional data mining field, so the
fVFDT can deal with noise data efficiently and improve the classification accuracy.

In the future, we would like to expand our work in some directions. First, we do not
discuss the problem of time changing concept here, and we will apply our method to
those strategies that take into account concept drift [4, 6, 10, 14, 15, 19, 24, 25].
Second, we want to apply other new fuzzy decision tree methods in data streams
classification [8, 13, 17, 18, 26].

References

[1] Babcock, B., Babu, S., Datar, M., Motawani, R., Widom, J.: Models and Issues in Data
Stream Systems. In: PODS (2002)

[2] Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proceedings of the
Association for Computing Machinery Sixth International Conference on Knowledge
Discovery and Data Mining, pp. 71–80 (2000)

102 T. Wang et al.

[3] Mehta, M., Agrawal, A., Rissanen, J.: SLIQ: A Fast Scalable Classifier for Data Mining.
In: Proceedings of The Fifth International Conference on Extending Database Technology,
Avignon, France, pp. 18–32 (1996)

[4] Fan, W.: StreamMiner: A Classifier Ensemble-based Engine to Mine Concept Drifting
Data Streams, VLDB’2004 (2004)

[5] Gama, J., Rocha, R., Medas, P.: Accurate Decision Trees for Mining High-Speed Data
Streams. In: Domingos, P., Faloutsos, C. (eds.) Proceedings of the Ninth International
Conference on Knowledge Discovery and Data Mining, ACM Press, New York (2003)

[6] Hulten, G., Spencer, L., Domingos, P.: Mining Time-Changing Data Streams, ACM
SIGKDD (2001)

[7] Jin, R., Agrawal, G.: Efficient Decision Tree Construction on Streaming Data. In:
proceedings of ACM SIGKDD (2003)

[8] Last, M.: Online Classification of Nonstationary Data Streams. Intelligent Data
Analysis 6(2), 129–147 (2002)

[9] Muthukrishnan, S.: Data streams: Algorithms and Applications. In: Proceedings of the
fourteenth annual ACM-SIAM symposium on discrete algorithms (2003)

[10] Wang, H., Fan, W., Yu, P., Han, J.: Mining Concept-Drifting Data Streams using Ensemble
Classifiers. In: the 9th ACM International Conference on Knowledge Discovery and Data
Mining, Washington DC, USA. SIGKDD (2003)

[11] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom,
J.: STREAM: The Stanford Stream Data Manager Demonstration Description –Short
Overview of System Status and Plans. In: Proc. of the ACM Intl Conf. on Management of
Data (SIGMOD 2003) (June 2003)

[12] Aggarwal, C., Han, J., Wang, J., Yu, P.S.: On Demand Classification of Data Streams. In:
Proc. 2004 Int. Conf. on Knowledge Discovery and Data Mining (KDD’04), Seattle, WA
(2004)

[13] Guetova, M., Holldobter, Storr, H.-P.: Incremental Fuzzy Decision Trees. In: 25th German
conference on Artificial Intelligence (2002)

[14] Ben-David, S., Gehrke, J., Kifer, D.: Detecting Change in Data Streams. In: Proceedings of
VLDB (2004)

[15] Aggarwal, C.: A Framework for Diagnosing Changes in Evolving Data Streams. In:
Proceedings of the ACM SIGMOD Conference (2003)

[16] Gaber, M.M., Zaslavskey, A., Krishnaswamy, S.: Mining Data Streams: a Review,
SIGMOD Record, vol. 34(2) (June 2005)

[17] Cezary, Janikow, Z.: Fuzzy Decision Trees: Issues and Methods. IEEE Transactions on
Systems, Man, and Cybernetics 28(1), 1–14 (1998)

[18] Utgoff, P.E.: Incremental Induction of Decision Trees. Machine Learning 4(2), 161–186
(1989)

[19] Xie, Q.H.: An Efficient Approach for Mining Concept-Drifting Data Streams, Master
Thesis

[20] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA
(1993)

[21] Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association 58, 13–30 (1963)

[22] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression
Trees, Wadsworth, Belmont, CA (1984)

[23] Maron, O., Moore, A.: Hoeffding Races: Accelerating Model Selection Search for
Classification and Function Approximation. In: Cowan, J.D., Tesauro, G., Alspector, J.
(eds.) Advances in Neural Information Processing System (1994)

 An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams 103

[24] Kelly, M.G., Hand, D.J., Adams, N.M.: The Impact of Changing Populations on Classifier
Performance. In: Proc. of KDD-99, pp. 367–371 (1999)

[25] Black, M., Hickey, R.J.: Maintaining the Performance of a Learned Classifier under
Concept Drift. Intelligent Data Analysis 3, 453–474 (1999)

[26] Maimon, O., Last, M.: Knowledge Discovery and Data Mining, the Info-Fuzzy
Network(IFN) Methodology. Kluwer Academic Publishers, Boston (2000)

[27] Fayyad, U.M., Irani, K.B.: On the Handling of Continuous-valued Attributes in Decision
Tree Generation. Machine Learning 8, 87–102 (1992)

[28] Wang, T., Li, Z., Yan, Y., Chen, H.: An Efficient Classification System Based on Binary
Search Trees for Data Streams Mining, ICONS (2007)

[29] Wang, T., Li, Z., Hu, X., Yan, Y., Chen, H.: A New Decision Tree Classification Method
for Mining High-Speed Data Streams Based on Threaded Binary Search Trees, PAKDD
(2007) workshop (2007)

[30] Peng, Y.H., Flach, P.A.: Soft Discretization to Enhance the Continuous Decision Tree
Induction. In: Proceedings of ECML/PKDD-2001 Workshop IDDM-2001, Freiburg,
Germany (2001)

	An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams
	Introduction
	Related Work
	VFDT
	VFDTc
	Soft Discretization

	Technique Details
	Threaded Binary Search Tree Structure for Continuous Attributes
	Updates the Threaded Search Binary Tree While New Examples Arrives
	Threads the Binary Tree While New Example Arrives
	Soft Discretization of Continuous Attributes
	Classify a New Example

	Evaluation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

