
P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 91–103, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Incremental Fuzzy Decision Tree Classification 
Method for Mining Data Streams∗  

Tao Wang1, Zhoujun Li2, Yuejin Yan1, and Huowang Chen1 

1 Computer School, National University of Defense Technology, Changsha, 410073, China 
2 School of Computer Science & Engineering, Beihang University, Beijing, 100083, China 

InsistStar@nudt.edu.cn 

Abstract. One of most important algorithms for mining data streams is VFDT. It 
uses Hoeffding inequality to achieve a probabilistic bound on the accuracy of the 
tree constructed. Gama et al. have extended VFDT in two directions. Their 
system VFDTc can deal with continuous data and use more powerful 
classification techniques at tree leaves. In this paper, we revisit this problem and 
implemented a system fVFDT on top of VFDT and VFDTc. We make the 
following four contributions: 1) we present a threaded binary search trees 
(TBST) approach for efficiently handling continuous attributes. It builds a 
threaded binary search tree, and its processing time for values inserting is 
O(nlogn), while VFDT`s processing time is O(n2). When a new example arrives, 
VFDTc need update O(logn) attribute tree nodes, but fVFDT just need update 
one necessary node.2) we improve the method of getting the best split-test point 
of a given continuous attribute. Comparing to the method used in VFDTc, it 
improves from O(nlogn) to O (n) in processing time. 3) Comparing to VFDTc, 
fVFDT`s candidate split-test number decrease from O(n) to O(logn).4)Improve 
the soft discretization method to be used in data streams mining, it overcomes the 
problem of noise data and improve the classification accuracy. 

Keywords: Data Streams, Incremental, Fuzzy, Continuous Attribute, Threaded 
Binary Search Tree. 

1   Introduction 

Decision trees are one of the most used classification techniques for data mining. Tree 
models have high degree of interpretability. Global and complex decisions can be 
approximated by a series of simpler and local decisions. Algorithms that construct 
decision trees from data usually use a divide and conquer strategy. A complex problem 
is divided into simpler problems and recursively the same strategy is applied to the 
sub-problems. The solutions of sub-problems are combined in the form of a tree to 
yield the solution of the complex problem [3, 20, 22]. 
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More recently, the data mining community has focused on a new model of data 
processing, in which data arrives in the form of continuous streams [1, 3, 9, 11, 12,  
16, 28, 29]. The key issue in mining on data streams is that only one pass is allowed 
over the entire data. Moreover, there is a real-time constraint, i.e. the processing time is 
limited by the rate of arrival of instances in the data stream, and the memory and disk 
available to store any summary information may be bounded. For most data mining 
problems, a one-pass algorithm cannot be very accurate. The existing algorithms 
typically achieve either a deterministic bound on the accuracy or a probabilistic bound 
[21, 23].  

Domingos and Hulten [2, 6] have addressed the problem of decision tree 
construction on data streams. Their algorithm guarantees a probabilistic bound on the 
accuracy of the decision tree that is constructed. Gama et al. [5] have extended VFDT 
in two directions: the ability to deal with continuous data and the use of more powerful 
classification techniques at tree leaves.  

Peng et al.[30]propose the soft discretization method in traditional data mining 
field,it solve the problem of noise data and improve the classification accuracy. 

The rest of the paper is organized as follows. Section 2 describes the related works 
that is the basis for this paper. Section 3 presents the technical details of fVFDT. The 
system has been implemented and evaluated, and experimental evaluation is done in 
Section 4. Last section concludes the paper, resuming the main contributions of this 
work. 

2   Related Work 

In this section we analyze the related works that our fVFDT bases on. 
Decision trees support continuous attributes by allowing internal nodes to contain 

tests of the form Ai≤ T (the value of attribute i is less than threshold T). Traditional 
induction algorithms learn decision trees with such tests in the following manner. For 
each continuous attribute, they construct a set of candidate tests by sorting the values of 
that attribute in the training set and using a threshold midway between each adjacent 
pair of values that come from training examples with different class labels to get the 
best split-test point.  

There are several reasons why this standard method is not appropriate when learning 
from data streams. The most serious of these is that it requires that the entire training set 
be available ahead of time so that split thresholds can be determined. 

2.1   VFDT 

VFDT(Very Fast Decision Tree) system[2], which is able to learn from abundant data 
within practical time and memory constraints. In VFDT a decision tree is learned by 
recursively replacing leaves with decision nodes. Each leaf stores the sufficient 
statistics about attribute-values. The sufficient statistics are those needed by a heuristic 
evaluation function that evaluates the merit of split-tests based on attribute-values. 
When an example is available, it traverses the tree from the root to a leaf, evaluating the 
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appropriate attribute at each node, and following the branch corresponding to the 
attribute's value in the example. When the example reaches a leaf, the sufficient 
statistics are updated. Then, each possible condition based on attribute-values is 
evaluated. If there is enough statistical support in favor of one test over the others, the 
leaf is changed to a decision node. The new decision node will have as many 
descendant leaves as the number of possible values for the chosen attribute (therefore 
this tree is not necessarily binary). The decision nodes only maintain the information 
about the split-test installed in this node. The initial state of the tree consists of a single 
leaf: the root of the tree. The heuristic evaluation function is the Information Gain 
(denoted by G(﹒). The sufficient statistics for estimating the merit of a discrete 
attribute are the counts nijk, representing the number of examples of class k that reach 
the leaf, where the attribute j takes the value i. The Information Gain measures the 
amount of information that is necessary to classify an example that reach the node: 
G(Aj)=info(examples)-info(Aj). The information of the attribute j is given by:  

inf ( ) ( log( ))j i ik iki k
o A P P P= −∑ ∑  

where ik ijk ajka
P n n= ∑ , is the probability of observing the value of the attribute i 

given class k and i ija ajba a b
P n n=∑ ∑ ∑ is the probabilities of observing the 

value of attribute i.  

As mentioned in Catlett and others [23], that it may be sufficient to use a small 
sample of the available examples when choosing the split attribute at any given node. 
To determine the number of examples needed for each decision, VFDT uses a statistical 
result known as Hoeffding bounds or additive Chernoff bounds. After n independent 
observations of a real-valued random variable r with range R, the Hoeffding bound 
ensures that,  with  confidence 1-δ, the  true mean of r is at least r ε− , where r is the 

observed mean of samples and 
2 ln (1 / )

2

R

n

δε = . This is true irrespective of the 

probability distribution that generated the observations. 

Let G(﹒) be the evaluation function of an attribute. For the information gain, the 
range R, of G(﹒) is log2 #classes. Let xa be the attribute with the highest G(﹒), xb the 
attribute with second-highest G(﹒) and ( ) ( )a bG G x G xΔ = − , the difference 
between the two better attributes. Then if G εΔ >  with n examples observed in the 
leaf, the Hoeffding bound states with probability 1-δ that xa is really the attribute with 
highest value in the evaluation function. In this case the leaf must be transformed into a 
decision node that splits on xa.  

For continuous attribute, whenever VFDT starts a new leaf, it collects up to M 
distinct values for each continuous attribute from the first examples that arrive at it. 
These are maintained in sorted order as they arrive, and a candidate test threshold is 
maintained midway between adjacent values with different classes, as in the traditional 
method. Once VFDT has M values for an attribute, it stops adding new candidate 
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thresholds and uses additional data only to evaluate the existing ones. Every leaf uses a 
different value of M, based on its level in the tree and the amount of RAM available 
when it is started. For example, M can be very large when choosing the split for the root 
of the tree, but must be very small once there is a large partially induced tree, and many 
leaves are competing for limited memory resources. Notice that even when M is very 
large (and especially when it is small) VFDT may miss the locally optimal split point. 
This is not a serious problem here for two reasons. First, if data is an independent, 
identically distributed sample, VFDT should end up with a value near (or an empirical 
gain close to) the correct one simply by chance. And second, VFDT will be learning 
very large trees from massive data streams and can correct early mistakes later in the 
learning process by adding additional splits to the tree. 

Thinking of each continuous attribute, we will find that the processing time for the 
insertion of new examples is O (n2), where n represents the number of distinct 
values for the attribute seen so far. 

2.2   VFDTc 

VFDTc is implemented on top of VFDT, and it extends VFDT in two directions: the 
ability to deal with continuous attributes and the use of more powerful classification 
techniques at tree leaves. Here, we just focus on the handling of continuous attributes. 

In VFDTc a decision node that contains a split-test based on a continuous attribute 
has two descendant branches. The split-test is a condition of the form attribj≤ T. The 
two descendant branches correspond to the values TRUE and FALSE for the split-test. 
The cut point is chosen from all the possible observed values for that attribute. In order 
to evaluate the goodness of a split, it needs to compute the class distribution of the 
examples at which the attribute-value is less than or greater than the cut point. The 
counts nijk are fundamental for computing all necessary statistics. They are kept with 
the use of the following data structure: In each leaf of the decision tree it maintains a 
vector of the classes’ distribution of the examples that reach this leaf. For each 
continuous attribute j, the system maintains a binary attribute tree structure. A node in 
the binary tree is identified with a value i(that is the value of the attribute j seen in an 
example), and two vectors (of dimension k) used to count the values that go through 
that node. Two vectors, VE and VH contain the counts of values respectively 

i≤ and i>  for the examples labeled with class k. When an example reaches leaf, all 
the binary trees are updated. In [5], an algorithm of inserting a value in the binary tree is 
presented. Insertion of a new value in this structure is O(nlogn) where n represents the 
number of distinct values for the attribute seen so far.  

To obtain the Information Gain of a given attribute, VFDTc uses an exhaustive 
method to evaluate the merit of all possible cut points. Here, any value observed in the 
examples seen so far can be used as cut point. For each possible cut point, the 
information of the two partitions is computed using equation 1. 

inf ( ( )) ( ) *  ( ( )) ( ) *  ( ( )) j j j j jo A i P A i iLow A i P A i i High A i= ≤ + >     (1) 
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Where i is the cut point, iLow(Aj(i)) the information of Aj≤ i (equation 2) and 
iHigh(Aj(i)) the information of Aj> i (equation 3). 

j
K

( ( )) ( | ) * log(P(K=k|A i)) j jiLow A i P K k A i= − = ≤ ≤∑           (2)  

j
K

( ( )) ( | ) * log(P(K=k|A >i)) j jiHigh A i P K k A i= − = >∑              (3) 

VFDTc only considers a possible cut_point if and only if the number of examples in 
each of subsets is higher than Pmin (a user defined constant) percentage of the total 
number of examples seen in the node. [5] Presents the algorithm to compute #(Aj≤ i) 
for a given attribute j and class k. The algorithm’s processing time is O(logn), so the 
best split-test point calculating time is O(nlogn). Here, n represents the number of 
distinct values for the attribute seen so far at that leaf.  

2.3   Soft Discretization 

Soft discretization could be viewed as an extension of hard discretization, and the 
classical information measures defined in the probability domain have been extended to 
new definitions in the possibility domain based on fuzzy set theory [13]. A crisp set cA  
is expressed with a sharp characterization function ( ) : {0,1}:cA a aΩ → ∈Ω , 
alternatively a fuzzy set A  is characterized with a membership function 

( ) : [0,1] :A a aΩ → ∈Ω . The membership ( )A a  is called the possibility of A  to 
take a value a ∈Ω [14]. The probability of fuzzy set A  is defined, according to Zadeh 

[15], by ( ) ( )FP A A a dP
Ω

= ∫ , where dP is a probability measure on Ω , and the 

subscript F is used to denote the associated fuzzy terms. Specially, if A  is defined on 

discrete domain 1{ ,..., ,..., }i ma a aΩ = , and the probability of ( )i iP a p=  then its 

probability is 
1

( ) ( )
m

F i i
i

P A A a p
=

=∑ . 

Let 1{ ,..., }kQ A A=  be a family of fuzzy sets on Ω . Q is called a fuzzy partition 

of Ω  [16] when
1

( ) 1,
k

r
r

A a a
=

= ∀ ∈Ω∑ . 

A hard discretization is defined with a threshold T, which generates the boundary 
between two crisp sets. Alternatively, a soft discretization is defined by a fuzzy set pair 
which forms a fuzzy partition. In contrast to the classical method of non-overlapping 
partitioning, the soft discretization is overlapped. The soft discretization is defined with 
three parameters/functions, one is the cross point T, the other two are the membership 
functions of the fuzzy set pair A1 and A2: A1(a)+A2(a)=1. The cross point T, i.e. the 
localization of soft discretization, is determined based on whether it can maximize the 
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information gain in classification, and the membership functions of the fuzzy set pair 
are determined according to the characteristics of attribute data, such as the uncertainty 
of the associated attribute.  

3   Technique Details 

Improving soft discretizaiont method, we implement a system named fVFDT on top of 
VFDT and VFDTc. It handles continuous attributes based on threaded binary search 
trees, and uses a more efficient best split-test point calculating method.  

For discrete attributes, they are processed using the algorithm mentioned in VFDT 
[2]. Our fVFDT specially focus on continuous attribute handling. 

3.1   Threaded Binary Search Tree Structure for Continuous Attributes 

fVFDT maintains a threaded binary search tree for each continuous attribute. The 
threaded binary search tree data structure will benefit the procedure of inserting new 
example and calculating best split-test point. 

For each continuous attribute i, the system maintains a threaded binary search tree 
structure. A node in the threaded binary search tree is identified with a value keyValue 
(that is the value of the attribute i seen in the example)，and a vector( of dimension k) 
used to count the values that go through that node. This vector classTotals[k] contains 
the counts of examples which value is keyValue and class labeled with k. A node 
manages left and right pointers for its left and right child, where its left child 
corresponds to ≤keyValue, while its right child corresponds to >keyValue. For the 
goodness of calculating the best split-test point, a node contains prev and next pointers 
for the previous and next node. At most, three nodes` prev and next pointers will be 
updated while new example arrives.  

fVFDT maintains a head pointer for each continuous attribute to traverse all the 
threaded binary trees. 

3.2   Updates the Threaded Search Binary Tree While New Examples Arrives 

One of the key problems in decision tree construction on streaming data is that the 
memory and computational cost of storing and processing the information required to 
obtain the best split-test point can be very high. For discrete attributes, the number of 
distinct values is typically small, and therefore, the class histogram does not require 
much memory. Similarly, searching for the best split predicate is not expensive if 
number of candidate split conditions is relatively small. 

However, for continuous attributes with a large number of distinct values, both 
memory and computational costs can be very high. Many of the existing approaches are 
scalable, but they are multi-pass. Decision tree construction requires a preprocessing 
phase in which attribute value lists for continuous attributes are sorted [20]. 
Preprocessing of data, in comparison, is not an option with streaming data, and sorting 
during execution can be very expensive. Domingos and Hulten have described and 
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evaluated their one-pass algorithm focusing only on discrete attributes [2], and in later 
version they uses sorted array to handle continuous attribute. This implies a very high 
memory and computational overhead for inserting new examples and determining the 
best split point for a continuous attribute. 

In fVFDT a Hoeffding tree node manages a threaded binary search tree for each 
continuous attribute before it becomes a decision node.  

Procedure InsertValueTBSTree(x, k, TBSTree)
Begin
while (TBSTree ->right != NULL || TBSTree ->left != NULL ) 

    if (TBSTree ->keyValue = = x )    then  break; 
    Elseif (TBSTree ->keyValue > x )  then TBSTree = TBSTree ->lef
    else TBSTree = TBSTree ->right; 

Creates a new node curr based on x and k; 
If ( TBSTree.keyValue = = x )    then   TBSTree.classTotals[k]++; 

 Elesif (TBSTree.keyValue > x)   then   TBSTree.left = curr; 
 else          TBSTree.right = curr; 
 Threads the tree ;( The details of threading is in figure2) 

End

t;  

 

Fig. 1. Algorithm to insert value x of an example labeled with class k into a threaded binary 
search tree corresponding to the continuous attribute i 

In the induction of decision trees from continuous-valued data, a suitable threshold 
T, which discretizes the continuous attribute i into two intervals: atrri≤ T and atrr i > T, 
is determined based on the classification information gain generated by the 
corresponding discretization. Given a threshold, the test atrri ≤ T is assigned to the left 
branch of the decision node while atrr i > T is assigned to the right branch. As a new 
example (x,k) arrives, the threaded binary search tree corresponding to the continuous 
attribute i is update as Figure 1. 

In [5], when a new example arrives, O(logn) binary search tree nodes need be 
updated, but fVFDT just need update a necessary node here. VFDT will cost O(n2), and 
our system fVFDT will just cost O (nlogn) (as presented in Figure 1) in execution time 
for values inserting, where n represents the number of distinct values for the given 
attribute seen so far. 

3.3   Threads the Binary Tree While New Example Arrives 

fVFDT need thread the binary search trees while new example arrives. If the new 
example’s value is equal to an existing node`s value, the threaded binary tree doesn’t 
need be threaded. Otherwise, the threaded binary tree need be threaded as Figure 2.  

At most, three relevant nodes need be updated here. This threading procedure 
mentioned in Figure 2 can be embedded in the procedure presented in Figure 1, and the 
inserting procedure’s processing time is still O(nlogn). 
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Procedure TBSTthreads() 
Begin
if (new node curr is left child of ptr)  

                curr->next = ptr;  
                curr->nextValue = ptr->keyValue;  
                curr->prev = ptr->prev; 

ptr->prev->next = curr;  
                prevPtr->nextValue = value; 

ptr->prev = curr;  
if (new node curr is right child of ptr)  

                   curr->next = ptr->next; 
                   curr->nextValue = ptr->nextValue; 
                   curr->prev = ptr; 

ptr->next->prev = curr; 
                   ptr->nextValue = value; 

ptr->next = curr; 
End  

Fig. 2. Algorithm to thread the binary search tree while new example arrives 

3.4   Soft Discretization of Continuous Attributes 

Taking advantage of threaded binary search tree, we use a more efficient method to 
obtain the fuzzy information gain of a given attribute.  

Assuming we are to select an attribute for a node having a set S of N examples 
arrived, these examples are managed by a threaded binary tree according to the values 
of the continuous attribute i ; and an ordered sequence of distinct values a1, a2 … an is 
formed. Every pair of adjacent data points suggests a potential threshold T= (ai+ai+1)/2 
to create a cut point and generate a corresponding partition of attribute i. In order to 
calculate the goodness of a split, we need to compute the class distribution of the 
examples at which the attribute value is less than or greater than threshold T. The counts 
TBSTree.classTotals[k] are fundamental for computing all necessary statistics.  

To take the advantage of threaded binary search tree, we record the head pointer of 
each attribute’s threaded binary search tree. As presented in Figure 3, traversing from 
the head pointer to the tail pointer, we can easily compute the fuzzy information of all 
the potential thresholds. fVFDT implies soft discretization by managing Max/Min 
value and example numbers. 

Procedure BSTInorderAttributeSplit(TBSTtreePtr ptr,int *belowPrev[]) 
Begin

if ( ptr->next == NULL) then  break; 
for ( k = 0 ; k < count ; k++) 

*belowPrev[k] += ptr->classTotals[k]; 
Calculates the information gain using *belowPrev[]; 

BSTInorderAttributeSplit( ptr->next,int *belowPrev[]); 
End

 

Fig. 3. Algorithm to compute the information gain of a continuous attribute 
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Here, VFDTc will cost O(nlogn) , and our system fVFDT will just cost O(n) in 
processing time, where n represents the number of distinct values for the given 
continuous attribute seen so far. 

3.5   Classify a New Example 

The classification for a given unknown object is obtained from the matching degrees of 
the object to each node from root to leaf. The possibility of an object belonging to class 
Ci is calculated by a fuzzy product operation ⊗ . In the same way, the possibility of the 

object belonging to each class can be calculated, 1...{ }i i k=Π . If more than one leaf are 

associated with a same class Ci, say, the value of  ( )i jΠ = ⊕ Π  will be  considered as 

the possibility of the corresponding class, where the maximum operation is used as the 
fuzzy sum operation ⊕  In the end, if one possibility value, such as kΠ , is much higher 
than others, that is ...k i kΠ >> Π , then the class will be assigned as the class of the 
object, otherwise the decision tree predicts a distribution over all the classes.  

4   Evaluation 

In this section we empirically evaluate fVFDT. The main goal of this section is to 
provide evidence that the use of threaded binary search tree decreases the processing 
time of VFDT, while keeps the same error rate and tree size. The algorithms` 
processing time is listed in Table 1. 

Table 1. Algorithm’s processing time 

Algorithm Name Inserting time Best split-test point calculating time 
VFDT 2( )O n  ( )O n  

VFDTc ( log )O n n  ( log )O n n  

fVFDT ( log )O n n  ( )O n  

We first describe the data streams used for our experiments. We use a tool named 
treeData mentioned in [2] to create synthetic data .It creates a synthetic data set by 
sampling from a randomly generated decision tree. They were created by randomly 
generating decision trees and then using these trees to assign classes to randomly generated 
examples. It produced the random decision trees as follows. Starting from a tree with a 
single leaf node (the root) it repeatedly replaced leaf nodes with nodes that tested a 
randomly selected attribute which had not yet been tested on the path from the root of the 
tree to that selected leaf. After the first three levels of the tree each selected leaf had  
a probability of f of being pre-pruned instead of replaced by a split (and thus of remaining a 
leaf in the final tree). Additionally, any branch that reached a depth of 18 was pruned at that 
depth. Whenever a leaf was pruned it was randomly (with uniform probability) assigned a 
class label. A tree was completed as soon as all of its leaves were pruned.  
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VFDTc`s goal is to show that using stronger classification strategies at tree leaves 
will improve classifier’s performance. With respect to the processing time, the use of 
naïve Bayes classifier will introduce an overhead [5], VFDTc is slower than VFDT. In 
order to compare the VFDTc and fVFDT , we implement the continuous attributes 
solving part of VFDTc ourselves.  

We ran our experiments on a Pentium IV/2GH machine with 512MB of RAM, 
which running Linux RedHat 9.0. 

Table 2 shows the processing (excluding I/O) time of learners as a function of the 
number  of training  examples averaged over  nine  runs. VFDT and  fVFDT run  with 

parameters 7
min10 , 5%, 300,  100000n example number Kδ τ−= = = = , no 

leaf reactivation, and no rescan. Averagely, comparing to VFDT, fVFDT`s average 

reduction of processing time is 16.66%, and comparing to VFDTc, fVFDT`s average 

reduction is 6.25%. 

Table 2. The comparing result of processing time 

       time(seconds) 

example numbers 
VFDT VFDTc fVFDT 

10000 4.66 4.21 3.75 

20736 9.96 8.83 8.12 

42996 22.88 20.59 18.57 

89156 48.51 43.57 40.87 

184872 103.61 93.25 87.12 

383349 215.83 187.77 175.23 

794911 522.69 475.65 441.61 

1648326 1123.51 1022.39 939.35 

3417968 2090.31 1839.45 1758.89 

7087498 3392.94 3053.65 2882.23 

14696636 5209.47 4688.53 4389.35 

30474845 8203.05 7382.75 6850.12 

43883922 13431.02 11953.61 11068.23 

90997707 17593.46 15834.12 15020.46 

100000000 18902.06 16822.86 15986.23 
 

In this work, we measure the size of tree models as the number of decision nodes 
plus the number of leaves. As for dynamic data stream with 100 million examples, we 
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notice that the two learners similarly have the same tree size. We have done another 
experiment using 1 million examples generated on disk, and the result shows that they 
have same tree size. 

 

Fig. 4. Error rate as a function of the examples numbers 

Figure 4 shows the error rate curves of VFDT and fVFDT. Both algorithms have 
10% noise data, VFDT`s error rate trends to 12.5%, while the fVFDT`s error rate trends 
to 8%. Experiment results show that fVFDT get better accuracy by using soft 
discretization, and it overcomes the problem of noise.  

5   Conclusions and Future Work 

On top of VFDT and VFDTc, improve the soft discretization method, we propose a 
system fVFDT. Focusing on continuous attribute, we have developed and evaluated a 
new technique named TBST to insert new example and calculate best split-test point 
efficiently. It builds threaded binary search trees, and its processing time for values 
insertion is O(nlogn). Comparing to the method used in VFDTc, it improves from 
O(nlogn) to O(n) in processing time for best split-test point calculating. As for noise 
data, we improve the soft discretization method in traditional data mining field, so the 
fVFDT can deal with noise data efficiently and improve the classification accuracy. 

In the future, we would like to expand our work in some directions. First, we do not 
discuss the problem of time changing concept here, and we will apply our method to 
those strategies that take into account concept drift [4, 6, 10, 14, 15, 19, 24, 25]. 
Second, we want to apply other new fuzzy decision tree methods in data streams 
classification [8, 13, 17, 18, 26]. 
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