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Preface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gottfried Wilhelm von Leibniz, the great mathematician and son of Leipzig, was 
watching over us during our event in Machine Learning and Data Mining in Pattern 
Recognition (MLDM 2007). He can be proud of what we have achieved in this area 
so far. We had a great research program this year. 

This was the fifth MLDM in Pattern Recognition event held in Leipzig 
(www.mldm.de). 

Today, there are many international meetings carrying the title machine learning 
and data mining, whose topics are text mining, knowledge discovery, and 
applications. This meeting from the very first event has focused on aspects of 
machine learning and data mining in pattern recognition problems. We planned to 
reorganize classical and well-established pattern recognition paradigms from the view 
points of machine learning and data mining. Although it was a challenging program in 
the late 1990s, the idea has provided new starting points in pattern recognition and has 
influenced other areas such as cognitive computer vision.  

For this edition, the Program Committee received 258 submissions from 37 
countries (see Fig. 1). 

To handle this high number of papers was a big challenge for the reviewers. Every 
paper was thoroughly reviewed and all authors received a detailed report on their 
submitted work. 

After the peer-review process, we accepted 66 high-quality papers for oral 
presentation, which are included in this proceedings book. The topics range from the 
classical topics within MLDM such as classification, feature selection and extraction, 
clustering and support-vector machines, frequent and common item set mining and 
structural data mining. 

 

 

 
  

MLDM / ICDM Medaillie  
Meissner Porcellan, the “White Gold” of King   
August the Strongest of Saxonia 
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China 15.71% 5.04% USA 10.00% 3.88% England 7.14% 1.94% 

France 4.29% 2.33% Korea South 4.29% 1.16% Mexico 4.29% 1.16% 

Germany 3.57% 1.94% Iran 3.57% 0.78% Italy 3.57% 1.94% 

Japan 3.57% 1.55% Spain 3.57% 1.16% Turkey 2.86% 1.16% 

Lithuania 2.86% 0.78% Cuba 2.86% 0.78% Greece 2.14% 1.16% 

Poland 2.14% 0.78% Canada 2.14% 0.78% Portugal 2.14% 0.39% 

Australia 2.14% 0.00% Switzerland 1.43% 0.78% Sweden 1.43% 0.78% 

Brazil 1.43% 0.39% Taiwan 1.43% 0.39% India 1.43% 0.00% 

Pakistan 1.43% 0.00% Chile 0.71% 0.39% Denmark 0.71% 0.39% 

Serbia 0.71% 0.39% Colombia 0.71% 0.39% Hungary 0.71% 0.39% 

Belgium 0.71% 0.39% Czech Republic 0.71% 0.39% Russia 0.71% 0.39% 

Netherlands 0.71% 0.39% Ireland 0.71% 0.39% Belorussia  0.71% 0.00% 

Singapore 0.71% 0.00%

Fig. 1. Distribution of papers among countries 

This year we saw new topics in pattern recognition such as transductive inference 
and association rule mining. The topics of applied research also increased and cover 
aspects such as mining spam, newsgroups and blogs, intrusion detection and 
networks, mining marketing data, medical, biological and environmental data mining, 
text and document mining. We noted with pleasure an increasing number of papers on 
special aspects of image mining that are the traditional data in pattern recognition. 

24 papers have been selected for poster presentation to be published in the MLDM 
Poster Proceedings Volume. They cover hot topics like text and document mining, 
image mining, network mining, support vector machines, feature selection, feature 
maps, prediction and classification, sequence mining, and sampling methods. 

We are pleased to announce that we gave out the best paper award for MLDM for 
the first time this year. 

We also established an MLDM/ICDM/MDA Conference Summary Volume for the 
first time this year that summarizes the vision of three conferences and the paper 
presentations and also provides  a “Who is Who” in machine learning and data mining 
by giving each author the chance to present himself.  

We also thank members of the Institute of Applied Computer Sciences, Leipzig, 
Germany (www.ibai-institut.de), who handled the conference. We appreciate the help 
and understanding of the editorial staff at Springer, and in particular Alfred Hofmann, 
who supported the publication of these proceedings in the LNAI series.  

Last, but not least, we wish to thank all the speakers and participants who 
contributed to the success of the conference. See you in 2009 again. 

 
 

July 2007                                                                                                                                                               Petra Perner 
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Céline Hébert and Bruno Crémilleux

Comparing State-of-the-Art Collaborative Filtering Systems . . . . . . . . . . . 548
Laurent Candillier, Frank Meyer, and Marc Boullé
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Data Clustering: User’s Dilemma  

Anil K. Jain  

Department of Computer Science and Engineering 
Michigan State University (USA) 

http://www.cse.msu.edu/~jain/ 

Abstract. Data clustering is a long standing research problem in pattern 
recognition, computer vision, machine learning, and data mining with 
applications in a number of diverse disciplines. The goal is to partition a set of n 
d-dimensional points into k clusters, where k may or may not be known. Most 
clustering techniques require the definition of a similarity measure between 
patterns, which is not easy to specify in the absence of any prior knowledge 
about cluster shapes. While a large number of clustering algorithms exist, there 
is no optimal algorithm. Each clustering algorithm imposes a specific structure 
on the data and has its own approach for estimating the number of clusters. No 
single algorithm can adequately handle various cluster shapes and structures 
that are encountered in practice. Instead of spending our effort in devising yet 
another clustering algorithm, there is a need to build upon the existing 
published techniques. In this talk we will address the following problems: (i) 
clustering via evidence accumulation, (ii) simultaneous clustering and 
dimensionality reduction, (iii) clustering under pair-wise constraints, and (iv) 
clustering with relevance feedback. Experimental results show that these 
approaches are promising in identifying arbitrary shaped clusters in 
multidimensional data.  



On Concentration of Discrete Distributions with

Applications to Supervised Learning of
Classifiers

Magnus Ekdahl and Timo Koski

Department of Mathematics
Linköpings University

SE-581 83 Linköping, Sweden

Abstract. Computational procedures using independence assumptions
in various forms are popular in machine learning, although checks on
empirical data have given inconclusive results about their impact. Some
theoretical understanding of when they work is available, but a definite
answer seems to be lacking. This paper derives distributions that max-
imizes the statewise difference to the respective product of marginals.
These distributions are, in a sense the worst distribution for predicting
an outcome of the data generating mechanism by independence. We also
restrict the scope of new theoretical results by showing explicitly that,
depending on context, independent (’Näıve’) classifiers can be as bad as
tossing coins. Regardless of this, independence may beat the generating
model in learning supervised classification and we explicitly provide one
such scenario.

1 Introduction

Factorization of joint probability distributions in various forms such as condi-
tional independence is widely used in machine learning and statistics in areas
such as pattern recognition, learning graphical models, supervised classification
and density estimation (see for example [1, 2, 3, 4]). This is not strange since a
discrete distribution with independent variables has fewer parameters than a full
discrete distribution [5] and often leads to sharper bounds on the performance
of learning [6, 7, 8].

While probabilistic independence cannot model all discrete distributions with
a preassigned level of accuracy, not much has been published about of what
kind of distributions that are worst to model with independence or how much a
distribution can differ from the independence factorization.

The main result is a set of distributions that maximizes the absolute proba-
bilistic difference w.r.t. independence, in some sense providing a theoretical coun-
terexample complementing the papers studying this effect on empirical data, c.f.
the references in the meta study on the subject available in [4]. This set of dis-
tributions also provides a restriction on the extent to which theoretical results
concerning independence can be improved. This is coupled with examples in den-
sity estimation, classification and supervised classification. Some of the examples

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 2–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On Concentration of Discrete Distributions 3

are ways to demonstrate important points, such as the fact that Näıve Bayes in
pattern recognition can be as bad as tossing a coin or that the generating model
can be suboptimal in supervised classification.

1.1 Organization

First Section 2 introduces the notation used in the paper then Section 3 presents
the main result and discusses implications in density estimation. Section 4 uses
the result in Section 3 to show explicitly that independence can yield bad re-
sults in pattern recognition and exemplifies that in empirical risk minimization
independence outperforms the generating model. All but the shortest proofs can
be found in the Appendix.

2 Notation

Let Xi be a discrete random variable, r.v., with the range {0, . . . , r − 1} for
r ∈ [2, . . . ,∞) . Random vectors will be written in bold, such as X = (Xi)d

i=1,
that is X is d dimensional, where d ∈ [2, . . . ,∞) . We denote a state of X with
no missing elements as x. When referring to the range of X, X =

⊗d
i=1 Xi will

be used. Note that we will restrict our attention to the multivariate case, where
every random element has the same range space, that is, where Xi = {0, . . . , r−1}
for all i ∈ [1, . . . , d]. The probability that X = x, that is P (X = x), will be
written in the shorter form P (x). Let P denote the set of possible distributions.
The individual elements Xi in the random vector X are independent if (and
only if) P (x) =

∏d
i=1 P (xi) for all x ∈ X . As with P (x) the short version

P (Xi = xi) = P (xi) is used for the marginal distribution. Despite of this we are
not restricted to the case where all the marginal probabilities for the elements
are equal.

3 The Worst Case Deviance

As noted in the introduction the problem of storing probability tables for high
dimensional discrete distributions is well known [5]. Independence reduces this
problem from

∏d
i=1 r − 1 to

∑d
i=1 (r − 1) required table entries. This does not

mean that independence can be introduced without problems however. This
section will elaborate on how much a distribution can differ from its independent
counterpart, where difference is in a prediction sense.

Definition 1. A discrete distribution P maximizing the state wise prediction
difference w.r.t. its independent counterpart (MSDI distribution for short), is
one such that for a reference state xj

P (x) =
{
d

−1
d−1 x = xj

0 x �= xj but there exists i ∈ [1, . . . , d] such that xi = xij
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In particular a distribution such that

P (x) =

⎧
⎪⎨

⎪⎩

d
−1

d−1 xi = 0 for all i
1 − d

−1
d−1 xi = 1 for all i

0 otherwise
(1)

is an MSDI distribution that satisfies
∑

x∈X P (x) = 1. Here 0 � P (x) � 1 since

∞ > d > 1 ⇒∞ > d
1

d−1 > 1 ⇒ 0 < d
−1

d−1 < 1 . (2)

Any distribution satisfying Definition 1 is maximizing the state wise prediction
difference of its counterpart, factorized by independence in the following way.

Theorem 1. For an MSDI distribution P̃

max
P∈P,x∈X

∣
∣
∣
∣
∣
P (x) −

d∏

i=1

P (xi)

∣
∣
∣
∣
∣

= max
x∈X

∣
∣
∣
∣
∣
P̃ (x) −

d∏

i=1

P̃ (xi)

∣
∣
∣
∣
∣

= d
−1

d−1 − d
−d

d−1 . (3)

Proof. For P̃

∣
∣
∣
∣
∣
P (xj) −

d∏

i=1

P (xij)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
P (xj) −

d∏

i=1

∑

{l|xil=xij}
P (xl)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
P (xj) −

d∏

i=1

P (xj)

∣
∣
∣
∣
∣

=
∣
∣
∣d

−1
d−1 − d

−d
d−1

∣
∣
∣, which is maximal by Theorems 2 and 3 in the appendix A.

Hence a maximum independent discrete distribution is a distribution that max-
imizes the absolute worst case probabilistic difference between the joint prob-
ability and the product of marginal probabilities (the joint probability under
the independence assumption). If r = 2 and d = 2 (the data is binary and
two-dimensional) the MSDI distribution is pictured in Table 1. Table 1 clar-
ifies the fact that when r = 2 and d = 2 the MSDI distribution corresponds
to the logical XOR function in the sense that it only has positive probability
when x1 XOR x2 = 0. A similar, but more complicated XOR distribution was
constructed in [9]. The maximal state wise difference is

d
−1

d−1 − d
−d

d−1 = 2
−1
2−1 − 2

−2
2−1 = 2−1 − 2−2 = 0.25. (4)

Table 1. XOR and a similar probability distribution

x1 x2 P (x) x1 XOR x2

0 0 0.5 1
0 1 0 0
1 0 0 0
1 1 0.5 1
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It is important to note that no two-dimensional distributions are arbitrarily far
from being independent, and in general from Theorem 1 (3) and (2) there are no
distributions (in the context of Section 2) that are arbitrarily bad in the sense
that the maximal difference is equal to 1, although as Figure 3 shows for high
dimensional distributions the worst case is pretty close to one.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
a
x
∣ ∣ ∣P

(x
)
−

∏
d i=

1
P

(x
i
)∣ ∣ ∣

d

Fig. 1. The maximum prediction error as a function of d

The result in Theorem 1 also holds asymptotically in density estimation
(learning a density given samples) in a sense given now given. Let

�a(b) =
{

1 a = b
0 a �= b

(5)

and for n independent identically distributed r.v.’s
(
X(l)

)n

l=1
let Sn,x(X) =

�x

(
X(1)

)
+ . . . + �x

(
X(n)

)
. Then Sn,x(X)/n a.s.→ P (x) as n → ∞ and for

Sn,xi(Xi) = �xi

(
X

(1)
i

)
+ . . . + �xi

(
X

(n)
i

)

d∏

i=1

[Sn,xi(Xi)/n] a.s.→
d∏

i=1

P (xi); as n→∞ . (6)

For the small sample behavior, Figure 2 shows the average from 1000 realiza-
tions of the left hand of (6), when the generating distribution is given by Table 1
(d = 2).

Hence we cannot expect that computation by independence assumption works
better than in the prediction case when learning the distribution (1) (recall that
here d

−1
d−1 − d

−d
d−1 = 0.25).
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x
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(x
)
−
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1
P̂

(x
i
)∣ ∣ ∣

n

Fig. 2. Average of 1000 ’learning’ realizations of (6)

4 Pattern Recognition

In 0 − 1 classification (C,X) is a r.v. with C ∈ {0, 1} such that the class is
denoted by c when observed. A classifier is a function ĉ : X → C such that given
x, ĉ(x) is an estimate of c. One such function is the Bayes classifier, here defined
as

ĉB(x) =
{

1; P (x|C = 1)P (C = 1) > P (x|C = 0)P (C = 0)
0; otherwise .

Bayes classifier can be defined using the posteriour P (C|X) directly, but this
may lead to difficult computations [10]. It is well known (i.e. see [8]) that Bayes
classifier is at least as good as any other ĉ(x) in the sense that

P (ĉ(X) = C) � P (ĉB(X) = C) . (7)

When approximating P by P̂ it is standard to use the plug-in function

ĉB̂(x) =
{

1; P̂ (x|C = 1)P̂ (C = 1) > P̂ (x|C = 0)P̂ (C = 0)
0; otherwise

. (8)

The approximation in question is independence, which in the context of classifiers
often is called the ’Näıve Bayes’ classifier. This is due to the ’näıve’ assumption
that

P̂ (x|c) =
d∏

i=1

P (xi|c). (9)

The Näıve Bayes assumption for specific data sets can actually perform better
than a plug-in classifier incorporating some dependencies as shown in [11]. In
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[12] Näıve Bayes has been reported as performing worse than taking dependence
into account (but not on all data sets), and even then the difference was in
many cases not large. In [9] it is found as suboptimal in most data sets. A more
in-depth Meta study on the subject is [4].

From a theoretical standpoint there exist cases when it is possible to prove
that independence works in pattern recognition. For example:

1. The distribution P (x|c) is very concentrated [13, 14]
2. The distribution P (x|c) is very non-concentrated [15]
3. The margin |P (x|C = 0) − P (x|C = 1)| is large [13, 14, 16]
4. The very part in 2,3 is reduced in the case of partial independence [14, 17]

However, an important question that naturally arises is if class conditional inde-
pendence can be proven to be good enough for classification in general. That
this is not the case will be shown after the next definition.

Definition 2. The Hamming distance between two states xj and xl, here de-
noted by d(xj ,xl) is the number of elements where xj and xl are different.

Example 1. Let d = 3, r = 2 and P̂ (c) = P (c) = 1
2 for all c ∈ {0, 1}. Let

P (x|C = 0) be the distribution in (1). Since

P (xi|C = 0) =
{

3−
1
2 xi = 0

1 − 3−
1
2 xi = 1

(10)

the distribution imposed by the independence assumption is as follows

P̂ (x|C = 0) =
3∏

i=1

(
3−

1
2

)1−xi
(

1 − 3−
1
2

)xi

.

For C = 1 let

P (x|C = 1) =

⎧
⎪⎪⎨

⎪⎪⎩

0 d(x, [0, 0, 0]) = 0
3−

1
2 − 1

3 d(x, [0, 0, 0]) = 1
2
3 − 3−

1
2 d(x, [0, 0, 0]) = 2

0 d(x, [0, 0, 0]) � 2

, (11)

then
∑

x∈X P (x) = 3
(

3−
1
2 − 1

3

)
+ 3

(
2
3 − 3−

1
2

)
= 1 and

P (Xi = 1|C = 1) = 3−
1
2 − 1

3
+

(
2
1

)(
2
3
− 3−

1
2

)

=
2
3
−

(

3−
1
2 − 1

3

)

= 1 − 3−
1
2

as well as

P (Xi = 0|C = 1) =
(

2
1

)(

3−
1
2 − 1

3

)

+
(

2
3
− 3−

1
2

)

= 3−
1
2 − 2

3
+

2
3

= 3−
1
2 .

In summary P̂ (x|C = 1) = P̂ (x|C = 0) yielding for P (ĉ(X) = C) = P (C =
0) = 1

2 for the plug-in Bayes classifier in (8). This is a bad case computation
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by independence in the sense that construction of an estimate based on features
yields the same performance/classifier as not using the features at all (ĉB̂(x) = 0
for all x ∈ X ). It also has the same performance as choosing a class randomly
with equal probability, for example by using a fair coin.

Supervised classification poses different challenges for computation under the
independence assumption. In this context learning means that a rule is learned
from n independent identically distributed r.v.’s (X(l), C(l))n

l=1. We will now
show that a generating model with no independet variables translated to a rule
c
(n)
F need not be optimal. In this context an optimal rule is a rule ĉ(n)

∗ such that
for all other ĉ(n) ∈ B

P

[

ĉ(n)

(

Xn|
(
C(l), X(l)

)n−1

l=1

)

=C(n)

]

�P

[

ĉ
(n)
∗

(

Xn|
(
C(l), X(l)

)n−1

l=1

)

=C(n)

]

.

One rule that takes dependence into account is the fundamental rule, which
is defined as

ĉ
(n)
F (x|(x(l), c(l))n

l=1) :=
{

1
∑n

l=1 �(x,1)

(
x(l), c(l)

)
>

∑n
l=1 �(x,0)

(
x(l), c(l)

)

0 otherwise
.

The supervised classifier that assumes corresponding (class conditional) inde-
pendent rule is ĉ(n)

I (x|(x(l), c(l))n
l=1) :=

{
1 P̂ (C = 1)P̂ (x1|C = 1)P̂ (x2|C = 1) > P̂ (C = 0)P̂ (x1|C = 0)P̂ (x2|C = 0)
0 otherwise

,

where

P̂ (C = c) =

{ ∑n
l=1 �c(c(l))

n , n > 1
0 otherwise

and

P̂ (xi|C = j) =

⎧
⎨

⎩

∑n
l=1 �xi

(
x
(l)
i ,c(l)

)

∑n
l=1 �j(c(l))

∑n
l=1 �j

(
c(l)

)
> 0

0 otherwise
. (12)

Example 2. In this example r = 2, d = 2 and P (c) = 1
2 for all c ∈ {0, 1}, where

the class conditional probabilities are tabulated in Table 2.
With the independence assumption one gets the class conditional probabilities

in Table 3.
While the class conditional probabilities are not correct given the indepen-

dence assumption it is true that

arg max
c∈C

P (c)P (x|c) = arg max
c∈C

P (c)P (x1|c)P (x2|c)

for all x1 ∈ X1 and x2 ∈ X2. So here Bayes classifier is equivalent to the Näıve
Bayes classifier. For [0, 0], [1, 0] Bayes Classifier will choose class 1, otherwise
class 2. Hence P (ĉB(X) = C)

= P (C = 0) [P ([0, 0]|0) + P ([1, 0]|0)] + P (C = 1) [P ([0, 1]|1) + P ([1, 1]|1)] = 0.7.
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Table 2. Class conditional probabilities

C = 0
P (X|C = 0) X1 = 0 X1 = 1

X2 = 0 0.4 0.3
X2 = 1 0.2 0.1

C = 1
P (X |C = 1) X1 = 0 X1 = 1

X2 = 0 0.1 0.2
X2 = 1 0.3 0.4

Table 3. Class conditional probabilities with the Independence assumption

Xi = 0 Xi = 1
P (X1|C = 0) 0.6 0.4
P (X2|C = 0) 0.7 0.3

Xi = 0 Xi = 1
P (X1|C = 1) 0.4 0.6
P (X2|C = 1) 0.3 0.7

C = 0
P (X1|C)P (X2|C) X1 = 0 X1 = 1

X2 = 0 0.42 0.28
X2 = 1 0.18 0.12

C = 1
P (X1|C)P (X2|C) X1 = 0 X1 = 1

X2 = 0 0.12 0.18
X2 = 1 0.28 0.42

This is the absolute maximum that can be achieved by ĉ(n) and/or ĉI in the
sense of (7).

Figures 3 contains plots on the Monte Carlo simulated effect of the funda-
mental rule versus the independent rule. Note that the number of training data
affects which rule is best (of the two rules simulated). In particular there exists
an n where the independent rule has a higher probability of classifying correctly
than the fundamental rule. Figure 4 shows the explicit difference with confi-
dence interval, thus showing that the results are very probable. Hence taking
the dependencies in the generating model into account is not optimal in general.
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Fig. 3. Average performance of rules as function of n
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Fig. 4. Average difference between the Fundamental and Independent rule

5 Conclusions

The computational independence assumption is widely used in one form or an-
other. When using independence or improving upon computational independence
it is useful to know of its limitations. A class of distributions that maximizes the
state wise probabilistic difference to its product of marginals has been derived.
It has been shown that in low dimensions that in the context of Section 2 there
are no distributions arbitrarily far from being independent, in particular for low
dimensions. The use of MSDI distributions has been demonstrated in learning
densities and classification. It has been shown that in supervised classification
computational independence can outperform independence assumptions based
on the generating models and that this performance may not only depend on
the generating model but also on the number of samples.
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A Technical Results Used in the Proof of Theorem 1

We will prove Theorem 3 (used in the proof of Theorem 1) through extending
the theory in [15]. Let pj = P (xj), p := maxx∈X P (x) and

h = arg max

{

g|g ∈ {0, 1, . . . , d},
g∑

b=1

(r − 1)b

(
d
b

)

� 1 − p1

p

}

. (13)
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Definition 3. Let IHB be defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

1 − 1 − p

d− 1

)d−1

(1 − p) ; for p � 1
d

(14)

(

1 − 1
d

)d

; for
1

(r − 1)d
� p � 1

d
(15)

max
p1∈{max(0,1−p(|X |−1)),p}

([

1 − p

h∑

b=1

(r − 1)b

(
d− 1
b− 1

)

−
(

1 − p

h∑

b=1

(r − 1)b

(
d
b

)

− p1

)
h + 1
d

]d

− p1

⎞

⎠ ; for p � 1
(r − 1)d

(16)

Theorem 2. [15] For all x ∈ X , P ∈ P
∣
∣
∣
∣
∣
P (x) −

d∏

i=1

P (xi)

∣
∣
∣
∣
∣
�

{
IHB for P (x) �

∏d
i=1 P (xi) (17)

p− pd otherwise. (18)

A theory will be developed that will show that max
(
p− pd, IHB [p]

)
= d

−1
d−1 −

d
−d

d−1 , then it only remains to find a distribution such that the evaluation
maxx∈X

∣
∣
∣P (x) −

∏d
i=1 P (xi)

∣
∣
∣ = d

−1
d−1 − d

−d
d−1 holds.

Lemma 1. maxp∈[0,1]

(
p− pd

)
= d

−1
d−1 − d

−d
d−1

Proof. Define g(p) := p − pd. The only extreme point is given by d
dag(a) =

1 − d · ad−1 = 0 ⇔ a = d
−1

d−1 . Finally d2

da2 g(a) = −d(d− 1)ad−2 < 0 when a > 0,
so this point gives a maximum.

The maximization of IHB(p) part of max
(
p− pd, IHB(p)

)
is carried out

through showing that

max
p∈A

IHB(p) =
(

1 − 1
d

)d

for both A =
[

1−p1
|X |−1 ,

1
d

]
and A =

[
1
d , 1

]
.

Lemma 2

max
p∈[ 1

d ,1]
IHB(p) =

(

1 − 1
d

)d

(19)

Proof From Definition 3 (14) we have IHB(p) =
(

1 − 1−p
d−1

)d−1

(1 − p) when

p ∈
[

1
d , 1

]
. Furthermore

d

dp
IHB(p) = −

(

1 − 1 − p

d− 1

)d−1

+
(

1 − 1 − p

d− 1

)d−2

(1 − p)
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=
(

1 − 1 − p

d− 1

)d−2 (

−1 +
(1 − p)
d− 1

+ (1 − p)
)

=
(

1 − 1 − p

d− 1

)d−2 (
(1 − p) − p(d− 1)

d− 1

)

=
(

1 − 1 − p

d− 1

)d−2 (
1 − d · p
d− 1

)

� 0

when p ∈
[

1
d , 1

]
. Now (14) for 1

(r−1)d � p � 1
d yields (19)

max
p∈[ 1

d ,1]
IHB(p) = IHB

(
1
d

)

=
(

1 − 1
d

)d

.

We continue to maximize IHB(p) for small values of p.

Definition 4. Given p1 let {pi} ⊂
[

1
|X | ,

1
(r−1)d

]
be the biggest set such that for

all i

h = arg max

{

g|g ∈ {0, 1, . . . , d},
g∑

b=1

(r − 1)b

(
d
b

)

� 1 − p1

pi

}

⇒
h∑

b=1

(r − 1)b

(
d
b

)

=
1 − p1

pi
(20)

Now all changes from h = k to h = k + 1 can be modeled by a ↓ 0 for pi + a,
since

h∑

b=1

(r − 1)b

(
d
b

)

=
1 − p1

pi
⇒

h∑

b=1

(r − 1)b

(
d
b

)

>
1 − p1

pi + a

for all a > 0.

Lemma 3. Let 0 < c <∞, g ∈ � and let pi be as in Definition 4. Let

lim
a↓0

c

[

1 − (pi + a)
k∑

b=1

(r − 1)b

(
d− 1
b − 1

)

−
(

1 − p1 − (pi + a)
k∑

b=1

(r − 1)b

(
d
b

))
k + 1
d

]g

→ c

[

1 − pi

k+1∑

b=1

(r − 1)b

(
d− 1
b− 1

)]g

. (21)

Proof. f(pi + a) :=

1 − (pi + a)
k∑

b=1

(r − 1)b

(
d− 1
b− 1

)

−
(

1 − p1 − (pi + a)
k∑

b=1

(r − 1)b

(
d
b

))
k + 1
d
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Here a δ(ε) > |a| is found such that

δ(ε)

∣
∣
∣
∣
∣
f(pi + a) −

[

1 − pi

k+1∑

b=1

(r − 1)b

(
d− 1
b− 1

)]∣
∣
∣
∣
∣
< ε.

We have
∣
∣
∣
∣f(pi + a) −

[

1 − pi

∑k+1
b=1 (r − 1)b

(
d− 1
b− 1

)]∣
∣
∣
∣

=

∣
∣
∣
∣
∣
−(pi + a)

k∑

b=1

(r − 1)b

(
d− 1
b− 1

)

−
(

1−p1 − (pi+a)
k∑

b=1

(r−1)b

(
d
b

))
k+1
d

+pi

k+1∑

b=1

(r − 1)b

(
d− 1
b− 1

)∣
∣
∣
∣
∣
.

That 1 − pi = pi

(
1−p1

pi

)
and collecting all the pi and a terms and term yields

=

∣
∣
∣
∣
∣
pi

(

−
k∑

b=1

(r − 1)b

(
d− 1
b− 1

)

+

(

−1 − p1

pi
+

k∑

b=1

(r − 1)b

(
d
b

))
k + 1
d

+

k+1∑

b=1

(r − 1)b

(
d− 1
b− 1

))

+ a

(

−
k∑

b=1

(r − 1)b

(
d− 1
b− 1

)

+
k + 1
d

k∑

b=1

(r − 1)b

(
d
b

))∣
∣
∣
∣
∣
.

Further simplification of the pi factor yields

=

∣
∣
∣
∣
∣

pi(k + 1)
d

(

−1 − p1

pi
+

k∑

b=1

(r − 1)b

(
d
b

)

+ (r − 1)k+1

(
d

k + 1

))

+a

(

−
k∑

b=1

(r − 1)b

(
d− 1
b− 1

)

+
k + 1
d

k∑

b=1

(r − 1)b

(
d
b

))∣
∣
∣
∣
∣
.

Then Definition 4 (20) reduced the expression to

� a

∣
∣
∣
∣
∣
−

k∑

b=1

(r − 1)b

(
d− 1
b− 1

)

+
k + 1
d

k∑

b=1

(r − 1)b

(
d
b

)∣
∣
∣
∣
∣

With
δ =

ε
∣
∣
∣
∣−

∑k
b=1(r − 1)b

(
d− 1
b− 1

)

+ k+1
d

∑k
b=1(r − 1)b

(
d
b

)∣
∣
∣
∣

δ > |a| yields
∣
∣
∣
∣f(pi + a) −

[

1 − pi ·
∑k+1

b=1 (r − 1)b

(
d− 1
b− 1

)]∣
∣
∣
∣ < ε, hence the

lima↓0 f(pi + a) = f(pi). Then the fundamental limit theorem gives (21).
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Lemma 4

max
p∈[ 1

|X| , 1
(r−1)d ]

IHB(p) =
(

1 − 1
d

)d

Proof Let

f(p) =

[

1 − p ·
h∑

b=1

(r − 1)b

(
d− 1
b− 1

)

−
(

1 − p

h∑

b=1

(r − 1)b

(
d
b

)

− p1

)
h + 1
d

]d

=

[

1 − (1 − p1)
h + 1
d

+ p
h∑

b=1

(r − 1)b

(
h + 1
d

(
d
b

)

−
(
d− 1
b− 1

))]d

since h+1
d

(
d
b

)

= (h+1)d!
d·b!(d−b)! = (h+1)(d−1)!

b·(b−1)!(d−b)! = h+1
b

(
d− 1
b− 1

)

and then compacting

using constants c1 and c2 � 0

=

[
d + p1(h + 1)

d
+ p ·

h∑

b=1

(r − 1)b

(
d− 1
b− 1

)(
h + 1
b

− 1
)]d

= [c1 + p · c2]d .

Finally c1 + p · c2 � 0 since it represents a probability (see the proof of Lemma
10 in [15]) so

d

dp
f(p) = d · c2 · [c1 + p · c2]d−1 � 0.

To maximize f(p) p should chosen to be as big as possible for each fixed p1 and
h. Also when h changes so we use Lemma 3 to show that this is not a problem,
i.e. lima↓0 f(pi + a) → f(pi) as well as lima↓0

d
dpf(pi + a) → d

dpf(pi). Hence

max
p∈[ 1

|X| , 1
(r−1)d ]

IHB(p) = max
p∈[ 1

|X| , 1
(r−1)d ],p1∈[...]

f(p) =

= max
p1∈[...]

[

max
p∈[ 1

|X| , 1
(r−1)d ]

f(p)

]

= max
p1∈[...]

[

IHB

(
1

(r − 1)d

)]

= max
p1∈[...]

[(

1 − 1
d

)d
]

=
(

1 − 1
d

)d

.

Now both p − pd (Lemma 1) and IHB(p) (Lemmas 2 and 4) have been
maximized.

Theorem 3

max

(

max
p∈[ 1

|X| ,1]
IHB(p), max

p∈[ 1
|X| ,1]

(
p− pd

)
)

= d
−1

d−1 − d
−d

d−1 . (22)
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Proof. By Lemma 1, 4 and Definition 3

max
p∈[ 1

|X| ,1]
IHB(p) =

(

1 − 1
d

)d

and by Lemma 1 maxp∈[ 1
|X| ,1]

(
p− pd

)
= d

−1
d−1 − d

−d
d−1 . Let f(a) =

(
1 − 1

a

)a

for a ∈ �, then lima→∞ f(a) ↑ e−1
≈ 0.3679 (see for example [18]). Hence

f(d) < 0.37 for all d � 2. Let f2(d) = d
−1

d−1 − d
−d

d−1 then we have f2(2) = f(2)
and f2(3) ≈ 0.3849. Using (4) we get for a � 2

d

da
f2(a) =

ln (a) a
−1

a−1

(a− 1)a
� 0 .

Hence f2(d) �
(
1 − 1

d

)d and (22) follows.
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Abstract. In this paper we consider multiclass learning tasks based on
Support Vector Machines (SVMs). In this regard, currently used meth-
ods are One-Against-All or One-Against-One, but there is much need for
improvements in the field of multiclass learning. We developed a novel
combination algorithm called Comb-ECOC, which is based on posterior
class probabilities. It assigns, according to the Bayesian rule, the re-
spective instance to the class with the highest posterior probability. A
problem with the usage of a multiclass method is the proper choice of pa-
rameters. Many users only take the default parameters of the respective
learning algorithms (e.g. the regularization parameter C and the ker-
nel parameter γ). We tested different parameter optimization methods
on different learning algorithms and confirmed the better performance
of One-Against-One versus One-Against-All, which can be explained by
the maximum margin approach of SVMs.

1 Introduction

All multiclass learning methods considered here are based on Support Vector
Machines, which are presented for example by Schölkopf and Smola [22] and
Vapnik [25]. Mostly, several binary classifications are resolved by an SVM, which
are then combined to a multiclass solution. Our goal is to present improved
methods in the open-research field of multiclass learning.

In section 2 we start with the presentation of different state-of-the-art multi-
class algorithms. We consider the standard methods One-Against-All (OAA) and
One-Against-One (OAO) using implementations of the libsvm [11] and SVMlight
[15]. We continue with two direct approaches, which are not based on several
binary optimization problems: the algorithm by Crammer and Singer [4] and
SVMmulticlass based on the theory of [24]. Furthermore we use the exhaus-
tive ECOC algorithm introduced by Dietterich and Bakiri [5] and present a
novel combination approach of ECOC, OAA and probability predictions. This
method ist called Comb-ECOC and has been developed in [14]. The probability
predictions are based on Bradley-Terry models described in [13].

The next principal subject of this paper will be the parameter optimiza-
tion. In many applications, Support Vector Machines are used with their default

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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parameters. Optimizing the parameters improves the classification performance
drastically, which will be shown in section 3. We consider different optimization
methods, such as the common grid search and the SVMpath algorithm intro-
duced in [10].

Finally, we give results obtained from different test runs with all considered
multiclass algorithms and parameter optimization methods in section 3, together
with the practical confirmation of the maximum margin explanation in the case
of One-Against-One and One-Against-All. A final discussion is carried out in
section 4.

2 Theoretical Background

In this section we consider the multiclass algorithms from a theoretical point
of view. We shortly describe the principal ideas of both the learning methods
and the parameter optimization. In order to avoid later misunderstandings, we
here already enumerate the used algorithms in Table 1. Detailed experiments
and comparisons can also be found in [9] and [12]. In the latter, especially One-
Against-One is suggested for real-world applications, which will be confirmed by
our analysis.

We start with a general description of the multiclass learning task, in order
to appoint the notations used in this paper: We consider an input space X =
{x1, ..., xm} and assign k > 2 classes to this set, so that each element in X belongs
to exactly one class. The goal is to find a decision function f : X → {1, ..., k} to
get a pair (xi, f(xi)) for all i = 1, ...,m. The assigned class f(xi) = r ∈ {1, ..., k}
is also called label. We furthermore distinguish between the input space and the
feature space. The input space X can be anything. It is not necessary that it con-
sists of vectors or numerical values. In contrast, the feature space F is a high di-
mensional vector space. In this paper, let its dimension be defined as n. A map
Φ : X → F is used to assign an element of the input space to a vector in the fea-
ture space. In order to avoid the computation ofΦ, we simply use a kernel function
k(x, x′) = 〈Φ(x), Φ(x′)〉 for all x, x′ ∈ X . Here we only give results obtained by
using Gaussian kernels k(x, x′) = exp(−γ||x − x′||2), γ ∈ IR, because pursuant
to [14], it delivers the best results and the corresponding SVM algorithm works
faster in comparison to the polynomial and the sigmoid kernel. Instead of predict-
ing classes we also use methods which predict posterior class probabilities.

2.1 Standard Multiclass Algorithms

One-Against-All (OAA). A well-known simple approach for the assignment
of instances to several classes is to separate each class from all the other classes.
This method is called One-Versus-the-Rest or One-Against-All and bears on k
binary classificators f1, ..., fk, where k is the number of classes. In order to
classify a test point x, one computes the decision function

f(x) = arg max
j=1,...,k

m∑

i=1

yiα
j
ik(x, xi) + bj , (1)
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Table 1. Description of the different multiclass learning algorithms

Algorithm Description Section

OAA One-Against-All classification by libsvm using binary
class probabilities

2.1

OAO One-Against-One classification by libsvm, voting 2.1
SVMpath SVMpath algorithm described in [10] using the appropri-

ate predict function
2.6

SVMlight-OAA Interface between R and SVMlight, One-Against-All clas-
sification

2.1

SVMlight-OAO Interface between R and SVMlight, One-Against-One
classification

2.1

Crammer-Singer Multiclass Algorithm by Crammer and Singer [4] 2.2
SVMmulticlass Direct Algorithm by Thorsten Joachims [24] 2.2
ECOC Standard Exhaustive ECOC Algorithm by Dietterich and

Bakiri [5] using the libsvm for binary classification
2.3

ECOC-SVMpath ECOC with SVMpath as binary predictor 2.3, 2.6
Comb-ECOC Combined ECOC Algorithm, combination with OAA

predicting posterior class probabilities
2.4

where the index j refers to the binary separation of class j from the rest. The
coefficients αi and b stem from the dual optimization problem, which is set up
in the context of binary Support Vector Machine classification, see e.g. [3]. We
use this method in two implementations: First, we consider the method named
OAA (see Table 1), which uses binary class probabilities computed – pursuant
to [19] – by:

P (j|x) =
1

1 + exp(Af j(x) + B)
, (2)

where f j is the binary classificator that separates class j from the rest. A and B
are parameters obtained by the minimization of a negative log-likelihood func-
tion. Then the class is computed by:

f(x) = arg max
j=1,...,k

P (j|x). (3)

The second implementation called SVMlight-OAA is based on the interface
between R [21] and SVMlight [15] (website: http://svmlight.joachims.org)
provided by the R-library klaR (see [20]). It calls SVMlight k times for all k
binary classifications and computes the class by equation (1).

One-Against-One (OAO). The idea of this method is to extract all pairs of
classes and accomplish a binary classification between the two classes in each
pair. Altogether, there are

(
k
2

)
= k(k−1)

2 binary classifications. The training set
contains only elements of two classes. The other training instances are eliminated
from the set. This results in a smaller complexity in comparison to the One-
Against-All method, but the number of classes is O(k2) instead of O(k). The
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assignment of a class to a test point occurs by voting. Pursuant to [16], an
advantage of the pairwise classification is that in general, the margin is larger
than in the OAA case, as we can see from Figure 1. Moreover, the difference of
the margin sizes is bigger in the OAO case. Very large margins are possible to
appear.
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Fig. 1. Comparison of the margin size in the case of OAA and OAO (4 classes): In the
left picture class 1 is separated from the rest. The margin is small. In the middle class
1 is separated from class 2 and in the right picture class 1 is separated from class 3.
The margin is larger in general. The margin size differs more in the OAO case. The
right picture shows a very large margin.

We use OAO from the libsvm (see [17]) as a function called svm from the
R-package e1071 (see [6]).

2.2 Direct Multiclass Algorithms

In our evaluation, we use two direct methods. Direct means that there is only
one optimization problem to solve instead of multiple binary ones.

The Algorithm by Crammer and Singer. The direct approach consists in
formulating one quadratic program with constraints for each class. The algorithm
developed by Crammer and Singer [4] is based on the same idea as the OAA-
approach, namely to look for a function HM : F → {1, ..., k} of the form

HM (x) = arg
k

max
r=1

{Mr · x}, (4)

where M is a matrix with k rows and n columns and Mr the rth row of M . The
aim is to determine M , so that the training error is minimized.

We take the implementation of this algorithm from the R-library kernlab. The
used function is named ksvm.

The Algorithm by Thorsten Joachims. This method is based on [24], where
the composition of the optimization problem and its solution are described in
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detail. The first reason for finding a more general direct multiclass algorithm
is the fact that in real world examples, one does not only have labels in IN.
The label set can be arbitrary. For instance, it can consist of structured output
trees. The output set Y does not have to be a vector space. The second reason is
allowing different loss functions. Most multiclass algorithms only minimize the
zero-one-loss.

We use the software SVMmulticlass implemented by Thorsten Joachims (see
http://www.cs.cornell.edu/People/tj/svm light/svm multiclass.html).

2.3 Error Correcting Output Codes

A very simple but efficient method is based on Error Correcting Output Codes
(the so-called ECOC method) and has been developed by Dietterich and Bakiri
[5]. ECOC is not a direct application but uses several binary classifications like
OAA and OAO. The main difference between OAA, OAO and ECOC is that
these are not predisposed. They can be chosen arbitrarily and are determined by
a coding matrix. The advantage of the usage of error correcting output codes is
that several binary classification errors can be handled, so that no error occurs
in the multiclass problem. We use an exhaustive code matrix, as proposed in [5].
The ECOC algorithm is part of our own implementation.

2.4 Combined ECOC Method

The novel Comb-ECOC algorithm (see also [14]) is a mixture of OAA, ECOC
and probability prediction. The results of three different partial algorithms are
combined by a combination method. We use three code matrices, one defined by
the user himself and two generated at random. The random code matrices are
composed, so that the minimum Hamming distance is equal to � �

2�. The number
of binary classificators � is a random integer between 2k and 2k, so the algorithm
can be NP-complete, like the Exhaustive-ECOC algorithm of section 2.3. This
disadvantage can be reduced by precalculating the code matrices for a given k.
Furthermore we use the binary class probabilities computed by equation (2) for
each of the � binary classificators and apply Bradley-Terry methods to estimate
the multiclass probabilities following [13]. The optimization problem results in a
fixpoint algorithm. The complete procedure of Comb-ECOC is described in [14].

All three initial code matrices contain OAA columns, that means columns
which define an OAA classification (one entry 1 and the rest 0). By a small
modification of the convergence proof in [13], one can show that the fixpoint
algorithm converges with this assumption. A test point is assigned to the class
with the highest posterior probability.

The fact that we consider three different code matrices delivers three different
multiclass models mi, i = 1, ..., 3. These models can be combined in order to be
able to compensate the weaknesses of particular models, as described in [8]. We
illustrate the idea of combination by the following example:

Example 1 (Combination of multiclass models). Consider k classes and μ
multiclass models. Let pi(xj,r) be the posterior probability with which a test point
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xj belongs to a class r ∈ {1, ..., k} predicted by the multiclass model mi, i ∈
{1, ..., μ}. Let furthermore pcomb(xj,r) be the resulting combination classificator.
Then xj is assigned to a class as follows:

class(xj) = arg max
r=1,...,k

pcomb(xj,r). (5)

We consider different combination models for pcomb:

1. The maximum: pcomb(xj,r) = maxi=1,...,μ pi(xj,r)
2. The minimum: pcomb(xj,r) = mini=1,...,μ pi(xj,r)
3. The average: pcomb(xj,r) = 1

μ

∑μ
i=1 pi(xj,r)

4. The median:

pcomb(xj,r) =

{
p μ

2
(xj,r)+p μ

2 +1(xj,r)

2 : μ is even
pμ+1

2
(xj,r) : μ is odd

(6)

5. The entropy:

pcomb(xj,r) = Hr(xj) =
1
μ

μ∑

i=1

pi(xj,r)

−
∑k

s=1 pi(xj,s) log pi(xj,s)
(7)

6. The product:

pcomb(xj,r) =
μ∏

i=1

pi(xj,r) (8)

2.5 Parameter Optimization Via Grid Search

In order to show that it is not sufficient to use the default parameters of the
respective methods, we performed a parameter optimization via grid search.
The parameters we consider are the SVM regularization parameter C and the
Gaussian kernel parameter γ. We first defined a training set and a test set of the
original dataset. To warrant the comparability of the results we used the same
training set and the same test set for all algorithms and optimization methods.
For the parameter optimization itself, we determined 10 bootstrap replications
on the training set (for details concerning the bootstrap see [7]). Each of them is
evaluated with different parameter pairs. The parameter pair with the smallest
mean error over the 10 bootstrap replications is taken for predictions on the
test set.

The parameters are defined on a grid, that means that we only allow a fi-
nal number of parameters for the optimization. For computational reasons, we
only use C ∈ C = {2−2, 2−1, ..., 23, 24} and γ ∈ G = {2−3, 2−2, ..., 22, 23}.
In total, have 7 · 7 · 10 = 490 bootstrap replications in our optimization pro-
cess. If we have two or more pairs (C, γ) with the same mean error rate over
the 10 bootstrap replications, we take the pair with the largest C to facili-
tate the choice of the maximum margin classification. We differenciate between
two methods: global and local. The global method tunes the whole multiclass
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algorithm globally, that means it takes one pair (C, γ) for the entire algo-
rithm, i.e. the same pair for all contained binary classifications. However, the
local method tunes all binary classificators, making a grid search for each bi-
nary classification. Therefore, in the global case we have a for-loop over C
and over γ and evaluate the multiclass algorithm with C and γ. The result
is one parameter pair (C, γ). In the local case we implemented a for-loop over
all � binary classificators, which in turn contains the C- and the γ-for-loops.
Then the binary classification i ∈ {1, ..., �} is made with C and γ. The re-
sult is a vector (Ci, γi)i=1,...,�. The computational complexity of the global
optimization is |C| · |G| · #(op. in the multiclass algorithm). The complexity of
the local optimization is � · |C| · |G| · #(op. in the binary algorithm). But espe-
cially in the case of the ECOC algorithms: #(op. in the multiclass algorithm) ≥
� · #(op. in the binary algorithm). Therefore the local optimization method is
faster in general.

2.6 Parameter Optimization Via SVMpath

In [10], a different method to optimize the cost parameter C is suggested. They
compute the entire regularization path for a binary Support Vector Machine
algorithm. The advantage of the calculation of this path is the fact that the
complexity is as large as the one of a usual SVM algorithm. Consider the decision
function f(x) = β0 + g(x), where

∀i=1,...,m g(xi) =
1
λ

m∑

j=1

αjyjk(xi, xj) (9)

with αj the Lagrangian multipliers of the SVM optimization problem and λ = 1
C .

Then the following definitions are made:

– E := {i|yif(xi) = 1, 0 ≤ αi ≤ 1} is called Elbow
– L := {i|yif(xi) < 1, αi = 1} is called Left of the Elbow
– R := {i|yif(xi) > 1, αi = 0} is called Right of the Elbow.

For the calculation of the optimal λ a Linear Equation System has to be
solved. The respective matrix can be singular, which is a problem of the SVMpath
algorithm.

3 Results

Finally, we show some results from the evaluation of the algorithms indicated in
Table 1. We took the Glass dataset for the evaluation. It consists of 241 instances,
9 features and 6 classes and stems from the UCI repository of machine learning
databases [18]. The task of the Glass problem is to discriminate between different
glass types to support criminological and forensic research. As mentioned in
section 2.5, we divided the dataset into a training and a test set. Table 2 shows
the classification error rates (= 1 − test accuracy) for the application of the
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Table 2. Error Rates, runtime in CPU seconds (on an Intel Pentium IV processor
with 3.06 GHz and 1 GB RAM) and number of support vectors for Glass dataset with
default and optimal parameters for each algorithm and each optimization method.
The mean of the support vectors (over all binary classifications) with the standard
deviations in parentheses are mostly indicated. Exceptions: OAO-global (total number
of support vectors, specific output of libsvm), Crammer-Singer/SVMmulticlass (Note
that these are direct algorithms. See [4] and [24] for more details.) Note that in the
case of Comb-ECOC we have three different code matrices: the user defined matrix (U)
and two randomly defined matrices (R1, R2).

Results with Default Parameters of each Multiclass Algorithm

Algorithm Error Rate Runtime Number of SVs

OAA 0.27 0.53 57.17 (38.85)
OAO 0.34 0.09 132.00
SVMlight-OAA 0.34 0.98 85.17 (29.53)
SVMlight-OAO 0.38 2.27 32.27 (17.14)
Crammer-Singer 0.28 0.46 480.00
SVMmulticlass 0.27 3.33 430.00
ECOC 0.45 1.81 84.42 (33.51)
Comb-ECOC 0.48 189.92 U: 96.07 (28.95)

R1: 101.00 (24.92)
R2: 101.00 (24.91)

Error Rates and Runtime with Parameter Optimization

Optimization Method

Algorithm Global Local SVMpath

OAA 0.30 947.64 0.38 1695.26 0.30 23.88
OAO 0.31 282.63 0.30 1062.92 0.28 5.63
SVMpath – – 0.30 4.47
SVMlight-OAA 0.33 95.5 0.30 1253.93 0.34 19.72
SVMlight-OAO 0.33 217.62 0.33 2522.45 0.30 10.34
SVMmulticlass 0.25 817.79 – –
ECOC 0.47 996.54 0.44 944.09 0.52 81.29
ECOC-SVMpath – – 0.48 87.36
Comb-ECOC 0.28 57822.65 0.23 5279.15 0.31 458.38

Number of Support Vectors with Parameter Optimization

Optimization Method

Algorithm Global Local SVMpath

OAA 70.00 (37.36) 64.00 (40.63) 48.00 (34.04)
OAO 135.00 28.47 (18.58) 21.13 (15.22)
SVMpath – – 14.8 (8.67)
SVMlight-OAA 82.00 (24.47) 72.17 (30.31) 34.00 (21.73)
SVMlight-OAO 32.6 (13.83) 24.27 (15.90) 14.8 (9.50)
SVMmulticlass 570.00 – –
ECOC 101.84 (22.31) 88.87 (28.34) 94.03 (15.81)
ECOC-SVMpath – – 61.81 (21.87)
Comb-ECOC U: 20.35 (4.66) U: 33.10 (2.45) U: 42.47 (22.05)

R1: 21.67 (3.62) R1: 33.82 (2.55) R1: 53.48 (22.65)
R2: 21.65 (3.70) R2: 33.64 (2.44) R2: 53.48 (22.65)

model established by the Glass training set on the independent test set with the
optimal parameters computed by the methods described in sections 2.5 and 2.6.
The training set contains about 70% of the original dataset. It is guaranteed
that all classes are contained both in the training set and in the test set.
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The results are comparable with error rates obtained by authors of other re-
views: Szedmak and Shawe-Taylor [23] got results in the range of 0.3-0.4 with
standard OAA and OAO algorithms, Garćıa-Pedrajas and Ortiz-Boyer [9] a re-
sult of 0.28. Friedrich [8] used 50 bootstrap replications which evoked 50 error
rates. Their mean was 0.39 with a standard deviation of 0.04, using a k-Nearest-
Neighbor algorithm, 0.40 with a standard deviation of 0.07 using a Decision Tree
based method and 0.41 with a standard deviation of 0.07 using a Linear Dis-
criminant Analysis. The best result obtained by [8] was 0.23 with evolutionarily
generated architectures of neural networks and combination models originated
from bagging (see [2]). The best result of 0.23 in Table 2 is obtained by Comb-
ECOC with a local parameter optimization. In general, the local optimization
delivers the best results but also from svmpath, quite good results are achieved,
especially with the simple multiclass algorithms that use the libsvm.

Table 2 also shows the results obtained with the default parameters of the
methods. Note that ECOC and Comb-ECOC use the libsvm and SVMlight, re-
spectively, as binary classificators. So we only took the binary default parame-
ters. We also got a result from the method by Crammer and Singer described
in section 2.2. Due to high runtimes during the parameter optimization, we did
not indicate any results for it in the lower tabulars of Table 2.

If we compare these results with the error rates in the tabular below, we see
that the results are much worse than with parameter optimization, except in
the case of OAA and ECOC (global and svmpath optimization). Mainly in the
case of the ECOC algorithms, a good parameter optimization is indispensable.
To explain this, we differenciate between two kinds of classification errors:

1. Errors occuring because of overlapping classes
2. Errors occuring because of classes that are too far away from each other with

other classes between them.

Especially errors of the second type can be serious. Depending on how the
classes are distributed in the input space and which classes have to be merged
by a binary classificator, the Gaussian kernel may not accomplish several classi-
fications anymore. Therefore, the choice of better parameters is necessary.
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Fig. 2. Artificial Datasets with different margin sizes for OAA and OAO. Each class is
defined by a unit circle. The first dataset has one, the second has two overlap regions.
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It is not excluded that the default parameters are better than the optimized
ones. This can have two reasons:

1. They are not taken from a grid but defined by another way, so their domain
is different.

2. As we use bootstrapping for finding the optimal parameters, the parameters
can differ from run to run, as the bootstrap replicates are defined at random.

Table 3. Error Rates, runtime and number of support vectors for the artificial dataset
in Figure 2 with 1 overlap region with optimal parameters for each algorithm and each
optimization method. The mean of the support vectors (over all binary classifications)
with the standard deviations in parentheses are mostly indicated. Exception: OAO-
global (total number of support vectors, specific output of libsvm).

Error Rates and Elapsed Runtime in CPU seconds

Optimization Method

Algorithm Global Local SVMpath

OAA 0.0233 477.08 0.0233 136.37 0.0233 177.52
OAO 0.0200 40.11 0.0267 157.93 0.0167 40.52
SVMlight-OAA 0.0267 290.11 0.0233 2980.90 0.0167 381.90
SVMlight-OAO 0.0267 368.49 0.0233 3999.49 0.0167 108.60

Number of Support Vectors

Optimization Method

Algorithm Global Local SVMpath

OAA 58.25 (41.92) 70.75 (40.05) 22.5 (23.04)
OAO 53.00 41.17 (38.94) 13.67 (19.56)
SVMlight-OAA 82.00 (61.16) 131.25 (76.68) 33.75 (35.53)
SVMlight-OAO 29.50 (18.43) 85.67 (14.25) 13.83 (13.17)

Table 4. Error Rates, runtime and number of support vectors for the artificial dataset
in Figure 2 with 2 overlap regions with optimal parameters for each algorithm and each
optimization method. The mean of the support vectors (over all binary classifications)
with the standard deviations in parentheses are mostly indicated. Exception: OAO-
global (total number of support vectors, specific output of libsvm). Note that in the
OAA case, the matrix of the resulting Linear Equation System is singular.

Error Rates and Elapsed Runtime in CPU seconds

Optimization Method

Algorithm Global Local SVMpath

OAA 0.0267 509.11 0.0233 166.41 singular system
OAO 0.0200 48.33 0.0267 157.09 0.0267 60.39
SVMlight-OAA 0.0233 10748.38 0.0200 3081.58 singular system
SVMlight-OAO 0.0133 450.48 0.0200 3848.86 0.0267 142.03

Error Rates and Elapsed Runtime in CPU seconds

Optimization Method

Algorithm Global Local SVMpath

OAA 184.25 (5.85) 133.5 (34.85) singular system
OAO 113.00 58.83 (31.69) 23.83 (32.96)
SVMlight-OAA 111.00 (8.29) 133.25 (69.01) singular system
SVMlight-OAO 37.50 (19.69) 89.83 (24.84) 17.00 (23.68)
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However, the higher runtime of a parameter optimization is worth getting
better models for classification tasks.

Beside the test accuracies, one also has to account the number of support
vectors, in order to exclude overfitting. They are also shown in Table 2. If we
confront the OAO algorithms with the OAA algorithms, we see that in the OAO
case, the number of support vectors is much lower than in the OAA case, as in
general, the margin is much larger in the first case (see Figure 1). Another ex-
planation might be the larger size of the training sets in the OAA case. Secondly,
if we compare ECOC and Comb-ECOC, we see that the bad test accuracies of
ECOC in Table 2 are related to the high number of support vectors, whereas
the good results of Comb-ECOC are connected with a small number of support
vectors.

Note that the complexities of the standard algorithms OAA and OAO are
polynomial in the number of classes. Also the algorithms by Crammer and Singer
[4] and by Thorsten Joachims [24] can be run in polynomial time. The methods
using error correcting output codes are NP-complete. As Comb-ECOC consists
of three runs defined by three different code matrices, each of which can have an
exponential number of columns, its elapsed runtime is the largest by far, followed
by ECOC and SVMmulticlass. OAA is not always faster than OAO, even if its
complexity is O(k) instead of O(k2). Note that the number of data points is
smaller in the case of pairwise classification.

Finally, we compared the OAA and OAO algorithms on two artificially com-
posed datasets, which are plotted in Figure 2. It is a realization of the theoretical
idea formulated by Figure 1. The margin sizes of the OAA algorithm are much
smaller than the ones of the OAO algorithm. Furthermore, we have different
margin sizes in the OAO case.

Each of the two datasets is two-dimensional and consists of 1000 instances.
The 4 classes are equally distributed. They are divided into a training set with
700 and a test set with 300 instances. Table 3 shows the results for the first and
Table 4 for the second dataset. In the case of one overlap region, we cannot see
any difference between OAA and OAO yet, except the fact that in the OAO
case, the number of support vectors is much smaller. The separations ’Class 1
vs rest’, ’Class 2 vs rest’ and ’Class 1 vs Class 2’ will produce training errors.
All the other cases are separable. Figure 3 shows the binary decision boundaries
of the first two OAA separations and the multiclass decision boundaries of the
OAO algorithm. In the OAO case, the margins are much larger than in the OAA
case.

The results for the second dataset with two overlap regions are summarized in
Table 4. Here, we see a difference between SVMlight-OAA and SVMlight-OAO:
As in Table 3, the number of support vectors is always smaller in the OAO case.
Furthermore the error rate is smaller using SVMlight-OAO. Also the runtime is
much higher in the OAA case. That is because the optimization problems are
more difficult to solve. The individual binary separations are more complicated.
The corresponding feature spaces will have very high dimensions. For the second
dataset, the separations ’Class 1 versus the rest’, ’Class 2 versus the rest’, ’Class 3
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4

Fig. 3. Decision boundaries for the separations ’Class 1 vs rest’, ’Class 2 vs rest’ and
OAO decision boundaries for the first dataset in Figure 2. We see that the OAA margins
are much narrower than the OAO margins. The support vectors are highlighted by
crosses.
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Fig. 4. Decision boundaries for the separations ’Class 3 vs rest’, ’Class 4 vs rest’ and
OAO decision boundaries for the second dataset in Figure 2. We see that the OAA sepa-
rations are much narrower than the OAO margins. The support vectors are highlighted
by crosses.
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versus the rest’, ’Class 1 versus Class 2’ and ’Class 1 versus Class 3’ cause positive
training errors. Figure 4 shows the binary decision boundaries of the last two
OAA separations and the multiclass decision boundaries of the OAO algorithm.
The margin is smaller in the OAA case, as expected.

In order to complete the experimental proof that the OAO algorithm per-
forms better than the OAA algorithm in the aforesaid special geometric case, we
executed pairwise t-tests on 30 bootstrap replications, using a confidence level
α = 0.05. Especially in the global optimization case the t-tests were significant
(p-value: p� α), in favor of the OAO algorithm.

4 Discussion and Conclusion

In this paper, we present a multiclass combination method named Comb-ECOC
and compare it statistically with other existing algorithms enlisted in Table 1.
Furthermore, we oppose different parameter optimization methods.

Comb-ECOC delivers good results. It performed best for the Glass dataset
with a special kind of parameter optimization. Its advantages are

1. the usage of error correcting output codes,
2. the prediction of posterior class probabilities,
3. its robustness and
4. the combination of three multiclass runs defined by three different code

matrices.

Of course, there are also some disadvantages. The result for the Glass dataset
is the best, but from this fact, one cannot interprete that it always outper-
forms the other algorithms. Pursuant to [26], this also depends on the respective
dataset. The main problem of Comb-ECOC lies in the precoding. In order to
maintain the robustness against several binary classification errors, a large min-
imum Hamming distance between the rows of the code matrices must always
be guaranteed. Some approaches can be found in [1], but it is indispensable to
use algebraic methods from Galois theory. Especially if the number of k is large
(e.g. k = 15), a large minimum Hamming distance is not procurable in an easy
way, and therefore Comb-ECOC will fail. But with a good precoding strategy
its performance will be enhanced.

The second disadvantage is its high runtime: For the local parameter optimiza-
tion it takes 1.5 hours and for the global optimization even 16 hours. However,
from Table 2 (first tabular) we can see that one modelling and classification
process without parameter optimization before only takes about 3 minutes.

The second subject of this paper is the parameter optimization. We sug-
gest three methods: global, local and svmpath. Intuitively, the local optimization
should perform better than the global optimization, because each classificator
gets its own optimal parameters. The danger of overfitting is excluded, because
we do not minimize training errors but test errors occuring during several boot-
strap replicates. As we can see from Table 2, the results are mostly better in the
local case.
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Another way is to take into account the contrast between a small training
error and a large margin instead of only considering several test errors. SVM-
path does so. Furthermore, it has the advantage of a complexity that is not
higher than a usual Support Vector Machine. But as we see in this paper, it
does not perform well on foreign classification algorithms. It should be used for
algorithms implemented in the libsvm. The best solution would be to use its own
prediction function. A disadvantage of SVMpath is the fact that it may compute
negative regularization constants which are useless for Support Vector Machines.
We found this problematic using other datasets.

Despite the advantages that SVMs show for binary classifications, other meth-
ods like Neural Networks, Linear Discriminant Analysis or Decision Trees should
be considered in multiclass scenarios.
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Abstract. Traditional methods in Data Mining cannot be applied to all types of 
data with equal success. Innovative methods for model creation are needed to 
address the lack of model performance for data from which it is difficult to 
extract relationships. This paper proposes a set of algorithms that allow the 
integration of data from multiple datasets that are related, as well as results 
from the implementation of these techniques using data from the field of 
Predictive Toxicology. The results show significant improvements when related 
data is used to aid in the model creation process, both overall and in specific 
data ranges. The proposed algorithms have potential for use within any field 
where multiple datasets exist, particularly in fields combining computing, 
chemistry and biology. 

Keywords: Data Integration, Data Mining, Machine Learning, Multi-Species 
Modelling. 

1   Introduction 

Current methods in Data Mining allow accurate and robust predictions to be made by 
models built for a wide variety of data. Unfortunately the process of building a 
reliable predictive model is not straightforward for certain types of data. In these 
situations novel and innovative techniques are needed to overcome problems with the 
quality or availability of data. Poor quality data can yield models that are 
overwhelmed by inputs which are unrelated to the prediction target, resulting in poor 
quality predictions [1]. A lack of available data also causes problems, as model 
building algorithms often fail to find underlying mathematical relationships between 
inputs and output(s) when insufficient amounts of training data are available. One 
field of research that often suffers from both of these problems is Predictive 
Toxicology; the study of chemical and biological data in order to make predictions 
about particular biological effects of (new) chemical compounds for a target species.  

Datasets containing large amounts of high quality data, both in terms of inputs and 
target output(s) can be difficult to find for many reasons. Inputs are often values 
calculated by software packages, and their monetary expense means that these 
calculated values are not freely released by users. The accuracy of the available data 
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is also subject to some debate [2], further complicating the choice of which source of 
data to use for any given task. Political, governmental and ethical factors obviously 
limit the amount of new experiments that are carried out, forcing researchers to rely 
on fairly limited amounts of data that may or may not be shared by the relevant 
owners. Further to this, the quality of these experiments must be taken into 
consideration. Documentation detailing the procedures used in the experiments can be 
difficult to find, despite attempts to make good experimental practices a priority [3], 
but examination of the methods used is necessary to determine the inherent reliability 
of the results. The reproducibility of such results is also highly relevant [4]. 

Our original approach attempts to address particular difficulties facing model 
builders for certain applications where the development of new and innovative 
algorithms and techniques are vital. With this in mind, we exemplify using chemical 
and biological datasets which have the potential to be exploited to improve the 
predictive power of models, particularly in situations where traditional model building 
techniques have failed. For any given chemical substance in a toxicology dataset, or 
indeed other collections of measurements of biological effects for chemical 
substances, there can be a toxicity value recorded for multiple different species or 
methods of administration. A particular species, with a chemical substance 
administered in a particular way (e.g. oral, intravenous, dietary etc.) over a given 
time-frame is known as an endpoint. These figures, when taken separately, can be 
used to make predictions for unknown values within the dataset. Traditional model 
creation techniques usually involve building models on data from a single endpoint, 
as the biological differences between two species, as well as changes in magnitude of 
measured effects caused by different methods of administration mean that predictions 
for one endpoint cannot be scientifically justified when directly applied to any other 
endpoint [5]. Whilst some success has been reported with so called inter-species 
extrapolation [6], [7], it remains difficult to intelligently use multi-endpoint data 
values in an accurate and justifiable way. The authors have attempted to overcome the 
problems associated with integrating data in this way, learning from existing 
techniques such as the work on meta-learning described in [8], but with a more data-
driven approach. Real-world data is used rather than artificial or trivial datasets, with 
model accuracy rather than computational efficiency as the goal. 

This paper proposes three algorithms that allow multiple endpoints to be used co-
operatively for the development of models. In Section 2 the algorithms are explained 
theoretically, and in Section 3 results are presented from a real-world application 
using Predictive Toxicology data. Section 4 summarises the conclusions drawn from 
interpretation of the results presented. 

2   Methods 

The inherent difficulties in using data from similar but separate endpoints can make 
the development of techniques and algorithms to integrate them complicated, but not 
impossible. The three original algorithms proposed in this paper are explained in 
Sections 2.1, 2.2 and 2.3. 



34 P.R. Trundle, D.C. Neagu, and Q. Chaudhry 

2.1   Toxicity Class Value Integration 

The first technique we propose uses the toxicity data from different endpoints 
together to build models that make predictions for a single endpoint. The toxicity 
values, which are usually used solely as a target for prediction, are taken as an 
additional input for another endpoint. For example, suppose we have two datasets, 
containing numerical input/output values for two endpoints, known as A and B. Each 
dataset has a set of inputs, IA and IB respectively. Each dataset also has a toxicity value 
(output), used as a target for prediction for created models, defined as TA and TB 
respectively. The two datasets have input and output values for a number of 
chemicals, and there is a degree of overlap between the two, such that there are three 
distinct subsets of chemicals. Let the subset of chemicals for which output values 
exist only in A be known as SA, the subset where they exist only in B be known as SB 
and the subset of chemicals where they exist both in A and B be known as SAB: 

BBAS A −∪= )(  (1) 

ABASB −∪= )(  (2) 

)( BASAB ∩=  (3) 

Suppose that we wish to create a model that predicts values for the toxicity of 
dataset A, TA. A traditional model might use the input data from A (IA) in order to find 
some mathematical relationship between those values and the prediction target. 
However, using this method of model creation we lose the potential extra information 
stored in dataset B, the data from a different but related endpoint. Since the input 
values are likely to be the same in both A and B we must consider the usefulness of 
the toxicity values from B for building a model to predict the toxicity value from A. 
The subset of data that is of interest is the intersection of chemicals in both datasets; 
SAB. Due to the aforementioned differences between two distinct endpoints, they 
cannot be directly applied as output values for another given endpoint. Despite this, it 
stands to reason that in two species which are somewhat biologically similar a 
correlation may be observed between the toxicity values recorded for both species. 
Any correlations are, of course, subject to variations in both the chemical structure of 
a given substance and any biological differences between the two target species, but 
the usefulness of these values should not be underestimated. 

The algorithm works by including the toxicity class value from another endpoint as 
an additional input in the model building process: the toxicity class information for 
the secondary endpoint will be added to the instances about chemicals common to 
both endpoints to be used for obtaining a model predicting toxicity for the primary 
endpoint. With the inclusion of a secondary set of toxicity class values as an input, it 
is expected that they will form a strong basis for prediction for the output of created 
models. This applies when the values are taken in conjunction with traditional 
chemical descriptors; the resulting predictions could be stronger than those made 
using either the descriptors or the secondary toxicity class alone. An effective model 
creation algorithm should be capable of determining which descriptors have a 
significant effect on the correlation of the additional secondary endpoint data and the 
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prediction target, thus using both information sources to their maximum potential. 
The main drawback of this technique is the restriction that only chemicals in the 
subset SAB may be used, due to the need for toxicity values to exist for both endpoints. 

SA

SAB

SB

Data only in A

Shared data in A

Dataset A
Dataset B

Data only in B

Shared data in B

 

Fig. 1. Division of datasets A and B 

2.2   Integration of Predicted Toxicity Class Values 

Our second algorithm addresses a significant problem highlighted in the previous 
section. Whilst the potential for increases in overall classification accuracy of models 
exists, it is limited to those chemicals within the subset of instances for which toxicity 
values exist for both endpoints; namely subset SAB. This could prove to be problematic 
in sparse or small datasets where subset SAB may be too small for any significant 
learning to take place during the model building process. In order to counter this 
limitation, the authors propose the use of toxicity class values that were produced by a 
model, in addition to experimental values determined by the use of living organisms 
in laboratory tests. 

Suppose we wish to build a model using dataset A, and we wish to include data 
from the target outputs of dataset B as additional inputs. Suppose also that we wish to 
include all the instances in A as inputs for our model, including those for which no 
data exists in B (subset SA). In order to do this we must fill in the missing target output 
data from B with artificial prediction values. This involves the creation of a model 
using all the instances in B, and using it to make predictions about the output values 
for the chemicals in SA. Once we have these predictions, we can use the artificial data 
for subset SA along with the real values for subset SAB and build models for A using 
the same algorithm described in section 2.1. The creation of artificial data is 
illustrated in Figure 2. 
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Chemicals with artificial class values from model built on Dataset B

SA

SAB

Chemicals only in A

Shared chemicals in A

Dataset B

Dataset A

Chemicals only in B

Shared chemicals in B

SB

 

Fig. 2. Expansion of dataset B using artificial prediction data 

2.3   Fusion of Connectionist Models 

The third algorithm proposed herein further explores the potential of integrating data 
from multiple sources by replacing many multi-layer single-output neural networks 
[9] with a larger, multi-layer multi-output network. The process of constructing this 
new network involves fusing together the datasets used in all of the single output 
networks and constructing the larger multi-output network. The motivation behind 
this algorithm is that if many separate single-output neural networks can make 
predictions, and we know that integrating data from multiple endpoints can yield 
better results; it should be possible to create a single larger network that can make 
predictions for many outputs, utilising information from multiple sources. 

Whilst the technique is applicable to any finite number of single output networks, 
for the sake of simplicity the authors exemplify using just two networks. If we have a 
neural network built to make predictions for a single source of data, and a second 
network built to make predictions for a second, but related, set of data, it is not 
straightforward to directly fuse these two networks together to provide a combined 
model. However at the architectural and learning level we propose to fuse them in a 
new connectionist multi-input multi-output model which we create. The aim is that 
the new network can make more accurate predictions for both of the outputs based on 
data from both sources. 

 



 Multi-source Data Modelling 37 

 

Fig. 3. Fusion of two related data sources into one dual-output model 

The fusion network allows sharing of knowledge from both sources. Figure 3 
demonstrates the fusion algorithm; initial inputs are defined as Iab, where a is the 
network that uses the input, and b is the number of the given input for the specific 
model. Note that the inputs to each of the single output networks may be identical 
(as is assumed in Figure 3) so simply using the original inputs from one of the 
single networks is acceptable. In cases where the single-output networks use non-
identical sets of inputs, the union of all input datasets is supplied as the training data 
for the larger multi-output model. Feature reduction techniques can be applied to 
this dataset to address any resulting redundancy of features or noise. The two 
outputs of the networks are defined as O1 and O2. The new connections formed 
when constructing the larger, combinatorial network are shown as dotted lines 
between neurons. 

3   Experiments 

In order to test the effectiveness of the techniques proposed in Section 2, a set of 
experiments were carried out using real-world toxicity datasets from the DEMETRA 
project [10]. The results of these experiments are detailed in sections 3.1, 3.2 and 3.3. 
All of the experiments used one or more of the following three endpoints, which were 
selected based on the amount of chemicals for which toxicity values existed, the  
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amount of overlap of chemicals between the datasets and the biological similarities of 
the species used in the experiments: LC50 96h Rainbow Trout acute toxicity (Trout), 
EC50 48h Water Flea acute toxicity (Daphnia), and LD50 14d Oral Bobwhite Quail 
(Oral_Quail). LC50, EC50 and LD50 describe a Lethal Concentration, an Effect 
Concentration producing a measurable effect and a Lethal Dosage of a specific 
substance that affects 50% of test subjects respectively. For each endpoint a numerical 
value existed describing the magnitude of toxic effect. This value is used to categorise 
each chemical as belonging to one of four classes: Class_1 (very high toxicity), 
Class_2 (high toxicity), Class_3 (medium toxicity) or Class_4 (low toxicity). 

In combination with the three sets of endpoints, nineteen separate sets of input 
values were used (named in Table 1), all of which were calculated from a variety of 
software packages using chemical structure information. The calculated inputs 
included both 2D and 3D attributes (known as descriptors) for each chemical. They 
describe information such as the molecular weight of a substance, numbers of 
various constituent atoms, solubility in water, and numerous other measurable 
attributes. 

3.1   Toxicity Class Value Integration 

The first experiment implements the algorithm defined in Section 2.1, and uses all 
three endpoints described in Section 3. The Trout endpoint was used as a basis for 
comparison, and traditional models using only chemical descriptors were built using 
six different well known Machine Learning algorithms: Bayesian Networks (Bayes) 
[11], Artificial Neural Networks (ANN) [9], Support Vector Machines (SVM) [12],  
k-Nearest Neighbour (KNN) [13], Decision Trees (DT) [14], and Rule Induction (RI) 
[15]. All six algorithms were implemented using the Weka software package [16]. 
The results from these initial tests are presented in Table 1. The classification 
accuracy is defined as the percentage of correctly classified instances using 10-fold 
cross validation [17]. 

The same tests were carried out using the same datasets, but this time the toxicity 
class values from the Daphnia endpoint were added as a new input for model 
creation. A third set of tests were carried out: Daphnia toxicity class values were 
replaced with those from the Oral_Quail endpoint. The results of these tests were 
compared to the results in Table 1, and any change in the classification accuracies 
noted. Table 2 presents results from the Daphnia tests, where each cell shows the 
increase/decrease for each combination of input set and model creation algorithm. 
Note that a decrease in accuracy is shown in italics, and that the cell in the lower-
right corner shows the overall change in classification accuracy compared to the 
traditional Trout models built in the first set of tests. The results for the addition of 
Oral_Quail data are not shown, as no significant increases or decreases in accuracy 
were recorded. 

The models have been generated with default parameters and no optimization 
procedure has been applied to increase model performances as reported below. Our 
objective was focused on general performance into the context of data integration. 
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Table 1. Percentage of correctly classified instances for Trout endpoint 

Descriptors Bayes ANN SVM KNN DT RI Average 

2DABLegend 41.05 39.47 44.74 46.32 39.47 38.42 41.65 

2DACD 46.84 40.53 43.68 42.11 45.26 45.26 44.06 

2DCodessa 37.89 40.53 42.11 47.37 42.11 45.26 41.58 

2DDragonA 40.53 43.16 45.79 39.47 46.84 45.26 43.61 

2DDragonB 44.74 47.37 49.47 45.26 48.95 45.79 46.17 

2DDragonC 36.84 35.26 44.21 46.84 43.68 44.74 40.90 

2DDragonD 35.26 45.79 48.42 45.79 41.58 41.58 43.76 

2DPallas 44.21 40.53 44.74 42.11 43.16 50.00 43.68 

3DCache 38.77 47.34 51.26 46.84 38.60 43.45 44.56 

3DCodessaA 48.36 47.37 51.78 49.01 45.73 48.54 48.30 

3DCodessaB 41.90 51.64 45.82 44.59 50.09 49.97 46.22 

3DCodessaC 39.27 44.62 38.63 42.98 41.35 41.35 41.68 

3DCodessaD 41.46 43.68 43.51 49.53 44.12 40.76 43.71 

3DDragonA 35.94 45.73 45.26 43.60 37.51 41.26 41.98 

3DDragonB 44.09 42.40 52.78 41.96 45.18 44.65 44.30 

3DDragonC 41.46 43.88 48.98 41.40 38.71 40.26 42.31 

3DDragonD 36.08 40.85 42.98 44.53 35.35 39.80 39.36 

3DMMP 41.46 40.41 42.46 42.40 40.67 46.81 41.91 

3DRecon 42.13 41.81 52.19 50.12 39.88 39.21 43.48 

Average 40.96 43.28 46.25 44.85 42.54 43.81 43.33 

Table 2 shows that a significant improvement (7.71%) in overall classification 
accuracy across all input sets and algorithms was recorded when Daphnia toxicity 
class values were used to create models for the prediction of Trout endpoint toxicity. 
The addition of Oral_Quail toxicity class values showed a slight decrease (-0.15%) in 
overall accuracy across all datasets and algorithms, though this value is not highly 
significant and could be due to random variations in the model creation processes 
rather than a direct result of the addition of the Oral_Quail values. When these results 
are taken in conjunction with the correlation values of the toxicity class values 
between the three endpoints, the reasons for the differences in accuracy are more 
easily explained. Each chemical is placed into a class based on the numerical value of 
its toxicity; determined by the experiments for each endpoint. The numerical values 
were compared for Trout and Daphnia and a correlation coefficient of 0.49 was found 
(0 being no correlation and 1 being perfect correlation). The same coefficient was 
calculated for Trout and Oral_Quail values and was found to be 0.16; a significantly 
lower correlation than for Daphnia. 

The differences in both correlation and accuracy increases/decreases are very likely 
based upon the biological similarities of the species in question. The Trout and 
Daphnia endpoints both deal with aquatic species, and certain chemical features are 
more important than others in determining the magnitude of any biological effects for  
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Table 2. Change in classification accuracy when Daphnia toxicity class values were added as 
an additional input to Trout models 

Descriptors Bayes ANN SVM KNN DT RI Average 

2DABLegend 13.16 12.63 10.00 11.05 1.58 8.95 9.56 

2DACD 1.05 16.84 13.68 9.47 13.68 1.05 9.30 

2DCodessa 12.11 7.37 17.37 13.16 1.58 2.11 8.95 

2DDragonA 14.21 9.47 11.58 7.37 14.21 -4.74 8.68 

2DDragonB 10.00 8.42 7.89 8.42 10.00 -1.58 7.19 

2DDragonC 2.11 15.79 5.26 16.84 2.63 0.00 7.11 

2DDragonD 5.79 7.89 8.42 2.63 3.68 0.53 4.82 

2DPallas 2.63 9.47 13.68 12.63 11.05 6.84 9.39 

3DCache 9.85 7.05 8.04 13.01 3.10 7.63 8.11 

3DCodessaA 0.53 5.47 3.22 6.11 2.25 5.00 3.76 

3DCodessaB 6.64 5.06 11.20 5.56 8.77 -2.60 5.77 

3DCodessaC 11.46 12.02 12.54 -0.03 17.37 5.94 9.88 

3DCodessaD 14.59 10.12 9.74 9.80 5.44 4.85 9.09 

3DDragonA 8.68 8.19 7.08 6.61 10.38 7.60 8.09 

3DDragonB 4.91 8.65 -0.03 13.13 11.93 3.30 6.98 

3DDragonC 5.94 3.46 6.02 8.04 5.85 4.85 5.69 

3DDragonD 2.89 5.91 9.85 13.04 10.12 10.91 8.79 

3DMMP 12.89 12.92 11.90 18.39 2.84 3.39 10.39 

3DRecon 1.64 4.44 1.78 13.27 2.78 5.76 4.95 

Average 7.43 9.01 8.91 9.92 7.33 3.67 7.71 

aquatic toxicity. Oral_Quail experiments were carried out on a species of bird, and the 
chemical features affecting the relative toxicity of different substances on this species 
are likely to be very different than those for aquatic species. It would appear that the 
biological similarity of the candidate species for use with this technique, as well as the 
correlation between the toxicity values of the endpoints, is a critical factor in 
determining whether any improvement is likely to occur when new data is added. 

Further to this, examining the improvements observed when Daphnia values were 
added shows that certain datasets and algorithms appeared to benefit more overall 
from the additional input. From Tables 1 and 2 we can see that descriptor sets with 
low average increases in accuracy, such as 3DCodessaA and 3DCodessaB (3.76% and 
5.77% improvements respectively) had relatively high average accuracies for models 
built without Daphnia data. The 3DMMP dataset, which showed the largest average 
improvement (10.39%), had a relatively low average accuracy in Table 1 of just 
41.91% when compared to the average of all datasets (43.33%). Logically we can 
assume that, in many cases, this technique could be used most effectively when 
traditional model creation techniques have proved inadequate for creating effective 
models. Also shown in Table 1 is the apparent difference in the success of the 
technique across the various model creation algorithms. The lowest overall 
improvement accuracy for a particular algorithm over all datasets is 3.67% for the 
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Rule Induction technique. Obviously this is significant when compared to the second 
lowest average improvement of 7.33% for the Decision Tree algorithm, and the 
overall average improvement across all data of 7.71%. This leads the authors to the 
conclusion that particular model building techniques may be more suitable for 
producing improvements in the prediction accuracy of models. 

3.2   Integration of Predicted Toxicity Class Values 

The experiments detailed in this section implemented the algorithm described in 
Section 2.2. Once again the Trout and Daphnia endpoints were used, as they had 
shown potential for continued development in the previous set of experiments (see 
section 2.1). The inclusion of the Oral_Quail endpoint was discounted due to the 
previous lack of improvement shown. The same six algorithms were applied, and the 
same descriptor sets (see Table 1) were used, with a single exception: 3DDragonA, -
B, -C and -D were combined into three new descriptor sets: 3DDragonA, -B and -C. 
Using only the Daphnia toxicity data, all combinations of algorithms and descriptor 
sets were used to build a total of 108 candidate models for the creation of the artificial 
toxicity class values. The models were judged according to the overall classification 
accuracy for all data using 10-fold cross validation, and the model with the highest 
overall accuracy was chosen, as well as the model with the accuracy closest to the 
average accuracy of all 108 models. These were an Artificial Neural Network and a 
Bayesian Network respectively, both of which used the 3DCodessaB descriptor set as 
input values. 

Both models were used to create predicted toxicity class values for chemicals in 
the Trout dataset that had no corresponding toxicity class value in the Daphnia 
dataset. These missing toxicity values correspond to chemicals that were used in the 
Trout experiments, but not used in the Daphnia experiments. 

Once again a variety of models were built using Trout data, combining all eighteen 
descriptor sets and all six algorithms, but this time all toxicity values for chemicals in 
the entire Trout dataset were used. 10-fold cross validation was carried out and the 
accuracies of the created models were recorded, and are presented in Table 3. 

With the results in Table 3 to be used as a benchmark, two further sets of tests were 
carried out using the new toxicity class values from the Daphnia dataset. The two sets 
of values, one expanded using the Artificial Neural Network predictions and the other 
expanded using the Bayesian Net predictions, were added as new inputs for use 
during model creation. Once again the entire range of descriptor sets and algorithms 
were used for both of these sets of tests. 

In Table 3 the lower-right cell shows the overall classification accuracy across all 
datasets and algorithms, which is 50.41%. The addition of the Artificial Neural 
Network and Bayesian Network Daphnia prediction values resulted in an overall 
improvement in prediction accuracy, with >2.5% and >5% improvements 
respectively. Note however that the largest overall improvement comes from the 
Bayesian Network data, which was not considered the best model in terms of its 
predictive power when selected. This suggests that improvements in prediction power 
may be more related to the type of model used as apposed to an objective measure of 
the models performance without considering the way predictions are calculated. 
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Table 3. Average classification accuracy for entire Trout dataset 

Descriptors Bayes ANN SVM KNN DT RI Average 

2DABLegend 47.78 46.78 47.78 35.89 42.78 45.67 44.44 

2DACD 56.56 57.67 47.89 55.56 48.89 55.33 53.65 

2DCodessa 47.78 40.22 48.89 50.22 45.89 47.00 46.67 

2DDragonA 47.78 58.56 53.11 49.00 49.11 45.44 50.50 

2DDragonB 46.67 51.11 55.22 55.22 57.89 59.89 54.33 

2DDragonC 46.89 48.33 48.00 49.11 49.11 43.67 47.52 

2DDragonD 45.56 53.44 54.22 48.89 40.00 45.44 47.93 

2DPallas 52.22 50.33 45.78 51.33 53.44 52.11 50.87 

3DCache 48.33 56.00 61.56 58.44 52.67 49.56 54.43 

3DCodessaA 58.67 52.78 59.44 57.44 53.22 54.11 55.94 

3DCodessaB 63.00 65.00 60.56 62.78 63.00 56.22 61.76 

3DCodessaC 47.11 46.33 49.33 47.22 47.22 47.22 47.41 

3DCodessaD 47.22 45.11 47.22 45.00 44.00 42.89 45.24 

3DDragonA 45.00 52.89 47.22 48.44 40.78 51.56 47.65 

3DDragonB 46.33 53.78 41.78 47.33 40.67 50.33 46.70 

3DDragonC 47.33 46.22 56.11 57.22 50.67 51.67 51.54 

3DMMP 43.89 44.22 55.89 49.44 39.67 57.11 48.37 

3DRecon 38.33 54.00 59.56 57.33 48.33 57.44 52.50 
Average 48.69 51.27 52.20 51.44 48.19 50.70 50.41 

As in the previous experiment, there are differences in the relative increases/ 
decreases in performance across the various datasets and algorithms, signifying the 
dependence that these techniques have upon the particular algorithms and sets of 
inputs used. Rule Induction models again performed worse overall when the Daphnia 
data was used as an input, with an average accuracy across all datasets of 50.07% 
using the Artificial Neural Network data, and of 49.26% using the Bayesian Network 
predictions. When compared to the value of 50.70% from models built using just 
Trout data, this again suggests its possible unsuitability for these techniques. 

3.3   Fusion of Connectionist Models 

The experiments in this section implement the algorithm proposed in section 2.3, and 
involved creating a variety of single output artificial neural networks, each of which 
predicted numerical values (as apposed to class values as in the previous two 
experiments) for a single endpoint and set of descriptors. Seven of the previous 
descriptor sets were used in this experiment: 2DABLegend, 2DACD, 2DCodessa, 
2DDragonA, 2DDragonB, 2DDragonC, and 2DDragonD. This resulted in fourteen 
neural networks, seven for the Trout endpoint and seven for the Daphnia endpoint. In 
addition to this, seven larger neural networks were created, each of which was built 
using the same inputs as the single-output networks, but used both sets of toxicity 
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values as targets for prediction and thus had two outputs. Each of the larger networks 
used twice as many hidden neurons in the hidden layer as the smaller networks, and 
of course had two output neurons. 

The fourteen Trout and Daphnia datasets in the experiment (combinations of the 
two sets of toxicity values and the seven descriptor sets) were divided into a training 
subset (75% of the chemicals) and a testing subset (25% of the chemicals). The 
training subset was used to train the networks, and the accuracy of the predictions was 
measured using the instances in the testing subset. By comparing the results from 
each of the single-output networks with those of the dual-output networks, it is 
possible to see if any significant improvements in accuracy can be made by using the 
larger networks. Table 4 shows the improvements in the Mean Absolute Error of the 
dual-output networks over the single-output network; so a positive value indicates that 
the dual-output network performed better than the single-output network, and a 
negative value indicates the opposite. 

Table 4. Improvement in accuracy on chemicals in testing subset when using dual-output 
networks compared to using single-output networks 

Descriptors Trout Improvement Daphnia Improvement 

2DABLegend -0.44 5.07 

2DACD 0.38 -0.52 

2DCodessa 0.75 0.23 

2DDragonA 1.88 0.57 

2DDragonB 0.62 0.37 

2DDragonC 1.40 -0.39 

2DDragonD 1.56 -1.58 

Average 0.88 0.54 

As the table shows, an overall improvement across all the descriptor sets for both 
endpoints can bee seen. There is however, a large variation in the accuracies reported. 
Once again this would seem to indicate a high dependence on the particular dataset used 
with this technique. A close look at some of the results shows us the potential for 
improvements with this method. The results for 2DDragonA are amongst the highest for 
both endpoints, and Figures 4 and 5 show us these results in more detail. The figures 
show scatter plots of the predictions made by both the single- and dual-output networks 
plotted against the actual toxicity values for each endpoint. The x-axis measures the 
actual value and the y-axis measures the predicted values made by the networks. 

As we can see from the figures, the outputs of the two types of networks are 
somewhat different across the range of toxicity values. Figure 4 shows the values for 
the Trout endpoint, and the predictions from the single-output network (squares) are 
frequently found in the upper section of the graph, distant from the broken line 
denoting where the actual and predicted values would be equal (perfect prediction). 

The predictions from the dual-output network (diamonds) are generally found 
much closer to this line, and none are found in the upper portion of the graph where 
the x-axis exceeds a value of 4. Note that any value that falls above the broken line 
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Fig. 4. Scatter plot of dual-output network and single-output network predictions against actual 
toxicity values for Trout endpoint 

Actual Toxicity

P
re

di
ct

ed
T

ox
ic

it
y Dual

Single

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4

 

Fig. 5. Scatter plot of dual-output network and single-output network predictions against actual 
toxicity values for Daphnia endpoint 
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has underestimated the toxicity of a chemical, which is a highly undesirable 
characteristic of potential toxicity models. The single output network has points much 
further to the top and left than the dual-output network, particularly to the upper left 
of the graph where the y-axis records values of less than -3. 

In Figure 5 we again can see an imbalance in the distribution of predicted values 
between the two networks. Close to the line of perfect prediction we can observe 
significantly more data points in the area contained within the values of -2 and 2 on 
both the x- and y-axis. There are also many more data points from the single-output 
network in the outlying areas towards the edges of the graph, far from the line of 
perfect prediction. 

4   Conclusions 

As the results show, this technique shows real potential for improvement of prediction 
accuracy both in general terms and for particular aspects of a given dataset, such as 
particular ranges of data that may be of interest. In all three experiments, it was found 
that the potential for improvement of models needs to be weighed against the 
sensitivity of the methods to the use different model creation algorithms and sets of 
descriptor values. There is also the drawback of the somewhat limited scope of 
applicability of these techniques, with a great deal of standard datasets having no 
related data to integrate. However, for applications where multiple related collections 
of data exist, the algorithms can be applied with only minor modification, as long as 
the underlying principles remain consistent, i.e. multiple sets of inputs that have some 
relationship to the target attribute of each collection of data, which are themselves 
related in some meaningful way. The authors propose the application of the 
techniques to a more diverse range of datasets as future work. 

Using appropriate types of data, particularly in the fields combining computing 
with biology and chemistry, and with particular attention paid to finding an 
appropriate combination of descriptors and a machine learning algorithm, Multi-
Source Data Modelling could be of real use in improving the quality of predictive 
models in the future. 
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Abstract. Two class classifiers are used in many complex problems in
which the classification results could have serious consequences. In such
situations the cost for a wrong classification can be so high that can be
convenient to avoid a decision and reject the sample. This paper presents
a comparison between two different reject rules (the Chow’s and the
ROC rule). In particular, the experiments show that the Chow’s rule is
inappropriate when the estimates of the a posteriori probabilities are not
reliable.

Keywords: ROC curve, reject option, two-class classification,
cost-sensitive classification, decision theory.

1 Introduction

Frequently, in two class classification problems, the cost for a wrong classification
could be so high that it should be convenient to introduce a reject option [1]. This
topic has been addressed by Chow in [2]. The rationale of the Chow’s approach
relies on the exact knowledge of the a posteriori probabilities for each sample
to be recognized. Under this hypothesis, the Chow’s rule is optimal because
minimizes the error rate for a given reject rate (or vice versa). For the two-class
classification cases in which the ideal setting assumed by the Chow’s rule is not
guaranteed and a real classifier must be used, an alternative method has been
proposed in [3] where the information provided about the classifier performances
by the empirical ROC curve is used to draw a reject rule which minimizes the
expected cost for the application at hand. In [4] a review of the reject rule based
on the empirical ROC and a comparison with the Chow’s rule is presented; in
the paper the authors claim to demonstrate the theoretical equivalence between
the two rules and suggest that the Chow’s reject rule should produce lower
classification costs than those obtained by means of the reject rule based on the
empirical ROC, even when real classifiers are employed.

A first comparison between the two approaches has been already proposed
in [5] with reference to Fisher LDA. The experiments presented show that the
empirical ROC reject rule works better than the Chow’s rule in the majority of
the cases considered.
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In this paper we aim to analyze more extensively the two rules and to compare,
by means of thorough experiments, their behavior in order to demonstrate that
the Chow’s rule is inappropriate when the the distributions of the two classes
are not perfectly known. In the next sections we resume the main features of
the two reject rules while in the last section the experiments performed on both
artificial and real data sets are reported.

2 Two Class Classification and the ROC Curve

2.1 The Ideal Case

In two class classification problems, the goal is to assign a pattern x coming
from an instance space X to one of two mutually exclusive classes that can be
generically called Positive (P) class and Negative (N ) class; in other words, X =
P ∪N and P ∩N = ∅ . Let us firstly consider a typical Decision Theory scenario
and suppose to have a complete knowledge of the distributions of the samples
within X, i.e. we know the a priori probabilities of the two classes (πP , πN ) and
the class conditional densities fP (x) = p (x |x ∈ P ) and fN (x) = p (x |x ∈ N ).

If
[
λNN λNP

λPN λPP

]

is the cost matrix defined for the problem at hand (where λAB

is the cost of assigning a pattern to the class B when it actually belongs to the
class A), the conditional risk associated to the classification of a given sample x
is minimized by a decision rule which assigns the sample x to the class P if

lr(x) =
fP (x)
fN (x)

>
(λNP − λNN )πN

(λPN − λPP )πP

where lr(x) is the likelihood ratio evaluated for the sample x. A way to assess
the quality of such rule as the costs and the a priori probabilities vary, is to
evaluate the performance obtained on each class by the rule lr(x) > t as the
threshold t is varied. For a given threshold value t, two appropriate performance
figures are given by the True Positive Rate TPR(t), i.e. the fraction of actually-
positive cases correctly classified and by the False Positive Rate FPR(t), given
by the fraction of actually-negative cases incorrectly classified as “positive”.
If we consider the class-conditional densities of the likelihood ratio ϕP (τ) =
p (lr (x) = τ |x ∈ P ) and ϕN (τ) = p (lr (x) = τ |x ∈ N ), TPR(t) and FPR(t)
are given by:

TPR (t) =
+∞∫

t

ϕP (τ) dτ FPR (t) =
+∞∫

t

ϕN (τ) dτ (1)

Taking into account the samples with likelihood ratio less than t, it is possible to
evaluate the True Negative Rate TNR(t) and the False Negative Rate FNR(t),
defined as:

TNR (t) =
t∫

−∞
ϕN (τ) dτ = 1 − FPR (t)

FNR (t) =
t∫

−∞
ϕP (τ) dτ = 1 − TPR (t)

(2)
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As it is possible to note from eq.(2), the four indices are not independent and
the pair (FPR(t), TPR(t)) is sufficient to completely characterize the perfor-
mance of the decision rule for a given threshold t. Most importantly, they are
independent of the a priori probability of the classes because they are sepa-
rately evaluated on the different classes. The Receiver Operating Characteristic
(ROC ) curve plots TPR(t) vs. FPR(t) by sweeping the threshold t into the
whole real axis, thus providing a description of the performance of the deci-
sion rule at different operating points. An important feature of the ROC curve
is that the slope of the curve at any point (FPR(t), TPR(t)) is equal to the
threshold required to achieve the FPR and TPR of that point [6]. Therefore,
the corresponding operating point on the ROC curve is the one where the curve
has gradient (λNP−λNN )πN

(λP N−λP P )πP
; such point can be easily found moving down from

above in the ROC plane a line with slope (λNP −λNN)πN

(λP N−λP P )πP
and selecting the point

in which the line touches the ROC curve [1]. The ROC generated by the de-
cision rule based on the likelihood ratio is the optimal ROC curve, i.e. the
curve which, for each FPR ∈ [0, 1], has the highest TPR among all possible
decision criteria employed for the classification problem at hand. This can be
proved if we recall the Neyman Pearson lemma which can be stated in this way:
if we consider the decision rule lr(x) > β with β chosen to give FPR = ε,
there is no other decision rule providing a TPR higher than TPR(β) with a
FPR � ε. The demonstration of the lemma can be found in [8,9]. The shape
of the optimal ROC curve depends on how the class-conditional densities are
separated: two perfectly distinguished densities produce an ROC curve that
passes through the upper left corner (where TPR = 1.0 and FPR = 0.0),
while the ROC curve generated by two overlapped densities is represented by
a 45◦ diagonal line from the lower left to the upper right corner. Qualitatively,
the closer the curve to the upper left corner, the more discriminable the two
classes.

2.2 The Empirical Approach

The ideal scenario of the Bayesian Decision Theory considered so far unfortu-
nately cannot be applied to the most part of real cases where we rarely have this
kind of complete knowledge about the probabilistic structure of the problem. As
a consequence, in real problems the optimal ROC is unknown since the actual
class conditional densities are not known. In this case, the decision is performed
by means of a trained classifier. Without loss of generality, let us assume that
the classifier provides, for each sample x, a value ω(x) in the range (−∞,+∞)
which can be assumed as a confidence degree that the sample belongs to one
of the two classes, e.g. the class P. The sample should be consequently assigned
to the class N if ω(x) → −∞ and to the class P if ω(x) → +∞. Also in this
case it is possible to plot an ROC curve by considering the outputs provided by
the trained classifier on a validation set V containing n+ positive samples and
n− negative samples V = {pi ∈ P, i = 1 . . . n+} ∪ {nj ∈ N, j = 1 . . . n−}. In this
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way, we obtain an empirical estimator of the optimal ROC curve by evaluating,
for each possible value of a threshold t in the range (−∞,+∞), the empirical
true and false positive rates as follows:

TPR (t) = 1
n+

n+∑

i=1

S (ω (pi) > t) FPR (t) = 1
n−

n−∑

j=1

S (ω (nj) > t)

where S(.) is a predicate which is 1 when the argument is true and 0 otherwise.
Let us call the obtained curve empirical ROC curve (see fig. 1) in order to
distinguish it from the ideal ROC.

There are some differences to be highlighted between the empirical and the
optimal ROC:

– once the two classes N and P have been specified through their conditional
densities fP (x) and fN (x), the ideal ROC is unique, while different classifiers
trained on the same problem have different empirical ROCs;

– for a continuous likelihood ratio, the ideal ROC is continuous and its slope in
a particular point equals the value of the threshold required to achieve TPR
and FPR of that point [1]; the empirical ROC is instead a discrete function
and the relation between slope and threshold does not hold. However it is
still possible to find the optimal operating point also on the empirical ROC
by moving down from above in the ROC plane a line with slope and selecting
the point in which the line touches the ROC curve. Provost and Fawcett [7]
have shown that the point is one of the vertices of the convex hull which
contains the empirical ROC curve (see fig. 2);

– the ideal ROC is the optimal ROC curve, i.e. the curve which, for each FPR
[0,1], has the highest TPR among all possible decision criteria employed
for the classification problem at hand. In other words, the ideal ROC curve
dominates every empirical ROC and consequently has the highest area under
the ROC curve (AUC) attainable.

3 Two-Class Classification with Reject

When dealing with cost sensitive applications which involve a reject option, the
possible outcomes of the decision rule include the reject and thus the cost matrix
changes accordingly (see tab. 1).

Table 1. Cost matrix for a two-class problem with reject

Predicted Class
N P R

True N λNN λNP λR

Class P λPN λPP λR
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(a) (b)

Fig. 1. (a) The densities of the confidence degree obtained by the classifier output on
real data and (b) the corresponding ROC curve

It is worth noting that λNN (cost for a True Negative) and λPP (cost for
a True Positive) are negative costs since related to benefits, while λNN (cost
for a False Negative) and λNP (cost for a False Positive) are positive costs.
λR weights the burden of managing the reject (e.g. by calling another, more
proficient classifier) and thus it is positive but smaller than the error costs.

3.1 The Ideal Case

Let us firstly suppose that we are working within a Bayesian scenario, i.e. we
know the a priori probabilities of the two classes (πP , πN ) and the class con-
ditional densities fP (x) and fN (x). In this ideal setting, the classification cost
is minimized by the Chow’s rule [2] which can be expressed in terms of the
likelihood ratio lr(x) as follows:

x → N if lr(x) <
πN

πP

λR − λNN

λPN − λR
= u1

x → P if lr(x) >
πN

πP

λNP − λR

λR − λPP
= u2 (3)

reject if u1 ≤ lr(x) ≤ u2

The rule can be also defined in terms of the a posteriori probability Pr (P |x).
If we recall that

Pr (P |x) =
πP fP (x)

πNfN (x) + πP fP (x)
=

πP lr(x)
πN + πP lr(x)
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Fig. 2. The ROC curve shown in fig. 1 and its convex hull. Three level lines with
the same slope are also shown: the line touching the ROC convex hull determines
the optimal operating point since it involves the minimum risk. The line above the
optimal line does not determine any feasible point, while the line below identifies only
suboptimal points.

the Chow’s rule can be written as:

x → N if Pr (P |x) <
λR − λNN

λPN − λNN
= t1 =

πPu1

πN + πPu1

x → P if Pr (P |x) >
λNP − λR

λNP − λPP
= t2 =

πPu2

πN + πPu2
(4)

reject if t1 ≤ Pr (P |x) ≤ t2

It is worth noting that in the ideal scenario, the slope of the ROC curve at any
point is equal to the threshold on the likelihood ratio which has generated that
point [6], and thus the points corresponding to the two thresholds u1 and u2 can
be easily identified on the ideal ROC.

3.2 The Empirical Approach

In real problems, however, the class conditional densities are not available and
thus the optimal decision rule in 3 or in 4 cannot be applied. In such cases, the
typical approach is to train a classifier ω (x) on a set of samples representative of
the classes to be discriminated and to use it to estimate the class of new samples.
Even though the Chow’s rule cannot be directly applied, a reject option can be
still defined on the empirical ROC, as it has been shown in [3]. The decision rule
is still based on two thresholds τ1 and τ2 applied on the output of the classifier
ω (x):
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x → N if ω (x) < τ1

x → P if ω (x) > τ2 (5)
reject if τ1 ≤ ω (x) ≤ τ2

As a consequence, the values of TPR and FPR change as:

TPR (τ2) = 1
n+

n+∑

i=1

S (ω (pi) > τ2) FPR (τ2) = 1
n−

n−∑

j=1

S (ω (nj) > τ2) (6)

It is worth noting that the condition described in eq.(2) is no more satisfied since
now there are two thresholds. In fact, the values of TNR and FNR are given
by:

FNR (τ1) = 1
n+

n+∑

i=1

S (ω (pi) < τ1)

TNR (τ1) = 1
n−

n−∑

j=1

S (ω (nj) < τ1)
(7)

Moreover, we have now a portion of samples rejected given by:

RP (τ1, τ2) = 1
n+

n+∑

i=1

S (τ1 � ω (pi) � τ2) = 1 − TPR (τ2) − FNR (τ1)

RN (τ1, τ2) = 1
n−

n−∑

j=1

S (τ1 � ω (nj) � τ2) = 1 − TNR (τ1) − FPR (τ2)
(8)

As a consequence, the classification cost obtained when imposing the threshold
τ1 and τ2 is given by:

C (τ1, τ2) = πP · λPN · FNR (τ1) + πN · λNN · TNR (τ1) +
πP · λPP · TPR (τ2) + πN · λNP · FPR (τ2) +
πP · λR · RP (τ1, τ2) + πN · λR ·RN (τ1, τ2)

(9)

The values of the thresholds should be chosen in order to minimize C (τ1, τ2); to
this aim the classification cost can be written as:

C (τ1, τ2) = k2 (τ2) − k1 (τ1) + πP · λPN + πN · λNN (10)

where:
k1 (τ1) = πP · λ′PN · TPR (τ1) + πN · λ′NN · FPR (τ1)
k2 (τ2) = πP · λ′PP · TPR (τ2) + πN · λ′NP · FPR (τ2)

and
λ′PP = λPP − λR λ′PN = λPN − λR

λ′NN = λNN − λR λ′NP = λNP − λR

In this way, the optimization problem can be simplified and the optimal values
for thresholds τ1opt and τ2opt can be separately obtained by maximizing k1 (τ1)
and minimizing k2 (τ2):

τ1opt = arg max
τ

[πP · λ′PN · TPR (τ1) + πN · λ′NN · FPR (τ1)]

τ2opt = arg min
τ

[πP · λ′PP · TPR (τ2) + πN · λ′NP · FPR (τ2)] (11)
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As described in [3], the optimal thresholds can be found by considering the
empirical ROC evaluated on a validation set; in particular, they correspond to
the points T1 and T2 of the empirical ROC touched by two lines with slopes:

m1 = −πN

πP

λNN − λR

λPN − λR
m2 = −πN

πP

λNP − λR

λPP − λR
(12)

and the thresholds are the values of the confidence degree which have generated
those points (see fig. 3).

It is worth noting that τ1opt must be less than τ2opt to achieve the reject
option, i.e. the slopes must be such that m1 < m2. If m1 � m2, the reject option
is not practicable and thus the best choice is to work at 0 reject. Taking into
account eq.(12), the condition for the reject option to be applicable is λNN−λR

λP N−λR
>

λNP−λR

λP P−λR
. This condition depends only on the cost values; however, there could

be situations in which the condition is verified but the geometry of the ROC
curve of the classifier at hand is such that the level curves corresponding to m1

and m2 touch the same point [3]. In other words, in spite of the costs which could
allow the reject, the characteristics of the classifier could make not applicable
the reject option.

Fig. 3. The ROC curve, the level curves and the optimal thresholds for a given cost
combination

3.3 Ideal and Empirical ROC Reject Rules. Are They Equivalent?

It is worth noting that, in the empirical ROC, the values of the thresholds are
not an immediate function of the slopes (like in the ideal case) but the relation
between the slopes (and the costs) and the threshold values is provided by the
geometry of the ROC curve and after all by the output of the classifier. As a
consequence, such values change when considering a different classifier.

The empirical rule reduces to the Chow’s rule when dealing with the ideal
ROC instead of an empirical ROC. In fact, in the ideal case, the lines with
slopes in eq. (12) identify two points in which the likelihood ratio has the same
value of the two slopes. In other words, u2 = m2, u1 = m1 and the reject rule in
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eq. (5) reduces to the reject rule in eq. (3). This means that the empirical rule
is certainly suboptimal with respect to the Chow’s rule, but this latter does not
work when the ideal setting assumptions (i.e. that the distributions of the two
classes are completely known) are not verified and a real dichotomizer should be
used instead of the optimal decision rule based on the likelihood ratio or on the
aposteriori probabilities.

However, on the basis of this observation, authors in [4] claim to demonstrate
the theoretical equivalence between the two rules and suggest that the adoption
of the ideal thresholds in eq.(3) (or thresholds derived from those in eq. (4)
if post probabilities are adopted in the decision rule instead of the likelihood
ratio) should produce lower classification costs than those obtained by means of
the reject rule based on the empirical ROC. This would mean that the reject
thresholds are independent of the classifier chosen or, in other words, that every
real classifier can be considered an effective estimator of the true likelihood ratio
or of the true post probabilities.

Such assumption does not hold at all for a large class of classification systems
such as margin based classifiers which do not provide an estimate of the post
probabilities. In these cases the Chow’s rule does not work, while the reject
rule based on the empirical ROC is still applicable (see, e.g., [10]). However,
such assumption seems to be excessive even for classification systems which
provide estimates of the likelihood ratio or of the post probabilities (e.g. Multi
Layer Perceptrons), since there are many elements (e.g. the limited size of the
training set, the learning parameters which are not univocal, etc.) which make
the estimate not very accurate.

In particular, the differences between the two rules should be higher and higher
in favor of the empirical ROC-based rule as the ideal setting assumption becomes
less verified. To experimentally prove such hypothesis, we have designed a set of
experiments using both synthetic data sets and real data sets. The synthetic data
sets are built by adding noise to the post probabilities generated from some cho-
sen distributions. The aim is to simulate in a controlled way a realistic situation,
i.e. a classification problem in which the post probabilities cannot be exactly
obtained since the distributions of the two classes are not completely known and
must be estimated by means of some method which inevitably provides a cer-
tain amount of error. For the real data sets, we train some well known classifiers
and we use the outputs of the classifiers as estimates of the post probabilities.
For each sample to be classified, the output is compared with the thresholds
provided by the two rules thus obtaining two decisions which can be compared.

In the next section we present the methodology adopted in the experiments
and the results obtained.

4 Experiments

4.1 Synthetic Data Set

To create an artificial problem, a gaussian model for the distribution of the
samples of the two classes has been adopted. In particular, we simulate the
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output of a classifier ω as ω(x) = Pr(P |x) + ε(x) where Pr(P |x) is the a
posteriori probability of the class P given the input vector x and ε(x) is the error
associated to that sample. In our framework the distribution of the two classes
is supposed to be gaussian with known mean and covariance matrix Σ = I.

In particular, we generate the likelihood probabilities for the two classes P
and N :

fN (x) = (2π)−K/2 exp
(

−1
2

(x− μN )T (x− μN )
)

fP (x) = (2π)−K/2 exp
(

−1
2

(x− μP )T (x− μP )
)

(13)

and from the Bayes theorem we find the a posteriori probability Pr(P |x). Know-
ing the distribution of the samples it is possible to vary the vector of the mean
μ, so as to create different data sets according to a value M that measures
the distance between the means of the distributions of the two classes. In this
paper, we considered three cases of interest: M = 4.5, i.e. the two classes are
completely separated; M = 3, i.e. the two classes are partially overlapped and
M = 1.5, i.e. the two classes are quite completely overlapped. Then, the term
ε(x) that simulates the error committed by a classifier is modeled according to
two distributions: a gaussian distribution with zero mean and variance varying
among 0 and 1 with step 0.1 and an uniform distribution varying among 0 and
1 with step 0.1. For each value of M 1000 samples have been generated and the
distributions have been truncated so that each output ω is in the interval [0,1].

4.2 Real Data Set

Four data sets publicly available at the UCI Machine Learning Repository [11]
have been used in the following experiments; all of them have two output classes
and numerical input features. All the features were previously rescaled so as to
have zero mean and unit standard deviation. More details for each data sets are re-
ported in table 2. The employed classifiers are neural networks and Support Vector
Machines (SVM). In particular, four Multi Layer Perceptron (MLP) with a vari-
able number of units in the hidden layer between two and five have been trained
for 10000 epochs using the back propagation algorithm with a learning rate of 0.01
and four Radial Basis Function (RBF) have been built with a variable number of
units in the hidden layer between two and five. Then, four Support Vector Ma-
chine (SVM) with different kernels have been used;in particular, the kernels used
were linear, polynomial of degree 2, RBF with σ = 1 and sigmoidal with σ = 0.01.

Table 2. Data sets used in the experiments

Data Sets Features Samples % Major Class Train Set Valid. Set Test Set
Pima 8 768 65.1 538 115 115

German 24 1000 70.0 700 150 150

CMC 9 1473 57.3 1031 221 221

Heart 13 303 54.1 213 45 45
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4.3 Results

In the comparison of the two reject rules 12 runs of a multiple hold out procedure
have been performed to reduce the bias in the data. In each run, each data set
has been divided into three subsets: a training set used to train the classifiers, a
validation set to evaluate the thresholds of the empirical reject rule and a test set
to compare the two methods. In the experiments with artificial data we had only
the validation and the test set containing respectively the 23% and the 77% of
the whole data set. In the experiments with real data, the three subsets contain
respectively the 70%, the 15% and the 15% of the samples of the whole data set.
In this way, 12 different values of the required costs have been obtained.

Another possible cause of bias is given by the employed cost matrix. To achieve
a result independent of the particular cost values, we have used a matrix (called
cost model) in which each cell contains a distribution instead of a fixed value.
In this way, 1000 different cost matrices have been randomly generated on the
basis of the cost model adopted. In our experiments, an uniform distribution
over the interval [−10, 0] for λPP and λNN , over the interval [0, 50] for λNP and
λPN and over the interval [0, 30] for the reject cost λR.

(a) (b)

Fig. 4. Results obtained on artificial data sets: (a) M = 4.5 and additive Gaussian
noise, (b) M = 4.5 and additive uniform noise

(a) (b)

Fig. 5. Results obtained on artificial data sets: (a) M = 3 and additive Gaussian noise,
(b) M = 3 and additive uniform noise
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(a) (b)

Fig. 6. Results obtained on artificial data sets: (a) M = 1.5 and additive Gaussian
noise, (b) M = 1.5 and additive uniform noise

(a) (b)

Fig. 7. Results obtained on real data sets: (a) Pima, (b) German

a
(b)

Fig. 8. Results obtained on real data sets: (a) CMC, (b) Heart

The obtained results are shown in figs. 4-6 for the synthetic data and in
figs. 7-8 for the real data sets. In both cases we report the comparison in terms
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of mean cost (MC) intended as the average of the classification costs obtained on
the 12 runs of the hold out procedure and on the 1000 cost matrices employed
on the considered problem. To order the classifier performance in the artificial
case we refer to the added noise since we have a complete knowledge of the
post probabilities and in particular we refer to the variance for the Gaussian
distribution and to the width of the interval in the uniform distribution. However,
while in the synthetic model we know the effective distribution of the classes
and so it is possible to relate the obtained results to the noise added to the
true post probabilities, when dealing with the real data sets we cannot do the
same unless we have a measure of the accuracy with which the real classifier
estimates the true post probabilities. To this aim, the AUC can be seen as a
reliable estimate of the discriminating quality of the classifier [12]. Moreover,
since the ideal ROC curve represents the “upper bound” of any empirical ROC
curves (i.e. it is dominant with respect to any empirical ROC curve), we can
reasonably assume that the greater is the AUC, the closer is the empirical to the
ideal ROC curve and the better is the estimate of the true post probabilities. For
this reason, in the graphs the value 1-AUC is reported on x-axis to be consistent
with the previous figures. In each graph, beyond the scatter plot of the mean
costs values also the regression lines are reported to emphasize the trend of the
mean costs obtained by the two analyzed rules.

If we look at the behavior of the two rules on the synthetic data sets it is pos-
sible to note that the Chow reject rule outperforms the ROC rule only when the
added noise is low. On the contrary, when the noise becomes higher the empirical
ROC rule becomes better since the estimate of the post probabilities becomes
worse and worse. This behavior is more visible when the added noise follows an
uniform distribution (figs. 4-(b), 5-(b), 6-(b)) while a similar behavior is shown
if the added noise is gaussian (figs. 4-(a), 5-(a), 6-(a)) because it produces less
bias in the data.

The same behavior obtained on the artificial data is shown on the real data
sets (figs. 7, 8) where the improvement obtained with the ROC rule is very evi-
dent when AUC decreases, i.e. when the classifier is not able to estimate a reliable
post probability for the two classes and the ideal conditions are less verified.

5 Conclusions and Future Work

In this paper we have experimentally compared the Chow’s reject rule and the
ROC based reject rule presented in [3]. Despite what claimed in [4] we have
found that the Chow’s rule is inappropriate when the estimates of the a poste-
riori probabilities are not sufficiently accurate, while the ROC based reject rule
gives good results. One could argue that such result could be not surprising,
but we believe that the strong assertion about the robustness of the Chow’s rule
made in [4] is worth a critical analysis based on the evidence of specific exper-
iments besides theoretical arguments. Finally, the analysis begun in this paper
has pointed out the need of a further investigation to characterize the type of
situations when one rule has advantage over another.
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Abstract. Outlier detection has recently become an important prob-
lem in many industrial and financial applications. In this paper, a novel
unsupervised algorithm for outlier detection with a solid statistical foun-
dation is proposed. First we modify a nonparametric density estimate
with a variable kernel to yield a robust local density estimation. Out-
liers are then detected by comparing the local density of each point to
the local density of its neighbors. Our experiments performed on sev-
eral simulated data sets have demonstrated that the proposed approach
can outperform two widely used outlier detection algorithms (LOF and
LOCI).

1 Introduction

Advances in data collection are producing data sets of massive size in commerce
and a variety of scientific disciplines, thus creating extraordinary opportunities
for monitoring, analyzing and predicting global economical, demographic, med-
ical, political and other processes in the World. However, despite the enormous
amount of data available, particular events of interests are still quite rare. These
rare events, very often called outliers or anomalies, are defined as events that oc-
cur very infrequently (their frequency ranges from 5% to less than 0.01% depend-
ing on the application). Detection of outliers (rare events) has recently gained a
lot of attention in many domains, ranging from video surveillance and intrusion
detection to fraudulent transactions and direct marketing. For example, in video
surveillance applications, video trajectories that represent suspicious and/or un-
lawful activities (e.g. identification of traffic violators on the road, detection of
suspicious activities in the vicinity of objects) represent only a small portion
of all video trajectories. Similarly, in the network intrusion detection domain,
the number of cyber attacks on the network is typically a very small fraction
of the total network traffic. Although outliers (rare events) are by definition in-
frequent, in each of these examples, their importance is quite high compared to
other events, making their detection extremely important.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 61–75, 2007.
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Data mining techniques that have been developed for this problem are based
on both supervised and unsupervised learning. Supervised learning methods typ-
ically build a prediction model for rare events based on labeled data (the training
set), and use it to classify each event [1,2]. The major drawbacks of supervised
data mining techniques include: (1) necessity to have labeled data, which can be
extremely time consuming for real life applications, and (2) inability to detect
new types of rare events. On the other hand, unsupervised learning methods
typically do not require labeled data and detect outliers (rare events) as data
points that are very different from the normal (majority) data based on some
pre-specified measure [3]. These methods are typically called outlier/anomaly
detection techniques, and their success depends on the choice of similarity mea-
sures, feature selection and weighting, etc. Outlier/anomaly detection algorithms
have the advantage that they can detect new types of rare events as deviations
from normal behavior, but on the other hand suffer from a possible high rate of
false positives, primarily because previously unseen (yet normal) data are also
recognized as outliers/anomalies, and hence flagged as interesting.

Outlier detection techniques can be categorized into four groups: (1) statis-
tical approaches; (2) distance based approaches; (3) profiling methods; and (4)
model-based approaches. In statistical techniques [3,6,7], the data points are typ-
ically modeled using a stochastic distribution, and points are labeled as outliers
depending on their relationship with the distributional model.

Distance based approaches [8,9,10] detect outliers by computing distances
among points. Several recently proposed distance based outlier detection al-
gorithms are founded on (1) computing the full dimensional distances among
points using all the available features [10] or only feature projections [8]; and (2)
on computing the densities of local neighborhoods [9,35]. Recently, LOF (Local
Outlier Factor) [9] and LOCI (Local Correlation Integral) [35] algorithms have
been successfully applied in many domains for outlier detection in a batch mode
[4,5,35]. In addition, clustering-based techniques have also been used to detect
outliers either as side products of the clustering algorithms (as points that do
not belong to clusters) [11] or as clusters that are significantly smaller than
others [12].

In profiling methods, profiles of normal behavior are built using different data
mining techniques or heuristic-based approaches, and deviations from them are
considered as outliers (e.g., network intrusions). Finally, model-based approaches
usually first characterize the normal behavior using some predictive models (e.g.
replicator neural networks [13] or unsupervised support vector machines [4,12]),
and then detect outliers as deviations from the learned model.

In this paper, we propose an outlier detection approach that can be classified
both into statistical and density based approaches, since it is based on local
density estimation using kernel functions. Our experiments performed on sev-
eral simulated data sets have demonstrated that the proposed approach outper-
forms two very popular density-based outlier detection algorithms, LOF [9] and
LOCI [35].
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2 Local Density Estimate

We define outlier as an observation that deviates so much from other observa-
tions to arouse suspicion that it was generated by a different mechanism [13].
Given a data set D = {x1,x2, ...,xn}, where n is the total number of data sam-
ples in Euclidean space of dimensionality dim, we propose the algorithm that
can identify all outliers in the data set D. Our first step is to perform density
estimate. Since we do not make any assumption about the type of the density,
we use a nonparametric kernel estimate [39] to estimate the density of majority
data points q(x), also referred to as a ground truth density. Consequently, all
data samples that appear not to be generated by the ground truth density q(x)
may be considered as potential outliers.

However, it is impossible to directly use density estimate to identify outliers if
the estimated distribution is multimodal, which mostly is the case. Data points
belonging to different model components may have different density without
being outliers. Consequently, normal points in some model components may have
lower density than outliers around points from different model components.

In order to detect outliers, we compare the estimated density at a given data
points to the average density of its neighbors. This comparison forms the basis of
most unsupervised outlier detection methods, in particular of LOF [9]. The key
difference is that we compare densities, which have solid statistical foundation,
while the other methods compare some local properties that are theoretically
not well understood.

One of our main contributions is to provide proper evaluation function that
makes outlier detection based on density estimate possible.

There is a large body of published literature on non-parametric density esti-
mation [39]. One of the best-working non-parametric density estimation methods
is the variable width kernel density estimator [39]. In this method, given n data
samples of dimensionality dim, the distribution density can be estimated as:

q̃(x) =
1
n

n∑

i=1

1
h(xi)dim

K(
x− xi

h(xi)
), (1)

where K is a kernel function (satisfying non-negativity and normalization condi-
tions) and h(xi) are the bandwidths implemented at data points xi. One of the
main advantages of this sample smoothing estimator is that q̃(x) is automati-
cally a probability density function [39] if K is a probability density function.
In our case, K is a multivariate Gaussian function of dimensionality dim with
zero mean and unit standard deviation:

K(x) =
1

(2π)dim
exp(−||x||2

2
), (2)

where ||x|| denotes the norm of the vector. The simplest version of the bandwidth
function h(xi) is a constant function h(xi) = h, where h is a fixed bandwidth.
However, for real data sets, local sample density may vary. Therefore, it is nec-
essary to have a method that is adaptive to the local sample density. This may
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be achieved for h(xi) = hdk(xi), where dk(·) denotes the distance to the kth
nearest neighbor of point xi. The usage of the kth nearest neighbor in kernel
density estimation was first proposed in [38] (see also [37]).

Since we are interested in detecting outlier data samples based on comparing
them to their local neighborhood, the sum in Eq. 1 needs only to be taken over a
sufficiently large neighborhood of a point x. Let mNN(x) denotes the m nearest
neighbors of a sample x. Thus, from Eq. 1 and 2 we obtain the following formula
for distribution density at data sample xj :

q̃(xj) ∝ 1
m

∑

xi∈mNN(xj)

1
h(xi)dim

K(
xj − xi

h(xi)
)

=
1
m

∑

xi∈mNN(xj)

1

(2π)
dim
2 h(xi)dim

exp(−d(xj ,xi)2

2h(xi)2
). (3)

Here,
d(xj ,xi) = ||xj − xi||2 (4)

is the squared Euclidean distance between samples xi and xj . Restricting the
sum in Eq. 1 to a local neighborhood as in Eq. 3 has a computational advantage.
While the computation of q̃ for all data points has O(n2) complexity, the average
computation in Eq. 3 can be accomplished in O(mn log n) time, where n is the
number of data samples in a data set D and O(m log n) refers to the cost of search
for m nearest neighbors of a data sample if a hierarchical indexing structure like
R-tree is used [46].

Observe that Euclidean distance from Eq. 4 may be very small if there is a
neighbor xi very close to sample xj . In such a case, it is possible to misleadingly
obtain a large density estimate q̃(xj). To prevent such issues and increase the
robustness of the density estimation, following the LOF approach [9], we compute
reachability distance for each sample y with respect to data point x as follows:

rdk(y,x) = max(d(y,x), dk(x)), (5)

where dk(x) is the distance to kth nearest neighbor of point x. Eq. 5 prevents
the distance from y to x to become too small with respect to the neighborhood
of point x.

We obtain our local density estimate (LDE) by replacing the Euclidean dis-
tance in Eq. 3 with the reachability distance:

LDE(xj) ∝ 1
m

∑

xi∈mNN(xj)

1

(2π)
dim
2 h(xi)dim

exp(−rdk(xj ,xi)2

2h(xi)2
)

=
1
m

∑

xi∈mNN(xj)

1

(2π)
dim
2 (h · dk(xi))dim

exp(− rdk(xj ,xi)2

2(h · dk(xi))2
). (6)

The name of local density estimate (LDE) is justified by the fact that we sum
over a local neighborhood mNN compared to the sum over the whole data
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set commonly used to compute the kernel density estimate (KDE), as shown
in Eq. 1.

LDE is not only computationally more efficient than the density estimate in
Eq. 1 but yields more robust density estimates. LDE is based on the ratio of two
kinds of distances: the distance from a point xj to its neighbors xi and distances
of the neighboring points xi to their k-th neighbors. Namely, the exponent term
in Eq. 6 is a function of the ratio rdk(xj ,xi)

dk(xi)
, which specifies how is the reachability

distance from xj to xi related to the distance to the k-th nearest neighbor
of xi. In fact, we use dk(xi) as a ”measuring unit” to measure the Euclidean
distance d(xj ,xi). If d(xj ,xi) ≤ dk(xi), then the ratio rdk(xj,xi)

dk(xi)
is equal to one

(since rdk(xj ,xi) = dk(xi)), which yields the maximal value of the exponential
function (exp(− 1

2h2 )). Conversely, if d(xj ,xi) > dk(xi), then the ratio is larger
than one, which results in smaller values of the exponent part.

The bandwidth h specifies how much weight is given to dk(xi). The larger
h, the more influential are the k nearest neighbors that are further away. The
smaller h, the more we focus on k nearest neighbors.

Observe that we compare a given point xj to its neighbors in mNN(xj). It
is important that the neighborhood mNN(xj) is not too small (otherwise, the
density estimation would not be correct). Overly large m does not influence the
quality of the results, but it influences the computing time (to retrieve m nearest
neighbors).

Having presented an improved local version of a nonparametric density es-
timate, we are ready to introduce our method to detect outliers based on this
estimate. In order to be able to use LDE to detect outliers, the local density
values LDE(xj) need to be related to the LDE values of neighboring points. We
define Local Density Factor (LDF) at a data point as the ratio of average
LDE of its m nearest neighbors to the LDE at the point:

LDF (xj) ∝
∑

xi∈mNN(xj)
LDE(xi)

m

LDE(xj) + c ·
∑

xi∈mNN(xj)
LDE(xi)

m

. (7)

Here, c is a scaling constant (in all our experiments we used c = 0.1). The scaling
of LDE values by c is needed, since LDE(xj) may be very small or even equal
to zero (for numerical reasons), which would result in very large or even infinity
values of LDF if scaling is not performed, i.e., if c = 0 in Eq. 7. Observe that the
LDF values are normalized on the scale from zero to 1/c. Value zero means that
LDE(xj) �

∑
xi∈mNN(xj)

LDE(xi)
m while value 1/c means that LDE(xj) = 0.

The higher the LDF value at a given point (closer to 1/c) the more likely the
point is an outlier.

The normalization of LDE values makes possible to identify outliers with a
threshold LDF (xj) > T chosen independently for a particular data set.

Observe that it is possible to use the Eq. 6 with covariance matrix of the
Gaussian that automatically adjusts to the shape of the whole neighborhood
mNN . Let Σi be the covariance matrix estimated on the m data points in
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mNN(xi). If we use a general Gaussian kernel with covariance matrices Σi, then
Eq. 3 becomes:

q̃(xj) ∝
n∑

i=1

1
hdim|Σi|

1
2

exp(−dΣ(xj ,xi)2

2h2
), (8)

where dΣ(x,y)2 = (x − y)T Σ−1
i (x − y) is the Mahalanobis distance of vectors

x and y. It can be shown that

dΣ(x,y)2 = (x∗ − y∗)T · (x∗ − y∗). (9)

Here,
x∗ ≡ (ΛT )−

1
2 VT (x∗ − μ), (10)

where Λ = diag(λ1, . . . , λk) is the diagonal matrix of eigenvalues and V =
[v1, . . . ,vk] is the matrix od corresponding eigenvectors of Σi and μ is the mean
of the vectors in the mNN neighborhood. Therefore, Eq. 8 can be, using Eq. 9
and Eq. 4 represented in the form:

q̃(xj) ∝
n∑

i=1

1
hdim|Σi|

1
2

exp(−d(x∗
j ,x∗

i)2

2h2
). (11)

Now, analogous to Eq.6, we may generalize the LDE measure to:

LDE(xj) ∝ 1
m

∑

xi∈NN(xj)

1

(2π)
dim
2 hdim|Σi|

1
2

exp(−
rdk(x∗

j ,x
∗
i )2

2h2
) (12)

Equation 12 can be replaced within Eq. 7 to obtain generalized measure of the
local density factor.

Fig. 1. The ROC curves for different detection algorithms



Outlier Detection with Kernel Density Functions 67

3 Performance Evaluation

Outlier detection algorithms are typically evaluated using the detection rate,
the false alarm rate, and the ROC curves [44]. In order to define these metrics,
let us look at a confusion matrix, shown in Table 1. In the outlier detection
problem, assuming class ”C” as the outlier or the rare class of the interest,
and ”NC” as a normal (majority) class, there are four possible outcomes when
detecting outliers (class ”C”)-namely true positives (TP ), false negatives (FN),
false positives (FP ) and true negatives (TN). From Table 1, detection rate and
false alarm rate may be defined as follows:

DetectionRate =
TP

TP + FN

FalseAlarmRate =
FP

FP + TN
.

Table 1. Confusion matrix defines four possible scenarios when classifying class ”C”

Predicted Outliers Predicted Normal
–Class C Class–NC

Actual Outliers True Positives False Negatives
–Class C (TP) (FN)

Actual Normal False Positives True Negatives
–Class NC (FP) (TN)

Detection rate gives information about the relative number of correctly iden-
tified outliers, while the false alarm rate reports the number of outliers misclassi-
fied as normal data records (class NC). The ROC curve represents the trade-off
between the detection rate and the false alarm rate and is typically shown on
a 2 −D graph (Fig. 1), where false alarm rate is plotted on x-axis, and detec-
tion rate is plotted on y-axis. The ideal ROC curve has 0% false alarm rate,
while having 100% detection rate (Fig. 1). However, the ideal ROC curve is
hardly achieved in practice. The ROC curve can be plotted by estimating detec-
tion rate for different false alarm rates (Fig. 1). The quality of a specific outlier
detection algorithm can be measured by computing the area under the curve
(AUC) defined as the surface area under its ROC curve. The AUC for the ideal
ROC curve is 1, while AUCs of ”less than perfect” outlier detection algorithms
are less than 1. In Figure 1, the shaded area corresponds to the AUC for the
lowest ROC curve.

4 Experiments

In this section, we compare the performance of the proposed LDF outlier de-
tection measures (Eq. 7) to two state of the art outlier detection algorithms
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LOF [9] and LOCI [35] on several synthetic data sets. In all of our experiments,
we have assumed that we have information about the normal behavior (nor-
mal class) and rare events (outliers) in the data set. However, we did not use
this information in detecting outliers, i.e. we have used completely unsupervised
approach.

Recall that LOF algorithm [9] has been designed to properly identify outliers
as data samples with small local distribution density, situated in vicinity of
dense clusters. To compare LOF to our proposed LDF algorithm, we created
two data sets Dataset1 and Dataset2. Dataset1 shown in Fig. 2(a) has two
clusters of non-uniform density and sizes (with 61 and 27 data samples) and two
clear outliers A and B (marked with stars in Fig. 2(a)). Data sample C does
not belong to the second cluster, but as argued in [9] is should not be regarded
as an outlier, since its local density is similar to its neighbors’ local densities.
Although points A and C have equal distances to their closest clusters (cluster1
and cluster2 correspondingly), the difference in clusters density suggests that
A is an outlier while C is a normal data point. Recall that one of the main
motivations for LOF in [9] is based on a data set of this kind.

As shown in Fig. 3, both methods LOF and the proposed LDF correctly
identify the outliers A and B in Dataset1 without classifying C as an outlier (as
in all figures presented here, the larger the circle and the darker its color, the
higher the outlier factor value). However, observe that LOF assigns a significantly
smaller LOF value to point B than A. This is counter intuitive, since point B
is definitely the strongest outlier, and may lead to incorrect outlier detection
results.

We illustrate the main problem of LOF on the second data set with two
clusters of different densities shown in Fig. 2(b). The data set contains 41 points
in sparse cluster1, 104 points in the dense cluster2, and four outstanding outliers
A, B, C andD (marked with stars). While samples C and D are clearly outliers,
we regard samples A and B as outliers in analogy to sample A from Dataset1
(see Fig. 2(a)). Like sample A in Dataset1, their local density is lower then
the local density of their neighbors from cluster1. In other words, samples A
and B are too far from the closet cluster to be regarded as normal data points.
However, the outlier values for points C and D should be significantly larger
than for points A and B.

LOF was not able to detect points A and B as outliers for any value of its
parameter k. We illustrate this fact in Fig. 4 for k = 5 and 20. Observe also
that for larger k values, the LOF value of point C actually decreases. In con-
trast, as shown in Fig.5(a), LDF is able to clearly identify all four outliers.
Fig. 5 also illustrates a multiscale behavior of LOF as a function of the band-
width parameter h. For small values of h, more weight is given to close neigh-
bors of a sample, while for larger values of h, the more distant neighbors also
receive higher weight. In other words, with smaller h values, we have higher
sensitivity to local situations, and therefore are able to detect all four outliers in
Fig. 5(a) for h = 0.5. In contrast, with larger h, we smooth local variations.
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Fig. 2. Two simulated data sets with two clusters of different densities. (a) Dataset1:
Two outliers A and B are marked with stars. (b) Dataset2: Four outliers are marked
with A, B, C, and D.
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Fig. 3. Results on two cluster data set in Fig. 2(a) for k = 5: (a) LOF. (b) LDF
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Fig. 4. LOF results on the data set in Fig. 2(b) for k = 5 and 20
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Fig. 5. LDF results on two cluster data set in 2(b) for k = 5 and bandwidth (a)
h = 0.5, (b) h = 1, (c) h = 5

Consequently, for h = 5, LDF detects only two outliers, while for h = 1, LDF de-
tects all four outliers, while assigning higher LDF values for the two clear outliers
C and D.

To further compare the results of the proposed algorithm with existing al-
gorithms [9,35], we generated synthetic data sets similar to those used in [35]
(original data from this reference were not available to us). The data set Dens
contains two uniformly distributed rectangular clusters (coordinates (12, 22;
15, 25) and (80, 120; 30, 70) respectively) with 200 samples in each and one out-
lier at coordinates (32, 20). The second data set Multimix contains a Gaussian
cluster, two uniform clusters, 3 outstanding outliers (with coordinates (80, 110),
(85, 110) and (20, 50) and three points linearly positioned on top of the uniform
cluster. The Gaussian cluster has 250 samples with mean at (20,110) and diag-
onal covariance matrix with both variances equal to 5. The first uniform cluster
has 400 samples uniformly distributed in the rectangle (130, 150; 95, 105). The
second uniform cluster had 200 points uniformly distributed in the circle with
center at (80, 50) and radius 20.

In Fig. 6(a,b), we demonstrate the performance of the LDF algorithm with
parameters h = 1, k = 10,m = 30 on these data sets. We compare results of the
proposed algorithm with LOF [9]. Fig. 6(c,d) contains results of executing LOF
algorithm for the same value of k = 10.

As we can see, the proposed LDF and the LOF algorithm performed similarly.
LDF values for samples on the boundaries of the Gaussian cluster of Multimix
tend to be higher, but the computed high rank correlation [48] between LDF
and LOF values (0.85) indicates similar order performance (since the outlier
detection is performed by thresholding). We also compare the performance of
the proposed algorithm with exact LOCI algorithm with parameters suggested
in [35]. LOCI results are shown in Fig. 6(e,f) for nmin = 20, α = 2, kσ = 2. The
visualization in Fig. 6(e,f) is different from (a-d), since LOCI outputs only a
binary classification for each data point (outlier or not an outlier). As can be
clearly seen, LOCI has trouble with data points on cluster boundaries. It tends
to identify samples on boundaries of clusters as outliers.
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Fig. 6. LDF results on synthetic data sets (a) Dens (b) Multimix. Corresponding
results for LOF are in (c) and (d), and for LOCI in (e) and (f)

5 Conclusions

A novel outlier detection framework is presented that is closely related to statis-
tical nonparametric density estimation methods. Experimental results on several
synthetic data sets indicate that the proposed outlier detection method can re-
sult in better detection performance than two state-of-the-art outlier detection
algorithms (LOF and LOCI). Data sets used in our experiments contained differ-
ent percentage of outliers, different sizes and different number of features, thus
providing a diverse test bed and illustrating wide capabilities of the proposed
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framework. Although performed experiments have provided evidence that the
proposed method can be very successful for the outlier detection task, future
work is needed to fully characterize the method in real life data, especially in
very large and high dimensional databases, where new methods for estimating
data densities are worth considering. It would also be interesting to examine the
influence of irrelevant features to detection performance of LDF method as well
as to investigate possible algorithms for selecting relevant features for outlier
detection task.

6 Reproducible Results Statement

All data sets used in this work are available by emailing the authors.
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Abstract. Data perturbation with random noise signals has been shown
to be useful for data hiding in privacy-preserving data mining. Perturba-
tion methods based on additive randomization allows accurate estimation
of the Probability Density Function (PDF) via the Expectation-
Maximization (EM) algorithm but it has been shown that noise-filtering
techniques can be used to reconstruct the original data in many cases,
leading to security breaches. In this paper, we propose a generic PDF re-
construction algorithm that can be used on non-additive (and additive)
randomization techiques for the purpose of privacy-preserving data min-
ing. This two-step reconstruction algorithm is based on Parzen-Window
reconstruction and Quadratic Programming over a convex set – the prob-
ability simplex. Our algorithm eliminates the usual need for the iterative
EM algorithm and it is generic for most randomization models. The sim-
plicity of our two-step reconstruction algorithm, without iteration, also
makes it attractive for use when dealing with large datasets.

Keywords: Randomization, Privacy-preserving data mining, Parzen-
Windows, Quadratic Programming, Convex Set.

1 Introduction

Consider the following scenario: There are two hospitals which seek to predict
new patients’ susceptibility to illnesses based on existing data. It would be useful
for the hospitals to pool their data, since data mining tasks can often benefit
from a large training dataset. However, by law, the hospitals cannot release
private patient data. Instead, some form of sanitized data has to be provided to
a centralized server for further analysis. It is thus imperative to discover means
to protect private information and be able to perform data mining tasks with a
masked version of the raw data. Can privacy and accuracy co-exist? This is the
fundamental question in privacy-preserving data mining [2,3].
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Randomization has been shown to be a useful technique for hiding data in
privacy-preserving data mining. The basic concept is to sufficiently mask the
actual values of the data by perturbing them with an appropriate level of noise
that can still allow the underlying Probability Density Function (PDF) of the
original dataset to be adequately estimated from the randomized data. A balance
has to be achieved between two conflicting concerns in such approaches. On one
hand, the confidentiality of the precise information has to be protected i.e. to
minimize privacy loss. On the other hand, the utility of the aggregate data
statistics has to be maintained i.e. to minimize information loss.

The use of randomization for preserving privacy was studied extensively in the
framework of statistical databases [1]. It typically involves a trusted centralized
database in which the data are already fully known before they are random-
ized and released for publication (e.g. census data). As such, privacy-preserving
transformations such as sampling [24] and swapping [24] are more suitable for
perturbing the data as they can incorporate knowledge about the aggregate
characteristics of the dataset. In privacy preserving data mining (PPDM), we
consider both (trusted) centralized database scenarios as well as distributed sce-
narios in which there is one (untrusted) central server that needs pieces of private
information from multiple clients to build a aggregate model for the data, and
the clients would each perturb the information before releasing them to the
server to preserve privacy.

The early attempts by the pioneering authors in PPDM [2] applied additive
white noise (ei), generated from a pre-determined distribution, to the true data
(xi) and then transmitting the sum (zi = xi + ei) instead of the raw data. As it
was shown that the distribution of the original data fX(x) can be reconstructed
to a high accuracy i.e. low information loss, data mining can then be done sat-
isfactorily using the sum (zi) instead of the original data values (xi). The recon-
struction process hinges on the use of the iterative Expectation-Maximization
(EM) algorithm taking the original values xi as the latent variables.

However, Kargupta et al. [15] showed that such methods risk privacy breaches
as the additive noise can be filtered off leaving a reasonably good estimation of
the original data in many cases. Thus, other randomization models, such as using
multiplicative noise, have been suggested [15].

Motivated by this, we develop a novel non-iterative PDF reconstruction
scheme based on Parzen-Window reconstruction and Quadratic Programming
(QP) optimization with only one equality constraint and one inequality con-
straint. These constraints define the probability simplex, which is a convex set.
Convex programming/optimization [5,7] has been widely studied and efficient
methods can be employed to estimate the PDF. As far as we know, currently
only the mean and the variance in a multiplicative model can be estimated ac-
curately [16]. To the best of our knowledge, for the first time, our method can
allow the underlying PDF of the original dataset to be accurately reconstructed
from randomized data set perturbed with multiplicative noise, additive noise or
other noise models. From the estimated PDF, all the statistics can be inferred



78 V. Yan Fu Tan and S.-K. Ng

for distribution-based data mining purposes. Our approach therefore provides a
complete description of the original data without compromising on the privacy.

Other randomization/reconstruction methods based on multiplicative noise
have been proposed [22] but the implementation of the reconstruction method
was very computationally demanding. As such, we have also made sure that our
reconstruction method can be efficiently implemented, avoiding using the itera-
tive Expectation-Maximization algorithm employed in many reconstruction ap-
proaches for perturbation-based privacy-preserving data mining [2]. This makes
our method attractive for use with the increasingly large datasets that have
become commonplace in recent years.

More recently, [18] proposed a data perturbation approach in which the data
is multiplied by a randomly generated matrix, hence preserving privacy by effec-
tively projecting the data into a lower dimension subspace. As the transformation
is distance-preserving, the authors showed that it is possible to estimate from
the perturbed data various distance-related statistical properties of the original
data. We consider non-distance-preserving randomization models in this paper
because the distance-preserving nature of the randomization scheme in [18] may
result in security breaches if some private data is also revealed.

In short, our reconstruction algorithm has two main advantages:

1. Unlike EM, it is non-iterative and can handle large datasets.
2. More importantly, it can be applied to generic (non-additive) randomization

models, including multiplicative noise models.

The rest of this paper is organized as follows: We define the generic pertur-
bation model and state some assumptions in Section 2. We describe the Parzen-
Window and Quadratic Programming reconstruction algorithm in Section 3. In
Section 4 we describe the evaluation metrics. We then present extensive eval-
uation results on both simulated and real data sets to validate our technique
in Section 5. Finally, we conclude in Section 6 and provide some discussions on
future work.

2 Problem Definition

The current PPDM framework consists of two processes: a randomization pro-
cess, followed by a reconstruction process. First, the source data is randomized
at possibly multiple client sites. The randomized data are then transmitted to
a centralized server which attempts to recover the PDF of the original data for
aggregate analyses. In the next two sections, we will first formally define the
randomization model for privacy-preserving preservation, followed by the basic
assumptions that are necessary for the subsequent reconstruction process.

2.1 Randomization Model

The generic randomization problem can be stated, succintly and generally, using
the following mathematical model. Consider a set of N original scalars represent-
ing a particular private attribute (e.g. income) x1, . . . , xN , which are drawn from
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independent and identically distributed (IID) random variables X1, . . . , XN .
These random variables Xi follow a common PDF fX(x). To create the per-
turbation, we consider the generic two-variable randomization model:

zi = Z(ei, xi), ∀ i ∈ {1, . . . , N} (1)

where the e1, . . . , eN are realizations of known IID random variables E1, . . . , EN .
Z(·, ·) is a deterministic, possibly nonlinear, randomization operator. The ei’s
are sampled from a specified uniform distribution. Therefore Ei ∼ U(e; aE , bE),
where fE(e) = U(e; aE , bE) is the uniform distribution parameterized by lower
and upper limits aE and bE respectively.

2.2 Reconstruction of PDF and Assumptions

Given the perturbed values z1, . . . , zN and the noise distribution, the reconstruc-
tion task is to obtain an estimate for the original PDF, which we denote f̂X(x)1.
We make the following simple assumptions for recovering the PDF of X , fX(x):

A1. The random variables X and E are statistically independent (SI) i.e. the
joint distribution fX,E(x, e) = fX(x)fE(e) is equal to the product of the
marginals.

A2. The PDFs of X and E are finitely supported by DX and DE respectively.
Outside these domains, fX(x) = fE(e) = 0.

Assumption A1 is a common assumption in privacy-preserving data mining us-
ing randomization. It basically implies that the perturbing and original distri-
butions are SI, which is a reasonable assumption. Assumption A2 simplifies the
computation for the reconstruction of the original PDF f̂X(x) without loss of
generality. This will be evident in Section 3, where the reconstruction algorithm
is presented.

3 Randomization and Reconstruction Algorithms

Given the original data xi, we will generate random numbers from a known
uniform distribution to obtain the randomized data values zi (c.f. Section 2.1).
Because we are applying the noise ei element-wise (as in Eq (1)), our random-
ization and reconstruction algorithm can be applied to both the centralized the
distributed scenarios. It has been suggested [15] that the use of multiplicative
noise is better than the additive model for minimizing risk of security breaches.
In fact, our model goes beyond multiplicative noise. Any noise model of the form
zi = Z(ei, xi) can be used.

The key here, is whether we can effectively reconstruct the PDF of original
data from the perturbed data. In this section, we will show how this can be done
effectively and efficiently, without the need of the commonly-used iterative EM
1 In this paper, estimates of functions, vectors and other variables are denoted with a

overhead hat. For example, â is the estimate for a.
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Fig. 1. Illustration of Parzen-Windows for estimation of the multimodal PDF. The
boxes are the N = 7 independent realizations of the multimodal random variable. The
individual Gaussian kernels are centered at the realizations. Their sum, as detailed in
Eq (2) and indicated by the bold line, is the Parzen-Window approximation [20].

reconstruction algorithm. The general idea is as follows. Given the perturbed
values zi, we will first obtain an estimate of fZ(z) via Parzen-Windows [20].
Following the estimation of fZ(z), we will use Quadratic Programming (QP) to
obtain an estimate of fX(x).

3.1 Estimate PDF of Perturbed Samples fZ(z) Via Parzen-Windows

The first step of the reconstruction algorithm is to estimate f̂Z(z) using Parzen
density estimation [20]. In this step, we are given N perturbed samples z1,. . ., zN .
They follow a common random variable Z, with true PDF fZ(z).

Parzen-Windows. The Parzen-Window approximation of the PDF of the per-
turbed samples is

f̂Z(z) =
1
N

N∑

i=1

1
σp

√
2π

exp
[

− (z − zi)2

2σ2
p

]

, (2)

where σp is the standard deviation or ‘width’ of the kernel. This estimator uses
the Gaussian kernel function to smooth the raw sample set, placing more prob-
ability mass in regions with many samples, which is intuitively evident.

Example 1. An illustration of how the Parzen-Window method works for N = 7
is shown in Fig 1. We show the samples drawn from an arbitrary distribution.
The Parzen approximation is the sum of the individual Gaussian kernels of equal
standard deviations σp.

Remark 1. For Parzen-Window estimation, the quality of the estimate depends
on the number of samples N as well as the standard deviation (SD) σp. If σp is
too small, the Parzen approximation suffers from too much statistical variability
and if σp is too large, the Parzen approximation is over-smoothed. Hence, we
will now turn our attention to the selection of the optimal value of σp.
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Cross-validation scheme for σp. In our experiments, we will use a cross-
validation scheme that guarantees an optimal value of σp [4,21] in the l2 sense.
In this univariate optimization procedure, we seek to minimize the Integrated
Squared Error (ISE) between the estimated PDF f̂Z(z) and the actual PDF
fZ(z):

ISE


=

∫

DZ

(
f̂Z(z) − fZ(z)

)2

dz. (3)

The ISE can be simplified to given the ‘leave-one-out’ (LOO) cross-validation
criterion

σ∗
p = argmin

σp

ELOO(σp), (4)

with ELOO(σp) defined as

ELOO(σp)


=

1
N2

N∑

i=1

N∑

j=1

N (zi; zj,
√

2σp) − 2
N(N − 1)

N∑

i=1

N∑

j=1
j �=i

N (zi; zj, σp), (5)

and N (x;μ, c) = (c
√

2π)−1 exp
[
−(x− μ)2/2c2

]
is the Gaussian kernel with

mean μ and variance c2. The optimization problem in Eq (4) is one-dimensional
and efficient line search methods [17] will yield sufficiently accurate solutions.

3.2 Estimate Original PDF fX(x) Via Quadratic Programming
(QP)

Equipped with an estimate of the perturbed PDF f̂Z(z), we are ready to estimate
the original PDF fX(x).

Theorem 1. Let Z = Z(X,E) be the result of a function of two random vari-
ables that can also be expressed as E = E(X,Z) i.e. given X = x, the trans-
formation is one-to-one. Then, if assumptions A1 and A2 (c.f. Section 2.2) are
satisfied, the Probability Density Function (PDF) of Z, f̂Z(z) can be written as

f̂Z(z) =
∫

DX

fX(x)fE [E(x, z)]
∣
∣
∣
∣
∂E(x, z)

∂x

∣
∣
∣
∣ dx. (6)

Proof. See Appendix A. ��

The assumption that the transformation from Z to E given X = x is one-to-
one is made without any loss of generality. This is because we can represent the
set A = {(x, e)} of input variables as the union of a finite number, say K, of
mutually disjoint subsets {Ak}K

k=1 such that the transformation is one-to-one in
each of Ak onto B = {(v, z)}. We focus on the one-to-one case for notational
simplicity but note that it is straightforward to extend the argument to the case
where the transformation is not one-to-one. For example, the randomization
model zi = Z(ei, xi) = xiei + x2

i e
4
i is not one-to-one. Nonetheless, it is still

possible to apply our reconstruction algorithm, with appropriate modifications
to Eq (6). We refer the reader to the excellent treatment of functions of random
variables by Hogg and Craig [14, Chapter 4].
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QP Formulation. Using Theorem 1, we can formulate the Quadratic Program
to estimate the optimal fX(x). Discretizing2 the integral in Eq. (6) yields

f̂Z(z) ≈
∑

nΔx∈DX

fX (nΔx) fE [E(nΔx, z)]
∣
∣
∣
∣
∂E(x, z)

∂x

∣
∣
∣
∣
x=nΔx

Δx, (7)

where Δx > 0 is the step size of fX(x) and nΔx ∈ DX and DX


= {(n0 + 1)

Δx, . . . , (n0 + Nx)Δx} is the set of discretized points contained in the finitely-
supported3 domain of X . Then for z ∈ {z1, . . . , zNz}, Eq. (7) can be written as

f̂Z = GE fX , (8)

where the length Nz vector f̂Z , length Nx vector fX and the Nz by Nx matrix
GE are defined as

[f̂Z ]j


= f̂Z(zj), (9)

[fX ]i


= fX((n0 + i)Δx), (10)

[GE ]ij


= fE [E((n0 + i)Δx, zj)]

∣
∣
∣
∣
∂E(x, zj)

∂x

∣
∣
∣
∣
x=(n0+i)Δx

Δx, (11)

and [v]k is the kth element of the vector v and [M]ij is the element in the ith row
and jth column of the matrix M and i ∈ {1, . . .Nz} and j ∈ {1, . . .Nx}. Eq. (8)
can be converted into the canonical cost function in a Quadratic Program as
shown in Appendix B.

Example 2. If as in [3], we use an additive scheme i .e. zi = Zadd(ei, xi) = xi +ei,
then Eq (11), together with the convolution formula [19], simplifies to give

[GE ]ij


= fE [zj − (n0 + i)Δx] . (12)

Example 3. If instead we use a multiplicative scheme [16] i.e. zi = Zmul(ei, xi) =
ei × xi, then Eq (11) together with the result in [13] simplifies to give

[GE ]ij


=

∣
∣
∣
∣

1
n0 + i

∣
∣
∣
∣ fE

[
zj

(n0 + i)Δx

]

, n0 �= −i. (13)

Constraints. As fX(x) is a PDF, it has to satisfy the stochastic constraints
fX(x) ≥ 0 , ∀x ∈ DX and

∫
DX

fX(x) dx = 1. This places an inequality and an
equality constraint on the vector fX , which can be easily incorporated into the
QP as:

fX ≥ 0NX×1,
∑

nΔx∈DX

fX(nΔx) =
1
Δx

. (14)

2 This is done using the Rectangular rule. We can alternatively use the Trapezoidal,
Simpson or Quadrature rules [8] to discretize the integral. Our experimental results,
however, show that the performances of these discretization rules are very similar
and hence for simplicity, we shall only present Rectangular rule.

3 By assumption A2.
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Sufficient conditions for QP. We now derive sufficient conditions for the
optimization problem. Because the constraint set is particularly simple, we can
obtain the optimal solution without the use of iterative methods (such as gradient
projection or modern interior points methods). Consider our quadratic program:

min
fX

J(fX) =
1
2
fT
XHfX + hTfX , (15)

subject to

fX ∈ C, with C =

{

fX
∣
∣
∣ fX ≥ 0,

Nx∑

i=1

[fX ]i = 1

}

, (16)

for appropriately chosen H and h (as shown in Appendix B). Then, the necessary
condition for f∗X to be a local minimum over a convex set [6, Section 2.1] is

Nx∑

i=1

∂J(f∗X)
∂[fX ]i

([fX ]i − [f∗X ]i) ≥ 0, ∀ fX ∈ C. (17)

Subsequent simplification yields the condition

[f∗X ]i > 0⇒ ∂J(f∗X)
∂[fX ]i

<
∂J(f∗X)
∂[fX ]j

⇔
Nx∑

k=1

[H]ik[fX ]k+[h]i <
Nx∑

k=1

[H]jk[fX ]k+[h]j , ∀ j.

(18)
Thus, all coordinates which are (strictly) positive at the optimum must have min-
imal (and equal) partial cost derivates [6]. Since GE only contains real entries,
the Hessian matrix H = GT

EGE of the QP is positive semidefinite. Consequently,
the cost function J(·) is convex [7] and any local optimum of Eq (15) is also a
global optimum, which implies that the cost value is equal for all local optima.
Moreover, the set of local optima is always convex.

We exploit the convexity of the cost function to conclude that Eq (18) is also
a sufficient condition for global optimality of f∗X = f̂X .

3.3 Discussion

We have completed the discussion of our non-iterative PDF reconstruction for
generic randomization schemes for privacy-preserving data mining. There are
two steps: Firstly, we build the Parzen-Window of the perturbed samples f̂Z(z).
Secondly, we perform a QP over the probability simplex to reconstruct an es-
timate of the original PDF f̂X(x). Our algorithm is summarised in Fig 2. We
conclude this section with two comments on our algorithm.

1. Discretizing the integral in Eq (6) is, in general, intractable if we are recon-
structing PDFs of high dimensions as the problem suffers from the ‘curse
of dimensionality’. We can mitigate the effects of the curse by assuming the
dimensions are independent, if possible. Using this näıve approach, we es-
timate the PDF in each dimension before taking their product to form the
joint density. Alternatively, we can project the data onto a lower dimensional
subspace and perform the same analysis in that subspace.
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Fig. 2. The PDF reconstruction algorithm. There are two main steps. We reconstruct
f̂Z via Parzen-Windows. Then we estimate of f̂X(x) using the QP.

2. The reconstruction algorithm can handle large datasets. One approach is to
find a random subset of the samples from the dataset zi to build the Parzen-
Window and to perform the QP. This is known as the reduced Parzen-
Window and is discussed in more detail in [12].

4 Performance Metrics

As mentioned earlier, there are two competing issues. Firstly, we hope to min-
imize the privacy loss so that individual information is not revealed. At the
same time, we want to preserve the structure and the aggregate statistics of the
underlying data. In other words, we also hope to minimize the information loss.

4.1 Privacy Loss

In this section, we will quantify privacy loss using mutual information. It was
argued in [2] that the mutual information between two random variables X and
Z measures the degree of independence between the random variables and hence,
the privacy loss for X when Z is revealed.

The mutual information I(X ;Z) tells us how much information one random
variable tells about another one. In other words, I(X ;Z) is the amount of uncer-
tainty in X , which is removed by knowing Z. When X and Z are independent,
I(X ;Z) = 0. The lower the value of I(X ;Z), the better the privacy gain via the
given perturbation scheme, the more the privacy is preserved. This leads us to
the notion of the privacy loss P(X |Z) of X when Z is known. It is defined as:

P(X |Z)


= 1 − 2−I(X;Z). (19)

By definition, 0 ≤ P(X |Z) ≤ 1. P(X |Z) = 0 if and only if X and Z are SI.

Remark 2. Privacy breach [9], based on worst-case information loss, has also
been suggested as an alternative privacy measure. However, in our work, we
consider an average disclosure measure – mutual information. Also, the privacy
breach [10] measure is typically used in the context of association-rule mining,
which is not applicable in our context.
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4.2 Information Loss

In this section, we will define information loss, which is a measure of the effec-
tiveness and accuracy of the reconstruction algorithm. It is clear that given the
perturbed values z1, . . . , zN , it is, in general, not possible to reconstruct the orig-
inal density fX(x) with arbitrary precision. The lack of precision in estimating
fX(x) from the perturbed values is referred to as information loss. The closer our
estimate f̂X(x) is to the actual PDF fX(x), the lower the information loss. We
use the following universal metric suggested in [2] to quantify the information
loss in the reconstruction of fX(x).

I(fX , f̂X)


=

1
2
E

[∫

DX

∣
∣
∣fX(x) − f̂X(x)

∣
∣
∣ dx

]

, (20)

where f̂X(x) is the estimate for the PDF of the random variable X . It is easy to
see that 0 ≤ I(fX , f̂X) ≤ 1. We will see that our algorithm produces an accu-
rate original PDF that is amendable to various distribution-based data mining
tasks.

5 Experiments

We conducted two main experiments to demonstrate the efficiency and accuracy
of the PQP reconstruction algorithm.

1. Firstly, we examine the tradeoff between the privacy loss and information
loss. In Section 5.1, we show empirically that our generic PDF reconstruc-
tion algorithm performs as well as the additive randomization-EM algorithm
suggested in [2]. We emphasize that our PDF reconstruction algorithm is
applicable to all randomization models that can be expressed in the form
Eq (1).

2. Secondly, we applied our algorithm to a real dataset and demonstrate that
privacy can be preserved and, at the same time, the aggregate statistics can
be mined. The results are discussed in Section 5.2.

5.1 Privacy/Accuracy Tradeoff

As mentioned previously, data perturbation based approaches typically face a
privacy/accuracy loss tradeoff. In this section, we shall examine this tradeoff and
compare it to existing technologies. We used two different randomization models
– multiplicative and additive and examine the efficacy of the PDF reconstruction
algorithm (‘PQP’). The results are summarized in Fig 3.

We observe that our reconstruction algorithm performs as well as EM with
the added bonus that it is generic. It can be applied to multiplicative, additive
and other randomization models. Besides, it is non-iterative.
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Fig. 3. Plot of the tradeoff between information loss I(fX , f̂X ) and privacy loss
P(X|Z). Our PDF reconstruction algorithm (‘PQP’) performs just as well as EM but
has the added bonus of being a generic reconstruction method.

Table 1. Information Losses resulting from the various perturbation/reconstruction
methods. Privacy Loss is kept constant at P(X|Z) = 0.330. We observe that the PQP
reconstruction algorithm gives a superior (lower) information loss as compared to EM.

Method Mul + PQP Add + PQP Add + EM [2]

I(fX , f̂X) 0.1174 0.0957 0.1208

5.2 Application to Real Data

We applied the Parzen-Window and QP reconstruction (‘PQP’) algorithm to real
data obtained from The U.S. Department of Housing and Urban Development’s
(USDHUD’s) Office of Policy Development and Research (PD&R) [23]. As with
the previous experiment, we perturbed the data with multiplicative noise and
additive noise. Other randomization techniques are also applicable.

The data in [23] provides us with the median income of all the counties in
the 50 states in the U.S in 2005. The length of the dataset is N = 3195. This
is plotted as a histogram with 75 bins in Figure 4(a). We multiplied each data
value with samples drawn from a uniform distribution with domain 1 ≤ e ≤ 3
giving a privacy loss value of P(X |Z) = 0.330.

In addition to using the multiplicative randomization and PQP reconstruc-
tion algorithm, we also ran the PQP algorithm on the data corrupted by additive
noise. The level of noise was adjusted such that the privacy loss is kept constant
at P(X |Z) = 0.330. Finally, we implemented the additive noise and EM recon-
struction algorithm [2] on the data.

We averaged our results over 500 independent runs and the results are tab-
ulated in Table 1. The results showed that our PDF reconstruction algorithm
(‘PQP’) performed better than additive/EM [2] on the real data. The added



Generic Probability Density Function Reconstruction 87

Fig. 4. (a) Original histogram of Median Income of Counties in the U.S. [23] (b) Re-
constructed histogram after Multiplicative Randomization and our PDF reconstruc-
tion algorithm (‘PQP’). (c) Reconstructed histogram after Additive Randomization
and ‘PQP’. (d) Reconstructed histogram after Additive Randomization and EM [2].
Note the accuracy of our PDF reconstruction algorithm.

advantage here is that our novel non-iterative PDF reconstruction algorithm
can be applied to all randomization models of the form Eq (1).

6 Conclusions and Further Work

In this paper, we have devised a novel PDF reconstruction scheme for privacy-
preserving data mining. This scheme is based on Parzen-Window reconstruction
and Quadratic Programming (with a positive semidefinite Hessian) over a con-
vex set. For the first time, the original PDF fX(x) can be approximated from the
samples which have been perturbed by any type of noise (even multiplicative)
that follows the generic randomization equation zi = Z(ei, xi). We performed ex-
tensive numerical experiments demonstrating the efficacy of our algoritm. There
are two distinct advantages over the existing PDF reconstruction algorithms
which are based on the iterative EM algorithm.

1. Firstly, our proposed two-step reconstruction algorithm eliminated the com-
mon need for the iterative Expectation-Maximization (EM) algorithm. This
is essential for problems which involve larger datasets, as it circumvents the
need for iteration. It only involves two steps: Parzen-Window reconstruction
and Quadratic Programming. The QP is particularly easy to solve because
of the nature of the constraints – the (convex) probability simplex.
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2. Secondly, our reconstruction method is also generic. Theorem 1 shows that
the algorithm can be applied to many other randomization models as long
as the perturbing random variable E and the underlying random variable
X are SI, which is a common assumption for randomization methods in
privacy-preserving data mining. We emphasize that although we examined
the multiplicative and additive models only in Section 5, our reconstruction
algorithm can be applied to all randomization models of the form Eq (1).

A natural extension to this work is to examine even more randomization models
and reconstruction algorithms. For instance, we can parameterize Eq (1) as fol-
lows: zi = Z(ei(ψ), xi;ψ) where ψ is an unknown but deterministic/non-random
parameter. This adds an additional layer of privacy and the PDF can be esti-
mated using a combination of our PQP reconstruction algorithm and maximum-
likelihood methods. Finally, a question of paramount importance that researchers
can try to decipher is: Does a fundamental relation between the privacy loss and
information loss exist? We believe this needs to be answered precisely in order
to unlock the promising future in privacy-preserving data mining.
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Appendix

A Proof of Theorem 1

Proof. Our proof is adapted from [11] and [13]. Using the transformation tech-
nique [14], the transformation V = X and Z = Z(X,E) constitutes a one-to-one
mapping from from A = {(x, e)} to B = {(v, z)}. Let u denote the transformation

http://www.huduser.org/datasets/ il/IL_99_05_REV.xls
http://www.huduser.org/datasets/ il/IL_99_05_REV.xls
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and w the inverse transformation. The transformation and its inverse can be
written as:

v = u1(x, e) = x, z = u2(x, e) = Z(x, e), (A.1)
x = w1(v, z) = z, e = w2(v, z) = E(v, z). (A.2)

Consequently, the Jacobian determinant can be expressed in the form

J =
∣
∣
∣
∣

∂x
∂z

∂x
∂v

∂e
∂z

∂e
∂v

∣
∣
∣
∣ =

∣
∣
∣
∣
∂E(v, z)

∂v

∣
∣
∣
∣ =

∣
∣
∣
∣
∂E(x, z)

∂x

∣
∣
∣
∣ . (A.3)

The marginal density of Z, which can be obtained through Parzen reconstruction
from the samples of zi can be found by integrating the joint density of V and Z

f̂Z(z) =
∫

DV

fV,Z(v, z) dv. (A.4)

Application of the transformation from B to A yields

f̂Z(z) =
∫

DV

fX,E(w1(v, z), w2(v, z))
∣
∣
∣
∣
∂E(x, z)

∂x

∣
∣
∣
∣ dv, (A.5)

A further simplification and the use of the statistical independence of X and E
(Assumption A1) gives Eq. (6). ��

B Detailed Formulation of the Quadratic Program

The canonical QP can be written as

θ∗ = argmin
θ

{
1
2
θTHθ + hTθ

}

, (B.1)

subject to
Aθ ≤ b, Aeqθ = beq, (B.2)

where H, A and Aeq are matrices and h, b, beq and θ are vectors, all appro-
priately sized. To optimize for a solution to Eq (8), we can write it in terms of
an cost function

J(fX) =
1
2

∥
∥
∥f̂Z −GEfX

∥
∥
∥

2

2
, (B.3)

where ‖ · ‖2 is the l2 norm. Eq (B.3) can be can be simplified to give

J(fX) =
1
2
fT
XGT

EGEfX − f̂T
Z GEfX + c, (B.4)

where c is some constant independent of fX . Hence, by comparing Eq (B.1) and
Eq (B.4), we observe that θ = fX is the vector of control variables and

H = GT
EGE , h = −GT

E f̂Z , (B.5)

are the matrix (Hessian) and vector that define the cost function. Also, compar-
ing the constraints in Eq (14) to the constraints in the canonical QP, we obtain

A = −INX×NX , b = 0NX×1, Aeq = (Δx)11×NX , beq = 1. (B.6)
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Abstract. One of most important algorithms for mining data streams is VFDT. It 
uses Hoeffding inequality to achieve a probabilistic bound on the accuracy of the 
tree constructed. Gama et al. have extended VFDT in two directions. Their 
system VFDTc can deal with continuous data and use more powerful 
classification techniques at tree leaves. In this paper, we revisit this problem and 
implemented a system fVFDT on top of VFDT and VFDTc. We make the 
following four contributions: 1) we present a threaded binary search trees 
(TBST) approach for efficiently handling continuous attributes. It builds a 
threaded binary search tree, and its processing time for values inserting is 
O(nlogn), while VFDT`s processing time is O(n2). When a new example arrives, 
VFDTc need update O(logn) attribute tree nodes, but fVFDT just need update 
one necessary node.2) we improve the method of getting the best split-test point 
of a given continuous attribute. Comparing to the method used in VFDTc, it 
improves from O(nlogn) to O (n) in processing time. 3) Comparing to VFDTc, 
fVFDT`s candidate split-test number decrease from O(n) to O(logn).4)Improve 
the soft discretization method to be used in data streams mining, it overcomes the 
problem of noise data and improve the classification accuracy. 

Keywords: Data Streams, Incremental, Fuzzy, Continuous Attribute, Threaded 
Binary Search Tree. 

1   Introduction 

Decision trees are one of the most used classification techniques for data mining. Tree 
models have high degree of interpretability. Global and complex decisions can be 
approximated by a series of simpler and local decisions. Algorithms that construct 
decision trees from data usually use a divide and conquer strategy. A complex problem 
is divided into simpler problems and recursively the same strategy is applied to the 
sub-problems. The solutions of sub-problems are combined in the form of a tree to 
yield the solution of the complex problem [3, 20, 22]. 
                                                           
∗ This work was supported by the National Science Foundation of China under Grants No. 

60573057, 60473057 and 90604007. 
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More recently, the data mining community has focused on a new model of data 
processing, in which data arrives in the form of continuous streams [1, 3, 9, 11, 12,  
16, 28, 29]. The key issue in mining on data streams is that only one pass is allowed 
over the entire data. Moreover, there is a real-time constraint, i.e. the processing time is 
limited by the rate of arrival of instances in the data stream, and the memory and disk 
available to store any summary information may be bounded. For most data mining 
problems, a one-pass algorithm cannot be very accurate. The existing algorithms 
typically achieve either a deterministic bound on the accuracy or a probabilistic bound 
[21, 23].  

Domingos and Hulten [2, 6] have addressed the problem of decision tree 
construction on data streams. Their algorithm guarantees a probabilistic bound on the 
accuracy of the decision tree that is constructed. Gama et al. [5] have extended VFDT 
in two directions: the ability to deal with continuous data and the use of more powerful 
classification techniques at tree leaves.  

Peng et al.[30]propose the soft discretization method in traditional data mining 
field,it solve the problem of noise data and improve the classification accuracy. 

The rest of the paper is organized as follows. Section 2 describes the related works 
that is the basis for this paper. Section 3 presents the technical details of fVFDT. The 
system has been implemented and evaluated, and experimental evaluation is done in 
Section 4. Last section concludes the paper, resuming the main contributions of this 
work. 

2   Related Work 

In this section we analyze the related works that our fVFDT bases on. 
Decision trees support continuous attributes by allowing internal nodes to contain 

tests of the form Ai≤ T (the value of attribute i is less than threshold T). Traditional 
induction algorithms learn decision trees with such tests in the following manner. For 
each continuous attribute, they construct a set of candidate tests by sorting the values of 
that attribute in the training set and using a threshold midway between each adjacent 
pair of values that come from training examples with different class labels to get the 
best split-test point.  

There are several reasons why this standard method is not appropriate when learning 
from data streams. The most serious of these is that it requires that the entire training set 
be available ahead of time so that split thresholds can be determined. 

2.1   VFDT 

VFDT(Very Fast Decision Tree) system[2], which is able to learn from abundant data 
within practical time and memory constraints. In VFDT a decision tree is learned by 
recursively replacing leaves with decision nodes. Each leaf stores the sufficient 
statistics about attribute-values. The sufficient statistics are those needed by a heuristic 
evaluation function that evaluates the merit of split-tests based on attribute-values. 
When an example is available, it traverses the tree from the root to a leaf, evaluating the 
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appropriate attribute at each node, and following the branch corresponding to the 
attribute's value in the example. When the example reaches a leaf, the sufficient 
statistics are updated. Then, each possible condition based on attribute-values is 
evaluated. If there is enough statistical support in favor of one test over the others, the 
leaf is changed to a decision node. The new decision node will have as many 
descendant leaves as the number of possible values for the chosen attribute (therefore 
this tree is not necessarily binary). The decision nodes only maintain the information 
about the split-test installed in this node. The initial state of the tree consists of a single 
leaf: the root of the tree. The heuristic evaluation function is the Information Gain 
(denoted by G(﹒). The sufficient statistics for estimating the merit of a discrete 
attribute are the counts nijk, representing the number of examples of class k that reach 
the leaf, where the attribute j takes the value i. The Information Gain measures the 
amount of information that is necessary to classify an example that reach the node: 
G(Aj)=info(examples)-info(Aj). The information of the attribute j is given by:  

inf ( ) ( log( ))j i ik iki k
o A P P P= −∑ ∑  

where ik ijk ajka
P n n= ∑ , is the probability of observing the value of the attribute i 

given class k and i ija ajba a b
P n n=∑ ∑ ∑ is the probabilities of observing the 

value of attribute i.  

As mentioned in Catlett and others [23], that it may be sufficient to use a small 
sample of the available examples when choosing the split attribute at any given node. 
To determine the number of examples needed for each decision, VFDT uses a statistical 
result known as Hoeffding bounds or additive Chernoff bounds. After n independent 
observations of a real-valued random variable r with range R, the Hoeffding bound 
ensures that,  with  confidence 1-δ, the  true mean of r is at least r ε− , where r is the 

observed mean of samples and 
2 ln (1 / )

2

R

n

δε = . This is true irrespective of the 

probability distribution that generated the observations. 

Let G(﹒) be the evaluation function of an attribute. For the information gain, the 
range R, of G(﹒) is log2 #classes. Let xa be the attribute with the highest G(﹒), xb the 
attribute with second-highest G(﹒) and ( ) ( )a bG G x G xΔ = − , the difference 
between the two better attributes. Then if G εΔ >  with n examples observed in the 
leaf, the Hoeffding bound states with probability 1-δ that xa is really the attribute with 
highest value in the evaluation function. In this case the leaf must be transformed into a 
decision node that splits on xa.  

For continuous attribute, whenever VFDT starts a new leaf, it collects up to M 
distinct values for each continuous attribute from the first examples that arrive at it. 
These are maintained in sorted order as they arrive, and a candidate test threshold is 
maintained midway between adjacent values with different classes, as in the traditional 
method. Once VFDT has M values for an attribute, it stops adding new candidate 
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thresholds and uses additional data only to evaluate the existing ones. Every leaf uses a 
different value of M, based on its level in the tree and the amount of RAM available 
when it is started. For example, M can be very large when choosing the split for the root 
of the tree, but must be very small once there is a large partially induced tree, and many 
leaves are competing for limited memory resources. Notice that even when M is very 
large (and especially when it is small) VFDT may miss the locally optimal split point. 
This is not a serious problem here for two reasons. First, if data is an independent, 
identically distributed sample, VFDT should end up with a value near (or an empirical 
gain close to) the correct one simply by chance. And second, VFDT will be learning 
very large trees from massive data streams and can correct early mistakes later in the 
learning process by adding additional splits to the tree. 

Thinking of each continuous attribute, we will find that the processing time for the 
insertion of new examples is O (n2), where n represents the number of distinct 
values for the attribute seen so far. 

2.2   VFDTc 

VFDTc is implemented on top of VFDT, and it extends VFDT in two directions: the 
ability to deal with continuous attributes and the use of more powerful classification 
techniques at tree leaves. Here, we just focus on the handling of continuous attributes. 

In VFDTc a decision node that contains a split-test based on a continuous attribute 
has two descendant branches. The split-test is a condition of the form attribj≤ T. The 
two descendant branches correspond to the values TRUE and FALSE for the split-test. 
The cut point is chosen from all the possible observed values for that attribute. In order 
to evaluate the goodness of a split, it needs to compute the class distribution of the 
examples at which the attribute-value is less than or greater than the cut point. The 
counts nijk are fundamental for computing all necessary statistics. They are kept with 
the use of the following data structure: In each leaf of the decision tree it maintains a 
vector of the classes’ distribution of the examples that reach this leaf. For each 
continuous attribute j, the system maintains a binary attribute tree structure. A node in 
the binary tree is identified with a value i(that is the value of the attribute j seen in an 
example), and two vectors (of dimension k) used to count the values that go through 
that node. Two vectors, VE and VH contain the counts of values respectively 

i≤ and i>  for the examples labeled with class k. When an example reaches leaf, all 
the binary trees are updated. In [5], an algorithm of inserting a value in the binary tree is 
presented. Insertion of a new value in this structure is O(nlogn) where n represents the 
number of distinct values for the attribute seen so far.  

To obtain the Information Gain of a given attribute, VFDTc uses an exhaustive 
method to evaluate the merit of all possible cut points. Here, any value observed in the 
examples seen so far can be used as cut point. For each possible cut point, the 
information of the two partitions is computed using equation 1. 

inf ( ( )) ( ) *  ( ( )) ( ) *  ( ( )) j j j j jo A i P A i iLow A i P A i i High A i= ≤ + >     (1) 
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Where i is the cut point, iLow(Aj(i)) the information of Aj≤ i (equation 2) and 
iHigh(Aj(i)) the information of Aj> i (equation 3). 

j
K

( ( )) ( | ) * log(P(K=k|A i)) j jiLow A i P K k A i= − = ≤ ≤∑           (2)  

j
K

( ( )) ( | ) * log(P(K=k|A >i)) j jiHigh A i P K k A i= − = >∑              (3) 

VFDTc only considers a possible cut_point if and only if the number of examples in 
each of subsets is higher than Pmin (a user defined constant) percentage of the total 
number of examples seen in the node. [5] Presents the algorithm to compute #(Aj≤ i) 
for a given attribute j and class k. The algorithm’s processing time is O(logn), so the 
best split-test point calculating time is O(nlogn). Here, n represents the number of 
distinct values for the attribute seen so far at that leaf.  

2.3   Soft Discretization 

Soft discretization could be viewed as an extension of hard discretization, and the 
classical information measures defined in the probability domain have been extended to 
new definitions in the possibility domain based on fuzzy set theory [13]. A crisp set cA  
is expressed with a sharp characterization function ( ) : {0,1}:cA a aΩ → ∈Ω , 
alternatively a fuzzy set A  is characterized with a membership function 

( ) : [0,1] :A a aΩ → ∈Ω . The membership ( )A a  is called the possibility of A  to 
take a value a ∈Ω [14]. The probability of fuzzy set A  is defined, according to Zadeh 

[15], by ( ) ( )FP A A a dP
Ω

= ∫ , where dP is a probability measure on Ω , and the 

subscript F is used to denote the associated fuzzy terms. Specially, if A  is defined on 

discrete domain 1{ ,..., ,..., }i ma a aΩ = , and the probability of ( )i iP a p=  then its 

probability is 
1

( ) ( )
m

F i i
i

P A A a p
=

=∑ . 

Let 1{ ,..., }kQ A A=  be a family of fuzzy sets on Ω . Q is called a fuzzy partition 

of Ω  [16] when
1

( ) 1,
k

r
r

A a a
=

= ∀ ∈Ω∑ . 

A hard discretization is defined with a threshold T, which generates the boundary 
between two crisp sets. Alternatively, a soft discretization is defined by a fuzzy set pair 
which forms a fuzzy partition. In contrast to the classical method of non-overlapping 
partitioning, the soft discretization is overlapped. The soft discretization is defined with 
three parameters/functions, one is the cross point T, the other two are the membership 
functions of the fuzzy set pair A1 and A2: A1(a)+A2(a)=1. The cross point T, i.e. the 
localization of soft discretization, is determined based on whether it can maximize the 
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information gain in classification, and the membership functions of the fuzzy set pair 
are determined according to the characteristics of attribute data, such as the uncertainty 
of the associated attribute.  

3   Technique Details 

Improving soft discretizaiont method, we implement a system named fVFDT on top of 
VFDT and VFDTc. It handles continuous attributes based on threaded binary search 
trees, and uses a more efficient best split-test point calculating method.  

For discrete attributes, they are processed using the algorithm mentioned in VFDT 
[2]. Our fVFDT specially focus on continuous attribute handling. 

3.1   Threaded Binary Search Tree Structure for Continuous Attributes 

fVFDT maintains a threaded binary search tree for each continuous attribute. The 
threaded binary search tree data structure will benefit the procedure of inserting new 
example and calculating best split-test point. 

For each continuous attribute i, the system maintains a threaded binary search tree 
structure. A node in the threaded binary search tree is identified with a value keyValue 
(that is the value of the attribute i seen in the example)，and a vector( of dimension k) 
used to count the values that go through that node. This vector classTotals[k] contains 
the counts of examples which value is keyValue and class labeled with k. A node 
manages left and right pointers for its left and right child, where its left child 
corresponds to ≤keyValue, while its right child corresponds to >keyValue. For the 
goodness of calculating the best split-test point, a node contains prev and next pointers 
for the previous and next node. At most, three nodes` prev and next pointers will be 
updated while new example arrives.  

fVFDT maintains a head pointer for each continuous attribute to traverse all the 
threaded binary trees. 

3.2   Updates the Threaded Search Binary Tree While New Examples Arrives 

One of the key problems in decision tree construction on streaming data is that the 
memory and computational cost of storing and processing the information required to 
obtain the best split-test point can be very high. For discrete attributes, the number of 
distinct values is typically small, and therefore, the class histogram does not require 
much memory. Similarly, searching for the best split predicate is not expensive if 
number of candidate split conditions is relatively small. 

However, for continuous attributes with a large number of distinct values, both 
memory and computational costs can be very high. Many of the existing approaches are 
scalable, but they are multi-pass. Decision tree construction requires a preprocessing 
phase in which attribute value lists for continuous attributes are sorted [20]. 
Preprocessing of data, in comparison, is not an option with streaming data, and sorting 
during execution can be very expensive. Domingos and Hulten have described and 
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evaluated their one-pass algorithm focusing only on discrete attributes [2], and in later 
version they uses sorted array to handle continuous attribute. This implies a very high 
memory and computational overhead for inserting new examples and determining the 
best split point for a continuous attribute. 

In fVFDT a Hoeffding tree node manages a threaded binary search tree for each 
continuous attribute before it becomes a decision node.  

Procedure InsertValueTBSTree(x, k, TBSTree)
Begin
while (TBSTree ->right != NULL || TBSTree ->left != NULL )

if (TBSTree ->keyValue = = x ) then break;
Elseif (TBSTree ->keyValue > x ) then TBSTree = TBSTree ->lef
else TBSTree = TBSTree ->right;

Creates a new node curr based on x and k;
If ( TBSTree.keyValue = = x ) then TBSTree.classTotals[k]++;
Elesif (TBSTree.keyValue > x) then TBSTree.left = curr;
else TBSTree.right = curr;
Threads the tree ;( The details of threading is in figure2)

End

t;

 

Fig. 1. Algorithm to insert value x of an example labeled with class k into a threaded binary 
search tree corresponding to the continuous attribute i 

In the induction of decision trees from continuous-valued data, a suitable threshold 
T, which discretizes the continuous attribute i into two intervals: atrri≤ T and atrr i > T, 
is determined based on the classification information gain generated by the 
corresponding discretization. Given a threshold, the test atrri ≤ T is assigned to the left 
branch of the decision node while atrr i > T is assigned to the right branch. As a new 
example (x,k) arrives, the threaded binary search tree corresponding to the continuous 
attribute i is update as Figure 1. 

In [5], when a new example arrives, O(logn) binary search tree nodes need be 
updated, but fVFDT just need update a necessary node here. VFDT will cost O(n2), and 
our system fVFDT will just cost O (nlogn) (as presented in Figure 1) in execution time 
for values inserting, where n represents the number of distinct values for the given 
attribute seen so far. 

3.3   Threads the Binary Tree While New Example Arrives 

fVFDT need thread the binary search trees while new example arrives. If the new 
example’s value is equal to an existing node`s value, the threaded binary tree doesn’t 
need be threaded. Otherwise, the threaded binary tree need be threaded as Figure 2.  

At most, three relevant nodes need be updated here. This threading procedure 
mentioned in Figure 2 can be embedded in the procedure presented in Figure 1, and the 
inserting procedure’s processing time is still O(nlogn). 



98 T. Wang et al. 

Procedure TBSTthreads()
Begin
if (new node curr is left child of ptr)

curr->next = ptr;
curr->nextValue = ptr->keyValue;
curr->prev = ptr->prev;
ptr->prev->next = curr;
prevPtr->nextValue = value;
ptr->prev = curr;
if (new node curr is right child of ptr)

curr->next = ptr->next;
curr->nextValue = ptr->nextValue;
curr->prev = ptr;
ptr->next->prev = curr;
ptr->nextValue = value;
ptr->next = curr;

End  

Fig. 2. Algorithm to thread the binary search tree while new example arrives 

3.4   Soft Discretization of Continuous Attributes 

Taking advantage of threaded binary search tree, we use a more efficient method to 
obtain the fuzzy information gain of a given attribute.  

Assuming we are to select an attribute for a node having a set S of N examples 
arrived, these examples are managed by a threaded binary tree according to the values 
of the continuous attribute i ; and an ordered sequence of distinct values a1, a2 … an is 
formed. Every pair of adjacent data points suggests a potential threshold T= (ai+ai+1)/2 
to create a cut point and generate a corresponding partition of attribute i. In order to 
calculate the goodness of a split, we need to compute the class distribution of the 
examples at which the attribute value is less than or greater than threshold T. The counts 
TBSTree.classTotals[k] are fundamental for computing all necessary statistics.  

To take the advantage of threaded binary search tree, we record the head pointer of 
each attribute’s threaded binary search tree. As presented in Figure 3, traversing from 
the head pointer to the tail pointer, we can easily compute the fuzzy information of all 
the potential thresholds. fVFDT implies soft discretization by managing Max/Min 
value and example numbers. 

Procedure BSTInorderAttributeSplit(TBSTtreePtr ptr,int *belowPrev[])
Begin

if ( ptr->next == NULL) then break;
for ( k = 0 ; k < count ; k++)

*belowPrev[k] += ptr->classTotals[k];
Calculates the information gain using *belowPrev[];

BSTInorderAttributeSplit( ptr->next,int *belowPrev[]);
End

 

Fig. 3. Algorithm to compute the information gain of a continuous attribute 
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Here, VFDTc will cost O(nlogn) , and our system fVFDT will just cost O(n) in 
processing time, where n represents the number of distinct values for the given 
continuous attribute seen so far. 

3.5   Classify a New Example 

The classification for a given unknown object is obtained from the matching degrees of 
the object to each node from root to leaf. The possibility of an object belonging to class 
Ci is calculated by a fuzzy product operation ⊗ . In the same way, the possibility of the 

object belonging to each class can be calculated, 1...{ }i i k=Π . If more than one leaf are 

associated with a same class Ci, say, the value of  ( )i jΠ = ⊕ Π  will be  considered as 

the possibility of the corresponding class, where the maximum operation is used as the 
fuzzy sum operation ⊕  In the end, if one possibility value, such as kΠ , is much higher 
than others, that is ...k i kΠ >> Π , then the class will be assigned as the class of the 
object, otherwise the decision tree predicts a distribution over all the classes.  

4   Evaluation 

In this section we empirically evaluate fVFDT. The main goal of this section is to 
provide evidence that the use of threaded binary search tree decreases the processing 
time of VFDT, while keeps the same error rate and tree size. The algorithms` 
processing time is listed in Table 1. 

Table 1. Algorithm’s processing time 

Algorithm Name Inserting time Best split-test point calculating time 
VFDT 2( )O n  ( )O n  

VFDTc ( log )O n n  ( log )O n n  

fVFDT ( log )O n n  ( )O n  

We first describe the data streams used for our experiments. We use a tool named 
treeData mentioned in [2] to create synthetic data .It creates a synthetic data set by 
sampling from a randomly generated decision tree. They were created by randomly 
generating decision trees and then using these trees to assign classes to randomly generated 
examples. It produced the random decision trees as follows. Starting from a tree with a 
single leaf node (the root) it repeatedly replaced leaf nodes with nodes that tested a 
randomly selected attribute which had not yet been tested on the path from the root of the 
tree to that selected leaf. After the first three levels of the tree each selected leaf had  
a probability of f of being pre-pruned instead of replaced by a split (and thus of remaining a 
leaf in the final tree). Additionally, any branch that reached a depth of 18 was pruned at that 
depth. Whenever a leaf was pruned it was randomly (with uniform probability) assigned a 
class label. A tree was completed as soon as all of its leaves were pruned.  
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VFDTc`s goal is to show that using stronger classification strategies at tree leaves 
will improve classifier’s performance. With respect to the processing time, the use of 
naïve Bayes classifier will introduce an overhead [5], VFDTc is slower than VFDT. In 
order to compare the VFDTc and fVFDT , we implement the continuous attributes 
solving part of VFDTc ourselves.  

We ran our experiments on a Pentium IV/2GH machine with 512MB of RAM, 
which running Linux RedHat 9.0. 

Table 2 shows the processing (excluding I/O) time of learners as a function of the 
number  of training  examples averaged over  nine  runs. VFDT and  fVFDT run  with 

parameters 7
min10 , 5%, 300,  100000n example number Kδ τ−= = = = , no 

leaf reactivation, and no rescan. Averagely, comparing to VFDT, fVFDT`s average 

reduction of processing time is 16.66%, and comparing to VFDTc, fVFDT`s average 

reduction is 6.25%. 

Table 2. The comparing result of processing time 

       time(seconds) 

example numbers 
VFDT VFDTc fVFDT 

10000 4.66 4.21 3.75

20736 9.96 8.83 8.12

42996 22.88 20.59 18.57

89156 48.51 43.57 40.87

184872 103.61 93.25 87.12

383349 215.83 187.77 175.23

794911 522.69 475.65 441.61

1648326 1123.51 1022.39 939.35

3417968 2090.31 1839.45 1758.89

7087498 3392.94 3053.65 2882.23

14696636 5209.47 4688.53 4389.35

30474845 8203.05 7382.75 6850.12

43883922 13431.02 11953.61 11068.23

90997707 17593.46 15834.12 15020.46

100000000 18902.06 16822.86 15986.23
 

In this work, we measure the size of tree models as the number of decision nodes 
plus the number of leaves. As for dynamic data stream with 100 million examples, we 
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notice that the two learners similarly have the same tree size. We have done another 
experiment using 1 million examples generated on disk, and the result shows that they 
have same tree size. 

 

Fig. 4. Error rate as a function of the examples numbers 

Figure 4 shows the error rate curves of VFDT and fVFDT. Both algorithms have 
10% noise data, VFDT`s error rate trends to 12.5%, while the fVFDT`s error rate trends 
to 8%. Experiment results show that fVFDT get better accuracy by using soft 
discretization, and it overcomes the problem of noise.  

5   Conclusions and Future Work 

On top of VFDT and VFDTc, improve the soft discretization method, we propose a 
system fVFDT. Focusing on continuous attribute, we have developed and evaluated a 
new technique named TBST to insert new example and calculate best split-test point 
efficiently. It builds threaded binary search trees, and its processing time for values 
insertion is O(nlogn). Comparing to the method used in VFDTc, it improves from 
O(nlogn) to O(n) in processing time for best split-test point calculating. As for noise 
data, we improve the soft discretization method in traditional data mining field, so the 
fVFDT can deal with noise data efficiently and improve the classification accuracy. 

In the future, we would like to expand our work in some directions. First, we do not 
discuss the problem of time changing concept here, and we will apply our method to 
those strategies that take into account concept drift [4, 6, 10, 14, 15, 19, 24, 25]. 
Second, we want to apply other new fuzzy decision tree methods in data streams 
classification [8, 13, 17, 18, 26]. 
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Abstract. If their assumptions are not met, classifiers may fail. In this
paper, the possibility of combining classifiers in multi-class problems is
investigated. Multi-class classification problems are split into two class
problems. For each of the latter problems an optimal classifier is deter-
mined. The results of applying the optimal classifiers on the two class
problems can be combined using the Pairwise Coupling algorithm by
Hastie and Tibshirani (1998).

In this paper exemplary situations are investigated where the respec-
tive assumptions of Naive Bayes or the classical Linear Discriminant
Analysis (LDA, Fisher, 1936) fail. It is investigated at which degree of
violations of the assumptions it may be advantageous to use single meth-
ods or a classifier combination by Pairwise Coupling.

1 Introduction

When talking about ensemble methods one usually has in mind very popular
principles like Bagging (Breiman, 1996) or Boosting (Freund and Shapire, 1997).
Both rely on combinations of different classification rules that are build on sam-
pled or weighted instances of the original data. In this paper a somewhat different
perspective to combining classifiers for multi-class problems is worked out: the
basic observation is that classifiers only work well if their underlying assumptions
hold, e.g. classwise independent features in the case of a Naive Bayes classifier.
This may be the case for some but not necessarily all of the classes.

Pairwise Coupling (PWC) generates K(K − 1)/2 subsamples of the data (K
being the number of classes) each consisting only of objects of one specific pair of
classes. For these two classes, an optimal classifier is determined, e.g. using cross-
validation. According to the thoughts presented above, the optimal classifier may
be a different one for different class pairs.

When classifying new data, of course in general no prior information is avail-
able to which pair of classes an object belongs. Thus, one can make use of the
Pairwise Coupling algorithm of Hastie and Tibshirani (1998) and apply the pre-
diction models for all class pairs and then construct posterior probabilities (and
thus a multi-class classification rule) from the results. The Pairwise Coupling
algorithm will be explained in Section 2.
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In this paper, the principle of combining pairwise optimal classifiers is investi-
gated for the case of two very common classification methods, namely Naive Bayes
and Linear Discriminant Analysis (Fisher, 1936). Both methods are briefly de-
scribed in Section 3. In a simulation study the degree of violation of the assumption
of both methods is varied. The results give quite an interesting indication of the ro-
bustness of both methods as well as they produce a ’map’ that shows when to use
whether one of the single classifiers or a combination. It turns out that in some
situations a combination of pairwise optimized classifiers can strongly improve the
classification results if the assumptions of single methods do not hold for all classes.

The following pseudo-code summarizes the steps of the suggested proceeding:

Build classification model (data, set of classification methods)

1. For each pair of two classes do
2. (a) Remove temporarily all observations that do not belong to one of both

classes from data: return newdata.
(b) For each classifier in set of classification methods

– Build classifier on newdata.
– Validate classifier e.g. using cross-validation.
– Store Results temporally in classifier results.

(c) Choose best classifier according to classifier results return classifier of
class-pair.

(d) Train classifier of class-pair on newdata:
(e) Return model of class-pair.

3. Return the whole model consisting of model of class-pair for all pairs of
classes.

Predict class (new object, models of class-pairs)

1. For each pair of subclasses do
2. (a) Calculate the posterior probabilities for new object assuming the object

being of one of the currently considered two classes according to model
of class-pair.

(b) Return the class pair posterior probabilities.
3. Use the Pairwise Coupling algorithm to calculate the posterior probabilities

for all K classes from the set of all estimated pairs of conditional class pair
posterior probabilities.

4. Return the predicted class k with maximal class posterior probability.

The following section describes a solution to the problem of gaining the vec-
tor of posterior probabilities form the pairwise classification models built with
possibly different classifiers.

2 Pairwise Coupling

2.1 Definitions

We now tackle the problem of finding posterior probabilities of a K-(sub)class
classification problem given the posterior probabilities for all K(K − 1)/2
pairwise comparisons. Let us start with some definitions.
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Let p(x) = p = (p1, . . . , pK) be the vector of (unknown) posterior probabilities.
p depends on the specific realization x. For simplicity in notation we will omit x.
Assume the ”true” conditional probabilities of a pairwise classification problem
to be given by

μij = Pr(i|i ∪ j) =
pi

pi + pj
. (1)

Let rij denote the estimated posterior probabilities of the two-class problems.
The aim is now to find the vector of probabilities pi for a given set of values rij .

Example 2: Let p = (0.7, 0.2, 0.1). The μij can be calculated according to
equation 1 and can be presented in a matrix:

(μij)i,j =

⎛

⎝
. 7/9 7/8

2/9 . 2/3
1/8 1/3 .

⎞

⎠ . (2)

Example 3: The inverse problem does not necessarily have a proper solution,
since there are only K−1 free parameters but K(K−1)/2 constraints. Consider

(rij)i,j =

⎛

⎝
. 0.9 0.4

0.1 . 0.7
0.6 0.3 .

⎞

⎠ (3)

where the row i contains the estimated conditional pairwise posterior probabili-
ties rij for class i. It can be easily checked that the linear system resulting from
applying equation 1 cannot be solved.

From Machine Learning, majority voting (”Which class wins most compar-
isons ?”) is a well known approach to solve such problems. But here, it will not
lead to a result since any class wins exactly one comparison. Intuitively, class 1
may be preferable since it dominates the comparisons the most clearly.

2.2 Algorithm

In this section we present the Pairwise Coupling algorithm of Hastie and Tib-
shirani (1998) to find p for a given set of rij . They transform the problem into
an iterative optimization problem by introducing a criterion to measure the fit
between the observed rij and the μ̂ij , calculated from a possible solution p̂. To
measure the fit they define the weighted Kullback-Leibler distance:

l(p̂) =
∑

i<j

nij

(

rij ln
(
rij

μ̂ij

)

+ (1 − rij) ln
(

1 − rij

1 − μ̂ij

))

. (4)

nij is the number of objects that fall into one of the classes i or j.
The best solution p̂ of posterior probabilities is found as in Iterative Propor-

tional Scaling (IPS) (for details on the IPS-method see e.g. Bishop, Fienberg
and Holland, 1975). The algorithm consists of the following three steps:
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1. Start with any p̂ and calculate all μ̂ij .
2. Repeat until convergence i = (1, 2, . . . ,K, 1, . . .):

p̂i ← p̂i

∑
j �=i nijrij

∑
j �=i nij μ̂ij

, (5)

renormalize p̂ and calculate the new μ̂ij .
3. Finally scale the solution to p̂← p̂∑

i p̂i
.

Motivation of the algorithm: Hastie and Tibshirani (1998) show that l(p)
increases at each step. For this reason, since it is bounded above by 0, l(p)
converges. providing μ̂ij = rij ∀ i �= j, it will be found.

Even if the choice of l(p) as optimization criterion is rather heuristic, it can
be motivated in the following way: consider a random variable nijrij , being the
number of observations of class i among the nij observations of class i and j.
This random variable can be considered to be binomially distributed nijrij ∼
B(nij , μij) with ”true” (unknown) parameter μij . Since the same (training) data
is used for all pairwise estimates rij , the rij are not independent, but if they were,
l(p) of equation 4 would be equivalent to the log-likelihood of this model (see
Bradley and Terry, 1952). Then, maximizing l(p) would correspond to maximum-
likelihood estimation for μij .

Going back to example 3, we obtain p̂ = (0.47, 0.25, 0.28), a result being
consistent with the intuition that class 1 may be slightly preferable.

In Wu et al. (2004) several methods for multi-class probability estimation by
Pairwise Coupling algorithms are presented and compared. For the simulations
of this paper, the method of Hastie and Tibshirani (1998) is used.

3 Implemented Methods

3.1 Linear Discriminant Analysis

In its classical form Linear Discriminant Analysis was constructed by R. Fisher
in 1936 for linear reduction of dimensionality to maximize the distance of class
means w.r.t. the covariance structure of the data.

The method is shown to be optimal in the sense that it minimizes the Bayes
Risk if the underlying class distributions follow normal law but have equal co-
variance matrices for all classes (see e.g. Hastie and Tibshirani, 2001, p.95).

The classification for an object x is obtained by maximizing the decision rule
d̂k(x) over all classes k:

d̂k(x) = x̄kΣ̂
−1x− 1

2
x̄kΣ̂

−1x̄k + ln(π(k)) (6)

with π(k) being the class prior membership probabilities, x̄k denoting the mean
of class k and Σ̂ being the pooled covariance matrix

Σ̂ =
1

N −K

K∑

k=1

N∑

n=1

I[k](kn)(xn − x̄k)(xn − x̄k)′. (7)
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Here I[k](kn) represents the indicator function that becomes 1 if object n of the
training data is of class k and 0 if not. The term pooled covariance follows from
the fact that equation 7 can be reformulated in terms of the classwise covariance
estimations Σ̂k:

Σ̂ =
1

N −K

K∑

k=1

nkΣ̂k (8)

where nk denotes the size of class k in the training data.
The classification rule linearly partitions the feature space. This is shown in

Figure 1 for the first two dimensions of the well known iris data from Fisher
(1936).

Hastie and Tibshirani (2001, p.89) mention that Linear Discriminant Analysis
often shows good results and is among top 3 classifiers for 7 of 22 real world data
data sets of the Statlog project (Michie et al., 1994).

Fig. 1. Two-dimensional projections of the partition of the feature space using Linear
Discriminant Analysis on Iris data

3.2 Naive Bayes

When using the Naive Bayes method features are assumed to be conditionally
independent given the class. For each class k and variable d mean μ̂d,k and
covariance σ̂d,k are estimated.

For a new observation x the likelihood Pd(x|k) of its realization in variable d
given class k can be calculated then assuming normal distribution.

Finally, the predicted class is obtained my maximizing the decision rule

d̂k(x) = π(k)
∏

d

Pd(x|k). (9)

with π(k) again denoting the prior probability of class k. Doing so implicitly
assumes no correlations between the different variables d given the class: the
covariance matrix of class k Σk is assumed to be 0 for all elements except for
the main diagonal elements.
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Fig. 2. Two-dimensional projections of the partition of the feature space using Naive
Bayes on Iris data.

This dramatically decreases the number of free model parameters, especially if
the number of features is large. Another advantage of the Naive Bayes method may
be that equal variances are not assumed as it is done in LDA. Nevertheless, it may
be disadvantageous if there are strong correlations among the predictor variables.

4 Simulation Study

4.1 An Introductory Example

To gain some insight into the merit of the method a synthetic example was con-
structed. This example consisted of four equally large classes in two-dimensional
space, all normally distributed (see Fig. 3, the different classes are labelled with
numbers from 1 to 4).

Fig. 3. First example of simulated data
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Classes 1 and 2 have an equal covariance structure and can therefore be opti-
mally separated by an LDA classifier, but not by the Naive Bayes method since
the input variables are not independent given the class.

Likewise, as classes 3 and 4 have uncorrelated features given the class, they
can therefore be optimally identified by the Naive Bayes method, but LDA will
produce a higher error because the underlying normal distributions do not have
an equal covariance matrix.

Table 1. Test error rates on synthetic example of Fig. 3 (400 samples per class, 2/3
training data and 1/3 test data)

Method Test Error

LDA 0.07
Naive Bayes 0.14

PWC 0.01

It is now conjectured that by training a PWC classifier on the dataset, a
LDA-classifier is chosen to separate the first pair of classes and a Naive Bayes
classifier for the latter pair. This expected behaviour can be observed on the
simulated data. The results show a strong increase in classification performance
on separately simulated test data when combing both classifiers as opposed to
use only the base methods (see table 3).

4.2 Experimental Setting

In oder to investigate when it is beneficial to use one of the base methods or
their classification using Pairwise Coupling (and choosing the pairwise optimal
classifier based on cross-validated error rates) a study is performed with simu-
lated data as in Section 4.1 but with varying degree of violated assumptions for
both methods:

Four normally distributed classes are generated with class expectations:

μ1 = (50, 50)′

μ2 = (65, 50)′

μ3 = (0, 20)′

μ4 = (0, 0)′.

The class covariance matrices are constructed as a convex combination of four
extreme cases:

Σ∗
1 (ρ) = Σ∗

2 (ρ) =
(

σ2
1 ρ σ1 σ2

ρ σ1 σ2 σ2
2

)

and

Σ∗
3 (ρ) = Σ∗

3 =
(
σ2

3 0
0 σ2

4

)
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Σ∗
4 (ρ) = Σ∗

4 =
(
σ2

4 0
0 σ2

3

)

with σ1 = 5, σ2 = 10, σ3 = 1 and σ4 = 10.
The covariance matrices of class 1 and 2 exactly hold the assumptions that un-

derly Linear Discriminant Analysis, since covariances are greater 0 but the same
for both classes. The covariance matrices of class 3 and 4 represent the ’Naive
Bayes - case’ since the variables are independent but have different variances for
both classes.

The covariance Σi of class i is set to be

Σi(α, ρ) = αΣ∗
1 (ρ) + (1 − α)Σ∗

i (ρ) (10)

The parameter α ∈ [0, 1] determines how equal the class covariance matrices look
like, the larger α is the more equal they are. For α = 1 all classes’ covariances
equal to Σ∗

1 (ρ). Then, the assumptions of LDA holds.
The free parameter ρ ∈ [0, 1] determines the correlation in Σ∗

1 (ρ). ρ = 0 means
independent variables for all classes as it is assumed for the Naive Bayes method.
Four exemplary situations are shown in Figure 4: The upper left figure shows

Fig. 4. Simulated data for 4 different parameter combinations
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simulated data for α = 0.1, ρ = 0.1: all classes possess quite specific covariance
matrices with very small correlations among the variables. This should be a case
where the Naive Bayes method can be assumed to produces good results. The
upper right figure illustrates simulated data for α = 0.5, ρ = 0: for all classes the
variables are completely uncorrelated but the class-specific covariance structure
is not as present as in the example before. The bottom left figure illustrates the
data situation for α = 0, ρ = 0.5: The covariance matrices of the classes are
unique and the variables of class 3 and 4 are correlated. Both parameters are
set to α = ρ = 0.9 in the bottom right figure: The covariance shapes of the
classes look very similar and contain strong correlations. In this situation, the
assumptions of Linear Discriminant Analysis are quite well met.

For our simulation study both parameters α and ρ are varied in the interval
[0, 1]. For each simulation 400 observations are generated for each class. The data
are split into 2/3 training data. The last third is used for testing. The locally
optimal classifiers are chosen by 3-fold cross-validation.

Fig. 5. Results of the simulation study for the different methods (scaled between 0
error (black) and the worst result (white)
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4.3 Results

The results of the simulation study are shown in Figure 5. The first three plots
show the results of the two base methods as well as their combination using
PWC for our simulated data.

For each pair of simulation parameters (α, ρ) the results are scaled: black
indicates a test error rate of 0 while white denotes the worst obtained result.

It can be easily recognized that LDA performs best for both high parameters
of ρ and α, i.e. equal covariance matrices of all classes and strong correlations
between the variables. Using Naive Bayes is advantageous for a low parameter
α, i.e. strongly differing covariance matrices of the classes, especially if there
are furthermore low correlations in the variables. Combining both classifiers
is a good compromise in most situations except if there are equal covariance
matrices with small correlations of all classes. A strong benefit can be obtained
if the covariance matrices of the classes are not equal and there are also strongly
correlated variables, i.e. if the assumptions of both base methods do not hold.
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Fig. 6. Best method in dependence of the parameter if its test error is siginifanctly
better than the error of the best competitor. * indicates that none of the methods
significantly outperforms the other methods. Method 1: LDA; 2: Naive Bayes and 3:
PWC. Left: simple significances, right: using Bonferroni-Holm correction for multiple
testing.

To determine whether one method significantly outperforms the other two,
the above mentioned simulation was conducted 30 times and for each pair of
parameters a paired t-test between the test error rates winning and the second
best method was applied (Dietterich, 1995). Figure 6 shows the results. In the left
figure tests were performed with a simple significance level of 0.05, while in the
right figure - in order to cope with the problem of multiple testing - results are
given after adapting the significance levels by the Bonferroni-Holm method. One
can observe that there are situations (strongly differering covariances between
the classes combined with correlations that appear in the data) where the PWC
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approach leads to significant improvements of the misclassification rate. The
base methods show a possible advantage in the areas where their underlying
assumptions are met (low ρ for Naive Bayes and and high α for LDA implying
equal covariance matrices in the classes). But these advantages proved not to
be significant after adapted significance levels and might be caused by falsely
rejecting the null hypothesis of equal mean error rates due to multiple testing.

5 Application to Real World Data

For not to restrict our analysis on the simulated data we also applied the methods
to several real world multi-class data from the UCI Machine Learning Repository.
An overview over some characteristics of the chosen data sets is given in Table 2.
For an explicit description of the data sets see Michie et al. (1994) and Merz and
Murphy (1998).

Table 2. Statistics of data sets

Satellite Vehicle Nursery Vowel

classes 6 4 5 11
features 36 18 8 10
examples 6435 846 12960 990

In each experiment the data were randomly split into a training and test set
(2/3 and 1/3), except for the Satellite set, where the same 4435 examples as
in Statlog (Michie et al., 1994)were used for training and the remaining 2000
examples for testing.

The results are given in Table 3 in terms of test error rates for both base
methods as well as their combination. For the Satellite data, the error rates of
the Naive Bayes method can be improved by a combined classifier but LDA
performs overall best. For the Vehicle data set, Naive Bayes shows very bad
results. The rates of LDA can even be slightly improved using a PWC classifier
combination. For the Nursery data LDA shows very bad results. The error rates
of Naive Bayes here can be improved by Pairwise Coupling. Finally, for the Vowel
data set the recognition rates of both methods can be dramatically improved
using a classifier combination. As a conclusion, the proposed local combination

Table 3. Test error rates MLBench

Method Satellite Vehicle Nursery Vowel

LDA 0.15 0.26 0.47 0.42
Naive Bayes 0.20 0.57 0.10 0.52

PWC 0.18 0.23 0.08 0.17
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of classifiers sometimes yielded a large improvement of the results but never
showed very bad performance compared to the winning base method method.
This result is in harmony with the observations made in Section 4.

6 Summary

Classifier combination for multi-class classification problems is proposed in dif-
ferent way compared to the very common Bagging and Boosting approaches: for
each pair of classes an optimal classifier is determined using cross-validation and
class pairwise models are trained.

A new object is labelled by applying all classifiers for each class pair and then
combining the results by Pairwise Coupling (Hastie and Tibshirani, 1998).

Such a proceeding may be advantageous in situations where the assumptions
of the different base methods hold for different classes.

The benefit of such a classifier combination is investigated for two very com-
mon methods, namely Linear Discriminant Analysis and Naive Bayes. A simula-
tion study is performed where the degree of violation of the specific assumptions
for both methods is varied and finally a map is obtained that indicates when it
is better to implement a single one of these methods or their combination.

Furthermore, the methods are applied to common real world problems from
the UCI Machine Learning Repository. Recapitulating the results, it turned out
that sometimes large improvements of the misclassification rate are achieved
by using PWC while its results were never much worse than the winning base
method.

It should also be mentioned that Moreira and Mayoraz (1998) proposed a
different approach to build classifiers from class pairwise rules by calculating
conditional probabilities for the membership of a new object to a class pair. A
comparison to this approach was not the main interest of this study but may be
a topic of further investigation as well as the investigation of the principle for
other classifiers.

Finally – referring to the work of Dietterich and Bakiri (1995) – multiclass-
classification problems can also be solved by transforming them into several bi-
nary classification problems using the method of Error-Correcting Output Codes.
There basically, in every binary classification problem the K classes are grouped
into two sets of classes which are then separated. The result is a sequence of
binary classifiers. Each of the classes is coded by a vector of the binary group-
labels. Prediction of an object is done by applying all classifiers and choosing
the class with the most similar code vector.

PWC can be embedded in this context according to Allwein et al. (2000) and
thus an extension of the suggested approach towards Error-Correcting Output
Codes may also be topic of further investigation.
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search Center ‘Reduction of Complexity in Multivariate Data Structures’ (SFB
475) of the German Research Foundation (DFG).
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Abstract. The paper proposes an agent-based approach to the multiple-
objective selection of reference vectors from original datasets. Effective
and dependable selection procedures are of vital importance to machine
learning and data mining. The suggested approach is based on the mul-
tiple agent paradigm. The authors propose using JABAT middleware
as a tool and the original instance reduction procedure as a method
for selecting reference vectors under multiple objectives. The paper con-
tains a brief introduction to the multiple objective optimization, followed
by the formulation of the multiple-objective, agent-based, reference vec-
tors selection optimization problem. Further sections of the paper pro-
vide details on the proposed algorithm generating a non-dominated (or
Pareto-optimal) set of reference vector sets. To validate the approach the
computational experiment has been planned and carried out. Presenta-
tion and discussion of experiment results conclude the paper.

1 Introduction

As it has been observed in [9], in supervised learning, a machine-learning algo-
rithm is shown a training set, which is a collection of training examples called
instances. After learning from the training set, the learning algorithm is pre-
sented with additional input vectors, and the algorithm must generalize, that is
to decide what the output value should be.

It is well known that in order to avoid excessive storage and time complexity
and to improve generalization accuracy by avoiding noise and overfitting, it is
often advisable to reduce original training set by removing some instances before
learning phase or to modify the instances using a new representation.

Instances reduction, often referred to as a selection of reference vectors, be-
comes especially important in case of large data sets, since overcoming storage
and complexity constraints might become computationally very expensive. Al-
though a variety of instance reduction methods has been so far proposed in the
literature (see, for example the review [9]), no single approach can be considered
as superior nor guaranteeing satisfactory results and a reduction of the learning
error or increased efficiency of the supervised learning. Therefore, the problem
of selecting the reference instances remains an interesting field of research.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 117–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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One of the most important application areas of the machine learning meth-
ods and tools is data mining understood as the extraction of implicit, previously
unknown, and potentially useful information from data. Unfortunately, several
useful machine learning tools and techniques as for example neural networks,
support vector machines or statistical methods do not provide explanations on
how they solve problems. In some application areas like medicine or safety as-
surance this may cause some doubts or even lower the trust of the users. In
such cases users may prefer approaches where the process of knowledge extrac-
tion from data is easier comprehensible by human beings. An obvious approach
would be using methods leading to the extraction of some logical rules repre-
senting the knowledge about phenomenon at hand. Extracting precise, reliable,
useful and easy to comprehend rules from datasets is not a trivial task [10][13].

Most widely used techniques for the rules generation, such as, for example,
algorithms C4.5 and CART [14][15], are based on decision trees. However in
case of the large datasets the resulting decision tree might become very complex
making it difficult to understand and evaluate by the human being. Possible
way to overcome the problem is to select a set of reference vectors as an input
to the decision tree generating algorithm producing than, so called, prototype-
based model [10]. It is expected that instance reduction through selection of
reference vectors may bring about several benefits including increased quality
of generalization, easier to comprehend set of rules, decreased requirements for
storage and computational resources and increased simplicity of the extracted
knowledge.

Selecting reference vectors is inherently a multiple-objective problem. The
resulting set should be evaluated not only in terms of generalization (classifica-
tion) quality of the prototype model, but also in terms of the resulting number of
rules, their complexity, data compression level, computational time required etc.
Considering the above, in this paper the selection of reference vectors is seen
as a multi-objective optimization problem which solution is a non-dominated
(or Pareto-optimal) set of reference vector sets. To obtain solutions to such
problems an agent-based approach is suggested.

The paper proposes the multiple-objective agent-based optimization of refer-
ence vectors selection algorithm, implemented using the JABAT environment.
JABAT is a middleware supporting the construction of the dedicated A-Team
architectures that can be used for solving a variety of computationally hard
optimization problems [3].

The paper is organized as follows. Section 2 reviews briefly a general multiple-
objective, optimization problem. Section 3 of the paper contains formulation
of the multiple-objective, agent-based, reference vectors selection optimization
problem. Section 4 provides details on the proposed algorithm generating a non-
dominated (or Pareto-optimal) set of reference vector sets. To validate the ap-
proach the computational experiment has been planned and carried out. Its
results are presented and discussed in Section 5. Finally, in the last section some
conclusions are drawn and directions for future research are suggested.
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2 Multiple-Objective Optimization

The general multiple-objective optimization problem is formulated following [11]
as:

max{z1, . . . , zJ} = max{f1(x), . . . , fJ(x)} (1)
or

min{z1, . . . , zJ} = min{f1(x), . . . , fJ(x)} (2)

where x ∈ D and solution x = [x1, . . . , xl] is a vector of decision variables,
D is the set of feasible solutions and z is a vector of objective functions zj ,
j = 1, . . . , J . The type of the variables may describe different classes of problems.
When the variables are discrete the multiple-objective optimization problem is
called as multiple-objective combinational optimization problem.

The image of a solution x in the objective space is a point z∗ = [z∗1 , . . . , z
∗
J ],

where z∗j = f(xj), j = 1, . . . , J .
Point z dominates z′, if, for the maximization case, zj ≥ z′j (for each j) and

zj > z′j for at least one j, and vice versa for the minimization problem.
A solution x ∈ D is Pareto-optimal, if there is no x′ ∈ D that dominates x.

A point being an image of Pareto-optimal solution is called non-dominated. The
set of all Pareto-optimal solutions is called the Pareto-optimal set. The image of
the Pareto-optimal set in objective space is called the non-dominated set.

An approximation of the non-dominated set is a set A of feasible points such
that ¬∃z1, z2 ∈ A such that z1 dominated z2.

Weighted linear scalarizing functions are defined as:

sl(z, Λ) =
J∑

j=1

λjzj , (3)

where Λ = [l1, . . . , lJ ] is a weight vector such that λj ≥ 0 and
∑J

j=1 λj = 1.
Others scalarizing functions are based on calculation of distances between zj

and z0
j , where z0 is a references point. The weighted Tchebycheff scalarizing

function may serve as an example of such a function. It is defined as follows:

s∞(z, z0, Λ) = max
j

{λj(z0
j − zj)}. (4)

Further details in respect to the multiple-objective optimization can be found,
for example, in [11].

3 Multiple-Objective Selection of Reference Instances

Instance reduction problem concerns removing a number of instances from the
original training set T and thus producing the reduced training set S. Let N
denote the number of instances in T and n-the number of attributes. Total
length of each instance (i.e. training example) is equal to n + 1, where element
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numbered n + 1 contains the output value. Let also X = {xij} (i = 1, . . . , N ,
j = 1, . . . , n+1) denote a matrix of n+1 columns and N rows containing values
of all instances from T .

Usually, instance reduction algorithms are based on distance calculation be-
tween instances in the training set. In such a case selected instances, which are
situated close to the center of clusters of similar instances, serve as the refer-
ence instances. The approach requires using some clustering algorithms. Other
methods, known as similarity-based methods, remove k nearest neighbors from a
given category based on an assumption that all instances from the neighbor will
be, after all, correctly classified. The third group of methods eliminates training
examples based on an evaluation using some removal criteria [9] [12].

In this paper instance reduction (or reference vector selection) is seen as a
multiple-objective optimization problem. It can be solved by producing a set of
Pareto-optimal solution instances each being a non-dominated set of reference
vectors. The following criteria are used to evaluate reference vectors:

- Classification quality - f1

- Data compression level - f2

- Number of rules - f3

- Length of rules -f4

It is clear that the above set of criteria represents a situation with several con-
flicting goals. Selection of the preferred reference vector from the set of Pareto-
optimal ones is left to the user. Hence, solving an instance reduction problem is
seen as generating a set of non-dominated solutions each, in turn, representing
a set of the selected reference vectors.

4 Agent-Based Algorithm for Generating Pareto-Optimal
Sets of Reference Vectors

4.1 Instance Reduction Algorithm

It is proposed to base instance reduction on the idea of Instance Reduction Al-
gorithm (IRA) proposed in the earlier paper of the authors [12]. The IRA was
originally proposed as a tool for solving a single objective version of instance
reduction problem. It was shown in [12] that the approach can result in reducing
the number of instances and still preserving a quality of the data mining re-
sults. It has been also demonstrated that in some cases reducing the training set
size can increase efficiency of the supervised learning. The proposed algorithm
is based on calculating, for each instance from the original set, the value of its
similarity coefficient, and then grouping instances into clusters consisting of in-
stances with identical values of this coefficient, selecting the representation of
instances for each cluster and removing the remaining instances, thus producing
the reduced training set. The algorithm involves the following steps:

Stage 1. Transform X normalizing value of each xij into interval [0, 1] and then
rounding it to the nearest integer, that is 0 or 1.
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Stage 2. Calculate for each instance from the original training set the value of
its similarity coefficient Ii:

Ii =
n+1∑

j=1

xijsj, i = 1, . . . , N, (5)

where:

sj =
N∑

i=1

xij , j = 1, . . . , n + 1. (6)

Stage 3. Map input vectors (i.e. rows from X) into t clusters denoted as Yv,
v = 1, . . . , t. Each cluster contains input vectors with identical value of the
similarity coefficient I and t is a number of different values of I.

Stage 4. Select input vectors to be retained in each cluster. Let |Yv| denote a
number of input vectors in cluster v. Then the following rules for selecting input
vectors are applied:

- If |Yv| = 1 then S = S ∪ Yv.
- If |Yv| > 1 then S = S ∪

{
xv

j

}
, where xv

j are reference instances from the
cluster Yv selected by applying the JABAT and where the number of selected
instances corresponds to multi objective optimization problem.

4.2 Overview of the JABAT

The single objective instance reduction is a combinatorial and computationally
difficult problem [12]. Its multiple-objective version can not be computationally
easier. To deal with the multiple-objective instance reduction it is proposed to
use the population-based approach with optimization procedures implemented
as an asynchronous team of agents (A-Team), originally introduced by Talukdar
[2]. An A-Team is a collection of software agents that cooperate to solve a prob-
lem by dynamically evolving a population of solutions. An A-Team usually uses
combination of approaches inspired by natural phenomena including, for exam-
ple, insect societies [4], evolutionary processes [5] or particle swarm optimization
[7], as well as local search techniques like, for example, tabu search [6].

An A-Tam is a cyclic network of autonomous agents and shared, common
memories. Each agent contains some problems solving skills and each memory
contains a population of temporary solutions to the problem to be solved. All
the agents can work asynchronously and parallel. During their works agents co-
operate by selecting and modifying these solutions. In the reported approach the
A-Team was designed and implemented using JADE-based A-Team (JABAT)
environment.

JABAT is a middleware allowing to design and implement an A-Team archi-
tecture for solving combinatorial optimization problems. The main features of
JABAT include:

- The system can in parallel solve instances of several different problems.
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- A user, having a list of all algorithms implemented for given problem may
choose how many and which of them should be used.

- The optimization process can be performed on many computers. The user
can easily adjoin or delete a computer from the system. In both cases JABAT
will adapt to the changes, commanding the agents working within the system
to migrate.

The JABAT produces solutions to combinatorial optimization problems using a
set of optimising agents, each representing an improvement algorithm. To escape
getting trapped into a local optimum an initial population of solutions called
individuals is generated or constructed. Individuals forming an initial popula-
tion are, at the following computation stages, improved by independently acting
agents, thus increasing chances for reaching a global optimum.

Main functionality of the proposed environment is searching for the optimum
solution of a given problem instance through employing a variety of the solution
improvement algorithms. The search involves a sequence of the following steps:

- Generation of an initial population of solutions.
- Application of solution improvement algorithms which draw individuals from

the common memory and store them back after attempted improvement,
using some user defined replacement strategy.

- Continuation of the reading-improving-replacing cycle until a stopping cri-
terion is met.

The above functionality is realized by the two main types of classes. The first one
includes OptiAgents, which are implementations of the improvement algorithms.
The second are SolutionManagers, which are agents responsible for maintenance
and updating of individuals in the common memory. All agents act in paral-
lel. Each OptiAgent is representing a single improvement algorithm (for exam-
ple simulated annealing, tabu search, genetic algorithm, local search heuristics
etc.). An OptiAgent has two basic behaviors defined. The first is sending around
messages on readiness for action including the required number of individuals
(solutions). The second is activated upon receiving a message from some So-
lutionManager containing the problem instance description and the required
number of individuals. This behaviour involves improving fitness of individuals
and resending the improved ones to a sender. A SolutionManager is brought
to life for each problem instance. Its behaviour involves sending individuals to
OptiAgents and updating the common memory.

Main assumption behind the proposed approach is its independence from
a problem definition and solution algorithms. Hence, main classes Task and
Solution upon which agents act, have been defined at a rather general level.
Interfaces of both classes include function ontology(), which returns JADE’s
ontology designed for classes Task and Solution, respectively. Ontology in JADE
is a class enabling definition of the vocabulary and semantics for the content of
message exchange between agents. More precisely, an ontology defines how the
class is transformed into the text message exchanged between agents and how
the text message is used to construct the class (here either Task or Solution).
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4.3 Implementation of the Multiple-Objective Instance Reduction
Algorithm

The JABAT environment has served as the tool for solving instances of the
multiple-objective instance reduction problem. All the required classes have been
defined in the package called MORIS (multiple-objective reference instances se-
lection). The MORIS includes the following classes: MORIS Task inheriting
form the Task class, MORIS Solution inheriting from the Solution class. The
MORIS Task identifies data set and creates the clusters of potential reference
instances. MORIS Solution contains representation of the solution. It consists of
the list of the selected references instances from original data set and the values
of the cost factors corresponding respectively to the classification accuracy, the
percentage of compression of the training set and the number of rules. To obtain
values of these factors the C 4.5 classification tool is used. For each decision tree
produced by the C 4.5 the size of rules is additionally calculated and recorded.

To communication between optimization agents and the solution manager the
MORIS TaskOntology and MORIS SolutionOntology classes have been also de-
fined through over-ridding the TaskOntology and SolutionOntology, respectively.
The TaskOntology is needed to enable sending between agents and the common
memory task parameters and instance numbers belonging to respective clusters
and representing potential reference instances. The SolutionOntology is needed
to enable sending around potential solutions.

Each optimization agent operates on one individual (solution) provided and
randomly selected form the population by the SolutionManager. Its role is to
improve quality of the solution. After the stopping criterion has been met, each
agent resends individuals to the SolutionManager, which, in turn, updates com-
mon memory by replacing randomly selected individual with the improved ones.
Generally, the SolutionManager manages the population of solutions, which on
initial phase is generated randomly. The generation of an initial population of
solutions is designed to obtain a population consisting of solutions with differ-
ent number of reference instances in each clusters. The SolutionManager, after
adding to the population a solution received from the OptiAgent, overwrides and
updates the set of potentially Pareto-optimal solutions.

To solve the discussed multiple objective problem two types of agents repre-
senting different improvement procedures have been implemented. In each case
the agent’s classes are inherited from the OptiAgent class. Both procedures aim
at improving current solution through modification and exchange of the refer-
ence vectors in different clusters. After having received a solution to be improved
an optimization agent generates random vector of weights Λ. It is used to obtain
the normalized function s(z, Λ), which, in turn, is used to evaluate potential
solutions.

The first optimization agent - local search with tabu list (in short: RLS),
modifies the current solution by removing the randomly selected reference vector
from the randomly chosen cluster and replacing it with some other randomly
chosen reference vector thus far not included within the improved solution. The
modification takes place providing the vector to be replaced is not on the tabu
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list. After the modification the newly added reference vector is placed on the tabu
list and remains there for a given number of iterations. This number depends on
the cluster size and decreases for smaller clusters. The modified solution replaces
the current one if it is evaluated as a better one using the current normalized
function s(z, Λ).

The second optimization agent - incremental/decremental local serach (in
short: IDLS), modifies the current solution either by removing the randomly
selected reference vector from the randomly chosen cluster or by adding some
other randomly chosen reference vector thus far not included within the improved
solution. Increasing or decreasing a number of reference vectors within clusters
is a random move executed with equal probabilities. Pseudo-codes showing both
types of the discussed optimization agents are shown in Example 1 and 2.

Example 1: Pseudo code of the RLS type optimization agent

public class RandomLocalSearch extends OptiAgent {
public void improveSolution() {
Initiate the list of tabu moves;
Draw at random a weight vector L;
MORIS_Solution x = (MORIS_Solution)solution.clone();
/*where x is the solution that has been sent to optimize*/
do{

Select randomly cluster from x;
Select randomly n, where n corresponds to instance number
from selected cluster;
If (n is not on the list of tabu active moves){
Select randomly n’, where n’ corresponds to instance
number which is not represented within x;
Remove n from x and add n’ to x producing x’;
Calculate fitness of the x’ on s(z,L);
if(x’ is better on s(z,L) then x) x=x’;
Add n to the list of tabu moves and during next s
iterations do not change this instance number;

}
Update the list of tabu moves;

}while (!terminatingCondition);
/*solution is ready to be sent back*/
solution = x;}

}

Example 2: Pseudo code of the IDLS type optimization agent

public class IncDecLocalSearch extends OptiAgent {
public void improveSolution() {
Draw at random a weight vector L;
Set s as a parameter determining decremental/incremental phase;
MORIS_Solution x = (MORIS_Solution)solution.clone();
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/*where x is the solution that has been sent to optimize*/
do{
counter=0;
Select randomly cluster from x;
if(( counter % s ) == 0)
{
Generate a random binary digit;
if(a random digit is 0)
{
Select randomly n, where n corresponds to instance number
which is not represented within x;
Add n to x;

}
else
{
Select randomly n, where n corresponds to instance
number from selected cluster;
Remove n from x;
}

}
Select randomly n, where n corresponds to instance number
from selected cluster;
Select randomly n’, where n’ corresponds to instance
number which is not represented within x;
Remove n from x and add n’ to x producing x’;
Calculate fitness of the x’ on s(z,L);
if (x’ is better on s(z,L) then x) x=x’;
counter++;
}while (!terminatingCondition);
/*solution is ready to be sent back*/
solution = x;}

}

5 Computational Experiment Results

To validate the proposed approach several benchmark instances have been solved.
The main aim of the experiment has been to evaluate usefulness and effectiveness
of the agent-based approach to solving the problem of multiple-objective selection
of reference vectors. This has been achieved through establishing experimentally
how different strategies of selecting and using optimization agents affect the com-
putation results.

The proposed approach has been used to solve four well known classification
problems - Cleveland heart disease (303 instances, 13 attributes, 2 classes), credit
approval (690, 15, 2), Wisconsin breast cancer (699, 9, 2) and sonar problem
(208, 60, 2). The respective datasets have been obtained from [8].
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Experiment plan has been based on the 10-cross-validation approach. Each
thus obtained training set T has been then reduced to a subset S containing
reference vectors. Each reference vectors set has been, in turn, used to produce a
decision tree. This has been evaluated from the point of view of the four criteria
discussed in Section 3. Each decision tree was created using only the instances
in S and each C 4.5 classifier was trained without pruned leaves.

For each benchmarking problem the experiment has been repeated 50 times
and the reported values of the quality measures have been averaged over all
runs. All optimization agents have been allowed to continue iterating until 100
iterations have been performed. The common memory size in JABAT was set
to 100 individuals. The number of iterations, the size of common memory and
selection criteria have been set out experimentally at the fine-tuning phase. The
search for solutions was satisfactory performed at reasonable computation time.

In order to evaluate the resulting Pareto-optimal sets approximations two
quality measures have been used [11]. The first measure is the average of the best
values of weighted Tchebycheff scalarizing function over a set of systematically
generated normalized weight vectors. The set of such weight vectors is denoted
and defined as Ψs = {Λ = [λ1, . . . , λJ ] ∈ Ψ |λj ∈ {0, 1

k ,
2
k , . . . ,

k−1
k , 1}}, where Ψ

is the set of all normalized weight vectors and k is a sampling parameter.
Finally, the measure is calculated in the following way:

R(A) = 1 −
∑

Λ∈Ψs
s∗∞(z0, A, Λ)
|Ψs|

, (7)

where s∗∞(z0, A, Λ) = minz∈A{s∞(z, z0, Λ)} and is the best value achieving by
function s∞(z, z0, Λ) on set A. Before calculating the value of this measure the
reference point z0 was set as an ideal point.

Table 1. Performance of different agent combinations measured using average values
of C and R



An Agent-Based Approach to the Multiple-Objective Selection 127

The second measure is the coverage of the two approximations of the non-
dominated set and is defined as:

C(A,B) =
|{z′′ ∈ B}|∃z′ ∈ A : z′ ! z′′|

|B| , (8)

where the value C(A,B) = 1 means that all points in B are dominated by or
are equal to some points in A. The value C(A,B) = 0 means that no point in
B is covered by any point in A.

Experiment results for different combinations of optimization agents averaged
over all benchmark datasets and instances are shown in Table 1. The cost factors
(optimization criteria) include classification accuracy, percentage of compression
of the training set, number of rules and size of the decision tree. Values of the R
measure have been calculated with the sampling parameter k set to 100 and 5
for the bi-objective and four-objective cases, respectively.

Fig. 1. Example Pareto fronts - instances of the bi-objective optimization (f1 and f2)
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Fig. 2. Example Pareto fronts - instances of the bi-objective optimization (f1 and f3)

The results of Pareto-optimal set approximations using the R measure in-
dicate that each combination of agents produces similar results. There are no
statistically significant differences between average values of the R measure for
all investigated combination of agents.

The results of Pareto-optimal set approximations using the C measure indicate
that IDLS produces a better coverage then RLS and RLS+IDLS better coverage
then either RLS or IDLS. This observation holds for all investigated cases i.e.
multi-objective optimization with two and four objectives and is independent on
dimensionality of problems. Thus RLS+IDLS generates best approximation of
the Pareto-optimal (non-dominated set).

The values of C measure have been also used to carry a pair-wise comparison
of average performance of different combinations of optimization agents. It has
been observed that the following inequalities are statistically significant:

- C(IDLS,RLS) > C(RLS, IDLS),
- C(RLS + IDLS,RLS) > C(RLS,RLS + IDLS),
- C(RLS + IDLS, IDLS) > C(IDLS,RLS + IDLS).
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Fig. 3. Example approximations of Pareto-optimal sets - an instance of the four-
objective optimization problem

In Fig. 1 and 2 example Pareto fronts obtained by solving a single instance
of each of the considered problem types are shown. Each set of points has been
obtained in a single run for the respective bi-objective optimization problem.

In Fig. 3 example approximations of Pareto-optimal sets produced by different
combination of agents for an instance of the four-objective selection of reference
vector problem are presented.

6 Conclusion

The paper proposes an agent-based multiple-objective approach to the selection
of reference vectors from original datasets. Effective and dependable selection
procedures are of vital importance to machine learning and data mining. The
suggested approach is based on the multiple agent paradigm. Using a team of
agents brings about several advantages including better use of computational
resources, flexibility and ability to carry computations in the distributed envi-
ronment. The focus of the paper is however not on efficiency of the agent based
approach but rather on the methodology of dealing with the multiple-objective
selection of reference vectors through employing a team of agents. It has been
shown that there exist adequate methodology and suitable tools allowing to
obtain good approximations of the Pareto-optimal solutions to problems of the
discussed type. The proposed method and tools can be used to design customized
machine learning and data mining systems corresponding better to the user re-
quirements and needs. The approach allows also for discovery of interactions
between composition of various vector selection optimization procedures and a
quality of generalization measured using multiple criteria. Such knowledge can
be used for evaluation and selection of optimization agents and procedures.

Future research should focus on refining the theoretical framework for agent-
based, multiple-objective optimization of reference vector selection as well as
on designing more user friendly tools for solving practical multiple objective
reference vectors selection problems.



130 I. Czarnowski and P. Jȩdrzejowicz
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3. Jȩdrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team Environment, pp. 719–
726. Springer, Berlin, Heidelberg (2006)

4. Oster, G.F., Wilson, E.O.: Caste and Ecology in the Social Insect, vol. 8. Princeton
University Press, Princeton, NJ (1978)

5. Davis, L. (ed.): Handbook of Genetic Algorithms, Van Nostrand Reinhold (1991)
6. Glover, F.: Tabu Search. Part I and II, ORSA Journal of Computing. 1(3), Summer

(1990) and 2(1) Winter (1990)
7. Kennedy, J., Eberhart, R.C.: Particle swarm optimisation. In: Proc. of IEEE Inter-

national Conference on Neural Networks, Piscataway, N.J. pp. 1942-1948 (1995)
8. Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Databases Irvine,

CA: University of California, Department of Information and Computer Science
(1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

9. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning al-
gorithm. In: Machine Learning, vol. 33(3), pp. 33–33. Kluwer Academic Publishers,
Boston (2000)

10. Duch, W., Blachnik, M., Wieczorek, T.: Probabilistic distance measure for
prototype-based rules. In: Proc. of the 12 International Conference on Neural In-
formation Processing, ICONIP, pp. 445–450 (2005)

11. Jaszkiewicz, A.: Multiple objective metaheuristic algorithms for combinational op-
timization. Habilitation thesis, 360, Pozna University of Technology, Poznań (2001)
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Abstract. Traditional classification problem assumes that a data sample belongs
to one class among the predefined classes. On the other hand, in a multi-labeled
problem such as text categorization, data samples can belong to multiple classes
and the task is to output a set of class labels associated with new unseen data
sample. As common in text categorization problem, learning a classifier in a high
dimensional space can be difficult, known as the curse of dimensionality. It has
been shown that performing dimension reduction as a preprocessing step can im-
prove classification performances greatly. Especially, Linear discriminant anal-
ysis (LDA) is one of the most popular dimension reduction methods, which is
optimized for classification tasks. However, in applying LDA for a multi-labeled
problem some ambiguities and difficulties can arise. In this paper, we study on
applying LDA for a multi-labeled problem and analyze how an objective function
of LDA can be interpreted in multi-labeled setting. We also propose a LDA algo-
rithm which is effective in a multi-labeled problem. Experimental results demon-
strate that by considering multi-labeled structures LDA can achieve computa-
tional efficiency and also improve classification performances greatly.

Keywords: Dimension Reduction, Linear Discriminant Analysis, Multi-labeled
Problems.

1 Introduction

While traditional classification problem assumes that a data sample belongs to only
one class among the predefined classes, a multi-labeled problem can arise in real sit-
uation where a data sample is associated with multiple class labels. For example, in
text categorization documents can be classified to multiple categories of topics [1]. In
bioinformatics, each gene is associated with a set of functional classes [2]. In a multi-
labeled problem, the main task is to output a set of class labels associated with a new
unseen data sample. One common way to deal with a multi-labeled problem is to trans-
form it to several binary problems. In other words, for each class a binary problem is
constructed where data samples belonging to the class compose the positive set and the
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remaining data makes up the negative set. Single-label classification methods such as
Support vector machines and k-nearest neighbor classifier can be applied independently
for each binary problem [3,4,5]. A maximum entropy based method was also developed
which explored correlations among classes [6]. Outputs from each binary classifier are
combined to produce a set of class labels for new data.

When the data dimensionality is high as common in text categorization problem,
learning a classifier in a high dimensional space can be difficult, known as the curse
of dimensionality. It has been shown that performing dimension reduction as a prepro-
cessing step can improve classification performances greatly [7,8,9,10]. By extracting
a small number of most optimal features for an intended main task, original data is
transformed to a low dimensional space where learning process can be performed more
efficiently. Among several statistical dimension reduction methods, Linear discriminant
analysis (LDA) performs dimension reduction to maximize class separability in the re-
duced dimensional space [11]. Due to this objective criterion, LDA can be most optimal
for classification tasks.

While many generalized LDA algorithms have been shown to be efficient for high
dimensional undersampled problems [12,13,14,15], LDA has not been applied for a
multi-labeled problem. Since the objective function of LDA was originally developed
for a single-labeled problem, LDA has been considered nonapplicable for a multi-
labeled problem. In this paper, we first derive formulations for applying LDA in a
multi-labeled problem. We also propose a computationally efficient LDA algorithm
for a multi-labeled problem with a small sample size. The proposed method can save
computational costs and memory requirements by utilizing QR-decomposition. And
through the generation of semi-artificial data samples, it overcomes problems occurred
due to a small sample size and multiple class labels. Experimental results demonstrate
that by considering multi-labeled structures LDA can achieve computational efficiency
and also improve classification performances greatly.

The paper is organized as follows. In Section 2, brief reviews for a multi-labeled
problem and generalized LDA algorithms are given. In Section 3, we propose an effi-
cient dimension reduction method which is more effective in multi-labeled data sets.
Experimental results in Section 4 compare performances of dimension reduction meth-
ods under various conditions. Conclusions follow in Section 5.

2 Multi-labeled Classification and Linear Discriminant Analysis

2.1 Multi-labeled Classification

Let X = {x1,x2, · · · ,xk} be a set of data samples, and a data sample is represented
as a vector in a m-dimensional space such as xi = [xi1, · · · , xim]T . The notation
T denotes the transpose of a vector or a matrix. We also assume that data samples
can have one or more class labels assigned to them among the predefined r classes.
Let Y = {y1,y2, · · · ,yk} be the set of class label vectors corresponding to the data
samples in X . Each yi = [yi1, · · · , yir] is a vector denoting class labels associated with
xi such that yij = 1 if xi belongs to the class j, and yij = 0 if xi does not belong to the
class j.
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In a multi-labeled problem, the classification task is to output a set of class labels
associated with a new unseen data sample. Instead of making a hard decision whether
a data sample belongs to a class or not, multi-labeled classification can produce confi-
dence level at which a data sample is assigned to each class so that r class labels can be
ordered according to their confidence levels. By setting a threshold to accept the class
label, ranking based classification can be transformed to hard-decision-making classifi-
cation. Also note that a single-label problem is a special case of a multi-label problem,
in which each data sample is to have only one positive class label.

Classification performance in a multi-labeled problem can be evaluated by several
measures. Among them, we introduce f1-measure and one-error. We refer to the pa-
pers [16,17] for more details about evaluation measures. The f1-measure was originally
used in information retrieval. For each class, the precision (p), recall (r) and f1-measure
are defined such as

p =
TP

TP + FP
, r =

TP

TP + FN
, f1 =

2pr
p + r

, (1)

where TP represents the number of positive samples which are predicted as positive, FP
is the number of negative samples which are predicted as positive, and FN is the number
of positive samples which are predicted as negative. The f1 value averaged over all the
classes is called the macro-averaged f1 measure. On the other hand, when TP, FP, FN
are first summed over all the classes respectively and then f1 is calculated based on
them. It is called micro-averaged f1 measure.

One-error is used for multi-labeled classification which produces only one positive
class label. For a ranking based classifier, the class label with the highest rank is only
considered in one-error measurement. Let us assume that T is a collection of new un-
seen data samples. For each x in T , tx denotes the set of the true class labels of x and
px is the predicted class label. One-error measures the probability that the predicted
class label is not one of the true class labels as follows.

one− error =
1
|T | |{x ∈ T |px /∈ tx}|, (2)

where | · | means the cardinality of the set. One-error is actually same as prediction
error in a single-labeled problem. In our experiments, we used the micro-averaged f1
measure and one-error to evaluate performances.

2.2 On Applying LDA for Multi-labeled Data

LDA utilizes the between-class scatter and within-class scatter as a means to measure
class separability. When the distance between classes is maximal and the scatterness
within classes is minimal, it is an ideal clustering structure for classification. LDA finds
a linear transformation to a low dimensional space that maximizes class separability.

We first review LDA in a single-labeled problem [11]. Let us represent the data
set as

A = {a1
1, · · · , a1

n1
, · · · · · · , ar

1, · · · , ar
nr
}, (3)
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where {ai
1, · · · ,ai

ni
} are the data samples belonging to the class i and the total number

of data is n = n1 + · · · + nr. The between-class scatter matrix Sb, the within-class
scatter matrix Sw, and the total scatter matrix St are defined as

Sb =
r∑

i=1

ni(ci − c)(ci − c)T , Sw =
r∑

i=1

ni∑

j=1

(ai
j − ci)(ai

j − ci)T , (4)

St =
r∑

i=1

ni∑

j=1

(ai
j − c)(ai

j − c)T ,

using the class centroids ci = 1
ni

∑ni

j=1 ai
j and the global centroid c= 1

n

∑r
i=1

∑ni

j=1 ai
j .

The trace [18] which is defined as the sum of the diagonal components of a matrix gives
measures for the between-class scatter and the within-class scatter such as

trace(Sb) =
r∑

i=1

ni‖ci − c‖2, trace(Sw) =
r∑

i=1

ni∑

j=1

‖ai
j − ci‖2.

One of optimization criteria in LDA is to find a linear transformation GT which
maximizes

J = trace((GTSwG)−1(GTSbG)), (5)

where GTSiG for i = b, w is the scatter matrix in the transformed space by GT . It is
well known [11] that J in (5) is maximized when the columns of G are composed of
the eigenvectors g corresponding to the r − 1 largest eigenvalues λ of

S−1
w Sbg = λg. (6)

Now suppose data samples can have more than one class label. LetX={x1,x2, · · · ,
xk} and Y = {y1,y2, · · · ,yk} denote data samples and their class label vectors re-
spectively as in section 2.1. One way to apply LDA for multi-labeled data would be
to transform a multi-labeled problem to r binary problems and perform LDA for each
binary problem. For each class a binary problem is constructed where data samples
belonging to the class compose the positive set and the remaining data makes up the
negative set. LDA reduces the data dimension by finding optimal projective directions
and in the reduced dimensional space classification is performed. We call this approach
LDA-BIN in order to distinguish it from the method suggested next.

In the approach of LDA-BIN, LDA is applied independently for each binary prob-
lem and it may not reflect correlations among classes. And also dimension reduction
should be performed as many times as the number of classes, since a binary problem is
constructed for each class. Now we propose to apply the objective function (5) directly
to a multi-labeled data instead of constructing multiple binary problems. A data sam-
ple with multiple class labels should contribute to all classes for which it is a positive
sample. We compose the data set A in (3) by taking all data samples positive to each
class. Hence a data sample with multiple class labels can appear several times in A and
the total number n ≡ n1 + · · ·+ nr can be greater than the number of the original data
samples. LDA is applied to the composed set A as in a single-labeled problem. We call
this approach LDA-ALL.
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Dimension reduction is most effective in high dimensional data as in text categoriza-
tion. Often high dimensional data is closely related with undersampled problems, where
the number of data samples is smaller than the data dimension. In the classical LDA,
Sw is assumed to be nonsingular and the problem is to compute eigenvectors of S−1

w Sb

as in (6). However, in undersampled problems, all of the scatter matrices become sin-
gular and the classical LDA is difficult to apply. In order to make LDA applicable for
undersampled problems, several methods have been proposed [19,12,20,21,13,14]. In
the next section, we analyze generalized LDA algorithms and propose a LDA algorithm
which is effective for a multi-labeled problem.

3 On Applying LDA-ALL for Undersampled Multi-labeled
Problems

In undersampled problems, the minimization of the within-class scatter can be accom-
plished by using the null space of the within-class scatter matrix Sw, since the projec-
tion by the vectors in the null space of Sw makes the within-class scatter zero. It has
been shown that a linear transformation based on the null space of Sw can improve
classification performance greatly [20,21,13,14]. On the other hand, the maximization
of trace(GTSbG) suggests that the column vectors of G should come from the range
space of Sb, since for any g ∈ null(Sb)

trace(gTSbg) = trace(
r∑

i=1

nigT (ci−c)(ci−c)Tg)=
r∑

i=1

ni‖gT ci−gT c‖2 = 0, (7)

and therefore all the class centroids become equal to the global centroid in the projected
space.

Generalization of LDA for undersampled problems can be characterized by the two-
step process of the minimization of the within-class scatter and the maximization of
the between-class scatter where one of them is performed after the other. In the next
sections, based on which one in two steps is first applied, we explore the applicability
of generalized LDA algorithms for a multi-labeled problem, and we also propose an
efficient algorithm.

3.1 Maximizing the Between-Class Distance in the First Stage

The method by Yu and Yang [12] first transforms the original space by using a basis of
range(Sb). Then in the transformed space the minimization of the within-class scatter is
performed by the eigenvectors corresponding to the smallest eigenvalues of the within-
class scatter matrix. This method is called Direct LDA (or DLDA). The computation in
DLDA can be efficient by taking advantage of the singular value decomposition (SVD)
for the smaller matrix HT

b Hb instead of Sb = HbH
T
b , where

Hb = [
√
n1(c1 − c), · · · ,√nr(cr − c)]

for the class centroids ci and the global centroid c. Our experiments in Section 4
show that in LDA-ALL approach, DLDA obtains competitive performances while
maintaining low computational complexities. Algorithm 1 summarizes DLDA for a
multi-labeled problem.
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Algorithm 1. DLDA-ALL for multi-labeled problems
For a data set X = {x1,x2, · · · ,xk} and a set of class label vectors Y = {y1,y2, · · · , yk} as in
Section 2.1, compose a data matrix A = [a1

1, · · · ,a1
n1 , · · · · · · ,ar

1, · · · ,ar
nr

] where ai
1, · · · ,ai

ni

are the data samples belonging to the class i.

1. Construct the between-class scatter matrix Sb from A.
2. Compute the eigenvector ui’s of Sb corresponding to the largest nonzero eigenvalue λi’s.
3. Let U = [λ

−1/2
1 u1, · · · , λ

−1/2
r−1 ur−1]. Compose the within-class scatter matrix S∗

w in the
data space UT A.

4. Compute the eigenvector vi’s of S∗
w corresponding to the smallest nonzero eigenvalue μi’s.

5. The linear transformation matrix G is composed as G = UV where V =

[μ
−1/2
1 v1, · · · , μ

−1/2
s vs].

3.2 Minimizing the Within-Class Scatter in the First Stage

Unlike DLDA, the methods in [20,21,13,14] utilize the null space of Sw, more specif-
ically, null(Sw) ∩ range(Sb). Most of generalized LDA algorithms mainly rely on the
Singular value decomposition (SVD) in order to compute eigenvectors. But, the com-
putational complexities and memory requirements for the SVD can be very demanding,
especially for high dimensional data. Zheng et al.’s method called GSLDA [14] obtains
computational efficiency by using QR-decomposition which is cheaper than the SVD.
However GSLDA assumes that the given data samples are independent. Hence it can
not work well in LDA-ALL approach. Even in LDA-BIN setting, it performs poorly
when data samples are nearly dependent as will be demonstrated in our experiments.

Now we discuss some difficulties with using the null space of Sw in a multi-labeled
problem. Since range(Sw) is the orthogonal complement of null(Sw),

R
m = range(Sw) ⊕ null(Sw), (8)

where ⊕ denotes the direct sum of the vector spaces, range(Sw) and null(Sw) [22].
Since null(St) ⊂ null(Sb) and using any vector in null(Sb) for the projection is un-
desirable as described in (7), considering only the space range(St) does not make any
effects. Hence from (8) we have

range(St)=(range(St)∩range(Sw))⊕(range(St)∩null(Sw))and
dim(range(St))=dim(range(St)∩range(Sw))+dim(range(St)∩null(Sw)). (9)

As the ratio of data samples which are not independent or belong to multiple classes
increases, the dimension of range(St) gets reduced severely from the number of data
samples. And also the dimension of range(St) ∩ null(Sw) becomes lower, possibly
to zero. It is because the subtraction of class centroids from each data sample makes
rank reduction in Sw less than in St. In order to visualize it, using a real data set we
test effects of multi-labeled data on the space range(St) ∩ null(Sw). From the largest
eight classes in the Reuter-21578 text dataset, independent 286 documents were chosen
to construct a base set. While adding documents with multiple class labels to a base
set, dim(range(St)) and dim(range(St) ∩ range(Sw)) were computed. As shown in
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Figure 1, as data samples with multiple class labels are added to the base set more
and more, the dimension of range(St) ∩ range(Sw) gets to close to the dimension of
range(St), and therefore the dimension of range(St) ∩ null(Sw) goes down to near
zero. It implies that GSLDA or any other algorithms utilizing the null space of Sw will
suffer from the shrinking of range(St) ∩ null(Sw). In the next section, we propose a
new method which can overcome such a problem.

Fig. 1. The effects of multi-labeled data on dim(range(St) ∩ null(Sw))

3.3 An Efficient LDA Algorithm for Multi-labeled Problems

Note that the scatter matrices in (4) can be computed as a product of the smaller matrices
as follows:

St = HtH
T
t , Sw = HwH

T
w , Sb = HbH

T
b ,

where

Ht = [a1
1 − c, · · · ,a1

n1
− c, · · · · · · ,ar

1 − c, · · · , ar
nr

− c],

Hw = [a1
1 − c1, · · · ,a1

n1
− c1, · · · · · · , ar

1 − cr, · · · , ar
nr

− cr],
Hb = [

√
n1(c1 − c), · · · ,√nr(cr − c)]

and n = n1 + · · · + nr. In order to obtain an orthonormal basis of range(Sw) =
range(Hw), we apply QR-decomposition with column pivoting [18] for Hw ∈ R

m×n

such as
HwΠ1 = Q1R1, (10)

where Π1 is a column permutation in Hw. When t = rank(Hw), Q1 ∈ R
m×t has

orthonormal columns and R1 ∈ R
t×n has zeros below the main diagonal. The columns

of Q1 make an orthonormal basis of range(Hw), which is also an orthonormal basis of
range(Sw). Note that null(Sw) is the orthogonal complement of range(Sw). Hence any
vector x is uniquely expressed as the sum of the orthogonal projection of x onto the
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range space of Sw and the orthogonal projection of x onto the null space of Sw [22].
For 1 ≤ i ≤ r and 1 ≤ j ≤ ni,

ai
j − c = projrange(Sw)(a

i
j − c) + projnull(Sw)(a

i
j − c), (11)

where projW (x) denotes the orthogonal projection of x onto the space W . Since the
columns of Q1 are an orthonormal basis for range(Sw), Q1Q

T
1 is the orthogonal pro-

jection onto range(Sw) [18]. Hence from (11), we have

projnull(Sw)(a
i
j − c) = (ai

j − c) − projrange(Sw)(a
i
j − c)

= (ai
j − c) −Q1Q

T
1 (ai

j − c) ∈ range(St) ∩ null(Sw).

Let
X = Ht −Q1Q

T
1 Ht. (12)

Then QR-decomposition with column pivoting for X ∈ R
m×n gives an orthonormal

basis Q2 of range(St) ∩ null(Sw) as

XΠ2 = Q2R2. (13)

In the above process, QR-decomposition can save computational complexities and
memory requirement greatly compared with the SVD. However, there still exist some
problems related with multi-labeled data. As shown in Fig 1, as the number of data sam-
ples with multiple class labels gets increased, the dimension of range(St) ∩ null(Sw)
becomes zero. Therefore the above process cannot completely resolve the shrinking
of range(St) ∩ null(Sw) caused by multi-labeled data. Now we propose a method to
overcome the problem through the generation of semi-artificial data.

Let P be any column permutation matrix on Ht. Instead of X = Ht −Q1Q
T
1 Ht in

(12), we shuffle the columns of Ht in the second term by using the permutation P :

X̂ = Ht −Q1Q
T
1 HtP. (14)

It means that instead of

projnull(Sw)(a
i
j − c) = (ai

j − c) −Q1Q
T
1 (ai

j − c) ∈ range(St) ∩ null(Sw),

we create artificial data samples

x̂ ≡ (ai
j − c) −Q1Q

T
1 (al

s − c) ∈ range(St)

for some 1 ≤ l ≤ r and 1 ≤ s ≤ nl. The generated data may deviate from the space
range(St)∩null(Sw). However, this deviation from range(St)∩null(Sw) can prevent
the shrinking of range(St) ∩ null(Sw) occurred by multi-labeled data. In this sense,
we call X̂ the complement to range(St) ∩ null(Sw). Now from QR-decomposition with
column pivoting for X̂ ,

X̂Π̂2 = Q̂2R̂2, (15)

where Π̂2 is a column permutation of X̂ , we obtain the complement to a basis of
range(St) ∩ null(Sw), Q̂2.
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Algorithm 2. LDA for multi-labeled problems using QR-decomposition

For a given data set A = {ai
j |1 ≤ i ≤ r, 1 ≤ j ≤ ni}, this algorithm computes a transformation

matrix G by which dimension reduction for multi-labeled data is performed.

1. Compute QR-decomposition with column pivoting for Hw : HwΠ1 = Q1R1.
Π1 is a column permutation and the columns of Q1 are an orthonormal basis of
range(Hw)=range(Sw).

2. Let P be any column permutation on Ht.
3. Compute QR-decomposition with column pivoting for X̂ ≡ Ht − Q1Q

T
1 HtP : X̂Π̂2 =

Q̂2R̂2. Π̂2 is a permutation matrix and Q̂2 gives the complement to an orthonormal basis of
range(St) ∩ null(Sw).

4. Compute the SVD of Q̂T
2 Hb : Q̂T

2 Hb = U2Σ2V
T
2 .

Let U21 be composed of the columns of U2 corresponding to nonzero diagonal components
of Σ2.

5. GT = (Q̂2U21)T gives a transformation for dimension reduction.

In the projected space by Q̂2, the maximization of the between-class scatter is pur-
sued. Let the SVD of Q̂T

2 Hb be Q̂T
2 Hb = U2Σ2V

T
2 . Then Q̂T

2 SbQ̂2 = U2(Σ2Σ
T
2 )UT

2

is the SVD of Q̂T
2 SbQ̂2. When U21 consists of the columns of U2 corresponding to

nonzero diagonal components of Σ2, the projection by U21 realizes the maximization
of the between-class scatter. Hence G = Q̂2U21 gives a transformation matrix for di-
mension reduction. Algorithm 2 summarizes the proposed method.

Supervised learning is based on the expectation that new unseen data would come
from the same distribution as training data. The vector from range(St) ∩ null(Sw) is
ideal projective direction for training data, but it is too optimistic to expect that new
data would perfectly fit to the data model based on small training data. Overfitting to
the training data leads to generalization errors. In (14), using a permutation and gener-
ating artificial data which slightly deviates from range(St) ∩ null(Sw) can reduce the
generalization errors caused by small sample size.

4 Experimental Results

We performed experiments to compare performances of dimension reduction methods
in text categorization. The first data set is from Reuters corpus volume I which is a text
categorization test collection of about 800,000 stories from Reuters newswire. We used
a publically available version of it, RCV1-v2 [1]. As in [23], choosing a small part of
data and picking up topics with more than 50 documents and words occurred in more
than 5 documents, we composed a data set of 3228 documents with 4928 terms over 41
topics. A document belongs to 2.88 topics on average. One third of the data was used as
a training set and two thirds was for a test set, and this splitting was randomly repeated
ten times.

Several LDA algorithms including LDA [12], GSLDA [14], PCA-LDA [21] and Al-
gorithm 2 in Section 3.3 were applied. Dimension reduction is performed in two ways,
LDA-ALL and LDA-BIN, as explained in Section 2.2. In both cases, a nearest neighbor
classifier and microaveraged f1-measure were used for performance evaluation. Table 1
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Table 1. Microaveraged f1-measures in the first data set from RCV1-v2

LDA-ALL LDA-BIN
1-NN in the original space 0.640 (0.005) -

Using range(Sb) DLDA 0.737 (0.011) 0.682 (0.008)
Methods GSLDA 0.449 (0.016) 0.694 (0.049)

using null(Sw) PCA-LDA 0.657 (0.010) 0.314 (0.130)
Algorithm 2 0.747 (0.010) 0.685 (0.007)

Table 2. Microaveraged f1-measures in the second data set from Reuter-21578

LDA-ALL LDA-BIN
1-NN in the original space 0.782 (0.005) -

Using range(Sb) DLDA 0.837 (0.006) 0.790 (0.006)
Methods GSLDA 0.599 (0.017) 0.531 (0.034)

using null(Sw) PCA-LDA 0.718 (0.015) 0.715 (0.035)
Algorithm 2 0.850 (0.006) 0.790 (0.006)

summarizes the experimental results, where mean and standard deviations of f1 values
obtained from 10 times splitting are shown. For Algorithm 2, we tested the following
three approaches in choosing a permutation P .

1. Use any random permutation.
2. Use random permutations within each class.
3. Use the permutation matrix Π1 obtained by QR-decomposition of Hw in (10).

In our experiments, the three approaches did not make noticeable difference in perfor-
mance and we only report the results from the third method of using Π1 obtained by
QR-decomposition of Hw in (10).

The second data set was composed from Reuter-21578 1 which has been a very pop-
ular benchmark data set in text mining. Similar as in the first data set, taking topics with
more than 50 documents and words occurred in more than 5 documents, we composed
a data set with 6537 documents and 4347 terms over 23 topics. A document belongs to
1.63 topics on average. Experimental setting was done same as in the first data set. The
result is shown in Table 2.

In both tables, DLDA and the proposed Algorithm 2 demonstrate the best perfor-
mance in LDA-ALL, compared with other methods utilizing the null space of the
within-class scatter matrix. In LDA-BIN, since the data set in Table 1 has 41 topic
classes, dimension reduction process was repeated 41 times for the constructed binary
problems. While it makes the time complexity of LDA-BIN worse than LDA-ALL,
the performance of LDA-BIN was also not good as in LDA-ALL. Also note that in
both cases the dimension reduction by DLDA and Algorithm 2 improved the perfor-
mances compared with those by a nearest neighbor classification in the original space,
as shown in the first rows of Table 1 and 2. By dimension reduction, training a classi-
fier is performed in very low dimensional space instead of high dimensional original

1 http://www.research.att.com/∼lewis
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Fig. 2. Data independence (top figure) and one-errors (bottom figure)

space. Therefore it can save computational costs and also circumvent the curse of
dimensionality.

We also tested how the proposed method works for independent or nearly dependent
data in a single-labeled problems. In this experiment, we used four text data sets2 which
do not contain multi-labeled data. Each text data set was randomly split to the training
and test set with the ratio of 1 : 1 and it is repeated ten times. One-error in (2) was used
as a performance measure. In order to measure data independency, for each data set

I =
rank(St)

totalnumberofdata− 1
(16)

was computed. The range of I is [0, 1], and if the data is independent, then I equals
to 1. The top figure in Figure 2 compares the I values for each data set and the figure
in the bottom plots one-errors. In the data sets re0 and re1 whose I values indicate

2 The data sets were downloaded and preprocessed from http://www-users.cs.umn.edu/
∼karypis/cluto/download.html
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data dependence, Algorithm 2 achieves comparable performances. It indicates that the
proposed method can be effective for dependent data sets in a single-labeled problem
as well.

5 Conclusion

In this paper, we explored the application of LDA for multi-labeled problems. We
showed that instead of constructing multiple binary problems and performing dimen-
sion reduction to each binary problem, LDA can be applied directly and efficiently to
a multi-labeled problem. In composing scatter matrices for LDA, a data sample with
multiple class labels contributes equally to all classes for which it is a positive sample.
In that way, LDA needs to be performed only once.

If a data sample belongs to multiple classes, what role does it play in separating
the classes maximally and minimizing scatter within each class at the same time? In
the dimension reduced space, data samples belonging to multiple classes are placed in
the boundary areas of the classes, while the maximization of the between-class distance
and the minimization of the within-class scatter are optimized. Experimental results
demonstrate that the classification performance can be improved when multiple class
labels are considered all together as in LDA-ALL rather than when it is transformed to
binary problems.

References

1. Lewis, D., Yang, Y., Rose, T., Li, F.: Rcv1: a new benchmark collection for text categorization
research. Journal of Machine learning research 5, 361–397 (2004)

2. Pavlidis, P., Weston, J., Cai, J., Grundy, W.: Combining microarray expression data and phy-
logenetic profiles to learn functional categories using support vector machines. In: Proceed-
ings of the 5th Annual international conference on computational biology, Montreal, Canada
(2001)

3. Elisseeff, A., Weston, J.: A kernel method for multi-labeled classification. Advances in neural
information processing systems 14, 681–687 (2002)

4. Zhang, M., Zhou, Z.: A k-nearest neighbor based algorithm for multi-label classification. In:
2005 IEEE International Conference on Granular Computing (2005)

5. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai,
H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS(LNAI), vol. 3056, pp. 22–30. Springer,
Heidelberg (2004)

6. Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy
method. In: SIGIR 05, Salvador, Brazil (2005)

7. Torkkola, K.: Linear discriminant analysis in document classification. In: IEEE ICDM-2001
Workshop on Text Mining (TextDM’2001), San Jose, CA (2001)

8. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces v.s. fisherfaces: Recognition
using class specific linear projection. IEEE transactions on pattern analysis and machine
learning 19(7), 711–720 (1997)

9. Nguyen, D., Rocke, D.: Tumor classification by partial least squares using microarray gene
expression data. Bioinformatics 18(1), 39–50 (2002)

10. Park, C.H., Park, H., Pardalos, P.: A comparative study of linear and nonlinear feature extrac-
tion methods. In: Fourth IEEE International Conference on Data Mining, Brighton, United
Kingdom, pp. 495–498 (2004)



On Applying Dimension Reduction for Multi-labeled Problems 143

11. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Acadamic Press, San
Diego (1990)

12. Yu, H., Yang, J.: A direct lda algorithm for high-dimensional data- with application to face
recognition. pattern recognition 34, 2067–2070 (2001)

13. Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular
value decomposition. IEEE transaction on pattern analysis and machine intelligence 26(8),
995–1006 (2004)

14. Zheng, W., Zou, C., Zhao, L.: Real-time face recognition using gram-schmidt orthogonaliza-
tion for lda. In: the Proceedings of the 17th International Conference on Pattern Recognition
(2004)

15. Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized dis-
criminant analysis on undersampled problems. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(8), 982–994 (2004)

16. Schapire, R., Singer, Y.: Boostexter: a boosting-based system for text categorization. Ma-
chine learning 39, 135–168 (2000)

17. Luo, X., Zincir-Heywood, N.: Evaluation of two systems on multi-class multi-label document
classification. In: ISMIS05, New York, USA (2005)

18. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Balti-
more (1996)

19. Friedman, J.H.: Regularized discriminant analysis. Journal of the American statistical asso-
ciation 84(405), 165–175 (1989)

20. Chen, L., Liao, H.M., Ko, M., Lin, J., Yu, G.: A new lda-based face recognition system which
can solve the small sample size problem. pattern recognition 33, 1713–1726 (2000)

21. Yang, J., Yang, J.-Y.: Why can lda be performed in pca transformed space? Pattern Recogni-
tion 36, 563–566 (2003)

22. Kolman, B., Hill, D.: Introductory linear algebra, 8/e edn. Prentice-Hall, Englewood Cliffs
(2005)

23. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: SIGIR’05, Sal-
vador, Brazil (2005)



Nonlinear Feature Selection by Relevance

Feature Vector Machine�

Haibin Cheng1, Haifeng Chen2, Guofei Jiang2, and Kenji Yoshihira2

1 CSE Department, Michigan State University
East Lansing, MI 48824

chenghai@msu.edu
2 NEC Laboratories America, Inc.

4 Independence Way, Princeton, NJ 08540
{haifeng,gfj,kenji}@nec-labs.com

Abstract. Support vector machine (SVM) has received much attention
in feature selection recently because of its ability to incorporate kernels to
discover nonlinear dependencies between features. However it is known
that the number of support vectors required in SVM typically grows
linearly with the size of the training data set. Such a limitation of SVM
becomes more critical when we need to select a small subset of relevant
features from a very large number of candidates. To solve this issue, this
paper proposes a novel algorithm, called the ‘relevance feature vector
machine’(RFVM), for nonlinear feature selection. The RFVM algorithm
utilizes a highly sparse learning algorithm, the relevance vector machine
(RVM), and incorporates kernels to extract important features with both
linear and nonlinear relationships. As a result, our proposed approach
can reduce many false alarms, e.g. including irrelevant features, while
still maintain good selection performance. We compare the performances
between RFVM and other state of the art nonlinear feature selection
algorithms in our experiments. The results confirm our conclusions.

1 Introduction

Feature selection is to identify a small subset of features that are most relevant
to the response variable. It plays an important role in many data mining ap-
plications where the number of features is huge such as text processing of web
documents, gene expression array analysis, and so on. First of all, the selection
of a small feature subset will significantly reduce the computation cost in model
building, e.g. the redundant independent variables will be filtered by feature
selection to obtain a simple regression model. Secondly, the selected features
usually characterize the data better and hence help us to better understand the
data. For instance, in the study of genome in bioinformatics, the best feature
(gene) subset can reveal the mechanisms of different diseases[6]. Finally, by elim-
inating the irrelevant features, feature selection can avoid the problem of “curse
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of dimensionality” in case when the number of data examples is small in the
high-dimensional feature space [2].

The common approach to feature selection uses greedy local heuristic search,
which incrementally adds and/or deletes features to obtain a subset of rele-
vant features with respect to the response[21]. While those methods search in
the combinatorial space of feature subsets, regularization or shrinkage methods
[20][18] trim the feature space by constraining the magnitude of parameters.
For example, Tibshirani [18] proposed the Lasso regression technique which re-
lies on the polyhedral structure of L1 norm regularization to force a subset of
parameter values to be exactly zero at the optimum. However, both the com-
binatorial search based methods and regularization based methods assume the
linear dependencies between features and the response, and can not handle their
nonlinear relationships.

Due to the sparse property of support vector machine (SVM), recent work [3][9]
reformulated the feature selection problem into SVM based framework by
switching the roles of features and data examples. The support vectors after opti-
mization are then regarded as the relevant features. By doing so, we can apply non-
linear kernels on feature vectors to capture the nonlinear relationships between the
features and the response variable. In this paper we utilize such promising charac-
teristic of SVM to accomplish nonlinear feature selection. However, we also notice
that in the past few years the data generated in a variety of applications tend to
have thousands of features. For instance, in the gene selection problem, the num-
ber of features, the gene expression coefficients corresponding to the abundance
of mRNA, in the raw data ranges from 6000 to 60000 [19]. This large number of
features presents a significant challenge to the SVM based feature selection be-
cause it has been shown [7] that the number of support vectors required in SVM
typically grows linearly with the size of the training data set. When the number
of features is large, the standard SVM based feature selection may produce many
false alarms, e.g. include irrelevant features in the final results.

To effectively select relevant features from vast amount of attributes, this paper
proposes to use the “Relevance Vector Machine”(RVM) for feature selection. Rele-
vance vector machine is a Bayesian treatment of SVM with the same decision func-
tion [1]. It produces highly sparse solutions by introducing some prior probability
distribution to constrain the model weights governed by a set of hyper-parameters.
As a consequence, the selected features by RVM are much fewer than those learned
by SVM while maintaining comparable selection performance. In this paper we in-
corporate a nonlinear feature kernel into the relevance vector machine to achieve
nonlinear feature selection from large number of features. Experimental results
show that our proposed algorithm, which we call the “Relevance Feature Vector
Machine”(RFVM), can discover nonlinear relevant features with good detection
rate but low rate of false alarms. Furthermore, compared with the SVM based
feature selection methods [3][9], our proposed RFVM algorithm offers other com-
pelling benefits. For instance, the parameters in RFVM are automatically learned
by the maximum likelihood estimation rather than the time-consuming cross val-
idation procedure as does in the SVM based methods.
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The rest of the paper is organized as follows. In Section 2, we will summarize
the related work of nonlinear feature selection using SVM. In Section 3, we
extend the relevance vector machine for the task of nonlinear feature selection.
The experimental results and conclusions are presented in Section 4 and Section 5
respectively.

2 Preliminaries

Given a data set D =
[
Xn×m,yn×1

]
, where Xn×m represents the n input exam-

ples with m features and yn×1 represents the responses, we first describe defini-
tions of feature space and example space with respect to the data. In the feature
space, each dimension is related to one specific feature, the data set is regarded
as a group of data examples D = [(x1, y1), (x2, y2), · · · , (xn, yn)]T , where xis are
the rows of X , X = [xT

1 ,x
T
2 , · · · ,xT

n ]T . The sparse methods such as SVM in the
feature space try to learn a sparse example weight vector α = [α1, α2, · · · , αn]
associated with the n data examples. The examples with nonzero values αi are
regarded as support vectors, which are illustrated as solid circles in Figure 1(a).
Alternatively, each dimension in the example space is related to each data sam-
ple xi, and the data is denoted as a collection of features X = [f1,f2, · · · ,fm]
and response y. The sparse solution in the example space is then related to a
weight vector w = [w1, w2, · · · , wm]T associated with m features. Only those
features with nonzero elements in w are regarded as relevant ones or “support
features”. If we use SVM to obtain the sparse solution, those relevant features

Feature Space Example Space

(a) (b)

Fig. 1. (a) The feature space where each dimension is related to one feature (f ) in
the data. SVM learns the sparse solution (denoted as black points) of weight vector α
associated with data examples xi. (b) The example space in which each dimension is
a data example xi. The sparse solution (denoted as black points) of weight vector w
is associated with related features (f ).
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are derived from the support features as shown in Figure 1(b). In this section,
we first describe feature selection in the SVM framework. Then we will present
nonlinear feature selection solutions.

2.1 Feature Selection by SVM

Support Vector Machine [13] is a very popular machine learning technique for
the task of classification and regression. The standard SVM-regression [14] aims
to find a predictive function f(x) = 〈x,w〉 + b that has at most ε deviation
from the actual value y and is as flat as possible, where w is the feature weight
vector as described before and b is the offset of function f . If the solution can
be further relaxed by allowing certain degree of error, the optimization problem
of SVM-regression can be formulated as

min
1
2
||w||2 + C1T (ξ+ + ξ−) (1)

sub.

⎧
⎨

⎩

y − 〈X,w〉 − b1 ≤ ε1 + ξ+

〈X,w〉 + b1− y ≤ ε1 + ξ−

ξ+, ξ− ≥ 0

where ξ+ and ξ− represent the errors, C measures the trade-off between error
relaxation and flatness of function, and 1 denotes the vector whose elements
are all 1s. Instead of solving this optimization problem directly, it is usually
much easier to solve its dual form [14] by SMO algorithm. The dual problem
of the SVM-regression can be derived from Lagrange optimization with KKT
conditions and Lagrange multipliers α+,α−:

min
1
2

(α+ −α−)T 〈X,XT 〉(α+ −α−)

−yT (α+ −α−) + ε1T (α+ + α−) (2)
sub. 1T (α+ −α−) = 0, 0 ≤ α+ ≤ C1, 0 ≤ α− ≤ C1

The dual form also provides an easy way to model nonlinear dependencies by
incorporating nonlinear kernels. That is, a kernel function K(xi,xj) defined over
the examples xi,xj is used to replace the dot product 〈xi,xj〉 in equation (2).
The term ε1T (α+ + α−) in (2) works as the shrinkage factor and leads to the
sparse solution of the example weight vector α = (α+−α−), which is associated
with data examples in the feature space.

While the SVM algorithm is frequently used in the feature space to achieve
sparse solution α for classification and regression tasks, the paper [3] employed
SVM in the example space to learn a sparse solution of feature weight vector w
for the purpose of feature selection by switching the roles of features and data
examples. After data normalization such that XT1 = 0 and thus XT b1 = 0, the
SVM based feature selection described in [3] can be formulated as the following
optimization problem.

min
1
2
||Xw||2 + C1T (ξ+ + ξ−) (3)



148 H. Cheng et al.

sub.

⎧
⎨

⎩

〈XT ,y〉 − 〈XT , X〉w ≤ ε1 + ξ+

〈XT , X〉w − 〈XT ,y〉 ≤ ε1 + ξ−

ξ+, ξ− ≥ 0

The above equation (3) makes it easy to model nonlinear dependencies between
features and response, which has also been explored in the work [9]. Similarly,
the dual problem of (3) can also be obtained with Lagrange multiplies w+,w−

and KKT conditions

min
1
2

(w+ −w−)T 〈XT , X〉(w+ −w−)

−〈yT , X〉(w+ −w−) + ε1T (w+ + w−) (4)
sub. 0 ≤ w+ ≤ C1, 0 ≤ w− ≤ C1

The intuition behind the dual optimization problem (4) is very obvious. It
tries to minimize the mutual feature correlation noted as 〈XT , X〉 and maxi-
mize the response feature correlation 〈yT , X〉. The parameter “C” in equation
(4) controls the redundancy of the selected features. Small value of “C” reduces
the importance of mutual feature correlation 〈XT , X〉 and thus allow more re-
dundancy. The term ε1T (w+ + w−) in the above dual form (4) achieves the
sparseness of the feature weight vector w = (w+−w−). After optimization, the
nonzero elements in w are related to the relevant features in the example space.
For the detailed explanation about the derivation of (3) and (4), please see [3].

2.2 Nonlinear Feature Selection

If we set ε = λ
2 and ignore the error relaxation in the primal problem (3),

the optimization form (3) can be rewritten in the example space using features
X = [f1,f2, · · · ,fm] and the response y

min
1
2

m∑

i=1

m∑

j=1

wiwj〈f i,f j〉 (5)

sub. |
m∑

i=1

wi〈f j ,f i〉 − 〈f j ,y〉| ≤
λ

2
, ∀j

The optimization problem in (5) has been proved in [9] to be equivalent to the
Lasso regression (6) [18] which has been widely used for linear feature selection

min||Xw − y||2 + λ||w||1 . (6)

While the Lasso regression (6) is performed in the feature space of data set to
achieve feature selection, the optimization (5) formulates the feature selection
problem in the example space. As a consequence, we can define nonlinear kernels
over the feature vectors to model nonlinear interactions between features. For
the feature vectors f i and f j with nonlinear dependency, we assume that they
can be projected to a high dimensional space by a mapping function φ so that
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they interact linearly in the mapped space. Therefore the nonlinear dependency
can be represented by introducing the feature kernel K(f i,f j) = φ(f i)Tφ(f j).
If we replace the dot product 〈, 〉 in (5) with the feature kernel K, we can obtain
its nonlinear version:

min
1
2

m∑

i=1

m∑

j=1

wiwjK(f i,f j) (7)

sub. |
m∑

i=1

wiK(f j ,f i) −K(f j ,y)| ≤ λ

2
, ∀j .

In the same way, we can incorporate nonlinear feature kernels into the general
expression (4) and obtain

min
1
2

m∑

i=1

m∑

j=1

(w+
i − w−

i )K(f i,f j)(w+
j − w−

j )

−
m∑

i=1

K(y,f i)(w
+
i − w−

i ) + ε

n∑

i=1

(w+
i + w−

j ) (8)

sub. 0 ≤ w+
i ≤ C, 0 ≤ w−

i ≤ C , ∀i
Both (7) and (8) can be used for nonlinear feature selection. However, they

are both derived from the SVM framework and share the same weakness of
standard SVM algorithm. For instance, the number of support features will
grow linearly with the size of the feature set in the training data. As a result,
the provided solution in the example space is not sparse enough. This will lead
to a serious problem of high false alarm rate, e.g. including many irrelevant
features, when the feature set is large. To solve this issue, this paper proposes a
RVM based solution for nonlinear feature selection, which is called “Relevance
Feature Vector Machine”. RFVM achieves more sparse solution in the example
space by introducing priors over the feature weights. As a result, RFVM is
able to select the most relevant features as well as decrease the number of false
alarms significantly. Furthermore, we will also show that RFVM can learn the
hyper-parameters automatically and hence avoids the effort of cross validation
to determine the trade-off parameter “C” in SVM optimization (8).

3 Relevance Feature Vector Machine

In this section, we will investigate the problem of using Relevance Vector Machine
for nonlinear feature selection. We will first introduce the Bayesian framework
of standard Relevance Vector Machine algorithm [1]. Then we present our Rel-
evance Feature Vector Machine algorithm which utilizes RVM in the example
space and exploits the mutual information kernel for nonlinear feature selection.

3.1 Relevance Vector Machine

The standard RVM [1] is to learn the vector α̃(n+1)×1 = [α0,α] with α0 = b
denoting the “offset” and α = [α1, α2, · · · , αn] as the “relevance feature weight
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vector” associated with data examples in the feature space. It assumes that the
response yi is sampled from the model f(xi) with noise ε, and the model function
is expressed as

f(x) =
n∑

j=1

αj〈x,xj〉 + α0 + ε (9)

where ε is assumed to be sampled independently from a Gaussian distribution
noise with mean zero and variance σ2. If we use kernel to model the dependencies
between the examples in the feature space, we can get the n × (n + 1) ’design’
matrix Φ:

Φ =

⎡

⎢
⎢
⎢
⎣

1 K(x1,x1) K(x1,x2) · · · K(x1,xn)
1 K(x2,x1) K(x2,x2) · · · K(x2,xn)
...
1 K(xn,x1) K(xn,x2) · · · K(xn,xn)

⎤

⎥
⎥
⎥
⎦

In order to estimate the coefficients α0, · · ·, αn in equation (9) from a set of
training data, the likelihood of the given data set is written as

p(y|α̃, σ2) = (2πσ2)−
n
2 exp

{

− 1
σ2

||y − Φα̃||2
}

(10)

In addition, RVM defines prior probability distributions on parameters α̃ in
order to obtain sparse solutions. Such prior distribution is expressed with n+ 1
hyper-parameters β̃(n+1)×1 = [β0, β1, · · · , βn]:

p(α̃|β̃) =
n∏

i=0

N(αi|0, β−1
i ) (11)

The unknowns α̃,β̃ and σ2 can be estimated by maximizing the posterior dis-
tribution p(α̃, β̃, σ2|y), which can be decomposed as:

p(α̃, β̃, σ2|y) = p(α̃|y, β̃, σ2)p(β̃, σ2|y) . (12)

Such decomposition allows us to use two steps to find the solution α̃ together
with hyper-parameters β̃ and σ2. For details of the optimization procedure,
please see [1]. Compared with SVM, RVM produces a more sparse solution α̃ as
well as determines the hyper-parameters simultaneously.

To the best of our knowledge, current RVM algorithm is always performed in
the feature space in which the relevance weight vector α in RVM is associated
with data examples. This paper is the first to utilize the promising characteristics
of RVM for feature selection. In the next section, we reformulate the Relevance
Vector Machine in the example space and incorporate nonlinear feature kernels
to learn nonlinear “relevant features”.

3.2 Nonlinear Feature Selection with Relevance Feature Vector
Machine

This section presents the relevance feature vector machine (RFVM) algorithm,
which utilizes RVM in the example space to select relevant features. We will
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also show how the kernel trick can be applied to accomplish nonlinear feature
selection. Again, we assume the data (X,y) is standardized. We start by rewrit-
ing the function (9) into an equivalent form by incorporating the feature weight
vector w

y =
m∑

j=1

wjf j + ε (13)

The above formula assumes the linear dependency between features and the
response. When such relationship is nonlinear, we project the features and re-
sponses into high dimensional space by a function φ so that the dependency in
the mapped space becomes linear

φ(y) =
m∑

j=1

wjφ(f j) + ε . (14)

Accordingly the likelihood function given the training data can be expressed as

p(φ(y)|w, σ2) = (2πσ2)−
n
2 exp

{

−||φ(y) − φ(X)w||2
σ2

}

(15)

where φ(X) = [φ(f1), φ(f2), · · · , φ(fm)]. We expand the squared error term in
the above likelihood function and replace the dot product with certain feature
kernel K to model the nonlinear interaction between the feature vectors and
response, which results in

||φ(y) − φ(X)w||2

= (φ(y) − φ(X)w)T (φ(y) − φ(X)w)
= φ(y)Tφ(y) − 2wTφ(X)Tφ(y) + wTφ(X)Tφ(X)w
= K(yT ,y) − 2wTK(XT ,y) + wTK(XT , X)w

where:

K(XT ,y) =

⎡

⎢
⎢
⎢
⎣

K(y,f1)
K(y,f2)

...
K(y,fm)

⎤

⎥
⎥
⎥
⎦

and

K(XT , X) =

⎡

⎢
⎢
⎢
⎣

K(f1,f1) K(f1,f2) · · · K(f1,fm)
K(f2,f1) K(f2,f2) · · · K(f2,fm)

...
K(fm,f1) K(fm,f2) · · · K(fm,fm)

⎤

⎥
⎥
⎥
⎦

After some manipulations, the likelihood function (15) can be reformulated as

p(φ(y)|w, σ2) = (2πσ2)−
n
2 exp

{(
−K(yT ,y)+

2wTK(XT ,y) −wTK(XT , X)w
)
/σ2

}
(16)
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Note that RFVM differs from traditional RVM in that the prior β =
[β1, β2, · · · , βm] is defined over the relevance feature vector weight w.

p(w|β) =
m∏

i=1

N(wi|0, β−1
i ) (17)

The sparse solution w corresponding to relevant features can be obtained by
maximizing

p(w,β, σ2|φ(y)) = p(w|φ(y),β, σ2)p(β, σ2|φ(y)) (18)

Similar to RVM, we use two steps to find the maximized solution. The first step
is now to maximize

p(w|φ(y),β, σ2) =
p(φ(y)|w, σ2)p(w|β)

p(φ(y)|β, σ2)

= (2π)−
n+1
2 |Σ|− 1

2 exp

{

−1
2

(w − μ)T |Σ|−1(w − μ)
}

(19)

Given the current estimation of β and σ2, the covariance Σ and mean μ of the
feature weight vector w are

Σ = (σ−2K(XT , X) + B)−1 (20)
μ = σ−2ΣK(XT ,y) (21)

and B = diag(β1, · · · , βn).
Once we get the current estimation of w, the second step is to learn the hyper-

parameters β and σ2 by maximizing p(β, σ2|φ(y)) ∝ p(φ(y)|β, σ2)p(β)p(σ2).
Since we assume the hyper-parameters are uniformly distributed, e.g. p(β) and
p(σ2) are constant, it is equivalent to maximize the marginal likelihood p(φ(y)|
β, σ2), which is computed by:

p(φ(y)|β, σ2) =
∫

p(φ(y)|w, σ2)p(w|β)dw

= (2π)−
n
2 |σ2I + φ(X)B−1φ(X)T |− 1

2

∗exp
{

−1
2
yT (σ2I + φ(X)B−1φ(X)T )−1y

}

(22)

By differentiation of equation (22), we can update the hyper-parameters β and
σ2 by:

βnew
i =

1 − βiNii

μi
2

(23)

σ2new
=

||φ(y) − φ(X)μ||2
n−

∑
i(1 − βiNii)

(24)

where Nii is ith diagonal element of the covariance from equation (20) and μ is
computed from equation (21) with current β and σ2 values. The final optimal
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set of w, β and σ2 are then learned by repeating the first step to update the
covariance Σ (20) and mean μ (21) of the feature weight vector w and the second
step to update the hyper-parameters β (23) and σ2 (24) iteratively.

RFVM learns a sparse feature weight vector w in which most of the elements
are zeros. Those zero elements in w indicate that the corresponding features
are irrelevant and should be filtered out. On the other hand, large values of el-
ements in w indicate high importance of the related features. In this paper we
use mutual information as the kernel function K(·, ·), which will be introduced
in the following section. In that case, K(XT ,y) actually measures the relevance
between the response y and features in the data matrix X and K(XT , X) in-
dicates the redundancy between features in the data matrix X . The likelihood
maximization procedure of RFVM tends to maximize the relevance between the
features and response and minimize the mutual redundancy within the features.

3.3 Mutual Information Feature Kernel

While kernels are usually defined over data examples in the feature space, the
RFVM algorithm places the nonlinear kernel over the feature and response vec-
tors for the purpose of feature selection. As we know, the mutual information
[16] of two variables measures how much uncertainty can be reduced about one
variable given the knowledge of the other variable. Such property can be used
as the metric to measure the relevance between features. Given two discrete
variables U and V with their observations denoted as u and v respectively, the
mutual information I between them is formulated as

I(U, V ) =
∑

u∈U

∑

y∈V

p(u, v)log2
p(u, v)
p(u)p(v)

(25)

where p(u, v) is the joint probability density function of U and V , and p(u) and
p(v) are the marginal probability density functions of U and V respectively.

Now given two feature vectors fu and fv, we use the following way to calcu-
late the value of their mutual information kernel K(fu,fv). We regard all the
elements in the vector fu (or fv) as multiple observations of a variable fu (or
fv), and discretize those observations into bins for each variable. That is, we
sort the values in the feature vectors fu and fv separately and discretize each
vector into N bins, with the same interval for each bin. For example, if the the
maximal value of fu is umax and the minimal value is umin, the interval for each
bin of feature vector fu is (umax − umin)/N . Now for each value u in feature
vector fu and v in feature vector fv, we assign u = i and v = j if u falls into
the ith bin and v falls into the jth bin of their discretized regions respectively.
The probability density functions p(fu,fv), p(fu) and p(fv) are calculated as
the ratio of the number of elements within corresponding bin to the length of
vector n. As a result, we have

p(u = i) = counts(u = i)/n
p(v = j) = counts(v = j)/n

p(u = i, v = j) = counts(u = i and v = j)/n
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and

K(fu,fv) =
N∑

i=1

N∑

j=1

p(u = i, v = j)log2
p(u = i, v = j)
p(u = i)p(v = j)

(26)

The mutual information kernel is symmetric and non-negative with K(fu,fv)
= K(fv,fu) and K(fu,fv) ≥ 0. It also satisfies the mercer’s condition [13],
which guarantees the convergence of the proposed RFVM algorithm. In this
paper we set the number of bins for discretization as log2(m), where m is the
number of features.

4 Experimental Results

Experimental results are presented in this section to demonstrate the effective-
ness of our proposed RFVM algorithm. We compare RFVM with other two state
of the art nonlinear feature selection algorithms in [3]and [9]. To be convenient,
we call the algorithm proposed in [3] as P-SVM and that in [9] as FVM algo-
rithm. All the experiments are conducted on a Pentium 4 machine with 3GHZ
CPU and 1GB of RAM.

4.1 Nonlinear Feature Selection by RFVM

In order to verify that the proposed RFVM is able to catch the nonlinear de-
pendency between the response and feature vectors, we simulated 1000 data
examples with 99 features and one response. The response y is generated by the
summation of three base functions of f1, f2, f3 respectively, together with the
Gaussian noise ε distributed as N(0, 0.005).

y = f(f1, f2, f3, · · · , f99)
= 9f1 + 20(1 − f2)3 + 17 sin(80 ∗ f3 − 7) + ε

The three base functions are shown in Figure 2(b)(c)(d), in which the first
is a linear function and the other two are nonlinear. Figure 2(a) also plots the
distribution of y with respect to the two nonlinear features f2 and f3. The values
of features f1, f2, f3 are generated by a uniform distribution in [0, 1]. The other
96 features f4, f5, · · · , f99 are generated uniformly in [0, 20] and are independent
with the response y.

We modified the MATLAB code provided by Mike Tipping [17] to implement
RFVM for the task of feature selection. The RFVM is solved by updating the
posterior covariance Σ in equation (20) and the mean μ in equation (21) along
with the hyper-parameters β in equation (23) and σ2 in equation (24) iteratively
using the two step procedure. The nonlinear dependencies between response and
features by using mutual information kernel in RFVM. That is, we replace the
dot product of the features and response, < XT , y > and < XT , X >, by the
precomputed mutual information kernel K(XT , y) and K(XT , X). The optimal



Nonlinear Feature Selection by Relevance Feature Vector Machine 155

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−20

−10

0

10

20

30

40

50

f
2

f
3

y

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

7

8

9

f
1

9*
f 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

f
2

20
(1

−
f 2)3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

15

20

f
3

17
si

n(
80

f 3−
7)

(b) (c) (d)

Fig. 2. (a) The distribution of response y with respect to two nonlinear features f2 and
f3. The bottom three figures illustrate the three components of the simulated function
f : (b) linear, (c) cubic and (d) sin.

set of feature vector weight w along with the hyper-parameters β and σ2 in
RFVM are automatically learned by a two step updating procedure. The initial
values of the hyper-parameters are set as β = 10 and σ2 = std(y)/10.

Figure 3(a) and (b) plot the values of feature weights computed by linear
RVM and nonlinear RFVM over the simulated data. From Figure 3(a), we see
that the linear RVM can detect the linear dependent feature f1, as well as the
feature f2 which has cubical relationship. The reason that f2 is also detected by
linear RVM is that the cubical curve can be approximated by a linear line in
certain degree, which is shown in Figure 2(b). However, RVM missed the feature
f3 completely, which is a highly nonlinear feature with periodical sin wave. On
the other hand, the nonlinear RFVM detects all the three features successfully,
which is shown in Figure 3(b). Furthermore, the detected feature set is pretty
sparse compared with the results of linear RVM.

4.2 Performance Comparison

This section compares the performance of RFVM algorithm with other nonlinear
feature selection algorithms such as FVM in [9] and P-SVM in [3]. To demon-
strate that RFVM is able to select most relevant features with much lower false
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Fig. 3. (a) The histogram of feature weights from linear RVM. It detects f1 and f2 but
misses the highly nonlinear relevant feature f3. (b) The histogram of feature weights
from nonlinear RVM. It detects all the three features.

alarm rate, we simulate another data set with 2000 data examples and 100 fea-
tures. The first 20 features are simulated uniformly in [−0.5, 0.5] and the rest
are generated uniformly in [0, 20] with Gaussian noise. The response y is the
summation of functions Fi(·) on the first 20 features

y =
20∑

i=1

Fi(fi) . (27)

The basis function Fi(·) is randomly chosen from the pool of eight candidate
functions

Fi(fi) ∈ {F1(fi), F2(fi), · · · , F8(fi)} (28)

where the expressions of those candidate functions are described in Table 1.
As you can see our simulation covers almost all kinds of common nonlinear
relationships.
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Table 1. The 8 basis function

j = 1 2 3 4

Fj(fi) = 40fi 20(1 − f2
i ) 23f3

i 20 sin(40fi − 5)

j = 5 6 7 8

Fj(fi) = 20efi − log2(|fi|) 20
√

1 − fi 20 cos(20fi − 7)

We divide the data into two parts, the first 1000 examples are used as training
data to determine the parameter λ in FVM and ε, C in P-SVM by 10 fold cross
validation. The rest 1000 data examples are used for test. The performances
of those algorithms are compared in terms of detection rate and false alarm
rate. We run 20 rounds of such simulations and present the results in Figure 4.
Figure 4(a) plots the detection rate of RFVM together with those of FVM and
P-SVM. It shows that RFVM maintains comparable detection rate as the other
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Fig. 4. (a) The detection rates of FVM, P-SVM and RFVM. (b) The false alarm rates
of FVM, P-SVM and RFVM.
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two algorithms. Note since the nonlinear relationship (27) generated in our sim-
ulation is very strong, the range of detection rates for those algorithms is rea-
sonable. Figure 4(b) plots the false alarm rates of FVM, P-SVM and RFVM
algorithms. It demonstrates that RFVM has lower false alarm rate generally,
which is due to the sparseness of RFVM in the example space compared with
FVM and P-SVM. Also note in the experiment we don’t need to predetermine
any parameters in RFVM since the parameters are automatically learned by two
step maximum likelihood method, while FVM and P-SVM are both sensitive to
parameters and need extra efforts of cross validation to determine those values.

5 Conclusions

This paper has proposed a new method, the “Relevance Feature Vector Ma-
chine”(RFVM), to detect features with nonlinear dependency. Compared with
other state of the art nonlinear feature selection algorithms, RFVM has two
unique advantages based on our theoretical analysis and experimental results.
First, by utilizing the highly sparseness nature of RVM, the RFVM algorithm
reduces the false alarms in feature selection significantly while still maintains de-
sirable detection rate. Furthermore, unlike other SVM based nonlinear feature
selection algorithms whose performances are sensitive to the selection of parame-
ter values, RFVM learns the hyper-parameters automatically by maximizing the
“marginal likelihood” in the second step of the two-step updating procedure. In
the future, we will apply RFVM to some real applications to further demonstrate
the advantages of our algorithm.
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Abstract. Dimension reduction methods are often applied in machine
learning and data mining problems. Linear subspace methods are the
commonly used ones, such as principal component analysis (PCA),
Fisher’s linear discriminant analysis (FDA), et al. In this paper, we
describe a novel feature extraction method for binary classification prob-
lems. Instead of finding linear subspaces, our method finds lower-
dimensional affine subspaces for data observations. Our method can
be understood as a generalization of the Fukunaga-Koontz Transforma-
tion. We show that the proposed method has a closed-form solution and
thus can be solved very efficiently. Also we investigate the information-
theoretical properties of the new method and study the relationship of
our method with other methods. The experimental results show that our
method, as PCA and FDA, can be used as another preliminary data-
exploring tool to help solve machine learning and data mining problems.

1 Introduction

Because of the curse of dimensionality and the concern of computational ef-
ficiency, dimensionality reduction methods are often used in machine learning
and data mining problems. Examples are face recognition in computer vision
[3, 20], electroencephalogram (EEG) signal classification in Brain-Computer In-
terface (BCI )[5, 16] and microarray data analysis [4]. Linear subspace methods
have been widely used for the purpose of dimension reduction. We give a brief
review of the most commonly used ones.

Principal component analysis (PCA) and independent component analysis
(ICA) are unsupervised linear subspace methods for dimension reduction. PCA
tries to find linear subspaces such that the variance of data are maximally pre-
served. ICA is a way of finding linear subspaces in which the second- and higher-
order statistical dependencies of the data are minimized; that is the transformed
variables are as statistically independent from each other as possible. Note that,
as unsupervised methods, neither PCA nor ICA use label information, which is
crucial for classification problems. Consequently, PCA and ICA are optimal for
pattern description, but not optimal for pattern discrimination.

Fisher’s discriminant analysis (FDA) finds linear subspaces in which the dis-
tance between the means of classes is maximized and the variance of each class

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 160–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is minimized at the same time. An important drawback of FDA is that, for
K-class classification problems, it can only find K − 1 dimensional subspaces.
This becomes more serious when binary classification problems are considered,
for which FDA can only extract one optimal feature. Canonical correlation anal-
ysis (CCA) is a method for finding linear subspaces to maximize the correlation
of the observation vectors and their labels. It has been known for a long time
that FDA and CCA indeed give identical subspaces for the dimension reduction
purpose [2].

Recently there has been some interest in partial least squares (PLS ) [18].
Only recently, it has been shown that PLS has a close connection with FDA
[1]. PLS finds linear subspaces by iteratively maximizing the covariance of the
deflated observation vectors and their labels. In one mode, PLS can be used to
extract more than one feature for binary classification. The main concern in PLS
is the efficiency issue, since in each iteration one has to subtract the observation
matrix by its rank-one estimation found in the previous iteration, and generate
deflated observation vectors.

Linear subspaces are specific instances of affine subspaces. In this study, we
propose a novel affine feature extraction (AFE ) method to find affine subspaces
for classification. Our method can be seen as a generalization of the Funkunaga-
Koontz transformation (FKT ) [9]. We investigate the information-theoretical
properties of our method and study the relationship of AFE and other similar
feature extraction methods.

Our paper is organized as follows: in section 2, we present the main result
of our work: the motivation of the study, the AFE method and its closed-form
solutions. We investigate the information-theoretical properties of AFE and the
relationship of AFE with other linear subspace dimension reduction methods in
section 3. We present experimental results in section 4, and conclude the study
with the summary of our work, and possible future directions in section 5.

2 Affine Feature Extraction

Consider a binary classification problem, which is also called discriminant anal-
ysis in statistics. Let {(xj , gj) ∈ R

m × {1, 2}|j = 1, 2, · · · , N} be a training set.
xj and gj are the observation vector and the corresponding class label. For sim-
plicity, we assume the training set is permuted such that observations 1 to N1

have label 1, and observations N1 + 1 to N1 + N2 have label 2. Define a data
matrix as

X = (x1,x2, · · · ,xN ) = (X1,X2),

where X1 = (x1,x2, · · · ,xN1), and X2 = (xN1+1,xN1+2, · · · ,xN ). For the con-
venience of future discussion, we define augmented observation vectors as

yi =
(

xi

1

)

. (1)

We can similarly define an augmented data matrix Yi for class i as YT
i =

(XT
i ,1). Throughout this paper, we use the following conventions: (1) vectors
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are column vectors; (2) 1 is a vector of all ones; (3) I is an identity matrix; (4)
�T is the transpose of a vector or matrix �; and (5) tr(�) is the trace of a
matrix �.

2.1 Background

In this subsection, we give a brief introduction of dimension reduction for clas-
sical discriminant analysis. Due to the limitation of space, we cannot provide
complete details for classical discriminant analysis. We refer to section 4.3 of
[11] for a nice treatment on this topic. This subsection also serves as our moti-
vation to carry on this study.

Before going on further, let us define the sample mean, covariance and second-
moment for class i as follows:

mean μ̂i =
1
Ni

Xi1, (2)

covariance Σ̂i =
1
N i

Xi(I−
1
Ni

11T )2XT
i , (3)

second-moment M̂i =
1
N i

XiXT
i . (4)

One essential assumption of classical discriminant analysis is that the proba-
bility density for each class can be modeled as a multivariate normal distribution,
i.e. N (μi,Σi) (i = 1, 2). Equations 2 and 3 can be seen as the empirical estima-
tions of classical density parameters μi and Σi, respectively. Without losing gen-
erality, let us consider how to find a one-dimensional linear subspace for classical
discriminant analysis; that is to find a linear transformation for observations:

zi = wT xi,

where wT is a m-dimensional vector.
When the two classes have a common covariance, i.e. Σ1 = Σ2 = Σ, the

problem is relatively easy. It is not hard to show that the optimal w∗ is the
eigenvector of Σ−1(μ2 − μ1)(μ2 − μ1)T . FDA essentially capture this situation
by solving the following problem:

max
wT (μ̂2 − μ̂1)(μ̂2 − μ̂1)Tw

wT Σ̂w
, (5)

where NΣ̂ = N1Σ̂1 + N2Σ̂2.
When Σ1 �= Σ2, to find an optimal linear subspace is hard. The only known

closed-form solution is that w∗ is the eigenvector of Σ−1
1 Σ2 +Σ−1

2 Σ1, which has
the largest eigenvalue. It can be shown that, when μ1 = μ2 = 0, the solution
optimizes the Kullback-Leibler KL divergence and the Bhattacharyya distance,
(c.f. Section 10.2 of [8]). The KL distance and the Bhattacharyya distance are
approximations of the Chernoff distance, which is the best asymptotic error
exponent of a Bayesian approach. Therefore the optimizing of these distances
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serves as the theoretical support to use it as a dimension reduction method.
Widely used in EEG classification problems, common spatial pattern (CSP)
solves the following problem:

max
wT Σ̂1w

wT Σ̂2w
or max

wT Σ̂2w

wT Σ̂1w
. (6)

Therefore CSP only works well when the difference between the class means is
small, i.e. |μ2 − μ1| ≈ 0. For many classification problems, this restriction is
unrealistic. Furthermore, unlike FDA, CSP has no natural geometrical interpre-
tation.

The FKT method can be seen as an extension of CSP by shrinking μ̂i to zero.
It can be seen as a rough shrinkage estimation of the mean for high dimensional
data. FKT solves the following problem:

max
wT M̂1w

wT M̂2w
or max

wT M̂2w

wT M̂1w
(7)

Taking a closer look at the criterion of FKT, we note that the criterion max
wT M̂1w

wT M̂2w
can be written as

min wT M̂2w
s.t. wT M̂1w = 1.

Note wT M̂iw = 1
Ni

∑ki+Ni

j=ki+1 z
2
j , where k1 = 1, k2 = N1 and i = 1, 2. That

is: wT M̂iw is the mean of square transformed observations, i.e. z2
j , of class i.

Therefore FKT can be interpreted as finding a linear subspace in which one
can maximize the distance of the means of square transformed observations.
However FKT may ignore important discriminant information for some cases,
for example, the one proposed in [7].

2.2 Method

Let zi = v0 + vT
1 xi be an affine transformation for observations xi, where v1

is a m dimensional vector. Linear transformations are a special form of affine
transformations, where v0 = 0. Now denoting wT = (vT

1 , v0), we have zi = wT yi.
Note that we have abused the notation of w. From now on, we shall use w for
affine transformations unless specified otherwise. Define a sample augmented
second moment matrix as

Ξ̂i =
1
Ni

YiYT
i . (8)

The relation of augmented second moment matrix, covariance matrix and mean
can be found in appendix A. Motivated by FKT, we use the following objective
function to find the optimal one-dimensional affine subspace

max ξ
wT Ξ̂1w

wT Ξ̂2w
+ (1 − ξ)

wT Ξ̂2w

wT Ξ̂1w
, (9)
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where 0 ≤ ξ ≤ 1. We use the sum of ratios to measure the importance of w
instead of two separated optimization problems in FKT. And ξ can be used to
balance the importance of different classes and thus is useful for asymmetric
learning problems.

Now let us consider how to find higher dimensional affine subspaces. Let
W = (w1,w2, · · · ,wd) ∈ R

(m+1)×d be a low-rank affine transformation matrix.
Let zi be the lower-dimensional representation of xi, i.e. zi = WT yi. We propose
the following optimization problem to find W:

max ξ
∑d

i=1
wT

i Ξ̂1wi

wT
i Ξ̂2wi

+ (1 − ξ)
∑d

i=1
wT

i Ξ̂2wi

wT
i Ξ̂1wi

s.t. wT
i Ξ̂twj = δij ,

where NΞ̂t = N1Ξ̂1 + N2Ξ̂2, and δij is 1 if i = j, and 0 otherwise. Let
Π̂i = WT Ξ̂iW. It is easy to recognize that Π̂i’s are indeed the second mo-
ment matrices in the lower dimensional space. Now we can write the problem
more compactly:

max ξtr(Π̂−1
1 Π̂2) + (1 − ξ)tr(Π̂−1

2 Π̂1)

s.t WT Ξ̂tW = I,

Generally speaking, we want to generate compact representations of the origi-
nal observations. Therefore it is desirable to encourage finding lower dimensional
affine subspaces. Motivated by the Akaike information criterion and Bayesian
information criterion, we propose the following objective function that is to be
maximized:

C(W; ξ, d) = ξtr(Π̂−1
1 Π̂2) + (1 − ξ)tr(Π̂−1

2 Π̂1) − d, (10)

where 0 ≤ ξ ≤ 1, d (1 ≤ d ≤ m) is the number of features we want to gen-
erate. We see that high dimensional solutions are penalized by the term −d.
Hyperparameter ξ may be tuned via standard cross-validation methods [11]. In
principal, the optimum d can also be determined by cross-validation procedures.
However such a procedure is often computationally expensive. Therefore we pro-
pose the following alternative: define C0(ξ) = C(I; ξ,m); we select the smallest
d such that C is large enough, i.e. d∗ = inf{d|C(W; ξ, d) ≥ βC0}, where β is a
constant.

The constraint WT Ξ̂tW = I is necessary in our generalization from the one
dimensional to the high dimensional formulation, but it does not generate mutu-
ally orthogonal discriminant vectors. Obtaining orthogonal discriminant vectors
basis is geometrically desirable. Therefore we introduce another orthogonality
constraint WT W = I. We refer to [6] for a geometrical view of the roles of the
two constraints in optimization problems. To summarize, we are interested in
two different kinds of constraints as follows:

1. Ξ̂t-orthogonal constraint: WT Ξ̂tW = I;
2. Orthogonal constraint: WTW = I.
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2.3 Algorithms

In this subsection, we show how to solve the proposed optimization problems.
Define function f as:

f(x; ξ) = ξx + (1 − ξ)
1
x
. (11)

Let 0 < a ≤ x ≤ b. Note f is a convex function, and thus achieves its maximum
at the boundary of x, i.e. either a or b.

Define Λ = diag(λ1, λ2, · · · , λm+1), and λi’s are the eigenvalues of (Ξ̂1, Ξ̂2)
(i = 1, 2, · · · ,m+1), i.e. Ξ̂1ui = λiΞ̂2ui. Let λi(ξ)’s be the ordered eigenvalues of
(Ξ̂1, Ξ̂2) with respect to f(λ; ξ). That is: define fi(ξ) = f(λi(ξ); ξ), then we have
f1(ξ) ≥ f2(ξ) ≥ · · · ≥ fm+1(ξ). The following lemma for nonsingular symmetric
Ξ̂1 and Ξ̂2 can be found in [10]:

Lemma 1. There exists nonsingular matrix U ∈ R
(m+1)×(m+1) such that

UT Ξ̂2U = I , UT Ξ̂1U = Λ.

In Appendix C, we show that:

C(W; ξ, d) ≤
d∑

i=1

fi(ξ) − d, (12)

Note that: if W1 maximizesC(W; ξ, d), then W1R also maximizesC(W; ξ, d),
where R is a nonsingular matrix. The proof is straight forward and therefore is
omitted.

Proposition 1. Let Uξ =(uξ
1,u

ξ
2, · · · ,u

ξ
d), where uξ

i is the eigenvector of (Ξ̂1, Ξ̂2)
and has eigenvalue λi(ξ). Let R be a nonsingular matrix. Then W = UξR maxi-
mize C(W; ξ, d).

Proof. It is enough to prove Uξ maximizes C(W; ξ, d). Note UT
ξ Ξ̂2Uξ = I

and UT
ξ Ξ̂1Uξ = diag(λ1(ξ), λ2(ξ), · · · , λd(ξ)). Then it is easy to affirm the

proposition.

Let Uξ = QR, where Q and R are the thin QR factorization of Uξ; then
W1 = UξR−1 maximizes C(W; ξ, d) and satisfies the orthogonal constraint.
Let W2 = UξΓ− 1

2 , where

Γ =
1
N

diag(N1λ1(ξ) + N2, N1λ2(ξ) + N2, · · · , N1λd(ξ) + N2). (13)

It can be easily shown that W2 maximizes C(W; ξ, d) and satisfies the Ξ̂t-
orthogonal constraint. In practice, we only need to check the largest d and the
smallest d eigenvalues and eigenvectors of (Ξ̂1, Ξ̂2) in order to generate d fea-
tures. The pseudo-code of the algorithm is given in Table 1. Practically, we may
need to let Ξ̂i ← Ξ̂i +αiI to guarantee the positive definiteness of Ξ̂i, where αi

is a small positive constant.
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Table 1. Pseudo-code for feature extraction

Algorithm for feature extraction

Input: Data sample x1,x2, · · · ,xn

Output: Transformation matrix W

1. Calculate the augment second moment matrices Ξ̂1, and Ξ̂2 ;

2. Compute the largest d and the smallest d eigenvalues and eigenvectors of (Ξ̂1, Ξ̂2);
3. Sort 2d eigenvalues and eigenvectors with respect to Eq. 11;
3. Selected the largest d eigenvectors to form Uξ;
4∗. (For orthogonal constraint) apply the thin QR factorization on Uξ, i.e. Uξ = QR;
5∗. (For orthogonal constraint) Let W = Q;

6∗∗. (For Ξ̂t-orthogonal constraint), calculate Γ as Eq. 13;

7∗∗. (For Ξ̂t-orthogonal constraint), Let W = UξΓ− 1
2 ;

6. Return W.

3 Discussion

In this section, we investigate the properties of our proposed method, and study
the relationship of the new proposed method with other dimension reduction
methods. For simplicity, we assume that Ξ̂i’s are reliably estimated. Therefore
we shall use Ξi in our discussion directly.

3.1 Information Theoretical Property of the Criterion

The KL divergence of two multivariate normal distributions pi and pj has a
closed expression as:

Lij =
1
2
{log(|Σ−1

i Σj |) + tr(ΣiΣ−1
j ) + (μi − μj)TΣ−1

j (μi − μj) −m}; (14)

where pi = N (μi,Σi). The symmetric KL divergence is defined as Jij = Lij+Lji.
It is easy to obtain

J12 =
1
2
{tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2) + tr[(Σ−1

1 + Σ−1
2 )(μ2 −μ1)(μ2 −μ1)T ]− 2m}.

(15)
Using formulas in Appendix A, one can easily get that

J12 = C0(
1
2

) − 1; (16)

That is, when ξ is 1/2, C0 is equivalent to the symmetric KL divergence (up to
a constant) of two normal distributions. The solution of maximizing C can be
seen as finding an affine subspace that maximally preserves C0, i.e. an optimal
truncated spectrum of J12.
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The KL divergence can be seen as a distance measure between two distribu-
tions, and therefore a measure of separability of classes. Traditional viewpoints
aim at maximizing the KL divergence between classes in lower dimensional lin-
ear subspaces, see [8] for an introduction and [14] for the recent development. It
is easy to show that maximizing the lower-dimensional KL divergence in [14] is
equivalent to our proposed problem with an additional constraint

WT = (VT , e) (17)

where V ∈ R
m×d, and eT = (0, 0, · · · , 1). With the additional constraint, a

closed-form solution cannot be found. By relaxing e ∈ R
m×1, we can find closed-

form solutions.

3.2 Connection to FDA and CSP

Without losing generality, let us consider the one dimensional case in this sub-
section. Let wT = (vT

1 , v0). Then we have Z = vT
1 X + v0, where X and Z are

random covariate in higher- and lower-dimensional spaces. Displacement v0 is
the same for both classes, and therefore plays no important role for final clas-
sifications. In other words, the effectiveness of the generated feature is solely
determined by v1. Let v∗

1 be an optimal solution.
Consider maximizing C(W; 1/2, d). We know that w∗ is the eigenvector of

Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 with the largest eigenvalue.
First, let us consider μ1 = μ2 = μ. Using formulas in Appendix A, we can

simplify Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 as

Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 =
(

Σ−1
1 Σ2 + Σ−1

2 Σ1 0
2μT − μT (Σ−1

1 Σ2 + Σ−1
2 Σ1) 1

)

Then by simple linear algebra, we can show that v∗
1 is also the eigenvector of

Σ−1
1 Σ2 + Σ−1

2 Σ1 with the largest eigenvalue.
Second, let us consider Σ1 = Σ2 = Σ. In this case, it is easy to verify the

following:

Ξ−1
2 Ξ1 − I =

(
Σ−1(μ1 − μ2)μT

1 Σ−1(μ1 − μ2)
μT

1 − μT
2 − μT

2 Σ−1(μ1 − μ2)μT
1 −μT

2 Σ−1(μ1 − μ2)

)

Ξ−1
1 Ξ2 − I =

(
Σ−1(μ2 − μ1)μT

2 Σ−1(μ2 − μ1)
μT

2 − μT
1 − μT

1 Σ−1(μ2 − μ1)μT
2 −μT

1 Σ−1(μ2 − μ1)

)

Then we have

Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 =
(

A 0
0 B

)

+ 2I,

where A = Σ−1(μ1−μ2)(μ1−μ2)T and B = (μ1−μ2)TΣ−1(μ1−μ2)T . It is then
not hard to show that v∗

1 is the eigenvector of A with the largest eigenvalue.
In summary, we show that FDA and CSP are special cases of our proposed

AFE for normally distribute data. Therefore, theoretically speaking AFE is more
flexible than FDA and CSP.
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4 Experiments

In order to compare our method with PCA and FDA, a 7-dimensional toy data
set has been generated. The toy data set contains 3-dimensional relevant com-
ponents, while the others are merely random noise. The 3 relevant components
form two concentric cylinders. The generated data are spread along the surfaces
of the cylinders. Figure 1 illustrates the first two features found by PCA, FDA
and our new approach AFE. As a result of preserving the variance of data, PCA
projects data along the surfaces, and thus does not reflect the separation of the
data (Figure 1(a)). Figure 1(b) shows that FDA fails to separate the two classes.
On the other hand, Figure 1(c) shows that our method correctly captures the
discriminant information in the data.

(a) PCA (b) FDA (c) AFE

Fig. 1. Comparision of features found by PCA, FDA, and Our method. Star and circle
points belong to different classes.

We selected three benchmark data sets: German, Diabetes and Waveform. The
dimensionality of these data sets are 20, 8, and 21 respectively. They can be freely
downloaded from http://ida.first.fraunhofer.de/projects/bench/benchmarks.
htm. The data sets had been preprocessed and partitioned into 100 training and
test sets (about 40% : 60%). They have been used to evaluate the performance
of kernel FDA [15], kernel PLS [19] and soft-margin AdaBoost [17].

We compared our new approach with FDA, CSP, and FKT. For convenience,
AFE1 and AFE2 are used for orthogonal and Ξt-orthogonal AFE algorithms.
We used FDA, CSP, FKT, AFE1 and AFE2 to generate lower-dimensional fea-
tures; the features are then used by linear support vector machines (SVM ) to
do classifications. To measure the discriminant information of the data set, we
also classified the original data set via linear SVMs, which we denote FULL in
the reported figures. Feature extraction and classification are trained on train-
ing sets, and test-set accuracy (TSA) are calculated with predictions on test
sets. Statistical boxplots of TSAs are shown in Figures 2, 3 and 4 for the three
chosen data sets. The poor performance of FDA, CSP and FKT affirms that
first-order or second-order statistics alone cannot capture discriminant informa-
tion contained in the data sets. By comparing AFE1 and AFE2 with FULL, we
see that AFE1 and AFE2 are capable of extracting the discriminant information
of the chosen data. AFE1 and AFE2 can be used to generate much compact
discriminant features, for example, the average dimensionality of extracted fea-
tures for German, Diabetes and Waveform are 8.16, 3.18 and 1.2, respectively.
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Fig. 2. Test set accuracy for German data sets. See text for notations and details.

Fig. 3. Test set accuracy for Diabetes data set. See text for notations and details.

We conducted preliminary experiments with AFE1 and AFE2 on data sets
Tübingen:1a and Berlin:IV from BCI competition 2003 1. We used AFE1 and
AFE2 to generate low-dimensional representations and then apply logistic re-
gression on the extracted features. For data set Tübingen:1a, we obtained TSA
as 77.13% and 85.32% for AFE1+ and AFE2+logistic regression, respectively.
The results are comparable with the ones of rank 11 and rank 4 of the compe-
tition, correspondingly. For data set Berlin:IV, we obtained TSA 71% for both
AFE1+ and AFE2+logistic regression, which are comparable with rank 8 of the
competition.

1 see http://ida.first.fraunhofer.de/projects/bci/competition ii/results/index.html
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Fig. 4. Test set accuracy for Waveform data set. See text for notations and details.

5 Conclusions

In this study, we proposed a novel dimension reduction method for binary clas-
sification problems. Unlike traditional linear subspace methods, the new pro-
posed method finds lower-dimensional affine subspaces for data observations.
We presented the closed-form solutions of our new approach, and investigated
its information-theoretical properties. We showed that our method has close con-
nections with FDA, CSP and FKT methods in the literature. Numerical exper-
iments show the competitiveness of our method as a preliminary data-exploring
tool for data visualization and classification.

Though we focus on binary classification problems in this study, it is always
desirable to handle multi-class problems. One can extend AFE to multi-class
problems by following the work presented in [5]. Here we proposed another way
to extend AFE to multi-class. Let Jij be the symmetric KL distance of classes
i and j, and assume class i, (i = 1, 2, · · · ,K), can be modeled by multivariate
normal distribution. Then we have

K∑

i=1

Ξ−1
i Ξt ∝

K∑

i,j=1

Jij ,

where Ξi is the augmented second moment matrix for class i and NΞt =∑K
i=1 NiΞi. Therefore we may calculate the truncated spectrum of

∑K
i=1 Ξ−1

i Ξt

for the lower-dimensional representations.
Another more important problem is to investigate the relationship of our new

proposed method with quadratic discriminant analysis (QDA). It has long been
known that FDA is an optimal dimension reduction method for linear discrim-
inant analysis (LDA) [11]. But there is no well-accepted dimension reduction
method for QDA in the literature. Recently, Hou et al. proposed that FKT
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might be seen as an optimal one for QDA under certain circumstance [13]. Our
future work will be dedicated to finding the relationship of AFE and QDA.
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Appendix A

Let X be a random covariate which has probability distribution p. So we have

μ = EX∼pX,

Σ = EX∼p(X − μ)(X − μ)T ,

Ξ = EX∼p

{(
X
1

)

(XT , 1)
}

,

where μ, Σ and Ξ are, respectively, the mean, covariance and augmented second
moment of X . When μ and Σ are finite, i.e. ‖μ‖ <∞ and ‖Σ‖ <∞, we have

Ξ =
(

Σ + μμT μ
μT 1

)

Assuming Σ is positive definite, we have the inverse of Ξ as follows:

Ξ−1 =
(

Σ−1 −Σ−1μ
−μTΣ−1 1 + μTΣ−1μ

)

.

Appendix B

Lemma 2. Let A be an r × s matrix, (r ≥ s), and ATA = I. Let Λ be a
diagonal matrix. Then

ξtr(AT ΛA) + (1 − ξ)tr([AT ΛA]−1) ≤
s∑

i=1

fi(ξ);

Proof. By the Poincaré separation theorem (c.f. [12] P190), we know the eigen-
values of ATΛA interlaces with those of Λ. That is, for each integer j, (1 ≤ j ≤
s), we have

λj ≤ τj ≤ λj+r−s,
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where τj is the eigenvalue of ATΛA. Then it is obvious that

ξtr(AT ΛA) + (1 − ξ)tr([ATΛA]−1)
=

∑s
i=1[ξτi + (1 − ξ) 1

τi
]

≤
∑s

i=1 fi(ξ);

Appendix C

Proof. Let U be a nonsingular matrix such that UT Ξ̂2U = I and UT Ξ̂1U = Λ.
Then we have

Π̂2 = WT (U−1)T UT Ξ̂2UU−1W = VT V

Π̂1 = WT (U−1)T UT Ξ̂1UU−1W = VT ΛV,

where V = U−1W ∈ R
(m+1)×k. Then we can get

C(W; ξ, d) = ξtr[(VT V)−1VT ΛV] + (1 − ξ)tr[(VT ΛV)−1VTV].

Applying SVD on V, we get V = ADBT . Here A and B are (m+ 1)× d and
d× d orthogonal matrices, i.e. BTB = I, BBT = I, and AT A = I. D is a d× d
diagonal matrix. Therefore we have:

tr[(VT V)−1VT ΛV] = tr[V(VT V)−1VT Λ]
= tr(AATΛ)
= tr(AT ΛA).

tr[(VT ΛV)−1VT V] = tr[V(VT ΛV)−1VT ]
= tr[A(AT ΛA)−1AT ]
= tr[(AT ΛA)−1].

Thus by Lemma 2, we know that

C(W; ξ, d) = tr[ξATΛA + (1 − ξ)(AT ΛA)−1] − d

≤
d∑

i=1

fi(ξ) − d.
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Abstract. Clustering is one of the most well known types of unsuper-
vised learning. Evaluating the quality of results and determining the
number of clusters in data is an important issue. Most current validity
indices only cover a subset of important aspects of clusters. Moreover,
these indices are relevant only for data sets containing at least two clus-
ters. In this paper, a new bounded index for cluster validity, called the
score function (SF), is introduced. The score function is based on stan-
dard cluster properties. Several artificial and real-life data sets are used
to evaluate the performance of the score function. The score function
is tested against four existing validity indices. The index proposed in
this paper is found to be always as good or better than these indices in
the case of hyperspheroidal clusters. It is shown to work well on multi-
dimensional data sets and is able to accommodate unique and sub-cluster
cases.

Keywords: clustering, cluster validity, validity index, k-means.

1 Introduction

The goal of clustering [1,2] is to group data points that are similar according
to a chosen similarity metric (Euclidean distance is commonly used). Cluster-
ing techniques have been applied in domains such as text mining [3], intrusion
detection [4] and object recognition [5]. In these fields, as in many others, the
number of clusters is usually not known in advance.

Several clustering techniques can be found in the literature. They usually
belong to one of the following categories [6]: partitional clustering, hierarchical
clustering, density-based clustering and grid-based clustering. An additional cat-
egory is the mixture of Gaussian approach. Since its computational complexity is
high, it is not likely to be used in practice. All these categories have drawbacks.
For example, hierarchical clustering has a higher complexity. Density-based clus-
tering algorithms often require tuning non-intuitive parameters. Finally, density-
based clustering algorithms do not always reveal clusters of good quality. The
K-means [1] algorithm, part of the partitional clustering, is the most widely
used. Advantages of K-means include computational efficiency, fast implementa-
tion and easy mathematical background. However, K-means also has limitations.
They include a random choice of centroid locations at the beginning of the pro-
cedure, treatment of categorical variables and an unknown number of clusters k.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 174–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Concerning the first limitation, multiple runs may be a solution. The paper by
Huang [7] contains a possible solution to the second limitation through the use
of a matching dissimilarity measure to handle categorical parameters. Finally,
the third issue is related to the number of clusters and therefore cluster validity.

Clustering is by definition a subjective task and this is what makes it difficult
[8]. Examples of challenges in clustering include i) the number of clusters present
in the data and ii) the quality of clustering [9]. Elements of answers to these two
issues can be found in the field of cluster validation. Other challenges such as
initial conditions and high dimensional data sets are of importance in clustering.
The aim of cluster validation techniques is to evaluate clustering results [6,8,10].
This evaluation can be used to determine the number of clusters within a data
set. Current literature contains several examples of validity indices [9,11,12,13].
Recent work has also been done on evaluating them [14].

The Dunn index [11] combines dissimilarity between clusters and their diam-
eters to estimate the most reliable number of clusters. As stated in [6], the Dunn
index is computationally expensive and sensitive to noisy data. The concepts of
dispersion of a cluster and dissimilarity between clusters are used to compute
the Davies-Bouldin index [12]. The Davies-Bouldin index has been found to be
among the best indices [14]. The Silhouette index [13] uses average dissimilar-
ity between points to identify the structure of the data and highlights possible
clusters. The Silhouette index is only suitable for estimating the first choice or
the best partition [15]. Finally, the Maulik-Bandyopadhyay index [9] is related
to the Dunn index and involves tuning of a parameter.

All of these indices require the specification of at least two clusters. As noted
in [16], the one cluster case is important and is likely to happen in practice.
As a prerequisite to the identification of a single cluster, a definition of what
is a cluster is important. Among those that exist in the literature, a possible
definition is given in [17]. Briefly, it states that a cluster is considered to be “real”
if it is significantly compact and isolated. Concepts of compactness and isolation
are based on two parameters that define internal properties of a cluster. While
this definition is precise, it is often too restrictive since few data sets satisfy such
criteria. More details of single cluster tests can be found in [16]. Other validity
indices exist in the literature. Some are computationally expensive [6] while
others are unable to discover the real number of clusters in all data sets [14].
This paper proposes a new validity index that helps overcome such limitations.

This article is organized as follows. Section 2 describes existing validity indices
from the literature. Section 3 proposes a new validity index, named the score
function. Performance of the score function is described in Section 4. The last
Section provides conclusions and directions for future work.

2 Existing Indices

In this Section, four validity indices suitable for hard partitional clustering are
described. These indices serve as a basis for evaluating results from the score
function on benchmark data sets. Notation for these indices have been adapted



176 S. Saitta, B. Raphael, and I.F.C. Smith

to provide a coherent basis. The metric used on the normalized data is the

standard Euclidean distance defined as ||x − y|| =
√∑d

i=1(xi − yi)2 where x

and y are data points and d is the number of dimensions.

Dunn index: One of the most cited indices is proposed by [11]. The Dunn
index (DU) identifies clusters which are well separated and compact. The goal
is therefore to maximize the inter-cluster distance while minimizing the intra-
cluster distance. The Dunn index for k clusters is defined by Equation 1:

DUk = min
i=1,...,k

{

min
j=1+1,...,k

(
diss(ci, cj)

maxm=1,...,k diam(cm)

)}

(1)

where diss(ci, cj) = minx∈ci,y∈cj ||x− y|| is the dissimilarity between clusters ci
and cj and diam(c) = maxx,y∈c ||x−y|| is the intra-cluster function (or diameter)
of the cluster. If Dunn index is large, it means that compact and well separated
clusters exist. Therefore, the maximum is observed for k equal to the most
probable number of clusters in the data set.

Davies-Bouldin index: Similar to the Dunn index, Davies-Bouldin index [12]
identifies clusters which are far from each other and compact. Davies-Bouldin
index (DB) is defined according to Equation 2:

DBk =
1
k

k∑

i=1

max
j=1,...,k,i�=j

{
diam(ci) + diam(cj)

||ci − cj ||

}

(2)

where, in this case, the diameter of a cluster is defined as:

diam(ci) =
(

1
ni

∑

x∈ci

||x− zi||2
)1/2

(3)

with ni the number of points and zi the centroid of cluster ci. Since the objective
is to obtain clusters with minimum intra-cluster distances, small values for DB
are interesting. Therefore, this index is minimized when looking for the best
number of clusters.

Silhouette index: The silhouette statistic [13] is another well known way of es-
timating the number of groups in a data set. The Silhouette index (SI) computes
for each point a width depending on its membership in any cluster. This silhouette
width is then an average over all observations. This leads to Equation 4:

SIk =
1
n

n∑

i=1

(bi − ai)
max(ai, bi)

(4)

where n is the total number of points, ai is the average distance between point
i and all other points in its own cluster and bi is the minimum of the average
dissimilarities between i and points in other clusters. Finally, the partition with
the highest SI is taken to be optimal.
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Maulik-Bandyopadhyay index: A more recently developed index is named
the I index [9]. For consistence with other indices it is renamed MB. This index,
which is a combination of three terms, is given through Equation 5:

MBk =
(

1
k
· E1

Ek
·Dk

)p

(5)

where the intra-cluster distance is defined by Ek =
∑k

i=1

∑
x∈ci

||x − zi|| and
the inter-cluster distance by Dk = maxk

i,j=1 ||zi − zj ||. As previously, zi is the
center of cluster ci. The correct number of clusters is estimated by maximizing
Equation 5. In this work, p is chosen to be two.

Discussion: Although all these indices are useful in certain situations, they are
not of general-purpose. For example, Dunn index is computationally heavy and
has difficulty to deal with noisy data. It is useful for identifying clean clusters
in data sets containing no more than hundreds of points. Davies-Bouldin index
gives good results for distinct groups. However, it is not designed to accommo-
date overlapping clusters. The Silhouette index is only able to identify the first
choice and therefore should not be applied to data sets with sub-clusters. The
Maulik-Bandyopadhyay index has the particularity of being dependent on a user
specified parameter.

3 Score Function

In this paper, we propose a function to estimate the number of clusters in a
data set. The proposed index, namely the score function (SF), is based on inter-
cluster and intra-cluster distances. The score function is used for two purposes:
i) to estimate the number of clusters and ii) to evaluate the quality of the cluster-
ing results. The score function is a function combining two terms: the distance
between clusters and the distance inside a cluster. The first notion is defined
as the “between class distance” (bcd) whereas the second is the “within class
distance” (wcd) .

Three common approaches exist to measure the distance between two clusters:
single linkage, complete linkage and comparison of centroids. This proposal is
based on the third concept since the first two have computational costs that are
too high [6]. In this work, the bcd is defined by Equation 6:

bcd =
∑k

i=1 ||zi − ztot|| · ni

n · k (6)

where k is the number of clusters, zi the centroid of the current cluster and ztot

the centroid of all the clusters. The size of a cluster, ni is given by the number of
points inside it. The most important quantity in the bcd is the distance between
zi and ztot. To limit the influence of outliers, each distance is weighted by the
cluster size. This has the effect to reduce the sensitivity to noise. Through n, the
bcd sensitivity to the total number of points is avoided. Finally, values for k are
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used to penalize the addition of a new cluster. This way, the limit of one point
per cluster is avoided. The wcd is given in Equation 7:

wcd =
k∑

i=1

(
1
ni

∑

x∈ci

||x− zi||
)

(7)

Computing values for wcd involves determining the distance between each
point to the centroid of its cluster. This is summed over the k clusters. Note
that ||x−zi|| already takes into account the size of the corresponding cluster. As
in bcd (Equation 6), the cluster size in the denominator avoids the sensibility to
the total number of points. With Equations 6 and 7, bcd and wcd are independent
of the number of data points.

For the score function to be effective, it should i) maximize the bcd, ii) min-
imize the wcd and iii) be bounded. Maximizing Equation 8 satisfies the above
conditions:

SF = 1 − 1
eebcd−wcd (8)

The higher the value of the SF , the more suitable the number of clusters.
Therefore, with the proposed SF, it is now possible to estimate the number of
clusters for a given set of models. Difficulties such as perfect clusters (wcd = 0)
and unique cluster (bcd = 0) are overcome. Moreover, the proposed score function
is bounded by ]0, 1[. The upper bound allows the examination of how close
the current data set is to the perfect cluster case. Thus we seek to maximize
Equation 8 to obtain the most reliable number of clusters. As can be seen through
Equations 6 and 7, computational complexity is linear. If n is the number of
data points, then the proposed score function has a complexity of O(n). In the
next Section, the score function is tested on several benchmark problems and
compared with existing indices.

4 Results

In this Section, the performance of validity indices are compared. For this pur-
pose, the standard K-means algorithm is used. K-means is a procedure that
iterates over k clusters in order to minimize their intra-cluster distances. The
K-means procedure is as follows. First, k centroids are chosen randomly over all
the points. The data set is then partitioned according to the minimum squared
distance. New centroid positions are calculated according to the points inside
clusters. The process of partitioning and updating is repeated until a stopping
criterion is reached. This happens when either the cluster centers or the intra-
cluster distances do not significantly change over two consecutive iterations.

To control the randomness of K-means, it is launched 10 times from kmin to
kmax clusters. The optimum - minimum or maximum, depending on the index-
is chosen as the most suitable number of clusters. The indices for comparison
have been chosen according to their performance and usage reported in the
literature (see Section 1). Selected indices are Dunn (DU), Davies-Bouldin (DB),
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Silhouette (SI) and Maulik-Bandyopadhyay (MB). These are compared with the
Score Function (SF). Results according to the number of clusters identified for
the proposed benchmarks are shown next. Particularities of the score function
such as perfect and unique clusters as well as hierarchy of clusters are then
tested. Finally, examples of limitations concerning the score function are given.

4.1 Number of Clusters

The score function has been tested on benchmark data sets and results are
compared with other indices. kmin and kmax are taken to be respectively 2 and
10. Artificial data sets used in this Section are composed of 1000 points in two
dimensions.
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Fig. 1. Four artificial data sets, namely Noisy, Unbalanced, Overlapped and Mixed. All
of these data sets contains 1000 points in 2D space.

Example 1: In the first data set, Noisy, five clusters in a noisy environment
are present (see Figure 1a). It is improbable that a data set contains no noise.
Therefore, clusters are frequently surrounded by noise. Table 1 shows that, unlike
other indices, the Dunn index is not able to estimate correctly the number of
clusters (five). This result confirms the idea that the Dunn index is sensitive to
noise [6].

Example 2: The second data set, Unbalanced, consists of four clusters (see
Figure 1b). These clusters are of different sizes and densities. According to [18],
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Table 1. Results of the five validity indices on the Noisy data set (example 1). The
data set is shown in Figure 1a. Bold numbers show maximum values for all indices
except DB, where minimum value is desired. This indication is used for Tables 1-6.
The correct number of clusters is five.

k 2 3 4 5 6 7 8 9 10

DU 0.018 0.016 0.019 0.019 0.032 0.035 0.027 0.028 0.023
DB 1.060 0.636 0.532 0.440 0.564 0.645 0.665 0.713 0.729
SI 0.534 0.573 0.719 0.821 0.785 0.768 0.733 0.706 0.669
MB 1.314 2.509 3.353 5.037 4.167 3.323 2.898 2.515 2.261
SF 0.424 0.489 0.553 0.592 0.584 0.578 0.575 0.573 0.572

clusters of varying densities are of importance. Table 2 shows the results for this
data set. Whereas DU underestimates the number of clusters, MB overestimates
it. This is not the case for DB, SI and SF which correctly identify four clusters.

Table 2. Results of the five validity indices on the Unbalanced data set (example 2).
The data set is shown in Figure 1b. The correct number of clusters is four.

k 2 3 4 5 6 7 8 9 10

DU 0.154 0.066 0.025 0.024 0.016 0.018 0.014 0.012 0.016
DB 0.739 0.522 0.347 0.552 0.633 0.712 0.713 0.722 0.733
SI 0.709 0.688 0.803 0.689 0.704 0.701 0.679 0.683 0.590
MB 3.900 3.686 4.795 4.751 4.941 4.844 4.540 3.575 3.794
SF 0.549 0.563 0.601 0.593 0.591 0.589 0.589 0.588 0.589

Example 3: This data set, named Overlapped, contains four clusters, two of them
overlap. It can be seen in Figure 1c. Two clusters are likely to overlap in real-life
data sets. Therefore, the ability to deal with overlapping cluster is one of the
best ways to compare indices [19]. Table 3 contains the results for this data set.
It can be seen that DU and DB underestimate the correct number of clusters.
Only SI, MB and SF are able to identify four clusters.

Table 3. Results of the five validity indices on the Overlapped data set (example 3).
The data set is shown in Figure 1c. The correct number of clusters is four.

k 2 3 4 5 6 7 8 9 10

DU 0.030 0.025 0.013 0.013 0.012 0.019 0.021 0.012 0.012
DB 0.925 0.451 0.482 0.556 0.701 0.753 0.743 0.774 0.761
SI 0.635 0.740 0.818 0.728 0.713 0.669 0.683 0.669 0.656
MB 1.909 3.322 5.755 5.068 4.217 3.730 3.527 3.150 3.009
SF 0.452 0.555 0.610 0.601 0.593 0.589 0.588 0.585 0.584
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Example 4: The following data set, named Mixed, contains six clusters. They
have different size, compactness and shape. The data set is shown in Figure 1d.
Table 4 presents results. First, it can be seen that DU is maximum for two
consecutive values (although not the correct ones). MB is the only index to
overestimate the correct number of clusters. Finally, only DB, SI and SF are
able to identify correctly six clusters.

Table 4. Results of the five validity indices on the Mixed data set (example 4). The
data set is shown in Figure 1d. The correct number of clusters is six.

k 2 3 4 5 6 7 8 9 10

DU 0.015 0.041 0.041 0.027 0.018 0.020 0.014 0.018 0.017
DB 1.110 0.751 0.630 0.575 0.504 0.554 0.596 0.641 0.662
SI 0.578 0.616 0.696 0.705 0.766 0.744 0.758 0.730 0.687
MB 1.523 1.574 2.379 2.813 3.389 3.661 3.857 3.490 3.236
SF 0.442 0.492 0.540 0.559 0.583 0.579 0.577 0.576 0.579

Example 5: The data set used in this example, Iris is one of the most used
real-life data sets in the machine learning and data mining communities [20]. It
is composed of 150 points in four dimensions. Iris contains three clusters (two
of them are not linearly separable). It is a good example of a case where the
dimension is more than two and clusters overlap. Table 5 shows the index values
for this data set. In this case, only SF is able to correctly identify the three
clusters. The overlap is too strong for other tested indices to enumerate the
clusters.

Table 5. Results of the five validity indices on the Iris data set (example 5). The data
set is made by 150 points in a 4D space. The correct number of clusters is three (two
of them overlap).

k 2 3 4 5 6 7 8 9 10

DU 0.267 0.053 0.070 0.087 0.095 0.090 0.111 0.091 0.119
DB 0.687 0.716 0.739 0.744 0.772 0.791 0.833 0.752 0.778
SI 0.771 0.673 0.597 0.588 0.569 0.561 0.570 0.535 0.580
MB 8.605 8.038 6.473 6.696 5.815 5.453 4.489 4.011 4.068
SF 0.517 0.521 0.506 0.507 0.503 0.503 0.497 0.510 0.513

Example 6: The next data set, named Wine, is also a real-life data set [20].
It contains 178 points in 13 dimensions. Wine data set contains three clusters.
Results of the five indices are given in Table 6. Whereas DU overestimates the
correct number of clusters, MB underestimates it. DB, SI and SF are able to
discover the three clusters.
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Table 6. Results of the five validity indices on the Wine data set (example 6). The
data set is made of 178 points in a 13 dimension space. The correct number of clusters
is three.

k 2 3 4 5 6 7 8 9 10

DU 0.160 0.232 0.210 0.201 0.202 0.208 0.235 0.206 0.214
DB 1.505 1.257 1.499 1.491 1.315 1.545 1.498 1.490 1.403
SI 0.426 0.451 0.416 0.394 0.387 0.347 0.324 0.340 0.288
MB 5.689 5.391 3.548 2.612 2.302 2.124 1.729 1.563 1.387
SF 0.131 0.161 0.151 0.146 0.143 0.145 0.147 0.149 0.150

Table 7 summarizes the results of the application of the five indices to four
artificial and two real-life data sets. Among the five indices tested, SF has the
best performance. SF correctly identified the number of clusters in all six data
sets. The SF successfully processes the standard case with clusters and noise
(Noisy), clusters of different size and compactness (Unbalanced), overlapped
clusters (Overlapped), multiple kind of clusters (Mixed) and multidimensional
data (Iris and Wine).

Table 7. Estimated number of clusters for six data sets and five cluster validity indices.
Notation indicates when the correct number of clusters has been found (O) or not (X).

Data Sets DU DB SI MB SF
Noisy 7(X) 5(O) 5(O) 5(O) 5(O)
Unbalanced 2(X) 4(O) 4(O) 6(X) 4(O)
Overlapped 2(X) 3(X) 4(O) 4(O) 4(O)
Mixed 3/4(X) 6(O) 6(O) 8(X) 6(O)
Iris 2(X) 2(X) 2(X) 2(X) 3(O)
Wine 8(X) 3(O) 3(O) 2(X) 3(O)

4.2 Perfect Clusters

Since the score function is bounded, its upper limit (1.0) can be used to estimate
the closeness of data sets to perfect clusters. The next two data sets are used to
test how the SF deals with perfect clusters. The data sets Perfect3 and Perfect5
are made of 1000 points in 2D and contain three and five clusters respectively
which are near to perfect (i.e. with a very high compactness). Although the num-
ber of clusters is correctly identified, it is interesting to note that the maximum
value for the SF is different in both cases. In the three cluster case, the maximum
(0.795) is higher than in the second one (0.722). This is due to the dependence
of the SF on the number of clusters k. This can be seen in the denominator of
Equation 6. Nevertheless, the SF gives an idea of how good clusters are through
the proximity of the value of the index to its upper bound of unity.
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4.3 Unique Cluster

An objective of the SF is to accommodate the unique cluster case. This case is
not usually treated by others. In this subsection, kmin and kmax are taken to
be respectively, 1 and 8. When the SF is plotted against the number of clusters,
two situations may occur. Either the number of clusters is clearly located with
a local maximum (Figure 2, left) or the SF grows monotonically between kmin

and kmax (Figure 2, right).
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Fig. 2. Difference of the SF trend with a data set containing three clusters (left) and
one cluster (right)

Since in the first situation, the number of clusters is identifiable, the challenge
lies in the second situation. There are three possible cases. They are: i) no
structure in the data, ii) data that forms one cluster and iii) the correct number of
clusters is higher than kmax. The first situation is out of the scope of this article.
More details of whether the data is structured or not, known as cluster tendency,
can be found in [1]. In the last two situations, the SF grows monotonically with
the number of clusters.

Two observations have been noticed. First, in the unique cluster cases, the
value of the SF when k = 2, denoted as SF2 is closer to the value for k = 1 (SF1)
than in other data sets. Second, the SF is dependent upon the dimensionality
of the data set. Therefore, the slope between SF2 and SF1 weighted by the
dimensionality of the data set is used as an indicator. To test the unique cluster
case, two new data sets are introduced: UniqueN is a unique cluster with an
added noise and Unique30 is a unique cluster in a 30 dimensional space. Results
of this indicator on all data sets are given in Table 8.

According to Table 8, it is empirically stated that the data set is likely to
contain more than one cluster if Equation 9 is satisfied.

(SF2 − SF1) · d > 0.2 (9)

where d is the dimensionality of the data, SF2 and SF1 are respectively the value
for SF when k = 2 and k = 1. Only two data sets containing unique clusters do
not satisfy the condition in Equation 9. Therefore, the index SF is the only one,
among all tested indices, that is able to identify a unique cluster situation.
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Table 8. Results of the indicator (SF2 − SF1) · d for eight benchmark data sets

Data sets Indicator Data sets Indicator
Noisy 0.37 UniqueN 0.11
Unbalanced 0.65 Unique30 0.10
Overlapped 0.45 Iris 1.49
Mixed 0.41 Wine 1.31

4.4 Sub-clusters

Another interesting study concerns the sub-cluster case. This situation occurs
when existing clusters can be seen as a cluster hierarchy. If this hierarchy can
be captured by the validity index, more information about the structure of the
data can be given to the user. Data set Sub-cluster in Figure 3 is an example of
this situation. The index SF is compared with the previously mentioned indices
on this topic. Figure 3 shows the evolution of each validity index with respect
to the number of clusters.
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Fig. 3. Comparison of DU, DB, SI, MB and SF for the sub-cluster case. DB must be
minimized

DU is not able to find the correct number of clusters (neither the sub-clusters,
nor the overall clusters). Although MB finds the sub-clusters, no information
about the hierarchy is visible. In the case of DB, even if it is not able to find
the five clusters (it finds four), the sub-cluster hierarchy is visible because the
value of the index drops rapidly at three clusters. The SI index is not able to
recover the correct number of clusters (i.e. the sub-clusters) although it can find
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the three overall clusters. Finally, the only index which is capable of giving the
correct five clusters as well as an indication for the three overall clusters is SF.

4.5 Limitations

In the above subsections, data sets used to test the different indices contain hy-
perspheroidal clusters. In this subsection, arbitrarily-shaped clusters are briefly
studied using two new data sets. Pattern is a data set containing 258 points
in 2D. It contains three clusters with a specific pattern and different shapes.
Rectangle is made of 1000 points in 2D that represent three rectangular clusters.
These data sets are shown in Figure 4.
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Fig. 4. Two new artificial data sets. Pattern and Rectangle contain respectively 258
and 1000 points in 2D.

Regarding the Pattern data set, all indices are able to find the correct number
of clusters (3). The proposed shapes and the pattern do not reveal weaknesses in
any index. Concerning the Rectlangle data set, results are different. The proposed
score function is not able to discover the three clusters. All other tested indices
fail as well. All indices overestimates the correct number of clusters: DU (9), DB
(7), SI (8), MB (8) and SF (10). A likely explanation is that clusters are far
from hyperspheroidal. Therefore, a limitation of the score function, as well as
other tested indices, is their restriction to data sets containing hyperspheroidal
clusters.

5 Conclusions

Although there are several proposals for validity indices in the literature, most
of them succeed only in certain situations. A new index for hard clustering -
the score function (SF) - is presented and studied in this paper. The proposed
index is based on a combination of the within and between class distances. It
can accommodate special cases such as the unique cluster and perfect cluster
cases. The SF is able to estimate correctly the number of clusters in several
artificial and real-life data sets. The SF has successfully estimated the number
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of clusters in data sets containing unbalanced, overlapped and noisy clusters.
In addition, the SF has been tested successfully on multidimensional real-life
data sets. No other index performed as well on all data sets. Finally, in the case
of sub-cluster hierarchies, only the SF was able to estimate five clusters and
overall, three groups. Therefore, the index SF outperforms four other validity
indices (Dunn, Davies-Bouldin, Silhouette and Maulik-Bandyopadhyay) for the
k-means algorithm on hyperspheroidal clusters. The proposed index can also
accommodate perfect and unique cluster cases. In order to identify the one cluster
case, an empirical condition has been formulated. Finally, determining values for
the index is computationally efficient.

Several extensions to the present work are in progress. For example, a theo-
retical justification for the unique cluster condition (Equation 9) is under study.
More extensive testing on arbitrarily shaped clusters is necessary. Finally, studies
of other clustering algoritms are also under way.
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Abstract. The high efficiency and quality of clustering for dealing with high-
dimensional data are strongly needed with the leap of data scale. Density-based 
clustering is an effective clustering approach, and its representative algorithm 
DBSCAN has advantages as clustering with arbitrary shapes and handling 
noise. However, it also has disadvantages in its high time expense, parameter 
tuning and inability to varying densities. In this paper, a new clustering 
algorithm called VDSCHT (Varying Density Spatial Clustering Based on a 
Hierarchical Tree) is presented that constructs a hierarchical tree to describe 
subcluster and tune local parameter dynamically. Density-based clustering is 
adopted to cluster by detecting adjacent spaces of the tree. Both theoretical 
analysis and experimental results indicate that VDSCHT not only has the 
advantages of density-based clustering, but can also tune the local parameter 
dynamically to deal with varying densities. In addition, only one scan of 
database makes it suitable for mining large-scaled ones.  

Keywords: High-dimensional, Hierarchical Tree, Density-based Clustering, 
Varying Density. 

1   Introduction 

Clustering groups similar objects together. As an important research area in data 
mining, clustering is extensively used in many diversified applications such as pattern 
recognition, image processing, business intelligence etc. Clustering can also be used 
as a pretreatment for other data mining tasks. The exponential growth of data scale 
and the enrichment of data types have put forward the following requirements on 
clustering algorithms: scalability, noise handling, dealing with different kinds of 
attributes, dealing with multi-dimensional data, discovery of clusters with arbitrary 
shapes, minimum dependence of domain knowledge or the user to determine the input 
parameters, insensitivity to the input order, dealing with restrained clustering, and 
interpretability and usability of the clustering results. 

Many clustering algorithms have recently been proposed in the literature, among 
which the density-based method shows obvious advantages in efficiency and effect. 
DBSCAN, proposed in [3], which is the representative algorithm for density-based 
clustering, can discover clusters of arbitrary shapes and handle noise. Meanwhile, 
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there are three main defects in DBSCAN: (1) a high time expense - especially when 
the data size is large, a significant amount of time is consumed in iterative detection; 
(2) the limitation of parameter tuning - the crucial parameter that directly influences 
the clustering results must be specified by the user; and (3) the inability to deal with 
varying density - a global parameter is used for clustering, but it does not work well 
under varying-density data environments.  

With the above defects of DBSCAN, many improvements have been proposed in 
recent years. The OPTICS algorithm presented in [4] does not form clusters 
explicitly, but calculates a cluster order. The discovery of the clusters is much more 
convenient based on the order, which can also be used to solve the parameter tuning 
problem in DBSCAN. The equivalence in structure makes OPTICS and DBSCAN 
have a similar time complexity; however, because the former adopts a complicated 
processing method and requires extra I/O operations, its actual running speed is well 
below the latter. Another clustering algorithm presented in [10] enhances DBSCAN 
by first partitioning the dataset in order to reduce the search space of the 
neighborhoods. Instead of examining the whole dataset, the enhanced method 
searches only in the objects within each partition. A merging stage is needed to reach 
the final natural number of clusters. Other approaches do not aim at producing the 
exact hierarchical clustering structure, but an approximate one, like sampling-based 
and grid-based clustering. The former clustering applies an expensive procedure to a 
subset of the database by sampling, whose clustering quality depends much on the 
quantity and quality of sampling. Details can be found in [11]. The data space is 
partitioned into a number of grid cells in the latter clustering, which can be used as a 
filter step for range queries to accelerate query processing. One of the classic 
algorithms called CLIQUE is presented in [8].  

The above algorithms mostly concentrate on improving the performance of 
DBSCAN by different techniques; however, the problems with parameter tuning with, 
high time expense and inability to deal with varying-density clustering have not been 
solved, especially for large-scaled, high-dimensional and varying-density databases.  

In this paper, a Hierarchical Tree model, or H-Tree, is proposed to describe 
subclusters and the original dataset, and a new density-based clustering algorithm, 
based on the H-Tree, called VDSCHT, is presented. VDSCHT is of multiple phases: 
it first scans the dataset to get subcluster information and builds an H-Tree, and the 
relevant parameter (or threshold) is adaptively adjusted in the tree building process. A 
density-based clustering procedure is adopted subsequently, and the essential 
parameter of clustering is locally and dynamically confirmed by the distribution 
situations of data objects in subclusters and the available information of the H-Tree. 
DBSCAN detects clusters by scanning the original dataset over and again, but 
VDSCHT detects and gets the full and natural clusters from the adjacent leaf nodes of 
the H-Tree by the local density parameter. Both theoretical analysis and experimental 
results indicate that VDSCHT not only possesses the advantages of density-based 
clustering (e.g. DBSCAN) including discovering clusters with arbitrary shapes and 
handling noise, but can also cluster well in varying-density datasets. It has a near 
linear complexity on both time and space to the size and dimensionality of the dataset 
and does not depend much on the user or domain knowledge. 

The rest of this paper is organized as follows. Section 2 details the idea  
and description of the VDSCHT algorithm. An algorithm analysis is provided in  
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Section 3, and experimental results are presented to demonstrate the effectiveness and 
efficiency of the VDSCHT algorithm in Section 4. Finally, Section 5 concludes this 
paper and outlines some issues for future research. 

2   The VDSCHT Algorithm 

In this section, we review and define related concepts at first, and then present the 
idea and details of the VDSCHT clustering algorithm. Some useful notations and their 
meanings are shown in Table 1. 

Table 1. Notations and their meanings 

notation meaning 
DDR (q, p) Object p is directly density-reachable from object q  

)(qNε  { }εε ≤∈= ),()( qpdistDqpN  

MinPts The minimum number of objects to form a cluster. 
B  The maximum number of sub-trees at each non-leaf node 

in H-Tree. 
radius of cluster: 

R  ( ) 2
1

2

01

1
⎟
⎠
⎞

⎜
⎝
⎛ −= ∑ =

N

ii
XX

N
R

rr
 

2.1   Related Concepts 

Definition 1 (Directly Density-Reachable) [3, 4]. Object p is directly density-reachable 

from object q (written as ),( pqDDR for short) wrt. ε and MinPts in a set of 

objects D  if: 

1) )(qNp ε∈ ( )(qNε is a subset of D  contained in the ε -neighborhood of q ). 

2) MinPtsqNCard ≥))(( ε ( )(NCard  denotes the cardinality of set N ). 

The condition MinPtsqNCard ≥))(( ε is called the “core object condition”. If this 

condition holds for an object q , then we call q a “core object”. Only from core 

objects, other objects can be directly density-reachable. 

Definition 2 (Core Distance) [4]. Let p be an object from a database D , ε  be a 

distance value, )( pNε be the ε -neighborhood of p , MinPts be a natural number, 

and MinPts_Distance ( p ) be the distance from p to its MinPts’ neighbor. Then, the 

core_distance of p is defined as:  

( )
⎩
⎨
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=
otherwisepdistanceMinPts

MinPtspNCardifUNDEFINED
pMinPtsdistancecore
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The core-distance of an object p is simply the smallest distanceε ′ between p and an 

object in its ε -neighborhood such that p would be a core object wrt. ε ′ if this 

neighbor is in )( pNε . Otherwise, the core-distance is undefined. 

Definition 3 (HSCF, Hierarchical Subcluster Feature). For a given N d-dimensional 

data points { }iX
r

 (where i = 1, 2… N) in a cluster, the HSCF vector of the cluster is 

defined as a triple HSCF = (N, LS , core_dist), where N is the number of data points 

in the cluster, LS  is the linear sum of the N data points, i.e.∑ =

N

i iX
1

r
, and core_dist 

saves the core distance of data objects in the corresponding subcluster. Commonly, 
core_dist is often shared by every data object in any subcluster. 

Definition 4 (H-Tree, Hierarchical Tree). An H-Tree is a height-balanced tree with 
two parameters: a branching factor B defining the maximal number of sub-trees at 
each non-leaf node, and a threshold T defining the maximum diameter (or radius) of 
every subcluster. Each node of the tree contains B HSCFs, shown in Fig. 1. 

 

Fig. 1. H-Tree Structure with B = 3; a node is divided as B parts (subclusters or HSCFs) 

Definition 5 (Candidate Cluster and Candidate Object). For a given dataset D , if the 
number of data objects in one subcluster C  is not less than the specific threshold 

(MinPts), then C is called as a candidate cluster, and each data point in C is called 
candidate object. 

Definition 6 (Cluster Subset and Non-Cluster Subset). For a given dataset 1D  which 

can form a full and natural cluster ( )1DC , dataset 
′

1D  is a subset of the given 

dataset 1D , i.e., 11 DD ⊆′
; if 

′
1D can form a candidate cluster, then 

′
1D is a cluster 

subset of ( )1DC ; otherwise, 1D ′ is a non-cluster subset of ( )1DC . 
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2.2   Description of VDSCHT 

The clustering process of VDSCHT is of three phases: clustering preprocessing, 
parameter confirming and clustering detection. A high-level description of the 
VDSCHT algorithm is described as follows. 

VDSCHT Algorithm  
{  
Clustering preprocessing with a hierarchical 
clustering method; 
Confirming parameterε locally and dynamically based on 
the information of preprocessing; 
Clustering detection among the adjacent subclusters 
with a density-based method; 

}. 

The main steps of VDSCHT are discussed in the following subsections. 

2.2.1   Clustering Preprocessing 
Scan the dataset and build an H-Tree with a small threshold value T defined in 
Definition 4 as follows. 

Building H-Tree Algorithm 
{ 
Step 1: Initialize the root of the H-Tree; 
Repeat scanning dataset; // Scan only one time. 
{ 
Repeat inserting data 
{// Find an appropriate HSCF at a leaf node and  
 // insert the new object into the H-Tree. 
Step 2: Identify the most appropriate leaf: 

starting from the root, recursively 
descends H-Tree by choosing the closest 
child node according to distance; 

Step 3: Modify the leaf: there are three kinds of 
situations to deal with according to the 
status of the leaf node from Step 2: 

 a): The leaf absorbs the current data point: 
update the HSCF information of the leaf and 
the relevant parent nodes; 

 b): Create a new leaf; and insert the current 
data object into the new position by B+ 
tree rules; 

 c): Split the leaf by choosing the farthest 
pair of entries (HSCF) as seeds, and 
redistribute the remaining entries based on 
the closest criterion;  

} Until needs rebuilding H-Tree; 
// Rebuild when specific situation is satisfied. 
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Step 4: Rebuild the H-Tree: tune the threshold and 
insert the entries of nodes into the new H-
Tree based on the structure of the original 
tree; 

} Until all data objects have been scanned; 
} // Building H-Tree ends. 

The computation of the mean distance between all data objects (including the 
current object) and the centroid of each subcluster at leaf nodes is inevitable to judge 
whether a certain subcluster can absorb the new data object O in Step 4. The mean 

distance, i.e. radius, is defined as ( ) 2
1
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ii
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rr
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r
is the 

centroid of the cluster. It is obvious that the computation of the radius of the cluster is 
expensive when the cluster includes a large number of data objects. Therefore, we 
provide Definition 7 and Theorem 1 as follows. 

Definition 7. For a given dataset D , if the mean distance between all objects and the 
centroid of cluster C  equals to a given parameter valueδ , then we call this cluster 

C is saturated. 

Theorem 1. For a given valueδ , if cluster C is saturated, C can be abstracted as the 

centroid ∑ == N

i iX
N

Center
1

1 r
 (where N is the number of objects in C ). The 

distance d between the new object O and Center  can be used to judge 

whether C can absorb O : if δ⋅+≤ Nd 11 , C can absorb O , i.e., the radius of 

the newly formed cluster is not larger than δ ; otherwise, if δ⋅+> Nd 11 , 

C cannot absorb O , i.e., the radius of the newly formed cluster is larger thanδ . 

Proof: The radius of cluster C is defined as ( ) 2
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. If 

C can absorb the new object O , the centroid of the newly formed cluster C′  

is ∑ +

=+
=′ 1
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, and the radius of this new cluster C′  

is ( ) 2
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. Thus, the proof of whether C  

can absorb O can be translated as follows: if 0R R′ − ≤ , C can  

absorb O ; otherwise, if 0R R′ − > , C can not absorb data object O . 
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d is the Euclidean distance between O and the centroid of C defined  

before. If C is saturated, i.e. 2 2R δ= , we set ( )2 21 ( 1)d t tδ= + ⋅ ≥ − , 

then ( ) ( ) 2222 11 δ⋅−⋅⋅+=−′ − tNNRR , we can discuss this question with two 

conditions: 

1). If
1

1 t
N

− ≤ ≤ , then δ⋅+≤ Nd 11 , 0, 0R R′ ≥ ≥Q  

apparently 0022 ≤−′⇔≤−′ RRRR , so O can be absorbed in cluster C . 

2). If
1

t
N

> , then δ⋅+> Nd 11 , apparently 2 2 0 0R RR R ′> ⇔ − >−′ , 

so O can not be absorbed in cluster C .    End. 

Accordingly, the computation of the distance between the new object O and the 
centroid of each cluster is much simpler than the computation of the radius of the 
cluster. In fact, to verify whether a certain cluster is saturated, we only need to check 
whether the radius approximately equals to the given value if there is no strict 
requirement on the quality of clustering.  

Building the H-Tree is only a data preprocessing step to find all the subcluster 
information in our VDSCHT design. The calculation is much simplified compared 
with the Birch algorithm in [2], for the following reasons. First, we only calculate 

the LS  in HSCF of each subcluster in Step 3 and need not calculate the 

SS=
2

1∑ =

N

i
Xi as Birch does, which will save time and space when HSCF includes 

much more data and we need to update the information of nodes. Second, the “Closest 
Criterion” is straightforward according to the distance between the new inserted data 
object and the centroid of HSCF by Theorem 1 when identifying the most appropriate 
leaf node in the H-Tree. Therefore, the time expense of finding the most appropriate 
leaf is much reduced.  

Dealing with three situations of modifying the leaf node in Step 3 is similar to B-
Tree, and rebuilding the H-tree when needed is simple, based on the processes in the 
original H-Tree structure, in a similar way to the reconstruction of the CF-Tree in [2]. 
These two procedures are not detailed here due to space limitations. However, “how 
to determine the timing of the tree rebuilding?” is a significant issue.  

Undoubtedly, “how to select the appropriate threshold value and determine the 
timing of tree rebuilding” is a very difficult problem. Clustering in the face of massive 
and complicated high-dimensional data without a sufficient understanding on the data 
is a real challenge. Paper [2] did not elaborate on the threshold selection and tree 
reconstruction.  

In this paper, an abnormality-support factor ( ab_limit ) is defined as: 
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N
ab_numberab_limit = , 

which is used to evaluate the validity of the H-Tree, where ab_number  figures the 

number of possible abnormality data objects included in the HSCF of H-Tree leaf 
nodes, i.e.,  

⎣ ⎦∑ =+= 2
21

MinPts
HSCFHSCFab_number α α , 

where 1HSCF figures the number of HSCFs that each contain only one data object 

and αHSCF figures the number of HSCFs that containα data objects and the mean 

distance between theseα data objects is distinctly greater than the threshold value. 
Our experiments have shown that the constructed H-Tree can better reflect the overall 
distribution of data objects and suit the next phase of density clustering to discover 
higher-quality clustering results when %3%9 ±≈ab_limit .  

Otherwise, %12>ab_limit indicates a smaller threshold resulting in some 

points of certain clusters may have been wrongly dealt as possibly abnormal data, and 
it therefore would be appropriate to increase the threshold value to reconstruct a new 
H-Tree. Also, %6<ab_limit shows that a large threshold leads to the expansion of 

the cluster and the wrong absorption of surrounding outliers, and at this time, the 
threshold should be appropriately reduced to reconstruct a new H-Tree. Naturally, a 
more accurate threshold value can be specified in practical applications when the 
customer has a deep understanding of the database. 

Different from increasing the threshold driven by memory or stored pages to 
rebuild the tree in [2], we tune the threshold value based on the data distribution of the 
dataset and the initial clustering results. Also, the reconstruction process by increasing 
the threshold value can be based on the original tree structure and can be quickly 
completed; however, the reconstruction by decreasing the threshold value will 
consume more time. Therefore, it is preferable to specify a small threshold value to 
begin with in order to improve the efficiency of the follow-up rebuilding when needed 
in the tree building process. 

The leaf nodes in the H-Tree including all the subcluster information can be divided 
into three kinds of forms: a cluster subset, a non-cluster subset of the natural clusters, 
and noisy data objects (outliers). Accordingly, the insertion of a data object always 
starts from the root of the H-Tree and finds a cluster according to the “closest criterion”. 
In the tree building process, when a natural cluster is divided into several subclusters by 
hierarchical clustering, these subclusters correspond to leaf nodes and are always 
adjacent in the H-Tree. Therefore, our iterative clustering detection at a later stage of 
VDSCHT does not need to scan the original dataset over and again as DBSCAN does 
when discovering clusters, but only detects clusters among the adjacent leaf nodes of the 
H-Tree. This reduces the time expense of discovering clusters significantly. 

2.2.2   Parameter Confirming 
Density-based clustering (e.g. DBSCAN) needs two essentially important parameters: 
MinPts and ε . MinPts determines the minimum number of data objects included in 
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the data space to form a cluster, andε  defines the size of the data space. MinPts is 
easy to confirm and [3, 4, 6] consider that setting MinPts as 5 is suitable even for 
large-scale databases. We have set MinPts as 5 in this paper, unless otherwise stated. 
The ε parameter is difficult to specify and it directly influences the final results of 
clustering. DBSCAN and its recent variations push away the task of establishing ε to 
the user. The results of clustering will be undoubtedly much more accurate if the user 
knows the distribution and density of the whole data very well (in which case, a 
natural question would be: if so, why do they need computer clustering?).  

In addition, high-dimensional data is often sparse and has a varying density. The 
globalε confirmed by the user can reduce the adaptability and quality of clustering 

algorithms. Another method of establishing ε is to calculate the thk − nearest 
distance of each data object in the whole dataset, draw a k -dist chart, and then get the 
user to assign the ε value according to the tendency of the chart (which mostly 
corresponds to the inflexion). However, after a large number of experiments, we have 
found that there are many similar “inflexions” in the k-dist chart in most cases, 
especially when the data set is high-dimensional and has a varying density. All of 
these observations show that the global ε is hard and infeasible to specify. 
Furthermore, the course of drawing a K-dist chart is expensive. 

 

Fig. 2. Two clusters with varying density 

For the dataset shown in Fig. 2, DBSCAN specifies the global ε  parameter to 
cluster the dataset, then clustering result will be: (i) if the ε parameter is suitable for 
point a in cluster C1, a can be used to detect all the red points around it; however, 
theε is awful for point b in cluster C2, as b can be used to detect nothing although 
other points in C2 around b can obviously form a cluster much like C1 except the 
density; (ii) otherwise, if the ε parameter is suitable for point b in cluster C2, C1 
will inevitably absorb the surround noise data. Accordingly, a local ε is indeed 
indispensable for finding out accurate and natural clustering results, especially under 
varying density environments. 
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Then, how to specify the local density parameterε ? First of all, a straightforward 
observation is that the distance between any two closest data objects in a certain 
cluster is approximately equal; otherwise, they are wrongly specified in one cluster 
when this distance is much different from others. Therefore, the local density 
parameterε will be similar or even the same when detecting from data objects in one 
certain cluster; but are mostly specified differently when detecting from different 
clusters. Second, each data object used to detect a cluster must be a core object. 
Apparently, it is so natural and rational to setε as the core distance that is shared with 
all data objects detected from a candidate cluster, i.e., 

core_dist=ε , 

where core_dist is saved in HSCF. Finally, the calculation of the core distance does 
not need scanning the whole dataset, but only through the adjacent HSCFs and/or 
nodes for the insertion of all data objects into the H-Tree based on the “closest 
criterion”, which ensures that data objects close to each other in the dataset are 
distributed in adjacent HSCFs and leaf nodes. Thus, we can calculate the local ε  
parameter for every subcluster under varying density environments simply and 
efficiently. 

Take the dataset in Fig. 2 as an example. We dynamically specify different 

local aε and bε values for detecting clusters from points a and b, and the objects in the 

same cluster share the same localε value. In this way, both points a and b can detect 
its own cluster naturally and correctly by using a different localε . 

Preprocessing the data by hierarchical clustering and building the H-Tree at first, 
we can then specify ε as a local value based on the preprocessing and the core 
distance of the candidate point dynamically. This does not require the user to specify 
theε parameter, avoids a possible serious distortion of the final clustering results, and 
improves the quality and adaptability of clustering at the same time.  

2.2.3   Clustering Detection 
Clustering detection of every data object in all leaf nodes uses the “far to near” 
criterion according to the distance between the current data object and the centroid 
with density-based clustering. It starts from a data object in the candidate cluster to 
improve the space and time efficiencies. For convenience, we select a random 
candidate point P from a candidate cluster to start the clustering detection process. If 
P belongs to a certain cluster, it does not change its attachment to this certain cluster; 
otherwise, if P does not belong to any cluster, this indicates that the candidate cluster 
in which P is located is a newly found cluster. When another data object Q is detected 
from P, clustering detection can be divided into the following three kinds of possible 
situations for different treatments. 

(a) Q does not belong to any cluster using DDR (Q, P), and Q is not a candidate 
point. The cluster to which P attaches absorbs Q in this case, i.e., P and Q are 
included in the same cluster, as shown in left of Fig. 3 (define MinPts = 3, 
hereinafter); 

(b) Q does not belong to a certain cluster, DDR (Q, P), and Q is a candidate point. 
The cluster to which P belongs absorbs the candidate cluster Q, i.e., a subcluster 
merger takes place, shown in middle of Fig. 3. 
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(c) Q belongs to a certain cluster (i.e. Q has been detected) and DDR (Q, P). The 
cluster to which Q belongs absorbs the cluster to which P is attached (or oppositely, 
the cluster where P is located absorbs the other cluster). I.e., the two clusters where P 
and Q are located are amalgamated into one cluster, as shown in right of Fig. 3. 

 

Fig. 3. Three kinds of possible situations of clustering detection 

The treatments of situations (a) and (b) provide the VDSCHT algorithm with the 
ability to discover clusters of arbitrary shapes. The treatment of situation (c) shields 
the sensitivity to input order of the DBSCAN algorithm. 

VDSCHT preprocesses data objects by hierarchical clustering to find the overall 
information of subclusters, and then locally and dynamically determines the crucial 
parameter ε which is indispensable to follow-up density-based clustering at a later 
stage. With the aim to improve the efficiency of clustering, detection only proceeds 
with candidate points among the adjoining areas. Non-candidate points are always far 
from the integrated and natural clusters; not to mention the outliers. However, if a 
non-candidate point is close to a cluster, it must be detected from a candidate point. 
Clustering detection always follows the “from far to near” criterion during the 
process, because the detection scope of points far from the centroid frequently covers 
the scope of points close to the centroid. Therefore, following this criterion, it can 
detect data points in other subclusters with more possibilities and extensions. The 
points close to the centroid can either be selected or never detected according to the 
actual conditions. Our experimental results indicate that detection by the criterion can 
improve the quality and efficiency of clustering significantly. 

3   Complexity Analysis 

The time complexity of the hierarchical clustering we have used to preprocess the 

data is ( )( )SBNdO Blog1+⋅⋅  (see [2] for details), where S is the maximal size  

of the H-tree; B is the branching factor of the H-Tree, defined in Definition 2; d  
is the data dimensionality; and N is the number of data objects. The follow- 
up clustering detection checks L adjacent neighbors among K candidate clusters  

with a complexity of ( )O K L⋅ . Therefore, the total time complexity 

is ( )( )LKSBNdO B ⋅++⋅⋅ log1  (commonly L<<K<<N). 

VDSCHT uses an array list to store the original dataset, and the nodes on the H-
Tree to record the positions of the corresponding data objects in the array list. 
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Therefore, the total space complexity is ( )NdPO ⋅+ , but P is always ( )NO , so the 

total space complexity is ( )NdO ⋅  (where P is the number of nodes, d is the 

dimensionality and N is the number of data objects in the original dataset; commonly 
P<<N). 

4   Performance Evaluation 

In this section, we present a comprehensive evaluation of VDSCHT using several 
synthetic databases, the SEQUOIA 2000 database benchmark, and the Weka 3.4 data 
[13]. VDSCHT and its rival algorithm DBSCAN are implemented in JAVA. All 
experiments are run on a 2.0 GHz CPU and 256 MB RAM. 

 

Fig. 4. Two databases used for comparing the clustering accuracy of VDSCHT and DBSCAN 

To confirm the accuracy and integrality of the VDSCHT algorithm, we run it on 
two sample databases (Database 1 and Database 2 in Fig. 4). Database 1 includes 
three equal-density clusters with arbitrary shapes, and VDSCHT and DBSCAN can 
find these three clusters completely as shown in Fig. 4. Database 2 contains two 
varying-density clusters C1 and C2, also shown in Fig. 4, however, the experimental 
results is disparate.  

Our experiments show that DBSCAN always finds one cluster, but there are 
differences in the cluster's content, which can be generally divided into three kinds of 
situations. (1) Whenε is small, DBSCAN finds cluster C1 but other points (including 
all points in cluster C2 and three points of r, s, t) are considered as noise. (2) When 
the ε value increases, the cluster found by DBSCAN includes all points in C1 and the 
three points of r, s, t. The reason is that these three points can be directly density-
reachable from some points in cluster C1, and are therefore included in the same 
cluster. (3) When ε  is relatively large, the cluster found by DBSCAN contains all 
points in C1, some points in C2 and the three points of r, s, t. Here not only the three 
points, but also some points of C2 close to C1 are also density-reachable from some 
points in C1, and therefore they are all combined into one cluster. 

As mentioned in Section 0, we dynamically specify the local ε  by the subcluster 
information of the H-Tree. In other words, VDSCHT specifies a different value of ε  
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as the core distance of data objects in every cluster. Therefore, the three points of r, s, 
t cannot be reachable from any points in C1 because of the small ε  when detecting 
from cluster C1, and therefore, they will not be wrongly absorbed in cluster C1. When 
detecting from cluster C2, the value of ε  increases with the core distance of points in 
cluster C2, which ensures that all points in C2 can be detected completely. It is 
obvious that when clustering under varying density environments, VDSCHT has a 
better quality and a higher adaptability compared with DBSCAN. 

We perform comparative studies using the three databases in Table 2. The Weka_2 
database has the most number of dimensionality, which is used to verify the time 
performance with varying dimensions. The test data size is 600 and its dimensionality 
is from 5 to 40.  

Table 2. Databases for experiments 
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Fig. 5. Run time w.r.t. varying dimensions 

Our experimental results show a linear increase in Fig. 5 and demonstrate that 
VDSCHT has the advantage of clustering high-dimensional data. The performance of 
VDSCHT is evaluated and compared with DBSCAN with three databases in Table 1. 
The former only detects clusters from candidate clusters in adjacent neighbors to 
discover the whole natural and integral clusters; however, the latter detects clusters 
from every core point and scans the database over and again. Therefore, VDSCHT is 
more efficient than DBSCAN and displayed in Fig. 6.  
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Fig. 6. Run time w.r.t. different databases 
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5   Conclusions 

This paper has analyzed density-based clustering and probed into the advantages and 
shortcomings of DBSCAN, and then proposed a varying density space clustering 
algorithm VDSCHT using a hierarchical tree. VDSCHT possesses the complementary 
advantages of density-based clustering and hierarchical clustering. Also, the crucial 
parameter ε is locally and dynamically determined on the basis of clustering 
preprocessing. In addition, the characteristic of only one scan of the database makes 
VDSCHT suitable for mining large-scale and high-dimensional data. The theoretical 
analysis and experimental results have both confirmed the above conclusions. Factual 
data are often complicated, incomplete and distributed; and how to discover the 
natural clusters efficiently is the main target of our future research. 
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Abstract. In this paper we propose a new criterion, based on Minimum
Description Length (MDL), to estimate an optimal number of clusters.
This criterion, called Kernel MDL (KMDL), is particularly adapted to
the use of kernel K-means clustering algorithm. Its formulation is based
on the definition of MDL derived for Gaussian Mixture Model (GMM).
We demonstrate the efficiency of our approach on both synthetic data
and real data such as SPOT5 satellite images.

1 Introduction

We are interested in knowledge extraction from a SPOT5 satellite image
database. One of our tasks is to find categories of images and to classify them
without prior knowledge on the type or number of these categories. Considering
the amount of available data we are concerned in using simple, fast and efficient
clustering algorithms. K-means is one of them but suffers from several draw-
backs: i) it cannot adapt to any cluster shape ii) the knowledge of number of
clusters is necessary iii) the result strongly depends on the initialization process.

To answer the first problem, a classical solution is to use Kernel K-means al-
gorithm [9] [14]. During the last decade kernel-based algorithms attracted lots of
researchers who applied them to various tasks such as machine learning, pattern
recognition, computer vision, etc. The success of these approaches is related
to the fact that using a kernel (see definition and properties of kernel in [13]
[14]) is equivalent to defining a feature space transform; the resulting feature
space is tuned to simplify the classification process and allows efficient classical
algorithms (like K-means) processing. This feature space depends on kernel pa-
rameter(s); several approaches are proposed in the literature to determine the
optimal parameter(s) [3]: in this work we use one kernel with fixed parameter.
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To answer the second and third problems we propose to use a standard ap-
proach such as selection of a clustering solution obtained using different num-
ber of clusters and initializations. This selection is based on the minimum of
our KMDL criterion. It allows us to stabilize clustering results and to have a
smoothed KMDL curve.

Our proposition about using MDL criteria to determine the number of clusters
is based on several arguments. Firstly, MDL is able to give access to an optimal
code or an optimal data representation for a certain model of data [10], e.g.
for GMM in our case. Secondly, this criterion works well when lots of data are
available [6]. This is our case because we have a huge storage of satellite images.
Finally, in the literature we have not found previous works about applying MDL
criteria to Kernel K-means to find the optimally associated number of clusters. It
gives us the motivation to formulate MDL criteria for Kernel K-means clustering.

We revise the main definition of MDL for GMM and we show a simplification
of MDL through the complete log-likelihood of GMM in Sect. 2. The objective
function for Kernel K-means is presented in Sect. 3. Then we formulate KMDL
in Sect. 4 using the simplified MDL for GMM. Results on synthetic data and real
satellite images are presented in Sect. 5 and Sect. 6, respectively. Conclusions are
in Sect. 7.

2 MDL for the Gaussian Mixture Model

2.1 Gaussian Mixture Model

The finite mixture model is widely used to represent data in statistical pattern
recognition. Let X = {X1, ..., XI} denote the data set of samples Xi, where each
Xi is a vector Xi = (Xi1, ..., XiD) of feature values Xid. The set X is modelled
by a finite mixture model consisting of two parts [10]:

1. the prior probability P (Xi ∈ j | Θj) = αj that every sample Xi is a member
of only one mixture component j, (j = 1, ..., J), where αj = nj/I, (nj

denoting the number of samples belonging to the mixture component j);
2. the conditional probability modelling each component j by the parameter-

ized probability density function (pdf) Pj(Xi | Θj), where Θj denotes the
parameter set.

Let Pj(Xi | Θj) denote the class-probability of observing the sample Xi con-
ditional to Xi belonging to the component j. The finite mixture model expresses
the probability of observing the sample Xi as a sum of pdf:

P (Xi | Θ) =
J∑

j=1

αjPj(Xi | Θj) . (1)

An important sub-class of mixture models is the multivariate Gaussian dis-
tribution, based on a Gaussian class-distribution:

Pj(Xi | Θj) = N (Xi | μj , Σj) =
e−

1
2 ((Xi−μj)

T Σ−1
j (Xi−μj))

(2π)D/2 | Σj |1/2
, (2)
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where μj and Σj are the mean and the covariance matrix of the jth component,
respectively. Estimates of the jth mean and covariance matrix are classically
obtained as:

μj =
1
nj

nj∑

l=1

Xl , (3)

Σj =
1
nj

nj∑

l=1

(Xl − μj)T (Xl − μj) , (4)

where Xl⊆j.
With the assumption that the data instances Xi are independently distributed,

the joint data probability (probability of observing data set X or likelihood func-
tion) is the product of the individual instance probabilities:

P (X | Θ) =
I∏

i=1

J∑

j=1

αjPj(Xi | Θj) . (5)

The Expectation-Maximization (EM) algorithm [10] can be used to estimate the
optimal parameters Θj of GMM. Without loss of generality we say that the jth

component of GMM models the jth cluster.
The purpose of clustering data is to simplify their representation in the feature

space by replacing each sample by a generic class which is likely to express all the
properties of the samples. However, when substituting a sample by its model,
an error is introduced. The more complex the model, the less the error. The
”model complexity” is well expressed by the number of parameters needed to
build the model. In the mixture of Gaussians case where every cluster is given by
its mean (3) and its covariance matrix (4), the more clusters are used, the more
complex the model is, and the less error between data and model. A method
to choose the optimal number of clusters consists in selecting the number that
most efficiently codes the data, i.e. that provides the shortest description when
representing the samples using models and the errors to the model. This method,
named Minimum Description Length (MDL), was proposed by Rissanen [2], [11],
[12]. MDL is defined as [12]:

min
k,Θ

−log(P (X |Θ)) +
1
2

klog(I) , (6)

where log(P (X | Θ)) is the log-likelihood of the mixture model (5) and 1
2klog(I)

is a penalty function with k parameters.

2.2 MDL for the Complete Log-Likelihood of GMM

Let see the log-likelihood for the mixture of Gaussian distributions in more
details. To complete the likelihood P (X |Θ) (5) of the finite mixture expressed
by (1), we should introduce the hidden variable z which attribute any sample
to a class: z = {z1, ..., zi, ..., zI} [4] [5]. Label zi is coded as a binary vector
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zi = [zi1, ..., zij , ..., ziJ ], where zij = 1 if sample i belongs to cluster j, or 0 if
not. Using (5), the complete log-likelihood log(P (X, z|Θ)) becomes [4] [5]:

log (P (X, z | Θ)) = log

⎛

⎝
I∏

i=1

J∑

j=1

zijαjPj(Xi | Θj)

⎞

⎠ =

I∑

i=1

zij log(αjPj(Xi | Θj)) .

(7)

By substituting the multivariate Gaussian distribution Pj(Xi | Θj) (2) in the
complete log-likelihood (7), we obtain:

I∑

i=1

zij log(αjN (Xi | μj , Σj)) =
I∑

i=1

zij log

(

αj
e−

1
2 ((Xi−μj)

T Σ−1
j (Xi−μj))

(2π)D/2 | Σj |1/2
)

)

=

I∑

i=1

zij

(

log

(
αj

| Σj |1/2

)

− D

2
log(2π) − 1

2
(
(Xi − μj)TΣ−1

j (Xi − μj)
)
)

=

1
2

I∑

i=1

zij log

(
α2

j

| Σj |

)

− 1
2

I∑

i=1

zijD log(2π)

−1
2

I∑

i=1

zij

(
(Xi − μj)TΣ−1

j (Xi − μj)
)
.

(8)
In this equation, some terms are constant:

− 1
2

I∑

i=1

zijD log(2π) = −1
2

J∑

j=1

njD log(2π) = −1
2
ID log(2π) = const1 . (9)

Moreover, to calculate the matrix Σj (4) the only samples from the cluster j are
needed, therefore:

− 1
2

I∑

i=1

zij

(
(Xi − μj)TΣ−1

j (Xi − μj)
)

= −1
2

J∑

j=1

njDI = −DI2

2
= const2 .

(10)
Then, the complete log-likelihood log(P (X, z|Θ)) (7) may be written as:

1
2

I∑

i=1

zij log

(
α2

j

| Σj |

)

+ const =
1
2

J∑

j=1

nj log

(
α2

j

| Σj |

)

+ const . (11)
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In the right part of the MDL definition (6), k is the model free parameters
number. In case of Gaussian mixture model free parameters are:

– J − 1 parameters for J weights αj (since
∑

αj = 1);
– D parameters for each mean μj ;
– D(D + 1)/2 parameters for each covariance matrix Σj.

Therefore, the number of free parameters is:

k = J − 1 + J(D + D(D + 1)/2) = J(D2 + 3D + 2)/2 − 1 . (12)

Using the complete log-likelihood (11) and the free parameter number of (12),
the description length (6) of Gaussian mixture model with J clusters is:

− 1
2

J∑

j=1

nj log

(
α2

j

| Σj |

)

+ (J(D2 + 3D + 2)/2 − 1)log(I)/2 + const . (13)

The const term having no influence on MDL for different cluster numbers and
as αj = nj/I, we may minimize:

Λ = −
J∑

j=1

nj log

(
n2

j

| Σj |

)

+ J(D2 + 3D + 2)log(I)/2 . (14)

Equation (14) shows that a quality of clustering only depends on the weighted
determinants of the covariance matrices which express the square errors between
data and model. Estimating the covariance matrices Σj and the populations of
each cluster nj , we can draw the MDL curve Λ as a function of the cluster
number J . The minimum on this curve indicates the optimal description of the
data set X , i.e. the minimum error with the minimum model complexity.

The MDL criterion (14) may be applied to any clustering method: to EM,
which, as said before, provides the best clustering, given a number of clusters, or
to simpler algorithms - like K-means which may be seen as a simplified version
of EM [10], or Kernel K-means, which is an extension of K-means. Based on this
remark, we propose first to define an MDL optimization of Kernel K-means.

3 Kernel K-Means Algorithm

In the case where data have a complex structure (e.g. data are non linearly
separable), a direct application of K-means is not suit because of its tendency
to group data into globe-shaped clusters [10]. To solve this problem, data may
be mapped by a transformation into a new feature space where samples are
linearly separable [14]. The transformation is defined by a kernel K(·) as the
inner product:

K(Xk, Xl) = 〈φ(Xk), φ(Xl)〉 , (15)

where φ(·) is a mapping of X to an inner product feature space [14] and k, l take
values [1, ..., I]. The simplest kernel is a linear:

K(Xk, Xl) = XkXl , (16)
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and one of the frequently used kernels is the Gaussian kernel:

K(Xk, Xl) = e
−‖Xk −Xl‖2

2σ2
, (17)

where σ is a kernel parameter. Kernel K-means minimizes an optimization func-
tion on the transformed data space [14]:

min
J∑

j=1

∑

k⊆j

‖ φ(Xk) − φ̄(Xk) ‖2
, (18)

where φ̄(Xk) = 1
nj

∑
Xk⊆j φ(Xk) is the jth cluster mean. One of the advantages

of using the kernel function is that we can solve (18) (e.g. for the Gaussian
kernel (17) without the explicit representation of function φ(·). The distance
‖ φ(Xk) − φ̄(Xk) ‖2 may be calculated with the inner product 〈φ(·)φ(·)〉. With
this objective, the standard steps of K-means algorithm are applied [14]. As can
be seen Kernel K-means algorithm is equal to K-means when the linear kernel
(16) is used.

4 Kernel MDL

Taking advantage of the formulation of (14), we propose to derive now a more
general form for MDL.

From (14) it has been said that the simplified MDL is depending on the
determinants of the | Σj | matrices which describe the model to data error. This
error may be determined in the original space X , as well as in the transform
space after kernel transformation. Therefore, we propose to define a general
MDL, similar to (14), as:

−
J∑

j=1

nj log

(
n2

j

Dist(Xk, Xl|k, l⊆j)

)

+ P (J,D, I) (19)

where Dist(Xk, Xl|k, l ⊆ j) is the error function for sample Xk being repre-
sented by the jth cluster (for instance, the distance between Xk and the mean of
cluster j) and P (J,D, I) is a penalty function.

The simplest error function is the Euclidean distance which may be calculated
using the kernel K (15). The sum-squares distances from patterns to their corre-
sponding jth cluster centroid was presented in [14] as the optimization function
for Kernel K-means:

Sj =
1

njD

∑

k⊆j

⎛

⎝K(Xk, Xk) − 1
nj

∑

l⊆j

K(Xk, Xl)

⎞

⎠ . (20)

In case where K is the linear kernel, S equals the variance in the original
space X as expressed by (16). To obtain the complete MDL formulation of (14),
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supposing the variances of a cluster equal for each dimension, we may rewrite
the determinant of covariance matrix Σj as:

| Σj | = SD
j . (21)

As the error Sj (20) may be derived for any kernel, e.g. Gaussian (17), we may
substitute the determinant (21) in the MDL expression (14) to obtain the kernel
MDL:

KMDL = −
J∑

j=1

njlog

(
n2

j

SD
j

)

+ J(D2 + 3D + 2)log(I)/2 . (22)

For the following experiments the same penalty function as in (14) have been
used. The derivation of an alternative penalty is not addressed in this paper.
One of the main advantages of this formulation lies in that the explicit mean
of a cluster j is not needed. This point is important when this mean has no
physical meaning, as it is often the case for non-convex clusters. To calculate
MDL criterion for the mixture of Gaussians in the original space X the distance
between samples and the nearest cluster centroid must be calculated. Problems
may appear in case of data distributed on clusters with holes as in Fig. 1-d.

5 Experiments with Synthetic Data

We tested our approach on synthetic data before applying it to real data such
as satellite images. The simplest and often used example of synthetic data are
using Gaussian distributions where each distribution is a cluster. When working
on satellite images, we expect to have a large number of clusters because of the
great variety of possible scenes. Therefore we demonstrate the potential of the
method with a rather large number of clusters, larger than in the usual literature
[8]. We make use of 20 Gaussian distributions as presented in Fig. 1-a with 100
samples per cluster. EM algorithm run 20 times for each cluster number, with a
different random initialization. Two curves are presented in Fig. 1-b, showing the
results of clustering using either MDL (14) or KMDL (22) with Gaussian kernel
and parameter σ = 2. For all curves of KMDL a constant is added to better
visualise with MDL. As expected, both curves exhibit a well defined minimum,
with an optimal number of clusters equals to 20.

The same experiments were done for another toy example having clusters with
a complex structure. Points of this cluster are distributed on a circle. Here again,
EM-algorithm and Kernel K-means with Gaussian kernel (σ = 0.5) have been
used. Optimal results are presented Fig. 1-c and Fig. 1-d. From Fig. 1-e, it may
be observed that EM with MDL detects more clusters than expected because
of the difficulty to linearly separate a cluster with a complex structure (also
seen in Fig. 1-c where the circle is split into 4 clusters). On the contrary Kernel
K-means with the Gaussian kernel optimally separates the mixture in Fig. 1-d,
and KMDL determinates the true number of clusters.

The last experiment concerns two real world data sets Iris and Thyroid taken
from the UCI machine learning repository. Iris data contain 3 classes, 50 samples
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Fig. 1. Synthetic examples. In a: synthetic example 1 with 20 clusters. In b: results
on clustering example 1. Detection of the optimal number of clusters by MDL (14)
(solid line) and by KMDL (22) (dashed line). In c: example 2 with a circular cluster as
clustered by EM. In d: the same as clustered by Kernel K-means. In e: curves drawn for
example 2. In f: Optimal number of clusters for Thyroid and Iris data. MDL (14) (solid
line with points) and KMDL1 (22) with σ = 5 (solid line with diamonds) propose 3 as
an optimal number of clusters for Thyroid data set. KMDL2 (22) with (16) (dashed
line with stars) and KMDL3 (22) with (17) σ = 4 (dashed line with squares) propose
3 as an optimal number of clusters for Iris data set.
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per class and 4 features per sample. The minimum of KMDL (22) with the
linear kernel (16) and the Gaussian kernel (17) determines the true number of
clusters as three Fig. 1-f. Thyroid data have 3 classes: 150, 35 and 30 samples
per class, respectively, and 5 features per sample. Both criteria KMDL (22) with
the Gaussian kernel (17) and MDL (14) determine the true number of clusters
as three Fig. 1-f.

From this set of experiments, several practical rules have been observed. At
first, it seems that it is better to start from high values of cluster number to
progressively reduce it in order to have a less chaotic behaviour of the curve.
Then we observe that the MDL is often unequivocal, allowing to use speeding
search techniques like dichotomy for instance.

6 Experiments with Real Data: Satellite Images

6.1 The Experiment

In the framework of the CNES-DLR Competence Centre we are interested in
information extraction and image understanding for Earth observation with high
resolution images [1]. In order to reduce the amount of information carried by
an image, we propose to categorize satellite images. To avoid bias and omissions
due to human expertise, we investigate unsupervised image category extraction.
In this scope we consider each cluster as a category. The optimal number of
clusters obtained from a given set of images is therefore an important clue which
cannot be arbitrarily fixed. The previous approach (with simplified MDL (14)
and KMDL (22)) will be our guideline to determine this number.

We are working with images from the SPOT 5 satellite, they are panchro-
matic images with a ground resolution of 5m per pixel. Each original image is
very large (12000 × 12000 pixels) and quite complex; therefore we extract smaller
images (1024 × 1024 pixels) with rather homogeneous content on urban areas.
These (1024 × 1024) images will, from now on, be named ”the images” since
the original large images will no longer be used in the rest of this document.
The images represent 6 cities: Copenhagen (Denmark), Istanbul (Turkey), Los
Angeles (USA), La Paz (Mexico), Madrid (Spain), Paris (France). We assume
that because of geography, culture and history each image has different surface
textures. Sub-samples of images are presented in Fig. 2. From these images, we
form a database of samples by cutting each image into 400 samples, each of size
64 × 64 pixels. Samples overlap by 13 pixels. The composed database contained
2400 samples, 6 cities and 400 samples per city. From each sample, 202 features
have been extracted: statistics issued from Quadratic Mirror Filters filtering,
statistics from Gabor filters, statistics from Haralick co-occurrence matrix de-
scriptors and geometrical features. 15 features were automatically selected from
the initial features using unsupervised feature extraction [9].

The data matrix of size 2400 × 15 is clustered with two algorithms: EM-
algorithm [10] with GMM and Kernel K-means [14] with the Gaussian kernel
(17) and parameter σ = 15. 50 random initializations were performed and the
best clustering was chosen. In our experiments the data were normalised in a
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a b c

d e f

Fig. 2. Samples of SPOT5 images (64 × 64 pixels per sample) : a - Copenhagen (Den-
mark), b - Istanbul (Turkey), c - Los Angeles (USA), d - La Paz (Mexique), e - Madrid
(Spain), f - Paris (France). c©Copyright CNES.

such a way that their mean equals 0 and the standard deviation of each column
is 1, so that the weight of each feature be the same.

μd =
1
I

I∑

i=1

Xid , (23)

σd =

√
√
√
√1

I

I∑

i=1

(Xid − μd)2 , (24)

X̃id =
Xid − μd

σd
(25)

Setting in (17) σ as the data dimension (σ = D), we obtain the curves shown in
Fig. 3 for MDL and for KMDL (22). For EM-algorithm the optimal number of
clusters is 9 whereas for Kernel K-means it is 11. We may present these optimal
clusterings as distribution matrices (as in Tables 1 and 2 respectively), where
each column corresponds to a city in the same order as in Fig. 2, and each line
represents a cluster.

6.2 Discussion

In the ideal case, where all the cities would be perfectly different, we could con-
sider that the clustering is good if each cluster consists of one city only. From
the classification matrices Tables 1 and 2 we can see that the EM-algorithm and
Kernel K-means give almost the same clusters. But EM-algorithm finds cluster 4
as a mixture of two cities (Los Angeles and Paris), although these cities exhibit
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Fig. 3. Detection of the optimal number of clusters by MDL (solid line) and KMDL
(dashed line) criteria for SPOT 5 image textures

Table 1. Clustering matrix for 6 cities with EM-algorithm

Cities

Clusters Copenhagen Istanbul Los Angeles La Paz Madrid Paris
∑

1 2 3 2 4 155 6 172
2 117 14 0 0 0 0 131
3 86 131 1 0 5 6 229
4 6 3 253 20 24 251 557
5 131 221 0 0 0 0 352
6 0 0 5 256 7 32 300
7 28 11 7 20 32 48 146
8 30 17 132 4 177 56 416
9 0 0 0 96 0 1 97

400 400 400 400 400 400

Table 2. Clustering matrix for 6 cities with Kernel K-means algorithm

Cities

Clusters Copenhagen Istanbul Los Angeles La Paz Madrid Paris
∑

1 0 0 0 94 0 1 95
2 28 10 6 22 31 49 146
3 0 0 19 24 9 259 311
4 67 123 1 0 4 6 201
5 112 27 0 0 1 0 140
6 0 0 4 252 5 28 289
7 20 16 72 4 172 34 318
8 13 2 296 0 35 19 365
9 2 2 2 4 142 4 156
10 114 208 0 0 1 0 323
11 44 12 0 0 0 0 56

400 400 400 400 400 400
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Table 3. Texture examples of clusters, Kernel K-means

Clusters Texture examples

1

2

3

4

5

6

rather different structures Fig. 2. The classification matrix of Kernel K-means
(Table 2) shows that these two cities are separated (clusters 3 and 8). Even if
we set the number of clusters to 12 for the EM-algorithm the confusion between
these cities remains. This confusion disappears when the number of clusters is
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Table 4. Texture examples of clusters, Kernel K-means

Clusters Texture examples

7

8

9

10

11

15, but it will not be an optimal clustering in terms of MDL. We consider that
Kernel K-means better clusters data than EM-algorithm because clusters better
correspond to cities. Some texture examples of clustered cities (4 textures per
cluster) by Kernel K-means are presented in Tables 3 and 4. The samples clos-
est from the centre of the corresponding clusters have been chosen. Each row
of Table 3 has 4 texture examples for clusters from 1 to 6 and Table 4 for clus-
ters from 7 to 11. We analyze visually this examples using classification matrix
in Table 2. The first and sixth rows of Table 3 correspond to 4 textures of La
Paz. These clusters show two different surfaces for this city. The second row has
samples from every city and corresponds to large places which are likely to be
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similar almost everywhere around the world. The third column is a typical ex-
amples of Paris city blocks and we see from the classification matrix in Table 2
that cluster 3 collects nearly all samples of this city. Cluster 4 has mixed samples
from Istanbul and Copenhagen with a domination of Istanbul (see cluster 4 in
Table 2). These textures represent both urban and rural areas. Cluster 5 has also
similar urban textures from these cities but with a domination of Copenhagen.
Cluster 7 in Table 4 has mainly textures from Madrid but also from other cities.
Los Angeles is represented by cluster 8 with its typical square streets. Half tex-
tures of Madrid are represented by cluster 9. Dense areas of Istanbul correspond
to cluster 10. Cluster 11 has textures which contain wide roads. From this early
interpretation of classification results, we are quite satisfied by the way the tex-
tures have been grouped and the homogeneity of the obtained classes. Results
of clusterings in Tables 1 and 2 show that several clusters have redundant in-
formation. It means that for different clusterings there are clusters which have
the same samples. It will be useful for data mining to combine samples that
always belong to common clusters that may reduce redundant information and
find some interesting particular clusters in data [7].

7 Conclusions

In this paper we proposed a new criterion called Kernel MDL (KMDL) to es-
timate the optimal number of clusters for the Kernel K-means algorithm. This
criterion is derived from a simplified formulation of the classical MDL for the
Gaussian Mixture Model. Both KMDL and the simplified MDL allow to de-
termine the optimal number of clusters using simply the error function be-
tween the data and the model of clusters. To adapt the criterion to the Kernel
K-means algorithm we defined this error function as the corresponding optimized
criterion.

The error can be calculated on the kernel function with the Kernel K-means
algorithm. The advantage of this approach is that Kernel K-means can linearly
separate data which are non linearly separable in the original space. As we can
see from experimental results the two criteria MDL and KMDL work well and
give optimal numbers of clusters each for its own algorithm. Kernel K-means
algorithm with KMDL shows superior results than EM with MDL for synthetic
data as well as real data.
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Abstract. This paper addresses the scale-space clustering and a val-
idation scheme. The scale-space clustering is an unsupervised method
for grouping spatial data points based on the estimation of probability
density function (PDF) using a Gaussian kernel with a variable scale
parameter. It has been suggested that the detected cluster, represented
as a mode of the PDF, can be validated by observing the lifetime of the
mode in scale space. Statistical properties of the lifetime, however, are
unclear. In this paper, we propose a concept of the ‘critical scale’ and
explore perspectives on handling it for the cluster validation.

1 Introduction

Cluster discovery is an essential approach to data mining. Most of the clustering
methods are based on either or both of a distance measure and estimation of the
probability density function (PDF) for a dataset. While the geometric distance
measure enables us to quantify internal cohesion and external isolation of clusters
in the dataset, such cluster characteristics are statistically governed by the PDF.

The PDF-based methods treat the dataset as a set of instances of random
points distributed in a feature space. In the case that a model of the PDF is not
presumable, the PDF is estimated by a nonparametric approach [1]. The clusters
are generated according to the structure of the PDF. Therefore, clustering is
essentially a structural analysis of the estimated PDF. The details of the PDF
structure, however, are controlled by the cardinality of the dataset. In other
words, a finite number of data points provide the geometric structure of the
PDF with some resolution or scale.

An unsupervised clustering method on the basis of the PDF estimation using
a Gaussian kernel with a variable kernel width, i.e. scale, is known as the scale-
space clustering [2,3,4,6]. The scale-space clustering can be interpreted as an
extraction of a hierarchical structure of the PDF on the basis of hierarchical
relationships among the data points in a scale space. We focus on an important
property that the modes of the estimated PDF in scale space are deterministic
above a certain critical scale, even though the positions of the data points are
stochastic. By selecting the scale for clustering above such critical scale, we can
obtain valid clusters without prior knowledge of the number of clusters or their
locations.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 218–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper, we first review the Gaussian scale-space theory and introduce
the scale-space clustering. A hierarchical clustering is achieved by constructing
a mode tree. Second, we define the critical scale and describe its concept. The
cluster validity is examined from the viewpoint of the PDF structure. We experi-
mentally show that the lifetime of the invalid cluster exhibits unimodal distribu-
tions, which are indispensable for statistical validations. Finally, we demonstrate
the scale-space clustering and recursive validation using the mode tree.

2 Scale-Space Analysis

2.1 Gaussian Scale Space

The scale space is classically explained as Gaussian blurring [13,14,16]. The
Gaussian convolution derives a one-parameter family of functions from a given
positive function f(x).

f(x, τ) = G(x,
√

2τ) ∗ f(x) (1)

Here, G(x,
√

2τ) is the isotropic Gaussian function. In this paper, we call f(x, τ)
the generalised function in scale space (x, τ). The parameter τ is called the
“scale”, which can be regarded as an inversion of the resolution if f(x) is an
image. The scale plays a role of the kernel bandwidth if f(x, τ) represents a
kernel density estimate, which we will treat in later sections.

The isotropic Gaussian convolution satisfies the following axioms [16,17].

– Non-negative intensity.
– Linearity.
– Closedness under affine transformations.
– Associative (or semigroup) property.

Equivalently, the scale space can also be defined as a space in which a spatial
function is governed by a diffusion equation with respect to the scale τ .

∂f

∂τ
= Δf. (2)

Any function described by the Gaussian convolution satisfies the linear diffusion
equation.

2.2 Hierarchical Structure

A remarkable geometric feature of the generalised function is a set of critical
points, where the spatial gradient of the function vanishes.

P (τ) = {x(τ)|∇f(x, τ) = 0} (3)

Local extrema are representative of regions with high and low values of f(x, τ).
Saddle points reside between the local extrema.
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The trajectories of the critical points observed in the scale space are called
the critical curves. The critical curves (a.k.a stationary curves) are solutions to
the equation

H
dx(τ)
dτ

= −∇Δf(x(τ), τ), (4)

where H = ∇∇�f is the Hessian matrix of the generalised function [15,18].
The hierarchical structure of f(x, τ) in scale space has been investigated

by various authors [15,19,20,21,22,23,24]. Especially, the critical curves in scale
space indicate the topological relationships among the critical points. The criti-
cal curves start at the critical points P (0), and end at scales where the critical
points are annihilated by blurring. Generically, a local extremum and a saddle
meet at a singular point where det H = 0. Equation (4) indicates that the spa-
tial velocity of the critical point with respect to scale becomes infinite at the
annihilation point.

We have investigated the hierarchical structure on the basis of links of singular
points, analysing the spatial gradient field of f(x, τ) in the Gaussian scale space
[23,24]. Each singular point generically has a considerable gradient field curve,
which we call the antidirectional figure-flow curve. The antidirectional figure-
flow curve defines the link of the singular point to another local extremum.
Consequently, the hierarchical relationships among the critical points can be
determined by the critical curves across scales and the antidirectional figure-
flow curves at fixed scales.

3 Clustering Based on PDF Estimation in Scale Space

3.1 PDF Estimation with Gaussian Kernel

For a dataset in a feature space,

P = {xn|xn ∼ p(x), n ≤ N,n ∈ N,x ⊂ R
d},

a kernel density estimate of the probability density function (PDF) [1] is defined
as

p̃(x;σ) =
1
N

N∑

n=1

K(x− xn;σ). (5)

Here, K is the kernel function and σ is its bandwidth. This PDF estimation is
known as a nonparametric method, and p̃(x;σ) with a suitable kernel function
converges to the true PDF p(x) if σ → 0 when the cardinality N of the dataset
approaches to infinity.

The Gaussian function with the scale parameter σ is a popular kernel for the
PDF estimation. We justify the use of an isotropic Gaussian kernel,

K(x;σ) = G(x, σ) =
1

√
2πσ2

d
e−

|x|2

2σ2 , (6)

for the following reasons.



Critical Scale for Unsupervised Cluster Discovery 221

– G(x, σ) is radial and unimodal. The radial function can express dominance
of a point at its center.

– Let σ =
√

2τ and define

f(x, τ) = p̃(x;
√

2τ ) =
1

N
√

4πτ
d

N∑

n=1

e−
|x−xn|2

4τ . (7)

Then, f(x, τ) satisfies the linear diffusion equation (2). This property implies
that the data points disperse by Brownian motion. Initial positions at τ = 0
are given by P , and a superposition of the Gaussian functions represents
uncertainty of the location of the points after the time τ .

– p̃(x;
√

2τ) satisfies the scale-space axioms. The parameter τ can be regarded
as the scale. Scale-space analyses are available for the estimated PDF.

– The number of modes of the homoscedastic Gaussian mixture seldom in-
creases as the scale σ increases [7]. That is, mode creation is less expected if
the Gaussian functions are unequally weighted. It is known that non-isotropic
Gaussian mixtures with different covariances yield spurious modes outside
the convex hull of P .

3.2 Scale Selection Problem

In practice, we need to estimate a finitesimal value of σ for P with a finite
cardinality. If σ is too small relative to data intervals, each data point xn ap-
proximately maximises p̃(x;σ) in its neighbourhood. p̃(x;σ) with such a small
σ is not a feasible PDF estimate of p(x), since geometric features of p̃(x;σ),
such as configurations of the peaks of p̃(x;σ) and their topologies, are stochastic
depending on randomness of P . In contrast, the geometric features of p̃(x;σ)
with a large σ are expected to be deterministic although the PDF p̃(x;σ) does
not provide the detail of distribution of the data points.

An essential approach to the scale selection problem in the kernel density
estimation is to analyse the structure of PDF p̃(x;σ) at all bandwidths σ, si-
multaneously. Observation of p̃(x;σ) in (x, σ)-space clarifies a hidden structure
across scales. The Gaussian scale-space analysis discussed in section 2 is of great
help if we equate the kernel density estimate with the generalised function in
scale space.

3.3 Scale-Space Clustering

Several authors has elaborated the clustering of data points based on the PDF
estimation in scale space [2,3,4]. Their brief concept is to trace the modes of
p̃(x;σ) from σ = 0 in scale space. The modes are the local maxima of the PDF,
which represent the regions where the data points are dense. That is, the data
clusters are detected as the modes of the estimated PDF.

Hierachical Clustering. The number of traceable modes of p̃(x;σ) from the
positions of data points at σ = 0 decreases with increasing bandwidth σ. The
data points are hierarchically clustered according to the hierarchical relationships
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among modes, which are described as the local maximum curves in scale space.
The mode hierarchy is symbolically described as a tree. The algorithm of the
tree construction is as follows.

ALGORITHM I – Mode Tree

1. Set card(P ) nodes with labels k (k = 1, . . . , card(P )) to be leaves of a tree
T .

2. Let P̂ = P , and σ =
√

2τ = 0.
3. Increase the scale τ by Δτ , which is a small value so that

√
2Δτ is negligible

compared to the space intervals of the points in P̂ .
4. For each point p̂i ∈ P̂ , update p̂i by maximising p̃(x;σ) with p̂i as the initial

position.
5. For each point p̂i ∈ P̂ , if ∃p̂j ∈ P̂ , j �= i, |p̂i − p̂j | < εσ, where ε is the

tolerance of maximisation, then remove p̂i from P̂ , and add a new node
with two branches attached to the nodes labelled i and j in T . The new
node inherits the label j, and contains the values p̂i and τi = τ .

6. If card(P̂ ) = 1 then stop; otherwise go to Step 3.

The iteration to update the dataset P̂ is equivalent to performing the so-called
mean-shift clustering [9,10,11], and the mean-shift algorithms are available for
the maximisation in Step 4 [8]. Depending on the step size Δτ , Algorithm I
functions as the nested and nonnested versions of hierarchical clustering [6].

Cluster Validation. The scale-space clustering finds the data clusters at any
scale. The detected clusters have been validated by several properties of the
clusters: the number of clusters vs. scale, compactness, isolation, lifetime and
birthtime [2,3,4,6]. As suggested in [3,4,5], the decrease in the total number of
clusters pauses over a scale interval where valid clusters survive. However, such
interval is detectable only if the valid clusters are simultaneously stable and each
cluster keeps a constant cardinality. This observation fails to detect valid clusters
each of which is stable at different scales.

The scale at which the cluster number varies indicates the death of a cluster.
The cluster lifetime [3,4,6], which refers to a range of the scale interval where the
cluster survives, is more essential than the cluster number. A cluster with long
lifetime is considered to be valid. Although the cluster validity is quantified by
the lifetime, it is still unclear how to distinguish valid clusters from invalid ones.
We need adequate criteria to identify the valid clusters. It is preferable to derive
such criteria from the nature of scale space, rather than strategical, empirical or
deliberate measures.

4 Critical Scale

4.1 Concept

The dataset P is an instance of a set of points which stochastically located in a
space according to the true PDF p(x). An important fact is that the cardinality
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of the dataset plays a role of resolution of the PDF. The detail of geometric
features of the estimated PDF is dependent on the cardinality of the dataset.
If the structure of the true PDF is so complicated that the dataset P cannot
express the PDF in detail, the structure of the estimated PDF are stochastic at
small scales.

It should be emphasised that the geometric features of PDF is provided from
coarse to fine by data samples, and a finite number of samples represent the PDF,
incompletely. The estimated PDF p̃(x;σ) reveals the structure of true PDF p(x)
from top to bottom with increasing cardinality. For the PDF described by the
dataset with a finite cardinality, there exists a critical lower bound of scale, above
which the structure is deterministic, and under which the structure is stochastic.
Clustering should be employed above such a critical scale.

Definition 1. The critical scale is a threshold of the spatial measure above which
the dataset or its subset is informative and under which results of pattern anal-
yses lose statistical significance.

4.2 Non-structured PDF

The dataset P potentially contains valid clusters iff the true PDF p(x) has
meaningful features such as modes. Contrapositively, if p(x) is featureless, or the
uniform distribution, then no valid cluster exists in P . The dataset generated
from such non-structured PDF should be classified into a single cluster with all
data points. Any small cluster detected in the uniformly distributed data points
is said to be invalid.

The arrangement of data points which achieves the uniform distribution is
not unique. We present three examples of uniformly distributed random points
in Fig. 1: the perfectly random arrangement (a.k.a the Poisson random arrange-
ment), the quasi-random arrangement, and the regular triangular grid points.
Each dataset consists of a thousand points. For the dataset in the perfectly
random arrangement, the number of points within an area S obeys the Pois-
son distribution with mean λ = ρS, where ρ is the point density. The dataset
in the quasi-random arrangement is generated using the Sobol’s sequence [25].
The quasi-random arrangement has a property of filling vacant spaces among
the previously generated points, uniformly. The grid points in Fig. 1(c) is also
considered to be the uniformly distributed random points if the direction θG
and the origin OG of the grid are uniformly random so that 0 ≤ θG < 2π and
OG ∈ R

2. Note that none of the three datasets has valid clusters, statistically.

4.3 Lifetime Histogram

In this paper, we define the lifetime as follows.

Definition 2. The lifetime of a data point pi ∈ P is defined as
√

2τi, where τi
is the terminating scale of the critical curve of local maximum whose starting
point is (pi, 0) in the scale space.
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Fig. 1. Examples of uniformly distributed random points. (a) Perfectly random ar-
rangement, (b) quasi-random arrangement, and (c) regular triangular grid points. The
grid points in (c) can be regarded as random points if the direction and the origin of
the grid are random.

We consider the distribution of the lifetimes. It has been suggested that the
number of modes of p̃(x;σ) exponentially decays with increasing scale if the
dataset does not contain clusters [3,6]. The scales at which the number of clusters
varies indicate the lifetimes of modes. According to those antecedent works, the
lifetime distribution is also expected to be in an exponential shape function.

The exponential decay, however, is not guaranteed depending on the arrange-
ment of points. Figure 2 is the lifetime histograms for the perfectly random points
and the quasi-random points. We have averaged the frequencies of the lifetimes
over a hundred of datasets, each of which consists of a thousand data points
distributed in a unit square [0, 1] × [0, 1]1. As shown in Fig. 2(a), the lifetime
histogram for the perfectly random dataset shows an unimodal shape, which is
similar to the Weibull distribution. The lifetime distribution of the quasi-random
dataset, shown in Fig. 2(b), has a sharp peak at

√
2τ ≈ 0.01, which is depen-

dent only on the point density. The assumption of the exponential decay in the
antecedent works may be based on the skirt of these distributions.

4.4 Detection of Valid Clusters

Detection of the valid clusters is to distinguish the structured PDF of data points
from the non-structured uniform distribution. The lifetime histogram is avail-
able to detect the meaningful structure. Multimodality and statistic outliers in
the lifetime data indicate the non-uniformity of the PDF. The outlying lifetime
values approximate the sizes of the valid clusters. The peak and decay of the life-
time distribution are found only in small scale relative to the outlying lifetimes.
In other words, the critical scale lies after the decay of the lifetime distribution.

In practice, the critical scale can be roughly estimated using the lifetime
histogram. If there exist valid clusters, one can find outstanding lifetimes above

1 For each dataset, we count the lifetimes of the points within [1/3, 2/3] × [1/3, 2/3]
to suppress the boundary effect, although it is negligible at small scales.
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Fig. 2. Lifetime histograms for uniformly distributed points in (a) perfectly random
arrangement, and (b) quasi-random arrangement

the critical scale. Statistical outlier detection is also possible if the underlying
lifetime distribution of the invalid clusters is assumable. The lifetimes of valid
clusters found in a critical region (a.k.a rejection region) are rejected by the
statistical hypothesis testing. The critical scale acts as critical value in statistics.

The number of clusters is determined by selecting the scale τ so that
√

2τ is
greater than the critical scale. All data points are classified into a universal clus-
ter at the coarsest scale, which is represented by the root node of the mode tree.
If the scale is sufficiently large, the position of one remaining local maximum con-
verges to the barycentre of the cluster. As the scale decreases, new modes appear
one after another. The appearance of the mode indicates that a cluster splits into
subclusters, which are represented by the nodes of subtrees of the mode tree.

4.5 Recursive Validation

Since the hierarchical relationships among the clusters are explicitly described as
the mode tree, we can recursively validate whether a cluster can be split into de-
terministic subclusters. Construct a histogram of the lifetime stored in a subtree
corresponding to the cluster. If a critical scale is found in that histogram, then there
exist valid subclusters with outstanding lifetime values above the critical scale.

5 Experimental Examples

5.1 Artificial Dataset: Cluster Discovery and Validity

We demonstrate the clustering for artificial datasets with different cardinalities
shown in Fig. 4. These datasets are generated from a PDF in Fig. 3(a). The
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(b)

Fig. 3. PDF and its critical curves in scale space. (a) The PDF to be estimated.
The brightness indicates the probability density of the data points. (b) Critical curves
corresponding to local maxima of the five blobs.

PDF consists of five elliptic blobs, so the expected number of clusters is five.
The critical curves of local maxima corresponding to the five blobs are found in
the scale space as shown in Fig. 3(b).

(a) (b)

(c) (d)

Fig. 4. Artifical dataset. (a) P30, (b) P100, (c) P300, and (d) P1000. card(P30) = 30,
card(P100) = 100, card(P300) = 300, and card(P1000) = 1000.
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Fig. 5. Critical curves of local maxima for (a) f(P30; x, τ ), (b) f(P100; x, τ ), (c)
f(P300; x, τ ), and (d) f(P1000; x, τ ).
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Fig. 6. Histograms of lifetimes for (a) P30, (b) P100, (c) P300, and (d) P1000. Roughly
estimated critical scale is indicated by the arrow. Note that both axes have a logarithmic
scale.

For each dataset, the critical curves of local maxima in scale space and the
lifetime histogram are shown in Fig. 5 and 6, respectively. For the dataset P30,
five critical curves of local maxima seem to represent the true five clusters. Their



228 T. Sakai et al.
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C5

Fig. 7. Clustering result for P1000

lifetimes, however, are not outstanding in the histogram in Fig. 6(a). Besides,
the hierarchy indicated by these five critical curves is different from that of the
five blobs of the true PDF in Fig. 3. Therefore, the dataset P30 is too poor to
estimate the dominance of each cluster, correctly.

Each of datasets P100, P300 and P1000 has a histogram with five outstanding
lifetimes as shown in Fig. 6(b), 6(c) and 6(d). They are well-detached and so
distinguishable from the others related to invalid small clusters. The increase in
the cardinality does not affect the number of valid clusters but clarify the decay
under the critical scale.

Nevertheless, any hierarchy of the valid clusters estimated by P100 and P300

disagree with that of the five blobs in the true PDF. We confirm that P1000

successfully estimates both of the number of clusters and the hierarchy. The
clustering result for P1000 is shown in Fig. 7. A larger number of data points
would be required for the estimation if the structure of the true PDF was more
complicated.

5.2 Data Clustering with Recursive Validation

We apply the scale-space clustering to the breast-cancer-wisconsin dataset [26].
This dataset consists of 683 instances each of which has 9 attributes of breast
cancer. The attribute values are integers ranging from 1 to 10. We treat all the
instances as the spatial data points in 9-dimensional space.

Figure 8 shows a few levels of mode tree and lifetime histograms for the
detected clusters. The lifetime histogram for all data points, which is plotted
with broken line in Fig. 8(b), exhibits a bimodal distribution. This indicates
the existence of valid clusters. Accordingly, the universal cluster splits into two
major clusters CB and CM at τ = 4.86 in the mode tree.

As shown in Fig. 8(b), the cluster CB is mainly composed of data points with
small lifetime values, and no outstanding lifetimes are found in its histogram. On
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Fig. 8. Clustering of Wisconsin breast cancer dataset. (a) Mode tree. Most of data
samples are classified into CB and CM . (b) Histograms of lifetimes for the samples in
CB and CM . The broken line in both histograms indicates the lifetime histogram for
all samples.
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Fig. 9. Lifetime histograms for cluster CM and its invalid subclusters CMX and CMY

the other hand, the histogram for CM consists of large lifetime values compared
to CB . Therefore, CM is larger and more sparse than CB.

All instances in the breast-cancer dataset are labelled as either benign or
malignant. We have confirmed that 94.0 belong to the benign and malignant
classes, respectively. Figure 9 replots the lifetime histogram for CM in a suitable
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range to validate its subclusters. No significant lifetime is found in the histogram.
Although the cluster CM splits into subclusters CMX , CMY and five outliers,
there is no evidence to justify the validity of these subclusters. We note that the
invalid cluster CMY has only malignant instances. The subclusters could turn
out to be valid if the dataset has a larger cardinality.

6 Concluding Remarks

Unsupervised clustering achieves data mining. We develop a clustering method
based on the PDF estimation in a scale space. The modes of the estimated
PDF is its geometric feature points, which correspond to clusters in the spatial
dataset. The nonparametric PDF estimation using the Gaussian kernel satisfies
the scale-space axioms. Reducing the spatial resolution for the dataset should
not be merging the data points based on user-defined distance measures, but
describing the PDF at coarser scales. In the same manner of the scale-space
analysis, the PDF structure across scales can be clarified in the scale space. Since
the Gaussian filtering gradually averages out the randomness of the dataset, the
geometric features of the PDF are established from coarse to fine. This scale-
space filtering reveals the hierarchical relationships among the modes, which
provides us with the top-down approach to identifying valid clusters of data
points.

The scale-space analysis of the PDF clarifies how the statistically deterministic
features of the dataset appear in higher scales even though the positions of the
data points are stochastic. In this paper, we proposed a concept of the critical
scale, which discriminates between deterministic and stochastic features of the
spatial dataset. The data clustering should be employed above the critical scale.

We showed that the uniformly distributed data points having no cluster yield
a unimodal lifetime distribution. It has been believed by many authors that the
lifetime distribution is exponential. In order to discover the valid clusters, it is
essential to analyse the lifetime distribution and prove the statistical significance
of individual clusters. Although we have not presented statistical algorithms,
we should remark the importance of distinguishing the structured data from
unstructured one in scale space.

The scale-space clustering has potential to discover and validate unknown
clusters in the dataset without any prior information. We demonstrated the
clustering for artifical datasets and a practical medical dataset. The experimental
examples clarified our clustering concepts and produced results in substantial
agreement.
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Abstract. The EM algorithm has been used repeatedly to identify la-
tent classes in categorical data by estimating finite distribution mixtures
of product components. Unfortunately, the underlying mixtures are not
uniquely identifiable and, moreover, the estimated mixture parameters
are starting-point dependent. For this reason we use the latent class
model only to define a set of “elementary” classes by estimating a mixture
of a large number components. We propose a hierarchical “bottom up”
cluster analysis based on unifying the elementary latent classes sequen-
tially. The clustering procedure is controlled by minimum information
loss criterion.

1 Introduction

concept of cluster analysis is closely related to the similarity of objects or distance
of data vectors defined by a metric. The cluster analysis of categorical (nominal,
qualitative) data is difficult because the standard arithmetical operations are
undefined and also there is no generally acceptable definition of distance for
multivariate categorical data. For these reasons the available methods of cluster
analysis cannot be applied directly to categorical data.

At present the standard approach to cluster analysis of categorical data is to
introduce some similarity measure or distance function in a heuristical manner.
It appears that the only statistically justified method to analyze multivariate
categorical data is the latent class model of Lazarsfeld [10]. Motivated by so-
ciological research he proposed the fitting of multivariate Bernoulli mixtures
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to binary data with the aim to identify possible latent classes of respondents.
Serious drawback of the Lazarsfeld’s idea has been the tedious and somewhat ar-
bitrary methods used for fitting the models. The numerical problems have been
removed by the computationally efficient EM algorithm [3]. In the last years the
original idea of Lazarsfeld has been widely applied and frequently modified by
different authors (cf. e.g. [8] and [14] for extensive references).

A serious problem of the latent class model is the validity of the resulting
clusters. There are at least three different sources of uncertainty which may in-
fluence the result of latent class cluster analysis. First, in application the number
of classes is usually unknown and there are no exact means to make a qualified
choice. Further, the EM algorithm may converge to a local maximum of the
maximized log-likelihood criterion and therefore the estimated parameters may
be starting-point dependent. Finally, the discrete mixtures of product compo-
nents are known to be non-identifiable and therefore the resulting latent class
model is not defined uniquely. It appears that the problem of a proper number
of components can be managed by additional computational constraints [7] but
the missing identifiability is a serious theoretical drawback (cf. [8]).

In this paper we propose a hierarchical approach to cluster analysis of categor-
ical data in the context of data mining. Applying the latent class model to large
multivariate databases we assume a large number of classes (M ≈ 101 ÷ 102)
with the aim to approximate the unknown probability distribution. The EM
algorithm yields different parameter estimates but the approximation accuracy
of the estimated mixture is comparable. The initial parameters of the estimated
mixture can be chosen randomly without affecting the quality of estimates es-
sentially. Unlike the latent class analysis we use the estimated mixture com-
ponents only to identify “elementary” latent classes with the posterior compo-
nent weights playing the role of membership functions. The underlying decision
problem can be characterized by the statistical decision information. We as-
sume that the statistical properties of data can be described by the estimated
mixture even if the “elementary” components are not defined uniquely. As the
estimated mixture model is the only information source about the structural
properties of data. We assume that potential clusters can be identified by the
optimal decomposition of the estimated mixture into sub-mixtures. We propose
a hierarchical clustering procedure based on sequential unifying of the elemen-
tary latent classes. The procedure is controlled by the minimum information loss
criterion.

The paper is organized as follows. We first describe the idea of latent class
analysis and the related problem of estimating discrete product mixtures by
means of EM algorithm (Sec. 2). In Sec. 3 we discuss the problem of unique
identification of latent classes and the specific features of multidimensional data-
mining problems. Section 4 introduces the statistical information criterion and
Sec. 5 describes the method of hierarchical cluster analysis. The application of
the method is illustrated by numerical examples in Sec. 6. Finally we discuss the
main results in the Conclusion.
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2 Latent Class Model

Let us suppose that some objects are described by a vector of discrete variables
taking values from finite sets:

x = (x1, . . . , xN ), xn ∈ Xn, |Xn| <∞, x ∈ X = X1 × · · · × XN . (1)

We assume that the variables are categorical (i.e. non-numerical, nominal, quali-
tative) without any type of ordering. Considering the problem of cluster analysis
we are given a set of data vectors

S = {x(1), . . . ,x(K)}, x(k) ∈ X (2)

and the goal of cluster analysis is to partition the set S into “natural” well
separated subsets of similar objects

& = {S1,S2, . . . ,SM}, S = ∪J
j=1Sj , Si ∩ Sj = ∅, for i �= j. (3)

In this sense the concept of cluster analysis is closely related to some similar-
ity or dissimilarity measures. Unfortunately, in case of categorical variables the
arithmetical operations are undefined and therefore we cannot compute means
and variances nor there is any generally acceptable way to define distance for
the categorical data vectors x ∈ X . Binary data, as a special case, may appear
to be naturally ordered, however, the values 0 and 1 are often assigned quite
arbitrarily. For these reasons the available algorithms of cluster analysis are not
directly applicable to categorical data.

The standard way to avoid this difficulty is to introduce a similarity measure
or distance function for categorical data in a heuristical manner. It may appear
quite easy to define a distance table for a single categorical variable, especially
in case of some well interpretable values. However, in a multidimensional space
the problem of distance definition becomes difficult because of uneasy foreseen
consequences of interference of different distance tables.

As it appears the only statistically justified approach to clustering categorical
data can be traced back to the latent structure analysis of Lazarsfeld [10] who
proposed to identify latent classes in binary data by estimating multivariate
Bernoulli mixtures. The method is easily generalized to categorical variables
and it is often applied in different modifications as “latent class analysis” [14].
The latent class model is defined as a finite mixture of a given number of product
components

P (x) =
∑

m∈M
wmF (x|m), x ∈ X , M = {1, . . . ,M}. (4)

Here wm are non-negative probabilistic weights
∑

m∈M
wm = 1, 0 < wm < 1, m ∈ M, (5)
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F (x|m) are the mixture components defined as products of univariate condi-
tional (component specific) discrete distributions fn(xn|m)

F (x|m) =
∏

n∈N
fn(xn|m), N = {1, . . . , N} (6)

and M,N are the index sets of components and variables respectively.
Let us recall that a set of multivariate categorical data has no internal struc-

ture in itself. Formula (4) is the only source of the structural properties of the
data set S and therefore it should be justified by some theoretical arguments.
From the probabilistic point of view Eq. (4) can be interpreted as a model of con-
ditional independence with respect to the index variable m which is sometimes
called the latent variable. In view of Eq. (4), the statistical relations among the
variables xn are fully explained by their dependence on the latent variable m.
Given the value of the latent variable m ∈ M, the variables xn are statistically
independent, i.e. their mutual dependence is removed. In this sense the latent
variable m can identify some “hidden causes” which remove the statistical de-
pendencies between the observed variables xn. Once specified, the hidden cause
m ∈ M would permit us to treat the visible variables xn in a simple way as if
they were mutually independent (cf. [11],[12]).

The latent class model (4) naturally defines a statistical decision problem.
Having estimated the mixture parameters we can compute the conditional
probabilities

q(m|x) =
wmF (x|m)

∑
j∈M wjF (x|j) , x ∈ X , m ∈M (7)

which can be viewed as membership functions of the estimated latent classes.
They are particularly useful if there is some interpretation of the mixture com-
ponents, e.g. if the components can be shown to correspond to some real “latent
classes” [10], “hidden causes” [11] or “clusters” having a specific meaning.

A unique classification of data vectors x ∈ X can be obtained by means of
Bayes decision function (with the ties arbitrarily decided)

d(x) = arg max
j∈M

{q(j|x)}, x ∈ X . (8)

By using the Bayes decision function d(x) we obtain the elementary “latent
class” partition & of the set S by classifying the points x ∈ S:

& = {S1,S2, . . . ,SM}, Sm = {x ∈ S : d(x) = m}, m ∈M. (9)

In other words the partition & is defined by the maximum posterior weights
q(m|x) and represents the result of latent class analysis in the original form as
proposed by Lazarsfeld (cf. [10], [8]), [14]). The latent class model (4) seems
to be one of the most widely applicable tools of cluster analysis of categorical
data. The original idea of Lazarsfeld has been used by many authors to identify
individual classes of bacteria (cf. e.g. [8]) and more recently Vermunt et al. [14]
describe different modifications of the latent class analysis as applied in diverse
fields.
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3 Non-unique Identification of Latent Classes

The standard way of estimating mixtures is to use EM algorithm (cf. [3], [9]).
In particular to compute maximum-likelihood estimates of mixture parameters
we maximize the log-likelihood function

L =
1
|S|

∑

x∈S
logP (x) =

1
|S|

∑

x∈S
log

[
∑

m∈M
wmF (x|m)

]

(10)

by means of the basic EM iteration equations:

q(m|x) =
wmF (x|m)

∑
j∈M wjF (x|j) , w

′

m =
1
|S|

∑

x∈S
q(m|x), m ∈M, (11)

f
′

n(ξ|m) =
1

∑
x∈S q(m|x)

∑

x∈S
δ(ξ, xn)q(m|x), ξ ∈ Xn, n ∈ N . (12)

Here w
′

m, f
′

n(·|m) are the new parameter values and δ(ξ, xn) denotes the usual
delta-function, i.e. δ(ξ, xn) = 1 for ξ = xn and otherwise δ(ξ, xn) = 0. The
number of mixture components M is a parameter which is assumed to be known
or has to be specified in advance.

The sequence of log-likelihood values {L(t)}∞0 produced by EM algorithm is
nondecreasing and converges to a local or global maximum in the parameter
space. The final estimates of parameters are therefore starting-point dependent
(cf. e.g. [9] for a more detailed discussion of convergence properties).

A serious disadvantage of the latent class analysis relates to the fact that
the resulting clusters may be non-unique. It is obvious that, if the estimated
mixture is not defined uniquely, then the corresponding interpretation of data
in terms of latent classes may become questionable. Unfortunately, there are
at least three sources of uncertainty which may influence the resulting mixture
parameters. First, there is no exact method to choose the proper number of
mixture components (cf. [9]). Another source of multiple solutions is the existence
of local maxima of the log-likelihood function (10). For this reason we can expect
different locally optimal solutions depending on the chosen initial parameters.
However, even if we succeed to manage the computational aspects of mixture
estimation, there is still the well known theoretical problem that the latent class
model is not identifiable (cf. [1], [8], [13]). In particular it is easily verified that
any non-degenerate mixture (4) can be expressed equivalently in infinitely many
different ways [7].

In practice the non-identifiability of latent class models does not seem to have
serious consequences since the classes can often be uniquely identified [2]. As it
appears, in many practical problems well separated components can be identified
spontaneously or by means of external knowledge or additional constraints (cf.
[2], [7]). However, in the context of data-mining the problem of non-identifiable
latent classes becomes more essential because of high dimensionality of data
spaces and in view of a large number of components to be expected.
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In case of large multidimensional real-life databases, which are typical for
data-mining problems, the form of the estimated distribution is generally un-
known. Obviously, in the present context, the primary condition of a successful
cluster analysis is a high approximation accuracy of the latent class model (4).
Multidimensional spaces are “spars” and therefore the estimated components
will be nearly non-overlapping. For this reason, in order to achieve reasonable
approximation accuracy, we have to assume relatively large number of compo-
nents (M ≈ 101 ÷ 103). Some of the resulting components usually have very
low weights and may be omitted without observable consequences. In this sense
the exact number of components M is less relevant. According to our practical
experience (cf. [4], [5], [6]) there are usually numerous local maxima of the like-
lihood function having similar values. The corresponding mixtures may include
different components but their approximation quality is comparable. From the
point of view of approximation accuracy the influence of initial parameters is
negligible and the EM algorithm can be initialized randomly.

We can conclude that in case of data-mining we have to consider multivariate
latent class models with a large number of classes. There is usually large variabil-
ity of the estimated parameters which, on the other hand, correspond to similar
values of the log-likelihood function and provide comparable approximation ac-
curacy of the estimated mixture. In this sense the latent classes themselves are
not suitable to define directly the latent structure of large multivariate cate-
gorical data sets. The basic idea of the proposed method is to apply the latent
class model only to define a sufficiently large set of elementary latent classes.
Considering the global quality of the estimated mixture we assume that possi-
ble clusters can be constructed by unifying the elementary latent classes even
if the underlying mixture components are not defined uniquely. We propose a
hierarchical “bottom up” clustering procedure which consists in sequential pair-
wise unifying of the elementary latent classes. The process of hierarchical cluster
analysis is controlled by minimizing the information loss criterion.

4 Minimum Information Loss Mixture Decomposition

In view of Sec. 2 the latent class model (4) is the only information source about
the structural properties of the data set S. For this reason we identify the clusters
by means of the optimal decomposition of mixture (4) into sub-mixtures.

Recall that having estimated the mixture parameters we can define the ele-
mentary latent classes by classifying the data vectors x ∈ S according to the
maximum posterior weight q(m|x) (cf. (8), (9)). The underlying decision prob-
lem can be characterized by the statistical decision information. By using the
Shannon formula we can write

I(X ,M) = H(M) −H(M|X ), H(M) =
∑

m∈M
−wm logwm, (13)

H(M|X ) =
∑

x∈X
P (x)Hx(M) =

∑

x∈X
P (x)

∑

m∈M
−q(m|x) log q(m|x). (14)
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Here H(M) is the uncertainty connected with estimating the outcome m ∈ M
of a random experiment with the probabilities {w1, . . . , wM} without any other
knowledge. Given a vector x ∈ X we can improve the estimation accuracy by
computing the more specific conditional probabilities q(m|x). The statistical
decision information I(X ,M) contained in the latent class model is defined as
the difference between the a priori entropy H(M) and the mean conditional
entropy H(M|X ) which corresponds to the knowledge of x ∈ X .

It can be seen that a partition U of the index set M

U = {M1,M2, ...,MC},
C⋃

c=1

Mc = M, i �= j ⇒Mi ∩Mj = ∅. (15)

actually defines a decomposition of the estimated mixture into sub-mixtures:

P (x) =
C∑

c=1

∑

m∈Mc

wmF (x|m) =
C∑

c=1

P (x|Mc) p(c), x ∈ X , (16)

P (x|Mc) =
∑

m∈Mc

wm

p(c)
F (x|m), p(c) =

∑

m∈Mc

wm, c = 1, . . . , C. (17)

Again the sub-mixtures P (x|Mc) can be used to define the partition of the data
set S into corresponding clusters. We can write

p(c|x) =
p(c)P (x|Mc)

P (x)
=

∑
m∈Mc

wmF (x|m)
P (x)

=
∑

m∈Mc

q(m|x), (18)

d(x|U) = arg max
c
{p(c|x)}, x ∈ X (19)

and by using the decision function d(x|U) we obtain the partition

&U = {Sc, c = 1, . . . , C}, Sc = {x ∈ S : d(x|U) = c}. (20)

Here the clusters Sc ∈ &U correspond to the respective sub-mixtures P (x|Mc).
By using the Shannon formula we can express the statistical decision infor-

mation contained in the decomposed mixture. In analogy with (13), (14) we can
write

I(X ,U) = H(X ) −H(X|U), H(X ) =
∑

x∈X
−P (x) logP (x), (21)

H(X|U) =
∑

c∈U
p(c)HMc(X ), HMc(X ) =

∑

x∈X
−P (x|Mc) logP (x|Mc). (22)

Intuitively it is clear that by fusing sub-mixtures (or components) we loose some
decision information. Indeed, we can easily verify that the decision information
decreases if we join any two subset Mi,Mj ∈ U of a given partition U .

In particular, let U ′ be a partition which derives from U by unifying two
subset Mi,Mj ∈ U ., i.e. the partition U ′ contains only one subset Mi ∪Mj
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instead on the two original subsets Mi and Mj . We can show that the union of
the two corresponding sub-mixtures P (x|Mi), P (x|Mj) is connected with some
information loss. Considering the difference

ΔIij = I(X ,U) − I(X ,U ′) = H(X|U ′) −H(X|U) (23)

we can write (cf. (22))

ΔIij = [p(i) + p(j)]HMi∪Mj (X ) − p(i)HMi(X ) − p(j)HMj (X ) (24)

and by using relation
[
p(i) + p(j)

]
P (x|Mi ∪Mj) = p(i)P (x|Mi) + p(j)P (x|Mj) (25)

we can rewrite Eq. (24) in the form

ΔIij =
∑

c=i,j

p(c)
∑

x∈X
P (x|Mc) log

P (x|Mc)
P (x|Mi ∪Mj)

≥ 0. (26)

It can be seen that the last sum in the expression above represents the Kullback-
Leibler information divergence which is non-negative for any two distributions
P (x|Mi), P (x|Mi∪Mj) and therefore the information loss ΔIij accompanying
the fusion of the two sub-mixtures is non-negative.

5 Minimum Information Loss Cluster Analysis

In view of the above equations any cluster analysis based on mixture decom-
position is connected with some information loss from the point of view of the
underlying decision problem. Naturally we are interested to minimize the infor-
mation loss caused by clustering the data and therefore the elementary informa-
tion loss (26) is a suitable criterion to control the process of sequential fusion of
the components and/or sub-mixtures in the original latent class model.

Let us note that the criterion (26) includes summing over the whole data
space X and therefore it is not suitable from the computational point of view.
For this reason we express the corresponding information loss equivalently in the
form (cf. (17), (18))

ΔIij = −
∑

c=i,j

p(c) log
p(c)

p(i) + p(j)
+

∑

x∈X
P (x)

∑

c=i,j

p(c|x) log
p(c|x)

p(i|x) + p(j|x)

(27)
By using a simple estimate in the last equation we can write the resulting
criterion in the following more suitable form

Qij = −
∑

c=i,j

p(c) log
p(c)

p(i) + p(j)
+

1
|S|

∑

x∈S

∑

c=i,j

p(c|x) log
p(c|x)

p(i|x) + p(j|x)
. (28)

The described criterion Qij is an estimate of the information loss arising after
union of the two subsets Mi,Mj in the partition U , i.e. by the fusion of the
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two sub-mixtures P (x|Mi), P (x|Mj). In the following we use the estimated
information loss Qij as a criterion for the optimal choice of the pair of subsets
to be unified. In other words, in each step of the procedure we unify the two
sets Mi,Mj ∈ U for which the resulting information loss Qij is minimized.
Let us note (cf. (26)) that the criterion Qij tends to fuse similar sub-mixtures
preferably with small weights p(i), p(j).

In the considered decision-making framework a natural goal of cluster anal-
ysis is to preserve maximum decision information with a minimum number of
clusters. Let us remark that the most general result of the above algorithm is
the sequence of information loss values {Q(k)

ij }K
k=1 produced by the hierarchical

clustering procedure. The form of the sequence suggests different possibilities of
final clustering and simultaneously it can be seen how justified are the resulting
clusters. For a given mixture (4) the sequence {Q(k)

ij }K
k=1 is defined uniquely and

the form of the sequence should be similar for comparably good estimates of the
underlying latent class model.

The proposed method of cluster analysis of categorical data can be
summarized as follows:

Algorithm

1. Estimation of the latent class model (4) for the categorical data set S by
means of EM algorithm for a sufficiently large M.

2. Definition of the basic latent class partition U = {{1}, {2}, . . . , {M}}.
3. Hierarchical cluster analysis by sequential unifying the most similar sub-

sets Mi,Mj ∈ U for which the resulting information loss Qij (cf. (28)) is
minimal.

4. Choice of the optimal partition U∗ according to the point of the increasing
information loss Q(k)

ij .
5. Definition of the resulting clusters in S by means of the decision function

d(x|U∗).

6 Numerical Experiments

6.1 Artificial Data

In order to illustrate the properties of the proposed method of cluster analysis we
have chosen a discrete data problem with the possibility of a visual verification
of results. The data vectors describe images on a square raster and the discrete
(binary) variables correspond to grey levels of the raster fields. However, the
algorithm treats the variables as general discrete categorical data without any
use of their physical meaning.

In particular, we have used an idea similar to that of the paper [2]. We have
constructed a multivariate Bernoulli mixture of M=8 components with uniform
weights wm = 0.125 and with the dimension N=256

P (x) =
8∑

m=1

wm

256∏

n=1

θxn
mn(1 − θmn)1−xn , 0 ≤ θmn ≤ 1. (29)
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Fig. 1. Parameters of the original mixture - dimension N = 256, number of components
M = 8 and identical component weights wm = 0.125. The component parameters are
set equal either to θmn = 0.7 or θmn = 0.3 according to simple geometrical patterns.

The parameters θmn have a simple geometrical meaning. For each komponent
the parameters θmn have only two possible values θmn = 0.7 or θmn = 0.3
and in the square raster arrangement they correspond to eight basic geometrical
patterns as shown in Fig. 1.

By random sampling from the distribution (29) we have generated a sample
of |S| = 100000 multidimensional binary data vectors to be the subject of cluster
analysis. Unlike usual benchmarking data the set S contains a large number of
independent observations of a random vector which are identically distributed
according to the Bernoulli mixture (29). In view of the well differentiated proba-
bilities θmn, 1−θmn the randomly generated data vectors more or less correspond
to the original patterns of Fig. 1 but simultaneously they are quite noisy as it
can be seen in Fig. 2. In each row of Fig. 2 there is first the pattern of component
parameters and then the examples of the corresponding randomly generated bi-

Fig. 2. A sample of randomly generated data set. In each row there is first the compo-
nent pattern and then the examples of the corresponding randomly generated binary
patterns.
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Fig. 3. The component parameters (in square arrangement) of the mixture of 49 com-
ponents estimated from the randomly generated data

nary data vectors. According to the chosen source mixture the data set S should
contain eight well defined latent classes which correspond to the respective mix-
ture components. Note that the two possible values of θmn affect the distance
between components and also the amount of noise in the generated vectors.
Applying the clustering algorithm we have estimated first the latent class model
(29). The number of components has been set to M = 49. We have achieved
satisfactory convergence after 40 iterations. The resulting component parame-
ters in square raster arrangement are shown in Fig. 3. The estimated latent class
model has been subject of the hierarchical clustering procedure. By unifying
the mixture components sequentially we have obtained a sequence of 48 possi-
ble decompositions of the original mixture. From the corresponding sequence of
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information loss values Q(k)
ij (cf. (28)) we have found that the information loss

essentially increases when the number of clusters is less than eight. The resulting
sub-mixtures can be characterized by the respective cluster means as shown in
the first column of Fig. 4. The error matrix shows how the resulting clusters
coincide with the randomly generated classes. In total there are 363 erroneously
classified data vectors (0.36 %) which correspond mainly to the last column of
the matrix. Probably the related sub-mixture does not describe the underlying
class with sufficient accuracy.

Fig. 4. Resulting cluster means for the final eight clusters. The error matrix illustrates
the coincidence of the resulting clusters with the original randomly generated classes.
There are 363 erroneously classified data vectors (0.36 %) mainly concentrated in the
last column.

6.2 Handwritten Non-stylized Numerals

In the second example the proposed minimum information loss cluster analysis
has been applied to classification of handwritten non-stylized numerals on a
binary rastr. We have used 400 000 numerals from the NIST database uniformly
representing the classes 0,1,...,9. Each of the numerals in the data base has been
normalized to a square 16 × 16 binary raster, i.e. it has been represented by a
256-dimensional binary vector.

Normally the NIST numerals are used as a benchmark problem for a su-
pervised pattern recognition. The supervised classifier is trained for each class
separately with the resulting relatively low classification error. Obviously, the
non-supervised solution of the problem cannot be expected to achieve compara-
ble accuracy, however, from the point of view of cluster analysis, we have again
the possibility of a visual inspection of results.

Fig. 5 illustrates the properties of the NIST database. In the rows there are
examples of numerals from the database. Again we have estimated the latent
class model in the form of a 256-dimensional Bernoulli mixture (29). We have
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Fig. 5. Examples of numerals from the NIST database normalized to the 16x16 binary
raster

chosen a model of M = 60 components. The EM algorithm has been initialized
randomly with the uniform component weights. The EM algorithm has been
stopped after 30 iterations and the estimated parameters θmn (in the raster
arrangement) are shown in Fig. 6. The estimated elementary latent classes as
characterized by the components in Fig. 6 have been unified sequentially by using
the algorithm of Sec. 5. The hierarchical procedure based on pairwise unifying
the most similar sub-mixtures has been stopped at the level of 12 clusters which
precedes a local increase of the information loss Qij .

Fig. 6. The component parameters (in square arrangement) of the mixture of 60 com-
ponents estimated from the NIST database
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Fig. 7 describes the properties of the resulting clusters. The number of clusters
is higher than 10 because for some numerals there are different variants which
are too dissimilar in the high-dimensional description. Every column shows the
distribution of data vectors in the resulting clusters with respect to the true
classes. It can be seen that digits with specific shape (e.g. one) are separated well,
whereas the others form clusters according to similarities in their shapes (e.g.
zero, two and six in the eight column). From the point of view of unsupervised
clustering this can be treated as an acceptable result.

Fig. 7. Resulting cluster means for the final 12 clusters. The matrix illustrates the
coincidence of the resulting clusters with the original classes.

7 Conclusion

The latent class models have been used repeatedly as a tool of cluster analysis
of multivariate categorical data since the standard approaches are usually not
directly applicable. Unfortunately, the underlying discrete distribution mixtures
with product components are not uniquely identifiable. In order to avoid the
problem of identifiability the latent class model is applied only to identify ele-
mentary latent classes. We assume that the potential clusters can be constructed
by unifying the elementary classes even if they are not defined uniquely. A hi-
erarchical procedure is proposed to define the optimal decomposition of the
underlying mixture. The hierarchical cluster analysis is controlled by minimum
information loss criterion.
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Abstract. In this paper we present a new algorithm for document clustering 
called Generalized Star (GStar). This algorithm is a generalization of the Star 
algorithm proposed by Aslam et al., and recently improved by them and other 
researchers. In this method we introduced a new concept of star allowing a 
different star-shaped form with better overlapping clusters. The evaluation 
experiments on standard document collections show that the proposed 
algorithm outperforms previously defined methods and obtains a smaller 
number of clusters. Since the GStar algorithm is relatively simple to implement 
and is also efficient, we advocate its use for tasks that require clustering, such 
as information organization, browsing, topic tracking, and new topic detection. 

Keywords: Clustering, Data mining, Document processing and recognition. 

1   Introduction 

Clustering is the process of grouping the data into classes or clusters so that objects 
within a cluster have high similarity in comparison to one another, but are very 
dissimilar to objects in other clusters. Dissimilarities are assessed based on the 
attribute values describing the objects. Often, distance measures are used. Clustering 
has its roots in many areas, including data mining, statistics, biology, and machine 
learning. Cluster analysis has been widely used in numerous applications, including 
pattern recognition, data analysis, image processing, and market research. By 
clustering, one can identify crowded and sparse regions and, therefore, discover 
overall distribution patterns and interesting correlations among data attributes. 

Initially, document clustering was evaluated for improving the results in 
information retrieval systems [11]. Clustering has been proposed as an efficient way 
of finding automatically related topics or new ones; in filtering tasks [2] and grouping 
the retrieved documents into a list of meaningful categories, facilitating query 
processing by searching only clusters closest to the query [12]. 

Several algorithms have been proposed for document clustering. One of these 
algorithms is Star, presented and evaluated by Aslam et al. [1]. They shown that the 
Star algorithm outperforms other methods such as Single Link, Average Link [7] in 
different tasks [1]; however, this algorithm depends on data order and produces 
illogical clusters. Another method that improves the Star algorithm is the Extended 
Star method proposed by Gil et al. [8]. The Extended Star method outperforms the 
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original Star algorithm, reducing considerably the number of clusters; nevertheless 
this algorithm can leave uncovered objects and in some cases produce unnecessary 
clusters. Another version of the Extended Star method was proposed by Gil et al. to 
construct a parallel algorithm [9]. However, this version also has some drawbacks; 
first of all, it can produce illogical clusters and in some cases unnecessary clusters. 

In this paper we propose a clustering method, called Generalized Star or GStar, 
which solves the drawbacks above mentioned. In GStar, we introduced a definition of 
star allowing a different star-shaped sub-graph form with better overlapping clusters. 

The experimentation - comparing our proposal against the original Star and the 
Extended algorithms - shows that our method outperforms those algorithms. Since the 
GStar algorithm is relatively simple to implement and is also efficient, we advocate 
its use for task that require clustering, such as information organization, browsing, 
topic tracking, and new topic detection. 

The basic outline of this paper is as follows. Section 2 is dedicated to related work. 
Section 3 contains the description of the GStar method. The experimental results are 
discussed in section 4. The conclusions of the research and some ideas about future 
directions are exposed in section 5. 

2   Related Work 

In this section we analyze the Star algorithm and two proposed versions of the 
Extended Star method for document clustering, and we show their drawbacks. 

2.1   Star Algorithm 

The Star algorithm was proposed by Aslam et al. in 1998 [1], with several extensions 
and applications in filtering and information organization tasks [2], [3]. They 
formalized the problem representing the document collection by its similarity graph, 
finding overlaps with dense sub-graphs; it is done so because the clique cover of the 
similarity graph is an NP-complete problem, and it does not admit polynomial time 
approximation algorithms. With this cover approximation by dense sub-graphs, in 
spite of loosing intra-cluster similarity guarantees, we can gain in computational 
efficiency. 

We call similarity graph to an undirected and weighted graph G = (V, E, w), where 
vertices in the graph correspond to documents and each weighted edge corresponds to 
a similarity measure between two documents. 

G is a complete graph with edges of varying weight. Nevertheless, we can consider 
a minimum similarity measure to obtain a thresholded graph. Let V = {d1, …, dn} be 
the universe of documents in study. Besides, let Sim(di, dj) be a similarity (symmetric) 
function between documents di and dj, and σ a similarity threshold defined by the 
user. The thresholded graph Gσ is an undirected graph obtained from G by eliminating 
all the edges whose weights are lower than σ. 

In the Star algorithm, a clique cover is approximated by covering the associated 
thresholded similarity graph with star-shaped sub-graphs. A star-shaped sub-graph on 
m+1 vertices consists of a single star center and m satellite vertices, where the star 
center is the vertex that has a degree greater or equal than any other vertex in the  
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sub-graph and there are edges between the star center and each of the satellite vertices 
[3]. It would appear at first glance that finding star-shaped sub-graphs provides 
similarity guarantees between the star center and each of its satellite vertices, but not 
such similarity guarantees between satellite vertices. However, Aslam et al. showed 
that the pairwise similarity between satellite vertices in a star-shaped sub-graph is 
high and a cover with these sub-graphs is an accurate method for clustering a set of 
documents [1], [3]. 

A thresholded similarity graph may have several different star covers because when 
there are several vertices of the same highest degree, this algorithm arbitrarily chooses 
one of them as a star center, whichever shows up first in the sorted list of vertices. 

This algorithm encodes the vertices by assigning the types “center” and “satellite” 
(which is the same as “not center”). It generates a correct star cover assigning the 
types “center” and “satellite” in such a way that (i) a star center is not adjacent to any 
other star center and (ii) every satellite vertex is adjacent to at least one center vertex 
of equal or higher degree. Using this star cover, the algorithm creates a set of clusters, 
where each cluster is made of a center vertex and its adjacent vertices. 

The Star algorithm is different to others, for example, Scatter/Gather [6], 
Charikar’s et al. [5] and classical K-means algorithms, because it does not impose a 
fixed number of clusters a priori as a constraint on the solution. The clusters created 
by this algorithm can be overlapped, that is why it was recommended in document 
processing systems, since documents can have multiple topics. Nevertheless, this 
algorithm has some drawbacks. 

The problems of the Star algorithm are illustrated in Fig. 1, where the dark vertices 
are the star centers. First of all, the obtained clusters depend on the data order. On the 
left graph (A), the Star algorithm takes first the vertex of the center (vertex 5). 
However, if vertex 2 (or 7) is processed before vertex 5, the algorithm obtains the 
clusters shown on graph (B). As we can see, the obtained clusters are different. 

 

Fig. 1. Drawbacks of Star algorithm 

It is important to note that this example shows not only how different the resulting 
clusters can be depending on the data order, but how this dependence can affect the 
quality of the clusters. 

The second main drawback is that it can produce “illogical” clusters, regardless of 
data order, since two star centers are never adjacent; see graph (C) in Fig. 1. As we 
can see, vertex 6 should be a star center and its neighbours with less degree should be 
its satellites. 

2.2   Extended Star Algorithm 

The Extended Star algorithm was proposed by Gil et al. to solve the aforementioned 
drawbacks [8]. They represent also the document collection by its thresholded 
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similarity graph, defining a new notion of star center obtaining, as a consequence, 
different star-shaped clusters that are independent of data order. 

Previously, they defined the concept of Complement Degree. The Complement 
Degree (CD) of a vertex is the quantity of neighbours (adjacent vertices) not included 
yet in any cluster. Notice that the complement degree of a vertex can decrease during 
the clustering process as more vertices are included in clusters.  

Then, the extended star definition is presented in the following way: An object o is 
considered a star (center) if it has at least a neighbour o’ (with less or equal degree 
than o) that satisfies one of the following conditions: 

− Object o´ does not have a neighbour marked as star. 
− The neighboring star center of o’ with the highest degree has a degree not greater 

than the degree of o. 

The logic of the algorithm is to generate cluster centers in an iterative process – 
while there are non-clustered documents – where vertices are selected, from the set of 
candidates L with maximum complement degree and degree, if they meet Extended 
Star definition without cluster redundancy. 

Unlike the Star algorithm, the obtained clusters are independent of data order. 
Nevertheless, the Extended Star algorithm has also some drawbacks. First of all, it 
can leave uncovered vertices, producing an infinite loop. This situation is illustrated 
in Fig. 2 (A).  

 

Fig. 2. Drawbacks of Extended algorithm 

In the first iteration, vertex 1 of graph (A) is selected as star center. In the second 
iteration, vertices 2, 3 and 4 have the highest complement degree (CD = 1) and also 
the highest degree, but none of them satisfies the center condition, remaining vertices 
5, 6, 7 and 8 as the candidates for the next iteration. In the third iteration, all have  
CD = 0, but 5 has the highest degree; nevertheless, it does not satisfy the center 
condition and it is removed from L. In the fourth iteration, the remaining vertices do 
not satisfy the condition and all are removed from L, reaching L the empty set. 
Henceforth, the loop will not finish because a non-clustered object exists (vertex 5) 
but it will not be covered by any cluster. This infinite loop would be avoided if the 
algorithm also checks that L is not empty, but even so vertex 5 remains as uncovered.  

This situation can be generalized. Indeed, any time that a vertex v exists, such as 
the illustrated in graph (B) of Fig. 2, the algorithm produces an infinite loop, leaving 
the vertex v uncovered. In this graph, each si represents the corresponding neighbours 
(adjacent vertices) of v, and ci, is the adjacent center of si with highest degree. If 
vertex v satisfies the conditions described in (1), then it has a set of neighbours with 
less degree than v, but not satisfying the Extended Star condition; therefore, neither v 
nor its neighbours can be selected as center, remaining v as an uncovered vertex. 



252 A.P. Suárez and J.E. Medina Pagola 

AdjvAdjckicAdjsAdjvkis iiii ..,1,..,1, >≤≤∀∧>≤≤∀  (1) 

In this and in the following expressions, x.Adj represents the set of adjacent 
vertices of the vertex x. 

The second drawback of this algorithm is that it can produce unnecessary clusters, 
since more than one center can be selected at the same time. As can be noticed in 
graph (C) of Fig. 2, vertex 2 and vertex 3 should not be centers at the same time 
because we only need one of them to cover vertex 4. 

A different version of the Extended Star algorithm was proposed by Gil et al. to 
construct a parallel approach [9]. This version also uses the complement degree of a 
vertex, but it does not apply the Extended Star definition for the selection of the star 
centers; as a consequence, the obtained clusters are different from those obtained by 
the original version. 

This new version is also independent of data order, and solves the first drawback of 
the former Extended Star algorithm, but it maintains some drawbacks too. As the first 
Extended Star version, it can produce unnecessary clusters, since more than one 
center can be selected at the same time (see graph (C) of Fig. 2). 

The second drawback of this version is that it can produce, like the original Star 
method, illogical (less dense) clusters. This situation is illustrated in Fig. 3. 

 

Fig. 3. Drawback of the new version of the Extended Star algorithm 

In the first iteration, vertex 1 is selected as star center. In the second iteration, 
vertices 2, 3 and 4 have the highest complement degree (CD = 1) and also the highest 
degree, so they are selected as centers. After this iteration, all vertices are covered and 
the algorithm stops.  

This behavior, in our opinion, is caused because it was not considered the 
Extended Star condition to obtain the clusters, observing behaviors similar to the 
original Star method. 

3   A Generalized Star Method 

In this section we introduce a new concept of star allowing a different star-shaped 
form and a new method, called Generalized Star or GStar, with better performance 
than the original Star and the Extended Star methods. As the aforementioned 
algorithms, we represent the document collection by its thresholded similarity graph 
Gσ . In order to define this new star concept and to describe the method, we define the 
following sets: Weak Satellites, Potential Satellites, and Potential Centers. 
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The set of Weak Satellites (WeakSats) of o is the set of all adjacent vertices with 
(standard) degrees not greater than the degree of o (2). 

{ }Adj.Adj./Adj.WeakSats. sooso ≥∈=  (2) 

The WeakSats degree of a vertex o is defined as the quantity of vertices included in 
its set of Weak Satellites, i.e. the length of its WeakSats set. 

The set of Potential Satellites (PotSats) of o is the set of all adjacent vertices with 
WeakSats degrees not greater than the WeakSats degree of o (3). 

{ }WeakSats.WeakSats./Adj.PotSats. sooso ≥∈=  (3) 

Considering the aforementioned sets, we can define the Generalized Star-shaped 
sub-graph concept as follows: A Generalized Star-shaped sub-graph of m+1 vertices 
consists of a single star center c and m adjacent vertices, verifying the property 
described in (4). 

PotSats.PotSats.PotSats,. sccs ≥∈∀  (4) 

The set of Potential Centers (PotCenters) of o is the set of all adjacent vertices that 
potentially can be centers of some star-shaped sub-graphs that include o, i.e. the set of 
adjacent vertices which has at least one vertex in its PotSats set (5). 

{ }0PotSats./Adj.PotCenters. ≠∈= coco  (5) 

Starting from this definition and guaranteeing a full cover, this method should 
satisfy the following post-conditions: 

( ) ( )φ≠∩∨∈∈∀ CxCxVx s.PotCenter, , (6) 

s.PotSatsc.PotSats,c.PotSats, ≥∈∀∈∀ sCc , (7) 

where V is the set of vertices of the thresholded similarity graph Gσ and C is the set of 
centers of each cluster obtaining by the GStar algorithm. 

The first condition (6) guarantees that each object of the collection belongs at least 
to one group, as a center or as a satellite. Besides, the condition (7) indicates that all 
the centers satisfy the generalized star-shaped sub-graph definition (4). 

3.1   Initial Considerations 

It is very important, before the definition of the GStar algorithm, to analyze which 
drawbacks will be solved and, more important, how they will be solved. 

First of all, the GStar method intends to solve the drawbacks that directly affect the 
quality of the obtained clusters; these are: 

− Illogical clusters (Star and Extended). 
− Uncovered vertices (Extended). 
− Unnecessary clusters (Extended). 
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The generalized star-shaped sub-graph concept and the post-conditions (6) and (7) 
above mentioned, will have the GStar algorithm solves these three drawbacks. 

The dependence on data order is a property that the Extended Star method certainly 
solves. Nevertheless, as we had previously indicated, it is necessary only when that 
dependence affects the quality of the resulting clusters. 

If we consider the graph of Fig. 4, and assume that we want to avoid unnecessary 
clusters, several “acceptable” solutions could be obtained. 

 

Fig. 4. Symmetric or similar solutions 

The answer to this situation is that these solutions are rather symmetric or similar, 
and any of them is a good result. This situation is solved by Extended Star method 
selecting all the potential centers (in this case all the vertices) as effective ones. We 
have considered that this solution is not a correct alternative.  

3.2   Generalized Star Algorithm 

In order to define the GStar algorithm, we introduce the concept of Necessary 
Satellite. 

The set of Necessary Satellites (NecSats) of o is the set of its adjacent vertices that 
could depend on o to be covered. This concept is necessary only during the cluster 
generation. Initially, NecSats takes the value of PotSats; but, it can decrease during 
the clustering process as more documents are covered by stars. 

The Generalized Star algorithm is summarized in Fig. 5. 
 

Algorithm: GStar 
Input: V = {d1, …, dn} – Set of vertices 
           σ - Similarity threshold 
Output: SC – Set of cluster 
1) forall vertex di ∈ V do 
2)   di.Adj = {dj ∈ V / Sim(di, dj) ≥ σ}; 
3) forall vertex d ∈ V do 
4)   d.WeakSats = {s ∈ d.Adj / |d.Adj| ≥ |s.Adj|}; 
5) forall vertex d ∈ V do begin 
6)   d.PotSats = {s ∈ d.Adj/|d.WeakSats|≥|s.WeakSats|}; 
7)   d.NecSats = d.PotSats; 
8) end 
9) forall vertex d ∈ V do 
10)   d.PotCenters = {c ∈ d.Adj / |c.PotSats| ≠ 0}; 
11) L = V; 
12) C = ∅; 
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13) while L ≠ ∅ do begin 

14)   d = PotSats.max i
Ld

dArg
i∈

; 

15)   Update(d, C, L); 
16) end 
17) “Sort C in ascending order by PotSats”; 
18) forall center c ∈ C do 
19)   if c.PotCenters ∩ C ≠ ∅ and 

20) 
     ∀ s ∈ c.PotSats, (s ∈ C or  
                       s.PotCenters ∩ C \ {c} ≠ ∅) 

21)   then C = C \ {c}; 
22) forall center c ∈ C do begin 
23)   create a cluster cl = {c} ∪ c.adj 
24)      SC = SC ∪ cl; 
25) end 

Fig. 5. Pseudo code of Generalized Star algorithm 

The procedure Update (see Fig. 6) is applied to mark a vertex as center, deleting it 
from L, and for updating the set NecSats on each of its necessary satellites. 

Procedure: Update 
Input:  d – vertex to be a cluster center 
Input/Output: C – Set of cluster centers 
                         L – Set of unprocessed vertices 
1) C = C ∪ {d}; 
2) L = L \ {d}; 
3) forall s ∈ d.NecSats do begin 
4)   s.NecSats = s.NecSats \ {d}; 
5)   if s.NecSats = ∅ then L = L \ {s}; 
6)   forall c ∈ s.PotCenters \ {d} do begin 
7)     c.NecSats = c.NecSats \ {s}; 

8) 
    if c.NecSats = ∅ and 
       c.PotCenters ∩ C ≠ ∅  

9)     then L = L \ {c}; 
10)   end 
11) end 

Fig. 6. Pseudo code of Update Procedure 

The algorithms works as follows: using a list L, containing the vertices that can be 
selected as center (initialized at step 11 in the way that it contains all the vertices), the 
algorithm iterates over the list L until it be empty; this means that all the vertices 
belong to at least one cluster, as a center or satellite. In each iteration, the algorithm 
will select, amongst all the contained vertices in L, a vertex d which has the higher  
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number of elements in its PotSats set, selecting that vertex as center. In this way we 
guarantee that every selected center satisfies (7). 

After that selection, it is necessary to update the set NecSats of some vertices, 
according to the concept of Necessary Satellites; this process is made by the Update 
procedure considering the following situations: 

− As vertex d (the new selected center) has been clustered, all its necessary satellites 
should eliminate d from their NecSats sets. After that operation, if any necessary 
satellite w of d gets an empty NecSats set, then w can be removed from L since no 
vertex needs for it to be clustered and, besides, it has been already clustered by d. 

− As each necessary satellite w of d has been clustered, all the potential centers 
(excepting d) of w should eliminate w from their NecSats sets. In the same way, if 
any of these  potential centers z gets an empty NecSats set and also had been 
already clustered by any other center, then z can be removed from L. 

It is important to notice that in each iteration the list L decreases its length at least 
in one unit, because of the deletion of the selected center. Besides, as we explained 
above, the length of list L is also decreased every time that we detect that some vertex 
is not necessary to cluster either at least one of the vertices in its NecSats sets or itself.  
The speed of the decrease of L depends on the number of vertices that were 
eliminated in the updating process of the NecSats set of the neighboring vertices of 
the selected center and this number will be increased along the iterations. 

The importance of the decrease of the length of L is that in this way we guarantee 
that the process of clustering (or the process of centers selection) will stop when L be 
empty, and that means that all the vertices either are center or belong to at least one 
center, i.e. all vertices satisfies (6). Besides we avoid the apriority selection of centers 
that will make redundant clusters. 

At the end, we sort the set of centers in ascending order according to the length of 
the PotSats set of each vertex, and then we check to eliminate the redundant centers 
that would emerge at the end of the selection process. 

3.3   General Considerations of GStar Method 

The GStar method - as the original Star algorithm and the two versions of the 
Extended algorithm - generates clusters which can be overlapped and guarantees also 
that the pairwise similarity between satellites vertices in a generalized star-shaped 
sub-graph be high. 

Unlike the Star algorithm, and as the two versions of the Extended Star method, the 
GStar algorithm allows centers as adjacent vertices. Besides, the generalized star-
shaped sub-graph definition (4) guarantees a better cluster generation than the 
Extended Star method; particularly, it solves the drawbacks of the first version of  
the Extended Star algorithm. 

Fig. 7 shows the solutions to uncovered vertices (A) and to unnecessary clusters 
(B), presented in graphs (A) and (C) of Fig. 2. 

The GStar method can not produce illogical clusters, because all the centers must 
satisfy the generalized star-shaped sub-graph definition (4). Note that in the process of  
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selection of the candidate center, the strategy is to select the vertex with the higher 
length of its PotSats set; so, in this way we guarantee that the cluster is not illogical 
and also the correctness of the resultant set of clusters. 

 

Fig. 7. Solutions to uncovered vertices (A), unnecessary clusters (B) and illogical clusters (C) 

Unlike the Star algorithm and the second version of the Extended Star method, 
GStar solves this drawback. Graphs (A) and (C) of Fig. 7 show the solution to 
illogical clusters presented in the graph (C) of Fig. 1 and in the graph of Fig. 3. 

4   Experimental Results 

In this section we present the experimental evaluation of our method and document 
representation, comparing its results against the Extended Star method and the 
original Star algorithms. The produced clustering results are evaluated by the same 
method and criterion to ensure a fair comparison across all algorithms. 

Two data sets widely used in document clustering research were used: TREC-5 and 
Reuters-21578. These are heterogeneous with respect to document size, cluster size, 
number of classes, and document distribution. The data set TREC-5 contains news in 
Spanish published by AFP during 1994 (http://trec.nist.gov); Reuters-21578 was 
obtained from http://kdd.ics.uci.edu. We excluded from data sets the empty 
documents and also those documents do not have an associated topic. 

In our experiments, the documents are represented using the traditional vector 
space model. The index terms of documents represent the lemmas of the words 
appearing in the texts. Stops words, such as articles, prepositions and adverbs are 
removed from document vectors. Terms are statistically weighted using the term 
frequency. We use the traditional cosine measure to compare the documents. 

The main characteristics of these collections are summarized in Table 1. We also 
included in this table the number of overlapping documents for each collection. 

Table 1. Characteristics of document collections 

Collect. Doc. Overlap. doc. Topics Lang. 
AFP 695 16 25 Span. 
Reuters 10377 1722 119 Engl. 

The literature abounds in measures defined by multiple authors to compare two 
partitions on the same set. The most used are: Jaccard index, and F-measure. 
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Jaccard index. This index (noted j) takes into account the objects simultaneously 
joined [10]. It is defined as follows: 

002
)1(
11),(

n

n
BAj

NN −
= −∗

 
(8) 

In this index, n11 denotes the number of pairs of objects which are both in the same 
cluster in A and are also both in the same cluster in B. Similarly, n00 is the number  
of pairs of objects which are in different clusters in A and are also in different clusters 
in B. 

The performances of the algorithms in the document collections considering 
Jaccard index are shown in Fig. 8. 

 

Fig. 8. Behavior in AFP (A) and Reuters (B) collections with Jaccard index 

F-measure. The aforementioned index and others are usually applied to partitions. 
In order to make a better evaluation of overlapping clustering, we have considered  
F-measure calculated over pairs of points, as defined in [4]. 

For each pair of points that share at least one cluster in the overlapping clustering 
results, these measures try to estimate whether the prediction of this pair as being in 
the same cluster was correct with respect to the underlying true categories in the data. 
Precision is calculated as the fraction of pairs correctly put in the same cluster, recall 
is the fraction of actual pairs that were identified, and F-measure (noted Fmeasure) is 
the harmonic mean of precision and recall (9). 
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The performances of the algorithms in the document collections considering  
F-measure are shown in Fig. 9. 
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Fig. 9. Behavior in AFP (A) and Reuters (B) collections with F-measure 

As can be noticed, the accuracy obtained using the GStar method is in most cases 
(for all the indexes) comparable with that obtained from the other methods 
investigated; moreover, our proposal can outperform those methods for all the 
indexes. But, this behavior is not homogeneous for all σ similarity thresholds; for 
each collection, there is a minimum value for which GStar outperforms previous Star 
methods. Starting from this minimum value, the accuracy of GStar is in general as 
good as, or even in many cases higher than, the others. Besides, this minimum value 
is generally lesser than the intra-similarity average in all the manually labeled topics. 

Furthermore, GStar in all cases obtains lesser clusters than the other algorithms 
(see Fig. 10), and in most cases obtains denser clusters (see Table 2). This behavior 
could be of great importance for obtaining a minimum quantity of clusters without 
loosing the precision.  

 

Fig. 10. Number of generated clusters in AFP (A) and Reuters (B) collections 
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Table 2. Average of elements per clusters in AFP and Reuters collections 

  Threshold 
Collect. Algorithm 0.25 0.30 0.35 0.40 0.45 0.50 

Generalized 18,73 11,54 7,10 5,01 3,43 2,12 
Extended 18,61 11,43 6,85 4,92 3,42 2,20 

AFP 

Star 9,32 5,43 3,57 2,83 2,13 1,73 
Generalized 227,36 90,29 51,00 24,57 19,72 12,89 

Extended 176,27 72,74 40,40 23,34 16,61 11,81 
Reuters 

Star 47,21 24,97 15,77 10,93 7,74 6,49 

Table 3. Number of redundant clusters generated by the Extended algorithm in both collections 

 Threshold 
Collect. 0.25 0.30 0.35 0.40 0.45 0.50 

AFP 7 5 13 10 8 3 
Reuters 25 65 82 94 104 74 

Besides, we include also in Table 3 the number of redundant clusters generated by 
the Extended algorithm in both collections. 

It is important to notice that the Extended algorithm could cover all the vertices, 
but only in these experiments. Nevertheless, as it was explained, theoretically the 
Extended algorithm may fail with other repositories. 

Despite the experiments carried out by Aslam et al. in [1], and in order to ensure 
the effectiveness of our proposed algorithm, we made a new experimentation to 
compare the performance of GStar algorithm against the Single Link and Average 
Link [7] algorithms, which uses different cost functions. For a fair comparison across 
all algorithms, we used the same thresholds of the previous experiments, stopping the 
execution of the Single Link and Average Link algorithms when the two selected 
clusters to be joined do not satisfy the current threshold, meaning that the evaluation 
of the cost function for all pair of clusters in the current algorithm return a value 
greater than the selected threshold. After that, we evaluated each algorithm 
considering the Jaccard index and F-measure, and we selected the average value of 
each algorithm for the selected measures for all thresholds. 

The performances of the algorithms in the document collections considering 
Jaccard index, and F-measure are shown in Fig. 11 and Fig. 12. 

As we can see, our proposal also outperforms the Single Link and Average Link 
algorithms in both collections. Thus, the GStar algorithm represents a 68.2% 
improvement in performance compared to average link and a 42.3% improvement 
compared to single link in AFP collection considering the Jaccard index; if we 
consider F-measure, then the GStar algorithm represents a 57.6% improvement in 
performance compared to average link and a 33.3% improvement compared to single 
link in the same collection. In the case of the Reuters collection the improvements are 
higher and even in some cases it doubles the result. 
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Fig. 11. Behavior in AFP (A) and Reuters (B) collections with Jaccard index 

 

Fig. 12. Behavior in AFP (A) and Reuters (B) collections with F-measure 

5   Conclusion 

In this paper we presented a new clustering algorithm called Generalized Star (GStar). 
As a consequence, we obtained different star-shaped clusters. This algorithm solves 
several drawbacks observed in Star and Extended Star methods; particularly, the 
dependence on data order (for non symmetric or similar solutions), the generation of 
illogical and redundant clusters. Besides, our proposal does not leave uncovered 
vertices. 

We compared the GStar algorithm with the original Star and the Extended Star 
methods in two standard document collections considering two different measures. 
The experimentation shows that our proposal outperforms previous methods for all 
the measures. Besides, we also evaluated GStar with the previous methods 
considering the number and density of the generated clusters. In these experiments, 
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GStar algorithm generally outperforms previous methods producing lesser and denser 
clusters. These performances prove the validity of our algorithm for clustering tasks. 

This algorithm can be used for organizing information systems in several ways; for 
example, as a pre-processing step in a static information system or as a post-
processing step on the specific documents retrieved by a query. The algorithm can 
also be used for browsing, topic tracking and new topic detection. 

Although we employ our algorithm to cluster documents collections, its use is not 
restricted to this area, since it can be applied to any problem of pattern recognition 
where clustering is needed. 

As a future work, we will try to develop an incremental version of this algorithm 
and maybe try to use it as a clustering routine in a dynamic hierarchical clustering 
algorithm. We also want to do some other experiments considering other 
representations of the documents and other similarity measures. These experiments 
could help us to decide how to choose a priory the threshold value in order to obtain 
the best performance of our algorithm.  
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Abstract. The main emphasis of the technique developed in this work
for evolving committees of support vector machines (SVM) is on a two
phase procedure to select salient features. In the first phase, clearly re-
dundant features are eliminated based on the paired t-test comparing the
SVM output sensitivity-based saliency of the candidate and the noise
feature. In the second phase, the genetic search integrating the steps
of training, aggregation of committee members, and hyper-parameter
as well as feature selection into the same learning process is employed.
A small number of genetic iterations needed to find a solution is the
characteristic feature of the genetic search procedure developed. The ex-
perimental tests performed on five real world problems have shown that
significant improvements in correct classification rate can be obtained
in a small number of iterations if compared to the case of using all the
features available.

1 Introduction

Aggregating outputs of multiple predictors into a committee output is one of the
most important techniques for improving prediction accuracy [1,2,3]. An efficient
committee should consist of predictors that are not only very accurate, but also
diverse in the sense that the predictor errors occur in different regions of the in-
put space [4,5]. Manipulating training data set, using different architectures, and
employing different subsets of variables are the most popular approaches used
to achieve the diversity. To promote diversity of neural networks aggregated
into a committee, Liu and Yao [6,7] proposed the so-called Negative correlation
learning approach, according to which, all individual networks in the committee
are trained simultaneously, using an error function augmented with a correlation
penalty term. In [8], aiming to find a trade-off between the accuracy and diversity
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of committee networks, the approach was extended by integrating into the same
learning process also the feature selection step. However, to assess and control
diversity of predictors and to find the trade-off between the accuracy and diver-
sity is not a trivial task [9,10]. For instance, feature selection may influence the
quality of a committee in several ways, namely by reducing model complexity,
promoting diversity of committee members, and affecting the trade-off between
the accuracy and diversity of committee members. Therefore it seems promising
to integrate the steps of training, hyper-parameter and feature selection, and
aggregation of members into a committee into the same learning process and to
use the prediction accuracy to assess the quality of the committee.

This paper is concerned with such an approach to evolving committees of
support vector machines for classification. The main emphasis of the paper is on
feature selection for classification committees. A large variety of feature selection
techniques have been proposed for a single predictor [11,12], ranging from the
sequential forward selection or backward elimination [13,14], sequential forward
floating selection [15] to the genetic [16] or tabu search [17]. However, works on
feature selection for classification or regression committees are very scarce [5].
It has been demonstrated that even simple random selection of feature subsets
may be an effective technique for increasing the accuracy of classification com-
mittees [18,19].

One needs to assess the feature saliency when selecting features. The Predictor
output sensitivity [20,21,22,23] is the most popular measure used to assess the
saliency. Eq. 1 exemplifies such a measure [20,21]

Υi =
1
QP

Q∑

j=1

P∑

p=1

∣
∣
∣
∂yjp

∂xip

∣
∣
∣ (1)

where y is the predictor output, Q is the number of outputs, P is the number
of training samples, and xip is the ith component of the pth input vector xp.
However, a saliency measure alone does not indicate how many of the candidate
features should be used. Therefore, some of feature selection procedures are
based on making comparisons between the saliency of the candidate and the noise
feature [20,21]. Nonetheless the usefulness of such comparisons, the measure does
not have direct relation to the prediction error.

The procedure developed in this work for evolving classification committees
consists of two phases. In the first phase, clearly redundant features are elimi-
nated based on the paired t-test comparing the saliency of the candidate feature
and the noise feature in a single classifier. Then, in the second phase, the ge-
netic search integrating the steps of training, aggregation of committee members
into a committee, search for the optimal hyper-parameter values, and selection
amongst the remaining features into the same learning process is employed. The
committee prediction accuracy is the measure used to assess the committee qual-
ity in the genetic search. A small number of genetic iterations needed to find a
solution is the characteristic feature of the genetic search procedure developed.
The rationale of using the first phase of the procedure is to reduce the com-
putation time needed for the genetic search. If the computation time is not a
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problem, the first phase of the procedure can be skipped. We use an SVM as a
committee member in our tests. However, other types of classifiers can also be
utilized.

2 Procedure

The procedure for evolving classification committees is summarized in the fol-
lowing steps.

1. Augment the input vectors with one additional noise feature.
2. Train the model.
3. Calculate the saliency score Γi,

Γi =
Υi

maxl=1,...,N Υl
, i = 1, ..., N (2)

where Υi is given by (1) and N is the number of features.
4. Repeat Steps 2 to 3 K times using different random data partitioning into

training, validation and test sets.
5. Eliminate features the saliency of which, do not exceed the saliency of the

noise feature. Use the paired t-test to compare the saliency values.
6. Choose the number of committee members L. Construct a chromosome char-

acterizing feature inclusion/noninclusion, regularization and kernel parame-
ters of all the committee members. More details on the chromosome defini-
tion are given in Section 2.3.

7. Perform the genetic search.
8. The committee is given by the parameters encoded in the “best” chromosome

found during the genetic search.

2.1 The Paired t-Test

To assess the equality of the mean saliency of ith feature μΓi and the noise
μΓn the paired t-test is defined as suggested in [21]: Null Hypothesis μDi = 0,
Alternative Hypothesis μDi > 0, where μDi = μΓi − μΓn . To test the null
hypothesis, a t∗ statistic

t∗ =
Di

SDi

(3)

is evaluated, where Di = K−1
∑K

j=1 Dij , Dij = Γij − Γnj , Γij and Γnj are the
saliency scores computed using (2) for the ith and the noise feature, respectively,
in the jth loop, and

SDi
=

√∑K
j=1(Dij −Di)2

K(K − 1)
(4)

Under the null hypothesis, the t∗ statistic is t distributed. If t∗ > tcrit, the
hypothesis that the difference in the means is zero is rejected, where tcrit is
the critical value of the t distribution with ν = K − 1 degrees of freedom for a
significance level of α: tcrit = t1−α,ν .
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2.2 The SVM Output Sensitivity, an Example

The output of a support vector machine y(x) is given by:

y(x) =
Ns∑

j=1

α∗
jdjκ(xj ,x) + b (5)

where Ns is the number of support vectors, κ(xj ,x) is a kernel, dj is a target
value (dj = ±1), and the threshold b and the parameter α∗

j values are found as
a solution to the optimization problem defined by the type of SVM used. In this
work, we used the 1-norm soft margin SVM [24]. The parameters αj satisfy the
following constrains:

Ns∑

j=1

αjyj = 0,
Ns∑

j=1

αj = 1, 0 ≤ αj ≤ C, j = 1, ..., Ns (6)

with C being the regularization constant.
For a Gaussian kernel κ(xj ,xk) = exp{−||xj − xk||2/σ}, where σ is the stan-

dard deviation of the Gaussian, having the jth input vector xj presented to the
input, the derivative of the output with respect to the ith feature is given by:

∂y(xj)
∂xij

= − 2
σ

Ns∑

k=1

α∗
kdk(xij − xik) exp

{
−

N∑

n=1

(xnj − xnk)2

σ

}
(7)

2.3 Genetic Search

Chromosome design, initial population generation, evaluation, selection,
crossover, mutation, and reproduction are the issues to consider when designing
a genetic search algorithm. We divide the chromosome into sections and each
section into parts. The number of sections is equal to the number of commit-
tee members L. There are three parts in each section. One part encodes the
regularization constant C, one the kernel width σ, and the third one encodes
the inclusion/noninclusion of features. The binary encoding scheme has been
adopted in this work. Fig. 1 illustrates the chromosome structure, where NC
and Nσ stand for the number of bits used to encode the regularization constant
C and the kernel width σ, respectively and N is the number of features.

Section 1 Section L

1C ··· NCC 1 ··· N 1f ··· Nf ··· 1C ··· NCC 1 ··· N 1f ··· fN

Fig. 1. The structure of the chromosome consisting of L sections

To generate the initial population, information obtained from the first fea-
ture selection phase, namely, the values of C and σ, and the maximum num-
ber of features, is exploited. The maximum number of features allowed for one
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committee member is equal to the number of features determined in the first
phase. In the initial population, the features are masked randomly and values of
the parameters C and σ are chosen randomly from the interval [C0 −ΔC,C0 +
ΔC] and [σ0 −Δσ, σ0 + Δσ], respectively, where C0 and Δ0 are the parameter
values obtained from the first phase.

The fitness function used to evaluate the chromosomes is given by the cor-
rect classification rate of the validation set data. In this study, the committee
output was obtained by averaging the outputs of committee members. To dis-
tinguish between more than two classes, the one vs one pairwise-classification
scheme has been used.

The selection process of a new population is governed by the fitness values.
A chromosome exhibiting a higher fitness value has a higher chance to be in-
cluded in the new population. The selection probability of the ith chromosome
pi is given by

pi =
ri

∑M
j=1 rj

(8)

where ri is the correct classification rate obtained from the model based on the
ith chromosome and M is the population size.

The crossover operation for two selected chromosomes is executed with
the probability of crossover pc. If a generated random number from the interval
[0,1] is larger than the crossover probability pc, the crossover operation is ex-
ecuted. Crossover is performed separately in each section of a chromosome. In
the “feature mask” and two parameter parts of each section, the crossover point
is randomly selected and the corresponding parts of two chromosomes selected
for the crossover operation are exchanged at the selected point.

The mutation operation adopted is such that each gene is selected for muta-
tion with the probability pm. The mutation operation is executed independently
in each part of each chromosome section. If the gene selected for mutation is in
the feature part of the chromosome, the value of the bit representing the feature
in the feature mask is reversed. To execute mutation in the parameter part of
the chromosome, to choices are possible: i. to reverse the value of the bit in
the parameter representation determined by the selected gene; ii. to mutate the
value of the offspring parameter determined by the selected gene by ±Δγ, where
γ stands for C or σ, as the case may be. The mutation sign is determined by the
fitness values of the two chromosomes, namely the sign resulting into a higher
fitness value is chosen. The way of determining the mutation amplitude Δγ is
somewhat similar to that used in [25] and is given by

Δγ = wβ(max(|γ − γp1|, |γ − γp2|)) (9)

where γ is the actual parameter value of the offspring, p1 and p2 stand for
parents, β ∈ [0, 1] is a random number, and w is the weight decaying with the
iteration number:

w = k(1 − t/T ) (10)

where t is the iteration number, k is a constant, and T is the total number of
iterations.
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In the reproduction process, the newly generated offspring replaces the
chromosome with the smallest fitness value in the current population, if a gen-
erated random number from the interval [0,1] is larger than the reproduction
probability pr or if the fitness value of the offspring is larger than that of the
chromosome with the smallest fitness value.

3 Experimental Investigations

In all the tests, we run an experiment 30 times with different random partitioning
of the data set into <Learning>, Dl, <Validation>, Dv, and <Test>, Dt data
sets. The mean values and standard deviations of the correct classification rate
presented in this paper were calculated from these 30 trials. The parameter
values used in the genetic search have been found experimentally. The following
values worked well in all the tests: pc = 0.05, pm = 0.02, and pr = 0.05.

3.1 Data Used

To test the approach we used five real-world problems. Data characterizing four
of the problems: US congressional voting records problem, The diabetes diagno-
sis problem, Wisconsin breast cancer problem, and Wisconsin diagnostic breast
cancer problem are available at: www.ics.uci.edu/~mlearn/. The fifth problem
concerns classification of laryngeal images [26].

Laryngeal images. The task is to automatically categorize colour laryngeal
images (images of vocal folds) into the healthy, nodular, and diffuse decision
classes [26]. Fig. 2 presents characteristic examples from the three decision classes
considered.

   

Fig. 2. Images from the nodular (left), diffuse (middle), and healthy (right) classes

Due to a large variety of appearance of vocal folds, the categorization task is
sometimes difficult even for a trained physician. Fig. 3 provides an example of
such a task. The image placed on the right-hand side of the figure comes from
the nodular class, while the other two are taken from the healthy vocal folds. In
this case, the only discriminative feature is the slightly convex vocal fold edges
in the upper part of the image coming from the nodular class.
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Fig. 3. Three examples of laryngeal images

Aiming to obtain a comprehensive description of laryngeal images, multiple
feature sets exploiting information on image colour, texture, geometry, image
intensity gradient direction, and frequency content are extracted [27]. Image
colour distribution, distribution of the image intensity gradient direction, pa-
rameters characterizing the geometry of edges of vocal folds, distribution of the
spectrum of the Fourier transform of the colour image complex representation
(two types of the frequency content based features), and parameters calculated
from multiple co-occurrence matrices are the feature types used to describe la-
ryngeal images [27]. A separate SVM is used to categorize features of each type
into the decision classes. The final image categorization is then obtained based
on the decisions provided by a committee of support vector machines. In this
work, there were 49 images from the healthy class, 406 from the nodular class,
and 330 from the diffuse class. Out of the 785 images available, 650 images were
assigned to the set Dl.

3.2 Results

First, the average test data set correct classification rate obtained from a single
SVM without any involvement of the designing procedure proposed was esti-
mated. The optimal values of the regularization constant C and the kernel width
σ have been selected experimentally. Table 1 presents the average test data set
correct classification rate obtained for the first four data sets from a single SVM
when using all the original features in the classification process. The number of
classes and the number of features available are also given in the table. In the
parentheses, the standard deviation of the correct classification rate is provided.
The average test data set correct classification rate obtained when using a sepa-
rate SVM for each type of features extracted from the laryngeal images is shown
in Table 2.

In the next experiment, we studied the effectiveness of the feature selection
procedure applied to single SVMs. Table 3 summarizes the results of the test
concerning the first four problems. Apart from the average test data set correct
classification rate obtained using the selected features, the table also provides
the number of selected features and the number of genetic iterations required
to achieve the solution. The number of features eliminated in the first selec-
tion phase has been equal to 1, 1, 6, and 12 for the Diabetes, WBCD, Voting,
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Table 1. The average test data set correct classification rate obtained for the different
data sets from a single SVM when using all the original features

Data set
Number of Number of Classification

Classes features rate

Diabetes 2 8 76.87 (1.60)
WBCD 2 9 96.86 (0.79)
Voting 2 16 95.49 (1.03)
WDBC 2 30 97.23 (1.01)

Table 2. The average test data set correct classification rate obtained when using a
separate SVM for each type of features extracted from the laryngeal images

Feature type
Number of Number of Classification

classes features rate

Gradient 3 1000 52.30 (5.80)
Co-occurrence 3 42 83.63 (3.17)
Frequency (F1) 3 180 83.38 (3.43)
Frequency (F2) 3 40 78.02 (3.04)
Geometrical 3 18 69.19 (3.48)
Colour 3 50 91.80 (2.69)

and WDBC databases, respectively. Observe that the first two problems are
characterized by 8 and 9 features, respectively. Thus, there are very few clearly
redundant features. The larger number of features eliminated in the first phase
for the other two problems significantly speeds up the genetic search executed
in the second phase.

Table 3. The average test data set correct classification rate obtained for the different
data sets from a single SVM when using the selected features

Data set
Average number of Average number Classification

selected features of iterations rate

Diabetes 4 8 77.64 (1.50)
WBCD 6 7 97.20 (0.75)
Voting 3 12 96.30 (0.96)
WDBC 17 20 98.06 (0.73)

As it can be seen from Table 1 and Table 3, for all the databases, the average
correct classification rate obtained from the single SVMs trained on the selected
feature sets is higher than that achieved using all the features available. The
number of genetic iterations needed to achieve the solutions is very small. The
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number of attempts made to make the crossover operation during one genetic
iteration is equal to the population size, which was set 50 in all the tests. Fig. 4
provides two graphs plotting the correct classification rate as a function of the
number of genetic iterations for the WDBC and Voting databases. For each
genetic iteration, the performance of the best (max ), the average (mean) and
the worst (min) population member is shown in Fig. 4. The performance achieved
by the best member at the end of the search procedure is also shown.
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Fig. 4. The test data set correct classification rate obtained from a single SVM as a
function of the number of genetic iterations for the Wisconsin diagnostic breast cancer
(left) and the US congressional voting records (right) data sets

Table 4. The average test data set correct classification rate obtained for the different
types of features extracted from laryngeal images when using a separate SVM for each
type of selected features

Feature type
Average number of Average number Classification

selected features of iterations rate

Gradient 362 17 83.65 (4.40)
Co-occurrence 28 13 85.48 (3.63)
Frequency (F1) 78 37 89.68 (2.36)
Frequency (F2) 29 13 79.56 (3.47)
Geometrical 10 13 72.12 (3.53)
Colour 42 13 92.74 (2.58)

The results obtained for the different feature sets characterizing the laryngeal
images are summarized in Table 4. The number of features eliminated in the
first feature selection phase ranged from 5 to over 400. As it can be seen from
Table 2 and Table 4, a considerable improvement in classification accuracy has
been obtained using the proposed SVM designing approach. The number of
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features chosen is considerably lower than that presented in Table 2, especially
for the Gradient and Frequency (F1 ) feature types. On average, a very small
number of genetic iterations was required to find the solutions. Fig. 5 provides
two graphs plotting the correct classification rate as a function of the number
of genetic iterations for the two types of frequency features. For each genetic
iteration, the performance of the best (max ), the average (mean) and the worst
(min) population member is shown.
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Fig. 5. The test data set correct classification rate obtained from a single SVM as a
function of the number of genetic iterations for the two types of frequency features
extracted from the laryngeal images

In the last experiment, the effectiveness of the feature selection procedure
applied to SVM committees has been studied. Table 5 summarizes the results of
the experiment.

Table 5. The average test data set correct classification rate obtained for the different
data sets from a committee when using the selected features

Data set
Average number of Average number Classification

selected features of iterations rate

Diabetes 5 8 77.66 (1.50)
WBCD 5 14 97.27 (0.59)
Voting 6 37 96.62 (0.79)
WDBC 9 20 98.31 (0.46)
Laryngeal 95 8 95.04 (1.88)

All the committees were made of six members. All six members of the com-
mittees built for solving the first four problems used the same initial feature set.
Each member of the committee built for solving the Laryngeal problem utilized
a different feature set—one of the six available types. The average test data set
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correct classification rate, the average number of features used by one committee
member, and the number of iterations needed to obtain the solution are given
in Table 5. As it can be seen from Table 5, the technique developed is capable
of evolving accurate classification committees in a small number of genetic iter-
ations. The relatively large average number of features used by the “laryngeal”
committee is due to the large number of “gradient” features selected. Fig. 6 pro-
vides two graphs plotting the test data set correct classification rate obtained
from the committees as a function of the number of genetic iterations for the
Laryngeal (left) and the Wisconsin diagnostic breast cancer (right) problems.
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Fig. 6. The test data set correct classification rate obtained from the committee as a
function of the number of genetic iterations for the Laryngeal (left) and the Wisconsin
diagnostic breast cancer (right) data sets

4 Conclusions

A technique for evolving committees of support vector machines has been pre-
sented in this work. The main emphasis of the technique is on selection of salient
features. Elimination of clearly redundant features in the first phase of the pro-
cedure developed speeds up the genetic search executed in the second phase of
the designing process. The genetic search integrating the steps of training, aggre-
gation of committee members, and hyper-parameter as well as feature selection
into the same learning process allows creating effective models in a small num-
ber of genetic iterations. The experimental tests performed on five real world
problems have shown that considerable improvements in classification accuracy
can be obtained using the proposed SVM designing approach.
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Abstract. The directed acyclic graph support vector machines
(DAGSVMs) have been shown to be able to provide classification accu-
racy comparable to the standard multiclass SVM extensions such as Max
Wins methods. The algorithm arranges binary SVM classifiers as the in-
ternal nodes of a directed acyclic graph (DAG). Each node represents a
classifier trained for the data of a pair of classes with the specific kernel.
The most popular method to decide the kernel parameters is the grid
search method. In the training process, classifiers are trained with differ-
ent kernel parameters, and only one of the classifiers is required for the
testing process. This makes the training process time-consuming. In this
paper we propose using separation indexes to estimate the generalization
ability of the classifiers. These indexes are derived from the inter-cluster
distances in the feature spaces. Calculating such indexes costs much less
computation time than training the corresponding SVM classifiers; thus
the proper kernel parameters can be chosen much faster. Experiment
results show that the testing accuracy of the resulted DAGSVMs is com-
petitive to the standard ones, and the training time can be significantly
shortened.

1 Introduction

The support vector machines (SVMs) are originally designed for binary classi-
fication problems [1]. To solve the multiclass classification problems, the SVMs
should be extended. The most often used extensions of the SVMs are the one-
against-one [2] and one-against-all strategies [3]. A decision-tree-based modifica-
tion of the one-against-one strategy is the directed acyclic graph SVM (DAGSVM)
[4]. These algorithms have been shown to perform well in real world applica-
tions [5]. Among these extensions, the performance of the DAGSVM is as good
as that of the one-against-one strategy, while the testing time of DAGSVM is
reduced. The DAGSVM constructs the directed tree structure with the pairwise
classifiers as its nodes. Therefore, designing a DAGSVM for a multiclass problem
is to train the standard SVM classifiers for each node.
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The training algorithms of SVMs look for the optimal separating hyperplane
which has a maximized margin between the hyperplane and the data and thus
minimizing the upper bound of the generalization error. The separating hyper-
plane is represented by a small number of training data, called support vectors
(SVs). Since the real data are often linearly inseparable, the data are mapped
into a higher dimensional space, the feature space, in which the data are possi-
bly more separable. In practice, a kernel function is incorporated to simplify the
computation of the inner product value of the transformed data.

Although the performance of an SVM depends largely on the kernel, there is
no theoretical method for determining a kernel and its parameters. Many exist-
ing approaches to determining the kernel parameters are mentioned in section 2.
Most of them look for good parameter combinations by training SVMs with all
parameter combinations in selected intervals, resulting in a very time-consuming
total training process. In this paper we propose using some indexes to predict a
good choice of the kernel parameters. The indexes derived from the inter-cluster
distances are proposed to estimate the performance of the classifier generaliza-
tion ability. If the pairwise classes data are considered as two labeled clusters,
a kernel parameter combination that leads to a good separation of data in the
resulted feature space would be a good choice. Meanwhile, the classifier being
found in that feature space is likely to have larger margin and thus will have a
higher generalization ability. The indexes we proposed are with O(l2) computa-
tional complexity for the sample size l. Although the time complexity is about
the same as training an SVM, the experimental results being listed in section 4
show that the actual computation time for the indexes are much less than that
for SVM training. According to the indexes, the kernel parameters we choose
from the possible candidates result in DAGSVMs which perform as well as the
ones being generated from the widely used grid search method.

2 SVM, DAGSVM and Kernel Selection

The SVM is designed for binary-classification problems, assuming the data are
linearly separable. Given the training data (xi, yi) , i = 1, . . . , l, xi ∈ Rn, yi ∈
{+1,−1}, where the Rn is the input space, xi is the sample vector and yi is
the class label of xi, the separating hyperplane (ω, b) is a linear discriminating
function that solves the optimization problem:

min
ω,b

〈ω, ω〉 ,

subject to yi (〈ω, xi〉 + b) ≥ 1, i = 1, . . . , l . (1)

〈., .〉 indicates the inner product operation. The minimal distance between the
samples and the separating hyperplane, i.e. the margin, is 1/ ‖ω‖.

In order to relax the margin constraints for the non-linearly separable data,
the slack variables are introduced into the optimization problem:

min
ξ,ω,b

〈ω, ω〉 + C

l∑

i=1

ξi,
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subject to yi (〈ω, xi〉 + b) ≥ 1 − ξi, i = 1, . . . , l, ξi ≥ 0 (2)

which is the soft margin SVM being generally discussed and applied. The resulted
classifier is called the 1-norm soft margin SVM, and C is the penalty parameter
of error. The decision function of the classifier is

sign

(
∑

xi:SV

yiαi 〈xi, x〉 + b

)

. (3)

In practice, since the real data are often not linearly separable in the input space,
the data can be mapped into a high dimensional feature space, in which the data
are sparse and possibly more separable. The mapping is often not explicitly
given. Instead, a kernel function is incorporated to simplify the computation of
the inner product value of the transformed data in the feature space.

When using a function φ : X → F to map the data into a high dimensional
feature space, the decision function of the classifier becomes

sign

(
∑

xi:SV

yiαi 〈φ (xi) , φ (x)〉 + b

)

. (4)

The mapping φ is not given explicitly in most cases. Instead, a kernel function
K(x, x′) = 〈φ (x) , φ (x′)〉 gives the inner product value of x and x′ in the feature
space. Choosing a kernel function is therefore choosing a feature space and the
decision function becomes

sign

(
∑

xi:SV

yiαiK (xi, x) + b

)

. (5)

The most often used kernel functions are:

– linear: K (x, z) = 〈x, z〉
– polynomial: K (x, z) = (γ 〈x, z〉 + r)d

, γ > 0

– radial basis function (RBF): K (x, z) = e

(

− ‖x−z‖d

2σ2

)

, σ > 0
– sigmoid: K (x, z) = tanh (γ 〈x, z〉 + r)

For certain parameters, the linear kernel is a special case of RBF kernels [6], and
the sigmoid kernel behaves like the RBF kernel [7]. When the data are linearly
inseparable, a non-linear kernel such as RBF that maps the data into the feature
space non-linearly can handle the data better than the linear kernels.

When using the DAGSVM for the multiclass data, an n-class problem is con-
sidered as n(n−1)/2 2-class problems. The data from each pair of the classes are
used to train a binary classifier, and all the binary classifiers form the internal
nodes of a rooted binary directed acyclic graph. Classifying a sample is going
through a path from the root to a leaf. At each node, the sample is classified by
the classifier of that node. The classification output decides moving to the left
or right child node, as illustrated in Fig. 1.
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Fig. 1. A DAG with a predefined node order

The most often used kernel function in an SVM is the RBF kernel. When
using the RBF kernel, the parameters 〈d, σ〉 should be set properly. Generally d
is set to be 2, thus the kernel value is related to the Euclidean distance between
the two samples. σ is related to the kernel width. The most straightforward way
to set the parameters is the grid search method [5]. This method trains SVMs
with all preferred parameter combinations. The classifier with the best accuracy
is applied in the testing process. The genetic algorithms (GAs) can be applied
to the SVM parameter search [8] [9] [10]. These parameter selection methods are
time-consuming because SVMs are trained for many combinations. The training
time complexity of the SVMs is O(l4) in worst case [11] or is experimentally
shown to be O(l)–O(l2.2) [12] [13], depends on the data. Debnath and Takahashi
use the principle components of data in the feature space to create an index for
choosing proper kernel parameters [14]. Bi et al propose a method for selecting a
suitable σ for RBF kernels according to the relationship of boundary data in the
feature space [15]. These methods calculate kinds of indexes as the heuristics of
choosing kernel parameters. The actual computation time is relatively short in
comparison to training an SVM. Based on the data geometry and distribution
in the feature space, we propose using the indexes derived from the inter-cluster
distances in the feature space as the heuristics to choose the kernel parameters.

3 Inter-cluster Distance and the Proposed Indexes

Generalization is the ability that a trained model gives the target value of an
input sample which is not in the training set. Many indexes can be used to
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assess the generalization ability. The most direct one is the validation accuracy.
For example, the training process of the grid search method uses the validation
accuracy to indicate the generalization ability of the classifier to the validation
data. With this method, a classifier is generated for each parameter combination
and the classifier with the best validation accuracy is chosen for generalization
usage. In addition to the training and testing samples, the validation samples
are reserved for validating the trained model to see whether the model overfits
the training samples. Therefore, it reflects the generalization ability of the model
to unknown data.

There are some other SVM-related indexes that can estimate the generaliza-
tion ability. Takahashi [16] used the ratio of the numbers of support vectors to
the training samples as an index. This suggests a useful index as Mij

SVij
for the

classifier of classes i and j, where Mij is the number of training data and SVij is
the number of support vectors. Phetkaew [17] proposed using the SVM margin
to identify a classifier that causes wrong classifications. As the margin decrease,
the distance between the nearest two samples from different classes decreases
and the more confusion between the two classes will be. These indexes require
the information of the trained classifiers, so they are as time-consuming as the
grid search is. Similar to the margin stands for, our previous work [18] proposed
a separation index which indicates the separation of two classes in the feature
space. We extend the previous proposed index to the following ones. Bezdek and
Pal [19] mentioned several inter-cluster distances. Considering the classes data
as the labeled clusters data, these distances can be modified and be used for
estimating the separation degree of two classes. The following two are robust to
noise:

δ4 (X+, X−) = d (x̄+, x̄−)

= d

⎛

⎜
⎝

∑

x+∈X+

x+

l+
,

∑

x−∈X−

x−

l−

⎞

⎟
⎠ , (6)

δ5 (X+, X−) =
1

l+ + l−

⎛

⎝
∑

x+∈X+

d (x+, x̄−) +
∑

x−∈X−

d (x−, x̄+)

⎞

⎠ , (7)

where X+ and X− are positive and negative classes, l+ and l− are sample sizes
of X+ and X−, and x̄+ and x̄− are the class means of X+ and X−, respectively.
d(x, z) is the preferred function which calculates the distance between two vec-
tors. A class mean is the arithmetic mean of the data in the same class. It can be
thought as the center of a class and thus stands for the class. The distance index
δ4 is the distance between the two means of the classes. The distance index δ5 is
the average distance between each sample to its opposite class mean. Both the
indexes reflect the distance between the two classes in some ways, thus they are
estimators of the separation degree of two classes.

In equation (6) and (7), d(x, z) is calculated with the data in the input space
in general. It represents the spatial relationship of two vectors in the input space.
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Since the data are mapped into the feature space first for the SVM training, the
indexes which are calculated in the input space may not represent the separation
degree of the two classes in the feature space. Referring to our previous work [18],
the distance indexes can be calculated in the feature space using the L2-norm
with the kernel function incorporated. The inter-cluster distance in the feature
space can be evaluated by applying the L2-norm on the mapped data. The kernel
function gives the inner product values of vectors in the feature space. We define
an index, δ4FSQ, which corresponds to the distance measure δ4 in the feature
space using the L2-norm.

δ4FSQ (X+, X−)
= d (x̂+, x̂−)

=
√

|x̂+ − x̂−|22

=

√
√
√
√
√
√

∣
∣
∣
∣
∣
∣
∣

∑

x+∈X+

φ(x+)

l+
−

∑

x−∈X−

φ(x−)

l−

∣
∣
∣
∣
∣
∣
∣

2

2

=

√
√
√
√
√

∑

x+i∈X+
x+j∈X+

K(x+i, x+j)

l2+
+

∑

x−p∈X−
x−q∈X−

K(x−p, x−q)

l2−
−

2
∑

x+m∈X+
x−n∈X−

K(x+m, x−n)

l+l−
,

(8)

where x̂+ and x̂− are the class means of the mapped X+ and X− data, respec-
tively. Similarly, δ5FSQ corresponding to δ5 can be

δ5FSQ (X+, X−)

=
1

l+ + l−

⎛

⎝
∑

x+∈X+

√

|φ(x+) − x̂−|22 +
∑

x−∈X−

√

|φ(x−) − x̂+|22

⎞

⎠ , (9)

where

|φ(x+) − x̂−|22

=

∣
∣
∣
∣
∣
∣
∣

φ(x+) −

∑

x−∈X−

φ(x−)

l−

∣
∣
∣
∣
∣
∣
∣

2

2

= K(x+, x+) +

∑

x−p∈X−
x−q∈X−

K(x−p, x−q)

l2−
−

2
∑

x−n∈X−

K(x+, x−n)

l−
. (10)

and |φ(x−) − x̂+|22 can be expressed in the similar way. δ4FSQ and δ5FSQ use
the L2-norm to calculate d(x, z) for two mapped vectors. Computing the L2-
norm values involves many inner products of mapped vectors, which can be in
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Table 1. Problem statistics

data set # training data # testing data # classes # attributes

dna 2000 1186 3 180

letter 15000 5000 26 16

satimage 4435 2000 6 36

Table 2. Training Process 1: Ordinary DAGSVM training

for each < C, σ > combination
for each pair of classes

train a classifier with the pairwise training data
construct the DAG with all the pairwise classifiers
classify the whole validation data by the DAG

the DAG with highest validation accuracy is for testing process usage

turn expressed by the kernel function. Therefore, the separation index values for
data in the feature space can be obtained. Calculating these indexes are with
O(l2) computational complexity. Since these indexes are related to inter-cluster
distances, they can represent the separation degree of the classes and thus can
estimate the classifier generalization ability.

4 Experiments and Results

In our experiments, we use the data sets dna, satimage and letter from the Statlog
collection [20]. The database statistics are listed in Table 1. The original training
data are scaled to be in [−1, 1] and are partitioned into training and validation
data sets [5]. The partitioned data are available on [21]. All the pairwise classifiers
are trained with the 1-norm soft margin SVM. We use the RBF kernel with d = 2,
σ ∈ [2−4, 2−3, . . . , 25] and C is set with the values [2−4, 2−3, . . . , 210].

We first find the best < C, σ > combination for the whole model. The corre-
sponding training process (TP1) is listed in Table 2. For each parameter combi-
nation, all the pairwise classifiers are trained to construct a DAG corresponding
to the parameter combination. The validation data are classified by each DAG
to obtain the validation rate of the whole DAG. As there is no such limitation
that all the pairwise classifiers must use the same parameter combination, we
also test the performance of the DAGSVM with each classifiers using different
parameter combinations. The relaxed training process (TP2) is listed in Table 3.
For a pair of classes, the grid search method is applied to the training process
to choose the best classifier for the two classes. Only the validation data from
the two classes are classified by the classifier. All the best classifiers for different
pair of classes together construct the DAG for testing. In practice, TP1 and
TP2 can share the same training and validation results with different arrange-
ments, and therefore they can have the same training time. However, since TP1
validates each DAG with all validation data while TP2 validates each pairwise
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Table 3. Training Process 2: DAGSVM with each pairwise classifier choosing param-
eters separately

for each pair of classes
for each < C, σ > combination

train a classifier with the pairwise training data
classify the validation data corresponding to the two classes

choose the classifier with highest validation accuracy
construct the DAG by the chosen classifiers for testing process usage

Table 4. Training Process 3: DAGSVM using proposed indexes for choosing kernel
parameters

for each pair of classes
for each σ

calculate the separation index
choose the σ with the highest index value
with the chosen σ, for each C

train a classifier with the pairwise training data
classify the validation data corresponding to the two classes

choose the classifier with highest validation accuracy
construct the DAG by the chosen classifiers for testing process usage

classifier with limited validation data, the resulted DAGs can be different in
chosen classifiers and testing accuracy.

Since the validation accuracy is an estimation of classifier generalization abil-
ity, it can be substituted by using the proposed indexes as the heuristics to choose
the kernel parameters. Because the kernel functions are involved in calculating
the index values, the kernel parameters can be chosen according to the index
values. There left only C to be chosen by the validation process, and the time
needed for the training process for different kernel parameters can be saved. The
training process (TP3) is presented in Table 4. We apply δ4FSQ to TP3 to show
that the heuristic works. The resulted DAG is validated with all the validation
data.

Table 5 lists the testing accuracy and training time of the trained DAGSVMs.
As TP1 and TP2 use the identical training and validation results, these two
training process are identical in the time consumption. Although TP1 uses the
global information while TP2 and TP3 don’t, the testing accuracy of TP2 and
TP3 is competitive to TP1 because the best pairwise classifiers are used. Since
it is not necessary to train models for the kernel parameters other than the ones
chosen by the heuristics, the training time of TP3 is significantly shorter than
TP1 and TP2. As we use ten candidates of σ and TP3 trains one DAGs only in
our experiment, the training process is about ten-time sped up. If a finer grid
for searching the parameters is used in TP1 and TP2, more candidates of the
kernel parameters are required to be validated and the proposed method would
speed up the training process more. We also observed that the kernel parameters
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Table 5. Testing rates (%) and training time (in seconds) for the DAGSVMs using
TP1, TP2 and TP3

TP1 TP2 TP3
data set testing training testing training testing training speed up

rate time rate time rate time factor

dna 94.35 3277.2 94.69 3277.2 94.60 162.1 20.2

letter 97.02 62004.3 95.42 62004.3 95.64 5827.8 10.6

satimage 90.45 7066.0 90.80 7066.0 89.85 874.9 8.1

chosen by the proposed heuristics are often the same ones or close to the ones
chosen by the validation accuracy. According to this, the proposed indexes can
also be used to suggest the starting point or searching center for the grid search
process.

5 Conclusion

We propose using the inter-cluster distance based index to choose the kernel
parameters for each classifier in DAGSVMs. Choosing the kernel parameters for
classifiers individually can possibly lead to a DAGSVM which performs even
better than a DAGSVM with the same parameter for all classifiers. Meanwhile,
it is not necessary to choose the kernel parameters for the pairwise classifiers by
the time-consuming grid search method. Using the proposed index, the proper
kernel parameters can be chosen. Since the index can be calculated much faster
than the grid search method, the training process for the proposed method can
be significantly faster than the generally used grid search method. Currently the
penalty parameter C is not incorporated into the proposed strategy; thus it is
our future work to also predict the penalty parameter.
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Abstract. This paper presents a data preprocessing procedure to se-
lect support vector (SV) candidates. We select decision boundary region
vectors (BRVs) as SV candidates. Without the need to use the decision
boundary, BRVs can be selected based on a vector’s nearest neighbor of
opposite class (NNO). To speed up the process, two spatial approxima-
tion sample hierarchical (SASH) trees are used for estimating the BRVs.
Empirical results show that our data selection procedure can reduce a full
dataset to the number of SVs or only slightly higher. Training with the
selected subset gives performance comparable to that of the full dataset.
For large datasets, overall time spent in selecting and training on the
smaller dataset is significantly lower than the time used in training on
the full dataset.

Keywords: sampling methods, support vector machines.

1 Introduction

Support vector machines (SVMs) [1] are a popular approach to machine learning
because of their solid analytical foundation and frequent high generalization
power. However, standard maximal margin SVMs face the difficulty of solving
a quadratic programming (QP) problem with time and space complexities of
O(n3) and O(n2) respectively (where n is the size of the input dataset). When
the dataset is relatively large, training SVMs becomes intolerable slow and often
results in memory shortage. Multiple efforts have been undertaken to overcome
these difficulties. Previous work has focused on how to simplify or modify the
QP problem (e.g., the sequential minimum optimization (SMO) algorithm [2]).
Another line of research has focused on reducing the training dataset by selecting
only a set of potential support vectors (SVs) to define the decision boundary.

In terms of data selection, existing methodologies can be roughly divided
into three categories: (1) data sampling, (2) neighborhood-based selection, and
(3) boundary-based selection. In the first category, statistical techniques such
as random sampling and stratified sampling [3,4,5] are employed to do data
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c© Springer-Verlag Berlin Heidelberg 2007



Data Selection Using SASH Trees for Support Vector Machines 287

selection. These techniques are simple but tend to miss SVs and select non-SVs.
In the second category, data selection is done by focusing on regions populated
by k-mean clusters ([6,7]), or on vector neighborhoods (such as k-NNs [8,9], or
Gabriel neighbors [10]). Using clustering to do data selection relies heavily on the
existence of regions with high sample density; sparse data makes it difficult to
identify clusters even when some of these data should be kept as SVs candidates.
Hence, using clusters to select SVs candidates tends to be overly conservative.
In addition, using k-NNs to select SVs candidates is based on the assumption
that data close to the decision boundary should have a mixed number of class
labels among their neighbors; a common research problem is to measure the
degree of k-NN purity, but a major problem is the time used to find all k-NNs
which is at least O(n2) without using an index. In the third category, data
selection techniques find the decision boundary, such as [11,12,13]. The general
procedure follows two steps: 1) find a tentative decision boundary; and 2) use the
boundary to find potential SVs. The selected vectors are used again during the
first step to update the decision boundary. The two steps are repeated until no
more updating is necessary. Even though this approach will eventually generate
a decision boundary, it may need a long search and do multiple scans over the
dataset before it converges.

In this paper we propose the following two steps: (1) select the decision bound-
ary region vectors (BRVs) as the SVs candidates without using iterative decision
boundary, and (2) use the spatial approximation sample hierarchy (SASH [14])
tree structure to speed up this process. In section 2, we provide a detailed ac-
count of our approach followed by an empirical evaluation in Section 3. Section 4
gives conclusions and discusses future work.

2 Data Selection Based on Boundary Region Vectors

Most vectors far from the decision boundary are not SVs and can be safely
removed. Without knowing the exact position of the decision boundary, however,
we can always find a vector close to the boundary followed by a search for its
nearest neighbor of opposite class (NNO); we can then consider them both as
SV candidates. The concept of NNO is used for data condensing in instance-
based learning (IBL). Data condensing aims at selecting the minimal subset
of data that preserves the same accuracy to that obtained when invoking a 1-
NN algorithm on the full dataset. Methodologies developed in data condensing
mainly focus on the quality (minimal or not) and accuracy (consistent or not)
of the condensed set. For example, Dasarathy’s MCS (minimum consistent set
[15]) condenses a dataset based on k-NNs of the same class and its nearest
opposite-class neighbors.

Different from data condensing, our purpose using NNOs is to select SV can-
didates similar to those identified by SVMs. A positive vector x+

i ’s NNO can be
obtained by comparing the distances from this vector to all negative vectors x−

j :

NNOi = arg min
x−

j

||x+
i − x−

j ||.
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Algorithm 1. Finding BRVs using a distance matrix D ∈ R
np×nn . In each step,

the set of marked vectors M is reduced to size kn or kp, respectively.
Given: kp ≥ 1, kn ≥ 1
Output: B, the set of BRVs
B = {}
for 1 ≤ i ≤ np:

di =knth smallest distance in row i
M = {xj | Di,j ≤ di}
B = B ∪ M

for 1 ≤ j ≤ nn:
dj =kpth smallest distance in column j
M = {xi | Di,j ≤ dj}, where
B = B ∪ M

The same can be done to find a negative vector’s NNO. We define the union
of NNOs for both classes as boundary region vectors (BRVs); these are assumed
to be within or close to the region around the decision boundary delineated by
the margin.

2.1 Finding BRVs Using a Pairwise Matrix

Our approach begins by splitting the full dataset into positive and negative
subsets, with size np and nn respectively. A 2-d distance matrix D with np

lines and nn columns is then created. Along the ith row of the matrix, the jth

element is the distance from positive vector x+
i to negative vector x−

j . The x+
i ’s

NNO can be found by looking for the shortest distance in the i row. Suppose
this shortest distance is found on the vth column; vector x−

v is then the NNO.
The procedure iterates until all NNOs in both classes are found and selected as
BRVs (see Algorithm 1). In this algorithm, more than one NNO is allowed to be
selected for each vector, i.e. kp ≥ 1 and kn ≥ 1. We will discuss this in the next
section.

Algorithm 1 is an effective approach to finding nearest neighbors across the
decision boundary. The time and space complexities of this algorithm are both
of O(n2) because we need to compute every pairwise distance and store that in
memory. Large datasets demand an index to speed up the search for BRVs.

2.2 Approximating BRVs Using SASH Trees

There are many indexing structures that can be used to reduce the complex-
ity of NN search, such as R-tree. In this study, we use SASH trees because
they require tuning fewer parameters than other methods. Since SV data selec-
tion is a data preprocessing step, computing minimal and consistent subsets is
unnecessary.

To guide the NN search, a SASH tree assumes that transitivity holds for the
NN relation. Specifically, if vector x is a NN vector of y, and y is a NN vector
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Algorithm 2. Finding the approximate BRVs given positive and negative SASH
trees T+ and T−. The dataset X is split into classes X+ and X−. The function
k-Closest(k, u,X) returns the k closest elements in the set X to the node u.
Given: number of NNOs in each class, k+ ≥ 1, k− ≥ 1
Output: approximate BRVs, S
S = {}
for c ∈ {+, −}:

c̄ = {+, −} − c
for u ∈ X(c):

P1(u) = root of T (c̄)

for 2 ≤ i ≤ Height(T (c̄)):
Ci(u) = {v ∈ Pi−1(u)}
Pi(u) = k-Closest(p, u, Ci(u))

P (u) =
⋃

i Pi(u)
s(u) = k-Closest(kc̄, u, P (u))
S = S ∪ s(u)

of z, then x is likely to be a NN vector of z. As a result, only approximate NNs
in adjacent levels are connected to each other. Although a SASH tree cannot
guarantee finding all exact NNs, it limits the NNs search in each level of the
tree to a small number of candidates, thus significantly reducing search time.
Similar work [16] uses a clustering feature hierarchy as index but guides the
data selection process through a tentative decision boundary.

Construction of SASH trees. A SASH tree consists of n nodes, where n is
the number of data vectors. Each vector is randomly assigned to a node, such
that starting from the bottom, there are n

2 ,
n
4 , . . . , 1 nodes in each level. Tree

levels are numbered starting from 1 for the top level until h for the bottom level,
where h ≈ log2 n is the height of the tree. Each node is allowed to have at most
p parents and c children. The leaf nodes have no children. The root node has no
parent and is fully connected to all nodes in level 2.

Links for the interior nodes are created through the following iterative process:
(1) Interior nodes in levels 3 ≤ i ≤ h are only connected to p parent nodes in
level i−1. Parent nodes are selected from a pool of pc candidates. The candidates
are obtained by selecting at most pc nearest nodes in each level, starting from
the root. (2) For each parent node, all but the c nearest child nodes are removed.

Because pc is much smaller than the actual number of nodes in most levels,
finding the p nearest parents substantially reduces search time. The time com-
plexity for connecting one node is O(pch), or O(pc log2 n). Tree construction has
time complexity O(n log2 n) and space complexity O(n).

Approximating BRVs using SASH tress. To speed up our BRVs search,
we need to construct positive and negative SASH trees. After each SASH tree is
constructed, we find BRVs by querying the opposite tree for each node. Querying
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is a top-down search similar to finding the parents for a child node. For each
node in the ith level of the positive SASH tree, searching starts from the root
node of the negative SASH tree. In each level, at most pc distances are compared
and only the p closest parents are collected. The final kn NNOs of the positive
node are selected from the p closest nodes obtained from the search. Through
this process, BRVs are selected for all nodes, as described in Algorithm 2. The
time complexity for BRVs querying is O(n log2 n).

3 Experiments and Discussions

3.1 Experiment Setup

In this study, we consider only binary-class datasets. Data are taken from UCI
repository with each variable scaled to [−1, 1]. For each dataset, we do the fol-
lowing: (1) select BRVs, (2) train on the selected subset of data and save the
resulting model, (3) assess the model on the testing dataset and obtain accuracy
results, and (4) stop if there is no performance improvement in two consecutive
runs; otherwise go back to step (1) and select more data after increasing the
value of k (parameter of nearest neighbor).

For our implementation, we used the publicly available LIBSVM library, C++
version 2.83, to train the SVMs [17]. SASH trees are also implemented in C++.
Experiments were run on a PC with a 2.2 GHz Pentium CPU and 1GB of
RAM. The classifier used is C-SVM with L2 penalty for noisy data and radial
basis functions (RBF) as kernel. With this kernel, there are two user-defined
parameters: (C, γ). We invoked a grid search to find the best-performing (C, γ)
values for each dataset.

3.2 Support Vector Recovery

We detail the BRV selection process on the breast-cancer dataset. To test our
SV recovery ratio, we trained on the full dataset. The dataset consists of 683
vectors and 10 features each. Using (C, γ) values of (1.0, 0.022) we found 87 SVs.
Of these, 44 are positive and 43 are negative, which accounts for only 12.7% of
all vectors.

We use Algorithm 1 to select BRVs and compare them to the actual 87 SVs.
We first select only one NNO for each vector. In this case, BRVs can only recover
34.5% of the set of SVs (see Table 1). The corresponding SVM’s accuracy is very
low. As we increase the number of NNOs for each vector, k (here kp = kn = k),
the number of selected BRVs increases and the SV recovery ratio grows, while
accuracy improves. When k = 8, the selected BRVs (74 positive and 69 negative
vectors) recover 90.8% of SVs, and accuracy reaches its highest value. We find
that selecting more data does not necessarily yield better accuracy even when
the number of recovered SVs increases. When this occurs, the ratio of BRVs
(selected to reach the same accuracy as SVM on the full dataset) is termed the
critical ratio. In this case, the critical ratio is 20.9%. The remaining 79.1% of
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Table 1. SV recovery from breast cancer dataset (683 vectors with 10 features)

k : kp(kn) 1(1) 3(3) 5(5) 7(7) 8(8) 10(10) 15(15) -
BRVs: p(n) 17(18) 40(35) 54(52) 66(64) 74(69) 83(80) 95(96) 239(444)

selection ratio 5.1 11.0 15.5 19.0 20.9 23.1 22.1 100
SV recovered (%) 34.5 64.4 79.3 86.2 90.8 92.0 94.3 100
SVM test acc(%) 65.0 95.9 96.2 96.5 97.4 97.4 97.4 97.4

Table 2. Critical ratios and SVM performance for different datasets

datasets full data set selected BRVs
(n × d) #SVs SV ratio

(%)
SVM acc.

(%)
#BRVs critical ratio

(%)
SVM acc.

(%)
breast cancer(683x10) 87 12.3 97.4 143 20.9 97.4

diabetes(768x8) 467 60.8 78.1 497 64.7 77.3
heart(270x13) 103 38.1 85.2 134 49.6 85.2

ionosphere (351x34) 194 55.3 100 225 64.1 98.9
mushrooms(8124x112) 313 3.8 100 1093 13.5 100

data are redundant and can be removed. This critical ratio is 8% higher than
the SV ratio.

The critical ratio is slightly higher than the actual SV ratio for two main
reasons. (1) some BRVs are not SVs but lie close to the decision boundary; (2)
noisy data causes a vector to be selected as an NNO. Noise has two effects in
our data selection process: (i) some NNOs of a noisy vector may be non-noisy.
These are selected in our approach and cause the critical ratio to increase; (ii) a
noisy vector may mislead the search of real NNOs if it is closer to a vector than
the actual NNO. In this case we have to increase the k value to select more data;
this helps to recover the real SVs, but increases the critical ratio.

Additional experimental results are shown in Table 2. Results show that crit-
ical ratios are 4-10% higher than SV ratios. For large datasets having low SVs
ratio, the reduction is substantial. For example, the mushroom dataset can be
reduced from 8124 vectors to 1093 vectors, where about 86% of the data are
eliminated without performance degradation.

Our investigation also shows that data selected according to the critical ratio
does not recover 100% of all SVs (again see Table 1). As we look for the best
(C, γ), the highest performance contour lies in a flat region within which all
SVMs have almost the same performance. This means that the best (C, γ) can
change within small ranges without performance degradation. However, the SVs
set is very sensitive to (C, γ) values both in terms of size and vectors contained.
Within different sets of SVs, many SVs are shared; others are mutual NNs of
common SVs. Shared SVs are essential to defining the decision boundary. Other
SVs can be replaced by their neighbors without changing overall performance.
This explains why a slight different BRVs set, even if it does not cover 100%
SVs, does not affect SVMs consistency.



292 C. Sun and R. Vilalta

Fig. 1. Comparison of different sizes (SASHs with p = 2 and c = 8) for different
datasets

3.3 Accuracy of SASH Approximation

As mentioned earlier, SASH only finds approximate nearest neighbors. There are
two ways to obtain more accurate approximations. One way is to increase the
values of p and c. This method will increase the time of SASH tree construction
and the time of k-NNs querying. Alternatively, one can keep p and c fixed and se-
lect more SV candidates with a larger value of k-NNOs. This produces a larger
critical ratio and will increase SVM’s training time. Using either method can
make the selected subset of data generate models comparable to those obtained
with the full dataset. In practice, p = 2 and c = 8 results in a good approxi-
mation. Figure 1 compares the size of the full dataset to the subset selected by
the matrix approach and the subset selected by SASHs for four datasets. Ex-
periments show that subsets obtained from SASHs are slightly larger than those
obtained from the matrix approach. However the difference is small, which leads
us to conclude that SASH approximation is very similar to the matrix approach.

3.4 Overall Time Savings

To check the overall improvement in computational time, we compare the time
it takes to train SVMs on a full dataset to the time it takes to do SASH data
selection and training on the selected subsets. Our experiments test the Adult
dataset with varying sizes (from 1600 to 32561 vectors, available from the LIB-
SVM website [17]). These data have 123 features (scaled to [−1, 1]). Experimen-
tal results are shown in Figure 2. This figure shows that when the size of the
dataset is small, the overhead for data selection dominates. As the size of data
increases, the time for data selection is shorter than the time needed to train on
the full dataset. Training time on the reduced dataset is even shorter. Overall
time savings are significant as the dataset becomes larger than 30,000 vectors. On
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Fig. 2. Comparison of different CPU times

Table 3. Overall time comparison

dataset full dataset selected BRVs overall
time

(n × d) #SVs t-time
(sec)

SVM acc.
(%)

#BRVs s-time
(sec)

t-time
(sec) SVM acc.

(%)
saving
(%)

mushrooms
(8,124x112) 313 30 100 1,093 23 2 100 16.6

adult-9
(32,561x123) 1,1505 2,098 85.1 11,733 742 263 84.5 52.1

SensIT
(30,000x100) 9,561 1,810 87.8 11,257 561 172 86.9 59.5

SensIT
(40,000x100) 12,329 3,465 88.0 14,667 964 417 87.2 60.1

SensIT
(50,000x100) 15,415 5,658 88.0 18,431 1360 823 87.2 61.4

(t-time: training time on 10-run average; s-time: selecting time on 10-run average)

additional datasets (see Table 3), we can observe that time savings are signifi-
cant, particularly for over-sized datasets.

Part of our proposed strategy is based on computing and comparing the dis-
tance between two vectors in input space. When it comes to finding NNs, using
Radial Basis Functions RBF as kernels does not change the NNOs nor BRVs.
For two vectors x and y, the distance over the input space is d2 = ||x − y||2.
When the vectors are mapped to φ(x) and φ(y), the distance in kernel space can
be written as d2

k = ||φ(x)−φ(y)||2 = K(x,x)−2K(x,y) +K(y,y). Using RBF,
K(x,y) = e−γ||x−y||2 , we have K(x,x) = K(y,y) = 1. In that case the distance
is d2

k = 2 − 2e−γ||x−y||2 . This shows how distance order does not change in NN
search. If we select k-NNOs, we will find the same vectors in input space as those
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found in the kernel space. Thus we do not need to compute a kernel function
to select data. This can save a lot of time as compared to the case where data
selection is carried out in the kernel space.

As final remarks, we add that data selection is used to select potential SVs
but will not produce gainings in time savings if a given dataset has a high SV
ratio. Data with high noise ratio suffers of the same problem. For particular
distributions such as equally spaced vectors, our approach is not an appropriate
solution because we select data based on differences in distance.

4 Conclusions and Future Work

Data selection based on BRVs can recover most SVs when we select slightly
more data than the number of actual SVs. Training on selected data subsets sig-
nificantly reduces the amount of training time without degrading performance.
Since the decision boundary can be defined with different set of SVs, we do not
need to recover 100% SVs. Instead, selecting BRVs as SVs candidates produces
almost-identical results. For large datasets, the SASH tree can be used to ap-
proximate all BRVs. Time saving are significant compared to training an SVM
on the full dataset.

Future work will focus on studying performance on extremely large datasets,
and in using fixed-sized SASH trees to approximate BRVs. As noisy data causes
more data to be selected, we will consider different techniques to detect and
remove noise vectors. For the case of highly unbalanced datasets, selecting the
same k-NNOs for both classes can have a strong impact on the example distribu-
tion. Future work will study how to address the class imbalance problem using
our proposed techniques for data selection.
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Abstract. In this paper, we present a novel active learning strategy, named 
dynamic active learning with SVM to improve the effectiveness of learning 
sample selection in active learning. The algorithm is divided into two steps. The 
first step is similar to the standard distance-based active learning with SVM [1] 
in which the sample nearest to the decision boundary is chosen to induce a 
hyperplane that can halve the current version space. In order to improve upon 
the learning efficiency and convergent rates, we propose in the second step, a 
dynamic sample selection strategy that operates within the neighborhood of the 
“standard” sample. Theoretical analysis is given to show that our algorithm will 
converge faster than the standard distance-based technique and using less 
number of samples while maintaining the same classification precision rate. We 
also demonstrate the feasibility of the dynamic selection strategy approach 
through conducting experiments on several benchmark datasets. 

Keywords: Active Learning, Dynamic Active Learning, Distance-based Active 
Learning, Information Retrieval, Support Vector Machine. 

1   Introduction 

Active learning is a learning model in which the training samples will be selected by 
the learner, labeled by an oracle and then added into the current training set to form 
the enlarged training one on which the classifier will be improved. Instead of passive 
learning, Active Learning is similiar to the human learning mode and has become an 
efficient tool for solving semi-supervised learning problems, especially when the 
initial training set only includes a few labeled samples. Since the last decade, Support 
Vector Machine (SVM) has been increasingly adopted as an universal classification 
tool for its excellent performance and its strong theoretical basis. More recently, some 
work has been done to combine active learning strategy with SVM and some 
successes have been reported for application domains such as information retrieval 
(including image and text retrievals), data mining, etc [1, 2, 3, 4, 5]. 

Because of its’ good performance and low additional computational requirements, 
distance-based active learning with SVM [1, 13] in particular is one of the more well-
known active learning methods. In terms of the Version Space Theory [1], the current 
version space can be approximately halved by the hyperplane induced by the sample 
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nearest to the decision boundary after making several weak assumptions. In distance-
based strategy, this sample will be queried and added into the training set after 
labeling.  

In this paper, we propose to improve upon the standard distance-based active 
learning in terms of learning efficiency and convergent rates by incorporating a 
dynamic sample selection strategy to the standard distance-based active learning 
method. Particularly, our approach selects, during each training iteration, the sample 
in the neighborhood of the sample nearest to the current decision boundary that 
induces the hyperplane which maximally reduces the surface area of the version 
space. Thus the approach can lead to faster convergence as well as improved learning 
efficiency. In the following section, we will present the theoretic foundation of the 
algorithm followed by experiments conducted on benchmark datasets to demonstrate 
the feasibility of the proposed method. 

2   Sample Selection in Version Space for SVM Training 

Version space [6] is the set of all hypotheses which satisfy all the samples in the 
training set. We suppose that the target function can be well studied, i.e., the target 
function can be perfectly expressed by one hypothesis in the version space. Thus 
when the area of the version space becomes smaller and smaller, the resulting 
classifier trained on the training set will approximate the target function more and 
more accurately, formally speaking, the generalization error will decrease with the 
area of the version space [7]. However, the version space for a typical classification 
problem is so complex that directly computing its’ surface area is in general 
impossible. It is fortunate that, in practice, we only need to calculate the rate at which 
the surface area of the version space decreases, instead of directly and explicitly 
computing its’ surface area. Since the total surface area of the version space is limited 
by the samples, this rule can be exploited to design active learning methods. Version 
space-based active learning is a strategy that the sample which can reduce the area of 
the version space is queried and added into the current training set after being labeled 
by an oracle. While for general classifiers, such as Artificial Neural Network, it is still 
an open-problem to find the relation between the version space and the samples, but 
the problem is tractable for SVM. In the following, we first give a description of the 
existing distance-based active learning with SVM, and then describe our improved 
algorithm. 

2.1   Support Vector Machine and Its Representation in Version Space 

Because of their strong mathematics foundation and excellent performances in 
practice, SVMs have received much attention in the computer vision community since 
the 90s. A tutorial on SVM can be found in [8], and other introductions of SVM  
can also be found in [9, 10]. A SVM classifier is a linear classifier where the 
separating hyperplane is chosen to minimize the expected classification error of 
unseen test patterns. For popular C-Support Vector Classification (C-SVC) [11], it 
can be obtained by solving the following optimization problem: 
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where W  is the parameter space which equals to the mapped space )(xF Φ= . 

For one classifier corresponds to one w  in the parameter space, according to its’ 
definition and model (3), its version space can be expressed as follow: 

{ }libxwywWwV ii ,...,1,0))((,1 =>+Φ•=∈=  (4) 

By assuming 1)( =Φ ix  and 1±=iy , we also have 
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which means that the margin of the SVM also equals to the minimum  

distance from one point, w , to the hyperplane 0))(( =+Φ• bxyw ii  

( )(y vectornormal i ixΦ≡ ) in the parameter space W .  

From the above analysis, we can see that the goal of SVM is to find the center of 
the largest radius hypersphere whose center can be placed in the version space and 
whose surface does not intersect with the hyperplanes induced by the labeled 
instances. It follows that the hyperplanes touched by the maximal radius hypersphere 
correspond to the support vectors and that the radius of the hypersphere is the margin 
of the SVM. 

For un-separable cases, as noted in [15], it is possible to modify any kernel so that 
the data in the new induced feature space is linearly separable. 

2.2   Distance-Based Active Learning with SVM 

In the mapped feature space F , SVM becomes a linear classifier. So there exists a 
duality between the feature space F  and the parameter space W : points in F  
correspond to hyperplanes in W  and vice versa. (These rules were already embodied 
in the above section.) Based on the duality property, any samples near the decision 
boundary can approximately halve the current version space if the later is symmetric. 
The situation where the version space is asymmetric is outside the scope of this paper 
and will be discussed in a separate work.  

Tong [12] proposed a lemma: 

Lemma 1. Suppose we have an input space X , finite dimensional feature space F  

(induced by a kernel k ), and parameter space W . Suppose active learner *l  always 
queries instances whose corresponding hyperplanes in W  halves the area of the 

current version space. Let l  be any other active learner. Denote the version spaces of 
*l  and l  after i  pool-queries as *

iV  and iV  respectively. Let P  denote the set of 

all conditional distributions of y  given x . Then 

)]([sup)]([sup *
iP

P
iP

P
VAreaEVAreaENi

Ρ∈Ρ∈

+ ≤∈∀ , 

with strict inequality whenever there exist a query j  by l  that does not halve version 

space 1−jV . 
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(a) Version Space Representation of SVM 

 

(b) Feature space Representation of SVM 

Fig. 1. Illustration of distance-based active learning with SVM (sample ‘a’ will be selected as 
query instance) 

Based on an assumption that the version space is symmetric and Lemma 1, the sample 
nearest to the decision boundary will be queried, and be added into the current 
training set after being labeled by the oracle (figure 1). This strategy is called 
distance-based active learning with SVM. 

2.3   Theoretic Derivation and Analysis of Dynamic Sample Selection Strategy 

Since training a SVM is usually expensive, one of the goals of active learning is using 
the fewest number of samples to train a classifier which can approximate the target 
function as much as possible. As to the version-space-based active learning, the target 
function can be well-defined by one point in the hypothesis space. Thus the goal is 
equivalent to finding the fewest number of samples which can maximally reduce the 
surface area of the version space. Based on this idea, we propose a dynamic sample 



 Dynamic Distance-Based Active Learning with SVM 301 

selection strategy to choose the sample which can reduce a larger area of the version 
space than the sample nearest to decision boundary could achieve.  

We can see that distance-based active learning strategy combines the following two 
steps into one atom operation: 

Step 1: query the sample nearest to the current decision boundary, and get its’ label 
from the oracle; 

Step 2: add the labeled sample into the current training set to get enlarged training set, 
and the classifier will be updated on the enlarged training set; 

Our approach splits the above atom operation to two separate steps. In the 
conventional distance-based strategy, it should be noted that, after Step 1, the label of 
the sample nearest to the decision boundary becomes known, i.e., the normal vector of 
the hyperplane induced by this sample is known, and adding it immediately into the 
current training set as defined in Step 2 may be not the best choice yet.  

We will first derive the theoretical conditions for the choice of sample in dynamic 
sample selection and then state the associated algorithm. (Here we only consider the 
problem of classification, and, without loss of generality, assume the label of positive 
and negative category is “1” and “-1”) 

Definition 1. Version space is the set of all hypotheses which satisfy all the samples 
in the training set. For separable SVM, it can be expressed by the following 
formulation (rewriting equation (4)): 

{ }libxwywWwV ii ,...,1,0))((,1 =>+Φ•=∈=  (6) 

where l  is the number of the current training samples. 

Definition 2. Area of the version space )(VArea  is the surface area that the version 

space occupies on the hypersphere 1=w . 

Definition 3. Distance from the point x  to the current decision boundary 

0)(* =+Φ• bxw  is bxwxD +Φ•= )(*)(  ( *w  is the solution of the SVM). 

Proposition 1 
For separable SVM, given l  training samples which form the symmetric version 

space in the form of equation (6), newV1  and newV2  are the new updated version after 

adding sample ),( 11 yx  and ),( 22 yx  respectively, then 

1) if 1, 21 =yy , and )()( 21 xDxD > , then )()( 21
newnew VAreaVArea > ; 

2) if 1, 21 −=yy , and )()( 21 xDxD > , then )()( 21
newnew VAreaVArea < ; 

Proof 
After adding a new sample ),( yx  in the margin band of the current SVM, the 

current version space is divided, by the hyperplane 0))(( =+Φ• bxwy  induced 
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by the sample ),( yx , into two portions: one is the new updated version space 

expressed by equation (7) and another is the removed version space expressed by 
equation (8). 

⎪⎭

⎪
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So after adding ),( 11 yx  and ),( 22 yx  respectively ( 21 yy =  here), we get their 

new updated version space as follows: 
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It is reasonable to conceive that there exist a hyperplane in the parameter space which 
has the same distance to the current solution of the SVM *w  as the hyperplane 

induced by the sample ),( 11 yx , and the same normal vector as the hyperplane 

induced by the sample ),( 22 yx  (figure 2). Thus this conceivable hyperplane can be 

expressed with 0))(( 22 =+Φ• tempbxwy  ( tempb  is offset constant). If this 

hyperplane corresponds to the sample ),( temptemp yx  ( 21 yyytemp == ), we get 

that 

temptemp bxwxDxD +Φ•== )(*)()( 21  (11) 

And the newly formed version space after adding the sample ),( temptemp yx  into the 

current training set is listed as follows: 
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1x

2x

tempx

 

Fig. 2. Illustration of the new updated version space after adding the sample ),( 11 yx , 

),( 22 yx  respectively (here 121 == yy  and )()( 21 xDxD > , the sample ),( 11 yx  

is selected into the current training set by standard distance-based active learning, while 

dynamic distance-based active learning selects the sample ),( 22 yx  into the current  

training set) 

Considering the conditions that the current version space is symmetric, and *w   
is almost the center of the current version space (model (3)), it can be easily  
followed that 

)()( 1
newnew

temp VAreaVArea =  (13) 

1) Substituting equation (11) into )()( 21 xDxD > , we can infer that: 

bbbxwbxw temptemp >⇒+Φ•>+Φ• )(*)(* 22  (14) 

By combining the condition 121 == yy , we can get 

0))((0))((

))(())((

2222

2222

>+Φ•⇒>+Φ•
⇓

+Φ•>+Φ•

temp

temp

bxwybxwy

bxwybxwy

 (15) 

Considering their definitions of the new updated version space in  

the equation (10) and (12), we can conclude new
temp

new VV ⊂2 , thus 

)()( 2
new

temp
new VAreaVArea < . Combined with equation (13), it is evidently that 

)()( 12
newnew VAreaVArea < . 

2) The proof processes are similar to item (1). After substituting equation (11) into 

)()( 21 xDxD > , we can infer that: 
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bbbxwbxw temptemp >⇒+Φ•>+Φ• )(*)(* 22  (16) 

By combining the condition 121 −== yy , we can get 

0))((0))((

))(())((

2222

2222

>+Φ•⇒>+Φ•
⇓

+Φ•>+Φ•

bxwybxwy

bxwybxwy

temp

temp

 (17) 

Considering their definitions of the new updated version space in  

the equation (10) and (12), we can conclude new
temp

new VV ⊃2 , thus 

)()( 2
new

temp
new VAreaVArea > . Combined with equation (13), it is evident that 

)()( 21
newnew VAreaVArea < .                                                                          █ 

From proposition 1, we know that if the sample ),( 11 yx  and ),( 22 yx  are both 

belong to the positive category, i.e., 121 == yy , and )()( 21 xDxD > , then 

)()( 21
newnew VAreaVArea > . It means that the sample ),( 22 yx  can reduce a 

larger area of the version space than the sample ),( 11 yx  can do. However, as the 

sample ),( 11 yx  is nearest to the current decision boundary and will hence be added 

into the current training set using the standard distance-based active learning with 
SVM (illustrated in figure 2).To overcome this problem, we propose one dynamic 
distance-based selecting strategy whose goal is to choose the sample which can 
reduce the version space as much as possible. Our dynamic distance-based active 
learning algorithm can be detailed in the following two steps: 

Step 1:  query the sample nearest to the current decision boundary (without losing 
generality, we call it sample “a”), and get its’ label from the oracle; then 
create an short ascended list based on the samples’ distance to the current 
decision boundary, which is only consisted of the neighbors of sample “a”; 

Step 2:  if the label of sample “a” is “+1” (i.e., sample “a” belongs to positive 
category), the sample in the former position of the sample “a” in the list will 
be queried, if its’ label is still “+1”, repeat querying its’ former sample until 
reaching one sample whose label is “-1” or the end of the list, then the last 
positive sample will be added into the current training set; if the label of 
sample “a” is “-1”, similar processes can be implemented; (illustrated in 
figure 3). 

As we will show later, the list is normally short, and it can be shown to the oracle 
in one go. So in practice, the oracle only needs to label the last sample which has the 
same label with the sample nearest to the current decision boundary (such as sample 
“d” in figure 3). 
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After several additional queries, we can find the sample in the neighborhood of 
the nearest sample ‘a’ that can maximally reduce the current version space (such as 
sample “b” in figure 4). Since every added sample selected by this process can 
reduce the area of the version space more than the sample selected by the standard 
distance-based active learning, the convergent rate of the version space will also be 
faster than that of the standard approach. It means that the classification accuracy 
performance of the resulting classifier trained by this dynamic strategy will be better 
than the one trained by the standard strategy using the same number of training 
samples. 

the label of sample “a” is “1” the label of sample “a” is “-1” 
(sample “a” is the one nearest to the current decision boundary) 
ascend list label description ascend list label description 

f ? unlabeled … ? unlabeled 
e -1 a -1 
d 1 b -1 
… 1 c -1 
c 1 … -1 
b 1 d -1 
a 1 

Sample “d” 
selected by 

dynamic 
 

(D(f)<D(e) 
<…<D(a)) e +1 

Sample “d” 
selected by 

dynamic 
 

(D(f)>D(e) 
>…>D(a)) 

… ? unlabeled f ? unlabeled 

Fig. 3. List-based illustration of dynamic distance-based active learning with SVM (usually the 
list is short, and the letters “a”, “b”, … denote different samples) 

a

b

c

Hyperplane induced by

Support Vector

Hyperplane induced by

the candidate sample

Normal vector of

the hyperplane

The solution of SVM
W* W*

Version Space

The largest inscribed

hypersphere

 

Fig. 4. Graphical-based illustration of dynamic distance-based active learning with SVM 
(sample ‘b’ will be selected as query instance, because it can reduce more area of the version 
space than sample ‘a’, although the later is nearest to the decision boundary. Here, we assume 
‘a’ and ‘b’ have ‘+1’ label +1, and sample ‘c’ has ‘-1’ label) 

From the experiment shown in figure 5, it can be easily seen that the sample 
selected by our dynamic distance-based strategy is nearer to the true decision  
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boundary than the sample selected by the standard distance-based strategy. It also 
shows that the dynamic strategy can make the version space converge to the target 
function quicker compared with the standard distance-based active learning. 

In the dynamic approach, the only additional computation is creating an ascending 
list. Since the initial sample of the list, nearest to the current decision boundary, is 
usually near to the true decision boundary, it is enough to set up a short list. 
Moreover, the members of the list must be in the margin band of the current classifier. 
Thus the running time on this operation is negligible compare to the total amount of 
computations required of training the SVM. It means that our dynamic method can 
achieve better performance than the standard distance-based active learning with 
almost the same spending. 

The sample added into the current training set

Margin band Decision boundary
  

Figure 3a. Dynamic distance-based active 
learning 

Figure 1b. Standard distance-based active 
learning 

Fig. 5. Comparison of the dynamic distance-based active learning and the standard distance-
based active learning methods 

3   Experiments and Conclusions 

Several experiments were conducted using four datasets: three of them have been 
downloaded from the benchmark websites and one is generated in this work. All 
datasets are first randomly divided into training and test sets. The training set is 
further divided into three portions: P-Set, N-Set and Unlabeled-Set. Table 1 describes 
the datasets. In the “Triangle” dataset, there are two classes of data. One category of 
the data is distributed in the input space, and is shaped likes two triangles, thus the 
dataset is named ‘triangle’ dataset (figure 6). It is particularly challenging due to the 
fact that the same category of data is distributed in two disjoint clusters in the input 
space and is therefore not separable using a single decision boundary. 
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The procedures of the experiment are listed as follows:  

Step 1:  Initial step: (1) prepare initial training set: one positive sample from P-Set, 
and other negative samples from N-Set, the size is ten for triangle dataset and 
twenty for the other datasets. (2) train an initial classifier on the initial training 
set and test it on the corresponding test dataset. 

Step 2:  Based on different strategies, one sample will be selected, labeled by the 
oracle and added in the current training set (the standard and dynamic 
distance-based active learning strategy are utilized respectively here). 

Step 3:  Re-train the classifier on the enlarged training set and test it on the 
corresponding test dataset. 

Step 4: Repeat step 2 and step 3 until there is no samples in the margin band of the 
SVM classifier. 

In our experiments, C-SVC is utilized, kernel function deployed is the Radial Basis 

Function ( )exp(
2

yx −∗−γ ), and the trade-off parameter C  equals to 100. The 

results are listed in figure 7. Since the P-Set only contains ten samples, the final 
value of the precision rate is averaged on ten tests which are initialized by ten 
different initial training sets. Figure 7a, 7b and 7c show clearly that dynamic 
distance-based active learning outperforms the standard technique, i.e., dynamic 
strategy uses less number of iterations than the standard strategy to achieve the 
same precision ratio. In figure 7d, it is interesting to note that the standard strategy 
outperforms the dynamic approach in several initial iterations. The reason may be 
that the version space is un-symmetric in the initial period. In this case, the sample 
selected by the dynamic strategy cannot guarantee to reduce more area of the 
version space than the sample selected by the standard method. It is interesting to  
 

 

Fig. 6. Illustration of Triangle dataset (one category data is distributed in the input space, and is 
shaped likes two triangles) 
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Table 1. Description of the datasets 

Name P-Set N-Set Unlabeled-Set Test Source 
Australian 10 40 295 345 Statlog 
Fourclass 10 40 381 431 TKH96a 

Breast Cancer 10 40 291 342 UCI 
Triangle 10 16 145 579 Self-create 

(Test denotes test dataset, unlabeled-Set is used as selection pool). 

  
(a) Triangle ( 46=γ ) (b) Australian ( 5.0=γ ) 

  
(c) Fourclass ( 1=γ ) (d) Breast-cancer ( 1=γ ) 

Fig. 7. Comparison of results of the dynamic distance-based active learning and standard 
distance-based active learning on different datasets (The dimension of Triangle, Australian, 
Fourclass and Breast-cancer is two, fourteen, two and ten respectively) 

note that, despite of this, the situation of dynamic strategy is still better than the 
standard one. 

In this paper, we present a novel dynamic distance-based active learning with 
SVM. Both the theoretical analysis and experiments show that our dynamic strategy 
outperforms the standard distance-based approach. The algorithm can be applied in 
information retrieval, data mining, etc., and is an efficient method to deal with the 
large scale problem of SVM [14]. When the version space is non-symmetric, the merit 
of our dynamic will become weaker. Future work includes extending this approach 
for non-symmetric version space. 
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Abstract. The recently introduced transductive confidence machines
(TCMs) framework allows to extend classifiers such that they satisfy the
calibration property. This means that the error rate can be set by the
user prior to classification. An analytical proof of the calibration property
was given for TCMs applied in the on-line learning setting. However, the
nature of this learning setting restricts the applicability of TCMs. In this
paper we provide strong empirical evidence that the calibration property
also holds in the off-line learning setting. Our results extend the range
of applications in which TCMs can be applied. We may conclude that
TCMs are appropriate in virtually any application domain.

1 Introduction

Machine-learning classifiers are common in many real-life applications. Many of
these applications are characterized by high error costs, indicating that incor-
rect classifications can have serious consequences. It is therefore desired to have
classifiers that output reliable classifications. One way to achieve this is to com-
plement each classification with a confidence value. Classifications with a low
confidence value are not reliable and should be handled with caution.

For some classifiers (such as the naive Bayes classifier) a measure of confidence
is readily available, but for many other classifiers this is not the case. The recently
introduced transductive confidence machines (TCMs) framework allows for an
efficient way to provide confidence values produced by virtually any classifier
[8,17]. The essential property of TCMs is that their error rate is controlled by
the user prior to classification. For example, if the user specifies an error rate of
0.05, then at most 5% of the classifications made by a TCM are incorrect. This
property is called the calibration property and has been proven to hold in the
on-line learning setting. However, this learning setting restricts the applicability
of TCMs. In the paper we investigate to what extent the calibration property
holds in the off-line learning setting. We investigate this by means of a systematic
empirical evaluation of TCMs using six different classifiers on various real-world
datasets.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 310–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The remainder of the paper is organized as follows. Section 2 defines the learn-
ing setting that we consider. Section 3 explains TCMs and the calibration prop-
erty. It also provides implementations of six classifiers in the TCM framework.
Section 4 investigates to what extent the calibration property holds in the off-
line learning setting. Section 5 provides a final discussion on TCMs. Section 6
concludes that TCMs satisfy the calibration property in the off-line learning
setting.

2 Learning Setting

We consider the supervised machine-learning setting. The instance space is de-
noted by X and corresponding label space by Y. An example is of the form
z = (x, y) with x ∈ X and y ∈ Y. The symbol Z will be used as a compact
notation for X × Y. Training data are considered as a sequence of examples:

S = (x1, y1), . . . , (xn, yn) = z1, . . . , zn, (1)

where each example is generated by the same unknown probability distribution
P over Z. We assume that this distribution satisfies the exchangeability assump-
tion. This assumption states that the joint probability of a sequence of random
variables is invariant under any permutation of the indices of these variables. In
other words, the information that the zi’s provide is independent of the order in
which they are collected. Formally, we write:

P (z1, . . . , zn) = P (zπ(1), . . . , zπ(n)), (2)

for all permutations π on the set {1 . . . , n}.1

We apply a classifier in the off-line learning setting (batch setting): the clas-
sifier is learned on training data and subsequently used to classify instances
one-by-one. The true labels of instances are not returned. This is in contrast to
the on-line learning setting where the true label of each instance is provided after
prediction. The classifier is then retrained after each prediction since new infor-
mation is available. Clearly, the on-line learning setting restricts the applicability
of classifiers since any form of feedback can be very expensive.

3 Transductive Confidence Machines

Traditionally, classifiers assign a single label to an instance. In contrast, trans-
ductive confidence machines (TCMs) are allowed to assign a set of labels to each
instance. Such a prediction set contains multiple labels if there is uncertainty in
the true label of the instance [7,8,17]. Subsection 3.1 explains the construction of
prediction sets. Subsection 3.2 discusses the calibration property. Subsection 3.3
outlines six practical implementations of TCMs.
1 Note that exchangeable random variables are identically distributed and not

necessarily independent from each other. Therefore, identically and independently
distributed (iid) random variables are also exchangeable. The exchangeability as-
sumption is thus weaker (i.e., more general) than the iid assumption.
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3.1 Construction of Prediction Sets

To construct a prediction set for an unlabeled instance xn+1, TCMs operate in
a transductive manner. Each possible label y ∈ Y is tried as a label for instance
xn+1. In each try we form the example zn+1 = (xn+1, y) and add it to S. Then
we measure how likely it is that the resulting sequence is generated by the
underlying distribution P . To this end, each example in the extended sequence:

(x1, y1), . . . , (xn, yn), (xn+1, y) = z1, . . . , zn+1, (3)

is assigned a nonconformity score by means of a nonconformity measure. This
measure defines how nonconforming an example is with respect to other available
examples. We require that it is irrelevant in which order the nonconformity scores
of the examples are calculated (due to the exchangeability assumption).

Definition 1. A nonconformity measure is a measurable mapping:

A : Z(∗) ×Z → R ∪ {∞} , (4)

with output indicating how nonconforming an example is with respect to all other
examples. The symbol Z(∗) denotes the set of all bags of elements of Z. A bag is
denoted by � · �.

Definition 2. Given a sequence of examples z1, . . . , zn+1 with n ≥ 1, the non-
conformity score of example zi (i = 1, . . . , n) is defined as:

αi = A(�z1, . . . , zi−1, zi+1, . . . , zn+1�, zi), (5)

and the nonconformity score of example zn+1 is defined as:

αn+1 = A(�z1, . . . , zn�, zn+1). (6)

Nonconformity scores can be scaled arbitrarily by multiplying with a fixed non-
zero number. Therefore, to know how nonconforming the created example zn+1

is in the extended sequence, the nonconformity score αn+1 is compared to all
other αi (i = 1, . . . , n).

Definition 3. Given a sequence of nonconformity scores α1, . . . , αn+1 with
n ≥ 1, the p-value of label y assigned to unlabeled instance xn+1 is defined
as:

py =
| {i = 1, . . . , n + 1 : αi ≥ αn+1} |

n + 1
. (7)

If the p-value is close to its lower bound 1/(n + 1), then example zn+1 is very
nonconforming. The closer the p-value is to its upper bound 1, the more con-
forming example zn+1 is. Hence, the p-value indicates how likely it is that the
tried label for an unlabeled instance is in fact the true label. A TCM outputs
the set of labels with p-values above a predefined significance level ε.
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Definition 4. A transductive confidence machine determined by some noncon-
formity measure is a function that maps each sequence of examples z1, . . . , zn

with n ≥ 1, unlabeled instance xn+1, and significance level ε ∈ [0, 1] to the pre-
diction set:

Γ ε(z1, . . . , zn, xn+1) = {y ∈ Y | py > ε} . (8)

There may be situations in which many training examples have nonconformity
score equal to the score of example zn+1. The p-value is then large, but caution
is needed since many examples are equally nonconforming, making it impossible
to discriminate between them. To alleviate this problem, a randomized version
of the p-value has been proposed [17, p. 27].

Definition 5. Given a sequence of nonconformity scores α1, . . . , αn+1 with
n ≥ 1, the randomized p-value of label y assigned to unlabeled instance xn+1

is defined as:

pτ
y =

| {i = 1, . . . , n + 1 : αi > αn+1} | + τ | {i = 1, . . . , n + 1 : αi = αn+1} |
n + 1

,

(9)
with τ a random number uniformly sampled from [0, 1] for instance xn+1.

Definition 6. A randomized transductive confidence machine determined by
some nonconformity measure is a function that maps each sequence of examples
z1, . . . , zn with n ≥ 1, unlabeled instance xn+1, uniformly distributed random
number τ ∈ [0, 1], and significance level ε ∈ [0, 1] to the prediction set:

Γ ε,τ(z1, . . . , zn, xn+1) =
{
y ∈ Y | pτ

y > ε
}
. (10)

A randomized TCM treats the borderline cases αi = αn+1 more carefully. Instead
of increasing the p-value with 1/(n+ 1), the p-value is increased with a random
amount between 0 and 1/(n+1). In the following, we employ randomized TCMs,
although for brevity we simply call them TCMs.

3.2 Calibration Property

In the on-line learning setting, TCMs have been proven to satisfy the calibration
property [17, p. 20-22 & p. 193]. This property states that the long run error
rate of a TCM with significance level ε equals ε:

lim sup
n→∞

Errε
n

n
= ε, (11)

with Errε
n the number of prediction sets that do not contain the true label, given

the first n prediction sets.2 The idea of the proof is to show that the sequence of
prediction outcomes (i.e., whether the prediction set contains the true label or
not) is a sequence of independent Bernoulli random variables with parameter ε.
From (11) follows that the significance level has a frequentist interpretation as
2 In case of non-randomized TCMs, the equality sign in (11) is replaced by the ≤ sign.
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the limiting frequency of errors. It allows to control the number of errors prior to
classification. The calibration property holds regardless of which nonconformity
measure is used.

In the off-line learning setting there theoretically exists a small probability
that TCMs are not well-calibrated (the training data is kept fixed, and therefore
the prediction outcomes are not independent) [17, p. 111]. Section 4 investigates
empirically whether TCMs are well-calibrated in the off-line learning setting.

3.3 Implementations

This subsection shows that virtually any classifier can be plugged into the TCM
framework. Nonconformity measures are formulated for the following six classi-
fiers: (1) k-nearest neighbour, (2) nearest centroid, (3) linear discriminant, (4)
naive Bayes, (5) kernel perceptron, and (6) support vector machine. Although
the nonconformity measures are based on specific classifier characteristics, they
can readily be applied to similar classifiers. In addition, they provide clear in-
sights in how to define new nonconformity measures.

The implementation of TCMs based on linear discriminant, kernel perceptron,
and support vector machine considers binary classification tasks. This is due
to the nature of these classifiers. We denote the binary label space as Y =
{−1,+1}. Extensions to multilabel learning are well-known and therefore not
discussed in the paper. We implemented TCMs that can incrementally learn
and decrementally unlearn a single instance, hereby keeping time complexity
low. Pseudo codes of these efficient implementations are found in a technical
report [16].

k-Nearest Neighbour. The k-nearest neighbour classifier (k-NN) classifies an
instance by means of majority vote among the labels of the k nearest neighbours
(k ≥ 1) [4]. An example is nonconforming when it is far from nearest neighbours
with identical label and close to nearest neighbours with different label.

A nonconformity measure can model this as follows. Given example zi =
(xi, yi), define an ascending ordered sequence Dyi

i with distances from instance
xi to its k nearest neighbours with label yi. Similarly, let D−yi

i contain ordered
distances from instance xi to its k nearest neighbours with label different from
yi. The nonconformity score is then defined as:

αi =

∑k
j=1 D

yi

ij
∑k

j=1 D
−yi

ij

, (12)

with subscript j representing the j-th element in a sequence [12]. Clearly, the
nonconformity score is monotonically increasing when distances to the k near-
est neighbours with identical label increase and/or distances to the k nearest
neighbours with different label decrease.

Nearest Centroid. The nearest centroid classifier (NC) learns a Voronoi par-
tition on the training data. It assumes that examples cluster around a class
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centroid. An example is nonconforming when it is far from the class centroid of
its label and close to the class centroids of other labels. Therefore, the noncon-
formity score of example zi = (xi, yi) can be defined as the distance from xi to
the class centroid of yi relative to the minimum distance from xi to all other
class centroids [2]. Formally, we write:

αi =
d(μyi , xi)

miny �=yi d(μy, xi)
, (13)

with μy the class centroid of label y which is defined as:

μy =
1

|Cy|
∑

i∈Cy

xi, (14)

with Cy the set of indices of instances with label y.

Linear Discriminant. The linear discriminant classifier (LDC) learns a sepa-
rating hyperplane by maximizing the between scatter of instances with different
labels while minimizing the within scatter of instances with identical labels [6].
Instances close to the hyperplane are classified with low confidence since a small
change in the hyperplane can result in a different classification of nearby in-
stances. Therefore, a natural nonconformity score of example zi = (xi, yi) is the
signed perpendicular distance from xi to the hyperplane:

αi = −yi (〈w, xi〉 + b) , (15)

with w and b the normal vector and intercept of the hyperplane, and 〈·, ·〉 the
inner product. If a classification is correct, then the nonconformity score is nega-
tive. A larger distance to the hyperplane represents more confidence in a correct
classification, and consequently a lower nonconformity score is obtained. If a
classification is incorrect, then the nonconformity score is positive and monoton-
ically increasing with larger distances to the hyperplane.

Naive Bayes. The naive Bayes classifier (NB) is a probabilistic classifier that
applies Bayes theorem with independence assumptions [5]. A valid nonconfor-
mity score is large if the label of an instance is strange under the Bayesian model
[17, p. 102]. We use the following as nonconformity score of example zi = (xi, yi):

αi = 1 − P(yi), (16)

with P(yi) the conditional probability of label yi that is estimated from the train-
ing data and instance xi, i.e., P(·) is the posterior label distribution computed
by the naive Bayes classifier.3

3 It is tempting to believe that the probabilities P(·) are confidence values. However,
it has been verified that these probabilities are overestimated in case of an incorrect
prior, e.g., classifying with a probability of 0.7 does not mean that the true label is
predicted 70% of the time [10].
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Kernel Perceptron. The kernel perceptron (KP) learns a separating hyper-
plane by updating a weight vector in a high-dimensional space during training
[9]. The weight vector represents the normal vector and intercept of the hyper-
plane. The expansion of the weight vector in dual form is:

w =
n+1∑

i=1

λiyiΦ(xi), (17)

with λi the dual variable for instance xi and Φ the mapping to the high-
dimensional space. It is easily verified that λi encodes the number of times
that instance xi is incorrectly classified during training [15, p. 241-242]. Hence,
the nonconformity score of example zi = (xi, yi) can be defined as αi = λi [10].
However, such a nonconformity score is not valid in the sense that the KP solu-
tion depends on the ordering of the training examples. Different KP runs result
in different nonconformity scores. In our experiments we show that this violation
of the exchangeability assumption does not have any effect in practice.

Support Vector Machine. The support vector machine (SVM) finds a sep-
arating hyperplane with maximum margin using pairwise inner products of in-
stances mapped to a high-dimensional space. The inner products are efficiently
computed using a kernel function. The maximum margin hyperplane is found
by solving a quadratic programming problem in dual form [15, Ch. 7].

In this optimization problem, the Lagrange multipliers λ1, λ2, . . . , λn+1 asso-
ciated with examples z1, . . . , zn+1 take values in the domain [0, C] with C the
SVM error penalty. Examples with λi = 0 lie outside the margin and at the
correct side of the hyperplane. Examples with 0 < λi < C also lie at the correct
hyperplane side, but on the margin. Examples with λi = C can lie inside the
margin and at the correct side of the hyperplane, or they can lie at the incor-
rect side of the hyperplane. Clearly, larger Lagrange multipliers represent more
nonconformity and therefore they are valid nonconformity scores, i.e., we define
αi = λi as the nonconformity score of example zi = (xi, yi) [13,14].

4 Experiments

The previous section discussed technical properties and practical implemen-
tations of TCMs. This section empirically investigates whether the calibra-
tion property holds when TCMs are applied in the off-line learning setting.
We performed experiments with TCMs on a number of benchmark datasets.
Subsection 4.1 briefly describes the datasets that we used. Subsection 4.2 outlines
the experimental setup. Subsection 4.3 presents the results of the experiments.

4.1 Benchmark Datasets

In the following, we denote the aforementioned TCM implementations by the
classifier name and the prefix TCM, e.g., TCM-kNN is the TCM based on the
k-NN nonconformity measure.
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We tested the six TCMs on ten well-known binary datasets from the UCI
benchmark repository [11]. The datasets are: heart statlog, house votes,
ionosphere, liver, monks1, monks2, monks3, pima, sonar, and spect. Some
datasets such as liver and sonar are known to be highly non-linear. For these
non-linear datasets, it is especially challenging to verify if TCM-LDC satisfies the
calibration property. The monks datasets are datasets for which distance-based
classifiers can have difficulties [3].

As a preprocessing step, all instances with missing feature values are removed
as well as duplicate instances. Features are standardized to have zero mean and
unit variance to remove possible effects caused by features with different orders
of magnitude.

4.2 Experimental Setup

The classifiers TCM-kNN, TCM-KP, and TCM-SVM require the selection of
one or more parameters. We performed model selection by applying a ten-fold
cross validation process that was repeated for five times. The chosen parameter
values are those for which the number of prediction sets with multiple labels is
minimized for significance levels in the domain [0, 0.2].4 The number of nearest
neighbours for TCM-kNN is restricted to k = 1, 2, . . . , 10. For TCM-SVM and
TCM-KP we tested polynomial and Gaussian kernels with exponent values e =
1, 2, . . . , 10 and bandwidth values σ = 0.001, 0.01, 0.03, 0.06, 1, 1.6 respectively.
The SVM error penalty C is kept fixed at value 10.

Once the parameter values are chosen, TCMs are applied in the off-line learn-
ing setting with ten-fold cross validation. To ensure that results are independent
of the order of examples in the training folds, the experiments were repeated five
times with random permutations of the data. We report the average performance
of all experiments and test folds.

The performance of TCMs is measured by two key statistics. First, the per-
centage of prediction sets that do not contain the true label is measured. This
is the error rate measured as a percentage. Second, we measure efficiency to
indicate how useful the prediction sets are. Efficiency is given by the percent-
ages of three types of prediction sets. The first type are prediction sets with
one label. These prediction sets are called certain predictions. Second, uncertain
predictions correspond to prediction sets with two labels and indicate that both
labels are likely to be correct. Third, prediction sets can also be empty. Clearly,
certain predictions are preferred.

4.3 Results

In this section we report our empirical results of off-line TCMs on the ten bench-
mark datasets. To visualize performance of a TCM, we follow the convention as
defined in [17]. Results are shown as graphs indicating four values for each signif-
icance level: (1) percentage of incorrect predictions, (2) percentage of uncertain
4 The conclusions based on our experiments do not depend on the chosen parameter

values. Other values simply result in more prediction sets with multiple labels.
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predictions, (3) percentage of empty predictions, and (4) percentage of incorrect
predictions that are allowed at the significance level. The first value represents
the error rate as a percentage, while the second and third values represent ef-
ficiency.5 The line connecting the percentage of incorrect predictions allowed
at each significance level is called the error calibration line. As an example,
Fig. 1 shows the result of applying TCM-kNN and TCM-NC on the ionosphere
dataset. Graphs of all TCMs and datasets are found in a technical report [16].
In the following we first focus our attention to the calibration property, then we
give some remarks about efficiency.

TCMs satisfy the calibration property if the percentage of incorrect predic-
tions at each significance level lies on the error calibration line. From Fig. 1
follows that the corresponding TCMs are well-calibrated up to neglectable sta-
tistical fluctuations (the empirical error line can hardly be distinguished from
the error calibration line). For example, at ε = 0.05 approximately 5% of the
prediction sets do not contain the true label. Table 1 verifies the calibration
property for all TCMs and datasets by reporting the average deviation between
empirical errors and the the error calibration line for ε = 0, 0.01, . . . , 0.50. We
do not consider significance levels above 0.5 since these result in classifiers for
which more than 50% of the prediction sets do not contain the true label. Devia-
tions are given in percentages and are almost zero, indicating that TCMs satisfy
the calibration property when they are applied in the off-line learning setting.
Note that we included datasets for which some classifiers have difficulties to
achieve a low error rate (Subsection 4.1). Even for these datasets and classifiers,
Table 1 reports deviations that are almost zero.

To measure efficiency we note that the percentage of uncertain predictions
is 100% when ε = 0 since the computed prediction sets contain all labels. We
allow for more incorrect predictions when the significance level is set to a higher
value. Therefore, the percentage of uncertain predictions monotonically decreases
with higher significance levels. How fast this decline goes depends on the per-
formance of the classifier plugged into the TCM framework. This means that
k-NN performs significantly better than NC on the ionosphere dataset, as il-
lustrated by Fig. 1. The percentage of empty predictions starts to occur at
approximately the significance level for which there are no more uncertain pre-
dictions. The percentage of empty predictions monotonically increases after this
significance level, moving closer to the error calibration line to eventually lie on
this line. To summarize efficiency for the ionosphere dataset, we consider four
significance levels that we believe to be of interest in many practical situations:
ε = 0.20, 0.15, 0.10, 0.05. For these significance levels, Table 2 reports means
and standard deviations for the percentage of incorrect, certain, and empty pre-
dictions of all six TCMs. Of course, Table 2 again verifies that the calibration
property holds. The reported standard deviations may not seem that small. How-
ever, the number of instances in a single test fold is small for the ionosphere

5 The percentage of certain predictions is trivially derived from the reported per-
centages of the other types of prediction sets. Note that the percentage of empty
predictions is at most the percentage of incorrect predictions.
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Fig. 1. Results of two TCMs applied on the ionosphere dataset in the off-line learning
setting: (a) TCM-kNN and (b) TCM-NC

dataset (35 test instances). All values correspond to our discussion of efficiency.
Efficiency results for the other datasets are similar and presented in a technical
report [16].
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Table 1. The deviations between empirical errors and the error calibration line. Values
are reported as percentages.

TCM-kNN TCM-NC TCM-LDC TCM-NB TCM-KP TCM-SVM

heart statlog 0.34 0.59 0.35 0.20 0.25 0.31
house votes 0.33 0.27 0.38 0.29 0.53 0.28
ionosphere 0.21 0.81 0.31 0.28 0.33 0.38
liver 0.62 1.35 0.35 0.43 0.47 0.23
monks1 0.98 1.02 0.40 0.60 0.26 0.40
monks2 0.49 1.29 0.46 0.29 0.27 0.36
monks3 0.32 0.51 0.22 0.52 0.21 0.45
pima 0.21 0.28 0.13 0.16 0.16 0.16
sonar 0.59 1.09 0.38 0.32 0.46 0.67
spect 0.35 1.06 0.36 0.58 0.51 0.61

5 Discussion

This section elaborates more on the difference between randomized and non-
randomized TCMs, and on the meaning of empty prediction sets.

In our experiments with non-randomized TCMs, we found that the line con-
necting the empirical errors of a non-randomized TCM-SVM is a step function
that tends to stay below the error calibration line (results not shown, see [16] for
an example). The reason for this observation is as follows. There are two possible
scenarios when a new example is added to the training examples. First, the new
example may be a support vector. The difference between the randomized p-
value and the non-randomized p-value is then small since the number of support
vectors with equal nonconformity score is only a small fraction of the available
examples. Second, the new example may be a non-support vector. The random-
ized p-value is then significantly smaller than the non-randomized p-value since
all non-support vectors have equal nonconformity score. This implies that the
non-randomized TCM-SVM will compute less empty prediction sets than the
randomized TCM-SVM. Therefore, the empirical error line becomes a step func-
tion since empty prediction sets are counted as errors. A similar reasoning holds
for the difference between a non-randomized TCM-KP and a randomized TCM-
KP. For the remaining TCM implementations, a non-randomized version did not
led to significantly different results than a randomized version. Indeed, when the
nonconformity scores take values in a large domain, then the difference between
non-randomized and randomized TCMs is neglectable.

Empty prediction sets indicate that the classification task has become too
easy: we can afford the luxury of refusing to make a prediction. Thus, empty
prediction sets are a tool to satisfy the calibration property for high significance
levels. In fact, the significance level for which empty prediction sets start to arise
is approximately equal to the error rate of the classifier when it is not plugged
into the TCM framework. To avoid empty predictions, TCMs can be modified to
include the label with highest p-value into the prediction set, even though this
p-value can be smaller than or equal to the significance level. In this situation,
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Table 2. Results of the six TCMs applied on the ionosphere dataset in the off-line
learning setting

classifier % error % certain % empty
ε mean std mean std mean std

TCM-kNN
0.20 19.71 7.66 89.43 5.75 10.57 5.75
0.15 14.86 7.05 97.26 3.96 2.63 3.99
0.10 9.66 5.59 90.69 6.34 0.00 0.00
0.05 4.46 4.25 72.97 8.62 0.00 0.00

TCM-NC
0.20 21.94 7.86 91.14 4.87 0.00 0.00
0.15 15.40 6.80 82.80 5.87 0.00 0.00
0.10 10.23 6.00 70.86 6.88 0.00 0.00
0.05 4.69 4.27 48.00 8.79 0.00 0.00

TCM-LDC
0.20 19.71 6.86 87.60 5.96 12.34 5.96
0.15 14.69 6.38 93.71 3.74 5.43 3.75
0.10 10.00 5.24 95.31 3.86 0.11 0.57
0.05 5.14 4.32 81.71 6.76 0.00 0.00

TCM-NB
0.20 19.88 8.20 95.42 4.20 4.57 4.20
0.15 14.74 7.12 93.82 4.91 0.00 0.00
0.10 9.71 5.88 83.82 7.67 0.00 0.00
0.05 4.80 4.18 71.82 8.62 0.00 0.00

TCM-KP
0.20 20.11 6.88 88.86 5.51 11.09 5.59
0.15 14.74 5.90 96.11 3.20 2.06 2.77
0.10 8.80 5.22 89.83 5.39 0.00 0.00
0.05 5.37 4.57 70.40 10.01 0.00 0.00

TCM-SVM
0.20 20.06 8.67 81.14 8.26 18.86 8.26
0.15 15.31 7.48 86.06 6.97 13.31 7.11
0.10 10.29 6.85 77.03 5.91 7.20 5.42
0.05 5.31 4.55 52.34 9.51 2.69 3.48

the percentage of empirical errors will also become a step function below the
error calibration line since an empty prediction set was previously counted as an
error. The significance level now gives an upper bound on the error rate, although
we do not know how tight this bound is. The resulting TCMs are called forced
TCMs and they are said to be conservatively well-calibrated [1].

6 Conclusions

In this paper we focused on the applicability and validity of transductive confi-
dence machines (TCMs) applied in the off-line learning setting. TCMs allow to
make predictions such that the error rate is controlled a priori by the user. This
property is called the calibration property. An analytical proof of the calibration
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property exists when TCMs are applied in the on-line learning setting. However,
this learning setting restricts the applicability of TCMs.

We provided an extensive empirical evaluation of TCMs applied in the off-line
learning setting. Six TCM implementations with different nonconformity mea-
sures were applied on ten well-known benchmark datasets. From the results of
our experiments we may conclude that TCMs satisfy the calibration property
in the off-line learning setting, hereby strongly extending the range of tasks in
which they can be applied. TCMs have a significant benefit over conventional
classifiers for which the error rate cannot be controlled by the user prior to clas-
sification, especially in tasks where reliable instance classifications are desired.

Since TCMs have now been shown to be widely applicable and well-calibrated
in virtually any application domain, our future work focuses on efficiency. We
noticed that the chosen nonconformity measure affects efficiency while it does
not violate the upper bound on the error rate. Our next goal is to minimize the
size of the computed prediction sets, especially in case of multilabel learning.
We believe that this can be achieved with a new nonconformity measure. Our
interest is a measure that is independent of the specific TCM implementation
and that is designed to provide a confidence value on nonconformity scores too.
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Abstract. Transduction is an inference mechanism “from particular to
particular”. Its application to classification tasks implies the use of both
labeled (training) data and unlabeled (working) data to build a classifier
whose main goal is that of classifying (only) unlabeled data as accurately
as possible. Unlike the classical inductive setting, no general rule valid for
all possible instances is generated. Transductive learning is most suited
for those applications where the examples for which a prediction is needed
are already known when training the classifier. Several approaches have
been proposed in the literature on building transductive classifiers from
data stored in a single table of a relational database. Nonetheless, no
attention has been paid to the application of the transduction principle
in a (multi-)relational setting, where data are stored in multiple tables of
a relational database. In this paper we propose a new transductive clas-
sifier, named TRANSC, which is based on a probabilistic approach to
making transductive inferences from relational data. This new method
works in a transductive setting and employs a principled probabilistic
classification in multi-relational data mining to face the challenges posed
by some spatial data mining problems. Probabilistic inference allows us
to compute the class probability and return, in addition to result of
transductive classification, the confidence in the classification. The pre-
dictive accuracy of TRANSC has been compared to that of its inductive
counterpart in an empirical study involving both a benchmark relational
dataset and two spatial datasets. The results obtained are generally in
favor of TRANSC, although improvements are small by a narrow margin.

1 Introduction

In the usual inductive classification setting, data is supposed to have been gener-
ated independently and identically distributed (i.i.d.) from an unknown proba-
bility distribution P on some domain X and are labeled according to an unknown
function g. The domain of g is spanned by m independent (predictor) random
variables Xi (either numerical or categorical), that is, X = X1, X2, . . . , Xm. The
range of g is a finite set Y = {C1, C2, . . . , CL}, where each Ci is a distinct class
label. After being inputted a training sample S = {(x, y) ∈ X × Y |y = g(x)},
an inductive learning algorithm returns a function f that is hopefully close to
g on the domain X . However, there are many cases in which the goal is to esti-
mate the value of the unknown function g at a given set of points of a working
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sample W ⊆ X based on the training sample S. The usual way of estimating
these values consists in first finding an approximation g′ to the desired function g
and then using this approximation to get the required estimates. This approach
is not always the best when the cardinality of the training sample S is much
smaller than that of the working sample W , which is often the case in many
real-world situations. It characterizes the traditional inductive learning setting,
which uses only labeled examples to generate a classifier and discards a large
amount of information potentially conveyed by the unlabeled instances to be
classified. Conversely, the idea of transductive inference (or transduction) [20] is
to analyze both the labeled (training) data S and the unlabeled (working) data
W to build a classifier whose main goal is that of classifying (only) the unlabeled
data W as accurately as possible.

Several transductive learning methods have been proposed in the literature
for support vector machines [1] [10] [13] [6], for k-NN classifiers [14] and even
for general classifiers [15]. However, despite the growing interest of the scientific
community for transductive inference, all of those transductive learning algo-
rithms are based on the single-table assumption [22], according to which the
training/test data are represented in a single table (or database relation) whose
rows (or tuples) represent independent units of the sample population, while
columns correspond to properties of these units. This classic tabular representa-
tion of data, also known as propositional or feature-vector representation, turns
out to be too restrictive for some complex applications. For instance, in spatial
data mining, different spatial objects may have distinctive properties, which can
be properly modeled by as many data tables as the number of object types.
Moreover, attributes of the neighbors of spatial objects may affect each other
(spatial autocorrelation), hence the need for representing object interactions by
additional data tables. Although several methods have been proposed to trans-
form a (multi-)relational (or structural) representation of training data into a
single table, this approach (known as propositionalization) is fraught with many
difficulties in practice [7,11].

In this paper, we propose a novel transductive classification algorithm, named
TRANSC (TRANsductive Structural Classifier), that exploits the expressive
power of Multi-Relational Data Mining (MRDM) to deal with relational data in
their original form. This means that knowledge on the relational data model (e.g.,
foreign key constraints) is obtained free of charge from the database schema and
used to guide the search process. The method works in a transductive setting and
employs a probabilistic approach to classification. Information on the potential
uncertainty of classification conveyed by probabilistic inference is useful when
small changes in the attribute values of a test case may result in sudden changes
of the classification. It is also useful when missing (or imprecise) information
may prevent a new object from being classified at all [5].

The rest of the paper is organized as follows. In the next section, the back-
ground of this research and some related works are introduced, while the
(multi-)relational transductive learning problem solved by TRANSC is formally
defined in Section 3. In Section 4 experimental results are reported for both
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a benchmark dataset typically used in MRDM and for two spatial datasets.
Finally, Section 5 concludes and discusses ideas for further work.

2 Background and Related Work

The combination of relational representation with principled probabilistic and
statistical approaches to inference and learning has been deeply investigated. In
particular, relational näıve Bayesian classifiers have been designed to perform
probabilistic classification tasks.

Given a feature-vector representation of a test data x, a classical näıve Bayesian
classifier assigns x to the classCi that maximizes the posterior probability P (Ci|x).
By applying the Bayes theorem, P (Ci|x) is expressed as follows:

P (Ci|x) =
P (Ci)P (x|Ci)

P (x)
. (1)

Under the conditional independence (or näıve) assumption of object attributes,
the likelihood P (x|Ci) can be factorized as follows:

P (x|Ci) = P (x1, . . . , xm|Ci) = P (xi|Ci) × . . .× P (xm|Ci) (2)

where x1, . . . , xm represent the attribute values different from the class label
used to describe the object x. Surprisingly, näıve Bayesian classifiers have been
proved accurate even when the conditional independence assumption is grossly
violated. This is due to the fact that when the assumption is violated, although
the estimates of posterior probabilities may be poor, the correct class still has
the highest estimate. This leads to correct classifications [8].

The above formalization of a näıve Bayesian classifier is clearly limited to
propositional representations. In the case of relational representations, some ex-
tensions are necessary. The basic idea is that of using a set of relational patterns
to describe an object to be classified, and then to define a suitable decomposi-
tion of the likelihood P (x|Ci) à la näıve Bayes to simplify the resolution of the
probability estimation problem.

An example of relational pattern considered in this work is the following:
molecule Atom(A,B) ∧ molecule T ype(B, [22, 27])

⇒ molecule Attribute(A, active).
This is a relational classification rule generated for the Mutagenesis dataset

considered in Section 4.1. The literal molecule Attribute(A, active) in the con-
sequent of the rule represents the class label (i.e. “active”) associated to the
molecule A. The literal molecule Atom(A,B) in the antecedent of the rule is
a structural characteristic representing the foreign-key constraint between the
tables Molecule and Atom, while the literal molecule T ype(B, [22, 27]) is a prop-
erty stating that the value of the attribute Type of the atom B (composing the
molecule A) is a number in the interval [22,27].

Each P (x|Ci) is computed on the basis of a set & = {Aj ⇒ y(X,Ci)}
of relational classification rules, where Ci ∈ Y , y( , ) is a binary predicate
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representing the class label for an example X and the antecedent Aj is a con-
junction of literals describing both relations and properties of objects. More pre-
cisely, if &(x) ⊆ & is the set of rules whose antecedent covers the reference object
x, then:

P (x|Ci) = P (
∧

Rk∈�(x)

antecendent(Rk)|Ci). (3)

This extension of the näıve Bayesian classifier to the case of multi-relational
data was originally proposed by Pompe and Kononenko [18] and was recently re-
worked by Flach and Lachiche [9]. In both works, the conditional independence
assumption is straightforwardly applied to all literals in

∧

Rk∈�(x)

antecendent(Rk).

However, this may lead to underestimate P (x|Ci) when several similar rules in &
are considered for the class Ci. Therefore, in this study, we employ a less biased
procedure for the computation of the probabilities 3, namely that adopted in the
multi-relational näıve Bayesian classifier Mr-SBC [5].

All above mentioned works on relational näıve Bayesian classifiers ignore un-
labeled data when mining the classifier. In semi-supervised learning approaches,
both labeled and unlabeled data are used for training, but the inferential princi-
ple is still inductive, that is, a general rule hopefully valid for the whole instance
space is generated. An example of semi-supervised learning algorithm has been
proposed by Nigam et al. [16], who combine the the näıve Bayesian classifier
with the Expectation-Maximization (EM) algorithm. The former is trained on
labeled data and provides an initial classification of unlabeled data, while the
latter is used to perform hill-climbing in data likelihood space, finding the clas-
sifier parameters that locally maximize the likelihood of all the data, both the
labeled and the unlabeled.

Vapnik [20] has introduced the transductive Support Vector Machines
(SVMs), which take into account a particular test set and try to minimize the
misclassification rate of just those particular examples. A different approach has
been proposed by Blum and Chawla [2], who uses a similarity measure to con-
struct a graph and then partitions the graph in such a way that it minimizes
(roughly) the number of similar pairs of examples that are given different labels.
An evolution of this work is the transductive version of k-NN, which has been
designed to avoid the myopia of the greedy search strategy adopted in graph par-
titioning by efficiently and globally solving an optimization problem via spectral
methods [14].

Finally, some studies on transductive inference have investigated the opportu-
nity of applying transduction to evaluate the predictive reliability of a real-valued
regression model. The basic idea in [3] is to construct transductive predictors
and to establish a connection between initial and transductive predictions. An
initial predictor is obtained as the model that best fits the training set. It is used
to assign a label to a single unlabeled example to be included in the training set
and the new training set is used to obtain the final transductive predictor in an
iterative process.
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3 Probabilistic Transduction in TRANSC

Let D = {(x, y) ∈ X×Y |y = g(x)} be a dataset labeled according to an unknown
function g whose range is a finite set Y = {C1, C2, . . . , CL}. Our transductive
classification problem is formalized as follows:

Input
• a training set S ⊂ D and
• the projection of the working set W = D − S on X ;
Output : a prediction of the class value (y) of each example in the working set
W which is as accurate as possible.

The learner receives full information (including labels) on the examples in S
and partial information (only that concerning the independent variables Xi) on
the examples in W and is required to predict the class values only of the examples
that W consists of. The original formulation of the problem of function estima-
tion in a transductive (distribution-free) setting requires that S be sampled from
D without replacement. This means that, unlike the standard inductive setting,
the examples in the training (and working) set are supposed to be mutually de-
pendent. Vapnik also introduced a second (distributional) transduction setting
in which the learner receives training and working sets, which are assumed to be
drawn i.i.d. from some unknown distribution. As shown in [20] (Theorem 8.1),
error bounds for learning algorithms in the distribution-free setting also apply
to the more popular distributional transductive setting. Therefore, in this work
we focus our attention to the first setting.

In the case of relational data, the problem of transductive classification we
aim at solving can be formulated as follows:
Given:

– a database schema S which consists of a set of h relational tables {T0, . . . ,
Th−1}, a set PK of primary key constraints on the tables in S, and a set FK
of foreign key constraints on the tables in S

– a target relation T ∈ S
– a target discrete attribute y in T , different from the primary key of T , whose

domain is the finite set {C1, C2, . . . , CL}
– the projection T ′ of T on all attributes of T except y
– a training (working) set that is an instance TS (WS) of the database schema
S with known values for y

Find: the most accurate prediction of the values of y for examples in WS rep-
resented as a tuple of t ∈ WS.T ′ and all tuples related to t in WS according to
FK.

This problem is solved by TRANSC by accessing, as in the propositional case,
both the full representation of instances in the training set (including that of y)
and the partial representation of instances in the working set (represented by T ′

and its joined tables).
In keeping with the main idea adopted in [13], we iteratively refine the clas-

sification by changing the classification of training and working examples in the



Transductive Learning from Relational Data 329

“borderline” of the class that would be more likely subject to errors. In par-
ticular, we propose an algorithm (see Algorithm 1) which starts with a given
classification and, at each iteration, alternates a step during which examples
are reclassified and a step during which the class of “borderline” examples is
changed.

Algorithm 1. Top level transductive algorithm description
1: transductiveClassifier(initialClassification, TS, WS)
2: classification1 ← initialClassification;
3: changedExamples ← φ;
4: i ← 0;
5: repeat
6: prevClassification ← classification1;
7: prevChangedExamples ← changedExamples;
8: classification2 ← reclassifyExamplesKNN(classification1, TS, WS);
9: (classification1, changedExamples) ← changeClassification(classification2);

10: until ( (++i ≥ MAX ITERS) OR
(computeOverlap(prevChangedExamples,changedExamples) ≥ MAXOVERLAP))

11: return prevClassification

The initial classification of an example E ∈ WS ∪ TS is obtained according
to the following classification function:

preclass(E) =
{
class(E) if E ∈ TS
BayesianClassification(E) if E ∈WS

where BayesianClassification(E) is the classification function corresponding
to the initial inductive classifier built from the training set TS. Such an initial
classifier is obtained by means of an improved version of the relational prob-
abilistic learning algorithm Mr-SBC [5] whose search strategy is enhanced by
considering cyclic paths in the set of foreign keys FK.

The examples are then reclassified by means of a version of the k-NN algorithm
tailored for transductive inference in MRDM. The idea is to classify each example
E ∈ WS ∪ TS on the basis of a k-sized neighborhood Nk(E) = {E1, . . . , Ek}
consisting of the k examples included in WS ∪ TS closest to E with respect
to a dissimilarity measure d. This step aims at identifying the value y′ of the
L-dimensional class probability vector associated to the example E, that is y′ =
(y1(E), . . . , yL(E)), where each yi(E) = P (class(E) = Ci) is estimated based
on Nk(E).

Each probability P (class(E) = Ci) is estimated as follows:

P (class(E) = Ci) =
|{Ej ∈ Nk(E)|CEj = Ci}|

k
(4)
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such that:

– P (class(E) = Ci) ≥ 0 for each i = 1, . . . , L,
–

∑
i=1,...,L P (class(E) = Ci) = 1.

In Equation (4), CEj is the generic class value associated to the example Ej at the
previous step; at the first step, CEj is the class label returned by preclass(Ej). It
should be noted that P (class(E) = Ci) is estimated according to the transduc-
tive inference principle, as both training and working set are taken into account
in the process.

The changeClassification procedure is in charge of changing the classifica-
tion of the examples on the borderline of a class. Unlike what proposed in [13],
where support vectors are used to identify examples on the border, in our case
we consider examples for which the entropy of the decision taken by the classifier
is maximum. The entropy for each example E is computed from the probabilities
associated with each class Ci:

Entropy(E) = −
∑

i=1,...,L

P (class(E) = Ci) × log(P (class(E) = Ci)) (5)

The examples are ordered according to the entropy function and the class
label of at most the first k examples having Entropy(E) > MINENTROPY
is changed. The class to which each selected example E is assigned is the most
likely class Ci for E among those remaining after the the old class of E has been
excluded. The threshold k is necessary in order to avoid changing the class of
several examples that would lead to erroneously change class of entire “clusters”.

In Algorithm 1, two distinct stopping criteria are used. The first criterion
stops the execution of the algorithm when the maximum number of iterations
(MAX ITERS) is reached. This guarantees the termination of the algorithm.
Indeed, our experiments showed that this criterion is rarely attained when the
parameter MAX ITERS is as small as 10.

The second criterion aims at stopping execution when a cycle insists on the
same examples of the previous one. For this purpose, the overlap between two
sets of examples is determined. The computeOverlap function returns the ratio
between the cardinality of the intersection between the sets of examples and the
cardinality of their union.

The classifier returned by Mr-SBC starting from the training set TS is not just
employed to pre-classify the working examples in WS. Indeed, the initial Mr-
SBC classifier includes a set of first-order classification rules used to represent
the examples to be classified. TRANSC reuses such rules to derive a boolean
feature-vector representation of each example in WS on which the similarity
function subsequently determined is based.

More formally, let & = {Aj ⇒ y(X,Ci)} be the set of classification rules
extracted by Mr-SBC, where Ci ∈ Y , y( , ) is a binary predicate representing
the class label for an example X and the antecedent Aj is the conjunction of
at most MAX LEN PATH literals describing both relations and properties of
objects. Then each example E ∈ WS is described by a boolean feature-vector



Transductive Learning from Relational Data 331

VE composed by |&| elements, that is, A1, . . . , A|�|. If the antecedent of a rule
(Aj ⇒ y(X,Ci)) ∈ & covers E, that is, a substitution θ exists such that Ajθ ⊆ E,
then the j-th element of VE is set to true; otherwise, it is set to false.

The similarity between two examples E1 and E2 is determined by matching
the true values of the corresponding vectors VE1 and VE2 . More precisely, by
computing Jaccard’s similarity coefficient, which is defined as follows:

s(E1, E2) =
cardinality(VE1 AND VE2)
cardinality(VE1 OR VE2)

(6)

where cardinality(•) returns the number of true values included in a boolean
vector. Coefficient 6 takes values in the unit interval: s(E1, E2) = 1 if the two
vectors match perfectly, while s(E1, E2) = 0 if the two vectors are orthogo-
nal or in the degenerate case of no true value occurring in both vectors. The
dissimilarity between two examples is then defined as follows:

d(E1, E2) = 1 − s(E1, E2) (7)

4 Experiments

An empirical evaluation of our algorithm was carried out on both the Mutage-
nesis dataset, which have been used extensively in testing MRDM algorithms,
and on two real-world spatial data collections concerning North West England
Census data and Munich Census data, respectively.

We compared the performance of TRANSC to that of Mr-SBC in order to
identify the advantages of employing a transductive reformulation of the prob-
lem of relational probabilistic classification in real-world applications where few
labeled examples are available and manual annotation is fairly expensive.

The two algorithms are compared on the basis of the average misclassification
error on the same K-fold cross validation of each dataset. For each dataset, the
target table is first divided into K blocks of nearly-equal size and then a subset
of tuples related to the tuples of the target table block by means of foreign key
constraints are extracted. This way, K database instances are created. For each
trial, both TRANSC and Mr-SBC are trained on a single database and tested
on the hold-out K − 1 database instances forming the working set. It should
be noted that the error rates reported in this work are significantly higher than
those reported in other literature [5] [4] because of this peculiar experimental
design. Indeed, unlike the standard cross-validation approach, here one fold at
a time is set aside to be used as the training set (and not as the test set). Small
training set sizes allows us to validate the transductive approach but result in
high error rates as well.

A non-parametric Wilcoxon two-sample paired signed rank test [17] is em-
ployed to perform a pairwise comparison of the two algorithms. In this test,
the summations on both positive (W+) and negative (W-) ranks determine the
winner.

It should be noted that in our experiments the size of the working set is one
order of magnitude greater than the size of the training set; this is something



332 M. Ceci et al.

rather different from what usually happens when testing algorithms developed
according to the inductive paradigm. Since the performance of the transductive
classifier TRANSC may vary significantly depending on the size (k) of the neigh-
borhood used to predict the class value of each working example, experiments for
different k are performed in order to set the optimal value. In theory, we should
experiment with each value of k ranging in the interval [1, |D|] where D is the
labeled data set. However, as observed in [21] it is not necessary to consider all
possible values of k during cross-validation to obtain the best performance. The
best performances are obtained by means of cross-validation on no more than
approximately ten values of k. A similar consideration has also been reported
in [12], where it is shown that the search for the optimal k can be substantially
reduced from [1, |D|] to [1,

√
|D|], without loosing too much accuracy of the ap-

proximation. Hence, we have decided to consider in our experiments only k = ηi
such that i value ranges on the sample [1,

√
|D|/h] and η is the step value.

Classifiers mined in all experiments in this study are obtained by setting
MAX LENGTH PATH = 3, MAX ITERS = 10, MINENTROPY = 0.65
and MAXOV ERLAP = 0.5. The step η is different for each dataset.

4.1 Benchmark Relational Data Application

The Mutagenesis dataset concerns the problem of identifying some mutagenic
compounds. We have considered, similarly to most experiments on data mining
algorithms reported in literature, the “regression friendly” dataset consisting of
188 molecules. A study on this dataset [19] has identified five levels of background
knowledge. Each subset is constructed by augmenting a previous subset and pro-
vides richer descriptions of the examples. Table 1 shows the first three sets of
background knowledge, the ones we have used in our experiments, where BKi ⊂
BKi+1 for i = 0, 1. The larger the background knowledge set, the more com-
plex the learning problem. All experiments consist in a 10-fold cross validation
(K = 10).

Table 1. Background knowledge for Mutagenesis data

Background Description
BK0 Data obtained with the molecular modeling package QUANTA. For each

compound it obtains the atoms, bonds, bond types, atom types, and
partial charges on atoms.

BK1 Definitions in BK0 plus indicators ind1 and inda in molecule table.

BK2 Variables (attributes) logp and lumo are added to definitions in BK1.

The predictive accuracy of TRANSC was measured by considering the values
k ∈ {2, 4, 6, 8, 10, 12}. For each setting BKi (i = 0, 1, 2), the average misclassifi-
cation error of both TRANSC and Mr-SBC is reported in Figure 1. Results show
that with BK0, TRANSC performs better than Mr-SBC, although the improve-
ment is not statistically significant (see Table 2). The results in the BK1 and
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Fig. 1. TRANSC vs. Mr-SBC: average misclassification error on the working sets of
Mutagenesis 10-CV data

BK2 settings suggest different conclusions. As also shown in [5], the predictive
accuracy of Mr-SBC increases so significantly when background knowledge is
increased (BK1 and BK2 setting), that the consideration of unlabeled examples
in a neighborhood can even lead to a deterioration in predictive accuracy. In this
case, we obtain the best results when k is the lowest.

Table 2. Mutagenesis dataset: results of the Wilcoxon test (p-value) on average ac-
curacy of TRANSC vs. Mr-SBC. The statistically significant p-values (< 0.05) are in
italics. The sign + (-) indicates that TRANSC outperforms Mr-SBC (or vice-versa).

BK/k 2 4 6 8 10 12

BK0 0.23 (+) 0.65 (+) 0.73 (+) 0.19 (+) 0.84 (+) 0.25 (-)

BK1 0.42 (+) 0.65 (-) 0.76 (-) 0.55 (-) 0.35 (-) 0.2 (-)

BK2 1.0 (+) 0.13 (-) 0.38 (-) 0.64 (-) 0.02 (-) 0.001 (-)

4.2 Spatial Data Application

We have also tested our transductive algorithm on two different spatial data
collections, that is, the North-West England Census Data and the Munich Census
Data.

The North-West England Census data are obtained from both census and
digital maps data provided by the European project SPIN! (http://www.ais.
fraunhofer.de/KD/SPIN/project.html). These data concern Greater Manchester,
one of the five counties of North West England (NWE). Greater Manchester is
divided into ten metropolitan districts, each of which is in turn decomposed
into censual sections (wards), for a total of two hundreds and fourteen wards.
Census data are available at ward level and provide socio-economic statistics
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Fig. 2. TRANSC vs. Mr-SBC on NWE census data: average misclassification error on
the working sets for 10-fold and 20-fold cross-validation

(e.g. mortality rate – the percentage rate of deaths with respect to the number of
inhabitants) as well as some measures of the deprivation of each ward according
to information provided by Census combined into single index scores. We have
employed Jarman Underprivileged Area Score (which is designed to estimate the
need for primary care), the indices developed by Townsend and Carstairs (used
to perform health-related analyses), and the Department of the Environment’s
(DoE) index (which is used in targeting urban regeneration funds). The higher
the index value the more deprived the ward. The mortality percentage rate takes
values in the finite set {low = [0.001, 0.01], high =]0.01, 0, 18]}.

The goal of the classification task is to predict the value of the mortality
rate by exploiting both deprivation factors and geographical factors represented
in some linked topographic maps. Spatial analysis is possible thanks to the
availability of vectorized boundaries of the 1998 census wards as well as of
other Ordnance Survey digital maps of NWE, where several interesting lay-
ers such as urban area (115 lines), green area (9 lines), road net (1687 lines),
rail net (805 lines) and water net (716 lines) can be found. The objects on
each layer have been stored as tuples of relational tables including also infor-
mation on the object type (TYPE). For instance, an urban area may be ei-
ther a “large urban area” or a “small urban area”. Topological relationships
between wards and objects in all these layers are materialized as relational ta-
bles (WARDS URBAN AREAS, WARDS GREEN AREAS, WARDS ROADS,
WARDS RAILS and WARDS WATERS) expressing non-disjointing relations.
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Fig. 3. TRANSC vs. Mr-SBC on Munich census data: average misclassification error
on the working sets for 10-fold and 20-fold cross-validation

The number of materialized “non disjoint” relationships is 5313 (381 wards-
urban areas, 13 wards-green areas, 2798 wards-roads, 1054 wards-rails and 1067
wards-waters).

The Munich Census Data concern the level of monthly rent per square meter
for flats in Munich expressed in German Marks (http://www.di.uniba.it/∼ceci/
mic Files/munich db.tar.gz). The data have been collected in 1998 by Infratest
Sozialforschung to develop the 1999 Munich rental guide. This dataset contains
2180 geo-referenced flats situated in the 446 subquarters of Munich obtained by
first dividing the Munich metropolitan area up into three areal zones and then
by decomposing each of these zones into 64 districts. The vectorized boundaries
of subquarters, districts and zones as well as the map of public transport stops
consisting of public train stops (56 subway (U-Bahn) stops, 15 rapid train (S-
Bahn) stops and 1 railway station) within Munich are available for this study.
The objects included in these layers are stored in different relational tables (SUB-
QUARTERS, TRANSPORT STOPS and FLATS). Information on the “area” of
subquarters is stored in the corresponding table. Transport stops are described
by means of their type (U-Bahn, S-Bahn or Railway station), while flats are
described by means of their “monthly rent per square meter”, “floor space in
square meters” and “year of construction”.

The target attribute was represented by the “monthly rent per square me-
ter”, whose values have been discretized into the two values low = [2.0, 14.0]
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or high =]14.0, 35.0]. The spatial arrangement of data is defined by both the
“close to” relation between Munich metropolitan subquarters areas and the
“inside” relation between public train stops and metropolitan subquarters. Both
of these topological relations are materialized as relational tables (CLOSE TO
and INSIDE).

The average misclassification error of TRANSC and Mr-SBC on both NWE
Census Data and Munich Census Data is reported in Figure 2 and Figure 3,
respectively. The reported results refer to both a 10-fold cross validation (CV)
of the data and 20-fold cross validation of the same data. When experimenting
on the NWE Census Data, we set k ∈ {2, 4, 7, 9, 1, 14}, while when experimenting
on the Munich Census Data we set k ∈ {9, 18, 27, 36, 45}.

The results of Wilcoxon test are reported in Table 3 for the NWE Census
Data and in Table 4 for the Munich Census Data. The results showed a slight
improvement in the predictive accuracy of the transductive classifier over its
inductive counterpart. Considering that both datasets are characterized by a
strongly relevant structural component, these results confirm what observed with
the Mutagenesis dataset, that is, the transductive approach we are proposing is
beneficial when structural information is strongly relevant for the task at hand.

Table 3. TRANSC vs. Mr-SBC on NWE census data: results of the Wilcoxon test.
Statistically significant p-values (< 0.05) are in italics. The sign + (-) indicates that
TRANSC outperforms Mr-SBC (or vice-versa).

Experiment/k 2 4 6 8 10 12

10-fold CV 0.43 (+) 0.84 (+) 0.31 (+) 0.29 (+) 0.21 (+) 0.37 (+)

20-fold CV 0.12 (+) 0.17 (+) 0.36 (+) 0.12 (+) 0.09 (+) 0.16 (+)

Table 4. TRANSC vs. Mr-SBC on Munich census data: results of the Wilcoxon test.
Statistically significant p-values (< 0.05) are in italics. The sign + (-) indicates that
TRANSC outperforms Mr-SBC (or vice-versa).

Experiment/k 9 18 27 36 45

10-fold CV 0.42 (-) 0.74 (-) 0.04 (+) 0.25 (+) 0.20 (+)
20-fold CV 0.0019 (+) 0.03 (+) 0.1 (+) 0.00012 (+) 0.00006 (+)

5 Conclusions

In this work we have investigated the combination of transductive inference
with principled probabilistic MRDM classification in order to face the chal-
lenges posed by real-world applications characterized by both complex and het-
erogeneous data, which are naturally modeled as several tables of a relational
database, and the availability of a small (large) set of labeled (unlabeled) data.
Our proposed algorithm builds on an initial inductive classifier, namely a multi-
relational näıve Bayesian classifier (Mr-SBC), learned from the training
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(i.e., labeled) examples and used to perform a preliminary labeling of the work-
ing (i.e., unlabeled) data. The initial classification of the examples comprising
the working set is then refined iteratively over a finite number of steps, each of
which consists in a k-NN classification of all unlabeled examples and a subsequent
reclassification of some “borderline” unlabeled examples. Neighbors are deter-
mined by computing a distance measure on a propositionalized representation
of working examples. Propositionalization is based on the set of multi-relational
rules mined by Mr-SBC.

The proposed transductive multi-relational classifier (TRANSC) has been
compared to its inductive counterpart (Mr-SBC) in an empirical study involving
both a benchmark relational dataset and two spatial datasets. The results of
the experiments conducted on the benchmark dataset are in favor of TRANSC
only when no background knowledge is considered (setting BK0). Experimental
results on spatial data are generally in favor of TRANSC and statistically signif-
icant in the case of the largest disproportion between training and working set
(Munich census data with 20-fold cross validation). However, the improvements
over the inductive counterpart are small. This findings confirm for the relational
framework what already established for the propositional case [14], where similar
small improvements have been observed when comparing SVMs in the inductive
and transductive setting (SVMs vs TSVMs). Nonetheless, we intend to perfect
our work in order to corroborate our intuition that transductive inference has
benefits over inductive inference when applied to situations, like text mining,
where the unlabeled examples heavily outnumber the labeled ones.
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Abstract. A Classification Association Rule (CAR), a common type of mined 
knowledge in Data Mining, describes an implicative co-occurring relationship 
between a set of binary-valued data-attributes (items) and a pre-defined class, 
expressed in the form of an “antecedent ⇒ consequent-class” rule. Classification 
Association Rule Mining (CARM) is a recent Classification Rule Mining (CRM) 
approach that builds an Association Rule Mining (ARM) based classifier using 
CARs. Regardless of which particular methodology is used to build it, a classifier 
is usually presented as an ordered CAR list, based on an applied rule ordering 
strategy. Five existing rule ordering mechanisms can be identified: (1) Confi-
dence-Support-size_of_Antecedent (CSA), (2) size_of_Antecedent-Confidence-
Support (ACS), (3) Weighted Relative Accuracy (WRA), (4) Laplace Accuracy, 
and (5) χ2 Testing. In this paper, we divide the above mechanisms into two 
groups: (i) pure “support-confidence” framework like, and (ii) additive score 
assigning like. We consequently propose a hybrid rule ordering approach by 
combining one approach taken from (i) and another approach taken from (ii). The 
experimental results show that the proposed rule ordering approach performs well 
with respect to the accuracy of classification.  

Keywords: Classification Association Rules, Classification Association Rule 
Mining, Data Mining, Rule Ordering. 

1   Introduction 

Classification Rule Mining (CRM) [15] is a well-known Data Mining technique for 
the extraction of hidden Classification Rules (CRs) from a given database that is 
coupled with a set of pre-defined classes, the objective being to build a classifier to 
classify “unseen” data records. One recent approach to CRM is to employ Association 
Rule Mining (ARM) [1] techniques to identify the desired CRs, i.e. Classification 
Association Rule Mining (CARM). In [9], Coenen et al. suggest that results presented 
in [13] and [14] show that CARM seems to offer greater accuracy of classification, in 
many cases, than other CRM methods such as C4.5 [15]. CARM mines a set of 
Classification Association Rules (CARs) from a class transaction database (the  
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well-established transaction database in a class fashion), where a CAR describes an 
implicative co-occurring relationship between a set of binary-valued data attributes 
(items in a transaction database) and a pre-defined class, expressed in the form of an 
“antecedent ⇒ consequent-class” rule. Regardless of which particular methodology is 
used to generate CARs, a classifier is usually presented as an ordered CAR list, based 
on an applied rule ordering mechanism. In [7] Coenen and Leng evaluated a number 
of alternative case satisfaction and rule ordering strategies. They indicate that (1) 
three common case satisfaction approaches are best first rule, best K rule, and all 
rules; and (2) five existing rule ordering mechanisms are Confidence-Support-
size_of_Antecedent (CSA), size_of_Antecedent-Confidence-Support (ACS), Weigh-
ted Relative Accuracy (WRA), Laplace Accuracy, and χ2 Testing. In this paper, we 
further divide (2) into two groups: (i) pure “support-confidence” framework like, and 
(ii) additive score assigning like. We consequently propose a hybrid rule ordering 
approach by combining one mechanism taken from (i) and another mechanism taken 
from (ii). The experimental results show good performance regarding the accuracy of 
classification when using the proposed rule ordering approach with the best first rule 
case satisfaction. 

2   Related Work 

2.1   An Overview of CARM Algorithms 

The idea of CARM was first presented in [3]. Subsequently a number of alternative 
approaches have been described. Broadly CARM algorithms can be categorized into 
two groups according to the way that the CARs are generated: 

• Two stage algorithms where a set of CARs are produced first (stage 1), which 
are then pruned and placed into a classifier (stage 2). Examples of this approach 
include CBA [14] and CMAR [13]. CBA (Classification Based Associations), 
developed by Liu et al. in 1998, is an Apriori [2] based CARM algorithm, which 
(1) applies its CBA-GR procedure for CAR generation; and (2) applies its CBA-
CB procedure to build a classifier based on the generated CARs. CMAR 
(Classification based on Multiple Association Rules), introduced by Han and Jan 
in 2001, is similar to CBA but generates CARs through a FP-tree [11] based 
approach. 

• Integrated algorithms where the classifier is produced in a single processing 
step. Examples of this approach include TFPC1 [7] [9], and induction systems 
such as FOIL [16], PRM and CPAR [17]. TFPC (Total From Partial 
Classification), proposed by Coenen et al. in 2004, is a Apriori-TFP [8] based 
CARM algorithm, which generates CARs through efficiently constructing both 
P-tree and T-tree set enumeration tree structures. FOIL (First Order Inductive 
Learner) is an inductive learning algorithm for generating CARs developed by 
Quinlan and Cameron-Jones in 1993. This algorithm was later developed by Yin 
and Han to produce the PRM (Predictive Rule Mining) CAR generation 

                                                           
1 TFPC may be obtained from http://www.csc.liv.ac.uk/~frans/ KDD/Software. 
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algorithm. PRM was then further developed, by Yin and Han in 2003 to produce 
CPAR (Classification based on Predictive Association Rules). 

2.2   Case Satisfaction Approaches 

In [7] Coenen and Leng summarized three case satisfaction approaches that have been 
employed in different CARM algorithms for utilizing the resulting classifier to 
classify “unseen” data. These three case satisfaction approaches are itemized as 
follows (given a particular case): 

• Best First Rule: Select the first best rule that satisfies the given case according to 
some ordering imposed on the CAR list. The ordering can be defined according 
to many different ordering mechanisms, including: (1) CSA – combinations of 
confidence, support and size of antecedent, with confidence being the most 
significant factor (used in CBA, TFPC and the early stages of processing of 
CMAR); (2) ACS – an alternative to CSA that considers the size of the rule 
antecedent as the most significant factor; (3) WRA – which reflects a number of 
rule “interestingness” measures as proposed in [12]; (3) Laplace Accuracy – as 
used in PRM and CPAR; (5) χ2 Testing – χ2 values as used, in part, in CMAR; 
etc. 

• Best K Rules: Select the first best K rules that satisfy the given case and then 
select a rule according to some averaging process as used for example, in CPAR. 
The term “best” in this case is defined according to an imposed ordering of the 
form described in Best First Rule. 

• All Rules: Collect all rules in the classifier that satisfy the given case and then 
evaluate this collection to identify a class. One well-known evaluation method in 
this category is WCS (Weighted χ2) testing as used in CMAR. 

3   Rule Ordering Approaches 

As noted in the previous section five existing rule ordering mechanisms are identified 
to support the best first rule case satisfaction strategy. Each can be further separated 
into two stages: (1) a rule weighting stage where each CAR is labeled with a 
weighting score that represents the significance of this CAR indicates a predefined 
class; and (2) a rule re-ordering stage, which sorts the original CAR list in a 
descending manner, based on the score assigned in stage (1), of each CAR. Based on 
(1) we divide these existing rule ordering mechanisms into two groups: (i) pure 
“support-confidence” framework like, and (ii) additive score assigning like. With 
regards to both stages of rule weighting and rule re-ordering, each rule ordering 
mechanism can be described in more detail as follows: 

(i)   Pure “support-confidence” framework like 

• CSA: The CSA rule ordering mechanism is based on the well-established 
“support-confidence” framework. It does not assign an additive weighting score 
to any CAR in its rule weighting stage, but simply gathers the value of 
confidence and support, and the size of the rule antecedent to “express” a  
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weighting score for each CAR. In the rule re-ordering stage, CSA generally sort 
the original CAR list in a descending order based on the value of confidence of 
each CAR. For these CARs that share a common value of confidence, CSA sorts 
them in a descending order based on their support value. Furthermore for these 
CARs that share common values for both confidence and support, CSA sorts 
them in an ascending order based on the size of the rule antecedent. 

• ACS: The ACS rule ordering mechanism is a variation of CSA. It takes the size 
of the rule antecedent as its major factor (using a descending order) followed by 
the rule confidence and support values respectively. This rule ordering 
mechanism ensures that “specific rules have a higher precedence than more 
general rules” [7]. 

(ii)   Additive score assigning like 

• WRA: The use of WRA can be found in [12], where this technique is used to 
determine an expected accuracy for each CAR. In its rule weighing stage, WRA 
assigns an additive weighting score to each CAR. The calculation of the value of 
a CAR r, confirmed in [7], is: wra(r) = support (r.antecedent) * (confidence (r) – 
support (r.consequent)). In the rule re-ordering stage the original CAR list is 
simply sorted in a descending order based on the assigned wra value of each 
CAR. 

• Laplace Accuracy: The use of the Laplace expected error estimate [5] can be 
found in [17]. The principle of applying this rule ordering mechanism is similar 
to WRA. The calculation of the Laplace value of a CAR r is: Laplace(r) = 
(support (r.antecedent ∪ r.consequent) + 1) / (support (r.antecedent) + c), where 
c represents the number of pre-defined classes. 

• χ2 Testing: χ2 Testing is a well known technique in statistics, which can be used 
to determine whether two variables are independent of one another. In χ2 
Testing a set of observed values (O) is compared against a set of expected values 
(E) – values that would be estimated if there were no associative relationship 
between the variables. The value of χ2 is calculated as: ∑[i = 1…n] (Oi – Ei)

2 / Ei, 
where n is the number of observed/expected values, which is always 4 in 
CARM. If the χ2 value between two variables (the antecedent and consequent-
class of a CAR) above a given threshold value (for CMAR the chosen threshold 
is 3.8415), thus it can be concluded that there is a relation between the rule 
antecedent and consequent-class, otherwise there is not a relation. After 
assigning an additive χ2 value to each CAR, it can be used to re-order the CAR 
list in a descending basis. 

4   The Hybrid Rule Ordering Strategy 

In [17] Yin and Han believe that there are only a limited number, say at most K in 
each class, of CARs that are required to distinguish between classes and should be 
thus used to make up a classifier. They suggest a value of 5 as an appropriate value 
for K, and employ the Laplace accuracy (a method in the additive score assigning 
like) to estimate the accuracy of CARs. With respect to the above suggestions, we  
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propose a hybrid rule ordering strategy by combining one rule ordering mechanism 
taken from (i) the pure “support-confidence” framework like, and another rule 
ordering mechanism taken from (ii) the additive score assigning like. We sketch the 
process of the proposed rule ordering approach in Figure 1 as follows. 
 
 

Procedure HYBRID RULE ORDERING; 
Input:  a list of CARs ℜ (in a CSA or ACS 

    ordering manner); 
Output: a re-ordered list of CARs ℜ+; 

(1)begin 
(2)  ℜ+ := {∅}; 
(3)  ℜ◊ := {∅}; 
(4)  ℜ◊ ← catch the best K rules in ℜ using 

 a method in (ii); 
(5)  ℜ◊ ← re-order ℜ◊ based on a method in (i); 
(6)  ℜ+ ← ℜ◊ + ℜ; 
(7)  return (ℜ+); 
(8)end 

Fig. 1. The HYBRID RULE ORDERING Procedure 

Six different schemes can be identified in this hybrid approach: 

• Hybrid CSA/WRA: Selects the best K rules in a WRA manner, and re-orders 
both the best K CAR list and the original CAR list in a CSA fashion. (Note: we 
assume that both CAR lists use the same ordering fashion as either CSA or 
ACS); 

• Hybrid CSA/Laplace: Selects the best K rules in a Laplace manner, and re-
orders both the best K CAR list and the original CAR list in a CSA fashion; 

• Hybrid CSA/χ2: Selects the best K rules in a χ2 manner, and re-orders both the 
best K CAR list and the original CAR list in a CSA fashion; 

• Hybrid ACS/WRA: Selects the best K rules in a WRA manner, and re-orders 
both the best K CAR list and the original CAR list in an ACS fashion. 

• Hybrid ACS/Laplace: Selects the best K rules in a Laplace manner, and re-
orders both the best K CAR list and the original CAR list in an ACS fashion; and 

• Hybrid ACS/χ2: Selects the best K rules in a χ2 manner, and re-orders both the 
best K CAR list and the original CAR list in an ACS fashion. 

5   Experimental Results 

In this section, we aim to evaluate the proposed hybrid rule ordering approach with 
respect to the accuracy of classification. All evaluations were obtained using the 
TFPC algorithm coupled with the best first rule case satisfaction strategy, although  
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any other CARM classifier generator, founded on the best first rule strategy, could 
equally well be used. Experiments were run on a 1.20 GHz Intel Celeron CPU with 
256 Mbyte of RAM running under Windows Command Processor. 

The experiments were conducted using a range of datasets taken from the LUCS-
KDD discretised/normalized ARM and CARM Data Library [6]. The chosen datasets 
are originally taken from the UCI Machine Learning Repository [4]. These datasets 
have been discretised and normalized using the LUCS-KDD DN software2, so that 
data are then presented in a binary format suitable for use with CARM applications. It 
should be noted that the datasets were rearranged so that occurrences of classes were 
distributed evenly throughout the datasets. This then allowed the datasets to be 
divided in half with the first half used as the training set and the second half as the test 
set. Although a “better” accuracy figure might have been obtained using Ten-Cross 
Validation [10], it is the relative accuracy that is of interest here and not the absolute 
accuracy. 

The first set of evaluations undertaken used a confidence threshold value of 50% 
and a support threshold value 1% (as used in the published evaluations of CMAR 
[11], CPAR [17], TFPC [7] [9]). The results are presented in Table 1 where 120 
classification accuracy values are listed based on 24 chosen datasets. The row labels 
describe the key characteristics of each dataset: for example, the label  
 

Table 1. Classification accuracy – five existing rule ordering approaches 

DATASETS CSA ACS WRA Laplace χ2 
adult.D97.N48842.C2 80.83 73.99 81.66 76.07 76.07 
anneal.D73.N898.C6 91.09 75.50 87.75 77.51 77.51 
auto.D137.N205.C7 61.76 53.92 50.00 47.06 50.00 
breast.D20.N699.C2 89.11 89.11 87.68 65.62 65.62 
connect4.D129.N67557.C3 65.83 64.83 67.93 65.83 65.83 
cylBands.D124.N540.C2 65.93 42.59 64.07 57.78 57.78 
flare.D39.N1389.C9 84.44 83.86 84.15 84.44 84.44 
glass.D48.N214.C7 58.88 43.93 50.47 52.34 50.47 
heart.D52.N303.C5 58.28 28.48 55.63 54.97 54.97 
hepatitis.D56.N155.C2 68.83 48.05 71.43 79.22 79.22 
horseColic.D85.N368.C2 72.83 40.76 79.89 79.89 63.04 
ionosphere.D157.N351.C2 85.14 61.14 86.86 64.57 64.57 
iris.D19.N150.C3 97.33 97.33 97.33 97.33 97.33 
led7.D24.N3200.C10 68.38 61.38 63.94 63.88 65.56 
letRecog.D106.N20000.C26 31.13 26.21 26.33 26.33 28.52 
mushroom.D90.N8124.C2 99.21 65.76 98.45 98.45 49.43 
nursery.D32.N12960.C5 80.35 55.88 70.17 70.17 70.17 
pageBlocks.D46.N5473.C5 90.97 90.97 90.20 89.80 89.80 
pima.D38.N768.C2 73.18 71.88 72.92 65.10 65.10 
soybean-
large.D118.N683.C19 86.22 79.77 36.36 36.07 77.42 
ticTacToe.D29.N958.C2 71.61 36.12 68.06 65.34 65.34 
waveform.D101.N5000.C3 61.56 47.96 56.24 57.84 57.28 
wine.D68.N178.C3 56.18 37.08 80.90 73.03 70.79 
zoo.D42.N101.C7 80.00 42.00 56.00 42.00 42.00 
Average 74.13 59.10 70.18 66.28 65.34 



 A Novel Rule Ordering Approach in Classification Association Rule Mining 345 

adult.D97.N48842.C2 denotes the “adult” dataset, which includes 48,842 records in 2 
pre-defined classes, with attributes that for the experiments described here have been 
discretised and normalized into 97 binary categories. 

From Table 1 it can be seen that with a 50% confidence threshold and a 1% 
support threshold the CSA rule ordering mechanism worked better than other 
alternative approaches. When applying the CSA rule ordering mechanism, the 
average accuracy of classification throughout the 24 datasets is 74.13%, whereas 
using ACS is 59.10%, WRA is 70.18%, Laplace is 66.28%, and χ2 is 65.34%. 

The second set of evaluations undertaken used a confidence threshold value of 
50%, a support threshold value of 1%, and a value of 5 as an appropriate value for K 
when selecting the best K rules (as suggested by Yin and Han in [17]). The results are 
presented in Table 2 where 144 classification accuracy values are listed based on 24 
chosen datasets. 

Table 2. Classification accuracy – six hybrid rule ordering schemes 

DATASETS 
CSA/ 
WRA 

CSA/ 
Laplace

CSA/ 
χ2 

ACS/ 
WRA 

ACS/ 
Laplace

ACS/ 
χ2 

adult.D97.N48842.C2 83.33 79.95 79.95 78.56 83.76 80.14 
anneal.D73.N898.C6 91.09 91.54 91.54 80.40 80.62 88.20 
auto.D137.N205.C7 59.80 58.82 53.92 55.88 54.90 52.94 
breast.D20.N699.C2 89.11 88.54 89.11 89.11 88.54 89.11 
connect4.D129.N67557.C3 67.67 65.83 65.83 64.88 64.88 64.88 
cylBands.D124.N540.C2 67.04 69.26 57.78 61.11 70.00 53.33 
flare.D39.N1389.C9 84.29 84.44 84.44 83.86 83.86 83.86 
glass.D48.N214.C7 66.36 66.36 66.36 65.42 65.42 68.22 
heart.D52.N303.C5 55.63 56.95 58.94 52.32 50.33 50.33 
hepatitis.D56.N155.C2 84.42 84.42 84.42 63.64 71.43 68.83 
horseColic.D85.N368.C2 83.15 83.15 79.89 75.00 83.15 71.20 
ionosphere.D157.N351.C2 90.29 89.71 88.00 90.29 89.71 88.00 
iris.D19.N150.C3 97.33 97.33 97.33 97.33 97.33 97.33 
led7.D24.N3200.C10 68.19 68.19 68.38 62.06 62.06 62.31 
letRecog.D106.N20000.C26 31.49 31.49 31.56 27.39 27.39 28.41 
mushroom.D90.N8124.C2 98.45 98.82 98.45 98.45 98.82 98.45 
nursery.D32.N12960.C5 78.86 78.86 78.86 66.73 66.73 66.73 
pageBlocks.D46.N5473.C5 90.97 90.97 90.97 90.97 90.97 90.97 
pima.D38.N768.C2 73.18 73.18 72.66 73.18 73.18 72.66 
soybean-
large.D118.N683.C19 80.94 80.94 82.11 75.66 75.66 78.01 
ticTacToe.D29.N958.C2 74.95 74.74 72.65 60.75 70.35 67.22 
waveform.D101.N5000.C3 57.96 57.96 60.60 59.20 59.20 60.60 
wine.D68.N178.C3 77.53 77.53 77.53 77.53 77.53 77.53 
zoo.D42.N101.C7 84.00 90.00 72.00 80.00 80.00 80.00 
Average 76.50 76.62 75.14 72.07 73.58 72.47 

From Table 2 it can be seen that with a 50% confidence threshold, a 1% support 
threshold, and 5 as the value of K, the approach hybrid CSA/Laplace preformed better  
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than other alternative hybrid schemes. When applying the hybrid CSA/Laplace, the 
average accuracy of classification throughout the 24 datasets is 76.62%. Let CSA and 
Laplace be the “parents” of the hybrid CSA/Laplace, we indicate that the 
classification accuracy obtained using the hybrid CSA/Laplace is significantly higher 
than using its “parents”, where CSA is 74.13% and Laplace is 66.28%. Furthermore 
we identify: 

• The classification accuracy of the hybrid CSA/WRA is significantly higher than 
the accuracies of its “parents”, where the average accuracy of the hybrid 
CSA/WRA is 76.50% whereas CSA is 74.13% and WRA is 70.18%. 

• The classification accuracy of the hybrid CSA/χ2 is significantly higher than the 
accuracies of its “parents”, where the accuracy of the hybrid CSA/χ2 is 75.14% 
whereas CSA is 74.13% and χ2 is 65.34%; 

• The accuracy of the hybrid ACS/WRA is significant higher than the accuracies of 
its “parents”, where the hybrid ACS/WRA is 72.07% whereas ACS is 59.10% 
and WRA is 70.18%; 

• The accuracy of the hybrid ACS/Laplace is significantly higher than its 
“parents”, where the hybrid ACS/Laplace is 73.58% whereas ACS is 59.10% and 
Laplace is 66.28%; and 

• The accuracy of the hybrid ACS/χ2 is significantly higher than its “parents”, 
where the hybrid ACS/χ2 is 72.47% whereas ACS is 59.10% and χ2 is 65.34%. 

6   Conclusion 

This paper is concerned with an investigation of CARM. An overview of alternative 
CARM algorithms was provided in Section 2.1, and three current case satisfaction 
strategies were reviewed in Section 2.2. In Section 3 with regards to both stages of 
rule weighting and rule re-ordering, we described the existing rule ordering 
mechanisms in groups (the “support-confidence” framework like vs. the additive 
score assigning like). A hybrid rule ordering approach was proposed in Section 4, 
which combines an approach taken from the “support-confidence” framework like, 
and another approach taken from the additive score assigning like. Subsequently six 
hybrid rule ordering schemes were introduced. From the experimental results (see 
Section 5), all six hybrid schemes presented good classification accuracy – the 
accuracy is significantly higher than the accuracies obtained by their “parent” rule 
ordering approaches. Further research is suggested to identify the improved rule 
ordering approach to give a better performance. 
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Abstract. The search for frequent patterns in transactional databases
is considered one of the most important data mining problems. Several
parallel and sequential algorithms have been proposed in the literature to
solve this problem. Almost all of these algorithms make repeated passes
over the dataset to determine the set of frequent itemsets, thus imply-
ing high I/O overhead. In the parallel case, most algorithms perform a
sum-reduction at the end of each pass to construct the global counts,
also implying high synchronization cost. We present a novel algorithm
that exploits efficiently the trade-offs between computation, communi-
cation, memory usage and synchronization. The algorithm was imple-
mented over a cluster of SMP nodes combining distributed and shared
memory paradigms. This paper presents the results of our algorithm on
different data sizes experimented on different numbers of processors, and
studies the effect of these variations on the overall performance.

1 Introduction

The discovery of Association Rules is one of the most productive fields in the
development of sequential algorithms as well as parallel algorithms for Data
Mining. Simultaneously, with the evolution of these algorithms the possible ap-
plications of Association Rule Mining (ARM) has also been extended together
with a corresponding increase in the volume of the databases to be mined. As
a consequence of the latter, even using the most efficient sequential ARM al-
gorithms, it is not possible to reduce the support threshold to the desired level
without causing a combinatorial explosion in the number of identified frequent
itemsets coupled with a corresponding computational overhead.

The situation described above confirms the relevance of the application of
Parallel Computing for Association Rule Mining, which is a very active global
research area. The main challenges of Parallel Computing are: load balancing,
minimization of the inter-process communication overhead, the reduction of syn-
chronization requirements and effective use of the memory available to each
processor.

These issues must be taken into account in the development of efficient parallel
algorithms for Association Rule Mining; basic references to consider are [8,9,10].

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 349–363, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The prototypical ARM application is the analysis of sales or basket data [1].
The task can be broken into two steps. The first step consists of finding the set of
all frequent sets of items that can be the transaction database. The second step
consists of forming implication rules among the sets of items found; the latter
can be done in a straightforward manner so we will focus on the first step.

In previous papers [11,12], we proposed a new algorithm called CBMine (Com-
pressed Binary Mine) for mining association rules and frequent itemsets. Its ef-
ficiency is based on a compressed vertical binary representation of the database.
CBMine has been compared with other efficient ARM algorithms to obtain fre-
quent itemsets, including: Fp-growth (implementation of Bodon), MAFIA and
Patricia Trie . The experimental results obtained showed that CBMine gives the
best performance in most cases, especially on big and sparse databases.

In this paper we propose a new parallel algorithm based in CBMine named
ParCBMine(Parallel Compressed Binary Mine). ParCBMine exploits efficiently
the trade-offs between computation, communication, memory usage and syn-
chronization. The algorithm was implemented over a cluster of SMP nodes com-
bining distributed and shared memory paradigms. Section 5 of this paper shows
the experimental results of our algorithm on different data sizes, evaluated on
different numbers of processors, and studies about the effect of these variations
on the overall performance.

The paper is organized as follows: the next section is dedicated to related work;
in section 3 we give a formal definition of association rules; section 4 contains
a description of ParCBMine algorithm; experimental results are discussed in
section 5; and some conclusions are presented in section 6.

2 Related Work

Until now the great majority of the parallel algorithms for Association Rule
Mining are based on the sequential Apriori algorithm. An excellent survey made
by Zaki in 1999 [18] classifies different algorithms up to that date, according to
the load balance strategy, the architecture and the type of parallelism used in
the algorithm. Other important references are [2,15,16,19,20,22].

Apriori algorithm has been the most significant of all sequential algorithms
proposed in the literature. Yet, directly adapting an Apriori-like algorithm will
not significantly improve performance over frequent itemsets generation. To per-
form better than Apriori-like algorithms, we must focus on the disadvantages as-
sociated with this approach. The main challenges include synchronization, com-
munication minimization, work-load balancing, finding good data layout and
data decomposition, and disk I/O minimization.

Recently interesting parallel ARM has increased as a result of this early work.
We can identify a number of early ARM algorithms: Count Distribution, Data
Distribution and Candidate Distribution. These algorithms were first presented
in [2] and offer a fairly simple parallelization of Apriori using different paradigms
of parallelization; namely data-parallelism and control-parallelism, or a combi-
nation of both. In Count Distribution the dataset is partitioned equally among
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the nodes of the parallel system. Each of these nodes computes the local support
for every candidate k-itemset in the iteration k. At the end of each iteration by
exchanging the local supports the global support is generated and the frequent
itemsets determined. The nodes must be synchronized to receive the candidate
itemsets and the coordinator node must wait for all local counts to generate
the global support. The former factors affects communication cost and load-
balancing; however the Count Distribution algorithm represents a good first
step and can be the core of subsequent implementations that address these is-
sues. In Data Distribution the set of candidate itemset is partitioned into disjoint
sets and these are sent to different nodes. The problem in this parallel version
of Apriori is the magnitude of the huge communications required at the end of
each iteration. In Candidate Distribution load-balancing is thus the main target,
selectively replicating the dataset so that each processor proceeds independently.
The algorithm requires redistribution of the dataset at level l, this is identified
using a heuristic approach.

There are other parallel versions of well-known sequential algorithms like PDM
(parallelizing DHP) [3]. But this was not a successful attempt due to its poor
performance with respect to the above algorithms. Other algorithms that ad-
dress the size of candidacy and better pruning techniques are DMA and FDM
presented in [4,5]. In [7] the Optimized Distributed Association Mining (ODAM)
algorithm is proposed based on Count Distribution which reduce both the size
of the average transaction and the number of message exchanges among nodes
in order to achieve better performance.

The Eclat(Equivalence CLass Transformation) algorithm [17] uses an itemset
grouping scheme based on equivalence classes and partitions them into disjoint
subsets among the processors. At the same time Eclat makes use of a kind of
vertical representation of the dataset and then selectively replicates it so that
each processor has the portion of the dataset it needs for calculations. After
the initial phase the algorithm eliminates the need for later communication or
synchronization. The algorithm scans the local partition of the dataset three
times, therefore diminishing the I/O overhead. Unlike other earlier algorithms,
Eclat uses simple intersection operations to compute frequent itemsets and does
not use complex hash tables structures. The main deficiency of this algorithm
lies in the need for a proper heuristic to achieve a suitable load balance among
the processors as of the L2 partitioning, because the equivalence classes do not
have the same cardinality.

In [15] a collection of algorithms with different partitioning and candidate
itemsets count schemes are described. Like Eclat, all of them assume a vertical
representation of the dataset (tidlits per item), which facilitates the intersection
operation of tids of items that make up an itemset. The dataset is duplicated
in a selective fashion to reduce synchronization. Two of these algorithms (Par-
Eclat and Par-MaxEclat) are based on the classes of equivalence formed by the
candidates first item, whereas the other two algorithms (Par-Clique and Par-
MaxClique) use the maximum closed hypergraph to partition the candidates.
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In [21], a parallel algorithm is proposed for Association Rule Mining that uses
a classification hierarchy named HPGM (Hierarchical Hash Partitioned Gener-
alized Association Rule Mining). In this algorithm, the available memory space
is completely used identifying the frequent occurrence of candidates itemsets
and replicating them to all processors, considering that frequent itemsets can be
locally processed without communication. This way the load asymmetry among
processors can be effectively reduced.

3 Problem Definition

In this section we define some necessary terminology to facilitate understanding
of the following sections. In this context it should be noted that we are only
focused on the problem of identifying frequent itemsets on large databases.

A dataset is a set of transactions and each of these is composed by a transac-
tion identifier (TID) and a set of items. The items in a transaction may represent
a shopping list in a supermarket by a customer (known as basket data) or words
in a document or stocks movements. A set of items, called itemset is frequent
if it is contained in a number of transactions above a user-specified threshold
(minimum support-minsup).

An itemset with k items will be referred to as k-itemset and its support will be
denoted as X.sup, where X is the k-itemset in question; support is represented
as a percentage rather than an absolute number of transactions.

More formally: I = {i1, i2, ..., in} be a set of n distinct items. Each transaction
T in the dataset D contains a set of items, such that T ⊆ I. An itemset is said
to have a support s if s% of the transaction in D contains the itemset.

4 ParCBMine

In this section we describe the parallel version of the CBMine algorithm which
we have named ParCBMine (Parallel CBMine).

ParCBMine takes advantage of the vertical representation of the dataset as in
CBMine and combines suitably the parallel programming models of shared and
distributed memory using the libraries pthreads (for multithreads programming)
and MPI (for message passing programming) respectively.

The mixture of multithreads programming and message passing in ParCB-
Mine was done based on the fact that the algorithm was implemented over a
cluster with SMP (Symmetric Multi-Processing) nodes for the parallel process-
ing managed by a GNU/Linux operating system; each node is composed by a
dual processor. All processors are Intel Xeon with hyperthreading technology,
which provides up to four threads on each node.

Although the algorithm is not tied to the number of real threads (proces-
sors) that could be deployed on each node, this is an important element on the
scalability of ParCBMine, because it allows the use of global information in the
shared memory of each node in a better way, i.e., in candidate generation and
support counting. Many authors refer to this as “intra-node parallelism”, and in
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certain way we have incorporated some aspects of the Candidate Distribution
algorithm, in this case by means of multithread programming using the Pthreads
library.

4.1 CBMine Algorithm

CBMine is a breadth-first search algorithm with a VTV organization, that uses
compressed integer-lists for itemset representation.

Let T be the binary representation of a database, with n filtered items and m
transactions. Taking from T the columns associated with frequent items, each
item j can be represented as a list Ij of integers (integer-list) of word size w, as
follows:

Ij = {W1,j , . . . ,Wq.j} , q = �m/w�, (1)

where each integer of the list can be defined as:

Ws,j =
min(w,m−(s−1)∗w)∑

r=1

2(w−r) ∗ t((s−1)∗w+r),j. (2)

The upper expression min(w,m− (s− 1) ∗w) is included to consider the case
in which the transaction number (s−1)∗w+ r does not exist due to the fact that
it is greater than m. The value ti,j is the bit value of term j in the transaction i.

This algorithm iteratively generates a prefix list PLk. The elements of this
list have the format: 〈Prefixk−1, CAPrefixk−1 , SuffixesPrefixk−1〉, where
Prefixk−1 is a (k − 1)-itemset, CAPrefixk−1 is the corresponding compressed
integer-list, and SuffixesPrefixk−1 is the set of all suffix items j of k-itemsets
extended with the same Prefixk−1, where j is lexicographically greater than
every item in the prefix and the extended k-itemsets are frequent. This repre-
sentation not only reduces the required memory space to store the integer-lists
but also eliminates the Join step described in Apriori algorithm.

The Prune step of Apriori algorithm is optimized by generating PLk as a
sorted list according to the prefix field and, for each element, by the suffix field.

In order to determine the support of an itemset with a compressed integer-list
CA, the following expression is considered:

Support(CA) =
∑

〈s,Bs〉∈CA

BitCount(Bs), (3)

where BitCount(Bs) represents a function that calculates the Hamming Weight
of each Bs.

Although this algorithm uses compressed integer-lists of non null integers
(CA) for itemset representation, in order to improve the efficiency, we maintain
the initial integer-lists (including the null integers) Ij = {W1,j , . . . ,Wq,j} asso-
ciated with each large 1-itemset j. This consideration allows direct accessing for
any Ij the integer position defined in CA.
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The above allows us to define the following formula (notice that this func-
tion represents a significant difference and improvement with respect to other
methods):

CompAnd(CA, Ij) = {〈s,B′
s〉|〈s,Bs〉 ∈ CA,B′

s = (BsandWs,j), B′
s �= 0}. (4)

Note that the cardinality of CA is reduced as the size of the itemsets increases
due to the downward closure property; thus the application of identities 3 and 4
becomes more efficient.

The complete CBMine algorithm is presented in Table 1.

Table 1. CBMine algorithm

Algorithm 1: CBMine
L1 = {large 1-itemsets} ; // Scanning the database1

PL2 = {〈Prefix1, CAPrefix1 , SuffixesPrefix1〉};2

for k = 3;PLk−1 �= ∅; k + + do3

forall 〈Prefix,CA, Suffixes〉 ∈ PLk−1 do4

forall item j ∈ Suffixes do5

Prefix′ = Prefix ∪ {j};6

CA′ = CompactAnd(CA,Ij);7

forall (j′ ∈ Suffixes) and (j′ > j) do8

if Prune(Prefix′ ∪ {j′}, PLk−1) and Support(CompactAnd(CA′ ,9

Ij′)) ≥ minsup then
Suffixes′ = Suffixes′ ∪ {j′};10

end11

if Suffixes′ �= ∅ then12

PLk = PLk ∪ {〈Prefix′, CA′, Suffixes′〉};13

end14

end15

end16

end17

end18

Answer=
⋃

k Lk ; // Lk is obtained from PLk19

Note that this algorithm only scans the dataset once in the first step.

4.2 Intelligent Block Partitioning

Given PLk−1 we need to partition it among the threads in the most efficient
manner. In the literature we can identified several partitioning techniques, such
as Bitonic Partitioning from Zaki [19]. Nevertheless, given the features of the
sequential algorithm, we achieve the best results making a block partitioning, so
the information to be processed by each thread was not fragmented.

For this purpose we develop Intelligent Block Partitioning (IBP), dynamically
recomputing the load balance for each thread in a straightforward manner. We
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use equation 5 to compute the work load generated by a Prefix based on the size
of its Suffixes. The pseudo-code of IBP is given in Table 2.

G (x) =
x (x− 1)

2
(5)

Table 2. Intelligent Block Partitioning algorithm

Algorithm 2: IBP

Total =
∑|PLk−1|

j=0 G(|SuffixesPrefixj |); /* Total Work Load */1

Ideal = Total
MaxThreads

; /* Ideal Work Load for each thread */2

i = 1;3

load = starts[0] = 0;4

forall 〈Prefix,CA, Suffixes〉 ∈ PLk−1 do5

load = load + G(|Suffixes|);6

if load > Ideal then7

/* Set block boundaries */
start[i] = stop[i − 1] = 〈Prefix,CA, Suffixes〉;8

/* Dynamically recompute Total and Ideal Work Load */
Total = Total- load + G(|Suffixes|);9

Ideal = Total
MaxThreads−i

;10

load = G(|Suffixes|);11

i++;12

end13

end14

stop[i] = 〈Prefix|PLk−1|, CAPrefix|PLk−1| , SuffixesPrefix|PLk−1| 〉;15

The aforementioned partition strategy is one of the improvements ParCB-
Mine introduces over its sequential counterpart, and this can be verified in the
experimental results.

4.3 ParCBMine Algorithm

Considering a master-slave framework, typical of parallel clusters, in the first
pass, the master node or coordinator determines the global L1 and partitions
the dataset D in N equitable segments and sends each one of them to the
corresponding node that makes up the cluster, of this way ParCBMine like Count
Distribution, adopts a horizontal partitioning of the dataset thus using “inter-
node parallelism”, in this case the communication among the nodes is made by
means of message passing using the MPI library.

The first pass is special. For all other passes k > 1, the algorithm works as
follows:

1. Each master-thread process Pj(j = 1, N) generates all the set Ck, using
all the frequent itemsets Lk−1 created at the end of pass k − 1. Notice
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that every process has the same Lk−1, so they will generate identical Ck.
Threads Pi(i = 1, N ×MaxThreads) running in the same node, share the
same memory structure for Lk−1, Ck and Dj(j = 1, N).

2. The master-thread process Pj creates MaxThreads−1 new threads and each
one of these makes a pass over Dj data partition and develops local support
counts for a portion of the candidates in Ck which was previously partitioned
using the IBP strategy. With this, the local Ck at node j, is partitioned
equitably and each thread of the process develops the support count of its
candidates without making any synchronization to access the memory, since
the support count is developed on a reserved memory structure for each
candidate, taking advantage of the vertical representation of the dataset.

3. The master-thread process Pj sends the local counts of Ck to the master
node or coordinator, in order to make an all-reduce operation to generate
the global counts of Ck. Master-thread processes are forced to synchronize
in this step.

4. The master node or coordinator computes Lk from Ck. If Lk is not empty
the coordinator sends it to the master-thread process Pj and continues on
to the next pass.

Notice that unlike Count Distribution we have replaced the word processor by
process, since given the characteristics of the hardware of our cluster the amount
of processes is greater than the amount of processors, and can be expressed by
N ×MaxThreads, where: N is the number of nodes and MaxThreads is the
maximum number of threads per node, in our particular case MaxThreads = 4
considering the use of the Hyperthreading technology.

Unlike PAR-DCI algorithm [13], in which the local dataset is partitioned yet
again into as many portions as threads that were possible to deploy, in step 2 of
ParCBMine a more efficient solution was adopted. We distribute the candidate
support count among the threads by partitioning the candidate set into disjoint
parts of approximately the same size, without the need for semaphoric operations
to control memory access.

4.4 Complexity Analysis

In this section we will evaluate the complexity of our algorithm in three different
contexts, first assuming the use of shared memory model, second employing the
distributed memory model, and lastly the solution proposed by us of fusing the
models of shared memory and distributed memory.

Given that our algorithm is intended for a parallel framework based on an
SMP cluster, it is important to indicate that if we had used only a distributed
memory model based on message passing, like other authors have done, the
performance of the algorithm would have suffered considerably.

It is well known that in any algorithm based on Count Distribution the scala-
bility degrades as the number of dataset partitions increases, due to the amount
of information that each MPI process receives in each pass when synchroniz-
ing the processes in order to develop global support counts of itemsets in the
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candidate set. The amount of information is (N − 1) × |Ck|, where: N is the
number of MPI processes with a dataset portion assigned to it and |Ck| is the
cardinality of the candidate set generated in each pass and for which each MPI
process computes a local support count. Bear in mind that whatever the value of
N is, the cardinality of Ck does not change. This is the reason why the reduction
of local set Ck is an issue that has been and continues to be a research objec-
tive. From the literature one suggested approach involves the use of probabilistic
estimations of local support, see [6,14].

Given that we are using SMP nodes the advantages offered by the data local-
ity would be wasted since all the MPI processes running in each node will try
to equitably distribute the total physical memory of the node, reserving equal
amounts of memory for data structures to store Lk−1 and Ck, as well as for the
dataset partition assigned to the node. For the analysis lets assume that the
problem size remains constant, so the amount of candidates will be the same in
each case and will be denoted as |Ck|.

In the development of a parallel algorithm the most common notation for the
execution times are (if we consider a problem of size m running in p processors):
Sequential computation denoted by σ (m), Parallel execution time (computa-
tion that can be performed in parallel) denoted by ϕ (m) and Parallel overhead
(communication and synchronization, etc) denoted by κ (m). For the experi-
ments performed, the sequential plus the parallel execution time was considered
as the parallel execution time because of the characteristic of the CBMine, the
part that can not be parallelized is less than 1% of total execution time. For that
reason, the two times measured were: Parallel execution time and Parallel
overhead.

Shared Memory: Lk−1 is partitioned in disjoint sets using IBP, support is
develop from the common data base.

Algorithm 3: Shared Memory
while(Lk−1 �= ∅) ; /* Level Iterator */

Ct
k = IBP (Lk−1, t) ; /* Ck =

⋃
Ct

k t=1,..,MaxThreads */
foreach(X ∈ Ct

k) ; /* Count each X in the DB */
if(sup(X,DB) ≥ minsup) Lk = Lk

⋃
{X}

where: ϕ(m) = |Ck| ∗ |DB|, κ(m) = ∅.

ShT ime =
∑

k

|Ck| ∗ |DB|
p

= . . . =
∑

k

max|Ct
k| ∗ |DB| (6)

Distributed Memory: The DB is partitioned among the quantity process de-
noted by P , each one has a copy of Lk−1, count the local support and
exchange it (i.e. Message Passing). For example: if the nodes are single pro-
cessor P = N ; in case that the nodes are SMP then P = N x p, where: N is
the quantity nodes, and p is the number of processors in each node.
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Algorithm 4: Distributed Memory
DBid = Partition(DB, id) ; /* Horizontal partitioning */
while(Lk−1 �= ∅) ; /* Level Iterator */

Ck = GenerateCandidate(Lk−1) ; /* Ck is the same for each
process */

foreach(X ∈ Ck) ; /* Count each X in the DBid */
local[x] = sup(X,DBid) ; /* Local support */

global = InterchangeAndSum(local) ; /* All to All */
foreach(X ∈ Ck) ; /* global support */

if(global[X ] ≥ minsup) Lk = Lk

⋃
{X}

where: ϕ(m) = |Ck|∗|DB|, κ(m) =
∑

k InterchangeAndSum =
∑

k |Ck|∗2∗P =∑
k |Ck| ∗ 2 ∗N ∗ p.

DsT ime =
∑

k

|Ck| ∗ |DB|
N ∗ p + κ(m) =

∑

k

|Ck| ∗max|DBid| + κ(m) (7)

Share + Distributed Memory Solution (Hybrid memory): In the pre-
vious cases the P processes were sharing the memory or completely dis-
tributed, in this case there will be N MPI-processes in correspondence with
the quantity of nodes and in each node p processes sharing memory, for that
reason P = N , because for the communication among nodes is not consider-
ing the quantity of processes in each node. In this case a process master for
each node is in charge of the communication with the remaining nodes and
of distributing tasks to the other processes that are in its node.

Algorithm 5: Hybrid Memory
DBN = Partition(DB,N) ; /* Horizontal partitioning */
while(Lk−1 �= ∅) ; /* Level Iterator */

Ct
k = IBP (Lk−1, t) ; /* Ck =

⋃
Ct

k t=1,..,MaxThreads */
foreach(X ∈ Ct

k) ; /* Count each X in the DBN */
local[x] = sup(X,DBN) ; /* Local support */

if(master(t)) then global = InterchangeAndSum(local)
foreach(X ∈ Ct

k) ; /* global support */
if(global[X ] ≥ minsup) Lk = Lk

⋃
{X}

where: ϕ(m) = |Ck|∗ |DB|, κ(m) =
∑

k InterchangeAndSum =
∑

k |Ck|∗2∗N .

HyT ime =
∑

k

|Ck| ∗ |DB|
N ∗ p + κ(m) =

∑

k

max|Ct
k| ∗max|DBN | + κ(m) (8)
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If we are using the same processes quantity for each memory model it is very
simple to observe that:

ShT ime < HyT ime < DsT ime (9)

5 Results

All the experiments described in this section were performed on a SMP clus-
ter of which we used 6 nodes: the master node and five working nodes. Each
working node is equipped with two Intel Xeon processors at 2.4 GHz based on
hyperthreading technology, 512 MB of RAM, 40 GB of disk space and 1 Gb/s
Fast Ethernet card. The working nodes are connected to a master node by a
network switch Gigabit Ethernet. The master node is equipped with two Intel
Xeon processors at 3.06 GHz based on hyperthreading technology too, 2 GB of
RAM, and a disk array of five disks, 36.4 GB of disk space each (total 145.6GB).

We ran two versions of the parallel algorithm: one using the distributed mem-
ory model implemented with MPI, so there were two processes for each node, i.e.
one process by physical CPU; and the other combining the distributed memory
model (MPI again) and the shared memory model implemented using Pthreads,
in this case there were 4 threads per node sharing the same memory, considering
the use of hyperthreading technology.

The experiments were made with one synthetic (T40I10D600K composed by
600000 transactions and 999 items) and one textual dataset (Kosarak com-
posed by 990007 transactions and 41935 items) (available from FIMI repository-
http://fimi.cs.helsinki.fi). The Kosarak Dataset was provided by Ferenc Bodon
and contains (anonymized) click-stream data of a Hungarian on-line news portal.
The T40I10D600K was created using an IBM generator(www.almaden.ibm.com/
cs/quest/syndata.html).

In the first experiment we compared the execution times between ParCBMine
using MPI plus Threads and ParCBMine using MPI only. The Figure 1 (a) and
Figure 1 (b) show that the parallel execution time is reduced to half when the
number of processors is doubled, for both implementations. The communication
time overhead is stable in the first case (with the use of MPI + Tthreads) but
increases linearly in the second (MPI only).

The second experiment was performed to analyze the SpeedUp (Figure 2)
and Efficiency (Figure 3) of both implementations of ParCBMine algorithm.
Figure 2 shows that the implementation of ParCBMine algorithm using MPI plus
Threads scales better when the number of processors is increased in spite of the
communication time overhead. Likewise, notice that in Figure 3 the degradation
of the efficiency for ParCBMine implementation using MPI plus Threads is much
slower with the increase of the communication time overhead.

In the third experiment we analyzed the algorithm scalability, thus we consid-
ered the case where both datasets were so big that they could not fit in the main
memory of any node, increasing databases size in proportion with the number
of nodes (N), these datasets were named T40I10D600KxN and KosarakxN. The
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(a) (b)

Fig. 1. Execution time comparison: (a) T40I10D600K, minsup = 0.01, (b) Kosarak,
minsup = 0.002

(a) T40I10D600K (b) Kosarak

Fig. 2. SpeedUp comparison

(c) T40I10D600K (d) Kosarak

Fig. 3. Efficiency comparison

minimum support values used in each case were the smallest that the sequential
version could process (for T40I10D600KxN the minimum support was set to
0.005 and for KosarakxN the minimum support was set to 0.003).
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(a) MPI + Threads (b) MPI

(c) MPI + Threads (d) MPI

Fig. 4. Scalability Analysis of ParCBMine in T40I10D600KxN (a y b) and
KosarakxN(c y d)datasets

Observe in Figure 4 that the parallel execution time remains constant, thus
the scalability of the algorithm does not depend on the database used.

As a conclusion of these experiments we can affirm that the shared-distributed
memory combination proved to be an effective way to avoid high traffic of data
and drastic reduction of the efficiency of the parallel algorithm.

6 Conclusions

The algorithms proposed by Rakesh Agrawal and John Shafer in [2] are recog-
nized as benchmarks for the development of parallel algorithms for Association
Rules Mining.

Making a general assessment of these algorithms we can say that the Count
Distribution reduces the communication overhead at the expense of ignoring
the system physical memory. In a cluster of workstations environment, with
monoprocessor nodes, this is probably the best approach; nevertheless it may not
be the best solution in the case where nodes are SMP, because it would not take
advantage of the combination of shared and distributed memory models. In order
to reach efficient implementations based on Count Distribution, determining new
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heuristics that allow a reduction of the cardinality of the local Ck obtained by
each processor continues to be a latent problem.

The Data Distribution algorithm can help us to explore this feature by fully
exploiting the physical memory with the risk of increasing communication over-
head. The ability to count in a single pass T times as many candidates as Count
Distribution makes this algorithm a strong contender.

If we include detailed background knowledge of the problem in the Candidate
Distribution, the joint benefits of Count Distribution and Data Distribution [2]
can be obtained. Yet, there are still some challenges for researchers in parallel
algorithms for association rule mining: to find a heuristic that allows (from a step
k = l) candidate itemsets partitioning so that synchronization among processors
is not needed, and to obtain a suitable load balance among the processors.

In conclusion we suggest that the purposed parallel algorithm described here
ParCBMine based on the sequential algorithm CBMine, and sustained on the
principles of Count Distribution in which some features of Candidate Distribu-
tion are also introduced, suitably combines the parallel programming based on
the message passing model with multithread programming. ParCBMine contin-
ues to be developed and in the future we expect to present new results oriented
to the reduction of the computational effort at synchronization level and to reach
a better load balance among processors.
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Abstract. Spam is a complex problem that makes difficult the exploitation of 
Internet resources. In this sense, several authorities have alerted about the  
dimension of this problem and aim everybody to fight against it. In this paper 
we present an extensive analysis showing how the effect of changing the  
dimensionality of message representation influences the accuracy of some well-
known classical spam filtering techniques. The conclusions drawn from the  
experiments carried out will be useful for building a comparison of the dimen-
sionality reorganization effects between classical filtering techniques and a  
successful spam filter model called SPAMHUNTING.  

1   Introduction and Motivation 

A lot of techniques used to distribute information in a massive form by using the 
newest technologies (like SMS or Internet) are considered spam behaviours. These 
approaches are used by malicious users to advertise illegal products and other little 
real value stuff. Spam can be easily found in blogs, posts, newsgroups, search en-
gines, mobile messages and mainly in e-mails. 

The use of Internet as an advertising platform is related to the way in which it is  
financed. Internet is a large set of interconnected networks, where each user takes on 
the cost of the connection between his network and other nodes. Every time an e-mail 
is delivered, it is routed through several sub-networks using the infrastructure  
financed by all of its users. Keeping in mind these ideas, spam is considered an irritat-
ing problem for all the Internet community. 

The most common form of spam is the distribution of illegitimate e-mail messages. 
Nowadays, the majority of the messages delivered through Internet are spam. As a 
consequence final users are not able to take advantage of the new forms of communi-
cation through Internet and newest technologies because spam is limiting their  
function. 
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In the last years, some strategic plans have been introduced by local Administrations 
and Government in order to promote Internet and the newest technologies as a way for 
developing an economy based on the knowledge. These plans have been adopted by 
different authorities including the Minister Council of Spain through the implantation of 
the AVANZA program [1], and the European Commission through eEurope 2002 plan 
[2], approved during the year 2001. Since these plans have been properly executed and 
successful results have been reported, some similar programs were newly introduced: 
Ingenio-2010 [3] in Spain, eEurope 2005 [4] and i2010 [5] in Europe. 

Recently (17th November 2006), the European Commission made public an alarm-
ing study showing a huge increment of the amount of spam messages received 
through Internet. The 85 percent of the messages received by Internet European users 
are spam. Vivian Reding, commissioner for the Information Society of the European 
Union, addressed the member states advising the development and deployment of 
anti-spam strategies. She congratulates the initiatives for spam filtering of Finland and 
Netherlands, particularly the OPTA Dutch anti-spam unit. Also the commissioner 
aims to the rest of member states to develop similar filtering systems and to use all 
available tools within the framework of the law. 

Spam e-mail is the principal cause of several associated drawbacks: (i) privacy 
problems (when the spammer obtains an e-mail address he will not stop sending spam 
messages to its owner), (ii) an increment in the costs supported by Internet providers 
and final users and (iii) an extensive waste of time. Moreover, spam activity is an 
important way of achieving illegal sales of fraudulent products and drugs and it is 
frequently used to attract people for carry out illicit activities. Finally, spam repre-
sents an important obstacle for the diffusion of new technologies based on Internet 
and mobile phone platforms.  

In this work we show an extensive study of how changes in message representation 
dimensionality influence the accuracy of existing spam filtering models. For this 
purpose, we have carried out several experiments using a representative selection of 
well-known techniques for spam e-mail classification. In our test-bed we have con-
sidered: (i) Naïve Bayes [6] and (ii) Flexible Bayes [7] approaches, (iii) SVM (Sup-
port Vector Machines) [8], (iv) AdaBoost [9] and (v) SPAMHUNTING, our previous 
successful spam filtering model [10, 11]. 

In order to properly select appropriate public available corpus and input data di-
mensionality, we have taken into account some relevant conclusions from previous 
successful research works such as [12, 13]. The major findings and conclusions of this 
work will be useful to compare and optimize several dimensionality issues of our 
previous spam filtering model. The SPAMHUNTING system has been developed using 
a CBR (Case-Based Reasoning) approach [14] and is founded on the use of a disjoint 
knowledge representation mechanism and an indexation structure known as EIRN 
(Enhanced Instance Retrieval Network). 

The rest of the paper is structured as follows: Section 2 presents a brief outline of 
our previous related work in the spam filtering domain. Section 3 summarizes the 
state of art in spam filtering models, whereas Section 4 introduces some relevant 
information about publicly available experimental data. Section 5 describes the ex-
periments carried out and presents the results obtained discussing the major findings. 
Section 6 presents how dimensionality affects to our SPAMHUNTING system. Finally, 
Section 7 summarizes the main conclusions and details the further work.  
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2   Previous Work 

This section summarizes previous results in spam filtering domain that are relevant to 
this work. Taking into account the purpose of this proposal, we need to look back on 
issues from past works used to evaluate the impact of the pre-processing steps [12] 
and the performance of the distinct feature selection methods [13]. 

In [12] we performed a sound analysis of different tokenizing schemes and intro-
duced the tokenizing by using only blank characters as separators. We also checked 
the advisability of using stemming [15, 16] and stopword [17] techniques in spam 
filtering domain. For this purpose, we have chosen a representative set of spam filter-
ing models (including Naïve Bayes, Adaboost, SVM, and three CBR systems) in 
order to measure their accuracy when the context of tokenising, stopword removal 
and stemming changes. Results of this previous work have shown the convenience of 
using only blanks as token separator allowing the preservation of noise data. The 
noise data is helpful for spam detection, in fact, it is distinctive between spam and 
legitimate classes. Moreover, the use of stemming techniques is not advisable whereas 
a stopword removal process can significantly improve the performance of the vast 
majority of techniques. 

In a previous work [13] we analysed the strengths and weaknesses of different  
feature selection strategies used in text categorization when they are applied to the 
spam filtering domain. In this contribution, we showed the results obtained by using 
different anti-spam content-based techniques when changing the feature selection of 
available training corpus. The selected feature selection approaches were: (i) IG (In-
formation Gain), (ii) DF (Document Frequency), (iii) MI (Mutual Information) and 

(iv) 2χ (Chi Square) [18]. For comparison purposes, we have used Naïve Bayes, 

Boosting Trees, SVM and a CBR system named ECUE [13]. This work confirms that 

the usage of IG and 2χ approaches are the most reliable methods for feature selection 

purposes with no statistical significant differences between them. We also found that 

IG achieves better precision (security) while 2χ is slightly superior in effectiveness. 

Therefore, as security is a critical feature in spam filtering, we highlighted the results 
achieved by using IG. Moreover, we showed a clear disadvantage of the utilization of 
MI method in spam filtering. The bad results were motivated by the tricks used by 
spammers for term obfuscation. Regarding the DF feature selection method and de-
spite its simplicity, the results were in general, good. Nevertheless, the quality of 
these results does not reach the performance achieved by using other feature selection 

methods such as IG or 2χ . 

As a result of the previously commented conclusions, we have introduced a new 
feature selection technique in [19] able to adequately manage data affected by concept 
drift. In this work we argue that one of the most relevant issues in domains affected 
by the concept drift problem is the passage of time.  

Expression 1 defines a measure capturing the amount of information achieved 
when a term w is selected for representing a message e. In this expression, K repre-
sents the knowledge that has been acquired until the message e arrived, length (w) is 
the length of the word w, P (w | e) represents the frequency of the term w in the  
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message e, and finally, P (w | S, K) and P (w | L, K) stands for the frequency of  
finding the term w in legitimate and spam messages, respectively.  

( ) ( ) ( )
( ) ( )

| , | ,1
( , | ) | 1

( ) | , | ,

P w S P w L
AI w e P w e

length w P w S P w L

−
= ⋅ − ⋅

+
⎡ ⎤⎡ ⎤
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K K
K

K K
 (1) 

In order to compute the achieved information (AI) of a term t when representing a 
message e, we suggest combining the relevance of the term w in the message e (esti-
mated by the frequency), the length of the term t (in order to discard shorter terms) 
and the capacity of discriminating between spam and legitimate messages (the last 
part of Equation 1).  

In order to represent each e-mail, we use the set of most relevant terms having an 
amount of AI greater than a certain percentage of the information achieved by all the 
terms belonging to the given message. The results achieved by using this approach as 
feature selection strategy are very promising and will be employed in the experimen-
tation of the current work. 

3   Successful Spam Filtering Models 

In this section we present a brief recompilation of previous successful works on spam 
filtering. We highlight some differences that can be found in these approaches such as 
the stage when the feature selection is carried out, the technique type, the capabilities 
of handling concept drift and the learning strategy they applied. Table 1 summarizes 
the above mentioned aspects. 

In first place we have introduced previous successful collaborative approaches. We 
have also included the white list approach, which is based on trusting the e-mail ad-
dresses belonging to the senders. The main disadvantage of these models is its limited 
generalization ability. They are based on mechanically generating a classification for 
a given message whereas content-based approaches include machine learning capa-
bilities. The results achieved by using collaborative-based approaches present a higher 
safety level (small amount of false positive errors) and a reduced effectiveness (most 
of the spam messages are not detected). In the collaborative approach feature vectors 
are not used and therefore, the dimensionality analysis proposed in this work makes 
no sense. 

In our study, we have also included some classical techniques such as Naïve and 
Flexible Bayes, SVM or AdaBoost. Due to its generalization capabilities and its sim-
plicity, the first two approaches have been widely used and included into well-known 
e-mail clients (such as Mozilla Thunderbird). Owning to the difficulties of SVM and 
AdaBoost algorithms, their relevance has been primarily limited to the scientific field. 
Content-based approaches have a higher degree of effectiveness but the safety level is 
more reduced than the achieved by using collaborative approaches. Content-based 
filtering techniques use feature vectors and a previous feature selection stage as their 
main strategy for learn from data. Therefore, we will use them for testing purposes. 

Table 1 also includes a novel technique called Chung-Kwey, which is able to ad-
dress the problem of spam classification. It is based on the study of a lot of spam 
messages in order to detect patterns that appear in illegitimate e-mails. Despite of the 
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great results achieved by using this technique, a large spam e-mail corpus is needed 
during the learning stage. Due to the fact that this approach is not based on the use of 
feature vectors, it has not been considered for our experimental setup.  

Table 1. Successful spam filtering techniques 

Model Authors Feature 
Selection 

Knowledge 
Representation 

Type Concept 
Drift 

Attributes Learning 
Strategy 

SBL [20] - IP address 
Black list / 

Collaborative 
- 

Server IP 
addresses 

None 

MAPS [21] - IP address 
Black list / 

Collaborative 
- 

Server IP 
addresses 

None 

White lists [22] - E-mail address White list - 
E-mail 

addresses 
None 

Razor [23] - E-mail hashes 
Black list / 

Collaborative 
- 

Body and 
subject 

None 

Pyzor [24] - E-mail hashes 
Black list / 

Collaborative 
- 

Body and 
subject 

None 

DCC [25] - E-mail hashes 
Black list / 

Collaborative 
- 

Body and 
subject 

None 

Naïve Bayes [6] 
Before 

learning 
Probabilities Content-based - 

Body and 
subject 

Eager learning 
(training) 

Flexible Bayes [7] 
Before 

learning 
Probabilities Content-based No 

Body and 
subject 

Eager learning 
(training) 

Adaboost [9] 
Before 

learning 
Combination of weak 

classifiers 
Content-based No 

Body and 
subject 

Eager learning 
(training) 

SVM [8] 
Before 

learning 

Straight line dividing 
the data and non-

linear transformation 
over the input space 

Content-based No 
Body and 

subject 
Eager learning 

(training) 

Chung-Kwey [26] - Spam patterns 
Black list / 

Content based 
- 

Body and 
subject 

Eager learning 
(training) 

ECUE_prev [27] 
Before 

learning 
Instances Content-based Yes 

Body and 
subject 

Lazy learning 

ECUE [28] 
Before 

learning 
Instances Content-based Yes 

Body and 
subject 

Lazy learning 

Similarity 
Cases 

[29] 
Before 

learning 
Classes of spam and 
legitimate messages 

Content-based No 
Body and 

subject 
Lazy learning 

SPAMHUNTING [11] 
Every time 

a message is 
received 

Instances 
(EIRN Model) 

Content-based 
and potentially 
collaborative 

Yes 
Body and 

subject 

Lazy learning 
(through the 

system operation) 

The most recent and successful approaches for spam labelling and filtering are 
based on the use of the CBR methodology [14]. Despite of the high accuracy and 
effectiveness level achieved by them, they are not yet included in commercial soft-
ware due to their recently appearance. The comparison between classical and CBR 
alternatives in the field of spam filtering is basically an analysis of the convenience of 
use lazy or eager learning. After the successful application of CBR techniques (espe-
cially, SPAMHUNTING [11] and ECUE [28] models), we highlight the benefits of using 
lazy learning strategies. Finally, from the experiments and results achieved we should 
mention SPAMHUNTING as a great alternative for spam filtering due to its capability of 
unify both content-based and collaborative approaches. For the work presented in this 
article, we have discarded the ECUE_prev. version, ECUE and Similarity Cases tech-
niques because they get poor results in comparison with SPAMHUNTING system as 
showed in previous works [19, 29]. 
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4   Available Corpus and E-mail Representation 

Despite privacy issues, a large number of corpuses like SpamAssassin1, Ling-Spam2, 
DivMod3, SpamBase4 or JunkEmail5 can be downloaded from Internet. In [13] a de-
tailed description of the above mentioned corpus can be found. In this section, we 
outline the corpus used to carry out the experiments in our current work. 

Keeping in mind the nature of this work, we have considered using the SpamAs-
sassin corpora, merging e-mails from 2002 and 2003 versions. Table 2 shows the 
structure of the SpamAssassin corpus focussing in the spam and legitimate ratio and 
the distribution form.  

Table 2. Message distribution of the SpamAssassin corpus 

Downloaded filename Year Message type Number of e-mails 
20021010_easy_ham.tar.bz2 2002 legitimate 2552 
20021010_hard_ham.tar.bz2 2002 legitimate 251 
20030228_easy_ham.tar.bz2 2003 legitimate 2500 
20030228_easy_ham_2.tar.bz2 2003 legitimate 1400 
20030228_hard_ham.tar.bz2 2003 legitimate 250 
20021010_spam.tar.bz2 2002 spam 502 
20030228_spam.tar.bz2 2003 spam 500 
20030228_spam_2.tar.bz2 2003 spam 1397 

The merged SpamAssassin corpus contains 9332 different messages from January 
2002 up to and including December 2003. This corpus has not been pre-processed by 
the author and the messages are distributed in RFC-822 format [30]. This fact repre-
sents and advantage in comparison with other corpus that are pre-processed and dis-
tributed as feature vectors. Therefore, SpamAssassin corpus becomes appropriate to 
carry out an analysis of the impact of changing input vector dimensionality. 

5   Experimental Setup and Results 

In this section we describe the experimental setup for analyzing the impact of chang-
ing feature vector dimensionality in the performance of different spam classifiers. 
Then, we introduce some specific issues about model configuration and finally, we 
present and discuss in detail the experimental results. 

As we commented earlier, we have chosen the following techniques: (i) Naïve Bayes, 
(ii) Flexible Bayes, (iii) AdaBoost and (iv) SVM. For each experiment we have tested 
all the algorithms working with 20 different feature vector sizes. We started the experi-
ments using vectors with a hundred of features and we incremented the size in 100 
features each time until reach the top of 2000 features. In order to configure the 
AdaBoost classifier we have used Decision Stumps [31] as weak learner with 150 boost 
iterations whilst the SVM algorithm has been tested by using a polynomial kernel. 

                                                           
1 Available at http://www.spamassassin.org/publiccorpus/ 
2 Available at http://www.iit.demokritos.gr/ 
3 Available at http://www.divmod.org/cvs/corpus/spam/ 
4 Available at http://www.ics.uci.edu/~mlearn/MLRepository.html 
5 Available at http://clg.wlv.ac.uk/projects/junk-e-mail/ 
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For each experiment we have used a 10 stratified fold cross-validation in order to 
increase the confidence level of the outcomes obtained [32]. The results showed in 
this work represent the mean value of the 10 tests computed in each fold-cross  
validation. 

Table 3 shows the percentage of correct classifications and error rate specifying the 
proportion of false positives and false negatives. From results, we can conclude that 
SVM is able to achieve a greater amount of correct classifications using small feature 
vector dimensionalities. Moreover, Flexible Bayes is always the best approach if the 
main goal is the reduction of false positive errors.  

Table 3. Percentages of correct classifications, false positives and false negatives 

 Naïve Bayes Flexible Bayes AdaBoost SVM 
Features %OK %FP %FN %OK %FP %FN %OK %FP %FN %OK %FP %FN 

100 89.62 6.42 3.96 88.85 0.26 10.89 91.86 2.39 5.75 94.16 1.74 4.10 
200 89.64 6.52 3.85 91.25 0.27 8.49 92.77 2.12 5.11 96.16 1.13 2.71 
300 89.76 6.43 3.81 93.12 0.23 6.65 93.52 1.81 4.67 97.02 0.81 2.16 
400 89.96 6.30 3.74 93.92 0.16 5.91 93.50 1.80 4.70 97.46 0.70 1.84 
500 89.88 6.41 3.71 94.65 0.13 5.22 93.53 1.84 4.63 97.65 0.70 1.65 
600 89.72 6.55 3.73 95.18 0.17 4.65 93.56 1.77 4.67 97.81 0.63 1.55 
700 89.81 6.55 3.64 95.33 0.10 4.58 93.85 1.60 4.55 98.05 0.48 1.47 
800 89.83 6.57 3.60 95.77 0.11 4.13 94.15 1.49 4.36 98.25 0.57 1.18 
900 89.98 6.52 3.50 96.24 0.15 3.61 93.99 1.41 4.60 98.25 0.57 1.18 
1000 90.02 6.50 3.47 96.53 0.19 3.28 93.89 1.46 4.65 98.28 0.55 1.17 
1100 90.11 6.43 3.46 96.71 0.19 3.10 93.95 1.48 4.58 98.27 0.60 1.13 
1200 90.10 6.46 3.44 96.82 0.18 3.00 93.97 1.49 4.54 98.37 0.54 1.09 
1300 90.17 6.40 3.43 96.89 0.19 2.91 93.97 1.51 4.52 98.36 0.55 1.09 
1400 90.51 5.98 3.51 97.01 0.21 2.78 93.91 1.55 4.53 98.38 0.55 1.07 
1500 90.37 6.25 3.39 97.18 0.20 2.61 93.92 1.58 4.50 98.42 0.64 0.93 
1600 90.29 6.30 3.41 97.30 0.19 2.51 93.99 1.47 4.53 98.46 0.54 1.007 
1700 90.38 6.20 3.42 97.43 0.21 2.36 93.98 1.44 4.59 98.46 0.51 1.03 
1800 90.43 6.15 3.42 97.67 0.19 2.13 93.92 1.43 4.65 98.47 0.46 1.07 
1900 90.42 6.15 3.43 97.59 0.17 2.24 93.85 1.51 4.64 98.50 0.51 0.99 
2000 90.45 6.14 3.41 97.72 0.16 2.12 93.83 1.49 4.68 98.53 0.53 0.93 

From another interesting point of view, Table 3 shows that incrementing the di-
mensionality while using Naïve Bayes does not result in a relevant improvement on 
the accuracy. Nevertheless, increasing the dimensionality when using SVM and 
AdaBoost techniques can slightly improve the results achieved. In the case of Flexible 
Bayes, we can realize that it is especially sensitive to the increment of the vector  
dimensionality.  

Despite current version of our SPAMHUNTING system achieves greater results than 
Flexible Bayes technique [33], we are really impressed by the small ratio of false 
positives achieved when using Flexible Bayes model and its capacity of improving 
the results by increasing the feature vector dimensionality. 

From another perspective, Table 4 shows the recall and precision scores [16] 
achieved by using the selected techniques with the different configurations. In order 
to understand the obtained results we should keep in mind the underground idea of 
these measures. Recall stands for the effectiveness (amount of spam messages suc-
cessfully detected) while precision is indicative of security (avoid false positive  
errors).  
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Table 4. Recall and precision scores obtained from the different analyzed scenarios 

 Naïve Bayes Flexible Bayes AdaBoost SVM 
Features Recall Precision Recall Precision Recall Precision Recall Precision 

100 0.845 0.771 0.573 0.983 0.774 0.893 0.839 0.925 
200 0.849 0.769 0.667 0.985 0.799 0.906 0.894 0.953 
300 0.850 0.772 0.739 0.988 0.817 0.920 0.915 0.966 
400 0.853 0.776 0.768 0.992 0.816 0.921 0.928 0.971 
500 0.855 0.773 0.795 0.993 0.818 0.919 0.935 0.972 
600 0.854 0.769 0.818 0.992 0.817 0.922 0.939 0.974 
700 0.857 0.770 0.821 0.996 0.822 0.930 0.942 0.980 
800 0.859 0.770 0.838 0.995 0.829 0.935 0.954 0.977 
900 0.863 0.772 0.858 0.993 0.820 0.937 0.954 0.977 
1000 0.864 0.773 0.871 0.991 0.817 0.935 0.954 0.978 
1100 0.864 0.775 0.879 0.991 0.821 0.934 0.956 0.976 
1200 0.855 0.774 0.882 0.992 0.822 0.934 0.957 0.979 
1300 0.866 0.776 0.886 0.992 0.823 0.933 0.957 0.978 
1400 0.862 0.789 0.891 0.991 0.822 0.931 0.958 0.978 
1500 0.867 0.780 0.897 0.991 0.824 0.930 0.963 0.975 
1600 0.866 0.779 0.901 0.992 0.822 0.935 0.961 0.979 
1700 0.866 0.781 0.908 0.991 0.820 0.936 0.959 0.979 
1800 0.866 0.783 0.916 0.992 0.818 0.936 0.958 0.981 
1900 0.866 0.783 0.912 0.993 0.818 0.933 0.961 0.980 
2000 0.866 0.783 0.917 0.993 0.816 0.934 0.963 0.979 

From the recall measure showed in Table 4 we confirm the findings achieved 
from the analysis of Table 3. Using higher dimensionality of input vector, Naïve 
Bayes can not improve effectiveness whilst AdaBoost and SVM get a small  
improvement. As in the previous case, Flexible Bayes is able to achieve the best 
effectiveness increment. 

Analysing precision scores from Table 4 we can see that, in general, the use of 
higher dimensionality vectors is not useful for improving the security achieved by the 
different approaches. We highlight the security achieved by Flexible Bayes. As we 
can see from results, any precision value achieved by Flexible Bayes goes beyond the 
one obtained by the use of any other configuration. 

We have also included a study of the balanced f-score measure [34] with the fol-
lowing three different values of β: 1 (equivalent to f-score [16]), 1.5 and 2. f-score 
measure is used to combine precision and recall into a single piece of information. 
Moreover, the β parameter is used to weight the importance of effectiveness and secu-
rity. When β=1, security and effectiveness have the same weight while a greater value 
stands for a higher importance of precision. In the case of β being smaller than 1, then 
recall is assumed to be more important than precision. 

Expression 2 defines the balanced f-score measure used to combine precision and 
recall. Moreover, Figure 1 shows a detailed comparative of balanced f-score meas-
ures in all the analyzed scenarios. 
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1 precision recall
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precision recall
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β
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Fig. 1. Balanced f-score results using β = 1, 1.5 and 2 
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Figure 1 shows the balanced f-score measure computed by using the selected  
values for the β parameter and considering the dimensionality variable. When effec-
tiveness and security are considered with the same relevance (β =1), we can see that 
Naïve Bayes does not achieve a substantial improvement even though the dimension-
ality is incremented. Moreover, SVM and AdaBoost algorithms present a relevant 
improvement until a dimensionality of 400 is reached. When the dimensionality is 
over this value, the benefits of using a higher dimensionality are very poor. Finally, 
Flexible Bayes presents a significant performance increment when we increase the 
dimensionality. 

In the case of giving priority to security against effectiveness, AdaBoost, Naïve 
Bayes and SVM models show a similar behaviour. Nevertheless, the results presented 
by Flexible Bayes are comparable to those achieved by SVM. Despite the highest 
security of Flexible Bayes model, SVM technique is clearly the best approach being 
able to make correct classifications with a reduced number of features. 

From another perspective, TCR (Total Cost Ratio) score [6] shows the suitability 
of a technique keeping in mind the cost of the different kind of errors. For use it, we 
need to define the value of a λ parameter indicating the proportion between the costs 
assigned to a false positive and a false negative. If the value of λ is 9, we assume that 
a false positive cause the same damage as nine false negatives. The most common 
values for the λ parameter are 1, 9 and 999. Table 5 shows the TCR scores for the 
different analyzed scenarios using the above values for the λ parameter. 

Table 5. TCR results obtained from the different analyzed scenarios 

 Naïve Bayes Flexible Bayes AdaBoost SVM 
Features λ = 1 λ = 9 λ = 999 λ = 1 λ = 9 λ = 999 λ = 1 λ = 9 λ = 999 λ = 1 λ = 9 λ = 999 

100 2.465 0.416 0.004 2.304 1.957 0.338 3.144 0.960 0.011 4.420 1.321 0.015 
200 2.467 0.411 0.004 2.942 2.388 0.124 3.549 1.084 0.013 6.797 2.300 0.032 
300 2.499 0.417 0.004 3.787 3.085 0.652 3.970 1.254 0.015 8.864 2.882 0.035 
400 2.552 0.426 0.004 4.321 3.644 1.513 3.974 1.292 0.016 10.368 3.326 0.040 
500 2.533 0.419 0.004 4.877 4.142 1.912 3.986 1.245 0.015 11.401 3.396 0.039 
600 2.491 0.410 0.004 5.382 4.274 1.171 4.011 1.309 0.016 12.088 3.748 0.044 
700 2.511 0.410 0.004 5.566 4.817 2.668 4.177 1.385 0.017 13.589 4.772 0.061 
800 2.215 0.409 0.004 6.148 5.176 2.453 4.411 1.503 0.019 15.998 4.668 0.056 
900 2.554 0.414 0.004 6.909 5.532 1.430 4.298 1.357 0.019 15.997 4.668 0.056 
1000 0.565 0.414 0.004 7.564 5.231 0.764 4.217 1.483 0.019 16.019 4.666 0.056 
1100 2.589 0.419 0.004 8.020 5.497 0.782 4.270 1.499 0.018 16.300 4.562 0.053 
1200 0.583 0.417 0.004 8.203 5.823 0.982 4.288 1.492 0.019 16.653 4.862 0.060 
1300 2.606 0.422 0.004 8.474 5.773 1.655 4.289 1.482 0.018 16.859 4.734 0.056 
1400 2.737 0.484 0.005 8.756 5.607 0.140 4.253 1.446 0.018 17.896 5.163 0.068 
1500 2.660 0.432 0.004 9.252 5.897 0.144 4.264 1.437 0.018 18.167 4.945 0.063 
1600 2.640 0.428 0.004 9.679 6.162 0.156 4.308 1.509 0.019 20.204 5.760 0.069 
1700 2.662 0.434 0.004 10.200 6.166 0.133 4.272 1.522 0.019 19.666 4.988 0.055 
1800 2.676 0.438 0.004 11.184 6.939 0.157 4.239 1.524 0.019 20.944 5.529 0.064 
1900 2.675 0.438 0.004 10.993 7.213 1.129 4.194 1.463 0.018 19.692 5.460 0.065 
2000 0.684 0.439 0.004 11.572 7.600 1.183 4.176 1.477 0.019 20.600 5.246 0.061 

From Table 5, we can deduce that SVM and Flexible Bayes models are widely af-
fected by dimensionality when the cost is weighted. Moreover, the results achieved by 
AdaBoost and Naïve Bayes can not be improved by using high dimensionality  
vectors. 
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From another point of view, results from Table 5 show that Flexible Bayes tech-
nique can achieve the most safety results reducing the global cost of errors. Moreover, 
AdaBoost and specially Naïve Bayes achieve the worst results while SVM and Flexi-
ble Bayes demonstrate their suitability as reliable alternatives for spam filtering. 

6   SPAMHUNTING and Dimensionality 

In the previous section we have presented a wide analysis of the effect of changing 
the dimensionality of input vector in four well-known techniques usually applied for 
spam filtering. Keeping in mind those results, this section carries out a particular 
study of the same matter in our most recent version of SPAMHUNTING system [19]. 

In order to study the behaviour of our system in relation to the amount of AI  
(available information), we have tested the performance achieved by using different 
percentages of AI starting from 25% and up to 70% using steps of five units (see 
Section 2 for details). 

Table 6 shows the results achieved by using SPAMHUNTING with the selected con-
figurations. As in previous experiments, we have used the following measures: (i) 
percentages of correct classifications, false positives and false negatives, (ii) recall 
and precision, (iii) balanced f-score with β values assigned to 1, 1.5 and 2, and (iv) 
TCR scores using λ values 1, 9 and 999. 

Table 6. SPAMHUNTING results obtained from the different analyzed scenarios 

 Percentages 
Effectiveness 
and Security 

Balanced 
f-score 

TCR 

Features %OK %FP %FN Recall Precision β = 1 β = 1.5 β = 2 λ = 1 λ = 9 λ = 999 
25 % 96.61 0.20 3.18 0.88 0.99 0.93 0.95 0.97 7.70 5.80 3.31 
30 % 96.85 0.18 2.87 0.88 0.99 0.93 0.96 0.97 8.36 6.25 2.80 
35 % 97.05 0.13 2.82 0.89 0.99 0.94 0.96 0.97 8.83 6.85 3.62 
40 % 97.40 0.14 2.46 0.90 0.99 0.95 0.96 0.97 10.07 7.98 4.49 
45 % 97.54 0.10 2.37 0.91 0.99 0.95 0.97 0.98 10.74 9.08 6.83 
50 % 97.69 0.10 2.22 0,91 0.99 0.95 0.97 0.98 11.45 9.76 7.47 
55 % 97.78 0.10 2.12 0.92 0.99 0.95 0.97 0.98 11.84 9.51 6.10 
60 % 97.76 0.13 2.11 0.92 0.99 0.95 0.97 0.98 11.83 9.33 6.48 
65 % 97.70 0.11 2.20 0,91 0.99 0.95 0.97 0.98 11.35 8.87 5.75 
70 % 97.84 0.10 2.07 0.92 0.99 0.96 0.97 0.98 12.12 9.67 6.14 
75 % 97.97 0.11 1.92 0.92 0.99 0.96 0.97 0.98 13.11 9.68 4.93 

As we can realize from Table 6, the percentage results achieved by SPAMHUNTING 
are very similar in all the tested configurations. The FP error ratio is always very 
small and outperforms the results achieved by other well-known analyzed techniques 
(see Table 3). From another point of view, only SVM achieves a better percentage of 
correct classifications.  

From recall and precision scores, we can see that SPAMHUNTING presents the high-
est security level (see Tables 4 and 6 for details). Despite the change of dimensional-
ity, precision scores have small variability and outperform the ones computed by 
using another technique. Moreover, as we can realize from Table 6, recall gets 
slightly higher values with the increment of the dimensionality. 
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Analyzing balanced f-score obtained values from Table 6 we can see that an  
increment of the dimensionality can slightly improve the obtained results for the con-
sidered β values. Moreover, variability remains small due to the quality of these  
results. Finally, balanced f-score achieved values are better than the ones computed 
from other techniques (see Figure 1 for details). 

Finally, from TCR scores showed on Table 6, we can see that SPAMHUNTING is 
able to effectively reduce the cost of the different kind of errors. This finding can be 
anticipated due to the small ratio of FP errors and the great precision level. From 
another point of view, the increment of the dimensionality allows the achievement of 
higher TCR scores. 

7   Conclusions and Further Work 

In this work we have compared and analyzed the effects of changing the dimensionality 
of input vector over four well-known spam filtering techniques. For this issue, we have 
summarized our previous findings in the spam filtering domain and included a brief 
description of the current available techniques for spam identification and classification. 
We have also introduced the publicly available corpus used for experimental purposes 
and finally, we have summarized details about the setup of our experimentation. 

In order to carry out the experiments, we have considered several scenarios related 
to the dimensionality (number of selected features) of the terms representing a whole 
corpus. For this purpose, we used input vectors starting from 100 features and ending 
in 2000. We carried out a 10 stratified fold cross-validation for studying the evolution 
of several well-known metrics, including percentages, precision, recall, balanced  
f-score and TCR scores. 

Results show that Naïve Bayes approach does not improve the security neither the 
effectiveness ratio. The difference between using feature vectors with 100 and 2000 
features for representing the SpamAssassin corpus is very small (see Table 4 for de-
tails). These findings backup the ideas exposed in [7], where it is pointed out that 
assuming normality in the data and modelling each conditional distribution with a 
single Gaussian makes up a hard simplification of the problem that can significantly 
deteriorate the obtained results. 

Flexible Bayes classifier always presents the highest precision rate. Nevertheless, 
using this technique with input vectors having small dimensionality is not a good idea 
for effective filter of spam e-mails. In these situations, despite of the small number of 
false positive errors, the amount of detected spam messages is limited (see Figure 1 
for details). In the other hand, working with high dimensionality feature vectors, 
Flexible Bayes classifier gets the most remarkable values for error cost (see Table 5 
for a thoroughly analysis).  

The main difference between Naïve and Flexible Bayes classifiers is the amount of 
messages classified as spam. The Naïve Bayes approach needs less evidence for clas-
sifying a message as spam than Flexible Bayes. This issue is due to the mechanism 
used to estimate the probability of a message being spam. From this fact we conclude 
that if we use vectors having small dimensionality a Naïve Bayes approach is more 
adequate for achieving good results. Nevertheless, if high dimensionality is used, the 
Flexible Bayes approach is the most suitable.  
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Summarizing the results of the AdaBoost classifier, it can be observed that it  
presents the smallest effectiveness ratio within all the tested scenarios (see recall 
measures from Table 4). Despite this circumstance, the precision score can get better 
by using a higher dimensionality. From another point of view, the security level of 
this technique is lower than the achieved when Flexible Bayes or SVM are applied. 
Keeping in mind these findings, this approach should not be used for spam filtering, 
especially when the dimensionality is small. The mixture of successful classifiers is 
less suitable for spam filtering than other techniques such as the combination of prob-
abilities (Flexible Bayes) and/or the use of a hyperplane for dividing the areas where 
spam and legitimate messages are situated. 

From experimental results we have observed that dimensionality is a very impor-
tant issue for using an SVM classifier. Both the recall and precision scores get better 
with the increment in the dimensionality of input vector (see recall and precision from 
Table 4). The security level obtained by this classifier is lower than the achieved by 
using Flexible Bayes. Nevertheless, this technique has obtained the best effectiveness 
ratio in the experiments carried out. The underground idea behind SVM classifier is 
that it is very effective in order to achieve higher effectiveness and security rates. 

In order to choose the best choice for spam filtering from classical models, we 
should keep in mind our study about dimensionality issues. If a lower dimensionality 
is used, SVM is recommended. Nevertheless, if a high dimensionality is used we 
should decide between maximize security or the effectiveness ratio. In the first case 
Flexible Bayes classifier should be used, whereas in the second case the SVM  
approach is more appropriate. 

Analyzing the results achieved by our SPAMHUNTING system, it can be seen that 
this technique obtains the maximum confidence level. This issue occurs because 
SPAMHUNTING is able to internally detect when there is no enough available knowl-
edge for correctly classifying a message (for instance, when no similar instances are 
retrieved from their memory given target e-mail). Moreover, SPAMHUNTING classifies 
messages using instances representing entire e-mails as the smallest piece of informa-
tion, whereas classical approaches use individual terms for this goal. This issue allows 
more confidence level on decisions while slightly reduces the effectiveness of the 
filter. The exhibit measures show SPAMHUNTING as the most reliable technique for 
spam filtering having a high effectiveness level (see Table 6 for details). Moreover, 
using SPAMHUNTING a high dimensionality representation is not required for getting a 
high confidence level but the effectiveness can be improved by using it. 

The introduction of SPAMHUNTING system has evidenced the importance of lazy 
learning and continuous updating capabilities in spam filtering. Moreover, it also 
shows the importance of using messages as the minimum information units as a way 
to improve the security. Finally, SPAMHUNTING has introduced a new way of doing 
feature selection based on the disjoint representation of the messages able to success-
fully address the concept drift problem. 

Talking about future work, we think that new improvements should be introduced 
in the pre-processing stage, especially for successfully address the noise present in 
spam messages. We are convinced that the most important difficulty that should be 
overcome is relative to the successful addressing of noise both in lexical and semantic 
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form. Therefore, we think that newer tokenizing and information extraction tech-
niques should be introduced for improving the results of the current state-of-the-art 
spam filtering techniques. 
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Abstract. In recent years there has been a tremendous increase in the
number of users maintaining online blogs on the Internet. Companies,
in particular, have become aware of this medium of communication and
have taken a keen interest in what is being said about them through such
personal blogs. This has given rise to a new field of research directed to-
wards mining useful information from a large amount of unformatted
data present in online blogs and online forums. We discuss an imple-
mentation of such a blog mining application. The application is broadly
divided into two parts, the indexing process and the search module. Blogs
pertaining to different organizations are fetched from a particular blog
domain on the Internet. After analyzing the textual content of these
blogs they are assigned a sentiment rating. Specific data from such blogs
along with their sentiment ratings are then indexed on the physical hard
drive. The search module searches through these indexes at run time for
the input organization name and produces a list of blogs conveying both
positive and negative sentiments about the organization.

1 Introduction

A blog, which is a collection of web pages on some website or portal, serves
as an online diary maintained by an individual to share his thoughts and ideas
and express his feelings. Blogs are powerful in the sense that they allow indi-
viduals over the globe to bring forth their ideas and garner feedback from other
Internet users. Blogs appeared in the late 1990s but have since seen an unprece-
dented increase. Given the astounding blog-posting frequency and the amount
of information communicated through online blogs, they are being viewed as po-
tentially valuable resources of research. Furthermore, many people seem to get
their news and form their opinions from authoritative blogs instead of standard
media outlets, like broadcast news and newspapers [3].

Blog Mining techniques serve as an effective tool in social network analysis,
economic research and network theory and form the basis for a myriad of services
offered by popular blog analysis engines. For example, as a step towards social
community mining, blog mining techniques can be used to find a community
of bloggers who share a similar topic distribution in their blogs. This concept
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is referred to as latent friend mining, wherein a latent friend is one who shares
similar interests [2]. Determining communities of web pages based on named
entity terms is another area where blog mining can prove to be useful. Named
entity terms are names of persons, organizations, locations, etc. that occur in
web documents with some relationships between them. Named entity terms are
of high interest in web and blog search. While query strings can vary from a
product model to a scientific concept, named entity terms are among the most
frequently searched terms on the web [5].

“Reputation Management,” is another technique under development by several
companies [1]. Companies have now become aware of the potential of blogs to hurt
them and have taken a two-pronged approach to dealing with the problem. On the
one hand, many companies have created their own corporate blogs which have
multiple purposes of keeping their customers and users informed, involved, and
in some cases to garner feedback about products before releasing them to a wider
audience. On the other hand, new blog mining startups have been created, which
are hired by major companies to keep an eye on the blog space [8].

This paper discusses the latter kind of sentiment mining of the blog text.
The architecture of the system is detailed in Figure 1.

Fig. 1. System Architecture
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The strength of positive or negative feelings is expressed by the sentiment rank-
ing number that our program assigns to each blog. This sentiment ranking is a
logarithmic number of positive or negative word counts from the blog text. The
whole procedure of classifying a blog and giving it a ranking is done at index time,
i.e. blogs are ranked and indexed prior to search time. This technique reduces the
time required for searching results as they are already stored on the machine.

2 Blog Search

To search for blogs of a specific organization on the Internet we use APIs pro-
vided by Google. Google API is a lightweight framework developed for searching,
made available by Google [6]. For implementation purposes, the Internet blog
domain used is blogspot.com. The format of the query supplied to Google APIs
is “company-name site:blogspot.com”. The company names are obtained from a
database table storing the list of Fortune 500 companies. The results returned
are sorted according to Google’s proprietary Page Rank method.

Each result returned consists of several parts as shown in Figure 2. These
parts are:

summary - If the search result has a listing in the Open Directory Project
directory, the ODP summary appears here as a text string. The Open Directory
Project is a web directory of Internet resources. A web directory is something
akin to a huge reference library. This directory is hierarchically arranged by sub-
ject - from broad to specific. The ODP is maintained by community editors who
evaluate sites for inclusion in the directory. In Figure 2, the result does not have
a summary from ODP.

URL - The URL of the search result, returned as text, with an absolute
URL path. In Figure 2, “planetmath.org/encyclopedia/TimeComplexity.html”
is a URL to reach this page.

snippet - A text excerpt from the results page that shows the query in con-
text as it appears on the matching results page. This is formatted HTML and
query terms are highlighted in bold in the results, and line breaks are included
for proper text wrapping. If Google searched for stemmed variants of the query
terms using its proprietary technology, those terms are also highlighted in bold
in the snippet. Note that the query term does not always appear in the snippet.
In Figure 2, “Time complexity refers to a function describing how much time it
will take an algorithm ... The exact expression for time complexity of a partic-
ular sorting...” is the snippet. Snippet and summary are used interchangeably.

title - The title of the search result, returned as HTML. “PlanetMath: time
complexity” is the title of the result shown in Figure 2.

cachedSize - Text (Integer + “k”). Indicates that a cached version of the
URL is available; size is indicated in kilobytes. In the figure 22k is the size of
the cached page.

relatedInformationPresent - Boolean indicating that the “related:” query term
is supported for this URL. This is not a visible component of the results returned
by Google.
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hostName - When filtering occurs, a maximum of two results from any given
host are returned. When this occurs, the second resultElement that comes from
that host contains the host name in this parameter.

directoryTitle - If the URL for this resultElement is contained in the ODP
directory, the title that appears in the directory appears here as a text string.
Note that the directoryTitle may be different from the URL. [6]

Fig. 2. Format of a result returned by Google API

3 Relevant Text Extraction

The URL of each result is used, in our program, to extract the text content of the
corresponding web page. For this purpose we have used JTidy. JTidy is a Java
port of HTML Tidy, an HTML syntax checker and pretty printer. Like its non-
Java cousin, JTidy can be used as a tool for cleaning up malformed and faulty
HTML. In addition, JTidy provides a Document Object Model interface (DOM)
to the document that is being processed, which effectively makes you able to use
JTidy as a DOM parser for real-world HTML [11]. The text retriever module
uses JTidy to get a DOM representation of the web page and then extract text
from it.

As seen on many blog portals, it is quite common to have several blogs listed
on a single web page. These blogs are mostly written on different topics and are
not related to each other. Of these, only a single topic or a few more may be
relevant to the organization we are interested in. Doing a classification on all
words of the web page yields highly erroneous results.

Hence, after fetching the text of the entire blog page, it is further processed to
fetch pieces of text relevant to the corresponding organization. A record of the
association between the query i.e. organization name and links corresponding
to it, maintained during the Blog Search procedure described in Section 2, is
utilized to extract such relevant text blocks. The complete text is split into
various blocks with the company name as the delimiter. If the company name
consists of more than one word then each individual block obtained in the first
iteration is split further using any of the individual words in the company name
as a delimiter.

For example, consider the text of a web page fetched for “Morgan Chase.”
The process of extracting relevant text is clarified in Figure 3.

After dividing the text into different blocks, the process of retrieving relevant
text starts. Since there is a low probability that a ”large” piece of text located
before the first occurrence of the organization name would actually describe the
organization, only 30 words are considered from the first block. Thereafter, each
block is examined to check if its length is greater than 150 words. If no, the



Blog Mining for the Fortune 500 383

entire block is considered relevant. If yes, only the first 75 words from both the
start and end of the block are considered relevant. Finally, for the last block, the
first 75 words from the beginning of the block are taken. If the size of the last
block is less than 75 words the entire block is used. To check for organization
name matches within the text of the web page, regular expressions have been
utilized which further improves the accuracy of the text extraction process.

Fig. 3. Algorithm for extracting the relevant pieces of text

A sample run of the RelevantTextExtractor module on the content of a par-
ticular piece of blog text extracted from the web is shown in Figures 4 and 5. As
shown in Figure 4, the blog is titled ”J.P. Morgan posts 68% rise in quarterly
profit” and the relevant text being extracted pertains to the company JP Mor-
gan Chase. The RelevatTextExtractor module uses the procedure described in
Figure 3 to search for occurrences of the phrase ”Morgan Chase” or each indi-
vidual word ”Morgan” or ”Chase” within the text, divide the text into blocks
based on these occurrences and extract pieces of relevant text from the blocks.
The output of the RelevantTextExtractor module is shown in Figure 5.

4 HashMap Classifier

4.1 Implementation

In order to determine the sentiment ranking of a piece of blog text, a table of
words conveying either positive or negative sentiments was implemented. The
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Fig. 4. Sample blog pertaining to the company J. P. Morgan Chase

Fig. 5. Set of relevant text blocks extracted from Figure 4

table contains the actual word, its category i.e. positive or negative and its weight
which is a numerical value ranging between -1.5 and +1.5 in increments of 0.25,
excluding 0. Weights less than 0 are assigned to words that convey negative
sentiments and those greater than 0 are given to words that convey positive
sentiments. The value of the weight indicates the extent to which a word is
positive or negative. The table, at present, stores over 400 positive and negative
words. We initially settled on 6 positive and 6 negative steps. To avoid ”infinite”
decimal numbers we chose the limit of 1.5 instead of 1, which will always provide
exact decimal numbers.

When starting the sentiment mining process on a given blog, a hash table is
created in memory, which contains the words conveying sentiments as keys and
weight numbers between -1.5 and 1.5 as values. The information loaded into this
hash table is extracted from the table mentioned above, which is implemented in
Oracle (see Figure 6). Every word in the relevant text blocks of a blog, extracted
as explained in Section 3, is then checked to see if it matches with the keys in the
hash map. Whenever a blog word matches a hash table key, the weight for this
key is returned. The weight of the entire set of relevant text blocks is obtained by
calculating the sum of weights of individual words that have a match in the hash
map. A negative word weight lowers the blog weight and a positive word weight
adds to it. Finally, the logarithm of the absolute value of the resultant sum is
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used as the sentiment rating for the blog text. The complete blog is classified
as positive or negative depending on whether the resultant logarithmic value is
greater or less than zero, respectively. If the resultant value is 0 then the blog
is neutral, in which case, it is skipped. However, this is a rare condition and the
probability of occurrence of such blogs is minimal.

To get a closer match between the words in the text and those in the hash
map, the base words and their variations have been included in the database.
An example of this is also shown in the figure 6.

As shown in Figure 6, both ”loves” and ”loved” give a match with ”love” in
the hash map. If a particular word in the text is not found in the map, a check is
performed to see if the word ends with any of the common suffixes. If a common
suffix is found, it is stripped and the remaining part of the word is again checked
for a match in the hash map. Common suffixes of 1, 2, 3 and 4 character lengths
have been used for this purpose. These are listed in Figure 7. This helps limit
the size of the wordlist table by reducing the number of variations to be entered
for each word in the database. It also helps achieve better classification due to
the probability of getting more matches.

Fig. 6. Text word match with hash map keywords

4.2 Comparison of Classifiers

We have compared our HashMap classifier with two other classifiers, Dynamic
Language Model Classifier and Binary Language Model Classifier, which are
included in the LingPipe framework. LingPipe is a suite of natural language
processing tools that performs tokenization, sentence detection, named entity
detection, co-reference resolution, classification, clustering, part-of-speech tag-
ging, general chunking, and fuzzy dictionary matching [12].

In order to compare our results with existing research, we needed a set of
test documents which are publicly accessible and have already been classified
as positive or negative. For that purpose, we have used LingPipe’s language
classification framework to perform the classification task on a set of test data,
which is actually a collection of positive and negative movie reviews. Lee and
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Fig. 7. Table of common suffixes used

Pang have provided such movie review data for testing purposes. This data is
already divided into two segments (slices), positive and negative. These reviews
can be obtained from the link http://www.cs.cornell.edu/people/pabo/movie-
review-data/review polarity.tar.gz. This test data set contains a total of 2000
movie reviews, 1000 with positive sentiments and 1000 with negative sentiments.
Following standard machine learning methods, for the purpose of training, 1800
movie reviews, 900 positive and 900 negative, are used. For testing, the remaining
200 movie reviews are used.

For each classifier and each training case, the number of training characters,
the time to train, the correctness of the tests, and the total time for testing are
given in Figure 8. The five cases of the experiment were done with different train-
ing and test data sets. For each case, 1800 training files were randomly picked
and both the classifiers were trained with them. The remaining 200 files were
used to test those trained classifiers. The highest accuracy achieved with the
Dynamic-LM Classifier was about 83%, while the lowest was 77%. On the other
hand, the accuracy of the BinaryLMClassifier was always 100%. The Binary-LM
Classifiers also takes less time for training because it gets trained on only one
category. This means that if the DynamicLMClassifier was trained on 1800 files
then the Binary-LM Classifier was trained only on 900 files.

The Dynamic Language Model Classifier (DLM) is slow in both cases of
training and evaluation. But the advantage of the Dynamic classifier against the
Binary LM Classifier (BLM) is that it can support n classifications. That means
that DLM can be trained to classify sentiments into several categories such as
positive, extremely positive, neutral, negative, etc.

On the other hand the BLM is very fast. As the name suggests, it can classify
only two categories, positive and negative. BLM only gets trained on one cate-
gory and it rejects the other category. When a file is fed to it, it returns ”true”
or ”false,” true if the file belongs to the category it was trained on. For every
other category it returns false. So, if there are only two categories this model
works perfectly fine with a high level of precision.

We used our HashMap classifier for the movie review data set, without adapt-
ing the key words to the movie domain. We only used generic sentiment terms
as we would use for any kind of blog mining. Looking at the results in Figure 8,
it becomes clear that the HashMap classifier does not require any training time,
as opposed to the Dynamic-LM and the Binary-LM classifier. Its classifica-
tion performance of 66% is below the results for both the classifiers. However,
HashMap classifier runs faster than both classifiers even during testing.
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Fig. 8. Statistics for different classifiers

Note that in Figure 8 the time for our HashMap classifier is given for 2000
movie reviews, while the times for the two other classifiers are given for 200 only.
Thus, if we want to compare equal work loads, we need to divide the run time
of 7140 ms by 10, giving 714 ms, which is faster than the fastest time of the
Binary-LM Classifier.

5 Lucene Indexing

5.1 Indexing Records

The next step consists of indexing the Google API results with the sentiment
rank. In order to do the indexing we have used Lucene [10]. Lucene is a free,
open source information retrieval API originally implemented in Java by Doug
Cutting. It is supported by the Apache Software Foundation and is released
under the Apache Software License. While suitable for any application which
requires full text indexing and searching capability, Lucene has been widely
recognized for its utility in the implementation of Internet search engines and
local, single-site searching.

At the core of Lucene is an index. Although Lucene is used for text indexing
it does not index files, it indexes document objects. A document is a collection
of fields which are nothing but name value pairs. An index in turn contains a
set of documents.

The following piece of code demonstrates how document objects have been
created in our module.
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public Document indexThis(IndexWriter writer, String query,
GoogleSearchResultElement r, HashMap wordWeightMap)
throws Exception
{

Document doc = new Document();
Double reverseBoost;

RelevantTextExtractor rte = new RelevantTextExtractor();

String url = r.getURL().replaceAll("<b>", "");
String snippet = r.getSnippet().replaceAll("<b>", "");
String title = r.getTitle().replaceAll("</b>", "");

String text = rte.parseThis(query, url).toString();
Double boost =
new Double(HashMapClassifier.evaluate(text, wordWeightMap));

if(boost.doubleValue() >= 0)
reverseBoost = new Double(100.0 - boost.doubleValue());

else
reverseBoost = new Double(100.0 + boost.doubleValue());

doc.add(Field.Text("url", url));
doc.add(Field.Text("snippet", snippet));
doc.add(Field.Text("title", title));
doc.add(Field.Text("rating", boost.toString()));
doc.add(Field.Text("reverse_rating",

reverseBoost.toString()));

return doc;
}

As shown in the code segment, a new instance of document object is created.
The URL, snippet and title are extracted from each search result returned by
the Google API. The URL is then passed to the RelevantTextExtractor module
to retrieve the entire text of the blog web page and extract relevant text content
from it. This relevant text is then passed to a static ”evaluate” function of
the HashMapClassifier class which returns a sentiment rating of the blog text.
A reverse sentiment rating is also calculated, which is useful to sort blogs in
descending order of their sentiment ratings. A document object is then created
using the values of URL, snippet, title, rating and reverse rating. The document
is then added to a new index or appended to one if the index already exists.

5.2 Searching Indexes

The search module provides a simple JSP page allowing a user to enter an
organization name and search for it in the records already indexed on the hard
drive. The snippet fields of all documents are checked for a match with the
organization name. Once such records are found, positive and negative blogs
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Fig. 9. Indexing Speed

are sorted and displayed separately on the JSP page. The displayed records are
again in the form of small documents with a title, sentiment rating, snippet
and URL.

6 Performance Statistics

Figure 9 shows the time required to complete the entire indexing process. This
includes fetching blog URLs using Google APIs, extracting text from the blog
web pages, determining sentiment rating to classify them as well as indexing
blog data. To index blogs from about 800 web pages takes just over 22 minutes,
which is fast considering the amount of processing that is done before indexing.
Moreover, this does not affect run time performance since indexing is done offline,
before hand.

Fig. 10. Classification Rate
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Figure 10 gives a plot of the number of blogs classified versus the percentage
of correct classifications. As seen from the figure, this varies between 60-73%.
Also, as seen from the comparison table in Figure 8, the average classification
rate for 2000 movie reviews is 66%.

7 Conclusions and Future Work

For companies trying to determine where they stand in the market with respect
to their customers, suppliers and many other stakeholders, blogs are becoming
a prime medium. With the help of blog mining software, employees can easily
go through the existing blogs to gain an insight into the feelings and opinions
of users about the organization. This helps them make important decisions on
improving product quality, increasing profit, market standing, and customer sat-
isfaction.

Our implementation performs this kind of sentiment mining on blogs. The
URLs of blogs specific to an organization are first fetched using APIs provided by
Google. The entire text of the blog page corresponding to each URL is then ex-
tracted. The size of text is further reduced by determining pieces of text relevant
to the organization. Using a table of words conveying sentiments the sentiment
rating of the blog is determined and the blog is categorized as either positive or
negative. The data for each blog is then indexed using Lucene APIs and stored
on the hard drive. Since this entire classification takes place offline, the run
time search procedure only needs to search through the indexed records already
created, thereby keeping access time to a minimum. In our implementation, we
have currently indexed 100 blogs for each of the Fortune 500 companies from
the domain blogspot.com.

Using a hash map data structure for classification of blogs makes the index-
ing process very fast. However, since the classification relies only upon a list
of positive and negative words the accuracy achieved is about 60-75%. To im-
prove accuracy the size of the word list in the database needs to be increased
by adding new positive and negative words as and when found. Note that due
to the efficient retrieval of data from hash tables, adding new terms will, on an
average, have a small effect on evaluation time. Thus, an expected increase in
classification accuracy will maintain the positive timing characteristics of our
approach. As an additional enhancement, a table of the most commonly occur-
ring phrases conveying sentiments along with their weights can be created. An
initial text weight can be determined first by checking for these common phrases
in the extracted relevant text. These phrases can then be eliminated from the
text and remaining text can be classified using our Hash Map classifier. This
would further refine the classification task. Moreover, in addition to searching
for only the company name, its products and/or services can also be used to
fetch relevant text. This would result in a larger text on which classification
would be more accurate.



Blog Mining for the Fortune 500 391

References

1. Aschenbrenner, A., Miksch, S.: Blog Mining in a Corporate Environment, Technical
Report ASGAARD-TR-2005-11, Technical University Vienna (September 2005)
(accessed February 1, 2007), http://ieg.ifs.tuwien.ac.at/techreports/
Asgaard-TR-2005-11.pdf

2. Shen, D., Sun, J.-T., Yang, Q., Chen, Z.: Latent Friend Mining from Blog Data.
In: International Conference on Data Mining, pp. 552–561 (2006)

3. Tirapat, T., Espiritu, C., Stroulia, E.: Taking the community’s pulse: one blog at
a time. In: International Conference on Web Engineering, pp. 169–176 (2006)

4. Mishne, G.: Experiments with Mood Classification in Blog Posts. In: Style2005 the
1st Workshop on Stylistic Analysis of Text for Information Access, at SIGIR 2005
(August 2005)

5. Li, X., Liu, B., Yu, P.S.: Mining Community Structure of Named Entities from
Web Pages and Blogs. In: AAAI Spring Symposium, Computational Approaches
to Analyzing Weblogs, pp. 108–114 (2006)

6. Google Web APIs (March 10, 2006), http://code.google.com/apis
7. Fischer, I., Torres, E.: A Distributed Blog Search Platform (2006)
8. The Blog in the Corporate Machine, The Economist, (February 11, 2006)
9. Fortune 500 Full List, CNNMoney (April 17, 2006),

http://money.cnn.com/magazines/fortune/fortune500/full list
10. Hatcher, E., Gospodnetic, O.: Lucene in Action (2006)
11. JTidy - HTML Parser and Pretty-Printer in Java (March 10, 2006),

http://jtidy.sourceforge.net
12. LingPipe (2007), http://www.alias-i.com/lingpipe

http://ieg.ifs.tuwien.ac.at/techreports/Asgaard-TR-2005-11.pdf
http://ieg.ifs.tuwien.ac.at/techreports/Asgaard-TR-2005-11.pdf
http://code.google.com/apis
http://money.cnn.com/magazines/fortune/fo rtune500/full_list
http://jtidy.sourceforge.net
http://www.alias-i.com/lingpipe


A Link-Based Rank of Postings in Newsgroup

Hongbo Liu1, Jiahai Yang1, Jiaxin Wang2, and Yu Zhang2

1 The Network Research Center
2 Department of Computer Science and Technology

Tsinghua University, Beijing, China, 100084
liuhb1@gmail.com

Abstract. Discussion systems such as Usenet, BBS, Forum are impor-
tant resources for information sharing, view exchanging, problem solving
and product feedback, etc. on Internet. The postings in newsgroups on
Usenet represents the judgments and choices of participators. The struc-
ture of postings could provide helpful information for the users. In this
paper, we present a method called PostRank to rank the postings based
on the structure of newsgroup. Its results correspond to the eigenvectors
of the transition probability matrix and the stationary vectors of the
Markov chains. It could provide useful global information for the news-
group and it can be used to help the users access information in it more
effectively and efficiently. This method can be also applied on other dis-
cussion systems. Some experimental results and discussions on real data
sets collected by us are also provided.

Keywords: link analysis, rank, newsgroup, discussion systems.

1 Introduction

Usenet is a world-wide distributed discussion system, and it is one of the rep-
resentative information resources on Internet. Usenet provides a convenient way
for the communication and organization of discussions, which is much different
from the World Wide Web (WWW) whose main purpose is information pub-
lishing. It consists of a set of newsgroups with names classified hierarchically by
subject. In each group, postings are posted to the NNTP server and broadcast
to other servers. With these servers, people all over the world can subscribe
newsgroups they are interested in and can participate in the discussions.

Comparing with web pages, the content of postings on Usenet is generally
more informal, brief and personalized. It contains rich information and ideas
contributed by the participators. Due to the huge size of Usenet, people can
only subscribe a few groups and generally read a small fraction of the postings.
It may take quite much time for a newbie to familiar with a group and use it
sensibly. It is difficult to access the required information efficiently from all the
postings in a group because of its huge size and loose organization.

Information Retrieval (IR) techniques have been used on the web to make
information more accessible. IR techniques have widely used the “bag-of-words
model” for tasks such as document matching, ranking, and clustering [1]. On
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WWW, because of the intrinsic hyperlink property of web pages, link analysis
based on ideas of social networks has also been used in the ranking system of
some search engines [2,3]. The simplicity, robustness and effectiveness of link-
based ranking method have been witnessed with the success of Google, whose
basis of ranking system is PageRank. Social networks have also been applied
in other domains, such as marketing [4], email relationship [5], chat [6] and
so on [7].

As most postings on the Usenet do not contain hypertexts, they can not
be benefited from these link-based algorithms of WWW directly. Some IR tech-
niques were used to improve the services of Usenet [8]. The briefness and casualty
of newsgroup postings make it difficult for conventional text mining techniques.
Some investigations based on social networks have also been done to extract
useful information from the Usenet [9,10].

On Usenet, it is not easy to choose the postings before read when the users
browse the newsgroup. Normally it is needed to read the postings throughout
thread to get related information. It is time consuming and many postings are
not very valuable. Some hints of postings may be greatly helpful to improve the
efficiency of the Usenet users. For the Usenet search, the order of results is very
important, which may be improve with a good ranking system. Therefore, good
posting rank with intrinsic properties of a newsgroup can make the information
on Usenet more accessible.

In this paper, according to the characteristics of Usenet, a link-based method
to calculate the rank of postings on Usenet is proposed. Some mathematical
analysis of this method is discussed and experimental results on real data sets
are also given.

2 The Calculation of PostRank

2.1 Usenet Newsgroup and Its Representation

Unlike web pages, the postings on a newsgroup of Usenet are organized by
threads. Each thread is invoked by one seed posting and followed by several
response postings. The quantity and content of postings are determined by col-
laborative work of the participators along with the evolution of discussions.

Considering the posting vi as node and the respondent relationship e =
〈vi1, vi2〉 as link, each thread can be abstracted as a rooted tree whose root
is the seed posting and its descendants are the response postings of this thread.
In the rooted tree, the leaf nodes are the postings without response. Since there
are many threads in a newsgroup, its structure can be represented with forest
G(V,E). In this way, a newsgroup contains m postings with s seed postings and
t leaf postings could be represented as a forest with m rooted trees and m − s
links.

Supposing posting vi have ci neighbors, due to the tree structure of thread
there are two classes of neighbors for vi according their relationships with vi,
i.e., the parent set P(vi) containing ai postings, and the offspring set O(vi)
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containing bi postings. ai may be 0 or 1 depending on whether vi is a seed
posting. From the above description, we can get that

ai + bi = ci,
∑

vi∈G

ci = 2(m− s),
∑

vi∈G

|ai − bi| = 2t. (1)

A

B C

D

E

F G H

I

J

K

L

M

N

O

Fig. 1. graph representing a small newsgroup containing 3 threads with 15 postings

A small newsgroup containing 15 postings, including 3 seed postings and 8
leaf postings was shown in Fig. 1. It can be represented by the following adjacent
posting matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A B C D E F G H I J K L M N O

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
O 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

According to the above descriptions, the following properties can be inferred
directly.
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Property 1. (1) The diagonal elements of M are zero. (2) Mij satisfies

m∑

j=1

Mij = ai,

m∑

i=1

Mij = bj,

m∑

i=1

m∑

j=1

Mij = m− s

.
In this manuscript, the rooted trees are denoted with Tk, k = 1, 2, · · · , s, and
we use the symbols with subscript Tk to denote parameters of tree Tk. For tree
Tk, posting is represented as vi|Tk. The number of postings in Tk is mTk, and
the number of leaf postings in Tk is tTk, and the level of Tk is lTk.

2.2 PostRank Calculation and Analysis

One intuitive idea to rank the postings based on G is that if a posting was
responded by more postings, its rank is higher. Thus, bi could be a candidate of
the rank of vi. This seems to be simple and feasible. However, this calculation
works with the assumption that all postings have equal contribution to the rank,
which is not reasonable enough. All postings are not created equal. A posting
responded by a high rank posting might be more valuable than posting with
a low rank response posting. It is better to retrieve the rank from the Usenet
structure recursively.

Similar with some link-based rank methods on the web, the link from vi

to vj in the forest G can be viewed as vote from vi to vj . If the rank of a
posting is high, the postings it responding to and responded by provide some
information intimately related with it, which might also be valuable for the
users. When the users browse the Usenet, it is natural to read the parent or the
offspring of his interested posting to get more detailed information. Thus, in our
calculation, posting vi|Tk votes other postings according to their relationships
with vi|Tk. In the reverse direction, the rank of vi|Tk is determined by the ranks
and relationships with other postings based on the structure of Usenet. Since
the seed postings and the leaf postings are special in the Usenet, we add self-
loop to them to give them additional bonuses. The rank of posting vi|Tk may
contribute to its parent, its offspring, other postings in the same thread, and any
posting in the newsgroup differently. In PostRank, we use α, β, λ, η to describe
the difference of these relationships. Therefore, the PostRank ri|Tk of vi|Tk can
be calculated as following:

ri|Tk = α
∑

vj∈P(vi|Tk)

rj/bj + β
∑

vj∈O(vi|Tk)

rj + λ
∑

vj∈Tk

rj/mTk + η, (2)

where 0 ≤ α, β, λ, η < 1 and α + β + λ + η = 1.
As the PostRank vector rT is a m dimensional row vector, it is convenient

to use the matrix form of Eq. (2) when calculating. To illustrate this easily,
two transformations were introduced. In the following discussions, by M ,V we
denote matrix space and vector space respectively.
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Transformation D : M → M is defined as follows to distill the self-loops of
seeding postings or leaf postings according to the posting matrix M. For A ∈ M ,

Dij(A) =

⎧
⎪⎨

⎪⎩

0 if i �= j

0 if i = j and
∑m

j=1 Aij �= 0
1 if i = j and

∑m
j=1 Aij = 0.

According to the definitions and Eq. (1), D(M) is the adjacent matrix of
root self-loops and the D(MT ) the adjacent matrix of leaf self-loops. Let square
matrix

T = M + D(M). (3)

T represents the new graph of G plus self-loops of root nodes. Since there is only
one parent or self-loop for each node, each row of T contains and only contains
one nonzero element.

Let lmax be the max level in G, i.e., lmax = max(lTk). The whole thread Tk
was included in the columns of seed postings of square matrix Tlmax , and Tlmax

could be used to indicate the correspondent relationships of postings and their
seed postings.

Transformation N : M → M is defined as the normalization of the matrix
row vectors based on their l1 norms. That is, for A ∈ M ,

Nij(A) = Aij/
n∑

j=1

Aij .

Therefore, the matrix form of PostRank can be represented with

rT = rT (αT + βN (MT + D(MT )) + λN (Tlmax )) + ηwT , (4)

where wT is a m dimensional personalized row vector with w > 0. w could be
used to customize the PostRank vector for special demand. In Eq. (2), wT = eT ,
where e be a m dimensional column vector with all ones.

For the implement of PostRank calculation, Eq. (4) can be written in the form
of iteration as

rT (k) = rT (k − 1)(αT + βN (MT + D(MT )) + λN (Tlmax )) + ηwT . (5)

For the implementation of Eq. (5), its convergentproperty should be considered.

Property 2. Let P = αT + βN (MT +D(MT )) +λN (Tlmax ). α+ β + λ is the
spectrum radius of P.

Proof. Based on the above descriptions and Property 1,

m∑

j=1

Pij = α

m∑

j=1

Tij + β

m∑

j=1

N (MT
ij + D(MT

ij)) + λ

m∑

j=1

N (Tlmax

ij ))

= α + β + λ,

(6)
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so we have Pe = (α + β + λ)e. Therefore α + β + λ is the eigenvalue of P and
e is the corresponding right eigenvector.

According to the matrix property, the spectrum radius of M

ρ(P) ≤ ‖P‖∞ = max
i,j

Pij

≤ αmax
i,j

(Tij) + β max
i,j

N (MT
ij + D(MT

ij)) + λmax
i,j

N (Tlmax

ij )

= α + β + λ.

(7)

Considering Eq. (6) and Eq. (7), ρ(P) = α + β + λ.

Starting from non-zero initial vectors rT (0), rT (k) can be calculated based
on rT (k − 1) using Eq. (5). Because ρ(P) = α + β + λ < 1 from Property 2,
PostRank calculation can converge to their stable vector rT , which is the solution
satisfying Eq. (4).

The meaning of PostRank can also be understood with the discrete Markov
model. Defining square matrix

Q = P + ηewT , (8)

when ‖rT (0)‖1 = 1, Eq. (5) can be written as

rT (k) = rT (k − 1)Q. (9)

When ‖wT ‖1 = 1, according to Property 2 we have

Qe = Pe + ηewT e = (α + β + λ)e + ηe = e. (10)

Thus, Q is a stochastic matrix and the PostRank calculation build a Markov
chain with transition probability matrix Q. Since η > 0, from Eq. (8) Q is prim-
itive. Hence the Markov chain can converge to its stationary vector, that is, the
PostRank vector rT . The Markov chain indicates random walk model that as
the Usenet user read one posting, he may jump to the posting it responded to,
the posting it responded by, any posting in the same thread or any posting in the
newsgroup with different probability on the next. When ‖wT ‖1 = 1, with this
model PostRank vector is the stationary probability distribution of all postings.
From Eq. (10), PostRank vector is also the eigenvector corresponding to eigen-
value 1 of Q which was constructed on the newsgroup structure using PostRank
equation. Therefore, PostRank vector rT could reflect the nature features of G,
and it is the intrinsic property and good measure of postings in a newsgroup.

In m×m matrix M, there are only m− s nonzero elements, which makes M
very sparse. P can be obtained based on M before iteration using the definition
of Property 2 and nnz(P) ≤ 3m, where nnz(P) is the number of non-zeros in P.
The process of Eq. (5) iteration is matrix-free and only nnz(P) multiplications
are needed for each step. Only the storage of one vector rT (k) is required at
each iteration. Thus, this algorithm is suitable for the large size and sparsity
of the posting matrix of Usenet newsgroup. Some experiments were performed
to acquire the PostRank vector on realistic datasets. The experimental results
achieved will be discussed in the next section.
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From: diffuser78@gmail.com
Newsgroups: comp.lang.python
Subject: Re: OS specific command in Python
Date: 21 Jun 2006 06:34:42 -0700
Organization: http://groups.google.com
Lines: 40
Message-ID: <1150896882.746722.95200@u72g2000cwu.googlegroups.com>
References: <1150781429.090359.148560@c74g2000cwc.googlegroups.com>
   <1150783324.258644.65770@u72g2000cwu.googlegroups.com>
   <4498dcd5$0$25503$626a54ce@news.free.fr>
NNTP-Posting-Host: 66.255.187.74
Mime-Version: 1.0
Content-Type: text/plain; charset="iso-8859-1"
X-Trace: posting.google.com 1150896887 8314 127.0.0.1 (21 Jun 2006 13:34:47 GMT)
X-Complaints-To: groups-abuse@google.com
NNTP-Posting-Date: Wed, 21 Jun 2006 13:34:47 +0000 (UTC)
In-Reply-To: <4498dcd5$0$25503$626a54ce@news.free.fr>
User-Agent: G2/0.2
Xref: news.edisontel.com comp.lang.python:41439

Fig. 2. The header of a typical posting on Usenet

3 Experiments and Their Results

3.1 Datasets Preparation

We wrote a bot program in Perl to download the postings from the NNTP server.
The bot program communicates with NNTP server using socket connection fol-
lowing RFC 977 specification [11] and save the postings in text file with Mailbox
format. Since only the headers are needed in our calculation, the headers were
separated from the postings from the Mailbox file, and they are stored using
CSV format after some text treatment. The header of a typical posting is shown
in Fig. 2. The contents in CSV file were ordered and imported to the database.
SQL statements were performed on the database by a Java program through
JDBC interface to construct and extract the structure of newsgroup based on
the header information. Postings in uncompleted thread were removed from the
data sets during the structure extraction. The process of data sets collection and
newsgroup structure extraction was shown in the diagram of Fig. 3.

Experiments were preformed on two data sets collected from comp.lang.perl.
misc and comp.lang.python, which are two active newsgroups about computer
languages on Usenet. The datasets are called DS1 and DS2 in the following.

DS1 contains 10532 postings including 1286 participators and 1774 threads
of comp.lang.perl.misc from Mar 5, 2006 to Jun 27, 2006. DS2 contains 18821
postings including 2463 participators and 3408 threads of comp.lang.python from
Mar 5, 2006 to Jun 27, 2006.

The probability distributions of response posting number b are shown in a log-
log plot of Fig. 4. In DS1 and DS2, a few postings got many response postings and
a lot of postings were only responded by few response posting or not responded.
From the figure, the distributions exhibit power-law feature of P (b) = b−γ with
γ ( 4.1 for both DS1 and DS2. Power-law distribution has also discovered on
Internet and other systems[12], and it means the heterogeneity of network struc-
ture which is helpful for our PostRank.
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Fig. 3. The process of data collec-
tion and structure extraction of Usenet
newsgroup

Fig. 4. The probability distribution of
response posting number of postings in
DS1 and DS2, the slope of dashed line
is −4.1

3.2 Experimental Results

In our experiments, PostRank vector rT was calculated with α = 0.25, β =
0.45, λ = 0.15, η = 0.15. These parameters are determined from our experiments,
and they can be adjusted to change the impacts of different kinds of postings.
The personalized vector wT was assigned eT , so according to Eq. (4) the l1 norm
of PostRank vector ‖rT ‖1 = ‖wT ‖1 = ‖et‖1 = m.

We measure the rates of convergence using the l1 norm of the residual
vector, i. e.,

Δ(k) = ‖rT (k) − rT (k − 1)‖1.

The convergence rates of in our experiments of DS1 and DS2 were plotted
on a semi-log graph shown in Fig. 5. It could converge rapidly, which follows
O((α + β + λ)k).

Since most PostRank scores are small, the logarithms of PostRank of DS1
and DS2 are shown in the histograms of Fig. 6. In these histograms, there are
few postings with high PostRank, and many PostRank scores are around the
average value 1. Comparing with Fig. 4, we can see that they are very unalike.
Effected by the number and PostRank scores of different kinds of related postings
simultaneously, ri is quite different with bi for posting vi. The relationship ri

and bi is shown in Fig. 7, where each symbol represents a posting and the cycle
symbols and plus symbols denote postings from DS1 and DS2 respectively. In
this Figure, we could see that postings with same bi may be very different in
ri, and vice versa. In DS1, the highest PostRank 37.145 is obtained by a seed
posting titled “What is Expressiveness in a Computer Language”, which was
responded by only 4 postings with high PostRank scores. The thread it invoked
contains 467 response postings, but this seeding posting is not very significant
barely considering bi. According to this figure, we get results alike for DS2.

In our example above, some seed postings with few bi rank high mainly
because they have a lot of descendants. The number of direct and indirect
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Fig. 5. The convergence rates of Pos-
tRank calculation of DS1 and DS2

Fig. 6. The PostRank histograms of
postings in DS1 and DS2

descendants can be used as the candidate for the rank, which could also makes
the seed postings rank high. However, this will lead to unreasonable results that
parents always rank higher than their descendants. In PostRank, there is the op-
portunity for the descendants rank higher than their parents, such as when the
offspring of descendants have high ranks. The influence of parents, descendants
and other postings were considered simultaneously according to their distances
and relationships with the posting being ranked, so PostRank is found to be a
good ranking method for the postings in newsgroup.

As we discussed, PostRank can provide useful clues based on the newsgroup
structure for the users to help them access the information more effectively. It
can also be used in other applications of Usenet data mining. For example, we
can obtain some helpful properties of the participators based on PostRank. On
the Usenet, participators are judged only by his postings, irrespective of his
social status or appearance. They are the soul of a newsgroup. The participators
behave very differently owing to their character and knowledge background.
Acquaintance and evaluation of participators in a newsgroup are very important
for the users to use the newsgroup effectively. However, it may take quite much
time, so some hints of participators may be of great help for this.

In the newsgroup, suppose there are n participators represented as pu, u =
1, 2, ..., n. All postings posted by pu is T (pu), and the number of postings in
T (pu) is du. Define fsum

u as the sum of PostRank of postings in T (pu) and fave
u

as the average PostRank of T (pu), i.e.,

fsum
u =

∑

vi∈T (pu)

ri, f
ave
u = fsum

u /du.

The relationship of fave
u and fsum

u was shown in the log-log plot of Fig. 8
where each symbol represents a participator. The results from DS1 and DS2 are
plotted in subgraphs respectively. In this figure, for the participators with high
fsum

u the average values of fave
u are about 1. Many participators with high fave

u
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have small fsum
u , which means they posted only a few postings. On the upper

right of DS1 plot in Fig. 8, there is one participator whose fsum
u and fave

u are
both high, which make him relatively special. He is xah@xahlee.org, who own
a homepage http://xahlee.org on computer and scientific art which was created
in 1996 and visited by about 7 to 10 thousand unique visitors per day. Among
24 postings he posted in DS1, 4 postings get PostRank more than 10. Barely
considering du, he is easy to be neglected. From Fig. 8, similar results can also
be obtained for DS2.
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4 Conclusions

In this paper, we proposed a method to calculate the PostRank vector of postings
in a newsgroup based on the newsgroup structure. From the analysis, we can see
that our method can converge rapidly. Its results correspond to the eigenvectors
of the transition probability matrix and the stationary vectors of the Markov
chains.

The calculation of PostRank is link-based and content independent, and it
can be computed offline using only the posting headers. Therefore, it can be
implemented on the servers of newsgroup services or on the newsgroup client
softwares. It could provide useful intrinsic attribution for the postings and can
be used in many applications including helping the organizing the search results,
aiding the users in navigating newsgroup, mining the features of participators,
investigating hot topics and their evolutions for some period and so on.

We provided a simple example in the experiments, and other applications of
PostRank could be explored and developed. Our method provides an essential
and simple way to determine the PostRank with link analysis on Usenet. Some
improvements can be done to revise it or adjust the parameters according to the
requirements.

On the WWW, hyperlinks indicate the choice of web page creators. It has been
confirmed that link carries less noisy information than text, and the effectiveness
of link analysis has been testified by some web search engines. Similar with web
structure, the structure of newsgroup forms gradually along with the evolution of
newsgroup. It represents the judgments and choices of participators and reflects
the swarm intelligence of the newsgroup. Therefore, it could provide rich helpful
information for the task of data mining on Usenet. Together with the IR methods
based on text contents, link analysis can be used in the clustering, topic discovery,
etc., to make full use of the rich resources on Usenet and other discussion systems.
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Abstract. During the past number of years, machine learning and data
mining techniques have received considerable attention among the intru-
sion detection researchers to address the weaknesses of knowledgebase
detection techniques. This has led to the application of various super-
vised and unsupervised techniques for the purpose of intrusion detection.
In this paper, we conduct a set of experiments to analyze the perfor-
mance of unsupervised techniques considering their main design choices.
These include the heuristics proposed for distinguishing abnormal data
from normal data and the distribution of dataset used for training. We
evaluate the performance of the techniques with various distributions of
training and test datasets, which are constructed from KDD99 dataset, a
widely accepted resource for IDS evaluations. This comparative study is
not only a blind comparison between unsupervised techniques, but also
gives some guidelines to researchers and practitioners on applying these
techniques to the area of intrusion detection.

1 Introduction

The significant increase of our everyday life dependency to Internet-based ser-
vices has intensified the survivability of networks. On the other hand, the number
of attacks on networks has dramatically increased during the recent years. Con-
sequently, interest in network intrusion detection systems has increased among
the researchers. At the core of an intrusion detection system relies the technique
that is used for detecting intrusions. Two main approaches to intrusion detection
have been proposed during the last decades. When an intrusion detection sys-
tem learns about the normal behavior of the system or the network it monitors,
it is categorized as an anomaly-based IDS. An anomaly is reported when the
monitored behavior deviates significantly from the normal profile. A misuse de-
tection approach, on the other hand, uses information about the known attacks
and detects intrusions based on matches with existing signatures.

Traditional approaches to intrusion detection are based on expert knowledge
for specification of what is normal or what is attack. This imposes a serious

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 404–418, 2007.
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limitations on intrusion detection systems considering the amount of knowledge
that should be hard-coded in the system. The problem is exaggerated when the
current knowledge of the system gets out of date. While the current attack sig-
nature should be updated in response to rapid development of new attacks, the
specification of normal behavior of the system should cope with rapid changes of
a dynamic environment. In recent years, considerable attention has been given
to data mining and machine learning techniques to mitigate the problems of
traditional intrusion techniques. Theses techniques have the capability of learn-
ing and discovering as apposed to hard-coding the specification of malicious or
normal behaviors.

The machine learning and data mining techniques can be used in either su-
pervised or unsupervised modes. However, providing the system with the labeled
data is both time consuming and labor intensive. Unsupervised techniques are
preferred over supervised techniques in this respect, but it doesn’t come without
cost. The algorithm should build the model without labels. In addition, the al-
gorithm should be flexible to the distribution of the target dataset (in terms of
relative population of normal and abnormal data) as not much is known about
the target dataset in advance.

In this paper, we analyze the unsupervised techniques in terms of the main
design choices one should make for using these techniques. We conduct experi-
ments to compare the performance of different techniques with different labeling
heuristics and also in direct and indirect application to test dataset. Furthermore,
we analyze the sensitivity of the techniques to the distributions of training and
test datasets.

The main goal of this study is to compare the performance of the unsupervised
techniques based on common practices proposed for the applications of these
technique to intrusion detection. To that end, we compare the performance of
clustering techniques with two basic labeling heuristics and evaluate their per-
formance in direct and indirect application to target datasets. Furthermore, the
performance of unsupervised techniques in detecting different attack categories
are compared with each other. We use different distributions of training and test
datasets to evaluate the sensitivity of the techniques to these design choices. To
the best of our knowledge, this work is the most comprehensive study in terms
of both techniques that are considered and different types of experiments that
are conducted.

The rest of this paper is organized as follows. We review the related works
in Section 2. In Section 3, a brief overview of the techniques considered in this
study is provided. In Section 4, we describe the steps that are taken to do the
experiments and provide the results. The lessons learned in this study, concluding
remarks and the future work are given in Section 5.

2 Related Work

Traditional works on anomaly detection [9, 25] are based on statistical meth-
ods for specifying the normal profile of the system. However, more and more
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machine learning and data mining techniques are proposed in the literature as
the traditional methods cannot cope with the complexity of the problem. Clus-
tering and outlier detection techniques are the main approaches to this problem.

A clustering method is used in direct or indirect mode for detecting intru-
sions. The indirect mode of clustering is a two-step process. In the training step,
a set of clusters is created using the training dataset and clusters are labeled
as normal or abnormal with a labeling heuristic. In the test step, each record
of the test dataset is compared against the centroids of all clusters and will
be assigned to the nearest one. In the direct mode, the clustering algorithm
is applied directly to the target dataset and data are labeled using a labeling
heuristic.

Portnoy et al. [19] presents a fix-width clustering technique in which sparse
clusters are considered as anomalous based on a given threshold on the density
of clusters. An extended version of the fix-width clustering is proposed in [6] by
Chan et al. with the ability to estimate the width of clusters. The algorithm is
applied directly to the target dataset and a labeling heuristic is proposed taking
into account both density and average distance of a cluster from other clusters.

Guan et al. [12] propose Y-means, a new clustering technique based on K-
means, which addresses the dynamic selection of the number of clusters. Ra-
madas et al. [20] use SOM (Self-organizing Map), a competitive learning tech-
nique, to detect anomalies using a two-step clustering technique. A new com-
petitive learning technique is proposed in [17] by Lei et al., which mitigates the
sensitivity of SOM to initialization of cluster centers.

Outlier detection techniques rely on the assumption that abnormal data can
be detected based on their deviation from some common characteristic of normal
data (e.g, belonging to one distribution, closeness, etc.). Three main approaches
to outlier detection have been proposed in the literature. In distribution-based
outlier detection techniques, outliers are detected by their significant deviation
from the standard distribution presumably resembled by the majority of points
in the target dataset. In distance-based outlier detection methods, outliers are
detected based on their distances from their nearest neighbors. Finally, the main
idea behind density-based techniques [4, 14] is to detect outliers with respect to
local density of their neighborhood.

The most related works to ours are reported in [11], [16] and [26]. Eskin et
al. [11] compare three outlier detection schemes including a fix-width cluster-
ing technique, K-nearest neighbor and unsupervised SVM on KDD99 dataset.
Lazarevic et al. [16] report the comparative results of several distance-based
(NN, KNN and Mahalanobis distance) and density-based (Local Outlier Func-
tion) outlier detection schemes as well as unsupervised SVM. In this work, the
authors construct a dataset from DARPA98 dataset for training and test. which
contains their own proposed features. Zhong et al. use KDD dataset to compare
the performance of some clustering techniques (including k-means, Mixture-of-
Spherical Gaussian, Self-organizing Map and Neural-Gas) using their proposed
labeling heuristic.



A Comparative Study of Unsupervised Machine Learning 407

3 Unsupervised Anomaly Detection Techniques

3.1 Clustering Techniques

The clustering techniques we have studied in our experiments include K-means,
C-means, EM, Self-organizing Map (SOM), Y-means and Improved Competitive
Learning Network (ICLN). K-means [18] is a very popular technique due to its
simplicity and relatively fast convergence. Given a certain number of clusters (k),
the algorithm starts with selecting k points from the input data as the initial
centroids of the clusters. The main body of the algorithm is a convergence loop,
in which the algorithm goes through two consecutive steps; Assignment updates
the membership of each point based on its distance to the nearest cluster and
Relocation deals with updating the centroid of the cluster so as to render the
mean of belonged points.

Fuzzy C-means is a method of clustering, which allows one piece of data to
belong to two or more clusters. Developed by Dunn [10] and improved later by
Bezdek [3], it is used in applications for which the hard classification of data is not
meaningful or difficult to achieve (e.g, pattern recognition). C-means algorithm
is similar to K-Means except that membership of each point is defined based on
a fuzzy function and all the points contribute to relocation of a cluster centroid
based on their fuzzy membership to that cluster.

EM is another soft clustering method based on Expectation-Maximization
meta algorithm [8]. Expectation-Maximization is an algorithm for finding max-
imum likelihood estimates of parameters in probabilistic models. EM clustering
algorithm alternates between performing expectation (E) step, by computing an
estimation of likelihood using current model parameters (as if they are known),
and a maximization (M) step, by computing the maximum likelihood estimates
of model parameters. The new estimations of model parameters contribute to
expectation step of the next iteration.

SOM, proposed by Kohonen in [15], is a competitive learning technique that
maps the input data from a possibly high-dimensional space to a low dimensional
one (2 or 3-D) while preserving the topological properties of the input space.
A SOM consists of neurons organized on a regular low-dimensional grid. Each
neuron i is represented by a d-dimensional weight vector Wi = [wi1, ..., wid]. The
neurons are connected to adjacent neurons by a neighborhood relation, which
dictates the topology of the map.

SOM is trained iteratively. In each step, one sample from input vector is
compared against all the neurons. The neuron whose distance from the input
vector is minimum is selected as the winner neuron or the Best Matching Unit
(BMU). After finding the BMU, the weight vector of the winner neuron and
all of its neighbors are updated so as to resemble the current input vector. The
SOM update rule for the weight vector of unit v is:

wv(t + 1) = wv(t) + η(t)hcv(t)(xi(t) − wv(t)),

where t denotes time, x(t) is an input vector randomly selected from the dataset
at time t, hcv(t) is the neighborhood kernel around the winner neuron c and α(t)
is the learning rate at time t.
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ICLN [17] is based on the Standard Competitive Learning Network (SCLN).
SCLN is basically a single-layer neural network in which each output neuron is
fully connected to the input node. In the SCLN, the output neurons compete to
become active, very similar to the way the neurons of the map compete in SOM.
However, the performance of SCLN is heavily dependent on the number of the
output neurons and their initial weight vectors. A critical shortage of SCLN (and
that of SOM) is that it may split one cluster into many small clusters (if several
neurons are initialized in one cluster). ICLN improves the mentioned shortage
by defining two different update rules for the winner neuron and loser ones. The
winning neuron, updates its weight vector using the following formula:

wj(t + 1) = wj(t) + η1(t)(x − ωj(t)),

At the same time, other neurons update their weight vectors as follows:

wj(t + 1) = wj(t) − η2K(d(xi, wj))(xi(t) − wj(t)),

where η1 and η2 are learning rates for winner and loser neurons, respectively,
and K(d(x, j)) is a kernel function in which d(xi, wj) is the distance between
neuron j and input vector x. The new update rule for the losing neurons moves
their weight vectors away from the input pattern. At the end, all the neurons
with no associated input vectors are removed.

Proposed by Guan et al. in [12], Y-means is a dynamic clustering algorithm,
which improves the K-means clustering algorithm in three aspects: 1) depen-
dency on the initial number of clusters; 2) dependency on centroids’ initializa-
tion and 3) degeneracy (i.e; ending up with some empty clusters). The algorithm
starts by running StabilizeWithKMeans (an improved version of K-means which
deals with empty clusters) on an arbitrary number of initial clusters. Then clus-
ters are refined through two further steps. The split phase actually alternates
between finding outliers of the clusters and running StabilizeWithKMeans on
the new set of cluster centroids. To detect outliers, a confident area is defined
around the centroid of each cluster whose radius is 2.32σ, where σ is the stan-
dard deviation of the points in that cluster. This criteria has its root from the
”Cumulative Standardized Normal Distribution” table [5], meaning that 99% of
the objects will lie within 2.32 standard deviation of the mean. At each step,
the farthest outlier is excluded from the cluster and is considered as the centroid
of a new cluster and possibly absorbs some points from the neighbor clusters in
the following StabilizeWithKMeans step.

In the merge phase, two adjacent clusters with significant overlap are merged.
The merge is performed to mitigate the problem of over-splitting which might
have happened due to split. Two clusters x and y are merged into one cluster if
the distance between their centroids is less than 1.44(σx + σy).

3.2 One-Class SVM

Unlike supervised SVM, the unsupervised SVM [22] is trained with an unlabeled
dataset that contains both positive and negative data. However, the assumption
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is that the majority of training data are normal. Like supervised SVM, a kernel
function is used for mapping the input data to a feature space. Using a constant
kernel function (i.e, kernel functions that only depend on the distance between
input vectors), all the input examples will be mapped onto the surface of a
hypersphere centered around the origin in the feature space. The objective is
to maximize the margin of separation from the origin or equivalently, find the
smallest sphere enclosing the data. There is a tradeoff between maximizing the
margin of separation and enclosing as much data points as possible. This trade-
off is achieved by solving the following optimization problem that penalizes any
points not separated from the origin while simultaneously trying to maximize
the distance of the hyperplane from the origin:

minω,b,ξ,ρ
1
2 < ω, ω > −ρ+ 1

vl

∑l
i=1 ξi,

subject to

< ω, φ(x) > ≥ ρ− ξi, ξi ≥ 0,

where < ., . > stands for a dot product kernel, ω is the normal vector to the
separating hyperplane, l is the number of the training samples, ρ is the offset
and v ∈ (0, 1) is a upper bound on the fraction of outliers. ξis are slack variables
associated with each data example. The farther a data example is from the
separating hyperplane on the wrong side, the greater is its slack variable. The
slack variables penalize the objective function, but allow some of the training
examples to be on the wrong side of the hyperplane. After solving the above
optimization problem, the label for each point x would be determined using the
following decision function:

f(x) = sgn((w.φ(x)) − ρ)

3.3 K-Nearest-Neighbor

KNN is another method for estimating the degree of outlier of a point. KNN-
based indexes assign an outlier degree to each point based on a function that takes
into account the distance of the point with respect to its K nearest neighbors.
We have selected Kappa and Gamma among the outlier indexes used in [13].

Kappa (κ) returns the distance of a point from its kth nearest neighbor,

κ(x) = ‖x− zk(x)‖,

where zi(x) is the ith nearest neighbor of point x. Gamma (γ) computes outlier
degree of a point taking into account the distances of all of its k nearest neighbors
as follows:

γ(x) = 1
k

∑k
j=1 ‖x− zj(x)‖

4 Experiments

In this section, the steps that are taken for preparing the datasets and the results
of different experiments are provided.
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4.1 Experiment Setup

MIT Lincoln Laboratory conducted a project for evaluating network intrusion de-
tection systems in 1998 and 1999. In this project, a simulation was performed on
a military network in which victim machines were target of various attacks and
normal traffic. Four categories of attacks were used in this simulation: 1) Probe
in which a network of computers is scanned for information gathering; 2) Denial
of Service (DOS) in which network services become unavailable due to excessive
consumption of resources by the attacker; 3) User to Root (U2R) attacks, which
result in super user privilege from a normal user privilege; and, 4) Remote to User
(R2L) attacks, which result in a local account on a remote host.

The KDD CUP’99 data set was built based on the data captured in DARPA98
IDS evaluation program. Data packets that form a complete session were en-
coded in a single connection vector which contains 41 features. Further details
on KDD99 features along with their descriptions can be found in [1]. Among the
features of KDD, protocol type, service type and status flag are categorical fea-
tures and the rest 38 features are continuous features. The categorical features
are converted to continuous feature by using the frequency of different values
appeared for these features (as proposed in [6]). Following that, all the features
were normalized in the scale of 0 and 1 based on the formula proposed in [6].

To analyze the sensitivity of unsupervised techniques on distribution of the
training and test dataset, we prepared datasets with different relative population
of normal and attack records. The training and test data are selected randomly
from the original 10% training and test datasets that are publicly available
from UCI repository [1] (we have made sure that all 4 attack categories ap-
pear in the prepared datasets). We prepared five different datasets (Train 8020,
Train 8416, Train 8812, Train 9208, Train 9604) for training and two datasets
(Test 8020 and Test 9604) for test (e.g. Train 8020 is a dataset in which the
percentage of normal and attack records is 80% and 20%, respectively).

We used Fuzzy Clustering and Data Analysis Toolbox [2], SOM Toolbox [23] and
LIBSVM library [7] to carry out the experiments with C-Means, SOM and One-
Class SVM, respectively. WEKA implementations of K-means and EM were used
in our experiments [24] and KNN-indices were developed in a simple program in
C. Source codes of Y-means and ICLN were provided by their respective authors.

All the clustering techniques were initialized with 50 clusters. For C-means,
the weighting exponent was set to 2.0. We used a Hexagonal grid of size 5*10
with a Gaussian neighborhood function for SOM and set its initial learning rate
to 0.5. For ICLN, the values of reward rate, punish rate and minimum update
parameters were set to 0.1, 0.01 and 0.01, respectively. The stability threshold
of Y-means was set to 0.01. For Unsupervised SVM, we used RBF as the kernel
function and initialized its gamma parameter to 0.025 (1/numberoffeatures).

4.2 Experimental Results

The performance of intrusion detection techniques is evaluated based on two
well-known criteria: detection rate and false positive rate. The detection rate
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Fig. 1. Count-based vs. Distance-based labeling
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Fig. 2. Direct vs. Indirect clustering on Test 8020

represents the percentage of correctly detected attacks whereas, the false positive
rate is the percentage of normal records detected incorrectly as attack.

In the first set of experiments, we evaluate the performance of each clustering
technique with two labeling heuristics. The count-based heuristic labels clusters
as normal or anomalous based on their populations, while in distance-based
heuristic, clusters are labeled based on their distance from the center of other
clusters. We use the Inter cluster distance (ICD) measurement proposed in [6]:

ICDi = 1
|C|−1

∑
j,i�=j dist(ci, cj)

The results of the experiments are shown as ROC curves by changing the count
or the distance thresholds in count-based and distance-based heuristics, respec-
tively (The varying parameter is ’nu’ for USVM). Figure 1 shows the results
of comparison between count-based and distance-based heuristics for K-means,
Y-means and ICLN when applied directly to training dataset. The results show
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Fig. 3. Comparison between techniques in indirect mode

that distance-based heuristic delivers a better average performance. For most of
the techniques (including EM, SOM and C-means), the distance-based heuristic
is a clear dominant over count-based heuristic except possibly on datasets whose
attack population is negligible (4%).

In the second set of experiments, the performance of each clustering technique
is evaluated in direct versus indirect mode. Figure 2 shows the comparative
results for K-means and Y-means. In indirect mode, the clusters were trained
using different prepared training datasets. The initial number of clusters was set
to 50 for all clustering techniques. The results show that direct application of
clustering techniques perform on the average as good as trained clusters. Due to
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(b) Direct test on Test 9604

Fig. 4. Comparison between techniques in direct mode

space limitations, only the results of two clustering techniques on Test8020 are
shown here, however, similar results were seen for other clustering techniques.

The comparative results of unsupervised techniques in indirect mode are
shown in Figure 3. The experiments include unsupervised SVM and other clus-
tering techniques. The models are trained using two instances of training datasets
and tested against two instances of test datasets. Either of the distance-based
or count-based heuristic that is superior for a technique are used in the compar-
ison. By comparing the curves, it is seen that all the techniques perform bet-
ter when trained with Train 8020 dataset except USVM and Y-means, which
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Fig. 5. Comparison on attack category detection
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perform significantly better when trained with Train 9604 dataset. For USVM,
this behavior is expected since USVM is naturally an outlier detection technique.
Obtaining similar results with Y-means can be attributed to the fact that in Y-
means clusters are refined based on outlier detection schemes. As a result, it
should deliver its best performance when abnormal data are rare in the training
dataset. All in all, K-means delivers the best performance in this experiment.
The results of experiments on Test 9604 is quite similar to those of Test 8020
though only the latter are shown here.

The clustering techniques as well as the KNN-based outlier detection techniques
are compared with each other by direct application on test datasets. The results
of these experiments are shown in Figure 4. By comparing these two figures, it is
easy to see that performance of KNN-based outlier detection techniques (i.e, κ and
γ) decreases as the population of attacks increases in the target dataset while the
clustering techniques tend to be more robust in this respect. ICLN and Y-means
delivers the best performance on Test 8020 dataset while Y-means and K-means
are superior on Test 9604 dataset. Moreover, κ performs slightly better than γ.

Figure 5 compares the performance of the clustering techniques as well as
USVM in detecting different attack categories. The models are trained with
Train 8020 and Train 9604, respectively and tested against Test 8020 dataset.
Again, the superior labeling heuristic for each technique is selected in the com-
parison. The results obviously show that all the techniques perform poorly in
detecting R2L attacks while most of them are good at detecting probe attacks.
When trained with Train 8020 dataset, K-means and SOM are dominant over
other techniques in detecting DoS attacks, while Y-means and USVM deliver best
performance when Train 9604 dataset is used for training. Moreover, USVM and
Y-means are clearly dominant in detecting U2R attacks in all experiments.

5 Concluding Remarks and Future Work

In this study, we conducted a set of blind experiments of unsupervised techniques
on KDD99 dataset. Our main goal was to analyze common practices used in the
literature in the application of unsupervised techniques for intrusion detection.
These include the heuristics used for labeling the clusters, direct or indirect
application of the techniques to target dataset, and using different distributions
of datasets for training.

Our experiments show that distance-based heuristic is on the average domi-
nant over count-based heuristic in almost all of the clustering techniques. Count-
based heuristic does not deliver satisfactory results unless (possibly) for datasets
in which attack population is negligible, while distance-based labeling is more
robust to population of attacks in the target dataset.

Although the clustering techniques are used for intrusion detection in both
direct and indirect modes, our experiments show that direct application of
clustering techniques provides a comparable performance to that of trained
clusters. Accordingly, it might be more efficient to apply the clustering tech-
niques directly to the target dataset when normal data are dominant (the tol-
erance for attack population is at least 20% as our experiments show). Applied
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in indirect mode, the clustering techniques (except Y-means) perform better
when trained with Train 8020, while USVM and Y-means perform better when
trained with Train 9604. In direct mode, the performance of KNN-based outlier
detection schemes decreases as the population of attack data increases in the
target dataset. Again, Y-means dominates other techniques in Test 9604 which
supports the outlier detection nature of this technique.

Two observations can be highlighted in terms of detecting different attack cat-
egories. First, all techniques perform poorly in detecting R2L attacks. Secondly,
USVM and Y-means are clearly superior over other techniques in detecting U2R
attacks. We need further analysis to explain this behavior.

C-means delivers the worst results in almost all the experiments. It seems that
fuzzy clustering is not suitable for distinguishing normal and abnormal data in
intrusion detection.

The results of these experiments not only provide reliable guidelines for re-
searchers and practitioners in applying unsupervised techniques to the area, but
also reveals some new avenues of research. Further research is required on ex-
ploring more intelligent labeling heuristics for labeling the clusters. It seems that
neither the count, nor the distance-based heuristic are sufficient and reliable cri-
teria for labeling the clusters. This fact was supported in our experiments in
that the overall detection rate of the clustering techniques hardly goes beyond
70%, even though the purity of clusters were satisfactory in some techniques.
It is worthwhile to take into account other properties of clusters (e.g, density)
and/or come up with more intelligent heuristics by combining the simple criteria.

Furthermore, the overall performance of unsupervised techniques might be
enhanced by combining individual techniques. These hybrid detectors should be
supported with intelligent voting policies that takes into account the strengths
and weaknesses of each technique.

The poor performance of machine learning-based techniques in detecting R2L
and U2R attacks has been reported in similar works [21]. This can be attributed
to the fact that existing features in KDD99 dataset provide no or few information
about these categories of attacks. Investigating more informative features for
R2L and U2R attacks would be beneficial to this area.
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Abstract. Elucidation of human browsing behavior in electronic spaces
has been attracting substantial attention in academic and commercial
spheres. We present a novel formal approach to human behavior analysis
in web based environments. The framework has been applied to analyz-
ing knowledge workers’ browsing behavior on a large corporate Intranet.
Analysis indicates that users form elemental and complex browsing pat-
terns and achieve their browsing objectives via few subgoals. Knowledge
workers know their targets and exhibit diminutive exploratory behavior.
Significant long tail attributes have been observed in all analyzed features.
A novel distribution that accurately models it has been introduced.

1 Introduction

”Nobody has really looked at productivity in white collar work in a scientific
way.” (Peter Drucker) [1]. Insufficient scientific evidence regarding knowledge
worker productivity, efficiency, and their adequate measurement methods has
been rising concerns in managerial circles [2]. Human dynamics [3] and behavior
in electronic spaces [4], [5] have been rapidly gaining importance in a corporate
sector. Corporations are eagerly exploiting ways to acquire and analyze large
volumes of customer behavior data—primarily for commercial benefits [6].

Human behavior in electronic environments can be analyzed from observer
studies or machine collected human–web interaction data. Observer studies are
generally time consuming and resource demanding [7]. Only limited attempts
have been made toward their automation [8]. Machine collected human–web
interaction data has generally two forms: server-side data (web logs) and client-
side data from script agents. The data is mined for user click-streams [9] and
further analyzed. Various analysis methods have been applied to this end. Empir-
ical analysis [10] provides generally rule-based results. For predictive purposes,
statistical approaches have been favoring Markov models [11]. However, higher-
order Markov models become exceedingly complex and computationally expen-
sive. Less computationally intensive cluster analysis methods [12] and adaptive
learning strategies [13] have scalability drawbacks. Mining only frequent pat-
terns reduces the computational complexity and improves the speed, however,
at the expense of substantial data loss [14]. A novel analysis framework and
methods that effectively capture dimensions of human interactions in electronic
environments are required.
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2 Approach Formulation

We introduce the basic line of inquiry together with corresponding terminol-
ogy. Definitions are accompanied by intuitive explanations that help us better
understand the concept at higher formal level.

Click-stream sequences [15] of user page transitions are divided into sessions,
and sessions are further divided into subsequences. Division of sequences into
subparts is done with respect to the user activity and inactivity. Consider the
conventional time-stamp click-stream sequence of the following form: {(pi, ti)}i,
where pi denotes the visited page URLi at the time ti. For the purpose of
analysis this sequence is converted into the form: {(pi, di)}i where di denotes a
delay between the consecutive views pi → pi+1. User browsing activity {(pi, di)}i

is divided into subelements according to the periods of inactivity di.

Definition 1 (Browsing Session, Subsequence, Train)
Let {(pi, di)}i be a sequence of pages pi with delays di between consecutive
transitions pi → pi+1.

Browsing session is a sequence B = {(pi, di)}i where each di ≤ TB. Length
of the browsing session is |B|. Browsing session is often referred to simply as a
session.

Subsequence of an individual browsing session B is a sequence S={(pi, dpi)}i

where each delay dpi ≤ TS, and {(pi, dpi)}i ⊂ B. The length of subsequence
is |S|.

A browsing session B = {(Si, dsi)}i thus consists of a train of subsequences
Si separated by inactivity delays dsi.

Sessions delineate tasks of various complexities users undertake in electronic
environments. Subsequences correspond to session subgoals; e.g. subsequence S1

is login, S2 – document download, S3 – search for internal resource, etc.
Important issue is determining the appropriate values of TB and TS that seg-

ment the user activity into sessions and subsequences. The former research [16]
indicated that student browsing sessions last on average 25.5 minutes. However,
we adopt the average maximum attention span of 1 hour as a value for TB. If
the user’s browsing activity was followed by a period of inactivity greater than
1 hour, it is considered a single session, and the following activity comprises the
next session.

Value of TS is determined dynamically and computed as an average delay
in a browsing session: TS = 1

N

∑N
i=1 di. If the delays between page views are

short, it is useful to bound the value of TS from below. This is preferable in
environments with frame-based and/or script generated pages where numerous
logs are recorded in a rapid transition. Since our situation contained both cases,
we adjusted the value of TS by bounding it from below by 30 seconds:

TS = max

(

30,
1
N

N∑

i=1

di

)

. (1)

Using these primitives we define navigation space and subspace as follows.
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Definition 2 (Navigation Space and Subspace)
Navigation space is a triplet G = (P ,B,S) where P is a set of points (e.g.
URLs), B is a set of browsing sessions, and S is a set of subsequences.
Navigation subspace of G is a space A = (D,H,K) where D ⊆ P , H ⊆ B, and
K ⊆ S; denoted as A ⊆ G.

Navigation space can be divided into subspaces based on the nature of de-
tected or defined sequences. For example, human navigation space consists of
human generated sequences, and machine navigation space may contain only
the machine generated sequences. Different spaces may have distinctly different
characteristics.

Another important aspect is to observe where the user actions are initiated
and terminated. That is, to identify the starting and ending points of subse-
quences, as well as single user actions.

Definition 3 (Starter, Attractor, Singleton)
Let G = (P ,B,S) be a navigation space and B = {(Si, dsi)}M

i , B ∈ B, be a
browsing session, and S = {(pk, dpk)}N

k , S ∈ S, be a subsequence.
Starter is the first point of an element of subsequence or session with length

greater that 1, that is, p1 ∈ P such that there exist B ∈ B or S ∈ S where
|B| > 1 or |S| > 1 and (p1, d1) ∈ B or (p1, dp1) ∈ S.

Attractor is the last point of an element of subsequence or session with
length greater that 1, that is, pN ∈ P or pM ∈ P such that there exist B ∈ B or
S ∈ S where |B| > 1 or |S| > 1 and (pM , dM ) ∈ B or (pN , dpN ) ∈ S.

Singleton is a point p ∈ P such that there exist B ∈ B or S ∈ S where
|B| = 1 or |S| = 1 and (p, d) ∈ B or (p, dp) ∈ S.

Starters refer to the starting navigation points of user actions, whereas attractors
denote the users’ targets. Singletons relate to the single user actions such as use
of hotlists (e.g. history or bookmarks) [10].

We can formulate behavioral abstractions simply as pairs of starters and at-
tractors. Then it is equally important to observe the connecting elements of
transitions from one task (or sub-task) to the other.

Definition 4 (SE Elements, Connectors)
Let B = {(Si, dsi)}i be a browsing session with consecutive subsequences Si and
Si+1, where Si = {(pik, dpik)}N

k and Si+1 = {(pi+1l, dpi+1l)}M
l .

SE element (start-end element) of a subsequence Si is a pair SEi =(pi1, piN ).
Connector of subsequences Si and Si+1 is a pair of points Ci = (piN , pi+1,1).

SE elements outline higher order abstractions of user subgoals. Knowing the
starting point, users can follow various navigational pathways to reach the tar-
get. Focusing on the starting and ending points of user actions eliminates the
variance of navigational choices. Connectors indicate the links between elemen-
tal browsing patterns. This enables us to observe formation of more complex
behavioral patterns as interconnected sequences of elemental patterns.
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3 Intranet and Data

Data used in this work was a one year period Intranet web log data of The Na-
tional Institute of Advanced Industrial Science and Technology (Table 1–left).
The majority of users are skilled knowledge workers. Intranet web portal had
load balancing architecture comprising of 6 servers providing extensive range of
web services and documents vital to the organization. Intranet services support
managerial, administration and accounting processes, research cooperation with
industry and other institutes, databases of research achievements, resource lo-
calization and search, attendance verification, and also numerous bulletin boards
and document downloads. The institution has a number of branches at various
locations throughout the country, thus certain services are decentralized. The
size of visible web space was approximately 1 GB. Invisible web size was consid-
erably larger, but difficult to estimate due to the distributed architecture and
constantly changing back-end data.

Table 1. Basic information about raw and preprocessed data used in the study

Data Volume ∼60 GB Log Records 315 005 952
Average Daily Volume ∼54 MB Clean Log Records 126 483 295
Number of Servers 6 Unique IP Addresses 22 077
Number of Log Files 6814 Unique URLs 3 015 848
Average File Size ∼9 MB Scripts 2 855 549
Time Period 3/2005 — 4/2006 HTML Documents 35 532

PDF Documents 33 305
DOC Documents 4 385
Others 87 077

Daily traffic was substantial and so was the data volume. It is important to note
that the data was incomplete. Although some days were completely represented,
every month there were missing logs from specific servers. Server side logs also
suffered data loss due to caching and proxing. However, because of the large
data volume, missing data only marginally affected the analysis. Web servers run
open source Apache server software and the web log data was in the combined
log format without referrer.

4 Data Preprocessing and Cleaning

Starting with the setup description we present the data preprocessing and initial
cleaning. Row data contained large number of task irrelevant logs. Extracted
clean data was structured, databased, and linked.

Setup. Extraction and analysis of knowledge worker navigation primitives from
Intranet web logs was performed on Linux setup with MySQL database as a data
storage engine for preprocessed and processed data. Analytic and processing
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routines were implemented in various programming languages and optimized for
high performance. Processing of large data volumes was computationally and
time demanding.

Preprocessing and Cleaning. Data fusion of web logs from 6 servers of a
load balanced Intranet architecture was performed at the preprocessing level.
Data was largely contaminated by logs from automatic monitoring software and
required filtering. During the initial filtering phase logs from software monitors,
invalid requests, web graphics, style sheets, and client-side scripts were elim-
inated. Access logs from scripts, downloadable and syndicated resources, and
documents in various formats were preserved. The information was structured
according to the originating IP address, complete URL, base URL, script pa-
rameters, date-time stamp, source identification, and basic statistics. Clean raw
data was logged into database and appropriately linked.

Approximately 40.15% of the original log records remined after initial filtering
(see Table 1–right). Major access to Intranet resources was via scripts (94.68%).
Only relatively minor portions of accessible resources were HTML documents
(1.18%), PDF documents (1.1%), DOC documents (0.15%), and others (2.89%),
such as downloadable software, updates, spreadsheets, syndicated resources, etc.
Detected IP address space (22077 unique IPs) consisted of both statically and
dynamically assigned IP addresses. Smaller portion of IP addresses were static,
and relatively uniquely associable with users.

5 Navigation Space Extraction

Complete navigation space extraction requires finding sessions and subsequences.
Sessions and subsequences were extracted from clean log records. We observed
that data contained machine generated logs. Separation of machine subspace from
the human navigation subspace was carried out during the subsequence extrac-
tion. Detected machine generated traffic was eliminated from further analysis.

Session Extraction. Preprocessed and databased Apache web logs (in com-
bined log format) did not contain referrer information. Click-stream sequences
were reconstructed by ordering logs originating from unique IP addresses ac-
cording to time-stamp information. Ordered log sequences from the specific
IP addresses were divided into the browsing sessions as described in Defini-
tion 1. Divisor between sessions was the user inactivity period dsi greater than
TBS = 1 hour.

It is noticeable that user sessions on the corporate Intranet are on average
longer (appx. 48.5 minutes) than those of students (appx. 25.5 minutes) reported
in [16]. Average number of 156 sessions per IP address, and large variation
in maximum and minimum number of sequences from distinct IP addresses,
indicate that association of particular users with distinct IP addresses is relevant
only for registered static IP addresses. Large number (3492) of single sessions
only originated from distinct IP addresses due to wide DHCP use. It is possible
to employ clustering techniques to identify reasonably diverse groups of users.
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Table 2. Observed basic session data statistics

Number of Sessions 3 454 243
Number of Unique Sessions 2 704 067
Average Number of Sessions per Day 9 464
Average Session Length 36 [URL transitions]
Average Session Duration 2 912.23 [s] (48 min 32 sec)
Average Page Transition Delay per Session 81.55 [s] (1 min 22 sec)
Average Number of Sessions per IP Address 156

Maximum 1 553
Minimum 1

Subsequence Extraction. Each detected session was analyzed for
subsequences as defined in Definition 1. Segmenting element dividing sessions
into subsequences was the delay between page transitions dpi > TS, where TS

was determined according to (1). Lower bound of 30 seconds for the separating
inactivity period dpi was proper.

Fig. 1. Histograms: a) average delay between subsequences in sessions, b) average
subsequence duration. There are noticeable spikes in chart a) around 1800 seconds
(30 minutes) and 3600 seconds (1 hour). The detailed view is displayed in subcharts.
Temporal variation of spikes corresponds to the peak average subsequence duration in
chart b). The spikes with relatively accurate delays between subsequences are due to
machine generated traffic.

It has been observed that sessions contained machine generated subsequences.
Periodic machine traffic with inactivity time less than the session separator delay
could result in long session sequences. As seen in the histogram of average delays
between subsequences (Figure 1-a), there was a disproportionally large number
of sessions with average delays between subsequences around 30 minutes and
1 hour. This is indicated by spikes in the main chart of Figure 1-a. Detailed
view (subcharts of Figure 1-a) revealed that the variation in the average delay
between subsequences is approximately ± 3 seconds. It well corresponds to the
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peak in the histogram of average subsequence duration (Figure 1-b). It is highly
unlikely that human generated traffic would produce this precision (although
certain subsequences were legitimate).

Machine generated traffic contaminates the data and should be filtered, since
we target primarily human behavior on the Intranet. We filtered two main groups
of machine generated subsequences: login subsequences and subsesequences with
delay periodicity around 30 minutes and 1 hour.

Every user is required to login into Intranet in order to access the services and
resources. Login procedure involves validation and generates several log records
with 0 delays. Records vary depending on whether the login was successful or
unsuccessful. In both cases the log records and login related subsequences can
be clearly identified and filtered.

The second group of machine generated traffic are subsequences with peri-
odicity of 30 minutes and 1 hour. Direct way of identifying these subsequences
is to search for sessions with only two subsequences having less than 1 second
(or 0 second) duration (machines can generate requests fast and local Intranet
servers are capable of responding within milliseconds) and delay dsi between
subsequences within the intervals: 1800 and 3600 ± 3 seconds. It has been discov-
ered that substantial number of such sessions contained relatively small number
(170) of unique subsequences. Furthermore, these subsequences contained only
120 unique URLs. Identified subsequences and URLs were considered to be ma-
chine generated and filtered from further analysis. Moreover, the subsequences
with SE elements containing identified URLs were also filtered.

Table 3. Observed basic subsequence data statistics

Number of Subsequences 7 335 577
Number of Valid Subsequences 3 156 310
Number of Filtered Subsequences 4 179 267
Number of Unique Subsequences 3 547 170
Number of Unique Valid Subsequences 1 644 848
Average Number of Subsequences per Session 3
Average Subsequence Length 4.52 [URL transitions]
Average Subsequence Duration 30.68 [s]
Average Delay between Subsequences 388.46 [s] (6 min 28 sec)

Filtering of detected machine generated subsequences and their URLs signif-
icantly reduced the total number of subsequences - by 56.97% (from 7335577
to 3156310), as well as the number of unique subsequences - by 46.37% (from
3547170 to 1644848). Since the login sequences were also filtered, the number
of subsequences per session decreased at least by 1. Reduction also occurred
in the session lengths due to filtering of identified invalid URLs. Filtering did
not significantly affect the duration of subsequences because the logs of ma-
chine generated subsequences occurred in rapid transitions with almost 0 dura-
tions and delays. It is noticeable that the average subsequence duration (30.68
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seconds) is approximately equal to the chosen lower bound for dsi (30 seconds).
This empirically justifies the right choice of lower bound for TS.

6 Knowledge Worker Browsing Behavior Analysis

By analyzing the navigation point characteristics (starters, attractors, and sin-
gletons) together with behavioral abstractions (SE elements and connectors) we
infer several relevant observations. Exploratory analysis demonstrates usefulness
of the approach in elucidating human browsing behavior in electronic spaces.

6.1 Starter, Attractor, and Singleton Analysis

Navigation point characteristics highlight initial (starters) and terminal targets
(attractors) of knowledge worker activities, and also single-action behaviors (sin-
gletons). Starters, attractors, and singletons were extracted from subsequences.

Knowledge workers utilized small spectrum of starting navigation points and
targeted relatively small number of resources during their browsing. The set of
starters, i.e. the initial navigation points of knowledge workers’ (sub-)goals, was
approximately 3.84% of total navigation points. Although the set of unique at-
tractors, i.e. (sub-)goal targets, was approximately three times higher than the
set of initial navigation points, it is still relatively minor portion (appx. 9.55%
of unique URLs). Knowledge workers aimed at relatively few resources.

Table 4. Statistics for starters, attractors, and singletons

Starters Attractors Singletons

Total 7 335 577 7 335 577 1 326 954
Valid 2 392 541 2 392 541 763 769
Filtered 4 943 936 4 943 936 563 185
Unique 187 452 1 540 093 58 036
Unique Valid 115 770 288 075 57 894

Few resources were perceived of value to be bookmarked. Number of unique
single user actions was minuscule. Single actions, such as use of hotlists [10],
followed by delays greater than 1 hour are represented by singletons. Unique
singletons accounted for only 1.92% of navigation points. If only small number
of starters and/or attractors was perceived useful, there is a possibility that they
were bookmarked and accessed directly in the following browsing experiences.

Knowledge workers had focused interests and diminutive exploratory behav-
ior. Narrow spectrum of starters, attractors, and singletons was frequently used.
Histograms and quantile characteristics of starters, attractors, and singletons
(see Figure 2) indicate that higher frequency of occurrences is concentrated to
relatively small number of elements. Approximately ten starters and singletons,
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Fig. 2. Histograms and quantiles: a) starters, b) attractors, and c) singletons. Right
y-axis contains a quantile scale. X-axis is in a logarithmic scale.

and fifty attractors were very frequent. About one hundred starters and sin-
gletons, and one thousand attractors were relatively frequent. Quantile analysis
(Figure 2) reveals that ten starters (appx. 0.0086% of unique valid starters) and
singletons (appx. 0.017% of unique valid singletons), and fifty frequent attrac-
tors (appx. 0.017% of unique valid attractors) accounted for about 20% of total
occurrences. One hundred starters (appx. 0.086% of unique valid starters) and
one thousand attractors (appx. 0.35% of unique valid attractors) constituted
about 45% and 48% of total occurrences, respectively. Analogously, one hundred
twenty singletons (appx. 0.21% of unique valid singletons) compounded to about
37% of total occurences.

6.2 SE Element and Connector Analysis

These components serve as higher order abstractions of knowledge worker behav-
ior. SE elements represent starting and ending points of subsequences, or corre-
sponding elemental patterns. Connectors delineate transitions between pattern
primitives, and thus formation of more complex patterns.

Extraction of SE elements of subsequences and connectors between subse-
quences is relatively straightforward. SE elements and connectors also under-
gone filtering. If invalid URLs were present in at least one element of a pair, the
respective SE element and/or connector was marked as invalid.

There is a noticeable reduction of SE elements and connectors due to the
filtering. Number of SE elements decreased by 56.97% (from 7335577 to 3156310)
and connectors by 40.63% (from 3952429 to 2346438). Similarly, reduction is
evident in the number of unique SE elements (30.37%: from 1540093 to 1072340)
and connectors (21.34%: from 1142700 to 898896).

Frequent users knew their targets and navigational paths to reach them. Du-
ration of subsequences in sessions was short - with peak in the interval of two
to five seconds (see histogram in Figure 1-b). During such short period users
were able to navigate through four to five pages on average (see Table 3) in
order to reach the target. Since there was approximately one second per page
transition, there was virtually no time to thoroughly scan the page. Therefore
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Table 5. Statistics for SE Elements and connectors

SE Elements Connectors

Total 7 335 577 3 952 429
Valid 2 392 541 2 346 438
Filtered 4 943 936 1 605 991
Unique 1 540 093 1 142 700
Unique Valid 1 072 340 898 896

Fig. 3. Histograms and quantiles: a) SE elements, and b) connectors. Right y-axis
contains a quantile scale. X-axis is in a logarithmic scale.

it is reasonable to assume knowledge workers knew where the next navigational
point was located on the given page and proceed directly there. There was little
exploratory behavior.

Session objective was accomplished via few subgoals. Average session (after fil-
tering) contained three subsequences (see Table 3) where each subsequence can
be considered a separate action and/or subgoal. Average knowledge worker spent
about 30 seconds to reach the subgoal/resource, and additional 6.5 minutes be-
fore taking another action. Considering the number of unique valid subsequences
(about 1.6 million) the complete population of users had relatively wide spec-
trum of browsing patterns. However, the narrow explored Intranet space of a
single user suggests large diversification.

Small number of SE elements and connectors was frequently repetitive. His-
togram and quantile charts in Figure 3 depict re-occurrence of SE elements
and connectors. Approximately thirty SE elements and twenty connectors were
very frequent (refer to left histogram curves of Figure 3). These thirty SE el-
ements (appx. 0.0028% of unique valid SE elements) and twenty connectors
(appx. 0.0022% of unique valid connectors) accounted for about 20% of total
observations (see right quantile curves of Figure 3).
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Knowledge workers formed frequent elemental and complex browsing patterns.
Strong repetition of SE elements indicates that knowledge workers often ini-
tiated their browsing actions from the same navigation point and targeted the
same resource. This underlines the elemental pattern formation. Relatively small
number of elemental browsing patterns was frequently repeated. Re-occurrence
of connectors suggests that after completing a browsing sub-task, by reaching
the desired target, they proceeded to the frequent starting point of following
sub-task(s). Frequently repeating elemental patterns interlinked with frequent
transitions to other elemental sub-task highlights formation of more complex
browsing patterns. Although the number of highly repetitive SE elements and
connectors was small, knowledge workers exposed a spectrum of behavioral di-
versity in elemental as well as more complex behavioral patterns.

Formation of behavioral browsing patterns positively correlates with short
peak average duration of subsequences (3 seconds). Knowledge workers with
formed browsing patterns exhibited relatively fast page transitions. They also
displayed shorter delays between subsequences.

7 Long Tails of Knowledge Worker Browsing Behavior

The term long tail colloquially refers to a feature of statistical distributions where
the head contains a small number of high frequency elements that gradually
progresses to the long tail of low frequency elements. The mass of a long tail can
substantially outweigh the mass of a head. Numerous aspects of human dynamics
have been observed to display such characteristics [3].

The former analysis indicates that the long tail characteristics are evident
in knowledge worker browsing behavior. All histograms of starters, attractors,
and singletons show long tails. The elemental behavioral abstractions, that is
SE elements, and their connectors, throughout which users form more complex
behavioral patterns, equally display long tails. Furthermore, even the complete
sessions have this attribute. (Note that the histogram charts have x-axis in a
logarithmic scale. It allows us to observe the details of heads of distributions.)

If the long tails are the common denominator of human browsing behavior in
electronic spaces, what is the underlying functional law that accurately captures
it? Conventionally, the heavy tails in human dynamics are modeled by Pareto
distribution [17]. However, results of our analysis suggest better and more accu-
rate novel distribution.

The novel distribution that efficiently captures the long tail features of a hu-
man browsing behavior in web environments is derived from analysis of log-log
plots. Figure 4-a shows a log-log plot of attractor histogram. It is evident that the
curve has a quadratic shape. Plots of other histograms have the same quadratic
appearance. Nonlinearity is the reason why Pareto distribution (and other well
known long tail distributions) is unsuitable since it only captures linear de-
pendency. Models employing conventional distributions may display systematic
deviations.
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Fig. 4. Long tail analysis in attractor histogram: a) log-log plot, b) normal plot
with x-axis in a logarithmic scale. Log-log plot clearly shows inverted quadratic
characteristics. The distribution is well approximated by the LPE p.d.f. function
f(x) = exp

[
−0.056 log(x)2 − 0.26 log(x) + 10.15

]
.

Expressing the quadratic characteristics of a log-log plot in an analytic form
leads to the formula:

log(y) =
2∑

i=0

θi log(x)i.

Eliminating the logarithm on the left-hand-side of the equation, and presenting
the generalized polynomial form results in the following expression:

f(x; θ) = exp

[
n∑

i=0

θi log(x)i

]

. (2)

Naturally, even more generalized form can be obtained by not limiting i to non-
negative integers, but considering it to be a real, i ∈ R.

The derived log-polynomial-exponential (LPE) function (2) appropriately rep-
resents the observed long tail dynamics of user browsing behavior. Although the
general n-th order polynomial can be considered, the second order form was suf-
ficient for modeling our observations (see Figure 4-b). When using the second
order polynomial form, the common concave shape depicted in Figure 4-a sug-
gests that the quadratic term will always be negative, θ2 ∈ R−, and the offset
at the origin always positive, θ0 ∈ R+. One can also notice that LPE p.d.f. (2)
is base independent. The estimation of parameters θ can be done by applying
various statistical inference techniques.

Long tail characteristics of human browsing behavior in electronic spaces
present both advantages and challenges. When the high (relative) frequency char-
acteristics are important, the heads of long tail distributions may be considered
beneficial, since they contain relatively small number of high frequency elements.
The conventional clustering and classification methods that are essentially based
on segmenting the observation domains with respect to the high frequency ele-
ments may be well applicable. Consider for example the application areas such as
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human-computer interfaces, and recommender systems. The conventional meth-
ods may be well suited for one-fit-all system designs, where the developers are
often faced with lack of computing power, unavailability of more personalized
information, and other limitations.

When the domain coverage is of importance, the challenging aspects of the
long tail characteristics are the long tails themselves. The effective domain cov-
erage by features extractable from a head may be substantially smaller than the
domain coverage by a spectrum of features extractable from a long tail. Simply
put, the cumulative power of a wide range of infrequent features may be higher
than that of the very frequent ones. Observe for instance the quantile character-
istics of SE elements and connectors. The heads cover approximately <30% of
the domain, whereas the tails cover remaining >70%. For clustering and/or clas-
sification methods to reach significant populations in long tails may demand fine
grained segmentation with respect to large number of attributes. This challenge
calls for novel approaches, methods, and algorithms.

Significant finding was that the underlying long tail characteristics generally
hold for large user populations having mixed behavioral attributes. They may
no longer hold for behaviorally similar micro-groups of users. In other words,
the massive user populations may exhibit typical long tail features, but the
particular user group may have completely different characteristics. This has
also been observed in the session dynamics.

To illustrate this finding we selected a frequent singleton that clearly corre-
sponded to a single action associable with specific category of knowledge workers.
This identified a distinct class of knowledge workers; denoted as user class A.
When projecting user class A into IP address space, it has been detected that
382 unique IP addresses displayed the particular action. Additional browsing
actions were shared among these users.

It can be seen from Figure 5-a that the session–IP dynamics for the complete
user population have typical long tail characteristics. The user class A exhibited

Fig. 5. Histogram and quantile analysis depicting the number of sessions with respect
to distinct IPs: a) complete knowledge worker population, b) user class A. Right y-axis
contains a quantile scale. X-axis is in a logarithmic scale.
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noticeably different sessions–IP dynamics (see Figure 5-b). Rather than the long
tail distribution, the user class A has a roughly Poisson shaped distribution
(account for logarithmic x-axis). Analogously, quantile characteristics are signif-
icantly different.

Models suitable for large user populations may be unfit for focused user groups.
Presented LPE distribution (2) may accurately model the browsing attributes of
masses, however, may no longer be proper for behaviorally narrow user clusters.
Implications of this important finding extend to numerous domains of web re-
search, engineering, metrics, and design of applications and services. Researchers
and practitioners often utilize the observations and models derived from massive
user populations for design and development of personalized services, applica-
tions, and interfaces.

Personalization requires different approach. Globally revealed attributes, al-
though valid, are reasonably applicable only to one-fit-all schemes. As the gran-
ularity of user populations increases one may experience a gradual divergence
from generally observed distribution characteristics. The characteristics of nar-
row user groups may significantly deviate from large scale observations. It is
therefore advisable to re-analyze micro-groups.

8 Conclusions and Future Work

A novel formal approach to analyzing human browsing behavior in electronic
spaces based on navigation space construct has been introduced. The framework
is not only applicable to analyzing and modeling human browsing behavior but
also to engineering behaviorally centered algorithms.

The presented framework has been applied to elucidation of behavioral charac-
teristics of knowledge workers on a large corporate Intranet. Exploratory analysis
revealed several important behavioral aspects. Knowledge workers had generally
well defined browsing targets and knew how to reach them. General browsing
strategy of knowledge workers was remembering the starting point and recalling
the navigational path to the target. The browsing objectives were accomplished
via few subgoals. Knowledge workers had a significant tendency to form elemen-
tal and complex browsing patterns that were often reiterated. They had focused
interests and effectively explored only diminutive range of resources.

All analyzed elements of knowledge worker browsing behavior exposed evident
long tail characteristics. A novel distribution that accurately models it has been
derived. Long tail aspects of human browsing behavior present new challenges
and opportunities for development of novel behaviorally centered approaches
and algorithms.

Focus of the future investigation is on further elucidation of the long tail
characteristics in connection with content based analysis. Efficient utilization
of long tails opens potential for design and development of the next generation
personalization systems and tools.



Long Tail Attributes of Knowledge Worker Intranet Interactions 433

Acknowledgment

The authors would like to thank Tsukuba Advanced Computing Center (TACC)
for providing raw web log data.

References

1. Schlender, B.: Peter Drucker sets us straight. Fortune (December 29, 2003)
http://www.fortune.com

2. Davenport, T.H.: Thinking for a Living - How to Get Better Performance and
Results from Knowledge Workers. Harvard Business School Press, Boston (2005)

3. Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Na-
ture 435, 207–211 (2005)

4. Park, Y.-H., Fader, P.S.: Modeling browsing behavior at multiple websites. Mar-
keting Science 23, 280–303 (2004)

5. Géczy, P., Akaho, S., Izumi, N., Hasida, K.: Navigation space formalism and ex-
ploration of knowledge worker behavior. In: Kotsis, G., Taniar, D., Pardede, E.,
Ibrahim, I.K. (eds.) Information Integration and Web-based Applications and Ser-
vices, pp. 163–172. OCG, Vienna (2006)

6. Moe, W.W.: Buying, searching, or browsing: Differentiating between online shop-
pers using in-store navigational clickstream. Journal of Consumer Psychology 13,
29–39 (2003)

7. Benbunan-Fich, R.: Using protocol analysis to evaluate the usability of a commer-
cial web site. Information and Management 39, 151–163 (2001)

8. Norman, K.L., Panizzi, E.: Levels of automation and user participation in usability
testing. Interacting with Computers 18, 246–264 (2006)

9. Bucklin, R.E., Sismeiro, C.: A model of web site browsing behavior estimated on
clickstream data. Journal of Marketing Research 40, 249–267 (2003)

10. Thakor, M.V., Borsuk, W., Kalamas, M.: Hotlists and web browsing behavior–an
empirical investigation. Journal of Business Research 57, 776–786 (2004)

11. Deshpande, M., Karypis, G.: Selective markov models for predicting web page
accesses. ACM Transactions on Internet Technology 4, 163–184 (2004)

12. Wu, H., Gordon, M., DeMaagd, K., Fan, W.: Mining web navigaitons for intelli-
gence. Decision Support Systems 41, 574–591 (2006)

13. Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. User
Modeling and User-Adapted Interaction 11, 5–18 (2001)

14. Jozefowska, J., Lawrynowicz, A., Lukaszewski, T.: Faster frequent pattern min-
ing from the semantic web. Intelligent Information Processing and Web Mining,
Advances in Soft Computing, pp. 121–130 (2006)

15. Géczy, P., Akaho, S., Izumi, N., Hasida, K.: Extraction and analysis of knowl-
edge worker activities on intranet. In: Reimer, U., Karagiannis, D. (eds.) Practical
Aspects of Knowledge Management, pp. 73–85. Springer, Heidelberg (2006)

16. Catledge, L., Pitkow, J.: Characterizing browsing strategies in the world wide web.
Computer Networks and ISDN Systems 27, 1065–1073 (1995)

17. Vazquez, A., Oliveira, J.G., Dezso, Z., Goh, K.-I., Kondor, I., Barabasi, A.-L.:
Modeling bursts and heavy tails in human dynamics. Physical Review E73(19),
36127 (2006)

http://www.fortune.com


A Case-Based Approach to

Anomaly Intrusion Detection

Alessandro Micarelli and Giuseppe Sansonetti

Department of Computer Science and Automation
Artificial Intelligence Laboratory

Roma Tre University
Via della Vasca Navale, 79, 00146 Rome, Italy

{micarel,gsansone}@dia.uniroma3.it

Abstract. The architecture herein advanced finds its rationale in the
visual interpretation of data obtained from monitoring computers and
computer networks with the objective of detecting security violations.
This new outlook on the problem may offer new and unprecedented tech-
niques for intrusion detection which take advantage of algorithmic tools
drawn from the realm of image processing and computer vision. In the
system we propose, the normal interaction between users and network
configuration is represented in the form of snapshots that refer to a lim-
ited number of attack-free instances of different applications. Based on
the representations generated in this way, a library is built which is man-
aged according to a case-based approach. The comparison between the
query snapshot and those recorded in the system database is performed
by computing the Earth Mover’s Distance between the corresponding
feature distributions obtained through cluster analysis.

1 Introduction

Intrusion Detection Systems (IDSs) have the objective of detecting attacks la-
unched against computers or computer networks. Their classification is usually
based on the audit source location and on the general detection strategy. With
respect to the first criterion, IDSs are divided into host-based techniques if the
input information they analyze consists of audit trails and/or system logs and
network-based techniques if it consists of network packets. According to the sec-
ond criterion, IDSs are classified as misuse-based or anomaly-based techniques.
The former use attack descriptions (signatures) in order to analyze the sequence
of events obtained from monitoring a given network and single computers con-
nected to it. If a known attack pattern is detected, an alarm is triggered. These
systems are usually efficient and generate a limited number of false detections,
called false positives. The main drawback of these systems lies in their inability to
detect unknown attacks, i.e., attacks for which there exists no prior information
in the system database.

The anomaly-based IDSs follow an approach which is complementary to the
previous one. They are based on models of the normal behavior (profiles) of users
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and applications in order to detect anomalous activities which might provide
an indication of an internal intrusion, launched by users attempting to abuse of
their privileges, or of an external intrusion. The main advantage of this approach
is the fact that it is capable of identifying unknown attacks. This advantage is
however obtained at the price of a large number of false positives. Axelsson refers
to it as “the limiting factor for the performance of an anomaly-based IDS” [2]. In
addition to this, recent work [33,37] has shown that these systems are vulnerable
to mimicry attacks, i.e., attacks which aim at imitating normal activity, thereby
avoiding identification by the system.

Nonetheless, we believe that the benefits offered by anomaly-based systems are
such that a thorough critical analysis of the limits of the approaches advanced
so far is needed in order to come up with adequate solutions. In particular,
excluding some notable exceptions, most anomaly-based systems share these
common characteristics:

1. They are based on a single feature, i.e., they usually consider a single
characteristic, based on which they assess the normality of a generic user-
application interaction;

2. They have only one input since they examine only one data typology, relative
either to the network or to a generic host and they do not propose the analysis
of combined data;

3. The classification procedure, i.e., the procedure whereby a generic event is
considered part of an ongoing attack or not, once the relative anomaly score
is known is trivial.

Concerning the first characteristic, most techniques used to date do not make
appropriate tools available to take into account more than one element during the
evaluation phase. It is therefore worthwhile to explore new techniques, inspired
by different principles.

The rest of the paper is organized as follows. Section 2 outlines related work.
Section 3 presents our intrusion detection system, in particular the case repre-
sentation and the dissimilarity metric. Section 4 describes the experiments that
were performed to evaluate the accuracy of the case-based classifier. Section 5
contains the conclusions and Section 6 discusses future directions of our research.

2 Related Work

In the field of Intrusion Detection, in addition to the traditional techniques used
to date, various alternative solutions have recently been advanced which use,
among others, haptic technologies [13], capable of generating tactile sensations,
and sonification techniques [34], which make use of non-speech audio to convey
information. Visualization techniques have also been proposed which operate the
conversion from textual datasets to digital images [7,23,20]. There exist many
advantages associated with this conversion. In particular, it has been observed
that, from a physiological viewpoint, the interpretation of graphical images is
a parallel process and, as such, it is much more efficient than reading textual
information, which is an intrinsically serial process [22].
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Fig. 1. The anomaly-detection system

Another major advantage is that a single image can convey several pieces of in-
formation simultaneously in a more structured and compact form than text [10].
There have been several contributions in the field of network-based visualization
techniques, mainly aimed at representing relative performances and bandwidth
usage in a graphical form [5,21].

Less attention has instead been devoted to Intrusion Detection. Among the
early contributions, tools have been advanced to estimate the level of attack
which a system being monitored undergoes [31,19]. Despite their usefulness,
these tools only allow one to detect attacks which are already in progress, but
they do not provide any proactive measure.

More recently, visual user interfaces have been devised which assist in the
interpretation of data streams produced by IDSs [9,20,27,32]. If, on the one
hand, these systems provide an important contribution, on the other hand, they
can make the human interpretation of data easier but they do not replace it
altogether.

To the best of our knowledge, there has been so far no contribution in au-
tomatic intrusion detection based on Image Processing and Computer Vision
techniques. However, we believe that these fields have made an outstanding
progress in providing useful tools in non-traditional application areas for these
disciplines such as Intrusion Detection [12,30,17].

Much headway has been made since February 1992 when the National Science
Foundation organized a workshop on Visual Information Management Systems
in Redwood, California. The objective of this event was the identification of
topic areas where to focus research aimed at designing and testing effective vi-
sual information management systems [24]. Such an interest was captured by
the possibility to access large image databases where traditional query meth-
ods such as keywords and annotations cannot be used [6]. Content-Based Image
Retrieval (CBIR) systems are nowadays largely in use. They exploit color, tex-
ture, shape information and spatial relations to represent and retrieve informa-
tion [35]. Their large number and the excellent performances they can guarantee
have inspired us to explore the use of such techniques in the arena of Intrusion
Detection.
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Concerning the use of Machine Learning techniques, several IDSs have re-
sorted to them to improve their performance [18,8,3]. These systems can be
grouped in two families: rule-based and model-based techniques. Even though
these systems have been proven to be useful, they however suffer from the typi-
cal drawbacks of this kind of expert systems, i.e., difficulties in the acquisition
and representation of new knowledge.

Instead, Case-Based Reasoning (CBR) is a problem-solving paradigm which,
rather than relying exclusively on general knowledge of the domain of interest or
building associations through generalized relationships among problem descrip-
tors and conclusions, it is capable of exploiting specific knowledge derived from
situations (cases) already experienced and solved in the past [1].

In [14,11] a case-based reasoner (AUTOGUARD) for intrusion detection is
presented. In AUTOGUARD, a translator model converts the low-level audit
trail into high-level class representation of events. This information is recorded
in the system as a collection of cases. In order to evaluate the similarity between
the new case and every old case archived in the system library, the authors
propose a fuzzy logic based approach. However, it is not clear if the design has
been implemented altogether.

3 System Design

A block diagram representation of the system we have designed and implemented
is shown in Figure 1. The input parameters are represented by the data obtained
from monitoring computers connected to the network whereas the output pa-
rameter is the relative anomaly score. This value is given by the smallest value
of dissimilarity obtained by comparing the input case with those stored in the
database. This database is managed, queried, and updated according to modal-
ities typical of the CBR approach.

It should be noted that the phase of relevance feedback is fundamental to keep
the case record updated. In order for an input representation to be useful and,
therefore, stored to optimize the system performance in case similar situations
are encountered again, two requirements are necessary:

1. The environment (a term which also refers to human supervision, e.g., the
system administrator) has to confirm the system indications;

2. The input representation has to convey meaningful information, i.e., in the
database, there is no case capable of representing effectively the class the
input snapshot belongs to.

Concerning the second objective, it is achieved using a second similarity thresh-
old: in addition to an upper threshold (called reliability threshold) beyond which
we can infer that the behavior being monitored is symptomatic of an attack un-
derway, we have considered a lower threshold (called identity threshold) below
which the input case is not kept. In other words, the input case is added to the
knowledge base of the system, thereby assuming the characteristic of a profile,
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when its dissimilarity value with respect to all other cases archived in the library
and relative to the same application is comprised between the two thresholds.
This ensures that the cases, which are progressively added to the library, effec-
tively reproduce a behavior not yet represented in the database. Therefore, they
have to be recorded with the goal of optimizing the system performance in case
a similar situation is encountered.

The need for carefully choosing the cases to keep stems from the need for
optimizing the system resources, i.e., memory support and processing time. Not
only do these problems affect the system architecture herein proposed, but they
also concern any case-based system. For this reason, they have been the object
of research in the Artificial Intelligence (AI) community. There are several con-
tributions suggesting memory models alternative to the simple flat memory. The
interested reader is referred, for instance, to [25,38].

It should be noted that the domain expert possibility to intervene in the
decision task is possible not only in the initial training phase of the system, but
also during the verification phase for the classification response. The system is
actually capable of acquiring knowledge also during its normal operation. The
ease and quickness of the learning phase represent in fact some of the strong
features of our case-based system.

In the following sections, we will analyze the key components of a typical case-
based expert system, i.e., the different case representations and the associated
(dis)similarity metric.

3.1 Case Representation

The fundamental assumption of the proposed architecture is the following: in
order for a program to effectively damage the system being monitored, it has to
interact with the operating system through system calls.

Various host-based approaches to anomaly detection have been proposed
which build profiles from the sequences of system calls [16,36]. Specifically, these
systems are based on models of the system call sequences generated by the appli-
cations during the normal operation of the system. In the detection phase, every
sequence being monitored which is not compliant with the profiles previously
recorded is deemed a part of an attack. Later work has, however, shown that it
is possible for the intruder to avoid this kind of detection [33,37].

An effective solution thus advocates the exploitation of additional information
drawn from the audit files. In [26], the authors observe that the output param-
eters and the arguments of the system calls can play an important role in the
intrusion detection process. Based on these considerations, we have decided to
consider this information in our representation. Concerning the output parame-
ters, namely the return value and the error status, their use is straightforward
since they are already available in a numeric format.

The issue is more complicated with the system call arguments. These argu-
ments can be divided into four categories: file name, execution parameter, user
ID, and flag [26]. The first two are of string type, the other of integer type.
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Fig. 2. Application audit trail

In this preliminary version of our system, we have considered only the string
type, for which it is possible to consider three models, namely, the length, the
character distribution and the grammar inference. The length and character
distribution models can be applied straightforwardly, since, with reference to
the second, we are only interested in the profile generated by the frequency of
occurrence of the characters independent of their type.

Concerning the grammar inference, i.e., the inference of the argument gram-
mar, two processing steps are necessary. In the first, each character is replaced
by the token corresponding to its class; in the second, the possible repetitions of
elements belonging to the same class are merged [26].

Regarding the classes, we have considered three main groups of characters,
namely lowercase letters, uppercase letters, and digits. Characters which do
not belong to any of these classes are considered to belong to new classes. A
different numeric identifier is associated with each class. For instance, assuming
the following class-identifier association:

N1 : lowercase letter
N2 : uppercase letter
N3 : digit

N4 : slash

. . . : . . .

the string /etc/usr/bin is represented in terms of the these ten features:

N4, N1, N4, N1, N4, N1, 0, 0, 0, 0.

The input to the detection process is an ordered stream X = {x1, x2, · · ·} of
system call invocations representing the generic instance of an application. In
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Fig. 3. Application snapshot

our system, based on the previous considerations, every system call invocation
x ∈ X is represented by means of the following features

< fx
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where

fx
1 : system call class
fx
2 : return value
fx
3 : error status
fx
4 : argument length

fx
5 , · · · , fx

14 : argument character distribution
fx
15, · · · , fx

24 : argument grammar inference

In particular, we have monitored the following six system calls: execve(),
chmod(), chown(), exit(), open(), setuid(), since these are the only ones
deemed potentially dangerous. In [4], Axelsson points out that “this logging
method consumes as little system resources as comparable methods, while still
being more effective.”

In order to spot the sequence of system calls within an audit trail of a generic
application, it is sufficient to find the audit record representing the execve()
system call in which the path name of the application of interest appears and
to record the process ID assigned to the process by the operating system. The
system calls to represent are all those which appear one after the other up to
the record relative to the exit() command terminating the process having the
ID under consideration. From the whole sequence of system calls we have repre-
sented only the six described above. For these audit events we have converted in
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numeric features only the pieces of information relative to the output parameters
(second and third columns) and to the arguments (remaining columns).

Based on these considerations, for instance, the instance of the ps application
comprised of the 43 system calls shown in Fig. 2, is associated with an m ×
n matrix of features where m is the number of system calls of the following
types execve(), chmod(), chown(), exit(), open(), setuid() among the
overall 43, 10 in this case, whereas n is fixed and equal to 24, i.e., to the number
of attributes which we have decided to consider and whose corresponding values
constitute the matrix entries.

Fig. 3 shows the representation obtained with Matlab by interpreting each
matrix entry as an index in the RGB color space. We have thus obtained a
snapshot representing the temporal behavior of the ps application to monitor;
this can then be compared against the profiles relative to the ps application
stored in the system.

Cluster Analysis. In order to compare system call sequences which may be
rather different in terms of their structure and of their number, a cluster analysis
is needed. In particular, we have used Hierarchical Clustering with the Jaccard
Distance in order to calculate the distance between every pair of objects. This
distance is defined as one minus the Jaccard coefficient, that is the percentage of
nonzero coordinates that differ from each other. Given an m× n feature matrix
X representing the generic instance of an application and made up of m 1 × n
row vectors x1, x2, ..., xm, representing the relative system calls, the Jaccard
distance between the row vectors xr e xs has the following expression:

drs =
# [(xrj �= xsj) ∧ ((xrj �= 0) ∨ (xsj �= 0))]

# [(xrj �= 0) ∨ (xsj �= 0)]
(1)

where # is the cardinality.
Then we have set an inconsistency coefficient threshold to divide the objects

in the hierarchical tree into clusters. This coefficient compares the height of a
link in a cluster hierarchy with the average height of neighboring links. It is
thus possible to identify the natural divisions in the dataset, but this involves a
variable number of clusters for every instance of an application. Every instance of
an application is represented by a set of a different number of clusters where each
cluster is represented by the coordinates of its centroid and by a weight that, in
the preliminary version of our system, is equal to the fraction of the distribution
that belongs to that cluster (the procedure for assigning appropriate weights to
the clusters will be one of the objectives of our future work). The information
obtained in this way represents a case which is structured as a record comprising
the following three fields:

– The first field is of string type and contains the name of the application to
which it refers; it is obtained from the path of the relative execve system
call;
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– The second field is represented by an array of N records (where N is the
number of clusters, a function of the threshold value for the inconsistency
coefficient) having 24 fields of type double, which contain the values of the
attributes represented and constitute the coordinates of the relative centroid;

– The third field is represented by an array of N values of type double, each
expressing the weight of the corresponding cluster.

3.2 Dissimilarity Metric

Once the representation of an application instance has been generated according
to the modalities discussed above, an appropriate dissimilarity metric has to be
determined to compare the input case with those contained in the database.

Recently, the Earth Mover’s Distance (EMD) [28] has been proposed to eval-
uate distribution dissimilarities. The EMD is based on the minimum cost asso-
ciated with the transformation of one distribution into the other. In the case
of Content-Based Image Retrieval, it has been proven to be more robust than
the histogram-based techniques, since it is able to handle also representations
with variable length. When used to compare distributions with the same overall
mass, it can be readily shown that it is a real metric [29], which allows the use
of more efficient data structures and query algorithms.

The EMD enables us to evaluate the dissimilarity between two multi-dimen-
sional distributions. In our architecture, the two distributions are represented by
two sets of weighted clusters that capture them. The clusters of any distribution
can be in any number and the sum of their weights can be different than the
sum of weights of the other distribution. This is the reason why a smaller sum
appears at the denominator of the expression of the EMD. In order to calculate
the EMD in some feature space, a distance measure (called ground distance)
between single features must be defined.

The computation of the EMD value can be performed by solving the following
linear programming problem: let X denote the distribution of the input instance
of an application with m clusters,

X = {(x1, wx1) , (x2, wx2) , · · · , (xm, wxm)} (2)

where xi represents the generic cluster and wxi the relative weight, and let Y
denote the distribution of the generic instance of the same application in the
archive of cases with n clusters

Y = {(y1, wy1) , (y2, wy2) , · · · , (yn, wyn)} (3)

Let D = [dij ] denote the ground distance matrix, dij being the ground distance
between clusters xi and yj . The objective is to calculate the value of the flow
F = [fij ] that minimizes the overall cost

WORK (X,Y, F ) =
m∑

i=1

n∑

j=1

fijdij (4)
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subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n (5)

n∑

j=1

fij ≤ wxi 1 ≤ i ≤ m (6)

m∑

i=1

fij ≤ wyj 1 ≤ j ≤ n (7)

m∑

i=1

n∑

j=1

fij = min

⎛

⎝
m∑

i=1

wxi ,
n∑

j=1

wyj

⎞

⎠ (8)

Once we have calculated the value of the flow that solves the above equations,
the EMD has the following expression

EMD(X,Y ) =

∑m
i=1

∑n
j=1 fijdij

∑m
i=1

∑n
j=1 fij

(9)

4 Empirical Evaluation

In order to evaluate the accuracy of our case-based IDS, we performed experi-
mental runs divided in a first training phase and in a second testing phase. During
the training phase, a database of instances of every application was built, which
represented normal behavior. The testing phase then ensued.

For the experiments we used the 1999 MIT Lincoln Lab Intrusion Detection
Evaluation Data [15]. In particular, we employed data of two attack-free weeks
(First Week and Third Week) to train the system and data of two other weeks
(Fourth Week and Fifth Week) to test the ability of the proposed architecture to
correctly classify applications with attacks and applications associated with the
users’ normal behavior. For some of the attacks in the evaluation data there is no
evidence in the Solaris Basic Security Module (BSM) log, so we were not inter-
ested in them. Among the visible attacks in the BSM audit trail some are policy
violations, in which the intruder tried to exploit possible system configuration
made by the administrator. We did not try to detect this class of attacks with
our system but we plan on performing this test in the future work. In particular,
we were interested in detecting attacks based on buffer overflow vulnerabilities.

In our simulations, a value of 0.9 was chosen for the threshold of the inconsis-
tency coefficient. As a distance for clustering, we have used the Jaccard distance
whereas for the computation of the EMD we have chosen the Euclidean distance
as the ground distance.

In particular, we have carried out two different experimental runs. In the
first experiment we stored in the library case all the 117 instances of eject,
fdformat, ffbconfig and ps applications encountered in the training phase.
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Table 1. Experimental Results

Total With attack Identified False Alarms

eject 9 3 3 0

fdformat 9 6 6 0

ffbconfig 2 2 2 0

ps 315 14 14 0

335 25 25 0

We have considered these four applications since these are the only ones subject
to attack in the Lincoln Laboratory database. We have then tested the system
by using a value of 5 for the reliabilty threshold: the input application has been
compared with all the instances archived in the library and relative to the same
application. If the minimum value obtained was lower than the threshold, the
application was labeled attack-free, otherwise it was classified as containing an
attack.

In the second experiment we started with an initially empty database. Ev-
ery training input application was analyzed through hierarchical clustering and
compared to all existing entries in the case memory. If a distribution was found
in the database that was similar enough, i.e., below the identity threshold set to
0.5, according the EMD similarity metric, this new case was discarded, because it
was already adequately represented in the database. Otherwise, the distribution
(clusters with their weights) that corresponded to the new input was included
into the database. After the training phase, the library contained only 19 cases.
A testing phase was then carried out by choosing the same parameters as those
of the previous session.

The results obtained after the two experimental sessions are collected in
Table 1. The fact that we have obtained the same values after the two test-
ing runs confirms that recording only one case for each typology of situation
encountered in the training phase, with the objective of improving the computa-
tional efficiency of the system, does not have any effect altogether on the system
performance in terms of classification.

Concerning the experimental results, we did not obtain any false positives by
testing the system with 335 instances of input applications and all 25 applications
containing attacks have been correctly identified.

5 Conclusions

In this contribution, we have presented a case-based anomaly detection system
which was inspired by the interpretation in the form of snapshots of system call
sequences obtained from the log of the C2 BSM of a Solaris workstation and
relative to different instances of applications. This allowed us to resort to Im-
age Processing and Computer Vision techniques, in particular to methodologies
drawn from Content-Based Image Retrieval for the implementation of our sys-
tem. These techniques, together with a CBR approach in the management of the
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knowledge base and with a representation of the cases based on the information
relative to output parameters and arguments of the system calls, enabled us to
obtain no false positives, even with a limited number of cases in the library. In
particular, it was possible to distinguish the 25 instances of applications affected
by attacks from the 310 relative to the normal behavior of the system with very
high accuracy. This was confirmed by the appreciable differences among the
EMD values relative to the corresponding feature distributions.

Obtaining a null number of false positives represents a very important result,
in consideration of the fact that achieving a small number of false positives
constitutes one of the most difficult objectives of any anomaly detection system.

Furthermore, the possibility to intervene on different parameters of the classi-
fication procedure (inconsistency coefficient threshold, reliability threshold, iden-
tity threshold, etc.) allows one to conveniently change the sensitivity of the system,
thereby increasing the probability to identify also the so-called mimicry attacks.

The procedure we have advanced has therefore allowed us to fully exploit the
salient features of the user-network configuration interaction, enabling the accu-
rate distinction between attacks and events associated with the normal behavior
of the system.

6 Future Work

There are several research thrusts that we intend to pursue in the near future.
First of all, we will focus our efforts on the clustering procedure, particularly on
the weight assignment procedure. Even though the experimental results we have
obtained are satisfactory, we intend to take into account other factors, such as
the semantic difference between the various features and the presence of outliers
obtained from monitoring the host.

We will continue our experimental evaluation of the system performance, using
new benchmarks, in order to check its capability of recognizing also new classes
of attacks in addition to buffer overflows already identified. In particular, we will
tackle the so-called policy violations, which to not allow the intruders to directly
upgrade their privileges, but have the objective of gaining classified information
in order to exploit possible erroneous configurations of the system administrator.
This class of attacks thus contain intrusions which do not exploit actual system
flaws and turn out to be not easily detectable, since the intruders have access
to classified information through the normal, although unintentional, behavior
of the system. In order to achieve this goal, besides working on clustering, it
is necessary to further develop the modalities for representing the cases, taking
into account new models based on the information contained in the audit trails,
such as, for instance, execution parameter, user ID and flag.

Another objective of our future research will be the integration of profiles
with signatures relative to known attacks. Last but not least, we will work on
the realization of a network-based version of our intrusion detection system, in
order to realize a combined analysis of the data obtained from monitoring the
whole network configuration.
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Abstract. In this work, we propose an Intrusion Detection model for
computer newtorks based on Hidden Markov Models. While stateful tech-
niques are widely used to detect intrusion at the operating system level,
by tracing the sequences of system calls, this issue has been rarely re-
searched for the analysis of network traffic. The proposed model aims at
detecting intrusions by analysing the sequences of commands that flow
between hosts in a network for a particular service (e.g., an ftp session).
First the system must be trained in order to learn the typical sequences
of commands related to innocuous connections. Then, intrusion detection
is performed by indentifying anomalous sequences. To harden the pro-
posed system, we propose some techniques to combine HMM. Reported
results attained on the traffic acquired from a European ISP shows the
effectiveness of the proposed approach.

1 Introduction

The widespread diffusion of information systems in an increasing number of
businesses, as well as for social and government services, requires incresing level
of security. Very often, information resources are the core business of an or-
ganisation, or at least consitute one of the principal assets. The internal flow
of information, and the external flow to customers and providers need to be
deployed as a lightweigth service in order to be effective. As a consequence, in-
formation resources need to be easily reacheble and accessible, and the risk of
misuse is increasing [18]. The adoption of best practices in the configuration and
management of all the devices in the network is the first step to protect the
information. Very often reported incidents in computer networks are related to
the misconfiguration of:

– operating systems and the applications running on the hosts inside the
network;

– routers and switches, which are the devices connecting the hosts in a local
network, and the local network to the Internet;

– firewalls, which are the first line of defence used to protect a network from
attempts of intrusions.
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However, no matter how cleverly the network has been configured and man-
aged, an intruder may find his path through the inevitable bugs and errors that
are always present in software or may exploit legitimate services as security re-
quires setting a trade-off bewteen protection of resources and their usability. As
a consequence network analysis tools are needed to detect anomalous or intrusive
traffic. These tools used to protect the network and its resources are called In-
trusion Detection Systems (IDS). An IDS includes a set of tools that can be used
to detect and stop attempts of intrusion. We can distinguish Intrusion Detection
Systems between anomaly-based and misuse-based Systems. The anomaly-based
approach has been the first to be developed as in principle this approach is able
to detect intrusions never seen before [6]. These kind of IDS are based on a
description of the normal behaviour. Starting from this description, the system
classifies as anomalous all the behaviors that are different from the normal ones.
Anomalous behaviors are typically related to intrusions, but they may also be
related to normal activities as the definition of a good model of normal activ-
ities is far from being perfect. As a consequence, anomaly based systems may
generate a very high percentage of false alarms. For this reason, the most widely
used IDS model are based on misuse detection. Misuse-based systems perform
a pattern matching between a set of rules (called signatures), which describes
well known attacks, and currently observed patterns. If this process detects a
matching between the observed behaviors and those encoded in the signatures,
the system labels the observed patterns as an attempt of intrusion. It is easy
to see that misuse based IDS can precisely detect known intrusions, but if the
traits of attacks are only slightly modified the matching process is likely to fail.
This is the case of so-called "polimorphic" attacks, where the code of the attack
is changed in order to evade misuse-based IDS while retaining their malicious
effect. The increasing number of these kind of attacks in recent years motivates
a renewed interest on anomaly based IDS [19].

In this work, we propose an anomaly based IDS that analyzes sequences of
commands exchanged between two hosts through a certain protocol (e.g., FTP,
SMTP, HTTP, etc.), and produces an output score that is used to assess if the
analyzed sequences are normal or anomalous. To model normal network traf-
fic, we use Hidden Markov Models (HMM). After a sequence of commands is
analysied, the HMM assigns a probability value that can be interpreted as the
likelihood that the sequence is normal. By setting a threshold on this probabil-
ity value, it is possible to flag anomalous traffic. However, the performances of
HMM depend on the choice of the learning parameters as well as on the number
of hiddden states. Thus, it may be difficult to design a model that meets the re-
quirement of high detection rate and low false alarm rates. To solve this problem,
we propose to use an ensemble of HMM created by using multiple training sets
and multiple learning parameters. Experimental results show the effectiveness of
the ensemble approach with respect to the use of a single model.

The paper is organised as follows. A review of the related works on state-
ful approaches to intrusion detection is reported in section 2. Section 3 sum-
marises the basic concepts of Hidden Markov Models. The proposed IDS model is
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described in section 4, where the techniques used to design the ensemble of HMM
are also reported. Experimental results related to the analysis of the FTP traffic
of a European Internet Service Provider are reported in Section 5. Conclusions
are drawn in Section 6.

2 Related Works

HMM have been successfully used in a numer of pattern recognition applications
in the past years (e.g. Speech recognition, Motion recognition, etc.) . HMM have
also been used for Intrusion Detection thanks to their ability to model time-series
using a stateful approach where the role and meaning of the internal states are
"hidden". In an Intrusions Detection problem these series may be sequences of
events, commands or function running on a single host, or sequences of packets in
a Network. The vast majority of studies that proposed HMM to implement IDS
are related to host-based systems, i.e., IDS that analyzes the actions performed
on a single host to detect attempts of intrusion[4][10][12][24]. The simplest way
to detect an attempt of intrusion in a single host, is to analyze the log files that
contain the traces of the system calls. In fact, when the goal of an intruder is to
gain control of the operating system, typically it can be detected by analysing
the sequence of system calls and comparing them to typical sequences observed
during normal system usage [15].

The user’s behavior can be described using different mechanisms of auditing.
At the lower level the behavior of users is represented by the sequences of input
characters, while, at higher levels, the behavior can be characterised by the
sequence of input commands or by the characteristics of different work sessions
(with a work session being usually defined as the set of simple operations that a
user performs to carry out a more complex operation [5]).

When a sequence is evaluated by HMM, a value can be associated to the
sequence, which denotes the probability that the sequence is produced by the
process modeled by the HMM [21]. Also, the most likely sequence of states that
generate the observed sequence of symbols can be compute. In this latter case,
a database of normal sequences is needed to perform intrusion detection by the
direct comparison of the sequence of states output by the HMM and the normal
ones that are stored into the database [25].

To the best of our knowledge, only few works have proposed the use of HMM
to analyse Network traffic [14] [11]. In addition, these works represent the traffic
at the packet level using features as the source and destination ports, the values
of flags, and the content of the message. Thus, according to these works, a
probability value is assigned to each packet. On the other hand, in this work we
propose a state model at the application level, where the traffic is characterised
by the commands exchanged between hosts in the Internet.

3 Hidden Markov Models

Hidden Markov Models represent a very useful tool to model time-series, and to
capture the underling structure of a set of strings of symbols. HMM is a stateful
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model, where the states are not observable (hidden). A probability density func-
tion is associated to each hidden state that provides the probability that a given
symbol is emitted from that state. A Hidden Markov Model λ = (S, V,A,B) is
defined as (see figure 1):

– S = {S1, ..., SN}, the set of N hidden states in the model.
– V = {V1, ..., VM}, the set of M distinct observation symbols emitted from

each state.
– A = {ai,j}, a NxN matrix of transition probabilities between states, where
{ai,j} is the probability of being in the state j at time t + 1 given that we
were in state i at time t

ai,j = P(qt+1 = Sj | qt = Si), 1 ≤ i,j ≤ N, where qt is the state at time t.

– The probability density function that describes the probability to emit sym-
bols from each state of the HMM.

bj(k) = P(Vk | qt = Sj)
1 ≤ j ≤ N, 1 ≤ k ≤ M

– The probability of being in the state i at the beginning of the process (i.e.,
t=1) π = {πi}.

πi = P(q1 = Si) , 1 ≤ i ≤ N

Fig. 1. The basic structure of HMM

HMM are based on the Markov’s property whereby the probability of being in
a state qt+1 at time t+1 depends only on the state qt at time t. Accordingly, the
joint probability of observable (emitted symbols yi) and unobservable (hidden
state qi) variables can be expressed as:

P(yT
1 ,qT

1 )= P(q1)
T−1∏

t=1
P(qt+1 | qt)

T∏

t=1
P(yt | qt)

The joint probability distribution is thus fully specified by: i) The initial state
probability P(q1); ii) the transition probabilities P(qt+1 | qt); iii) the emission
probabilities P(yt | qt).
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3.1 Basic HMM Problems

Three basic problems can be solved by Hidden Markov Models: the Decoding
problem, the Training problem, and the Evaluation problem [22]. The Decoding
problem is formulated as follows: given a sequence O, and a model λ, find the
most likely sequence of states of λ that generated O. As this problem is not
addressed in this paper, we will not provide details about it. On the other hand,
we provide details of the Training and Evaluation procedures in the following
subsections. Let us first describe the so-called Forward-Backward procedure,
because forward and backward variables are used in the training and evaluation
problems.

Forward-Backward Procedure. Let us consider the variable αt(i) defined as

αt(i) = P (O1, O2, ..., Ot, qt = Si|λ),

This variable represents the probability of observing the sequence {O1,O2,...,Ot},
given the model λ, and that the state variables at time t is qt = Si. The procedure
of estimation of P (O|λ) is made up of three steps:

1. Initialization. α1(i) = πibi(O1) , 1 ≤ i ≤ N . This step initializes the for-
ward probability α as the joint probability of the state Si and the initial
observation O1.

2. Induction. αt+1(j) = [
N∑

i=1

αt(i)aij ] · bj(Ot+1)

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N .

3. Conclusion. P (O|λ) =
N∑

i=1

αT (i)

The backward probability is computed in a similar way. The backward prob-
ability is defined as the probability that the last symbol of a sequence OT is
preceded by the sequence of symbols OT−1, OT−2, until the symbol Ot+1. The
backward variable is defined as

βt(i) = P (Ot+1, Ot+2, ..., OT , qt = Si|λ)

and describes the probability of a subsequence of symbols within time t+1 and
time T.
βt(i) can be calcultated by induction:

1. Initialization βT (i) = 1 , 1 ≤ i ≤ N.

2. Induction βt(i) =
N∑

j=1

aij · bj(Ot+1)βt+1(j),

t = {T-1,T-2,...,1}, 1 ≤ i ≤ N .

3.2 Evaluation

Given a model λ, and a sequence of symbols O = {O1, ..., OT }, we want to
compute the probability P (O||λ) that the sequence of symbols is emitted by the
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model. This probability provides a "matching value" between the model, and
the sequence. This problem can be solved using the forward variables, because
P (O|λ) can be expressed as the sum of the terminal forward variables αT (i):

P (O|λ) =
N∑

i=1

αT (i)

3.3 Training

Given a set of sequences {O|}, we need to calculate the model λ which max-
imises P (O||λ). In this case, the problem is to find the set of parameters (A,
B, π) that maximise the Emission Probabilities P ({Ot}||λ) of a given set of
sequences O|. The solution of the problem can be find through an iterative pro-
cedure aimed at finding a local maximization of P (O|λ). One of the most widely
used training procedure for HMM is the Baum-Welch algorithm [2], which is
an Expectation-Maximization algorithm that computes the parameters of the
model by maximizing the log-likelihood λ = arg max log(P ({Ot}||λ)). At each
iteration, a new estimation of the parameters is performed using the probabil-
ity density functions estimated at the preceding iteration. Typically the initial
values of the parameters are randomly chosen. More details on the Baum-Welch
algorithm can be found in [2].

4 The Proposed IDS Model

The proposed IDS aims at analysing sequences of commands exchanged between
pairs of hosts, in order to assess if the sequences represent attempts of intrusion
or not. To perform this analysis, three problems must be addressed:

– the length of the sequences is not known in advance.
– the correlations between the elements in the sequences are not known in

advance, so that we cannot use a window of fixed length to capture correlated
elements.

– the internal state of the machine responding to the commands is unknown.

The first problem does not allow designing the IDS as a deterministic finite
state machine, as for these state machines we must fix the initial and final states
as well as the transitions between states. On the other hand, HMM is suitable
for this purpose.

The basic idea of the proposed IDS is represented in figure 2.
The sequence of events we are interested in is the sequence of commands

(USER, PASS, PWD, etc.) and numeric codes (220, 231, 257, etc.) ex-
changed between hosts. In particular, we are not interested in any argument
asssociated to the command (e.g., the command “STORE xxx” is considered as
“STORE”). In order to explain the characteristics of the proposed system, we
will refer to the scheme reported in Figure 3 [25].
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Fig. 2. Commands exchanged between hosts

Fig. 3. The basic scheme of the proposed IDS

The scheme can be explained as follows:

1. The first component, called Data-Preprocessing, is a module that performs a
number of preliminary operations on the sequence in order to make it suitable
for the HMM. During the training phase, this module extracts the dictionary
of symbols to be used by the HMM. Once the dictionary is created, all the
test sequences are preprocessed in order to contain only the symbols that are
in the dictionary. We will go into the details of the creation of dictionaries
later on.

2. HMM are built using the Baum-Welch procedure, using a set of training
sequences.

3. Once the model is built, its performances are assessed by a set of test se-
quences, using the Evaluation Procedure.

4. For each test sequence, the HMM outputs a probability value stating how
likely the sequence is anomalous. By setting a decision threshold, the se-
quence can be labeled as normal or anomalous (i.e., potentially intrusive).

4.1 Creation of the Dictionaries of Symbols

To train and test HMM, we need to create the dictionaries of symbols. Such
symbols are related to the commands exchanged by hosts for a given Internet
service. Typically the number of commands defined by the RFC (i.e., the rules
that define the protocols associated to services) is very large, compared to the
number of commands that are actually used by applications. As a consequence,
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the use of a dictionary comprising all the possible commands would be ineffective
as a large number of emission probabilities would be zero, and the computational
load would be high. In addition, if a new command is added to the protocol, the
HMM must be re-trained to take into account the new symbol. On the other
hand, if we build the dictionary by using only the set of symbols of the sequences
in the training set, some action must be perfomed for those test sequences that
contain symbols that are not in the dictionary.

In this work, we propose to build the dictionaries by using only the symbols
in the training sequences. We present two alternatives solutions for processing
the test sequences that we call Large Dictionary and Small Dictionary.

Large Dictionary. The dictionary D={S1, S2, ..., Sn, “NaS′′} contains all the
symbols S1...Sn the are present in the training sequences, plus a special sym-
bol "NaS" (Not a Symbol). Unknown symbols in the test set are managed by
replacing them with "NaS". Of course this symbol is not a command defined
by the RFC, but is simply used to replace all the symbols in the test sequences
that don’t belong to the dictionary of commands learned from the training se-
quences. As an example, if the HMM is trained using the dictionary of symbols
“a”,“b”,“c”,“d”, the sequence [a-b-d-g-c-a] cannot be analysed because there is the
unknown symbol “g”. If the dictionary is enlarged with the “NaS” symbol, so that
the HMM is trained using the dictionary {“a”,“b”,“c”,“d”,“NaS”} , the symbol “g”
into the test sequence can be replaced with “NaS”: and the resulting sequence
[a-b-d-NaS-c-a] can be analysed by the HMM.

Small Dictionary. In this second solution, we discard from the test sequences
all the symbols that don’t belong to the dictionary. Thus, the test sequence of
the previous example [a-b-d-g-c-a] becomes [a-b-d-c-a].

If we compare the two solutions we can observe that in the case of Large Dic-
tionaries, all the test sequences that contain an unknown symbol are anomalous,
as the symbol NaS is never encountered in the training set, and its associated
probability of emission is 0. On the other hand, if the solution using a Small
Dictionary is used, intrusions that contain unknown symbols cannot be detected
if the sequence resulting after discarding the unknown symbols are similar to
the normal ones. We can conclude that the fewer the number of erased symbols
compared to the length of the sequence, the smaller the impact of the Small
Dictionary solution. The use of Large Dictionaries on the other hand, allows
producing an alert for each new symbol encountered. If the training set is highly
representative, then the presence of an unknown symbol in a test sequence can
be certainly related to some kind of anomaly.

4.2 Combination of HMM

As the performances of HMM are sensitive to the training set, and to the initial
values of the parameters, in this work we explored the performances attained
by combining an ensemble of HMM in order to attain low false alarms and high
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detection rates. To this end, we used three techniques for combining the outputs
of HMM, namely:

– Arithmetic Mean
– Geometric Mean
– Decision Templates

The first two techniques simply combine the outputs by computing the average
of the outputs:

Parithm(O|λ) = 1/L ·
L∑

i=1

P (O|λi)

or the product of the outputs:

Pgeom(O|λ) = L

√
L∏

i=1

P (O|λi)

where P (O|λi) is the probability that the sequence O has been emitted by the
i-th HMM, and L represents the number of combined HMM.

The combination by Decision Templates is a more complex technique that has
been first proposed in [16], and that has been used to combine HMM outputs
[3] [7].

The Decision Templates method is based on a similarity measure between two
vectors, called Decision Profile and Decision Template. The Decision Template
is a vector whose elements represent the mean support given by each classifier
to the N training sequences of each class. So, as in this case we are interested in
modeling only one class, i.e. the normal class, the decision template represents
the average of the emission probabilities of training sequences for each HMM.
Let us define dti(Z) as the average emission probability of the i-th HMM for the
N sequences in the training set Z:

dti(Z) = 1/N ·
∑

j∈Z

P (Oj/λi)

The Decision Template is thus defined as follows:

DT(Z) = [dt1(Z)...dtk(Z)...dtL(Z)]

Analougously the Decision Profile for a test sequence Otest is defined as
follows:

DP(Otest) = [P (Otest|λ1)...P (Otest|λk)...P (Otest|λL)]

A soft label is then assigned to the test sequence Otest by means of a similarity
measure between DP(Otest) and DT (Z). We compute this similarity by the
Squared Euclidean Distance:

Sim(DT (Z), DP (Otest)) = 1 − 1
L

L∑

i=1

(dti(Z) − P (Otest|λi))2. (1)
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5 Experimental Results

5.1 Dataset

The dataset used to test the proposed solution is made up of a set of sequences
of FTP commands exchanged betwen a server and many clients. These sequence
are extracted from the FTP traffic that is generated by the users that upload and
download their resources on their own Web Space. The data were extracted from
the network of the European ISP Tiscali SpA. The sequences of commands have
been extracted by the live traffic using SNORT, a very popular open source
IDS [23]. In order to filter out potentially intrusive sequences, we discarded
all the sequences for which SNORT raised an alarm. The resulting dataset is
made up of 40,000 sequences that have been used to train and test the HMM.
First, we randomly extracted a training set made up of 80% of the traffic, the
remaining 20% being used for testing. To avoid a bias in the evaluation, we
repeated this subdivision five times. Thus, we created 5 different training sets,
each one made up of 32,000 sequences, and 5 different test sets, each one made
up of 8,000 sequences. Each of the 5 training set is further subdivided into
10 subsets (without replacement) of 3,200 sequences. Each of this sequences
has been used to train distinct HMM. As a result, 50 different training set are
availble for training HMMs. The main drawback of Hidden Markov Models is the
computational cost of the training process, the larger the training set, the longer
the training time. On the other hand, the training sets used to build Anomaly
Based IDS are typically very large, so that normal activities overwhelm those
anomalous events that can be present in the training traffic. In addition, the set
of parameters used of a HMM trained on a large training set may not capture the
structure of data. For this reason, it can be more effective to split the training set
into a number of smaller subsets, and to use each subset to train different HMM.
The outputs of these HMM can be then combined using the techniques outlined
in the previous section, thus exploiting the information in the training set.

In order to create attack sequences, we used the simulator IDS-Informer [26]
and added 22 attack sequences to the test set. It is worth nothing that the
generation of attack sequences is not an easy task, because typically for each
service a very small number of vulnerabilities can be actually exploited. This can
be explained by the fact that software vendors and developers update frequently
their products to correct known vulnerabilities. In addition the traffic sniffed
in a network tipically contains a very small percentage of attacks. Thus, this
experimental setup allows simulating a real network scenario.

5.2 Dictionaries of Symbols

In order to generate the Dictionaries of Symbols, we implemented the Large and
Small Dictionaries described in the previous section. In particular, in the case
of Large Dictionaries, we extracted the symbols from each of the 5 training sets
made up of 32,000. Thus, in this case all the ten HMM extracted from the same
training set, use the same dictionary. On the other hand, Small Dictionaries have
been extracted from each of the 3,200 sequences used to train each HMM. As
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a result, the ten HMM extracted from the same training set, use ten different
dictionaries.

5.3 Experimental Setup

For each of the five Training Set, the following simulations have been performed
for each of the 10 HMMs: i) HMM have been created using both the Large and
the Small Dictionary; ii) three values for the number of states of HMM have
been considered, namely, 10, 20, and 30; iii) two different random initializations
of the initial values of the emission and transition matrixes have been performed.
Thus, for a given number of states of the HMM, and for a given dictionary of
symbols, 100 HMM have been created. Finally, the number of iterations for the
training algorithm has been set to 100.

5.4 Performances Evaluation

In order to evaluate the performances of individual HMM we decided to report
the mean value and the standard deviation computed over all the 100 HMM
with the same number of states and the same kind of dictionary. Combination
techniques have been used to combine the 20 HMM generated for each train-
ing set. Results of combination are reported in terms of average and standard
deviation computed over the five training set.

In order to evaluate the performance of the proposed IDS, we selected three
measures:

– The Area under the ROC curve, where the ROC curve represents the perfor-
mance of the HMM at different values of the decision threshold. In particular,
the ROC curve represents the False Acceptance Rate, i.e., the rate of attacks
classified as normal traffic Vs. the True Positive Rate, i.e. the rate of normal
sequences classified as attacks. It is easy to see that the larger the AUC, the
better the performance.

– The percentage of real false alarms measured on the test dataset when the
Detection Rate is equal to 100%.

– The Detection Rate, when the percentage of false alarms measured on the
training set is equal to 1%. The threshold has been calculated on the Training
Set, so we evaluated the corresponding percentage of false alarms on the Test
Set.

The second performance measure is used to assess the performance of the system
in term of the number of false alarms that are produced if we wish to attain a
100% detection, while the third measure aims at assessing the performances
when the false alarm rate is limited to 1%. This value typically represent an
upper bound for the tolerable false positives for an IDS.

5.5 Nomenclature

Let us define some acronyms that are used in the tables where results are re-
ported: i) LD and SD are used to denote respectively the use of a Large or
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Small Dictionary; ii) 10s, 20s, and 30s are used to specify the number of states
of the HMM; iii) DR is used for the Detection Rate; iv) FA is used for the False
Alarms rate.

5.6 Experimental Results

Experimental results pointed out that the use of Small Dictionaries provides
significantly lower performances with respect to the use of Large Dictionaries.
Thus, for the experiments relates to the use of Small Dictionaries, we decided
to report only the best results attained by varying the number of states of the
HMM. This result has been attained by setting the number of states of HMM
to 30. Table 1 shows the performances of this configuration. Reported results
clearly show that high vaues of AUC can be attained by combining the HMM
using the Decision Template technique. Thus, as far as the AUC is concerned,
combining an ensemble of HMM allows improving the performances. However,
if we analyse the False Alarm rate produced when the decision threshold is set
to have a 100% Detection Rate, we can easily see that these values cannot be
accepted in a real working scenario, as more than 90% of normal sequences have
been classified as intrusives. In addition, the combination of HMM provides less
reliable results than those provided on average by individual HMM. On the hand,
if we set the decision threshold (on the training set) so that the False Alarm
rate is equal to 1%, we see that the performances of combination techniques are
higher than those of individual HMM, the best performance being attained by the
Geometric Mean. In the following we will see that the use of Large Dictionaries
allows attaining higher performances. On the other hand, as far as the training
time is concerned, the use of Small Dictionaries require a shorter training time
than that needed when using Large Dictionaries.

Table 1. Simulations Small Dictionary 30 States

30 States SD DR 100% FA1%
AUC FA(real%) DR % FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.873 (0.006) 89.77 (4.14) 58.72 (2.52) 0.72 (0.23)
Arithmetic Mean 0.874 (0.002) 95.27 (0.61) 63.63 (4.54) 0.31 (0.15)
Geometric Mean 0.876 (0.002) 96.19 (1.50) 76.36 (2.03) 0.71 (0.20)

Decision Templates 0.933 (0.004) 93.84 (8.40) 65.54 (3.80) 0.35 (0.16)

If we analyse the performances of HMM using Large Dictionaries reported in
Tables 2, 3, and 4, it is easy to see that performances are quite superior to
those attained using Small Dictionaries. In particular, performances improved
significantly by increasing the number of states from 10 to 20. On the other hand
a further increase in the number of states from 20 to 30 does not provide sig-
nificant improvements in performance, except for the standard deviation which is
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Table 2. Simulations Large Dictionary 10 States

10 States LD DR 100% FA1%
AUC FA(real%) DR% FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.953 (0.006) 65.15 (2.09) 85.44 (1.73) 0.80 (0.23)
Arithmetic Mean 0.958 (0.002) 76.41 (1.22) 82.72 (2.03) 2.35 (1.24)
Geometric Mean 0.961 (0.001) 74.54 (1.07) 92.72 (4.06) 2.83 (1.22)

Decision Templates 0.958 (0.002) 74.89 (2.55) 83.62 (4.06) 2.42 (1.22)

Table 3. Simulations Large Dictionary 20 States

20 States LD DR 100% FA1%
AUC FA(real%) DR% FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.967 (0.004) 59.60 (4.46) 90.94 (1.27) 0.74 (0.22)
Arithmetic Mean 0.974 (0.002) 79.23 (3.02) 92.72 (6.1) 0.33 (0.16)
Geometric Mean 0.972 (0.001) 52.27 (3.06) 95.45 (0) 0.89 (0.09)

Decision Templates 0.965 (0.002) 52.34 (9.69) 95.45 (0) 0.41 (0.18)

Table 4. Simulations Large Dictionary 30 States

30 States LD DR 100% FA1%
AUC FA(real%) DR% FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.969 (0.003) 57.85 (3.57) 92.97 (0.65) 0.74 (0.16)
Arithmetic Mean 0.974 (0.0004) 55.92 (0.62) 95.45 (0) 0.53 (0.13)
Geometric Mean 0.971 (0.0008) 55.00 (1.20) 95.45 (0) 1.01 (0.10)

Decision Templates 0.962 (0.004) 86.02 (8.12) 95.45 (0) 0.62 (0.17)

smaller than that of HMM with 20 states. The values of AUC in the three cases
are larger than 0.95, the combination by the arithmetic and geometric means
providing the highest performances.

If we analyse the performances attained when the decision threshold is set so
that the Detection Rate is equal to 100%, we see that the values of False Alarm
rate are quite smaller than those attained using the Small Dictionaries, but still
these values are not suited for a real operating environment. It is worth noting,
however, that hardly any IDS is able to produce an accetable False Alarm rate
when it is tuned to detect the 100% of attacks [1]. Thus the evaluation of IDS
at 100% detection rate is just used to see the performances in the limit. From
an operational point of view, it is more intersting to evaluate the detection rate
when the false alarm rate is fixed at 1%. If we compare the values attained using
10, 20, and 30 states we can see that the detection rate increases as the num-
ber of states is increased. Again, the highest values are attained by combining
HMM, reaching the value of 95.45%. If we compare this result with the false
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alarm rate attained at 100% detection rate, it is easy to see that a small increase
in the detection rate is accompained by a very large increase in the false alarm
rate. Finally, the tables also report the false alarm rate attained on the test set
(FA(real%)) when the decision threshold is set to the value that produces the 1%
false alarm rate on the training set. It can be seen that, apart from the case of 10
states, the false alarm rate on the test set is always smaller that 1%. Thus, the
threshold estimated on the training set produces similar results on the test set.

6 Conclusions

This work proposed a novel technique to detect intrusions in computer networks,
based on the analysis of sequences of commands exchanged between pairs of
hosts. In particular we modelled sequences using HMM. For each command
sequence, a probability value is assigned and a decision is taken according to some
predefined decision threshold. We investigated different HMM models in terms
of the dictionary of symbols, number of hidden states, and different training sets.
We found that good performances can be attained by using dictionary of symbols
made up of all symbols in the training set, and adding a NaS (not-a-symbol)
symbol in account of symbols in the test set that are not represented in the
training set. Performances can be further improved by combining different HMM.
As the size of training sets in an intrusion detection application is typically large,
we proposed to split the training set in a number of parts, training different HMM
and then combining the output probabilities by three well known combination
techniques. Reported results on a real dataset extracted from the live traffic of
an ISP show the effectiveness of the proposed approach.

Future works should include the fusion of information from the proposed
module, which analyses sequence of commands, with information from other
modules devoted, for example, to the analysis of the arguments of commands
(e.g., the name of files exchanged, subject of e-mails, etc.). In fact attacks can be
reliably detected when multiple analysis are performed on the network traffic,
and the partial results combined. We suspect the resulting IDS will not only
produce a lower false alarm rate, but also be more robust to evasion activities, as
the attacker should evade the detection capabilities of multiple modules working
on different traffic characteristics.
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Abstract. Many applications require the discovery of items which have
occur frequently within multiple distributed data streams. Past solutions
for this problem either require a high degree of error tolerance or can only
provide results periodically. In this paper we introduce a new algorithm
designed for continuously tracking frequent items over distributed data
streams providing either exact or approximate answers. We tested the
efficiency of our method using two real-world data sets. The results in-
dicated significant reduction in communication cost when compared to
näıve approaches and an existing efficient algorithm called Top-K Mon-
itoring. Since our method does not rely upon approximations to reduce
communication overhead and is explicitly designed for tracking frequent
items, our method also shows increased quality in its tracking results.

1 Introduction

Many applications require the analysis of data streams. Data streams are se-
quences of data that arrive continuously over time. The properties of data
streams impose many computational challenges. Some of these properties
include:

1. Data may arrive at a very fast rate. Sometimes as fast as several gigabytes
a second [10].

2. The final length of the stream is often times not known in advance. Therefore,
they are treated as never-ending streams [17].

3. Analysis of the stream must be done in a single pass since the data is too
vast to be stored [8].

A common data stream analysis task is to find items in the data which have
occurred frequently. An item is defined to be frequent if it accounts for a high
percentage of the total number of occurrences seen so far. Important applications
of frequent item analysis include:

1. Web Advertising: Revenue may be increased by recognizing users who fre-
quently click advertisements and displaying Pay-Per-Click advertisements
when they visit your site [13].
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2. Network Flow Management: Generally only a few flows will account for a
large portion of bandwidth in a network. Knowing these flows can be used
to allocate bandwidth more fairly [16].

3. Detecting Network Anomalies: Some network attacks exhibit frequent char-
acteristics. For example, worms can be detected by determining frequently
occurring substring patterns in traffic flows [9].

This paper considers the problem of monitoring frequent items over dis-
tributed data streams. In this scenario frequently occurring items must be deter-
mined from multiple data streams originating from dispersed sources. The term
monitoring, means that the up-to-date list of frequent items are displayed to the
user continuously in real-time. This problem is difficult since it inherits the chal-
lenges of any data stream analysis task. Since the data is occurring very rapidly
and possibly indefinitely, memory must be managed carefully. The high rate of
data streams require very fast response time. The method must process the new
data and determine if the frequency status of each item has changed very quickly
to prevent getting overwhelmed. Finally, the problem is made more difficult by
introducing multiple distributed streams. Information must be gathered from
each source to determine which items are frequent. Thus communication must
be limited to observe any imposed network constraints.

Due to the difficulties described above, it is not surprising that few solutions
for this problem have been proposed [4,11]. Most available solutions for frequent
item monitoring focus on computational constraints, and were not designed to
operate in a distributed environment [1,6,7,8,10,12,13,16]. The solutions designed
for this setting, are either expensive computationally or only report the frequent
items periodically [4,11]. It is the goal of this work to build off prior solutions in
order to provide a more comprehensive approach to the frequent item monitoring
problem [3].

The remainder of this paper will be organized as follows. Section 2 gives a
formal definition of our problem and the distributed architecture used. Section 3
discusses prior work in the defined problem domain for which we build off of. In
Sect. 4 we describe our approach for monitoring frequent items over distributed
data streams. We evaluate our method based on a series of criteria in Sect. 5.
Finally, closing remarks are given in Sect. 6.

2 Formal Problem Statement

2.1 System Architecture

The distributed monitoring environment used in our method has been defined
as a single-level hierarchical architecture [3]. It consists of m + 1 nodes and
m distributed data streams. Of the nodes, N1, N2, . . . , Nm are used for sum-
marizing the m data streams and are called monitoring nodes. Node N0 is a
specialized coordinator node. The coordinator node is responsible for displaying
the set of frequent items over the union of the m distributed data streams. As
in previous work [3,4,5], communication is conducted amongst the monitoring
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nodes and the coordinator. There is no direct communication between any two
monitoring nodes. A schematic of this architecture can be seen in Fig. 1. Each
of the distributed data streams S1, S2, . . . , Sm, is used as input to corresponding
monitoring nodes N1, N2, . . . , Nm. The data streams consist of a sequence of
tuples ordered by time of occurrence. Each tuple is of the form 〈oj , tj〉, where
oj is the unique identifier of a specific item of interest pulled from a finite (but
possibly large) set of allowable identifiers U , and tj is the timestamp of the
tuple. Identifiers may be repeated any number of times in a data stream. An
example of an input stream, corresponding to monitoring node N1, may be
S1 = {〈2, 0.024〉, 〈2, 0.029〉, 〈1, 0.050〉, 〈0, 0.056〉} where U = {0, 1, 2, 3}.

Coordinator Node

Monitor Node 1 Monitor Node 2 Monitor Node n….

S1 S2 Sn

Frequent Item Set

User

Fig. 1. Communication structure

As stated, each monitoring node maintains a summary of its corresponding
data stream. This summary is made by managing a set of frequency counts
Ci = {c1,i, c2,i, . . . , cn,i}, where each cj,i ∈ Ci corresponds to an item identifier
from the set U . Initially each frequency count is equal to zero, and for each input
tuple 〈oj , tj〉 to Ni, cj,i is incremented by one. Therefore, each frequency count
in the set Ci maintains the number of occurrences of an item in the data stream
Si on monitoring node Ni. To extend the previous example, C1 = {1, 1, 2, 0}.

2.2 Frequent Item Problem Definition

The purpose of the monitoring structure discussed above is to monitor frequent
items over the union of the distributed data streams. Given an item oj and corre-
sponding counters {cj,1, cj,2, . . . , cj,m}, we call oj frequent if

∑
1≤i≤m cj,i ≥ s ·N ,

where s ∈ (0, 1) is a user defined support parameter and N is the accumulative
sum of all frequency counts across all monitoring nodes seen since the monitor-
ing process was initiated. The set of all frequent items F , therefore, consists of
all items which account for at least s% of the total number of item occurrences
across the union of the m data streams.

To allow approximate frequency counts an extension has been proposed called
the ε-deficient frequent items problem. The definition for this problem we used
comes from the work of Manku and Motwani [12]. To extend the previous
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definition, the ε-deficient frequent items problem allows a degree of error on
the frequency counts which is bounded by a user defined error tolerance pa-
rameter ε � s. The membership of an item in the set F is modified with the
following requirements:

1. Those whose true frequency exceeds s ·N are in the frequent item set.
2. No item whose true frequency is less than (s− ε) ·N is in the frequent item

set
3. Frequency counts are under counted or over counted by at most ε ·N .

The resulting membership test derived from these three points is determined
by whether the frequency counts are over estimated or under estimated. If the
items are under estimated, an item is called frequent if

∑
1≤i≤m cj,i ≥ (s −

ε) · N , where each cj,i is an approximate frequency count underestimating the
true frequency of oj by at most ε · |Si|. The advantage of allowing approximate
frequency counts is the reduction of memory requirements across the monitoring
structured. Although we will mainly focus on our previous definition throughout
this paper, in Sect. 4.3 we will propose an extension to accommodate the ε-
deficient frequent items problem.

2.3 Monitoring System Goals

As stated in the problem definition, the goal of the monitoring system is to con-
tinuously report the set of frequent items. However, in most scenarios the mon-
itoring process is not the only responsibility of the nodes. They will usually be
conducting other tasks (such as retrieving files requested by a user in the case of
a file server). Therefore, the processing and memory requirements should be kept
to the minimum. Finally, communication between the coordinator node and the
monitoring nodes must be limited, to reduce overhead on the underlying network.

3 Prior Work

Prior work on monitoring frequent items over data streams focus on limiting
space requirements [1,6,7,8,10,12,13,16]. Since the number of unique items to
monitor may be very large, storing the frequencies of all these items may un-
reasonable. To reduce the memory requirements, a relaxation of the original
problem was created. The most common of which is the problem of finding the
ε-deficient frequent items. This problem was addressed previously in Sect. 2.2.

Several algorithms have been proposed to solve the ε-deficient frequent items
problem on a centralized monitoring environment. Manku and Motwani proposed
two algorithms called Sticky Sampling and Lossy Counting to address this prob-
lem. The more popular of the two, Lossy Counting, requires O(1

ε · log(εN)) space
[12]. Demaine et al. proposed an algorithm known as Frequent which requires
only O(1

ε ) space and O(1) time [7]. Although this is an improvement in the
worst case space requirement, Lossy Counting requires less space in practice on
skewed data [1]. More recent work by Metwally et al. resulted in an algorithm
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called Space-Saving, in which they compared against several known ε-deficient
frequent items algorithms. The final results showed that their method required
more space and time than Frequent but provided better precision [13].

Although prior work has been completed on limiting space requirements in a
centralized data stream environment, very little has been done on finding fre-
quent items over distributed data streams. One paper to address this problem
was proposed in [11]. In this paper frequent items were propagated up a hierar-
chical communication structure and displayed at a root node at the end of every
T time units (ie. every 5 or 15 minutes). To reduce communication and space
requirements, frequency precision at each level of the hierarchy was addressed.
An obvious draw back of this method is that results are only given periodically.
There may be cases when the set of frequent items have not changed between two
or more consecutive time units, and thus the process results in wasted communi-
cation. Another problem is when the set of frequent items has changed between
two consecutive time units. Some of these changes may not be detected by this
approach. Another method proposed by Cormode and Garofalakis in [4] can be
used to continuously monitor frequent items. Their method does this by main-
taining at each monitoring node a summary of the input stream and a prediction
sketch. If the summary varies from the prediction sketch by more than a user
defined tolerance amount, the summary and (possibly) a new prediction sketch
is sent to a coordinator node. The coordinator can use the information gathered
from each monitoring node to continuously report frequent items. This method is
very robust, being able to solve a range of monitoring tasks other than frequent
item monitoring. One draw back of this approach is that the sketches maintained
by each monitoring node require O( 1

ε2 log(1
δ )) space and O(log(1

δ )) time per up-
date, where δ is a probabilistic confidence. Another drawback is that the total
error tolerance must be high, otherwise small deviations of the stream summaries
from the prediction sketches will result in communication with the coordinator.

Earlier work by Olston and Babcock in [3] addressed a similar problem. Their
problem was to find the top-k items in a distributed stream environment. We
believe this method, which we will call Top-K Monitoring, can also be used to
monitor frequent items as defined in Sect. 2.2. One draw back of this method,
however, is that the frequency count of every item encountered by a monitor is
maintained in memory. Thus frequency counts can accumulate over time, placing
a load on available memory.

It is the objective of this work to build off past experiences to develop a
system to monitor frequent items. More specifically we examine the following
three points.

1. The performance of Top-K Monitoring for tracking frequent items will be
examined.

2. Top-K Monitoring will be modified to explicitly monitor frequent items,
with the goal of reducing communication cost. We called this method FIDS
(Monitoring Frequent Items over Distributed Data Streams).

3. Reduce memory requirements by proposing an extension to accommodate
ε-deficient frequent items.
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4 Frequent Item Monitoring

FIDS begins with an initialization phase. There are two ways to accomplish
this task. One option is to issue an efficient one-time frequent item query. This
method will reduce initial communication overhead since a number of update
tuples will be summarized in a more condense fashion. The drawback of this
approach is that the monitoring process will not begin until the initialization
time period has passed. The second option is to forward all update tuples to the
coordinator node. This will require more communication overhead but allow the
monitoring process to begin immediately. Depending on the needs of the user
any of these two methods can be used, although it is highly recommended that
an initialization phase is used (the reasons will be clear later).

Once the initialization phase is completed the coordinator node sends to each
monitor the current frequent item set F . Along with this, new values for the
adjustment factors are assigned. The notation of adjustment factors are borrowed
from Top-K Monitoring and are discussed below.

Each adjustment factor δj,i corresponds to an item oj and node Ni, and are
used to shift item occurrences amongst the nodes in the system to facilitate local
constraint checking. Requirements for adjustment factors are that:

1. For each item oj , its corresponding adjustment factors sum to zero across
all nodes:

∑
0≤i≤m δj,i = 0.

2. For each item of ∈ F , its corresponding adjustment factor stored at the
coordinator node is greater than or equal to zero: δf,0 ≥ 0

3. For each item onf �∈ F , its corresponding adjustment factor stored at the
coordinator node is less than or equal to zero: δnf,0 ≤ 0

After receiving the new adjustment factors and the current frequent item set,
each monitor installs parameterized constraints which are used to determine if
the validity of F has changed over time.

A key component to the parameterized constraints is a local threshold value
Ti, kept by each corresponding monitoring node Ni. For each input tuple to Ni,
Ti is incremented by the user defined support parameter s. By incrementing the
threshold value in this fashion, it is clear that Ti = s · |Si|. Adding the threshold
values for each monitoring node yields, T =

∑
1≤i≤m Ti =

∑
1≤i≤m s · |Si| =

s · N , by the definition of N . Thus, the local threshold value Ti represents the
contribution Ni makes to the global threshold value, which defines the frequent
item set.

With the definition of the local threshold values described, the parameterized
constraints installed at each monitoring node can now be defined. For each item
monitored at a node, the following constraints are installed:

1. If oj ∈ F then the installed constraint is defined, cj,i + δj,i ≥ Ti, where cj,i
is the frequency count of oj and δj,i is the adjustment factor corresponding
to oj .

2. If oj �∈ F then the installed constraint is defined, cj,i + δj,i < Ti.
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If all the parameterized constraints hold for each node, then for every oj ∈ F ,∑
1≤i≤m cj,i +

∑
0≤i≤m δj,i ≥

∑
1≤i≤m Ti or

∑
1≤i≤m cj,i ≥ T . Likewise for every

oj �∈ F ,
∑

1≤i≤m cj,i +
∑

0≤i≤m δj,i <
∑

1≤i≤m Ti or
∑

1≤i≤m cj,i < T . Thus, as
long as all constraints hold, the set of frequent items is guaranteed to be valid.
In the event any one constraint is violated, the coordinator is notified that the
current set may no longer be valid. At this point the coordinator begins a process
called resolution to determine the new frequent item set.

4.1 Resolution

Whenever a local constraint is broken on any monitor node a three phase process
called resolution is initiated. The purpose of this process is to determine if either
the frequent item set has changed or it hasn’t, and to install new parameterized
constraints in such a fashion so that all constraints hold. This process is modified
from Top-K Monitoring changing validation tests and message content. The
changes made to the three phases are described below.

To begin the resolution process, in Phase 1 the monitor containing an invalid
constraint NI sends a message to the coordinator. This message contains a set of
frequency counts, adjustment factors, and item identifiers which are involved in
violated constraints. Also included in the message sent to the coordinator, is the
local threshold value of the monitor. This value is used later when determining
the value of the new adjustment factors.

It is important to note that the entire frequent item set does not need to be
sent to the coordinator. The membership of an item in F is independent of any
other item. As we will see later this is very important in reducing communication
overhead, when comparing FIDS to Top-K Monitoring.

In Phase 2 the coordinator node determines if the frequent item set is still
valid using information gathered from NI and its own stored adjustment factors.
For each violated constraint, the coordinator performs the following tests:

1. If oj ∈ F then the test performed is cj,I + δj,I + δj,0 ≥ TI .
2. If oj �∈ F then the test performed is cj,I + δj,I + δj,0 < TI .

In the event that all violated constraints passed their respective tests, a pro-
cess called reallocation is initiated and resolution terminates. If any one test
fails, however, Phase 3 is initiated instead. In Phase 3 of resolution, the coor-
dinator contacts each monitoring node Ni : i �= I and collects the frequency
counts, adjustment factors, and item identifiers corresponding to those involved
in violated constraints on NI . Also collected, are the local threshold values for
each monitor contacted. Once all the values are collected the new frequent item
set is determined, reallocation is initiated, and resolution terminates. Phase 3
of resolution can also be called a synchronization phase, as all monitors in the
network are contacted to determine the new set F .

4.2 Reallocation

Once the new frequent item set is determined, adjustment factors are assigned
to each node involved in resolution N . The assignment is made so that all



FIDS: Monitoring Frequent Items over Distributed Data Streams 471

constraints defined become valid for the newly define set F . The process re-
sponsible for this is called reallocation. Like resolution, this process is a modi-
fication from the one used in Top-K Monitoring. The changes are described in
the following paragraphs.

The first step of reallocation is to determine the accumulative threshold and
the accumulative weighted frequency (frequency count plus adjustment factor)
for each item oj involved in an invalid constraint across each node in N . Next
the distance of each frequency with the threshold is determined *j . Whenever
N contains all the monitoring nodes, *j represents the amount an item is over
or under the global threshold.

The third step of reallocation assigns new adjustment factors for each oj

involved in an invalid constraint. The assignment is made so that each local
weighted frequency count is equal to the local threshold value. By doing this the
constraints for each item in F are satisfied.

Finally, a portion of *j is added to the new adjustment factor assigned in
Step 3. The amount added is based on an allocation parameter 0 ≤ Fi < 1
corresponding to node Ni. Allocation parameters are set in a fashion to control
the amount of *j given to node Ni and it is required that

∑
0≤i≤m Fi = 1. This

notation is similar to that of Top-K Monitoring with exception that F0 �= 1.
Assigning F0 = 1 prevents any monitoring node from receiving a portion of *j .
As a result, the constraints of items not in F may not be satisfied after the
reallocation process terminates.

Given the description above, the reallocation procedure can be expressed for-
mally with two expressions.

1. *j =
∑

i∈N cj,i +
∑

i∈N δj,i −
∑

i∈N Ti.
2. δj,i = Ti − cj,i + Fi · *j .

The first expression represents Step 1, while the second expression represents
Steps 3 and 4. For each item oj involved in a violated constraint and node in
N , both expressions are evaluated to determine the new adjustment factor δj,i

where i ∈ N represents node Ni. Comparing these two equations to those used in
Top-K Monitoring, will show that the reallocation method original designed can
be re-used. Assigning the parameters used in Top-K Monitoring appropriately
will result in the definitions given above.

4.3 Frequency Count Reduction

Thus far in this paper we have only examined the case when ε = 0. Setting the
error parameter in this fashion implies that every unique item observed has an
associated frequency count. If the number of unique items is very large, this will
result in impractical memory requirements.

To reduce memory requirements, the counting techniques discussed in Sect. 3
can be integrated into the system. If the counting method selected over counts,
each frequency count will be over counted by at most ε · |Si|. As a result, the
accumulative frequency of an item will be at most over counted by

∑
1≤i≤m ε ·

|Si| = ε ·N . Although memory on each monitoring node can be reduced in this
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fashion, the presence of adjustment factors introduces complications. First, if an
item that is removed from memory and is globally frequent, removing it would
invalidate our monitoring method. Secondly, if the item being removed contains a
corresponding adjustment factor, deleting it would invalidate adjustment factor
invariants. To alleviate these problems we will introduce a generic solution which
can utilize any of the counting techniques discussed in Sect. 3 [7,12,13].

To prevent items that are globally frequent from being removed from memory,
we require that these items always remain. Since there can be at most 1

s globally
frequent items, this is the additional space is required. In the event that an
item is being removed from memory is not frequent and contains an adjustment
factor, a message is sent to the coordinator containing the identifier and its
adjustment factor. The coordinator will then determine if this adjustment factor
can be cancelled out using its own stored values. If it can, no response is given,
otherwise a message is sent to the monitor in question. This response signifies to
the monitor that it must poll the coordinator each time a new item is encountered
to determine if a past adjustment factor resides on the coordinator. This process
will continue until there are no adjustment factors remaining at the coordinator
on behave of the monitoring node. Since only infrequent items are removed from
memory and each local threshold increases over time, it can not be the case that
an item that is removed from memory will ever exceed its local threshold.

Determining the memory bounds required for this solution depends upon the
counting technique selected. If the counting technique used requires 1

ε counters,
each monitoring node will require 1

ε + 1
s counters or O(1

ε ) space. There can
be at most 1

ε different counters on each monitoring node, and thus at most
m2

ε adjustment factor assignments. Since the coordinator may store adjustment
factors on behalf of a monitoring node, the coordinator will require at most
O(m2

ε ) space, where m is the number of monitoring nodes.

5 Experimental Evaluation

5.1 Data Sets

Two data sets were used to evaluate the performance of FIDS. The first data set
consists of wide-area network traffic between Lawrence Berkeley Laboratory and
the rest of the world [14]. The data set contains 1.8 million TCP packets with
1,622 unique user IDs. Records were evenly assigned to four monitoring nodes
and frequent users of the network were tracked.

The second data set consists of 1998 World Cup web requests on 9th June
[2]. The dataset contains approximately 20 million requests with 9,198 unique
requested item IDs. On the particular day used 26 servers were active. Thus, fre-
quently requested item IDs were tracked using 26 distributed monitoring nodes.

5.2 Performance Measures

To evaluate our algorithm a series of performance criteria was defined. The
most important of these criteria is communication cost. In our studies ε = 0,
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thus communication is only conducted during resolution. Communication cost
is therefore defined as the ratio of the total number of elements sent to the
coordinator during resolution over the number of update tuples in bits. The
number of elements sent per resolution (EPR) in bits can be formally expressed
with the following equation:

EPR = |F| · |N ′| · (32 + 32 + 64) + |N ′| · 64 + |F| · |N ′| · (32 + 64) . (1)

In the equation |F| is defined as the total number of broken constraints and
|N ′| is the total number of monitoring nodes involved in resolution, where N ′ =
N − {N0}. In our equation we assumed adjustment factors and local thresholds
require 64 bits and all other elements (including update tuples) require 32 bits.

Finally, two measures were used to compare the quality of the output between
FIDS and a comparable method, Top-K Monitoring. The two measures used
were precision and recall. Precision is defined as the percentage of correct items
contained in the entire output. Similarly, recall is defined as the percentage of
correct elements contained in the output to the number of total possible correct
items [6]. It is sometimes helpful to combine these two measurements into a single
value. This value gives the overall quality of the output and can be expressed in
the following equation:

F-Measure =
2PR

(P + R)
. (2)

The equation used is derived from [15], and weighs precision and recall
equally. In evaluation of FIDS we did not allow approximation in frequency
counts, and since our method is explicitly designed for monitoring frequent items
F-Measure = 1.

5.3 Experimental Results

The first experiments focused on the communication cost of our algorithm under
varying parameter settings. The two parameters varied were the support value
and coordinator allocation parameter F0. In Fig. 2 and Fig. 3 we see the results
using the two data sets described in Sect. 5.1. The results show that the effects of
F0 differ between the two data sets. We see for the Berkeley TCP data set that
the allocation parameter increases communication cost as its value is increased.
The opposite occurs with the World Cup data set. The communication cost is
reduced with increased value.

As was seen in the analysis of Top-K Monitoring by Olston and Babcock
[3], when F0 > 0 reallocation can prevent reaching the expensive Phase 3 as
often but constraints are broken more frequently. This same scenario occurs
with FIDS. Since only four monitors were used with the Berkeley TCP data
set, however, Phase 3 required little communication and the weaker constraints
could not offset this cost. From these results we therefore recommend that F0

be assigned a small value (< 0.3) when there are few nodes and a large value
when there are many.
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Fig. 3. Communication cost for ’98 World Cup data set

Both results show that by raising the support parameter, communication cost
decreases. This is not surprising as the average size of the frequent item set de-
creases with increased support. An anomaly did occur, however, in the World
Cup data set when s = 0.008. In this scenario it is assumed that the frequent item
set becomes more dynamic. This demonstrates the need for the data to main-
tain a degree of stability in order for the purposed method to significantly reduce
communication cost. Also examined were effects of two reallocation heuristics on
communication cost. These two methods are proportional allocation and even
allocation, both defined in [3]. The experiments indicated no significant differ-
ences between the two methods. Therefore, even allocation was selected for our
experiments.

Our second experiment focused on how communication cost accumulated over
time to reach it final value. The World Cup data set was used for this experiment



FIDS: Monitoring Frequent Items over Distributed Data Streams 475

but execution was terminated after 500,000 update tuples. The coordinator re-
allocation parameter was set to F0 = 0, with the support value varying. To
determine how communication accumulates we fixed the number of update tu-
ples to the total number in the data set (about 20 million) in our communication
cost formula. The results of this experiment are shown in Fig. 4. We see that
a sudden spike in of communication cost occurs during the first 100,000 tuples,
afterwards, only steadily rising to reach its final value. Extending the initializa-
tion phase to account for these tuples will reduce the communication cost of our
results significantly.
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Fig. 4. Communication cost over time for ’98 World Cup data set

5.4 Comparison

We compared FIDS to Top-K Monitoring observing differences in communication
cost and in the output quality. Although Top-K Monitoring was not originally
designed for finding frequent items, it can be used for this purpose. Assigning
K = 1

s will guarantee that all frequent items are found. Setting K to a smaller
value may introduce false negatives, but will likely increase the overall quality of
the output and reduce communication cost. The effects of various settings of K
were therefore examined to optimize the performance of Top-K Monitoring for
our comparisons. Our experiments used the Berkeley TCP data set, measuring
the recall and precision every 100,000 updates and then averaging the results.
These two measures where then combined with equal weight in an F-measure.
The results from Fig. 5 show that a good degree of quality can be obtained by
assigning K appropriately, and will serve as a guide for selecting its value in our
comparisons.

With the observation described above, we then began comparing Top-K Mon-
itoring with our modifications. In all our experiments the Berkeley TCP data
set was used. The results of our comparison are summarized in Table 1. Both
methods were tested with three support values and the F0 allocation setting
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which yielded lowest communication cost was selected. The K which yielded op-
timal output quality was selected for Top-K Monitoring. This value is indicated
in parenthesis under the support column.

We see that in all scenarios communication cost is lower with our method.
The differences between the two are greatest when a low support value is used.
There was, however, one test scenario where Top-K Monitoring out-performed.
When K = 5 communication cost is reduced by 0.1% when compared to FIDS
using s = 0.02, but the quality of the output is less than optimal.

Although K was selected to yield optimal output quality, the results show it
still yielded lower quality when compared to our method. This is not surprising
though, since Top-K Monitoring was not specifically designed for finding fre-
quent items (as defined in Sect. 2.2). It must be noted that when introducing
error in frequency counts to reduce memory, the quality of the output of our
modification will also decrease. These results, however, depend on the counting
method selected.

For a final comparison, the scalability of each method was tested using the
Berkeley TCP data set with varying number of monitoring nodes. The support
value selected for these tests was s = 0.01 or K = 20. The results indicated that
both methods grow linearly with the number of nodes, but the Top-k Monitoring
method grew roughly four times faster.

We have seen in the previous paragraphs that FIDS out performs Top-K Mon-
itoring in both communication cost and quality of results. FIDS is also compa-
rable with methods [4] and [11] introduced in Sect. 3. The method in [4] can
only provide the approximate frequent item set and relies on a generous error
tolerance to significantly reduce communication cost. FIDS, however, can pro-
vide the exact frequent item set while yielding comparable communication cost.
Finally, the method in [11] can only provide the frequent item set periodically. It
is likely that the set will change before it is recomputed. FIDS can detect these
changes when the periodic nature of [11] can not allow.
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Table 1. Comparison of two approaches

Method Support Communication Cost F-Measure

Top-K Monitoring 0.005 (K = 50) 143.34% 95.37%
0.01 (K = 20) 46.66% 96.07%
0.02 (K = 10) 12.20% 83.62%

FIDS 0.005 7.43% 100.00%
0.01 7.03% 100.00%
0.02 2.70% 100.00%

6 Conclusions

In this paper we studied the problem of continuously reporting frequent items
over the union of distributed data streams. In our study we determined that
Top-K Monitoring introduced in [3] can be used to solve this problem effectively.
However, modifications to this algorithm can be made which can both reduce
communication cost and improve the overall quality of the results.

Finally in an attempt to reduce memory requirements for both methods, we
introduced a generic solution to prevent adjustment factor invalidation. This so-
lution allows memory constraints on the nodes to be bounded but may introduce
additional communication overhead. Future work consists of implementing this
protocol and measuring the additional cost obtained. Additionally, a requirement
for many monitoring tasks is to weigh newer occurrences more than older ones
or to expire old item occurrences. Recency in frequency counts should be exam-
ined to determine the communication overhead required. This will also require
new methods to reduce memory requirements while not invalidating adjustment
factor invariants.
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Abstract. Mining maximal frequent itemsets in data streams is more difficult 
than mining them in static databases for the huge, high-speed and continuous 
characteristics of data streams. In this paper, we propose a novel one-pass 
algorithm called FpMFI-DS, which mines all maximal frequent itemsets in 
Landmark windows or Sliding windows in data streams based on FP-Tree. A 
new structure of FP-Tree is designed for storing all transactions in Landmark 
windows or Sliding windows in data streams. To improve the efficiency of the 
algorithm, a new pruning technique, extension support equivalency pruning 
(ESEquivPS), is imported to it. The experiments show that our algorithm is 
efficient and scalable. It is suitable for mining MFIs both in static database and 
in data streams. 

Keywords: maximal frequent itemsets, data streams, FP-Tree, pruning 
technique. 

1   Introduction 

In recent years, data streams have been researched widely. The technologies about 
data streams are used in many applications. Examples of such applications include 
financial applications, network monitoring, security, telecommunications data 
management, web applications, manufacturing, sensor networks, and others [1]. In a 
word, a data stream is a real-time, continuous, ordered (implicitly by arrival time or 
explicitly by timestamp) sequence of items. The algorithm for mining data streams 
must be single-pass algorithm for the characters of data streams. 

The time and space efficiency of data mining in data streams is more significant 
than that in static databases. The number of maximal frequent itemsets and closed 
frequent itemsets is much less than that of frequent itemsets. So, mining MFIs or CFIs 
can get better time and space efficiency than mining frequent itemsets. Mining 
maximal frequent itemsets [2][3][4] and mining closed frequent itemsets [5][6] in data 
streams is to be a tendency. 

Many good algorithms have been developed for mining maximal frequent itemsets 
in static database, for example MaxMiner [7], DepthProject [8], GenMax [9], AFOPT 
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[10], FPMax* [11], FpMFI [12]. All these algorithms need to scan database more than 
one pass. They are not suitable for mining maximal frequent itemsets in data streams. 
In all these algorithms, FpMFI is almost fastest for all tested database [12]. The 
algorithm needs to scan database two passes. We reconstruct the algorithm to a 
single-pass one, called FpMFI-DS. To mining maximal frequent itemsets in 
Landmark windows or Sliding windows in data streams, we must store all 
transactions in the window. For Sliding windows, when transaction is out of window, 
it should be deleted from window. To satisfy with these requires, we designed a new 
structure of FP-Tree, which can store all transactions in Landmark windows or 
Sliding windows, and when transaction is out of Sliding windows, it can be deleted. 
To reduce search space of FpMFI-DS, a new pruning technique, extension support 
equivalency pruning, is added in the algorithm. The efficiency of FpMFI-DS is close 
to FPMax* and a little lower than that of FpMFI. 

2   Preliminaries and Related Work 

This section will formally describe the MFIs mining problem in data streams and the 
set enumeration tree that represents search space. Also the related works will be 
introduced in this section. 

2.1   Problem Revisit 

Let },...,,{ 21 miiiI =  be a set of m distinct elements, called items. A subset IX ⊆  is 

called an itemset. An itemset with k items is called a k-itemset. Each transaction t is a 
set of items in I. A data stream, ),...,[ 21 NtttDS = , is an infinite sequence of 

transaction. For all transactions in a given window W over data stream, the support of 
an itemset X, denoted as sup(X)= / | |xD W , where 

xD  is the number of transactions 

in which X occurs as a subset and | |W  is the width of the window. For a given  

threshold min_sup in the range of [0,1], itemset X is frequent if sup(X) ≥ min_sup. If 
sup(X) ≥ min_sup and for any XY ⊇ , we have sup(Y) < min_sup, then X is called 
maximal frequent itemset in window W. 

From the definitions above, we can see that the selection of window W is important 
for an itemset X be a frequent one. In paper [13], three windows models are 
introduced, including landmark windows, sliding windows, damped windows. In this 
paper, we focus on mining the set of all maximal frequent itemsets in landmark 
windows or in sliding windows over data streams. 

To get all maximal frequent itemsets, one method is to enumerate all itemsets that 
maybe be maximal frequent itemsets, count the support of these itemsets and decide 
whether they are maximal frequent itemsets. In paper [14], Rymon presents the 
concept of generic set enumeration tree search framework. The enumeration tree is a 
virtual tree. It is just used to illustrate how sets of items are to be completely 
enumerated in a search problem. The tree could be traversed depth-first, breadth-first, 
or even best-first as directed by some heuristic. In the domain of data mining, the set 
enumeration tree is also named after search space tree. 
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But, when the number of different items is big, the algorithm that searches all 
search space may suffer from the problem of combinatorial explosion. So the key to 
an efficient set-enumeration search is the pruning techniques that are applied to 
remove entire branches from consideration [7]. The two most often used pruning 
techniques, subset infrequency pruning and superset frequency pruning, are based on 
following two lemmas: 

Lemma 1. A restricted subset of any frequent itemset is not a maximal frequent 
itemset.  

Lemma 2. A subset of any frequent itemset is a frequent itemset, and a superset of 
any infrequent itemset is not a frequent itemset. 

For example, for the dataset in the left, Fig. 1 shows the corresponding search 
space tree. In Fig. 1, we suppose I = {a,b,c,d,e} is sorted in firm lexicographic order. 
The pruning techniques used in the tree includes subset infrequency pruning (SIP) and 
superset frequency pruning (SFP). The root of the tree represents the empty itemset, 
and the nodes at level k contain the k-itemsets. The itemset associated with each node, 
n, will be referred as the node’s head(n). The possible extensions of the itemset is 
denoted as con_tail(n), which is the set of items after the last item of head(n). The 
frequent extensions denoted as fre_tail(n) is the set of items that can be appended to 
head(n) to build the longer frequent itemsets. In depth-first traversal of the tree, 
fre_tail(n) contains only the frequent extensions of n. The itemset associated with 
each children node of node n is build by appended one of fre_tail(n) to head (n). As 
example in Fig. 1, suppose node n is associated with {b}, then head(n) = {b} and 
con_tail(n) = {c,d,e}. For {e} is not frequent, fre_tail(n) = {c,d}. The children node 
of n, {b,c}, is build by appending c from fre_tail(n) to {b}.  

The problem of MFI mining can be thought as to find a border of the tree, all the 
elements above the border are frequent itemsets, and others are not. All MFIs are near 
the border. As our examples in Fig. 1, itemsets in solid rectangle are MFIs.  
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Fig. 1. The set enumeration tree built based on the dataset in the left 

2.2   Related Work 

Some one-pass algorithms for mining maximal frequent itemsets in data streams have 
been developed, for example, DSM-MFI [3], estDec+ [4] and INSTANT [2]. They 
are all approximate algorithm.  
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DSM-MFI mines the set of all maximal frequent itemsets in landmark windows 
over data streams. The algorithm is composed of four steps. First, it reads a window 
of transactions from the buffer in main memory, and sorts the items of transactions in 
a lexicographical order. Second, it constructs and maintains the in-memory summary 
data structure, SFI-forest. Third, it prunes the infrequent information from the 
summary data structure. Fourth, it searches the maximal frequent itemsets from the 
current summary data structure. Steps 1 and 2 are performed in sequence for a new 
incoming basic window. Steps 3 and 4 are usually performed periodically or when it 
is needed [3]. The experiment results in paper [3] show that DSM-MFI is efficient on 
both sparse and dense datasets, and scalable to very long data streams. 

estDec+ use a structure, CP-tree (Compressed-prefix tree), to keep the supports of 
all the significant itemsets in main memory. It also consists of four phases: parameter 
updating, node restructuring, itemset insertion, and frequent itemset selection. When a 
new transaction Tk in a data stream Dk-1 is generated, these phases except the frequent 
itemset selection phase are performed in sequence. The frequent itemset selection 
phase is performed only when the up-to-date result set of frequent or maximal 
frequent itemsets is requested. The main advantage of the algorithm is that it adopts 
an adaptive memory utilization scheme to maximize the mining accuracy for confined 
memory space at all times [4]. 

INSTANT mines maximal frequent itemsequences from data streams based on a 
new mining theory provided by paper [2]. Where an itemsequence is an ordered list of 
items. The main advantage of the algorithm is that it is an online algorithm, which can 
directly display current maximal frequent itemsequences while they are generated. 
But the time efficiency of the algorithm is affected. 

Paper [12] proposed a MFIs mining algorithm, FpMFI. It is an improvement over 
FPMax* and outperforms FPMax* by 40% averagely. They all need to scan dataset 
two passes. In this paper, we propose an algorithm, FpMFI-DS, based on FpMFI. 
FpMFI-DS only need to scan dataset one pass. It is a one-pass and exact algorithm.  

3   FpMFI-DS 

In this section, FpMFI-DS algorithm is introduced in details. 

3.1   The Construction of FP-Tree in FpMFI-DS 

To construct FP-Tree, it usually needs to scan database two passes. The first scan of 
database derives a list of frequent items. Then it sorts the items by frequency 
descending order. The list of items in header table and each path of prefix-tree will 
follow this order. The second scan of database gets every transaction and inserts all 
frequent items in transaction into FP-Tree. During the process of mining, to construct 
the FP-Tree of node n, it needs to scan the head(n)’s conditional pattern base that 
comes from FP-tree of its parent node two passes[15]. Paper [11] improves this 
approach by adopting an array-based technique. It only needs to scan head(n)’s 
conditional pattern base one pass. 

In FpMFI-DS, to implement one-pass algorithm, we must complete the 
construction of FP-Tree by only scanning dataset one-pass.  
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To mine maximal frequent itemsets in sliding windows, the FP-Tree of root should 
contain all the transactions in the Sliding windows. When a transaction comes to 
window, all items of the transaction are inserted to the FP-Tree of root, whether they 
are frequent or infrequent. And when a transaction is out of window, it should be 
deleted from the FP-Tree of root. So except for header table and prefix-tree, the FP-
Tree of root in FpMFI-DS also contains a tidlist, a list of IDs of the transactions in 
window. Every item in the tidlist is composed of an ID of transaction (an integer) and 
a pointer to the last node of the transaction in the FP-Tree of root. For an one-pass 
algorithm, when adding the transaction to the root FP-Tree, we can’t get the 
frequencies of items in all transactions. So the order of the items in the FP-Tree of 
root can’t be frequency descending order. In FpMFI-DS, the order of the items in the 
FP-Tree of root is based on the lexicographical order of the items. When a transaction 
comes to window, all items of the transaction are inserted to FP-Tree by 
lexicographical order. When a transaction is out of window, the last item of the 
transaction in the FP-Tree of root can be found through the transaction’s ID and 
pointer in the tidlist, then it is deleted from root FP-Tree. To mine maximal frequent 
itemsets in landmark windows, we only need to fixup beginning side of the window. 

The subsequent FP-Tree during the process of mining is similar to that in FPMFI. 
To improve the effectiveness of superset frequency pruning, the order of the items in 
the subsequent FP-Tree also adopts frequency descending order.  

For example, for data streams and window width in the left, Fig. 2 shows the  
FP-tree of root built based on transactions in first window. The FP-tree includes five 
transactions. 
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Fig. 2. The FP-Tree of root built based on transactions in first window 
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Fig. 3 shows the FP-tree of root built based on transactions in second window. In 
the FP-Tree, the first transaction is deleted from it and the sixth transaction is inserted 
into it.   

When min_sup is 2, Fig. 4 shows the FP-tree of itemset {f} during the process of 
mining for data in Figure 3. The items order in Fig. 2 and Fig. 3 is based on the 
lexicographical order of the items, while that in Fig. 4 is based on frequency 
descending order. 
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Fig. 4. The FP-Tree of itemset {f} during the process of mining for data in Figure 2 

3.2   Pruning Techniques 

FpMFI uses three pruning techniques, including subset infrequency pruning, superset 
frequency pruning, parent equivalence pruning. The efficiency of these pruning 
techniques is high for item ordering policy used by it. In FpMFI, since the item order 
in the FP-Tree of root is based on the lexicographical order, the item order in first 
level of search space tree has to accord with it. If only use these pruning techniques, 
the efficiency is lower than that in FpMFI, especially for dense dataset. For example, 
for dataset MUSHROOM, search space of FpMFI-DS is about as twice as that of 
FpMFI. So, Excepting for these pruning techniques, another pruning technique, 
ESEquivPS, is adopted by FpMFI-DS. ESEquivPS is firstly present in paper [16]. The 
pruning technique is described as following:  

Supposed p and n are nodes in search space tree, and n is a children node of p. Let 
item )(_ ptailfrex ∈  and )(_ ntailfrex ∈ . If sup(head(p) ∪ {x}) = 

sup(head(n) ∪ {x}), then any offspring node of p that contains item x and is in the 
right of node n can be pruned.  

Proof. Let j be an item associated with node n, X and Y are itemsets associated with 
head(p) ∪ {x} and head(n) ∪ {x}, respectively. Since sup(X) = sup(Y), then any 
transaction T containing X must contains item j. Thus, the maximal frequent itemset 
containing X must containing j.In the p-subtree, the itemsets, which associated with 
the nodes that contain item x and are in the right of node n, must not contain item j for 
the character of search space tree. So, they can’t be maximal frequent itemsets.  

From experiments, we found that if the nodes in every level of search space tree is 
in the order of frequency descending, then the pruning technique is invalidity. 
Fortunately, the first level of search space tree in FpMFI-DS is in the lexicographical 
order of the items. Then we can use it for the first level of search space tree. The 
experiments show that for the dense datasets, MUSHROOM, the size of search space 
can be trimmed off by about 30%. 
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3.3   Algorithm FpMFI-DS 

Fig. 5 shows algorithm FpMFI-DS. Though the items order in the first level of search 
space tree of FpMFI-DS is different from that of FpMFI, the mining procedure of the 
two algorithms is similar. The difference is that algorithm FpMFI-DS adopts the new 
pruning technique, ESEquivPS (line 4 to line 6). 

PROCEDURE: FpMFI-DS Algorithm
INPUT: 
    n: a node in search space tree that associated with a head itemset h, 
        a FP-tree, a MFI-tree,  and an array
    M-trees: MFI-trees of all ancestor nodes of n
1  For each item x from end to beginning in header of n.FP-tree 
2    h'=h∪{x} //h' identifies n'
3    if (sup(h')<min_sup)   continue
4    if (ESEquivPS_cheching(x))   continue
5    if (Thirdlevel() and sup({x})= = sup(h'))
6       insert true into respective position of a bool array for ESEquivPS
7    if x is not the end item of the header
8       if(superset_checking(con_tail(n'),n.MFI-tree)  return
9       if(superset_checking(con_tail(n'),n.FP-tree)
10        insert h'∪con_tail(n') into M-trees return
11    if n.array is not null
12         fre_tail(n') = {frequent items for x in n.array}
13    else
14       fre_tail(n') = {frequent items in conditional pattern base of h' }
15    PeIs = {items whose count equal to the support of h'}
16    if(superset_checking(fre_tail(n'), n. MFI-tree)
17       if the number of items before x in the header is | fre_tail(n')| 
18             return
19      else continue
20    if(superset_checking(fre_tail(n'), n. FP-tree)
21       insert h'∪fre_tail(n') into M-trees
22       if the number of items before x in the header is | fre_tail(n')|   
23           return
24       insert fre_tail(n') into n.MFI-tree continue
25    h' = h'∪PeIs , fre_tail(n’) = fre_tail(n’) – PeIs
26    sort the items in fre_tail(n')
27    construct the FP-tree of n'
28    if(superset_checking(fre_tail(n'), n'. FP-tree)
29      insert h'∪fre_tail(n') into M-trees
30      if the number of items before x in theheader is | fre_tail(n')|
31         return
32      insert fre_tail(n') into n.MFI-tree continue
33    construct the MFI-tree of n'
34    M-trees = M-trees∪{n.MFI-tree}

35    call FpMFI-DS(n' ,M-trees)  

Fig. 5. Algorithm FpMFI-DS 

To implement ESEquivPS, we use an integer array store the support of items in 
first level of search space tree and use a bool array denote if the respective items 
satisfy with the condition of ESEquivPS. When exploring the third level of search 
space tree, we check if the support of respective item equals to that of the  
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corresponding item in the first level of search space tree. If they are, the 
corresponding position in the bool array is set true (line 5 to line 6). Before exploring 
any node in the search space tree, we first chech if the corresponding position in the 
bool array is set to true. If it is, the node should be cut off (line 4).  

4   Experimental Evaluations 

All the experiments were conducted with a 2.4 GHZ Pentium IV with 512 MB of 
DDR memory running a Redhat Linux 9.0 operation system. We implemented the 
code of FpMFI-DS by c++ and compiled it with the g++ 2.96 compiler. 

4.1   Performance Comparisons 

To evaluate the performance of FpMFI-DS, we have compared its performance with a 
representative algorithm, INSTANT [2]. The advantage of INSTANT is that it can 
directly display current maximal frequent itemsequence (not itemsets) while they are 
generated. For sparse datasets, the efficiency of the algorithm is high. But for dense 
datasets, the efficiency is not very good. The code of INSTANT was provided by its 
authors, Guojun Mao, etc. It is also written in c++ and compiled by g++ 2.96 
compiler. 

The dataset in the experiment is T20I5D10K, a dataset generated by IBM data 
generator [17]. The synthetic dataset T20I5D10K has average transaction size T of 20 
items and the average size of frequent itemset I of 5 items and the number of 
transactions D of 10K. It is a sparse dataset.  
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Fig. 6. Performance comparisons with INSTANT 

Fig. 6 shows the result of performance comparisons for dataset T20I5D10K. The 
efficiency of FpMFI-DS is much higher than that of INSTANT.  For the dataset, 
maximal total time of FpMFI-DS is lower than 2 seconds.  

We also compared its performance with some multi-pass algorithms. Fig. 7 and 
Fig. 8 show the result of performance comparisons with algorithm FPMax*. The 
dataset in Fig. 7 is T20I5D100K, a sparse dataset and the dataset in Fig. 7 is  
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MUSHROOM, a dense dataset. The source code of algorithm FPMax* and dataset 
MUSHROOM were downloaded from [18]. Algorithm FPMax* is written in c++ and 
compiled with the g++ 2.96 compiler, too.  
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Fig. 7. Performance comparisons with FPMax* for dataset T20I5D100K 
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Fig. 8. Performance comparisons with FPMax* for dataset MUSHROOM 

From Fig. 7 and Fig. 8, we can see that for dense dataset, the efficiency of FpMFI-
DS is a little higher than that of FPMax*, and for sparse dataset, the efficiency of 
FpMFI-DS is a little lower than that of FPMax*. We can draw a conclusion that the 
efficiency of two algorithms is close. The result in paper [11] shows that the 
efficiency of FPMax* is very high. So the efficiency of FpMFI-DS is good, too.  

4.2   Scalability of FpMFI-DS 

To evaluate the scalability of FpMFI-DS, we use four huge datasets, T10I5D1000K, 
T10I5D2000K, T10I5D3000K, T10I5D4000K. The minimum support is 0.1%. From 
Fig. 9, we can see that the execution time grows smoothly as the dataset size increases 
from 1,000K to 4,000K. The algorithm has scalability. 



488 F. Ao et al. 

0

20

40

60

80

100

120

1000k 2000k 3000k 4000k

The Number of Transactions (k)

T
ot

al
 T

im
e 

(s
) FpMFI-DS

 

Fig. 9. The scalability of FpMFI-DS 

5   Conclusions 

In this paper, we proposed a novel one-pass algorithm, FpMFI-DS, which mines all 
set of the maximal frequent itemsets in data streams. To mine MFIs both in landmark 
windows and in sliding windows, we adopt a new structure of FP-Tree. To reduce the 
search space of the algorithm, a new pruning technique, ESEquivPS, is adopted by the 
algorithm. The experiments show that the algorithm is efficient on both sparse and 
dense datasets, and has good scalability.  
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Abstract. We propose a novel approach which extracts consistent
(100% confident) rules and builds a classifier with them. Recently, asso-
ciative classifiers which utilize association rules have been widely studied.
Indeed, the associative classifiers often outperform the traditional clas-
sifiers. In this case, it is important to collect high quality (association)
rules. Many algorithms find only high support rules, because decreas-
ing the minimum support to be satisfied is computationally demanding.
However, it may be effective to collect low support but high confidence
rules. Therefore, we propose an algorithm that produces a wide variety
of 100% confident rules including low support rules. To achieve this goal,
we adopt a specific-to-general rule searching strategy, in contrast to the
previous many approaches. Our experimental results show that the pro-
posed method achieves higher accuracies in several datasets taken from
UCI machine learning repository.

1 Introduction

As a new classification approach, associative classifiers which integrate associa-
tion mining and classification have been widely studied [1,2,3,4,5,6]. According
to several reports [1,2,3], higher classification accuracies are achieved by them
compared with traditional classifiers such as C4.5 [7] and RIPPER [8]. The
associative classifiers assume that the input dataset is a set of itemsets, that
is, a transaction database (table-form databases are converted into transaction
databases beforehand). Here, a transaction is a set of items. The pioneer of as-
sociative classification, CBA [1], builds a classifier from a set of association rules
obtained by an association rule mining technique such as Apriori [9]. Here, only
high quality rules are selected to construct a ruleset (a classifier).

In many mining techniques, the rules are found in a general-to-specific man-
ner. In this case, starting from null item, the number of items used in a temporal
rule increases during the rule narrowing process. Note that a rule with null item
in the condition part explains every instance. In such an approach, we collect
items such that a rule maintains a minimum support. Such a minimum-support
requirement brings the efficiency of the mining process. One of challenging issues
is to extract more rules having lower supports (below a required minimum sup-
port) but sufficiently high confidences to improve association classifiers. So far,
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this was not carried out due to the impractical increase of computational cost
that is largely consumed to examine many combinations of items while keeping
a small value of support. We resolve this difficulty by taking the reverse strategy,
that is, a specific-to-general approach. In this approach, confidence is given more
priority than support. As a result, regardless their values of support, more rules
with a high confidence can be found efficiently.

The individual instance in a database can be regarded as a 100% confident
rule itself, while the support value of the corresponding rule is quite low (maybe
such a rule explains only one instance). They are most specific rules. We merge
some instances by taking intersection (the set of common items among them),
to make them more general. This merging is made only when the consistency
(explaining instances of one class only) is kept. As a consequence, we obtain the
most general rules, in the set inclusion relation, keeping consistency. In addition,
such rules are expected to be highly interpretable because they represent some
unique patterns for a class.

In the proposed method, we consider a combination of instances instead of
a combination of items. The latter is a popular approach in the previous min-
ing techniques. This exchange enables us to have an algorithm that runs in a
linear order with respect to the number of items. Although the naive version
of the proposed algorithm requires a combinatorial number of examinations of
instances, we can reduce the computational cost by its randomized version.

Our contribution in this paper is summarized as follows: 1) a novel rule ex-
traction method is proposed as an extension of the subclass method [10,11,12],
by which a transaction database consisting of itemsets is now be able to be dealt
with, 2) a classification rule combining obtained consistent (association) rules is
proposed, and 3) the proposed classifier achieves higher classification accuracies
in several datasets compared with the competitors, such as C4.5 [7], RIPPER [8],
CBA [1], CMAR [2] and CPAR [3].

2 Methodology

Our method is built on the basis of subclass method [10,11,12] which is a classifier
only applicable to numerical attributes. We expand the framework of the subclass
method so as to deal with transaction databases.

2.1 Problem Setting

Let D be a dataset, I = {I1, I2, . . . , In} be the set of all items in D, and C =
{c1, c2, . . . , ck} be the set of the class labels. We refer to a pair of an itemset
X ⊆ I and a class label c ∈ C as an instance, that is, (X, c) ∈ D denotes an
instance. For simplicity, we also call X instance. A rule is written as r : A → c,
where A ⊆ I and c ∈ C. If A ⊆ X is held, we say that “itemset A covers
(explains) instance X” or “rule r : A→ c covers (explains) instance X”. Let Dc

denotes the family of the itemsets of the instances whose class label is c (positive
instances), and let Dc be the itemsets of the rest of the instances (negative
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instances). If itemset A does not cover any instance of Dc, then we say that
itemset A is consistent (to Dc). For an itemset family S, let R(S) denote the set
of the common items seen in every instance of S, that is, R(S) =

⋂
X∈S X .

For class c, subclass S is defined as a subset of Dc that satisfies:

1. R(S) is consistent to Dc.
2. S is maximal, that is, no instance in Dc can be added to S while keeping

consistency of R(S).

Here, R(S) is called Consistent Common Itemset (CCI) in class c (∈ C) if S is
a subclass of C. The family of the subclasses for class c is denoted by Ωc and
the set of all subclasses for all c ∈ C is denoted by Ω. Then, what we want to
obtain is the family of subclasses Ω, as well as CCIs (R(S)’s for S ∈ Ω) for all
the classes.

Table 1. An illustrative dataset

ID X c

1 {sunny, hot, humid, windless} not-play
2 {sunny, hot, humid, windy} not-play
3 {rainy, cool, normal-humidity, windy} not-play
4 {sunny, mild-temperature, humid, windless} not-play
5 {rainy, mild-temperature, humid, windy} not-play

6 {overcast, hot, humid, windless} play
7 {rainy, mild-temperature, humid, windless} play
8 {rainy, cool, normal-humidity, windless} play
9 {overcast, cool, normal-humidity, windy} play
10 {sunny, cool, normal-humidity, windless} play
11 {rainy, mild-temperature, normal-humidity, windless} play
12 {sunny, mild-temperature, normal-humidity, windy} play
13 {overcast, mild-temperature, humid, windy} play
14 {overcast, hot, normal-humidity, windless} play

An example: For an illustrative dataset (Table 1), there are two CCIs for
not-play class and five CCIs for play class as follows:

1. {sunny, humid} → not-play
2. {rainy, windy} → not-play
3. {windless, normal-humidity} → play
4. {overcast} → play
5. {rainy, windless} → play
6. {mild-temperature, normal-humidity} → play
7. {sunny, normal-humidity} → play

Here, each rule corresponds to one subclass (e.g., #1 rule corresponds to S =
{1, 2, 4}) and each itemset in the condition part shows one CCI (e.g., #1 rule
shows R(S) = {sunny, humid}). The procedure of finding these rules will be
described in the following section.
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2.2 Rule Extraction Procedure

We employ a randomized algorithm [10] to obtain a subset Ω′ ⊆ Ω to econo-
mize the computational cost of enumerating all members of Ω. According to a
theoretical analysis [10], the suboptimal subclass family Ω′ (a subset of CCIs)
obtained by this randomized algorithm with a fixed iteration number, has the
following properties:

1. Larger subclasses (CCIs with larger coverage rates) are more probable to be
found than smaller subclasses in the earlier iterations (the concrete procedure
is given later).

2. Characteristic subclasses are also found in a higher probability. Here, a “char-
acteristic subclass” is one that includes instances covered by only a few
subclasses.

Now let us explain the algorithm briefly. The algorithm executes multiple
scans for all the positive instances. The scanning is repeated t times for a given
t. Each scan is made according to a random order, that is, a permutation σ =
(σ1, σ2, . . . , σ|Dc|) randomly chosen. According to order σ, we merge the positive
instances into S (initialized by the empty set), as long as the addition does
not break the consistency of R(S). Otherwise we skip the positive instance.
Because of the fact that the merging process does not make R(S) larger than
before in the set inclusion relation and the fact that every positive instances are
necessarily scanned, it is guaranteed that one subclass is necessarily found by
one scan. Here, the dataset is assumed to be consistent in the weakest sense,
that is, all the positive instances themselves are assumed to be consistent to the
negative instances. We may obtain the same subclass for different σ’s. Thus, the
duplicated subclasses are removed in the last stage.

If we test all possible |Dc|! permutations, we can obtain the complete family
of the subclasses, Ω. However, even for not so large |Dc|, this number becomes
infeasible. So we terminate the iteration by a given iteration number t. As de-
scribed already, we can expect that almost all important subclasses are found
even for a moderate iteration number, say t = 1, 000, for each target class. For
the constant t, the randomized algorithm runs in O(|Dc||Dc||I|) for each target
class, where |Dc| is the number of instances in a target class, |Dc| is the number
of instances in a non-target class and |I| is the number of the items.

An example: Let us show how to obtain a rule “{sunny, humid} → not-play”
from Table 1.

Assume that the permutation is decided as σ = (1, 2, 3, 4, 5).

1. We put instance #1 into S. Here, S = {1} and R(S) = {sunny, hot, humid,
windless}. This R(S) is consistent, because no negative instance (Nos. 6–14)
has all the items at once.

2. Putting instance #2 into S, R(S) becomes {sunny, hot, humid}. R(S) is still
consistent.
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3. If we put instance #3 into S, R(S) becomes ∅, and the consistency is broken
(because ∅ is included in any itemset). So we skip instance #3 for merging.

4. When we put instance #4 into S, R(S) becomes {sunny, humid}. The con-
sistency of the itemset is still kept.

5. If we put instance #5 into S, R(S) becomes {humid}, then the consistency
is again broken because the negative instances #6, #7 and #13 includes
{humid}. So we skip this instance too.

Through this scan we obtain a CCI: R(S) = {sunny, humid} with the corre-
sponding of S = {1, 2, 4}.

Note that another scan with a different σ produces another rule such as
“{rainy, windy} → not-play” for σ = (3, 5, 1, 2, 4). Repeating scanning with
all 120(= 5!) permutations, we have all the subclasses for class not-play. In this
example, there are only two subclasses for class not-play and five subclasses for
class play.

2.3 Classification

Once CCIs have been obtained for each class, we can proceed to build a classifier.
We design a classifier relying on the following belief (note that all the rules are
100% confident to the training set):

1. CCIs with larger coverage rates are more reliable.
2. Class assignment by a larger number of rules is more reliable.

In order to satisfy both of them, we introduce a score to a rule and sum up
the scores of rules that explain a given instance. Here, the score of a rule is
measured by its coverage rate of positive instances. According to the highest
score, we assign a class to the instance.

Let us assume that a (class unknown) instance is given with an itemset A.
Next, let SA,c be the set of subclasses S (∈ Ωc) whose R(S) is included in A,
that is,

SA,c = {S ∈ Ωc | R(S) ⊆ A}.

Then our classification rule is written as

ĉ = arg max
c∈C

∑

S∈SA,c

|S|
|Dc|

.

Here, |S|/|Dc| (0 < |S|/|Dc| ≤ 1) is the score of subclass S (or equivalently
CCI R(S)). Note that the score can be obtained without additional calculation
during the rule generalization process by counting the number of the instances
put into the subclass.

A tie-break is resolved by assigning it to the class with the largest population.
If none of the rules is matched, the largest class is also chosen. We call this
combining way the “Consistent Common Itemsets Classifier (shortly, CCIC)”
approach.
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3 Experimental Results

We conducted an experiment to evaluate the performance of CCIC approach. Ac-
cording to the literature [1,2,3], we used 26 datasets from UCI Machine Learning
Repository [13]. The summary of datasets is shown in Table 2.

Every instance in the dataset is converted into an itemset. Numerical at-
tributes are discretized into 5-bins, respectively. Here, the intervals of specifying
the bins are taken so as to make the populations of the attribute values be equal
in each attribute. The number of the iterations is set to t = 1, 000. The nega-
tive instances that break the consistency of any positive instance are removed
in order to keep the consistency of the dataset in a weakest sense.

We also present the accuracies of C4.5 [7], RIPPER [8], CBA [1], CMAR [2]
and CPAR [3] as competitors. All of their results are copied from reference [3].
This is allowed because the experimental conditions are almost the same.

Table 2. Summary of the datasets. Three missing rates are: 1) the rate of attributes
including missing values, 2) the rate of instances including missing values, and 3) the
rate of missing values to the all values

dataset #attr. #attr. #attr. #inst. #classes major class missing missing missing
(cat.) (num.) (%) (attr.) (inst.) (val.)

anneal 38 32 6 898 6 0.76 0.763 1.000 0.650
austra 14 8 6 690 2 0.56 - - -
auto 25 10 15 205 7 0.33 0.280 0.224 0.012
breast 10 - 10 699 2 0.66 0.100 0.023 0.002
cleve 13 7 6 303 2 0.54 0.154 0.023 0.002
crx 15 9 6 690 2 0.56 0.467 0.054 0.006
diabetes 8 - 8 768 2 0.65 - - -
german 20 13 7 1000 2 0.70 - - -
glass 9 - 9 214 7 0.36 - - -
heart 13 - 13 270 2 0.56 - - -
hepati 19 13 6 155 2 0.79 0.789 0.484 0.057
horse 22 15 7 368 2 0.63 0.955 0.981 0.238
hypo 25 18 7 3163 2 0.95 0.320 0.999 0.067
iono 34 - 34 351 2 0.64 - - -
iris 4 - 4 150 3 0.33 - - -
labor 16 8 8 57 2 0.65 1.000 0.982 0.357
led7 7 7 - 3200 10 0.11 - - -
lymph 18 15 3 148 4 0.55 - - -
pima 8 - 8 768 2 0.65 - - -
sick 29 22 7 2800 2 0.94 0.276 1.000 0.056
sonar 60 - 60 208 2 0.53 - - -
tic-tac 9 9 - 958 2 0.65 - - -
vehicle 18 - 18 846 4 0.26 - - -
waveform 21 - 21 5000 3 0.34 - - -
wine 13 - 13 178 3 0.40 - - -
zoo 16 16 - 101 7 0.41 - - -
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Table 3. Accuracy comparison. The best score is indicated in boldface. The column
#CCIs is the average number of CCIs found by the proposed method. The column
%drop is the avarage ratio of test instances that are not matched with any rule. The
bottom row #bests shows the number of the datasets to which the method recorded
the best accuracy.

dataset C4.5 RIPPER CBA CMAR CPAR CCIC #CCIs %drop

anneal 0.948 0.958 0.979 0.973 0.984 0.966 128.0 0.02
austra 0.847 0.873 0.849 0.861 0.862 0.877 714.6 0.00
auto 0.801 0.728 0.783 0.781 0.820 0.787 334.2 0.07
breast 0.950 0.951 0.963 0.964 0.960 0.964 266.5 0.00
cleve 0.782 0.822 0.828 0.822 0.815 0.828 584.9 0.00
crx 0.849 0.849 0.847 0.849 0.857 0.875 716.8 0.00
diabetes 0.742 0.747 0.745 0.758 0.751 0.723 833.6 0.01
german 0.723 0.698 0.734 0.749 0.734 0.748 1635.6 0.00
glass 0.687 0.691 0.739 0.701 0.744 0.705 193.0 0.09
heart 0.808 0.807 0.819 0.822 0.826 0.837 548.0 0.00
hepati 0.806 0.767 0.818 0.805 0.794 0.827 270.3 0.01
horse 0.826 0.848 0.821 0.826 0.842 0.845 601.3 0.02
hypo 0.992 0.989 0.989 0.984 0.981 0.972 183.4 0.01
iono 0.900 0.912 0.923 0.915 0.926 0.923 999.7 0.00
iris 0.953 0.940 0.947 0.940 0.947 0.933 35.0 0.02
labor 0.793 0.840 0.863 0.897 0.847 0.833 77.0 0.04
led7 0.735 0.697 0.719 0.725 0.736 0.729 153.1 0.00
lymph 0.735 0.790 0.778 0.831 0.823 0.810 260.6 0.05
pima 0.755 0.731 0.729 0.751 0.738 0.732 829.2 0.01
sick 0.985 0.977 0.970 0.975 0.968 0.941 438.1 0.01
sonar 0.702 0.784 0.775 0.794 0.793 0.836 1655.2 0.00
tic-tac 0.994 0.980 0.996 0.992 0.986 0.989 268.9 0.00
vehicle 0.726 0.627 0.687 0.688 0.695 0.703 1715.2 0.00
waveform 0.781 0.760 0.800 0.832 0.809 0.802 2944.7 0.02
wine 0.927 0.916 0.950 0.950 0.955 0.961 407.8 0.00
zoo 0.922 0.881 0.968 0.971 0.951 0.891 8.8 0.11

average 0.8334 0.8293 0.8469 0.8522 0.8517 0.8476

#bests 5 1 2 7 5 8

Table 3 shows the summary of the results. The average accuracy is obtained
by 10-fold cross validation. The average accuracy of CCIC was the third, while
CCIC was best in the number of wins (8/26). As can be seen from those results,
the performance of CCIC approach depends on the problems. So, let us examine
the reasons why such a dependency happens.

Since CCIC uses only the consistent rules, the accuracy goes down if a suffi-
cient number of consistent rules are not found. Even if many consistent rules are
found, their coverage rates might be low, that is, the consistent rules may explain
only a part of positive instances. In this case, an instance that is not matched by
any rule is assigned to the largest population class. This is one possible reason
of the performance degradation. Indeed, in some datasets such as auto, glass and
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zoo, more than 5% of the test instances were not matched with any rule (see
column %drop in Table 3). This is a limitation of the proposed method relying
only on the consistent rules. On the other hand, as seen in Table 3, CCIC shows
better performance for datasets for which many consistent rules are found and
almost all instances are covered by them. Adopting consistency-relaxed rules
might improve the accuracy.

Another possible reason of the degradation of performance is that some CCIs
fit too tightly to the training instances. In this case, a CCI may contain redun-
dant items not contributable for classification. Such a situation occurs when the
CCI is obtained from only a small number of positive instances. This problem
may be resolved by removing such redundant items from the obtained CCIs.

Discretization of numerical values also affects the performance [14]. The op-
timal setting of bins is one of difficult problems. If we adopt too many bins,
the common items among instances decreases. On the other hand, with too less
bins, some instances would not be distinguished from the others. With a better
selection of bins, the performance may be improved for datasets that include
many numerical attributes such as diabetes, iris, and waveform.

All the experiments were performed on a 2GHz Intel Core Duo PC (running
Mac OS X 10.4.8) with 1GB main memory. The implementation was not mul-
tithreaded. The most time-consuming dataset was waveform, its execution time
of the 10-fold cross validation (including both training and test) was about 395
seconds. However, the algorithm is easily parallelized to reduce the running time
with less overheads because each iteration is completely independent.

4 Conclusion

A novel classifier called CCIC has been proposed. The CCIC combines many
consistent itemsets for classification. So, it is an associative classifier. The exper-
imental results showed that CCIC outperformed the others in several datasets.

In the future works, we will consider more different combining ways of the
consistent rules and adoption of consistency-relaxed rules to improve the perfor-
mance of the classifier. In addition, rule selection should be considered in order
to reduce redundancy of the ruleset.
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Abstract. We develop a metric ψ, based upon the RAND index, for the 
comparison and evaluation of dimensionality reduction techniques.  This metric 
is designed to test the preservation of neighborhood structure in derived lower 
dimensional configurations.  We use a customer information data set to show 
how ψ  can be used to compare dimensionality reduction methods, tune method 
parameters, and choose solutions when methods have a local optimum problem.  
We show that ψ  is highly negatively correlated with an alienation coefficient K 
that is designed to test the recovery of relative distances.  In general a method 
with a good value of ψ also has a good value of K.  However the monotonic 
regression used by Nonmetric MDS produces solutions with good values of ψ, 
but poor values of K. 

1   Introduction 

Dimensionality reduction techniques have great applicability within marketing. Uses 
of these techniques include product placement, perceptual and cognitive mapping, and 
brand switching. These techniques have been developed in distinct traditions; those of 
psychometrics, statistics, and computer science. Most marketing applications of 
dimensionality reduction can be placed within the psychometric tradition though 
computer science based data-mining techniques have been applied to the large data 
sets typically found in customer systems. 

There has been little work on the evaluation and comparison of dimensionality 
reduction techniques. We start by describing some Multidimensional Scaling based 
techniques referenced in the marketing literature; we then review some techniques 
from the data mining literature. We describe methods for evaluating the recovery of 
lower dimensional solutions and then develop and test metrics based upon the 
Agreement Rate described in [1,2,3]. 

2   Overview of Multidimensional Scaling 

Multidimensional Scaling (MDS) can be described as a set of techniques for 
interpreting similarity or dissimilarity data. Typically MDS is used to take data of 
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high dimensionality and reduce the data to a more interpretable form, often but not 
always in one, two, or three dimensions. MDS has been applied to a large number of 
problems throughout the social and behavioral sciences, as well as to some extent in 
the biological and physical sciences.  The technique has its basis in the mathematical 
psychology literature; the initial breakthrough paper is [40]. [37] introduces classical 
metric scaling, which is based on a singular value decomposition of a derived “scalar 
products” matrix. [33] shows that lower dimensional solutions can be extracted from 
ordinal scale, or “nonmetric” data, where the underlying latent dimensionality is 
lower than the observed dimensionality of the data. [21,22] introduce a computational 
algorithm inspired by the ideas of [33], which was specifically designed to handle 
such nonmetric proximity data. 

3   Applications of Dimensionality Reduction in Marketing 

Most marketing research involving dimensionality reduction has used some variant of 
MDS in order to produce perceptual maps. [17] gives a survey of perceptual and 
preference mapping uses of MDS, including product and brand mapping. [13] 
describes unfolding methodology for fitting choice data, [15] provides an analysis of 
brand switching data, [4] combines latent class choice models and latent class MDS 
models for empirical analysis of scanner data, and [13] develops spatial MDS models 
that account for the effects of brand size and buying power in consumer brand 
attraction. [26] combines econometric and MDS methodologies and uses panel data to 
create a time series of joint space maps, and then uses these maps in marketing 
response models. Other approaches for creating perceptual maps include corres-
pondence analysis [9] and attribute elicitation mapping [35]. 

More recently, data warehousing has created huge repositories of customer data.  
Data mining researchers, typically with roots in computer science, have developed 
techniques for interpreting these data. Among these techniques are those of dimen-
sionality reduction, which are typically used to create visual maps of customers, 
products, and services. [16] provides an overview of common dimensionality 
reduction techniques, including those based upon the psychometric and statistical 
literature, such as Principal Components Analysis (PCA), factor analysis, and MDS, 
and those from the data mining literature, such as kernel/nonlinear PCA, and self-
organizing maps [20], which are often extensions of the original psychometric/ 
statistical techniques. Other nonlinear dimensionality reduction techniques include 
PARAMAP [1,2,34],  Isomap [36], and Local Linear Embedding (LLE) [31]. 

PARAMAP optimizes an index of continuity rather than a traditional MDS 
distance function.  Isomap uses a shortest path algorithm to build geodesic distances 
and then performs classical MDS, as per the method usually associated with [37,38].  
LLE produces a global lower dimensional embedding of higher dimensional data, 
while preserving local neighborhoods. Recent dimensionality reduction techniques 
include an incremental version of Isomap [24], diffusion maps and coarse-graining 
[23], and semi-definite programming techniques [39]. [18] shows that many of these 
techniques, including Isomap and  LLE, can be described as Kernel PCA algorithms 
using Gram matrices. 
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4   Agreement Rate Metric (AR) 

In order to test how well a lower dimensional configuration is related to a higher 
dimensional configuration, we need some sort of metric to compare the two solutions.  
This is not easy as most dimensionality reduction techniques maximize some measure 
of congruence, which is itself just such a metric, thus we need to develop a metric that 
in some sense is independent of the one on which the solution is based. The 
performance of dimensionality reduction techniques will depend on the structure of 
the data being transformed, the size of the data, and the number of target dimensions.  
We need some appropriate metrics to test the various dimensionality reduction 
techniques appropriate for a range of different problems.  When describing these 
comparison metrics, we will consider a higher dimensional solution A, and a derived 
lower dimensional solution B. Though we concentrate on comparing a higher 
dimensional solution with a derived lower dimensional solution, we could also 
compare two lower dimensional derived solutions. 

Correlation based metrics have been used to compare configurations.  [6] shows 
that the standard Pearson product moment correlation of data and obtained distances 
is inappropriate given that distances plus an additive constant are not invariant under a 
linear transformation; the distances will not correspond to distances among the points 
in the same configuration as the original untransformed distances.  Also, the distances 
may not continue to satisfy the triangle inequality under such a transformation. 

The paper goes on to describe a congruence coefficient. Take solution configure-
tions A and B, with n points in each configuration. Calculate each of the n(n-1)/2 
symmetric distances between solution points for both A and B; the resulting 
congruence coefficient is given in (1). 

0.5( 1) / 2 ( 1) / 2 ( 1) / 2

1 1 1

n n n n n n

Ai Bi Ai Bi
i i i

c d d d d
− − −

= = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (1) 

The coefficient is transformed into the alienation coefficient (2) in order to give a 
greater spread of values. 

( )0.521K c= −  (2) 

[5] uses the alienation coefficient to test the recovery of perceptual maps, and also 
used a series of Monte Carlo tests on data sets of known dimensionality to test the 
recovery of true dimensionality for different variants of MDS.  It should be noted that 
when testing with real life data sets, the intrinsic dimensionality of the data is 
unknown, through some techniques have been developed for estimating the intrinsic 
dimensionality of Manifolds [25,29]. 

[2] performs a comparison of two nonlinear dimensionality reduction techniques, 
PARAMAP and Isomap.  To compare the solutions, Variance Accounted For (VAF) 
and the Agreement Rate (AR) were used. VAF can be used when testing different 
error perturbed versions of a base configuration.  AR is more general, and can be used 
to compare any two solutions that have the same number of points. It is upon this idea 
of agreement rate that we will base our metrics for testing the recovery of lower 
dimensional solutions. 
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4.1   Description of the Agreement Rate Metric (AR) 

The Agreement Rate metric is based upon the RAND index for comparing Clustering 
configurations [19,30] and was developed for comparing embeddings of sets of 
objects in [1,2]. Take solution configurations A and B.  For each configuration, 
calculate the k nearest neighbors for each solution point i. For both A and B, we 
calculate the distances between each pair of items.  This gives us derived n(n-1)/2 
item distance matrices dA and dB.  The k nearest neighbors for item i are the items 
with one of the k lowest values of dAij (for solution A) and the k lowest values of dBij 
(for solution B), where i≠j.  Denote the neighborhoods for item i as Ai and Bi.  Let ai 
represent the number of points in both Ai and Bi for point i.  The agreement rate AR is 
equal to (3), where k is the size of neighborhood used and n is the number of points. 

1

1 n

i
i

AR a
kn =

= ∑  (3) 

4.2   Extension of the Agreement Rate Metric 

Previous comparison work using AR such as [1,2,3] has tended to choose an arbitrary 
value of the neighborhood size k, based upon getting a good spread of results.   Given 
n points in the embedding, we can calculate AR for neighborhood sizes from 1 to n-1.  
A neighborhood of size n-1 will include every other solution point, giving a value of 
AR=1.  By results derived by [19] we can test the deviation from randomness using a 
chi-squared statistic.  We assume however that our lower dimensional solution is non-
randomly related to the higher dimensional one, so we want some relative measure of 
how good the solution is. 

Theorem 1. AR is not monotonic with respect to k. 

Proof. If k=n-1 then AR=1. Unless there is perfect agreement then for some k<n-1 
then AR<1 so k does not decrease monotonically. Assume that AR increases 
monotonically with respect to k; we will give a simple counter example. Consider a 
higher dimensional solution: 

d(1,2)=1, d(1,3)=5, d(1,4)=6, d(2,3)=4.2 d(3,4) = 1.5  

Consider also, the following derived one dimensional solution: 

d(1,2)=0.9, d(1,3)=5.7, d(1,4)=5.3, d(3,4) = 0.4  

Denoting AR(k) as the agreement rate for a neighborhood of size k we have: 

AR(1)=1, `AR(2)=0.75 ,AR(3)=1 

A problem with using a specific value of k is it may favor one technique over 
another. Of course we can calculate the mean and standard deviation across all values 
of k. Taking the mean value of AR across all values of k gives us a measure of the 
performance of a technique over different neighborhood sizes, but for large values of 
neighborhood size AR has little discrimination value. We propose a statistic that takes 
account of the expected value of AR if the lower dimensional configuration is 
completely random. We need to find the proportion of the possible items in the 
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neighborhood that agree. There are n-1 items in the potential neighborhoods of a 
single point in a lower dimensional solution. Given a neighborhood of size k and a 
randomly generated lower dimensional solution, each item in the higher dimensional 
neighborhood has a probability of being in the lower dimensional neighborhood of 
p(A)=k/(n-1). Taking the expected value of AR over all n item configurations this 
gives the expected agreement rate for neighborhood size k in (4). 
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Where E[R(K)] is the expected agreement rate if neighborhood agreement is random, 
k is the size of the neighborhood, and n is the number of items in the solutions.  We 
can define the improvement in agreement rate over that what would be expected from 
a random solution as AR(k)-E[R(K)]. If a solution is a perfect lower dimensional 
reconstruction then AR(k)=1 for all values of k.  Thus the maximum possible increase 
in agreement rate from the E[R(K)] is 1- E[R(K)]. We define the statistic ψ  as the 
sum of AR(k)-E[R(K)] over k, divided by the sum of the 1- E[R(K)]. over k, where k 
ranges from k=1 to k=n-1. The statistic is defined for n>2, as n=1 gives a 
neighborhood size of 0 and a denominator in (5) of 0.  Negative values of ψ  may 
occur if the solution is a worse representation than what would be expected randomly.  
A similar statistic, called the adjusted agreement rate, was developed in [1,2,3].  This 
statistic was defined for a single value of k and used an experimental rather than 
theoretical value for E[R(K)]. 
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We can also calculate ψ  for subsets of neighborhood size.  We may wish to 
concentrate on a certain subset of k values as in (6).  For example we may wish to 
choose the lowest 10% of k values, in order to check the preservation of local 
neighborhood structure. 
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We could also use a function to proportionally weight the agreement for different 
values of k as in (7). 
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Theorem 2. { }( )sup 1f kψ =  and is independent of f(k). 

Proof. For each k, 0 ( ) 1AR k≤ ≤ . As AR(k) is linear and in the numerator, 

{ }( )sup f kψ  occurs when ( ) 1AR k =  for each k. 
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Theorem 3. If f(k)=c for some constant c then { } ( )( )inf
2f k
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minimized for each value of k.  If 1 2≤ ≤ ⎢ ⎥⎣ ⎦k n  then { }min ( ) 0AR k = .  If 2 >⎢ ⎥⎣ ⎦n k  

then { }min ( )AR k  depends on the size of the overlap between the two solutions; the 

overlaps are of the form 1,3,5,…..,n-1 when n is even, and 2,4,…..,n-1 when n is odd. 
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An example of a linear function, concentrating on preservation of local 
neighborhoods, is given in (10). 
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When comparing any two techniques it may also be useful to check the sums of 
differences between the agreement rates.  We split the differences into upper and 
lower sums. 
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If the lower sum is 0 then 1 2( ) ( )AR k AR k≥  for all values of k and we can say a 

solution completely dominates another solution. 
In Figure 1 we give an example of dimensionality reduction of 500 points, with 

two techniques, Metric and Nonmetric MDS. ψ is a discrete analogue of the area 
between the “Random” line and the technique line divided by the total area above the 
“Random” line.  The upper and lower sums are the analogues of the areas between the 
two technique lines.  For this example, ψ(Metric)=0.545, ψ(Nonmetric)=0.582, 
U(Metric,Nonmetric)=0.623, and U(Nonmetric,Metric)=9.67.  We can see from this 
figure how ψ is a discrete analogue to the integral of the area between the random line 
and the solution line divided by the total area above the random line. 
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Fig. 1. Agreement Rate over k 

5   Experimentation 

In Section 1 we gave an overview of a selection of dimensionality reduction 
techniques.  Many of the papers referenced test the lower dimensional embedding of 
certain standard data sets, such as the Swiss roll, sphere, 4-dimensional torus, and face 
data. The MDS marketing based papers tend to use psychometric data, where the 
variables are of uniform measurement type, and there are no missing observations. 

In our experiments we aim to show how the metrics described in the previous 
section can be used, and how some common dimensionality reduction techniques 
perform on a set of realistic data of the type typically found in corporate customer 
information systems. The main thrust of this paper is to develop ideas on the 
comparison of dimensionality reduction techniques; we do not intend to provide a 
comparison of all of the techniques previously mentioned.  

We tested our data with Principal Components Analysis (PCA), Metric MDS, 
Nonmetric MDS, and Isomap.  PCA, and Isomap are guaranteed to give globally 
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optimal solutions.  The MDS procedures may have local optima, so multiple runs may 
be required to get a globally optimal solution.  Isomap requires some parameter 
tuning for the size of the neighborhoods.  We can therefore demonstrate the use of our 
metrics in both parameter tuning and in selecting solutions for the techniques with 
non-global optima. 

PCA is based upon a simple Singular Value Decomposition (SVD). Let us define 
Y as the higher dimensional data matrix with m rows (items) and n columns 
(dimensions).  We find the scalar product A=YY’ and then decompose Y as Y=UΣV’, 
where U and V are orthogonal matrices of eigenvectors and Σ is a matrix of singular 
values. The derived lower dimensional solution is given as X=UΣ1/2. PCA is 
equivalent to performing Classical Torgerson MDS (CMDS) on a proximity matrix 
calculated from the data using Euclidean distances.  Isomap uses the same SVD, but 
the standard matrix Y is replaced by Y*, where Y* contains geodesic distances 
(approximated by shortest path distances between points).  A dynamic programming 
approach, such as Distikra’s algorithm, is used to calculate the shortest paths. 

The Metric and Nonmetric MDS techniques used both optimize the STRESS 
function given in (12). 

( )2
2ˆ

ij ij ij
i j i j

STRESS d d d= −∑∑ ∑∑  (12) 

Where ( )ˆ Fij ijd δ=  is the best least squares approximation (attainable by 

transforming ijδ  by a function in the class of functions F) to the distance in the low 

dimensional space (dij). For Nonmetric MDS the transformation is monotone, and F is 
the best least squares monotonic function (non-decreasing if δij is a dissimilarity 
measure).  For Metric MDS F is a simple linear regression function. 

5.1   Description of Data 

In our experiments we mapped customer information from a specific data set. This 
was the “Churn Modeling Tournament” set supplied by the Duke University 
TerraData center. The dataset consists of 250,000 customer records. Each customer 
record has approximately 168 fields. These fields detail information such as 
demographics, customer purchase records, and behavioral information such as 
attitudes towards products. The data are of different measurement levels, for example 
there are purchase values (ratio), satisfaction ratings (interval or ordinal), and 
demographic groups (nominal). 

The data are of variable quality, with some data values missing. The data set is 
introduced in [28]; we ignored the value of churn and concentrate on mapping 
customers based upon the other customer variables. 

5.2   Experimentation and Results 

We designed an experiment to test the recovery of lower dimensional solutions using 
the methods and data set previously described. As we present a marketing application, 
and dimensionality reduction in marketing is used to create a parsimonious visual 
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representation of data, we restricted our lower dimensional derived solutions to 1, 2, 
and 3 dimensions. Out of the approximately 250,000 items, we randomly selected 
records for mapping. We selected 20 files (sets of records), each with 500 items.  
Most computational algorithms for dimensionality reduction techniques require ratio 
or interval scale data with no missing values.  We ran the EM algorithm [12] to 
estimate parameters. We then took a single imputation of the data (if we were looking 
to hypothesize about the data then multiple imputations would be more appropriate, 
but we are only looking for a higher dimensional representation to transform). 

We then used correspondence analysis [27] to transform the nominal and ordinal 
dimensions into a smaller number of ratio scale dimensions (taking all dimensions 
accounting for more than 1% of the variance). The resulting data set had 132 ratio and 
interval scale dimensions and no missing data. As the techniques tested utilize the 
Euclidean distance between items, some sort of transformation was required, so we 
standardized the variables to mean zero and variance one. 

For each combination of technique and data set tested we produced lower 
dimensional representations in 1, 2, and 3 dimensions. We calculated the metric ψ  
across all values of k from 1 to n-1 (499). We also calculated the metric for each of the 
quartiles of the numbers 1-499 and calculated the alienation rate given in (1) and (2). 
We prescribed a randomized design (where File is the blocking random factor) and used 
MANOVA to analyze the experiments. The model specification is given in (13). 

ijk i j k i j ijkX METHOD DIM FILE METHOD DIM ε= + + + × +  (13) 

Though the main purpose of the paper is not to compare dimensionality reduction 
algorithms, we tried to make our comparisons as fair as possible.  We are testing a 
globally optimal technique (PCA), a globally optimal technique with parameter tuning 
(Isomap), and techniques utilizing gradient based optimization (Metric MDS and 
Nonmetric MDS).  We did some initial experimentation to approximate the average 
time per run for each of the techniques.  All techniques were tested using MATLAB 
implementations on a PC with a 2.8MHz Pentium 4 Zeon processor and 1GB of 
memory. As the value of k for Isomap could possibly affect the running time of the 
algorithm we averaged across values of k taken at intervals of 20, from 20 to 480. The 
average run times for each technique are given in Table 1. 

Table 1.  

Technique Solution Time (seconds) 

PCA 1.1 

Isomap 13.0 

Metric MDS 379.1 

Nonmetric MDS 2029.1 

We can see that one run of either Metric MDS or Nonmetric MDS takes many 
times the running time of the Isomap algorithm. To try and keep the comparison 
reasonable, when testing we took one run of the iterative MDS procedures (using the 
CMDS solution as a starting solution), and for Isomap we found the best solution 
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from testing 30 different values of k (equidistantly spaced between 1 and n-1). This 
equates to running Isomap for approximately the same time as for Metric MDS. We 
can see from Table 1 that the Monotonic Regression used for Nonmetric MDS gives 
running times that are a factor of 7 to 8 greater than the running times for the standard 
linear regression function fitted by Metric MDS. 

 

Fig. 2. Estimated Marginal Means of MetricAll 

 

Fig. 3. Estimated Marginal Means of MetricQ1 

We neglect to show the MANOVA table for the sake of brevity, but using Wilks’s 
Lambda and an F-test based upon this statistic, all factors except one were significant 
with p<0.001. The one exception was the effect of the interaction term between 
method and dimension on the alienation dependent variable. Confidence intervals for 
the dependent variables are given in Table 2 and graphs of the estimated marginal 
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means of the dependent variables are given in Figures 2-5. Figures are given for 
alienation; ψ across all k, ψ for the first quartile values of k, and ψ for the fourth 
quartile values of k. 

 

Fig. 4. Estimated Marginal Means of MetricQ4 

 

Fig. 5. Estimated Marginal Means of Alienation 

We summarize the results of the Bonferroni post-hoc test for ψ  across all values of 
k (MetricAll in table 2) in (14) and for the alienation metric in (15). We denote a>b to 
mean that technique “a” achieves a better result than “b”, so the order of the 
alienation metric is reversed. 

PCA<Isomap<Metric MDS<Nonmetric MDS (14) 



510 S. France and D. Carroll 

Nonmetric MDS<PCA<Isomap<Metric MDS (15) 

We can glean additional information from the quartile results and the graphs of 
marginal means given in Table 2.  We can see that the performance of Metric MDS is 
better than Nonmetric MDS for quartile 1, but as the value of k increases Nonmetric 
MDS shows increasing advantage over Metric MDS.  From Figure 2, we can see that 
this pattern is repeated across dimensions.  Metric MDS is therefore strong at 
preserving local neighborhood structure, but weaker at preserving order for larger 
distances.  Isomap does not perform as well as Metric MDS on either the agreement 
rate metric or the alienation metric, but the use of geodesic distances gives a bump to 
performance over PCA when reducing to 2 and 3 dimensional solutions. 

Table 2. Confidence Intervals 

Metric Method     Mean   95% LB 95% UB 
AMAll  Isomap     0.425  0.419  0.431 
       MetricMDS  0.499  0.493  0.506 
       NMetricMDS 0.535  0.529  0.541 
       PCA        0.402  0.395  0.408 
AMQ1   Isomap     0.266  0.261  0.272 
       MetricMDS  0.322  0.316  0.327 
       NMetricMDS 0.319  0.314  0.324 
       PCA        0.225  0.220  0.230 
AMQ2   Isomap     0.490  0.483  0.498 
       MetricMDS  0.572  0.564  0.580 
       NMetricMDS 0.614  0.607  0.622 
       PCA        0.463  0.455  0.471 
AMQ3   Isomap     0.686  0.678  0.694 
       MetricMDS  0.774  0.766  0.783 
       NMetricMDS 0.884  0.875  0.892 
       PCA        0.688  0.680  0.697 
Alien. Isomap     0.304  0.283  0.325 
       MetricMDS  0.199  0.178  0.220 
       NMetricMDS 0.724  0.703  0.745 
       PCA        0.404  0.383  0.425 

The results throw up a paradox; why does Nonmetric MDS perform so well in 
terms of preserving neighborhoods but badly on the distance based alienation metric? 
Figures 8-9 show the solutions for the first random file for both 1 and 2 dimensions. 
We can see that the solutions for Nonmetric MDS have many points very closely 
clumped together, with small distances between points. These very small distances, 
which almost lead to a degenerate solution, when multiplied lead to a small numerator 
in (1) and thus a small congruence coefficient and large alienation coefficient. This 
lack of distance preservation is due to the monotonic regression only enforcing 
monotonicity in the distances, but not preserving relative distances. This illustrates a 
problem of using a nonmetric technique with essentially metric data. The resulting 
maps preserve distance order well, but the clumping of points makes the solutions 
almost impossible to interpret visually. [7] found similar degeneracy problems when 
visualizing Nonmetric MDS solutions. Comparing the other three techniques, all have 
more of a spread of points than Nonmetric MDS, giving more interpretable 
visualization. We can see that for PCA and Isomap, most of the variation is in the first 
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dimension; this is to be expected given the nature of the SVD, finding maximal 
variance for each dimension in turn. For the Metric MDS solution the variance is 
much more evenly divided between dimensions, despite the fact that there may be 
some bias from the initial CMDS solution. 

We explore the relationship between the agreement metrics by calculating the 
pairwise Pearson product moment correlation coefficient between the results for each 
pair of metrics. The correlation coefficients and significance values are summarized 
in Table 3. There is significant positive correlation between all the quartiles of the 
agreement metric, with p=0.000 for all pairwise comparisons. This suggests that for 
the techniques tested, good recovery of local neighborhoods implies good recovery of 
more distant neighborhoods. 

Table 3. Correlations: All Methods 

       AMAll  AMQ1   AMQ2   AMQ3   AMQ4 
AMQ1   0.946 
       0.000 
AMQ2   0.995  0.920 
       0.000  0.000 
AMQ3   0.915  0.738  0.934 
       0.000  0.000  0.000 
AMQ4   0.835  0.638  0.848  0.954 
       0.000  0.000  0.000  0.000 
Alien. 0.026 -0.152  0.047  0.252  0.321 
       0.652  0.008  0.418  0.000  0.000 
AM=Agreement Metric 
Alien.=Alienation Metric 
Cell Contents: Pearson correlation 
               P-Value 

Table 3 shows no significant correlation exists between the agreement rate metric 
ψ  and the alienation coefficient K. However, the correlations are skewed by the 
results for Nonmetric MDS. In Table 4 we calculate correlations between metric 
values for results and exclude Nonmetric MDS. All correlations are significant to 
p<0.001. 

Table 4. Correlations: All Methods EXCEPT Nonmetric MDS 

    AMAll  AMQ1   AMQ2   AMQ3   AMQ4 
AMQ1   0.959 
       0.000 
AMQ2   0.993  0.929 
       0.000  0.000 
AMQ3   0.915  0.769  0.937 
       0.000  0.000  0.000 
AMQ4   0.848  0.703  0.856  0.929 
       0.000  0.000  0.000  0.000 
Alien.-0.667 -0.667 -0.658 -0.569 -0.584 
       0.000  0.000  0.000  0.000  0.000 

We also calculate the correlations between metrics solely for the Nonmetric MDS 
runs. These correlations are given in Table 5. We find that the metrics are still 
significantly correlated, but this relationship is weaker (p=0.025) than for the other 
techniques. 
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Table 5. Correlations: Nonmetric MDS 

       AMAll  AMQ1   AMQ2   AMQ3   AMQ4 
AMQ1   0.995 
       0.000 
AMQ2   0.997  0.984 
       0.000  0.000 
AMQ3   0.964  0.934  0.974 
       0.000  0.000  0.000 
AMQ4   0.924  0.902  0.925  0.935 
       0.000  0.000  0.000  0.000 
Alien.-0.289 -0.276 -0.299 -0.301 -0.279 
       0.025  0.033  0.020  0.019  0.031 

Overall we have found that there is negative correlation between the neighborhood 
based metric ψ  and the distance based alienation coefficient K. Generally, when 
comparing different techniques the higher the value of ψ  for a technique, then the 
lower the value of K. This relationship holds for PCA, Isomap, and Metric MDS.  The 
relationship does not hold for Nonmetric MDS; this technique produces a very high 
value of the agreement metric, but a poor value of alienation.  This result shows that 
good values of ψ  do not necessarily guarantee a mapping which preserves distances 
and is easy to interpret. However using a combination of ψ  and K we can ensure 
solutions that preserve both neighborhood orderings and distances. 

Given the success of Metric MDS in producing visually appealing solutions with 
good values of ψ  and K for the CRM data tested, we decided to explore this 
technique further. As previously discussed the solution space produced by the 
STRESS function is non-convex, so any solution produced by the gradient based 
optimization procedure is not guaranteed to lead to a global optimum. The termination 
criterion set for the algorithm is STRESS<0.00001, so it is not possible to choose 
from random solutions based upon the value of STRESS. 

For one of our test problems, we ran the Metric MDS algorithm 100 times.  Table 6 
summarizes how well the run with the CMDS starting point compares to the random 
solutions.  This run is not guaranteed to be optimal, but for all metrics gives a solution 
within the top decile of the random solutions.   

Table 6. Ranking of solution from CMDS start when combined with 100 random starts 

Dimensions Evaluation 
Techniques 1 2 3 
Metric All 1 3 1 
Metric Q1 1 3 9 
Metric Q2 1 3 3 
Metric Q3 1 4 7 
Metric Q4 1 3 9 
Alienation 1 2 1 



 Development of an Agreement Metric Based Upon the RAND Index 513 

Figures 6 and 7 show the normal curves for ψ  and K respectively, separate curves 
are given for each dimension. We can see that the values of ψ  have a much larger 
standard deviation than the values of K, giving a larger spread of values. A 
combination of the normalized values from ψ  metrics and K can be used to select a 
solution based upon our desired solution characteristics.  
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Fig. 8. 2D Solutions: Top Row (PCA,Isomap), Second Row (Nonmetric MDS, Metric MDS) 
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Fig. 9. 1D Solutions: From Top to Bottom: PCA→Isomap→Nonmetric MDS→Metric MDS 

6   Conclusions and Future Work 

We have introduced a metric based upon neighborhood agreement rate (ψ), and have 
shown how ψ  can be used to help evaluate the performance of dimensionality 
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reduction techniques. From our experimentation we propose three possible uses for 
the metric; comparing dimensionality reduction techniques, tuning parameters, and 
for techniques with local optima, selecting solutions. 

We showed how ψ can be used to evaluate the reconstruction of local 
neighborhoods in lower dimensional solutions. We gave a typical marketing 
application, taking a set of customer data, and mapping consumers in 1, 2, and 3 
dimensions. For our application, we found that performance for ψ  correlates strongly 
with performance for the alienation coefficient K for metric measurement level based 
dimensionality reduction techniques, but that Nonmetric MDS performs strongly on 
the ψ measures and poorly on K. Thus ψ is a useful metric in evaluating lower 
dimensional solutions but must be used with care, particularly with techniques 
designed to measure rank order. To get an overall pattern of performance, ψ metrics 
may be combined with K. Future work on the metric could include developing a 
stronger theoretical basis for the statistic, possibly developing chi-squared tests based 
similar to those for the RAND index. 

The calculation of ψ  for large data sets could prove problematic.  The algorithm 
developed to calculate ψ is of order O(n3). It may be worthwhile taking many samples 
of a small number of points, and then using a technique such as the bootstrap in order 
to calculate confidence intervals for the statistic. 

In testing different dimensionality reduction methods on the customer data, 
Nonmetric MDS gave the best results for ψ, but produced solutions with points 
clumped together, giving poor visualization. Metric MDS gave strong all round 
results for both ψ  and K. Fitting of Metric MDS has been somewhat ignored in the 
literature; this may be because most MDS literature is in the realm of psychometrics, 
and most psychological data are regarded as ordinal scale data, for which only the 
rank orders are meaningful, thus leading to a concentration on Nonmetric MDS 
techniques. Future Metric MDS research could involve improving the efficiency of 
the optimization algorithm, and fitting different regression functions (possibly using 
local kernel techniques or splines) to the data.  

Isomap’s main advantage is the globally optimal solution and the quick running 
time. Isomap produces solutions with a significant improvement in the values of ψ  
and K from PCA. Isomap would prove very useful for larger scale data sets where the 
optimization of the Stress function would be computationally expensive. A major 
advantage of Isomap for customer information data sets is that the information will 
change rapidly, necessitating rapid updates of the lower dimensional solutions, and 
thus an efficient updating technique. Once the Isomap neighborhood parameter is 
tuned for a specific type of data then solutions can be rapidly created. [24] gives an 
algorithm for the rapid updating of Isomap solutions, given changes in the higher 
dimensional data. 

For all the methods tested, in order to visualize really large problems, memory 
storage for a distance matrix with n(n-1)/2 entries becomes a problem. Both Metric 
and Nonmetric MDS have local optimum problems. We showed how ψ  and K can be 
combined and used to select solutions based on certain criteria, e.g. preservation of 
local neighborhoods, or reconstruction of distances. Given that different solutions 
may be invariant under Procrustes rotation, calculation of ψ  may provide a quick way 
of finding similar solutions. 
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Abstract. Demand prediction plays a crucial role in advanced systems for sup-
ply chain management. Having a reliable estimation for a product’s future de-
mand is the basis for the respective systems. Various forecasting techniques 
have been developed, each one with its particular advantages and disadvantages 
compared to other approaches. This motivated the development of hybrid sys-
tems combining different techniques and their respective advantages. Based on 
a comparison of ARIMA models and neural networks we propose to combine 
these approaches to a sequential hybrid forecasting system. In our system the 
output from an ARIMA-type model is used as input for a neural network which 
tries to reproduce the original time series. The applications on time series repre-
senting daily product sales in a supermarket underline the excellent perform-
ance of the proposed system.  

Keywords: Neural Networks, ARIMA, Demand Forecasting, Hybrid Forecasts. 

1   Introduction  

In time series forecasting we have seen the development of many different techniques. 
Especially those belonging to the ARIMA family have been applied successfully in 
various applications. The recent development of data mining has led to methods that 
differ conceptually from the ARIMA-type, such as e.g. regression trees, support  
vector regression, and neural networks [Han, Kamber 2001]. Each one of these tech-
niques has its advantages and limitations compared to the others. Therefore, the  
development of hybrid forecasting systems combining two different methods was a 
natural consequence we could witness during recent years; see [Abraham et al. 2004].  

In this paper we propose a sequential hybrid forecasting system (SHFS) and show 
its application to predict daily sales data from a Chilean supermarket. The message 
from our work is twofold: First, the proposed SHFS gives excellent results among all 
considered approaches for the application we worked on. Second – and maybe even 
more important - the generic idea of combining an ARIMA model sequentially with a 
neural network offers huge potential in other areas as well and should be considered 
in future forecasting applications.  

Section 2 provides an overview on the state-of-the-art in hybrid forecasting mod-
els. Section 3 compares two techniques for time series prediction (ARIMA and neural 
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networks) and analyzes the respective strengths and weaknesses. Based on this analy-
sis we develop a sequential hybrid forecasting system in section 4. Its advantages 
compared to traditional forecasting approaches as well as to already established hy-
brid models are presented in section 5 by way of an application for demand forecast. 
Section 6 concludes this work and points at future developments.  

2   Overview on Hybrid Forecasting Systems  

Hybrid forecasting systems combine different methods in order to improve the fore-
casting quality compared to the respective single techniques. Assigning weights to 
each model’s forecast is one way to consolidate competing models into a single fore-
cast. Several surveys on literature related to forecast-combination show approaches to 
solve the practical problem of determining such weights; see e.g. [Clemen 1989].  

The forecasting literature contains also hybrid intelligent systems (HIS) where at 
least one so-called intelligent technique (e.g. neural network, fuzzy logic, genetic  
algorithm) is combined with another method. Such a HIS combines a neural network 
with fuzzy logic in order to model electricity demand [Abraham, Nath 2001]. This 
system outperformed pure neural networks as well as ARIMA models. Other forecast-
ing applications of neural networks have been proposed for inventory control result-
ing in huge cost savings [Bansal et al. 1998] [Reyes-Aldasoro et al. 1999].  

Additive hybrid forecasting systems (AHFS) combining ARIMA and neural net-
works have been used e.g. in [Zhang 2003] and [Aburto, Weber 2007] considering the 
original time series X(t) as a composition of two elements: the result from a linear 
model Y(t) and the non-linear part e(t) that cannot be modeled linearly as shown in 
the following equation: X(t) = Y(t) + e(t); see also [Donaldson, Kamstra 1996].  

This AHFS has been applied to the following three well-known data sets: the 
Wolf's sunspot data, the Canadian lynx data, and the British pound/US dollar ex-
change rate data; see [Zhang 2003]. It has been shown that combining dissimilar mod-
els gives better results since error variance is reduced. Fitting the ARIMA model first 
to the data decreases also the overfitting effect neural networks can produce. On the 
other hand, the capabilities of neural networks are not exploited in the best possible 
way since only the error is presented to the network. This critique led to the sequential 
hybrid forecasting system proposed in this paper (see section 4) where both models, 
ARIMA as well as neural networks “see” the entire original time series.  

3   Analysis and Comparison of ARIMA Models and Neural 
Networks  

We describe briefly ARIMA models and neural networks for time series  
forecasting in order to have a basis for the proposed sequential hybrid model. We also 
provide a comparative analysis of these two techniques which motivated their  
combination.  
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3.1   ARIMA Models 

Problems to predict time series have been solved mainly applying ARIMA  
models (Autoregressive Integrated Moving Average) proposed by [Box, Jenkins 
1976]. Let Xt be the observation of a time series at time t with a probability  
distribution f(Xt).  

A is a time series of n white noise observations with average zero and variance σ2
A  

B is the delay operator, i.e. BXt=Xt-1 and BAt=At-1 
∇=1-B is the differentiating operator, i.e. ∇Xt=(1-B)Xt =Xt-Xt-1 

An ARIMA process (p,d,q) is based on a series that has been differentiated d times, 
with p autoregressive terms and q mobile average terms. The respective equation is:  

tqt
d

p ABXB )())(( θμφ =−∇  (1) 

The result of these models is the real value μ and the parameter vectors qθ   

(moving average) and pφ  (autoregressive) that best fit the data [Box, Jenkins 1976]. 

The process can be generalized even more when incorporating seasonal elements. 

The seasonal differentiating operator is defined as: 
s

s B−=∇ 1 , where s is the sea-

sonal factor. Besides, the time series Xt can be explained by external variables or pre-
dictors (also called regressors). Based on these definitions, the most general model is 
expressed as SARIMAX (p,d,q) (sp,sd,sq) Y, where Y are the regressors. Finally, the 
general equation of the model is:  
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where )(BspΦ  is the sp seasonal autoregressive polynomial, )(BsqΘ  is the sq sea-

sonal mobile average polynomial and ci are the regressors’ coefficients.  

3.2   Neural Networks  

Neural networks are mathematical models that “learn” pattern from data and have 
proved to be very effective in order to solve classification and regression problems by 
handling non-linearity between input and output variables, being able to approximate 
any function under certain conditions [Hornik 1991]. Neural networks have per-
formed very well e.g. in forecasting stock exchange indexes [Kuo, Reitsch 1995] and 
corporative bonds [Moody 1994]. One of the most popular models among neural net-
works is the Multi Layer Perceptron (MLP), which is trained usually with the back-
propagation learning rule [Han, Kamber 2001].  

A forecasting system using an MLP requires two parameters if no external  
variables are used. The first one is k, which indicates the size of the time window to 
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be used as input. The second parameter is s, which is the number of intervals  
for which the time series is supposed to forecast in the future. The following figure 
presents a typical MLP-architecture used for time series forecasting with these  
parameters.  

 

Fig. 1. MLP network for time series forecasting using parameters k and s  

3.3   Comparing ARIMA and Neural Network Models  

Many publications compare ARIMA and neural network models, both theoretically 
[Dorffner 1996][Wan 1993] and empirically [Faraway, Chatfield 1998][Kuo, Reitsch 
1995]. According to [Dorffner 1996], the main limitation of ARIMA models is the 
linear relationship they assume between the independent and dependent variables. As 
[Wan 1993] states, MLP networks allow to model NARX processes, i.e. they are able 
to model autoregressive non-linear processes with exogenous variables.  

On the other hand, the ARIMA family of models has also many advantages  
over neural networks, such as the information provided by the model. Analyzing the 
respective regressors’ coefficients reveals the effect each independent variable has in 
relation to the dependent variable. Another disadvantage of neural networks is the 
high degree of freedom in their architecture. This implies several problems, such  
as e.g.: 

• In order to obtain reliable results, a large number of training examples is needed.  
• Having many weights can easily lead to overfitting ending up in local minima.  

The following table summarizes the most important aspects of this comparison. 
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Table 1. Comparison between ARIMA and MLP models  

ARIMA Neural Networks (MLP) 
Linear model: assumes certain behavior of 
the time series.  

Nonlinear model: more degrees of 
freedom for the model.  

The series has to be stationary.  Any time series can be analyzed.  
Requires a lot of interaction with the user. Requires less interaction with the user.  
The model provides insight and informa-
tion through its parameters.  

Model difficult to interpret (black 
box).  

No overfitting.  Overfitting is possible.  

4   A Sequential Hybrid Forecasting System (SHFS)  

Motivated by the above comparison we developed a sequential hybrid forecasting  
system (SHFS). The following observations led our development.  

• SARIMAX processes are powerful tools to detect linear structures in time  
series.  

• Neural networks, in particular a multilayer perceptron, have the capabilities of 
modeling non-linear relations between input and output vectors.  

• If, however, we restrict a neural network only to the error from a SARIMAX  
process (as in additive hybrid forecasting systems), we loose a lot of their predic-
tive power, because they do not “see” the entire time series, they “see” just the  
error.  

• Neural networks do not perform well, if they have to work on raw time series.  
Instead they need “assistance” in modeling the time series properly, see e.g.  
[Hill et al. 1996]. Here is where a SARIMAX process can help.  

As a conclusion of the above observations we developed the following system.  

1. First, the original time series X(t) is modeled by a SARIMAX process, which  
provides as forecast the time series Y(t).  

2. Then we train a neural network with the output from the SARIMAX process (Y(t)) 
as input and the original time series X(t) as desired output, i.e. we try to reproduce 
the original time series with the result from the SARIMAX process. With other 
words: We use the SARIMAX process as “filter” for the neural network which 
now receives preprocessed data.  

3. In the final forecasting step we apply first SARIMAX as developed in Step 1 to the 
original time series and then the neural network as developed in Step 2 to the out-
put from the SARIMAX process. The output from the neural network is the  
sequential hybrid forecast for the original time series.  

The following figure illustrates the proposed system.  
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Fig. 2. Forecasting scheme using the sequential hybrid forecasting system (SHFS)  

The proposed SHFS has several advantages since it combines “the best of both 
worlds”. Applying a SARIMAX process to the original time series we have the ad-
vantages such a model offers, e.g. interpretability of the model parameters. The neural 
network, on the other hand, does not only forecast an error function (as e.g. in the ad-
ditive hybrid system) but works on the entire time series. Instead of taking the raw 
time series as input, the network makes use of the already preprocessed data.  

5   Application of the Sequential Hybrid Forecasting System and 
Comparison with Traditional Approaches  

We show the advantages of our sequential hybrid forecasting system (SHFS) by com-
paring it to alternative approaches using data from the Chilean supermarket 
Economax.  
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Economax, as well as any other retail company, provides a broad range of products 
(about 5,000 different SKUs: stock keeping units) purchased from a large number of 
manufacturers and distributors. In order to offer such a variety of products to its  
customers at competitive prices, the supermarket and its providers have to manage  
efficiently the respective supply chain. Based on the data flow generated by the con-
sumers the supermarket has to decide what, how much, and how often to buy.  

In order to solve this problem satisfactorily, a reliable forecast of future demand is 
necessary. Determining future demand, however, is difficult since it depends on many 
factors, such as: past sales, prices, advertising campaigns, seasonality, holidays, 
weather, sales of similar products, competitors’ promotions, among others. We ap-
plied the proposed hybrid sequential forecasting system to data provided by 
Economax and compared its results with those from the following techniques:  

• Naïve forecasting  
• Seasonal naïve forecasting  
• Unconditional average  
• Pure SARIMAX process  
• Pure Multilayer Perceptron  
• Additive Hybrid Forecasting Model (AHFS; see [Aburto, Weber 2007])  

Section 5.1 presents the data set used; the respective preprocessing is described  
in 5.2. Section 5.3 exhibits the SARIMAX process we developed, while section 5.4  
describes the pure neural network for demand forecasting. Section 5.5 presents the 
additive hybrid system and the sequential hybrid system. Section 5.6 provides the  
results obtained applying the mentioned techniques to various products’ sales data.  

5.1   Description of Analyzed Data Sets  

We analyzed sales data for the 4 best-selling stock keeping units (SKU) in Economax. 
Below, we present demand forecasts for SKU 100595 (vegetal oil, 1 liter) exemplarily 
in more detail. The same procedure has been applied to the other 3 products. We had 
the following data for the 13 months between July 1, 2000 and July 31, 2001:  

• Daily sales data for each SKU.  
• Prices of the considered SKUs from Economax and of the respective products from 

the competitors in the micro market.  

Additionally, we generated the following external binary variables:  

• Payment: characterizing days at the end of each month when people receive 
monthly payment.  

• Intermediate payment: characterizing days at the mid of each month when people 
receive 2-weekly payment.  

• Before holiday: characterizing days before a holiday.  
• Holiday: characterizing holidays.  
• Independence: characterizing Chilean independence days (September 18).  
• Santa: characterizing days of the week before eastern.  
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• Vacation: characterizing days that belong to the period of summer vacation.  
• Summer: characterizing summer days (October 1 to March 31).  
• New Year: characterizing the only day when supermarkets are closed (January 1).  

The following figure shows daily sales data for SKU 100595.  
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Fig. 3. Daily sales data for SKU 100595  

5.2   Preprocessing of Available Data  

Since we are interested in demand forecast we first had to correct the respective time 
series where “cero sales” appeared. This occurs when the respective product is out-of-
stock and does not mean that there was no demand. Strictly speaking we do not want 
to forecast sales; we want to know future demand in order to manage the respective 
supply chain. These two variables take the same value if the respective product is 
available. In this case we assume the customers to find the product.  

If sales for a certain day had value 0 we replaced it by the sales value of the same 
product for the same weekday one week before. The resulting time series have been 
normalized, i.e. sales data for each SKU has been transformed to the interval [0,1]. It 
has been shown that this kind of preprocessing improves significantly the forecasting 
results obtained with neural networks [Crone et al. 2006].  

Using each SKU’s prices from Economax as well as from its competitors in the  
respective micro market we calculated the following “derived price variables”:  

• PriceA = Original price of the SKU in Economax  
• PriceB = Price A / Max(Price in micro market)  
• PriceC = Price A / Min(Price in micro market)  
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This way the models receive implicitly the information if a certain product is the 
most expensive or cheapest one of all competing products. Additionally, the effect of 
price changes (e.g. promotions) is represented implicitly.  

5.3   Application of SARIMAX Process  

Since time series in the present application show a strong seasonal effect and external 
variables are important for forecasting we developed a SARIMAX model for SKU 
100595 using the following 4 steps.  

Step 1: Preliminary analysis  
We determined the time series’ autocorrelation as shown in the following figure.  
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Fig. 4. Autocorrelation analysis for SKU 100595  

Analyzing the time series with the preprocessed sales data and the autocorrelation 
function as shown above we can conclude:  

• The series is stationary; i.e. we do not have to apply the differentiation operator.  
• The time series shows a strong seasonality with time lags of 1, 7, and 14 days.  

Step 2: Determine the order of the SARIMAX model  
Given the above described autocorrelation analyses we developed a SARIMAX 

(1,0,0)(2,0,0) model with the external variables described in 5.1.  

Step 3: Parameter estimation  
We determined the parameters of our SARIMAX model using the software tool 

SPSS. The following table shows the final result of this parameter estimation.  



 A Sequential Hybrid Forecasting System for Demand Prediction 527 

Table 2. Variables of SARIMAX model  

 B SEB T-Ratio Appr. Prob. 
AR1 .417463  .051085 8.1719215 .00000000 
SAR1  .130165  .055043 2.3647876 .01866427 
SAR2  .295255  .055631 5.3073729 .00000021 
Payment  51.980466  5.876780 8.8450596 .00000000 
Before Holiday 27.948165  6.911996 4.0434291 .00006672 
Holiday  25.081074  6.947247 3.6102176 .00035735 
SANTA  34.127746  17.129981 1.9922816 .04722842 
Price B  14.634096  8.306789 1.7617031 .07911801 
Price C  16.487375  8.888587 1.8548928 .06457326 
Constant  35.859236  5.626348 6.3734482 .00000000 

The second column contains the coefficient B for each selected variable. SEB is 
the error in estimating this coefficient, T-ratio the value of the t-test for B and SEB, 
and “Appr. Prob.” is the probability that this coefficient has value 0.  

The variables shown in table 2 have been selected applying the following  
steps. We started using all variables in the SARIMAX (1,0,0)(2,0,0) model and  
performed for each variable a t-test determining the probability that the respective  
coefficient of this variable has value 0 (last column of Table 2). Then we elimi- 
nated the variable with highest probability. We repeated these steps revising simulta-
neously the Akaike Information Criterion [Akaike, Kitagawa 1999; Akaike 1974], 
which helps to determine models with a good tradeoff between model fit and  
model complexity (number of parameters). Finally we obtained the variables shown 
in Table 2.  

Step 4: Model validation  
Given the residuals and autocorrelation shown in the following two figures we ac-

cept the SARIMAX (1,0,0)(2,0,0) model.  
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Fig. 5. Residuals for SARIMAX (1,0,0)(2,0,0) model  
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Fig. 6. Autocorrelation of residuals of SARIMAX(1,0,0)(2,0,0) model  

5.4   Application of Neural Networks  

In this section we describe the “pure” Multilayer Perceptron we applied for forecast-
ing. Its architecture has also been used for the hybrid approaches presented below.  

We used the following 32 input variables:  

• Sales data from the past k=14 days, i.e. from a time window with size k=14.  
• Nine binary variables characterizing special days as described in 5.1.  
• Six binary variables characterizing the day of the week.  
• Three price variables (Price A, Price B, Price C) as described in 5.2  

In the hidden layer we had 16 neurons since (number of input variables+1)/2 hid-
den neurons are sufficient in order to approximate any non-linear function with a 
MLP [Hornik 1991]. We used one neuron in the output layer, i.e. we made a one-day 
forecast based on the information available the day before.  

Regarding the neural network learning parameters we tested several settings.  
Particularly we analyzed learning rate, momentum, and pruning strategy. The latter is 
described by its relevance threshold (rt) and time constant (tc), which have the follow-
ing interpretation: “If during tc epochs the absolute value of a weight is below rt the  
associated connection will be pruned.”  

The following parameter setting gave best results for the neural network models:  

• Learning rate = 0.3  
• Momentum = 0.8  
• Using pruning with relevance threshold 0.001 and time constant 10.  

In order to avoid overfitting of the network we tested its performance on a separate 
test set during training minimizing root-mean squared error (RMS) between calcu-
lated and desired output. We implemented all neural network models using the  
software tool DataEngine 4.0.  
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5.5   Application of Hybrid Forecasting Systems  

We applied the two hybrid systems AHFS and SHFS as described next.  

Additive Hybrid Forecasting System (AHFS: “Sarimax + MLP”)  
We first applied the SARIMAX model as presented in section 5.3 to forecast de-

mand. The associated error has been considered as a time series by its own, which we 
forecast with an MLP. This neural network has the following characteristics:  

• Input neurons:  
− error values in periods t-k (k=1, …, 14)  
− 15 binary variables characterizing the respective day t (as in 5.4)  
− 3 product prices (as in 5.4)  

• Output neuron: error value in period t: e(t). 

The network’s architecture and parameter setting are as described in 5.4 

Sequential Hybrid Forecasting System (SHFS: “First Sarimax then MLP”)  
We first applied the SARIMAX model as presented in section 5.3 to forecast de-

mand. Then we took the respective forecast as new time series providing input values 
for the neural network. The network’s desired output values, however, are the original 
sales values. This neural network has the following characteristics:  

• Input variables:  
− demand forecast provided by SARIMAX for periods t-k (k=1, …, 14)  
− 15 binary variables characterizing the respective day t (as in 5.4)  
− 3 product prices (as in 5.4)  

• Output neuron: original sales value in period t. 

The network’s architecture and parameter setting are as described in 5.4 

5.6   Results  

We applied the techniques the supermarket currently uses (naïve forecast, seasonal 
naïve, and unconditional average). Naïve forecast assumes that sales tomorrow will be 
the same as today whereas seasonal naïve presumes that sales tomorrow will be the 
same as the same weekday one week before. Unconditional average estimates  
tomorrow’s sales as the average of previous sales data.  

The performance of each system has been evaluated using as error function Mean 
Absolute Percentage Error (MAPE) and Normalized Mean Square Error (NMSE).  
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The following table shows these errors for the mentioned systems. The training set 
corresponds to the period July 1, 2000 to June 30, 2001; test set is the period between 
July 1, 2001 and July 31, 2001.  

Table 3. Results from different forecasting systems for product 100595  

 Training set Test set 
 SKU 100595 MAPE (%)  NMSE MAPE (%) NMSE  
M1 Naïve  44.28 0.6972 56.83 1.2481  
M2 Seasonal Naïve  64.67 1.2212 45.75 1.9217 
M3 Unconditional average  59.98 0.7759 48.54 0.9689 
M4 SARIMAX (1,0,0)(2,0,0) 36.21  0.3301 40.49 0.6090 
M5 MLP tw 14  31.15 0.3115 34.64  0.5703  
M6 Additive hybrid (AHFS)  

(“M4 + M5”)  
30.13 0.2916 35.63 0.5177 

M7 Sequential hybrid (SHFS) 
(“first M4 then M5”) 

23.97 0.1594 30.59 0.4262 

As can be seen SARIMAX (model M4) and the “pure” neural network (model M5) 
outperform traditional techniques (models M1, M2, M3). The additive hybrid system 
(M6) gives better results than each of its components whereas the sequential hybrid 
forecasting system (M7) proposed in this paper gives best results among all consid-
ered approaches. We applied the systems M1, …, M7 to three more products and  
obtained the results shown in the following table.  

Table 4. MAPE test results (in %) for four SKUs  

SKU M4:  
SARIMAX 

M5:  
MLP tw 14  

M6: additive 
hybrid  

M7: sequential 
hybrid  

SKU1: 100595  40.49  34.64 35.63 30.59  
SKU2: 108464 41.39 34.49 40.24 33.60 
SKU3: 257842 41.34 39.81 38.15 38.29 
SKU4: 262900 42.04 34.25 39.80 35.79 
Average  41.32 35.80 38.46 34.57 
Max  42.04 39.81 40.24 38.29 
Min  40.49 34.25 35.63 30.59 

The underlined values indicate the best result for the each row. From the previous 
table we can conclude:  

• For 2 out of 4 cases SHFS (M7) gave best results.  
• No other system gave better results for the remaining 2 SKUs.  
• SHFS (M7) improved the SARIMAX process (M4) for all time series  
• On average SHFS (M7) gave best results for the 4 SKUs.  
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6   Conclusions and Future Work  

We proposed a sequential hybrid forecasting system (SHFS), which takes the output 
from a SARIMAX process as input for a neural network in order to reproduce the 
original time series. This system has been applied to forecast a supermarket’s sales 
data. We compared the results with those from the two components of our hybrid sys-
tem (i.e. SARIMAX and MLP), an additive hybrid system, and traditional techniques 
used by the supermarket so far. Neural networks outperformed the SARIMAX proc-
ess and the proposed SHFS gave best results among all considered approaches.  

The contribution of this paper is twofold. On one hand, the proposed SHFS pro-
vides very good results for the supermarket data we had. On the other hand - and 
maybe even more important - we should emphasize the generic idea of combining 
ARIMA-type approaches with neural networks in a sequential way. Whereas models 
from the first family have advantages in deriving interpretable linear models those 
from the latter family are stronger in modeling non-linear functions. One possible in-
terpretation is that the result from a SARIMAX process provides richer input informa-
tion for the neural network than original data itself. We think, this result is worth fur-
ther research and application to other time series.  

The proposed approach might show limitations in cases where the respective 
ARIMA-models do not provide reasonable results, i.e. the presented sequential hybrid 
forecasting system is strong in improving acceptable results using ARIMA-type fore-
casts which are the basis within our system. The issue of understanding better for 
which type of forecasting problems the presented system offers promising results 
should be studied further.  
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Céline Hébert and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen
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Abstract. Association rule mining often results in an overwhelming
number of rules. In practice, it is difficult for the final user to select the
most relevant rules. In order to tackle this problem, various interesting-
ness measures were proposed. Nevertheless, the choice of an appropriate
measure remains a hard task and the use of several measures may lead
to conflicting information. In this paper, we give a unified view of ob-
jective interestingness measures. We define a new framework embedding
a large set of measures called SBMs and we prove that the SBMs have
a similar behavior. Furthermore, we identify the whole collection of the
rules simultaneously optimizing all the SBMs. We provide an algorithm
to efficiently mine a reduced set of rules among the rules optimizing all
the SBMs. Experiments on real datasets highlight the characteristics of
such rules.

1 Introduction

Exploring and analyzing correlations between features is on the core of KDD
processes. Agrawal et al. [1] define association rules as the implications X → Y
where X and Y represent one or several conjunctions of features (or attributes).
However, among the overwhelming number of rules resulting from practical ap-
plications, it is difficult to determine the most relevant rules [10]. An essential
task is to assist the user in selecting interesting rules.

Measuring the interestingness of discovered rules is an active and important
area of data mining research. Interestingness measures are numerous and they
are usually divided into two groups: subjective and objective measures. Whereas
subjective measures take into account both the data and the user’s expectations,
objective measures are only based on raw data. In this paper, we focus on objec-
tive measures. Support and Confidence are probably the most famous ones [2],
but there are more specific measures (e.g., Lift [6], Sebag and Schoenauer [18]).
In practice, choosing a suitable measure and determining an appropriate thresh-
old for its use is a challenge for the end user. Combining results coming from
several measures is even much more difficult. Thus an important issue is to com-
pare existing interestingness measures in order to highlight their similarities and
differences and better understand their behaviors [17, 3]. The lack of generic
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results about the characteristics captured by interestingness measures was the
starting point of this work.

Contributions. This paper deals with the behavior of objective interestingness
measures when applied to association rules. Our main objective is to make clear
the choice of such a measure. For this purpose, we design an original framework
which gives a unified view of a large set of measures, the Simultaneously lower
Bounded Measures (SBM). We demonstrate that SBMs have similar behaviors so
that choosing an appropriate measure among them becomes a secondary issue.
This framework shows that three parameters (the minimal threshold for the
antecedent frequency γ, the maximal consequent frequency η and the maximal
number of exceptions δ) are on the core of many measures. This formalization
provides lower bounds for the SBMs according to these parameters and thus
guarantees a minimal quality for the rules. Moreover, we provide an efficient
method to mine a reduced set of rules simultaneously optimizing all the SBMs,
which ensures to produce the best rules according to these measures.

In a previous work [12], we addressed the specific case of the so-called classi-
fication rules (i.e., rules concluding on a class label). In this context, we showed
that most of the usual interestingness measures only depend on the rule an-
tecedent frequency and the rule number of exceptions and that they have a
similar behavior. This paper is a generalization of [12] to any association rule.
This generalization is not straightforward because one key point in [12] is the
fact that the rule consequent is a class label and thus its frequency is known.
This is obviously no longer true when considering any association rule and the
major difficulty is the lack of information about the consequent frequency. We
overcome it by bounding the consequent frequency. The fact that any attribute
may appear in a rule consequent also requires to design a new algorithm to mine
the rules simultaneously optimizing all the measures of the framework.

Organization. The rest of the paper is organized as follows. Section 2 discusses
related work on rule selection and gives preliminary definitions. Section 3 in-
troduces our framework and the SBMs. Section 4 shows how the SBMs can
be simultaneously lower bounded and studies their behavior. Section 5 presents
our algorithm to mine a reduced set among the most significant rules from a
database. Section 6 gives experimental results about the quality of the discov-
ered rules.

2 Preliminaries

2.1 Related Work

Lossless cover. It is well known that the whole set of association rules contains a
lot of redundant rules [1]. So several approaches (see [13] for a survey) propose
to restrict the mining to a rule cover [22] like the informative rules [15] or the
informative generic base [9]. These rules have minimal antecedents and maximal
consequents. They are lossless and informative since they enable to regenerate
the whole set of valid association rules and their exact support and confidence
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values. Our work is linked to this approach because we define informative SBM
rules that have minimal antecedents and that simultaneously optimize the SBMs
(see Section 5).

Selecting the most interesting rules with objective measures. As already told, re-
searchers have proposed a lot of interestingness measures for various kinds of pat-
terns. There is no widespread agreement on a formal definition of interestingness
and several works attempt to define properties characterizing “good” interesting-
ness measures [10, 16]. Piatetsky-Shapiro [16] proposes a framework with three
properties and we set our work with respect to it. Other works compare interest-
ingness measures to determine their differences and similarities, either in an exper-
imental manner [20] or in a theoretical one [19, 8]. In [4], a visualization method is
proposed to help the user in the rule exploration. There are also attempts to com-
bine several measures to benefit from their joint qualities [7]. However choosing
and using a measure remains a hard task. Our approach differs from these works :
we argue that choosing the appropriate measure is a secondary issue because they
all behave the same. We aim at analyzing the behavior of existing measures and
showing their common features. We exhibit the minimal properties that a measure
must satisfy to get a unified view of a lot of objective interestingness measures, the
SBMs. Second, by simultaneously optimizing all the SBMs, our work combines the
information brought by these measures.

2.2 Definitions

Basic definitions. A database D is a relation R between a set A of attributes
and a set O of objects : for a ∈ A, o ∈ O, aR o if and only if the object o contains
the attribute a. A pattern is a subset of A. The frequency of a pattern X is the
number of objects in D containing X ; it is denoted by F(X). Table 1 shows an
example of a database containing 8 attributes and 9 objects.

Table 1. An example of a database D

D Attributes

Objects A B C D E F G H

o1 1 0 1 0 1 0 0 1

o2 0 1 1 0 1 0 1 1

o3 1 0 1 0 1 0 0 1

o4 1 0 1 0 1 0 0 1

o5 0 1 1 0 1 1 0 0

o6 1 0 0 1 0 1 0 1

o7 0 1 1 0 1 1 0 1

o8 1 0 1 0 0 1 0 1

o9 0 1 0 1 0 1 1 0

Association rules. An association rule r : X → Y is an implication where X
and Y are patterns of D. X is the antecedent of r and Y its consequent. F(XY )
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is the rule frequency, F(X) the antecedent frequency and F(Y ) the consequent
frequency. In Table 1, r1 : CG → BEH and r2 : BCF → E are association
rules. The frequency of r1 (resp. r2) is equal to 1 (resp. 2), the frequency of its
antecedent is 1 (resp. 2) and the frequency of its consequent is 2 (resp. 6).
Evaluating objective measures. An interestingness measure is a function which
assigns a numerical value to an association rule according to its quality. A lot
of interestingness measures are based on the rule, the antecedent and the con-
sequent frequencies. We recall here the well-known Piatetsky-Shapiro’s proper-
ties [16] which aim at specifying what a “good” measure is. In the next section,
we will use properties P2 and P3 to define the SBMs.

Definition 1 (Piatetsky-Shapiro’s properties). Let r : X → Y be an asso-
ciation rule and M an interestingness measure.

– P1: M(r) = 0 if X and Y are statistically independent i.e. if |D|×F(XY ) =
F(X) ×F(Y );

– P2: When F(X) and F(Y ) remain unchanged, M(r) monotonically increases
with F(XY );

– P3: When F(XY ) and F(X) (resp. F(Y )) remain unchanged, M(r) mono-
tonically decreases with F(Y ) (resp. F(X)).

P2 ensures the increase of M according to the rule frequency and P3 the de-
crease of M according to the antecedent and the consequent frequencies. Most of
usual measures satisfy P2 (e.g., support, confidence, interest, conviction). How-
ever, there are a few exceptions (e.g., J-measure, Goodman-Kruskal, Gini index).
In [16], Piatetsky-Shapiro defines a measure called the Rule-Interest which sat-
isfies the three properties P1, P2 and P3.

3 A Formal Framework for Objective Measures: The Set
of Simultaneously Bounded Measures

This section presents our framework which gives a unified view of a large set of
measures, the SBMs. The key idea is to express a measure according to variables
which depend on frequencies in order to capture their joint effect. We will see in
Section 4 that this rewriting provides lower bounds for the SBMs and highlights
their behavior.

3.1 Measures as Functions

We rewrite any interestingness measure as a function according to the frequencies
of a rule.

Definition 2 (Associated function). Let M be an interestingness measure
and r : X → Y an association rule. ΨM (x, y, z) is the continuous function
associated to M where x = F(X) and y = F(Y ) and z = F(XY ).

For instance, the function associated to the Lift measure is: ΨLift(x, y, z) = z×|D|
x×y .
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Let δ be the maximal authorized number of exceptions for a rule. Variables
x, y and z are frequencies in the dataset and we only have to consider the case
where they are greater than or equal to zero. Moreover, since the rules have less
than δ exceptions, z ≥ 0 implies x ≥ δ. Definition 3 underlines the influence of
the rule number of exceptions.

Definition 3 (δ-dependent function). Let M be an interestingness measure
and r : X → Y an association rule. The δ-dependent function associated to M
called ΨM,δ(x, y) is the two-variable function obtained by the change of variable
z = x− δ in ΨM , i.e. ΨM,δ(x, y) = ΨM (x, y, x− δ).

Pursuing the Lift example, we obtain: ΨLift,δ(x, y) = (x−δ)×|D|
x×y .

3.2 Identifying Properties Shared by Measures

By using the previous definitions, we give now properties expressing basic char-
acteristics of interestingness measures. These properties are on the core of our
framework.

Property 1 (P2’: weak P2). Let M be an interestingness measure. ΨM in-
creases with z.

We call Property 1 weak P2 since it is closely related to Piatetsky-Shapiro’s
property P2. The slight difference being it is not necessary that the measure
monotonically increases.

Property 2 (P3’: weak P3). Let M be an interestingness measure. ΨM de-
creases with y.

Property 2 is called weak P3 since it corresponds to the first part of P3 (as well
as P2, the definition does not require the monotonical decrease). Contrary to
the Shapiro’s set of properties, we do not make assumptions on the measure’s
behaviour according to the antecedent frequency. P3’ only considers the con-
sequent frequency and, unlike P3, does not require the symmetry between the
antecedent and the consequent. As ΨLift(x, y, z) increases with z and decreases
with y, it is immediate that the Lift satisfies P2’ and P3’.

The link between the frequencies expressed by Definition 3 captures an impor-
tant feature of an interestingness measure: its behavior with respect to the joint
development of the antecedent and the consequent frequencies and the maximal
rule number of exceptions. This characteristic is translated by Property 3 and
we will use it in our framework.

Property 3 (P4: property of δ-dependent growth). Let M be an interest-
ingness measure. ΨM,δ increases with x.
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3.3 SBMs

Property 4 defines the SBMs. It establishes a powerful framework for analyzing
the behavior of interestingness measures. Table 2 provides a sample of SBMs. The
Rule-Interest measure (RI), which is a good measure according to Definition 1,
belongs to this framework.

Property 4 (SBM). An interestingness measure M is a simultaneously lower
bounded measure (or SBM) if M satisfies P2’, P3’ and P4.

Theorem 1 states that a linear combination of SBMs with positive coefficients is
still a SBM. It also shows that the set of SBMs is infinite.

Table 2. A sample of SBMs

SBM Definition

Support
F(XY )

|D|
Confidence

F(XY )

F(X)

Sensitivity
F(XY )

F(Y )

Specificity 1 − F(X) − F(XY )

|D| − F(Y )

Success Rate
|D| − F(Y ) − F(X) + 2F(XY )

|D|
Lift

|D| × F(XY )

F(Y ) × F(X)

Rule-Interest [16] F(XY ) − F(Y ) × F(X)

|D|
Laplace (k=2)

F(XY ) + 1

F(X) + 2

Odds ratio
F(XY )

F(X) − F(XY )
× |D| − F(Y ) − F(X) + F(XY )

F(Y ) − F(XY )

Growth rate
F(XY )

F(X) − F(XY )
× |D| − F(Y )

F(Y )

Sebag & Schoenauer
F(XY )

F(X) − F(XY )

Jaccard
F(XY )

F(Y ) + F(X) − F(XY )

Conviction
|D| − F(Y )

|D| × F(X)

F(X) − F(XY )

φ-coefficient
|D| × F(XY ) − F(Y ) × F(X)

√
F(X) × F(Y ) × (|D| − F(X)) × (|D| − F(Y ))

Added Value
F(XY )

F(X)
− F(Y )

|D|
Certainty Factor

F(XY ) × |D| − F(X) × F(Y )

F(X) × (|D| − F(Y ))

Information Gain log

(
F(XY )

F(X)
× |D|

F(Y )

)
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Theorem 1. Let M1, . . . ,Mn be SBMs and α1, . . . , αn be n positive real num-
bers. α1 ×M1 + · · · + αn ×Mn is a SBM.

The key idea of the proof relies on the fact that when multiplying a SBM M
by a positive real number α, the associated function ΨαM and the δ-dependent
function ΨαM,δ behave like ΨM and ΨM,δ.

Proof. We denote α1 ×M1 + · · ·+αn ×Mn by M . Let us show that M satisfies
P2’, P3’ and P4. The following equalities hold: ΨM = α1ΨM1 + · · · + αnΨMn

and ΨM,δ = α1ΨM1,δ + · · ·+ αnΨMn,δ. Since M1, . . . ,Mn are SBMs, they satisfy
P2’, P3’ and P4. ΨM1(x, y, z), . . . , ΨMn(x, y, z) increase with z and decrease with
y, e.g., the partial derivatives of ΨM1 , . . . , ΨMn w.r.t. z are positive and their
partial derivatives w.r.t. y are negative. Thus the partial derivative of ΨM w.r.t.
z remains positive and the partial derivative of ΨM w.r.t. y remains negative. We
conclude that ΨM also increases with z and decreases with y. Thus M satisfies P2’
and P3’. By the same reasoning, we prove that M satisfies P4 and we conclude
that M is a SBM. ��

Theorem 1 can be used to define new SBMs or to check if a candidate in-
terestingness measure is a SBM. For instance, the Novelty [14] (defined by

Nov(r) =
F(XY ) × |D| − F(X) ×F(Y )

|D|2 ) can be expressed according to the

Rule-Interest since Nov = α×RI with α = 1
|D| . As the Rule-Interest is a SBM

and α is a positive real number, Theorem 1 ensures that Novelty is a SBM as
well.

4 SBMs’ Bounds and Behavior

This section provides lower bounds for the SBMs. We show that all the SBMs
can be simultaneously lower bounded and behave in a similar way. Let γ be the
minimal antecedent frequency and η the maximal consequent frequency. Except
for Property 5, the values of the parameters γ, η and δ are fixed.

4.1 Lower Bounds

Theorem 2 provides for each SBM its lower bound according to γ, η and δ. Such
a bound expresses the minimal quality of a rule according to γ, η and δ. Table 3
gives the lower bounds for SBMs quoted in Table 2. With γ = 3, δ = 1 and
η = 5 in Table 1, the Lift lower bound is 4.6 and the Rule-Interest lower bound
is 1

27 . Note that Theorem 1 enables to calculate ΨNov,δ(γ, η) with α×ΨRI,δ(γ, η)
where α = 1

|D| .

Theorem 2 (Lower bounds). Let M be a SBM. If r : X → Y is an associ-
ation rule such that F(X) ≥ γ, F(Y ) ≤ η and r admits less than δ exceptions,
then M(r) is greater than or equal to ΨM,δ(γ, η).
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Proof. According to P2’, ΨM (x, y, z) increases with the variable z. Since X → Y
admits less than δ exceptions, F(XY ) ≥ F(X)− δ and consequently ΨM (x, y, z)
≥ ΨM (x, y, x− δ) = ΨM,δ(x, y). A lower bound for x is γ and a upper bound for
y is η thus, since ΨM,δ increases with x and decreases with y (consequence of
weak P3), a lower bound for ΨM,δ(x, y) is ΨM,δ(γ, η). ��

Table 3. Lower bounds for SBMs defined in Table 2

SBM Lower bound

Support
γ − δ

|D|
Confidence 1 − δ

γ

Sensitivity
γ − δ

η

Specificity 1 − δ

|D| − η

Success Rate 1 +
γ − 2δ − η

|D|
Lift (1 − δ

γ
) × |D|

η

Rule-Interest γ − δ − γ η

|D|
Laplace (k=2)

γ − δ + 1

γ + 2

Odds ratio [
γ − δ

η − γ + δ
] × [

|D| − η − δ

δ
]

Growth rate
γ − δ

δ
× |D| − η

η

Sebag & Schoenauer
γ − δ

δ

Jaccard
γ − δ

η + δ

Conviction
|D| − η

|D| × γ

δ

φ-coefficient
γ × (|D| − η) − δ × |D|

√
γ × (|D| − γ) × η × (|D| − η)

Added Value
γ − δ

γ
− η

|D|
Certainty Factor

γ × (|D| − η) − δ × |D|
γ × (|D| − η)

Information Gain log

(
γ − δ

γ
× |D|

η

)

As Theorem 2 is true for all the SBMs, we deduce that all the SBMs are simul-
taneously lower bounded. It means that the set of rules such that F(X) ≥ γ,
F(Y ) ≤ η and admitting less than δ exceptions simultaneously satisfy minimal
values according to all the SBMs. Thus, Theorem 2 enables to identify a set
of “good” rules according to the SBMs because all the SBMs have high values,
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at least greater than or equal to their lower bounds. In the following, we are
interested in all the rules r such that M(r) ≥ ΨM,δ(γ, η) for all the SBMs:

Definition 4 (SBM rule). The set of rules satisfying M(r) ≥ ΨM,δ(γ, η) for
all the SBMs is denoted by RSBM . A SBM rule is a rule belonging to RSBM .

4.2 SBMs’ Behavior

Property 5 specifies the behavior of the lower bounds according to γ, η and δ.

Property 5. ΨM,δ(γ, η) increases with γ and decreases with η and δ.

Proof. As M is a SBM, it is obvious that ΨM,δ(γ, η) increases with γ (P4) and
decreases with η (weak P3). From weak P2, it follows that ΨM (x, y, z) increases
with z. Hence assuming δ1 ≥ δ2 we have ΨM (x, y, x− δ2) ≥ ΨM (x, y, x− δ1) and
ΨM,δ2(γ, η) ≥ ΨM,δ1(γ, η). Consequently, ΨM,δ(γ, η) decreases with δ. ��

Property 5 states that all the lower bounds behave in a similar way according
to the parameters γ, η and δ. Consequently, it is possible to increase the rule
quality according to the SBMs by increasing γ and decreasing η and δ.
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Fig. 1. Lower bounds according to γ, δ and η

For some usual measures, Figure 1 depicts the lowers bounds according to γ
(with η = 200 and δ = 5), η (with γ = 100 and δ = 5) and δ (with η = 200
and γ = 100). These figures show the similar behavior of SBMs and that these
measures can be simultaneously optimized.

5 Rule Mining

In this section, we start by characterizing RSBM . This characterization enables
to infer an efficient rule mining algorithm.

5.1 Characterizing RSBM

Theorem 3 provides properties on the frequencies of a SBM rule.
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Theorem 3. If r : X → Y is a SBM rule then r satisfies the following condi-
tions: F(X) ≥ γ, F(Y ) ≤ η and r admits less than δ exceptions.

Proof. We define M1(r)=F(X), M2(r)=
1

F(Y )
and M3(r) =

1
F(X) −F(XY )

.

It is trivial to check that M1, M2 and M3 are SBMs. The inequalities M1(r) ≥
ΨM1,δ(γ, η) = γ, M2(r) ≥ ΨM2,δ(γ, η) =

1
η

and M3(r) ≥ ΨM3,δ(γ, η) =
1
δ

imme-

diately prove the result. ��
Theorem 3 is the converse of Theorem 2. These two theorems prove that RSBM

is equal to the set of rules having a γ-frequent antecedent, an η-infrequent con-
sequent and less than δ exceptions. Thus, even if the set of SBMs is infinite,
this characterization of RSBM makes feasible the mining of the rules optimizing
all SBMs and ensures the completeness of the mining. The next section shows
that we can only mine a reduced set of rules having minimal antecedents among
RSBM .

5.2 Informative Rules of RSBM

Section 2.1 has introduced the rule cover based on informative rules [15]. In-
formative rules are build with minimal patterns (also called free [5] or key pat-
terns [15]) as antecedents and one part of their closures (see [21] for a definition)
as consequents. By analogy in Definition 5, we call an informative SBM rule a
rule having a minimal pattern (i.e., free pattern) as antecedent and one part of
its closure as consequent.

Definition 5 (Informative SBM rules). An informative SBM rule r : X →
Y is a SBM rule such that X is a free pattern and XY is a closed pattern. Thus
r satisfies:

– X is γ-frequent and free
– Y is η-infrequent
– X ∩ Y = ∅
– XY is closed
– r has less than δ exceptions

The set of informative SBM rules is denoted by Inf(RSBM ).

This definition is precious in practice to mine the informative SBM rules be-
cause there are efficient algorithms to extract the free or key patterns and their
closures [5]. The next section provides an algorithm which mines the whole set
of informative SBM rules.

5.3 Algorithm Mining Inf(RSBM )

This section gives the main features of our algorithm for mining Inf(RSBM ).
The basic principle is to associate the free and the closed patterns given in input
to build the informative SBM rules. Definition 4 states that the SBM rules satisfy
the following constraints: F(X) ≥ γ, F(Y ) ≤ η and F(X)−F(XY ) ≤ δ. These
constraints lead to Property 6 which provides pruning conditions:
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Property 6. The SBM rules satisfy:

1. γ ≤ F(X) ≤ η + δ
2. γ − δ ≤ F(XY ) ≤ F(Y ) ≤ η

Proof.

1. Since Y ⊂ XY , F(XY ) < F(Y ) ≤ η. F(XY ) ≤ η is obvious. Thus F(X) ≤
F(XY ) + δ and we have F(X) ≤ η + δ.

2. Since Y ⊂ XY , F(XY ) < F(Y ). We have γ − δ ≤ F(X) − δ ≤ F(XY ).
Thus γ − δ ≤ F(Y ).

Algorithm 1 considers each pattern X in Free(γ,η+δ), i.e., each free pattern hav-
ing a frequency between γ and η + δ. Then the closed patterns containing X
and having a frequency between γ − δ and η are determined. I is the set of
discovered informative SBM rules. Note that the antecedent and the rule satisfy
the frequency constraints of Property 6 by construction. Then, the number of
exceptions and the consequent frequency are checked. This latter is obviously
greater than γ − δ but not necessarily less than η. The consequent frequency is
computed by finding the smallest closed pattern containing the rule consequent.
When discovered, a valid rule is added to I. The algorithm stops when all the
patterns in Free(γ,η+δ) have been considered.

Data: Free the set of free patterns, Closed the set of closed patterns
Result: the informative SBM rules Inf(RSBM )
foreach X ∈ Free(γ,η+δ) such that F(X) −F(Z) ≤ δ do1

foreach Z = XY ∈ Closed(γ−δ,η) such that F(X) −F(Z) ≤ δ do2

if F(Y ) ≤ η then3

I = I ∪ {X → Y }4

end5

end6

end7

return I8

Algorithm 1. Mining Inf(RSBM )

6 Experiments

The aim of the experiments is twofold: first, we quantify the size of Inf(RSBM )
according to the parameters of our framework, and second we observe the quality
of the informative SBM rules mined in practice. Experiments are performed on
a real data set, the hepatitis data collected at the Chiba University Hospital
(Japan). These data are used in discovery challenges [11]. They contain the
examinations of 499 patients which are described with 168 attributes.

Number of informative SBM rules. Figures on the top of Figure 2 plot on a
logarithmic scale the size of Inf(RSBM ) i.e. the number of informative SBM
rules according to the minimal antecedent frequency threshold γ (on the left) and
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the maximal number of exceptions δ (on the right) with η = 200. The figure on
the bottom of Figure 2 plots the size of Inf(RSBM ) according to the maximal
consequent frequency threshold η with γ = 60. As expected (cf. Property 5), the
number of rules clearly decreases according to γ and increases both with η and
δ. Nevertheless, these curves specify how these numbers vary.

Fig. 2. Size of Inf(RSBM ) according to γ, δ and η

Figure 3 plots the number of rules with η = 200 and without maximal conse-
quent frequency i.e., η = 500 (since the hepatitis data only contain 499 objects).
It shows the reduction of the rule number due to η. For instance, with γ = 80,
there are 5605 rules with η = 200 versus almost 200.000 rules with η = 500.
Clearly, bounding the consequent frequency enables to drastically reduce the
size of the output. This result is interesting because we know (thanks to Prop-
erty 5) that the discarded rules have the worst values according to the set of
SBMs.
Quality of the mined rules. We now focus on the quality of the informative
SBM rules. With γ = 60, η = 200 and δ = 5, Inf(RSBM ) includes 40697
rules. Table 4 indicates the minimal value, the lower bound (calculated with the
expressions given in Table 3), the average value for the rules in Inf(RSBM )
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Fig. 3. Number of rules with and without a maximal consequent frequency

and the maximum value of a few SBMs. These results show for each SBM the
minimal value guaranteed by our framework. Obviously, the average values are
higher than the lower bounds and the difference between the average value and
the lower bound depends on the measures. For instance, the Sensitivity ranges
from 0 to 1. Its lower bound equals 0.275 and its average value is 0.411. For the
Sebag & Schoenauer’s measure (ranging from 0 to infinity), the lower bound is
11 while the average value is about 21.

Table 4. Minimum, lower bound, average value and maximum of a few SBMs

Measure Support Confidence Sensitivity Rule-Interest Odds Ratio

Minimum 0 0 0 -0.25 0

Lower bound 0.1102 0.917 0.275 0.06203 22.303

Average value 0.134 0.962 0.411 0.089 74.038

Maximum 1 1 1 0.25 ∞
Measure GR Sebag & Schoenauer Jaccard φ-Coefficient Added Value

Minimum 0 0 0 -1 -0.5

Lower bound 16.45 11 0.300 0.452 0.599

Average value 43.616 21.274 0.406 0.540 0.626

Maximum ∞ ∞ 1 1 1

7 Conclusion and Future Work

Further work addresses the multi-criteria optimization of the SBMs. Theorem 1
shows that it is possible to combine several SBMs without loosing the properties
of our framework. An approach is to get a lower bound for a weighted combina-
tion of SBMs in order to ensure a global quality for all SBMs. Another way is to
automatically determine the parameters involved in the mining of the SBM rules
in order to take into account the various semantics conveyed by the measures
during the mining process.
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Abstract. Collaborative filtering aims at helping users find items they
should appreciate from huge catalogues. In that field, we can distinguish
user-based, item-based and model-based approaches. For each of them,
many options play a crucial role for their performances, and in particular
the similarity function defined between users or items, the number of
neighbors considered for user- or item-based approaches, the number of
clusters for model-based approaches using clustering, and the prediction
function used.

In this paper, we review the main collaborative filtering methods pro-
posed in the litterature and compare them on the same widely used real
dataset called MovieLens, and using the same widely used performance
measure called Mean Absolute Error (MAE). This study thus allows us
to highlight the advantages and drawbacks of each approach, and to pro-
pose some default options that we think should be used when using a
given approach or designing a new one.

1 Introduction

Recommender systems [1] have known a growing interest in the last two decades,
since the appearance of the first papers in the mid-1990s [2]. The aim of such
systems is to help users find items they should appreciate from huge catalogues.
To do this, three types of approaches are commonly used:

1. collaborative filtering,
2. content-based filtering,
3. and hybrid filtering.

In the first case, the input of the system is a set of ratings of users on sets
of items, and the approach used to predict the rating of a given user on a given
item is based on the ratings of a set of users who have already rated the given
item and whose tastes are similar to the ones of the given user.

In the second case, the item descriptions are used to construct user thematic
profiles (such as “like comedy and dislike war” when items are movies), and the
prediction of interest of a user on a given item is based on the similarity between
the item description and the user profile. In the third case of hybrid filtering,
both information, collaborative and content-based, are used.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 548–562, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper, we focus on the first type of techniques, because it is the most
widely considered in the field of recommender systems, and yet many different
collaborative filtering approaches are worth to be compared. We present here
many different options of the three general approaches for collaborative filtering:

1. user-based approaches, that associate to each user its set of nearest neighbors,
and then predict a user’s rating on an item using the ratings, on that item,
of its nearest neighbors,

2. model-based approaches, and more specifically those based on clustering, that
construct a set of users groups, and then predict a user’s rating on an item
using the ratings, on that item, of the members of its group,

3. and item-based approaches, that associate to each item its set of nearest
neighbors, and then predict a user’s rating on an item using the ratings of
the user on the nearest neighbors of the item considered.

We chose to focus on collaborative filtering instead of content-based filtering
also because in many cases, well-structured item descriptions are hard to get,
whereas collecting user ratings on items is easier, yet some real rating datasets are
available for tests. We chose the most widely used one, called MovieLens, for our
study. This dataset contains 1,000,209 ratings collected from 6,040 users on 3,706
items that represent movies. Then two ways for evaluating the performances of
a collaborative filtering method can be used [3]:

1. evaluate its error rate in cross-validation,
2. or evaluate user satisfaction in the system.

We focus in this paper on the first approach that is the most widely used one,
and less subjective. Many measures can then be used to compare the results of
different collaborative filtering methods. The most widely used ones are:

1. Mean Absolute Error (MAE),
2. Root Mean Squared Error (RMSE),
3. and Precision and Recall.

The two first measures evaluate the capability of a method to predict if a user
will like or dislike an item, whereas the third measure evaluates its capability
of providing an ordered list of items that a user should like. So these measures
carry different meanings [4]: in the first two cases, the method needs to be able
to predict dislike, but there is no need for ordering items, whereas in the third
case, the method only focuses on items users will like, but the order in which
these items are ranked is important. In this paper, we focus on the MAE, that
is the most widely used measure.

The rest of the paper is organized as follows: section 2 presents an overview of
the principal approaches for collaborative filtering; we then report in section 3 the
results of extensive experiments conducted using various collaborative filtering
methods and various alternatives of each, on the MovieLens dataset using cross-
validation and the MAE measure for comparison; finally, section 4 concludes the
paper and proposes some default options that we think should be used when
using a given collaborative filtering method, or designing a new one.
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2 Collaborative Filtering Approaches

Let U be a set of N users and I a set of M items. vui denotes the rating of user
u ∈ U on item i ∈ I, and Su ⊆ I stands for the set of items that user u has
rated. In the MovieLens dataset for example, ratings are integers ranging from
1 to 5.

2.1 User-Based Approaches

For user-based approaches [2], the prediction of rating pai of user a (active) on
item i is computed using the sum of the user mean rating and the weighted
sum of deviations from their mean rating of users that have rated item i. More
formally, pai is computed as follows:

pai = va +

∑
{u∈U|i∈Su} w(a, u) × (vui − vu)

∑
{u∈U|i∈Su} |w(a, u)| (1)

vu represents the mean rating of user u:

vu =

∑
i∈Su

vui

|Su|
(2)

And w(a, u) stands for the similarity between users a and u, computed using
pearson correlation in [2], that corresponds to the cosine of the users deviation
from their mean:

w(a, u) =

∑
i∈Sa∩Su

(vai − va)(vui − vu)
√∑

i∈Sa∩Su
(vai − va)2

∑
i∈Sa∩Su

(vui − vu)2
(3)

The influence of this similarity measure in the performances of this approach is
very important. So many other measures have been considered in the litterature
[5,6]. Let us introduce two of them:

– simple cosine:

w(a, u) =

∑
i∈Sa∩Su

vai × vui
√∑

i∈Sa∩Su
v2

ai

∑
i∈Sa∩Su

v2
ui

(4)

– and constraint pearson correlation, that corresponds to the cosine of users
deviation from the mean rating, denoted by v (equal to 3 for a rating scale
ranging from 1 to 5):

w(a, u) =

∑
i∈Sa∩Su

(vai − v)(vui − v)
√∑

i∈Sa∩Su
(vai − v)2

∑
i∈Sa∩Su

(vui − v)2
(5)
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Finally, a neighborhood for each user can be considered. In such a case, the
neighborhood size K is then a system parameter that needs to be defined, and
only the neighbors of the active user are considered for predictions.

The time complexity of user-based approaches is O(N2 × M × K) for the
model construction, O(K) for one rating prediction, and the space complexity
is O(N ×K).

2.2 Model-Based Approaches

Since predicting the rating of a given user on a given item requires the compu-
tation of the similarity between the given user and all its neighbors that have
already rated the given item, its execution time may be long for huge datasets.
In order to reduce such execution time, model-based approaches have been pro-
posed [7]. The general idea is to derive off-line a model of the data in order to
predict on-line ratings as fast as possible.

The first types of models that have been proposed consist in grouping the
users using clustering and then predicting the rating of a given user on a given
item using only the ratings of the users that belong to the same cluster. Then
probabilistic clustering algorithms have been used in order to allow users to
belong, at some level, to different groups of users [8,9]. Hierarchies of clusters
have also been proposed, so that if a given cluster of users does not have opinion
on a given item, its super-cluster can be considered [10].

In such approaches, the choice of the distance measure used to compare users
is important. Let us present two widely used of them:

1. normalized manhattan distance:

dist(a, u) =

∑
{i∈Sa∩Su} |vai − vui|
|{i ∈ Sa ∩ Su}|

(6)

2. and normalized euclidian distance:

dist(a, u) =

√∑
{i∈Sa∩Su}(vai − vui)2

|{i ∈ Sa ∩ Su}|
(7)

The number of clusters considered is also of key importance. In many cases,
different numbers of clusters are tested, and the one that led to the lowest error
rate in cross-validation is kept. Clusters Ck are then generally represented by
their centroid −→μk:

μki =

∑
{u∈Ck|i∈Su} vui

|{u ∈ Ck|i ∈ Su}|
(8)

Then the predicted rating of a user to an item can be directly derived from
the rating of its nearest centroid, or it can be computed using a sum on the
ratings of all centroids, weighted by the distance between the given user and the
centroids.
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For this study, we implemented four clustering algorithms:

– K-means, the well-known full-space clustering algorithm based on the evo-
lution of K centroids that represent the K clusters to be found,

– Bisecting K-means [11], based on the recursive use of (K=2)-means, by se-
lecting at each step for next split the cluster that maximizes its inertia,

– LAC [12], that is based on K-means and adds a weight to each attribute,
depending on the deviation of the cluster members from its mean,

– and SSC [13], that is a probabilistic clustering algorithm, based on a mixture
of gaussians and the EM algorithm.

All these methods need to be run many times with random initial solutions
in order to avoid local minimum solutions. We set the default number of runs
to 10 in these experiments. The time complexity of cluster-based approaches is
O(K ×N ×M) for the model construction, O(1) for one rating prediction, and
the space complexity is O(K ×M + N).

Finally, models based on item associations have also been considered. Bayesian
models have been proposed to model dependencies between items [7]. The clus-
tering of items have been studied in [14,15]. And models based on association
rules have been studied in [16,17].

2.3 Item-Based Approaches

Then item-based approaches have known a growing interest [18]. Given a simi-
larity measure between items (like cosine or pearson correlation presented earlier
for user-based approaches), item-based approaches predict the rating of a given
user on a given item using the ratings of the user on the items considered as
similar to the target item. In [18], a weighted sum is used to predict the rating
of active user a on item i, given sim(i, j) a similarity measure between items:

pai =

∑
{j∈Sa|j �=i} sim(i, j) × vaj
∑

{j∈Sa|j �=i} |sim(i, j)| (9)

Two specific similarity measures have been proposed in [19,20] for item-based
collaborative filtering methods:

– adjusted cosine, that corresponds to the cosine of items deviation from the
user mean rating:

sim(i, j) =

∑
{u∈U|i∈Su&j∈Su}(vui − vu)(vuj − vu)

√∑
{u∈U|i∈Su&j∈Su}(vui − vu)2

∑
{u∈U|i∈Su&j∈Su}(vuj − vu)2

(10)
– and a probabilistic similarity measure, that corresponds to the co-occurrence

frequence of both items i and j, normalized by user frequences in order
to enhance the contribution of users who have rated fewer items, and then
normalized by the product of the frequences of both concerned items:

sim(i, j) =

∑
{u∈U|i∈Su&j∈Su} vuj/|Su|

|{u ∈ U |i ∈ Su}| × |{u ∈ U |j ∈ Su}|
(11)
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Finally, as for user-based approaches, a neighborhood for each item can be
considered. In such a case, the neighborhood size K is then a system parameter
that needs to be defined, and only the neighbors of the target item are considered
for predictions.

The time complexity of item-based approaches is O(M2 × N × K) for the
model construction, O(K) for one rating prediction, and the space complexity
is O(M ×K).

2.4 Complementary Approaches

Different default prediction techniques can also been considered, in particular
when a method is not able to predict any rating, if a user has no rating, if it has
no neighbor, if there is no rating on an item or if an item has no neighbor:

– mean item rating,
– mean user rating,
– majority item rating,
– and majority user rating.

We also propose an alternative approach where we consider the recommenda-
tion problem as a standard classification problem with two input variables, user
u and item i, and one output variable, rating r. We apply the standard Naive
Bayes approach, assuming that users and items are independent conditionally to
the ratings. This approach is based on the following Bayes rule used to compute
the probability of rating r for a given user u on a given item i:

P (r|u, i) =
P (r|u) × P (r|i)

P (r)
× P (u) × P (i)

P (u, i)
(12)

P (r|u) stands for the probability of rating r for user u, P (r|i) the probability
of rating r on item i, and P (r) the global probability of rating r. The last three
probabilities P (u), P (i) and P (u, i) can be ignored since they are the same for
all users and items. From these probabilities, we then propose three prediction
schemes:

– predict the most probable rating, which corresponds to the Maximum A
Posteriori (MAP) approach:

pai = Argmax5
r=1P (r|a, i) (13)

– compute the weighted sum of ratings, that corresponds to minimizing the
expectation of Mean Squared Error (MSE):

pai =
5∑

r=1

r × P (r|a, i) (14)
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– or select the rating that minimizes the expectation of Mean Absolute Error
(MAE):

pai = Argmin5
r=1

5∑

n=1

P (n|a, i) × |r − n| (15)

The time complexity of bayes-based approaches is O(R) for the model con-
struction, with R the number of ratings in the dataset. The time complexity for
one rating prediction is O(1), and the space complexity is O(N + M).

Model-based approaches can be combined with different default approaches,
or with any user- or item-based approach. This is done by constructing local
models from the different sub-datasets created using clustering.

Finally, since in many real datasets ratings are integer values, we can choose
to round the predicted ratings instead of using their real values. Such a process
improves the results when MAE is used, but not when RMSE is used.

3 Experiments

3.1 Parameters

Considering only the principal collaborative filtering approaches already leads
us to a lot of choices and parameters. When implementing a user- or item-based
approach, one may choose:

– a similarity measure: pearson (equation 3), cosine (4), constraint pearson
(5), adjusted cosine (10), or probabilistic (11),

– a neighborhood size,
– and how to compute predictions: using a weighted sum of rating values (9),

or using a weighted sum of deviations from the mean (1).

For model-based approaches, the following parameters need to be defined:

– the distance measure used: manhattan (6) or euclidian (7),
– the number of clusters,
– how to compute predictions in one cluster: using the mean rating of the

cluster members on an item, using another default approach, or using a
local user- or item-based approach,

– and how to compute predictions for one user: returning the prediction of its
nearest cluster, or the weighted sum of predictions of each cluster.

Finally, in all cases, we can choose to round the results or not. As a default
prediction scheme, if no prediction can be done for a given approach, the global
mean item rating is returned, and if the item is not known by the system, then
the mean user rating is returned.
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3.2 Protocol

We conduct these experiments using the MovieLens dataset. We divided it into
10 parts in order to perform 10-fold cross-validations, training the chosen model
using 9 parts and testing it on the last part. In all experiments, the division
into 10 parts of the dataset is always the same, so that all approaches are evalu-
ated under exactly the same conditions. Since the dataset size is important, the
variance of the results over the 10 cross-validations is low.

Given T = {(u, i, r)} the set of (user,item,rating) triplets used for test, the
Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE) are
used to evaluate the performances of the algorithms:

MAE =
1
|T |

∑

(u,i,r)∈T

|pui − r| (16)

RMSE =

√
√
√
√

1
|T |

∑

(u,i,r)∈T

(pui − r)2 (17)

We also report the time spent for the model construction and for predictions.

3.3 Results

Let us start with the results of the default approaches, presented in table 1.

Table 1. Default approaches results measured using MAE and RMSE, when rounding
(2) or not (1) the predicted ratings

MeanItem MeanUser MajoItem MajoUser BayesMAP BayesMSE BayesMAE

MAE(1) 0.7821 0.8286 0.7702 0.8363 0.7159 0.7279 0.6829
MAE(2) 0.7501 0.7939 0.7702 0.8363 0.7159 0.6899 0.6829
RMSE(1) 0.9791 1.0350 1.0924 1.1991 1.0658 0.9247 0.9894

RMSE(2) 1.0182 1.0741 1.0924 1.1991 1.0658 0.9684 0.9894

We can thus already observe that the results are better when default ratings
are based on item information than when they are based on user information, and
that using the mean rating is better than using the majority rating. But default
ratings using Bayes models lead to much better results. For such approaches, the
MAE is minimized with the BayesMAE scheme (equation 15), but the RMSE
is minimized with the BayesMSE sheeme (14). Rounding the predicted ratings
improves the results when the MAE is used, but not when the RMSE is used.
These two observations confirm the theory. In the following, we only report
results using MAE and after the predicted ratings have been rounded. Figures 1
and 2 report such results using different user-based approaches.
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Fig. 1. Comparing similarity measures for user-based approaches using the deviation
prediction scheme, and different neighborhood sizes (K)

0.68

0.72

0.76

0.8

MAE

0 500 1000 1500 2000 2500 K

PearsonWeighted
PearsonDeviation

ProbaWeighted
ProbaDeviation

Fig. 2. Comparing prediction schemes for user-based approaches using pearson and
probabilistic similarity measures, and different neighborhood sizes (K)

We can thus observe that the results are improved when many neighbors are
considered. But of course the execution time is higher when more neighbors are
used. The similarity measure that leads to the best results is pearson, according
to figure 1. Predicting using weighted sum of deviations from the mean leads to
better results than predicting using simple weighted sum according to figure 2.
Rounding the predicted ratings improved the MAE from 2.5 to 5.5 percent.
Figures 3 and 4 then report the results using item-based approaches.

We observe again from figure 4 that predicting using weighted sum of devia-
tions from the mean leads to a lower MAE than predicting using simple weighted
sum, no matter which similarity measure is used. But in that case, considering
too much neighbors degrades the results, and the probabilistic similarity leads
to the lowest MAE, according to figure 3. Rounding the predicted ratings im-
proved the MAE from 2.3 to 6 percent. Finally, figures 5 and 6 report the results
obtained using Kmeans-based approaches.

According to figure 5, we see that there is not a high difference in using
manhattan or euclidian distance, although euclidian distance leads to slightly
better results. In both cases, the optimal number of clusters is 6. On the contrary,
predicting using BayesMAE (equation 15) leads to better results than when
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Fig. 3. Comparing similarity measures for item-based approaches using the deviation
prediction scheme, and different neighborhood sizes (K)
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Fig. 4. Comparing prediction schemes for item-based approaches using pearson and
probabilistic similarity measures, and different neighborhood sizes (K)
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Fig. 5. Comparing distance measures for model-based approaches using the mean item
rating prediction scheme, and different numbers of clusters (K)

MeanItem rating is used, according to figure 6, and in that case, the optimal
number of clusters is 4. Those reported results concern predictions based on the
nearest cluster rather than based on a weighted sum of predictions of each cluster
because that first scheme led to better results. Figure 7 presents results using
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Fig. 6. Comparing prediction schemes for model-based approaches using the euclidian
distance, and different numbers of clusters (K)
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Fig. 7. Comparing different clustering algorithms for model-based approaches using
the euclidian distance, the mean item rating prediction scheme, and different numbers
of clusters (K)

other clustering algorithms than K-means, and shows that K-means outperforms
LAC and SSC, but that Bisecting K-means can lead to better results when more
clusters are considered.

Finally, table 2 summarizes the results of the best of each approach, including
execution time and space complexity.

The BestDefault is BayesMAE: the default approach based on Bayes rule
minimizing MAE (equation 15). The BestUserBased is the user-based approach
based on pearson similarity (3) and 1500 neighbors. The BestItemBased is the
item-based approach based on probabilistic similarity (11) and 400 neighbors.
Both use predictions using weighted sum of deviations from the mean (1). Finally,
the BestModelBased is the model-based approach using K-means with euclidian
distance (7), 4 clusters and prediction scheme based on the nearest cluster and
Bayes model minimizing MAE.

The best overall results are reached by the best item-based approach. It needs
170 seconds to construct the model and 3 seconds to predict 100,021 ratings.
Then the best user-based approach has slightly lower MAE than model-based
or default approaches, but for a model construction time of 730 seconds and
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Table 2. Summary of the best approaches

BestDefault BestUserBased BestItemBased BestModelBased

model construction
1 730 170 254

time (in sec.)

prediction time
1 31 3 1

(in sec.)

MAE 0.6829 0.6688 0.6382 0.6736

prediction time of 31 seconds. On the other side, the best default approach only
needs 2 seconds for both model construction and predictions, for a difference in
MAE of only 0.0141.

In the litterature, [6] reported an MAE of 0.88 on the MovieLens dataset,
[10] reported 0.73, and [19] 0.72. This last score is the best reported in the
litterature, and corresponds to what we obtain with an item-based model using
their proposed adjusted cosine similarity measure given by equation 10, their
proposed weighted prediction scheme given by equation 9, 700 neighbors, and
without rounding results.

Finally, we also tested the use of local item-based models constructed on the
different user groups identified by clustering, but such an approach degrades the
results of a global item-based approach.

4 Conclusion

Many approaches to collaborative filtering have been proposed in the last two
decades. However, many different experimental protocols have been used to eval-
uate them, so that it is hard to compare them. In this paper, we chose to focus
on the most widely used dataset and relevance measure in order to test the main
methods for collaborative filtering and their main options.

According to our first results on default approaches, it seems that using Bayes
model for default predictions is relevant since it has reasonable error rate for very
low execution time. Besides, another important advantage of such a technique is
that it is easily updatable since it is incremental, whereas the other approaches
need to relearn their entire model in order to take into account new data.

For all experiments, rounding the predicted ratings led to an improvement
ranging from 2 to 6 percent of the MAE. Besides, rounding ratings is natural in
practice, since real users generally prefer rating scales based on natural numbers
than on real numbers.

Computing predictions using weighted sum of deviations from the mean
also led to better results than using simple weighted sum for both user- and
item-based approaches. As far as we know, using such prediction scheme for
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item-based approaches is new, and that is what led us to the best results.
The lowest error rates were reached using pearson similarity for user-based ap-
proaches and probabilistic similarity for item-based approaches.

Using Bayes default approach in order to predict ratings inside a given cluster
leads to better results than when the mean item rating of the cluster members is
used. Considering the prediction of the nearest cluster is better than computing
a weighted sum of the predictions of each cluster. Finally, K-means led to better
results than more sophisticated algorithms like LAC or SSC. We think it is
not relevant, in the field of collaborative filtering, to assume that the ratings
of users of a same cluster follow a normal distribution. In particular, we are
faced with the problem that users generally use differently the rating scale: for
example one user may rate 5 a movie he likes and 3 a movie he dislikes whereas
another user with the same tastes will rate 4 a movie he likes and 1 a movie he
dislikes.

More generally, item-based approaches seem the bests in our experiments.
But these results need to be taken with precaution. Indeed, although in many
cases the number of users is much more important than the number of items, in
cases where there are more items than users, user-based approaches could lead
to better results. On the same way, if there are some demographic information
on users, results of user-based approaches can be improved [21]. On the other
side, if some content information on items are available, results of item-based
approaches can also be improved [22].

Besides their very good results, item-based approaches have other advantages:
they seem to need fewer neighbors than user-based approaches, and such models
are also appropriate for the navigation in item catalogues even when no infor-
mation about the current user is available, since it can also present to a user the
nearest neighbors of any item he is currently interested in.

For future work, it seems now interesting to study how these methods can
be adapted to scale well when faced with huge datasets. The dataset provided
by Netflix [23], a popular online movie rental service, can be used for such
tests since it contains 100,480,507 movie ratings from 480,189 users on 17,770
movies.

In that field, [24] proposed a user selection scheme for user-based approaches,
[11] proposed to create super-users by running a user-based approach considering
as users the centroids found using a bisecting K-means clustering algorithm, [25]
proposed to use Principal Components Analysis (PCA) and [26] proposed to use
Singular Value Decomposition (SVD) in order to reduce the initial rating matrix
size.

Unfortunately, such dimensionality reduction techniques then prevent us from
presenting understandable results to the users because of the rating matrix trans-
formation. So instead, we think it is interesting to study how bagging [27] could
be used in collaborative filtering, and if using local item-based approaches in
each cluster found using K-means still fails with huge datasets such as Netflix’s
one.
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Abstract. Graphs are a convenient representation formalism for struc-
tured objects, but they suffer from the fact that only a few algorithms
for graph classification and clustering exist. In this paper we propose a
new approach to graph classification by embedding graphs in real vec-
tor spaces. This approach allows us to apply advanced classification tools
while retaining the high representational power of graphs. The basic idea
of our approach is to regard the edit distances of a given graph g to a set
of training graphs as a vectorial description of g. Once a graph has been
transformed into a vector, different dimensionality reduction algorithms
are applied such that redundancies are eliminated. To this reduced vecto-
rial data representation, pattern classification algorithms can be applied.
Through various experimental results we show that the proposed vector
space embedding and subsequent classification with the reduced vectors
outperform the classification algorithms in the original graph domain.

1 Introduction

After many years of research, the fields of machine learning and data mining
have reached a high level of maturity [1,2,3]. Powerful methods for clustering,
classification, and other tasks have become available. However, the vast majority
of these approaches rely on object representations given in terms of feature
vectors. Such object representations have a number of useful properties. For
example, object similarity, or distance, can be easily computed by means of the
Euclidean distance or similar measures in the n-dimensional real space. Recently,
however, a growing interest in graph-based object representation can be observed
[4]. As a matter of fact, graph based object representations have a number of
advantages over feature vectors. For example, graphs are able to represent not
only the values of object properties, i.e. features, but can be used to explicitly
model structural relations that may exist between different parts of an object.
Furthermore, a graph may include an arbitrary number of nodes and edges. This
is definitely more desirable than the case of feature vectors where the number of
features, i.e. the dimensionality of the vector space, is fixed beforehand and one
is confined to always using the same number of features regardless of the size or
the complexity of the objects under consideration. There are many applications
where the use of graphs as representation formalism is preferable over feature
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vectors [5]. There are other applications, for example in computational chemistry
or bioinformatics, where the use of a graph representation is indispensable [6,7].

Recently, various efforts have been made to bridge the gap between the domain
of feature based and graph based object representations. In [8] an approach to
graph embedding in vector spaces has been introduced. This method is based
on algebraic graph theory and utilizes spectral matrix decomposition. Another
approach for graph embedding has been proposed in [9]. It makes use of the
relationship between the Laplace-Beltrami operator and the graph Laplacian
to embed a graph onto a Riemannian manifold. In [10] an approach to graph
embedding in an n-dimensional vector space by means of prototype selection
and edit distance computation is described. The key idea of this approach is
to use the distances of an input graph to a number of training graphs, termed
prototype graphs, as vectorial description of the graph. An advantage of this
method is the explicit use of graph edit distance, which allows us to deal with
various kinds of graphs and utilize domains specific knowledge in defining the
dissimilarity of nodes and edges through edit costs. However, an appropriate
choice of the prototype graphs is one of the critical issues in this approach. A
good selection seems to be crucial to succeed with the classification algorithm in
the feature vector space. Different algorithms for solving this problem have been
described [10,11,12]. However, it has turned out that there is no universally best
method. The suitability of an algorithm for prototype selection depends on the
underlying data set.

In this paper we propose a more principled way of embedding graphs in vector
spaces. We also make use of graph edit distance to map graphs to vector spaces.
In contrast to the above mentioned method, however, we avoid the difficult task
of prototype selection by using the whole set of training graphs as prototypes. Of
course, it can be expected that by using the whole training set as prototypes, we
end up with feature vectors of very high dimensionality, which in turn may lead
to redundancy and perhaps lower the performance as well as the efficiency of our
algorithms in the features space. However, these problems may be overcome by
feature selection. Popular methods for reducing the dimensionality of a feature
space are Principal Component Analysis (PCA) and Fisher’s Linear Discrimi-
nant Analysis (LDA) [13,14]. Both methods first combine the feature values and
then project them onto a space of lower dimensionality. In this paper we make
use of both approaches after we have mapped the considered graphs into a high
dimensional feature space defined by the whole training set of graphs.

Our approach can be interpreted as a specified kind of graph kernel [15].
Graph kernels provide us with an embedding of the space of graphs into an
inner product space. The main result of kernel theory is that it is not necessary
to provide an explicit mapping from graphs to vectors as many algorithms can
be formulated entirely in terms of inner products. Hence, knowing the value of
the kernel function is sufficient. This procedure is termed kernel trick and has
proved to be very powerful for classification tasks. In our case, the mapping from
the graph domain to the feature space is explicitly given. Therefore, performing
this mapping and subsequently computing scalar products represents a valid
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kernel function. Note, however, that the method proposed in this paper is even
more flexible than graph kernels because we can also deal with algorithms that
can’t be kernelized, i.e. algorithms that need the image of a graph in the vector
space in explicit form, or need functions in the feature space other than scalar
products.

The rest of this paper is organized as follows. In Section 2, we describe our
novel procedure of graph embedding and dimensionality reduction. Then a num-
ber of experimental results are presented, demonstrating the superior perfor-
mance of the proposed method. Finally, we draw conclusions and discuss possible
future work.

2 Graph Embedding and Subsequent Dimensionality
Reduction

To embed an input graph in a vector space we assume a labeled set of training
graphs, T = {g1, . . . , gn}, and a dissimilarity measure d(gi, gj) are given. In this
paper we make use of graph edit distance as dissimilarity measure d [16,17].
The key idea of graph edit distance is to define the dissimilarity, or distance, of
graphs by the amount of distortion that is needed to transform one graph into
another. The distortions considered in this paper are insertions, deletions, and
substitutions of nodes and edges. A sequence of edit operations that transforms
a graph g1 into another graph g2 is called an edit path between g1 and g2. Costs
are assigned to each individual edit operation and the cost of an edit path is the
sum of the costs of its individual edit operations. Thus, the cost of an edit path
represents the strength of the distortions of the corresponding edit sequence.
Finally, the edit distance of two graphs is defined as the minimum cost, taken
over all edit paths between two graphs under consideration.

Recently, it has been proposed to embed graphs in vector spaces [10]. The idea
underlying this method was first developed for the embedding of real vectors in
a dissimilarity space [11,12]. In our method, after having selected a set P =
{p1, . . . , pm} of m < n prototypes from T , we compute the dissimilarity of a
graph g ∈ T to each prototype p ∈ P . This leads to m dissimilarities, d1 =
d(g, p1), . . . , dm = d(g, pm), which can be interpreted as an m-dimensional vector
(d1, . . . , dm). In this way we can transform any graph from the training set, as
well as any other graph from a validation or testing set, into a vector of real
numbers. Note that whenever a graph from the training set, which has been
choosen as a prototype before, is transformed into a vector x = (x1, . . . , xm)
one of the vector components is zero. Formally, if T = {g1, . . . , gn} is a training
set of graphs and P = {p1, . . . , pm} ⊆ T is a set of prototypes, the mapping
tPm : T → R

m is defined as a function tPm(g) +→ (d(g, p1), . . . , d(g, pm)) where
d(g, pi) is the graph edit distance between the graph g and the i-th prototype.

One crucial question in this approach is how to find a subset P of prototypes
that lead to a good performance of the classifier in the feature space. As a matter
of fact, both the individual prototypes selected from T and their number have a
critical impact on the classifier’s performance. In [10,11,12] different prototype
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selection algorithms are discussed. It turns out that none of them is globally best,
i.e. the quality of a prototype selector depends on the underlying data set. In
this paper we propose a new approach where we use all available elements from
the training set of prototypes, i.e. P = T and subsequently apply dimensionality
reduction methods. This process is much more principled than the previous
approaches and allows us to completely avoid the dificult problem of heuristic
prototype selection. For dimensionality reduction, we make use of the well known
Principal Component Analysis (PCA) and Fisher’s Linear Discriminant Analysis
(LDA) [13,14].

2.1 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) [13,14] is a linear transformation. It
seeks the projection which best represents the data. PCA is an unsupervised
method which does not take any class label information into consideration. We
first normalize the data by shifting the mean to the origin of the coordinate
system and making the variance of each feature equal to one. Then we calculate
the covariance matrix of the normalized data and determine the eigenvectors ei

and the eigenvalues λi of the covariance matrix. There exists one eigenvalue for
each eigenvector. The eigenvectors are ordered according to decreasing magni-
tude of the corresponding eigenvalues, i.e. λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. The data is
then represented in a new coordinate system defined by the eigenvectors. The
eigenvectors are also called principal components. The first principal component
points in the direction of the highest variance and, therefore, includes the most
information about the data. The second principal component is perpendicular
to the first principal component and points in the direction of the second highest
variance and so on. For reducing the dimensionality of the transformed data we
retain only the m < n eigenvectors with the highest m eigenvalues. The trans-
formation of a point in the original coordinate system into the new coordinate
system is given in Eq. 1 where x = (xi1, . . . , xin)′ denotes the untransformed
vector of dimension n, and y = (yi1, . . . , yim)′ the transformed vector which has
dimension m (m ≤ n). The first row of the transformation matrix contains the
values of the eigenvector e1, the second row the values of the eigenvector e2, and
so on. ⎛

⎜
⎜
⎜
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2.2 Fisher’s Linear Discriminant Analysis (LDA)

Fisher’s Linear Discriminant Analysis (LDA) [13,14] is a linear transformation as
well. In contrast with PCA, LDA takes class label information into account. In its
original form, LDA can be applied to two-class problems only. However, we make
use of a generalization, called Multiple Discriminant Analysis (MDA), which can
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cope with more than two classes. In MDA, we are seeking the projection of the
data which best separates the classes from each other. For this purpose, the
expression given in Eq. 2 is maximized.

J(W) =
|WT SBW|
|WTSW W| (2)

In this equation, SB represents the between-class convariance matrix, SW the
within-class covariance matrix, and W represents the transpose of the transfor-
mation matrix. We first normalize the data by its mean and its variance. Then
we calculate the matrices SW and SB and determine the eigenvectors and the
eigenvalues of the matrix S−1

W SB. As matrix SB has a maximal rank of c − 1 ,
where c represents the number of classes, we have at most c − 1 different and
nonzero eigenvalues and therefore, the transformed data points have a maximal
dimensionality of c− 1. By means of the obtained eigenvectors and eigenvalues
we get the transformed data points as described for the PCA in Subsection 2.1.

3 Experimental Results

The purpose of the experiments described in this section is to compare the classi-
fication accuracy of the proposed method with a reference system in the original
graph domain. The classifier used in the vector space is a SVM with radial basis
function kernel (RBF-kernel) [18,19]. This type of classifier has proven very pow-
erful in various applications and has become one of the most popular classifiers
in machine learning, pattern recognition, and related areas recently. As reference
system, the k-nearest neighbor classifier in the graph domain is used. Note that
as of today – up to very few exceptions, e.g. [20] – there exist no other classifiers
for general graphs that can be directly applied in the graph domain.

(a) Optimizing C and γ for a specific di-
mensionality.

(b) Optimizing the number of eigenvectors,
i.e. the resulting dimensionality.

Fig. 1. SVM validation on the Letter data
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In each of our experiments we make use of three disjoint graph sets, the
training set, the validation set and the test set. The validation set is used to
determine optimal parameter values for dimensionality reduction and for the
classification task. Clearly, for the k-nearest neighbor classifier (reference system)
the meta parameter k, i.e. the number of neighbors considered for classification,
is optimized on the validation set. If we apply PCA based reduction, we have
to determine the optimal dimensionality of the target space, i.e. the number of
eigenvectors which have to be retained. For each dimensionality an individual
SVM is trained. The RBF-kernel SVM used in this paper has parameters C
and γ. C corresponds to the weighting factor for misclassification penalty and
γ is used in our kernel function K(u,v) = exp(−γ · ||u − v||2) [18,19]. These
parameters are optimized, i.e. the parameter values that result in the lowest
classification error on the validation set are applied to the independent test set.
The procedure for the LDA transformed data differs from the validation on PCA
data. First of all, the dimensionality is not validated for LDA reduction. We use
the maximum possible dimension on each dataset, which is given by the number
of classes minus one. Furthermore, for LDA it is more important to provide a
large training set for transformation than optimizing the SVM parameter values.
Hence, for LDA transformation we merge the validation and training set to one
large set. Transformation is applied on this new set subsequently. Consequently,
no validation set is available anymore and the standard parameter values for
SVM classification are used.

3.1 Letter Database

The first database used in the experiments consists of graphs representing dis-
torted letter drawings. In this experiment we consider the 15 capital letters of the
Roman alphabet that consist of straight lines only (A, E, F, ...). For each class,
a prototype line drawing is manually constructed. To obtain large sample sets of
drawings with arbitrarily strong distortions, distortion operators are applied to
the prototype line drawings. This results in randomly translated, removed, and
added lines. These drawings are then converted into graphs in a simple manner
by representing lines by edges and ending points of lines by nodes. Each node is
labeled with a two-dimensional attribute giving its position. In Fig. 2 a graph
representing the letter A is given under five distortion levels. The graph database
used in our experiments consists of a training set, a validation set, and a test set,
each of size 750 for each of a total of five different distortion levels. As mentioned
above, there is no need for a validation set if one applies LDA transformation in
our experiments. In this case, only two sets are necessary, a training set (1500
letters) and a test set (750 letters).

In Fig. 1 the PCA validation for all three parameter values is illustrated. An
SVM for each dimensionality and each possible value of C and γ is trained. In
Fig. 1 (a) we show the classification accuracy for various (C, γ) pairs on the
validation set for one fixed value of the dimensionality. In Fig. 1 (b) (dashed
line) the best classification results achieved on the validation set for various
dimensionality values and the globally best (C, γ) pair are displayed. It turns out
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(a) (b) (c) (d) (e)

Fig. 2. Letter Database – Letter A under five distortion levels

(a) City (b) Country (c) People (d) Streets (e) Snowy

Fig. 3. Image Database – A sample image of the five classes

that only few dimensions are necessary to obtain good results. For instance, the
accuracy is not drastically decreasing before the dimensionality is reduced to 20.
Together with the accuracy a projection error curve is shown in the same figure
(solid line). This curve displays the average of squared error distance of PCA
reduced vectors as a function of the dimensionality m. This error distance for a
PCA transformed vector y and subsequently dimensionality reduced vector ŷ =
(y1, . . . , ym, 0, . . . , 0) is given by |y− ŷ|. As one expects, the error monotonically
increases with a smaller number of dimensions. However, there is no clear cut-
off point in the error curve. Hence, the optimal number of dimensions has to be
found by means of a validation set.

Table 1. Letter Data: Classification accuracy in the graph and vector space

Ref. System Classifiers applied to reduced data

Distortion k-NN (graph) PCA-SVM (dim) LDA-SVM (dim)

0.1 98.27 98.53 (20) 99.07 (14)
0.3 97.60 98.40 ◦ (30) 98.80 ◦ (14)
0.5 94.00 97.20 ◦ (30) 96.53 ◦ (14)
0.7 94.27 95.20 (30) 94.80 (14)
0.9 90.13 93.73 ◦ (100) 94.00 ◦ (14)

◦ Statistically significantly better than the reference system (α=0.05)

The parameter values that lead to the best recognition accuracy on the valida-
tion set are applied on the independent test set. The results of the experiments
on the letter database are given in Table 1. In addition to the classification ac-
curacy, the number of dimensions is indicated in bracktes for PCA-SVM and
LDA-SVM. In Table 1, we observe that the new approach with PCA and LDA
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(a) (b) (c) (d)

Fig. 4. NIST-4 fingerprint Database – A sample image of the classes arch, left, right
and whorl

outperforms the reference system on all distortion levels. Note that six out of
ten improvements are statistically significant. It is very interesting to note that
in three out of five cases the results achieved by LDA are better than the results
of PCA. But LDA uses only 14 dimensions on all distortion levels, while PCA
reduction requires up to 100 dimensions.

3.2 Real World Data

For a more thorough evaluation of the proposed methods we additonally use
three real world data sets. First we apply the proposed method to the problem
of image classification. Images are converted into graphs by segmenting them into
regions, eliminating regions that are irrelevant for classification, and representing
the remaining regions by nodes and the adjacency of regions by edges [21]. The
image database consists of five classes (city, countryside, people, snowy, streets)
and is split into a training set, a validation set and a test set of size 54 each. In
Fig. 3 a sample image of each class is given. The classification accuracies obtained
by the different methods are given in the first row of Table 2. We note that
both SVMs applied to the reduced data improve the accuracy compared to the
reference system. But only the LDA reduced classifier achieves an improvement
with statistical significance. Note that LDA uses only 4 dimensions while PCA
makes use of 35 dimensions.

The second real world dataset is given by the NIST-4 fingerprint database
[22]. We construct graphs from fingerprint images by extracting characteristic
regions in fingerprints and converting the results into attributed graphs [23].
We use a validation set of size 300 and a test and training set of size 500 each.
In this experiment we address the 4-class problem (arch, left-loop, right-loop,
whorl). In Fig. 4 a fingerprint image of each class is given. The results achieved
on this database are shown in the second row of Table 2. The SVM with the
PCA reduced data achieves better results than the reference system, though not
statistically significant. The accuracy achieved with LDA based SVM is lower
than the reference system but uses only three dimensions. Compared to the PCA
based SVM, where 150 dimensions are used, this is a vector space of very low
dimensionality.

Finally, we apply the proposed method of graph embedding and subsequent
SVM classification to the problem of molecule classification. To this end, we con-
struct graphs from the AIDS Antiviral Screen Database of Active Compounds
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[24]. Our molecule database consists of two classes (active, inactive), which rep-
resent molecules with activity against HIV or not. We use a validation set of size
250, a test set of size 1500 and training set of size 250. Thus, there are 2000 el-
ements totally (1600 inactive elements and 400 active elements). The molecules
are converted into graphs in a straightforward manner by representing atoms
as nodes and the covalent bonds as edges. Nodes are labeled with the number
of the corresponding chemical symbol and edges by the valence of the linkage.
The results achieved on this database are shown in the third row of Table 2.
The accuracy of the reference system in the graph domain is quite high, but
it can be further improved by graph embedding and SVM classification. The
PCA based SVM outperforms the reference system with statistical significance.
The accuracy of the LDA based SVM is lower than the reference systems. Note,
however, that only one dimension is used here. Taking this fact into account, an
accuracy of 95.3% seems quite remarkable. For comparison, the PCA SVM uses
100 dimensions.

Table 2. Real World Data: Classification accuracy in the graph and vector space

Ref. System Classifiers applied to reduced data

Database k-NN (graph) PCA-SVM (dim) LDA-SVM (dim)

Image 57.4 61.1 (35) 68.5 ◦ (4)
Fingerprint 82.6 84.6 (150) 66.6 • (3)
Molecules 97.1 98.2 ◦ (100) 95.3 • (1)

◦ Statistically significantly better than the reference system (α=0.05)
• Statistically significantly worse than the reference systems (α=0.05)

4 Conclusions and Future Work

The main contribution of this paper is a general methodology for bridging the gap
between statistical and structural pattern recognition. This is achieved through
computing the graph edit distance to a training set of size n. As a result we
obtain n real numbers which can serve as a high dimensional vectorial descrip-
tion of any given graph. In previous work about graph embedding, a selection
of certain prototypes has to be done before graph embedding. However, the way
of selecting these prototypes is critical. In the method proposed in this paper
we avoid the difficult task of prototype selection by taking all available graphs
from the training set as prototypes and reduce the dimensionality by applying
the mathematically well founded dimensionality reduction algorithms PCA and
LDA. This step can be interpreted as a sort of delayed prototype selection. With
several experimental results we show that the performance of a k-nearest neigh-
bor classifier in the graph domain, used as a reference system, can be outper-
formed with statistical significance. In case of classification problems with many
classes, the LDA based system is preferable, while for a small number of classes
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the PCA based system is the method of choice. In either case, the new method
allows us to combine the high representational power of graph representations
with the good performance of SVM classifiers in vector spaces.

In future work we will investigate whether one can make further improvements
in classification accuracy with kernelized versions of the dimensionality reduction
algorithms. We will also study the problem of graph clustering using the proposed
embedding method.
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Abstract. This paper presents a novel solution for the problem of building text 
classifier using positive documents (P) and unlabeled documents (U). Here, the 
unlabeled documents are mixed with positive and negative documents. This 
problem is also called PU-Learning. The key feature of PU-Learning is that 
there is no negative document for training. Recently, several approaches have 
been proposed for solving this problem. Most of them are based on the same 
idea, which builds a classifier in two steps. Each existing technique uses a 
different method for each step. Generally speaking, these existing approaches 
do not perform well when the size of P is small. In this paper, we propose a new 
approach aiming at improving the system when the size of P is small. This 
approach combines the graph-based semi-supervised learning method with the 
two-step method. Experiments indicate that our proposed method performs well 
especially when the size of P is small. 

1   Introduction  

Text classification is the technique of automatically assigning categories or classes to 
unlabeled documents. With the ever-increasing volume of text documents from 
various online sources, an automatic text classifier can save considerable time and 
human labor. Recently, a new direction of text classification problem becomes 
recognized, which is called PU-Learning [6] [7] [5] [8]. P represents the given labeled 
positive set; U represents the given unlabeled set, which is mixed with positive and 
negative documents. Usually, the positive set contains documents from a special topic 
and the negative set contains documents from diverse topics. PU-Learning is a special 
problem of text classification, where classifiers are built using labeled positive 
documents and unlabeled documents. 

PU-Learning is of great use in the task of accurately labeling documents as positive 
and negative with respect to a special class. It is particularly useful when the user 
wants to find positive documents from many text collections or sources. For example, 
a student is interested in the field of text classification and has collected some papers 
of this field from ICML, now he wants to find papers of text classification from 
ICDM. At this time, PU-Learning is helpful. The papers collected from ICML are 
positive documents (P), all the papers in the ICDM are unlabeled documents (U). 
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With the help of a PU-Learning system, the user can get the papers he wants from 
ICDM automatically.  

Recently several approaches have been proposed for solving the PU-Learning 
problem, such as typically the two-step methods such as PNB and PNCT [8] [3]. 
However, current existing methods can not perform well in some cases. Experiments 
show that especially when the labeled positive set P for training is relative small, the 
classification result is not satisfactory. The main reason is due to the uniqueness of 
PU-Learning: 1) a large portion of training documents is unlabeled and no labeled 
negative documents are given; 2) the positive class contains documents from a special 
topic while the negative class contains documents from diverse topics. When the size 
of P is small, it can hardly reflect the true feature distribution of the positive class. 
Small P and the high diversity of the negative class will make building a good 
classifier extremely difficult [8]. 

Graph based semi-supervised learning [11] is usually effective for the classification 
task in the case of small size of labeled training. This kind of methods assumes label 
smoothness over the graph. In other words, they are smooth with respect to the 
intrinsic structure revealed by the given labeled and unlabeled data. Current graph-
based methods mainly include spectral methods [4], random walks [9], graph mincuts 
[1], Gaussian random field and harmonic functions [12], etc. The characteristics of the 
graph based semi-supervised motivate us think of using this kind of methods to solve 
the PU-Learning problem with small positive dataset P. In this paper, we propose a 
novel method aiming at solving the PU-Learning problem when the given positive 
dataset P is lacking. To overcome the difficulty caused by small size of positive 
dataset, we combine the graph-based method with classical two-step methods of PU-
Learning in an effective way, and further present our approach called PE-PUC for 
constructing the positive document enlarging PU classifier.            

The organization of the paper is as follows. In Section 2 we introduce the 
background of the two-step method for PU-Learning and the graph-based semi 
supervised learning. In Section 3, we present our PE-PUC approach by combining the 
graph based method to solve the PU-Learning problem with respect to text 
classification. In Section 4, we give the evaluation of our PE-PUC approach with 
experimental results. In Section 5, we have the concluding remarks and the future 
work. 

2   PU-Learning and Graph Based Semi-supervised Learning 

2.1   Two-Step Method of PU-Learning 

The given training data for PU-Learning is the labeled positive dataset P and  
the unlabeled dataset U. The key feature of PU-Learning is that there is no  
labeled negative data for training, which makes the task of building classifier 
challenging. One class of algorithm for solving this problem is based on a two-step 
strategy. 
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Step 1: Identify a set of reliable negative documents RN, from the given unlabeled 
dataset U. In this step, several techniques can be used, such as naïve Bayesian 
approach, spy technique, 1-DNF and Rocchio algorithm, etc. 

Step 2: Build a set of classifiers by applying a classification algorithm iteratively 
using the given labeled positive documents P, the extracted negative documents RN 
and the remaining unlabeled documents U-RN; at last, select a good classifier from 
the set. In this step, Expectation Maximization (EM) algorithm and Support Vector 
Machine (SVM) usually are used. 

2.2   Graph-Based Semi-supervised Learning  

Graph-based semi-supervised learning [11] [12] considers the problem of learning 
with labeled and unlabeled data. The problem can be described as follows.  

Given a point set 1 1{ ,..., , ,..., } m
l l l nx x x xχ + += ⊂ and a label set }{1,...,C c= , the first 

l points of χ are labeled as iy C∈ , here, each class of C at least has one point. The 

remaining n  points are unlabeled. The task is to predict the label of unlabeled points. 
The graph-based method using the concept and characteristic of graph, compute the 
similarities between nodes and propagate according to a given rule until reach a 
global stable state. The points with high similarity are considered to have the same 
label. 

3   PE-PUC Approach: Positive Document Enlarging PU Classifier 

As indicated in Section 1, current two-step methods cannot work well when P is 
small. In order to solve the PU-Learning problem, the two-step methods first extract 
a set of reliable negative documents from U in Step 1. The key requirement for this 
step is that the identified negative documents from the unlabeled set must be 
reliable and relative pure, that is to say, with no or very few positive documents in 
RN. If not so, too many noisy documents will damage the performance of classifier, 
which is built in Step 2. When the size of P is small, P is too small to reflect the true 
feature distribution of the positive class. In the two-step methods, whatever 
technique we use in Step 1, it is difficult to get reliable RN. In other words, after 
Step 1, many positive documents may be extracted from U as negative ones and put 
into RN. In Step 2, the noisy RN and the small P will make it impossible to build 
good classifiers.  

Our PE-PUC method proposes a solution of the PU-Learning problem with small 
P. Intuitively, if we can extract some positive documents from U to enlarge P, we will 
possibly extract RN with high precision in Step 1. However, it is difficult to extract 
positive documents from U because: 1) U is large in size and high in diversity; 2) only 
a small portion of U is positive. It is difficult to avoid importing some negative 
documents into P when enlarging P. Those noisy documents can not improve the 
system but make it even poorer. To enlarge P with high precision, we present the  
PE-PUC algorithm using the graph-based semi-supervised techniques with main steps 
in Figure 1. 
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PE-PUC (P,U) 
Input: the given labeled positive documents, P, the given unlabeled documents, 

U; 
Output: PU Classifier 

1. Based on P, extract a set of negative documents, RN, from U; 
2. Enlarge P: Extract a set of reliable positive documents, RP, from U-RN; 
3. P’= P∪RP, U’=U-RP, extract a set of negative documents, RN’, from U’; 
4. Build the final classifier using P’, RN’ and U’-RN’. 

Fig. 1. PE-PUC algorithm 

3.1   Extracting Negative Documents from U 

We use the naïve Bayesian method to extract negative documents RN from U and  
get the remaining unlabeled dataset U-RN. The detail of the procedure is shown in 
Figure 2. 

The reason for labeling each document in U with the class label “-1” is that the 
proportion of positive documents in U is usually very small. In order to build the 
naïve Bayesian classifier, we firstly assume U is negative. Since naïve Bayesian 
method can tolerate some noise, this assumption is feasible. 

Extract RN (P, U) 
Input: the given labeled positive documents, P, the given 

unlabeled documents, U; 
Output: a set of reliable negative documents, RN, a set of 

remaining unlabeled documents, U-RN. 
1. Label each document in P with the class label 1; 
2. Label each document in U with the class label -1; 
3. Build a naïve Bayesian classifier, NB-C, using P and U; 
4. Classify U using NB-C; 
5. RN ← documents which are classified as negative; U-RN ← 

documents which are classified as positive; 

Fig. 2. Algorithm for extracting reliable negative documents 

3.2   Enlarge P: Extracting RP from U-RN 

In order to solve the PU-Learning problem with small P, we try to enlarge P by 
extracting some reliable positive documents from U-RN. Now we give the detail of 
this procedure.  

Given a point set 1 1{ ,..., , ,..., } m
l l l nx x x xχ + += ⊂ , the first l points of χ are labeled 

positive documents; the remaining points of χ  are unlabeled documents which are to 
be ranked according to their relevance to the labeled positive documents. Let 
d: χ χ× → denotes a matrix on χ , this matrix assigns each pair i jx ,x  the 

distance ( )i jd x ,x , and :f χ → denotes a ranking function which assigns each data 
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point of χ a ranking score. Finally, we define a vector [ ]1,...
T

l ny y y += , in 

which 1,... 1ly y = , referring to the labeled positive documents, and 1,... 0l l ny y+ + = , 

referring to the unlabeled documents. 
Graph based semi-supervised learning is an effective approach to deal with small 

size of labeled training for the purpose of classification.  But for PU-Learning based 
classification, the problem is that we don’t have any negative documents for 
propagation. Thus, an improved graph-based algorithm for extracting RP from U-RN 
is proposed as shown in Figure 3. An intuitive description of the algorithm is to 
randomly select a set of positive documents from P and put them into PL, which is 
used as the seeds for propagation, and then a weighted graph is formed which takes 
each point in PL∪ (U-RN) as a vertex. A positive ranking score to each point in PL is 
further assigned while zero to the remaining ones, and all the points then spread their 
scores to the nearby points via the weighted graph. This spread process is repeated 
until a global stable state is reached, and all the points except the seed points will have 
their own scores according to which they will be ranked. The resultant ranking score 
of an unlabeled document in U-RN is in proportion to the probability that it is relevant 
to the positive class, with large ranking score indicating high probability. So, at last, 
we can choose a number of the top ranked documents as reliable positive documents 
and use them to enlarge P. 

Enlarge P (P, U-RN, λ )  

Input: a set of positive documents, P, a set of unlabeled documents, U-RN, the 
percentage of U-RN which will be extracted as positive documents, λ , (0,1)λ ∈ ; 

Output: a set of positive documents, RP; 
1. RP ← ∅ , n  ← the number of documents in U-RN; 

2. Randomly select l documents from P and put them in PL; 

3. Form the affinity matrix W , 2 2exp || || 2ij i jW x x σ⎡ ⎤= − −⎣ ⎦ if i j≠ , 0iiW = ; 

4. Symmetrically normalize W  by
1 1

2 2S D WD= . D  is the diagonal matrix with 
( , )i i -element equal to the sum of the thi  row of W ;  

5. ( )( ) 1* 1 1f S yα α −= − − , (0,1)α ∈ . Rank each document [ ], 1,ix i l l n∈ + +  

according to the ranking score in *f (largest ranked first); 

6. RP ← the top ranked documents in U-RN ( RP U RNλ⎡ ⎤= × −⎢ ⎥ ) 

Fig. 3. Algorithm for enlarging P 

But when P is extremely small, only several labeled positive documents are known 
for training. In this case, just extracting RP from U-RN to enlarge P may not improve 
the performance distinctly. Here we propose a repeated extraction approach to take 
place of the second step in PE-PUC, namely, enlarging P repeatedly. The procedure 
of repeated extraction is shown in Figure 4.  
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Repeated Extraction  
Input: the given labeled positive documents, P, the given unlabeled 

documents, U, the number of iteration, m, 1{ ,..., ,..., }i mλ λ λΛ = ; 

Output: a set of reliable positive documents, RP; 
1:  for 1:i m=  do 
2:  get U-RN from Extract RN (U, P); 
3:  get RP from Enlarge P (P, U-RN, iλ ); 

4:  P←P∪RP, U←U-RP, 1i i= + ; 
5:  end for 
6:  return RP 

Fig. 4. Algorithm for repeated extraction 

In PU-Learning problem, the negative class consists of diverse topics. It is the 
diversity that makes it difficult to extract RP from U. Thus, the main issue is to find a 
way to deal with the problem of diversity. The key to semi-supervised learning 
problem is the prior assumption of consistency: 1) nearby points are likely to have the 
same label; 2) points on the same structure (such as a cluster) are likely to have the 
same label. The classifying function, which is constructed by the graph-based method, 
is sufficiently smooth with respect to the intrinsic structure revealed by the given 
labeled and unlabeled data. Using this method to extract RP, the propagation of 
ranking score reflects the relationship of all the data points (each document in PL and 
U-RN now is looking as a point in the graph), since in the feature space, distant points 
will not have similar ranking scores unless they belong to the same cluster consisting 
of many points that help to link the distant points, and nearby points will have similar 
ranking scores unless they belong to different clusters. As we use positive documents 
as seeds for propagation, so after convergence, the documents with higher-ranking 
scores are more likely positive documents.  

Another reason that we adopt the graph-based method is that it needs few labeled 
documents for propagation. This characteristic accords with our situation when the 
size of P is small. No matter how small |P| is, this method is relative feasible. 

In this step, we extract positive documents from U-RN but not from U. This is 
reasonable. The given unlabeled set U is mixed with positive and negative documents. 
Usually the proportion of positive documents in U is quite small, and the negative 
documents are of high diversity, so it is difficult to extract positive documents from U 
with high precision. Moreover, the number of documents in U is quite large, which 
will make the computation complicated and time consuming. According to our 
experiments, when P is small, most of the negative documents in U are extracted into 
RN, and a lot of positive documents in U are also selected into RN. In other words, 
RN is of high recall but low precision. Under this circumstance, the number of 
documents in U-RN is much smaller than the number of documents in U, so the 
computation of the graph-based method is easy. In addition, the proportion of positive 
documents in U-RN is much larger than the proportion of positive documents in U, 
which makes the extraction with high precision possible. 
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3.3   Build the Final Classifier 

In the process of enlarging P, a reliable positive set RP is extracted from U-RN and 
added to P. Then, we use P’ and U’ as the new input, and get the newly extracted 
negative documents, which is defined as set RN’. The final classifier is built based on 
P’, RN’ and U’-RN’. In our work, we use two techniques to build the final classifier, 
one is based on the naïve Bayesian method and the other is based on the Expectation-
Maximization (EM) algorithm.   

For the naïve Bayesian method, we directly build the final classifier with P’ and 
RN’. For the EM algorithm, we build a set of classifiers using P’, RN’ and U’-RN’. 
EM iteratively runs naïve Bayesian algorithm to revise the probabilistic label of each 
document in set U’-RN’. The iteration of EM at each time generates a naïve Bayesian 
classifier. After convergence, we can get several classifiers. Since it is not easy to 
catch the best classifier, we choose the better one between the first classifier and the 
classifier at convergence as the final result.  

4   Experiment and Evaluation 

4.1   Experiment Setup 

In the experiment, we use the 20 Newsgroups1 dataset. For the 20newsgroup, there are 
totally 20 different classes, where each class contains about 1,000 documents. We use 
each newsgroup as the positive set and the rest of the 19 groups as the negative set, 
which creates 20 datasets. For each dataset, 30% of the documents are randomly 
selected as test documents, the rest (70%) are used as training documents. The 
training datasets are selected as follows. γ % of the documents from the positive class 

is first selected as the positive set P. The rest of the positive documents and negative 
documents are mixed to form the unlabeled set U. Our work focuses on the situation 
when |P| is small, so  γ  is ranged from 1% to10% for evaluating our method.  

In our experiment, we use NB-NB and NB-EM as the baseline systems which are 
adopted in [8]. In the process of enlarging P, 10 documents are randomly selected 
from P as the seeds for propagation. We compute the affinity matrix W with 1.0σ =  
and iteration with 0.99α = . The number of positive documents selected from U-RN is 
set according to |U-RN| and the parameter λ . We test different λ settings to get a 
better result. In the last step, naïve Bayesian and EM algorithms are used to build the 
final classifier, which are represented as PE-PUC-NB and PE-PUC-EM, respectively. 
We use the popular F -score on the positive class as the evaluation measure.  

4.2   Result Evaluation 

The PE-PUC Method Can Give Better Results When P Is Small 
Table 1 is the average of F -scores of the 20 datasets for each γ  setting. Columns 2  

and 3 show the results of the baseline systems. Columns 4 and 5 show the results of our 
PE-PUC approach. The comparative result of the experiment is shown in Figure 5. 

                                                           
1 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes/20_newsgroups.tar.gz 
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Table 1. The results of Newsgroup20 

PE-PUC %γ  NB-
NB 

NB-
EM 

NB EM 

1 0.063 0.429 0.272 0.451 

2 0.155 0.499 0.474 0.512 

3 0.192 0.511 0.538 0.538 

4 0.253 0.524 0.597 0.597 

5 0.321 0.530 0.648 0.648 

6 0.370 0.531 0.625 0.625 

7 0.421 0.568 0.611 0.627 

8 0.464 0.590 0.630 0.666 

9 0.497 0.599 0.642 0.679 

10 0.530 0.625 0.657 0.690 

 

Fig. 5. Experiment results for the 20Newsgroup 

The results indicate that our PE-PUC method performs better than the baseline 
systems significantly when P is small. For some cases, using the EM algorithm to 
build the final classifier can boost the systems. However, for the other cases, EM 
gives the same result as NB. As we use a classifier selection mechanism with the EM 
algorithm, which is able to select the first classifier if it is better than the one at 
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convergence, so we can see, for some instances, the iteration of EM algorithm cannot 
boost the systems but degraded them.  

Analysis of the Enlarging P Procedure 
In our work, the graph-based method is used to extract positive documents from  
U-RN. Now we further analyze the function of this procedure according to the 
experimental results. 

(1) The number of positive documents extracted from U-RN affects the 
performance of the system. 

We set the size of RP according to the number of documents in U-RN and the 
parameter λ , where RP U RNλ⎡ ⎤= × −⎢ ⎥ . Table 2 gives the results of different λ  

settings for 9%γ =  in term of F -score. Due to the space limitation, here we just list 
out the results of the four classes. The results of the other classes behave in the similar 
way. From the results, we can observe that different λ produces different results.  

Table 2. 9 %γ = , Results of different λ settings 

PE-PUC  

NB-NB NB-EM 

P         λ  0.6 0.7 0.8 0.6 0.7 0.8 

Crypt 0.921 0.918 0.909 0.921 0.918 0.909 

Electronics 0.437 0.449 0.461 0.576 0.578 0.580 

Med 0.396 0.417 0.388 0.396 0.417 0.388 

Space 0.601 0.641 0.673 0.781 0.785 0.790 

(2) Enlarging P can help to extract negative documents with higher precision.  

As indicated in Section 3, the key requirement for the extraction of RN is high 
precision, which is a main problem when P is small. Table 3 gives the results of the 
precision of RN, which is the average of 20 datasets for 10%γ = . As we can see from 
Table 3, the enlarging P procedure can help to extract negative documents with higher 
precision. 

Table 3. 1 0 %γ = , Precision of RN 

Method PE-PUC Two-step 

λ  0.6λ =  0.7λ =  0.8λ =   

PrecisionOfRN  0.9771 0.9786 0.9756 0.9703 
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(3) Effectiveness of the repeated extraction approach 

Another phenomenon shown in our experiment is that when the number of positive 
documents is extremely small, e.g. 5%γ ≤ , the number of documents in U-RN will be 
very small. The reason is that when P is extremely small, P is too small to represent 
the distribution of the positive class, so most of the documents in U will be extracted 
into RN as negative ones. In this case, the number of positive documents can be 
extracted from U-RN is small, which limits the performance of our PE-PUC 
approach. To solve this problem, we conceive the repeated extraction approach to 
gradually enlarge P. From Table 4 shows that our approach is effective when P is 
extremely small. The value in the form is the average of F -scores of the 20 datasets 
for each γ  setting. 

Table 4. The results of PE-PUC with Repeated Extraction Approach 

1m =  2m =  m=3 %γ  

NB EM NB EM NB EM 

1 0.187 0.437 0.213 0.425 0.272 0.451 

2 0.321 0.510 0.389 0.501 0.474 0.512 

3 0.392 0.518 0.522 0.522 0.538 0.538 

4 0.474 0.533 0.597 0.597 0.535 0.535 

5 0.563 0.563 0.648 0.648 0.600 0.600 

5   Conclusion and Future Work 

In this paper, we present a novel approach called PE-PUC to solve the PU-Learning 
problem when the positive dataset P is small. PU-Learning refers to the problem of 
learning a classifier from positive and unlabeled data. A typical kind of method for 
solving this problem is a so called two-step method. However, the two-step method 
cannot perform well when the positive dataset P is small. In our PE-PUC approach, 
the graph-based method is combined with the two-step method, which is used to 
extract some reliable positive documents from the unlabeled dataset to enlarge P. A 
comprehensive evaluation shows that our PE-PUC approach outperforms current 
existing PU-Learning algorithms especially when positive dataset is small. 

In the future work, our research will further focus on the parameter selection, 
namely, to effectively determine the most suitable λ and m  settings in a pure 
mechanical way with respect to different datasets.  
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Abstract. The purpose of subsequence matching is to find a query se-
quence from a long data sequence. Due to the abundance of applications,
many solutions have been proposed. Virtually all previous solutions use
the Euclidean measure as the basis for measuring distance between se-
quences. Recent studies, however, suggest that the Euclidean distance
often fails to produce proper results due to the irregularity in the data,
which is not so uncommon in our problem domain. Addressing this prob-
lem, some non-Euclidean measures, such as Dynamic Time Warping
(DTW) and Longest Common Subsequence (LCS), have been proposed.
However, most of the previous work in this direction focused on the
whole sequence matching problem where query and data sequences are
the same length. In this paper, we propose a novel subsequence match-
ing framework using a non-Euclidean measure, in particular, LCS, and
a new index query scheme. The proposed framework is based on the
Dual Match framework where data sequences are divided into a series
of disjoint equi-length subsequences and then indexed in an R-tree. We
introduced similarity bound for index matching with LCS. The proposed
query matching scheme reduces significant numbers of false positives in
the match result. Furthermore, we developed an algorithm to skip ex-
pensive LCS computations through observing the warping paths. We
validated our framework through extensive experiments using 48 differ-
ent time series datasets. The results of the experiments suggest that our
approach significantly improves the subsequence matching performance
in various metrics.
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Fig. 1. Whole sequence matching and Subsequence matching

1 Introduction

One of the basic problems in handling time series data is locating a pattern
of interest from the long sequence of input data [1,2,7]. The sequence match-
ing problem is largely classified into two categories: whole sequence matching
and subsequence matching. Whole sequence matching involves finding, from the
dataset, all sequence entries whose lengths are equal to the query and that fall
within the similarity threshold specified by the user. For example, Figure 1(a)
illustrates the whole sequence matching using the sign language palm orientation
example. It shows the palm orientation readings from four different people (rows)
using Australian Sign Language saying seven different words (columns)[4]. Each
word from different signers has the same length and is searched for a given query.

Subsequence matching finds all subsequences from a longer data sequence that
matches to the query. Figure 1(b) shows an example. It shows a short query se-
quence, one heart beat signal, and all matching regions from the longer data
sequence. Subsequence matching is a more general problem than the whole se-
quence matching problem. However, most of the previous work has focused on
the whole sequence matching problem [1,5,11]. While applying whole sequence
matching techniques to the subsequence matching can be possible through GEM-
INI [2] framework, the application is not straightforward when non-Euclidean
distance measures are used. Euclidean measure is sensitive to noise and due to
the irregular nature of the data in sequence applications (e.g., moving object tra-
jectories, query-by-humming, etc.), non-Euclidean measures are often desirable.
The non-Euclidean distance measures such as DTW (Dynamic Time Warping)
and LCS (Longest Common Subsequence) address some of the problems that
Euclidean measure has [5,10].

In this work, we propose an efficient index searching framework for subse-
quence matching using LCS. We choose LCS because it is known to be more
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robust to the noise in the data than DTW [3,9] and yet to the best of our knowl-
edge no previous work has considered it in the context of subsequence matching.
We made the following contributions:

– We proposed a subsequence matching framework that employs a non-
Euclidean distance measure LCS. It is for a more intuitive matching
performance.

– We formally introduced the criteria for pruning the search space when using
time series index with LCS similarity function.

– We introduced a new index query scheme, multiple window sliding, where
several adjacent windows are queried and aggregated in order to improve
the query performance.

– We proposed a new index search scheme that enables us to skip unnecessary
similarity computations for the consecutive matching subsequences.

2 Background and Related Work

2.1 Notational Convenience

In order to state the problem and concepts clearly, we define some notations
and terminologies in Table 1. In our work, we assume that a time series is a
totally ordered set of real numbers and each real number element is collected
from a single channel sensor device. A subsequence is a subset of a time series
in contiguous time stamps.

Table 1. The basic notation

B A time series data sequence, < b1, b2, . . . > , each bi is a real
number at the ith time stamp.

|B| Length of the sequence B

Bi The ith subsequence of B when B is divided into disjoint sub-
sequences of an equal length

Q A query sequence, usually |Q| � |B|
B[i : j] A subsequence of B from time stamp i to j

2.2 Subsequence Matching Framework (DualMatch vs. FRM)

There are at least two subsequence matching frameworks, FRM [2]1 and Dual
Match [7]. Both of the matching processes are illustrated in Figure 2. Let n
be the number of data points and w be the size of an index window. In FRM,
the data sequence is divided into n− w + 1 sliding windows. Figure 2(a) shows
the FRM indexing step. Every window is overlapped with the next window
except the first data point. Whereas, query Q is divided into disjoint windows
(Figure 2(b)), and each window is to be matched against the sliding windows of

1 It is named after its authors.
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Fig. 2. Two Subsequence Matching Frameworks

the data sequence (Figure 2(c)). On the other hand, in Dual Match framework,
data sequence is divided into disjoint windows (Figure 2(d)), and part of the
query in its sliding window is matched to the data indices (Figure 2(e) and
2(f)). Since the Dual Match does not allow any overlap of the index windows,
it needs less space for the index and, in consequence, index searching is faster
than FRM. Through the index matching, we get a set of candidate matches and
the actual similarity or distance is computed for them. Since the length of the
data is usually very long, Dual Match framework reduces the indexing efforts.
We employ the Dual Match as our indexing scheme.

2.3 Dual Match Subsequence Matching with Euclidean Distance

Dual Match consists of three steps. First, in the indexing step, data is decomposed
into disjoint windows and each window is represented by a multi-dimensional vec-
tor. They are stored in a spatial index structure like R-tree. Second, query se-
quence is decomposed into a set of sliding windows and each window is trans-
formed into the same dimensional vector representation as the index window. The
size of the sliding window is the same as that of the index window. It is proven
that if the length of the query is longer than twice of the index length, one of the
sliding windows in the query is guaranteed to match to a data index that belongs
to a subsequence that matches to the query [7]. The index matching always re-
turns a super set of the true matching intervals since the similarity of the index
and query sliding window is always larger than the similarity of the true match.
Lastly, based on the positions of the matching sliding windows, whole matching
intervals are decided and actual similarities are computed.
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2.4 A Non-euclidean Distance LCS

Non-Euclidean similarity measures such as LCS and DTW are useful to match
two time series data when the data has irregularity. The LCS is known to be
robust to the noise since it does not count the outliers in the sequence that fall
out of the range (ε). Both use the same dynamic programming procedure to
compute the optimal warping path within the time interval (δ). We chose LCS
as our distance function and its definition is given below.

Definition 1. [10] Let Q=< q1, q2, ..., qn > be a query and B=< b1, b2, ..., bn >
be a data subsequence of time series. Given an integer δ and a real number 0
< ε <1, we define the cumulative similarity γi,j(Q,B) or γi,j as

γi,j =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i, j = 0
1 + γi−1,j−1 if|qi − bj| ≤ ε

and |i− j| ≤ δ
max(γi,j−1, γi−1,j) otherwise

and using that, LCS similarity with δ and ε as

LCSδ,ε(Q,B) = γ|Q|,|B|

LCS(Q,B) returns an integer between 0 and min(|Q|, |B|). δ is the allowable
matching interval in the time dimension and ε is the allowable error bound
in the data value dimension. Here is an example of LCS match for the two
sequences A and B of the same length where A = <0, 0, 0, 0, 0.8, 1, 0.9, 0.1,
0> and B = <0, 0.1, 0, 0.8, 1, 1, 0, 0, 0.1>. Figure 3(a) shows the LCS warping
path. Figure 3(b) shows the LCS computation process in the LCS warping path
matrix. It is constructed by dynamic programming of the cumulative similarity
γ|A|,|B|. The non-zero boxes in light color in the LCS warping path matrix of
Figure 3(b) is called a Sakoe-Chiba band [8].
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3 Problem Statement

The purpose of the subsequence matching is to find subsequences similar to the
given query sequence. Subsequence matching framework with Euclidean distance
has been already developed as we stated in the previous section. However, to the
best of our knowledge, many things have not yet been considered when we apply
non-Euclidean function to the subsequence matching. We need to improve the
index search performance and we need to provide an index matching criteria
that avoids expensive computation caused by non-Euclidean measures.

In order to describe what should be the output of the subsequence matching,
we define matching subsequences for a query sequence Q in terms of LCSδ,ε.

Definition 2. Let Q=< q1, q2, ...qm > be a query and B=< b1, b2, ...bn > be a
data subsequence of time series. Given an integer δ, a real number 0 < ε <1
and user defined similarity threshold θ, we define the matching subsequences,
M = {B[i : j] | LCSδ,ε(Q,B[i : j]) ≥ θ}

There may be many overlapping subsequences in the same region that exceed the
similarity threshold θ. We restrict the scope of our work to find only the longest
possible matching subsequences of the length |Q| + 2δ. We do not return all
matching subsequences that are properly contained in the longest possible one
returned. It could be prohibitively expensive to find all matches of all lengths us-
ing a non-Euclidean measure. It makes sense to return only the longest matching
subsequences since it contains all matching subsequences shorter than |Q|+2δ in
the region. It is possible to search shorter matching subsequences, if needed, after
the search process for the longest ones completes. In Figure 4, all the matching
subsequences of size |Q| + 2δ are visualized in grey dotted lines.

Formally, our problem is defined as follows:Find all matching subsequences
B[i : j] of length |Q| + 2δ for data sequence B and query Q such that the
similarity LCSδ,ε(Q,B[i : j]) is no less than s% of the |Q|, s

100 |Q|.

4 Subsequence Matching with LCS

4.1 Linear Search and Skipping LCS Computation

A straighforward approach to the subsequence matching is comparing the query
subsequence Q to all of the candidate subsequences of the data sequence B in



Efficient Subsequence Matching Using the LCS with a Dual Match Index 591

Data

Query

[δ=8, ε =0.15]
 = 32

0 10 20 30 40 50

 = 19 Similarity 
[δ=8, ε =0.15]

Similarity 

0 10 20 30 40 50

Data

Query

(a) Aligned to the left (b) Aligned to the center

Fig. 5. Alignment with LCS when |Query| = 32 and |Data| = 48

a sequential manner. All the candidates can be chosen by sliding a fixed size
window along the data sequence.

Alignment in LCS. When we compare query Q to a candidate data subse-
quence of length |Q|+ 2δ, we align the query in the middle of each candidate as
illustrated in Figure 5(b). In the case of the whole sequence matching, alignment
is not a problem since the query and data have the same length. However, in
our subsequence matching, we need to locate the query in the candidate subse-
quence. If we align the query to the left side of a candidate, we may find a correct
subsequence. In Figure 5(a), shorter query is not matched well to the longer data
when aligned to the left. The right side of the query cannot be compared with
the data since the δ is not big enough to cover all the matching points in the
data. Larger δ increases the computational complexity of the matching process.
Figure 5(a) shows that the query is correctly matched with the same δ when
properly aligned.

Skipping LCS Computation. We can avoid expensive similarity computa-
tions of the adjacent subsequences by exploiting the LCS warping path and the
local constraint such as the Sakoe-Chiba band. In the subsequence matching,
we can think of the computation matrix as a moving window along the data
sequence as shown in Figure 6.

Let us take a look at an example. Assume that |Q| = 4 and the user wants to
find all the subsequences whose similarity is larger than or equal to 3.
Figure 6(a) shows the LCS warping path which is represented as a set of arrows.
In this case, LCS(Q,B[1 : 6]) = 4. Darker cells represent the Sakoe-Chiba band.
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In Figure 6(b), we move a sliding window by a time stamp. The Sakoe-Chiba
band still includes the warping path. In this case, we don’t have to compute
the LCS(Q,B[2 : 7]) since the dynamic programming finds a maximum warping
path in the Sakoe-Chiba band and LCS(Q,B[2 : 7]) must be larger than or
equal to 4. In Figure 6(c),we need to compute LCS(Q,B[3 : 8]) since the first
three warping steps now became invalid.

We can skip the computation of a sliding window by tracing the warping path.
If we find that the Sakoe-Chiba band of the current LCS matrix includes the
previous warping path more than or equal to the user defined threshold, then
we can skip the LCS computation. The skipping goes until a Sakoe-Chiba band
includes warping path less than the user defined threshold. It is a useful property
to reduce the expensive similarity computation in the subsequence matching
where the adjacent window usually has a similar similarity value.

4.2 Index Match

Indexing enables us to avoid unecessary similarity computations for true-negative
candidates for subsequence matching. In order to do that, we compute the prun-
ing criteria to choose candidate matching subsequences with LCS. We also in-
troduce in this section a new framework to efficiently search the index.

Indexing. Data is divided into equi-length disjoint windows for indexing. Each
window is then represented as a multi-dimensional vector. That is, data sequence
B is divided into equi-length disjoint windows < wi >. Let N be the dimension-
ality of the space we want to have indexed. An MBR, MinimumBounding
Rectangle, represents a dimension. N MBRs for a wi, are transformed into −→wi

=< (ui1, . . . , uiN ), (li1, . . . , liN ) > ,where uij and lij represent the maximum and
minimum values in the jth interval of wi. −→wi is stored in an N dimensional R-tree.
An example is illustrated in Figure 7(a). In the figure, the data in the first win-
dow, w1 =< b1, ..., b9 > is transformed into −→w1 =< (u11, u12, u13), (l11, l12, l13) >.
It is stored in an R-tree as showin in Figure 7(b).
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Index Matching with LCS. Query Q is compared first to the index. Q is
transformed into an MBE, Minimum Bounding Envelope, with LCSδ,ε function
as illustrated in Figure 7(d). Let MBEQ be an MBE for Q. Let the ith sliding
window of Q be vi. It is transformed into −→vi =< (ûi1, . . . , ûiN ), (l̂i1, . . . , l̂iN ) >,
where ûij and l̂ij are the maximum and minimum values respectively in MBEQ

of the jth MBR of the vi. This is illustrated in Figure 7(e). Since MBEQ covers
the whole possible matching area, any point that lies outside the MBEQ is
not counted for the similarity. The number of intersecting points between B
and MBEQ provides the upperbound for LCSδ,ε(B,Q) [10]. The number of
intersections is counted through the R-tree operation as shown in Figure 7(b),
which is the intersection of Figure 7(a) and Figure 7(e).

4.3 Window Sliding Schemes in Index Matching

There are three ways to slide query windows and choose the candidate matching
subsequences: Naive Single Window Sliding, Single Window Sliding and Multiple
Window Sliding. We explain each window sliding scheme and show how the the
bounding similarity is computed.

Naive Single Window Sliding. In this scheme, as illustrated in Figure 8(a),
we compare a sliding window of a query to index, which is first introduced in
the Dual Match [6]. This overestimation method cannot be applied to the LCS
based subsequence matching since it is based on the Euclidean distance. We
should consider δ on both ends of the query sliding window. In Figure 9 (a), a
sliding window v of a query Q is matched to a window w of the data sequence B.
In actual index matching, near the ends of the point of the Q cannot be matched
to the points of w as in Figure 9 (b). The data is just indexed by MBR that
does not consider δ time shift.

We compute the similarity threshold for the naive single window sliding
method.

Let v be a sliding window of Q. The minimum similarity, θ is

θ = |v| − (|Q| − s

100
|Q|) − 2δ (1)
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The term, (|Q| − s
100 |Q|) for the Equation (1) is subtracted from |v| when all

the mismatches can be found in the current window v. The last term 2δ is the
maximum possible number of the lost matching points.

Single Window Sliding. When the query length is long enough to contain
more than one sliding window, we can use the consecutive matching information
as in Figure 8(b). Assume query Q and matching data subsequence B has M
consecutive disjoint windows, Bi’s and Qi’s. If some Qi and Bi pairs are not
similar, then the other Qj and Bj pairs should be similar and we can recog-
nize the B and Q pair is a candidate through Bj and Qj . When all Bi and Qi

pairs have the same similarities, we should have the minimum value to decide
the candidate for comparison. The multiPiece search [2] is proposed to choose
candidates through this process. The same applies for the Euclidean distance
measure. In the multiPiece, the two subsequences, B and Q, of the same length
are given and each can be divided into p subsequences each of which has length l.
d(B,Q) < ε ⇒ d(Bi, Qi) < ε√

p for some 1 ≤ i ≤ p where Bi, Qi are ith subse-
quence of the length l and ε > 0. In the case of the Dual Match using Euclidean
distance, we can count a candidate if the distance is less than or equal to ε√

p .
Similarly, in the case of LCS, LCSδ,ε(B,Q) > s

100 |Q| ⇒ LCSδ,ε(v,Q[i : j]) >
M|v|−(|Q|− s

100 |Q|)−2δ

M for some j−i+1 = |v|. So the similarity threshold for single
window sliding, θs is

θs = |v| −
(|Q| − s

100 |Q|) + 2δ
M

(2)

As illustrated in Figure 8(b), M consecutive sliding windows are thought to be
one big sliding window that might lose warping path at both ends. The threshold
for the M sliding windows is M |v|−(|Q|− s

100 |Q|)−2δ and it is divided by M for
one sliding window. If one of the sliding windows among consecutive M sliding
windows in Q is larger than or equal to θs, we can get a candidate and we don’t
have to do index matching for the remaining consecutive sliding windows at the
same candidate location.
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Multiple Window Sliding. In this new window sliding scheme, as illustrated
in Figure 8(c), the matching results of consecutive sliding windows in a query
are aggregated. If we sum up the index matching result from M consecutive
sliding windows, we can further reduce false positives. Let M be the number of
consecutive windows fitted in a query Q. We vary M to contain the maximum
number of sliding windows depending on the left most window.

The index matching results of each sliding window for all disjoint data win-
dows are added up to get M consecutive sliding windows. In Figure 10, the
aggregation is done by accumulating the results in a vector A of the size |B|

w .
B is the data sequence and w is the length of an index window. Assume that
< v1, . . . , vM > is a series of consecutive windows in the query Q. The index
matching results of a query window vj is placed in a temporary row vector in
Figure 10. It is added to A and A is shifted to the right. The next matching
result for vj+1 is placed in the temporary row vector. It is added to A and A is
shifted right. In Figure 10, we get A such that

A[1] = LCSδ,ε(−→v1 ,
−→w1) + LCSδ,ε(−→v 2,

−→w 2) + LCSδ,ε(−→v 3,
−→w 3),

A[2] = LCSδ,ε(−→v1 ,
−→w2) + LCSδ,ε(−→v 2,

−→w 3) + LCSδ,ε(−→v 3,
−→w 4), ...

A[m] = LCSδ,ε(−→v1 ,
−−−→wm−2) + LCSδ,ε(−→v 2,

−→wm−1) + LCSδ,ε(−→v 3,
−→wm).

The shift operations aggregate the consecutive index matching results.
The similarity threshold for multiple sliding windows, θm, is computed as if

the consecutive M windows move together like one big window.

θm = M |v| − (|Q| − s

100
|Q|) − 2δ (3)

θm is for an aggregate comparison of M consecutive sliding windows while θs is
for one sliding window.

Through the aggregation of the consecutive index matching information, we
can enhance the pruning power of the index. That is, we have less false alarms
than the single window sliding scheme. In Figure 10, the diagonal sum illustrates
the aggregatation of the consecutive index matching results. If θs = 8, the first,
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Fig. 11. Postprocessing to find whole length of the candidate matching subsequences

second and the fifth diagonals are selected as the candidates since one of the
matches is greater than or equal to 8. However, in case of the multiple window
sliding, if the θm = 20, the fifth diagonal is not a candidate since the sum 12 is
less than 20, so it has less false alarms than the single window sliding scheme.

Post-Processing. Post-processing is the final procedure to decide the whole
length of the matching subsequence depending on the position of the match-
ing sliding window and matching index. The actual similarity computation is
done for the whole interval of the subsequence against the query. Figure 11
demonstrates the postprocessing. We intensionally omit the adjacent matching
subsequences and show only one matching. Through the index matching pro-
cess, matching indexes for each sliding window 1©, 2©, 3© are to be found and
then whole length of the candidate subsequence is computed including 2δ area.
In Figure 11, one candidate subsequence has an index matching area and a four
box area.

Skipping LCS computation. After deciding the whole length of the candi-
date subsequences, skipping LCS computation is applied to reduce the com-
putational load. Subsequence matching cannot avoid many adjacent matching
subsequences where one subsequence is found. By tracing the warping path of the
matching subsequences in its LCS warping path matrix, we can reduce the LCS
computation.

5 Experiment

Experiments were conducted on a machine with 2.8 GHz pentium 4 processor
and 2GB Memory using Matlab 2006a and Java. Here are the parameters to run
the tests.

– Dataset. We used 48 different time series datasets2 for evaluation. Each
dataset has a different length of data and a different number of channels.

2 http://www.cs.ucr.edu/ eamonn/TSDMA/UCR, The UCR Time Series Data Min-
ing Archive.
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Fig. 12. Candidates generated by single window sliding and multiple window sliding

We set the length of each to 100,000 by attaching the beginning to the end
so that all the datasets have the same length.

– Index. We set the dimension to 8 and MBR size to 4. Regarding the param-
eters to index dataset such as dimension, MBR and R-tree size need domain
knowledge.

– Query. We choose 4 fixed length of queries, 100, 150, 180 and 200 so that
each length includes 3,4,5 and 6 windows. 10 queries for each length are
randomly selected from the data sequence.

– Similarity. ε is set to 1 % of the data range, δ is 2.5 % of the |Q|. Similarity
threshold s is set to 99%.

5.1 Different Sliding Schemes and Candidates

We compare the performance of the two different index sliding schemes : single
window sliding and multiple window sliding scheme. Figure 12 shows that the ra-
tios, # of candidates by single windows sliding

# of candidates by multiple windows sliding for different lengths of queries of each
dataset. Ratios greater than one means that the multiple window sliding scheme
generates less candidates than those of the single window sliding scheme. The
multiple window sliding scheme has less false alarms than the single window slid-
ing scheme in the tests. The ratio varies from 1 to 140. Multiple sliding window
generates only 1

140 of the single window sliding scheme in the Fluid dynamics
dataset. Figure 13 shows the median values from the Figure 12 for each length
of the queries. Figure 13 summarizes how much the performance is improved as
the length of query gets longer in all of the datasets. It demonstrates that as the
length of a query gets longer to include more index windows, we have less false
alarms in the multiple window sliding than in the single window sliding.

However in the datasets such as EEG heart rate, two pat or robot arm, there
is not much difference between the two methods. We can explain it in terms of
the index. For these datasets, all of the disjoint data windows are very similar to
each other. Figure 14 shows the first 500 points index of the best and the worst



598 T.S. Han, S.-K. Ko, and J. Kang

100 150 180 200

1
2
3
4
5
6
7

Median Candidate Ratio of Single/Multiple
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size =  4)

Query Length, |Q|

Median of
# of Candidate by Single
# of Candidate by Multiple
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Fig. 14. Index

three datasets regarding the candidate generation. Comparing the index of the
top three datasets to the bottom three, we cannot easily distinguish one window
from another. It makes hard to search the index quickly even though multiple
index information is used.

5.2 Goodness and Tightness

Goodness and tightness are metrics that shows how well the index works [5].

Goodness =
# of all true matches
# of all candidates

, T ightness =
Sum of all true similarity

Sum of all estimated similarity
(4)

Goodness shows how much the index reduces the expensive computations.
Tightness shows how the estimated values are close to the actual values in in-
dexing [5]. If the tightness is 1.0 then it means estimation is perfect. In Figure 15,
the multiple sliding window scheme shows higher goodness and tightness than
that of the single window sliding scheme.
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5.3 Improving Performance by Skipping Similarity Computations

Figure 16 shows how the skipping of the similarity computation is effective. The
chart shows that we can avoid many similarity computations as the length of
the query gets longer.
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However it also shows that the skipping mechanism does not work well for the
datasets that cannot be properly indexed, since the index parameter captures
all of the windows in the data as well as the ones similar to the LCS matrix.

6 Conclusion

We proposed a novel subsequence matching framework that employs a non-
Euclidean distance, a multiple window sliding scheme and a similarity skipping
idea. As validated through experiments with various datasets, proposed methods
enable us to have more intuitive and efficient subsequence matching algorithms.
The multiple window sliding scheme was more efficient than the single win-
dow sliding scheme for the longer query in candidate generation, goodness and
tightness. In addition, skipping the LCS computation greatly reduces expensive
similarity computations.
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Abstract. Current metrics for evaluating the performance of Bayesian
network structure learning includes order statistics of the data likelihood
of learned structures, the average data likelihood, and average conver-
gence time. In this work, we define a new metric that directly measures
a structure learning algorithm’s ability to correctly model causal asso-
ciations among variables in a data set. By treating membership in a
Markov Blanket as a retrieval problem, we use ROC analysis to compute
a structure learning algorithm’s efficacy in capturing causal associations
at varying strengths. Because our metric moves beyond error rate and
data-likelihood with a measurement of stability, this is a better char-
acterization of structure learning performance. Because the structure
learning problem is NP-hard, practical algorithms are either heuristic
or approximate. For this reason, an understanding of a structure learn-
ing algorithm’s stability and boundary value conditions is necessary. We
contribute to state of the art in the data-mining community with a new
tool for understanding the behavior of structure learning techniques.

1 Introduction

Bayesian networks are graphical models that compactly define a joint probabil-
ity over domain variables using information about conditional independencies
between variables. Key to the validity of a Bayesian Network is the Markov
Condition [11]. That is, a network that is faithful to a given distribution prop-
erly encodes its independence axioms. Inducing Bayesian networks from data
requires a scoring function and search over the space of network structures [10].
As a consequence of the Markov Condition, structure learning means identifying
a network that leaves behind few unmodeled influences among variables in the
modeled joint distribution.
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Vi

Vj

Vk

Fig. 1. Graphical representation for Bayesian Network

A Bayesian network takes form as a directed acyclic graph G = (V,E) where
the nodes Vi ∈ V represent the variables in a data-set and the directed edges
(Vi, Vj) ∈ E encode the causal relationship between Vi and Vj . Dependencies
among variables are modeled by a directed edge. As such, if edge (Vi, Vj) ∈ E,
then Vj depends causally upon Vi or, similarly, Vi is the parent of Vj and Vj is
the child of Vi. The graphical model for a simple Bayesian network appears in
Figure 1. In this example, we have three nodes Vi, Vj , and Vk where Vj is causally
dependent upon Vi and Vk. Causality is implied in edge directedness. Through its
network structure, a Bayesian network model encodes the independence axioms
of a joint distribution. Given a Bayesian network G = (V,E) we compute the
full joint distribution for variables Vi ∈ V using the chain rule:

p(V1, . . . , Vn) =
n∏

i=1

p(Vi|pai)

where pai are the set of variables that are the parents of Vi. By expressing the
joint distribution in terms of its conditionally independent factors, marginaliza-
tion and inference are made more tractable.

Inference in Bayesian networks is well known to be an NP-hard problem both
in the exact and approximate cases [2, 4]. Construction of Bayesian networks
structures from data is also an NP-hard problem. The major classes of techniques
for learning Baysian networks falls into two major categories. The first considers
network construction as a constraint satisfaction problem [11, 14]. These meth-
ods compute independence statistics such as χ2 test, KL-divergence, or entropy
over variables and build networks that represent computed associations. The sec-
ond considers network construction as an optimization problem. These methods
search among candidate network structures for the optimum [3, 5, 15].

The search problem over Bayesian network structures is also an NP-hard prob-
lem. Heuristic approaches such as the K2 algorithm impose simplifying assump-
tions on the network in order to make learning and inference tractable [3]. In K2,
nodes are are assumed to have a causal ordering. That is, a node appears later in
an ordering than the nodes on which it depends. Additionally, the K2 algorithm
also bounds the number of parent dependencies a node may have. In the recent
K2GA approach, the author employs a genetic algorithm to perform stochastic
search simultaneously over the space of node orderings and network structures
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for an extension of the K2 algorithm. K2GA has been found to perform com-
petitively with respect to ground truth networks on benchmark data-sets [7].
Additional search techniques include greedy hill-climbing, simulated annealing
and Markov Chain Monte Carlo (MCMC) [6, 13]. Other approaches make the
problem more tractable by pruning the search space. For example, the sparse
candidate algorithm uses mutual information between variables to prune the
search space so that only a reduced set of potential parents are considered for
each variable [9]. Another approach that has enjoyed success performs greedy
search over equivalence classes of DAG patterns instead of the full DAG space
representation [1].

The experiments described in this paper grew out of the need to character-
ize the performance of an implementation of K2GA. This work goes beyond
measures of model fit and convergence time as typical in the Bayesian network
literature to include measurements of stability. While we use K2GA as the target
system for evaluation, our techniques are generally applicable to any Bayesian
network structure learning algorithm. In recent related work Shaughnessy and
Livingston introduce a method for evaluating the causal explanatory value of
structure learning algorithms [12]. Their approach begins with randomly gen-
erated ground truth networks involving three-valued discrete variables. Next
they sample from them to produce small synthetic data-sets that are input to
a structure learning algorithm. Finally, precision-recall measures are made from
edge level statistics, such as false positive edge count, comparing the learned and
ground truth networks. While this method evaluates different types of causal
dependencies it cannot vary the strength of such dependencies and requires a
sufficient number of samples. Because K2GA is a stochastic algorithm, we set
out to test if initial conditions and noise in the data affect the structure learner’s
ability to correctly capture variable dependencies.

In the sections that follow, we begin with a high level description of the
stochastic algorithm K2GA. Then, we outline a method for testing how well the
Bayesian network has modeled dependencies among variables. In doing so, we
treat variable dependence as a retrieval problem and apply an ROC technique
for measuring performance stability. Lastly, we describe our experiments and
discuss results.

2 Structure Learning Using K2GA

K2GA makes use of an alternate Bayesian network representation that encodes
a DAG in terms of its undirected skeleton and the causal ordering of the nodes.
Let X = {X1, . . . , XN} be a set of variables, Θ = {Θ1, . . . , ΘN} be the ordering
of nodes (where Θi ∈ [0, 1]), and B be the adjacency matrix for the undirected
skeleton such that Bij = 1 if and only if Xi is related to Xj . Skeleton, B, describes
the dependency between two variables while Θ defines the edge directedness. For
example, in the situation where Xj is causally dependent on Xi, we have Bij = 1
and Θi < Θj .
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Given the exponential space of DAGS, a number of simplifying assumptions
have been made to reduce the complexity of the search space to polynomial in
the number of nodes. These include causal ordering of variables that participate
in the model along with bounded in-degree between a node an its parents. The
topological ordering, ≺, of graph nodes {X1, . . . , XN} is such that

∨

i,j

Xj ≺ Xi → Xj ∈ Ancestors(Xi)

Structure learning algorithms that assume the K2 heuristic search within a
family of DAGS possible from fixed causal orderings. Given topological ordering,
≺, the set of all possible skeletons S = {B1, . . . ,BL} is defined by the number
of unique skeletons that can be defined from the upper triangle of B. Given N -
variables, |S| = 2

N(N−1)
2 . Since there are N ! orderings, this results in substantial

reduction from a total of N !
(

2
N(N−1)

2

)
possible DAG patterns. While a factorial

reduction in search space is significant, the issue of which ordering to search
remains. The K2GA algorithm performs simultaneous search of the space of
topological orderings and connectivity matrices. For more detailed descriptions
of K2GA, We direct the reader to the original work [7].

3 Markov Blanket Retrieval: An Efficacy Measure

By extending the definition of a document in information retrieval, verification
of a Bayesian network is treated as a retrieval problem where the information
need is the set of causal dependencies for a given variable. This corresponds to
the Markov blanket that most closely resembles the ground truth blanket for a
given node. In using a vector space approach and ranking, we allow for partial
similarity. This is particularly important for variables with weak dependence
relationship.

This approach differs from traditional methods for verification of Bayesian
networks in that we do not rely on samples from a hand constructed gold stan-
dard network for verification. Because such techniques rely on samples from the
specified network, a sufficient sample size is required. Moreover, for nontriv-
ial real-world problems, apriori knowledge of variable dependencies is difficult.
Consider a real world complex data-set such as manufacturing or supply chain
modeling scenario involving 100’s or 1, 000’s of variables. It might be the case
that the Bayesian network structure learned from data is correct, but its per-
formance is discounted by a faulty hand constructed gold standard network. By
exercising precise control over variable dependence and measuring resulting per-
formance, we provide characterization of a Bayesian network learner’s modeling
stability using ROC analysis.

3.1 ROC Curves

More than just its raw performance numbers, an algorithm’s quality is also mea-
sured in terms of sensitivity and specificity. A predictor’s sensitivity measures
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the proportion of the cases picked out from a data set relative to the total num-
ber of cases that satisfy some test. Sensitivity is also called the true positive rate.
A predictor’s specificity measures its ability to pick out cases that do not satisfy
some test. Specificity is also called the true negative rate. A receiver operating
characteristic (ROC) curve is related to likelihood ratio tests in statistics and
expresses how the relationship between sensitivity and specificity changes with
system parameters [8].

In comparing Bayesian networks, we would like a single measure of predictive
quality. Area under the curve (AUC) is a non-parametric approach for measuring
predictive quality. AUC is simply the area under the ROC curve. This gives us
a standard means of comparing performance. AUC varies in the closed interval
(0, 1) on the real number line and is interpreted as the rate of correct prediction.

As one could imagine, a good predictor is one that can correctly identify cases
in the data that actually have the phenomenon under test. This corresponds to
an AUC that is closer to 100%. AUC results are typically compared to the
random performance. In an example where true positive and false negative are
assumed equally likely, the ROC curve is a straight line with slope 45-degrees
and AUC of 50%. Any method that cannot outperform random performance is
not worth deployment.

For Bayesian network structures, in order to convert performance measures
into likelihood ratio tests for the purpose of ROC analysis, we must compare
structures learned from data with some notion of ground truth. This allows us
to define what it means to have a true positive or a true negative.

3.2 Markov Blanket

A Markov blanket of a node, A, is defined as A’s parents, children and spouses
(the parents of A’s children). The Markov blanket is the minimal set of nodes
that give A conditional independence.

P (A|MB(A), B) = P (A|MB(A))

That is, A is conditionally independent of any node B /∈MB(A) given MB(A).
The Markov blanket gives complete description of the variables upon which A
depends. As depicted in Figure 2, these are the nodes that partition A from the
rest of the nodes in the network.

The Markov blanket is related to d-separation in that given the set Z = {Zi ∈
MB(A)} and C = {X − A−MB(A)} where X is the set of variables, it is the
case that A is d-separated from C given MB(A). Thus, the Markov blanket
gives us the dependence relationship between a node and all other nodes in the
Bayesian network. We use this to test K2GA’s efficacy in correctly modeling
causal dependencies.

3.3 Ground Truth Causal Dependence

Controlling variable dependencies is accomplished by augmenting a data-set
with synthetic variables. We treat synthetic variables Xnew as queries. Because
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A

Fig. 2. A node and its Markov blanket

variables X1, . . . , Xk are used to compute the synthetic variable, we know ground
truth that X1, . . . , Xk are in Xnew’s Markov blanket. A synthetic variable also
depends on a noise process ε used to control the strength of dependence on
the ground truth parent variables. For strong dependence, the contribution to
Xnew by the noise process is dominated by X1, . . . , Xk. For weak dependence,
the contribution to Xnew by the ground truth parent variables is dominated by
the noise process. Using random variable A ∼ Bernoulli(α) taking on values
a ∈ {0, 1} we select

Xnew =
{
fw(X1, . . . , Xk) if a = 1
ε o.w.

where parameter α is defined in the closed interval (0, 1) on the real number line.
Thus, α regulates the strength of causal dependence. Regardless of the strength
of causal dependence, we know ground truth that {X1, . . . , Xk} ⊂MBB(Xnew).

The amount by which the synthetic variable depends on each of its ground
truth parents is determined by a vector of weights. Given k ground truth par-
ent variables, we have weight vector w =< w1, . . . , wk > computed by uniform
sampling from the unit simplex in k-dimensions. That is the series of weights
from the set {< w1, . . . , wk > |w1 + . . . + wk = 1, 0 <= wi <= 1, i = 1, . . . , k}.
Given Q-samples, this gives us representative coverage across the range of as-
sociations a dependent variable can have on k-parent variables. The dependent
variable takes on values drawn from the union of the domains of its parents. In
Figure 3 we list the values of the domain for three parents in rectangles along
the top row and domain values of the dependent variable in rectangles along the
bottom row. In this example, we have three parent variables whose domain sets
have values {v1, v2}, {v3, v4, v5}, and {v6, v7, v8, v9} respectively. The dependent
variable draws its values from the set {v1, . . . , v9} (Figure 3). This allows us
to interpret the weight vector as the relative proportion of cases for which the
value of the dependent variable is dictated by a given parent. An example of this
appears in Figure 4. We list values for four cases by repeating the pair of rows
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v1 v2 v3 v4 v5 v6 v7 v8 v9

parent 2 parent 3parent 1

synthetic variable

v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 3. The domain of a synthetic variable

Fig. 4. Illustration of synthetic variable causally dependent on parents

from Figure 3 once for each case. The values taken by the three parents and
the dependent variable are illustrated by shading in the appropriate positions in
each row.

As can be seen in Figure 4, for the synthetic dependent variable, the first,
second, and third cases are causally dependent on the second parent while the
fourth is causally dependent on the third parent. These four example cases would
correspond to a weight vector of < 0.0, 0.75, 0.25 > with α = 1.0. For α < 1, we
incorporate a noise process ε by selecting the dependent variable’s value from its
domain by sampling uniform at random for (1−α) percent of the cases. We treat
Xnew’s Markov blanket computed from Bayesian network B as a document. The
causal dependency set for each of the Xi is also treated as a document. This
results in a collection of documents, one for Xnew and each Xi.

3.4 The Retrieval Problem

A Markov blanket describes the complete set of dependencies for a given variable.
By definition, the Markov blanket is a subset of the variables over the modeling
domain. Let each variable, X1, . . . , Xd (including Xnew) in a data-set be an
indexing term. A Markov blanket then becomes a simple document containing
a subset of indexing terms. Define weight wij as the number of occurrences of
term-i in document j. For a Markov blanket, because a variable occurs at most
once, we have that wij ∈ {0, 1}. Given d-variables, the Markov blanket MB(Xj)
for variable Xj is compactly described by weight vector

MB(Xj) =< w1j , . . . , wdj >
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A ranking function R(qi, dj) outputs a value along the real number line that
defines an ordering of documents in terms of their relevance to the given infor-
mation need. Define ranking function R:

R(dj , qi) =
∑d

k=1 wkjqki

|X |

That is the proportion of the variables in the Markov blanket that satisfy the
query. With this definition, we rank the d Markov blankets in a Bayesian network
and select the Markov blanket document associated with the highest rank. The
top ranked Markov blanket corresponds to the variable dependencies that are
most relevant to the query. We then measure quality in modeling ground truth
variable dependences using ROC curves.

We expand a query for Xnew into known ground truth causal dependencies
in vector form and search for the most relevant document in the collection. In
our procedure, we create Xnew randomly. Given Bayesian network B learned
from a data set augmented with the synthetic variable, compute documents
di = MBB(Xi). Define the f -blanket for Xnew, MBf (Xnew) = {X1, . . . , Xk}.
Given a query expansion, qi, the most relevant document, dr, is returned:

dr = argmaxjR(dj , qi)

That is the document with the highest rank. This corresponds to the Markov
blanket in the learned network that most closely resembles the ground truth
f -blanket. In using a vector space approach and ranking, we allow for partial
similarity with a given query. This is particularly important for synthetic vari-
ables that are weakly dependent on their parents. By adding a set of synthetic
variables whose dependence on X1, . . . , Xd varies in the number parent nodes
and strength of dependence, we can use the true positive and false positive rate
for retrieval to measure the Bayesian network’s ability to accurately model true
causal dependencies.

We call our approach Markov blanket retrieval (MBR). The algorithm for
MBR appears in Figure 5. Input parameters to MBR are a data-set X depen-
dence strength α, and parent set size k. We begin by computing the number of
cases and variables in steps 1 and 2. Measurements are made for a fixed number
of Q queries (step 3). Each query consists of a synthetic variable whose k ground
truth parents are selected randomly (step 4). For each selected parent set, we
choose their dependence strengths by sampling from the unit simplex (step 5).
Before constructing the synthetic variable, we first create its domain set by tak-
ing the union of the domains of its k-parent set (step 6). Then, looping over each
of the N cases (step 7) we compute the value, xi,new of the synthetic variable
using the mixture weights and the dependence strength α (step 8, 9, 10). This
gives us a new column of data corresponding to the synthetic variable Vnew. The
augmented data-set X′ is then constructed by including the column of values,
Xnew, for the synthetic variable among the columns {X1, . . . , XL} of the orig-
inal data set (step 11). We run structure learning on the augmented data set
and obtain a Bayesian network B (step 12). For each variable in the augmented
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Markov-blanket-retrieval(k, α,X)
1 N ← |X|
2 L ← num-variables(X)
3 for q ← 1 to Q
4 do sample {V1, . . . , Vk} ∈ X
5 sample < w1, . . . , wk > from simplex
6 domain(Vnew) =

⋃k
j=1 domain(Vj)

7 for i ← 1 to N
8 do sample A ∼ Bernoulli(α)
9 if a = 1 then xi,new ← f(xi,1, . . . , xi,k) //using mixture weights

10 else xi,new ← ε
11 X′ = {X1, . . . , XL, Xnew} //augment data-set
12 B ← learn-structure(X′)
13 for i ← 1 to L + 1
14 do
15 di = compute-document(MBB(Xi))
16 q = compute-document(MBground−truth(Xnew))
17 dr = argmaxlR(dl, q)
18 record ROC data

Fig. 5. algorithm for Markov blanket retrieval analysis of structure learner

data-set, we obtain the Markov blanked computed by the structure learner and
compute a document (steps 13, 14, and 15). Given the ground truth Markov
blanket for the synthetic variable, we expand it into a query (step 16). We then
rank Markov blanket documents from step 14 and return the highest ranking
document (step 17). We then record whether or not our result is a true positive,
true negative, false positive or false negative and continue to the next query
iteration (step 18).

4 Experiments

Our experimental goal was to uncover how K2GA’s ability to model causal de-
pendence changed as we varied the genetic algorithm’s population size and num-
ber of generations across data-sets of different complexities. We ran experiments
using three data-sets from the UCI machine learning repository. We selected
one nominal (zoo), one mixed nominal-integer (lymphoma), and one real valued
(sonar) data set for experiments in order to have representation across different
types of data-sets. We rank data-sets by their complexity defined in terms of the
number of variables and the number of instances (Table 1).

In our ranking, we include the class label in our variable counts. Since op-
timization based approaches such as K2GA bound the maximum in-degree of
nodes in the Bayesian network, it is important demonstrate how in-degree for
causal dependence affects performance. This means measuring performance as
more parents nodes are recruited. We tested variable dependence by running
experiments for f -blankets of size 1,2, and 3.
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Table 1. Data set complexities

rank data-set number of variables number of instances

1 zoo 17 101

2 lymphoma 19 148

3 sonar 61 208
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Fig. 6. ROC curve for zoo data-set with various parental causal dependencies for
K2GA at 50 generations and population size 10
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Fig. 7. ROC curve for lymphoma data-set with various parental causal dependencies
for K2GA at 50 generations and population size 10

A positive test instance is a synthetic variable for which a true causal de-
pendency exists and a negative is a synthetic variable for which a dependence
does not exist. We generated synthetic variables with 50% priors over positive
instances. For the remaining 50%, we set thresholds for strength of causal de-
pendence in regular increments for α = 0.0, 0.1, . . . , 1.0. Across all settings of α
the expected generation rate for positive instances is 0.5 +

∑1.0
α=0.0 0.5α = 0.75.
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Fig. 8. ROC curve for sonar data-set with various parental causal dependencies for
K2GA at 50 generations and population size 10
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Fig. 9. ROC curve for zoo data-set with various parental causal dependencies for
K2GA at 100 generations and population size 20

An augmented data-set has d + 1 variables where d variables are from the orig-
inal data-set, and the d + 1-th is the synthetic variable. Since a random ap-
proach must guess uniform at random which of the d + 1 Markov blanket doc-
uments matches the query, the probability of picking out the true positive is

1
d+1(0.5 +

∑1.0
α=0.0 0.5α). Using the trapezoidal rule, we compute AUC for ran-

dom performance as 0.5000.
K2GA performs optimization by stochastic search. K2GA is a genetic algo-

rithm in which Bayesian network structure candidates are members of a pop-
ulation. Thus, the population size for K2GA controls the number of frontiers
along which stochastic search in the space of network structures is performed.
The number of generations controls the number of optimization rounds for which
search proceeds. We ran two versions of K2GA differing in population size and
number of generations, one at 50 generations and population size of 10 and
another at 100 generations and population size of 20. We refer to these as
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Fig. 10. ROC curve for lymphoma data-set with various parental causal dependencies
for K2GA at 100 generations and population size 20
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Fig. 11. ROC curve for sonar data-set with various parental causal dependencies for
K2GA at 100 generations and population size 20

K2GA-small and K2GA-large. We ran experiments for 100 queries for each set-
ting of causal dependence strength using 5 fold cross validation on 10 random
initializations of K2GA. Because validation is done directly on the resulting
structure and not on the test set, we did not use the test set from each fold. We
did this in order to train similarly to approaches that validate by partitioning
data into training and testing sets.

This resulted in 5000 queries for each setting of α representing a total of
55, 000 total queries per experiment. ROC curves for f -blanket sizes 1 and 3
appear in Figure 6, 7, 8, 9, 10, 11. In each of our results, there was a dramatic
decrease in the true positive rate once the false positive rate reached between
0.4 and 0.5. We compare K2GA-small with K2GA-large by their AUC scores
(Table 2). We group the results of K2GA-small and K2GA-large and indicate
the better performer in bold typeface.
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Table 2. AUC scores for Markov-Blanket Retrieval

data-set K2GA setting f -blanket size AUC for MBR AUC for random

zoo 50-gen 10-pop 1 0.5802 0.5000

zoo 100-gen 20-pop 1 0.5482 0.5000

zoo 50-gen 10-pop 2 0.6338 0.5000

zoo 100-gen 20-pop 2 0.6023 0.5000

zoo 50-gen 10-pop 3 0.6359 0.5000

zoo 100-gen 20-pop 3 0.5927 0.5000

lymph 50-gen 10-pop 1 0.5653 0.5000

lymph 100-gen 20-pop 1 0.5737 0.5000

lymph 50-gen 10-pop 2 0.6305 0.5000

lymph 100-gen 20-pop 2 0.6174 0.5000

lymph 50-gen 10-pop 3 0.6205 0.5000

lymph 100-gen 20-pop 3 0.6529 0.5000

sonar 50-gen 10-pop 1 0.6356 0.5000

sonar 100-gen 20-pop 1 0.6709 0.5000

sonar 50-gen 10-pop 2 0.6280 0.5000

sonar 100-gen 20-pop 2 0.6640 0.5000

sonar 50-gen 10-pop 3 0.6652 0.5000

sonar 100-gen 20-pop 3 0.6186 0.5000

We found that if the data-set contained a smaller number of variables as is
the case with the zoo data-set (complexity rank 1), as we increase the number
of parents upon which a variable can causally depend, K2GA-small consistently
had higher AUC. A Bayesian network with larger node in-degree is a more com-
plex model. Building more complex models require a larger number of training
examples. The zoo data-set contains relatively few instances. Since K2GA-large
searches twice as many frontiers for twice as many optimization rounds, it tends
to over-fit the data. Therefore, its performance is worse on our simplest data-set
as the f -blanket size increases. On the lymphoma data-set, we see a modest
increase in the number of variables and 40% increase in number of instances.
K2GA-large turns in its largest favorable difference in performance over K2GA-
small when the f -blanket is 3. This coincides with K2GA-large’s ability to search
more complex models.

For the sonar data-set (rank 3) , we find K2GA-large turns in a higher AUC for
f -blanket sizes 1 and 2. The sonar data-set has 3x more variables. By searching
twice as many frontiers for twice as many optimization rounds, K2GA-large
is more able to consistently and stably (higher AUC) model causal linkages
in complex data. When the f -blanket increases to 3, the number of instances
becomes insufficient. Consider 2 Markov blankets each containing a child node
with 3 parent nodes. Building network involves evaluating conditional probability
tables. If each variable assumes only 2 states, we find the conditional probability
table (CPT) for the child node has 24 entries. Across 2 Markov blankets, we
have (24)2 = 256 unique configurations. Estimating the CPTs for this example
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requires more than 208 instances. Because K2GA-small involves fewer frontiers
and optimization rounds, it effectively builds lower complexity models. This
gives us advantage when there are too few examples because it helps against
over-fitting by early stopping. As we can see K2GA-small turns in a higher AUC
than K2GA-large when the f -blanket is 3.

5 Discussion

We have presented a new tool for measuring the efficacy of structure learn-
ing algorithms in finding causal dependencies that exist within data. By treat-
ing membership in a Markov blanket as a retrieval problem and controlling for
ground truth causal dependencies, we are able to borrow sound principles of ROC
analysis to evaluate the structure learner’s performance. Our measurements go
beyond error by measuring stability across a range of dependence strengths using
AUC. Our method measures structure learning efficacy directly from the learned
structures themselves without use of a gold standard network. We have found
from our experiments that Markov Blanket Retrieval (MBR) lends insight into
parameter tuning and stability of a structure learning algorithm and feel it is a
valuable tool for the data-mining community.

The goal for reported experiments was the development of a tool for compar-
ing the performance of different parameterizations of a structure learner under
varying dependence strengths. In complex real-world data-sets, some of the vari-
ables are correlated. Future investigation will include measurements for the effect
of correlation between parent variables on modeling efficacy. We are encouraged
by results for our measure on K2GA. A logical next step is to investigate MBR’s
utility in making fair comparison between different structure learning techniques.
We represented Markov blankets using vector space and ranked documents based
on a normalized inner product. This approach allowed us to observe the pro-
portion of variables in the augmented data-set that matched the ground truth
f -blanket. In future experiments we will extend our ranking approach to include
measurement of graph properties as well as other distance measures.
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Abstract. In this paper, we present a new combined fractal scale de-
scriptor based on wavelet moments in gait recognition. This method is
likely useful to general 2d objects pattern recognition. By introducing
the Mallat algorithm of wavelet, it reduces the computational complex-
ity compared with wavelet moments. Moreover, fractal scale has advan-
tage on the self-similarity description of signals. And because it is based
on wavelet moments, it is still translation, scale and rotation invariant,
and have strongly anti-noise and occlusion handling performance. For
completely decomposed signals, we get the new descriptor by combining
the global and local fractal scale in each level. Experiments on a middle
size database of gait sequences show that the new combined fractal scale
method has simple computation and is an effective descriptor for 2-d
objects.

1 Introduction

The classical moment invariants theory developed from Hu moment includes
seven moment invariants for 2d image recognition [10]. The study of moment has
been put more attention on because its effectiveness in pattern recognition. Many
moments with different properties have been derived, such as Li moment, com-
plex moment, Teague orthogonal moment, Zernike moments and Fourier-Mellin
moments [6, 9, 15, 22]. And many descriptors based on moment for 2d patten
recognition have been set up [21]. Moreover combining the descriptors of Zernike
and Fourier moments, Zhang presented mixed descriptors, which work well in
pattern recognition [26]. While sometimes these moments should compute some
high-order moments. However the complexity and instability in computation of
these moments increase when the order is high. In addition, the computation of
high-order moments is still complex, though a few fast algorithms appear [20].
So it is hard to identify the similar objects with noise only using low order mo-
ments. Wavelet moments are new moments features, which combine the wavelet
characteristic and moment trait [23]. Because wavelet transform is capable to
provide both time and frequency localization [5], this characteristic is particu-
larly suited to extract local discriminative features. But wavelet transform is not
invariant to translation variations, some small translation can drastically change
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wavelet feature. So simplex wavelet analysis is not widely used in the field of
pattern recognition. Considering the respective characteristic of moments fea-
ture and wavelet analysis, wavelet moments resulted from the combination of
moments feature and wavelet analysis, have many advantages: translation, scale
and rotation invariance, strongly antinoise performance, and multi-resolution
analysis. It overcomes the complex computation of high order moments and has
the advantage on identification of the similar objects.

Recently gait recognition, as one branch of biometrics, is used to signify the
identification of individuals in image sequences ’by the way they walk’ [2]. From
a surveillance perspective, gait recognition is an attractive modality because it
may be performed at a distance, surreptitiously. Now, there are many methods
contributing to the gait analysis, for example model-based [7, 14], appearance-
based [1, 3, 8, 11, 13, 25]. In the image sequences, translation and scaling varia-
tions of walking people often exist, and moments is an efficient tool to deal with
them. The application of classical moments to two dimensional images was first
presented in the early sixties by Hu [10]. Little used moment based features to
characterize optical flow for automatic gait recognition [16], thus linking adjacent
images but not the complete sequence. Lee and Grimson computed a set of im-
ages features that are based on moments [14]. Liu et al. used the first and second
moments of two binary silhouettes to determine an affine transformation that
coarsely aligns them [17]. Shutler et al. developed new Zernike velocity moments
to describe the motion throughout an image sequence to help recognize gait [24].
Zhao, Cui et al. combined wavelet velocity moment and reflective symmetry to
analysis gait feature for human identification [27]. Moreover they proposed the
wavelet reflective symmetry moments for gait recognition [28].

On the computation of Wavelet moments [23], only the wavelets with apparent
formula are concerned. However the Mallat algorithm of wavelet [18] is not in
use for computating the feature, which omits the filter character of wavelet. By
introducing Mallat algorithm of wavelet and fractal scale, we have used fractal
scale and wavelet moments in gait recognition [29]. In this paper, we develop a
new combined fractal scale descriptor based on wavelet moments, which combine
the global and local fractal scale in each level for completely decomposed gait
sequence signals.

2 Combined Fractal Scale Descriptor

In mathematics, fractal scale is similar to Lipschitz exponent (Hölder exponent),
which is used to discuss the global and local regularity of function. It is power-
ful to characterize the singularity of signals. While wavelet basis in L2(R) is a
group of similar functions, which is formed by translation and scale of one func-
tion. So there is inner relation between wavelet and fractal scale. In [19], Mallat
gave a method to compute the fractal scale by wavelet transform. And wavelet
analysis with its fast Mallat algorithm provides multi-resolution, anti-noise and
easy computation properties. Then solving the fractal scale of signals in this way
has many advantages. Meanwhile, to recognize a signal, we use not only global
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fractal scale, but also local fractal scale. By completely decomposing signal with
Mallat algorithm, we combine all fractal scale features in each level to represent
a signal.

Because the researchful object of fractal scale is one dimension signals, we
should get the adaptable signals from gait images first, then completely decom-
pose the signals using Mallat algorithm. With the method in [19], we get the
global and local fractal scale in each level. Then we combine all fractal scale to
get the new descriptor for gait image. In gait recognition, we use the averaged
features by normalizing with respect to the number of images in one period
gait sequence. At last we analyze the time complexity of new combined features
compared with wavelet moments and original fractal scale features.

2.1 Standardization and Sampling

To eliminate the influence of translation and scaling variations of walking person
in image, we should standard the image first. The region of interest, i.e. the region
of walking people, is mapped to the unit disc using the polar coordinates, where
the centroid of walking region is the origin of the unit disc. Those pixels falling
outside the unit disc are not used in the calculation. The coordinates are then
described by the polar coordinate (r, θ). Translation invariance is achieved by
moving the polar origin to the centroid of walking people by computing Hu’s first
moments. And scale invariance is implemented by scaling the walking region to
the unit disc.

Rotation invariance is achieved by descriptor’s definition. Shen [23] presented
the wavelet moments in polar coordinate, which is easier to get rotate invariants.
Our new descriptor is based on wavelet moments. It gets rotate invariants in the
same way.

Definition 1. Suppose ψ(r) is a wavelet function. Then for each object f(r, θ)
expressed in polar coordinates and defined on field Ω, its wavelet moments are

Fmnq =
∫ ∫

Ω

f(r, θ)ψmn(r) exp(−iqθ)rdrdθ ,

where ψmn(r) = 2m/2ψ(2mr − n), m,n, q ∈ Z+.

Here, q represents the frequency rank of image object. Descriptors ‖Fmnq‖mnq

(‖Fmnq‖2 := Fmnq ∗ Fmnq) of f are invariant under the 2d rotations.
In the computation of our new descriptor, the first step is to compute the

angular integral using FFT transform. After that we get a radial function, which
is our sampling function. Signals are sampled along the radius direction.

Suppose (x, y) denotes pixel, f(x, y) denotes 0 or 1 in black and white im-
age, θ(x, y) is the polar angle in pixel (x, y), r(x, y) is its polar radius and ri is
the average sampling point in radial direction. If the number of samples is 2N ,
we divide the maximal radius into 2N segments. In the kth segment, MaxR ×
(k/2N) ≤ Rk ≤ MaxR × ((k + 1)/2N), after scale to an unit disc, (k/2N) ≤
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rk ≤ ((k+1)/2N), MaxR is the maximum radius of current frame. r = R/MaxR,
range of r is from 0 to 1, and R is from 0 to MaxR.

The sampling method is:

Fq(k) =
∫

rk−1≤r≤rk

∫

0≤θ≤2π

f(r, θ) exp(−iqθ)rdrdθ

=
∫

Rk−1≤R≤Rk

∫

0≤θ≤2π

f(x, y) exp(−iqθ(x, y))/MaxR2dxdy

=
∑

x

∑

y

f(x, y) exp(−iqθ(x, y)), rk−1 ≤ r ≤ rk ,

where q = 1, 2, · · ·.
In this way, we only need scan f(x, y) by line in the processing of sampling

but not compute the integral on θ in reality.

2.2 Completely Decomposition with Mallat Algorithm

Suppose ϕ(x) is the scaling function, ψ(x) is the wavelet function with compactly
support, ϕj,k = 2j/2ϕ(2jx − k), ψj,k = 2j/2ψ(2jx − k), cjk = 〈f, ϕj,k〉, and
dj

k = 〈f, ψj,k〉, k ∈ Z.
For the sample signal of gait image, it is easy to suppose the number of sample

is 2N . In fact, {cNl }2N−1
l=0 is always known as the original sample signal. And the

finite filters is concerned in practice. Completely decompose the signal into N
levels with Mallat algorithm:

cj−1
k =

∑

l∈Z

hl−2kc
j
l

dj−1
k =

∑

l∈Z

gl−2kc
j
l , j = N,N − 1, · · · , 1, k ∈ Z ,

where {hl}l and {gl}l are finite low-pass and high-pass filters. And if they are
orthogonal, there is gl = (−1)lh1−l. While in the bio-orthogonal condition there
are four filters {hl}l, {gl}l(decomposition filters),{h̃l}l, {g̃l}l(reconstruction fil-
ters), and there are gl = (−1)lh̃1−l, and g̃l = (−1)lh1−l.

2.3 Computation of Global Fractal Scale

In [19], fractal scale is expressed in wavelet transform as follows.
If the signal f ∈ L2(R) is bounded and phase continuous and there exists

certain α to make the wavelet transformation of f satisfy

|〈f, ψj,k〉| ≤ c2−j(α+ 1
2 ), j = N − 1, N − 2, · · · , N −M, k ∈ Z ,

where c > 0 is constant, M is the level number of decomposition, N is the initial
level number. Then the fractal scale of f is α.
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Considering the high frequency part {dj
k}k,j , to get the global fractal scale is

to solve the maximum α and minimum c, which satisfy the below inequations.

|dj
k| ≤ c2−jα, j = N − 1, N − 2, · · · , N −M, k ∈ Z .

For the discrete initial signal {cNl , l = 0, · · · , 2N − 1}, we need to get the
maximal high frequency signals in each level :

d∗j = max
k

|dj
k| ,

where d∗j > 0. The problem becomes to solve c and α to satisfy

d∗j ≤ c2−jα, j = N − 1, N − 2, · · · , N −M.

Suppose b∗j = log2 d
∗
j , b = log2 c, and βj = b − jα − b∗j , then using the least

square estimation we can get α and b to minimize
∑

j β
2
j . To have enough data

for least square estimation and for the stability of algorithm, only M > 3 is
utilized in our implementation.

The fractal scale in the M th level is α− 1
2 . The global fractal scale in the M th

level is expressed as αM,global.

2.4 Computation of Local Fractal Scale

After original signals are decomposed completely, we get high frequency signals
of former M levels and compute the local fractal scale in the M th level (M > 2).

The high frequency signals of former M levels are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dN−1
k , k = 0, 1, · · · , 2N−1 − 1,
dN−2

k , k = 0, 1, · · · , 2N−2 − 1,
· · · , · · · ,
dj

k, k = 0, 1, · · · , 2j − 1,
· · · , · · · ,
dN−M

k , k = 0, 1, · · · , 2N−M − 1 .

In the M th level, the number of the local fractal scale is 2N−M . And the No.
l local fractal scale use the following wavelet coefficients, see Fig. 1.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dN−M
k , k = l,

dN−M+1
k , k = 2l, 2l + 1,
· · · , · · ·
dj

k, k = 2j−N+M l, 2j−N+M l + 1, · · · , 2j−N+M l + 2j−N+M − 1,
· · · , · · ·
dN−1

k , k = 2M−1l, 2M−1l + 1, · · · , 2M−1l + 2M−1 − 1 .



A New Combined Fractal Scale Descriptor for Gait Sequence 621

Fig. 1. Wavelet coefficients (The bottom row is dN−M
k , the top row is dN−1

k , from this
partition, we can get two groups of high frequency signals corresponding to two blocks
and so the two local fractal scale features)

To solve the lth local fractal scale in the M th level is to solve the optimal α
and c, which satisfy

|dj
k| ≤ c2−jα,

j = N − 1, N − 2, · · · , N −M,
k = 2j−N+M l, 2j−N+M l + 1, · · · , 2j−N+M l + 2j−N+M − 1 .

The method is similar to the global one. The difference is the field of k becomes
smaller. The No. l local fractal scale in M this expressed as αl

M,local (M > 3).

2.5 Combined Descriptor for Gait Sequence

In this way, with different frequency phase q in wavelet moments, we can compute
the global and local fractal scale in each level larger than 3. Then combining all
fractal features we get a new descriptor for 2d object, especially a new combined
fractal scale descriptor for gait sequence.

Definition 2. For each object f(r, θ) expressed in polar coordinates and defined
on field Ω, compute

sq(r) =
∫ 2π

0

f(r, θ) exp(−iqθ)rdθ, q ∈ Z+ .

Suppose the sample number of one dimensional signal sq(r) is 2N , and completely
decompose the sampling signal with Mallat algorithm. Solve the global and local
fractal scale in each level. We get

αq
M,global, α

l,q
M,local, l = 0, 1, · · · , 2N−M −1, q = 1, 2, · · · , n, M = N−1, · · · , 4 ,

where αq
M,global denotes αM,global in phase q, αl,q

M,local denotes αl
M,local in the

phase q. Then we call the vector (αq
M,global, α

l,q
M,local)M,l,q combined fractal scale

descriptor.

In gait recognition, gait sequences are repetitive and exhibit nearly periodic
behavior. So all features are averaged by normalizing with respect to the number
of images in one period gait sequence. The new descriptor of gait is:
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⎧
⎨

⎩

αq
M,global =

∑

t
αt,q

M,global/T

αl,q
M,local =

∑

t
αt,l,q

M,local/T ,

where αt,q
M,global and αt,l,q

M,local respectively correspond to a certain image in one
period gait sequence.

2.6 Time Complexity

The time complexity of our new descriptor will be discussed by comparing with
the wavelet moments descriptor and the original fractal scale descriptors. Be-
cause the real difference focuses on the radial integral, we only consider the time
complexity of the one dimension signal sq(r). That is to compare them in a cer-
tain phase q. Here ψ(r) in fractal features can be any wavelet function. In fact we
can use different filters to get fractal features. While in wavelet moments [23],
only the cubic B-spline wavelet function is used, whose Gauss approximation
form is

ψ(r) =
4ad+1

√
2π(d + 1)

· σω · cos(2πf0(2r − 1)) · exp(− (2r − 1)2

2σ2
ω(d + 1)

) ,

where a = 0.697066, f0 = 0.409177, σ2
ω = 0.561145, d = 3, m = 0, 1, 2, 3 · · · , n =

0, 1, 2, · · · , 2m+1.
According to this background, we discuss the time complexity of wavelet mo-

ments, original fractal scale descriptor and the combined fractal scale descriptors.
Suppose the sampling number is 2N , M is the level number in decomposition of
wavelet moments and the length of low-pass and high-pass filers is n.

1. The computation of the wavelet moments descriptors (wavelet function is
cubic B-spine): (2M+2 +M−1)2N cos(·) exp(·), where we must compute two
complex functions. The dimension of the descriptors is 2M+2 + M − 1.

2. The computation of the original fractal scale descriptor in the M th level
includes two parts:
(a) The complexity of Mallat algorithm is 2N(1 − 2−M )2n.
(b) Solving the fractal scale mainly includes four log(·) and four multiplica-

tion in least square estimation.
So the computational complexity is 2N(1−2−M )2n+(4+4 log(·))(2N−M +1).
The dimension is 2N−M + 1.

3. The computation of the new descriptor is combining all fractal scale in each
level larger than 3. So the computational complexity of new descriptor is
(2N − 1)2n+ (4 + 4 log(·))(2N−3 +N − 4). The dimension is 2N−3 +N − 4.

From above analysis, the new combined fractal scale descriptor still has less
computational complexity than the wavelet moments, though it is distinctly
more complex than the original fractal descriptor in [29]. For higher recognition
rate in gait recognition, the time cost of new combined feature is worthy. It is
very important to process the huge data base.
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3 Experiments

Our experiments is based on the background of gait recognition. To evaluate our
method, we use CMU Motion of Body (MoBo) database (http://hid.ri. cmu.
edu/ Hid/databases.html). CMU MoBo database includes 25 subjects who walk
in treadmill. They are captured from 6 views. We extract 7 sequences for each
subject in lateral and oblique view. Example image can be seen in Fig.2. The
original image size is 486*640. To reduce the computation time, we resize the
image to 180*240.

Rank order statistic [4] is used as performance measure. Due to a small number
of examples, we hope to compute an unbiased estimate of the true recognition
rate using a leave-one-out cross-validation method. That is, we first leave one
example out, train the rest, and then classify or verify the omitted element
according to its difference with respect to the rest examples.

Fig. 2. Image from CMU MoBo database (left is from oblique view and right is lateral
view)

In [29], we have tested different filters with different sampling methods in a
small UCSD (University of California, San Diego) database. The bi-orthogonal
cubic B-spline filter with our sampling method works better. So we go on using
bi-orthogonal cubic B-spline filters in this experiments. And the filters are:

h−1 = 0.25;h0 = 0.75;h1 = 0.75;h2 = 0.25;
g0 = 1; g1 = −1.

To evaluate the robustness of our algorithm to occlusion occasions, we assume
that in CMU database. We set occlusion in the central area of each frame for
all sequences and test each occlusion subjects in other sequences database. This
experiment to some extent simulates the segmentation errors which usually hap-
pen when people take something whose color or texture is similar to that of the
background. Here we select the occlusion width 5 pixels, 11pixels and 15pixel, as
shown in Fig.3. And to investigate the effects of noise, we added synthetic noise
to each image. Fig.4 is the example images with added increasing noise level in
CMU database.

Just like in [29], we use the same test method to get the local optimal pa-
rameters. So the radial sample number is 2N , N = 6. In wavelet moments, the
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Fig. 3. Occlusion images in CMU database(from left to right, 5 pixels, 11pixels and 15
pixels respectively)

Fig. 4. Noisy Data in CMU database(Noise level from left to right is from 0, to 10%,
20%, 30% and 50% respectively)

number of the decomposed level is 3. The angular phase number and the transla-
tive factor number are the same. While in the original fractal scale descriptors
(with bi-orthogonal cubic B-spline filter) the angular phase number is qn = 8,
the number of the decomposed level is M = 5. With these parameters in new
combined descriptor we get the features all together in M = 4, 5, 6 levels.

In this test, both the wavelet moments descriptors and the fractal scale
descriptors adopts the following Hausdorff distance to measure the similar-
ity. The Hausdorff distance for two sets of sequences A = {a1, a2 · · · , an} and
B = {b1, b2 · · · , bm}. is defined as

‖A−B‖H = max(maxa∈AD(a,B),maxb∈BD(b, A)) .

Where each sample is represented by fractal scale features, D(p,Q) is the shortest
Euclidean distance between sample p sequence and any sample in set Q. The
Hausdorff distance has been proven to be an effective shape matching measure
for object recognition [12].

In many aspects, we test our new combined fractal scale descriptor (CFS) in
CMU database compared with B-spline wavelet moments descriptor (BWMs)
[23] and original fractal scale descriptor (OFS)(using dual B-spline filters with
our sampling method) [29], shown in Table 1. It can be seen that with the
combined features, better performance in EER (Equal Error Rate), occlusion,
speeding handling and anti-noise, has been achieved than in the case of only one
level features. And in Table 2, we give the average time cost of every gait sequence
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Table 1. Performance comparison in CMU database

Train Test BWMs OFS CFS

lateral view lateral view 99.43% 98.86% 98.86%
EER(lateral view) 6.33% 6.14% 4.9%
lateral view Occlusion 5p 100% 92% 100%
lateral view Occlusion 11p 40% 60% 72%
lateral view Occlusion 15p 20% 32% 60%
lateral view Noise10% 100% 100% 92%
lateral view Noise20% 92% 68% 76%
lateral view Noise30% 72% 48% 48%
lateral view Noise50% 36% 20% 28%
oblique view oblique view – 96% 98.29%
slow walk fast walk – 60% 60%
fast walk slow walk – 56% 72%

Table 2. Time comparison in CMU database (Unit: Second)

BWMs OFS CFS

Time 26.038 7.5470 20.324

in one period using the three methods (on a 2.4GHz CPU, RAM 256M). Just
like the analysis in section 2.6, the computation complexity of our new descriptor
is acceptable in gait recognition. In fact, it is powerful and effective in our test.

4 Conclusions and Future Work

In this paper, we propose a new gait recognition method based on fractal scale
and wavelet analysis. The new descriptors combine the fractal scale features from
different decomposing levels together. The proposed method is still translation,
scale and rotation invariants, and has strongly anti-noise and occlusion handling
performance. And we analysis the time complexity in theory. The performance
of new descriptors are evaluated in CMU databases.

Selection of coefficients, filters and sampling methods will influence recogni-
tion. In the future, it will be considered and discussed. Maybe we can try to
find fit filters of fractal scale in gait. More conditions which can affect gait will
be taken into account, experiment on bigger database and more changes will be
done to test our method. And we would like to explore more general method
and study more universal feature for recognition.
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Abstract. This paper presents a novel Daubechies-based kernel Princi-
pal Component Analysis (PCA) method by integrating the Daubechies
wavelet representation of palm images and the kernel PCA method for
palmprint recognition. The palmprint is first transformed into the
wavelet domain to decompose palm images and the lowest resolution
subband coefficients are chosen for palm representation. The kernel PCA
method is then applied to extract non-linear features from the subband
coefficients. Finally, weighted Euclidean linear distance based NN clas-
sifier and support vector machine (SVM) are comparatively performed
for similarity measurement. Experimental results on PolyU Palmprint
Databases demonstrate that the proposed approach achieves highly com-
petitive performance with respect to the published palmprint recognition
approaches.

1 Introduction

Biometric approaches utilize the identity of a person with certain physiological or
behavioral characteristics [1]. Palmprint is a relatively new biometric feature, and
is regarded as one of the most unique, reliable, and stable personal characteristics
[1]. Compared with other biometrics, the palmprints has several advantages: low-
resolution imaging can be employed; low-cost capture devices can be used; it is
difficult to fake a palmprint; the line features of the palmprints are stable, etc.
[1]-[11]. It is for these reasons that palmprint recognition has recently attracted
an increasing amount of attention from researchers.

There are many approaches for palmprint recognition based on line-based
[6][4][5], texture-based [11][5], and appearance-based methods [3][10][9][8] in var-
ious literature. In the line-based approach, the features used such as principal
lines, wrinkles, delta points, minutiae [6], feature points [4] and interesting points
[5], are sometimes difficult to extract directly from a given palmprint image with
low resolution. The recognition rates and computational efficiency are not strong
enough for palmprint recognition. In the texture-based approach, the texture fea-
tures [5][1] are not sufficient and the extracted features are greatly affected by
the lighting conditions. From that disadvantages, researches have developed the
appearance-based approaches.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 628–642, 2007.
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Fig. 1. Main steps in the proposed algorithm

The appearance-based approaches only use a small quantity of samples in each
palmprint class randomly selected as training samples to extract the appearance
features (commonly called algebraic features) of palmprints and form feature vec-
tor. Eigenpalms method [10], fisherpalms method [3], and eigen-and-fisher palms
[9] are presented as the appearance-based approaches for palmprint recognition
in literature. Basically, their representations only encode second-order statistics,
namely, the variance and the covariance. As these second order statistics pro-
vide only partial information on the statistics both natural images and palm
images, it might become necessary to incorporate higher order statistics as well.
In other words, they are not sensitive to higher order statistics of features. A
kernel fisherpalm [8] is presented as another work to resolve that problem. In
addition, for palmprint recognition, the pixel wise covariance among the pixels
may not be sufficient for recognition. The appearance of a palm image is also
severely affected by illumination conditions that hinder the automatic palmprint
recognition process.

Converging evidence in neurophysiology and psychology is consistent with the
notion that the visual system analyses input at several spatial resolution scales
[26]. Thus, spatial frequency preprocessing of palms is justified by what is known
about early visual processing. By spatial frequency analysis, an image is repre-
sented as a weighted combination of basis functions, in which high frequencies
carry finely detailed information and low frequencies carry coarse, shape-based
information. Recently, there have been renewed interests in applying discrete
transform techniques to solve some problems in face recognition [18][19][24], in
palmprint recognition [2][24][25] and many real world problems. An appropriate
wavelet transform can result in robust representations with regard to lighting
changes and be capable of capturing substantial palm features while keeping
computational complexity low.

From the considerations briefly explained above, we propose to use discrete
wavelet transform (DWT) to decompose palm images and choose the lowest
resolution subband coefficients for palm representation. We then apply kernel
PCA as a nonlinear method to project palmprints from the high-dimensional
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palmprint space to a significantly lower-dimensional feature space, in which the
palmprints from the different palms can be discriminated much more efficiently.

The block diagram of the main steps involved in developing the proposed
palmprint algorithm is illustrated in Figure 1. The palm images are read from
the digital system and used to extract a gray-level region of interest (ROI)
depicting palmprint texture. The palm images are resized to 128 by 128 pixels,
converted into column vector form and made zero mean and unit variance. In the
process of feature extraction, the palmprint images are then decomposed into
multi resolution representation by discrete wavelet transform (DWT). Then, the
decomposed images in the lowest resolution subband coefficients are selected and
are fed into a nonlinear method, Kernel PCA, computation. Therefore, we get
the feature matrix of all training palmprint samples. The main contributions
and novelties of the current paper are summarized as follows:

– To reliably extract palmprint representation, we adopt a template matching
approach where the feature vector of a palm image is obtained through a
multilevel two-dimensional discrete wavelet transform (DWT). The dimen-
sionality of a palm image is greatly reduced to produce the waveletpalm.

– A nonlinear machine learning method, kernel PCA, is applied to extract
palmprint features from the waveletpalm.

– The proposed algorithm is tested on two public palmprint databases, we
called as PolyU-I and PolyU-II databases. We provide some quantitative
comparative experiments to examine the performance of the proposed al-
gorithm and different combinations of the proposed algorithm. Comparison
between the proposed algorithm and other recent approaches is also given.

2 Discrete Wavelet Transform

The DWT was applied for different applications given in the literature e.g.
texture classification [16], image compression [17], face recognition [18][19], be-
cause of its powerful capability for multi resolution decomposition analysis. The
wavelet transform breaks an image down into four sub-sampled, or decimated,
images. They are subsampled by keeping every other pixel. The results consist of
one image that has been high pass filtered in both the horizontal and vertical di-
rections, one that has been high pass filtered in the vertical and low pass filtered
in the horizontal, one that has been lowpassed in the vertical and highpassed in
the horizontal, and one that has been low pass filtered in both directions.

So, the wavelet transform is created by passing the image through a series of
2D filter bank stages. One stage is shown in Fig. 2, in which an image is first
filtered in the horizontal direction. The filtered outputs are then down sampled
by a factor of 2 in the horizontal direction. These signals are then each filtered
by an identical filter pair in the vertical direction. Decomposed image into 4
subbands is also shown in Fig. 2. Here, H and L represent the high pass and low
pass filters, respectively, and ↓ 2 denotes the subsampling by 2. Second-level
decomposition can then be conducted on the LL subband. Second-level structure
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Fig. 2. One-level 2-D filter bank for wavelet decomposition and multi-resolution struc-
ture of wavelet decomposition of an image

of wavelet decomposition of an image is also shown in Fig. 2. This decomposition
can be repeated for n-levels.

The proposed work based on the DWT addresses the four-level and six-level
decomposition of images in Database I and Database II, respectively.
Daubechies-4 and -8 low pass and high pass filters are also implemented [14].
Additionally, four- and six-levels of decompositions are produced, then 32 x 32
and 16 x 16 sub-images of 128 x 128 images in the wavelet is processed as use-
ful features in the palmprint images. Reducing of the image resolution helps to
decrease the computation load of the feature extraction process.

2.1 FFT and DCT

F (u, v) and C(u, v) are 2-D FFT and DCT coefficients of an W x H image I(x, y),
respectively. The feature sequence for each one is independently generated using
the 2D-FFT and 2D-DCT techniques. The palmprint image (128 x 128) in the
spatial domain is not divided into any blocks. The FFT and DCT coefficients for
the palmprint image are first computed. In the FFT, the coefficients correspond
to the lower frequencies than 3 x 3, and correspond to the higher frequencies than
16 x 16 in the FFT, are discarded by filtering. In other words, 247 coefficients
correspond to the 6% coefficients in the frequency domain, are only implemented.
These data are empirically determined to achieve best performance. Therefore,
the palmprint image in the spatial domain is represented with a few coefficients,
which is corresponding to 1.5% of the original size of image (128 x 128), by using
filtered FFT based image representation. In DCT, low frequencies correspond
to the 12.5% coefficients are also selected as useful features. Finally, N = μ x
ν features form a vector χ ∈ &N , χ = (F0,0, F0,1, ...Fμ,ν) for FFT, and form a
vector χ = (C0,0, C0,1, ...Cμ,ν) for DCT.
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3 Kernel PCA

The kernel PCA (KPCA) is a technique for nonlinear dimension reduction of
data with an underlying nonlinear spatial structure. A key insight behind KPCA
is to transform the input data into a higher-dimensional feature space [12]. The
feature space is constructed such that a nonlinear operation can be applied in the
input space by applying a linear operation in the feature space. Consequently,
standard PCA can be applied in feature space to perform nonlinear PCA in the
input space.

Let χ1, χ2, ..., χM ∈ &N be the data in the input space (the input space is
2D-DWT coefficients in this work), and let Φ be a nonlinear mapping between
the input space and the feature space i.e. using a map Φ : &N → F , and then
performing a linear PCA in F . Note that, for kernel PCA, the nonlinear mapping,
Φ, usually defines a kernel function [12]. The most often used kernel functions
are polynomial kernels, Gaussian kernels, and sigmoid kernels [12]:

k(χi, χj) = 〈χi, χj〉d, (1)

k(χi, χj) = exp

(

−‖χi − χj‖2

2σ2

)

, (2)

k(χi, χj) = tanh(κ〈χi, χj〉 + ϑ), (3)

where d is a number in the set of natural numbers, e.g. {1,2,. . . }, σ > 0, κ > 0,
and ϑ < 0.

The mapped data is centered, i.e.
∑M

i=1 Φ(χi) = 0 (for details see [12]), and let
D represents the data matrix in the feature space: D = [Φ(χ1)Φ(χ2) · · ·Φ(χM )].
Let K ∈ &MxM define a kernel matrix by means of dot product in the feature
space:

Kij = (Φ(χi) · Φ(χj)) . (4)

The work in [12] shows that the eigenvalues, λ1, λ2, . . . , λM , and the eigenvectors,
V1, V2, . . . , VM , of kernel PCA can be derived by solving the following eigenvalue
equation:

KA = MAΛ (5)

with A = [α1, α2, . . . , αM ] and Λ = diag{λ1, λ2, . . . , λM}. A is MXM orthogonal
eigenvector matrix, Λ is a diagonal eigenvalue matrix with diagonal elements in
decreasing order (λ1 ≥ λ2 ≥ · · · ≥ λM ), and M is a constant corresponds to
the number of training samples. Since the eigenvalue equation is solved for α’s
instead of eigenvectors, V = [V1, V2 . . . VM ], of kernel PCA, first, A should be
normalized to ensure that eigenvalues of kernel PCA have unit norm in the
feature space, therefore λi‖αi‖2 = 1, i = 1, 2, . . . ,M . After normalization the
eigenvector matrix, V , of kernel PCA is then computed as follows:

V = DA (6)
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Now let χ be a test sample whose map in the higher dimensional feature space
is Φ(χ). The kernel PCA features of χ are derived as follows:

F = V TΦ(χ) = ATB (7)

where B = [Φ(χ1) · Φ(χ)Φ(χ2) · Φ(χ) · · ·Φ(χM ) · Φ(χ)]T .

4 Similarity Measurement

When a palm image is presented to the wavelet-based kernel PCA classifier,
the wavelet feature of the image is first calculated as detailed in Section 2, and
the low-dimensional wavelet-based kernel PCA features, F , are derived using the
equation 7. Let M0

k , k = 1, 2, .., L, be the mean of the training samples for class
wk. The classifier applies, then, the nearest neighbor rule for classification using
some similarity (distance) measure δ:

δ(F,M0
k ) = minjδ(F,M0

j ) −→ F ∈ wk, (8)

The wavelet-based kernel PCA feature vector, F , is classified as belong to the
class of the closest mean, M0

k , using the similarity measure δ.
Popular similarity measures include the Weighted Euclidean Distance (WED)

[13] and Linear Euclidean Distance (LED) which are defined as follows:

WED : dk =
N∑

i=1

(f(i) − fk(i))2

(sk)2
(9)

where f is the feature vector of the unknown palmprint, fk and sk denote the
kth feature vector and its standard deviation, and N is the feature length.

LED : dij(x) = di(x) − dj(x) = 0 (10)

where di,j is the decision boundary separating class wi from wj . Thus dij > 0
for pattern of class wi and dij < 0 for patterns of class wj .

dj(x) = xT mj −
1
2
mT

j mj , j = 1, 2, ...M (11)

mj =
1
Nj

∑

x∈wj

x, j = 1, 2, ...,M (12)

where M is the number of pattern classes, Nj is the number of pattern vectors
from class wj and the summation is taken over these vectors.

Support Vector Machines (SVMs) have recently been known to be successful
in a wide variety of applications [12][20]. SVM-based and WED-based classifier
are also compared in this work. In SVM, we first have a training data set,
like, D = {(xi, yi)|xi ∈ X, yi ∈ Y, i = 1, ...,m}. Where X is a vector space of
dimension d and Y = {+1,−1}. The basic idea of SVM consists in first mapping
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x into a high dimension space via a function, then maximizing the margin around
the separating hyper lane between two classes, which can be formulated as the
following convex quadratic programming problem:

maximize W (α) =
m∑

i=1

αi −
1
2

m∑

i,j=1

αiαjyiyj(K(xi, xj) +
1
C
δi,j) (13)

subject to 0 ≤ αi ≤ C, ∀i, (14)

and

m∑

i

yiαi = 0 (15)

where αi(≥ 0) are Lagrange multipliers. C is a parameter that assigns penalty
cost to misclassification of samples. δi,j is the Kronecker symbol and K(xi, xj) =
〈φ(xi) ·φ(xj)〉 is the Gram matrix of the training examples. The form of decision
function can be described as

f(x) = 〈w,Φ(x)〉 + b (16)

where, w =
∑m

i=1 α
∗
jyiΦ(xi), and b is a bias term.

5 Experiments

The performance of the proposed method is evaluated with PolyU-I database
[15] and PolyU-II database [11].

5.1 Database I

The samples in PolyU-I palmprint database were captured by a CCD based
palmprint capture device [15]. The PolyU-I database contains 600 gray scale
images of 100 different palms with six samples for each palm. Six samples from
each of these palms were collected in two sessions, where the first three samples
were captured in the first session, and the other three in the second session. The
average interval between the first and the second session was two months. In
our experiments, sub-image of each original palmprints was firstly cropped to
the size of 128 x 128 by finger gaps using an algorithm similar to [21]. Figure 3
shows typical samples in the database in which the last two samples were cap-
tured from the same palm at different sessions. When palmprints are collected in
different sessions, direction and amount of stretching of a palm may vary so that
even palmprints from the same palm may have a little rotation and translation.
Furthermore, palms differ in size and the lighting, translation, and orientation
conditions in both sessions are very different. Hence they will effect the accuracy,
if palmprint images are oriented and normalized before feature extractions and
matching. But no any preprocessing step was done. It is directly processed to
achieve recognition performances given in this paper. For instance, the palms
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Fig. 3. Some typical restrictions in the the PolyU-I database. Left samples were
cropped at first session. Last two samples were cropped from the same palm at sec-
ond session. The restrictions are reported in this work as the different lighting (Top),
orientation (Middle), and translation (Bottom) conditions.

shown in the first column in Figure 3 are used as training set, and the corre-
sponding to the last two samples are also employed as testing set. In order to
reduce the computation complexity, we independently adopted three different
2D discrete transforms (FFT, DCT, WT) to decompose the palm print image
into lower resolution.

Two different experiments on this PolyU-I database were done to show the
recognition performance of the proposed algorithm. The first experiment is the
most challenging experiment which is in the case of that the palm images cap-
tured in the first session are chosen as training set, the other palms captured
in the second session are selected as testing set. This is more realistic experi-
ment and there are also more various problems such as lighting, orientation, and
translation conditions because the training and test images were not obtained in
the same session, which is always the case in a real world applications. During
the experiments, the features are extracted by using the proposed method with
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Table 1. Database I: Comparative performance evaluation for the different matching
schemes with different feature lengths

Method Feature length
25 75 125 200 300

PCA 212 (70.667) 231 (77.0) 229 (76.333) 227 (75.66) 231 (77.0)
KPCA 149 (49.67) 186 (62.0) 224 (74.667) 221 (73.667) 233 (77.667)

DCT+KPCA 218 (72.667) 231 (77.0) 240 (80.0) 240 (80.0) 242 (80.767)
FFT+KPCA 194 (64.667) 226 (75.333) 240 (80.0) 244 (81.333) 242 (80.667)
DWT+KPCA 215 (71.667) 234 (78.0) 237 (79.0) 242 (80.667) 244 (81.333)

length 25, 75, 125, 200, and 300. The WED is first used to cluster those features.
The matching is separately conducted and the results are listed in Table 1. The
numbers given in Table 1 show the correct recognition from 300 test samples.
The entries in the brackets indicate the corresponding recognition accuracies.
Kernel PCA gives higher performance than PCA when long feature lengths is
used. A high recognition rate (81.333%) was achieved for the DCT+KPCA and
DWT+KPCA, with feature lengths of 200 and 300, respectively.

Figure 4 shows the performance variation for WED and SVM classifiers with
the increase in number of features produced by wavelet-based kernel PCA. The
parameters of SVM employed in the experiments were empirically selected. The
SVM using the radial basis function was implemented. The SVM training was
achieved with C-SVM, a commonly used SVM classification algorithm [22]. The
training parameter γ, ε and C were empirically fixed at 0.5, 0.1, and 100, re-
spectively. When the number of features is less than about 60, the SVM-based
classifier gives higher recognition rate. But while the number of features is higher
than about 60, WED-based classifier gives higher accurate results.

The recognition accuracy (81.333%) in the first experiment may not be very
encouraging. When the database is carefully investigated, there are translation,
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Table 2. Database I: Recognition rate of different number of training samples(%)

Train PCA KPCA FFT+KPCA DCT+KPCA DWT+KPCA
Samples LED WED LED WED LED WED LED WED LED WED

1 66.0 80.2 73.6 80.6 82.0 82.8 80.0 82.4 82.8 82.0
2 74.25 93.5 83.75 94.0 92.25 98.0 89.5 95.75 89.5 95.75
3 77.3 95.0 84.0 96.67 90.6 98.67 90.0 97.33 90.3 97.67
4 70.0 97.5 82.0 98.0 92.0 99.5 90.5 98.0 91.0 98.0

rotation, or illumination changes in the input images at least 42 samples cor-
respond to 14 persons (the database includes 100 persons). This is one of the
main problem to obtain lower recognition rate than expected. We did not do
more works in the pre-processing and at the palm image alignment for PolyU-I
database, because we focused to another palmprint database which is devel-
oped by the PolyU [11] and includes more samples and persons, and we called
PolyU-II to this database. However, we designed a second experiment for PolyU-
I database to clarify the efficiency of the proposed algorithm. The experiments
on the PolyU-II database will also be given in the next section.

The performance of the second experiment on the PolyU-I database is sum-
marized in Table 2. Table 2 shows the different recognition rate with different
number of training samples. Four kind of experiment schemes were designed:
one (two, three, or four) sample(s) of each person was randomly selected for
training, and other samples were used for authentication, respectively. Kernel
PCA has given higher recognition rate than PCA. Discrete transform-based ker-
nel PCA has increased the recognition rate. High recognition rates (99.5%) and
(98.0%) were achieved by FFT+KPCA and DWT+KPCA, respectively, when
the four samples were used as training. WED-based classifier has also given
higher matching results than LED-based classifier.

5.2 Database II

The PolyU-II palmprint database [11] was also obtained by collecting palmprint
images from 193 individuals using a palmprint capture device. People was asked
to provide about 10 images, each of the left and right palm. Therefore, each per-
son provided around 40 images, so that this PolyU database contained a total of
7,752 gray scale images from 386 different palms. The samples were collected in
two sessions, where the first ten samples were captured in the first session and
other ten in the second session. The average interval between the first and second
collection was 69 days. The resolution of all original palmprint images is 384 x 284
pixels at 75 dpi. In addition, they changed the light source and adjusted the focus
of the CCD camera so that the images collected on the first and second occasions
could be regarded as being captured by two different palmprint devices. Typical
samples captured under different lighting conditions on the second sessions of
image capture could not be shown in this paper because of paper limitation,
but they can be seen from [11]. Although the lighting conditions in the second
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collection of palm images are quite different from the first collection, the proposed
method can still easily recognize the same palm.

At the experiments for PolyU-II database, we use the preprocessing technique
described in [11] to align the palmprints. In this technique, the tangent of the two
holes (they are between the forefinger and the middle finger, and between the
ring finger and the little finger) are computed and used to align the palmprint.
The central part of the image, which is 128 x 128, is then cropped to represent
the whole palmprint. Such preprocessing greatly reduces the translation and
rotation of the palmprints captured from the same palms. An example of the
palmprint and its cropped image is shown in Figure 5.

Fig. 5. Original palmprint and it’s cropped image

Two different experiments were done on the PolyU-II database. In the first
experiment, the first session was used as training set, second session includes
3850 samples of 386 different palms was also used as testing set. In this experi-
ment, the features are extracted by using the proposed kernel based eigenspace
method with length 50, 100, 200, 300, and 380. WED- and LED-based matching
were independently used to cluster those features. The matching is separately
conducted and the results are listed in Table 3. The number given in Table 3 rep-
resents the correct recognition samples in all test samples (3850). The entries in
brackets also represent corresponding the recognition rate. High recognition rates
93.454% and 93.168% were achieved for the FFT+KPCA and DWT+KPCA,
with feature length of 300, respectively. A nearest-neighbor classifier based on

Table 3. Database II: Comparative performance evaluation for the different matching
schemes with different feature lengths. Train is first session, test is second session.

Method Feature length
50 75 100 200 300

PCA 3411 (88.597) 3477 (90.311) 3498 (90.857) 3513 (91.246) 3513 (91.246)
DWT+PCA 3444 (89.454) 3513 (91.246) 3546 (92.103) 3570 (92.727) 3568 (92.675)

KPCA 3411 (88.597) 3481 (90.415) 3498 (90.857) 3508 (91.116) 3510 (91.168)
DCT+KPCA 3455 (89.74) 3528 (91.636) 3554 (92.311) 3595 (93.376) 3598 (93.454)
FFT+KPCA 2746 (71.324) 2933 (76.181) 3034 (78.805) 3174 (82.441) 3253 (84.493)
DWT+KPCA 3457 (89.792) 3531 (91.714) 3558 (92.415) 3584 (93.09) 3587 (93.168)
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the weighted Euclidean distance (WED) is employed. It is evident that feature
length can play an important role in the matching process. Long feature lengths
lead to a high recognition rate.

The another interesting point, DCT+KPCA based method achieved high-
est recognition rate (93.454%) with feature length of 300, while it gave lowest
accuracy for the first database as explained in previous section (see to the Ta-
ble 1). Although FFT+KPCA based method achieved highest recognition rate
for the first database, but it has given lowest recognition rate (84.493%) for
the second database, with feature length of 300. DWT+KPCA based method
has also achieved very close recognition rate to the highest recognition rates
for both databases. For instance, at the experiments given in Table 3, although
DWT+KPCA achieved the better performance than others for the feature
lengths less than 300, but DCT+KPCA achieved higher recognition rate than
DWT+KPCA for feature length of 300. Consequently, we propose DWT+KPCA
based method for palmprint recognition because it has given stable experimental
results on both databases.

The performance variation for WED-based nearest-neighbor (NN) and SVM
classifiers with the increase in number of features are shown in Figure 6. The
SVM using radial basis function was employed in the experiments and the pa-
rameters of SVM were empirically selected. The training parameter γ, ε and C
were empirically fixed at 0.55, 0.001, and 100, respectively. As shown in Figure 6,
the SVM classifier achieved higher recognition when 50 features were only im-
plemented. For the feature lengths longer than 50, the WED-based NN classifier
has achieved better performance.
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Fig. 6. Performance analysis of classifier with the number of features: DWT+ KPCA
method using the SVM- and WED-based classifiers

In the literature by today, PolyU-I and PolyU-II databases are only published
and public palmprint databases which include palm samples captured from the
different sessions. The experimental results given in Table 3 are first candidate
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Table 4. Testing results of the eight matching schemes with different feature lengths

Method Feature length
50 100 200 300 380

PCA
LED 60.664 % 71.804 % 74.568 % 74.395 % 74.136 % (1717)
WED 98.747 % 99.179 % 99.093 % 99.05 % 98.963 % ( 2292)

DWT+PCA
LED 59.542 % 71.459 % 87.305 % 87.737 % 87.737 % (2032)
WED 98.834 % 99.309 % 99.352 % 99.352 % 99.395 % ( 2302)

KPCA
LED 63.557 % 73.661 % 75.82 % 74.697 % 73.92 % (1712)
WED 98.877 % 99.222 % 99.05 % 99.006 % 98.92 % (2291)

DWT+KPCA
LED 83.462 % 86.01 % 86.01 % 87.435 % 88.039 % (2039)
WED 98.747 % 99.309 % 99.568 % 99.654 % 99.654 % (2308)

experimental results to be published in the literature, as we have followed the
published papers in the literature. The published papers by [1][3][7] only worked
on the palm samples collected from the one of the session. They used four sam-
ples as training set, and used remainder six samples as testing set. To compare
the performance of the proposed algorithm with the published algorithms, a sec-
ond experiment was designed in this section. In the second experiment which is
same scenario to the experiments published in the literature, the palm images
collected from the first session were only used to test the proposed algorithm. We
use the first four palmprint images of each person as training samples and the
remaining six palmprint images as the test samples. So, the numbers of training
and test samples are 1544 and 2316. We also test the 8 approaches against con-
ventional PCA method using different test strategies. Based on these schemes,
the matching is separately conducted and the results are listed in Table 4. The
meaning of LED and WED in Table 4 is linear Euclidean discriminant and the
weighted Euclidean distance based nearest neighbor classifier, respectively. The
entries in the brackets (in the last column) given in Table 4 indicate the number
of the correct recognition samples in all 2316 palms used as test samples. A high
recognition rate (99.654 %) was achieved for kernel PCA with 2D-DWT (ab-
breviated as DWT+KPCA) and WED-based classifier approach, with feature
length of 300. One of the important conclusion from Table 4 is that, long feature
lengths still lead to a high recognition rate. However, this principle only holds
to a certain point, as the experimental results summarized in Table 4 show that
the recognition rate remain unchanged, or even become worse, when the feature
length is extended further.

A comparison has been finally conducted among our method and other meth-
ods published in the literature, and is illustrated in Table 5. The databases given
in the Table 5 are defined as the numbers of the different palms and whole sam-
ples tested. The data represent the recognition rates and given in Table 5 is taken
from experimental results in the cited papers. In biometric systems, the recog-
nition accuracy will decrease dramatically when the number of image classes
increase [1]. Although the proposed method is tested on the public database
includes highest number of different palms and samples, the recognition rate of
our method is more efficient, as illustrated in Table 5.
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Table 5. Comparison of different palmprint recognition methods

Method
Proposed In [4] In [5] In [3] In [10] In [8] In [9] In [23] In [24] In [25]

Data palms 386 3 100 300 382 160 100 100 190 50
base samples 3860 30 200 3000 3056 1600 600 1000 3040 200

Recog. Rate(%) 99.654 95 91 99.2 99.149 97.25 97.5 95.8 98.13 98

6 Conclusion

This paper presents a new appearance-based non-linear feature extraction (ker-
nel PCA) approach to palmprint identification that uses low-resolution images.
We first transform the palmprints into wavelet domain to decompose the origi-
nal palm images. The kernel PCA method is then used to project the palmprint
image from the very high-dimensional space to a significantly lower-dimensional
feature space, in which the palmprints from the different palms can be dis-
criminated much more efficiently. WED based NN classifier is finally used for
matching. The feasibility of the wavelet-based kernel PCA method has been
successfully tested on two data sets from the PolyU-I and PolyU-II databases,
respectively. The first data set contains 600 images of 100 subjects, while the
second data set consists of 7752 images of 386 subjects. Experimental results
demonstrate the effectiveness of the proposed algorithm for the automatic palm-
print recognition.
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Abstract. In this paper, we propose a filter-refinement scheme based
on a new approach called Sorted Extended Gaussian Image histogram
approach (SEGI) to address the problems of traditional EGI. Specifically,
SEGI first constructs a 2D histogram based on the EGI histogram and
the shell histogram. Then, SEGI extracts two kinds of descriptors from
each 3D model: (i) the descriptor from the sorted histogram bins is used
to perform approximate 3D model retrieval in the filter step, and (ii) the
descriptor which records the relations between the histogram bins is used
to refine the approximate results and obtain the final query results. The
experiments show that SEGI outperforms most of state-of-art approaches
(e.g., EGI, shell histogram) on the public Princeton Shape Benchmark.

Keywords: Filter-refinement, Extended Gaussian Image.

1 Introduction

In the past few years, there exist a lot of 3D model collections, such as the Pub-
lic Princeton Shape Benchmark (PSB) database, the Protein Data Bank, the
Digital Michelangelo Project archive, and so on. In order to perform indexing
and retrieval of the 3D models in 3D model collections, an efficient and effective
search engine needs to be designed. One of the most important factors to deter-
mine the performance of the search engine is the 3D shape descriptor. Although
there exist a lot of approaches to extract the descriptor from the model shape
[1]-[12], such as D2 [1][2], EGI (Extended Gaussian Image) [4], VEGI (Volumet-
ric Extended Gaussian Image)[3], Geometrical Moments [7], Shell histogram[6],
Sector histogram[6], and so on, finding a suitable descriptor to capture the global
or local properties of the shape is still a challenging problem.

In this paper, we focus on the EGI approach. Traditional EGI approach has
three limitations: (i) it is sensitive to the rotation transformation; (ii) it re-
quires the pose alignment process to align the 3D models before extracting the
descriptor, which takes a lot of computational effort; and (iii) it cannot distin-
guish between the convex object and the concave object. In order to solve the
limitation of EGI, we propose a new approach called Sorted Extended Gaus-
sian Image histogram approach (SEGI). Specifically, SEGI first constructs a 2D
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histogram based on the EGI histogram (as the rows) and the shell histogram
(as the columns). Then, it sorts the bins in each row of the 2D histogram in
descending order. Next, SEGI extracts the value of the histogram bins in the
first l-th columns as the descriptors for the filtering step. Finally, SEGI records
the relations of these selected histogram bins in the original 2D histogram as
the descriptor for the refinement step. In addition, a filter-refinement scheme is
designed for 3D model retrieval based on the new descriptors. The experiments
on the public Princeton Shape Benchmark (PSB) database shows that SEGI
works well.

The remainder of the paper is organized as follows. Section 2 describes the
SEGI approach. Section 3 presents the filter-refinement scheme. Section 4 eval-
uates the effectiveness of our approach through the experiments. Section 5 con-
cludes the paper and describes possible future works.

2 The SEGI Approach

2.1 Preprocess

SEGI first triangulates the 3D mesh models by the approach in [13]. Then, SEGI
calculates the EGI histogram and the shell histogram by considering the triangles
on the surface of the 3D model one by one.

EGI Histogram: SEGI subdivides the sphere into nα × nβ cells, which are
denoted as (αi, βj)(i ∈ [0, nα − 1], j ∈ [0, nβ − 1]) as shown in Figure 1 (a).

αi =
π

nα
(i +

1
2

), i ∈ [0, nα − 1] (1)

βj =
π

nβ
(2j + 1), j ∈ [0, nβ − 1] (2)

where αi is the latitudinal angle, and βj is the longitudinal angle. The feature of
each triangle on the surface of the 3D model will be mapped to the corresponding
cells in the EGI histogram according to the outward normal of the triangle (here
the feature is the normalized surface area of the triangle, which is the ratio
between the surface area of the triangle and the total area of all the triangles in
the 3D model).

Shell Histogram: The 3D model is decomposed by ns concentric shells (ns

is the number of concentric shells) around the centroid of the 3D model as
shown in Figure 1 (b). The feature of each triangle on the surface of 3D model
will be mapped to the corresponding shell in the shell histogram according to
the normalized distance dnormal between the centroid of the 3D model and the
geometric center of the triangle.

dnormal =
d− dmin

dmax − dmin
(3)
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where dmax and dmin are the maximum distance and the minimum distance
among all the triangles respectively, and d is the distance without normalization.

h =
{

1 if dnormal = 0
�dnormal × ns� Otherwise (4)

where h denotes the h-th shell that the triangle mapped to.

Fig. 1. EGI Histogram and Shell histogram

Next, SEGI constructs a 2D histogram whose row consists of the bins in the
EGI histogram and whose column consists of the bins in the shell histogram.
The feature value in the 2D histogram bin is the normalized surface area.

Traditional EGI approach cannot distinguish between the convex object and
the concave object, since it only considers the normals of the surface. With the
help of the shell histogram, SEGI not only considers the normals of the surface,
but also the distance from the surface to the centroid of the 3D model, which
make it capable of identifying the convex object and the concave object. This is
the first motivation of the paper.

2.2 Rotation Invariance

In the next step, SEGI sorts the values of the bins in each row of the 2D his-
togram. The original EGI requires pose alignment, since it is sensitive to rotation.
Unfortunately, the process of pose alignment (i) takes a lot of computational
time and (ii) cannot accurately align all the 3D models due to the limitation of
the pose alignment approach. SEGI performs the sorting operation on each row
of the original 2D histogram. The 2D histogram after sorting satisfies rotation
invariance, which is the second motivation of the paper. As a result, the descrip-
tor obtained by SEGI from the 2D histogram after sorting satisfies translation
invariance, rotation invariance and scaling invariance.
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2.3 Dimensionality Reduction

A feature vector of the 3D model can be obtained by concatenating the values
of the bins in the 2D histogram, but the dimension of the feature vector is very
high, which is equal to nα×nβ×ns. As a result, we need to reduce the dimension
of the feature vector.

In this paper, we only focus on reducing nα × nβ , which is the number of the
bins in the EGI histogram. The optimal nα × nβ is 64 × 64 in [4], which forms
a histogram consisting of 64 × 64 bins as shown in Figure 2(a). The histogram
bins in Figure 2(a) are sorted in descending order according to the values (the
normalized surface areas) of the bins. Only the values in a very small number of
the histogram bins on the right hand side of Figure 2(a) is useful for identifying
different models, while the values of other bins are close to zero. Figure 2(b)
enlarges the values in the first 100 histogram bins. Table 1 illustrates the effect
of the number of bins with respect to the sum of the normalized surface area
(A(nb)):

A(nb) =
∑nb

i=1

A
× 100% (5)

where nb denotes the first nb histogram bins after sorting in the descending order
and A is the total surface area of the 3D model. For example, when the nb = 32,
69% of the surface areas in the 3D model maps to the first 32 histogram bins,
while 31% of the surface areas in the 3D model falls into the remaining 4064
histogram bins.

E
n
la
rg
e

(a) The original histogram (b) The enlarged histogram

Fig. 2. The motivation of dimensionality reduction

As a result, SEGI extracts a l × ns dimensional feature vector from each 3D
model (where l = 32 in this paper) in the fifth step, which is the descriptor
(called the area descriptor) in the filtering step during the retrieval process.
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Table 1. The effect of the number of bins

NO. of bins (nb) 8 16 32 48 64

Sum of the normalized area 37% 53% 69% 76% 82%

2.4 The Relation Between Histogram Bins

SEGI considers the relation between the bin with the maximum value and the
remaining l − 1 selected bins in each row of the histogram. We assume that (i)
the selected l bins in the h-th row can be represented by the tuple (αi, βj , rh)
(i ∈

∏
α, j ∈

∏
β ,

∏
α and

∏
β denotes the set of α values and β values of the

selected l bins respectively), which corresponds to the cell (αi, βj) in the EGI
histogram and the h-th shell with the radius rh in the shell histogram; and (ii)
the bin with the maximum value in the hth row (h ∈ [1, ns]) is represented by
(αi∗ , βj∗ , rh). The normal of the bin with the maximum value (αi∗ , βj∗ , rh) and
other selected bins (αi, βj , rh) (i, i∗ ∈

∏
α, j, j

∗ ∈
∏

β , i �= i∗, j �= j∗) can be
expressed as follows:

−→n (αi∗ ,βj∗ ,rh) = [rhsinβj∗ , rhcosβj∗sinαi∗ , rhcosβj∗cosαi∗ ] (6)

−→n (αi,βj ,rh) = [rhsinβj, rhcosβjsinαi, rhcosβjcosαi] (7)

The angle θ between two normals −→n (αi∗ ,βj∗ ,rh) and −→n (αi,βj,rh) can be calculated
by the following equations:

θ = arc cos θ (8)

cosθ =
1
2

(sinβj∗ × sinβj + cosβj∗sinαi∗ × cosβjsinαi

+cosβj∗cosαi∗ × cosβjcosαi) (9)

SEGI obtains a (l − 1) × ns dimensional feature vector consisting of the angle
values from each row in the 2D histogram, which is the descriptor (called the
angle descriptor) in the refinement step in the process of 3D model retrieval.

3 A Filter-Refinement Scheme

Figure 3 provides an overview of the filter-refinement scheme. Given a new 3D
query model, the 3D search engine retrieves k relevant models from the 3D
model database, which are the most similar to the query model. In the filter-
refinement scheme, the 3D search engine first extracts the area descriptor and
the angle descriptor from the query model by SEGI. Then, it uses the area
descriptor of the query model to retrieve c · k (c is a constant and c > 1, we
set c = 5 in the experiment) 3D models as the approximate query results in
the filtering step. In the refinement step, it uses the angle descriptor to select k
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models from the approximate query results as the final query result. We adopt the
Minkowski distance (Lp norm) as the similarity measure between the descriptors.
The Minkowski distance between two descriptors −→fi and −→

fj is defined as follows:

Lp = (
m∑

h=1

|−→fih −
−→
fjh|p)

1
p (10)

where m denotes the number of dimensions of the descriptor, and h denotes
the h-th dimension. In the experiment, we set p = 1 which is the Manhattan
distance (L1 norm).

3D query model

Area descriptor Angle descriptor

c•k query 

results
k query results
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Fig. 3. The filter-refinement scheme

4 Experiments

4.1 Data Set and Experimental Setting

Our 3D model database comes from the test dataset of the public Princeton
Shape Benchmark (PSB) database [2]. There are 907 3D models in our 3D model
database, which can be categorized into 131 classes, such as computer, airplane,
car, plane, animal, architecture, and so on. The vertices contained in the 3D mod-
els range from 108 to 160940, with a median of 1005 vertices per model. Figure 4
illustrates examples of the front views of the 3D models in some of the classes.

We compare SEGI with D2 [1][2], EGI (Extended Gaussian Image) [3], shell
histogram (SH), geometric moment (GM), and the random approach in the

Fig. 4. Examples of 3D models
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Fig. 5. Comparison of the precision-recall curves among different approaches

Fig. 6. Comparison of the precision-recall curves among different classes
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Query

example

Result 1

Result 2

Result 3

Result 4

Result 5

Filter Refinement Filter Refinement

Fig. 7. Comparison of the results between the filter step and the refinement step

experiment. The parameters of SEGI are 32 for l (l is the selected number of bins
in each row of the 2D histogram) and 16 for ns (ns is the number of concentric
spheres).

The performance of the approaches based on different descriptors are mea-
sured by the precision-recall curve. The precision p and the recall r is defined as
follows:

p =
ρ

%
, r =

ρ

σ
(11)

where ρ denotes the number of the retrieved 3D models which is relevant to the
query model, % is the total number of the retrieved 3D models, and σ denotes
the number of relevant models in the 3D model database.
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4.2 Experimental Results

Figure 5 compares the performance of different approaches according to the
precision-recall curves. The SEGI approach which combines the EGI histogram
and the shell histogram outperforms the EGI approach which only uses the EGI
histogram and the SH approach which only adopts the shell histogram, due to its
ability to combine the advantages of the EGI histogram and the shell histogram.
The SEGI approach is also better than the D2 approach and the GM approach.

Figure 6 shows the precision-recall curves among six classes by the SEGI
approach, while Figure 7 compares the query results of two query examples
between the filtering step and the refinement step. The result in both examples
in the refinement step are correct, while the fifth result in both examples in the
filtering step are not correct.

5 Conclusion and Future Work

In this paper, we investigate the problem of content based 3D model retrieval.
Although there exist a lot of approaches for 3D model retrieval, few of them
can guarantee translation invariance, scaling invariance and rotation invariance.
Our major contribution consists of proposing: (i) a new approach called Sorted
Extended Gaussian Image Histogram (SEGI) to extract the descriptor from 3D
models and (ii) a filter-refinement scheme for 3D model retrieval based on the
new descriptors. In the future, we will explore how to assign different weights to
the descriptors extracted from different rows.

Acknowledgments. The work described in this paper was fully supported by
grants from the Research Grants Council of Hong Kong Special Administrative
Region, China [Project No. CityU 1197/03E and CityU 121005].
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Abstract. In this paper, a reinforcement learning method called DAQL is pro-
posed to solve the problem of seeking and homing onto a fast maneuvering tar-
get, within the context of mobile robots. This Q-learning based method consid-
ers both target and obstacle actions when determining its own action decisions, 
which enables the agent to learn more effectively in a dynamically changing 
environment. It particularly suits fast-maneuvering target cases, in which ma-
neuvers of the target are unknown a priori. Simulation result depicts that the 
proposed method is able to choose a less convoluted path to reach the target 
when compared to the ideal proportional navigation (IPN) method in handling 
fast maneuvering and randomly moving target. Furthermore, it can learn to 
adapt to the physical limitation of the system and do not require specific initial 
conditions to be satisfied for successful navigation towards the moving target. 

Keywords: Moving object navigation, reinforcement learning, Q-learning. 

1   Introduction 

Seeking and homing onto a moving target is an interesting and essential issue for a 
mobile robot. The navigation problem is no longer a global path planning matter, but 
the agent (robot) now requires to constantly re-plan its navigational tactic with respect 
to the motion feature of the target. Common applications include soccer robotics, 
autonomous vehicle navigation, and missile guidance. Although navigation methods 
such as potential field [1] and cell decomposition method [2] are sophisticated and 
well studied, most of these researches concentrate on stationary target only. When a 
moving target is concerned, most of these methods designed for stationary targets do 
not work. Therefore, a new set of strategy has to be developed, from which new 
methods are to be evaluated for this complex scenario.  

Briefly, moving targets may be classified into two categories. The first one is slow-
maneuvering target, which allows a more accurate prediction of the target’s motion. 
The second one is fast-maneuvering target, which moves quickly and randomly such 
that accurate prediction on the target’s motion is not always possible. For slow-
maneuvering targets, a common approach is to equip the navigation system with a 
prediction capability to derive a more accurate and optimal path to intercept the  
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target. Examples of navigation system using this approach include the fuzzy logic 
control method [3], [4] and the artificial vision method [5]. 

When fast-maneuvering targets are concerned and prediction is not available, ap-
proaches such as the potential field method [6], [7] and the line of sight navigation 
method [8] have been adopted. Because of their computational efficiency, real time 
application is possible. In [7], the robot navigates towards the moving goal by consid-
ering the potential field with the velocity of both the robot and the target taken into 
account. However, the potential field method suffers from the local minima problem 
as in stationary target. The line of sight navigation method in [8] is based on the line 
of sight guidance law which aims at minimizing the distance between the robot and 
target by making the expected intercept time as small as possible. However, it re-
quires the notion of an observer as a control station or reference point which may not 
always exist in real application. 

The proportional navigation (PN) [9] guidance law for missile guidance is another 
approach used for fast-maneuvering targets and is well studied and developed. In PN, 
the interceptor is guided by applying a commanded acceleration proportional to the 
rate of rotation of the line of sight and acting perpendicular along a direction defined 
by the specific variant of PN. There are two generic classes of PN, 1) the true propor-
tional navigation (TPN) [10] method which had the commanded acceleration applied 
in the direction normal to the line of sight between the interceptor and the target and, 
2) the pure proportional navigation (PPN) [10] method which had the commanded ac-
celeration applied in the direction normal to the interceptor velocity. Although these 
PN methods have the advantage of implementation simplicity in practice, they are 
sensitive to the initial condition and may fail to reach the target if requirements for the 
initial condition are not satisfied [10]. For missile guidance, the problem on initial 
condition may not be critical as the operators can make fine adjustments on the initial 
velocity and direction for the missile before it is launched. However, for a general 
purpose autonomous navigation application, it is reasonable to assume that the agent 
starts from rest and not necessarily at a heading angle pointing towards the target. 
Therefore, TPN and PPN may not be completely suitable for autonomous navigation. 

Another variation of PN called the ideal proportional navigation (IPN) method, 
which has the commanded acceleration applied in the direction normal to the relative 
velocity between the interceptor and the target, has been presented in [11]. IPN is less 
dependent on the initial condition of the interceptor and thus more applicable in robotics 
applications. In [12], [13], Mehrandezh et al. presented an IPN based guidance system 
for moving object interception. Practical issues such as limitations to the velocity and 
acceleration of the robot were considered to enable IPN to be used in a robotics system. 

Motivated by the fact that there are still rooms for improvement for current  
approaches on the issue of moving target navigation, we regard it as an intelligent 
control problem and apply reinforcement learning to deal with the problem. Rein-
forcement Learning (RL) [14] aims to find an appropriate mapping from situations to 
actions in which a certain reward is maximized. It can be defined as a class of prob-
lem solving approaches in which the learner (agent) learns through a series of trial-
and-error searches and delayed rewards [14]-[17]. The purpose is to maximize not 
only the immediate reward, but also the cumulative reward in the long run, such that 
the agent can learn to approximate an optimal behavioral strategy by continuously  
interacting with the environment. This allows the agent to work in a previously  
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unknown environment by learning to adapt to it gradually. The advantage of using RL 
is that we do not have to make any assumptions regarding the underlining kinematics 
model used by the agent and it should work on any autonomous vehicles given the 
state information from the environment. The agent can therefore learn to adapt to the 
physical limitations of the system and not require any specified initial condition to be 
satisfied for successful navigation towards the moving target. 

In this paper, we propose a solution for the problem of fast-maneuvering target 
seeking using a RL approach called Double Action Q-Learning (DAQL) [18], [19]. 
The proposed method uses DAQL to consider the response or action of the target 
when deriving the agent’s next action. In the case of seeking the fast-maneuvering 
target, the agent naturally selects a more appropriate action when compare with other 
RL or non-RL methods that do not consider target actions. DAQL also works with or 
without prediction. In this paper, we present an approach without using the prediction 
technique for convenience sake. In addition, the target is assumed to be moving with-
out known maneuvers. By using a reinforcement learning approach, the proposed 
method is suitable for application in general autonomous navigation, with the ability 
to learn to adapt to the limitations and underlining kinematics of the system. When 
compared to the PN methods, the proposed method is insensitive to initial conditions 
and therefore more suitable for the application of autonomous navigation. 

This paper is organized as follows: an overview of the proposed system is given in 
Section 2. Following that, section 3 discusses the geometrical relations between agent 
and target. Section 4 introduces our approach by showing how the problem of moving 
target navigation can be accomplished with DAQL. Section 5 presents the simulation 
environment and the result in different simulation cases. Finally, the conclusion is 
given in Section 6. 

2   System Overview 

Fig. 1. depicts an overview of the proposed RL approach. The DAQL method is  
designed to handle fast-maneuvering target, or obstacles. As DAQL requires a dis-
crete state input, a state matrix is used to quantize the continuous input into discrete 
states. The states information together with the reward received is used to update the 
Q-values by using the DAQL update rule. Finally, an exploration policy is employed 
to select an action and carry out proper exploration. Detailed explanations on each 
part will be discussed in the following section. 

 

Fig. 1. Overview of the reinforcement learning approach 
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3   Geometrical Relations Between Agent and Target 

The control variables of the agent and the target at time t are depicted in Fig.2. It is 
assumed that the location information of the target can be detected by sensory system 
(e.g. GPS). The agent and target are assumed to be circles with radius ra and rT re-
spectively. We assume that the agent is +ℜ∈Td  away from the target and is at an an-

gle Θ∈φ  where ℜ⊂=Θ ]2,0[ π . The two parameters: dT, and φ are quantized into 

states through the state matrix, where the actual number of states is determined by 
how DAQL are realized. The state set for the relative location of the destination is 

TT Ll ∈  where ( ){ }qTTTT DddL Θ∈∈= φφ ~
 and 

~
|
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,

~ , DT={i |i=0,1,…,5} and qΘ ={j 
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Fig. 2. Control variables of agent and the target 

There are altogether 96 states for LT. The output actions are given by Aa ∈1   
where ( ){ }aaaaaa VvvA Θ∈∈= θθ  and |, , { }5,...,1,0|5/max, =×= mvmV aa

, 

{ }15,...,1,0|8/ ==Θ nna π , and va,max is the maximum velocity of the agent. For 

av
v

=0, the agent is at rest despite of θa, resulting in only 81 actions. For DAQL, we 

assume that the target have velocity vT
+ℜ∈  and heading angle θT∈Θ. They are 

quantized to TAa ∈2  where ( ){ }qTqTTTT VvvA Θ∈∈= θθ ~
 and  ~|

~
,~  and 

{ }10,...,1,0| == llVq
. Quantization is achieved as follows: 
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where there are altogether 161 actions for the target as observed by the agent. 

4   Target Seeking Using DAQL 

In order to navigate towards the moving target, the DAQL method is adopted such 
that the agent learns to select the most appropriate action according to the current 
state. DAQL is a modified version of QL [20] that works in a dynamic environment 
by essentially having the actions performed by both the agent and the target taken in 
its formulation. The DAQL update rule shown in Eqt. (5) is used to update the  

Q-values ( ),,( 21
, tttT aalQ ) which represent the action values in different states. 
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Fig. 3. Change in dT form t-1 to t 

where lT,t, lT,t+1 are the input states, a1
t, a

1
t+1 are the action of the agent , a2

t, a
2
t+1 are 

the action of the target in t and t+1 respectively. α and γ are the weighting parameter 
and discount rate respectively, which both range from 0 to 1. 1+tr  describes the re-
ward received by the agent generated from the reward function at time t+1. Reward is 
given to the agent to encourage it to travel towards the target using the shortest path 
with the maximum velocity. With reference to Fig. 3, let us define ΔdT=dT,t-dT,t+1, 
where dT,t is the distance between the agent and destination at t, dT,t+1 is the distance at 
t+1; and the agent travels at va from t to t+1. Therefore, ΔdT will be larger if the agent 
maximizes the distance it can travel in one time step with higher velocity. The nor-
malized reward function of the agent is thus defined as: 
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)/()( max,1 Tvdr aTt Δ=+  (6) 

When 1+tr is available, the agent uses the DAQL update rule to learn the navigation 

task, as depicted in Fig. 4. Given obstacles’ actions in two time steps (t & t+1), the 
agent updates its Q-values ( ),,( 21

, tttT aalQ ) at t+2 and the values are stored in the  

Q-value table. 

 

Fig. 4. DAQL for moving target navigation. Q-values updated at t. 

Apart from learning, the agent needs to determine its own action in the current time 
step. Given the state information of the current time step, the agent can use it together 
with the Q-values in the Q-value table to determine an action that is most appropriate 
for the navigation task. That is, the agent needs to determine an action 1

ta  given 

),,( 21
, tttT aalQ . However, since a2

t is not known at t, it has to be predicted, which can 

be treated independently from RL, i.e. the agent predicts from the environment’s his-
torical information, or it can be based on concepts (rules learn from examples) and  
instances (pools of examples). In this paper, we assume that a2

t has equal probability 
in taking any of the 161 actions. To incorporate the predicted a2

t, the corresponding 
Q-value can be acquired as follows: 

∑=
2

2 ),,(),( 21
,

1
,

t

t
a

tttTattTT aalQpalQ  
(7) 

where 2
ta

p is the probability that the target performs the action 2
ta . The expected value 

of the overall Q-value is obtained by summing the product of the Q-value of the target 
when it takes action 2

,tia  with its probability of occurrence. Assuming an evenly  
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distributed probability, we have
Aa

Np
t

/12 = , where NA is the number of actions that the 

target can perform (NA =161), and )( 1
tT aQ  can now be expressed as follows: 

∑=
2

),,(
1

),( 21
,

1
,

ta
tttT

A
ttTT aalQ

N
alQ  (8) 

The final decision of the agent is made by using the ε-greedy policy as shown in 
Eqt. (9). Exploration policy allows the agent to learn the different response from the 
environment so that the agent can discover better approaches to move toward the  
target. 

⎪⎩

⎪
⎨
⎧

=
ε
ε

y probabilitwith random

-1y probabilitwith ),(max arg 1
,

a1 1
t

ttTT alQ
at

 (9) 

5   Simulation and Result 

In this simulation, length has unit of cm and time has unit of second. The agent is as-
sumed to be circular with radius ra of 50cm while the target is also assumed to be cir-
cular with radius rt of 50cm. Physical limitations have been applied on the agent so 
that it only has a maximum acceleration of 20cm/s2 and maximum velocity of 50cm/s. 
The agent is required to start from rest, and hit the target, i.e, the distance dT between 
them is reduced to zero. To acquire environmental information, a sensor simulator has 
been implemented to measure distances between the agent and target. The sensor 
simulator can produce distance measurements, at T interval (typically 1 s) to simulate 
practical sensor limitations. The other parameters for simulations are α=0.6, γ=0.1, 
ε=0.5, and T=1s. 

We considered a number of scenarios here including when the target moves in a 
straight line, circular path, and randomly. A comparison with the IPN method is con-
ducted to illustrate the difference in navigation behavior of the RL method and the 
IPN method. To distinguish between the two methods, we called the agent which uses 
the proposed approach the RL agent while the agent that uses the IPN method the IPN 
agent. 

Before evaluating the performance of the RL agent, the agent is trained in an envi-
ronment that contains randomly moving targets with the origin of both parties  
randomly placed. The agent is trained for 10000 episodes in which each episode is de-
fined by the agent being able to hit the target. The learning and exploration process of 
the agent is then stopped and different cases of simulations are performed and  
discussed in the next section. 

For the IPN method, as it only defines the magnitude and direction of the accelera-
tion that should be applied to the agent but without the indication of any physical 
limitations to the agent itself. For fairness of comparison, the same limitations on 
maximum velocity and acceleration used by the RL agent are applied to the IPN 
agent. The method used for limiting the acceleration command is the same as de-
scribed in [12], where the magnitude of the acceleration is scaled down to the maxi-
mum value if the acceleration limit is violated. The velocity limit is applied to the 
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agent similar to that of the acceleration limit. Besides, as the IPN agent is sensitive to 
its initial condition, i.e., when it starts from rest, it needs quite a long time to acceler-
ate to its maximum velocity, we therefore used a relatively large value of λ=50 to  
alleviate this problem. 

5.1   Case 1 - Target Moving in a Straight Line 

In this case, the target moves in a straight line, from left to right, with a constant ve-
locity of vt=30cm/s. The aim in this example is to demonstrate how the agent seeks 
the target and navigates toward a non-accelerating moving target. The paths of the RL  
 

 

Fig. 5. Agents’ path for a target that moves with constant velocity, observed at t=66s. The ini-
tial position of the agents and target are (100,100) and (500,2400) respectively. 
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 (a) Velocity profile - RL agent  (b) Heading angle - RL agent 
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 (c) Velocity profile - IPN agent (d) Heading angle - IPN agent 

Fig. 6. Velocity profile and heading direction for RL and IPN agent when target moves in a 
straight line 
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agent, IPN agent and the target are depicted in Fig. 5. The numbers in the figure repre-
sent the location of the agents and targets in every 10s. The velocity and heading angle 
profile of the RL agent and IPN agent are shown in Fig. 6. It can be observed that al-
though both agents share a similar path in the first 10 seconds, their path deviate there-
after. The agents are able to reach the moving target at t=66s and t=68s for the RL and 
IPN respectively. The minor difference is probably due to that the IPN agent required 
slightly more time to turn and steer towards the target. The RL agent uses a straight 
path to approach the target with a nearly constant heading angle of 45° while the IPN 
agent also travel straightly to the target but with a slightly smaller angle of 41.55°. 
This is understandable as the IPN method applies a commanded acceleration in the di-
rection normal to the relative velocity between the agent and the target, which makes 
the agent travel further towards the direction which the target is approaching. 

Comparing Fig. 6(a) and 6(c), it can be observed that the velocity of the IPN agent 
is still zero in the first second after the simulation started. This is because both the 
agent and the target are assumed to be at rest initially and thus the relative velocity 
between the agent and the target is zero which makes the IPN agent slow to apply a 
commanded acceleration right after the simulation begins. The initial condition prob-
lem is a common nature to the PN methods and the IPN agent can be initialized by us-
ing other methods to solve the problem [12]. Comparing Fig. 6(b) and 6(c), the two 
heading direction functions are very similar, except that the IPN function is continu-
ous, while the RL function is discrete, which is its inherent feature. 

5.2   Case 2 - Target Moving in a Circle 

In this case, the target moves in a circle with radius of 200cm. Velocity of the target is 
vT=30cm/s. Two scenarios are illustrated in Fig. 7(a) and 7(b), where the target moves 
clockwise and counterclockwise respectively. The velocity and heading angle profiles 
of the RL agent and IPN agent are depicted in Fig. 8. The agents are able to reach the 
moving target at t=26s and t=33s for the RL and IPN agent respectively in the  

 

 
(a) Clockwise   (b) Counter-clockwise 

Fig. 7. Agents’ path for a target that moves in a circle. In (a), snapshot taken at t=26s. In (b), 
snapshot taken at t=34s. The initial position of the agents and target are (100,100) and 
(1100,1400) respectively. 
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 (a) Velocity profile - RL agent (clockwise) (b) Heading angle - RL agent (clockwise) 
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 (c) Velocity profile - IPN agent (clockwise) (d) Heading angle - IPN agent (clockwise) 

0

20

40

60

0 10 20 30 40
Time (s)

V
e
lo
c
it
y
 (
c
m
/s
)

0

45

90

135

180

0 10 20 30 40
Time (s)

H
e
a
d
in
g
 A
n
g
le
 (
d
e
g
)

 

 (e) Velocity profile - RL agent (c-clockwise) (f) Heading angle - RL agent (c-clockwise) 
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 (g) Velocity profile - IPN agent (c-clockwise) (h) Heading angle - IPN agent (c-clockwise) 

Fig. 8. Velocity profile and heading direction for RL and IPN agent when target moves in a  
circle clockwisely 

clockwise case and at t=34s and t=36s for the counterclockwise case. It can be ob-
served that the RL agent is able to reach the target using more constant heading angle 
and velocity along the path when compared to the IPN agent.  

The IPN agent, on the contrary, adopted a more convoluted path with frequent change 
in velocity and heading angle. This is due to the nature of IPN method which applies 
commanded acceleration in a direction normal to the relative velocity between the agent 
and the target. Since this relative velocity changes continuously as the target moves in a 
circular path, the path of the IPN agent thus changes accordingly, resulting in the using of 
non-optimal speed, and a relatively large change in heading angle along the path. 

5.3   Case 3 – Target Moving Randomly 

In this case, the target moves randomly, so that it has an equal probability in perform-
ing one of the actions (a2) in AT in each time step. We tested the performance of the 
two agents for 1000 episodes of simulations. One episode defines the success of 
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reaching the target for the agents. The initial positions of the agents and the target are 
fixed in each episode and a sample of an episode is depicted in Fig. 9. In this exam-
ple, the agents are able to reach the moving target at t=42s and t=44s for the RL and 
IPN method respectively. From the velocity and heading angle profiles as depicted in 
Fig. 10 for both agents, we observed that although both agents maintains almost 
maximum speed through the journey, they have quite a different behavior in selecting 
the heading angle. It is shown in Fig 10(b) and 10(d) that the RL agent has a constant 
heading angle most of the time and has a large variation only if it is close enough to 
the target. On the contrary, the IPN agent changes its heading angle frequently and 
thus applied a more convoluted path to reach the target. This depicts that the IPN 
agent is more reactive to the short term change in velocity of the target and requires 
longer time to reach the target. 
 

 

Fig. 9. Agents’ path for a target moving randomly. Observed at t=42s. The initial position of 
the agents and target are (100,100) and (1500,1500) respectively. 
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 (a) Velocity profile - RL agent  (b) Heading angle - RL agent 
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 (c) Velocity profile - IPN agent (d) Heading angle - IPN agent 

Fig. 10. Velocity profile and heading direction for RL and IPN agent when target moves  
randomly 



664 D.C.K. Ngai and N.H.C. Yung 

Table 1. Average path time and the corresponding path time for the two agents in navigating 
towards a randomly moving target 

Agent Average path time (s) Standard deviation path time 
RL 44.18 6.08 
IPN 48.62 7.16 

Table 2. Summary on the simulation on the 1000 episodes of simulation with a randomly 
moving target  

RL reaches target faster IPN reaches target faster Both reach target with the same time 
926 24 50 

A summary of the results from the 1000 episodes of simulations are shown in  
Tables 1 and 2. Table 1 shows the average number of time required for the agents to 
reach the target and the corresponding standard deviation. It illustrates that the RL 
agent is able to reach the target in an average time of 44.18s while the IPN agent 
needs an average time of 48.62s. Table 2 depicts that in 926 out of the 1000 episodes, 
the RL agent is able to reach the target faster while the IPN agent can reach the target 
faster in 24 of the episodes. This suggested that the RL method is less affected by the 
sudden changes of a randomly moving and unpredictable target. 

5.4   In the Presence of Obstacles 

In environment with the presence of obstacles, the proposed method for moving target 
navigation is also able to find a collision-free path to reach the target. This can  

 

 

Fig. 11. Agents’ path for a target moving in a straight line, with the presence of static obstacles. 
Observed at t=80s. 
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be done by combining the proposed moving target navigation method with the obsta-
cle avoidance method proposed in [19]. Fig. 9 depicts a situation same as case 1 but 
with the presence of two static obstacles. Since there are obstacles in the environment, 
the agent applies a more convoluted path to avoid colliding with the obstacles while 
reaching the moving target at the same time. The agent is able to reach the target suc-
cessfully at t=80s.  

6   Conclusion 

In this paper, we presented a method for solving the problem of fast-maneuvering tar-
get seeking in general robotics applications. The target’s maneuvers are assumed un-
known to the agent and no predictions on target’s maneuvers are required. The pro-
posed method applies the DAQL reinforcement learning approach with implicit 
consideration on the actions performed by the target. Through reinforcement learning, 
the agent learns to seek the moving target by receiving rewards when the environment 
reacts upon the agent’s actions. Thus, no kinematics models on the agent and target 
are required. Simulation results prove that the RL agent is able to reach the moving 
target successfully with its path less affected to the sudden change in motion of the 
target. Initial condition is not critical for the RL agent to find a path towards the target 
as it learns and reacts with the most suitable action in each time instant. The RL agent 
can also learn to adapt to the physical limitations of the system during the navigation 
task. For future research, some kind of prediction should be incorporated with the 
agent to enhance its ability further. 
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Abstract. Advances in wireless and mobile technology flood us with amounts
of moving object data that preclude all means of manual data processing. The
volume of data gathered from position sensors of mobile phones, PDAs, or ve-
hicles, defies human ability to analyze the stream of input data. On the other
hand, vast amounts of gathered data hide interesting and valuable knowledge pat-
terns describing the behavior of moving objects. Thus, new algorithms for mining
moving object data are required to unearth this knowledge. An important func-
tion of the mobile objects management system is the prediction of the unknown
location of an object. In this paper we introduce a data mining approach to the
problem of predicting the location of a moving object. We mine the database of
moving object locations to discover frequent trajectories and movement rules.
Then, we match the trajectory of a moving object with the database of movement
rules to build a probabilistic model of object location. Experimental evaluation of
the proposal reveals prediction accuracy close to 80%. Our original contribution
includes the elaboration on the location prediction model, the design of an effi-
cient mining algorithm, introduction of movement rule matching strategies, and
a thorough experimental evaluation of the proposed model.

1 Introduction

Moving objects are ubiquitous. Portable devices, personal digital assistants, mobile
phones, laptop computers are quickly becoming affordable, aggressively entering the
market. This trend is parallel to the widespread adoption of wireless communication
standards, such as GPRS, Bluetooth, or Wi-Fi networks. Recent advances in position-
ing technology compel manufacturers to equip their devices with positioning sensors
that utilize Global Positioning System (GPS) to provide accurate location of a device.
Accurate positioning of mobile devices paves the way for the deployment of location-
based services and applications. Examples of location-based services include location-
aware information retrieval, emergency services, location-based billing, or tracking of
moving objects. It is important to note that location-based services are not limited to
mobile devices, such as mobile phones, PDAs or laptops; these services can be suc-
cessfully deployed for other types of moving objects, e.g., vehicles or even humans. In
order to fully exploit the possibilities offered by location-aware services, it is crucial to
determine the current position of a moving object at any given point in time.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 667–680, 2007.
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Typically, a moving object is equipped with a transmitting device that periodically
signals its position to the serving wireless carrier. Between position disclosures the ex-
act location of a moving object remains unknown and can be determined only approx-
imately. Unfortunately, the periodicity of position acknowledgments can be interrupted
by several factors. For instance, the failure can be caused by power supply shortage of
a moving object. Positioning systems have known limitations that can result in com-
munication breakdown. Signal congestions, signal losses due to natural phenomena, or
the existence of urban canyons lead to temporal unavailability of a moving object po-
sitioning information. Whenever the location of a moving object is unknown, a robust
method of possible location prediction of a moving object is required.

Predicting the location of a moving object can be a difficult task. Firstly, the sheer
amount of data to be processed precludes using traditional prediction methods known
from machine learning domain. The stream of data generated by positioning sensors of
thousands of moving objects requires new, robust and reliable data mining processing
methods. The location prediction mechanism must allow for fast scoring of possible
moving object location. The method must work online and should not require expen-
sive computations. Furthermore, the performance of the prediction method should not
degrade significantly with the increase of the number of moving objects. We also re-
quire that, given the prediction accuracy is satisfactory and does not drop below a given
threshold, the prediction method should favor prediction speed over prediction accu-
racy. We believe that this feature is crucial for the development of successful location-
based services. The success of a location-based service depends on whether the ser-
vice is delivered to a particular object at a particular location and on particular time.
If objects move quickly and change their location often, then the speed of computa-
tion must allow to deliver the service while the object still occupies a relevant location.
For instance, complex models of movement area topology and movement interactions
between objects may produce accurate results, but their computational complexity is
unfeasible in mobile environment. Similarly, prediction methods based on simulation
strongly depend on numerous input parameters that affect the quality of the resulting
movement model. The cost of computing the model can be prohibitively high and the
model itself may not scale well with the number of moving objects.

Another important drawback of currently used prediction methods is the fact that
most of these methods do not utilize historical data. The raw data collected from mov-
ing objects hide useful knowledge patterns that describe typical behavior of moving
objects. In particular, trajectories frequently followed by moving objects can be mined
to discover movement patterns. Movement patterns, represented in the form of human-
readable movement rules can be used to describe and predict the movement of objects.

Data mining techniques have been long considered inappropriate and unsuitable for
online location prediction due to long processing times and computational expensive-
ness of these techniques. In this paper we prove that this assumption is entirely incorrect
and that data mining techniques can be successfully used for location prediction. We
build a probabilistic model of an unknown position of a moving object based on histor-
ical data collected from other objects moving on the same area. We mine logs of histor-
ical position acknowledgments to discover frequent trajectories of objects representing
popular movement routes, and then we transform frequent trajectories into movement
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rules. In order to predict the location of a moving object, for which only a part of its
movement history is known, we score the movement history of the object against the
database of movement rules to find possible locations of the object. For each possible
location we compute the probability of prediction correctness based on the support and
confidence of discovered movement rules. Our method is fast and reliable. Frequent
trajectories and movement rules are discovered periodically in an offline manner. The
scoring process is performed online. Our experiments show that the scoring process can
be performed within milliseconds. The presented method is independent of the move-
ment area topology and scales well with the number of moving objects. The idea of
using movement rules for location prediction was first presented in [15]. The work pre-
sented in this paper continues and extends our previous initial findings in a number of
ways. The original contribution of this paper includes:

– refinement of the frequent trajectory model,
– design of an efficient Traj-PrefixSpan algorithm for mining frequent trajectories,
– modification of the FP-Tree index structure for fast lookup of trajectories,
– experimental evaluation of the proposal.

The paper is organized as follows. Section 2 presents the related work on the sub-
ject. In section 3 we introduce notions and definitions used throughout the paper. The
Traj-PrefixSpan algorithm and frequent trajectory matching methods are presented in
section 4. Section 5 contains the results of the experimental evaluation of our proposal.
The paper concludes in section 6 with a brief summary.

2 Related Work

Both spatial data mining and mobile computing domains attract significant research
efforts. The first proposal for spatial data mining has been formulated in [11]. Since
then, many algorithms for spatial data mining have been proposed [5]. Authors in [6]
introduce a spatial index for mining spatial trends using relations of topology, distance,
and direction. A comprehensive overview of current issues and problems in spatial and
spatio-temporal databases can be found in [7], and recent advances in spatio-temporal
indexing are presented in [14]. However, the problem of mining trajectories of mov-
ing objects in spatial databases remained almost unchallenged until recently. Examples
of advances in this field include the idea of similar trajectory clustering [12] and the
proposal to use periodic trajectory patterns for location prediction [13]. The aforemen-
tioned works extend basic frameworks of periodic sequential patterns [8] and frequent
sequential patterns [1].

An interesting area of research proposed recently focuses on moving object databases
[2]. In [17] authors consider the effect of data indeterminacy and fuzziness on moving
objects analysis. According to the authors, an inherent uncertainty of moving objects
data influences attribute values, relations, timestamps, and time intervals. Advances in
mobile object databases can be best illustrated by the development of the Path-Finder
system, a prototype moving object database capable of mining moving object data. The
idea of using floating car data of an individual moving object to describe movement
patterns of a set of objects is presented in [3].
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Several proposals come from mobile computing domain. Most notably, tracking of
moving objects resulted in many interesting methods for location prediction. Authors in
[10] present a probabilistic model of possible moving object trajectories based on road
network topology. The solution presented in [21] advocates to use time-series anal-
ysis along with simulation of traveling speed of moving objects to determine possi-
ble trajectory of an object. A modification of this approach consisting in using non-
linear functions for movement modeling is presented in [19]. A movement model that
employs recursive motion functions mimicking the behavior of objects with unknown
motion patterns is introduced in [18]. Another complex model with accuracy guaran-
tees is presented in [20]. Recently, [22] consider predicting location in presence of un-
certain position signals from moving objects. The authors present a min-max property
that forms the basis for their TrajPattern algorithm for mining movement sequences of
moving objects.

3 Definitions

Given a database of moving object locations, where the movement of objects is con-
strained to a specified area A. Let O = {o1, . . . , oi} be the set of moving objects. Let
p denote the position of a moving object w.r.t. a system of coordinates W , p ∈ W .
The path P = (p1, . . . , pn) is an ordered n-tuple of consecutive positions of a moving
object. Unfortunately, the domain of position coordinates is continuous and the gran-
ularity level of raw data is very low. Therefore, any pattern discovered from raw data
cannot be generalized. To overcome this problem we choose to transform original paths
of moving objects into trajectories expressed on a coarser level. The net divides the
two-dimensional movement area A into a set of rectangular regions of fixed size. We
refer to a single rectangular region as a cell. Each cell has four edges. Cells form a
two-dimensional matrix covering the entire area A, so each cell is uniquely identified
by discrete coordinates 〈i, j〉 describing the position of the cell in the matrix. A moving
object always occupies a single cell at any given point in time. When moving, an object
crosses edges between neighboring cells. Each edge can be traversed in two directions,
vertical edges can be traversed eastwards and westwards, whereas horizontal edges can
be traversed northwards and southwards.

Fig. 1. Edge enumeration

Figure 1 presents the enumeration scheme of edges of the cell 〈i, j〉 used by our
algorithm. Intuitively, the enumeration scheme preserves the locality of edges and al-
lows for a fast lookup of all edges adjacent to a given edge. By an adjacent edge we
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mean an edge that can be traversed next after traversing a given edge. Each edge re-
ceives two sets of coordinates that are relative to its cell coordinates. The two sets of
coordinates represent two possible directions of edge traversal. For instance, consider
an object occupying the cell 〈2, 4〉. When the object moves northwards, it traverses an
edge labeled 〈3, 5〉. The same edge, when traversed southwards, is identified as the edge
〈2, 6〉. The reason for this enumeration scheme is straightforward. An edge cannot have
a single coordinate, because the set of possible adjacent edges depends on the direction
of traversal. We have also considered other enumeration schemes, such as Hilbert curve
or z-ordering. The main advantage of the presented edge enumeration scheme is the fact
that any two neighboring edges differ by at most 2 on a dimension. In addition, any two
edges within a single cell differ by at most 1 on any dimension.

Each path Pi of a moving object oi can be unambiguously represented as a se-
quence of traversed edges. A trajectory of an object oi is defined as an ordered tu-
ple Ri = (E1, E2, . . . , En) of edges traversed by the path Pi. The length of a trajec-
tory Ri, denoted length(Ri), is the number of edges constituting the trajectory Ri.
We refer to a trajectory of the length n as n-trajectory. We say that the trajectory
X = (X1, X2, . . . , Xm) is contained in the trajectory Y = (Y1, Y2, . . . , Yn), denoted
X ⊆ Y , if there exist i1 < i2 < . . . < im such that X1 = Yi1 , X2 = Yi2 , . . .,
Xm = Yim . A trajectory X is maximal if it is not contained in any other trajectory. We
say that a trajectory Y supports a trajectory X if X ⊆ Y . The concatenation Z of tra-
jectories X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Yn), denoted Z = X ⊗ Y , is
the trajectory Z = (X1, X2, . . . , Xm, Y1, Y2, . . . , Yn). Given a database of trajectories
DT = {R1, . . . , Rq}. The support of a trajectory Ri is the percentage of trajectories in
DT that support the trajectory Ri.

support(Ri) =
|{Rj ∈ DT : Ri ⊆ Rj}|

|DT |

A trajectory Ri is frequent if its support exceeds user-defined threshold of minimum
support, denoted minsup. Given a trajectoryRi = (E1, E2, . . . , En). The tail of the tra-
jectory Ri, denoted tail (Ri,m), is the trajectory Ti = (E1, E2, . . . , Em). The head of
the trajectoryRi, denoted head(Ri,m), is the trajectory Hi =(Em+1, Em+2, . . . , En).
Concatenation of the tail and head yields the original trajectory, i.e., tail(Ri,m) ⊗
head(Ri,m) = Ri.

Frequent trajectories are transformed into movement rules. A movement rule is an
expression of the form Ti ⇒ Hi where Ti and Hi are frequent adjacent trajectories
and Ti ⊗ Hi is a frequent trajectory. The trajectory Ti is called the tail of the rule,
the trajectory Hi is called the head of the rule. Contrary to the popular formulation
from association rule mining, we do not require the tail and the head of a rule to be
disjunct. For instance, an object may traverse edges Ei, Ej , Ek and then make a U-turn
to go back through edges Ek, Ej . Thus, the same edge may appear both in the tail and
the head of a rule. However, this difference does not affect the definition of statistical
measures applied to movement rules, namely, support and confidence.

The support of the movement rule Ti ⇒ Hi is defined as the support of Ti ⊗Hi,

support (Ti ⇒ Hi) =
|Tj ∈ DT : Tj ⊇ (Ti ⊗Hi)|

|DT |
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The confidence of the movement rule Ti ⇒ Hi is the conditional probability of Hi

given Ti,

confidence (Ti ⇒ Hi) = P (Hi|Ti) =
support (Ti ⊗Hi)

support (Ti)

4 Proposed Solution

Formally, the location prediction problem can be decomposed into two subproblems:

– discover movement rules with support and confidence greater than user-defined
thresholds of minsup and minconf, respectively,

– match movement rules against the trajectory of a moving object for which the cur-
rent location is to be determined.

In section 4.1 we present the Traj-PrefixSpan algorithm that aims at efficient dis-
covery of frequent trajectories and movement rules. Section 4.2 describes the modified
FP-Tree index structure. In section 4.3 we introduce three matching strategies for move-
ment rules.

4.1 Traj-PrefixSpan Algorithm

The algorithm presented in this section is a modification of a well-known PrefixSpan
algorithm [16]. The difference consists in the fact that, contrary to the original formu-
lation, we do not allow multiple edges as elements of the sequence (each element of a
sequence is always a single edge). In addition, each sequence is grown only using adja-
cent edges, and not arbitrary sequence elements. The following description presents an
overview of the PrefixSpan algorithm, already augmented to handle trajectories.

Given a trajectory X = (X1, X2, . . . , Xn), the prefix of the trajectory X is a trajec-
tory Y = (Y1, Y2, . . . , Ym), m ≤ n, such that Yi = Xi for i = 1, 2, . . . ,m − 1. The
projection of the trajectory X over prefix Y is a sub-trajectory X ′ of the trajectory X ,
such that Y is the prefix of X ′ and no trajectory X ′′ exists such that Y is the prefix of
X ′′, X ′′ is the sub-trajectory of X , and X ′′ �= X ′.

Let X ′ = (X1, . . . , Xn) be a projection of X over Y = (Y1, . . . , Ym−1, Xm). The
trajectory Z = (Xm+1, . . . , Xn) is a postfix of X over the prefix Y , denoted Z =
X/Y . In other words, for a given prefix Y and a given postfix Z , X = Y ⊗ Z .

Let Y be a frequent trajectory in the database of trajectories DT . An Y -projected
trajectory database, denoted by DT/Y , is the set of all postfixes of trajectories in DT

over the prefix Y . Let X be a trajectory with the prefix Y . The support count of X in
Y -projected trajectory database, denoted by supportDT/Y

(X), is the number of trajec-
tories Z in DT/Y , such that X is a sub-trajectory of Y ⊗ Z .

Traj-PrefixSpan algorithm consists of three phases. In the first phase the algorithm
performs a full scan of the trajectory databaseDT to discover all frequent 1-trajectories.
In the second phase each frequent 1-trajectory Y is used to create an Y -projected tra-
jectory database. Every pattern contained in an Y -projected trajectory database must
have the prefix Y . The third phase of the algorithm consists in recursive generation of



Mining Frequent Trajectories of Moving Objects for Location Prediction 673

procedure TrajPrefixSpan(Y, l, DT/Y )

1: scan DT/Y to find edges e such, that
if (l > 0) then e is adjacent to the last edge of Y
else Y can be extended by e to form a frequent trajectory

2: foreach edge e create Y ′ = Y ⊗ e
3: foreach Y ′ build DT/Y ′

4: run TrajPrefixSpan(Y ′, l + 1, DT/Y ′)

end procedure

Fig. 2. Traj-PrefixSpan algorithm

further Y ′-projected trajectory databases from frequent trajectories Y ′ found in pro-
jections. The pseudocode of the algorithm is presented in Figure 2. The initial call is
TrajPrefixSpan(<>, 0, DT ).

4.2 FP-Tree

The physical indexing structure used in our algorithm is a slightly modified FP-Tree [9].
The main change consists in storing sequences of elements (as opposed to sets of el-
ements), and allowing a bi-directional traversal of the tree. FP-Tree is an undirected
acyclic graph with a single root node and several labeled internal nodes. The root of the
tree is labeled null, and internal nodes are labeled with edge numbers they represent.
Each internal node of the tree has a label, a counter representing the support of a se-
quence from the root to the given node, and a pointer to the next node with the same
label (or a null pointer if no such node exists). In addition, the index contains a header
table with edges ordered by their support and pointers to the first occurrence of an edge
within the FP-Tree. The tree is constructed during the execution of the Traj-PrefixSpan
algorithm by pattern growth. Each frequent trajectory discovered by the Traj-PrefixSpan
algorithm is inserted into FP-Tree index for fast lookup. After the frequent trajectory
discovery process finishes, the FP-Tree contains all frequent trajectories discovered in
the database. Generation of movement rules is a straightforward task. For each frequent
n-trajectoryX = (X1, X2, . . . , Xn), (n−1) movement rules can be generated by split-
ting the trajectory in every possible place, T1 ⇒ H1, T2 ⇒ H2, . . . , Tn−1 ⇒ Hn−1.

4.3 Matching Strategies

After frequent trajectories have been found and stored in the FP-Tree, they can be used
to predict the unknown location of a moving object. For each moving object its known
trajectory has to be compared with movement rules generated from frequent trajecto-
ries. In the next sections we introduce three matching strategies for scoring a partial
trajectory of a moving object with the database of movement rules. In all examples
let X = (X1, X2, . . . , Xm) be a partial trajectory of a moving object, for which we
are seeking its most probable location. For a given partial trajectory X the set of all
matched movement rules is denoted by LX .
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Whole Matcher. The Whole Matcher strategy consists in finding all movement rules
Ti ⇒ Hi such, that X = Ti (i.e., the tail of the rule entirely covers the partial trajectory
X). The head Hi can be used as a prediction of a possible location of a moving object.
The probability that a moving object followsHi is given by confidence (Ti ⇒ Hi). The
Whole Matcher strategy yields accurate results, but disallows any deviations of matched
rules from the partial trajectory X . Furthermore, in case of long partial trajectories, the
Whole Matcher strategy may fail to find a matching movement rule.

Last Matcher. The Last Matcher strategy discards all information from the partial tra-
jectory X except for the last traversed edge Xm. The strategy finds all movement rules
Ti ⇒ Hi such, that Xm = Ti. The result of the strategy is the list of edges (move-
ment rule heads Hi) ordered by descending values of confidence (Ti ⇒ Hi). The Last
Matcher strategy finds matching movement rules even for very short partial trajectories,
but the predictions in LX are less reliable, because they ignore the movement history
of a moving object.

Longest Last Matcher. The Longest Last Matcher strategy is a compromise between
the two aforementioned strategies. For a given partial trajectoryX it finds all movement
rules Ti ⇒ Hi such, that Ti covers a part of the partial trajectory X , i.e., there exists
j, 1 ≤ j < m such, that Ti = head(X, j). The strategy outputs, as the result, the
movement rule heads Hi weighted by the relative coverage of the partial trajectory
X . For a given movement rule Ti ⇒ Hi the strength of the prediction is defined as
confidence (Ti ⇒ Hi)∗ length(Ti)

length(X) . Edges contained in LX are ordered according to the
descending value of the prediction strength.

5 Experiments

In this section we report on the results of the experimental evaluation of the pro-
posed approach. All experiments were conducted on a PC equipped with AMD Athlon
XP 2500+ CPU, 521 MB RAM, and a SATA hard drive running under Windows XP
SP2 Home Edition. Algorithms and the front-end application were implemented in C#
and run within Microsoft .NET 2.0 platform. Synthetic datasets were generated using
Network-based Generator of Moving Objects by T.Brinkhoff [4]. Experiments were
conducted using the map of Oldenburg. The number of moving objects varied from
1 000 to 10 000, the number of classes of moving objects was set to 10, and the number
of time units in each experiment was 200. We set the maximum velocity of moving
objects to 50, locations of objects were registered using PositionReporter method. All
results reported in this section are averaged over 30 different instances of datasets. The
experiments measure: the time of mining frequent trajectories, the number of discov-
ered frequent trajectories, the time of matching a partial trajectory with the database of
moving rules, and the quality of location prediction.

Figure 3 shows the number of frequent trajectories (depicted on the left-hand side
axis of ordinates) and the time of mining frequent trajectories (depicted on the right-
hand side axis of ordinates) with respect to the varying value of the minsup threshold.
Both measured values decrease with the increase of the minsup threshold. As can be
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Fig. 3. Minimum support

clearly seen, the correlation between the number of frequent trajectories and the time
it takes to mine them is evident. We are pleased to notice that even for low values of
minsup threshold the algorithm requires less than 20 seconds to complete computations
and the number of discovered frequent trajectories remains manageable.

Figure 4 presents the number of frequent trajectories (depicted on the left-hand side
axis of ordinates) and the time of mining frequent trajectories (depicted on the right-
hand side axis of ordinates) with respect to the varying number of moving objects for a
set value of minsup = 0.025. Firstly, we notice that the time of mining frequent trajec-
tories is linear w.r.t. the number of moving objects, which is a desirable property of our
algorithm. Secondly, we observe a slight decrease in the number of discovered move-
ment rules as the number of moving objects grows (a fivefold increase in the number
of moving objects results in a 20% decrease of the number of discovered movement
rules). This phenomenon is caused by the fact that a greater number of moving objects
is spread more or less uniformly over the movement area, and the minsup threshold is
expressed as the percentage of the number of all moving objects. Thus, less edges be-
come frequent. For a smaller number of moving objects edges in the center of the city
tend to attract more moving objects, and less restrictive minsup threshold makes more
of these edges frequent, resulting in more movement rules.

Figure 5 shows the number of frequent trajectories (depicted on the left-hand side
axis of ordinates) and the time of mining frequent trajectories (depicted on the right-
hand side axis of ordinates) with respect to the varying size of an edge cell. The size
of a cell is expressed in artificial units. The time of mining steadily decreases with the
growth of the cell size. This result is obvious, because larger cells result in less frequent
trajectories. On the other hand, the decrease is not linear. For larger cell sizes the num-
ber of discovered frequent trajectories is indeed lower. However, discovered frequent
trajectories have higher support and tend to be longer, contributing to the overall com-
putation time. The interpretation of the second curve, the number of discovered frequent
trajectories, is more tricky. One can notice atypical deviations for cell sizes of 400 and
600 units. These random effects are probably caused by accidental structural influence
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of larger and smaller cell sizes on areas of intensified traffic. The results presented in
Figure 5 emphasize the importance of correct setting of the cell size parameter (e.g., the
difference in the number of discovered frequent trajectories is 10 when changing the
cell size from 300 to 400 units, and it grows to 40 when changing the cell size from 400
to 500 units). Unfortunately, our model does not permit to choose the optimal value of
the cell size parameter other than experimentally.

The next two figures present the results of experiments evaluating the accuracy of
prediction of the location using movement rules. These experiments were conducted as
follows. First, a database of moving objects was generated using a set of fixed param-
eters. Then, 50 trajectories were randomly drawn from each database. Each test trajec-
tory was then split into a tail and a head. The tail was used as a partial trajectory, for
which future location of an object was to be predicted. Finally, the prediction returned
from each matching strategy was compared to the known head of the test trajectory and
the quality of prediction was computed. Let X = (X1, X2, . . . , Xm) be a randomly
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selected trajectory of a moving object, divided into tail(X, k) and head(X, k). The tail
is used as a partial trajectory for matching. If the next traversed edge, which is Xk+1 is
not contained in the set of matching strategy answers LX , then the quality of location
prediction Quality(X,LX) = 0. Otherwise, the quality of matching is computed as the
probability of traversing Xk+1 diminished by weighted incorrect predictions from LX

that had prediction strength greater than Xk+1, i.e.,

Quality(X, LX) = P (Xk+1) ∗ (1 −
∑

j≤k:Xj∈LX

P (Xj) − P (Xk+1)

k + 1
(1)

In the above formula we assume that LX is ordered by the decreasing prediction
strength, so stronger predictions have lower indices.
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Fig. 6. Prediction time

Figure 6 presents the average time required to match a partial trajectory with the
database of movement rules with respect to the varying minsup threshold (and, conse-
quently, to the number of discovered movement rules). The Whole Matcher and Last
Matcher strategies perform almost identically, because both strategies can fully utilize
the FP-Tree index structure. The Longest Last Matcher strategy performs slower, be-
cause it must traverse a larger part of the FP-Tree. Nevertheless, in case of all strategies
the matching time is very fast and never exceeds 0.3 ms. We are particularly satisfied
with this result, because it supports our thesis that data mining methods can be em-
ployed for real-time location prediction.

Figure 7 depicts the average quality of prediction as computed by Equation 1. The
prediction quality of the Whole Matcher and Last Matcher strategies reaches even 95%
of accuracy for high minsup threshold values. For general settings of the minsup thresh-
old the accuracy of both methods remains satisfactory between 75% and 85%. It is
worth mentioning that the results depicted in the figure are computed according to our
formula, which might be too penalizing for the Longest Last Matcher strategy, so the
presented numbers are somehow biased towards simple matching strategies. The quality
achieved by the Longest Last Matcher strategy varies from 35% to over 60%. Surpris-
ingly, the quality of prediction increases with the decrease of the minsup threshold. This



678 M. Morzy

0

20

40

60

80

100

0.010 0.015 0.020 0.025 0.030 0.035

ac
cu

ra
cy

 [%
]

minimum support

Traj-PrefixSpan Longest Last Matcher
Traj-PrefixSpan Last Matcher

Traj-PrefixSpan Whole Matcher

Fig. 7. Quality of prediction

can be explained by the fact that low values of the minsup threshold produce more fre-
quent trajectories and more often the correct prediction is placed high in the resulting
set LX . Nevertheless, from the experimental evaluation we conclude that the Longest
Last Matcher strategy is inferior to the Whole Matcher and Last Matcher strategies
under all conditions.

6 Conclusions

In this paper we have introduced a new data mining model aiming at the efficient pre-
diction of unknown location of moving objects based on movement patterns discovered
from raw data. The model represents frequent trajectories of moving objects as move-
ment rules. Movement rules provide a simplification and generalization of a large set of
moving objects by transforming original continuous domain of moving object positions
into a discretized domain of edges of a superimposed grid. The main thesis of the paper,
well proved by conducted experiments, is that data mining techniques can be success-
fully employed for real-time location prediction in mobile environments. Indeed, while
most expensive and burdensome computations (e.g. the discovery of frequent trajecto-
ries) can be performed offline and periodically, the online matching of partial trajecto-
ries with the database of movement rules is executed very fast. The quality of location
prediction is satisfying, but we aim at developing more efficient matching strategies for
even better accuracy.

Our future work agenda includes:

– replacing uniform grid cells with differently sized areas that adaptively divide the
area of movement based on the density and congestion of moving objects,

– developing new matching strategies,
– including temporal aspects in discovered movement rules,
– including spatial information in movement rules,
– providing more informed decisions to location-based services based on discovered

movement rules.
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Abstract. CoreWar is a computer simulation where two programs written in
an assembly language called redcode compete in a virtual memory array. These
programs are referred to as warriors. Over more than twenty years of develop-
ment a number of different battle strategies have emerged, making it possible to
identify different warrior types. Systems for automatic warrior creation appeared
more recently, evolvers being the dominant kind. This paper describes an attempt
to analyze the output of the CCAI evolver, and explores the possibilities for per-
forming automatic categorization by warrior type using representations based on
redcode source, as opposed to instruction execution frequency. Analysis was per-
formed using EM clustering, as well as information gain and gain ratio attribute
evaluators, and revealed which mainly brute-force types of warriors were being
generated. This, along with the observed correlation between clustering and the
workings of the evolutionary algorithm justifies our approach and calls for more
extensive experiments based on annotated warrior benchmark collections.

1 Introduction

Among the many approaches to creating artificial intelligence and life, one is concerned
with constructing computer programs which run in virtual environments. Many aspects
of these environments may be inspired by the real world, with the overall objective to
determine how well the programs adapt. In some cases different programs compete for
resources and try to eliminate the opposition.

One of the oldest and most popular venues for the development and research of pro-
grams executing in a simulated environment is CoreWar, in which programs (referred to
as warriors) attempt to survive in a looping memory array. The system was introduced
in 1984 by A. K. Dewdney in an article in the Scientific American [1]. Basically, two
programs are placed in the array end executed until one is completely eliminated from
the process queue. The winner is determined through repeated execution of such “bat-
tles” with different initial positioning of warriors in the memory. Online competitions
are held on a regular basis, with the game being kept alive by the efforts of a small, but
devoted community.

Over the course of more than twenty years of development, a number of different
battle strategies have emerged, often combining more than one method for eliminat-
ing opponents. These strategies closely reflect programmers’ ideas about how a warrior
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should go about winning a battle. However, several attempts have been made recently to
automatically create new and better warriors, by processes of optimization and evolu-
tion. Optimized warriors are essentially human-coded, with only a choice of instruction
parameters being automatically calculated to ensure better performance. On the other
hand, evolved warriors are completely machine generated through the use of evolution-
ary algorithms.

In order to evaluate the performance of optimized and evolved warriors, the most
common method is to put them against a benchmark set of manually prepared test pro-
grams. To get reliable and stable results against every warrior from the benchmark in
the usual setting, at least 250 battles are needed, each taking a few seconds to execute.
Evolving new warriors from a set of a few thousand programs and iteratively testing
them against the benchmark is then clearly a very time demanding process.

The goal of the research presented in this paper is to examine the diversity of war-
rior pools created by one particular evolver and to test the possibilities of automatic
categorization by warrior type (employed strategies), given the information obtained
by syntax analysis of warrior source code. The amount of data created by evolver
runs usually surpasses the capabilities of human experts to examine and classify the
warrior pools. Automated categorization would, therefore, be extremely helpful in the
control of diversity levels, and dynamic modification of mutation rates for sustaining
the desirable diversity within generations. It would also significantly contribute to our
understanding of the nature of the output of evolutionary algorithms, in this case the
battle strategies of evolved warriors. Although one may be familiar with every detail
of how a particular evolutionary algorithm works, its output is still very much depen-
dent on the performance of warriors against the benchmark, leaving room for many
surprises.

There were some attempts in the past to perform automatic categorization of war-
riors, but these were based on the analysis of execution frequencies of particular in-
struction types during simulation, which requires the simulation to be run for a certain
amount of time [2]. If the source-based approach proved fruitful, it would be possi-
ble to come to similar conclusions much quicker, which could, in turn, speed up the
whole process of warrior evolution. To the best of our knowledge, this paper presents
the first attempt to categorize warriors using static (source-based) instead of dynamic
(execution-based) methods.

The rest of the paper is organized as follows. Section 2 explains the essentials of
CoreWar and some basic strategies of human-coded warriors, while Section 3 outlines
the principles of the EM clustering algorithm. Section 4 describes the dataset of evolved
warriors and how it was processed into the representation suitable for analysis. The
analysis, which relies on clustering and attribute evaluation techniques, is the subject of
Section 5. The last section provides a summary of the conclusions together with plans
for future work.

2 CoreWar

CoreWar is a computer simulation where programs written in an assembly language
called corewars (by the 1988 ICWS standard) or redcode (by the 1994 ICWS
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standard) compete in a virtual memory array. Those programs are referred to as war-
riors. The simulated memory array is called the core. It is wrapped around, so that the
first memory location in the address space comes right after the last one. The basic unit
of memory in the core is one instruction, instead of one bit. The memory array redcode
simulator (MARS) controls the execution of the instructions in the core. The execution
of instructions is consecutive, apart from the situations arising after executing jump in-
structions. All arithmetic is modular, depending on the size of the core. All addressing
modes are relative.

The goal of a warrior is to take complete control over the core by making the op-
ponent eliminate its own thread of execution from the process queue. There are many
ways to achieve this effect, and various different strategies of attack have emerged over
time. CoreWar warriors can copy the memory content, read from the core, perform var-
ious calculations, mutate and change their behavior, make copies of themselves, place
decoys, search for their opponents etc. The starting placement of warriors in the core
is done at random, and a predetermined number of fights are staged to decide the win-
ner (3 points are awarded for a win, 1 for a draw, 0 for a loss). Between rounds, the
result of the previous fight is stored in a separate memory array called P-space. In some
competitions warriors are allowed to access this memory and change their strategy, if
necessary, to ensure better performance in future rounds.

CoreWar was introduced by A. K. Dewdney in 1984, in an article published in the
Scientific American [1]. Today, CoreWar exists as a programming game with ongo-
ing online competitions on several servers, among which are www.koth.org/ and
sal.math.ualberta.ca/. There are many competition leagues, depending on
battle parameters, and each of these is called a hill. The warrior currently holding the
first place is appropriately called the king of the hill (KOTH).

Although the competitions were originally meant as a challenge for testing human
skill in making successful CoreWar programs, there were also those who chose to create
software capable of autonomously generating or evolving and later evaluating compet-
itive CoreWar programs. On several occasions such warriors were able to outperform
warriors coded by humans. This is usually done via the implementation of evolutionary
algorithms.

2.1 The Redcode Language

Redcode is a language that is being used as a standard for making CoreWar warriors
since 1994. It consists of 19 instructions, 7 instruction modifiers and 8 addressing
modes. The warrior files are stored on the disk as WarriorName.RED.

The redcode instruction set, although not huge, allows for much creativity and di-
versity. Each command consists of an instruction name, instruction modifier, A-field
addressing mode, A-field value, B-field addressing mode, and the B-field value. The
source address is stored in the A-field and the destination address in the B-field. Table 1
summarizes the more important redcode instructions, while Tables 2 and 3 describe all
redcode modifiers and addressing modes, respectively. Figure 1(a) depicts the source of
an example warrior.

www.koth.org/
sal.math.ualberta.ca/
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Table 1. Overview of some redcode instructions

Instruction Description
DAT Removes the process that executes it from the process queue. It is used to

store data. The instruction modifiers play no role here.

MOV Copies the source to the destination.

ADD Adds the number in the source field to the number in the destination field.
Two additions can be done in parallel if the .F or .X modifier is used.

SUB Performs subtraction. The functionality is the same as in ADD.

MUL Performs multiplication. It is not used as frequently as ADD or SUB, however.

DIV Performs integer division. In case of division by zero, the process demanding
the execution of the instruction is removed from the process queue. This is
another way of removing enemy processes.

MOD Gives the remainder of the integer division.

JMP The unconditional jump instruction, redirecting the execution to the location
pointed at by its A-field. The B-field does not affect the jump, so it can be
used either to store data, or to modify some other values via the use of incre-
mental/decremental addressing modes.

JMZ Performs the jump, if the tested value is zero. If the modifier is .F or .X, the
jump fails if either of the fields is nonzero. As in the jump instruction, the
A-field points to the jump location. The B-field points to the test location. If
the jump fails, the instruction following the JMZ will be the next instruction
to be executed by this process.

JMN Performs the jump if the tested value is nonzero. Otherwise functions like
JMZ.

DJN Decreases the destination and jumps if the value is nonzero. The functionality
is otherwise the same as in JMZ and JMN.

SPL Creates a new process and directs its execution to the source value. The old
process, being the one that executed the SPL is moved to the next memory
location. The new process is executed right after the old process.

Table 2. Overview of redcode instruction modifiers

Modifier Description
.I This modifier states that the action is conducted on the whole instruction, and

used only when copying an instruction or comparing the content of two memory
locations.

.F Copying, or comparing two fields at the same time.
.X Copying, or comparing two fields at the same time, A-field of the source to the B-

field of the destination, and B-field of the source to the A-field of the destination.
.A Moving, or comparing, the A field of the source to the A-field of the destination.
.B Moving, or comparing, the B field of the source to the B-field of the destination.

.AB Moving, or comparing, the A field of the source to the B-field of the destination.

.BA Moving, or comparing, the B field of the source to the A-field of the destination.
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Table 3. Overview of redcode addressing modes

Addressing Mode Description
$ direct Points to the instruction x locations away, where x is the respec-

tive field value in the executed instruction. It can be omitted.
# immediate Points to the current instruction, regardless of the field value.
∗ A-field indirect Points to the instruction x + y locations away, where x is the re-

spective field value and y is the value in the A-field of the instruc-
tion x locations away.

@ B-field indirect Analogous to A-field indirect.
{ A-field predecrement Indirect mode, also decreasing the A-field value of the instruction

pointed to by the respective field in the executed instruction. The
decrement is done before calculating the source value of the cur-
rent instruction.

} A-field postincrement Indirect mode, also increasing the A-field value of the instruction
pointed to by the respective field in the executed instruction. The
increment is done after calculating the source value of the current
instruction.

< B-field predecrement Analogous to A-field predecrement.
> B-field postincrement Analogous to A-field postincrement.

2.2 Warrior Types

As mentioned before, over twenty years of CoreWar competitions had lead to a great
increase in diversity of warrior types. Some of the most important warrior categories
are given below.

Imps are the simplest kind of warriors which just copy themselves to another memory
location in each execution cycle, that way “running around” the core. Imps barely
have any offensive capabilities, and are seldom used on their own.

Coreclears attempt to rewrite the whole core with process-killing instructions, that
way ensuring a win, in a sense of being positive that the opponent is destroyed.

Stones simply copy DAT instructions over the core, trying to overwrite a part of the
enemy code. Up to this moment, many alternate approaches were devised, resulting
in warriors copying other instructions as well, not only DATs.

Replicators (papers) follow the logic that in order for the warrior to survive, it should
create many processes and let them operate on many copies of the main warrior
body, therefore ensuring that some of those copies will survive an enemy attack,
since it takes a lot of time to destroy them all. In the meantime, the warrior tries to
destroy the enemy process. The warrior in Fig. 1(a) is, in fact, a replicator, referred
to as the “black chamber paper.”

Scanners (scissors) try to discover the location of enemy code and then start an attack
at that location. Since the scanner attack has a greater probability of succeeding,
due to the intelligent choice of target location, such a warrior is usually able to
invest more time in the attack against that location.

Hybrid warriors combine two or more warrior types in their code, and are nowadays
most frequently used in CoreWar tournaments.
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Generally, each non-hybrid type of CoreWar warrior is effective over one other war-
rior type, and is at the same time especially vulnerable to another, with the relationships
between types being in line with the rock-paper-scissor metaphor (hence the naming
of some warrior types). For more information about the redcode language and warrior
types, see [3].

3 Expectation Maximization

The research described in this paper utilizes the expectation maximization (EM) clus-
tering algorithm [4] (p. 265), implemented in the WEKA machine learning workbench.
This algorithm is probabilistic by nature, and takes the view that while every instance
belongs to only one cluster, it is almost impossible to know for certain to which one.
Thus, the basic idea is to approximate every attribute with a statistical finite mixture. A
mixture is a combination of k probability distributions that represent k clusters, that is,
the values that are most likely for the cluster members. The simplest mixture is when
it is assumed that every distribution is Gaussian (normal), but with different means and
variances. Then the clustering problem is to deduce these parameters for each cluster
based on the input data. The EM algorithm provides a solution to this problem.

In short, a procedure similar to that of k-means clustering ([4], pp. 137–138) is used.
At the start, the parameters are guessed and the cluster probabilities calculated. These
probabilities are used to re-estimate the parameters, and the process is continued until
the difference between the overall log-likelihood at consecutive steps is small enough.
The first part of the process is “expectation,” i.e. the calculation of cluster probabilities,
and the second part – calculating the values of parameters – is the “maximization” of
the overall log-likelihood of the distributions given the data.

WEKA’s implementation of EM provides an option to automatically determine the
number of clusters k using 10-fold cross-validation. This is done by starting with k = 1,
executing the EM algorithm independently on every fold and calculating the average
log-likelihood over the folds. As k is incremented the process is repeated until the av-
erage log-likelihood stops increasing.

4 The Dataset

The analyzed data represents a subset of warriors generated by the CCAI evolver [5],
which was written by Barkley Vowk from the University of Alberta in summer 2003.
The evolutionary approach used in this evolver was the island model [6].

The dataset consists of 26795 warrior files, and is summarized in Table 4. The data
was divided into four smaller parts in chronological order. The respective sizes of the
parts are 10544, 6889, 4973, 4389, and will be referenced in the text as “generation 1,”
“generation 2” etc. The first pool was randomly generated, and the others represent the
consecutive generations in evolving. One of the reasons why each group is smaller than
the previous one is that evolvers reduce diversity in each step, and duplicates are re-
moved before proceeding to the next generation. The benchmark used for this evolution
was Optimax [7].
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4.1 Selecting the Representation

Inspired by the classical bag-of-words representation for text documents, and the fact
that it works for many types of data mining and machine learning problems, we opted
for an analogous “bag-of-instructions” representation for CoreWar warriors. Since each
instruction may be accompanied by an instruction modifier, two addressing modes and
two field values, there are plenty of choices for deriving attributes, possibly leading to
a high dimensionality of the representation.

In the end, the decision was made to use a vector with just the bare instruction counts
from the warrior source code. The resulting vector has 16 coordinates (attributes), one
for each of the command types. The name of the warrior was also added as an attribute.
To transform the data into vector form a Java command line application was written,
details of which are presented in [3].

Some modifications were introduced to make the information more specific to red-
code, and the first alteration was to treat ADD and SUB as the same instruction, being
that they can perform the same operation by simply toggling the minus sign in the ad-
dress field.

The next alteration was done in order to add more information about the structure of
the warriors to the representation. For many types of warriors there are specific pairs of
commands that appear one after the other. Based on our previous experience with war-
rior types and coding practices, eight pairs of these two-command combos were added
to the representation, namely SPLMOV, MOVJMP, MOVDJN, MOVADD, MOVSUB,
SEQSNE, SNEJMP and SEQSLT.

Finally, there are sets of commands specific to some types of imps, so a true/false
field named “Imp spec” was introduced. Examples of such commands are MOV.I 0,1
and MOV.I #x,1. The presence of any of the commands suggests that an imp struc-
ture could be embedded within a warrior.

Figure 1 shows the representation of an example warrior (a) as a vector of attributes
(b) described above.

4.2 Removing Duplicates

Besides choosing an appropriate representation, a method for speeding up calculations,
as well as improving results, is to remove “too similar” warriors. When clustering the
data, warriors which are close to each other in terms of distance between the appropriate
vectors in the state-space (containing all the vectors), could easily gravitate smaller
groups toward them, thus creating a larger cluster than it should be.

A decision was made to ignore the address fields, and therefore duplicates would be
any two warriors that have the same sequence of instructions with identical instruction
modifiers and address modifiers.

Table 4 summarizes the results of the duplicates search. Most duplicates were re-
moved from generations 1 and 2, 12% and 8% respectively. From generation 3 only
about 1% of the files were removed as duplicates, and in set 4 about 4%. In summary, a
total of 2153 duplicates were found, which is about 8% of the initial 26795 warriors.
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boot SPL.B $1, $0
SPL.B $1, $0
SPL.B $1, $0
MOV.I {p1, {divide

divide SPL.B (p3+1+4000), }c
p1 SPL.B @(p3+1), }ps1

MOV.I }p1, >p1
p2 SPL.B @0, }ps2

MOV.I }p2, >p2
MOV.I #bs2, <1
SPL.B @0, {bs1
MOV.I {p2, {p3

p3 JMZ.A $ps3, *0

DAT: 0
MOV: 5
ADD/SUB: 0
MUL: 0
DIV: 0
MOD: 0
JMP: 0
JMZ: 1
JMN: 0
DJN: 0
SPL: 7
SEQ: 0
SNE: 0
SLT: 0
NOP: 0
SPLMOV: 4
MOVJMP: 0
MOVDJN: 0
MOVADD: 0
MOVSUB: 0
SEQSNE: 0
SNEJMP: 0
SEQSLT: 0
Imp spec: false

(a) (b)

Fig. 1. Example code of a warrior (a), and its attribute vector representation (b)

Table 4. Summary of datasets and results of duplicate detection

Dataset Files Duplicates Reduction
Generation 1 10544 1345 12%
Generation 2 6889 559 8%
Generation 3 4973 56 1%
Generation 4 4389 193 4%
Complete 26795 2153 8%

5 Analysis of Evolved Warriors

5.1 Clustering

First, clustering was performed independently on all warrior generations (and also on
the complete set) using the implementation of EM from the WEKA workbench. The
number of clusters was automatically determined by cross-validation (see Section 3).

The number of discovered clusters per warrior set and the number of instances per
cluster are given in Table 5. In generation 1, only two clusters were found. After ex-
amining a portion of the warriors in this set, it appeared that the two clusters that were
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found consist mostly of various kinds of replicators and some coreclears. This was de-
termined by taking a random sample of 50 warriors from each of the clusters. The only
way to achieve absolute confirmation is to manually examine all warriors, which we
considered infeasible. However, some insights provided by attribute evaluation (Sec-
tion 5.2) give additional support to the finding.

Table 5. Clusters per generation and number of warriors per cluster

Dataset Clusters Cluster sizes
Generation 1 2 8081 1146
Generation 2 4 3456 1857 572 468
Generation 3 12 88 2112 644 543 526 47 671 36 47 103 38 80
Generation 4 5 2364 1197 357 94 184
Complete 3 6571 2671 15469

Compared to generation 1, the number of clusters increases in generations 2 and 3,
more precisely 4 and 12 respectively, but this was expected. The warriors in each set
were evolved from the previous, and new strategies that had good results were pre-
served. This means that new groups of warriors with similar strategies should appear in
generations 2 and 3, and the clustering algorithm did notice this.

In the last generation, the fourth, the number of clusters decreased to 5. This is most
probably due to the reduction of diversity in the warriors that takes place at the end of
the process of evolution.

The clustering of the whole dataset resulted in 3 clusters. The reduction of the num-
ber may be a consequence of the island model – the larger clusters most likely “absorb-
ing” the smaller ones.

5.2 Attribute Evaluation

To analyze the effects of different attributes on cluster selection, information gain (IG)
and gain ratio (GR) attribute evaluators were used [4]. Because of known shortcomings
of both evaluation methods1, the approach that was utilized was to choose the attributes
with the highest gain ratio, but only if their information gain is larger that the average
information gain for all attributes ([4], p. 105).

Since attributes in the warrior representation mostly correspond to instructions and
instruction pairs, we expected their (in)significance with regards to the clustering to
give us some idea about the types of warriors that were grouped together, and also to
shed some light on the process of warrior evolution.

Table 6 summarizes the results of attribute evaluation on the complete dataset. It
shows that the most informative feature is ‘DJN,’ being that others with higher GR
values have very low information gain. It is interesting to note that the second best is
‘MOVDJN’ and that these two are also the best two in IG values. However, the rest of
the information gain list does not follow in the same order. The ‘SPLMOV’ attribute

1 IG favors attributes with many distinct values, while GR may give unrealistically high scores
to attributes with a low value count.



690 D. Pracner et al.

Table 6. Gain ratio and information gain for the complete dataset

Gain Ratio Information Gain
0.40350 MUL 0.49217 DJN
0.38200 SLT 0.43917 MOVDJN
0.37550 SEQSNE 0.31378 MOV
0.34570 MOVSUB 0.22883 SPLMOV
0.33690 MOD 0.20510 SPL
0.31520 SNEJMP 0.17605 Imp spec
0.26310 DJN 0.17025 DAT
0.24970 SEQSLT 0.15134 ADD/SUB
0.24820 JMZ 0.14137 MOVJMP
0.24070 MOVDJN 0.09816 SEQ
0.18620 NOP 0.09345 MOVSUB
0.18270 ADD/SUB 0.07179 JMP
0.18040 Imp spec 0.06768 MOVADD
0.17430 DIV 0.06380 SNE
0.15190 MOVADD 0.06001 JMZ
0.11840 JMN 0.03642 MUL
0.11630 SNE 0.02582 SLT
0.10140 SEQ 0.02370 NOP
0.09350 MOVJMP 0.02184 SEQSNE
0.08930 MOV 0.02126 JMN
0.08240 SPLMOV 0.01484 DIV
0.05780 SPL 0.01138 MOD
0.05420 JMP 0.00730 SNEJMP
0.05110 DAT 0.00117 SEQSLT
0.192436 AVERAGE 0.1191416 AVERAGE

also has high information gain, but shows less in terms of gain ratio. Looking from
the CoreWar perspective, ‘SPLMOV’ and ‘MOVDJN’ are instruction pairs appearing
frequently in both coreclears and replicators, so this result is not surprising. It also
suggests that the results might have been significantly different if these attributes had
not been used, and an ordinary bag-of-instructions was employed instead.

After the analysis of the complete dataset, an attempt was made to get more informa-
tion on the actual evolution process by examining the individual generations, keeping
in mind that the first generation is (in big part) random.

Table 7 lists the most informative attributes for generations 1–4, with their GR and IG
scores. On generation 1, analysis showed that the most informative attribute is ‘JMN,’
being the first selection or both information gain and gain ratio. ‘SLT’ is also close,
followed by ‘MOVSUB’ and ‘MOVADD’ after a large gap.

An interesting observation is that the best attributes for the complete dataset, ‘DJN’
and ‘SPLDJN,’ are at the very bottom of the list in generation 1. An interpretation
for this is that there was greater variety in the original pool, which did not affect the
global dataset at a greater measure, especially when considering the fact that subsequent
generations increasingly resemble the complete dataset, as demonstrated below.
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Table 7. Most informative attributes for generations 1–4, together with GR and IG scores

Generation 1
Attribute GR IG
JMN 0.47461 0.11450
SLT 0.41082 0.04551
MOVSUB 0.13870 0.05287
MOVADD 0.12117 0.04122

Generation 2
Attribute GR IG
MOVADD 0.48960 0.34157
ADD/SUB 0.37800 0.34566
MOVDJN 0.22310 0.43554
SPLMOV 0.22280 0.56428
DJN 0.20880 0.43173
SPL 0.20350 0.54848

Generation 3
Attribute GR IG
SPLMOV 0.36100 0.47913
MOVDJN 0.33800 0.31149
DJN 0.31500 0.32649
Imp spec 0.26400 0.18135
SPL 0.22700 0.49328

Generation 4
Attribute GR IG
SPLMOV 0.52450 0.56816
MOVJMP 0.43380 0.44600
MOVDJN 0.42800 0.33516
DJN 0.41400 0.33717

In the second warrior set the situation was significantly different compared to gen-
eration 1, with ‘JMZ’ and ‘DIV’ leading the GR scores, but with low IG. After filter-
ing with the average IG, the list is as follows: ‘MOVADD,’ ‘ADD/SUB,’ ‘MOVDJN,’
‘SPLMOV,’ ‘DJN,’ and ‘SPL’. Here ‘MOVDJN’ and ‘DJN,’ which were important for
the complete dataset, do appear in the list. Also, most of the best attributes from gener-
ation 1 do not show, or are a lot lower in the list, except ‘MOVADD’ and ’ADD/SUB’.
This all indicates that much code from generation 1 was discarded during evolution.
This is also evident in the reduction of size by 40% between generations 1 and 2.

In the third group, analysis shows that ‘SPLMOV,’ ‘MOVDJN,’ ‘DJN,’ ‘ImpSpec,’
and ‘SPL’ had most impact on the clustering process. Compared to the second genera-
tion, ‘ADD/SUB’ and ‘MOVADD’ which were “inherited” from generation 1 are now
gone, leaving a result much closer to the complete set.

In generation 4, ‘SPLMOV,’ ‘MOVJMP,’ ‘MOVDJN,’ and ‘DJN’ were the most sig-
nificant attributes with regards to clustering. The only big difference between this and
generation 3 is the “climbing” of ‘MOVJMP’. This lack of differences is also consistent
with the earlier explained way the CCAI evolver works, in the sense that when there are
no great improvements to the warriors in the next generation the process is stopped.

6 Conclusions and Future Work

Exploration and generation of CoreWar warriors, assisted by computers, has become in-
creasingly popular in the recent years. Majority of work, however, has concentrated on
warrior parameter optimization [7] and the evolution of competitive warriors [8,5,9].
Exploratory analysis (albeit motivated by warrior evolution), by means of automatic
categorization based on the analysis of execution frequencies of certain instruction
types during simulation, was performed, with some results available in [2], but with no
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published findings. In the research described in this paper, on the other hand, we at-
tempted to utilize a static (source-based) instead of a dynamic (execution-based) ap-
proach to the analysis and categorization of a set of warriors. The used dataset was the
result of warrior evolution conducted by the CCAI evolver [5].

The clustering of the CCAI evolver output was done using the EM algorithm incor-
porated in the WEKA workbench. Three clusters were detected in the complete dataset.
This indicates that the overall diversity of the complete dataset was rather low, which
can be explained by the fact that it is difficult for evolutionary algorithms to gener-
ate complex structures within the warriors in the evolved population, because small
changes and mutations usually render good complex warriors useless, and there is a
huge gap between different warrior strategies. Therefore, the most mutation resistant
forms prevailed, namely replicators and coreclears.

The complete dataset was divided into 4 subsets, in chronological generational order.
After processing, 2, 4, 12 and 5 clusters had been found in generations 1, 2, 3 and 4,
respectively (see Table 5). The general tendency of this result was expected, because
of varying mutation rates which were decreased at the end of the evolution process,
producing a general decrease of diversity in the evolved population.

Information gain and gain ratio analysis showed that ‘DJN’ and ‘MOVDJN’ were
the most significant attributes in the clustering of the whole dataset (see Table 6).
‘SPLMOV’ and ‘MOVJMP’ were also important in clustering of some of the subgroups.
This can be explained by the fact that most of the warriors in the dataset were either
replicators or coreclears, and these instructions and instruction pairs are seen quite fre-
quently in such warriors.

Attribute analysis generation by generation also showed consistency with the way
the evolver works. The greatest changes were exhibited between the original pool and
the next generation, and attribute evaluation did register large differences in the infor-
mativeness of attributes.

It is also possible to cluster warrior sets according to the scores of evolved warriors
against a predetermined benchmark. A diverse benchmark of human-coded warriors
manually annotated with their types was created for this purpose, and the score tables
have already been generated. The clustering according to the score tables will be con-
ducted and the results compared to those obtained via source-based clustering described
in this paper.

An issue with the static source-based warrior representation used in the presented
work may be the “garbage” often left over in the source code of evolved warriors –
instructions which never actually execute, but effectively introduce noise to the repre-
sentation. Warriors written by humans, on the other hand, are usually “clean” in this
sense. Dynamic representations based on counts of instruction execution are able to
deal with this kind of noise, but at the expense of a considerable increase in warrior
preprocessing time.

The noted correspondences between the workings of the evolutionary algorithm and
clustering indicate that our choice of static warrior representation was to some extent
appropriate. However, in order to determine exactly to what extent, and whether the syn-
tax analysis can produce good categorization of evolved warriors, precise measurements
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are necessary. This may be done through comparison of source-based and score-table-
based clusterings, and additionally by training classifiers and comparing classification
results with the clusters.

The warrior population evolved by the CCAI evolver was not as diverse in a strategic
sense as any human coded warrior group. To see how well clustering and classification
algorithms can cope with more diverse datasets, and also to see if the data represen-
tation chosen in this project does well in such situations, the whole process will be
repeated on some human coded warrior set. Being that human coded warriors often mix
several strategies, it would be especially interesting to use probabilistic methods to gain
insight into the probabilities of a warrior belonging to classes which were previously
identified and annotated. A comparison of static and dynamic representations, on both
human-coded and evolved warrior datasets, should then give more definitive answers
concerning the feasibility and applicability of automatic warrior categorization.
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Abstract. The object selection is an important task for instance-based classifi-
ers since through this process the size of a training set could be reduced and 
then the runtimes in both classification and training steps would be reduced. 
Several methods for object selection have been proposed but some methods 
discard relevant objects for the classification step. In this paper, we propose an 
object selection method which is based on the idea of sequential floating search. 
This method reconsiders the inclusion of relevant objects previously discarded. 
Some experimental results obtained by our method are shown and compared 
against some other object selection methods. 

1   Introduction 

In supervised classification, a training or sample set (denoted in this paper as T) con-
taining objects (previously assessed) described by a set of values (features) is used for 
classifying new objects. Commonly T contains objects with non relevant information 
for classifiers, therefore it is necessary to apply an object selection method over T in 
order to detect and retain those relevant objects for classification. 

Object selection is important for instance-based classifiers because for this kind of 
classifiers the runtime in training and classification steps depends on the size of the 
training set. Thus, through the object selection, the runtimes in both training and clas-
sification steps could be reduced since these steps are applied over an object subset S 
(S ⊂ T) instead of using the whole set T. 

Sequential search is a method used for finding a sub-optimal solution of a selection 
problem. This kind of search for selecting consists in evaluating at each step the rele-
vance of each possibility in the partial solution set. This search can be done in the 
forward or backward direction, the forward search starts with an empty solution set 
and at each step it evaluates all options and includes the best one. The backward 
search starts with the whole set and at each step it excludes the worst element. These 
sequential methods analyze at each step all possibilities for including/excluding one 
of them but they cannot exclude/include solutions previously included/excluded, this 
is possible in the sequential floating methods [5] which include/exclude solutions 
(previously excluded/included) after each inclusion/exclusion. 
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Sequential search has been used for the feature selection problem [5, 6] and  
extended for the object selection problem in [3]. 

In this paper, we propose a sequential method for object selection. Our method  
re-considers the inclusion to S of relevant objects previously discarded in the selection 
process, so that S would include those objects that contribute for improving the  
quality in S.  

This paper has been structured as follows: in section 2 we describe some relevant 
object selection methods. In section 3 we introduce our object selection method, in 
section 4 we report comparative results obtained by our method and other object se-
lection methods. Finally, in section 5 conclusions and future work are given. 

2   Related Work 

One of the first proposed methods for object selection is the ENN (Edited Nearest 
Neighbor) [1]. This method is commonly used as noise filter because it deletes noisy 
objects, that is, objects with a different class in a neighborhood. The ENN rule con-
sists in discarding from T those objects that do not belong to their k nearest neighbors’ 
class.  

In [2] the DROP (Decremental Reduction Optimization Procedure) methods were 
proposed. The selection criterion in DROP methods is based on the concept of asso-
ciate. The associates of an object O are those objects such that O is one of their k 
nearest neighbors. DROP1 starts with S=T and discards the object O if its associates 
in S can be classified correctly without O. DROP2 considers the effect of the removal 
of an object on T, DROP2 discards O if its associates in T can be classified correctly 
without O. DROP3 and DROP4 apply a noise filter (similar to ENN) before starting 
the selection process. Finally, DROP5 modifies DROP2 so that the selection process 
starts with the nearest enemies (nearest objects with different class). 

The sequential search has been used for selecting objects. In [3] the BSE (Back-
ward Sequential Edition) method was proposed. BSE applies the backward sequential 
search to the object selection problem. This method sequentially analyzes the rele-
vance of each object in the partial object subset and at each step BSE discards the ob-
ject that its deletion maximizes the classification accuracy. This selection process is 
repeated until the accuracy decreases. BSE is an expensive method since at each step 
it analyzes the impact of excluding each object in the sample. 

In [4] the edition schemes ENN+BSE and DROP+BSE were proposed. These 
schemes apply a pre-processing step before the selection process using BSE so that 
BSE is used over previously reduced object sets. ENN and DROP3,…,DROP5 meth-
ods are used by ENN+BSE and DROP+BSE respectively in the pre-processing step. 

3   Proposed Method 

Our object selection method is based on the idea of the Sequential Floating Selection 
(SFS) [5], which reconsiders the inclusion/exclusion (in the partial subset) of objects 
previously discarded/included. SFS consists in applying conditional inclu-
sion/exclusion steps after each exclusion/inclusion in the set. This kind of search (as 
sequential search) can be done in the backward and forward directions. 
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The backward SFS consists in applying after each exclusion step a number of in-
clusion steps as long as the classification results are better than the previously evalu-
ated ones. The forward SFS is the counterpart of backward SFS. These floating 
searches are very expensive therefore we propose an object selection method based on 
the backward SFS but in a restricted way. 

Our method named Restricted Floating Object Selection (RFOS) applies an exclu-
sion process followed by the conditional inclusion of discarded objects. The RFOS 
method is shown in figure 1. 

 

RFOS (Training sample T)  
 Let S= subset obtained after applying ENN or DROPs over T 
 Best_val =Classif(S)    
 Repeat                               //exclusion process 
  Worst=null 
 For each object O in S 
    S’=S-{O} 
              Eval = Classif(S’) 
    If Eval ≥ Best_val  
         Worst=O 
         Best_val=Eval 
 If Worst ≠ null  
       S=S-{Worst} 
 Until Worst==null or |S|==1 
 D=T-S   
 For each object Oi in D //conditional inclusion  
     S’’ = S ∪ {Oi} 
     Eval = Classif(S’’) 
     If Eval >Best_val 
          Best_val = Eval 
          S=S ∪ {Oi} 
 Return S 
 

 

Fig. 1. RFOS method for object selection 

RFOS starts applying a pre-processing step followed by the exclusion process and 
finally the conditional inclusion is applied over the object set previously selected  
(S, S⊂T). The exclusion step sequentially discards objects in the partial set. This step 
analyzes the classification contribution of each object and at each step it excludes the 
object (Worst) with the smallest contribution for the subset quality, in terms of the 
accuracy of a classifier, which is calculated by the Classif function. 

The selection process in RFOS consists in analyzing (conditional inclusion) the ob-
jects discarded from T (objects in the set D=T-S) for including in S those objects that 
their inclusion improves the classification, that is, an object O∈D is included in S 
only if the classification obtained using S ∪ {O} is better than the obtained using S. 

To know whether the classification after the inclusion is better or not, RFOS uses a 
classifier (Classif function in figure 1) to evaluate the quality of the sets. 

In this work we use ENN or DROP methods for the pre-processing step but any 
other object selection method can be used for that step. 
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The RFOS is a restricted floating search method because first it applies only an ex-
clusion process followed by the conditional inclusion. This restricted floating method 
can be done in the inverse direction (RFOS-Inv), that is, first applying an inclusion 
process followed by the conditional exclusion. The RFOS-Inv method is shown in 
figure 2. 

 

RFOS-Inv (Training sample T)  
 Let S= subset obtained after applying ENN or DROPs over T 
 Best_val =Classif(S) 
 D=T-S   
 For each object O in D // inclusion process 
     S’ = S ∪ {O} 
     Eval = Classif(S’) 
     If Eval >Best_val 
          Best_val = Eval 
          S=S ∪ {O} 
 Best_val =Classif(S)   //conditional exclusion 
 Repeat 
  Worst=null 
 For each object O in S 
    S’’=S-{O} 
 Eval = Classif(S’’) 
    If Eval ≥ Best_val  
         Worst=O 
         Best_val=Eval 
 If Worst ≠ null  
       S=S-{Worst} 
 Until Worst==null or |S|==1 
 Return S 
 

 

Fig. 2. RFOS-Inv method for object selection 

4   Experimental Results 

In this section, we show the results obtained by RFOS and RFOS-Inv over nine data-
sets obtained from the UCI repository [7] and compare them against ENN+BSE and 
DROP+BSE methods.  

In all the tables shown in this section, for each method, we show the classification 
accuracy (Acc.) and the percentage of the original training set that was retained by 
each method (Str.), that is 100|S|/|T|. In addition, we show the classification obtained 
using the original training set (Orig.) and the average results over the nine datasets at 
the bottom. Also we show the average accuracy difference (Average diff) with respect 
to the original accuracy. In all the experiments 10 fold cross validation was used. 

The results obtained by ENN+BSE and DROP+BSE methods over the datasets are 
shown in table 1. In table 2 we report the results obtained by RFOS using ENN and 
DROP methods in the pre-processing step. In table 2, RFOS(ENN) is the RFOS 
method using ENN for the pre-processing step and by analogy for RFOS(DROP3),…, 
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RFOS(DROP5), the DROP3,…DROP5 methods were respectively used. Table 3 
shows the results obtained applying RFOS-Inv method. In tables 1-3 we used as dis-
tance function the Heterogeneous Value Difference Metric (HVDM) [2]. 

Table 1. Classification (Acc.) and retention (Str.) results obtained by: original sample (Orig.), 
ENN+BSE and DROP3+BSE…DROP5+BSE methods 

Orig. ENN+BSE DROP3+BSE DROP4+BSE DROP5+BSE 
Dataset 

Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Bridges 37.91 100 30.27 51.27 35.45 8.42 36.72 12.02 35.81 14.79 

Glass 71.42 100 69.41 21.81 59.78 14.95 59.78 17.18 54.24 15.21 

Iris 93.33 100 93.00 8.00 88.00 6.42 88.00 6.64 89.33 6.39 

Liver 65.22 100 57.67 26.69 59.77 10.91 61.21 12.36 54.95 11.75 

Sonar 86.19 100 71.19 27.24 81.42 12.60 84.83 14.79 84.30 15.17 

Tae 51.08 100 46.66 43.85 47.70 14.93 50.00 18.17 46.66 20.08 

Thyroid 95.45 100 93.09 5.63 91.19 4.28 91.16 4.39 88.29 3.51 

Wine 94.44 100 92.74 8.17 96.07 5.05 96.07 5.05 96.07 4.43 

Zoo 91.33 100 91.11 12.59 77.77 11.72 77.77 11.97 83.33 7.76 
           

Average 76.26 100 71.68 22.81 70.79 9.92 71.73 11.40 70.33 11.01 

Average diff -4.58  -5.47  -4.54  -5.93  

Table 2. Classification (Acc.) and retention (Str.) results obtained by RFOS  

Orig. RFOS(ENN) RFOS(DROP3) RFOS(DROP4) RFOS(DROP5) 
Dataset 

Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Bridges 37.91 100 32.00 58.33 36.45 15.61 35.45 18.29 35.81 24.33 

Glass 71.42 100 69.43 29.34 64.48 25.75 65.41 27.46 67.74 26.11 

Iris 93.33 100 93.33 10.07 93.00 9.92 93.33 10.29 93.33 10.00 

Liver 65.22 100 59.98 33.68 61.70 16.94 65.00 18.39 60.03 19.64 

Sonar 86.19 100 72.57 32.27 84.64 21.58 83.52 20.88 83.73 22.59 

Tae 51.08 100 50.70 48.88 47.70 25.45 50.00 27.29 53.33 31.34 

Thyroid 95.45 100 94.04 7.02 93.98 6.25 94.45 6.77 90.47 5.94 

Wine 94.44 100 93.63 10.23 94.44 8.17 94.44 8.17 93.85 8.30 

Zoo 91.33 100 91.33 71.14 91.33 14.81 91.33 14.69 91.11 14.93 
           

Average 76.26 100 73.00 33.44 74.19 16.05 74.77 16.91 74.38 18.13 

Average diff -3.26  -2.07  -1.49  -1.89  

Table 3. Classification (Acc.) and retention (Str.) results obtained by RFOS-Inv  

Dataset Orig. RFOS-Inv(ENN) RFOS-Inv(DROP3) RFOS-Inv(DROP4) RFOS-Inv(DROP5) 

 Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Bridges 37.91 100 30.54 25.06 35.54 13.23 35.09 16.12 35.54 18.08 

Glass 71.42 100 58.35 19.47 43.50 23.36 54.95 20.77 55.49 16.45 

Iris 93.33 100 80.66 5.33 92.66 7.18 92.00 7.25 86.00 6.29 

Liver 65.22 100 58.84 21.80 59.75 19.25 61.20 20.58 60.30 19.54 

Sonar 86.19 100 71.14 16.77 68.26 18.58 70.66 21.20 68.76 22.49 

Tae 51.08 100 50.97 14.27 46.66 20.27 45.54 31.86 54.20 30.17 

Thyroid 95.45 100 88.83 3.82 94.55 4.85 93.03 5.27 86.96 4.18 

Wine 94.44 100 90.00 4.36 88.23 5.18 89.44 5.36 91.04 4.43 

Zoo 91.33 100 91.11 15.92 90.00 13.58 78.88 13.45 80.00 14.19 
           

Average 76.26 100 68.94 14.09 68.79 13.94 68.98 15.76 68.70 15.09 

Average diff -7.33  -7.47  -7.29  -7.56  
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The runtimes of the experiments reported in tables 1-3 are shown in table 4. Based 
on the average results, we can observe that because of the inclusion/exclusion steps in 
RFOS and RFOS-Inv, their runtimes are higher than the ENN+BSE and DROPs+BSE. 

Table 4. Runtimes (in seconds) spent by the methods shown in tables 1-3 

Dataset ENN+BSE DROP3+BSE DROP4+BSE DROP5+BSE RFOS 
(ENN) 

RFOS 
(DROP3)

RFOS 
(DROP4)

RFOS 
(DROP5)

RFOS-Inv
(ENN) 

RFOS-Inv
(DROP3)

RFOS-Inv 
(DROP4) 

RFOS-Inv 
(DROP5) 

Bridges 595.3 8.3 13.5 8.6 608.4 31.4 37.1 30.9 379.8 35.4 69.8 38.7 

Glass 540.0 14.7 28.0 14.2 545.3 27.0 35.8 25.7 215.6 59.8 46.1 33.7 

Iris 420.1 4.5 3.8 2.1 426.9 9.9 9.1 6.3 482.1 7.5 7.9 8.0 

Liver 1203.8 68.3 48.9 63.8 1214.0 95.8 74.0 91.5 1211.9 87.6 124.9 120.6 

Sonar 1496.8 64.1 65.5 60.3 1509.6 109.6 85.3 83.6 1512.0 142.1 140.7 183.7 

Tae 49.6 7.9 13.4 12.8 50.3 11.4 16.5 17.9 55.7 15.3 22.3 26.5 

Thyroid 1381.6 2.8 2.2 2.5 1393.1 12.7 11.3 12.8 1140.2 11.4 12.9 12.2 

Wine 960.4 5.0 5.3 3.8 969.7 13.7 14.1 12.4 905.7 12.6 14.1 13.5 

Zoo 1380.6 6.3 6.5 6.0 1402.9 18.9 15.5 20.4 1020.6 13.1 16.3 17.3 

Average 892.02 20.21 20.79 19.34 902.24 36.71 33.19 33.50 769.29 42.76 50.56 50.47 

The classifier used in the results shown in tables 1-3 was k-NN (k=3). The average 
results reported in tables 1-3 are depicted in figure 3, which shows a scatter graphic of 
retention (vertical axis) versus accuracy (horizontal axis). On this graphic, the most 
located at right the best classification accuracy and the most located at bottom the best 
retention percentage. 

Based on results shown in tables 1-3 and figure 3, we can observe that RFOS out-
performed to RFOS-Inv because this method discards relevant objects in the final ex-
clusion step. In addition, the accuracy obtained by RFOS is better than the obtained 
by ENN+BSE and DROP+BSE schemes; this is because RFOS includes relevant ob-
jects discarded in the exclusion steps. As a consequence of the final inclusion step, the 
object sets obtained by RFOS are slightly bigger than those obtained by RFOS-Inv, 
ENN+BSE and DROP+BSE. In this experiment the best accuracy was obtained by 
RFOS(DROP4) in the average case (figure 3).  
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Fig. 3. Scatter graphic from results obtained in tables 1, 2 and 3 
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In the above results the classifier used was k-NN, but it is important to know the 
performance of the proposed object selection methods using other classifiers. There-
fore we applied RFOS (the best restricted floating method in above experiments) and 
ENN+BSE, DROP+BSE using LWR (Locally Weighted Regression) and SVM (Sup-
port Vector Machines) classifiers during the selection process (notice that RFOS, 
ENN+BSE and DROP+BSE allow us to use any classifier different from k-NN in the 
selection process). In this experiment we have tested only numeric datasets because 
the classifiers are restricted to this kind of data. 

Table 5. Classification (Acc.) and retention (Str.) results obtained by: original sample (Orig.), 
ENN+BSE and DROP3+BSE…DROP5+BSE methods using LWR 

Orig. ENN+BSE DROP3+BSE DROP4+BSE DROP5+BSE Dataset 
Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Glass 57.85 100 56.84 50.26 50.71 20.83 55.18 25.54 53.72 21.97 

Iris 98.00 100 96.66 20.74 88.00 10.88 88.66 11.18 88.66 8.14 

Liver 70.12 100 66.33 31.51 70.99 17.13 68.08 19.00 68.68 16.58 

Sonar 64.40 100 65.36 73.29 63.98 21.37 69.26 28.26 63.88 25.21 

Thyroid 91.16 100 57.84 51.06 86.10 19.22 87.03 23.66 89.78 18.04 

Wine 92.15 100 88.88 57.50 90.96 14.10 88.20 14.10 88.28 9.36 

Average 78.95 100 71.99 47.39 75.12 17.26 76.07 20.29 75.50 16.55 

Average diff -6.96  -3.82  -2.88  -3.45  

Table 6. Classification (Acc.) and retention (Str.) results obtained by RFOS using LWR 

Orig. RFOS(ENN) RFOS(DROP3) RFOS(DROP4) RFOS(DROP5) Dataset 
Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Glass 57.85 100 57.79 52.18 53.30 25.13 58.33 26.26 54.54 27.09 

Iris 98.00 100 97.33 22.00 96.00 13.40 95.33 13.77 95.33 10.00 

Liver 70.12 100 66.34 37.61 73.31 18.64 71.27 21.22 71.30 18.77 

Sonar 64.40 100 66.81 74.36 71.00 31.94 65.35 25.96 68.78 30.12 

Thyroid 91.16 100 58.66 51.99 91.21 22.58 91.62 25.93 91.19 19.90 

Wine 92.15 100 90.62 58.75 90.98 16.22 90.58 16.22 90.73 16.15 

Average 78.95 100 72.93 49.48 79.30 21.32 78.75 21.56 78.65 20.34 
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Fig. 4. Scatter graphic from results obtained using LWR 
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In tables 5 and 6 we show the accuracy and retention results obtained using the LWR 
classifier and the average scatter graphic from these results is depicted in figure 4. 

Based on tables 5 and 6 we can observe that in all cases RFOS outperformed 
ENN+BSE and DROP+BSE methods. Figure 4 shows that in the average case, the 
best method using LWR was RFOS(DROP3) and the accuracy obtained by the other 
RFOS(DROP) methods was slightly lower than the obtained by the original set.  

Also the SVM classifier was used for testing RFOS, ENN+BSE and DROP+BSE 
methods. These results are shown in tables 7-8 and the average results are depicted in 
figure 5.  

Table 7. Classification (Acc.) and retention (Str.) results obtained by: original sample (Orig.), 
ENN+BSE and DROP3+BSE…DROP5+BSE methods using SVM 

Orig. ENN+BSE DROP3+BSE DROP4+BSE DROP5+BSE Dataset 
Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Glass 65.34 100 66.82 40.82 61.31 17.29 64.87 23.73 61.90 15.42 

Iris 96.00 100 96.00 8.89 93.33 3.70 94.00 4.07 94.67 3.33 

Liver 69.91 100 69.88 35.31 62.07 17.61 65.84 14.90 63.80 20.32 

Sonar 79.38 100 78.60 58.07 72.83 13.68 74.48 14.42 71.57 15.12 

Thyroid 72.61 100 72.61 7.23 68.34 3.20 68.20 3.36 67.27 3.31 

Wine 97.18 100 96.63 21.68 93.89 3.62 94.97 3.87 92.09 2.75 

Average 80.07 100 80.09 28.67 75.30 9.85 77.06 10.73 75.22 10.04 

Average diff 0.02  -4.78  -3.01  -4.85  

Table 8. Classification (Acc.) and retention (Str.) results obtained by RFOS using SVM 

Orig. RFOS(ENN) RFOS(DROP3) RFOS(DROP4) RFOS(DROP5) Dataset 
Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Glass 65.34 100 69.18 43.24 62.26 20.16 64.95 25.50 63.87 20.14 

Iris 96.00 100 96.00 9.78 93.33 4.14 94.00 4.14 94.67 3.70 

Liver 69.91 100 69.83 47.68 62.95 20.52 67.03 19.62 67.83 21.71 

Sonar 79.38 100 78.90 58.19 74.42 15.48 74.48 14.90 73.16 16.86 

Thyroid 72.61 100 72.61 8.16 69.07 5.42 69.23 3.77 69.59 5.78 

Wine 97.18 100 96.75 22.75 95.55 5.80 95.55 5.86 92.64 4.80 

Average 80.07 100 80.55 31.63 76.26 11.92 77.54 12.30 76.96 12.17 

Average diff 0.47  -3.81  -2.53  -3.11  
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Fig. 5. Scatter graphic from results obtained using SVM 
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According to the results reported in tables 7 and 8, we can notice that using the 
SVM classifier, in all the experiments, again RFOS outperformed the ENN+BSE and 
DROP+BSE schemes. Figure 5 shows that the best accuracy results using this classi-
fier were obtained by RFOS(ENN). 

Based on the results shown in this section, we can observe that the proposed meth-
od obtain smaller subsets (with respect to the original size set ) without a significantly 
accuracy reduction. The main benefit of using the subsets obtained is the reduction in 
training and classification stages for instance-based classifiers. 

5   Conclusions 

Object selection is an important task for instance-based classifiers since through this 
process the training set is reduced and also the runtimes in classification and training 
steps.  

Several object selection methods which sequentially discard objects have been pro-
posed, for example, the edition schemes ENN+BSE and DROP+BSE. It is possible that 
during the selection process, these methods remove relevant objects for the classifica-
tion accuracy. In this work, we proposed the RFOS method which is an object selection 
method that includes those relevant objects discarded by the edition schemes.  

The experiments show that RFOS outperforms RFOS-Inv, ENN+BSE and 
DROP+BSE (not only for k-NN but also for LWR and SVM), that is, the inclusion of 
some discarded objects helps to improve the classification. 

RFOS is a restricted floating sequential method because it applies only an exclu-
sion process followed by the conditional inclusion, therefore, as future work we will 
adapt a full floating sequential search for solving the object selection problem. 
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Abstract. The color of the digital images is one of the most important 
components of the image processing research area. In many applications such 
as image segmentation, analysis, compression and transition, it is preferable to 
reduce the colors as much as possible. In this paper, a color clustering technique 
which is the combination of a neural network and a fuzzy algorithm is 
proposed. Initially, the Kohonen Self Organized Featured Map (KSOFM) is 
applied to the original image. Then, the KSOFM results are fed to the 
Gustafson-Kessel (GK) fuzzy clustering algorithm as starting values. Finally, 
the output classes of GK algorithm define the numbers of colors of which the 
image will be reduced. 

Keywords: Color Reduction, Color Clustering, Neural Networks, Fuzzy 
Clustering. 

1   Introduction 

Nowadays the color of the digital images is one of the most widely used information 
for the image processing researchers. Digital images are usually described by a set of 
pixels uniformly distributed in a two-dimensional grid. On the one hand, in gray-scale 
images, the value of each pixel is described by a scalar value. On the other hand, in 
color images each pixel is expressed by a vector containing the values of three color 
components. True-type color images consist of more than 16 million different colors, 
in a 24-bit RGB color space. However, in many applications, such as image 
segmentation, analysis, compression and transition it is preferable to reduce the colors 
as much as possible. 

The objective of color reduction is to divide a color set of an image into c uniform 
color clusters. Several techniques have been proposed in the literature for the color 
reduction of the image. Firstly, there is a group of techniques that repeatedly divide 
the color histogram in disjoint regions [1]. The methods of octree [2, 3], median-cut 
(MC) [4] and variance-based algorithm [5] are some of those splitting algorithms.  
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The second major class of algorithms is based on cluster analysis of the color 
space. Techniques in this category attempt to find the optimal palette using vector 
classifiers like the Growing Neural Gas (GNG) [6], Adaptive Color Reduction [7], 
FOSART [8-11], Fuzzy ART [12-13] and FCM [14].  

Techniques in the third category are general color segmentation techniques, which 
can be considered as color reduction algorithms. For instance the mean-shift-based 
procedures for feature space analysis employ the former approach [15-16]. 

In present paper a color clustering technique which is the combination of a neural 
network and a fuzzy algorithm is proposed. Initially, the Kohonen Self Organized 
Featured Map (KSOFM) is applied to the original image. Then, the KSOFM results 
are fed to the Gustafson-Kessel (GK) fuzzy clustering algorithm as starting values. 
The resulting classes define the colors of the final image.  

The next two sections describe the KSOFM neural network and the GK algorithm 
used in this work. Section 4 describes the color reduction method through the 
combine efforts of the above clustering methods. Section 5 presents some 
experimental results and describes some deductions that derive from them. Finally, in 
Section 6 some conclusions are drawn and the future directions are defined. 

2   Kohonen Self Organized Featured Map (KSOFM) 

A major category of neural nets is the self-organized neural nets which do not need 
supervising during their training phase (unsupervised neural nets). Their goal is to 
distinguish patterns in their training data and separate them in groups. The KSOFM 
[17-18] invented by the Prof. Teuvo Kohonen, is such a self-organized neural net. It is 
a Single Layer Feedforward Network but it differs in how it is trained and in how it 
revokes a pattern.  

Analytically, the Kohonen network consists of two layers, the input and the 
competitive layer. In the latter layer the output units are arranged in one or two 
dimensional grids. As depicted in the architecture of the KSOFM in Fig 1, each input 
class has a feed-forward connection to each output class. So, the neural network maps 
a set of input vectors into a set of output vectors without supervision. The knowledge 
the network acquires by the training data is stored in the weights jkw . These weights 

express the extent to which the connection of the data kx  with the output neuron jy  

is important.   
In the proposed method the input features are the three components of the RGB 

color space and the output units are the centers of the classes which depict RGB 
colors. The number of the output units is equal to the desirable amount of colors from 
which the image will be reduced.  

The training algorithm of the KSOFM is based on competitive learning. Each time 
an input vector kx  is presented, a winner output neuron jy  is calculated based on the 

Euclidean Distance. 

j k jky arg min x w= −  . (1) 
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Fig. 1. The Architecture of the Kohonen Self-Organizing Map 

 

Fig. 2. The sub sampling of the image based on the Hilbert’s space filling curve 

The winner output neuron changes its connections weights jkw  as follows: 

( )jk k jkw n x wΔ = −  . (2) 

The n  is a variable that defines the learning rate of the training process and it is 
not constant but changes each time a new input vector is presented. In this work, the 
learning rate had the following values: 2

initiallyn 10−= , 4
finaln 10−= , 5

stepn 10−= . 

One of the most important parts of the training process is the selection of the 
samples data. It is preferable to have as training samples data a sub-sampling version 
of the original image instead of the whole image in order to achieve reduction of the 
computational time. In the proposed color reduction technique, the training samples 
are selected from the peaks of the well-known Hilbert’s space filling curve [19]. As 
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the Fig. 2 depicts, the Hilbert’s space filling curve is one dimensional curve which 
visits every possible pixel within a two dimensional space. This fractal scanning 
technique is much more efficient in capturing features in a digital image than the 
commonly used techniques of raster scanning because the neighborhood relation 
between the pixels is retained.  

After the end of the training phase, the KSOFM initially is fed with unknown 
samples (all the pixels of the image) and then it correlates the samples to the centers 
of the classes that the neural net converged at the training phase.   

3   Gustafson – Kessel Fuzzy Algorithm 

3.1   Overview  

One major problem of the standard fuzzy c-mean algorithm is that produces spherical 
classes. For example, if the sets of points presented at Fig 3a, pass through the fuzzy c-
mean algorithm for partition into four classes, the result will not be the optimal (Fig 3b).  

The Gustafson – Kessel [20] is an extension of the fuzzy c-mean algorithm that 
deals with this problem by using a covariance matrix in order to detect ellipsoidal 
classes. That is, each cluster is characterized by its center and its own-inducing matrix 
Ai that forms the following distance for each class:  

( ) ( )T2
ik k i i k id x v A x v= − −  . (3) 

The kx ,k [1,n]∈  are the data vectors and the iv , i [1,c]∈  are the centers of the 

classes. The iA  is a positive-define matrix adapted according to the topological 

structure of the data inside a cluster. The following equation (eq. 4) indicates that the 
objective function of the Gustanfson – Kessel algorithm is linear by iA  and cannot be 

directly minimized with respect to it.  

c n
m 2
ik ik

i 1 k 1

J(U,V) u d
= =

=∑∑  . (4) 

So the iA  must be constrained. This is accomplished by constraining its 

determinant: 

i i iA , 0 i= ρ ρ > ∀  . (5) 

Without any prior knowledge, the iρ  is fixed at 1 for each cluster. Finaly, the iA  

is calculated from the following equation:  

( ) 1h
i i i iA det F F , i [1,c]−= ρ ∈  . (6) 

where h  represent the number of dimensions of the space that the data reside. 
Because the RGB color space has three dimensions, the value of h  is equal to 3 in 
this work. iF  is the covariance matrix which shows how the samples are scattered 

inside a class:      
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( )

( )

n
m T

ik k i k i
k 1

i n
m

ik
k 1

u (x v )(x v )
F , i [1,c]

u

=

=

− −
= ∈
∑

∑
 . (7) 

The weighting parameter m , ( )m 1,∈ ∞  influence the crispness or the fuzziness of 

the resulting partition between the classes. Worth noticing that if the equations 6 and 
7 substituted into the equation 3, the outcome will be a squared Mahalanobis distance 
norm. 

Finaly, the [ ]ikU u=  is called partition matrix and is defined as the grade of 

membership of kx  to the cluster i  and it must satisfy the following constraints: 

[ ] [ ]ik0 u 1, i 1,c and k 1,n≤ ≤ ∈ ∈  . (8) 

[ ]
c

ik
i 1

u 1, k 1,n
=

= ∈∑  . (9) 

[ ]
n

ik
k 1

0 u n, i 1,c
=

< < ∈∑  . (10) 

 
a. 

 

b. 

 
    
c. 

 

  

Fig. 3. (a) The points in the 2D space which must separate to four classes. (b) The clustering of 
the points to four classes through the fuzzy c-mean algorithm. (c) The clustering of the points to 
four classes through the Gustafson – Kessel algorithm. 
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3.2   The Algorithm 

The Gustafson - Kessel algorithm consists of the following steps: 

Step 1: Define the number of the classes c , the weighting parameter m  and the 
cluster volumes iρ .  

Step 2: Define the termination tolerance 0ε >  and the number of iterations λ . Set a 
counter α equal to one ( 1α = ). 

Step 3: Initialize randomly the partition matrix [ ]ikU u= . In this work, the partition 

matrix is initialized not randomly but from the connections weights jkw  of the 

KSOFM for each output class.  

Step 4: Compute the centers of the classes iv  according to the following equation: 

( )

( )
[ ] [ ]

n
m

ik k
k 1

i n
m

ik
k 1

u x
v , i 1,c and k 1,n

u

=

=

= ∈ ∈
∑

∑
 . (11) 

Step 5: Compute the covariance matrix iF  for each class according to the equation (7). 

Step 6: Compute the matrix iA for each class according to the equation 6.  

Step 7: Compute the distance ikd  of every sample kx  from the center of each class 

iv  according to the equation 3. 

Step 8: Update the partition matrix [ ]ikU u=  for each sample kx  according to the 

following equation: 

[ ] [ ]ik 2

m 1c
ik

j 1 ij

1
u , i 1,c and k 1,n

d

d

−

=

= ∈ ∈
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

 . 
(12) 

But when ikd 0=  for some kx  and one or more center of classes iv  (very rare 

case), the partition function iku  cannot be computed. In this case the 0 is assigned 

to each iku  for which  ikd 0>  and the membership is distributed arbitrarily among 

the rest iku  (for which ikd 0= ) but underlined to the constraint shown at the 

equation (9).  
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Step 9: if ( ) ( 1)max U Uα α−− < ε  or α ≥ λ stop, else set 1α = α + and go to step 4. 

4   Overview of the Proposed Method 

Figure 4 depicts the process of the proposed method. It is a combination of the 
KSOFM and the Gustafson-Kessel fuzzy algorithm, appropriate for reducing the 
colors of the image at a preprocessing stage for a segmentation technique. The 
proposed method consists of the following steps: 

Step 1: Assemble the training samples data from the sub-sampling of the original 
image from the peaks of the Hilbert’s space filling curve. 

Step 2: Define the number of colors of which the image will be reduced. This number 
defines also the output classes of the KSOFM and GK algorithm. 

Step 3: Feed the KSOFM with the training samples to train it. 

 

Fig. 4. The process of the proposed image color reduction method 

Step 4: Feed each pixel of the original image into the trained KSOFM. This maps 
(classify) each pixel to one of the output classes and ultimately to one of the reduced 
colors.  
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Step 5: Initialize Gustafson – Kessel with the classification results of the KSOFM. 
That is, populate the partition matrix [ ]ikU u=  from the KSOFM connections 

weights jkw  of each output class.    

Step 6: Run the Gustafson – Kessel algorithm. 

Step 7: Reduce the colors of the image based on the results of the Gustafson – Kessel 
fuzzy algorithm.  

The result from the above steps is an image which has reduced number of colors as 
defined in Step 2.   

5   Experimental Results 

The method proposed in this paper is implemented with the help of a Visual 
Programming Environment (Borland Delphi). The program can be downloaded at the 
web address: http://orpheus.ee.duth.gr/download/pythagoras.zip. The proposed tech-
nique is tested on several images with satisfactory results. 

As the Figures 5, 6, 7, 8 and 9 depicts, the proposed method is compared with other 
two popular color reduction techniques based on cluster analysis in the color space: 
the KSOFM and the FCM algorithm. Table 1 presents the parameters of the 
algorithms during the testing. 

The experimental results have shown that the proposed technique has the ability 
to retain the dominant colors even if the final image consists of a very small number 
of unique colors. Also, it can merge areas of the image having similar colors. In this 
point of view, it can be considered as a powerful color image segmentation 
procedure.  

Table 1. The parameters of the algorithms during the testing  

KSOFM Fuzzy C-Mean KSOFM - GK 
Initially Learning Rate: 

2
initiallyn 10−=   

m 1.2=  Initially Learning Rate: 
2

initiallyn 10−=   

Final Learning Rate: 
4

finaln 10−=   
Epochs = 2000 Final Learning Rate: 

4
finaln 10−=   

Step of the Learning 
Rate: 5

stepn 10−=  
Termination Tolerance:  

55 10−ε = ⋅  

Step of the Learning 
Rate: 5

stepn 10−=  

  KSOFM Termination 
Tolerance: 55 10−ε = ⋅  

  m 1.2=  
  GK termination 

Tolerance: 45 10−ε = ⋅  
  Iterations: 100λ =  
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A significant disadvantage of the proposed technique is its high computational cost 
which comes from the determination of the Mahalanobis distance. For an AMD 
Athlon 64 3000+ (2GHz) based PC with 1GByte RAM, the processing time for a 
512x384 image with 119143 colors for all the algorithms is presented at Table 2. The 
number of colors of which the above image is reduced is six (6). 

 
a. 

 

b. 

 
    
c. 

 

d. 

 

Fig. 5. (a) The original image is constituted of 22410 colors. (b) The output image, through the 
KSOFM is constituted of 4 colors. (c) The output image, through the FCM is constituted of  
4 colors. (d) The output image, through the proposed method (KSOFM-GK) is constituted of  
4 colors. 

Table 2. Computational cost for each algorithm processing a 512x384 image with 119143 
colors. The final reduced colors are 6. 

KSOFM Fuzzy C-Mean KSOFM - GK 

2.43 seconds 8.32 seconds 43.27 seconds 
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a. 

 

b. 

 
    
c. 

 

d. 

 

Fig. 6. (a) The original image is constituted of 99760 colors. (b) The output image, through the 
KSOFM is constituted of 7 colors. (c) The output image, through the FCM is constituted of  
7 colors. (d) The output image, through the proposed method (KSOFM-GK) is constituted of  
7 colors. 

a. 

 

b. 

 
    
c. 

 

d. 

 

Fig. 7. (a) The original image is constituted of 33784 colors. (b) The output image, through the 
KSOFM is constituted of 5 colors. (c) The output image, through the FCM is constituted of  
5 colors. (d) The output image, through the proposed method (KSOFM-GK) is constituted of  
5 colors. 
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a. 

 

b. 

 
    
c. 

 

d. 

 

Fig. 8. (a) The original image is constituted of 31655 colors. (b) The output image, through the 
KSOFM is constituted of 4 colors. (c) The output image, through the FCM is constituted of  
4 colors. (d) The output image, through the proposed method (KSOFM-GK) is constituted of  
4 colors. 

a. 

 

b. 

 
    
c. 

 

d. 

 

Fig. 9. (a) The original image is constituted of 69656 colors. (b) The output image, through the 
KSOFM is constituted of 8 colors. (c) The output image, through the FCM is constituted of  
8 colors. (d) The output image, through the proposed method (KSOFM-GK) is constituted of  
8 colors. 
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6   Conclusion 

In this paper a color clustering technique is proposed which is based on a combination 
of a KSOFM neural network and the Gustafson-Kessel fuzzy algorithm. Initially, the 
KSOFM is applied to the original image and produce a predefined number of color 
classes. Then, the final color reduction is performed by the Gustafson-Kessel fuzzy 
clustering algorithm considering the KSOFM clustering results as initial values. Thus, 
the entire clustering procedure can be considered as an hybrid neuro-fuzzy technique.  

The experimental results have shown the ability to retain the image’s dominant 
colors. Also, it can merge areas of the image with similar colors and therefore can be 
used as a color segmentation procedure. Future directions should include the ability to 
detect the optimal number of final colors and reduce the high computational cost. 

Acknowledgment 

This work is co-funded by the project PYTHAGORAS 1249-6. 

References 

1. Scheunders, P.: A comparison of clustering algorithms applied to color image quantization. 
Pattern Recognit. Lett. 18, 1379–1384 (1997) 

2. Ashdown, I.: Octree color quantization in Radiosity. Wiley, Chichester (1994) 
3. Gervautz, M., Purgathofer, W.: A simple method for color quantization: Octree 

quantization. In: Glassner, A.S. (ed.) Graphics Gems, pp. 287–293. Academic New York 
(1990) 

4. Heckbert, P.: Color image quantization for frame buffer display. Comput. Graph. 16, 297–
307 (1982) 

5. Wan, S.J., Prusinkiewicz, P., Wong, S.K.M.: Variance based color image quantization for 
frame buffer display. Color Res. Applicat. 15(1), 52–58 (1990) 

6. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, 
D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 
625–632. MIT Press, Cambridge, MA (1995) 

7. Papamarkos, N., Atsalakis, A., Strouthopoulos, C.: Adaptive color reduction. IEEE 
Transactions on Systems. Man and Cybernetics Part B: Cybernetics 32 (2002) 

8. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition—
part I. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 29(6), 
778–785 (1999) 

9. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition-
part II. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 29(6), 
786–801 (1999) 

10. Baraldi, A., Parmiggiani, F.: Novel neural network model combining radial basis function, 
competitive Hebbian learning rule, and fuzzy simplified adaptive resonance theory. In: 
Proceedings of the SPIE’s Optical Science, Engineering and Instrumentation 1997: 
Applications of Fuzzy Logic Technology IV, San Diego CA, vol. 3165, pp. 98–112 (1997) 

11. Baraldi, A., Parmiggiani, F.: A fuzzy neural network model capable of generating/ 
removing neurons and synaptic links dynamically. In: Blonda, P., Castellano, M., 
Petrosino, A. (eds.) Proceedings of the WILF 1997-II Italian Workshop on Fuzzy Logic, 
pp. 247–259. World Scientific, Singapore (1998) 



 Color Reduction Using the Combination of the Kohonen Self-Organized Feature Map 715 

12. Carpenter, G., Grossberg, S., Rosen, D.B.: Fuzzy ART: fast stable learning and 
categorization of analog patterns by an adaptive resonance system. Neural Networks 4, 
759–771 (1991) 

13. Carpenter, G., Grossberg, S., Maukuzon, N., Reynolds, J., Rosen, D.B.: Fuzzy ARTMAP: 
a neural network architecture for incremental supervised learning of analog 
multidimensional maps. IEEE Transactions on Neural Networks 3(5), 698–713 (1992) 

14. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum 
Press, New York (1981) 

15. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002) 

16. Nikolaou, N., Papamarkos, N.: Color segmentation of complex document images. In: 
International Conference on Computer Vision Theory and Applications. Setúbal, Portugal, 
pp. 220–227 (2006) 

17. Kohonen, T.: The self-organizing map. Proceedings of IEEE 78(9), 1464–1480 (1990) 
18. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997) 
19. Sagan, H.: Space-Filling Curves. Springer, New York (1994) 
20. Gustafson, E.E., Kessel, W.C.: Fuzzy Clustering with a Fuzzy Covariance Matrix. In: 

Proc. 18th IEEE Conference on Decision and Control (IEEE CDC, San Diego, CA). 
Piscataway, NJ, USA, pp. 761–766 (1979) 



A Hybrid Algorithm Based on Evolution

Strategies and Instance-Based Learning, Used in
Two-Dimensional Fitting of Brightness Profiles

in Galaxy Images

Juan Carlos Gomez1 and Olac Fuentes2

1 INAOE, Computer Science Department, Luis Enrique Erro No. 1, Tonantzintla,
Puebla 72000, Mexico

jcgc@inaoep.mx
2 University of Texas at El Paso, Computer Science Department, 500 West University

Avenue, El Paso 79968, Texas, USA
ofuentes@utep.edu

Abstract. The hybridization of optimization techniques can exploit the
strengths of different approaches and avoid their weaknesses. In this work
we present a hybrid optimization algorithm based on the combination
of Evolution Strategies (ES) and Locally Weighted Linear Regression
(LWLR). In this hybrid a local algorithm (LWLR) proposes a new so-
lution that is used by a global algorithm (ES) to produce new better
solutions. This new hybrid is applied in solving an interesting and dif-
ficult problem in astronomy, the two-dimensional fitting of brightness
profiles in galaxy images.

The use of standardized fitting functions is arguably the most powerful
method for measuring the large-scale features (e.g. brightness distribu-
tion) and structure of galaxies, specifying parameters that can provide
insight into the formation and evolution of galaxies. Here we employ
the hybrid algorithm ES+LWLR to find models that describe the bi-
dimensional brightness profiles for a set of optical galactic images. Mod-
els are created using two functions: de Vaucoleurs and exponential, which
produce models that are expressed as sets of concentric generalized el-
lipses that represent the brightness profiles of the images.

The problem can be seen as an optimization problem because we
need to minimize the difference between the flux from the model and the
flux from the original optical image, following a normalized Euclidean
distance. We solved this optimization problem using our hybrid algorithm
ES+LWLR. We have obtained results for a set of 100 galaxies, showing
that hybrid algorithm is very well suited to solve this problem.

1 Introduction

Galaxies encompass an enormous set of phenomena in the universe, from star
formation to cosmology subjects. Thus, study of galaxies is essential to under-
stand many basic questions about the cosmos. Also, there is a huge amount of
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astronomical data in images and spectra in surveys (SDSS, 2MASS, etc.) ob-
tained from modern observatories, and it is important to automatically analyze
such information in order to extract important physical knowledge.

A very useful way to quantify galaxies and extract knowledge from data is
to fit images or spectra with parametric functions [9][11]. The use of standard-
ized fitting functions is arguably the most powerful method for measuring the
large-scale features (e.g. brightness profiles) and structure of galaxies (e.g. mor-
phologies), specifying parameters that can provide insight into the formation
and evolution of galaxies, since the functions yield a variety of parameters that
can be easily compared with the results of theoretical models [4].

Galaxies are composed of distinct elements: stars, gas, dust, planets and dark
matter. Old stars are normally present in the central part of a galaxy (also called
bulge), while young star, gas and dust are usually in the outer parts (called disk)
and dark matter is normally surrounded the galaxy (called halo). Each element
contributes in a different way to the light that one galaxy emits; stars producing
the light and gas, dust and dark matter dispersing or diffracting it. Galaxy
brightness profile describes how this light is distributed over the surface of a
galaxy [7]. Thus, studying the brightness profile will lead to understand many
subjects about the formation, composition and evolution of galaxies [11]. For
example, elliptical galaxies are normally composed only by a bulge and a dark
matter halo, which means that ellipticals are old, because they only contains old
stars in the central part and they produces a very intense brightness in this part.
On the other hand spiral galaxies are usually composed by a bulge, a disk and a
dark matter halo, which means spirals are younger than ellipticals because spirals
still contain young stars, and gas and dust to produce new stars, where these
elements are normally present in the spiral arms. In this case, galaxies present a
brilliant central part and a less brilliant disc (with spiral arms) surrounding the
bulge.

Thus, fitting of galaxy brightness profiles provides a reasonably detailed de-
scription of the radial light distribution with a small number of parameters.
Nevertheless, ideally fitting functions would be based upon the physics of the
formation and evolutionary processes in galaxies. Unfortunately, these processes
are neither simple nor well understood, so the most commonly used functions
are derived empirically.

Here we propose a machine learning [8] hybrid algorithm to automatically
find models for galaxy brightness profiles; exploring the search space of possible
solutions in order to find the best set of parameters that produces a model able
to describe the brightness distribution in a galaxy.

Hybridization is referred to a merge or mixture among two or more algo-
rithms, implemented or developed trying to exploit the advantages and avoid
the weakness of each particular algorithm. Using such schema, for example in a
non-simple search space in an optimization problem, we might initially employ
a global algorithm to identify regions of high potential, and then switch, using
appropriate switching metrics, to local techniques to rapidly converge on the
local minimum. Through hybridization, the optimization strategy can be fitted
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to suit the specific characteristics of a problem, thereby enhancing the overall
robustness and efficiency of the optimization process.

Here we use a different way to perform hybridization: a local algorithm pro-
duces one proposed solution that is evaluated and used to produce new solutions
by a global algorithm; in this manner an exchange of possible solutions between
algorithms occurs. Hybridization is done in each iteration of the global algo-
rithm Evolution Strategies (ES) [10], adding a new solution approximated by
the instance-based algorithm Locally Weighted Linear Regression (LWLR) [1]to
the set of solutions in ES.

We have obtained fitting for a set of 100 galaxy images, from spiral and
elliptical galaxies, using hybrid algorithm, showing that ES+LWLR is a well
suited method to solve this problem.

The rest of the paper is structured as follows: in Section 2 a brief description
of theory for brightness profile and description of the problem is presented, the
hybrid algorithm is shown and explained in Section 3, Section 4 includes the
general description of the optimization process, results are presented in Section 5
and Section 6 includes conclusions and future work.

2 Brightness Profile

Surface brightness in a galaxy is literally defined as how much light emits the
galaxy [7], and luminosity is defined as the total energy received by unit of area
by unit of time. Then, the surface brightness of an astronomical source is the
ratio of the source’s luminosity F and the solid angle (Ω) subtended by the
source.

B =
F

Ω
(1)

The surface brightness distribution in elliptical galaxies depends essentially
only on the distance from the centre and the orientation of the major and minor
axis. If we consider that elliptical galaxies are only composed by a bulge, and
if r is the radius along with the major axis, the surface brightness I(r) is well
described by de Vaucoleurs’ law r1/4 [6]:

Ib = Ie exp
[

−3.3
[(

r1/4

re

)

− 1
]]

(2)

where r is the distance from the galactic center, re is the mean ratio of the
galaxy brightness (the radius where half of the total brightness lies), and Ie is
the surface brightness for r = re.

Although de Vaucoleurs’ law is a purely empirical relation, it still gives a
remarkably good representation of observed light distribution in bulges. However,
in the outer regions of elliptical galaxies changes in light distribution may often
occur. Different galaxies differ widely in this respect indicating that the structure
of ellipticals is not as simple as it might appear.
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Fig. 1. Example of an observed galaxy image and its modelled brightness profile

Spiral galaxies, and according with observation some ellipticals, are also com-
posed by a disc. The surface brightness profile for a disc galaxy has an exponen-
tial distribution:

Id = I0 exp
(

− r

r0

)

(3)

where I0 is the central surface brightness and r0 is the radial scale length.
Finally, surface brightness distribution in elliptical and spiral galaxies can be

described in a more general way as the sum of equations 2 and 3, which is an
approximation of the profile using concentric ellipses [7].

I = Ib + Id (4)

In fact, it is not expected that equations 2 and 3 fit all the profile measured
in the radial range of the galaxy, because sometimes sky subtraction errors in
external regions of galaxy can distort the profile. Also the fitting process does
not allow the presence of structures, it fits across arms and bars as if they were
noise in the data, since models are based only in concentric ellipses.

An example of a galaxy image and its corresponding generated brightness
profile using the previous equations is shown in Figure 1.

2.1 Fitting

In order to fit a galaxy image, it is necessary to define a model of its brightness
profile that matches the brightness distribution of the original image.
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Thus, let q = [re, Ie, I0, r0, i1, i2] be a vector of brightness parameters, a model
for a brightness profile is constructed as follows:

m = Ib(q) + Id(q) (5)

where Ib(q) and Id(q) are the equations 2 and 3 applied with the parameters
in q. This model produces an artificial image m of size n × m that represent
certain brightness distribution.

Then, the final goal in this fitting task is to approximate, efficiently and au-
tomatically, the best combination for the following parameters: re, mean ratio
of the galaxy brightness; Ie, surface brightness in r = re; I0, central surface
brightness; r0, radial scale length and two angels i1 and i2 which are the rota-
tion angles in x and z axis, that produce a model that matches the brightness
distribution of the observed image.

3 Optimization

The process starts with an observed image o, which first is resized to a 256×256
pixel size. This process is done to simplify the fitting task and it is necessary to
standardize all the data (the observed and the simulated).

Thus, let o be the observed image variable of size 256 × 256, let m be the
simulated image with the same dimensionality as o. The goal of the optimization
process is to obtain a model m that maximizes the following function:

f(m) = 1 − 1
max

√
√
√
√

256∑

i=1

256∑

j=1

(mi,j − oi,j)2 (6)

where max is the maximum difference that can exist between images. This is the
fitness function used by our hybrid algorithm. The fitness function represents the
similarity between both images, and its values range is [0-1], with 1 as a perfect
match and 0 as totally different images. At the end, the simulated image that
maximizes such equation is the one that was produced by the set of brightness
parameters we were looking for.

3.1 Hybrid Algorithm

Our hybrid algorithm, that we called ES+LWLR, is based in the main idea of
using the individuals in each generation of ES as the training set for the learning
algorithm LWLR [1]. Such algorithm will be used to predict a new individual,
which is expected to be closer to the global solution.

LWLR uses implicit knowledge in the ES population about the target func-
tion to predict a new individual that is potentially better than the ones in ES.
LWLR creates local linear models of the target function around a query point hq

(original image), and local models achieve an approximation finer of the target
function than those based on global models, reaching a more accurate prediction.
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Literally LWLR is exploiting the current population configuration for predicting
directly a new solution.

In this work we implemented a modified version of (μ + λ) ES [2][3] that in-
cludes some changes to the canonical version. We create μ = 7 parent individuals
and λ = 14 children individuals, we use discrete recombination and traditional
mutation, but we also include a new way to create offspring with the average
operator and a dynamical mutation [5] for strategy parameter vectors based on a
simple, but effective and easy to understand, multiplication by constant factors.

We employed LWLR in the following way: given a query point hq, to predict
its output parameters yq, we find the k closest examples in the training, and
assign to each of them a weight given by the inverse of its distance to the query
point:

wi = 1

|hq−hi|
i = 1, . . . , k

where hi is the i-st closest example. This measure is called “relevance”.
Let W , the weight matrix, be a diagonal matrix with entries w1, . . . , wk. Let H

be a matrix whose rows are the vectors h1, . . . ,hk, the input parameters of the
examples in the training set that are closest to hq, with the addition of a “1” in the
last column. Let Y be a matrix whose rows are the vectors y1, . . . ,yk, the output
parameters of these examples. Then the weighted training data are given by Z =
WH and the weighted target function is V = WY . Then we use the estimator for
the target function yq = hT

q Z
∗V , where Z∗ is the pseudoinverse of Z.

Merging both ideas of ES and LWLR we obtain the ES+LWLR algorithm,
where we have: first, the initial population of ES xi i = 1, . . . , μ, where each
xi = [re,i, Ie,i, I0,i, r0,i, i1,i, i2,i], and their corresponding strategy parameters
vectors σi i = 1, . . . , μ are formed by randomly generated values. Then, each
xi is passed to a module that following equation 5 creates the simulated galaxy
image mi. Afterwards, each mi is evaluated using the fitness function 6. The
next step consists of an iterative process: if some model has obtained a good
match with the original image we stop the process, otherwise we create λ new
individuals x′

j j = 1, . . . , λ using recombination, mutation and average operators.
Then we create their corresponding models m′

j and evaluate them using the
fitness function. The next step consist in the hybridization, here we pass the
(μ + λ) population, the mk k = 1, . . . , μ + λ models and the original image o
to the LWLR module, where LWLR takes the 7 closest models to the original
images an predict the output vector of parameters yq. This vector is evaluated
using the fitness function and returned to ES, replacing the least fit individual of
the (μ+λ) population. Afterward we select the best μ individuals from the total
population and return to compare the new models with the observed image.

The pseudocode of the ES+LWLR algorithm for this problem is the following:

1. Create μ = 7 parent vectors xi i = 1, . . . , μ, where each vector contains 6
parameters xi = [re,i, Ie,i, I0,i, r0,i, i1,i, i2,i], and their corresponding strategy
parameter vectors σi i = 1, . . . , μ with the same dimensionality as xi. Each
parameter is chosen through a random process and satisfying the constraints
of the problem.
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2. For each vector xi produce a simulated galaxy image mi

3. For each mi compute the fitness function

f(mi) = 1 − 1
max

√∑256
j=1

∑256
l=1(mi,j,l − oj,l)2

4. If some model mi fits good the observed galaxy brightness profile terminate,
otherwise continue next step

5. Create new λ = 14 child individuals in the following way:

– Create 10% of λ population using discrete recombination, from two par-
ents xa and xb:

x′k,j = xa,j or xb,j

σ′
k,j = σa,j or σb,j

– Create 10% of λ population using average operator, from two parents xa

and xb, and a random number d between 0-1:

x′
k = dxa + (1 − d)xb

σ′
k = dσa + (1 − d)σb

– Create 80% of λ population using mutation:

x′
k = xa + N(0,σa)

6. For each vector x′
k produce a simulated galaxy image m′

k k = 1, . . . , λ

7. For each m′
k compute the fitness function

f(m′
k) = 1 − 1

max

√∑256
j=1

∑256
l=1(m′

k,j,l − oj,l)2

8. Merge μ and λ populations to obtain a (μ + λ) population

9. Sort the merged population by fitness function, in descending order

10. Pass entire population xk, its corresponding models mk k = 1, . . . , μ+λ and
original observed image o to LWLR module where:

(a) Calculate relevance for all the models wi = 1
|o−mi| i = 1, . . . , μ + λ

(b) Select the k = 7 closest examples to form matrix W

(c) Transform each simulated image mj j = 1, . . . , k in a row for matrix H

(d) Transform o in a row
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(e) Transform each individual xj j = 1, . . . , k in a row for matrix Y

(f) Do Z = WH

(g) Do V = WY

(h) Do y = oTZ∗V

(i) Return y

11. Do xμ = y
12. Select the best μ individuals from the sorted population

13. Mutate strategy parameter vectors:

σ′
i =

{
0.3σi if xi is a child
3.3σi if xi is a parent

where these values have been selected experimentally.

14. If some model mi fits good the observed galaxy brightness profile or the max-
imum number of generations is reached terminate, otherwise return to 5

4 Results

In order to evaluate the performance of the hybrid algorithm ES+LWLR we have
obtained results for a set of 100 galaxies. Also, we made a comparison with ES
algorithm alone to have a best scenario about the improvements reached with
the hybrid algorithm.

The fitting of one galaxy image takes on average 12 minutes on a PC with a
PIV 3 Ghz processor and 512 MB of RAM, using MatLab. Computational time
can be improved if we employ a compiler language such C, C++ or FORTRAN
rather than an interpreter one.

The fitness function describes the fitness of each individual by measuring the
normalized Euclidean distance with respect to the observed image o, the function
is ranged from 0 to 1, with 1 as a perfect match and 0 as totally different images.
We say a model m∗ matches perfectly the observed image when f(m∗) = 0, but
since we are matching models with observational data, we do not expect to reach
the real maximum. Rather, we are interested in obtaining good approximations
to the observed flux distribution.

After a set of experiments we determined that a value of 0.96 for the fitness
function is good enough and the model can be acceptable, a bigger value for this
threshold would lead to a better fit, albeit at an increase in computation time.

We illustrate the fitting of brightness profiles with a sample of 5 examples,
presented in Table 1 that shows 5 galaxy images and their corresponding models
approximated by ES+LWLR or ES. The first column indicates the name of the
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Table 1. Comparison between ES and ES+LWLR for a set of 5 galaxy images (F.E.
means Function Evaluations)

Galaxy Original Image Best Model Difference Algorithm F.E. f(m)

NGC2768 ES 5140 0.9824
ES+LWLR 4600 0.9731

NGC2903 ES 3700 0.9719
ES+LWLR 4180 0.9717

NGC3031 ES 5740 0.9616
ES+LWLR 730 0.9575

NGC3344 ES 2430 0.9514
ES+LWLR 2020 0.9513

NGC4564 ES 3670 0.9917
ES+LWLR 3160 0.9615
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Table 2. Comparison between ES and ES+LWLR for a set of 100 galaxy images

Algorithm Function Evaluations f(m) Standard Success
(average) (average) deviation (%)

ES 2239 0.97738 0.00563 85

ES+LWLR 1846 0.97733 0.00607 86

galaxy, the second, third and fourth columns show the original, the model and
the difference images respectively, the fifth one indicates the algorithm (ES or
ES+LWLR), the sixth presents the total number of function calls needed by the
algorithm to reach convergence, and the last one shows the value for the cost
function for the maximum found for each algorithm. We can observe that, as
stated before, structure features (such as bridges, tails or spiral arms) of the
galaxies are not fitted by the models, but the general distribution of brightness
and angles are approximated very closely. Better fit is obtained in the central
part, because basically in all the galaxies the centre is formed by a bulge, which
can be fitted very well using the de Vaucoleurs’ law; outer parts of galaxies are
less fitted because the models are known not to be as accurate to describe details
about structures.

In Table 2 we present the summarized results for a sample of 100 galaxy
images, comparing behaviors of ES and ES+LWLR algorithms. The employed
set in this case was formed using 85 spiral galaxies and 15 elliptical galaxies.
We can see in the table that both algorithms have similar behaviors in terms of
accuracy and average value for fitness function, because both of them present
very similar values: 85% and 0.97738 for ES and 86% and 0.97733 for ES+LWLR.
Nevertheless, we also observe that ES+LWLR has a better performance since it
presents a less number of function evaluations than ES.

5 Conclusions

In this work we have solved the problem of two-dimensional fitting of bright-
ness profiles for spiral and elliptical galaxies using a hybrid algorithm, based on
Evolution Strategies and Locally Weighted Linear Regression, an instance based
method, this new algorithm is called ES+LWLR. The hybrid algorithm achieved
very good results, because was able to find an acceptable solution for almost all
the cases in the galaxy images set. The ES+LWLR algorithm shows that knowl-
edge generated by ES, in form of proposed solutions or individuals within a
population can be employed to breed a new solution or individual that could be
potentially better than those in the present population. This improved solution
inserted in the set of current individuals helps to improve the global fitness of
the population. Literally, LWLR is exploiting current population configuration
for predicting directly a new solution.

Next step with this algorithm is a version where more than one individual
is produced by LWLR, taking various training sets extracted from the current
population in a random way.
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Abstract. Recognizing people by gait has a unique advantage over other
biometrics: it has potential for use at a distance when other biometrics
might be at too low a resolution, or might be obscured. In this paper, an
improved method for gait recognition is proposed. The proposed work
introduces a nonlinear machine learning method, kernel Principal Com-
ponent Analysis (KPCA), to extract gait features from silhouettes for
individual recognition. Binarized silhouette of a motion object is first
represented by four 1-D signals which are the basic image features called
the distance vectors. The distance vectors are differences between the
bounding box and silhouette, and extracted using four projections to sil-
houette. Classic linear feature extraction approaches, such as PCA, LDA,
and FLDA, only take the 2-order statistics among gait patterns into ac-
count, and are not sensitive to higher order statistics of data. Therefore,
KPCA is used to extract higher order relations among gait patterns
for future recognition. Fast Fourier Transform (FFT) is employed as a
preprocessing step to achieve translation invariant on the gait patterns
accumulated from silhouette sequences which are extracted from the sub-
jects walk in different speed and/or different time. The experiments are
carried out on the CMU and the USF gait databases and presented based
on the different training gait cycles. Finally, the performance of the pro-
posed algorithm is comparatively illustrated to take into consideration
the published gait recognition approaches.

1 Introduction

The image-based individual human identification methods, such as face, finger-
prints, palmprints, generally require a cooperative subject, views from certain
aspects, and physical contact or close proximity. These methods cannot reli-
ably recognize non-cooperating individuals at a distance in the real world under
changing environmental conditions. Gait, which concerns recognizing individuals
by the way they walk, is a relatively new biometric without these disadvantages
[1]-[6][8]. In other words, a unique advantage of gait as a biometric is that it of-
fers potential for recognition at a distance or at low resolution when the human
subject occupies too few image pixels for other biometrics to be perceivable.
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Various gait recognition techniques have been proposed and can be broadly
divided as model-based and model-free approaches. Model based approaches
[13][21] aim to derive the movement of the torso and/or the legs. They usually
recover explicit features describing gait dynamics, such as stride dimensions and
the kinematics, of joint angles.

Model-free approaches are mainly silhouette-based approaches. The silhouette
approach[8][14][9][12][3][2][6] characterizes body movement by the statistics of the
patterns produced by walking. These patterns capture both the static and dy-
namic properties of body shape. A hidden Markov models based framework for
individual recognition by gait is presented in [9]. The approach in [14] first ex-
tracts key frames from a sequence and then the similarity between two sequences
is computed using the normalized correlation. The template matching method in
[5] is extended to gait recognition by combining transformation based on canonical
analysis and used eigenspace transformation for feature selection. In the work in
[8], the similarity between the gallery sequence and the probe sequence is directly
measured by computing the correlation corresponding time-normalized frame
pairs. The approach in [3] presents self similarity and structural stride parameters
(stride and cadence) used PCA applied to self-similarity plots that are derived by
differencing. In [2], eigenspace transformation based on PCA is first applied to the
distance signals derived from a sequence of silhouette images, then classification
is performed on gait patterns produced from the distance vectors. Han et. al. [6]
used the Gait Energy Image formed by averaging silhouettes and then deployed
PCA and multiple discriminant analysis to learn features for fusion.

In this paper, we presents an improved silhouette-based (model-free) approach
and kernel PCA is applied to extract the gait features. The main purpose and
contributions of this paper:

– An improved spatio-temporal gait representation, we called gait pattern,
is first proposed to characterize human walking properties for individual
recognition by gait. The gait pattern is created by the distance vectors. The
distance vectors are differences between the bounding box and silhouette,
and are extracted by using four projections of silhouette.

– A Kernel Principal Component Analysis (KPCA) based method is then ap-
plied for feature extraction. KPCA is a state-of-the art nonlinear machine
learning method. Experimental results achieved by PCA and KPCA based
methods are comparatively presented.

– FFT is employed to achieve translation invariant on the gait patterns which
are especially accumulated from silhouette sequences extracted from the sub-
jects walk in different speed and/or different time. Consequently, FFT+
KPCA based method is developed to achieve higher recognition for individ-
uals in the database includes training and testing sets do not correspond to
the same walking styles.

– A large number of papers in literature reported their performance without us-
ing different training numbers. Here, we provide some quantitative compara-
tive experiments to examine the performance of the proposed gait recognition
algorithm with different number of training gait cycles of each person.
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2 Gait Pattern Representation

In this paper, we only consider individual recognition by activity-specific human
motion, i.e., regular human walking, which is used in most current approaches
of individual recognition by gait. We first represent the spatio-temporal infor-
mation in a single 2D gait template (pattern) by using multi-projections of sil-
houette. We assume that silhouettes have been extracted from original human
walking sequences. A silhouette preprocessing procedure [8][17] is then applied
on the extracted silhouette sequences. It includes size normalization (proportion-
ally resizing each silhouette image so that all silhouettes have the same height)
and horizontal alignment (centering the upper half silhouette part with respect
to its horizontal centroid). In a processed silhouette sequence, the process of
period analysis of each gait sequence is performed as follows: once the person
(silhouette) has been tracked for a certain number of frames, then we take the
projections and find the correlation between consecutive frames, and do normal-
ization by subtracting its mean and dividing by its standard deviation, and then
smooth it with a symmetric average filter. Further we compute its autocorre-
lation to find peaks indicate the gait frequency (cycle) information. Hence, we
estimate the real period as the average distance between each pair of consecutive
major peaks [20][2].

2.1 Representation Construction

Gait pattern is produced from the projections of silhouettes which are generated
from a sequence of binary silhouette images, Bt(x, y), indexed spatially by pixel
location (x, y) and temporally by time t. An example silhouette and the distance
vectors corresponding to four projections are shown in Figure 1. The distance
vectors (projections) are the differences between the bounding box and the outer
contour of silhouette. There are 4 different image features called the distance
vectors; top-, bottom-, left- and right-projections. The size of 1D signals for left-
and right-projections is the height of the bounding box. The values in the both
signals are the number of columns between bounding box and silhouette at each
row. The size of the 1D signals for both top- and bottom-distance vectors is the
width of the bounding box, and the values of the signals are the number of rows
between the box and silhouette at each column.

Thus, each gait pattern can separately be formed as a new 2D image. For
instance, gait pattern image for top-projection is formulated as PT (x, t) =∑

y Bt(x, y) where each column (indexed by time t) is the top-projections (row
sum) of silhouette image Bt(x, y), as shown in Figure 1 (Middle-Top). The
meaning of Bt(x, y) is complement of silhouette shape, that is empty pixels
in the bounding box. Each value PT (x, t) is then a count of the number of rows
empty pixels between the top side of the bounding box and the outer contours in
that columns x of silhouette image Bt(x, y). The result is a 2D pattern, formed
by stacking row projections (from top of the bounding box to silhouette) to-
gether to form a spatio-temporal pattern. A second pattern which represents the
bottom-projection PB(x, t) =

∑
−y Bt(x, y) can be constructed by stacking row
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Fig. 1. Silhouette representation. (Left) Silhouette and four projections, (Middle)
Gait patterns produced from top and bottom projections, (Right) Gait patterns ob-
tained from left and right projections.
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projections (from bottom to silhouette), as shown in Figure 1 (Middle-Bottom).
The third pattern PL(y, t) =

∑
x Bt(x, y) is then constructed by stacking

columns projections (from left of the bounding box to silhouette) and the last
pattern PR(y, t) =

∑
−x Bt(x, y) is also finally constructed by stacking columns

projections (from right to silhouette), as shown in Figure 1 (Right), respectively.
For simplicity of notation, we write

∑
y,

∑
−y,

∑
x, and

∑
−x as shorthand for

∑Contour−of−silhouette
y=Top−of−the−box ,

∑Contour−of−silhouette
y=Bottom−of−the−box,

∑Contour−of−silhouette
x=Left−side−of−the−box, and

∑Contour−of−silhouette
x=Right−side−of−the−box, respectively.
The variation of each component of the distance vectors can be regarded as gait

signature of that object. From the temporal distance vector plots, it is clear that
the distance vector is roughly periodic and gives the extent of movement of differ-
ent part of the subject. The brighter a pixel in 2D patterns in Figure 1 (Middle
and Right), the larger value is the value of the distance vector in that position.

3 Human Recognition Using Gait Patterns

In this section, we describe the proposed approach for gait-based human recogni-
tion. Binarized silhouettes are produced by using motion segmentation which is
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Fig. 2. System diagram of human recognition using the proposed approach

achieved via background modeling using a dynamic background frame estimated
and updated in time, for details see to [7]. In the training procedure, each training
silhouette sequence is divided into cycles by gait cycle estimation. Training gait
patterns are then computed from each cycle. To be achieve translation invariant
for the situation that training and test sequences are obtained from the subjects
walk different speed and/or different time, the 2D gait pattern is transformed
to spectral domain by using frequency transform (FFT). Next, features useful
for distinguishing between different persons are extracted by kernel PCA-based
nonlinear feature extraction method from the normalized gait pattern. As a re-
sult, training gait transformation matrices and training gait features that form
feature databases are obtained. This is independently repeated for each gait pat-
terns produced from the projections. In the recognition procedure, each test gait
silhouette sequence is processed to generate test gait patterns. These patterns
are then transformed by transformation matrices to obtain gait pattern features.
Test gait pattern features are compared with training gait pattern features in the
database. This is separately performed for each gait pattern features constructed
by each projections. Finally a feature fusion strategy is applied to combine gait
pattern features at the decision level to improve recognition performance. The
system diagram is shown in Figure 2.

3.1 Kernel PCA

The kernel PCA (KPCA) is a technique for nonlinear dimension reduction of
data with an underlying nonlinear spatial structure. A key insight behind KPCA
is to transform the input data into a higher-dimensional feature space [15]. The
feature space is constructed such that a nonlinear operation can be applied in the
input space by applying a linear operation in the feature space. Consequently,
standard PCA can be applied in feature space to perform nonlinear PCA in the
input space.

Given k class for training, and each class represents a sequence of the distance
vector signals of a person. Multiple sequences of each subject can be added for
training, but we have used a sequence includes one gait cycle. Let Pw

i,j be the
jth distance vector signal in the ith class for w projection to silhouette and Mi
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the number of such distance vector signals in the ith class. The total number of
training samples is Mw

t = Mw
1 + Mw

2 + ... + Mw
k , as the whole training set can

be represented by [Pw
1,1, P

w
1,2, .., P

w
1,M1

, Pw
2,1, ..., P

w
k,Mk

]. For ease of understanding,
we denote the training samples, Pw

i,j , as χi ∈ &N , i = 1, ..,M , where M is total
number of samples.

Thus, given a set of examples χi ∈ &N , i = 1, ...M, which are centered,∑M
i=1 χi = 0, PCA finds the principal axis by diagonalizing the covariance

matrix:

C =
1
M

M∑

i=1

χiχ
T
j (1)

Eigenvalue equation, λv = Cv is solved where v is eigenvector matrix. First few
eigenvectors are used as the basic vectors of the lower dimensional subspace.
Eigen features are then derived by projecting the examples onto these basic
vectors [16].

In kernel PCA, the data, χ from input space is first mapped to a higher
dimensional feature space by using a map Φ : &N → F , and then performing a
linear PCA in F . The covariance matrix in this new space F is,

C =
1
M

M∑

i=1

Φ(χi)Φ(χi)T (2)

Now the eigenvalue problem becomes λV = CV . As mentioned previously we
do not have to explicitly compute the nonlinear map Φ. The same goal can be
achieved by using the kernel function k(χi, χj) = (Φ(χi)·Φ(χj)), which implicitly
computes the dot product of vector χi and χj in the higher dimensional space
[15]. The most often used kernel functions are Gaussian kernel, polynomial ker-
nels, and sigmoid kernels [15]. Gaussian kernel was used for the experimentation
in this work, and it is defined as,

k(χi, χj) = exp

(

−‖χi − χj‖2

2σ2

)

, (3)

Pairwise similarity between input examples are captured in a matrix K which
is also called Gram matrix. Each entry Ki,j of this matrix is calculated using
kernel function k(χi, χj). Eigenvalue equation in terms of Gram matrix written
as (see[15]),

MAΛ = KA, (4)

with A = (α1, ..., αM ) and Λ = diag(λ1, ..., λM ). A is a M x M orthogonal eigen-
vector matrix and Λ is a diagonal eigenvalue matrix with diagonal elements in
decreasing order. Since the eigenvalue equation is solved for A’s instead of eigen-
vectors Vi of Kernel PCA, we will have to normalize A to ensure that eigenvalues
of Kernel PCA have unit norm in the feature space, therefore αj = αj/

√
λj .

After normalization the eigenvector matrix, V , of Kernel PCA is computed as
follows,

V = DA (5)



Gait Recognition by Applying Multiple Projections and Kernel PCA 733

where D = [Φ(χi)Φ(χ2) · · ·Φ(χM )] is the data matrix in feature space. Now let
χ be a test example whose map in the higher dimensional feature space is Φ(χ).
The Kernel PCA features for this example are derived as follows:

F = V TΦ(χ) = ATB, (6)

where B = [Φ(χ1) · Φ(χ)Φ(χ2) · Φ(χ) · · ·Φ(χM ) · Φ(χ)]T .

3.2 Similarity Measurement

Weighted Euclidean Distance (WED) measuring has initially been selected for
classification [23], and is defined as follow:

WED : dk =
N∑

i=1

(f(i) − fk(i))2

(sk)2
(7)

where f is the feature vector of the unknown gait pattern, fk and sk denote the
kth feature vector and its standard deviation, and N is the feature length. In
order to increase the recognition performance, a fusion task is developed for the
classification results given by each projections.

3.3 Fusion

Two different strategies were developed. In strategy 1, each projection is sepa-
rately treated. Then the strategy is to combine the distances of each projection
at the end by assigning equal weight. The final similarity using strategy 1 is
calculated as follows:

Di =
4∑

j=1

wj ∗ dji (8)

where Di is the fused distance similarity value, j is the algorithm’s index for pro-
jection, w its normalized weight, di its single projection distance similarity value,
and 4 is the number of projections (left, right, top, bottom). In conclusion, if any
2 of the distance similarity values in the 4 projections give maximum similari-
ties for the same person, then the identification is determined as to be positive.
Therefore, fusion strategy 1 has rapidly increased the recognition performance
in the experiments.

In the experimental studies, it has been seen that some projections have given
more robust results than others. For example, while a human moves in the lateral
view, with respect to image plane, the back side of the human gives more indi-
vidual characteristics of gait. The projection corresponding to that side can give
more reliable results, and in such case, is called the dominant feature. As a result,
strategy 2 has also been developed to further increase recognition performance.
In the strategy 2, if the dominant projection, or at least 2 projections of others,
are positive for an individual, then the final identification decision is positive.
The dominant feature in this work is automatically assigned by estimating the
direction of motion objects under tracking [17].
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4 Experiments and Results

We evaluate the performance of the method on CMU’s MoBo database[18], and
USF database [8].

4.1 CMU Database

This database has 25 subjects (23 males, 2 females) walking on a treadmill. Each
subject is recorded performing four different types of walking: slow walk, fast
walk, inclined walk, and slow walk holding ball. There are about 8 cycles in
each sequence, and each sequences is recorded at 30 frames per second. It also
contains six simultaneous motion sequences of 25 subjects, as shown in figure 3.

We did mainly different two type experiments on this database: In type I,
all subjects in train set and test set walk on the treadmill at the same walking
type. In type II, all subjects walk on the treadmill at different two walking types,
and it is called that fast walk and slow walk. We did two kinds of experiment
for each type investigation. They are: I.1) train on fast walk and test on fast
walk, I.2) train on slow walk and test on slow walk. Type II: II.1) train on slow
walk and test on fast walk; II.2) train on fast walk and test on slow walk.

First, we use six gait cycles of each person are selected to form a training set,
and the rest is used to test. PCA-based method was employed to extract the fea-
tures from gait patterns, and then the WED based NN is used for classification.
The fusion was finally performed to achieve the final decision. We first tested
the performance of this algorithm for Type I, and it is summarized in Table 1.
It can be seen from Table 1 that the right person in the top one match 100% of
the times for the cases where testing and training sets correspond to the same
walking styles for all viewpoints.

Second, seven kinds of experiment tests were designed: one (two, three, four,
five, six, or seven) gait cycle(s) of each person was randomly selected for training,
and the other seven gait cycles were used for authentication, respectively. During
the experiments, the features are extracted by using the eigenspace method given
above. Based on these tests, the matching is separately conducted and the results
for Type I experiment are given in Figures 4 and 5. The results illustrated in
Figures 4 and 5 are obtained from the experiments: train on fast walk and test on
fast walk; train slow walk and test on slow walk, respectively. The experimental

Fig. 3. The six CMU database viewpoints

View 1 View 2 View 3 View 4 View 5 View 6
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Table 1. Gait Recognition across different views (CMU Data)

CMU Gait Database View Points
Test – Train View 1 View 3 View 4 View 5 View 6

Fast – Fast 100 100 100 100 100
Slow – Slow 100 100 100 100 100

results show that the recognition rate is increased when the more gait cycles
are used as training test. We did not need to apply kernel PCA-based feature
extraction on the gait patterns, because PCA-based method had achieved the
high recognition rates (100%) in this type of the experiments.
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Fig. 4. Illustration of the recognition performance variation with different training gait
cycles of each person. Train on fast walk, test on fast walk.

View 1 View 3 View 4

View 5 View 6

The third experiment, we called Type II, was also done on the gait sequences
extracted from the subjects walk on the treadmill with different speed. It is
called as slow walk and fast walk. For the case of training with fast walk and
testing on slow walk, and vice versa, the dip in performance is caused due to
the fact that for some individual as biometrics suggests, there is a considerable
change in body dynamics and stride length as a person changes his speed. The
results for Type II experiments are also summarized in Table 2. Table 2 shows
experimental results obtained by different feature extraction methods presented
in this paper. In this table, rank1 performance means the percentage of the
correct subjects appearing in the first place of the retrieved rank list and rank5
means the percentage of the correct subjects appearing in any of the first five
places of the retrieved rank list. The performance in this table is the recognition
rate under these two definitions.
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Fig. 5. Illustration of the recognition performance variation with different training gait
cycles of each person. Train on slow walk and test on slow walk.

There are 8 gait cycles at the slow walking and fast walking data sets for each
view. The 8 cycles in one walking type are used as train set, the 8 cycles in other
walking type are used as test set. The gait patterns are produced as explained in
section 2.1. The features in the gait patterns are extracted by using four different
features extraction methods given in Table 2. When it is considered, it seen that
kernel PCA-based feature extraction gives better performance than PCA-based
method. There is quite possible translation variant problem between two gait
patterns extracted from the subjects walk with different walking styles and/or
different times. To achieve translation invariant for the proposed method, the
gait pattern in the spatial domain is first transformed to the spectral domain by
using one dimensional (1-D) FFT. 1-D FFT process is independently performed
in horizontal or vertical directions for the gait patterns produced from both

Table 2. Experiments for two different walking styles with different view points. Each
walking styles includes 8 gait cycles.

Train View 1 View 3 View 4 View 5 View 6
Test Method Rank: 1 5 Rank: 1 5 Rank: 1 5 Rank: 1 5 Rank: 1 5

Slow
PCA 31.5 46 44 64.5 27 58.5 29 44 46 64.5

KPCA 33 54 46.5 68.5 34.5 60.5 35 54 48 63.5

Fast
FFT+PCA 65 89 80 91.5 63 91 64.5 87 67 87.5

FFT+KPCA 73 89 76.5 92.5 71.5 94 64 89 76 91.5

Fast
PCA 27 50.5 52 68.5 28 67.5 26 47.5 49 65

KPCA 39.5 62 53.5 69 31.5 59 24.5 51 49 65

Slow
FFT+PCA 61.5 85 74.5 88 62.5 90.5 64 85 73.5 88

FFT+KPCA 66.5 89.5 79.5 91.5 61 89.5 67 90 74 88.5
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the left and right-projections or for the gait patterns produced from both the
top- and bottom-projections, respectively. Then PCA- and kernel PCA-based
feature extraction methods are employed to achieve higher recognition rates,
as illustrated in Table 2. Consequently, highest recognition rates for most view
points were achieved by using FFT+KPCA based feature extraction method.

Table 3 compares the recognition performance of different published
approaches on MoBo database. Several papers have published results on this
data set, hence, it is a good experiment data set to benchmark the performance
of the proposed algorithm. Table 3 lists the reported identification rates for eight
algorithms on eight commonly reported experiments. The first row lists the per-
formance of the proposed method. For seven experiments the performance of the
proposed algorithm is always highest score. The numbers for given in Table 3
are as read from graphs and tables in the cited papers. The number of the sub-
jects in the training set and test set is 25. In the test experiments for train on
fast walk and test on slow walk, or vice versa, 200 gait patterns (25 persons X 8
gait cycles) for each experiment were used to present the performance of the
proposed method.

Table 3. Comparison of several algorithm on MoBo dataset

Train Slow Fast Slow Fast
Test Slow Fast Fast Slow

Viewpoint View 1 View 3 View 1 View 3 View 1 View 3 View 1 View 3

Proposed method 100 100 100 100 73 76.5 66.5 79.5
BenAbdelkader et.al.[3] 100 96 100 100 54 43 32 33

UMD [9][10][11] 72 - 70 - 32 - 58 -
UMD [13] 72 - 76 - 12 - 12 -
CMU [14] 100 - - - 76 - - -

Baseline [8] 92 - - - 72 - - -
MIT[19] 100 - - - 64 - - -

4.2 USF Database

The USF database [8] is finally considered. This database consists of persons walk-
ing in elliptical paths in front of the camera. Some samples are shown in Figure 6.
For each person, there are up to five covariates: viewpoints (left/right), two differ-
ent shoe types, surface types (grass/concrete), carrying conditions (with/without
a briefcase), and time and clothing. Eight experiments are designed for individual
recognition as shown in Table 4. Sarkar et. al. [8] propose a baseline approach to
extract human silhouette and recognize an individual in this database. The ex-
periments in this section begin with these extracted binary silhouette data. These
data are noisy, e.g., missing of body parts, small holes inside the objects, severe
shadow around feet, and missing and adding some parts around the border of sil-
houettes due to background characteristics. In Table 4, G and C indicate grass
and concrete surfaces, A and B indicate shoe types, and L and R indicate left and
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Fig. 6. Some sample images in the database described in [22][8]

right cameras, respectively. The number of subjects in each subset is also given in
square bracket. Each one also includes 4-5 gait cycle sequence.

The experimental results on the standard USF HumanID Gait database ver-
sion 1.7 are summarized in Table 4. In this table, the performance of PCA-
and KPCA-based feature extraction methods are comparatively illustrated. The
matching is also conducted independently based on weighted Euclidean dis-
tance classifier. The decision results based on the fusion strategies, explained in
section 3.3, are additionally given in Table 4. Fusion 1 and Fusion 2 indicate
that the results are produced by using the strategy I and the strategy II, respec-
tively. It is observed from the experiments that, the recognition performance is
increased when the strategy II is used in the fusion process.

Table 4. Classification performance for the USF data set, version 1.7

PCA KPCA

Experiment Fusion 1 Fusion 2 Fusion 1 Fusion 2

CAL[71] 78.8 85.9 84.5 90.1
CAR[71] 85.9 88.7 85.9 87.3
CBL[43] 74.4 86.04 81.3 90.6
CBR[43] 83.7 93.02 79.06 88.3
GAL[68] 86.7 92.6 88.2 92.6
GAR[68] 79.4 82.3 80.8 85.2
GBL[44] 90.9 93.1 93.1 95.4
GBR[44] 77.2 86.3 86.3 90.9

To analyze the relationship between the performance of the proposed method
and number of training gait cycles of each person, four kinds of experiment types
were designed: one (two, three, or four) training gait cycle(s) of each person was
randomly selected for training, and the other gait cycles were used for authentica-
tion, respectively. These experimental results are given in Figure 7. KPCA- and
PCA-based features extraction methods are comparatively illustrated, as well.
In the Figure 7, y-axis indicates recognition rate, and x-axis indicates the num-
ber of training gait cycles of each person. When the plotted results in Figure 7
are considered, it can be seen that kernel PCA-based feature extraction approach
achieves better performance than PCA-based approach. From the results we can
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Fig. 7. Illustration of the recognition performance variation with different training gait
cycles of each person

report that the accuracy can be greatly improved with the growth of the training
gait cycles. For instance, when the proposed algorithm is trained using 1 gait
cycle in the experiment GBL, an accuracy of 72.1% is achieved. When 4 gait
cycles are used for training, a higher accuracy of 95.4% can be gotten. It is evi-
dent that training gait cycle number can play an important role in the matching
process. More training gait cycles lead to a high recognition rate.

Table 5 compares the recognition performance of different published
approaches on the USF silhouette version 1.7. The performance of the proposed
algorithm is better than other approaches in GBR, GBL, CAR, CBR, CAL, and
CBL, and slightly worse in GAL.

Table 5. Comparison of recognition performance using different approaches on USF
silhouette sequence version 1.7

Exp. The method Baseline[22] NLPR[2] UMD-Indirect[9] UMD-Direct[9] GEI [6]
GAL 92.6 79 70.42 91 99 100
GBR 90.9 66 58.54 76 89 90
GBL 95.4 56 51.22 65 78 85
CAR 87.3 29 34.33 25 35 47
CBR 88.3 24 21.43 29 29 57
CAL 90.1 30 27.27 24 18 32
CBL 90.6 10 14.29 15 24 31

5 Conclusion

In this paper, we first propose to improve the spatio-temporal gait representa-
tion, which is multi-projections of silhouettes developed by our previous work
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[20], for individual recognition by gait. As the others contributions and novelties
in this paper, 1) Kernel PCA based features extraction approach for gait recog-
nition is then presented, 2) FFT-based pre-processing is also proposed to achieve
translation invariant for the gait patterns which are produced from silhouette
sequences extracted from the subjects walk in different walking styles. 3) The
experimental results were finally submitted to examine the performance of the
proposed algorithm with different training gait cycles. The proposed approach
achieves highly competitive performance with respect to the published major
gait recognition approaches.

Acknowledgments. This research was partially supported by The Research
Foundation of Karadeniz Technical University (Grant No: KTU-2004.112.009.001).
The authors would like to thank to Dr. R.T. Collins from Carnegie Mellon Uni-
versity, U.S.A., for providing us with the CMU database, Dr. S. Sarkar from the
University of South Florida, U.S.A., for providing us with the USF database.

References

1. Nixon, M.S., Carter, J.N.: Automatic Recognition by Gait. Proceeding of the
IEEE 94(11), 2013–2023 (2006)

2. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition
for Human Identification. IEEE Trans. on PAMI 25(12), 1505–1518 (2003)

3. BenAbdelkader, C., Cutler, R.G., Davis, L.S.: Gait Recognition Using Image Self-
Similarity. EURASIP Journal of Applied Signal Processing 4, 1–14 (2004)

4. Veres, G.V., et al.: What image information is important in silhouette-based gait
recognition?. In: Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition vol. 2, pp. 776–782 (2004)

5. Huang, P., Harris, C., Nixon, M.S.: Human Gait Recognition in Canonical Space
Using Temporal Templates. IEE Vision Image and Signal Processing 146, 93–100
(1999)

6. Han, J., Bhanu, B.: Individual Recognition Using Gait Image Energy. IEEE Trans.
on Pattern Analysis and Machine Intelligence 28(2), 316–322 (2006)

7. Ekinci, M., Gedikli, E.: Background Estimation Based People Detection and Track-
ing for Video Surveillance. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS,
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Abstract. Programs for gene prediction in computational biology are
examples of systems for which the acquisition of authentic test data is
difficult as these require years of extensive research. This has lead to test
methods based on semiartificially produced test data, often produced by
ad hoc techniques complemented by statistical models such as Hidden
Markov Models (HMM). The quality of such a test method depends on
how well the test data reflect the regularities in known data and how
well they generalize these regularities. So far only very simplified and
generalized, artificial data sets have been tested, and a more thorough
statistical foundation is required.

We propose to use logic-statistical modelling methods for machine-
learning for analyzing existing and manually marked up data, integrated
with the generation of new, artificial data. More specifically, we suggest
to use the PRISM system developed by Sato and Kameya. Based on logic
programming extended with random variables and parameter learning,
PRISM appears as a powerful modelling environment, which subsumes
HMMs and a wide range of other methods, all embedded in a declar-
ative language. We illustrate these principles here, showing parts of a
model under development for genetic sequences and indicate first initial
experiments producing test data for evaluation of existing gene finders,
exemplified by GENSCAN, HMMGene and genemark.hmm.

1 Introduction

A computer program calculating a well-defined mathematical function is either
correct or incorrect, and testing is a systematic process aiming to prove the
software incorrect. One sort of test is black-box (or external) testing, which
consists of running selected data through the program and comparing observed
and expected results; established methods exist for designing test data suites
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that increase the chance of finding errors [1]. Systems for information retrieval
and extraction, on the other hand, have no such simple correctness criteria and
are evaluated by relative measurements such as precision and recall in manually
marked-up test data, e.g., the text corpora provided by the TREC and MUC
conferences [2,3].

Gene finding programs, whose job is related to information extraction, aim to
predict the total number and locations of genes in sequences of up to 3 billion
letters. Here the situation is more subtle as a the production of marked-up test
sequences may require years of research. In addition to this, it may be a research
project in itself, to verify that a new gene suggested by a gene finder is correct.

Following the completion and release of the human genome sequence, a wide
range of gene finder programs have been published. The tools differ in which kind
of knowledge they integrate in gene modelling; from the fundamental ab initio
approach, like GENSCAN [4], where generalized knowledge of genes is used, to
the more opportunistic models, like GeneWise [5] and GenomeScan [6], where
already known sequences of genes, EST’s and proteins are used for finding genes
by sequence similarity. One major problem with the existing gene prediction
tools seems to be the lack of appropriate methods to evaluate their accuracy.
The two major groups of human genome sequencing, Celera and Ensemble both
predicted about 30,000 genes in the human genome [7,8], but a comparison of
the predicted genes [9], revealed a very little overlap. This also seems to be
the problem with other gene prediction tools. Which tools are more correct, is
not easy to conclude, since most of the new predicted genes are not possible to
classify as either correct genes that have not been found yet, or false predicted
genes. This also applies to the underlying layer, of telling wrong exons (false
positives) from those that have not been found yet. Another problem with the
currently used training sets is that they usually consists of relatively simple
genes, like the leading Burset/Guigó training set [10], with generalized features
like containing few exons, all having tataboxes, having no overlapping genes and
so on. Therefore most gene finders get very good at finding simple structured
genes, and poor at finding the complex ones. The evaluation of gene finders
does also have a problem, with sometimes large overlaps between the data sets
used for training and the data sets used for estimating the accuracy of the gene
finders [11].

To partly overcome these problems, test methods have been proposes based
on semiartificially produced test data, typically by a combination of ad hoc
techniques and statistical models such as Hidden Markov Models (HMM). The
quality of such a test method depends on how well the test data reflect the reg-
ularities of known data and how well they generalize these regularities. So far
only very simplified, artificial data sets have been tested, and a more thorough
statistical foundation is required. A semiartificial data set [11] was generated to
overcome these problems, in which a large set of annotated genes were placed
randomly in an artificial, randomly generated intergenic background. This back-
ground sequence, however, is constructed in rather simplified, using a Markov
Model to generate GC content of 38%. The present work is intended as a further
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step in this direction, demonstrating how the logic-statistical machine-learning
system PRISM, introduced by other authors [12,13], can be used for the devel-
opment of more sophisticated and reliable models. Based on logic programming
extended with random variables and parameter learning, PRISM appears as a
powerful modelling environment, which subsumes HMMs and a wide range of
other methods, all embedded in a declarative language.

We illustrate these principles here, showing parts of a model under develop-
ment in PRISM for genetic sequences and indicate first experiments producing
test data for evaluation of existing gene finders, exemplified by GENSCAN [4],
HMMGene [14] and genemark.hmm [15]. The advantage of the approach, that
we can demonstrate, is the relative ease and flexibility with which these proba-
bilistic models can be developed, while a claim that the approach may lead to
biologically more well-founded models needs to be supported by more extensive
testing.

PRISM embeds a both powerful and very flexible modelling language, which
makes it possible to embed biological knowledge about genome sequences. A
model in PRISM is parameterized by probabilities for random variables, and
training the model with known data generates estimates for these probabilities.
Using the same model, these probabilities can be used for generating artificial
data that mimic in a faithful way sufficiently many properties of the authentic
data. The generated data are marked up with information of where the model
decided to put in genes, and a given gene finder can be evaluated in a precise way,
by comparing its proposals for genes with those of the PRISM model (which,
here, would play the role of “true” ones). We describe an experiment testing the
three gene finders.

Section 2 gives a brief introduction to PRISM, and section 3 presents frag-
ments a PRISM model for genomic sequences, which is still under development.
Section 4 compares briefly with related work, before we show how our model
is used for testing three selected gene finders. Sections 5 and 6 describe and
evaluate the tests and compare the different gene finders. Section 7 discusses the
quality of the test data generated by our model, and section 8 gives perspective
and outline plans for future work.

2 Logic-Statistical Modelling in PRISM

By a modeling paradigm based on logic programs, we take a step upwards in
formal expressibility compared with those models traditionally used in sequence
analysis. Where HMMs are based on regular languages, SCFGs (Stochastic
CFGs) as their name indicates on context-free language, PRISM can specify
any Turing computable language. In practice, and to stay within computation-
ally tractable cases, we need to be more modest and employ the flexibility of
a general programming language to combine existing models and to introduce
auxiliary data structures whenever convenient.

PRISM [12,13] represents a logic-statistical modelling system that combines
the logic programming language Prolog with probabilistic choice and machine
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learning, and is implemented as an extension to the B-Prolog language [16]. It
includes discrete random variables called multi-valued random switches, abbrevi-
ated msw’s. The system is sound with respect to a probabilistic least Herbrand
model semantics, provided that the different msw’s are independent (see the ref-
erences above for details). As an example, we can declare a class of msw’s for
selecting one out of a four different letters at random as follows.

values( nextLetter(_), "ACGT").

Recall that a string such as "ACGT" is a list of character codes, and in gen-
eral the values directive describes a finite list of possible values. The term
nextLetter( ) includes a logical variable which means that, for any possible
value substituted for it, there exists an msw; e.g., nextLetter(t1), nextLetter
(t2). The following fragment shows how an msw typically is used within a rule;
the arrow-semicolon is Prolog’s generalized if-then-else construction; the nota-
tion 0’char indicates the relevant character code.

msw( nextLetter(t1), Letter),
(Letter = 0’A -> ...
; Letter = 0’C -> ...
; Letter = 0’G -> ...
; Letter = 0’T -> ... )

The dots indicate the different actions taken for the different outcomes. In this
way, it is straightforward to write HMM’s as PRISM programs (additional msw’s
may govern state transitions). Other models such as discrete Baysian networks,
Stochastic Context-Free Grammars [17], and Hierarchical HMM’s [18] can also
be described in straightforward ways, and PRISM can be seen as a high-level
tool for defining advanced and directly executable probabilistic models, as we do
in the present paper. Conditional probabilities can be represented using generic
msw names. For example, P (a = x|b = y) is indicated by the code msw(b,Y),
msw(a(Y),X).

We show an illustrative example of a model in PRISM, which also illustrates
the modular structure we apply in our sequence model. We imagine sequences
comprising three types of subsequences t1, t2, t3, put together in random order.
Each type represent sequences of the letters ACGT but with different relative
frequencies for each type. An annotated sequence can be described by a goal
as follows, having the annotations in a separate argument, and numbering the
letters starting from 1.

sequence("AAAACGCGCG",[t1(1,4),t2(5,10)])

The annotation is a sequence of descriptors for each subsequence. The following
msw’s govern the composition of subsequence of different types.

values(nextSubstringType(_),[t1,t2,t3]).
values(continueSeq,[yes,no]).
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The argument to the first one describes the type of a previous subsequence; the
last one determines number of subsequence, the higher probability for yes, the
longer sequence.1 The following rule describes the composition at subsequence
level. An arbitrary “previous type” called start is assumed for the first subse-
quence, and an extra argument which keeps track of the position in the string
is added; evidently this is a HMM with 5 states, the last one being the implicit
final state.

seq(Seq,D):-seq(start,Seq,D,1).

seq(PrevType,Seq,[D1|DMore],N):-
msw(nextSubstringType(PrevType), SubT),
subSeq(SubT,D1,Seq,SeqMore,N,M),
msw(continueSeq, YesNo),
(YesNo=no -> SeqMore=[], DMore = []
; Mplus1 is M+1,
seq(SubT,SeqMore,DMore,Mplus1)).

For each type T , we need to add an appropriate clause subSeq(T,· · ·):- · · ·.
To finish this example, we assume identical definition (but individual probabili-
ties) for each type.

subSeq(Type,[L|SeqMore],SeqRest,N,M):-
msw(nextLetter(Type),L),
msw(continueSub(Type),YesNo),
(YesNo=no -> SeqMore=SeqRest, N=M
; Nplus1 is N+1,
subSeq(Type,SeqMore,SeqRest,Nplus1,M)).

Notice that we assumed an additional class of msw’s to govern the length
of each subtype (so this model resembles a 2-level Hierarchical HMM). Such a
program can be used in two ways in the PRISM system. In case the probabilities
are given in some way or another, the program can generate samples of annotated
sequences by a query ?-sample(sequence(S,A)) where PRISM executes the
msws by using a random number generator adjusted to the given probabilities.

PRISM can also run in learner mode, which means that the program is pre-
sented with a number of observed goals, from which it calculates the distribution
of probabilities that provides the highest likelihood for explaining the observed
data. PRISM uses some quite advanced algorithms and data structures in order
to do this in an efficient way; these topics are outside the scope of this paper
and we refer to [12,13]. Training with a single observation (somewhat artificial)
being the short annotated sequence above, we get for t1 prob. 1.0 for A and for
t2 prob. 0.5 for each of C and G. After the training phase, sampling can be used
to create similar sequences, where the applied notion of similarity is given by the
program, i.e., the model for sequence structure that we designed above. PRISM
runs also on 64-bit architectures so it can address quite large amounts of storage.
The version used for out tests (1.9, 2006) can, with programs as the one shown,
easily handle data sets of around 10 sequences of 100,000 letters. For eukaryote
1 As is well-known, this gives a geometric distribution of lengths.
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sequence analysis in general, this is a rather small number, and current research
aim at increasing this number drastically.2

3 A PRISM Model of Genomic Sequences

The example above illustrates the overall structure of our approach to test data
generation for gene finders. A model of full genome sequences is under considera-
tion, but for the present task of testing gene finders we have limited to a model of
the intergenic regions. We argue that a detailed and biologically faithful model is
essential also for these regions, as they contain patterns and fragments that may
descend from obsolete functional regions, and thus may confuse a gene finder;
this is, in fact, what our experiments reported below seem to indicate.

A sequence is characterized in our model by two intertwined structures. The
first level concerns the distribution of GC islands which are long stretches with
significantly higher frequencies for the two letters; GC islands are important as
their presence often indicates subsequences containing genes; remaining regions
of the sequences are called GC sparse. At a second level, the sequence is con-
sidered to consist of mostly arbitrary letters (coloured noise) interspersed with
so-called repeat strings, which are either subsequences of a known catalogue
of named strings, simple repeats (e.g., (ACCT)n meaning a repetition of the
indicated pattern), and low-complexity strings such as CT-rich which is a com-
bination of these letters. A marked up sequence is represented by structure of
the following form.

sequence(sequence-of-ACGT, GC-islands, repeats)

The first component is the bare sequence of letters, the second indicates positions
of GC islands and GC sparse, and the third one describes the repeats in the
sequence. The relationship between these two levels is somewhat tricky as a
given repeat substrings can appear in a GC island, in a GC sparse region, or
overlap both; however, there is a dependency in the sense that a repeat (or section
thereof) with many G’s and C’s tend to appear more often in GC islands. Since
GC islands tend to be much larger that repeats, they are considered the top level
structure. The lengths of GC islands and GC sparse regions are determined by
empirically determined minimum lengths combined with random variables that
decide whether to continue or stop, thus giving geometric distributions upon the
minimum lengths. Other random variables are given in two versions, one for GC
island and one for GC sparse.

This two-level structure is implemented by hiding the management of GC
islands in an abstract data type, which appears as an alternative version of
PRISM’s msw predicate with the following parameters.

msw(random-var, value, GC-islands, position)

2 E.g., using an array representation for sequences instead of Prolog lists as in the
current version, may reduce storage for each letter from 24 bytes (on a 64 bit archi-
tecture) to 2 bits!.
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If a variable, say x(a) is referred to at position 5000 in a sequence, we call
msw(x(a), V, · · ·, 5000) and the implementation choses, depending on how
position 5000 is classified, the relevant of msw(x(gcIsland,a),V) and
msw(x(gcSparse,a),V); in addition, the extended version of msw includes the
machinery that describes GC islands in terms of other random variables as ex-
plained. Abstracting away a few implementation details, the overall composition
of intergenic sequences can be presented as follows; notice that the choice of
repeat depends on the previous one, as biologists indicate that certain repeats
tend to come in groups; the letter sequences between repeats depend on those as
well since some repeats have a tendency to come close to each other. These letter
sequences are a kind of coloured noise, where the colours indicate the different
letter probabilities in GC islands vs. GC sparse regions.

seq(Seq,GCs,Reps):-
seq(dummy,Seq,GCs,Reps,1).

seq(Prev,Seq1,GCs,Reps,N1):-

msw(nextRepType(Prev),RepType,GCs,N1),

letters(Previous,RepType,

Seq1,Seq2,GCs,N1,N2),

N2i is N2+1,

(RepType=noMore -> Seq=[], Reps=[]

; RepType=namedRepeat ->

namedRep(Details,Seq2,Seq3,GCs,N2i,N3),

Reps=[named(Details)|Reps1],

seq(RepType,Seq3,GCs,Reps1,N3)

; RepType=simpleRepeat ->

simpleRep(· · ·), Reps=· · ·, seq(· · ·)
; RepType=lowComplexRep ->

lowCmplxRep(· · ·), Reps=· · ·, seq(· · ·)).

Predicates namedRep, simpleRep, lowCmplxRep describe the detailed structure
of the different sort of repeats. They apply their own random variables to govern
which substring is repeated; namedRep has access to an 11Mbyte catalogue of
known repeat string strings and employs random variables to determine which
portion of the named string is used and its direction: it may appear as a plain
copy, reversed, complement (i.e., with letters interchanged A↔T, C↔G), or
reverse complement. These predicates are defined in relatively straightforward
ways, although a few technicalities are needed in order to handle mutations,
which here means that a few “noise letters” have been inserted or deleted in the
sequences. Again, we used random variables to govern this and to control which
noise letters are chosen.

Named repeats were described in a simplified version in the marked up se-
quences we had available, as the exact portion used as well as its direction were
not given, only its name. To cope with this, we used a preprocess to determine
one unique best match of portion and direction and added it to the annota-
tions, where “best” is defined by a few heuristics and a lowest penalty scheme.
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In addition, our best match algorithm adds best proposals for where and how
mutations have occurred. The use of preprocessing to provide unique best pro-
posals for lacking information in annotations appears to be essential for this
form of sequence analysis, as nondeterminism in a PRISM model can introduce
backtracking which may be very problematic due to the size of the data being
analyzed.

The model is now ready to be trained from a set of marked up sequences; the
actual training set is described below. PRISMs learning algorithm produces a set
of probabilities for the random variables that gives the highest likelihood for the
training data. With these probabilities, the model can thus generate artificial,
marked up sequences that are faithful to those properties of the training data
that are expressible in the model.

4 Previous Work

The first attempt to overcome the problem of not having large, precisely marked
data sets, for evaluation of gene finders was made by embedding random genes
in a random sequence approximating intergenic sequence [11]; 42 sequences with
accurate gene annotation were used, having an average length of 177160, con-
taining 4.1 genes with an average of 21 exons and 40% GC content. Knowledge
about repeated sequences, the existence of GC islands and pseudogenes were
not taken into account, and only a simple average GC frequency of 38% was
generated by using a fifth order HMM. Not surprisingly, the test of GENSCAN
on these sequences did show a lower rate of correct predictions. This is obvious
since ab initio programs like GENSCAN, recognizes genes by small sequences
like tata boxes, splicesites etc. and therefore are dependent on possible sequence
variations that will inform it about possibly being close to something relevant;
e.g., GC islands. Our approach is to concentrate on including more knowledge
about intergenic regions in the model, incorporating GC content variations and
intergenic repeats.

5 Results: Evaluation of Three Different Gene Finders

In this section we present results of testing three gene finders; GENSCAN, HM-
MGene and genemark.hmm, using the data generated by our model, as described
in a previous section. A significant drop in accuracy was observed [11] when test-
ing GENSCAN on the semi artificial training set described above. This could
be the first step in giving an accurate measure of gene finders, but due to the
simplicity of the data set, some degree of uncertainty is evident. Here we have
demonstrated a test of the three gene finders using a data set founded on a sta-
tistically better ground, and showing a relative high error rate. The model was
trained on a data set of 12 intergenic sequences from the human chromosome
17 (NCBI refseq NT 0101718.15), together with a list of specified positions of
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repeated sequences and GC islands.3 We chose to use Repeatmasker [19] to find
repeated sequences in these sequences, since this tool appears well established.
We used standard masking options for this. RepBase [20] was used for generating
a repeater catalogue, in order to train our model on actual repeater sequences.
Furthermore positions of GC island were detected by using CpGplot [21], also
using standard masking options.

After training our model, the learned probabilities were used to generate 12
sequences, together with annotations of inserted repeated elements and GC is-
lands. From these sequences test sets were assembled, with real genes inserted
between the generated sequences. Three test sets were created, each consist-
ing of four generated sequences with three real genes in between. The same
three genes are used in all three test sets, making it possible to compare the
artificial intergenic sequences alone. The sequences of the genes comprise the
genomic region of the gene, from 200 bp before to 200 bp after the CDS.4 The
length of the generated intergenic regions ranges from 2.2 kb to 30 kb. The three
test sets have varying lengths of; test set A (193,721 bp), test set B (170,545
bp), and test set C (202,368 bp). We report the outcome of predicted exons
in the intergenetic regions, as this is the main area of interest in this paper.
Therefore only false positives are reported. For this we use the evaluation term;
specificity, which describes the relationship between wrong exons and the to-
tal number of predicted exons, as described by [10]. The table below shows the
results of the tests performed on the three gene finders, using the three test
sets.

Table 1. Results from the tests on gene finders; GENSCAN, HMMGene, and gene-
mark.hmm. Specificity describes the relationship between wrong hits and total hits,
where 0 is a perfect result and 1 means all predicted exons are wrong.

Genscan Hmmgene Genemark.hmm

Predicted genes in testset A 7 12 10

Predicted genes in testset B 10 11 11

Predicted genes in testset C 11 11 10

Average number 9.33 11.33 10.33

Gene Specificity

(Wrong genes /

predicted genes)

0.68 0.74 0.71

Average number of

predicted exons

54.99 83 41.66

Wrong exons in testset A 50 79 24

Wrong exons in testset B 29 55 34

Wrong exons in testset C 33 73 28

Average number of wrong

exons

37.33 69 28.67

Exon Specificity

(Wrong exons / predicted

exons)

0.68 0.83 0.69

3 One of the reasons for choosing chromosome 17 is due to the fact that it is a rather
well studied chromosome, and the relative gene density is high. This could mean
that most genes are accounted for, and the intergenic sequence therefore is more
accurate to use.

4 The genomic sequence comprising all exons and introns of the gene.
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All the results show a large error rate, both regarding the number of genes and
exons predicted. All gene finders have a gene specificity of about 0.7, which is
rather high. This result is probably due to the training of the gene finders on
single exon-genes, making them more likely to predict many and short genes. As
to the results showing the exon specificity, the same high error rate of approxi-
mately 0.7 is seen in GENSCAN and genemark predictions. Here HMMGene has
an even higher error specificity of 0.83. These results seem to indicate that all the
tested gene finders overpredict, when faced with intergenic sequences containing
repeated sequences and GC islands.

6 Comparison of the Tested Gene Finders

To determine if the quite similar high error rate is caused by the gene finders
finding the same exons, we made a comparison of the predicted set exons. The
figure below illustrates the combination of the three predictions, where the pre-
dicted exons are considered the same if they match in either end of the other
exon.

Fig. 1. The predictions of the three tests were joined to find exons that are the same.
The given numbers are an average value of the three tests performed.

The result of this comparison shows that very few of the predicted exons are in
fact the same. HMMGene has the highest number of predicted exons appearing
only within its own prediction. The average number of 17 exons being present in
all three predictions, and 37.66 exons being present in at least two predictions, is
also not a very high number compared to a total number of 125 predicted exons.
These results states that the same error rate between the three gene finders
is not a consequence of the predicted exons being the same. In contrary, these
differing results are probably due to differences in the underlying models of the
gene finders. Therefore the results of table 1 could indicate that the precision of
the tested gene finders are much lower than anticipated.
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7 Appropriateness of the Generated Data

If the test we are performing is to be used to evaluate a gene finder, the testdata
must reflect the essential properties of natural data, and appear as authentic
copies. Including most possible dependencies and variables in the data is not
possible, but all important features that could affect the outcome of the test must
be accounted for. In our model we believe all important features are accounted
for, but to examine if this is really the case, an analysis of the three test sets
were performed. The length of the intergenic sequences, as well as GC islands and
repeated elements did in fact resemble those of the training set. The tool used
for finding CG islands in the training material, was also used on the artificial
data, to observe if the overall pattern resembled the one of real sequences. The
figure below illustrates the GC frequency in data set A, and a section of real
sequence from the region the training material was taken from.

Real data

Test set A

Fig. 2. GC frequencies in real vs. model generated data

Figure 2 seems to indicate that the pattern of the GC percentage in the arti-
ficial data resembles the real data. However, when comparing the annotated GC
islands and the ones found by CpGPlot, there is a slightly higher amount of GC
islands in the CpGPlot. This is probably due to the fact that our model oper-
ates on absolute frequencies and the CpGPlot presumably uses a more complex
model with relative frequencies. This difference in GC island reporting could
help explaining why the three tested gene finders predict too many exons, but
it does not explain all of them since the results from the three gene finders, as
explained, differed greatly. These facts may also indicate the weakness of our
model that it uses a first-order HMM to describe GC islands; a higher order, say
3 or 4, may seem more appropriate.

Furthermore an analysis of the dispersed repeated elements was carried out.
Using Repeatmasker to find repeated sequences in the artificial data, and com-
paring them to the annotated elements, showed a very good match between
these. Nearly all of the repeated sequences were found. The alignments of the
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detected repeaters returned by Repeatmasker showed a similar pattern of mu-
tations in the artificial repeater sequences, compared to those in the training
set, which thereby verifies our method for generating mutations. From this we
conclude that the model generates fairly realistic artificial intergenic sequences,
though this training set, as mentioned, is to be considered as an example of
what the model could be trained on. Therefore the evaluation of GENSCAN,
HMMGene and genemark will not be an absolute assessment. For this a larger
training set is needed, making the probabilities of the model more thoroughly
based. We believe however, that this new method of evaluating gene finders, is
a new step in the way of finding a more accurate measure for the precision of
gene finders.

8 Perspectives and Future Work

A further development of the model presented in this paper, will be a more com-
prehensive model, which takes more specialized features into account, together
with the inclusion of genes. The major issue for a successful training of the model
is a larger and better marked up set of sequences; At this point perfectly marked
up genomic sequences, which include both genetic and intergenic regions remain
sparse and difficult to access.

The use of artificial data sets is a subject under debate. As discussed by [22]
the use of artificial data sets have not been used much, since it is very difficult
to reflect the whole complexity of real data sets. But how many details must be
included in a model for artificial data generation? As [22] state, the goal must
be to include those characteristics of real data which may affect the performance
of real data sets. Multivariable dependencies are also very important in terms
of reflecting real data, and can often be very difficult to reproduce. PRISM
however, seems to be a rather powerful modelling tool, which also are capable
of reflecting multivariable dependencies, by the inclusion of one msw in another
(see section 2). Even if these characteristics are accounted for, the ideal data
mining method for one data set might not be ideal for another set. Furthermore,
undiscovered correlations could influence the outcome of a given model. Our
model only accounts for those characteristics verified by a biological expert, and
therefore undiscovered multivariable dependencies are naturally not included.
Another important issue, as mentioned, is the balance between including enough
information in the model to make it realistic, and including too much, which
results in overfitting. This will also be very important to have in mind, when
expanding the model. Another important issue is the balance between over-
fitting and generalization, and the granularity of the model; while a fine-grained
model is well suited when large training sets are available but likely subject of
over-fitting in case a few training data, it is the other way round for a coarse
model which may the the best out of few training date data and and too little
out of large sets. Only testing and analyze indicate the right level.

As noticed above, we believe that the specific model described in this paper
can be improved concerning the modeling of GC island by using a higher order
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HMM, and we may also refer to [23] who discusses consequences of different
orders, and proposes an extension to HMM which may be interesting to apply
in PRISM-based models.

Our experiences indicates that the elegance of logic programming is not in-
compatible with the processing of large data sets. With the present technology
we can handle around one million letters, which is clearly to little, although with
reasonable execution times are reasonable, and plans for extensions of PRISM in-
cludes specialized representations for sequences (as opposed to list structures!) as
well as adaptation to computer clusters. We hope that the continued refinement
of this sort of models of genome sequences, based on a very flexible, powerful
and theoretically well-founded paradigm, may lead to models that can be used
in future gene finders that provide a higher accuracy than what we can observe
at present.

The overall approach of using artificially test data produced by sophisticated,
statistical models and machine learning was here motivated by the conditions
for sequence analysis, that authentic test data are difficult to require. Similar
methods may also have their relevance for embedded systems, with the statistical
model simulating a world, and context-aware systems.

Acknowledgement. This work is supported by the CONTROL project, funded
by Danish Natural Science Research Council.

References

1. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M. (Revised by): The Art of
Software Testing, 2nd edn. Wiley (2004)

2. TREC: Text REtrieval Conference http://trec.nist.gov/
3. MUC: Message Understanding Conferences

http://www-nlpir.nist.gov/related projects/muc/
4. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic

DNA. Journal of Molecular Biology 268, 78–94 (1997)
5. Birney, E., Clamp, M., Durbin, R.: GeneWise and Genomewise. Genome Res. 14(5),

988–995 (2004)
6. Yeh, R.-F., Lim, L.P., Burge, C.B.: Computational Inference of Homologous Gene

Structures in the Human Genome. Genome Res. 11(5), 803–816 (2001)
7. Venter, J.C., et al.(>300 authors): The Sequence of the Human Genome. Sci-

ence 291(5507), 1304–1351 (2001)
8. Lander, E.S., et al.(> 300 authors): Initial sequencing and analysis of the human

genome. Nature 409, 860–892 (2001)
9. Hogenesch, J.B., Ching, K.A., Batalov, S., Su, A.I., Walker, J.R., Zhou, Y., Kay,

S.A., Schultz, P.G., Cooke, M.P.: A comparison of the Celera and Ensembl pre-
dicted gene sets reveals little overlap in novel genes. Cell 106(4), 413–415 (2001)
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Abstract. The goal of predictive toxicology is the automatic construc-
tion of carcinogenecity models. Most common artificial intelligence tech-
niques used to construct these models are inductive learning methods. In
a previous work we presented an approach that uses lazy learning meth-
ods for solving the problem of predicting carcinogenecity. Lazy learning
methods solve new problems based on their similarity to already solved
problems. Nevertheless, a weakness of these kind of methods is that some-
times the result is not completely understandable by the user. In this
paper we propose an explanation scheme for a concrete lazy learning
method. This scheme is particularly interesting to justify the predictions
about the carcinogenesis of chemical compounds.

1 Introduction

During the seventies Europe and the United States respectively started long
term programs with the aim of developing toxicology chemical databases. The
idea was to establish standardized experimental protocols allowing to determine
the carcinogenecity of chemical compounds. In particular, the American Na-
tional Toxicology Program (NTP) established two protocols to be performed on
rodents: a short-term protocol (90 days) and a long-term protocol (2 years). To
develop both protocols is necessary to sacrify a lot of animals and sometimes
the results are not clearly conclusive concerning to carcinogenecity. Moreover,
even in the situation of clear carcinogenic activity of a chemical compounds on
rodents, there is no certainty that the results may be extrapolable to humans.

The use of computational models applied to toxicology could contribute to
reduce the cost of experimental procedures. In particular, artificial intelligence
methods such as knowledge discovery and machine learning can be used for
building models of carcinogenecity (see [13]). The construction of such models
is called predictive toxicology. From the machine learning point of view, the
goal of the predictive toxicology is a classification task, i.e. toxic compounds
are classified as belonging to the positive class and non-toxic compounds are
classified as belonging to the negative class.

Most of machine learning approaches use representations of chemical com-
poudns based on structure-activity relationship (SAR) descriptions since there

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 756–769, 2007.
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are easily obtained from commercial drug design tools ([14], www.accelrys.com/
chem/, www.disat.inimib.it/chm/Dragon.htm). Concerning the classification of
chemical compounds, a widely used technique to build carcinogenecity models
is inductive logic programming (ILP). The main idea of ILP is to induce general
descriptions satisfied by a set of examples represented using logical predicates.
In these approaches (for instance see [9]), compounds are represented as sets of
predicates relating the atoms of the molecule and they also include information
about the chemical compunds (such as molecular weight, charge, etc). Never-
theless, due to the wide variety of chemical compounds, the use of inductive
learning methods for building a general model of carcinogenesis is very difficult.

In [6] we proposed the use of lazy learning methods, instead of inductive
learning methods, to classify chemical compounds. The main difference among
both kinds of approaches is that inductive learning methods build a model and
then they use it to classify new chemical compounds. Instead, lazy approaches
do not build any model, but given a new problem they try to classify it based on
both its features and the similarity of that problem with already known problems.
This represents an advantage because lazy learning methods are not aware of
the variability of the problems but they only focus on the features of the new
problem. Concerning to the toxicology domain, since chemical compounds have
high variability, inductive learning methods produce models with rules that are
too general. Instead, a lazy learning method only focuses on the features of the
new chemical compound to assess the similarity of that compound with others
compounds with known carcinogenic activity.

A weakness of lazy learning methods is the way they are able to explain
the result to the user. The most common way used by case-based reasoning
systems to explain the result is to show the user all the cases that support the
classification of a new problem. This kind of explanation seems appropriate when
domain objects are not too complicated, however when domain objects have a
complicated structure the user is not able to detect similarities among the cases.
McSherry [18] argues that the most similar case could be a good explanation
but it also may have features that could act as arguments against that case and,
therefore, against the classification that it proposes. For this reason, McSherry
proposes that the explanation of a case-based reasoning system has to explicitly
distinguish between the case features supporting a classification and the case
features against it. In that way, the user could decide about the final solution
of the problem. A related idea proposed in [17] is to use the differences among
cases to support the user in understanding why some cases do not satisfy some
requirements.

Our approach is based on generating an explanation scheme from the similar-
ities among a problem and a set of cases. As the approaches of McSherry and
McCarthy et al. [17], the explanation scheme of our approach is also oriented
to the user. The difference of our approach with that of McSherry is that we
explain the result using a set of similar cases whereas McSherry explains it using
both similarities and differences among the most similar case compared to the
problem at hand. An interesting part of the explanation scheme we propose is
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Fig. 1. Partial view of the chemical ontology

that it allows the user to focus on relevant aspects that differentiate carcinogen
compounds from non carcinogen compounds.

The structure of the paper is the following. In the next section we briefly
describe the formalism of feature terms, the representation we use to describe
chemical compounds. Then in Section 3 we introduce LID, the lazy learning
method we use to classify chemical compounds and that handles objects repre-
sented as feature terms. In Section 4 we introduce the anti-unification concept in
which is based the explanation scheme described in Section 5. We end up with
some related works and conclusions.

2 Representation of the Chemical Compounds Using
Feature Terms

Current approaches using artificial intelligence techniques applied to chemistry
use representations inherited from existing tools. These tools describe chemical
compounds with a set of structure-activity relationship (SAR) descriptors be-
cause they were developed mainly for the task of drug design. In [6] we proposed
the use of a representation of chemical compounds based on the chemical ontology
given by the IUPAC nomenclature (www.chem.qmul.ac.uk/ iupac/). The IUPAC
chemical nomenclature is a standard form to describe the (organic and inorganic)
molecules from their chemical structure. From our point of view, a formal repre-
sentation using the IUPAC nomenclature could be very useful since it allows a
direct description of the chemical structure, in a way very familiar to the chemist.
Our point is that, using the standard nomenclature, the name of a molecule
provides enough information to graphically represent its structure. Actually,
we represent a compound as a structure with substructures using the chemi-
cal ontology that is implicit in the nomenclature of the compounds. Figure 1
shows part of the chemical ontology we have used to represent the compounds
in the Toxicology data set.

The implementation of our approach has been done using the feature terms
formalism [2]. Feature terms is a kind of relational representation, i.e. an object



Discovering Plausible Explanations of Carcinogenecity 759

O
ON

NH2

OH TR-339 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

benzene

radical-set .
=

alcohol
amine
nitro − derivate

p-radicals .
=

⎡

⎣
position-radical
position .

=one
radicals .

=alcohol

⎤

⎦

⎡

⎣
position-radical
position .

=two
radicals .

=amine

⎤

⎦

⎡

⎣
position-radical
position .

=four
radicals .

=nitro − derivate

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 2. Representation of TR-339, 2-amino-4-nitrophenol, with feature terms

is described by its parts and the relationhs among these parts. The intuition
behind a feature term is that it can be described as a labelled graph where
nodes are objects and links are the features describing the objects. An object,
as well as the values of the features of that object belong to a sort. A sort is
described by a set of features, where each feature represents a relation of this sort
with another sort. Sorts are related among them by partial order 1 (see 4.1) that
induces a hierarchy of sorts/subsorts relating the concepts of a domain. Thus,
the chemical ontology shown in Fig. 1 can be viewed as a sort/subsort hierarchy
relating the chemical concepts describing the molecular structure of a chemical
compound.

Let us illustrate with an exemple how chemical compounds are represented
using feature terms. Figure 2 shows the molecular structure of the chemical
compound TR-339, called 2-amino-4-nitrophenol, and its representation using
feature terms. Chemical compound TR-339 is represented by a feature term
with root TR-339 of sort benzene described by two features: radical-set and p-
radicals. The value of the feature radical-set is the set {alcohol, amine, nitro-
derivate}. The value of the feature p-radicals is a set whose elements are of
sort position-radical. In turn, the sort position-radical is described using two
features: radicals and position. Values of radicals are those of the feature radical-
set meaning the position where the radical is placed. TR-339 has the radical
alcohol placed in position one, the radical amine in position two and the radical
nitro-derivate in position four. Note that this information has been directly
extracted from the chemical name of the compound following the nomenclature
rules.

A leaf of a feature term is defined as a feature whose value is a (set of)
feature term without features. For instance, leaf features of TR-339 are the
following: {radical-set, position, radicals, position, radicals, position, radicals}. No-
tice that there is a leaf position and also a leaf radicals for each value of
p-radicals.
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Function LID (p, SD, D, C)
SD := Discriminatory-set (D)
if stopping-condition(SD)

then return class(SD)
else fd := Select-leaf (p, SD, C)

D′ := Add-path(π(root(p), fd), D)
SD′ := Discriminatory-set (D′, SD)
LID (SD′ , p, D′, C)

end-if
end-function

Fig. 3. The LID algorithm. p is the problem to be solved, D is the similitude term, SD

is the discriminatory set of D, C is the set of solution classes, class(SD) is the class
Ci ∈ C to which all elements in SD belong.

A path Π(root, f) is the sequence of features leading from the root of the
feature term to the feature f . Paths of TR-339 from the root to the leaves are
the following:

– TR-339.radical-set with value the set {alcohol, amine,nitro-derivate}
– TR-339.p-radicals.position with value one
– TR-339.p-radicals.radicals with value alcohol
– TR-339.p-radicals.position with value two
– TR-339.p-radicals.radicals with value amine
– TR-339.p-radicals.position with value four
– TR-339.p-radicals.radicals with value nitro-derivate

3 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant features of a problem and
searches in a case base for cases sharing these relevant features. The problem is
classified when LID finds a set of relevant features shared by a subset of cases all o
them belonging to a same class. We call similitude term the feature term formed
by these relevant features and discriminatory set the set of cases satisfying the
similitude term. A first version of LID was introduced in [3] to assess the risk
of complications in diabetic patients. In order to assess the carcinogenecity of
chemical compounds, the LID algorithm has been modified to cope with some
situation that, although general, they do not occur in the diabetes domain.

Given a problem p, the LID algorithm (Fig. 3) initializes D as a feature term
such that sort(D) = sort(p), with no features and with the discriminatory set
SD initialized to the set of cases satisfying D. For the Toxicology domain we set
C = {positive, negative}.

Let D be the current similitude term, the first step is to form the set SD with
all the cases satisfying the similitude term D. When the stopping condition of
LID is not satisfied, the next step is to select a leaf for specializing D.
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The specialization of a similitude term D is achieved by adding features to
it. Given a set Fl of features candidate to specialize D, the next step of LID
is the selection of a leaf feature fd ∈ Fl to specialize the similitude term D 1.
Selecting the most discriminatory leaf feature in the set Fl is heuristically done
using the López de Mántaras’ distance (LM) [16] over the features in Fl. LM
measures the distance among two partitions and LID uses it to compare each
partition Pj induced by a feature fj with the correct partition Pc. The correct
partition has two sets: one with the examples belonging to a solution class Ci

and the other containing the cases not in Ci. Each feature fj ∈ Fl induces in the
discriminatory set a partition Pj with two sets, one with the cases where fj takes
the same value than p and the other with the rest. Given two features fi and fj

inducing respectively partitions Pi and Pj , we say that fi is more discriminatory
than fj iff LM(Pi, Pc) < LM(Pj , Pc). This means that the partition Pi induced
by fi is closer to the correct partition than the partition Pj induced by fj. LID
selects the most discriminatory feature to specialize D.

Let us call fd the most discriminatory feature in Fl. The specialization of
D defines a new similitude term D′ by adding to D the sequence of features
appearing in the path Π(root(p), fd). After adding the path Π to D, the new
similitude term D′ = D + Π subsumes a subset of cases in SD, namely SD′ .

Next, LID is recursively called with the discriminatory set SD′ and the simili-
tude term D′. The recursive call of LID has SD′ instead of SD because the cases
that are not subsumed by D′ will not be subsumed by any further specializa-
tion. The process of specialization reduces the discriminatory set at each step,
therefore we get a sequence Sn

D ⊆ Sn−1
D ⊆ . . . ⊆ S0

D.
LID has three possible stopping situations: 1) all the cases in the discriminatory

set belong to the same solution class, 2) there is no feature allowing to specialize
the similitude term, and 3) there are no cases subsumed by the similitude term.

In a previous version of LID [3] there only the stopping conditions 1) and 2)
were considered. Now, in the Toxicology domain we have introduced a third stop-
ping condition: the similitude term does not subsumes any case. Let us explain
condition 3 in more detail. The similitude term is a feature term of the same
sort than p, and the sort of p is any sort of the ontology of organic compounds
(Fig. 1). Nevertheless, it is possible than there is no chemical compound of the
same sort of p. For instance, let us suppose that cp is the compound TR-496
of sort eicosane, then the similitude term is a feature term of sort eicosane.
This means that LID searches in the case base for chemical compounds of sort
eicosane but there is not any other chemical compound of that sort, therefore
SD = ∅. In that situation, LID finishes without giving a solution for p.

When the stopping condition 1) is satisfied because all the cases in SD belong
to a same solution class Ci, then p is classified as belonging to Ci. When SD = ∅
then LID gives no classification for p, and finally when the discriminatory set
contains cases from several classes, then the majority criteria is applied, i.e. p is
classified as belonging to the class of the majority of cases in SD.

1 In fact, the selection of a leaf implies the selection of the path from the root to the
leaf.
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1 = benzene.radical-set (value = amine)

2 = benzene.radical-set.radical-set (value = methane)

3 = benzene.radical-set.p-radicals.radicals (value = methane)

4 = benzene.positions.radicals (value = {methane, ether})

5 = benzene.positions.distance (value = 1)

TR-089

O     CH3

NH2

Fig. 4. Molecular structure, feature term representation and paths of the chemical
compound TR-089 (resorcinol)

3.1 Example

In this section we explain the LID algorithm by illustrating the process with the
classificacion of the chemical compound TR-089 (Fig. 4 shows the molecular
structure and paths of TR-089 ). The first step is to select a relevant feature,
therefore, it is necessary to induce the partitions associated to each feature of
TR-089 and then to compute the distance to the correct partition. Using the LM
distance, LID takes the feature radical-set with value methane. In such a situation,
D0 = Π1 (Fig. 4) and SD0 = {TR-491, TR-416, TR-414, TR-372, TR-351, TR-
223, TR-171, TR-142, TR-128, TR-127, TR-124, TR-120, TR-114, TR-105,
TR-084} where some compounds are positive and some others are negative for
carcinogenesis. Therefore LID has to specialize D0 by selecting a relevant feature
to be added to it. The next most relevant feature is radical-set with value amine.
Now the discriminatory set associated to D1 = D0 + Π2 is SD1 = {TR-084,
TR-105, TR-127, TR-142, TR-171, TR-351, TR-372} that still contains both
positive and negative compounds. Therefore a new relevant feature has to be
selected. Now the selected feature is distance with value 1. The new similitude
term is D2 = D1 + Π5 and the discriminatory set is SD2 = {TR-084, TR-127,
TR-142, TR-171, TR-372} where TR-171 is the only compound with negative
carcinogenecity for male rats. Because LID cannot further specialize D2, since
there are no features able to discriminate the compound TR-171 from the others,
it uses the majority criterion to classify TR-089 as positive.

Notice that in the situation above, the result given by LID after the appli-
cation of the majority rule seems clear, i.e. TR-089 is positive because all the
cases assessed as the most similar (except TR-171) are positive. Nevertheless,
sometimes such a majority is not so clear. for instance, in the current situation,
the user could note that the molecular structures of all the compounds in SD2

are very similar (see Fig. 6) so the question is: why TR-171 is negative? In the
next section we propose an explanation scheme in order to justify to the user
the classifications given by LID.

4 How Results of a Lazy Learning Method Can Be
Explained?

Case-based reasoning (CBR) systems predict the solution of a problem based
on the similarity between this problem (the current case) and already solved
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problems (cases). Clearly, the key point is the measure used to assess the simi-
larity among the cases. Since the resulting similarity value is difficult to explain,
CBR systems often show the retrieved cases (the set of cases that have been
assessed as the most similar to the new problem) to the user as an explanation
of the prediction: the solution is predicted because the problem was similar to
the cases shown. Nevertheless, when the cases have a complex structure, simply
showing the most similar cases to the user may not be enough. Our proposal,
similar to that introduced in [4] is to show the user a symbolic description (the
final similitude term given by LID) that makes explicit what the new problem
has in common with the retrieved cases.

As we already mentioned, LID has three stopping situations for the classifica-
tion process of a problem p. For the first one, when all the cases in SD belong
to a same solution class, the similitude term is a good explanation since makes
explicit the relevant features shared by p and a subset of classes belonging to
a class. However, when the second stopping condition holds, p shares relevant
features with cases from different solution classes, therefore the similitude term,
by its own, is not a good justification of the result. For this resason, we take the
explanation scheme introduced in [4] to explain results obtained by LID using
the majority rule. This scheme is based on the anti-unification concept.

4.1 The Anti-unification Concept

The explanation scheme we propose is based on the concept of least general
generalization (lgg), commonly used in Machine Learning. The partial order 1
among sorts mentioned in Section 2 gives an informational order among sorts
since s1 1 s2 (s2 is a subsort of s1) means that s1 provides less information
than s2. Using the partial order 1 we can define the least upper bound (lub) of
two sorts lub(s1, s2) as the most specific super-sort common to both sorts. For
instance, Fig. 1 shows the sort hierarchy representing this chemical ontology. The
most general sort is organic-compound and most specific sorts are the leafs of
this hierarchy (e.g. pentane, hexane, benzene, furane, etc). Thus, the super-sort
of any two sorts of that hierarchy (for instance benzene and furane) is always
organic-compound. The anti-unification concept concerns to the most specific
sort of two sort, therefore the lub(benzene, furane) (Fig. 1) is the sort monocycle.
Similarly, lub(benzene, xantene)=ring-system, and lub(methane, O-compound) =
organic-compound.

Now, we can define the least general generalization or anti-unification of a
collection of descriptions represented as feature terms (either generalizations or
cases) using the relation more general than (≥g) as follows:

– AU(d1, ..., dk) = g such that (g ≥g d1) ∧ ... ∧ (g ≥g dk) and not exists (g′ ≥g

d1) ∧ ... ∧ (g′ ≥g dk) such that g >g g
′

That is to say, g is the most specific generalization of all those generalizations
that cover all the descriptions d1, ..., dk. AU(d1, ..., dn) is a feature term described
by all the features common to (or shared by) d1, ..., d2, i.e it describes all aspects
in which two ore more descriptions are similar.
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O-compound

functional-group

OH

OH

TR-403 AU(TR-089, TR-403)TR-089

O     CH3

NH2

Fig. 5. Graphical representation of both the chemical compound TR-403 and the anti-
unification of TR-089 and TR-403

The anti-unification of the chemical compounds TR-089 (Fig. 4) and TR-403
(Fig. 5) is the feature term AU(TR-089, TR-403), shown in Fig. 5. AU(C-089,
C-403) represents a chemical compound that is a benzene with a radical of sort
O-compound and another radical in a non specified position. See [2] for a more
detailed account on feature terms and their anti-unification. In the next section
we detail the explanation scheme used to justify the classification of LID.

5 The Explanation Scheme

This section presents the way in which descriptions resulting from the anti-
unification of a collection of cases can be used to explain the classification of a
new problem in CBR systems. Let SD the discriminatory set containing cases
satisfying the similitude term D given by LID as a result of the classification of
a problem p. There are two possible situations: 1) cases in SD belong to only
one class Ci, and 2) cases in SD belong to several classes.

Concerning the first situation, the similitude term D is a good explanation of
why the cases in SD are similar to p, since it is a description of all that is shared
among a subset of cases belonging to a some class Ci and the new problem. Let
us to concentrate on the second situation.

Assuming two solution classes C1 and C2, let S1
D ⊆ SD be the set of retrieved

cases hat belong to a class C1, and S2
D ⊆ SD the subset of retrieved cases that

belong to C2 (SD = S1
D ∪ S2

D). The explanation scheme we proposed in [4] is
composed of three descriptions:

– AU∗: the anti-unification of p with all the cases in SD. This description
shows what aspects of the problem are shared by all the retrieved cases, i.e.
the k retrieved cases are similar to p because they have in common what is
described in AU∗.

– AU1: the anti-unification of p with the cases in C1. This description shows
what has p in common with the cases in C1.

– AU2: the anti-unification of p with the cases in C2. This description shows
what has p in common with the cases in C2.

This explanation scheme supports the user in the understanding of the classi-
fication of a problem p. With the explanation scheme we propose, the similarities
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Fig. 6. Graphical representation of the similitude term D2 and the chemical compounds
contained in the discriminatory set SD2 when classifying the compound TR-089

among p and the cases of each class are explicitly given to the user, who can
decide the final classification of p. This scheme can also be used in situations
where more than two classes are present in SD, our explanation scheme is simply
to build one anti-unification description for each one of them. For instance, if
cases in the retrieval set belong to 4 classes the explanation scheme consists on
the following symbolic descriptions: AU1, AU2, AU3, and AU4.

When the similitude term AU∗ is too general (e.g. most of the features hold
the most general sort as value), the meaning is that the cases have low simi-
larity. Conversely, when AU∗ is a description with some features holding some
specific value, this means that the cases share something more than only the
general structure. In this paper instead of AU∗ we propose the use of the final
similitude term D given by LID. The main difference between AU∗ and D is that
AU∗ shows all the aspects shared by all the retrieved cases whereas D shows
the important aspects shared by the problem and the retrieved cases, i.e. those
aspects considered important to classify the problem.
AU1 shows the commonalities among the problem p and the retrieved cases

belonging to C1. This allows the user to focus on those aspects that could be
relevant to classify p as belonging to C1. As before, the more specific AU1 is, the
more information it gives for classifying p. Notice that AU1 could be as general
as D; in fact, it is possible that both feature terms are equal. This situation
means that p has not too many similar aspects with the cases of C1. A similar
situation may occur with AU2.

In [7] an example that follows this scheme can be found. Here we illustrate
the explanation scheme with the example of the classification of the chemical
compound TR-089 developed in section 3.1. This is an interesting case where
the explanation scheme can support the user the search of unclear aspects of
the classification of compounds. Figure 6 shows the similitude term D2 and the
discriminatory set SD2 = {TR-084, TR-127, TR-142, TR-171, TR-372} given
by LID when classifying the chemical compound TR-089. Concerning the car-
cinogenesis on male rats, SD2 can be partitioned in the following two subsets:
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S1
D2

= {TR-084, TR-127, TR-142, TR-372} and S1
D2

= {TR-171}, where com-
pounds in S1

D2
are positive and the compound in S2

D2
is negative. The explanation

scheme for chemical compound TR-089 is the following:

– The similitude term D2 shows that TR-089 and the compounds in SD2

have in common that they all have a benzene structure with two radicals at
distance 1 among them. One of these radicals is an ether that in turn has a
radical methane. The other radical is an amine.

– The description AU1 is the anti-unification of TR-089 and the chemical
compounds considered as positive for male rats. In fact, AU1 = D2, since
all positive compounds share, as before, that they are benzenes with two
radicals (an ether with a radical methane and an amine. ) with distance 1
among them.

– The description AU2 is the anti-unification of TR-089 and TR-171 that is
the unique compound in SD2 , i.e. negative for carcinogenesis. Note that also
in that case, AU2 = D2

From the descriptions AU1 and AU2 the user can easily observe the similari-
ties and differences among the compounds in C1 and those in C2. In the current
example, D2, AU1 and AU2 give the same feature term as explanation, which is
quite specific since common radicals have specific sorts (benzene, ether, methane,
amine), therefore the user can conclude that all the compounds are really very
similar. So, the question could be why TR-171 is negative for carcinogenesis. All
compounds in SD (included TR-171 ) are aromatic amines which are highly cor-
related with carcinogenecity [19,1], therefore, in principle TR-171 should also be
carcinogenic. Because the TR-171 (2,4 - Dimethoxyaniniline hydrochloride) is an
aniline we performed a search on Internet asking for information about experi-
mental results on anilines. We found from the page of the International Agency
for Research on Cancer (IARC) that there are defined four categories of chemical
compounds according to their potential carcinogenic power on humans. In partic-
ular, anilines are classified on category 3 corresponding to chemical compounds
with inadequate evidence of carcinogenecity in humans or those compounds whose
experimental evidence on animals is either inadequate or limited. In fact, the NTP
report of experimental results of TR-171 on rodents (see long term NTP Study
Reports from web page ntp.niehs.nih.gov/) states that studies began when 2,4 -
Dimethoxyaniniline hydrochloride was suspicious to be the cause of the increment
of incidence of bladder cancer among dye manufacturing industry workers. Nev-
ertheless the experimental results on rodents did not provide a convincing evi-
dence of the carcinogenic power of the 2,4 - Dimethoxyaniniline hydrochloride.
This means that for chemical experts, TR-171 was at first sight a potential
carcinogen and despite the experimental results on rodents show no evidence of
carcinogenecity, toxic activity on other species could not be discarded.

6 Related Work

Concerning to the Predictive Toxicology domain, we have proposed 1) a new
approach to represent chemical compounds and 2) a lazy approach for solving



Discovering Plausible Explanations of Carcinogenecity 767

the classification task. The most common representation of chemical compounds
is using SAR descriptors which represent the compounds from several points
of view (structural, physical properties, etc) and they are the basis to build
equational models that relate the structure of a chemical compound with its
physical-chemical properties. The main difference between the representations
based on SAR and our ontological approach is that the former describe the
molecular structure of the chemical compounds in an exhaustive way. Instead
the representation we propose is more conceptual than SAR in the sense that it
directly uses the concepts understood by the chemists.

Some authors use approaches that are not centered on the representation of
specific atoms but on molecular structures. For instance, González et al [12] and
Deshpande and Karypis [11] represent chemical compounds as labeled graphs,
using graph techniques to detect the set of molecular substructures (subgraphs)
more frequently occurring in the chemical compounds of the data set. Concep-
tually, these two approaches are related to ours in that we describe a chemical
compound in terms of its radicals (i.e. substructures of the main group).

Concerning the explanation of the solution proposed by a CBR system, there
are a lot of possible approaches depending on the kind of explanation we are
looking for. Sørmo et al. [20] performed a deep analysis of the different perspec-
tives from whose an explanation can be taken. Related to problem solving tasks,
there are two main kinds of explanations that are specially useful: 1) an expla-
nation of how a solution has been reached, and 2) an explanation justifying the
result. In this sense, the explanation proposed in this paper justifies the solution
proposed by the system. Nevertheless, because part of this explanation scheme
(the similitude term) contains the important features that LID used to classify a
new problem, the explanation also gives some clues of how the system reached
the solution.

Most of explanations given by CBR systems are oriented to the user. Sørmo et
al. [20], Leake [15] and Cassens [10] also consider that the form of the explanation
depends on the user goals. This statement has been proved in the application
presented by Bélanger and Martel [8] where the explanations for expert and
novice users are completely different. Leake [15] see the process of explanation
construction as a form of goal-driven learning where the goals are those facts
that need to be explained and the process to achieve them gives the explanation
as result. Cassens [10] uses the Activity Theory to systematically analyze how
a user evolves in the utilization a system, i.e. how the user model is changing.
The idea is that in using a system, the user can change his expectations about
it and, in consequence, the explanation of the results would also have to change.
In our approach we are considering classification tasks, therefore the user goals
are always the same: to classify a new problem. This means that the explanation
has to be convincing enough to justify the classification and we assume that the
kind of explanation has always the same form, i.e. it does not change along the
time. The explanation scheme we have introduced is also oriented to explain
the result to the user. Nevertheless, these explanations could also be reused
by the system as general domain knowledge as we proposed in [5].
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7 Conclusions and Future Work

Lazy learning methods seem to be specially useful on domains such as toxicol-
ogy, in which object domains are highly variable. Nevertheless, one of the main
weakness of the lazy learning methods is how they justify the results to the user.
In this paper we have proposed an explanation scheme that supports the user in
comparing molecular structures of positive and negative compounds.

The application of that explanation scheme to explain the results of a lazy
learning approach to predictive toxicology can be of high utility. Unlike induced
leaning methods, a lazy learning method does not build a carcinogenecity model,
therefore there is not a clear justification of the result. On the other hand, a
chemist needs to focus on both similarities and differences among the molecu-
lar structure of chemical compounds. Using our approach, even if it focuses on
similarities, the user can easily see the differences among carcinogenic and non
carcinogenic compounds. Due to this fact, and because small differences on the
molecular structure of compounds may give different carcinogenic activity, the
user can revise literature supporting the classification given by the lazy learning
method.

As future work we plan to assess the confidence degree of an explanation. This
confidence could be assessed taking into account the entropy of the discrimina-
tory set associated to a similitude term. In other words, since LID can finish with
a similitude term D satisfied by cases of several classes, a discriminatory set SD

with high entropy means that D is too general, therefore the features included
in D, even if considered as relevant, are not actually discriminant. This could
be interpreted as a low confidence in the explanation of the classification. Con-
versely, a discriminatory set with low entropy means that the similitude term
D is accurate, therefore the confidence on the classification would be high. This
same criteria could be applied to assess the confidence of the parts AU1 and
AU2 of the explanation scheme.
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y Programación, Universidad Complutense de Madrid, Madrid, Spain, pp. 97–104
(2004)

11. Deshpande, M., Karypis, G.: Automated approaches for classifying structures. In:
Proc. of the 2nd Workshop on Data Mining in Bioinformatics (2002)

12. Gonzalez, J., Holder, L., Cook, D.: Application of graph-based concept learning to
the predictive toxicology domain. In: Procs of the Predictive Toxicology Challenge
Workshop, Freiburg, Germany (2001)

13. Helma, C., Kramer, S.: A survey of the predictive toxicology challenge 2000-2001.
Bioinformatics, pp. 1179–1200 (2003)

14. Katritzky, A.R, Petrukhin, R., Yang, H., Karelson, M.: CODESSA PRO. User’s
Manual. University of Florida (2002)

15. Leake, D.B.: Issues in goal-driven explanation. In: Proceedings of the AAAI Spring
symposium on goal-driven learning, pp. 72–79 (1994)
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Abstract. In this paper we present results on real data, focusing on per-
sonal identification based on one lead ECG, using a reduced number of
heartbeat waveforms. A wide range of features can be used to character-
ize the ECG signal trace with application to personal identification. We
apply feature selection (FS) to the problem with the dual purpose of im-
proving the recognition rate and reducing data dimensionality. A feature
subspace ensemble method (FSE) is described which uses an association
between FS and parallel classifier combination techniques to overcome
some FS difficulties. With this approach, the discriminative information
provided by multiple feature subspaces, determined by means of FS, con-
tributes to the global classification system decision leading to improved
classification performance. Furthermore, by considering more than one
heartbeat waveform in the decision process through sequential classifier
combination, higher recognition rates were obtained.

1 Introduction

Fiducial points of the electrocardiographic (ECG) signal, are typically used in
clinical applications for diagnostics and evaluation of the cardiac system function
[1][2][3]. These points have well characterized reference values, and deviations
from those may express multiple anomalies.

The ECG provides a visualization of the electrical activity of the cardiac
muscle fibres; as measured from the body surface, the ECG signal is directly re-
lated to the physiology of each individual. These measurements are influenced by
physiologic factors which include: skin conductivity, genetic singularities, posi-
tion, shape and size of the heart. Regardless of what factors originate differences
in the measurement, the fact that the ECG contains physiologic dependant sin-
gularities potentiates its application to personal identification.

Recent research work has been devoted to the characterization of ECG fea-
tures, unique to an individual, with clear evidence that accurate ECG based
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personal identification is possible [4][5][6]. As a behavioral biometric technique
the ECG is very appealing: it is a non-invasive technique; it is not easily repli-
cated or circumvented ; and it requires the subject to be physiologically active,
among other characteristics.

A wide range of features can be used to characterize the ECG signal trace with
application to personal identification [1][7][8][9][3], and a question arises: for a
given feature set, which features are truly relevant for the decision process, and
which can be discarded. The reasons why addressing this question is of paramount
importance include: (a) the curse of dimensionality problem [10]; and (b) the fact
that some features may misguide the decision process [11][12].

In pattern recognition, this can be addressed through feature selection (FS).
Considering a d-dimensional feature representation space (FRS), F={f1, · · · , fd},
feature selection consists of determining which subspace F ∗ ⊂ F , if any, contains
the features fj ∈ F with most relevant discriminative information [13]. For this
purpose, a variety of methods has been proposed [14][15][16].

This paper presents results on real data, for the application of one lead ECG
data to personal identification. Previous approaches to the problem [4][5][6], also
using real data, have shown the potential of ECG data for subject identification
through contingency matrix analysis. In our approach, we study the potential
of subject identification using a reduced number of heartbeat waveforms, with
the purpose of real-time analysis. We focus on studying the classification perfor-
mance provided on one hand by a single heartbeat waveform, and on the other
hand by multiple heartbeat waveforms. FS and classifier combination techniques
are applied to the problem to improve the recognition rates, with positive results
when compared to the cases where no FS is performed.

An overview of our feature subspace ensemble (FSE) approach is presented:
a parallel classifier combination method, in which a global decision is produced
by combination of the individual decisions of multiple classifiers, designed using
subspaces of the original feature representation space F, obtained by means of
FS [17]. Each considered feature subspace contributes to the global decision as a
result of the classifier combination process. This allows us to overcome one of the
difficulties associated with FS: retrieval of relevant discriminative information
contained in discarded features. FSE was applied to the problem, and proved to
be more effective than a single classifier trained on a single FRS, both for the
cases where the original space F , and FS determined subspaces were used.

We evaluate the recognition rate of a single heartbeat waveform for different
sizes of the training and validation data, in order to determine the minimum
number of patterns necessary to achieve maximum recognition rates. With the
same purpose, sequential classifier combination is also employed, to determine
how the recognition rate evolves by using a reduced number of heartbeat wave-
forms for personal identification instead of a single one.

The rest of the paper is organized as follows: Section 2 describes the feature
subspace ensemble parallel classifier combination approach. Section 3 details
our one lead ECG based personal identification setup and evaluation conditions.
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Section 4 presents results for the one lead ECG based personal identification
problem. Finally, section 5 summarizes results and presents the main conclusions.

2 Feature Subspace Ensembles

Feature selection is an important tool in classification system design. The clas-
sification process is essentially a mapping F → W , of the original FRS, F , into
a set W = {w1, · · · , wc} of c categories. FS consists on determining a subspace
F ∗ ⊂ F , containing only the features fj ∈ F with the most relevant discrimi-
native information, with the threefold aim of: (a) improving the discriminative
capacitive; (b) reducing computational demands ; and (c) removing redundant or
superfluous information [13]. For this purpose, numerous methods and frame-
works have been suggested [18][19][20][14]. In this section, we overview FS and
some of the difficulties arising from its usage, and describe a feature subspace
ensemble (FSE) method, designed to overcome some of those problems.

Typically, FS methods fall into one of three generic classes: filter methods,
which are based on the discriminative information provided by individual or
groups of features from the original FRS; wrapper methods, which are based on
the performance of a learning machine; and embedded methods, in which the
feature subspaces are a consequence of the classifier training process. In general,
FS methods are based on the optimization of a feature subspace evaluation
criteria, which measures the relevance of F ∗ in terms of discriminative potential,
and usually only suboptimal solutions are guaranteed.

Let S(A, J,X) denote a feature selection context (FSC), defined as the FS
parameters comprehended by the feature selection algorithm A, the feature sub-
space evaluation criteria J , and the training data X , through which a given F ∗

is determined.
As a result of FS, some features from the original FRS are discarded during

the process and not incorporated in F ∗. Although interesting results are achieved
through FS [21][14][15], some difficulties often arise: (a) solution overfitting to
a particular feature selection context (FSC); (b) suboptimality of the obtained
solutions; (c) solution diversity with respect to the FSC ; and (d) loss of relevant
discriminative information contained in features fj ∈ F \ F ∗.

Thus, we devised a more effective method which uses parallel classifier com-
bination rules [12][22], to combine the decisions of multiple, individual classifiers
Cr; each designed using its own subspace F ∗

r ⊂ F , obtained by means of feature
selection in different FSCs. A related approach proposed in [23], uses the com-
bined decision of classifiers constructed on sequentially selected features sets,
forcing the full coverage of the original FRS, F .

Let S = {S1, · · · , Sp} be a set of p features selection contexts, differing in any
combination of the parameters Ar, Jr, or Xr, (0 < r ≤ p). In our feature subspace
ensemble (FSE) approach [17], a set of p feature subspaces F∗ = {F ∗

1 , · · · , F ∗
p } is

determined using each FSC, Sr ∈ S (thus the term feature subspace ensemble).
Using each feature subspace F ∗

r ∈ F , a classifier Cr is designed, forming a set
C = {C1, · · · , Cp} of p classifiers. For the classification of a given pattern xi, each
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individual classifier Cr ∈ C produces a decisions ŵCr , and in the end all decisions
are combined by a classifier combination strategy [12][24][22][25][26], in order to
produce a global decision ŵxi . Figure 1 illustrates the described approach.

Fig. 1. Feature subspace ensemble (FSE) system. A set C = {C1, · · · , Cp} of p classifiers
is trained using individual feature subspaces F ∗

r obtained for some variation Sr of
the FSC. Each classifier Cr ∈ C produces an individual decision ŵCr . All individual
decisions are combined using a classifier combination strategy to produce a global
decision ŵxi .

Figure 2 condenses the results of 50 FS runs on the SAT benchmark data from
the UCI machine learning repository [27]; in a given run r, the feature selection
context Sr, (0 < r ≤ 50), is composed by fixed Ar and Jr (that is, the same type
in all runs), and randomly selecting 50% of the available patterns in each run
to create Xr. Ar is a sequential forward search (SFS) wrapper framework (later
described in section 3.3); Jr is the classification performance of a 1-NN decision
rule using Xr as training data to classify the remaining 50% of the available
patterns (used as validation set).

In the context of figure 2, in a FRS of dimension d = 36 features, the mean
feature subspace size was approximately 23 features; an horizontal line indicates
the histogram mean. As shown, only a few features are consistently selected in
most feature subspaces over all runs, and there is full coverage of the original
FRS. This means that there is a great diversity of subspaces with relevant dis-
criminative information, and in a single FS run some of the discarded features
may still contain useful information.

Through parallel classifier combination we incorporate in the global decision
relevant discriminative information contained in each particular feature sub-
space, eventually recovering relevant features discarded as a result of a single FS
run (e.g., due to a particularly inadequate or misleading FSC). This way, the
classification system becomes less sensitive to misleading feature subspaces; the
combined decisions of individual classifiers is capable of overcoming inaccurate
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Fig. 2. Illustrative histogram of 50 FS runs on the SAT benchmark data from the UCI
machine learning repository. The FSC context Sr of a given run r was established as
follows: Ar and Jr are fixed for all runs, Ar being a wrapper sequential forward search
framework, and Jr being the classification performance of a 1-NN decision rule trained
on Xr to classify a validation set; Xr is randomly selected from the available set of
patterns in each run. The horizontal axis corresponds to each of the dimensions of the
FRS; the vertical axis corresponds to the number of times a given dimension d was
selected. An horizontal line indicates the histogram mean.

decisions resulting from low quality feature subspaces, provided that a sufficient
number of feature subspaces exists, that leads to accurate decisions.

In section 3.3 we present a FSE implementation, which we have applied to
the ECG based personal identification problem. Comparative results show that,
a single classifier designed using a single feature subspace obtained by means
of FS, outperforms the case where the original feature representation space F
is used, that is, when no feature selection is performed. With feature subspace
ensembles further improvements were obtained, outperforming the classification
performance of both cases.

3 One Lead ECG Based Personal Identification

3.1 Data Acquisition

Unlike previous work, where ECG recordings were performed at rest [28][6],
and in stress potentiating tasks [4], we present preliminary results on real data
acquired during a cognitive activity. Twenty six subjects, 18 males and 8 females,
between the ages of 18 and 31 years, willingly participated in individual sessions
(one per subject), during the course of which their ECG signal was recorded.

In each individual session the subject was asked to complete a concentration
task on a computer, designed for an average completion time of 10 minutes.
The subject interacted with the computer in a sitting position, using only the
mouse as input device. No posture or motion restrictions during the activity
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were imposed, however, the ECG acquisition was part of a wider multi-modal
physiological signal acquisition experiment; therefore due to the placement of
other measurement apparatus in the subjects passive hand1 it was suggested to
the subject to reduce the movements of the passive hand to the indispensable
minimum.

Fig. 3. Illustration of one grid of digits from the concentration task that each subject
was asked to complete, and during which the ECG signal acquisition was performed

The task consisted on the presentation of two grids with 800 digits, similar
to the one illustrated in figure 3, with the goal of identifying every consecutive
pair of digits that added 10. Each grid was traversed in a line wise manner, from
the top left to right bottom corner. The task was designed to induce saturation,
having the following constraints: in order to be able to move from a current line
to the next, the current line would have to be fully traversed; once a new line was
moved into, the previously traversed ones could not be accessed. An horizontal
bar and a cursor followed the mouse movement along the horizontal axis; the
horizontal bar informed the subject of the point until which the current line had
been traversed, and the cursor highlighted the pair of consecutive numbers over
which the mouse was hovering at a given point. Whenever the user identified a
consecutive pair of numbers matching the goal and highlighted by the cursor, he
would mark it with a mouse click, and although it was not possible to return to
previously visited lines, within the same line the markings could be revised.

A one lead surface mount ECG placement on the V2 precordial derivation
[1][3] was used. Facing the subject, the V2 derivation is located on the fourth
intercostal space over the mid clavicular line, at the right of the sternum. Prior
to sensor placement, the area was prepared with abrasive gel and conductive
paste was used on the electrodes to improve conductivity.

1 we define active hand as the one used to control the input device; passive hand as
the free hand.
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3.2 Signal Processing and Feature Extraction

The acquired ECG signals were band-pass filtered in the passing band 2−30Hz
with a zero-phase forward and reverse scheme [29], to remove high frequency
powerline noise and low frequency baseline wander artifacts from the signal.

Fig. 4. Measured features from the ECG heartbeat waveform

Each heartbeat waveform was sequentially segmented from the full recording,
and after this all waveforms were aligned by their R peaks. From the resulting
collection of ECG heartbeat waveforms, the mean wave for groups of 10 heart-
beat waveforms (without overlapping), was computed to minimize the effect of
outliers. A labeled database was compiled, in which each pattern corresponds to
a mean wave.

For each mean waveform, 8 latency and amplitude features were extracted,
along with a sub-sampling of the waveform itself. This resulted in a feature
representation space F of dimension d = 53, with 4 latency features, 4 amplitude
features measured at selected points (figure 4), and 45 amplitude values measured
at the sub-sampled points. No time limit was imposed to complete the task, and
therefore the heartbeat wave form collection of each subject in the database was
truncated at approximately 6 minutes2 to ensure uniform class distribution.

3.3 Feature Selection and Classification

The ECG mean wave database is used for evaluation purposes; 50 data selec-
tion runs were performed, where in each run r three mutually exclusive sets Xr,
Yr and Zr, of randomly selected patterns from the full recording are created.
Also a feature subspace F ∗

r is determined using the individual feature subspace

2 Corresponding to the fastest completion time over all subjects.
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selection framework described next. As a result, 50 feature subspaces will be
available as a result of the performed data selection runs. Xr is created with
22.5% of the available patterns and used as training set both for FS and classifier
design; Yr is created with another 22.5% of the available patterns and used as
validation set in FS; and the remaining 55% of the available patterns were used to
create Zr, which served as testing set for classification performance assessment.

For our experiments we have employed a wrapper FS framework [16], with a
heuristic sequential forward search (SFS) method [30]. SFS is a state space search
method, which starts from an initial state F ∗

t=0 = ∅ and iteratively evolves by
constructing at each step all possible super-spaces Ft+1 = F ∗

t ∪ {fj ∈ F \ F ∗
t },

adding each of the features fj ∈ F \ F ∗
t to the optimal subspace F ∗

t obtained
at the previous step. J is used to evaluate each of the resulting super-spaces
Ft+1, and F ∗

t+1 is selected as the set which optimizes J . If J(F ∗
t+1) < J(F ∗

t )
the search is stopped3, and F ∗

r = F ∗
t is considered to be the feature subspace

with most relevant discriminative information for a given FSC r. Although con-
ceptually simple, wrapper SFS feature selection has proven to hold comparable
results in benchmark data when compared to other (more complex) methods
[31][32].

The feature subspace evaluation criteria J in wrapper methods is the opti-
mization of the classification performance of a learning machine. In our imple-
mentation, J is trained with Xr, and the recognition error over Yr is used for
feature subspace evaluation; therefore F ∗

r is determined as the feature subspace
that provides higher recognition rate over the validation set Yr. Using all feature
subspaces computed through SFS during the 50 data selection runs, a feature
subspace ensemble F = {F ∗

1 , · · · , F ∗
50} was created, and used for classification

performance evaluation of the FSE method.
For classification, we use the k-NN decision rule with an Euclidean neighbor-

hood metric [12]. A 1-NN neighborhood was adopted, since it is a particular case
of the k-NN rule where ŵxi for a given pattern xi is assigned as the category
of the closest pattern from the training set Xr. The same type of classifier is
used for feature subspace evaluation criteria J , and for classification performance
assessment.

Two types of classification performance analysis were performed. On one hand,
we evaluated the recognition rate of a single heartbeat waveform for different
sizes of the training and validation data, in order to determine the minimum
number of patterns necessary to achieve maximum recognition rates. On the
other hand, to determine how the recognition rate evolves by using more than
one heartbeat waveforms in personal identification instead of a single one, we
evaluated the classification performance achieved by combination of the individ-
ual decisions of a reduced set of heartbeat waveforms.

Therefore, additionally to the FSE parallel classifier combination method,
sequential classifier combination was also employed. A simple majority voting
strategy was adopted as classifier combination rule in both cases [33][24][34].

3 J(F ) denotes the usage of J in the evaluation of a given feature subspace F.
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4 Results

In this section we present results for the one lead ECG based personal identifi-
cation. We evaluate the classification performance of a single classifier designed
using a single feature subspace both for the cases where no feature selection is
performed, and for FS selected feature subspaces. Our feature subspace ensemble
method, described in section 2 is also applied to the problem.

Figure 5 illustrates the evolution of the mean recognition error of a single
heartbeat waveform (figure 5(a)), and feature subspace size (figure 5(b)), com-
puted over 50 runs according to the methodology described in section 3.3. To
determine the minimum number n of patterns necessary to achieve the maxi-
mum recognition rate, we experimented training and validation sets (Xr, and
Yr respectively) of different sizes, ranging from a single training and validation
pattern n = 1 (1 mean heartbeat waveform), to the full set of n = 9 patterns
(which as described in section 3.3, corresponds to 22.5% of the available pat-
terns in each run). As we can observe the error rate is fairly similar with (curve
iSFS) and without SFS feature selection (curve iALL), although feature selec-
tion leads to more compact feature spaces, as illustrated in figure 5(b). An im-
proved recognition rate was achieved with the application of FSE to the problem
(curve eSFS).

We can observe that even using a single pattern per subject in the training
and validation sets, the average recognition error rate is approximately 19.65%
using all features, and 19.66% with SFS selected feature subspaces. In this case,
the feature subspace ensemble method reduced the recognition error rate to
approximately 11.86%. By increasing the number n of patterns in the training
and validation sets, the recognition error rate is highly decreased. The minimal
values are reached when the whole set of training and validation data is used,
with a recognition error rate of 2.80% using all features and 2.58% with SFS
selected feature subspaces. In this case, the FSE method further improved the
average recognition error rate to 1.91%.

Figure 6 illustrates the feature histogram for the SFS selected feature sub-
spaces over all runs, when the full set of training and validation patterns is used.
The mean subspace size is 19.62 features; as we can observe, there is a high
feature subspace diversity, and there are several relevant features that not all
FSCs lead to. This explains why feature subspace ensembles consistently im-
proved the recognition error rate. We can also observe the presence of irrelevant
features, which FS discards or are rarely selected. From figure 5(a) we can see
that these, although irrelevant are not misleading the classifier designed using
the original feature representation space F , since the recognition error rate is
only marginally superior to the results obtained for the classifier design using a
single SFS selected feature subspace.

With FSE, a single mean heartbeat waveform, which in our case corresponds
to approximately 7 seconds of signal acquisition4 (since each pattern corresponds

4 this calculation was performed taking as a reference an average normal resting heart
rate of 70 beats per minute [3].
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Fig. 5. Mean recognition error of a single ECG heartbeat waveform (figure 5(a)), and
feature subspace size (figure 5(b)). n: number of patterns used for the training and
validation sets (Xr and Yr); E : mean classification error; d̄: mean subspace size; all :
no feature selection; sfs: wrapper sequential forward search; the i prefix denotes the
curves for individual classifier and subspace cases, and the e prefix denotes the curves
for the feature subspace ensemble method.

to the mean wave of a group of 10 heartbeat waveforms), provides 98.09% recog-
nition accuracy, using a training set of 9 patterns (that is, 63 seconds).

Maintaining the methodology described in section 3.3, we also evaluated
the recognition rate of personal identification using more than one heartbeat
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Fig. 6. Histogram for the SFS selected feature subspaces over all runs when the full
set of training and validation patterns is used. The horizontal axis corresponds to each
dimension of the FRS; the vertical axis corresponds to the number of times a given
dimension d was selected. The horizontal line indicates the histogram mean.

waveform. The classification performance obtained for reduced sets of h =
3, · · · , 8 heartbeat waveforms was evaluated, and sequential classifier combina-
tion through majority voting was used as classifier combination strategy. Figure 7
illustrates these results. It is important to recall that the FS step was performed
to optimize the recognition rate of a single heartbeat waveform (as described
in section 3.3). Nonetheless, as we can observe, considering a reduced set of
heartbeat waveforms greatly improves the recognition accuracy. The highest
recognition rate (99.97%), was obtained by majority voting the individual FSE
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Fig. 7. Mean recognition error and standard deviation intervals for subject identifica-
tion from sets with a reduced number h of ECG heartbeat waveforms. h: size of the
set of heartbeats waveforms; E : mean classification error; all : no feature selection; sfs:
wrapper sequential forward search; the i prefix denotes the curves for individual clas-
sifier and subspace cases, and the e prefix denotes the curves for the feature subspace
ensemble method.
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decisions for a group of 8 heartbeat waveforms (the equivalent to 56 seconds of
signal acquisition according to the adopted methodology).

5 Conclusions

In this paper we addressed a real data problem of ECG based personal identifica-
tion using a single, and reduced sets of heartbeat waveforms described in a feature
representation space of dimensiond = 53 measured features. We evaluated the clas-
sification performance of a single classifier using the original FRS, and recurred to
feature selection to improve the recognition rate and reduce data dimensionality.

We introduced the concept of feature selection context (FSC): the conditions
under which a given feature subspace is obtained; and described the generic fea-
ture subspace ensemble (FSE) approach: a parallel classifier combination method
which uses an association between FS and classifier combination techniques [17].
FSE was designed to overcome some of the difficulties resulting from FS, namely:
FSC overfitting; suboptimality of FS methods ; and recovery of relevant discrim-
inative information contained in features discarded by FS.

An instantiation of the FSE method using a wrapper heuristic sequential for-
ward search (SFS) framework, 1-NN classifier and the majority voting classifier
combination rule, was applied to the ECG based personal identification problem
providing higher recognition rates than the single classifier designed using a single
FRS cases (both the original FRS, and FS selected through feature subspaces).

Preliminary results have shown that the ECG can be used to identify individ-
uals, particularly useful as a behavioral biometric technique. High recognition
rates were achieved using a single heartbeat waveform, and we were able to fur-
ther improve the results by using sequential classifier combination techniques to
combine the individual decisions of a reduced set of heartbeat waveforms. It is
important to enhance that, in each evaluation run, a random selection of the
patterns was performed from the full recording. This indicates robustness of the
ECG signal, since the task during which the signal was acquired was designed
to induce saturation.

Through FSE, using a set of 9 training patterns we achieved a personal
identification rate of 98.09% from a single heartbeat waveform pattern (which
according to the adopted methodology corresponds to 7 seconds of signal acqui-
sition). Using sequential classifier combination in conjunction with FSE, combin-
ing the individual decisions from FSE over a reduced set of heartbeat waveforms
to produce a global decision, further improved the recognition rates. We were
able to achieve a 99.97% subject recognition rate by combining the individual
decisions of 8 heartbeat waveforms, which according to the adopted methodology
corresponds to 56 seconds of signal acquisition.

FS targets dimensionality reduction and better discriminative ability, by
selecting from the original FRS only the features with relevant discriminative
information for a given FSC. Classifier combination strategies target the decision
refinement, by taking into account multiple individual decisions in order to pro-
vide for a global decision. FSE has the potential to combine the advantages of
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both FS and classifier combination, since through FS reduced dimensionality is
achieved; and through classifier combination, the classification system becomes
less sensitive to misleading feature subspaces due to particularly inadequate FSCs.

Ongoing and future work includes further validation of the obtained results
by including longer databases and a higher number of recordings per individual.
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Abstract. Female breast cancer is a major cause of death in western
countries. Several computer techniques have been developed to aid ra-
diologists to improve their performance in the detection and diagnosis
of breast abnormalities. In Point Pattern Analysis, there is a statistic
known as Ripley’s K function that is frequently applied to Spatial Anal-
ysis in Ecology, like mapping specimens of plants. This paper proposes a
new way in applying Ripley’s K function to classify breast masses from
mammogram images. The features of each nodule image are obtained
through the calculate of that function. Then, the samples gotten are
classified through a Support Vector Machine (SVM) as benign or malig-
nant masses. SVM is a machine-learning method, based on the principle
of structural risk minimization, which performs well when applied to
data outside the training set. The best result achieved was 94.94% of
accuracy, 92.86% of sensitvity and 93.33% of specificity.

Keywords: Mammogram, Breast Cancer Diagnosis, Ripley’s K Func-
tion, Texture Analysis, SVM.

1 Introduction

Breast cancer is the most common form of cancer among women in Western
countries, and a major cause of death by cancer in the female population. It
is well know that the best prevention method is the precocious diagnosis, what
lessens the mortality and enhance the treatment [1]. American National Cancer
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Institute [2] estimates that every three minutes, a woman is diagnosed with
breast cancer, and every 13 minutes, a woman dies from the disease.

Mammography is currently the best technique for reliable detection of early,
non-palpable, potentially curable breast cancer [1]. In 1995, the mortality rate
from this disease decreased for the first time, due in part to the increasing use of
screening mammography [1]. However, the image interpretation is a repetitive
task that requires much attention to minute detail, and radiologists vary in their
interpretation of mammograms.

Digital mammography represents an enormous advance in detection and diag-
nosis of breast abnormalities. Through image processing techniques, it is possible
to enhance the contrast, color, and sharpness of a digital mammogram. Thus,
several possible breast abnormalities may become visible for human beings.

Therefore, in the past decade there has been tremendous interest in the use of
image processing and analysis techniques for Computer Aided Detection (CAD)/
Diagnostics (CADx) in digital mammograms. The goal has been to increase di-
agnostic accuracy as well as the reproducibility of mammographic interpretation.
CAD/CADx systems can aid radiologists by providing a second opinion and may
be used in the first stage of examination in the near future, allowing to reduce
the variability among radiologists in the mammograms interpretation.

Automatic detection and diagnostic of breast lesions has been a highly chal-
lenging research area. In [3], a neural-genetic algorithm for feature selection in
conjunction with neural and statistical classifiers has obtained a classification
rate of 85.0% for testing set. A computer aided neural network classification of
suspicious regions on digitized mammograms is also presented in [4]. They use
a Radial Basis Function Neural Network (RBFNN) to accomplish the classifi-
cation, fed by features selected through independent component analysis. That
experiments presented a recognition accuracy of 88.23% in the detection of all
kinds of abnormalities and 79.31% in the task of distinguishing between benign
and malignant regions, outperforming in both cases standard textural features,
widely used for cancer detection in mammograms. In [5], the authors proposed
a method for discrimination and classification of mammograms with benign,
malignant and normal tissues using independent component analysis and mul-
tilayer neural networks. The best performance was obtained with probabilistic
neural networks, resulting in 97.3% success rate, 100% of specificity and 96% of
sensitivity.

Traditionally, texture analysis is accomplished with classical image processing
measures, like histogram, Spatial Gray Level Dependence Method, Gray Level
Difference Method and others. Ripley’s K function is frequently applied to Spa-
tial Analysis in Ecology, like mapping plants specimens. In this paper we intend
to investigate the effectivity of a classification methodology that uses Ripley’s
K function to calculate input measures for a Support Vector Machine, with the
purpose to classify masses in mammographic images into two types, benign or
malignant.

The main contribution of this work is the application of Ripley’s K function
to breast nodule characterization, using a Support Vector Machine. For the best
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of our knowledge, there is no work published applying the Ripley’s K function
for characterization of textures on medical images, even though this is a classical
method in the ecology area.

This work is organized as follows. In Section 2, we present the techniques for
feature extraction, and mass diagnosis. Next, in Section 3, the results are shown
and we discuss about the application of the techniques under study. Finally,
Section 4 presents some concluding remarks.

2 Material and Methods

The methodology proposed in this work to determine breast masses nature is
based on three steps. The first one is the image acquisition, that is done obtaining
mammograms and selecting manually regions that corresponds to benign and
malignant masses.

The second step is the application of some measure function to the mass as a
way to define some of its determinant aspects. In this work, we propose the use
of Ripley’s K function to do this characterization.

The last step is the selection of the most important measures from texture
characterization to classify the samples gotten and their use for a SVM based
classification into two classes, benign or malignant.

2.1 Image Acquisition

For the development and evaluation of the proposed methodology, we used a pub-
lic available database of digitized screen-film mammograms: the Digital Database
for Screening Mammography DDSM [6].

The DDSM database contains 2620 cases acquired from Massachusetts Gen-
eral Hospital, Wake Forest University, and Washington University in St. Louis
School of Medicine. The data are comprised of studies of patients from different
ethnic and racial backgrounds. The DDSM contains descriptions of mammo-
graphic lesions in terms of the American College of Radiology breast imaging
lexicon called the Breast Imaging Reporting and Data System (BI-RADS) [6].
Mammograms in the DDSM database were digitized by different scanners de-
pending on the institutional source of the data. A subset DDSM cases was se-
lected for this study. Cases with mass lesions were chosen by selecting reports
that only included the BI-RADS descriptors for mass margin and mass shape.
From 2620 cases, 390 images were selected based on this criteria. From this sub-
set, 394 regions of interest were selected manually, 187 represent benign mass
and 207 represent malignant mass regions.

2.2 Texture Analysis

Texture can be understood as tonal variations in the spatial domain and deter-
mines the overall visual smoothness or coarseness of image features. It reveals
important information about the structural arrangements of the objects in the
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image and their relationship to the environment. Consequently, texture analysis
provides important discriminatory characteristics related to variability patterns
of digital classifications.

Texture processing algorithms are usually divided into three major categories:
structural, spectral and statistical [7]. Structural methods consider textures as
repetitions of basic primitive patterns with a certain placement rule [8]. Spec-
tral methods are based on the Fourier transform, analyzing the power spec-
trum [8]. The third and most important group in texture analysis is represented
by statistical methods, which are mainly based on statistical parameters such
as the Spatial Gray Level Dependence Method-SGLDM, Gray Level Difference
Method-GLDM, Gray Level Run Length Matrices-GLRLM [9], [10], [11].

In practice, some of the most usual terms used by interpreters to describe
textures, such as smoothness or coarseness, bear a strong degree of subjectivity
and do not always have a precise physical meaning. Analysts are capable of vi-
sually extracting textural information from images, but it is not easy for them
to establish an objective model to describe this intuitive concept. For this rea-
son, it has been necessary to develop quantitative approaches to obtain texture
descriptors. Thus, in a statistical context, textures can be described in terms of
an important conceptual component associated to pixels (or other units), their
spatial association. This component is frequently analyzed at the global level by
quantifying the aggregation or dispersion of the element in study [12].

In this work, the texture analysis is done by quantifying the spatial association
between individual pixel values from the nodule image by applying the local form
of the Ripley’s K function - which will be discussed in a following subsection.

Ripley’s K Function

Patterns of point based objects in two or three dimensions or on the surface of
the terrestrial or celestial spheres are commonplace; some examples are towns
in a region, trees in a forest and galaxies in space. Other spatial patterns such
as a sheet of biological cells can be reduced to a pattern of points [13].

Most systems in the natural world are not spatially homogeneous but exhibit
some kind of spatial structure. As the name suggests, point pattern analysis
comprises a set of tools for looking at the distribution of discrete points [14],
for example individual pixels in an image that have been mapped to Cartesian
coordinates (x, y).

Point pattern has a long history in statistics and the great majority of them
focus on a single distance measurement. There are a lot of indices - most of them
use the Poisson distribution [15] as the underlying model for inferences about
pattern - used to quantify the intensity of pattern at multiple scales.

Point patterns can be studied by first-order and second-order analysis. The
first-order approach uses point-to-point mean distance or derives a mean area
per point, and then inverts this to estimate a mean point density from which the
test statistics about the expected point density are derived [14]. Second-order
analysis looks at a larger number of neighbors beyond the nearest neighbor.
This group of methods is used to analyze the mapped positions of objects in
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the plane or space, such as the stems of trees and assumes a complete census of
the objects of interest in the zone (area or volume) under study [14]. One of the
most commonly used second-order methods is the Ripley’s K function.

Ripley’s K function is a tool to make analysis of completely mapped spa-
tial point process data, i.e. data on the locations of events. These are usually
recorded in two dimensions, but they may be locations along a line or in 3D
space. Completely mapped data include the locations of all events in a prede-
fined study area. Ripley’s K function can be used to summarize a point pattern,
test hypotheses about the pattern, estimate parameters and fit models [13].

Ripley’s K method is based on the number of points tallied within a given
distance or distance class. Its typically definition for a given radius, t, is:

K(t) =
A

n2

∑

i

∑

j

δ (dij) (1)

for i �= j, where A is the area sampled, n is the total number of points and δ is
an indicator function that is 1 if the distance dij between the points on locations
i and j is lower than the radius t, else it takes on 0. In other words, this method
counts the number of points within a circle of radius t of each point, as Figure 1
shows.

Fig. 1. Schematic illustration measurement of Ripley’s K function

It is usual to assume isotropy, i.e. that one unit of distance in the vertical
direction has the same effect as one unit of distance in the horizontal direction.
Although it is usual to assume stationarity, that means the minimal assump-
tion under which inference is possible from a single observed pattern, K(t) is
interpretable for nonstationary processes because K(t) is defined in terms of a
randomly chosen event.

As every point in the sample is taken one time to center a plot circle, Ripley’s
K function provides an inference at global level of the element in study. However,
this measure can be also considered in a local form for the ith point [16]:

Ki(t) =
A

n

∑

i�=j

δ (dij) (2)
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2.3 Selection of Most Significant Features

The choice of the minimum set of features that has the power to discriminate the
samples is very important to simplify the model and increase its generalization
power.

Stepwise selection [17] begins with no variables in the model. At each step,
the model is examined. The variable that has the least contribution to the model
discriminatory power, as measured by Wilks lambda, is removed if it fails to meet
the criterion to stay. Otherwise, the variable not in the model that contributes
most to the discriminatory power of the model is included. When all variables
in the model meet the criterion to stay and none of the other variables meet the
criterion to enter, the stepwise selection process stops.

2.4 Support Vector Machine

The Support Vector Machine (SVM) introduced by V. Vapnik in 1995 is a
method to estimate the function classifying the data into two classes [18], [19].
The basic idea of SVM is to construct a hyperplane as the decision surface in
such a way that the margin of separation between positive and negative exam-
ples is maximized. The SVM term come from the fact that the points in the
training set which are closest to the decision surface are called support vectors.
SVM achieves this by the structural risk minimization principle that is based on
the fact that the error rate of a learning machine on the test data is bounded
by the sum of the training-error rate and a term that depends on the Vapnik-
Chervonenkis (VC) dimension.

The process starts with a training set of points xi ∈ &n,i = 1, 2, · · · , l where
each point xi belongs to one of two classes identified by the label yi ∈ {−1, 1}.
The goal of maximum margin classification is to separate the two classes by
a hyperplane such that the distance to the support vectors is maximized. The
construction can be thinked as follow: each point x in the input space is mapped
to a point z = Φ(x) of a higher dimensional space, called the feature space, where
the data are linearly separated by a hyperplane. The nature of data determines
how the method proceeds. There is data that are linearly separable, nonlinearly
separable and with impossible separation. This last case be still tracted by the
SVM. The key property in this construction is that we can write our decision
function using a kernel function K(x, y) which is given by the function Φ(x)
that map the input space into the feature space. Such decision surface has the
equation:

f(x) =
l∑

i=1

αiyiK(x, xi) + b (3)

where K(x, xi) = Φ(x).Φ(xi), and the coefficients αi and the b are the solutions
of a convex quadratic programming problem [18], namely

min
w,b,ξ

1
2w

T · w + C
l∑

i=1

ξi

subject to yi

[
wT · φ (xi) + b

]
≥ 1 − ξi

ξi ≥ 0.

(4)
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where C > 0 is a parameter to be chosen by the user, which corresponds to
the strength of the penality errors and the ξi’s are slack variables that penalize
training errors.

Classification of a new data point x is performed by computing the sign of the
right side of Equation 3. An important family of kernel functions is the Radial
Basis Function, more commonly used for pattern recognition problems, which
has been used in this paper, and is defined by:

K(x, y) = e−γ‖x−y‖2
(5)

where γ > 0 is a parameter that also is defined by the user.

2.5 Validation of the Classification Methods

To evaluate the performance of a generic classifier, three quantities are usually
used. These are the sensitivity (SE), the specificity (SP) and the accuracy rate
(A), respectively defined as: SE = TP/(TP +FN), SP = TN/(TN +FP ). and
A = (TP + TN)/(TP + TN + FP + FN). TP is the number of true positives,
i.e. the positive examples correctly classified as positives, TN is the number of
true negatives, FP is the number of false positives, i.e. the negative examples
incorrectly classified as positives, and FN are the false negatives. Our aim is to
obtain a high sensitivity, in order to detect all the positive examples without a
significant loss in specificity; from a medical point of view it is indeed crucial to
detect all the positive examples, but at the same time we need to significantly
reduce the number of false positives.

3 Results and Discussion

The regions of interest (ROI) were manually extracted from each image based on
the information provided by the database DDSM. The ROIs are square region
sub-images defined to completely enclose the DDSM described abnormality, as
shown in Figure 2. To perform the experiments, we take 187 ROIs representing
benign masses and 207 representing malignant ones.

In order to find maximum possible information about the masses, we used
original images and we also quantized them to 3, 4, 5, 6, and 7 bits (or 8, 16,
32, 64 and 128 gray levels, respectively). For each quantization level we applied
Equation 2 to each individual pixel value, being the area A = π×t2. For example,
for a nodule quantized to 8 bits, we obtained the 256 function values of Ki(t);
first it was obtained Ki(t) for the pixels with density equals to 1, after for the
pixels with density equals to 2 and so on, until to be obtained Ki(t) for the
pixels with density equals to 255.

For the purpose of carry out the analysis along the entire nodule, we per-
formed the analysis using six different values for the radius t. So, in order to find
maximum radius value, we took the ROI’s central pixel and then we found out
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Fig. 2. Illustration of a malignant ROI example (DDSM database reference: B-3086-1)

the farthest one from it (Figure 3). Each circle radius ti may take values 1
6 × d,

1
3 × d, 1

2 × d, 2
3 × d, 5

6 × d and d, where d is the distance from the central pixel i
to the farthest one P .

Figure 4 shows this scheme to compute Ripley’s function. This approach makes
possible to observe the spatial association among individual pixel values at dif-
ferent locations, from central to peripheral zones of the ROIs.

Thus, we obtained a set of 3024 (equals to 8 + 16 + 32 + 64 + 128 + 256
gray levels × 6 concentric circles) different values of Ki(t), for each sample. To
make feasible the computation we need to select from all the obtained measures
which were the minimum set that has the power to discriminate benign from
malignant masses. To do it, we used the stepwise technique that reduced the
number of 3024 variables to 83. There are 26 variables for t = 1

6 × d, 11 variable
for t = 1

3 × d, 8 variables for t = 1
2 × d, 3 variables for t = 2

3 × d, 14 for t = 5
6 × d

and 21 for t = d. Analyzing only the way variables are distributed in relation
to the gray levels, there are 0 variables for 8 gray levels, 6 for 16 gray levels, 4
for 32 gray levels, 10 for 64 gray levels, 16 for 128 gray levels and 47 for 256
gray levels. In fact, we may see that the more we quantize the images, the more
relevant informations are lost.

The next step was the classification of each sample, using a SVM classifier. A
library for Support Vector Machines, called LIBSVM [20], was used for training
and testing the SVM classifier. We used Radial Basis Function as kernel and the
value parameters used were C = 8192 and γ = 0.001953125.

The data set is commonly split in training and test sets, so we generated
several pairs of subsets with 315 samples for training and 79 samples for tests.
In order to show the best performance results, we select only five pair of subsets
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Fig. 3. The distance from the central pixel i to the farthest one P from it
.

Fig. 4. Schematic illustration of computing the local form of Ripley’s K function for
different values of t

that present best test accuracy, i.e, that ones that produces less generalization
error. Table 1 shows performances measures for each experiment.

Analyzing only test results, we may observe that the best result was 94.94% of
accuracy, 92.86% of sensitvity and 93.33% of specificity. A more detailed analysis of
test results shows that the methodology presents an average sensibility of 95.29%,
an average specificity of 91.55% and an average accuracy of 93.92%. The global ac-
curacy is the sum of all true positives and true negatives detected by the method-
ology divided by the total of samples, and its average value is equal to 95.94%.
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Table 1. Results from running SVM with Ripley’s K function

Experiments
Specificity (%) Sensitivity (%) Accuracy (%) Global Accuracy (%)
Train Test Train Test Train Test

1 93.33 93.33 98.18 92.86 95.87 94.94 95.69
2 93.96 92.11 98.80 95.12 96.51 93.67 95.94
3 94.08 91.43 98.16 95.45 96.19 93.67 95.69
4 95.39 91.43 98.16 95.45 96.83 93.67 96.19
5 95.30 89.47 98.19 97.56 96.83 93.67 96.19

Thus, we verify that the proposed methodology provides a good support for
breast masses characterization and classification, resulting in a good generaliza-
tion power from training to test data. Its success is very encouraging for further
investigation and utilization of more complicated databases, with larger number
of samples.

4 Conclusion

This paper has presented a new application of a function used traditionally
in point pattern analysis, with the purpose of characterizing breast masses as
benign or malignant. The measures extracted from Ripley’s K function were
analyzed and had great discriminatory power, through Support Vector Machine
classification. The best test result was 94.94% of accuracy, 93.33% of specificity
and 92.86% of specificity, with means that the proposed methodology has also a
good generalization power.

The results presented are very encouraging, and they constitute strong evi-
dence that Ripley’s K function is an important measure to incorporate into a
CAD software in order to distinguish benign and malignant lesions. Neverthe-
less, there is the need to perform tests with other databases, with more complex
cases in order to obtain a more precise behavior pattern.

As future works, we propose the use of other textural measures to be used
jointly with Ripley’s K funcion, in order to try to reduce the number of false
negatives to zero and to find others possible patterns of malignant and benign
lesions. We also suggest the application of the function to provide features for au-
tomatic detection of masses. Finally, we suggest to apply the proposed mehodol-
ogy for calcification detection and diagnosis problem, using SVM classification.
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Abstract. In the biometric field, different experts are combined to
improve the system reliability, as in many application the performance
attained by individual experts (i.e., different sensors, or processing al-
gorithms) does not provide the required reliability. However, there is no
guarantee that the combination of any ensemble of experts provides su-
perior performance than those of individual experts. Thus, an open prob-
lem in multiple biometric system is the selection of experts to combine,
provided that a bag of experts for the problem at hand are available.
In this paper we present an extensive experimental evaluation of four
combination methods, i.e. the Mean rule, the Product rule, the Dynamic
Score Selection technique, and a linear combination based on the Linear
Discriminant Analysis. The performance of combination have been eval-
uated by the Area Under the Curve (AUC), and the Equal Error Rate
(EER). Then, four measures have been used to characterise the per-
formance of the individual experts included in each ensemble, namely
the AUC, the EER, and two measures of class separability, i.e., the d’
and an integral separability measure. The experimental results clearly
pointed out that the larger the d’ of individual experts, the higher the
performance that can be attained by the combination of experts.

1 Introduction

Approaches based on ensemble of experts are widely used in many applications
as they avoid the choice of the “best” expert, and typically provide better perfor-
mance than those provided by individual experts [1]. Ensemble approaches also
allow “fusing” experts based on different input sources, so that complementary
information can be exploited, and the resulting expert is robust with respect to
noise [1]. For this reason, they are widely used in security applications, such as
biometric authentication systems, where the goal is to authorise the access to a
protected resource by using one or more biometric traits to validate the identity
of the person. At present, there is an increasing interest in multi-biometrics, i.e.
the combined use of different biometric traits and/or processing algorithms, as in
many application the performance attained by individual sensors or processing
algorithms does not provide the required reliability [2].

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 795–809, 2007.
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When combination is performed it would be useful to have some measures
allowing to selects the experts to combine from a bag of available experts de-
signed for the task at hand. In the biometric field it is easy to create such a bag
of experts as, for example, for a given sensor, a number of processing algorithms
and matching techniques are available. The number of available matchers in-
creases in those applications where two or more sensors are used to deploy user
authentication mechanisms.

In the case of pattern classifiers, a number of diversity and accuracy measures
have been proposed to design a multiple classifier system [1]. The vast majority
of these measures are based on the classification errors made by different clas-
sifiers. However, these measures are not suited in the biometric field. Biometric
experts perform user authentication by the so-called matchers, i.e. algorithms
that compare the acquired biometry to those stored during the enrolment phase.
The output of a matcher is a matching score, i.e. a measure stating how much the
acquired biometry is likely to be the stored biometry associated to the claimed
identity. In order to perform user authentication, a threshold is set so that users
with a matching score larger than the threshold are accepted (i.e. assigned to
the so-called genuine class), otherwise they are rejected (i.e. assigned to the so-
called impostor class). However, in order to evaluate matchers, typically the ROC
curve is used, which represents the relationship between the false acceptance rate
and the true acceptance rate for different values of the decision threshold. It is
easy to see that the Area Under the Curve (AUC) represents a measure of the
performance of the systems. However, as the AUC provides information on the
“average” performance of a biometric systems, typically in the biometric field
the performance are compared in terms of the Equal Error Rate (EER), i.e. the
point of the ROC where the two errors, i.e. the false acceptance rate and the
false rejection rate, are equal.

As the combination of experts in a multi-biometric system is usually per-
formed at the score level (i.e., only the matching scores are available), there is
no information available about classification “errors”, because they are related
to the choice of the acceptance threshold. Thus, to design a multiple biometric
system we cannot use the diversity and accuracy measures proposed to design a
multiple classifier system as they are typically based on the classification errors
made by different classifiers. Consequently, we must resort to some performance
measure that is not “accuracy based”.

To this end, we propose to characterise the individual experts by four mea-
sures, i.e., two measures of performance (namely, the AUC, and the EER), and
two measures of class separability (namely, the d’, and an integral measure).
Then, we performed an extensive experimental evaluation on a large bag of
biometric experts to seek correlations between the above measures and the per-
formance attained after combination. Four combination rules have been consid-
ered: the Mean rule, the Product rule, the Dynamic Score Selection technique
[3], and a linear combination based on Linear Discriminant Analysis. It is worth
noting that other authors performed extensive experimental evaluation of the
performance of the combination of multiple experts [4]. However, while previous
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works aimed at assessing the improvement in performance that can be attained
by combining multiple experts, this paper aims at providing some guidelines to
select experts so that their combination allows attaining high performance im-
provements. In addition, reported experiments will also show which of the four
considered combination methods is more suited for combining multiple biometric
experts.

The rest of the paper is organised as follows: Sections 2 and 3 present respec-
tively the measures of performance we used to characterise the individual experts
and to evaluate the results after combination, and the rules we considered for
combining biometric experts. The experimental results are presented in Section 4
and our conclusions are outlined in Section 5.

2 Performance Measures

In biometric systems, performance are assessed by measuring the errors made by
rejecting genuine users, and those made by accepting impostor users, for a given
value of the acceptance threshold. Let us denote with th an acceptance threshold
so that users whose score is larger than th are assigned to the genuine class, while
users whose score is smaller than th are assigned to the impostor class. The two
errors, respectively the False Rejection Rate (FRR), and the False Acceptance
Rate (FAR) are computed as follows:

FRRj(th) =
∫ th

−∞
p(sj|sj ∈ genuine)dsj = P (sj ≤ th|sj ∈ genuine) (1)

FARj(th) =
∫ ∞

th

p(sj |sj ∈ impostor)dsj = P (sj > th|sj ∈ impostor) (2)

The most widely accepted method used to evaluate the performance of a bio-
metric system is the Receiver Operating Characteristic (ROC) curve. In this
curve the value of 1 - FRR (i.e., the true acceptance rate) is plotted against
the value of FAR for all possible values of th. As the ROC is a graphical mea-
sure of performance, to compare two or more biometric experts it is useful to
use numerical performance measures. Such a measure can be a summary index
related to the ROC, or an index related to the degree of overlapping of the
distributions of genuine and impostor scores. In addition, performance can be
assessed at a specific point of the ROC that corresponds to a particular working
condition. According to the literature on ROC analysis [5], and on biometric
system evaluation [6] we selected four measures of performance: the Area Under
the ROC Curve (AUC), the Equal Error Rate (EER), the d’, and an integral
class separation measure.

2.1 Area Under the ROC Curve

In ROC analysis the Area Under the Curve (AUC) is the most widely used
measure for assessing the performance of a two-class system because it is a more
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discriminating measure than the accuracy [5]. The AUC can be computed by
the numerical integration of the ROC curve, or by the Wilcoxon-Mann-Whitney
(WMW) statistic [7]. We decided to use the WMW statistic to estimate the
AUC as it is equivalent to the value computed by integrating the ROC, but
the resulting estimation is more reliable, as the value of the integral depends on
the numerical technique employed. In addition, the AUC can be interpreted as
follows: given two randomly chosen users, one from the set of genuine users, and
one from the set of impostor users, the AUC is the probability P (xp > yq), i.e.
the probability of correct pair-wise ranking [8].

According to the WMW statistic, the AUC can be computed as follows. Let
us divide into two sets all the scores {sij} produced by a matcher Mj for all the
ui users: {xp}, i.e. the set made up of the scores produced by genuine users, and
{yq}, i.e. the set made up of the scores produced by impostor users.

AUC =

∑n+
p=1

∑n−
q=1 I(xp, yq)

n+ · n−
(3)

where n+ is the number of genuine users and n− is the number of impostors,
and the function I(xp, yq) is1:

I(xp, yq) =
{

1 xp > yq

0 xp < yq
(4)

2.2 Equal Error Rate

The Equal Error Rate (EER) is the point of the ROC curve where the two errors,
i.e. the FAR and the FRR, are equal. This performance measure is widely used
in the biometric field to assess the performance of biometric systems [6].

2.3 d’

The d-prime (d’) is a measure of discriminability proposed within the Signal
Detection Theory [9]. Given the distributions of the scores produced respectively
by genuine and impostor users, the d’ is defined as

d′ =
|μGen − μImp|
√

σ2
Gen

2 +
σ2

Imp

2

where μGen and μImp are the means of the two distributions, while σGen and
σImp are the related standard deviations. It is easy to see that the larger the d’,
the better the performance.

1 For discrete values I(xp, yq) = 0.5 if xp = yq .
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2.4 Class Separability

The values of FAR and FRR, for a given value of the threshold, depend on the
degree of separation of the distribution of the scores of impostor and genuine
users, as it can be easily seen from Equations (1) and (2). Thus it follows that
to minimise the errors in different working conditions, it is desirable that the
distributions of genuine and impostor users are separated as much as possible.
A measure of the separability between the two distribution is given by:

1
2

∫ 1

0

|p (s|genuine) − p (s|impostor)| ds (5)

where a value of 1 is associated to perfectly separable distributions, while the
value of 0 is associated to completely coincident distributions.

3 Combination Rules

Combination of multiple biometric systems can be performed at different rep-
resentation levels, i.e, the raw data level, and the feature level, the score level,
and the decision level [10]. The combination at the raw data level and at the
feature level are performed before the matching phase, while the combination
at the score and decision levels are performed after the matching phase. The
combination at the raw data level can be used only if the raw data comes from
the same biometry, and the sensors used are compatible. The combination at the
feature level can be performed only when feature sets extracted from different
biometric sources are compatible. The combination at the score level allows com-
bining different matching algorithm, different sensors and/or different biometric
traits. The combination at the decision level aims at combining authentication
outputs (accepted/rejected) from different biometric systems.

This work is focused on the combination at the score level, as it is the most
widely used and flexible combination level. In particular, we chose to investigate
the performance of four combination methods: the Mean rule, the Product rule, a
linear combination whose weights are computed through the Linear Discriminant
Analysis (LDA), and a novel technique called Dynamic Score Selection (DSS)
[3]. It is worth noting that the combination by LDA and DSS require a training
phase in order to estimate the parameters needed to perform the combination.

In the following we will briefly recall the definition of the four combination
methods. Let M = {M1 . . .Mj . . .MN} be a set of N matchers and U = {ui}
be the set of users. Let also fj(·) be the function associated to matcher Mj that
produces a score sij for each user ui, sij = fj(ui).

3.1 Mean Rule

The mean rule is applied directly to the matching scores produced by the set of
N matchers, and the resulting score is computed as follows:

si,mean =
1
N

N∑

j=1

sij
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3.2 Product Rule

Similarly to the mean rule, this fusion rule is applied directly to the matching
scores produced by the set of N matchers:

si,prod =
1
N

N∏

j=1

sij

3.3 Linear Combination by Linear Discriminant Analysis

LDA can be used to compute the weights of a linear combination of the scores
[9]. The goal of this fusion rule is to attain a fused score such that the within-
class variations are minimised, and the between-class variations are maximised.
The fused score is computed as follows:

si,LDA = W t · si

where W t is the transformation vector that takes into account the within and
between class variations as

W = S−1
w (μgen − μimp)

where μgen is the mean of the genuine distribution, and μimp is the mean of the
impostor distribution, and Sw is the within-class scatter matrix.

3.4 Dynamic Score Selection

The (DSS) is a score selection technique based on the ideal selector defined in
[3], where the ideal score selector selects the maximum score for genuine users,
and the minimum score for impostor users:

si,∗ =
{

max{sij} if ui is a genuine user
min{sij} if ui is an impostor user

The state of nature for sij (i.e., if the score is likely to be produced by a
“genuine” or an “impostor” user) is estimated using the Relative Minimum Error
(RME) measure. The RME takes into account two terms: the error committed
accepting an impostor, through the difference FARj(−∞) − FARj(sij) (i.e.,
a measure of how likely ui is a genuine user), and the error committed when a
genuine is rejected, through the difference FRRj(∞)−FRRj(sij) (i.e., a measure
of how likely ui is an impostor). These quantities are estimated from a training
set. In detail, the Relative Minimum Error is computed as follows:

RMEij =
[FARj(−∞) − FARj(sij)] − [FRRj(∞) − FRRj(sij)]
|[FARj(−∞) − FARj(sij)] + [FRRj(∞) − FRRj(sij)]| =

=
FRRj(sij) − FARj(sij)
FRRj(sij) + FARj(sij)
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Fig. 1. In these figures the mean value of the AUC attained by each pair of experts is
plotted against the AUC of the correspondent combination, using the four combination
methods

Summing up, the algorithm of DSS is made up of the following steps:

1. Compute for each matcher Mj the value of RMEij for the user ui

2. Estimate the most reliable state of nature for ui by selecting the maximum
value of |RMEij |. Let k = argmaxj(|RMEij |)

3. Select the score ssel based on RMEik as

ssel =
{

maxj(sij) if RMEik > 0
minj(sij) if RMEik < 0

4 Experimental Results

Experiments have been performed using the scores produced by a large number
of matchers during the third Fingerprint Verification Competition (FVC2004)
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Fig. 2. In these figures the mean value of the AUC attained by each pair of experts is
plotted against the EER of the correspondent combination, using the four combination
methods

[11] [12]. For our experiments we used 40 experts from the Open category. The
fingerprint images consists of four different databases, three acquired with dif-
ferent sensors and one created with a synthetic fingerprint generator. For each
sensor and for each expert, a set of scores is available, where the scores have been
generated by authentication attempts by genuine users, as well as authentication
attempts by impostors. For the details on how the scores where obtained and
normalised, the reader is referred to [11]. This database is not freely available, so
the experiments were ran at the Biometric Systems Lab (University of Bologna,
Italy) which organises the competition.

For each sensor, 7750 matching scores are available, 2800 of them belonging
to “genuine” users, and 4950 belonging to “impostor” users. In order to create
a training set for the LDA fusion rule, and the DSS algorithm, we randomly
divided the set of users into four subsets of the same size, each subset made up
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Fig. 3. In these figures the mean value of the EER attained by each pair of experts is
plotted against the AUC of the correspondent combination, using the four combination
methods

of 700 “genuines” and 1238 “impostors”. Each of the four subsets has been used
for training, while the remaining three subsets have been used for testing. Using
this partitioning of the dataset, we performed an exhaustive multi-algorithmic
combination experiment: for each of the four partitioning, and for each sensor,
we considered all the possible pairs of experts. Thus, the reported experiments
are related to the combination of 13,366 pairs of experts.

For each pair of experts, we computed the mean value of the AUC, the EER,
the d’ and the separability index. Then, after combining the experts using the
four combination rules described in Section 3, we computed the related values
of AUC and EER, as they better represent the performance of the resulting
systems. It worth remarking that for the AUC, the d’ and the separability index
the larger the value the better the performance, while the reverse holds for the
EER.
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Fig. 4. In these figures the mean value of the EER attained by each pair of experts is
plotted against the EER of the correspondent combination, using the four combination
methods

In order to evaluate the relationship between the mean performance of the
pair experts, and the performance of their combination, we report a graphical
representation of the results of the experiments. On the X axis we represent
the mean performance of the pair of experts, while on the Y axis we report
the performance of their combination. As a result, 32 graphics are reported in
Figures (1 - 8).

In Figures (1) and (2) the mean value of the AUC of any pair of experts
is plotted against the AUC and the EER, respectively, of all the considered
combination methods. The inspection of Figure (1) allows us to conclude that
the mean AUC value of a pair of experts is not an useful measure to select the
pair of experts whose combination may provide performance improvements. In
fact for all the combination rules but the Mean rule, there is no clear relationship
between the mean AUC of the pair of experts and the AUC of their combination.
In the case of the Mean rule, the AUC of the combination is always greater than
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Fig. 5. In these figures the mean value of the d’ attained by each pair of experts is
plotted against the AUC of the correspondent combination, using the four combination
methods

or equal to the mean AUC of the pair of experts. On the other hand, if we
evaluate the performance of combination in terms of the EER (Figure (2)), it is
clear that the mean AUC of the pair of experts is uncorrelated with the EER
attained by the combination. In addition, for all the combined methods, when
the mean AUC of the experts is in the range between 0.75 and 0.8, the EER
of the combination spans over a wide range of values. Thus, we cannot predict
the performance of the combination in terms of EER by taking into account the
mean AUC of the individual experts.

In Figures (3) and (4) the mean value of the EER of any pair of experts is
plotted against the AUC and the EER attained by the considered combination
methods. The graphics plotted in Figure (3) exhibit a behaviour similar to those
in Figure (1), as there is no clear relationship between the mean EER of the pair
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Fig. 6. In these figures the mean value of the d’ attained by each pair of experts is
plotted against the EER of the correspondent combination, using the four combination
methods

of experts and the AUC of their combination. In this case too, the Mean Rule
performs better than the other combination methods.

The analysis of Figure (4) shows that there is no correlation between the mean
EER of the pair of experts and the EER attained by the combination methods.
By comparing Figure (4) with Figure (2) it is easy to see that the graphics
plotted have similar behaviour. Therefore, despite the fact that the AUC and
the EER are widely used as performance measure to evaluate biometric systems,
they are not suited as a measure to select the experts to combine.

Figures (5) and (6) show the mean value of the d’ of any pair of experts against
the AUC and the EER, respectively, of their combinations. In Figure (5) the
larger the d’ the larger the AUC, and in Figure (6) the larger the d’ the smaller
the EER. In addition it is easy to see that for all combination methods but the
Product rule, large values of d’ guarantee small variance of the performance of
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Fig. 7. In these figures the mean value of the Separability attained by each pair of
experts is plotted against the AUC of the correspondent combination, using the four
combination methods

the combination. Thus, according to these graphics it is clear that the d’ is a
good measure to choose the experts to combine. Finally, we can say that the d’
is more useful to choose the experts to combine than the AUC and the EER.

Figures (7) and (8) show the mean value of the separability of any pair of
experts against the AUC and the EER, respectively, of their combinations. These
figures point out that the this measure of separability of the pair of experts are
not related to the performance of the combinations in terms of the AUC and the
EER. In fact, large mean values of the separability of the pair of experts don’t
always correspond to large values of the AUC or to a small values of the EER
of their combinations. By comparing these results with those obtained using the
other measures, it is clear that this separability measure is useless if we have to
choose the experts to combine.



808 R. Tronci, G. Giacinto, and F. Roli

Fig. 8. In these figures the mean value of the Separability attained by each pair of
experts is plotted against the EER of the correspondent combination, using the four
combination methods

As far as the evaluation of the considered combination methods is concerned
Figures (1 - 8) allows to conclude that the Product rule exhibits the worst
performance. On the other hand the linear score combination performed through
the Mean rule and the LDA provided the highest performance.

5 Conclusions

In this paper, an experimental analysis to evaluate the correlation between the
combination methods and performance measures was presented. In particular
the aim of the paper was to find which performance measure is the more ap-
propriate to use when we must choose the biometric experts to combine. More-
over we showed the behaviour of the combination methods in terms of different
measures.
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Reported experiments clearly point out that the d’ is the most suitable mea-
sure to choose the experts to combine, while the “class separability” is the less
appropriate measure to choose the experts. Moreover, despite the fact that the
AUC and the EER are typically used to asses the performance of biometric
experts, they are not suited to choose the experts to combine as the d’ is.

The analysis of the performance of the combination methods clearly show
that the worst performance were attained by the Product rule, while the best
performance were obtained by the linear score combination methods: the Mean
rule and the LDA. The performance of DSS lies between those of the linear
combination methods and those of the Product rule. This behaviour can be
explained by the fact that the errors made by selection mechanism are heavier
than those of fusion techniques.
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Abstract. Many processes experience abrupt changes in their dynamics. This 
causes problems for some prediction algorithms which assume that the 
dynamics of the sequence to be predicted are constant, or at least only change 
slowly over time. In this paper the problem of predicting sequences with sudden 
changes in dynamics is considered. For a model of multivariate Gaussian data 
we derive expected generalization error of standard linear Fisher classifier in 
situation where after unexpected task change, the classification algorithm learns 
on a mixture of old and new data. We show both analytically and by an 
experiment that optimal length of learning sequence depends on complexity of 
the task, input dimensionality, on the power and periodicity of the changes. The 
proposed solution is to consider a collection of agents, in this case non-linear 
single layer perceptrons (agents), trained by a memetic like learning algorithm. 
The most successful agents are voting for predictions. A grouped structure of 
the agent population assists in obtaining favorable diversity in the agent 
population. Efficiency of socially organized evolving multi-agent system is 
demonstrated on an artificial problem. 

Keywords: Generalization, Dimensionality, Evolution, Learning, Multi-agent 
systems, Neural networks, Sample size. 

1   Introduction 

A characteristic feature of current research for the development of intelligent 
machines is a requirement for intelligent agents and robots to operate in new, 
unknown environments, to be able adapt to sudden situational changes [1], [2], [3], 
[4], [5]. A large group of problems from the domain of technology (e.g. the converter-
oxygen process of steelmaking, the change of catalyst properties in an oil refinery or, 
in the process of carbon dioxide conversion) is described by non-stationary 
probability densities that vary in time gradually [5]. A powerful stream of research of 
fast adaptation in changing environments had been carried out in analysis of biology, 
physics, economy and financial time series (see e.g. [6], [7], [8], [9]).  

Much work has been done in automatic control, machine learning and pattern 
recognition communities.  In statistical estimation, different models of changes had 
been utilized in order to develop optimal or close to optimal parameter estimation 
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an/or decision making rules [1], [5], [10], [11], [12], [13]. In other part of 
investigations, fixed length of historic learning data is used to train classification or 
prediction rules [4], [7], [9]. It was shown theoretically and experimentally that 
optimal length of training data depends on a power of environmental changes [9]. In 
situations where environmental changes are taking place unexpectedly, single 
learning algorithm cannot react adequately to all possible changes. It is difficult to 
determine optimal length of training sequence and ensure good accuracy. Following a 
strategy realized in by the Nature in human and artificial immune systems [6, 14] 
numerous of forecasting or classification algorithms differing in the length of training 
sequences, input features and complexity of training algorithm started to be used. 
Like in multiple classifier system approach, a final decision making was allocated to a 
fusion rule of individual forecasting/classification algorithms [4, 9]. In order to ensure 
good performance of such collective decision making system, optimal diversity of 
individual predictors/classifiers should be obtained. In human and natural immune 
systems the diversity is achieved by suppression of similar classifiers (antibodies) 
[14]. Another possibility is to split individual predictors/classifiers into groups and let 
the system to evolve by genetic combination of evolutionary algorithm combined with 
local search in lengthy series of environmental changes. Under this scenario, learning 
system inherits parameters of “learning style” genetically [3]. Contrary to standard 
memetic algorithms [15], a fitness function characterizes learning rapidity after 
environmental change [3], [16]. To ensure faster adaptation to environmental changes, 
training with corrupted learning directives started to be utilized [3], [16], [17].  

An objective of present paper is to solve methodological problems. In majority of 
research papers gradual environmental changes had been considered. We examine 
sudden data changes and consider the Nature inspired prototype schema of collective 
decision making in changing environments. The paper is organized as follows. 
Section 2 introduces main terms and notations, considers generalization error of 
standard Fisher linear discriminant function in stationary situation. This type of 
classification rule is chosen due to a possibility to perform theoretical examination by 
means of multivariate statistical analysis and by a fact that the Fisher classifier could 
be obtained while training linear and non-linear perceptrons [18], [19], [20], [21]. 
Section 3 investigates a situation where after the classification task change, the 
algorithm is trained on a mixture of old and new, the changed, data. Simple, however, 
rather exact equation to calculate generalization error in non-stationary case is 
derived. In Section 4 adaptive multi-agent system (MAS) to tackle non-stationary 
time series is considered. The system is composed of an assortment of adaptive agents 
that ought to learn: 1) the changing pattern classification tasks by means of iterative 
percepton training procedure and 2) “learning style” parameters by means of 
inheritance and mutations. Section 5 discuses possibilities of application of new MAS 
in analysis or real world time series, considers directions for future research work. 

2   Generalization Error in Stationary Case 

Standard Fisher linear discriminant function (DF) probably is the most frequently 
used pattern recognition rule. Discovered seventy years ago it undergone a great 
variety of modifications and generalizations [21], [22]. In two category and equal 
prior probability case, classification is performed according to a sign of DF 
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where x = [x1, x2, ..., xp]
 T is  p-dimensional vector, to be allocated to one of two 

pattern classes,  1X , 2X , and  S are sample estimates of mean vectors, μ1, μ2, and 

covariance matrix, Σ, respectively; superscript  “T” indicates transposition operation.  
Fisher disciminant function may be obtained by training standard sum of squares 

cost function [18]. Discriminant function (1), however, has more attractive features. 
While training non-linear single layer perceptron (SLP) in two-category case, we 
minimize a sum of squares cost function 
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where f(arg) is activation function, w is p-dimensional weight vector and  w0 is a bias 

term. In Eq. (2), ( )i

jt  stands for a desired output, and Ni is a number of training vectors 

of class Πi. For standard sigmoid activation function, one can choose: (1)

jt =1, (2)

jt = 0.  

Profound analysis shows that while minimizing cost (2) one may obtain seven 
different types of the classifiers. If training sample sizes  in two pattern classes        
N2= N1=n/2, the mean vector of training set is moved to a centre of coordinates and 
we start total gradient training from the weight vector with zero components, then 
after the first iteration we obtain Euclidean distance classifier (EDC) based on the 
mean vectors of the pattern classes. Afterwards, we move towards linear regularized 
discriminant analysis, standard linear Fisher classifier or the Fisher classifier with 
pseudo-inverse of the covariance matrix (for an introduction into statistical pattern 
recognition see e.g. [21], [22]). With a progress of iterative adaptation procedure one 
has robust discriminant analysis. At the end, when the weights become large, one may 
approach the minimum empirical error or support vector classifiers [20], [21]. 
Evolution is a superb peculiarity of total gradient SLP training procedure enabling us 
to obtain a sequence of diverse classifiers of increasing complexity. 

One of most important characteristics of any classification rule is its generalization 
error, a probability of misclassification in terms of discriminant analysis. 
Generalization error, Pn, of sample based DF (1) is conditioned by two random 

vectors, 1X  and 2X , and p×p random covariance matrix, S. In case of multivariate 

Gaussian data characterized by mean vectors of the pattern classes, μ1,  μ2, common 
for both classes covariance matrix Σ and equal prior probabilities of the classes, the 
generalization error 
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where Φ(t) stands for standard Gaussian cumulative distribution function.  
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In stationary case the data does not change: iX ∼ N (μi, 1/Ni Σ), S ∼ W (Σp, n-2), 

where N (μi, Σ) symbolizes a multivariate Gaussian distribution with mean μi and 
covariance Σ. Notation W (Σp, n-2) symbolizes a Wishart distribution with p×p matrix 
Σp and n-2 = N1+N2 – 2 degrees of freedom. Thus, conditional generalization error, Pn, 
could be considered as a random variable whose distribution density function depends 
on sample sizes, N1, N2, input vector dimensionality, p, and Mahalanobis distance       
δ = ((μ1- μ2)

T Σ -1(μ1- μ2))
1/2. An expectation of conditional probability of 

misclassification, EPn, is called an expected classification error or mean 
generalization error. 

Expected classification error is relatively easy to obtain for above multivariate 
Gaussian data model characterized by common covariance matrices (GCCM), equal 
prior probabilities of the classes and equal sample sizes, N1 = N2 = n/2, if one 
assumes that sample size, N, and dimensionality, p, are high. From above 
assumption it follows that asymptotically as N →∞ and p →∞, distribution density 
of discriminant function (1) tend to Gaussian one. After calculating its mean and 
variance, following simple asymptotic formula for generalization error had been 
derived [23]. 
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This formula is valid for standard Fisher linear classifier, linear and non-liner single 
layer perceptrons trained in a special way. Unfortunately, we cannot benefit from this 
formula if classification task has changed abruptly and for learning we use the both, 
the old and the changed data. 

3   Analysis of Generalization Error in Changing Environments 

In this section we will analyze generalization error in situations where the 
classification task has changed abruptly, however, the researcher does not known this 
fact and continues to train the classifier both with the old and new data sets. Let us 
denote by μ1, μ2 the mean vectors of the pattern classes before the task change, and by 

Σ 
a common covariance matrix that does not change. Denote by '

1μ , '
2μ  the mean 

vectors of the pattern classes after the task change. Let learning set size is N vectors 
of each pattern class and the task has changed Nnew time steps before. In our analysis 
we assume, that during each time step we acquire one training vector from each class. 
Consequently, we use for training Nold = N - Nnew vectors from each of populations    

N (μ1, Σ), N (μ2, Σ) and Nnew vectors from populations N ( '
1μ , Σ), N ( '

2μ , Σ).  

Denote Δ = '
1μ - μ1 = '

2μ - μ2, a common shift vector that characterizes the data 

change, μ = μ1 - μ2, and α = Nold/N, a proportion of old data in training set. A  
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derivation of asymptotic formula for expected generalization error in non-stationary 
case, when a mixture of old and new task data is used to train the classifier, is rather 
tedious work. To save the paper’s space, below we are presenting a simplified sketch 
of the derivation. Like in standard linear discriminant analysis (see e.g. [21], [22]), 
without loss of generality one may assume that Σ = Ιp,  p×p dimensional identity 

matrix, μ1 + μ2 = 0, μ = (δ, 0, 0, …, 0)T. Then ( '
1μ + '

2μ )/2 = Δ, the estimate of the 

mean ))( 21
2

1
XX +  will be biased by αΔ, an estimate of covariance matrix will be 

biased by αΔΔ T. Then Equation (3) can be expressed as  
 

 Pn = ∑
=

−

−−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

+++
−

++

+−)

α

αα
Φ

2

1 2
2

2

2
13

1

)()()(

)()()1(

2

1
)( (

 2

1

i
TT

TTi

YY

YY

T

T

μμ

μμ

ΔΔ

ΔΔΔ
, (5) 

where 1Y ∼ N (0, 
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2 Ιp), T ∼ W (Ιp, n-2), and 1Y , 2Y and T are 
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To obtain equation for expected generalization error we will use expectations of 

inverse elements of sample covariance matrix T 

-1
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ij)) derived in Appendix of the 
author’s paper [23] using special elements of multivariate statistical analysis. In large 
dimensionality and large sample size situation, we may write  
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In a similar way, for large p and n using simple, however, tedious algebra we may 
derive higher moments 

 E ( tij )3  ≈  ijpnn =− −    if   )( 33 , 
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Equation (6) may be simplified dramatically if we take into account that expectations 

E 21 YY
T = 0,   E 22 YY

T = δ2 
+ 4p / N,  ignore variances of random variables ( t 

ij
 )

2
 and 

consider a situation where in the PR task change, the data shift is performed along a 

line connecting the mean vectors μ1 and μ2, i.e., δ =(βδ, 0, 0, … , 0)T:  
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In case on zero data shift (Δ=0), we obtain simple Equation (4). According to Monte 
Carlo simulations performed for 104 GCCM populations with different parameters, 
Eq. (4) outperformed in accuracy other six asymptotic formulae [24]. Speaking in 
general, asymptotic analysis of statistical pattern classification algorithms where both 
learning set size, n, and dimensionality, p, are large, is very fruitful (see e.g. recent 
review [25]). 

In Figure 1 we present learning curves characterizing expected generalization error 
of linear Fisher classifier versus leaning set size n  calculated according to Eq. (7) for 
the GCCM data model, where p=20, δ=3.76 (asymptotic classification error, P∞=0.03) 
and the classification task has changed 2Nnew=200 time steps before the present time 
moment. Red graph (a) corresponds to β=0.4, blue graph (b) - to β=0.2 and black 
graph (c) – to situation where no task change occurred. By black squares, circles and 
dots we marked averages of 25 Monte Carlo experiments performed with different 
artificially generated GCCM data sets. The experiments show a good agreement 
between Eq. (7) and empirical evaluations even in a case when relatively low 
dimensionality (p=20) and finite learning set size were chosen for validation of the 
theory.  

Most important is the fact that in a case of classification task change there exist 
optimal learning set size, which value depends on:  
 

1) the strength of the pattern recognition task change (value of parameter β) and  
2) the time that has passed after the task change, Nnew.  

 
The place of the minimum is greatly affected by a time passed after the task change. If 
the change is powerful, the place of the minimum only negligibly exceeds 2Nnew. 
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Fig. 1. Generalization error of standard linear Fisher classifier as a function of training set size 
in situations when the classification tasks changes suddenly: a) large change (red), b) – medium 
change (blue), c – no change (black). Theoretical and experimental results. 

4   Multi-agent System to Tackle Changeability Problem   

Calculations performed according to Eq. (7) advocate that at each time moment 
elapsed after the task change, generalization errors of the classification rules trained 
on learning sequence of diverse length will be different. In real world situations, the 
intervals between the environmental changes and their types and strengths are varying 
unpredictably. Therefore, for each single classification (or prediction) algorithms it is 
difficult to adapt speedily to all the changes. One may hope that a multi-agent system 
composed of a great diversity of classifiers (adaptive intelligent agents) would react to 
the changes more rapidly. As a first attempt to develop such rapidly reacting system 
we considered a decision making schema composed of m adaptive agents (non-linear 
single layer perceptrons, SLP). The SLP was selected to model the intelligent agents 
since the nonlinear SLP has many traits of universality [26]. We believe that such 
model would provide opportunity to formulate various general statements. 

In neural network training, the agents’ performance depends also on training 
conditions, first of all, on initial weights (a position of starting hyperplane in 
multidimensional feature space and magnitudes of the weights) and differences 
between target values. If initial weighs are selected correctly, the perceptron learns 
quickly. Its generalization error could be small if stopping moment would be chosen 
properly [27].  

Large differences between the targets values of the perceptron could lead to very 
fast training of the perceptron at the very beginning. Later components of the weight 
vector are becoming large and training process slows down later [28]. In order to 
ensure fast training all the time, special regularization means have to be used. We 
used corrupted targets to prevent the weight to grow too large. Corrupted targets (a 
noise injection) appeared to be useful strategy to increase the SLP based adaptive 
agent ability to overcome sudden changes of classification tasks [3], [16], [17], [28]. 

a 
 
 

 
 
 
b 
 
 
c 
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Below we describe a procedure used to create the MAS approach based adaptive 
pattern recognition system. We consider a long sequence of environmental changes 
which were mimicked by altering two pattern recognition tasks, Task 1 and Task 2, 
which artificial agents have to solve. Both classification tasks considered were two-
class ten-dimensional Gaussian classes, N(μ1, Σ), N(μ2, Σ). We alternated the mean 

vectors, μ1, μ2, and matrix Σ: '
iμ = Tμi, Σ = T 1 0.98

0.98 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

T, with T= 0

0 t

⎡ ⎤ρ
⎢ ⎥

Β( )⎢ ⎥⎣ ⎦
 and 

Β(s)=h(−1)s, s = 1, 2, …, smax, where parameter h characterizes the strength of the 
environmental change. Thus, in turn the data were rotated counter clockwise and then 
clockwise. Other eight features were non-informative Gaussian zero mean vectors. 
Generalization errors of the trained classifiers were calculated analytically since 
decision boundary was a hyperplane, and the parameters of GCCM data were known. 

In Figure 2 we present two pattern classification tasks in a space of the first two 
features. On the left and center, we see two tasks corresponding to Β(s) = 1.8 and 
Β(s+1) =1/1.8, μ1 = (-0.15, 0.15, 0, …, 0)T, μ2 = - μ1. Hypothetically, the final weight 
vector obtained while training with data of Task 1 is used as the initial weight vector 
while training with the data of Task 2 (dotted line). On the very right, we present the 
most frequent situation where after the recent task change, the classifier is trained by a 
mixture of the old and new data. In Fig. 2 we see a situation where learning sets of 
each of two classes are composed of 20 vectors of Task 1 and 16 vectors of Task 2.  

Task 1

           

Task2

            

Both
tasks

  

Fig. 2. Changes of the pattern recognition tasks and sets of training data 

In each of the experiments, the strengths of the task changes (parameter h) do not vary 
during smax = 350 of the PR task changes. A time interval between two subsequent PR 
tasks, however, was varying. The time was measured by a number of training epochs 
of the SLP based classifier. In Figure 3a we have a graph that shows the alteration of 
the interval. The interval is evaluated as a number of training sessions composed of 10 
total gradient descent iterations. So, at the very beginning, the interval between two 
changes is 240 iterations. Fig 3a shows that the interval diminishes until 80 iterations 
between the 80th and 200th PR task changes. 

To have the classifiers for prediction diverse each of them possessed its individual 
length of learning sequence (a number of training vectors (n=2N) and a fraction, ν, of 
corrupted targets. Two strategies to generate diverse agents were studied.  
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Fig. 3. Dynamics of (a) - a time between  the task changes, (b) - a length of training sequence, 
(c) - a fraction of corrupted (incorrect) training directives and (d) - a total number of agents 
(black) and that of offspring (green) during the 280 pattern recognition task changes 
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The strategy with fixed parameters. In this experiment we generated m=300 agents 
with randomly generated values of “learning style” parameters, n and ν. The 
parameters did not change during sequences of 350 PR task changes. The non-linear 
SLP based classifiers were trained by standard total gradient training algorithm with 
learning step η=1.5. Typically, after each task change, classification error jumped up 
suddenly. After 20 – 50 batch iterations, classification error dropped down notably.  
 
The strategy with evolvable parameters. In second experiment, we also generated 
m=300 agents with randomly determined fixed values of n and ν which did change 
during the sequence of 350 environmental changes. Variation of parameters, n and ν, 
were governed by a memetic like learning algorithm. The agents which did not 
succeed adapt rapidly (satisfy requirement Perror < Pgoal = 0.12) were replaced by 
offspring. The offspring started to train from initial weight vector with components 
equal to zero. 

Each offspring, however, inherited the learning sequence length (parameter n) and 
the fraction, ν, of corrupted training signal from a randomly chosen  successful agent 
that satisfied the reproduction requirement, Perror < 0.8×Pgoal. In addition, small 
mutations of parameters n and ν were introduced. Such strategy resulted that 
parameters n and ν ”followed” frequency of the classification task changes (see 
Figures 3b and 3c where we have a mean and “a mean ± standard deviation” at each 
time moment). Genetic adaptation causes that during each time moment the agent 
population is composed of agents with diverse values of n and ν. We pay readers 
attention that the agent population size and that of offspring reacted to environmental 
changes most rapidly (Figure 3d). Reaction of parameters n and ν was much more 
sluggish. The graphs in Figure 3 are averages of ten experiments with evolving 
populations of 300 agents. In indicates that in Fig. 3bc, the mean values are calculated 
of 2000 - 3000 existing agents. 

Final decision making was performed by “the best” single agent selected after 
preceding training cycle (ten batch training iterations) in the experiments described 
below. Performance of decision making system was measured by “adjustment times”, 
- a number of training cycles (one cycle = 10 batch iterations) required to decline 
classification error up to threshold Pgoal after each PR task change. It means that in our 
algorithm, learning rapidity served as a fitness function.  

In Figure 4a we have a histogram of distribution of 300 mean (average) adjustment 
times (measured in training cycles) calculated in an interval between the 41st – 320th 
task changes for 300 adaptive agents with different a priori fixed learning style 
parameters. We see, 25 to 60 batch iterations were required to react to the task 
change. The best from 300 randomly generated individual agents required on average 
25.9 training cycles in order to diminish its classification error until the survivability 
threshold, Pgoal = 0.12. It is the average of the 280 task changes. A distribution of the 
280 time intervals is portrayed by a histogram in Figure 3b. The MAS composed of 
300 adaptive agents with a priori fixed learning style parameters, however, did not 
outperformed the best individual agent: an average reaction time of such system was 
actually the same, 26 training cycles.  

In Figure 4c we have a histogram of distribution of 300 adjustment times (in tens 
of batch iterations) of 300 evolvable agents registered after the 280th task change. 
Markedly less, 13 to 39, training cycles were required to react to the task changes. On 
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average, 22.2 training cycles were necessary in the case of evolving MAS. Figure 4c 
suggests that the distribution of the reaction times is multimodal. It means that during 
280 task changes the adaptive agents turned out to be clustered into the groups.   

 

Fig. 4. The histograms of distribution of the number of learning cycles required to decline 
classification error up to threshold Pgoal after each task change: (a) - 300 randomly formed 
individualistic adaptive agents, (b) – the best individualistic agent, (c) – MAS composed of 300 
agents with inheritance 
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It is worth noting that the MAS described above was only the first and simplest 
attempt developed without an inclusion of various “tricks” that help the population of 
intelligent adaptive agents to overcome severe environmental changes. Our previous 
research has shown that organizing the agents into the groups where they help each 
other, and does not allow other groups to pass away during “hard times” (an 
“altruism”), inclusion of genetically controlled difference between the target values, 

(1)

jt and (2)

jt (a stimulation), synthetic emotions (self-stimulation) is also useful (see 

[16] and references therein).  
We performed several experiments where the power of environmental changes 

(parameter h in expression Β(s)=h(−1)s) varied in time. The agents in the population 
were split into the groups where successful agents transmitted the learning sequence 
length parameter, n, to offspring of its own group. Preliminary experiments showed 
that the grouped structure of the agent population assists in obtaining higher 
differentiation in the values of learning style parameters, n and  ν. In such cases, we 
observed certain diversity of the agent population that makes the agent population 
more resistible to most powerful environmental changes. In such scenario we have a 
complex interplay between a variety of the parameters that define learning style of the 
agents and their groups. Results of the research will be published elsewhere later. 

In standard evolutionary algorithms, fitness function is related with classification 
performance. In our multi-agent system, the main criteria used to govern evolution of 
the agent populations were learning rapidity and survivability of the population. One 
may hope that further tailoring of the evolution criteria to the requirements of 
speeding up the reaction time, would make the evolving MAS even more viable. 

5   Discussion and Suggestions for Future Research 

The analysis has shown that in suddenly changing environments, the decision making 
algorithms should adjust their learning characteristics to periodicity and magnitude of 
the changes. First of it, is the length of learning sequence. We derived the equation to 
calculate generalization error of standard Fisher classifier in dependence on learning 
set size, a time passed after the classification task alteration and the power of the 
pattern recognition task change. The equation obtained allows calculating optimal 
length of learning sequence with respect to minimum generalization error if the data 

parameters and that of the changes are known. 
Unfortunately, in real world problems, the data ant their parameters are unknown 

and changing in time unexpectedly. Therefore, a prototype of evolving multi-agent 
pattern recognition system was suggested and investigated experimentally with 
artificially generated non-stationary multivariate time series. In this system we 
learned genetically the values of the length of training sequence and the fraction of 
corrupted training directives. Simulation studies showed that even utilization of 
simple evolving MAS based on the strategy of “the most rapidly learning agent” 
outperformed the best individual adaptive agents in final decision making. 

Certain research efforts were made to test new collective decision making strategy 
to predict commodity prices by utilizing real world data [29], [30]. We formulated 
financial time series forecasting task as pattern classification problem defining the 
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classes as notable increase, notable decrease and insignificant change of a chosen 
financial variable at time t +1 as compared to time t. A preceding part of the historical 
data was used to adjust parameters of evolving MAS based forecasting system, and 
the rest of the data was used to test the MAS like in the experiments described above. 
The experiments have shown that utilization of evolving multi-classifier forecasting 
system with fusion of the best agent decisions outperforms decisions of individually 
acting adaptive pattern classifiers. Results of our research will be published elsewhere 
later. 

The evolving MASs tested in this paper were only one of the first attempts. Many 
possibilities exist to improve evolution process and collective decision making. At 
first, the larger number of the parameters that govern learning style of individual 
agents should be included into the MAS evolution procedure. Second, more 
sophisticated survival criteria to be used in order to obtain an “optimal diversity” of 
the agents in the MAS should be developed. Finally, instead of the best instantaneous 
agent strategy used to make final classification in the present paper, usefulness of 
more complex fusion rules  should be explored (for recent review of such rules see 
e.g. [31] and references therein). 
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Abstract. We present a method, called equivalence learning, which ap-
plies a two-class classification approach to object-pairs defined within a
multi-class scenario. The underlying idea is that instead of classifying
objects into their respective classes, we classify object pairs either as
equivalent (belonging to the same class) or non-equivalent (belonging to
different classes). The method is based on a vectorisation of the similarity
between the objects and the application of a machine learning algorithm
(SVM, ANN, LogReg, Random Forests) to learn the differences between
equivalent and non-equivalent object pairs, and define a unique kernel
function that can be obtained via equivalence learning. Using a small
dataset of archaeal, bacterial and eukaryotic 3-phosphoglycerate-kinase
sequences we found that the classification performance of equivalence
learning slightly exceeds those of several simple machine learning algo-
rithms at the price of a minimal increase in time and space requirements.

1 Introduction

The classification of proteins is a fundamental task in genome research. In a typi-
cal application, a protein sequence object (a string of several tens to several hun-
dred characters) has to be classified into one of the several thousand known classes,
based on a string similarity measure. Sequence similarity is thus a key concept since
it can imply evolutionary, structural or functional similarity between proteins.

Early methods of protein classification relied on the pairwise comparison of
sequences, based on the alignment of sequences using exhaustive dynamic pro-
gramming methods [1] [2] or faster, heuristic algorithms [3][4]. Pairwise compar-
ison yielded a similarity measure that could be used to classify proteins on an
empirical basis. The next generation of methods then used generative models for
the protein classes and the similarity of a sequence to a class was assessed by
a score computed between the model and the sequence. Hidden Markov Models
(HMMs) are now routinely used in protein classification [5], but there are many
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other, simpler types of description in use (for a review, see: [6]). Discriminative
models (such as artificial neural networks and support vector machines etc.) are
used in a third generation of protein classification methods where the goal is to
learn the distinction between class members and non-members. Roughly speak-
ing, 80-90% of new protein sequence data can be classified by simple pairwise
comparison. The other, more sophisticated techniques are used mostly to verify
whether a new sequence is a novel example of an existing class or it represents a
truly new class in itself. As the latter decisions refer to the biological novelty of
the data, there is a considerable interest in new, improved classification methods.

Kernel methods represent a subclass of discriminative models in which a pair-
wise similarity measure calculated between objects is used to learn the decision
surface that separates a class from the rest of the database. The kernel function
can be regarded as a similarity function which has the additional property of
always being positive semi-definite, which allows many novel applications to non-
linear problems [7]. In the context of protein classification, kernel methods have
an important practical advantage: the similarity measures developed in protein
classification can be used to construct kernel functions, and so decision making
can directly capitalize on the considerable empirical knowledge accumulated in
various fields of protein classification. Over the past decade, many kernels have
been developed for sequences such as the String kernel [8], Mismatch kernel [9],
Spectrum kernel [10], Local Alignment Kernel [11] and the Fisher kernel [12].
For a good review of these applications, see [7].

This work aims to use a conceptual approach that is slightly different from the
mainstream use of kernel functions. Let us first consider a database of objects
and a similarity measure computed between each pair of objects. This setup can
be visualized as a weighted graph (network) of similarities where the nodes are
the proteins and the weighted edges represent the similarities between them.
The network can also be represented as a symmetrical matrix in which the
cells represent the pairwise comparison measures between the objects. Figure
1a shows a hypothetical database of 8 objects. We can vaguely recognize two
groups in which the members are more similar to each other than to the objects
outside the groups. Let us now suppose that an expert looks at the similarity
data and decides that the two groups represent two classes, A and B, and there is
another object that is not a member of either of these. Figure 1b illustrates this
new situation. The members of the groups are now connected by an equivalence
relation that exists only between the members of a given group. As a result,
the similarity matrix becomes a simpler equivalence matrix in which only the
elements between the members of the same class are non-zero. The aim of this
study here is to use a similarity matrix given between a set of objects, and use
it to learn the equivalence matrix defined by the classification task, as shown in
the bottom part of Figure 1. We term this approach equivalence learning, which
is characterized as follows. Protein classification methods seek to classify the
objects, i.e. the nodes of the similarity network, which is a multi-class problem.
In contrast, here we try to classify the edges of the similarity network into just
two classes, one signifying equivalence the other the lack of it.
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Fig. 1. Principle of Equivalence Learning (EL) I. A similarity matrix (left) can be
determined by an all vs. all comparison of a database using algorithms such as BLAST
or Smith-Waterman. The equivalence matrix (right) is a representation of groups (A,B)
and an outlier identified by human experts. EL tries to learn the equivalence.

In more detail, a sequence pair is called equivalent when both of them belong
to the same sequence group and is called non-equivalent or distinct when they do
not. We define the equivalence function that returns one for equivalent sequences
and zero for non-equivalent sequences taken from a different group - where the
group could be a protein family, superfamily, fold or class. This function can be
formulated as follows

δ(s, t) =
{

1 s and t belong to the same sequence group,
0 otherwise.

Since the equivalence function defined over the sequence pairs gives a partition
(equivalent/non-equivalent sequence pairs), learning this function essentially be-
comes a two-class classification problem that can be solved by one of the existing
classification schemes. For clarity, the process is shown in Figure 2. A key issue
here is to decide how we should represent the edges of the similarity network
so that we can efficiently predict equivalence. A simple numerical value is not
sufficient since, as shown in the example of Figure 1, a value 9 is sufficient for
class membership in class A, but not in class B. As a solution, we will use a
vectorial representation for the edges, hence we will need projection methods in
order to represent a sequence pair in one vector. Now let P : S × S → R

n be
such a projection function and let the corresponding database be

L = {(xi, yi) | xi = P (si, ti), yi = δ(si, ti), si, ti ∈ S}, (1)

where S denotes the set of sequences.
The construction of an equivalence function has been proposed by Cristianini

et al who defined the concept as the ideal kernel, along with a kernel alignment
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equivalence non-equivalence

Fig. 2. Principle of equivalence learning II. Equivalence learning is a two-class problem
defined on object pairs.

measure that quantifies the difference between a kernel and the ideal one [17].
Semidefinite programming techniques were then used to learn the kernel matrix
from data and it was shown that using the labeled part of the data one can learn
an embedding too for the unlabeled part [18]. Tsang and Kwok once suggested
a feature weighting technique that allows one to approximate the ideal kernel
[19].

In this paper we will examine how an equivalence function can be learnt with
a standard machine learning method such as Artificial Neural Networks (ANNs)
[13], Support Vector Machines (SVMs) [14] Logistic Regression (LogReg) [15] or
Random Forest (RF) [16]. These methods learn a function f and for any sequence
pair (s, t) return a score f(z), where z = P (s, t) and P is a projection function.
If this score is greater than a certain threshold then the sequence pair classified
is an equivalent pair, otherwise it is a non-equivalent pair. Unlike a class label
predicted for a single protein, the score f(z) can be considered as a similarity
measure for a sequence pair (s, t) and thus the learned machine can be regarded
as a fast similarity function for a sequence pair. In Section 2.3 we offer a way of
constructing a kernel function from a decision boundary f(z) obtained by SVM.
Section 3 describes experiments that illustrate how these method can learn the
equivalence function and how we can evaluate them in a protein classification
context. Section 4 then gives a brief summary along with some conclusions.

2 Methods

2.1 Vectorization Step

Now we will present a way of defining projection functions which map any se-
quence pair into a fixed-length vector of real numbers, that is P : S × S → R

n.
First, we define a method to vectorize a single sequence into a vector. The

essential idea behind this is that a chosen protein sequence can be effectively cap-
tured by asking how similar a protein is to a large collection of other proteins
[20][21]. Let us view a fixed set of sequences {f1, f2, . . . , fn} ⊆ S as a feature
set and an arbitrary similarity function D. For a sequence s ∈ S let the corre-
sponding vector w whose components are indexed by fi and its corresponding
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value wfi be the similarity score between fi and the target sequence s, that is
φD : S → R

n such that φD(s)fi = D(s, fi), where vi denotes the component
of vector v indexed by i. A mapping of this type is also known as an empirical
feature map [22].

The next step is to form a vector from two sequence objects. Table 1 sum-
marizes a few simple methods which were used in our experiments. For ease of
notation the operators a · b,

√
a and an on R were extended to vectors and they

were defined on vectors in a coordinate-wise manner, i.e. for any vector u, v ∈ R
n

(u · v)i = uivi, (
√
v)i =

√
vi and (vn)i = (vi)n. We should note that unlike other

operators the concatenation operator maps to R
2n instead of R

n.

Table 1. Summary of the used vector composition method

Name Formula Description

Concatenation CC(u, v) = (u, v) gives the concatenation of two vector
Sum C+(u, v) = u + v summarizes the vector components
Product C•(u, v) = u · v product of the vector components
Quadratic CQ(u, v) = (u − v)2 quadratic distance between the components
Hellinger CH(u, v) = (

√
u −

√
v)2 a normalized form of quadratic distance

We use the notation PC
V : S × S → R

n
+ for the projection function which

maps any sequence pair into an n-dimensional vector space. The subscript V
of this function denotes the vectorization method for each sequence and the
superscript C defines the vector composition method. For example, if the Smith-
Waterman (SW ) similarity function is used to vectorize a sequence, and the
product function C• is used to construct one vector from two, then the projection
function we get will be denoted by PSW

• (x, y) = C•(φSW (x), φSW (y)).

2.2 Classifier Algorithms

Now the machine learning methods on the set L defined by Eq. 1 should be able
to learn an equivalence function. In the following section we will give a short
summary of classification methods used in our experiments.

Artificial Neural Networks (ANN) are good at fitting functions and recogniz-
ing patterns. In fact there is a proof that a fairly simple neural network can fit
any practical function f(x) = y. An ANN is composed of interconnected sim-
ple elements called neurons and organized in levels. In our study the network
structure consisted of one hidden layer with 40 neurons and the output layer
consisted of one neuron. In each neuron the log-sigmoid function was used as
the transfer function and the Scaled Conjugate Gradient (SCG) algorithm was
used for training. The package we applied was the Neural Network Toolbox 5.0
version part of Matlab.

The Support Vector Machine (SVM) gives a decision boundary f(z) = 〈z, w〉+
b (also called a hyperplane) with the largest margin between the positive and
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negative classes. Replacing the inner product by a kernel function leads to a
nonlinear decision boundary in the feature space. In our experiments the Ra-
dial Basis Function kernel was used and its width parameter σ was the median
Euclidean distance from any positive training example to the nearest negative
example. During the training the class labels 0 for the miscellaneous pair were
replaced by -1. Here the SVM used was the LibSVM [23]. The One-Class SVM
also also evaluated to learn equivalence members.

The Logistic Regression (LogReg) is one of the generalized linear models which
is used when the response variable is a dichotomous variable (i.e. it can take one
of two possible values) and the input variables are continuous. Unlike linear
regression, logistic regression does not assume a linear relationship between the
input and the output, but it does exploit the advantages of the linear methods.
To do this, it uses an ln

(
p

1−p

)
= 〈w, x〉 + b function, called a link function,

and thus it leads to a non-linear relationship, where the p is the probability that
yi = 1. In our study the LogReg was part of Weka version 3-4.

The Random Forest (RF) technique is a combination of decision trees such
that each tree is grown on a bootstrap sample of the training set. For each node
the split is chosen from m�M variables (M being the number of dimensions)
selected from an independent, identically distributed random variable taken from
the feature set. In our experiments 50 trees were used and the number of features
m was set to log l + 1, where l is the number of input patterns. The RF was part
of Weka Version 3-4.

2.3 Learned Kernel Functions

Here we present a way of constructing a kernel function from the decision bound-
ary f(z) = 〈z, w〉 − ρ obtained by One-Class SVM. After training a One-Class
SVM on the set of equivalence members L = {xi | xi = P (si, ti), 1 = δ(si, ti)}
the w parameter of the decision boundary can be expressed as a weighted lin-
ear combination of support vectors, that is w =

∑
i αixi, where αi > 0 are the

corresponding Lagrangian multiplier. Here the support vectors are equivalence
sequence pairs which belong to L. Thus the decision function

f(P (s, t)) =
∑

i
αi〈P (s, t), xi〉 − ρ (2)

can be regarded as a similarity function over sequence pairs. Moreover, omitting
the ρ additive constant from f does not change the essence of similarity. In the
following lemma we shall examine what kind of projection function would make
a kernel function.

Lemma 1. Let Pφ
• , P

φ
+, P

φ
Q, P

φ
H : S × S → R

n
+ be a symmetric projection

function, where φ : S → R
n
+ is an arbitrary positive feature mapping. Using

support vectors xi and their corresponding Lagrangian multiplier αi > 0 the
functions
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SV K•(s, t) =
∑

i
αi exp(σ〈Pφ

• (s, t), xi〉) (3)

SV K+(s, t) =
∑

i
αi exp(σ〈Pφ

+(s, t), xi〉) (4)

SVKQ(s, t) =
∑

i
αi exp(−σ〈Pφ

Q(s, t), xi〉) (5)

SV KH(s, t) =
∑

i
αi exp(−σ〈Pφ

H(s, t), xi〉) (6)

are kernel functions over S ×S, where σ > 0. The class of such kernel functions
is called the Support Vector Kernel (SVK).

For more detail about kernel functions and their properties, the reader should
peruse [25].

Proof. The class of kernel function is closed under direct sum and positive scalar
multiplication. Here, it is sufficient to prove that the exponential expressions are
kernels. First, let θ a positive valued vector. Then 〈Pφ

• (s, t), θ〉 is a kernel function
because it is a weighted inner product. This follows from the fact that

〈Pφ
• (s, t), θ〉 = 〈φ(s) · φ(t), θ〉 = φ(s)Θφ(t)

where Θ is a diagonal matrix whose diagonal elements are taken from θ. Thus
exp(σ〈Pφ

• (s, t), θ〉) is a kernel too.
The statement for Eq. 4 follows immediately from

exp(〈Pφ
+(s, t), θ〉) = exp(〈φ(s) + φ(t), θ〉) = exp(〈φ(s), θ〉 + 〈φ(t), θ〉) =

= exp(〈φ(s), θ〉) exp(〈φ(t), θ〉)

because a function of the form k(x, y) = f(x)f(y) is always a kernel function.
And 〈Pφ

Q(s, t), θ〉 is a quadratic Euclidian metric weighted by θ, that is

〈Pφ
Q(s, t), θ〉 = 〈φ2(s) + φ2(t) − 2φ(s)φ(t), θ〉

= 〈φ2(s), θ〉 + 〈φ2(t), θ〉 − 2〈φ2(s)φ2(t), θ〉
= φ(s)Θφ(s) + φ(t)Θφ(t) − 2φ(s)Θφ(t).

Thus exp(−σ〈Pφ
Q(s, t), θ〉) is a kernel. The assertion for exp(−σ〈Pφ

H(s, t), θ〉) can
be proved in a similar way.

The training points in L are also vectorized sequence pairs represented by a
projection function. Hence the training points are a positive-valued vector, and
the support vectors obtained are also positive-valued vectors. This proves our
statement. ��

3 Experiments

Dataset and performance evaluation. 3PGK is a set of 131 sequences representing
the essentially ubiquitous glycolytic enzyme, 3-phosphoglycerate kinase (3PGK,
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358 to 505 residues in length) - obtained from 15 archaean, 83 bacterial and
33 eukaryotic species. This dataset was designed to show how an algorithm will
generalize to novel, distantly related subtypes of the known protein classes [26].
The dataset is freely available at [27].

The sequences were represented by the so-called pairwise method, where the
feature set was the whole train set sequences containing both positive and neg-
ative sequences. For the underlying similarity measure we chose two alignment-
based sequence comparisons methods, namely the BLAST and Smith-Waterman
algorithms. We used version 2.2.4 of the BLAST program with a cutoff score of
25, the Smith-Waterman algorithm was used as implemented in MATLAB. The
BLOSUM 62 matrix [28] was used in both cases.

The performance evaluation was carried out by standard receiver operator
characteristic (ROC) analysis, which is based on the ranking of the objects to be
classified [29]. The analysis was performed by plotting sensitivity vs. 1-specificity
at various threshold values, and the resulting curve was integrated to give an
”area under the curve” (AUC) value. We should remark here that for a perfect
ranking AUC = 1.0 while for a random ranking AUC = 0.5. In our experiments
the ROC score for the 3PGK dataset was AUC averaged over 8 tasks.

Equivalence learning. For each classification task, the set of training pairs L de-
fined in Eq. 1 consists of pairs made up from training sequences. The equivalence
function δ was calculated via class labels. Here a sequence pair (s, t) is treated
as equivalent if s and t belong to the same species and their equivalence score is
1. If they belong to two different species, then their equivalence score is 0. This
δ may be regarded as a similarity function and be denoted by DM where the
subscript M stands for a given machine. Thus for an ANN the similarity func-
tion obtained is denoted by DANN . δ was learned on L by several classification
methods.

During the evaluation, a test sequence u was paired with each of the train
sequences s to check whether they belong to the same group. For the ROC
analysis these sequence pairs were ranked by their score obtained via DM (u, s).
As a comparison the sequence pairs were also ranked by their Smith-Waterman,
and their BLAST score. The corresponding ROC score for these functions is
given in Table 2.

The train pairs and test pairs can be arranged in a matrix MD whose columns
are indexed by train sequences and whose rows are indexed by test sequences.
Then an element of (MD)s,t is a similarity score of (s, t) obtained by a measure
D. A heat map representation of a train and test matrix of one of 8 classification
tasks is shown in Figure 3 below.

Train set construction. To learn an equivalence function, we randomly selected a
small part of the positive and negative pairs from the train sequences. This step
is necessary in order to avoid overlearning, to speed up the training and to reduce
the training set to a computationally manageable size. In order to select the best
number of training pairs we calculated the learned similarity function by varying
the number of datasets and repeated the procedure 10 times (Figure 5). We may
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a b c

Fig. 3. A heat map representation of train and test matrices from the 3PGK database.
The train matrix (above) is an equivalence matrix over train sequences and the test
matrix (below) is an equivalence matrix between train and test sequences. The three
sequence groups are easily recognizable in the equivalence matrix (a). The equivalence
was learnt by RF where the sequence pair was projected by P SW

+ . The obtained train
and the test matrices are displayed in (b). The Smith-Waterman similarity matrices
(c) are also shown for comparison.

Table 2. Evaluation of the equivalence function learning using different vectorization
methods.

DSV M DSV K DANN DLogReg DRF

CC 0.9146 n.a 0.8600 0.6856 0.8311
SW C+ 0.9107 0.6308 0.8948 0.7110 0.8446
0.73021 C• 0.9022 0.6508 0.8870 0.6452 0.8516

CQ 0.8473 0.7901 0.8135 0.7448 0.8383
CH 0.8586 0.7919 0.8429 0.7571 0.8250

CC 0.9193 n.a 0.8800 0.6879 0.8605
BLAST C+ 0.9184 0.6339 0.8906 0.7189 0.8649
0.73721 C• 0.9085 0.6565 0.8839 0.6517 0.8703

CQ 0.8561 0.7966 0.8068 0.7530 0.8209
CH 0.8587 0.8037 0.8486 0.7617 0.8548

1The corresponding ROC score for the similarity method to measure how it can
express the equivalence.

conclude here that the standard deviation is generally small and increasing the
training points only makes it smaller. We should mention here that a reasonable
choice of number of training points depends on the variability of the training
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Fig. 4. Dependence of the equivalence learning results on the train set size. Except for
the SV KH case the P SW

+ projection method was applied.

set; protein groups in real-life databases are known to be vastly different in the
number of members, in average protein size, similarity within group and so on. In
our experiments 500 positive and negative training pairs were used for learning,
respectively.

In the experiments we dealt only with the situation where the class labels
are known for the negative sequences. If the class labels are unavailable, (i.e. it
cannot be decided if two negative sequences belong to the same group), there
are two potential solutions. First, any (x, y) pair where either or both of them
are negative sequences, can be treated as a non-equivalent pair. In this case, the
learner learns that a sequence pair belong to the particular species. The second
possibility is that only the positive-negative sequence pairs are considered non-
equivalent, and negative-negative pairs are removed from the training set. In our
study, only the first method gave better results than the second (data not shown).

Iteration. The functions obtained by the machine learning algorithms can be
used as an underlying similarity function in the pairwise vectorization approach.
This step can be repeated in an iterative fashion. Here, as shown in Figure 5, the
results become stable after 3-4 steps. Our empirical test told us that the trained
similarity matrices (Figure 5, top) really converge to the ideal equivalence matrix
but the test similarity matrix (bottom) kept some of its original mistakes, and
during the iteration process these errors became more pronounced.

3.1 Classification Results Via Learned Similarity Functions

These learned similarity functions were evaluated in a protein classification con-
text. A sequence was vectorized by the pairwise vectorization method and the
feature set was the whole train sequence set. For the underlying similarity func-
tions DANN , DSV M , DLogReg, DRF and the original Smith-Waterman were
used, while the classification method employed was SVM. The results obtained
are listed in the table below.
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ROC score 0.8879 0.9229 0.899 0.8779 0.8784

Fig. 5. An iteration of ideal similarity learning by RF with P SW
+ . The leftmost heat

map pair is the target equivalence matrix which was calculated by using class labels.

Table 3. Evaluation of the sequence classification via SVM

DSV M DANN DLogReg DRF

CC 0.9694 0.9778 0.7709 0.9545
C+ 0.9749 0.9866 0.7802 0.9700

SVM C• 0.9759 0.9691 0.8730 0.9712
0.96511 CQ 0.9641 0.8823 0.9360 0.9434

CH 0.9614 0.9242 0.9499 0.9460

1The ROC score obtained by SVM classification with SW feature extraction.
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Fig. 6. SVM classification results with kernel functions. Here the BLAST algorithm
was used for feature extraction.

Learned kernel results. Experiments for the support vector kernel. The results
we got are summarized in Table 3. For a comparison, the Local Alignment Kernel
was also evaluated. The program was used with the parameter values suggested
by the authors [11].
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4 Conclusions

We described a method termed equivalence learning, which applies a two-class
classification approach to object-pairs defined within a multi-class scenario. The
underlying idea is that instead of classifying objects into their respective classes,
we classify object pairs either as equivalent (belonging to the same class) or
non-equivalent (belonging to different classes). The method is based on a vec-
torisation of similarity between the objects. We should note that this is one of
the most important steps and the results are sensitive to small changes. We think
further methods should be developed to characterize similarity by several values,
represented in vector form rather than by just a single value. The application of
kernel methods to routine problems in protein classification is apparently ham-
pered by the high dimensionality of vector representations. Equivalence learning
is plagued by the same problem, so the reduction of dimensionality may be
an important step if equivalence learning is to be applied to real-life protein
databases.

The method is more complex than simple machine learning algorithms but
its time and storage space requirements are not exceedingly high as compared
to these methods, and in some cases it provides a better performance.

Finally we should mention that even though the expression equivalence learn-
ing may be novel in machine learning, it has already been used in cognitive
studies [30]. We hope that this concept will become more popular in machine
learning.
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Abstract. Algorithms for text classification generally involve two stages,
the first of which aims to identify textual elements (words and/or phrases)
that may be relevant to the classification process. This stage often in-
volves an analysis of the text that is both language-specific and pos-
sibly domain-specific, and may also be computationally costly. In this
paper we examine a number of alternative keyword-generation methods
and phrase-construction strategies that identify key words and phrases
by simple, language-independent statistical properties. We present re-
sults that demonstrate that these methods can produce good classifica-
tion accuracy, with the best results being obtained using a phrase-based
approach.

Keywords: Text Classification, Text Preprocessing.

1 Introduction

The increasing volume and availability of electronic documents, especially those
available on-line, has stimulated interest in methods of text classification (TC).
TC algorithms typically make use of a classifier developed from analysis of a
training set of documents that have been previously classified manually. The
training process usually involves two stages: first, a preprocessing stage to identify
relevant textual characteristics in the documents of the training set, and second,
a learning stage in which these characteristics are associated with class labels.
We are in this paper especially concerned with TC methods that use this second
stage to develop Classification Rules by a process of Classification Association
Rule Mining (CARM).

CARM methods, and other related rule-based classification systems, require
the initial preprocessing stage to identify textual components (words or phrases)
that can be used in the construction of classification rules of the form A → c,
where A is the conjunction of a set of these components and c is a class label.
Much current work on document preprocessing makes use of techniques tailored
to either the language in which the documents to be classified are written (e.g.
English, Spanish, Chinese, etc.) or the particular domain that the documents
describe (e.g. medline abstracts, Biological texts, etc.). Knowledge of the lan-
guage used allows the application of techniques such as natural language parsing

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 838–853, 2007.
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and stemming, and the use of stop and synonym lists. Knowledge of the domain
allows the application of specialised dictionaries and lexicons or the use of so-
phisticated ontology structures. These approaches can produce very accurate
classifiers, but are costly to implement, in terms of human resources, as they
are not generally applicable, and the techniques involved may also be relatively
costly in computational terms. These reasons motivate a search for methods that
will identify relevant words and phrases by statistical techniques, without the
need for deep linguistic analysis or domain-specific knowledge.

In this paper we examine a number of such methods for identifying key phrases
(and words) in document sets to support TC. The methods all begin by using
language-independent statistical methods to identify significant words in the doc-
ument set: i.e. words that are likely to be relevant to the classification task. We
investigate a number of strategies for constructing phrases, all of which make use
only of simple textual analysis using significant words derived in this way. Eight
different methods of generating the significant words are considered, coupled with
four phrase formulation algorithms. We compare the phrase-generation meth-
ods with results obtained from simpler “bag of words” approaches. Our results
demonstrate that the shallow linguistic analysis employed in our preprocessing
is nevertheless sufficient to produce good classification accuracy, and that even
simple phrase-construction approaches can improve on single-word methods.

The rest of this paper is organised as follows. In section 2 we describe the
background and some related work relevant to this study. Section 3 outlines the
CARM algorithm and the data sets that we have used to evaluate the various
preprocessing strategies. Section 4 describes the methods we use for identifica-
tion of significant words, and section 5 the phrase-construction algorithms. In
section 6 we present experimental results, and in section 7 our conclusions.

2 Previous Work

Text for TC purposes is usually represented using the vector space model, where
each document is represented as a single numeric vector d, and d is a subset of
some vocabulary V . The vocabulary V is a representation of the set of textual
components that are used to characterise documents. Two broad approaches are
used to define this: the bag of words and the bag of phrases approaches.

In the bag of words approach each document is represented by the set of words
that is used in the document. Information on the ordering of words within docu-
ments as well as the structure of the documents is lost. The vectors representing
documents may comprise either (a) Word identification numbers (the binary
representation), or (b) Words weighted according to the frequency with which
they appear in the document (the term-weighted representation). The problem
with the approach is how to select a limited, computationally manageable, sub-
set of words from the entire set represented in the document base. Methods
include the use of stop and synonym lists and stemming, or the use of a domain-
dependent set of key words or named entities. These are all options that make
use of knowledge of the language in which the documents in the document set
are written, an approach which, for reasons discussed above, we wish to avoid.
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In the bag of phrases approach each element in a document vector represents
a phrase describing an ordered combination of words appearing in sequence,
either contiguously or with some maximum word gap. A variety of techniques
exist for identifying phrases in documents, most of which again make use of
some kind of meta knowledge (either the application domain or the language
used in the document set). For example Sharma and Raman in [10] propose
a phrase-based text representation for web document management using rule-
based Natural Language Processing (NLP) and a Context Free Grammar (CFG).
In [4] Katrenko makes an evaluation of the phrase-based representation.

In [6] and [8] a sequence of experiments is described comparing the bag of
keywords approach with the bag of phrases approach in the context of text
categorisation. The expectation was that the phrase based approach would work
better than the keyword approach, because a phrase carries more information;
however the reverse was discovered. In [9] a number of reasons for this are given:

1. Phrases have inferior statistical properties.
2. Phrases have lower frequency of occurrence than keywords.
3. The bag of phrases includes many redundant and/or noise phrases.

We hypothesise that these drawbacks can be overcome by the use of appro-
priate classification algorithms. It is clear that phrases will be found in fewer
documents than corresponding key words, but conversely we expect them to
have a greater discriminating power. To take advantage of this, we require algo-
rithms that will identify classification rules with relatively low applicability as
well as very common ones. To avoid problems of noise, conversely, we require
the ability to discard rules that fall below defined thresholds of validity. These
requirements point us to the use of CARM algorithms to construct classification
rules using the identified words and/or phrases. CARM approaches are based on
methods of Association Rule Mining that rely on the examination of large data
sets to identify even scarce rules without overfitting. A number of studies (e.g.
[1], [7], etc.) have demonstrated that, for many classification problems, CARM
approaches can lead to better classification accuracy than other methods. Earlier
work by the authors [2] [3], employing a CARM algorithm, TFPC, showed that
appropriate selection of thresholds led to high classification accuracy in a wide
range of cases. In the present work we seek to apply this algorithm to the TC
problem, and to identify parameter values to optimise its accuracy.

3 Experimental Organisation

All experiments described in this paper were undertaken using the authors’
TFPC algorithm [2] [3]. TFPC (Total From Partial Classification) is a CARM
algorithm that constructs a classifier by identifying Classification Association
Rules (CARs) from a set of previously-classified cases. A CAR is a special case
of an Association Rule for which the consequent is a class-label. As is the case
for association rules in general, CARs can be characterised by their support
(the relative frequency with which the rule is found to apply), and confidence
(the ratio of their support to the frequency of the antecedent of the rule). An
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appropriate selection of threshold values for support and confidence is used to
define a set of rules from which the classifier is constructed. The unusual feature
of TFPC is that, when the algorithm finds a general rule that meets its thresh-
old requirements, it does not search for any more specific rule whose antecedent
is a superset of this. This heuristic makes TFPC less prone to overfitting than
other CARM methods that follow an “overfit and prune” strategy, while still en-
abling the identification of low-support rules. These characteristics make TFPC
a realistic choice for TC in potentially noisy environments.

The experimental analysis was undertaken using a subset of the Usenet col-
lection, a set of documents compiled by Lang [5] from 20 different newsgroups,
often referred to as the “20 Newsgroup” collection. There are exactly 1,000 doc-
uments per group (class) with the exception of one class that contains only 997.
For our experiments the collection was split into two data sets covering 10 classes
each: NGA.D10000.C10 and NGB.D9997.C10, and the analysis was undertaken
using NGA.D10000.C10.

4 Phrase Identification

The phrase identification approach we employed proceeds as follows, for each
document in the training set:

1. Remove common words, i.e. words that are unlikely to contribute to a char-
acterisation of the document.

2. Remove rare words, i.e. words that are unlikely to lead to generally applicable
classification rules.

3. From the remaining words select those significant words that serve to differ-
entiate between classes.

4. Generate significant phrases from the identified significant words and asso-
ciated words.

4.1 Noise Word Identification

We define words as continuous sequences of alphabetic characters delimited by
non-alphabetic characters, e.g. punctuation marks, white space and numbers.
Some non-alphabetic characters (‘,’, ‘.’, ‘:’, ‘;’, ‘!’ and ‘?’), referred to as stop
marks, play a role in the identification of phrases (more on this later). All other
non-alphabetic characters are ignored.

Common and rare words are collectively considered to be noise words. These
can be identified by their support value, i.e. the percentage of documents in the
training set in which the word appears. Common words are words with a support
value above a user defined Upper Noise Threshold (UNT), which we refer to as
Upper Noise Words (UNW). Rare words are those with a support value below
a user defined Lower Noise Threshold (LNT), and are thus referred to as Lower
Noise Words (LNW).

The UNT must of course exceed the LNT value, and the distance between the
two values determines the number of identified non-noise words and consequently,
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if indirectly, the number of identified phrases. A phrase, in the context of the
TFPC algorithm, represents a possible attribute of a document which may be a
component of the antecedent of rules. Some statistics for the NGA.D10000.C10
set, using LNT = 1% and UNT = 50% are presented in Table 1. It can be seen
that the majority of words occur in less than 1% of documents, so LNT must be
set at a low value so as not to miss any potential significant words. Relatively
few words are common, appearing in over 50% of the documents.

Table 1. Statistics for 20 Newsgroup data sets A and B using LNT = 1% and UNT
= 50%

Data Set # words # LNW # UNW % LNW % UNW
NGA.D10000.C10 49,605 47,981 21 96.73 0.04

NGB.D9997.C10 47,973 46,223 22 96.35 0.05

Tables 2 and 3 list the most common words (support greater than 40%) in the
two 20 Newsgroup sets. Figures in parentheses indicate the number of documents
where the word appears; recall that there are 10,000 and 9,997 documents in the
two sets respectively. Note that NGB.D9997.C10 set contains the additional
common word “but”.

Table 2. Number of common words (UNT = 40%) in NGA.D10000.C10

a (7,666) and (7,330) are (4,519) be (4,741) for (6,367) have (5,135)

i (6,803) in (7,369) is (6,677) it (5,861) not (4,565) of (7,234)

on (5,075) re (5,848) that (6,012) the (8,203) this (5,045) to (7,682)

with (4,911) writes (4,581) you (5,015)

Table 3. Number of common words (UNT = 40%) in NGB.D9997.C10

a (7,837) and (7,409) are (4,807) be (5,258) but (4,633) for (6,401)

have (5,366) i (6,854) in (7,579) is (6,860) it (6,169) not (4,849)

of (7,546) on (5,508) re (6,267) that (6,515) the (8,427) this (5,333)

to (7,905) with (4,873) writes (4,704) you (5,013)

4.2 Significant Word Identification

The desired set of significant words is drawn from an ordered list of potential
significant words. A potential significant word is a non-noise word whose con-
tribution value exceeds some user specified threshold G. The contribution value
of a word is a measure of the extent to which the word serves to differentiate
between classes and can be calculated in a number of ways. For the study pre-
sented here we considered two methods: (a) Using support counts only, and (b)
Term weighting.

Contribution from support counts only is obtained using the following identify:
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Contribution Gwi of word w with respect to class i = Swi×D
Sw×Si

Where D is the total number of documents in the training set, Si is the number
of documents that are labelled as class i, Swi is the number of documents in class
i that contain word w, and Sw is the total number of documents that contain
word w. The ratio Sw

D describes the overall frequency of occurrence of word w

in the document set. If the ratio Swi

Si
is greater than this, then the contribution

value Gwi will be greater than 1, indicating that w may be a significant word
for class i. In practice, of course, even words with little significance may have
contribution values slightly greater than 1, so to indicate a significant contri-
bution we require Gwi to exceed some threshold value G > 1. The maximum
value of the contribution can reach is D

Si
, obtained when Swi

Sw
= 1, indicating

that w occurs only in class i. In the case of the NGA.D10000.C10 set, we have
ten classes of exactly 1,000 documents each, so the maximum contribution value
is 10. The algorithm for calculating contribution values using support counts is
given in Table 4.

Table 4. Algorithm for calculating contribution using support counts

G ← significance threshold
w ← the given word
C ← set of available classes
D ← total number of documents
Sw ← number of documents that contain w

for each ci in C from i = 1 to |C| {
Si ← number of documents labelled as in class ci

Swi ← number of documents in ci that contain w

SLi ←
Swi

Si

contribution ← SLi×D

Sw

if (contribution > G) then w is a significant word
}

We apply a similar approach when term weighting is used. TF-IDF (Term
Frequency - Inverse Document Frequency) [11] is a well established term weight-
ing technique. Our variation of this is defined as follows:

Contribution Gwi of word w with respect to class i = TFwi×N
TFw×Ni

Where TFwi is the total number of occurrences of w in documents in class i,
N is the total number of words in the document set, Ni is the total number of
words contained in documents labeled as class i, and TFw is the total number of
occurrences of the word w in the document set. The ratio TFw

N defines the over-
all term frequency of w in the document set; if the corresponding ratio TFwi

Ni
is

significantly greater than this, then a contribution value Gwi greater than 1 will
indicate a potential significant word. The algorithm for calculating contribution
values using term weighting is given in Table 5.
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Table 5. Algorithm for calculating contribution using term weighting

G ← significance threshold
w ← the given word
C ← set of available classes
N ← total number of words in the document base
Tw ← total number of occurrences of word w

for each ci in C from i = 1 to |C| {
Twi ← total number of occurrences of word w in ci

Ni ← total number of words in ci

contribution ← Twi×N

Tw×Ni

if (contribution > G) then w is a significant word
}

Thus we have two options for calculating the contribution of a word, using
support counts or using term weightings. We place those whose contribution
exceeds the threshold G into a potential significant words list ordered according
to contribution value. This list may include words that are significant for more
than one class, or we may choose to include only those non-noise words with
contribution greater than G with respect to one class only (i.e. uniques).

From the potential significant words list we select the final list of significant
words from which we generate phrases. We have examined two strategies for
doing this. The first method, which simply selects the first (most significant)
K words from the ordered list, may result in an unequal distribution between
classes. In the second approach we select the top K

|C| for each class (where |C| is
the number of available classes), so as to include an equal number of significant
words for each class. Thus, in summary, we have:

– Two possible contribution selection strategies (support count and term
weighting).

– Two potential significant word list construction strategies (include all words
with appropriate level of contribution, or alternatively only unique words).

– Two significant word selection strategies (top K or top K
|C| for each class).

These possibilities define eight different methods for the identification of signif-
icant words. Tables 6 and 7 illustrate some consequences of these options. Table
6 gives the distribution of significant words per class for the NGA.D10000.C10
set using the “support count, all words and top K strategy” with UNT = 7%,
LNT = 0.2%, G = 3. Note that the number of significant words per class is not
balanced, with the general “forsale” class having the least number of significant
words and the more specific “mideast” class the most. Table 7 shows the 10 most
significant words for each class using the same strategy and thresholds. The value
shown in parentheses is the contribution of the word to that class in each case.
Recall that using the support count strategy the highest possible contribution
value for the NGA.D10000.C10 set is 10, obtained when the word is unique to a
certain class. In the “forsale” category quite poor contribution values are found,
while the “mideast” category has many high contribution words.
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Table 6. Number of significant words in NGA.D10000.C10 using the “support count,
all words and top K strategy” with UNT = 7.0%, LNT = 0.2%, G = 3

Class Label # Sig. Words Class Label # Sig. Words
comp.windows.x 384 rec.motorcycles 247
talk.religion.misc 357 sci.electronics 219
alt.atheism 346 misc.forsale 127
sci.med 381 talk.politics.mideast 1,091
comp.sys.ibm.pc.hardware 175 rec.sport.baseball 360

Table 7. Top 10 significant words per class for NGA.D10000.C10 using the “support
count, all words and top K strategy” with UNT = 7.0%, LNT = 0.2%, G = 3

windows.x motorcycles religion electronics atheism

colormap(10) behanna(10) ceccarelli(10) circuits(9.8) inimitable(10)
contrib(10) biker(10) kendig(10) detectors(9.6) mozumder(10)
imake(10) bikers(10) rosicrucian(10) surges(9.5) tammy(10)
makefile(10) bikes(10) atf(9.5) ic(9.3) wingate(10)
mehl(10) cages(10) mormons(9.5) volt(9.3) rushdie(9.8)
mwm(10) countersteering(10) batf(9.3) volts(9.2) beauchaine(9.7)
olwn(10) ducati(10) davidians(9.2) ir(9.2) benedikt(9.4)
openlook(10) fxwg(10) abortions(9.0) voltage(9.2) queens(9.4)
openwindows(10) glide(10) feds(8.9) circuit(8.9) atheists(9.3)
pixmap(10) harley(10) fbi(8.8) detector(8.9) sank(9.1)

forsale med mideast hardware baseball
cod(10) albicans(10) aggression(10) nanao(10) alomar(10)
forsale(9.8) antibiotic(10) anatolia(10) dma(9.4) astros(10)
comics(9.5) antibiotics(10) andi(10) vlb(9.4) baerga(10)
obo(9.0) candida(10) ankara(10) irq(9.3) baseman(10)
sale(8.8) diagnosed(10) apartheid(10) soundblaster(9.0) batter(10)
postage(8.6) dyer(10) appressian(10) eisa(8.8) batters(10)
shipping(8.6) fda(10) arabs(10) isa(8.8) batting(10)
mint(8.4) homeopathy(10) argic(10) bios(8.7) bullpen(10)
cassette(8.2) infections(10) armenia(10) jumpers(8.7) cardinals(10)
panasonic(7.6) inflammation(10) armenian(10) adaptec(8.7) catcher(10)

5 Phrase Identification

Whichever of the methods described above is selected, we define four different
categories of word:

1. Upper Noise Words (UNW): Words whose support is above a user de-
fined Upper Noise Threshold (UNT).

2. Lower Noise Words (LNW): Words whose support is below a user defined
Lower Noise Threshold (LNT).
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Table 8. Phrase generation strategies

Delimiters Contents Label
Sequence of one or more significant words and DelSNcontGO

Stop marks and ordinary words

noise words Sequence of one or more significant words and DelSNcontGW
ordinary words replaced by “wild cards”

Sequence of one or more significant words and DelSOcontGN
Stop marks and noise words
ordinary words Sequence of one or more significant words and DelSOcontGW

noise words replaced by “wild cards”

Table 9. Example of significant word identification process using a document from the
NGA.D10000.C10 data set

@Class rec.motorcycles
paint jobs in the uk
can anyone recommend a good place for reasonably
priced bike paint jobs, preferably but not
essentially in the london area.
thanks
john somename.
–
acme technologies ltd xy house,
147 somewherex road

(a) Example document from NGA.D10000C10 data set in its unprocessed form

paint jobs in the uk can anyone recommend a good place for reasonably
priced bike paint jobs # preferably but not essentially in the london
area # thanks john somename # acme technologies ltd xy house #
somewherex road

(b) Document with stop marks indicated and non-alphabetic characters removed

paint jobs în t̂he uk ĉan ̂anyone recommend a ĝood place f̂or reasonably
priced b̃ike paint jobs # ˜preferably b̂ut n̂ot essentially în t̂he london
area # ̂thanks john somename # acme ˜technologies ltd xy house #
somewherex r̃oad

(c) Document with lower, ̂upper and ˜significant words marked (all other words are
ordinary words)

3. Significant Words (SW): Selected key words that serve to distinguish
between classes.

4. Ordinary Words (OW): Other non-noise words that were not selected as
significant words.

We also identify two groups of categories of words:

1. Non-Noise Words (NNW): The union of significant and ordinary words.
2. Noise Words (NW): The union of upper and lower noise words.
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These categories are all used to describe the construction of phrases. We have
investigated four different simple schemes for creating phrases, defined in terms
of rules describing the content of phrases and the way in which a phrase is
delimited. In all cases, we require a phrase to include at least one significant
word. In addition to this, Table 8 shows the four different algorithms used for
the experiments described here.

An example illustrates the consequences of each method. In Table 9a we show
a document taken from the NGA.D10000.C10 data set (with some proper names
changed for ethical reasons). Note that the first line is the class label and plays
no part in the phrase generation process. The first stage in preprocessing replaces
all stop marks by a # character and removes all other non-alphabetic characters
(Table 9b). In Table 9c the document is shown “marked up” after the significant
word identification has been completed. Significant words are shown using “wide-
tilde” (ãbc...), upper noise words use “wide-hat” (âbc...), and lower noise words
use “over-line” (abc...).

In Table 10 we show the phrases used to represent the example document from
Table 9 using each of the four different phrase identification algorithms. Where
appropriate “wild card” words are indicated by a ‘?’ symbol. Note that a phrase
can comprise any number of words, unlike word-gram approaches where words
are a fixed length. The phrase identified in a document become its attributes in
the classification process.

Table 10. Example phrases (attributes) generated for example document given in
Table 9 using the four advocated phrase identification strategies

Phrase Identification Example of Phrase Representation
Algorithm (Attributes)

DelSNcontGO {{r̃oad}, { ˜preferably}, {reasonably priced b̃ike

paint jobs}, {acme ˜technologies ltd}}
DelSNcontGW {{r̃oad}, { ˜preferably}, {? ? b̃ike ? ?},

{? ˜technologies ?}}
DelSOcontGN {{somewherex r̃oad}, { ˜preferably

b̂ut n̂ot}, {b̃ike}, { ˜technologies}}
DelSOcontGW {{? r̃oad}, { ˜preferably ? ?}, {b̃ike},

{ ˜technologies}}

6 Experimental Results

Experiments conducted using the NGA.D10000.C10 data set investigated all
combinations of the eight different proposed significant word generation strate-
gies with the four proposed different phrase generation approaches. We also
investigated the effect of using the generated significant words on their own as
a “bag of keywords” representation. The suite of experiments described in this
section used the first 9/10th (9,000 documents) as the training set, and the last
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1/10th (1,000 documents) as the test set. We used the TFPC algorithm to carry
out the classification process. For all the results presented here, the following
thresholds were used: support = 0.1%, confidence = 35.0%, UNT = 7.0%, LNT
= 0.2%, G = 3, and maximum number of significant words threshold of 1,500.
These parameters produced a word distribution that is shown in Table 11. As
would be expected the number of potential significant words is less when only
unique words (unique to a single class) are selected. Note also that using word
frequency to calculate the contribution of words leads to fewer significant words
being generated than is the case when using the “word support calculation”
which considers only the number of documents in which a word is encountered.

Table 11. Number of potential significant words calculated per strategy
(NGA.D10000.C10)

Number of Noise Words above UNT 208

Number of Noise Words below LNT 43,681

Number of Ordinary Words 4,207

Number of Significant Words 1,500

Number of Words 49,596

Word Frequency Word Support
Unique All Unique All

Number of Potential Significant Words 2,911 3,609 3,188 3,687

Table 12. Number of attributes (phrases) generated (NGA.D10000.C10)

Word Frequency Word Support
Unique All Unique All

Dist Top K Dist Top K Dist Top K Dist Top K

DelSNcontGO 27,551 27,903 26,973 27,020 26,658 25,834 26,335 25,507

DelSNcontGW 11,888 12,474 12,118 13,657 11,970 11,876 11,819 11,591

DelSOcontGN 64,474 63,134 60,561 61,162 59,453 58,083 59,017 57,224

DelSOcontGW 32,913 34,079 32,549 35,090 32,000 32,360 31,542 31,629

Keywords 1,510 1,510 1,510 1,510 1,510 1,510 1,510 1,510

Table 12 shows the number of attributes generated using all the different
combinations of the proposed significant word generation and phrase generation
strategies, including the case where the significant words alone were used as at-
tributes (the “keyword” strategy). In all cases, the algorithms use as attributes
the selected words or phrases, and the ten target classes. Thus, for the keyword
strategy the number of attributes is the maximum number of significant words
(1,500) plus the number of classes (10). In other experiments, we examined the
effect on the keyword strategy of removing the upper limit, allowing up to 4,000
significant words to be used as attributes, but this led to reduced accuracy, sug-
gesting that a limit on the number of words used is necessary to avoid including
words whose contribution may be spurious.
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Table 13. Classification accuracy (NGA.D10000.C10)

Word Frequency Word Support
Unique All Unique All

Dist Top K Dist Top K Dist Top K Dist Top K

DelSNcontGO 75.9 73.6 77.3 72.4 76.4 73.2 77.4 74.5

DelSNcontGW 75.1 71.6 76.2 68.5 74.9 71.3 75.8 72.3

DelSOcontGN
DelSOcontGW 70.9 70.4 66.0 71.2 68.9

Keywords 75.1 73.9 75.8 71.2 74.4 72.2 75.6 73.7

In the DelSNcontGO and DelSNcontGW algorithms, stop and noise words are
used as delimiters. As the results demonstrate, this leads to many fewer phrases
being identified than is the case for the other two phrase generation strategies,
which use stop words and ordinary words as delimiters. For DelSOcontGN (and
to a lesser extent DelSOcontGW) the number of attributes generated usually
exceeded the TFPC maximum of 215 (32,767) attributes. This was because these
algorithms allow the inclusion of noise words in phrases. Because there are many
more noise words (43,889) than ordinary words (4,207), the number of possible
combinations for phrases far exceeds the number obtained using the two DelSN
strategies. Further experiments which attempted to reduce the number of phrases
produced by adjusting the LNT, UNT and G thresholds did not lead to good
results, and led us to abandon the DelSOcontGN and DelSOcontGW strategies.

Variations within the DelSN strategies were less extreme. DelSNcontGW pro-
duces fewer attributes than DelSNcontGO because phrases that are distinct in
DelSNcontGO are collapsed into a single phrase in DelSNcontGW. Intuitively it
might seem that identifying more attributes (phrases) would improve the quality
of representation and lead to better classification accuracy. In other experiments
we increased the number of attributes produced by the DelSNcontGO and Del-
SNcontGW strategies by increasing the limit on the number of significant words
generated. However, as was the case with the keywords strategy, this did not lead
to any better accuracies, presumably because the additional significant words in-
cluded some that are unhelpful or spurious.

Table 13 shows the percentage classification accuracy results obtained using
the different strategies. Because too many phrases were generated using DelSO-
contGN and, in some cases, DelSOcontGW for the TFPC algorithm to operate,
the results were incomplete for these algorithms, but, as can be seen, results
obtained for DelSOcontGW were invariably poorer than for other strategies. In
the other cases, it is apparent that better results were always obtained when sig-
nificant words were distributed equally between classes (columns headed “Dist”,
noted as “top K

|C|” in section 4.2) rather than selecting only the K (1,500) most
significant words. Best results were obtained with this policy using a potential
significant word list made up all words with a contribution above the G threshold
(columns headed “All”), rather than when using only those that were unique to
one class. Overall, DelSNcontGO performed slightly better than DelSNcontGW,
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Table 14. Number of empty documents in the training set (NGA.D10000.C10)

Word Frequency Word Support
Unique All Unique All

Dist Top K Dist Top K Dist Top K Dist Top K

DelSNcontGO 190 258 251 299 229 238 224 370

DelSNcontGW 190 226 251 299 229 147 224 370

DelSOcontGN
DelSOcontGW 251 229 411 224 370

Keywords 190 226 251 299 229 411 224 370

and both phrase-generation strategies outperformed the Keywords-only algo-
rithm. The contribution calculation mechanism used did not appear to make a
significant difference to these results.

Table 14 shows the number of “empty” training set documents found in the
different cases: that is, documents in which no significant attributes were identi-
fied. These represent between 2% and 5% of the total training set. Perhaps more
importantly, any such documents in the test set will necessarily be assigned to the
default classification. Although no obvious relationship between the frequency
of empty documents and classification accuracy is apparent from these results,
further investigation of this group of documents may provide further insight into
the operation of the proposed strategies.

Table 15 shows execution times in seconds for the various algorithms, in-
cluding both time to generate rules and time to classify the test set. The key
words only approach is faster than DelSNcontGO because many fewer attributes
are considered, so TFPC generates fewer frequent sets and rules. However, Del-
SNcontGW is fastest as the use of wild card leads to faster phrase matching.

Table 15. Execution times (NGA.D10000.C10)

Word Frequency Word Support
Unique All Unique All

Dist Top K Dist Top K Dist Top K Dist Top K

DelSNcontGO 244 250 253 242 250 248 328 235

DelSNcontGW 155 148 145 158 157 194 145 224

DelSOcontGN
DelSOcontGW 370 326 281 278 314

Keywords 183 176 282 287 261 262 235 220

A further set of experiments were conducted to investigate the effects of ad-
justing the various thresholds. The first of these analysed the effect of changing
G. The G value (contribution or siGnificance threshold) defines the minimum
contribution that a potential significant word must have. The size of the po-
tential significant word list thus increases with a corresponding decrease in G;
conversely, we expect the quality of the words in the list to increase with G.



Statistical Identification of Key Phrases for Text Classification 851

Significant Words

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

G

# 
S

ig
. W

d
s.

Series1
Series2

Fig. 1. Relationship between G value and number of significant words identified for
NGA.D10000.C10, UNT = 7.0%, LNT = 0.2%, and K = 1,500. Series 1 = word fre-
quency contribution calculation, Series 2 = word support contribution calculation

Figure 1 shows the effect on the number of selected significant words with changes
in G, when UNT = 7.0%, LNT = 0.2%, and K = 1,500. The figure shows that
there is little effect until the value of G reaches a point at which the size of
the potential significant words list drops below K, when the number of selected
significant words falls rapidly and a corresponding fall in accuracy is also ex-
perienced. The drop is slightly less severe using word frequency contribution
calculation compared with support count contribution calculation.

In other experiments, varying the support and confidence thresholds had simi-
lar effects to those experienced generally in Association Rule Mining. Relatively
low support and confidence thresholds are required because of the high vari-
ability of text documents, so as not to miss any significant frequent item sets
or useful if imprecise rules. Generally we found that a support threshold cor-
responding to 10 documents produced best results, with a confidence threshold
of 35.0%. We also undertook a number of experiments with the LNT and UNT
thresholds. Best results were obtained using low values for both (such as those
used in the above experiments).

7 Conclusion

In this paper we have described a number of different strategies for identifying
phrases in document sets to be used in a “bag of phrases” representation for
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text classification. Phrases are generated using four different schemes to combine
noise, ordinary and significant words. In all eight methods were used to identify
significant words, leading overall to 32 different phrase generation strategies that
were investigated, as well as 8 keyword only identification strategies.

The main findings of the experiments were:

1. Best results were obtained from a strategy that made use of words that
were significant in one or more classes, rather than only those that were
unique to one class, coupled with a selection strategy that produced an
equal distribution between classes.

2. The most successful phrase based strategy outperformed classification using
only keywords.

From the experiments described above we observe that a small subset of the
documents to be classified were represented by an empty vector, i.e. they were
not represented by any phrases/key words. This suggests that there remain pos-
sibilities to improve the strategies considered, which will be the subject of further
investigation planned by the authors.
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Abstract. We address the problem of learning automatically to map
heterogeneous semi-structured documents onto a mediated target XML
schema. We adopt a machine learning approach where the mapping be-
tween input and target documents is learned from a training corpus of
documents. We first introduce a general stochastic model of semi struc-
tured documents generation and transformation. This model relies on
the concept of meta-document which is a latent variable providing a link
between input and target documents. It allows us to learn the corre-
spondences when the input documents are expressed in a large variety
of schemas. We then detail an instance of the general model for the par-
ticular task of HTML to XML conversion. This instance is tested on
three different corpora using two different inference methods: a dynamic
programming method and an approximate LaSO-based method.

1 Introduction

With the development and growth of numerical resources, semantically rich data
tend to be encoded using semi-structured formats. In these formats, content ele-
ments are organized according to some structure, that reflects logical, syntactic
or semantic relations between them. For instance, XML and, to a lesser extent,
HTML allow us to identify elements in a document (like its title or links to
other documents) and to describe relations between those elements (e.g. we can
identify the author of a specific part of the text). Additional information such as
meta data, annotations, etc., is often added to the content description resulting
in richer descriptions.

For many applications, a key problem associated with the widespread of semi-
structured resources is heterogeneity: as documents come from different sources,
they will have different structures. For instance, in XML document collection
focused on a specific domain (like scientific articles), document will come from
different sources (e.g. each source corresponds to a journal) and will, therefore,
follow different schemas. The schema itself may unknown. For managing or ac-
cessing this collection, a correspondence between the different schemas has to

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 854–867, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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be established. The same goes for HTML data on the Web where each site will
develop its own presentation. If one wants, for example, to develop a movie
database, information has to be extracted from each site so that heterogeneous
structures may be mapped onto a predefined mediator schema.

Fig. 1. Heterogeneity example: two documents describing the same information coming
from two different sources. Both the organization, partitioning and element order differ.

Manual correspondence between heterogeneous schemas or toward a mediated
schema is usually performed via document transformation languages, like XSLT.
However the multiplicity and the rapid growth of information sources have mo-
tivated researchers to work out ways to automate these transformations [1,2].
This heterogeneity problem has been addressed only recently from a content
centric perspective for applications in information retrieval [3], legacy document
conversion [4], and ontology matching [5]. Depending on the targeted applica-
tion and on the document sources considered, this semi-structured document
mapping problem will take different forms. With heterogeneous XML sources,
the correspondence between the different structures will have to handle both the
structural and content information. The mapping will provide new structures for
the input sources, this is an annotated tree conversion problem which involves
tag renaming and document elements reorganization and annotation. For the
HTML to XML conversion problem, the context is different. HTML documents
are only weakly structured and their format is presentation-oriented. The prob-
lem here will be to map this weakly structured visualization oriented format
onto a valid XML tree.

In this article, we consider the problem of automatically learning transforma-
tions from heterogeneous semi-structured documents onto an XML predefined
schema. We adopt a machine learning approach where the transformation is
learned directly from examples. We propose a general framework for learning
such transformations and focus then on the special case of HTML to XML con-
version. The article is organized as follows. The general framework is introduced
in Section 2. Section 3 details the HTML to a predefined XML schema conver-
sion problem. Experiments performed on four different corpora are described in
Section 4 and related work is reviewed in Section 5.
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Fig. 2. Toy example of a structured document transformation from HTML data to a
predefined schema describing the casting of a movie

2 A Model for Document Structure Mapping

2.1 General Framework

We consider semi-structured documents where content information (text, video,
pictures, etc.) is organized according to some schema. In the following, the terms
semi-structured and schema are used in a general sense and are not restricted
to XML. The former includes different formats like HTML, XML or PDF and
the latter denotes the document organization. We study the problem of learning
mappings from a set of heterogeneous documents onto a predefined mediated
target XML schema denoted sT (T holds for Target). The set of possible input
schema is denoted S = {s1, ..., s|S|}. No assumption is made on the structure of
the input documents for the general model. These documents may either follow a
well-defined DTD, or may be HTML documents or even plain — unstructured —
text documents.

A straightforward approach for learning to map heterogeneous documents
onto a target schema is to learn the correspondence for each input schema. This
raises different problems: for example representative data have to be collected
for each input schema and schemas not represented in the training set cannot be
transformed. In order to bypass these limitations, we will introduce an abstract
representation of a document, called meta document, which will be used as an
intermediate representation in our document mapping framework. This abstract
representation supposedly contains the information needed for an individual to
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create the different views of a document corresponding to different schemas. This
meta document will provide a link between the different representations, it is a
variable of our model and its very definition will depend on the precise task we
are dealing with. In order to fix the ideas, let us consider an illustration of this
concept. In Figure 3, the meta document is represented as a set of relations and
content elements which may be stored into a relational database. It may then be
used for producing different projections onto different schemas. It may also be
transformed into a HTML document for an intranet, into a PDF document or
into an XML document following a specific DTD. We denote dsi the projection
of the meta document d onto schema si.

Fig. 3. In this example, a company uses a Database Server to generate different views
of a same piece of information of the whole database. Each piece of database describing
a particular movie is the meta document of the movie.

The meta document d is not necessarily known — in the example of Figure 3,
one does not usually have access to the database used to generate the different
documents. Different meta documents can produce the same projection onto a
schema si. For example, different databases can be used to generate the same
HTML document. In the proposed model, we will consider that d is a hidden
random variable. For the HTML to XML problem dealt with in Section 3, we
will propose a specific instance of d.

Our stochastic model of document view generation is described in Figure 4
using a Bayesian network formalism. The meta document d is a latent variable
which provides a link between different document representations. ai is a discrete
random variable that represents the author of the projection of d onto dsi — it
identifies the specific process by which dsi is produced from d. In this model dsi

is fully defined by d and ai. In practice ai will simply identify a source. aT is
not represented in this model since the target schema is unique and predefined.
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Fig. 4. The belief network representing the generative process of the different views of
a meta document

This generative model of document views will serve as a basis for introducing
the transformation model.

2.2 Structure Mapping Formalism

We will denote sin(d) the input schema and dsin(d) the projection of d onto this
schema. The author of the transformation of d into sin(d) denoted ain(d) may be
known or unknown depending on the structure mapping problem. For example,
if we want to transform different known Websites into XML documents, the
author (the Website) is a known information. Usually there is no information
available about the meta document d and only a projection of d will be available.

Within this framework, we formalize the mapping problem as follows: given
a document dsin(d) and an author ain(d), find the mapping which maximizes the
probability of generating a document in the target schema. Formally one could
write:

dsT = argmax
d′∈sT

P (d′|dsin(d) , ain(d)) (1)

In order to solve equation 1 we use the document view model of Figure 4. Let
us write the joint probability for the whole Bayesian Network:

P (d, ds1 , ...., ds|S| , dsT , a1, ...., a|S|) = P (d)
|S|∏

i=1

P (ai)
|S|∏

i=1

P (dsi |d, ai)P (dsT |d)

(2)
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Since we only have access to a projection of the document d onto schema
sin(d), we will integrate out all unknown variables, leading to:

P (dsT , dsin(d) , ain(d)) =
∑

d
{ak}k �=in(d)
{dsj

}j �=in(d)

P (d)
|S|∏

i=1

P (ai)
|S|∏

i=1

P (dsi |d, ai)P (dsT |d)
(3)

Here the summation over d consists in integrating over all possible instances
of the hidden variable d. From this expression, we obtain the final expression for
the right term of Equation 1:

P (dsT |dsin(d) , ain(d)) ∝
∑

d

P (d)P (dsT |d)P (dsin(d) |d, ain(d)) (4)

The structure mapping problem consists in solving the following equation:

dsT = argmax
d′∈sT

∑

d

P (d)P (d′|d)P (dsin(d) |d, ain(d)) (5)

Here P (d′|d) corresponds to the probability of generating a document into
the target schema using the meta document d and P (dsin(d) |d, ain(d)) is the
probability of generating document dsin(d) according to ain(d). Note that the
meta document variable trick allows us to model the processing of heterogeneous
databases without having to learn one distinct classifier for each input schema.

Solving equation 5 involves summing over all possible meta-documents d
and scoring each possible output d′. In order to efficiently compute the target
document probability, we will have to make different simplifying assumptions
about the stochastic generation processes corresponding to P (dsin(d) |d, ain(d))
and P (dsT |d). These assumptions will depend on the task and on the type of
structure mapping problem. In the following, we will detail these assumptions
and the model instance for the HTML to XML conversion task.

3 Model Instance for HTML to XML Conversion

We now focus on learning mappings from heterogeneous HTML sources to a pre-
defined XML schema. In this specific HTML to XML conversion task, we consider
one possible input schema (HTML) denoted sIN and different possible authors
(for example, ”IMDB” and ”Allocine” fir the movie corpus - see part Experi-
ments). We will make two assumptions: the first one concerningP (dsIN |d, ad,IN)
and the second one concerning P (d′|d).

3.1 Meta Document Assumption

Tags in HTML documents are mainly used for the rendering of the document
and as such do not provide useful information for the transformation. The latter
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will be essentially based on the content elements of the HTML document. Since
tag names and attributes only bring few relevant information in the case of
HTML, in the following, the input for the transformation will be the sequence of
the document content elements. This assumption models a deterministic process
where a meta document d is built from dIN only keeping the sequence of text
segments of the input document.

Formally, for the model described in Section 2, a meta document d will be a
sequence of text segments denoted d = (d1, ...., d|d|). Let (d1

IN , ...., d
|dIN |
IN ) denote

the sequence of segment extracted from dIN , the probability P (dsIN |d, ad,IN) is
defined as follow:

P (dsIN |d, ad,IN ) =
{

0 if (d1, ...., d|d|) �= (d1
IN , ...., d

|d|
IN )

1 elsewhere
(6)

3.2 Target Document Model

We now introduce a target document model which will be used for mapping a
meta document representation onto a target schema. Under the above hypoth-
esis, this amounts at inferring the probability of XML trees from a sequence of
text segments. This model extends a series of document models already proposed
for the classification and clustering of XML documents ( [6], [7]).

Let NdT = (n1, ...., n|NdT
|) denote the set of labeled nodes for an XML docu-

ment dT and ci denote the content of node ni. If ni is a leaf node of dT then ci
will be the content of the leaf, if ni is an internal node of dT , ci will be the content
of all the leaf nodes descendant of ni. Let LdT denote the set of leaves of dT , and
let d = (d1, ...., d|d|) be a meta document, we have P (dT |d) = P (dT |d1, ...., d|d|).

Modeling all structural relations from the target tree would involve a very
large probabilistic space for random variable dT . In our model, simplifying as-
sumptions are made so that structure and content information is represented
using the local context of each node of the document. These assumptions have
already been successfully tested on the categorization and clustering tasks. We
will assume that the label of a node only depends on its content, its left sibling (if
any) and its father (if any). With these assumptions, we can write1 (see Figure 5
for the corresponding belief network):

P (dT |d1, ...., d|d|) =
∏

ni∈LdT

P (ci|di)
∏

ni∈NdT

P (ni|ci, sib(ni), father(ni)) (7)

where ni is the label of node i (the XML tag), father(ni) and sib(ni) correspond
to the label of the father node and the label of the left sibling node of ni. Remind
that ci is the union of all the content information of children of ni.

1 In order to simplify the equation, we don’t write P (ci|cj , ck, ...) for the internal nodes.
The content of internal nodes are built by a deterministic process so the probability
P (ci|cj , ck, ...) is considered to be equal to 1.
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Fig. 5. The belief network representing the dependencies between dT and the sequence
of text segments of the meta-document d. The stochastic process modeled here considers
that the input content elements di generate the content leaf nodes ci. The label ni of
node i depends on its left sibling, its father and its content.

We make the additional assumption that the leaf content in dT is exactly the
sequence of elements in d (i.e P (ci|di) = 0 if ci �= di)2 which leads to:

P (dT |d1, ...., d|d|) =

⎧
⎨

⎩

0 if (d1, ...., d|d|) �= (c1, ..., c|d|)∏

ni∈NdT

P (ni|ci, sib(ni), father(ni)) otherwise (8)

Learning the model: In order to learn the probabilities P (ni|ci, sib(ni), father
(ni)), we have used a maximum entropy framework [8]. The label for each node
is chosen by estimating the probability:

P (ni|ci, sib(ni), father(ni)) =
exp

(〈
Wni , Fci,sib(ni),father(ni)

〉)

Zci,sib(ni),father(ni)
(9)

where Zci,sib(ni),father(ni) is a normalizing factor, Fci,sib(ni),father(ni) is a vector
representation of the context of node ni, Wα is the vector of parameters to be
learned and 〈·, ·〉 is the scalar product. In this model, we will learn one set of
parametersWα for each possible node label α using a Maximum Entropy method.
For the iterative parameter estimation of the Maximum Entropy exponential
models, we use one of the quasi Newton methods, namely the Limited Memory
BFGS method, which is observed to be more effective than the Generalized
Iterative Scaling (GIS) and Improved Iterative Scaling (IIS) for NLP and IE
tasks [9].
2 This assumption corresponds to the idea that we don’t want to modify the content

of the source document in order to generate the target document.
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3.3 Final HTML to XML Model

Once the Wα are learned from a training set, the mapping onto the target schema
is finally obtained by solving:

dsF INAL = argmax
dT such as

(d1,....,d|d|)=(c1,...,c|d|)

∏

ni∈NdT

exp
(〈
Wni , Fci,sib(ni),father(ni)

〉)

Zci,sib(ni),father(ni)
(10)

In order to solve this equation, we have used two methods:

1. The first one is based on dynamic programming (DP) (see [10], [11]) and
provides an exact solution to Equation 1. Its complexity is O(n3.V ) (see [10]
for more details) — where n is the sequence size of d and V is the number of
possible internal node labels - which may be prohibitive for large documents.

2. The second one is based on the LaSO algorithm described in Section 4.1) [12].
It allows us to compute an approximation of the maximum in a complexity
of O(|NdsT

|.V.n) where |NdsT
| is the number of node of |dsT |.

4 Experiments

4.1 LaSO-Based Model

LaSO is an original method proposed by [12] that describes a general way to make
approximate inference in structure mapping problems. This method is especially
useful in cases, like ours, in which dynamic programming is too time-consuming.
It relies on the observation that inference can be described as a search process
and that it is possible to make it faster by learning an adapted heuristic function
and using it in a heuristic search algorithm: this method proposed to consider
the learning problem and the decoding problem in an integrated manner.

As we show in the next part, LaSo can be applied very easily to our model
and allows us to obtain reasonably good results with a lower inference time but
a larger training time.

4.2 Corpora

The HTML to XML structure mapping model has been tested on four different
collections. One is the INEX’03 corpus [13], which includes XML articles from
20 different journals and proceedings of the IEEE Computer Society. It is made
of about 12,000 documents that represent more than 7,000,000 XML elements.
The documents have an average length of 500 leaf nodes and 200 internal nodes.
There are 139 tags. This is a medium size collection according to the IR criteria,
but it is quite a large corpus for the complex structure mapping task. Each INEX
document has a corresponding HTML page extracted from the INEX Website
which is the input document.
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The second collection includes 10,000 movie descriptions extracted from the
IMDb Website3. Each movie was represented in both, an XML document cre-
ated from the relational database and a HTML document extracted from the
site. The target XML documents have an average length of 100 leaf nodes and
35 internal nodes labeled with 28 possible tags. The documents have a rather
regular structure compared to INEX ones: they have fewer tags and share more
structural regularities.

The third collection is a set of 39 Shakespearean plays in XML format4 con-
verted manually to a simple HTML document. There are only a few documents
in this collection, however their average length is huge: 4100 leaf nodes and 850
internal nodes. There are 21 different tags. The main challenge of this collection
is related to the length of its documents.

The fourth collection, called Mini-Shakespeare, is the smallest one. As in [10],
we have randomly selected 60 Shakespearean scenes from the third collection.
These scenes have an average length of 85 leaf nodes and 20 internal nodes over
7 distinct tags.

Each collection was randomly split in two equal parts, one for learning and the
other for testing. Due to its complexity, dynamic programming was performed
only on documents containing less than 150 leafs – this corresponds to 2200
INEX documents, 4000 IMDb documents –, DP was not applicable at all on the
third collection.

4.3 Features and Evaluation Measures

The model uses a sparse vector representation of the context of nodes ni (Fni in
part 3.3). This vector includes structure and content information. Structure is
coded through a set of Boolean variables indicating the presence or absence
of a particular (sib(ni), father(ni)) pair. Content is represented by Boolean
and real variables. The former encode layout, punctuation and word presence,
while the latter represent the size of the content information (in words) and
the different word lengths. This sparse representation generates a large vector
space: depending on the corpus, there are often more than one million distinct
(structure and content) features.

Our first evaluation measure, Micro, is the percentage of correctly annotated
leaf nodes. It is similar to the word error ratio used in natural language. Since we
are dealing with unbalanced classes (e.g. INEX documents are essentially made
of paragraphs, so this tag is by far the most frequent), we also use a Macro
score for leaf nodes: the unweighted average of F1 classification scores of each
tag. Internal nodes mapping is measured with the Internal metric: it is the F1
score of correctly annotated sub-trees, where a sub-tree is correctly annotated
when its tag and its content are both correct5. The internal metric is similar to
the non-terminal error ratio used in [10]. The Full metric is a F1 score on all
3 http://www.imdb.com
4 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
5 A sub-tree is correctly annotated if its root node has the right label and if its content

is exactly the target content. This measure is sometimes called coverage.
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Table 1. Structure mapping results on four XML collections. Four evaluation measures
are used (Experiments performed on a standard 3.2Ghz Computer.)

Collection Method Micro Macro Internal Full Learning time Testing time

INEX DP 79.6% 47.5% 51.5% 70.5% 30 min � 4 days
LaSO 75.8% 42.9% 53.1% 67.5% > 1 week 3h20min

Movie DP 95.3% 91.2% 77.1% 90.4% 20 min � 2 days
LaSO 90.5% 88.6% 86.8% 89.6% > 1 week 1h15min

Shakespeare LaSO 95.3% 78.0% 77.0% 92.2% � 5 days 30 min
Mini-shakespeare DP 98.7% 95.7% 94.7% 97.9% 2 min � 1 hour

LaSO 89.4% 83.9% 63.2% 84.4% 20 min 1 min

Fig. 6. Percent of documents with more than x% Full score for different values x.
We can for example see that the DP method maps correctly more than 80% of the
Mini-Shakespeare with a full score included in range [95%, 100%].

built tree components. This is a common measure in the natural language field
(under the name of F1 parsing score). As a document typically contains more
leaf nodes than internal nodes, this measure advantages the leaf score and does
not fully inform about the quality of the built tree. These results are shown on
Table 1. We also provide the percentage of documents from the test corpus with
a Full score greater than than x% (see Figure 6).

4.4 Results

The DP method shows higher scores for leaf nodes classifications than the ap-
proximated method based on the LaSO algorithm. For example, with the Movie
collection, DP achieves a Micro score of 95.3% whereas LaSO is limited to a score



Probabilistic Model for Structured Document Mapping 865

of 90.5%. However, this performance increase has a cost: testing with exact DP
inference has a high complexity and may take several days for a collection like
INEX, which is unrealistic in practice. It is then limited to short documents.
LaSO makes inference fast and practicable for large documents. However, learn-
ing is time-consuming. Convergence was not achieved after one week learning
on the two real size collections (Movie and INEX). Due to the small number
of examples, the huge quantity of features, and the lack of regularization tech-
niques, LaSO also suffers from over-fitting when applied to the Mini-Shakespeare
collection.

Best internal scores are achieved by LaSO. This is because LaSO is a top-down
parsing method, whereas DP is a bottom-up one. Intuitively, top-down methods
may work better on top elements of the trees whereas bottom-up methods are
best on bottom elements (leaf nodes).

5 Related Work

In the database community automatic or semi-automatic data integration —
known as schema matching — has been a major concern for many years. A recent
taxonomy and review of these approaches can be found in [5]. [14] describes one
of the most complete approach which can handle both ontologies, SQL and XML
data.

The matching task is formulated as a supervised multi-label classification
problem. While many ideas of the database community can be helpful, their
corpora are completely different from the textual corpora used in the IR com-
munity: all documents — even XML ones — keep an attribute-value structure
like for relational database and are thus much smaller and more regular than for
textual documents; textual data hardly appears in those corpora. With database
corpora, finding the label of a piece of information is enough to build the corre-
sponding tree because each element usually appears once in the tree structure.

Document structure mapping, also shares similarities with the information
extraction task, which aims at automatically extracting instances of specified
classes and/or relations from raw text and more recently from HTML pages.
Recent works in this field [15] have also highlighted the need to consider structure
information and relations between extracted fields.

The document model proposed here is related to other ML models of the lit-
erature. Different authors ( [16], [10]) have proposed to use natural language for-
malisms like probabilistic context free grammars (PCFG) to describe the internal
structure of documents. Early experiments [11] showed that the complexity of
tree building algorithms is so high that they cannot be used on large corpora
like INEX. Our specific XML model makes the same kind of independence as-
sumptions as Hierarchical HMMs ( [17]) do. The work closest to ours is [10].
They address the HTML to XML document conversion problem. They make use
of PCFGs for parsing text segments sequences of and of a maximum entropy
classifier for assigning tags to segments.
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6 Conclusion

We have proposed a general framework for the structure mapping task on het-
erogeneous corpora. Our model uses a meta document abstraction in order to
generate different views of the same document on different schemas and for-
mats. We have then detailed a specific application of this model for the mapping
of HTML document onto a mediated XML schema. From our knowledge, this
model is today the only one able to handle large amount of documents for the
HTML decoding task. For this problem, the meta document is a sequence of
text segments and the model will find the best XML tree in the target schema.
This model has been implemented using two inference methods: a DP exact
method and an approximate LaSO algorithm. The results show that, for both
methods, the model is able to cope with large corpora of documents. LaSO is
faster than DP and this type of method should be investigated further for the
transformation problem.
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Abstract. Fractal theory has been used for computer graphics, image
compression and different fields of pattern recognition. In this paper, a
fractal based method for recognition of both on-line and off-line Farsi/
Arabic handwritten digits is proposed. Our main goal is to verify whether
fractal theory is able to capture discriminatory information from digits
for pattern recognition task. Digit classification problem (on-line and off-
line) deals with patterns which do not have complex structure. So, a gen-
eral purpose fractal coder, introduced for image compression, is simplified
to be utilized for this application. In order to do that, during the coding
process, contrast and luminosity information of each point in the input
pattern are ignored. Therefore, this approach can deal with on-line data
and binary images of handwritten Farsi digits. In fact, our system repre-
sents the shape of the input pattern by searching for a set of geometrical
relationship between parts of it. Some fractal-based features are directly
extracted by the fractal coder. We show that the resulting features have
invariant properties which can be used for object recognition.

Keywords: Fractal theory, Iterated function system, on-line and off-line
Farsi/Arabic handwritten digit recognition.

1 Introduction

The recognition of handwritten alphanumeric is a challenging problem in pattern
recognition. This is due to the large diversity of writing styles and image quality.
English, Chinese and Kanji isolated handwritten character recognition has long
been a focus of study with a high recognition rates reports. But few researches
have been done on Farsi and Arabic. Recognition of Farsi/Arabic script has
progressed slowly mainly due to the special characteristics of these languages,
and the lack of communication among researchers in this field. The reader is
referred to [1][2] for more details on the state of the art of Arabic character
recognition.

Fractal theory of iterated function systems has been extensively investigated
in computer graphics [3] and image compression [4]. The fundamental principle
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of fractal coding consists of the representation of any image by a contractive
transform of which the fixed point is too close to the original image. Recently
its potential in different fields of pattern recognition such as face recognition [5],
character and digit recognition [6], texture recognition [7], fingerprint analysis
[8] and writer identification and authentication [9] has been explored.

This paper presents a method to recognize on-line and off-line handwritten
Farsi digits. The method simplifies a general fractal image coder via discarding
contrast and luminosity information during the coding process. The main differ-
ence between our work and the one which was reported by Baldoni et al. [6] is
that our fractal coder does not use gray level values. Therefore, it can be used
for on-line and binary off-line digit recognition.

In section 2, an overview of fractal theory and Iterated Function Systems is
presented. Section 3 describes the off-line recognition approach including the pro-
posed fractal coding and decoding algorithms. One dimensional fractal coder for
on-line digit recognition is detailed in section 4. Section 5 outlines some feature
extraction approaches in the fractal domain. Finally, classification set-up and
experimental results are presented in sections 6 and 7 respectively. Conclusion
remarks are given in section 8.

2 Overview of Fractal Theory and Coding

The goal of this section is to explain the general concepts of fractal theory in
very simple terms, with as little mathematics as possible. Fractal theory is based
on the concepts and mathematical results of Iterated Function Systems (IFS).
The fundamental principle of fractal coding involves the representation of any
image, I, by a contractive transformation T, in which the fixed point (image) is
too close to the original image, I = limn→∞ T (In).

Banach’s fixed point theorem guarantees that the fixed point of such a trans-
formation can be obtained by an iterated application In+1 = T (In). The obtained
image from IFS is made of modified copies of itself, generated by the elemen-
tary transforms. Let us assume an IFS that reduces the input image size and
reproduces it three times in a triangle shape. The above IFS consists of three
transformations, a reduction, followed by a translation, and repositioning in a
triangle shape. If a circle image is given to this system, the fixed point of this
IFS is the Sierpinski triangle (Fig 1).

With the introduction of the partitioned IFS (PIFS) by Jacquin [3], Fractal
theory became a practical reality for natural image compression. In PIFS, each
of the individual mappings operates on a subset of the image, rather than on
the entire image as in IFS. A PIFS defines a transform T as the union of affine
contractive transforms defined on domains, Ii, included in the image:

T (I) = T1(I1) ∪ T2(I2) ∪ ... ∪ Tn(In) (1)

The set of all images obtained from all the transformations of sub-images
allows to partition the spatial domain of I. So, if the right PIFS is built, the
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Fig. 1. Generation of fractal image by IFS

initial image would be the attractor of the IFS and could be derived from any
initial image. For more details on fractal theory see [3][4].

The aim of fractal compression is to find a set of transforms in a PIFS which
generate the initial image as the fixed point (equation 1). In order to construct this
PIFS, the image to be encoded is partitioned into non-overlapping range blocks (R
blocks) and overlapping domain blocks(D blocks) as depicted in Fig 2. To apply
fixed point theorem, the D blocks are assumed two times larger than R blocks
to make sure that the transforms in PIFS are contractive. The task of the frac-
tal coder is to find a D block for each R block in the same image such that the
transformation of this block, W (R), minimizes the collage error in equation 2.

CollageError = min ‖D −W (R)‖2 (2)

In the above equation, the transformation W,which maps each D block into its
corresponding R block, can be any transformation. However, affine transforms are
preferred in practice. An affine transformation preserves co-linearity and ratios of
distances. It does not necessarily preserve angles or lengths. The transformation
W is a combination of geometrical and luminance transformations. According to
equation 3, a point at coordinate (x, y) with gray level z is rotated and scaled by
the geometrical parameters a,b,c ,and d and is offset by e and f.

Wi

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
ai bi 0
ci di 0
0 0 si

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ +

⎡

⎣
ei

fi

oi

⎤

⎦ (3)

Minimizing equation 2 has two meanings: first, finding a good choice for Di

and second, selecting a good contrast and brightness setting for Wi in equation 3.
A choice of Di, along with a corresponding si and oi, determines a map Wi. It
has been proven that parameter s has to be less than 1, in order to obtain a
set of contractive transforms [4]. A more complete introduction to fractal image
coding are given in [3] and [4].

3 Off-Line Digit Recognition Approach

Off-line recognition involves the automatic conversion of text in an image into let-
ter codes which can be used within computer and text-processing applications.
This technique is applied to previously written text, such as any images digitized
by an optical scanner. Each character is then located and segmented and the re-
sulting matrix is fed into a preprocessor for smoothing, noise reduction and size
normalization. Off-line recognition can be considered as the most general case in
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Fig. 2. One of the range to domain block mapping in PIFS representation

which no special device is required for writing. This section focuses on the recog-
nition of off-line handwritten digits and the proposed fractal coder is introduced.

3.1 The Proposed Fractal Image Coder

Unlike many other object recognition systems, such as face and texture recog-
nition, the overall shape of the character is more important than the pixel gray
levels in optical character recognition. As a result, many OCR systems work
with binary images rather than gray level images and several feature extraction
approaches have been proposed for them.

This section presents a simplified fractal coder for binary image coding. This
method concentrates on the geometrical relationship between the range block
and its best domain block instead of pixel gray levels distribution. There are two
spatial dimensions in equation 3 and the gray level adds a third dimension to
it. Therefore, we can easily simplify equation 3 by omitting the third row which
includes parameters of luminance transformation to obtain equation 4.

vi

[
x
y

]

=
[
ai bi
ci di

] [
x
y

]

+
[
ei

fi

]

(4)

In the above equation, vi determines how the partitioned ranges are mapped to
their domains. As we are dealing with simple patterns (digit images) and range to
domain block matching is a very time consuming process, the transformation set
is restricted to isometric affine transformations in this research. A transformation
f is called isometric if it keeps the distance function, d, invariant.

d(x, y) = d(f(x), f(y)) (5)

The only isometric affine transformation is the rotation, possibly composed
with the flip. Among all rotations, four of them preserve the orientation of a
square, namely, the identity, the 90o rotation, the 180o rotation, and the 270o

rotation. Composing these rotations with the flip, the following eight deforma-
tion matrices are obtained in Table 1. Let us assume a block with 4 pixels like[

1 2
3 4

]

. Table 1 shows this block after each transformation. It is supposed that

we are dealing with a M×M binary image I(x, y). The image is partitioned into
range and domain blocks. In our experiments, D blocks are twice the size of R
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blocks. If the R block consists of N ×N pixels, the number of non-overlapping
R blocks would be nr = [M

N ]× [M
N ]. Since size of D blocks is assumed 2N × 2N ,

the collection D contains nd = [M −2N + 1]× [M −2N + 1] overlapped squares.
Each R/D block is characterized by the number of its pixels and its starting
point, which always points to the top-left pixel in the corresponding block. As
mentioned before, a D block has 4 times as many pixels as an R block, so we
must average the 2× 2 sub-squares corresponding to each pixel of R block when
minimizing equation 2. This down-sampling method can be done by an averag-
ing transformation. The encoding algorithm can be summarized as follows:

Encoding Algorithm
1- Input the original binary image.
2- Partition the input image into R blocks according to fixed size square blocks
partitioning scheme (Fig 2).
3- Create a list of all D blocks.
4- Scan the image from top-to-bottom and from left-to-right.
5- Search for a fractal match. Given a Ri region, loop over all possible D blocks
to find the best match using a given metric (equation 2).
6- After finding the best match, select fractal elements. The fractal code of the
input image is defined as a set of all nr range to domain affine transformations.
Transformation f(k) consists of five real numbers:

• Starting point of the R block, rsk(x, y).
• Starting point of the corresponding D block, dsk(x, y).
• The index of Dk to Rk transformation, Tk.

The transformation Index is a number between 1 and 8 according to Table 1.

Table 1. Eight isometric affine transforms used in this paper

Index Isometry Matrix Pixels order in
the transformed block

1 identity

[
1 0
0 1

] [
1 2
3 4

]

2 x flip

[
−1 0
0 1

] [
3 4
1 2

]

3 y flip

[
1 0
0 −1

] [
2 1
4 3

]

4 180o rotation

[
−1 0
0 −1

] [
4 3
2 1

]

5 x = y flip

[
0 1
1 0

] [
4 2
3 1

]

6 270o rotation

[
0 −1
1 0

] [
2 4
1 3

]

7 90o rotation

[
0 1

−1 0

] [
3 1
4 2

]

8 x = −y flip

[
0 −1

−1 0

] [
1 3
2 4

]
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3.2 Fractal Image Decoder

The reverse process of generating an image from a fractal model is called de-
coding or decomposition. The decoding process starts with an M ×M arbitrary
initial image. For each fractal transformation f(k), the N × N domain block
dk is constructed from the initial image, given its start point dsk stored in the
fractal code. Then its corresponding stored affine transformation Tk is applied
on it. After down-sampling process, the N ×N obtained block is translated to
the corresponding R block located at rsk. After doing the above process one
iteration is completed. The decoding algorithm is usually iterated about 6 to 16
times until the difference between two successive output images is small enough
and the fixed point image is obtained. Depending on the image which was coded,
the decoding process can be applied to black and white images as well as to gray
level images. The results for a gray level image fractal decoding are shown in
Fig.3 with different iterations and different R block sizes (N) [14].

Fig. 3. Fractal image decoding results. (a) Original image. (b) arbitrary initial image.
(c) decoded image after 1 iteration for N=4. (d) decoded image after 10 iteration for
N=4. (e) decoded image after 1 iteration for N=8. (f) decoded image after 10 iteration
for N=8. (g) decoded image after 1 iteration for N=16. (h) decoded image after 10
iteration for N=16.

4 On-Line Digit Recognition Approach

In on-line character recognition systems, the computer recognizes the symbols
as they are drawn. The most common writing surface is a digitizing tablet and
a special pen which emits the temporal sequence of the pen position points. In
on-line recognition, writing line has no width. Additionally, temporal informa-
tion like velocity and pen lifts are available and can be useful in recognition
process. The on-line problem is usually easier than the off-line problem since
more information is available.



874 S. Mozaffari, K. Faez, and V. Märgner

4.1 One Dimensional Fractal Coder

In on-line recognition, the process is performed on one-dimensional data rather
than two-dimensional images in off-line recognition. In this case, we are dealing
with a time ordered sequence of points based on the pen positions. Therefore,
gray levels, contrast, and luminosity information have no role in on-line digit
recognition. Since on-line data is modeled as a set of (x,y) coordinates, we can
easily use the proposed fractal image coding presented in section 3.1 for off-line
recognition.

We used a re-sampling as preprocessing step to realize uniform a uniform
sampled input curve with M sample points. Similar to the block image coding
scheme, the digit locus is divided into range and domain segments with the
length of N and 2N, respectively. Therefore the input locus can be grouped into
nr = [M

N ] range segments and nd = [M − 2N + 1] domain segments. Each of the
R segments shares a common point with its adjacent segment such that the end
point of the last segment is the starting point of the next one.

Each of the R and D segments is characterized by the number of their points
(N and 2N) and their starting point (rsk and dsk). For each range segment, a
corresponding domain segment is searched within the digit locus to minimize
equation 2 under an appropriate affine transformation. Since each D segment
has two times more points than an R segment, during the search for the best D
segment a down sampling process is needed. So when we minimize equation 2,
the average of each two consecutive points in the D segment is assigned to
corresponding R segment point. Similar to 2D fractal codes, each fractal code,
f(k), consists of five real numbers (see section 3.1).

4.2 One Dimensional Fractal Decoder

After creating an arbitrary initial locus S with M points, for each fractal code
f(k), a D segment with 2N points is constructed at the staring point dsk). After

Fig. 4. On-line decoding algorithm’s results. (a) original locus. (b) arbitrary initial
locus. (c) decoded locus after 1 iteration for N=2. (d) decoded locus after 5 iterations
for N=2. (e) decoded locus after 1 iteration for N=4. (f) decoded locus after 5 iterations
for N=4. (g) decoded locus after 1 iteration for N=8. (h) decoded locus after 5 iterations
for N=8.
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down-sampling to N points, the stored affine transformation Tk is performed on
the D segment. Then its starting point is shifted to the origin of R segment rsk.
Fig 4 shows the effects of range segment length, N , and number of iterations
on the decoded locus.

5 Fractal Based Feature Extraction

The fractal coder attempts to capture some self-similarity information from the
given pattern which can be used for pattern recognition. From now onward,
we will call the PIFS based features fractal feature. This section presents some
fractal features which can be used for on-line and off-line digits recognition.

5.1 Fractal Codes

The Fractal codes, extracted directly from the fractal coder, can be used as a
feature vector [5][10]. The fractal coder used the fixed size block/segment parti-
tioning method to divide the input pattern into R blocks/segments. For off-line
patterns, the digit image was scanned from top-to-bottom and from left-to-right.
The same approach was used for on-line digits in which two adjacent segments
share one common point and the input locus is traced from the first segment
to the last segment, one after another. Therefore, starting point coordination
of the R block/segment is redundant and can be deduced easily. According to
sections 3.1 and 4.1, each fractal code contains five real numbers. By omitting
(x,y) coordinates of the starting point of the R block/segment (rsk), a feature
vector with the length of 3 × nr obtained for each input pattern.

5.2 Mapping Vector Accumulator (MVA)

In addition to fractal codes, a secondary subset of the fractal transformation
parameters can be used for classification. This feature is based on the relative lo-
cations of a range block/segment and its corresponding domain block/segment,
called Mapping Vector Accumulator (MVA)[15]. MVA records the angle and
magnitude of domain-range mapping vector. The matrix itself is an accumula-
tor, where the angle and magnitude are first quantized and then the appropriate
element of the accumulator is incremented. For example, assuming the mapping
shown in Fig 5 has an angle θ = 78 and a magnitude m = 5. In this case the
appropriate element highlighted in the matrix is incremented. Although MVA
feature records the relative locations of the range and corresponding domain
blocks/segments, it does not show how these blocks/segments are mapped to
each other. To add the transform information to the MVA feature, we pro-
posed Multiple Mapping Vector Accumulators (MMVA) feature in which MVA
matrixes are built for each of the transforms, M1,M2, ...,M8, in Table 1. For
example, if the range and domain blocks in Fig 5 correspond to each other
under the third affine transformation, then the appropriate element in M3 is
increased. After reshaping each of M1,M2, ...,M8 matrixes into a vector form,
the obtained vectors are concatenated to each other to make the MMVA feature
vector, M = [M1,M2, ...,M8].
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Fig. 5. Mapping Vector Accumulator [15]

5.3 Domain-Range Co-Location Matrix

The Domain-Range Co-Location Matrix (DRCLM) encapsulates information
from the relative location of the domain block/segment and the associated range
block/segment [15]. So it measures levels of self similarity in different parts of the
image. In this method, the image is divided into four equal sized non-overlapping
segments. So the matrix is a 4× 4 table of numbers illustrating when a mapping
occurs from one segment to the other. For example, if a range block in segment 1
is mapped from a domain block in segment 3, then the entry at cell c13 in the ma-
trix will be incremented. This is then repeated for all range blocks in the image.
Similar to MVA feature, we can have a DRCLM for each affine transformation
to compute the Multiple Domain-Range Co-Location Matrix (MDRCLM) for
the input pattern. As it was proposed by Linnell and Deravi (2003)[15], two fur-
ther features can be extracted from MDRCLM matrices. Firstly the difference
moment of order 2 and secondly, the entropy of the matrix as:

Moment =
∑

i

∑

j

(i− j)2cij (6)

Entropy =
∑

i

∑

j

cij log cij (7)

These features are similar to those used for texture classification when applied on
Co-occurrence matrices. They have been chosen to characterize the self-similarity
in the pattern. For example, the difference moment of order 2 is used as a
measure of self-similarity in the same segment, as it gives a higher weight to
elements on the main diagonal of the matrix. Similarly, the entropy measures
the randomness of the entries in the matrix, so it is a good measure of evenly
distributed self-similarity across all areas in the pattern [15]. For each of eight
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MDRCLM matrices, difference moment and entropy are calculated separately,
resulting in a 16 element feature vector.

6 Classification Set-Up

This section describes the two test sets on which we worked, off-line and on-line
handwritten digits, and explains different classification methods that we used in
this research.

6.1 Test Images

Farsi language has ten digits. Most of the Farsi recognition systems were tested
on different databases created only by a few people and no common database
is available to compare the results. In this paper off-line and on-line datasets
were gathered separately from different people with different educational back-
grounds.

Our off-line database contains 480 samples per digit, written by 48 persons.
We used 280 samples of each digit for training and the rest for testing. For a
given image of a single numeral, two pre-processing tasks have been done to make
the system invariant to scale and frame size changes. To remove any difference
to the location of a numeral within the image, the bounding rectangle box of
each digit was calculated. This bounding box was scaled to 64 × 64 pixel image
for normalization purpose.

For training and testing the proposed system, a data set consisting of 1000
on-line digits written by 100 different persons was collected (100 per digit). 60
samples of each digit were used to train the classifier and the remaining data
was utilized in the classification step. The numbers of points in an on-line digit
depends on the sampling rate of the digitizing tablet and also on the speed of
writing. Therefore, a preprocessing phase was needed to smooth and re-sample
the input curve into M spatially uniform points. By interpolating the given
sequence, a curve is fitted to it. Then M points were uniformly re-sampled from
the obtained curve.

6.2 Classification Methods

In the preceding section, we presented different feature extraction methods. The
next step is to evaluate the discriminatory power of these features by means of a
classifier. While there are many classification approaches for pattern recognition,
we used two different classifiers for on-line and off-line digit recognition.

First a Multilayer Perceptron (MLP) Neural Network with 300 hidden neurons
was used. This Neural Network was trained with backpropagation algorithm after
1000 iterations and learning rate of 0.01 [16]. The same structure, learning rate
and number of iterations were used for all experiments with Neural Networks in
this research.

Fractal transformation is used as the second classifier. The inherent property
of fractal theory, based on the IFS fixed point theorem, has also been exploited
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by some researchers, called fractal transformation. In this method the distortion
between an input pattern and the pattern after one decoding iteration was used
as the basic idea for classification. For more details on fractal transformation
classifier see [11][17].

7 Experimental Results

Unfortunately, there is not any standard database for Farsi/Arabic digits recog-
nition to be considered as a benchmark (such as NIST data set for English
Digits). Every research group has implemented their system on sets of data
gathered by themselves and reported different recognition rates. Among them,
the proposed method by Soltanzadeh and Rahmati reached the recognition rate
of 99.57% [18] while this was less than 95% for others [19]. To validate the ef-
fectiveness of the proposed fractal based features, it is necessary to compare
them with other approaches. Such comparison is possible by implementing the
concurrent approaches and then applying them with the proposed method on
the same database. Therefore, it is very difficult to give comparative results for
the proposed methods. We compared the performance of the proposed system
with the results of our previous research, which have already been presented
separately.

For the off-line digit recognition, first we extracted the fractal features from
gray level and binary images with the help of the fractal image coder, described
in section 3.1. The aim of this experiment was to verify the effect of luminescence
information on fractal based off-line digit classification. The results showed that
by the use of the fractal coder, the recognition rates for binary digits were higher
than the gray level ones. This can be true because unlike other pattern recog-
nition domains, such as face and texture recognition, the structure and overall
shape of a digit are more important than gray level information for classifica-
tion process. On the other hand, these results should be expected since, the
aim of this research was pattern recognition rather than image compression and
we had made some simple assumptions about luminescence information in the
input image (calculating the average of gray levels in each R/D block during
fractal coding and decoding phases). Therefore, the recognition rate improved
from 85% for gray level images to 89% for binary images with the help of fractal
codes (N=4) and MLP Neural Network classifier. Due to this result, we used
binary images instead of gray level digits for the next experiments.

Afterwards, we studied the performance of fractal transformation approach, a
classifier based on inherent property of fractal theory, and compared it with MLP
Neural Network classifier. According to the comparison made by Tan and Yan
[11], this classifier outperformed the others (HMM, PDBNN) in the terms of error
rate in the application of face recognition. One drawback of this method is that
the complexity of the recognition system is linear to the size of the database,
which is not as much the case for Neural Networks. Unlike Neural Networks,
fractal transformation does not need re-training process when some classes were
added to or removed from the database. In this method, discrimination criterion,
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Fig. 6. First row: input image. Second row: some samples in the training set. Third
row: results of applying fractal codes of input image with N=4 on second row images
after one iteration. Fourth row: results of applying fractal codes of input image with
N=8 on second row images after one iteration. Fifth row: results of applying fractal
codes of input image with N=16 on second row images after one iteration.

distortion between input and decoded images after one iteration, can highly be
affected by the size of Range blocks (N). According to Fig 6, when we used R
blocks with the size of 4 × 4 and 8 × 8, after one decoding iteration, decoded
images were not very different from the input image. By increasing the size of
the R blocks in the fractal coding step to 16 × 16 , the discrimination criterion
can be more obvious in fractal transformation classifier. The optimum size of
the Range block depends on the size of input image and type of the application.
This method can easily be used for on-line digit recognition.

As it was mentioned before, a secondary subset of the fractal features (MVA
and DRCLM) can be extracted for digit recognition after the coding phase. By
adding transforms information to the MVA and DRCLM features (see sections
5.2 and 5.3), their performance improved from 82% to 85.4% for MVA feature
and from 80.2% to 82.6% for DRCLM feature, both with the use of R block size
8 × 8 and an MLP Neural Network.

Dividing the input image into R and D blocks was another aspect which was
studied. Various partitioning methods were proposed for fractal image compres-
sion [4]. Quad-tree partitioning technique was also implemented for finding range
blocks [12]. A quad-tree partition is a representation of an image as a tree in
which each node, corresponding to a square portion of the image, contains four
sub-nodes, each corresponding to the four quadrants of the square. The root of
the tree is the initial image. Since digit images do not have complicated struc-
tures, quad-tree partition takes more time than fixed size square block approach
(FSSB) for feature extraction with lower performance (86.2% against 91% recog-
nition rate obtained by FSSB with fractal transformation classifier). For each of
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Table 2. Comparison results for off-line digit recognition

Classifier Feature Recognition Rate

Fractal Transformation Fractal N=16 91%
MLP NN Fractal N=4 89%
MLP NN MVA N=8 82%
MLP NN MMVA N=8 85.4%
MLP NN DRCLM N=8 80.2%
MLP NN MDRCLM N=8 82.6%

the fractal based methods the best recognition rate (depending on the optimum
range block size) is reported. The results of this series of experiments on off-line
digit recognition are reported in Table 2.

Although, in the case of on-line digit recognition, additional information
such as velocity and pen lifts are available, we only used (x,y) sequence of
the plotted points. The experimental results obtained for off-line digit recog-
nition were almost the same for on-line digit recognition. Fractal transformation
with R segment length of 8 had the best recognition rate among other frac-
tal based approaches. The results of on-line digit recognition are presented in
Table 3.

Table 3. Recognition rates of fractal features for on-line digit recognition

Classifier Feature Recognition Rate

Fractal Transformation Fractal N=8 93.6%
MLP NN Fractal N=8 91%
MLP NN MVA N=8 86.5%
MLP NN MMVA N=8 88.5%
MLP NN DRCLM N=8 86%
MLP NN MDRCLM N=8 88.4%

8 Conclusions

The main goal of this paper is to verify whether fractal theory is able to capture
discriminatory information from digits for pattern recognition task. In order to
be utilized for pattern recognition, a general purpose fractal coder which has
previously been used for image compression was simplified. This was achieved
by obviating the need to determine the brightness and contrast parameters. In
this way we proposed a fractal based approach that can be used for both on-line
and off-line binary digit recognition. The main difference between the proposed
method and the previous works on fractal based object recognition is that we
focus on the ability of fractal theory for simple structure one-dimensional pattern
recognition. Another aspect that makes our work different from the others is
recognizing binary images instead of gray level ones, which is a common task in
off-line digit recognition.
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In our research, some feature vectors were directly extracted from the ap-
propriate fractal coder and fed to different classifiers. Fractal transformation
achieved a high recognition rate but its recognition time was also relatively
high and consequently its performance degrades for large databases. Experi-
ments showed recognition rates more than 91% on both on-line and off-line test
samples. We believe that the obtained results are adequate to motivate other
researchers to study fractal based feature extraction methods for object recog-
nition. Transformation selection for IFS is still an open problem which depends
on the application type and needs more consideration.
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Abstract. Description logics have emerged as one of the most successful
formalisms for knowledge representation and reasoning. They are now
widely used as a basis for ontologies in the Semantic Web. To extend
and analyse ontologies, automated methods for knowledge acquisition
and mining are being sought for. Despite its importance for knowledge
engineers, the learning problem in description logics has not been inves-
tigated as deeply as its counterpart for logic programs.

We propose the novel idea of applying evolutionary inspired methods to
solve this task. In particular, we show how Genetic Programming can be
applied to the learning problem in description logics and combine it with
techniques from Inductive Logic Programming. We base our algorithm on
thorough theoretical foundations and present a preliminary evaluation.

1 Introduction

Ontologies based on Semantic Web technologies are now amongst the most
prominent paradigms for knowledge representation. The single most popular
ontology language in this context is OWL1. However, there is still a lack of
available ontologies and tools for creating, extending and analysing ontologies
are most demanded. Machine Learning methods for the automated learning of
classes from instance data can help to overcome these problems.

While the learning, also referred to as induction, of logic programs has been
studied extensively in the area of Inductive Logic Programming (ILP), the anal-
ogous problem for description logics has been investigated to a lesser extend,
despite recent efforts [9,11]. This is mainly due to the fact that description log-
ics have only recently become a popular knowledge representation paradigm.
The rise of the Semantic Web has increased interest in methods for solving the
learning problem in description logics.

Genetic Programming (GP) has been shown to deliver human-competitive
machine intelligence in many applications [12]. We show how it can be applied
to the learning problem in description logics. Further, we discuss the advantages
and drawbacks of this approach and propose a framework for hybrid algorithms
combining GP and refinement operators.

Refinement operators are central in ILP and we can base our methods on a
thorough theoretical analysis of their potential and limitations. We will design
1 http://www.w3.org/2004/OWL
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concrete refinement operators and show that they have the desired properties.
For the novel algorithm we obtain, a preliminary evaluation is performed, com-
paring it with standard GP and an other non-evolutionary algorithm for learning
in description logics.

The paper is structured as follows. In Section 2 we briefly introduce description
logics, Genetic Programming, the learning problem, and refinement operators.
Section 3 shows how to apply GP to the learning problem in description logics.
The main section is Section 4, in which we show how refinement operators fit in
the GP framework. In 5 we report on our prototype implementation. We discuss
related work in 6 and draw conclusions in Section 7.

2 Preliminaries

Description Logics. Description logics represent knowledge in terms of ob-
jects, concepts, and roles. Objects correspond to constants, concepts to unary
predicates, and roles to binary predicates in first order logic. In description logic
systems information is stored in a knowledge base, which is a set of axioms. It
is divided in TBox, containing terminology axioms, and ABox, containing asser-
tional axioms.

Table 1. ALC syntax and semantics

construct syntax semantics

concept A AI ⊆ ΔI

role r rI ⊆ ΔI × ΔI

top � ΔI

bottom ⊥ ∅
conjunction C � D (C � D)I = CI ∩ DI

disjunction C � D (C � D)I = CI ∪ DI

negation ¬C (¬C)I = ΔI \ CI

existential ∃r.C (∃r.C)I = {a |
∃b.(a, b) ∈ rI and b ∈ CI}

universal ∀r.C (∀r.C)I = {a |
∀b.(a, b) ∈ rI implies b ∈ CI}

We briefly introduce the ALC description logic, which is the target language of
our learning algorithm and refer to [3] for further background on description log-
ics. Let NI denote the set of objects, NC denote the set of atomic concepts, and
NR denote the set of roles. As usual in logics, interpretations are used to assign
a meaning to syntactic constructs. An interpretation I consists of a non-empty
interpretation domain ΔI and an interpretation function ·I , which assigns to
each object a ∈ NI an element of ΔI , to each concept A ∈ NC a set AI ⊆ ΔI ,
and to each role r ∈ NR a binary relation rI ⊆ ΔI × ΔI . Interpretations are
extended to elements as shown in Table 1, and to other elements of a knowl-
edge base in a straightforward way. An interpretation, which satisfies an axiom
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(set of axioms) is called a model of this axiom (set of axioms). An ALC concept
is in negation normal form if negation only occurs in front of concept names.

It is the aim of inference algorithms to extract implicit knowledge from a given
knowledge base. Standard reasoning tasks include instance checks, retrieval and
subsumption. We will only explicitly define the latter. Let C, D be concepts and
T a TBox. C is subsumed by D, denoted by C 2 D, iff for any interpretation I
we have CI ⊆ DI . C is subsumed by D with respect to T (denoted by C 2T D)
iff for any model I of T we have CI ⊆ DI . C is equivalent to D (with respect to
T ), denoted by C ≡ D (C ≡T D), iff C 2 D (C 2T D) and D 2 C (D 2T C).
C is strictly subsumed by D (with respect to T ), denoted by C � D (C �T D),
iff C 2 D (C 2T D) and not C ≡ D (C ≡T D).

Genetic Programming. Genetic Programming is one way to automatically
solve problems. It is a systematic method to evolve individuals and has been
shown to deliver human-competitive machine intelligence in many applications.
The distinctive feature of GP within the area of Evolutionary Computing is to
represent individuals (not to be confused with individuals in description logics) as
variable length programs. In this article, we consider the case that individuals are
represented as trees. Inspired by the evolution in the real world, fit individuals
are selected from a population by means of different selection methods. New
individuals are created from them using genetic operators like crossover and
mutation. We do not introduce GP in detail, but instead refer to [12] for more
information.

The Concept Learning Problem in Description Logics. In this section, we
introduce the learning problem in Description Logics. In a very general setting
learning means that we have a logical formulation of background knowledge
and some observations. We are then looking for ways to extend the background
knowledge such that we can explain the observations, i.e. they can be deduced
from the modified knowledge.

More formally, we are given background knowledge B, positive examples E+,
negative examples E− and want to find a hypothesis H such that from H to-
gether with B the positive examples follow and the negative examples do not
follow. It is not required that the same logical formalism is used for background
knowledge, examples, and hypothesis. This means, that although we consider
learning ALC concepts in this article, the background knowledge can be a more
expressive description logic.

So let a concept name Target, a knowledge base K, and sets E+ and E−

with elements of the form Target(a) (a ∈ NI) be given. The learning problem
is to find a concept C such that Target ≡ C is an acyclic definition and for
K′ = K ∪ {Target ≡ C} we have K′ |= E+ and K′ �|= E−.

For different solutions of the learning problem the simplest ones are to be pre-
ferred by the well-known Occam’s razor principle [5]. According to this principle,
simpler concepts usually have a higher predictive quality. We measure simplicity
as the length of a concept, which is defined in a straightforward way, namely
as the sum of the number of concept, role, quantifier, and connective symbols
occurring in the concept.
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Refinement Operators. Learning can be seen as a search process in the space
of concepts. A natural idea is to impose an ordering on this search space and
use operators to traverse it. This idea is prominent in Inductive Logic Program-
ming [18], where refinement operators are used to traverse ordered spaces. Down-
ward (upward) refinement operators construct specialisations (generalisations) of
hypotheses.

A quasi-ordering is a reflexive and transitive relation. In a quasi-ordered space
(S,1) a downward (upward) refinement operator ρ is a mapping from S to 2S ,
such that for any C ∈ S we have that C′ ∈ ρ(C) implies C′ 1 C (C 1 C′). C′

is called a specialisation (generalisation) of C.
Quasi-orderings can be used for searching in the space of concepts. One such

quasi-order is subsumption. If a concept C subsumes a concept D (D 2 C), then
C will cover all examples, which are covered by D. This makes subsumption a
suitable order for solving the learning problem.

Definition 1. A refinement operator in the quasi-ordered space (ALC,2T ) is
called an ALC refinement operator.

We need to introduce some notions for refinement operators. A refinement chain
of an ALC refinement operator ρ of length n from a concept C to a concept D is
a finite sequence C0, C1, . . . , Cn of concepts, such that C = C0, C1 ∈ ρ(C0), C2 ∈
ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. This refinement chain goes through E iff
there is an i (1 ≤ i ≤ n) such that E = Ci. We say that D can be reached from
C by ρ if there exists a refinement chain from C to D. ρ∗(C) denotes the set of
all concepts, which can be reached from C by ρ. ρm(C) denotes the set of all
concepts, which can be reached from C by a refinement chain of ρ of length m.
If we look at refinements of an operator ρ we will often write C �ρ D instead
of D ∈ ρ(C). If the used operator is clear from the context it is usually omitted,
i.e. we write C � D.

Refinement operators can have certain properties, which can be used to eval-
uate their usefulness.

Definition 2. An ALC refinement operator ρ is called

– (locally) finite iff ρ(C) is finite for any concept C.
– (syntactically) redundant iff there exists a refinement chain from a concept C

to a concept D, which does not go through some concept E and a refinement
chain from C to a concept weakly equal to D, which does go through E.

– proper iff for all concepts C and D, D ∈ ρ(C) implies C �≡ D.
– ideal iff it is finite, complete (see below), and proper.

An ALC downward refinement operator ρ is called

– complete iff for all concepts C,D with C �T D we can reach a concept E
with E ≡ C from D by ρ.

– weakly complete iff for all concepts C �T 3 we can reach a concept E with
E ≡ C from 3 by ρ.

The corresponding notions for upward refinement operators are defined dually.
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3 Concept Learning Using Standard GP

To apply GP to the learning problem, we need to be able to represent ALC
concepts as trees. We do this by defining the alphabet T = NC ∪ {3,⊥} and
F = {�,�,¬} ∪ {∀r | r ∈ NR} ∪ {∃r | r ∈ NR}, where T is the set of terminal
symbols and F the set of function symbols.

Example 1. The ALC concept Male � ∃hasChild.Female can be represented as
the following tree:

We say that an alphabet has the closure property if any function symbol can
handle as an argument any data type and value returned by an alphabet symbol.
Using the presented encoding the closure property is satisfied, because the way
trees are build corresponds exactly to the inductive definition of ALC concepts.
This ensures that tree operations like crossover and mutation can be performed
safely, i.e. the obtained trees also represent ALC concepts.

Fitness Measurement. To be able to apply GP to the learning problem we
need to define a fitness measure. To do this, we introduce some notions.

Definition 3 (covered examples). Let Target be the target concept, K a
knowledge base, and C an arbitrary ALC concept. The set of positive examples
covered by C, denoted by posK(C), is defined as:

posK(C) = {Target(a) | a ∈ NI ,K ∪ {Target ≡ C} |= Target(a)} ∩ E+

Analogously, the set of negative examples covered by C, denoted by negK(C), is
defined as:

negK(C) = {Target(a) | a ∈ NI ,K ∪ {Target ≡ C} |= Target(a)} ∩ E−

Of course, the fitness measurement should give credit to covered positive exam-
ples and penalize covered negative examples. In addition to these classification
criteria, it is also useful to bias the GP algorithm towards shorter solutions. A
possible fitness functions is:

fK(C) = −|E+ \ posK(C)| + |negK(C)|
|E+| + |E−| − a · |C| (0 < a < 1)

The parameter a is the decline in classification accuracy one is willing to ac-
cept for a concept, which is shorter by one length unit. Being able to represent
solutions and measuring their fitness is already sufficient to apply Genetic Pro-
gramming to a problem. We discuss some advantages and problems of doing
this.
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Advantages. GP is a very flexible learning method. It is not only able to learn
in ALC, but can also handle other description languages (languages with role
constructors can be handled using the framework of Strongly Typed GP). GP
has been shown to deliver good results in practice and is especially suited in situ-
ations, where approximate solutions are acceptable [13]. An additional advantage
is that GP algorithms are parallelizable and can make use of computational re-
sources, i.e. if more resources (time and memory) exist its parameters can be
changed to increase the probability of finding good solutions. This may seem ob-
vious, but in fact this does not hold for many (deterministic) solution methods.
GP also allows for a variety of extensions and is able to handle noise naturally
(the parameter a in the introduced fitness function is one way to handle noise).

Problems of the Standard Approach. Despite the described advantages
of GP, there are some notable drawbacks. One problem is that the crossover
operator is too destructive. For GP to work well, it should be the case that high
fitness individuals are likely to produce high fitness offspring. (This is the reason
why selection methods are used instead of random selection.) For crossover on
ALC concepts, small changes in a concept can drastically change its semantics,
so it is not very likely that the offspring of high fitness individuals also has a
high fitness. Similar problems arise when using GP in ILP and indeed a lot of
systems use non-standard operators [7].

Another problem of the standard approach is that we do not use all knowledge
we have. An essential insight in Machine Learning [15] is that the approaches,
which use most knowledge about the learning problem they want to solve, usually
perform best. The standard GP algorithm does not make use of subsumption
as quasi-order on concepts. Thus, a natural idea is to enhance the standard GP
algorithm by operators, which exploit the subsumption order.

4 Refinement Operators in Genetic Programming

4.1 Transforming Refinement Operators to Genetic Refinement
Operators

As argued before, it is useful to modify the standard GP approach to make
learning more efficient. The idea we propose is to integrate refinement operators
in GP. This aims to resolve the two problems we have outlined above: Well-
designed refinement operators are usually less destructive, because applying such
an operator to a concept means that only a small change to the concept is
performed – syntactically and semantically. Moreover, refinement operators can
make use of the subsumption order and, thus, use more available knowledge than
the standard GP algorithm. We show how refinement operators and GP can be
combined in general and then present a concrete operator.

Some steps need to be done in order to be able to use refinement operators as
genetic operators. The first problem is that a refinement operator is a mapping
from one concept to an arbitrary number of concepts. Naturally, the idea is to
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select one of the possible refinements. In order to be able to do this efficiently,
we assume that the refinement operators we are looking at are finite.

The second problem when applying refinement operators to GP is that a con-
crete refinement operator only performs either specialisation or generalisation,
but not both. However, in GP we are likely to find too strong as well as too
weak concepts, so there is a need for upward and downward refinement. A sim-
ple approach is to use two genetic operators: an adapted upward and an adapted
downward refinement operator.

Another way to solve the problem is to use one genetic operator, which
stochastically chooses whether downward or upward refinement is used. This
allows to adjust the probabilities of upward or downward refinement being se-
lected to the classification of the concept we are looking at. For instance consider
an overly general concept, i.e. it covers all positive examples, but does also cover
some negative examples. In this case we always want to specialize, so the prob-
ability for using downward refinement should be 1. In the opposite case for an
overly specific concept, i.e. none of the negatives is covered, but some positives,
the probability of downward refinement should be 0. How do we assign prob-
abilities to concepts, which are neither overly specific nor overly general? Our
approach is as follows:

1. The probability of downward refinement, denoted by p↓, should depend on
the percentage of covered negative examples. Using α as variable factor we
get:

p↓(K, C) = α · |negK(C)|
|E−|

In particular for |negK(C)| = 0 (consistent concept) we get p↓(K, C) = 0.
2. The probability of upward refinement, denoted by p↑, should depend on the

percentage of covered positive examples. We use the same factor as in the
first case:

p↑(K, C) = α ·
(

1 − |posK(C)|
|E+|

)

In particular for |posK(C)| = |E+| (complete concept) we get p↑(K, C) = 0.
3. For any concept p↓(K, C) + p↑(K, C) = 1.

From this, we can derive the following formulae for the probabilities of upward
and downward refinement:

p↓(K, C) =
|negK(C)|

|E−|

1 + |negK(C)|
|E−| − |posK(C)|

|E+|
p↑(K, C) =

1 − |posK(C)|
|E+|

1 + |negK(C)|
|E−| − |posK(C)|

|E+|

Note that the return value of the formula is undefined, due to division by zero,
for complete and consistent concepts. However, in this case C is a learning prob-
lem solution and we can stop the algorithm – or continue it to find smaller
solutions by just randomly selecting whether upward or downward refinement is
used.
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This way we have given a possible solution to both problems: transforming
the refinement operator to a mapping from a concept to exactly one concept
and managing specialisation and generalisation. Overall, for a given finite up-
ward refinement operator φ↑ and a finite downward refinement operator φ↓ we
can construct a genetic operator φ, which is defined as follows (rand selects an
element of a given set uniformly at random):

φK(C) =

⎧
⎪⎪⎨

⎪⎪⎩

rand(φ↓(C)) with probability
|negK(C)|

|E−|

1+
|negK(C)|

|E−| − |posK(C)|
|E+|

rand(φ↑(C)) with probability
1− |posK(C)|

|E+|

1+
|negK(C)|

|E−|
− |posK(C)|

|E+|

(1)

In the sequel, we will call genetic operators, which are created from upward and
downward refinement operators this way, genetic refinement operators.

4.2 A Genetic Refinement Operator

To design a suitable refinement operator for learning ALC concepts, we first
look at theoretical limitations. The following theorem [14] is a full analysis of
the properties of ALC refinement operators:

Theorem 1. Considering the properties completeness, weak completeness, pro-
perness, finiteness, and non-redundancy the following are maximal sets of prop-
erties (in the sense that no other of the mentioned properties can be added) of
ALC refinement operators:

1. {weakly complete, complete,finite}
2. {weakly complete, complete, proper}
3. {weakly complete,non-redundant,finite}
4. {weakly complete,non-redundant, proper}
5. {non-redundant,finite, proper}

We prefer complete operators, because this guarantees that, by applying the
operator, we always have the possibility to find a solution of the learning problem.
As argued before, we also need a finite operator. This means that a complete
and finite operator is the best we can hope for. We will define such an operator
in the sequel.

For A ∈ NC and background knowledge K = (T ,A), we define nb↓(A) =
{A′ | A′ ∈ NC , there is no A′′ ∈ NC with A′ �T A′′ �T A}. nb↑(A) is de-
fined analogously. Furthermore, we define the operator φ↓ as shown in Figure 1.
It works on concepts in negation normal form, so an input concept has to be
converted if necessary.

Proposition 1. φ↓ is an ALC downward refinement operator.

Proof. We show that D ∈ φ↓(C) implies D 2T C by structural induction over
ALC concepts in negation normal form. We can ignore refinements of the form



Hybrid Learning of Ontology Classes 891

φ↓(C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if C =⊥
{∀r.� | r ∈ NR} ∪ {∃r.� | r ∈ NR} ∪ {� � �} if C =�
∪ {A | nb↑(A) = ∅} ∪ {¬A | nb↓(A) = ∅}
{A′ | A′ ∈ nb↓(A)} ∪ {⊥ | nb↓(A) = ∅} ∪ {A � �} if C =A (A ∈ NC)

{¬A′ | A′ ∈ nb↑(A)} ∪ {⊥ | nb↑(A) = ∅} ∪ {¬A � �} if C =¬A (A ∈ NC)

{∃r.E | E ∈ φ↓(D)} ∪ {∃r.D � �} ∪ {⊥ | D = ⊥} if C =∃r.D

{∀r.E | E ∈ φ↓(D)} ∪ {∀r.D � �} ∪ {⊥ | D = ⊥} if C =∀r.D

{C1 � · · · � Ci−1 � D � Ci+1 � · · · � Cn if C =C1 � · · · � Cn

| D ∈ φ↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {C1 � · · · � Cn � �}
{C1 � · · · � Ci−1 � D � Ci+1 � · · · � Cn if C =C1 � · · · � Cn

| D ∈ φ↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {C1 � · · · � Ci−1 � Ci+1 � · · · � Cn | 1 ≤ i ≤ n}
∪ {(C1 � · · · � Cn) � �}

Fig. 1. Definition of φ↓

C � C � 3, because obviously C 2T C � 3 (C ≡T C � 3). We also ignore
refinements of the form C � ⊥, for which the claim is also true. All other cases
are shown below.

– C = ⊥: D ∈ φ↓(C) is impossible, because φ↓(⊥) = ∅.
– C = 3: D 2T C is trivially true for each concept D (and hence also for all

refinements).
– C = A (A ∈ NC): D ∈ φ↓(C) implies that D is also an atomic concept or

the bottom concept and D � C.
– C = ¬A: D ∈ φ↓(C) implies that D is of the form ¬A′ with A �T A′.
A �T A′ implies ¬A′ �T ¬A by the semantics of negation.

– C = ∃r.C′: D ∈ φ↓(C) implies that D is of the form ∃r.D′. We haveD′ 2T C′

by induction. For existential restrictions ∃r.E 2T ∃r.E′ if E �T E′ holds in
general [4]. Thus we also have ∃r.D′ 2 ∃r.C′.

– C = ∀r.C′: This case is analogous to the previous one. For universal restric-
tions ∀r.E 2T ∀r.E′ if E �T E′ holds in general [4].

– C = C1 � · · · �Cn: In this case one element of the conjunction is refined, so
D 2T C follows by induction.

– C = C1�· · ·�Cn: One possible refinement is to apply φ↓ to one element of the
disjunction, so D 2T C follows by induction. Another possible refinement is
to drop an element of the disjunction, when D 2T C obviously also holds.

Proposition 2. φ↓ is complete.

Proof. We will first show weak completeness of φ↓. We do this by structural
induction over ALC concepts in negation normal form, i.e. we show that every
concept in negation normal form can be reached by φ↓ from 3.
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– Induction Base:
• 3: 3 can trivially be reached from 3.
• ⊥: 3 � A1 � . . . � An � ⊥ (descending the subsumption hierarchy)
• A ∈ NC : 3 � A1 � . . . � An � A (descending the subsumption

hierarchy until A is reached)
• ¬A(A ∈ NC): 3 � ¬A1 � . . . � ¬An � ¬A (ascending the sub-

sumption hierarchy of atomic concepts within the scope of a negation
symbol)

– Induction Step:
• ∃r.C: 3 � ∃r.3 �∗ ∃r.C (last step by induction)
• ∀r.C: 3 � ∀r.3 �∗ ∀r.C (last step by induction)
• C1 � · · · � Cn: 3 �∗ C1 (by induction) � C1 � 3 �∗ C1 � C2 �∗

C1 � · · · � Cn

• C1 � · · · �Cn: 3 � 3�3 �∗ C1 �3 (by induction) � C1 �3�3 �∗

C1 � C2 � 3 �∗ C1 � · · · � Cn

We have shown that φ↓ is weakly complete. If we have two ALC concepts C and
D in negation normal form with C 2T D, then for a concept E = D � C we
have E ≡T C. E can be reached by the following refinement chain from D:

D � D � 3 �∗ D �C (by weak completeness of φ↓)

Thus, we have shown that we can reach a concept equivalent to C, which proves
the completeness of φ↓.

Proposition 3. φ↓ is finite.

Proof. Some rules in the definition ofφ↓ applyφ↓ recursively, e.g. specialising an el-
ement of a conjunction. Since such applications are only performed on inner struc-
tures of an input concept, only finitely many recursions are necessary to compute
all refinements. This means that it is sufficient to show that every single application
of φ↓ produces finitely many refinements under the assumption that each recursive
application of φ↓ on an inner structure represents a finite set. Since NR and NC

are finite, this can be verified easily by analysing all cases in Figure 1.

We have shown that φ↓ is complete and finite, which makes it suitable to be used
in a genetic refinement operator. We defined a dual upward refinement operator
φ↑ and showed its completeness and finiteness. The definition of the operator and
the proofs are omitted, because they are analogous to what we have shown for
φ↓. From φ↓ and φ↑ we can construct a genetic refinement operator as described
in Equation 1. This new operator is ready to be used within the GP framework
and combines classical induction with evolutionary approaches.

What are the differences between classical refinement operator based appro-
aches and our evolutionary approach? Usually, in a classical algorithm a refine-
ment operator spans a search tree and a search heuristic guides the direction of
search. The heuristic corresponds to the fitness function in a GP and usually both
bias the search towards small concepts with high classification accuracy.
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The search space in a classical algorithm is traversed in a well-structured and
often deterministic manner. However, such an algorithm has to maintain (parts
of) a search tree, which is usually continuously growing. In a GP, the population
has, in most cases, a constant size. This means that a GP can run for a long time
without consuming more space (assuming that the individuals themselves are not
constantly growing, which is not the case for our genetic refinement operator). In
this sense, a GP can be seen as a less structured search with individuals moving
stochastically in the search space. Another difference is that classical algorithms
often traverse the search space only in one direction (bottom-up or top-down
approach), whereas genetic refinement operators use both directions and can
start from random points in the search space. In general, it is not clear whether
a classical or hybrid approach is to be preferred and the choice – as usual in
Machine Learning – depends on the specific problem at hand.

5 Preliminary Evaluation

To perform a preliminary evaluation, we have chosen the FORTE [20] family
data set. We transformed it into an OWL ontology about family relationships
and defined a new learning task. In our case, the ontology contains two disjoint
concepts Male and Female, the roles parent, sibling (symmetric), and married
(symmetric and functional). The family tree is described by 337 assertional ax-
ioms. As learning target, we have chosen the concept of an uncle. A possible
definition of this concept is:

Male � (∃ sibling.∃ parent.3 � ∃ married.∃ sibling.∃ parent.3)

86 examples, 23 positive and 63 negative, are provided. This learning task can
be considered challenging, since the smallest possible solution is long (length
13) and there are no restrictions on the search space. For our experiments, we
have chosen to let the GP algorithm run a fixed number of 50 generations. We
used a generational algorithm and initialised it using the ramped-half-and-half
method with maximum depth 6 for initialisation. The fitness measure in Section 3
with a non-optimised value of a = 0.0025 was used, i.e. a length unit is worth a
accuracy decline of 0.25% . As selection method, we have chosen rank selection
defined in such a way that the highest ranked individual has a ten times higher
probability of being selected than the lowest ranked individual.

Since our main contribution is the provision of a new operator, we have tested
three sets of operator probabilities. All sets have a 2% probability for mutation.
The standard GP set has an 80% probability of crossover (the remaining 18%
are used for reproduction). The mixed set uses 40% crossover and 40% genetic
refinement operator and the refinement set uses only 5% crossover and 85%
genetic refinement operator. We have varied the population size from 100 to 700
and averaged all results over 10 runs. Figure 2 depicts the results we obtained
with respect to classification accuracy of the examples (defined as in the first part
of Equation 3). Under the assumptions of a t test, the difference in accuracy for
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Fig. 3. length of learned concepts on family data set

standard GP compared to one of the two others is statistically significant with
a confidence interval of 95% for population sizes higher than 200.

Apart from the classification accuracy, we also measured the length of the
concepts, which were returned as solutions by the algorithm. The results are
shown in Figure 3. All algorithms were always able to find at least a concept
of length 3 with a classification accuracy of 88%. Since the number of ALC
concepts grows exponentially with their length, it is much harder for a learning
algorithm to find promising long concepts. In most cases, standard GP failed to
do so, whereas the other algorithms had high success rates for high population
sizes.
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For the experiments we used the reasoner Pellet2 (version 1.4RC1), which
was connected to the learning program using the DIG 1.1 interface3. Most of
the runtime of the algorithm (98%) was spent for reasoner requests. Since the
genetic refinement operator is not proper and performs only small changes on
concepts, we built up a caching mechanism for it. Before saving a concept in
the cache, we normalized it. First, we defined a linear order over ALC con-
cepts and ordered elements in conjunctions and disjunctions according to this
order. Additionally, we converted the concept to negation normal form and ap-
plied equivalence preserving rewriting rules e.g. C � 3 → C. This techniques
allowed us to use the cache for approximately 65% of the computed refinements
of the genetic refinement operator. Due to more cache hits, the performance of
the genetic refinement operator is even better than for crossover and mutation.
The overall runtime varied from approximately 100 seconds on average for a
population size of 100 to 950 seconds on average for a population size of 700 on
a 2,2 GHz dual core processor4 with 2 GB RAM.

The YinYang system [11] has a runtime of 200 seconds for this example, a
classification accuracy of 73.5%, and a concept length of 12.2 averaged over 10
runs5. We could not use other systems for comparison. The system in [6] is not
available anymore and the approach in [4] was not fully implemented.

6 Related Work

To the best of our knowledge, there has been no attempt to use evolutionary
approaches for learning concepts in description logics. Hence, there is no closely
related work we are aware of. Approaches for concept learning in description
logics are described in [6,4,9,11]. Although evolutionary methods have not been
considered for learning in description logics before, they have been used for
inducing logic programs. A recent article [7] provides a good overview.

Evolutionary ILP systems usually use variants of Genetic Algorithms or Ge-
netic Programming. The goal is to learn a set of clauses for a target predicate.
EVIL 1 [19] is a system based on Progol [16], where an individual represents a
set of clauses (called the Pittsburgh approach) and crossover operators are used.
REGAL [17] is a system, which consists of a network of genetic nodes to achieve
high parallelism. Each individual encodes a partial solution (called the Michigan
approach). It uses classic mutation and several crossover operators. GNET is
a descendant of REGAL. It also uses a network of genetic nodes, but takes a
co-evolutionary approach [1], i.e. two algorithms are used to converge to a so-
lution. DOGMA [10] is a system, which uses a combination of the Pittsburgh
and Michigan approach on different levels of abstraction. All these systems use
a simple bit string representation. This is possible by requiring a fixed template,
2 http://pellet.owldl.com
3 http://dl.kr.org/dig/
4 Our current GP implementation does not efficiently use the second CPU.
5 3 out of 86 examples could not be used, because YinYang could not calculate most

specific concepts for them, which are needed as input for their algorithm.
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which the solution must fit in. We did not consider this approach when learning
in description logics due to its restricted flexibility.

The following systems use a high level representation of individuals. SIA01
[2] is a bottom-up approach, which starts with a positive example as seed and
grows a population until it reaches a bound (so the population size is not fixed
as in the standard approach). ECL [8] is a system using only mutation style
operators for finding a solution. In contrast GLPS [23] uses only crossover style
operators and a tree (more exactly forest) representation of individuals. In [22] a
binary representation of clauses is introduced, which is shown to be processable
by genetic operators in a meaningful way. [21] extends this framework by a fast
fitness evaluation algorithm.

The systems based on Genetic Programming, i.e. SIA01, ECL, and GLPS
are closest to our approach. Similar to our research, they also concluded that
standard GP is not sufficient to solve their learning problem. As a consequence,
they invented new operators. As far as we know, they did not try to connect
refinement operators and GP explicitly as we did. We cannot directly compare
the operators, which are used in ILP systems, with the genetic operator we have
developed, since the target language (logic programs) is different.

7 Conclusions, Further Work

In the article, we have presented a hybrid approach for learning concepts in
DLs, which combines GP and refinement operators. We first presented how to
solve the problem using standard GP, outlined difficulties and showed how they
can be overcome using refinement operators. To the best of our knowledge, this
is the first time a framework for transforming refinement operators to genetic
operators has been proposed and the first time that evolutionary techniques have
been applied to the concept learning problem in description logics. Based on a
full property analysis [14], we developed a concrete genetic refinement operator
and provided a preliminary evaluation.

In the future we plan to extend our evaluation, propose benchmark data sets
for the learning problem, and analyse the interaction between genetic refinement
operators and traditional operators.
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Abstract. This paper addresses relation information extraction problem and 
proposes a method of discovering relations among entities which is buried in 
different nest structures of XML documents. The method first identifies and 
collects XML fragments that contain all types of entities given by users, then 
computes similarity between fragments based on semantics of their tags and 
their structures, and clusters fragments by similarity so that the fragments 
containing the same relation are clustered together, finally extracts relation 
instances and patterns of their occurrences from each cluster. The results of 
experiments show that the method can identify and extract relation information 
among given types of entities correctly from all kinds of XML documents with 
meaningful tags.  

Keywords: relation information extraction, XML document, cluster, 
occurrence pattern. 

1   Introduction 

As a new standard for Web information issue and data interchange, XML was 
designed to describe data and to focus on what data is. In XML documents, tags are 
"invented" by the authors of the XML documents to mark the data. In fact, the 
semantic information of XML data is implied in the tags and structure of the 
document. It can help to infer the content of XML documents. However, there are still 
greater differences in tags and structures in different XML documents. Therefore, 
extracting relation information from different XML documents is still a challenging 
work. 

This paper focuses on discovering relations among given types of entities which 
are buried in different nest structures utilizing the topology of XML data and 
semantics of XML tags. Different from other Web IE (Information Extraction) tasks, 
our research aims to find all kinds of relations among given types of entities. Previous 
Web IE tasks [1] [2] [3] have kept the notion of specific pieces of information based 
on some pre-defined templates or given relations. However, we treat relations 
themselves as variables that can be mined. Our method can come up with new 
relations. 
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We observe that the XML document fragments that contain the same relation 
usually have similar elements and similar topology structures. Therefore, in the 
procedure for discovering relations, we collect related XML fragments first, and then 
cluster XML fragments according to semantics of tags and structures of XML 
fragments so that the fragments containing the same relation are clustered together, 
finally, extract relation instances and patterns of their occurrences from each cluster. 

The rest of the paper is structured as follows. In section 2, we formalize our 
relation extraction problem. In section 3, we propose a new method and introduce our 
solution in detail. In section 4, we present some results of experiments. We introduce 
some related work in section 5. Finally, we draw a conclusion and put forwards 
further work in section 6. 

2   Problem Definition 

This paper focuses on the problem of discovering relation information among entities 
from XML documents. Here we formalize the relation information that will be found, 
data source (XML file), and the task of extraction as follows. 

2.1   Relation Schema and Instance 

Define relation information to be found first. 

Definition 1. A relation scheme that describes the relationship among n entities is 
defined as R(et1, …, etn), where R is a relation name and et1, …, etn are named entity 
types. An instance of the relationship among n entities is an n-tuple (I(et1), …, I(etn)), 
where I(eti ) (i =1,…,n) is an instance of named entity type eti. 

2.2   XML Document and Fragment 

The element is the basic unit of XML document. All XML documents must have a 
root element. All other elements must be within this root element. Any element can 
have subelements (child elements). Subelements must be correctly nested within their 
parent element. Therefore, an XML document can be represented as a labeled tree. 
Each node v of the tree corresponds to an XML element (or an attribute) and is 
labeled with the tag name (or the attribute name). 

Definition 2. A labeled tree of an XML document d is a pair (N, E), where (1) N is a 
node set which is the union of element set and attribute set of the document; (2) E is 
an arc set, (u,v)∈E iff u,v∈N and v is a subelement or an attribute of u. We say that a 
part of an XML document p is an XML document fragment of d if the labeled tree of 
p is a subtree of labeled tree of d with root x∈N (namely, the subtree consists of x and 
all of descendants of x).  

Here we model XML documents as a labeled tree with nodes that are related to our 
mining task. 
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Definition 3. Let et be an entity type name, Ex(et)=(et,et1,et2, …, etm) is an extended-
name vector of et, where eti (i=1,2, …, m) is a synonym, compound word or 
abbreviation of et. 

Namely, an extended-name vector of an entity type name consists of the type name, 
synonyms, compound words or abbreviations of the type name. 

Definition 4. Let p be an XML document fragment, T= {t1, …, tv} be the set of tags 
and attributes of p, Ex(et) be the extended-name vector of entity type name et, we say 
that fragment p contains entity type et if there exists a ti∈T such that ti matches one of 
element of Ex(et).  

Definition 5. Let P be a set of XML document fragments containing entity type 
et1,…, etn, p∈P, if ∀p’∈P, the labeled tree of p’ is not a subtree of the labeled tree of 
p, we call p the minimal fragment containing entity types et1,…, etn. 

Example 2. Both fragment 1 and fragment 2 are minimal fragments containing  
entity-type “title” and “author”. 

Book-order document: 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XML Explorer v2.0 by Mergesoft --> 
<Catalog> 
<book> 

     <title>Expert One-on-One Oracle</title> 
<bookinfo> 
<author>Thomas Kyte</author> 
<publisher>Apress</publisher> 
<price>$59.99</price> 

</bookinfo> 
</book> 
<book> 
<title>Professional C++ Programming</title> 
<bookinfo> 
<author>Nicholas A. Solter, etc</author> 
<publisher>Wiley</publisher> 
<price>$26.39</price> 

</bookinfo> 
</book> 

</Catalog> 

Fragment 1: 

<book> 
<title>Expert One-on-One Oracle</title> 
<bookinfo> 
<author>Thomas Kyte</author> 
<publisher>Apress</publisher> 
<price>$59.99</price> 

</bookinfo> 
</book> 
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Fragment 2: 

<book> 
<title>Professional C++ Programming </title> 
<bookinfo> 
<author>Nicholas A. Solter, etc </author> 
<publisher>Wiley </publisher> 
<price>$39.99</price> 

</bookinfo> 
</book> 

2.3   Task Description 

Let et1,…, etn be n entity types related to relations in which we are interested, let 
R={R1,…, Rh} denote all of relations among et1,…, etn, where Ri={rij | rij=(I(et1),…, 
I(etn)) } (i=1,…, h), (j=1,…,|Ri|), let D be a set of XML documents. 

The problem of discovering relations among et1,…, etn and their occurrence 
patterns is: 

Find all minimal fragments containing entity-type et1,…, etn , P= {p1,…, pm}, then 
divide P into P1,…, Ph so that each Pi corresponds to a relation Ri. For each Ri, set up 
a relation schema Ri(et1,…, etn) and extract relation instances of Ri and their 
occurrence patterns from Pi. 

3   Method Outline 

Our goal is to discover and extract relation information among given entity types. An 
XML document may consist of some fragments with different contents. Therefore, we 
should extract fragments that contain given entity types from documents first, 
discarding unrelated parts of document. In General, fragments containing the same 
relation will have similar elements and structures. There is high similarity between 
them. Fragments can be clustered by similarity so that a cluster is corresponding to a 
relation. Thereby, all kinds of relations hidden in documents are discovered. Our 
solution includes following steps: 

(1) Prompt users input entity type names related to desired relations et1, …, etn. 
(2) Generate extended-name vectors of entity types Ex(et1), …, Ex(etn) by using 

WordNet [4] and a user-defined word library. 
(3) Extract minimal fragments containing entity types et1, …, etn from given XML 

documents and set up a fragment set P. 
(4) Cluster P by similarity so that a cluster is corresponding to a relation. 
(5) Select a cluster of P, display the roots of cluster and prompt users to choose a 

relation name. 
(6) Generate a pattern tree for above relation and extract relation instances that match 

the pattern tree and their occurrence pattern. 

Repeat steps 5-6 to extract all kinds of relation information of entity types et1, …, 
etn from P. 

Using above method, we call it FCRD (Fragment Clustering based Relation 
Discovery), all kinds of relations buried in XML documents can be discovered. 
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3.1   Computing Similarity Between XML Fragments 

Fragment clustering is a key step of our method. Fragments about the same kind of 
relation should be similar to each other. According to Information-Theoretic 
Definition of Similarity [5], the similarity between A and B can be measured by the 
ratio between the amounts of information required to state the commonality of A and 
B and the information required to fully describe what A and B are. If two objects A 
and B can be viewed from several independent perspectives, their similarity can be 
computed separately from each perspective. We believe that XML fragments with the 
same kind of relation information will have the similar set of tags and similar 
topology structures. Similarity between XML fragments can be measured from the 
meaning of tags and the topology structure of the fragments. Based on the definition 
of element similarity and the method for computing structure similarity proposed by 
[6], we present the methods to calculate semantic similarity and structure similarity 
between XML fragments respectively first, and then compute overall similarity 
between XML fragments by weighted average of semantic similarity and structure 
similarity. 

Semantic similarity measure: XML tags are used to mark data. They carry useful 
semantic information. Therefore, we set up a semantic feature vector model according 
to tags for each fragment, and then calculate semantic similarity by the semantic 
feature vectors [7]. 

Structure similarity measure: we use an adapted sequential pattern mining 
algorithm for finding maximal similar paths between XML fragments [6]. Path 
a1a2…ak in fragment p and b1b2…bk in fragment p’ are similar iff an item in Ex(ai) 
match or partially match an item in Ex(bi) (i=1,…, k). We compute structure 
similarity between 2 fragments by the ratio of similar paths to the nested structure of 
bigger fragment. 

Definition 6. Let p1 and p2 be XML fragments, the similarity between p1 and p2 is 
defined as follows: 

Sim(p1,p2)=λ1SemSim(p1,p2)+λ2StrSim(p1,p2) . (1) 

λ1, λ2: the weights of semantic similarity and structure similarity respectively; 
SemSim(p1,p2): Semantic similarity, it is computed by following steps:  

(1) Each XML fragment is represented as a semantic feature vector. 
)score),t(Ex,...,score),t(Ex,score),t(Ex(p 1

m
1
m

1
2

1
2

1
1

1
11 ><><><= , 

)score),t(Ex,...,score),t(Ex,score),t(Ex(p 2
n

2
n

2
2

2
2

2
1

2
12 ><><><=  

Where, Ex(tj
i) is the extended-name vector of the jth tag of pi (i=1, 2). It 

consists of the tag name, synonyms, compound words or abbreviations of 
the tag name. scorej

i is the score of similarity of tag tj
i . The score criterion 

is as follows: 
6: When the name of tag tj

i completely matches a tag name of another 
fragment. 

5: When the name of tag tj
i completely matches a term in the extended-

name vector of a tag in another fragment. 
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4: When a term in the extended-name vector of the tag tj
i completely 

matches a term in the extended-name vector of a tag in another 
fragment. 

3: When the name of tag tj
i partially matches a tag name of another 

fragment. 
2: When the name of tag tj

i partially matches a term in the extended-
name vector of a tag in another fragment. 

1: When a term in the extended-name vector of tag tj
i partially matches 

a term in the extended-name vector of a tag in another fragment. 
0: When there is no match. 
If more than one value is applicable, the maximum value is selected. 
If the score>0, we say that this tag (or element) is a similar tag (or 

element) between p1 and p2. 
(2) Compute SemSim(p1, p2). 

)nm(6
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StrSim(p1,p2): Structure similarity, it is computed by the nested structure of the 

fragment with more elements. 
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N: the number of level-1 subtrees of the fragment with more elements in (p1,p2} 
Rt: the root of the tth level-1 subtree of the fragment with more elements in 

{p1,p2} 
L(x): a level function; L(Rt) is the number of levels of the subtree with root Rt;  
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  Ct: the set of child-notes of Rt 

   N(Ct): the number of the nodes in Ct  
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Example 3. In figure 1, the semantic similarity of (a) and (b) is 0.77, and the structure 
similarity is 0.61. When λ1=λ2=0.5, the similarity of (a) and (b) is 0.69. 

 
book 

title bookinfo

author 
publisher

link

 
document

bookinfo

title author link
 

                                                (a)                                                        (b) 

Fig. 1. Two XML Documents 

From definition 6, we can prove that Sim(a, b) has following properties. 

Proposition 1. The similarity measure Sim(a, b) satisfies: 

(1) ∀a, b, Sim(a, a) =1 ≥ Sim(a, b) 
(2) ∀a, b, Sim(a, b) = Sim(b, a) 
(3) The more similar a and b are, the higher Sim(a, b) is. 

3.2   XML Fragment Clustering 

We propose a multi-threshold-clustering algorithm to cluster XML fragments so that a 
cluster is corresponding to a relation. In the procedure of clustering, the algorithm will 
dynamically choose threshold according to the distribution of similarities. The main 
steps include: (1) pick up a desired fragment p and compute the similarity between p 
and all of fragments (include p). In general, there is an obvious difference between the 
similarities of the fragments that are similar to p and the similarities of the fragments 
that are dissimilar to p. Therefore, (2) rank similarities in descending order to form a 
descent curve. (3) Apply the second derivative passing through zero to get inflexions, 
and then choose the similarity corresponding to the inflexion whose first derivative is 
the minimum as similarity threshold ε. (4) Select fragments whose similarities are 
greater than ε to form a candidate cluster. The candidate cluster will become a cluster, 
if it is large enough, that is greater than the given density in algorithm DBSCAN [8]. 
The remaining fragments, whose similarities to p are less than ε may contain other 
relations. Repeating above steps on the rest fragments, more clusters will be obtained. 

Algorithm 1. Multi-threshold-clustering algorithm for XML fragments 
Input: a set of XML fragments P, density d 
Output: a set of XML fragment clusters C 
Method:  

(1) Select a desired fragment p0 from set P. 
(2) For each pi∈P, compute Sim(pi, p0). 
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(3) Rank all Sim(pi, p0) in descending order. 
(4) Choose the similarity corresponding to the inflexion whose first derivative is 

the minimum as threshold ε.  
(5) Let S= { p’| Sim(p’, p0)>ε}. 
(6) If |S|≥d, then put S into C. 
(7) P:=P-S,  
Repeat above steps until P=∅, namely, all of the fragments in P have been 
processed. 

3.3   Extracting Relation Instances and Their Occurrence Patterns 

Each cluster of XML fragments contains a relation of given types of entities. We first 
create a pattern tree to represent the relation mining requirement of users, and then 
apply approximate match to find desired relation instances. Approximate match 
require only the nodes similar to pattern tree and keep ancestor-descendant 
relationship. Because the context of a word often determines the meaning of a word in 
a document, we check the parent node of the root of fragment in original document if 
necessary while matching. Our tree approximate match is defined as follows. 

Definition 7. Let Tp=(V, Ep) be a pattern tree that represents the relation mining 
requirement, Tf=(W, Ef) be the tree of an XML fragment, we say that there exists an 
approximate match of Tp in Tf, if there is a function f: V→W, which satisfies: 

(1) u=v⇔f(u) =f(v), u, v∈Domain(f) 
(2) name(f(v))∈ Ex(name(v)) 
(3) u=parent(v)⇔f(u) =ancestor(f(v)) 

where, condition (1) means that f is one to one; condition (2) means that the node of 
Tp is similar to corresponding node of Tf , and condition (3) requires f to keep 
ancestor-descendant relationship. 

 

Fig. 2. Two Examples of Approximate Match 

Figure 2 shows two examples of approximate match. The first one is a special 
example for approximate match, in which f keeps parent-child relationship of nodes. 
It is an example of exactly match. 

After finding matches, the next is to extract corresponding elements and attributes 
from matched subtree, then assemble extracted data in the relation tables and extract 
occurrence patterns from fragments. 
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4   Experiment 

In order to test our method, we implemented above method on the windows 2000 
using Java [10] and chose discovering relations between “title” and “author” as the 
task of our experiment. Here we focus only on testing ability to discover different 
relations. 

The data set for our experiment came from Wisconsin’s XML data bank [11]. The 
test set D consists of all of XML files in directories bib and club, and some of XML 
files from directories lindoc and sigrecord. In the experiment, our system extracted 
212 minimal fragments with entity types “title” and “author” from D, and set up a set 
of fragments P. 

 

Fig. 3. The tree of bib_0_0.xml 

While clustering, the system selected the first fragment bib_0_0.xml (its structure 
is shown in figure 3) and computed the similarities between bib_0_0.xml and all of 
fragments of P. Figure 4 (a) shows the similarities between bib_0_0.xml and the 
fragments extracted from XML files in directory lindoc and sigrecord. The 
similarities are lower, because bib_0_0.xml and the fragments from directory lindoc 
and sigrecord contain different relations. Figure 4 (b) lists the similarities between 
bib_0_0.xml and all of the fragments in P in descending order. It shows that all of 
similarities between bib_0_0.xml and fragments from directory bib are 1 though they 
are different not only in their content but also in their structure. For example, 
bib_0_0.xml contains an author name only, while some fragments contain two or 
more author names. It is due to their same tag-names and similar paths. 

0
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0.3
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0.5
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.       .

.    .

lindoc15 sigrecord15

Similarity

XML fragment
lindoc1 0

0.2
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.       .       .

.    . 212XML fragment

Similarity

 

Fig. 4. Similarities between Bib_0_0 and paragraphs of P 
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book 

firstname lastname

publisher price year author
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Table 1. Some results of experiment 1 

Title Author 
Unix Network Programming Richard Stevens 
Crafting a Compiler with C Charles Fischer 
Crafting a Compiler with C Richard LeBlanc 
Problem Solving with C++ Walter Savitch 
lex and yacc John Levine 
lex and yacc Tony Mason 
lex and yacc Doug Brown 

Statistics, The Exploration and Analysis of Data Jay Devore 
Statistics, The Exploration and Analysis of Data Roxy Peck 

… … 

Applying the second derivative passing through zero to get inflexions, the result is 
that 0.6353 was chosen as the similarity threshold ε, which is corresponding to the 
inflexion whose first derivative is the minimum. With the similarity threshold 
ε=0.6353 and the density d=10, we got first fragment cluster that contains 182 
fragments with book-author relation Book(title, author). All of the fragments in 
cluster are from directory bib. The system extracted 342 book-author relation 
instances. Table 1 lists some of them. The occurrence pattern of them is in figure 3. 
After repeating above process on the remaining fragments, we got other 2 clusters that 
contain LinuxDocument-author relations Linuxdoc(title, author) and article-author 
relation Article(title, author) respectively. The experiment extracted all of title-author 
relation instances from D and partitioned them to 3 relations exactly. 

5   Related Work 

Extracting entities and relations among them is one of the important tasks for 
information extraction [9]. There are many researches related to information 
extraction. As we know, the most similar work to ours is [2] [3]. Sergey Brin [2] and 
Neel Sundaresan [3] call identifying relation tuples and the patterns of their 
occurrences the duality problems of the Web, and use similar methods to extract 
relation tuples and patterns from HTML webpage iteratively. Sergey Brin [2] 
proposed a technique called DIPRE (Dual Iterative Pattern Relation Expansion) that 
exploited the duality between sets of patterns and relations to grow the target relation 
starting from a small sample set. The technique was applied to extract 15257 (author, 
title) pairs and 346 patterns from 156,000 HTML pages on the Web. Neel Sundaresan 
and Jeonghee Yi [3] defined and formalized the general duality problem of relations 
on the web. They solved the problem of identifying acronyms and their expansions 
through patterns of occurrences of (acronym, expansion) pairs as they occur in web 
pages. They started off with base sets of (acronym, expansion) pairs, patterns, and 
acronym formation rules, crawled the web to look for new (acronym, expansion) pairs 
that conform the patterns in the base set, and then from the set of (acronym, 
expansion) pairs, new formation rules are extracted. Moreover, new patterns that 
associate the acronyms were identified. With the extended sets of (acronym, 
expansion) pairs, patterns, and the rules, they continued crawling the web to discover 
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more of them. Finally their crawler downloaded and analyzed 13,628 web pages, from 
which 2,694 unique AE-pairs and 948 unique patterns were identified. 

Due to the difference of the goals, the method proposed by [2] and [3] cannot be 
used to our experiment in section 4 directly. In [2], a pattern is a 5-tuple (order, 
urlprefix, prefix, middle, suffix), where order is a boolean value and the other 
attributes are strings. In the fragments of our test set D, there are two elements 
“publisher” and “year” between “title” and “author”. The middle strings are different 
between different title and author. Using the pattern defined in [2], we cannot find 
new relation instance from our test set. In [3], the authors formalize the duality 
problem of patterns and relations, but they have not defined general pattern yet. They 
present a special pattern for problem of finding acronyms and their expansions only. 
The pattern is a 3-tuple (a_pattern, e_pattern, formation_rule), where the 
formation_rule is a rule which specifies how an acronym is formed from its 
expansion. Therefore, their solution of finding acronyms and their expansions cannot 
be used to our experiment in section 4 directly. 

[12] and [13] also consider fragment documents clustering. However, their goal is 
to integrate XML data sources so that users can conveniently access and acquire more 
complete information. Their similarity measure just compares the PCDATA values of 
leaf nodes without considering their semantic similarities. In this paper, semantic 
information of XML tags is considered when computing similarity between two 
fragments. 

6   Conclusion 

XML tags and topology structure of document carry rich semantic information that 
can be explored for inferring the content of the document. In this paper, we propose a 
method FCRD to discover and extract relation information among entities from XML 
documents. According to the types of entities given by users, first, we extract 
fragments that contain given entity-types from XML documents. Second, we propose 
a mult-threshold clustering algorithm to cluster extracted fragments by similarity so 
that the fragments containing different relations are clustered to different groups. 
Thereby, all kinds of relations are revealed. Finally, we extract all kinds of relations 
and their occurrence patterns from respective clusters.  

Primary experiments show that if extended-entity vectors are generated properly, 
our method can extract all of relations among given types of entities correctly from 
XML documents with meaningful tags. We noticed that one of the problems is how to 
set up a proper dictionary so that system can generate extended-name vector properly 
for all kinds of application. Next, we will carefully research on this problem. 
Furthermore, we will improve our similarity measure method and XML fragment 
clustering algorithm. 
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Raphael, Benny 174
Raudys, Sarunas 810
Riesen, Kaspar 563
Roli, Fabio 795

Sadoddin, Reza 404
Saitta, Sandro 174
Sakai, Tomoya 218
Sanderson, Robert 838
Sansonetti, Giuseppe 434
Shidara, Yohji 490
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